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ABSTRACT

Douglas Roy Wilson, Jr.: Statistical Methods for the Estimation of Cell-Type Composition and
Cell-Type Specific Association Studies

(Under the direction of Wei Sun and Joseph Ibrahim)

Samples of human tissues used in biological research are often impure. Such samples contain

cells of the type under study and multiple ancillary cell types, leading to inaccurate expression

estimates and analysis for the cell type under study. While estimates of cell type abundance can be

of interest on their own, their use is critical to the correction of differential expression testing in

heterogeneous cell type samples to account for differential cell type abundance across conditions.

This dissertation develops and examines three statistical models for the estimation or use of cell

type abundance profiles in the analysis of RNA-seq data from heterogeneous cell type samples.

Regarding estimation of cell type abundance profiles, we propose two models: IsoDeconv and

ICeD-T. The IsoDeconv model approaches abundance estimation using isoform-level expression.

We extend the IsoDeconv model to allow for biological variability in isoform expression across

samples. The IsoDeconv model is assessed via simulation and through use of in silico mixtures of

genuine RNA-seq expression datasets from non-cancerous human cell lines. The ICeD-T model

approaches abundance estimation deconvolution using gene-level expressions while allowing for

aberrant gene behavior within mixed cell type samples. Estimation properties of ICeD-T are

assessed via simulation and validated in both microarray and RNA-seq datasets.

Transitioning to the use of abundance profiles in the analysis of heterogeneous cell type samples,

we propose pTReCASE. pTReCASE is an expression quantitative trait locus (eQTL) mapping

technique for use in bulk tumor samples. pTReCASE extends current eQTL mapping methods for

tumor tissues to estimate eQTLs within tumor and normal cells separately. The type I error and

iii



power of pTReCASE are assessed via simulation before application to the study of breast cancer

data from 547 Caucasian women.
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CHAPTER 1: INTRODUCTION

Almost invariably, tissue samples collected from human sujects are not restricted to a single

cell type. Instead, each sample is a mixture of cell types (e.g. immune cells, fibroblasts, etc.). In

tumor tissues, mixtures arise naturally from incomplete separation of normal cells from the tumor

section or from the infiltration of normal cells into the tumor itself (e.g. immune cell infiltration).

It is often of interest to examine the composition of such mixtures with respect to the constituent

cell types. In the case of immune cell infiltration within tumors, abundance profiles can provide

biological insight into the body’s response to cancer and can identify possible deficiencies in this

response. When the abundance profile itself is not of interest, cell type composition is crucial to the

study of cell-type specific differential expression. Failing to consider differential abundance profiles

risks conflating expression differences due to shifting profiles with true differential expression.

Physical methods exist to separate the mixture tissues into their distinct, constituent cell types.

However, these techniques can be prohibitively expensive and remove the cells from the natural

environment in which they live. The use of computational methods to deconvolute gene expression

from mixed cell type samples sidesteps these obstacles while still providing useful information

in their analysis. It is the purpose of this dissertation to explicitly model cell type abundance

profiles and incorporate such profiles into the study of heterogeneous cell types samples using gene

expression profiles from RNA-seq experiments.

In chapter 3, we develop IsoDeconv, a model for cell type abundance estimation which utilizes

isoform expression information. Since isoform expression is a more granular examination of the

expression products utilized by a cell, it may be more sensitive to cell type differences existing

between cells of similar lineages (e.g. CD8+ T-cells, γδ T-cells) than gene-level expression.

Thus, the proposed methodology would be more accurate than current gene-level methods for

deconvolution of highly similar cell types. IsoDeconv is extended to allow for biological variation
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in isoform expression across samples. This model is assessed via simulation and through the use of

in silico mixtures of genuine RNA-seq expression datasets from non-cancerous cell lines.

In chapter 4, the abundance estimation problem is revisited using gene-level expression data.

We propose a model for the estimation of immune cell abundance within tumor tissues called ICeD-

T. ICeD-T is designed to estimate immune cell abundance profiles in the presence of aberrant gene

behavior using tumor purity estimates, if available. ICeD-T is validated on microarray expression

data from human blood and an RNA-seq expression dataset from melanomas. ICeD-T is also

applied to the examination of response-to-treatment for an immune checkpoint therapy.

Chapter 5 transitions to the use of cell type abundance profiles in the analysis of heterogeneous

cell type samples rather than the estimation of such profiles. In this chapter, we propose a statistical

model for the identification of expression quantitative trait loci (eQTL) within tumor tissues called

pTReCASE. As outlined above, tumor tissues contain tumor cells and normal cells. pTReCASE

extends current tumor-tissue eQTL mapping techniques to estimate eQTLs in tumor and normal

cells separately. We demonstrate that pTReCASE provides proper Type I error control and improved

power in the detection of eQTL. pTReCASE is applied to the study of gene expression data from

the breast cancers of 547 Caucasian women.
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CHAPTER 2: LITERATURE REVIEW

2.1 The Biology of Transcription and RNA-Seq

Next generation sequencing technologies (NGS) provide a wealth of knowledge for the analysis

of the cell. For example, one can examine the genetic sequence, interrogate the use of DNA-protein

interactions, and explore the transcriptional activity of the cell in order to uncover the biological

determinants governing cell behavior and function. Ribonucleic acid sequencing (RNA-Seq) allows

examination of the latter, providing a snapshot of the building blocks each cell uses to create proteins.

These proteins, in turn, are the basic units used to perform work within a cell. Thus, by providing a

snapshot of the transcriptional activity of a cell, RNA-Seq allows examination of a cells identity by

examining the tools it will use to perform work.

Before discussing RNA-Seq, a discussion of the basic biology it examines is warranted. In order

to create proteins, cells translate the genetic information contained in DNA into RNA through the

process of transcription. Once the DNA has been transcribed into RNA, cellular mechanisms edit

the RNA transcript. This editing removes regions of code, termed introns, which will not be used in

creating proteins. The remaining regions of code, called exons, are retained in the final messenger

RNA (mRNA) transcript and will be expressed through proteins. A single gene in the genome

can produce multiple mRNA transcripts and thus multiple proteins through the use of alternative

splicing [1]. Alternative splicing, occurring in at least 90% of human genes, is the process by

which a single RNA transcript has various exons removed from the final mRNA transcript to create

multiple, unique transcripts called isoforms [2]. RNA-Seq measures the presence and amount of the

final, processed mRNA transcripts within the cell.

The process of RNA-Seq begins with the purification of the RNA sample. This typically

involves processes to remove ribosomal RNA – a subset of non-coding RNAs which comprise 90%
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of RNA product in the average cell – or the enrichment of the sample for messenger RNA (mRNA).

Once a sample of purified RNA is obtained, these molecules are often sheared to reduce the length

of fragments before sequencing and to remove structural impediments to downstream processing.

These RNA sequence fragments are then reverse transcribed into complementary DNA (cDNA).

This cDNA is then amplified for sequencing and sequenced on one of numerous massively parallel

DNA sequencers including Illumina Genome Analyzer, ROCHE 454, or SOLiD sequencers. Often,

these sequenced RNAs are then mapped back onto a reference human genome to determine their

site of origin and summarized by genomic locus or isoform [3].

The output of the typical RNA-Seq experiment involves counts of the number of sequence

fragments at various sites in the genome. However, comparison of counts both across and within

samples requires normalization. Archetypical normalization attempts to remove imbalances in

RNA-Seq read counts due to differences in the amount of RNA procured in a given experiment

and/or the length of the genomic feature of interest. This is typically performed through use of

Fragments per Kilobase per Million Mapped reads (FPKM) correction, which divides each observed

count by the amount of mapped sequence present in each sample and multiplied by the length of

the genomic feature [4]. In this way, counts across different samples and genomic features can be

viewed on a similar scale.

Notable sources of bias in RNA-Seq counts at different genomic loci include mappability biases,

GC-content biases, and nucleotide start site biases. Mappability bias implies that regions of DNA

with fewer repetitive elements and longer stretches of unique arrangements of DNA will see larger

observed RNA-Seq read counts [5]. GC content biases indicate that regions with a large proportion of

GC nucleotides tend to experience larger RNA-Seq read counts [6, 7, 8]. Finally, though somewhat

attributable to a preparatory technique known as random hexamer priming, it was observed that

RNA-Seq reads tended to start at genomic loci with G or C nucleotides [8]. The correction for these

biases is most critical in situations where attempts are made to compare transcription activity levels

between different genomic locations, not for the examination of transcriptional activity at the same

genomic loci across different conditions.

4



Compared to RNA microarrays, RNA-Seq provides numerous improvements. While microar-

rays can only consider pre-specified genomic locations or splice junctions, RNA-Seq provides a

large dynamic range of reads covering the genome. This allows for the discovery of novel genes,

transcripts, and splice sites [9, 10]. In addition, RNA microarray data processing often requires the

use of opaque normalization techniques whose impacts on resulting measures of signal strength

are not readily comprehensible. Current popular RNA-Seq normalization techniques are simple to

apply and their effects on resulting signal strength measures are much clearer.

2.2 Count Models for RNA-Seq Expression

As discussed in the previous section, RNA-Seq output comes in the form of observed sequence

counts at various genomic loci or transcripts. Typical models for RNA-Seq data have involved

count distributions such as the multinomial or discrete model, the Poisson model, and the negative

binomial model. Each of these will be discussed briefly.

Early models of RNA-Seq expression assumed that reads represented independent, random

realizations from a selection process that was uniform across the length of a transcript and dependent

on the activity level of the transcript or locus in question [11]. Thus, the multinomial model was a

natural starting point. The multinomial models can occur on one of two scales which summarize

the same data in different ways. The first scale is to model expression at each genomic locus.

The second scale models the likelihood for each individual RNA read. RNA-Seq by Expectation

Maximization (RSEM) is a good representative of the individual RNA read level model [12]. Let θi

be the proportion of expression and li denote the length of a transcript i. The probability that one

would observe a read fragment r that arises from transcript i is given by:

P {r ∈ i} =
θili∑
θjlj

This modeling technique accounts for the length of different isoforms in generating RNA-Seq reads.

RSEM also incorporates corrections for positional biases and sequencing errors by adding weighting
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factors for each possible location that a given read can map within the genomic feature of interest

[12].

As RNA-Seq expression libraries are quite large, and the expression of typical genes can be

considered quite small in relation to the entire library, the multinomial model lends itself well to an

approximation via Poisson counts. Marioni et al [13] assess the variability in read counts at certain

loci across technical replicates of RNA-Seq expression. A technical replicate is data arising from

sequencing of the same biological sample on differing lanes or runs of a DNA sequencer. They

found that, at least in the technical replicate setting, a Poisson model accounting for library size and

average transcript expression adequately captured the mean and variance for differential expression

testing [13]. It has been proven that estimation of transcript abundance using the multinomial and

Poisson counts is identical under identical bias models [14].

It has been noted, however, that the Poisson model does not adequately capture the variance

in expression levels across biological replicates as compared to technical replicates. It was found

that the observed variance in expression tended to exceed the mean across biological replicates,

suggesting the presence of overdispersion [15, 16]. It is in this setting that the negative binomial

models were introduced to correct differential expression analyses for this greater observed variation.

Anders and Huber utilized a library-size and locus specific expression dependent model of mean

expression. In a low replicate setting, Anders and Huber borrow information across genes to

estimate overdispersion by hypothesizing a functional relationship between average expression

and variance using local regression to obtain estimates [15]. Robinson and Smyth proposed an

alternative estimator for the overdispersion using a weighted likelihood approach, which acts as a

penalty on a genes estimate of overdispersion towards a common overdispersion using a likelihood

function motivated by Empirical Bayesian estimates of penalty parameters [16].

In a model titled IsoDOT, Sun et al provided an extension to the negative binomial models

often used in RNA-Seq that shifted focus from the modeling of gene or transcript level expression

to exon set level expression. By breaking down expression within a gene into sets of reads which

overlap particular groupings of exons, Sun et al were able to interrogate the alternative splicing
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mechanisms used in transcription regulation and thereby model isoform specific abundances across

varying conditions (e.g. cell type, disease status) [17].

The following introduces the structure of the IsoDOT model for a single gene, which will set

the stage for further extensions of this model to deconvolution of expression data from multiple

cell type sources. Consider exon sets A and B. A and B are distinct groupings of non-overlapping

regions of exonic code within a particular gene. Exon sets A and B may contain one or more exons

in common, but their set difference is non-empty. Each read is partitioned to a single exon set if and

only if it overlaps each exon in the set and no others [17].

One can expect the number of reads mapping to exon sets to depend on, at the very least, two

factors. The first is the length of the exon set. As noted above, larger genomic features produce

larger counts due to the fragmentation of RNA output for sequencing. Additionally, more reads will

be expected for a particular exon set if the isoforms which use the exons in this set are more active

[17].

Sun et al incorporate these features into the mean structure of a negative binomial model by

defining an effective length of each exon set within each transcript. Thus, for exon sets with exons

not composing an isoform I , the effective length of this exon set for this isoform is 0. Otherwise,

the effective length of an exon set A in isoform I is the expected number of start sites for a read

covering these exons assuming the ordered composition of an isoform I [17].

In summary, Sun et al model the count of reads across a group of exon sets in a single experiment

the following way, where X is an E × I matrix of effective lengths, γ is the vector of normalized

isoform expressions, and ti is a measure of read depth within the sample:

yi ∼ Neg.Bin. (µ = tiXγ, φ)

µ = ti

(
I∑
i=1

xuγu

)
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The true novelty of this approach is in its partitioning of reads at the gene level into varying exon

sets which create the information necessary for probabilistically estimating the isoform expression

values without probabilistically assigning reads to transcripts [17].

Sun et al also incorporate an iterative adaptive lasso penalty in the optimization of the γ param-

eters to limit the number of estimated isoform parameters above 0. In this way, it simultaneously

performs variable selection while estimating isoform expression. Differential usage testing of

isoforms across conditions uses a bootstrapped likelihood ratio statistic [17].

2.3 Expression Deconvolution Using RNA-Seq Data

Almost invariably, sequencing data derived from human tissue samples are contaminated.

Such samples contain not only cells of the type desired for study, but also contaminating cell types

such as blood or epithelium. The need for statistical procedures which can deconvolute these

sequencing data into components from contaminating cell types and those cell types of interest

has frequently been addressed in the literature. Accurate estimates of cell type abundance provide

useful information in the correction of analyses for differential expression of genes or transcripts

for differences in cell type composition, estimating the presence of immune cell contamination in

tumor samples, and the guiding of patient care in the presence of intra-tumor heterogeneity or the

presence of multiple competing cancers in a single tumor.

There are two main approaches to the deconvolution of mixed cell type samples into their

constituent cell types expressions for analysis. The first is the mechanical separation of cell types into

groups of purified cell types using techniques such as laser capture microdissection or fluorescence

activated cell sorting (FACS). Concerns exist as to whether these physical procedures influence the

cellular environment and thus the expression patterns of cells [18]. The second approach attempts

to deconvolute expression in silico through the use of statistical models to mathematically predict

cell type proportions. One can group the in silico approaches into a few different subcategories:

ratio based models of expression, linear models of expression, infiltration score models, models

which incorporate prior information about cell type abundance, and perturbed expression models.
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Ratio based models of expression typically handle the two cell type case. These cell types

can be two different normal cells or two subsets of cells (e.g. normal and tumor). Consider a

mixture sample composed of cell types A and B. Let EiA represent the expression of gene i

in cell type A. Let EiAB be the expression of gene i in the mixture tissue. It is assumed that

EiAB = pAEiA + (1− pA)EiB . The idea behind ratio-based models is to compare the expression of

a gene i in a pure sample of one cell type A, against the expression of this gene in a mixture sample

of types A and B. Thus, define RiAB = EiAB/EiA where a reference value of EiA is known a priori.

In the absence of noise, one would expect the minimum of this ratio across genes to approach pA

since one considers genes more highly expressed in A and more lowly expressed in B. However,

the presence of biological or experimental noise complicates the analysis and ruins estimation of

the proportions.

Two different approaches to handle this noise were examined. In the approach used by Gosink

et al, several realistic simulations are computed across a range of values for pA. For each simulation,

the RiAB are ranked by magnitude. The fifth percentile RiAB score is used in a regression equation

to predict pA. The model used was selected from multiple regression models considering the q-th

percentile RiAB and its square as covariates. The one which provided the best R2 value was chosen

[19]. Clarke and Seo, however, accounted for noise using a transformed version of the RiAB values.

The transformed version of the RiAB

[
tRiAB = log(1+αEiAB)

log(1+αEiA)

]
values uses an optimized choice

of correction factor (α) found by computing the ”elbow” of a plot of the mean transformed RiAB

values against the correction factor. The minimum tRiAB was found to be a good estimator of pA

[20].

Another ratio based method, UNDO uses the ratios of expression (Ri) between two mixed

tumor/normal samples across all available genes i. A gene is considered a marker gene if it falls

within some pre-specified small-ε neighborhood of the minimum and maximum Ri. As before,

these maximum and minimum Ri are indicative of genes used exclusively in one cell type. Using a

simple relationship between these marker genes expressions and cell type proportions in each of the

mixtures, namely that the ratios are bounded by ratios of cell type abundances one can estimate

9



cell type specific proportions for each cell type from sample mean expression values in the mixture

tissues [21]. Without the use of pre-specified pure sample references, one could term this method

unsupervised estimation.

Linear models of expression all begin with the following underlying model for the expression in

a mixture tissue with K-constituent cell types. Let Y , a g × n matrix, be appropriately normalized

gene expressions in n mixture tissues. Let C, a g ×K matrix, be the appropriately normalized,

Gold-standard reference expression at each gene for each of the K cell types. Let W , a K × n

matrix, represent the mixing fractions of the different cell types across the k tissues. The model

for expression in the mixture tissue is then given by Y = CW . The majority of these methods

require a Gold-Standard reference expression profile, preferably composed of genes with differential

expression across cell types.

The earliest methods in linear models were designed and fit using simulated annealing pro-

cedures to obtain estimates of the matrix W [18, 22]. In the Lu paper, simulated annealing to

minimize prediction error was used to fit the linear model. Lu et al investigated yeast cell popu-

lation dynamics under various environmental conditions [22]. Shen-Orr applied the technique to

human blood samples [18]. Early linear modeling procedures required post-estimation correction of

physically impossible results such as negative proportions or proportions which did not sum to one

by renormalizing positively estimated proportions to fall between 0 and 1[23].

After the advent of RNA-Seq, Gong et al tested the applicability of the linear modeling

procedures previously developed in the microarray setting. Advocating proper normalization, such

as RPKM in the RNA-Seq setting, their method DeconRNASeq utilizes quadratic programming to

find an estimate of W which minimizes the squared prediction error and is subject to the normal

physical constraints of proportions. DeconRNASeq also refines the Gold-Standard expression

matrix by utilizing a subset of rows of the reference matrix with the smallest condition number,

thereby producing more stable estimates of the cell type proportions [24].

Much like DeconRNASeq, CIBERSORT uses a refined Gold-Standard reference profile A that

is made robust through the use of condition number selection to remove uninformative genes from
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the selection matrix. However, CIBERSORT uses support vector regression to obtain estimates of

cellular proportions [25].

The digital sorting algorithm (DSA) was designed by Zhong et al to incorporate the linear

model in the absence of a reference profile matrix. Applied to gene-level, normalized microarray

data, DSA requires a priori knowledge of marker genes genes expressed in only one of the K

cell-types. Let C∗ be a diagonal matrix with the average expression across all marker genes of

cell type k at C∗(k, k) . Let Y ∗ be the corresponding observed average expression values in the

mixture cell type samples. Assuming that the number of mixture samples exceeds the number of cell

types in the mixtures, then C∗−1Y ∗ creates an overdetermined system of equations for the C∗(k, k)

since each column of the matrix C∗−1Y ∗ must sum to one. Once these values are estimated, the

estimation of the W matrix is simply W = C∗−1Y ∗ [26].

Finally, the DeMix model uses a similar linear structure for mean intensity in non-log trans-

formed microarray data, but it does so only in the two cell type case of tumor versus normal

cells. It proposes a log base-two normal distribution for microarray intensity in tumor and normal

cells, leading to a mixture expression distribution that is the weighted convolution of these two

distributions. Estimation proceeds through use of a mixture of Nelder-Mead optimization steps

to cyclically update estimates of tumor purity, mean and variance parameters across samples for

each genes tumoral and normal expression, and tumoral intensity expression at each gene until

convergence of the likelihood. Multiple mixture samples are required for proper deconvolution [27].

In stark contrast to the majority of the previously described models, two methods of RNA

expression deconvolution focus on the estimation of gene expression values from within a mixed cell

type sample using prior information regarding cell type abundances. In the absence or pure sample

expressions, prior information regarding cell type abundance allows for identifiable models of cell

type specific gene expression. TEMT uses RNA-Seq data and a model similar to that discussed

for RSEM to quantify cell type specific gene expressions. The authors of TEMT encourage strong

information regarding cell type proportion for proper deconvolution of cell type specific gene

expression signatures [28].
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DSection also makes use of prior information regarding cell type proportions in the decon-

volution of microarray intensity data. Under a normal distribution model, DSection utilizes a

weighted sum of cell type specific expressions for the mean with heteroscedasticity across genes.

It incorporates the use of normal priors on cell type specific expression, gamma priors for probe

specific variance measures, and Dirichlet priors for cell type proportions. Parameters regarding

sample specific contributions of cell type intensity, probe specific variance measures, and cell type

proportions are updated through the use of MCMC sampling [29].

The last subset of deconvolution models can be termed perturbation models. In these models,

the reference expression levels of various cell types in the mixture are perturbed versions of pure

sample reference expression levels. These models attempt to correct for differences in mixture

sample and reference sample profiles arising from environmental effects, cell culture effects, or

mutational effects leading a cell to become a cancerous version of itself.

PERT, a model designed by Qiao et al, uses microarray RNA expression to estimate cell

type abundances. PERT assumes that the latent reference gene expression profile (D∗) of the

heterogeneous cell type sample is a multiplicative perturbation of a true expression reference (D)

given by a renormalized version of diag(P ) ∗D where each column sums to 1 and P is a vector of

perturbation factors for each gene. Maximum likelihood estimation of cell type abundances and

perturbation factors is performed assuming a discrete model for each unit of intensity. Regularization

of cell type abundances and perturbation factors is incorporated across multiple mixture samples

using dirichlet and gamma priors, respectively [23].

IsoPure, the successor of ISOLATE [30], models mRNA microarray expression in a tumor

in the following way [31]. As before, let C be a reference expression matrix for each normal

cell type, normalized so that each column sums to one, dn be a reference profile for sample ns

particular cancer, and θn be the mixing proportions of sample n. Let ω define an indicator vector

of the cell-type origin of the cancer being examined in the study. Then, we may model yn, the
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gene-expression vector for the n-th sample as:

yn ∼ Multinomial

([
C dn

]
θn

)
dn ∼ Dirichlet (knm)

m ∼ Dirichlet (k′Cω)

θn ∼ Dirichlet (ν)

In this way, they model cancer as a random perturbation of a single cell type profile, allow for each

individual’s cancer profile to vary about the true cancer profile and regularize cell type proportions

across individuals. The IsoPure model provides cancer purity estimates, an identification of the

cell-type of origin of the cancer under study, while at the same time restricting cell-type abundances

to follow a similar profile across subjects [31].

The majority of these proposed methods were designed specifically to handle microarray data.

Only DeconRNASeq, Undo, Cibersort, TEMT, and IsoPure were designed specifically with RNA-

Seq methodology in mind. Of these, only DeconRNASeq, TEMT, and EPIC specifically applied to

and validated using RNA-Seq data. The remaining models suggest validity in the RNA-Seq case,

but do not test for it. Thus, the proposed methodology for cell type expression deconvolution in

RNA-Seq data is limited.

Additionally, some models require prior information or regularization procedures with respect

to cell type abundances for deconvolution. Prior information with respect to cell-type abundance

may difficult to obtain due to cost, infeasibility of good cell type separation, or a desire to maintain

natural environmental conditions for the heterogeneous cell type samples. Models such as IsoPure

or Isolate, which require regularization of cell type abundance parameters, are somewhat limited

to the case where multiple mixed tissue samples exist or natural regularization parameters are

available.

Finally, the majority of these models measure expression on the gene level. Thus, deconvolution

among cell types necessitate cell types that express differently at the gene level. However, as noted
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earlier, at least 90% of genes utilize alternative splicing[2]. It may be the case that alternative

splicing could be more sensitive to cell type differences than gene expression, especially in cells of

highly similar lineage, for example different varieties of B-Cells. Extension of these models to the

transcript level expression would require that accurate transcript level expression information is

available. Often, however, reads map to multiple transcripts and the estimation of transcript level

expression is inexact and this uncertainty in reference expression profiles would not be captured.

2.4 Immune Cell Expression Deconvolution in Tumor Tissues

The developing relationship between a cancer and its host’s immune system is well summarized

in a hypothesis known as immunoediting. In summary, the immune system’s attack upon a burgeon-

ing cancer cell population becomes a driving force behind the development of immunosubversive

cancer cells [32, 33]. Such cells are capable of hiding from the immune system, killing its cytotoxic

population or even recruiting its suppressors to reduce further response [34, 35]. Much therapeutic

development has been focused on therapies, called immunotherapies, which enhance the bodys

natural immune response by counteracting these self-defense mechanisms in cancer. Despite recent

successes in prostate cancers and melanomas, immunotherapies have been demonstrated to be

highly disease- and subject-specific. For example, immune checkpoint blockade therapies have

produced response rates as low as 12% in head and neck squamous cell cancers and as high as 85%

in Hodgkins lymphomas [35, 36]. As immune cell composition estimation within human cancers

has demonstrated prognostic value [37, 38, 39], such an approach provides a potential avenue for the

investigation of therapeutic efficacy of immunotherapies as well as the identification of mechanisms

for novel interventions.

Bulk expression analyses such as RNA-seq and RNA microarrays have become standard tools in

the interrogation of infiltrating immune cells within the tumor microenvironment (TME). However,

as bulk expression experiments capture the totality of expression from all cells within the TME,

there is a need for statistical models which can disentangle the individual contributions of each cell

type in order to estimate the composition of the TME.
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The previous section discussed the bulk-expression deconvolution problem and several methods

used in its address for general tissue types. Here we focus on an additional subset of deconvolution

models used specifically to estimate immune cell proportions in tumor tissues. Pioneering methods

sought to quantify immune cell infiltration by proxy using infiltration scores. In this setting,

infiltration scores are quantities which are correlated with immune cell proportion in the tumor

body; the larger the score, the more abundant the immune cell population they measure. Two such

methods utilized the normalized expressions of a select few immune-specific genes (e.g. CD8A,

GZMA, PRF1) to examine infiltration of cytotoxic immune cells within the tumor body [40, 41]. A

similar method, MCP-counter, extended these models to compute infiltration scores for an increased

array of immune cell subsets including B-cells, CD4 T-cells, CD8 T-cells, Monocytes, macrophages

and more [42]. Becht et al computed the infiltration score for any category as the log-2 average

gene expressions computed across genes with cell-type specific expression in the given immune

cell subset. Infiltration scores are limited in their interpretations. At best, they allow one to rank

subjects with respect to the level of immune cell infiltration. However, they do not allow one to

assess whether there are more cells of one type than another.

An alternative to infiltration score techniques, linear regression based models remain popular

deconvolution techniques for use in tumor expression datasets. However, within tumor tissues,

the previously described approaches must be modified to account for the presence of a tumor cell

type. This modification is often performed by restricting the “gold-standard” reference matrices to

immune-specific genes, or genes expressed only within immune cells and not within tumor cells.

With an appropriate selection of immune-specific genes, the mixture expressions being modeled

remain a linear combination of the expressions across non-tumor cells only. To this end, the

CIBERSORT team developed the Leukocyte Matrix 22 (LM22) to characterize reference immune

expression across 22 different immune cell subsets at genes expressed only within the immune

population[25]. TIMER uses a similar approach by constructing a “gold-standard” reference

expression matrix for several immune cell subsets and restricting genes to those anti-correlated
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with tumor sample purity. In addition, the TIMER methodology removes high-expressions genes as

these such genes tend to have high variability and exert undue influence on model estimates[43].

The most recent linear model for tackling immune cell deconvolution in tumor tissues is

called EPIC [44]. EPIC utilizes constrained, weighted least squares to simultaneously estimate the

proportions of several immune cell types and the proportion of tumor cells within the sample. EPIC

uses a weighting scheme which considers the ratio of average gene expression to gene expression

variance. Higher weights are assigned to genes with lower expression variance in accordance with

the magnitude of their average expression across reference profiles. For use within tumor samples,

particularly melanomas, EPIC creates a reference expression matrix, TRef, constructed from single

cell RNA-seq expression profiles conducted on melanoma samples. Racle et al argue that immune

cell expression profiles developed from circulating immune cells may not adequately capture their

behavior within the tumor microenvironment. By assessing expression profiles directly from tumor

infiltrating immune cells, EPIC seeks to correct for this possible disagreement [44].

Previously proposed methods for immune cell deconvolution in the tumor microenvironment

suffer from three main disadvantages. First, each method fails to utilize knowledge of the level of

non-tumor cell infiltration into the TME should this information be available. Second, as expression

mixing occurs in linear-space, each of these methods deconvolve expression in the linear space.

However, this fails to incorporate the beneficial properties of the log-transformation for RNA-seq

and microarray expression experiments. Finally, previously proposed methods fail to provide a

mechanism which can both control for and identify loci within individual mixture tissues which are

inconsistent with measured references.

2.5 Expression QTL Mapping Using Gene Expression Data

Genome wide association studies (GWASs) have long been used as a tool for establishing a

link between genetic variation and phenotypes. Genetic variation in GWASs is examined through

the use of single nucleotide polymorphisms (SNPs), or single base pairs which vary across human

subjects. The phenotypes considered often involve indicators of disease (e.g. cancer) [45].
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The complex regulatory landscape that governs phenotypic expression made interpretation

of GWAS results difficult. While a link between a disease and a SNP could be established,

the biological mechanisms behind this association remained unclear. The advent of expression

microarrays and RNA-Sequencing expanded the phenotypes available for GWAS examination to

include RNA expression of individual genes. Investigation of gene-level expression afforded by

such techniques allows for direct examination of the functional role of genetic variation in gene

expression and helps to interpret GWAS results [46].

SNPs linked to changes in gene-level expression are termed expression quantitative trait loci

(eQTL). EQTL are categorized in two groups, cis-eQTL or trans-eQTL, distinguished by the

patterns of expression change they induce in affected genes [47, 48]. In order to understand the

distinction between these two types of eQTL, recall that humans are diploid organisms. Normal

cells within humans contain two homologous copies of each chromosome: a maternal and a paternal

copy.

A locus is considered a cis-eQTL if it regulates expression of the gene it effects in an allele-

specific manner [48]. For example, consider a mutation on a single allele at a transcription factor

binding site which inhibits the initiation of transcription. Alleles which lack this mutation are able

to successfully bind the transcription factor and thus initiation of transcription proceeds uninhibited.

Such a mutation acts in an allele-specific manner and is thus considered a cis-eQTL. Cis-eQTL

are often found close to the gene whose expression they alter. As a result, cis-eQTL are often

misleadingly labeled ”Local eQTL”[47].

On the other hand, trans-eQTL are distinguished by genetic variants which impact expression

of both alleles of a gene [48]. A common mechanism employed by trans-eQTL is the mutation of

loci involved in the production of transcription factors which bind to all copies of a gene. Altering

the expression or functionality of a transcription factor would thereby impact both alleles of the

gene. Trans-eQTL may be found near the genes whose expression they alter but can also be found

at a distance, possibly from a different chromosome [47].
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Traditional eQTL mapping methods implicitly assume that an eQTL has the same effect on all

cells within a sample. This is a reasonable assumption for samples with a relatively homogeneous

cell population. However, tumor samples invariably contain both tumor cells and infiltrating normal

cells (e.g. immune cells) and eQTL effects could differ between these two cell types. Previous

eQTL studies in tumors ignored tumor purity, defined as the proportion tumor cells among all cells

within the tumor sample,thereby assuming that tumors are composed of homogeneous cell types.

For example, such studies regressed normalized gene expression on eQTL genotype and other

population stratifying factors such as genotype principal components or gender [49, 50, 51, 52].

Other regression-based techniques propose first regressing tumor gene expression on estimates of

methylation and/or somatic copy number before regressing the resulting residual expression on

eQTL genotype[53]. Identification of tumor-specific eQTL is generally ad-hoc, labeling an eQTL

tumor-specific when analysis within tumor tissues suggests an eQTL where none is found in a

separate analysis of normal tissues.

An extension of these linear models has been developed to incorporate measures of tumor

purity or, in the normal tissue setting, cell-type specific abundance. Westra et al utilize a proxy

for neutrophil abundance as a covariate in a linear regression model to identify neutrophil specific

eQTL within whole blood samples[54].

As an alternative to tumor purity, several studies have incorporated allele-specific expression

(ASE) in analyses of eQTL within tumor tissues to strengthen conclusions. For example, Li et al

also propose use of RNA-Seq data to examine allelic imbalance, or the proportion of reads mapping

to one allele or another. Deviation of this proportion from 0.5 is termed imbalance[53]. However,

by failing to integrate the regression and ASE components of the model, such studies restrict ASE

analysis to a supportive role in eQTL identification. In a framework developed by Sun et al [55], it

has been demonstrated that concurrent incorporation of ASE and gene-level expression improves

power in the detection of cis-eQTL within normal tissues.

We briefly describe the model proposed by Sun for eQTL identification in normal tissues[55].

Sun examines expression data from RNA-Seq by modeling two distinct, yet overlapping components:
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total read count and allele specific read count. Employing a negative binomial model, the total

number of reads mapping to a gene are examined to estimate trans- or cis-eQTL effects. The

subset of total reads which are uniquely mappable to a single allele are modeled in a beta-binomial

framework and can only identify cis-eQTL effects. For cis-eQTL, these two components of the

model are linked through use of a common eQTL parameter which is defined for a composite,

normal tissue type. Previous extensions of this model have attempted to remove its dependence on

prior genotype imputation and haplotype phasing [56].
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CHAPTER 3: ISODECONV: CELL TYPE ABUNDANCE ESTIMATION USING RNA
ISOFORM EXPRESSION

3.1 Introduction

Sequencing data derived from human tissue samples are often mixtures of heterogeneous cell

types. Such samples contain not only cells of the type desired for study (e.g. tumor cells, B-cells), but

a milieu of additional cell types. It is often of interest to quantify the abundance of each constituent

cell type found within a heterogeneous cell type sample. In some cases, the abundance profiles

themselves contain relevant information regarding biological response, such as the case of immune

infiltration within a tumor. In others, abundance profiles are crucial for proper cell type-specific

differential expression analyses. Cell-sorting and other physical separation techniques exist to

partition heterogeneous cell type samples into purified samples of their constituent cell populations,

but such methods can be costly and may even induce changes to the cellular environment which

impact expression profiles [18]. As an alternative to physical separation methods, the development

of statistical models for the deconvolution of expression profiles from heterogeneous cell type

samples has become an active area of research.

In silico expression deconvolution models can largely be separated into three main develop-

ments: ratio-based models, linear models, and infiltration scores. Ratio-based models rely upon

computing expression ratios between a mixed expression profile and a “gold standard” reference for

a single cell type. The minimum of these ratios across genes roughly approximates the proportion

of the referent cell type [19, 20, 21]. These methods are often limited to the two cell group case (e.g.

tumor vs normal). In response to the limited cell populations interrogated by ratio based methods,

linear modeling of mixture expressions was introduced. The traditional linear model framework

assumes that appropriately normalized mixture expressions can be modeled as a weighted sum of

contributions of “gold-standard” expression profiles from two or more cell types [22, 24, 25, 26].
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Recent deconvolution models have been applied to the study of immune infiltration in tumors and

have focused on the computation of infiltration scores, or unitless quantities designed to reflect

increasing abundance of a certain immune cell [42, 43].

Almost exclusively, the proposed methods have been designed to examine and validate on gene-

level expression only. Thus, appropriate deconvolution requires that cell types express differently at

the gene level. In the case of highly similar cell types (e.g. CD8+ T-cells vs. γδ T-cells), however, it

may be the case that gene-level expression differences are minimal. Through a process known as

alternative splicing, a single unprocessed mRNA transcript produced by a gene can form multiple

distinct processed transcripts, or isoforms. Isoform expression, therefore, represents a more granular

examination of the expression products utilized by a single gene [2]. In the case of highly similar cell

types, the differential usage of isoforms may be more sensitive to cell type identity than higher-level

gene expression.

In this chapter, we outline the development of two statistical models for expression deconvolu-

tion in mixture tissues which are capable of utilizing isoform-level expression differences between

cell types. The first, IsoDeconvNB, posits a negative binomial structure for mixture expressions

across cell types. The second, IsoDeconvMM, is the successor to IsoDeconvNB which is designed

to explicitly model biological variability in reference isoform expression profiles.

3.2 Statistical Methods

3.2.1 The Data

Consider a biological tissue sample composed of K different cell types. The abundance of each

cell type k, or the proportion of cells of type k in the heterogeneous cell type sample, is unknown

and must be estimated. In order to estimate these proportions, IsoDeconv requires a single RNA-Seq

experiment performed on the mixed cell type sample. In addition, it is assumed that there exist

RNA-Seq experiments for each cell type k performed on purified samples of cells of this type; for a

single cell type k, these Nk sets of reads are considered cell-type specific RNA-seq profiles. For
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each experiment, read counts are summarized at the exon level by counting the number of reads

overlapping various sets of exons.

IsoDeconv assumes that there exists a list of cell-type specific genes wherein there are gene-

and/or isoform- expression differences across the K cell types. Such a list of genes can be found

using one of many differential expression testing methods for RNA-seq data. For the following,

the Cufflinks suite was used to determine differentially expressed and/or regulated genes for use in

deconvolution [57].

Furthermore, it is assumed that a detailed gene and isoform construction model is available

for each gene at which expression is assessed. The gene construction model assumes knowledge

of all non-overlapping exons utilized by the gene and their locations within the gene body. The

isoform-construction model for each gene assumes knowledge of all isoforms used by the gene and

their construction with respect to the known exons. For further details regarding the formation of

these gene and isoform construction models, please see the supplementary materials of Sun et al

[17].

3.2.2 IsoDeconv - Negative Binomial Model (IsoDeconvNB)

Within the IsoDeconv model, estimation of cell-type abundances is first estimated for each gene

and each sample separately. Then the final estimates for each sample are derived by aggregating the

gene-specific estimates. In the following, we first describe the IsoDeconv model for a single gene.

Consider a hypothetical gene composed of m non-overlapping exons. These m exons are

utilized by I isoforms, or distinct mRNA transcripts formed by unique combinations of these exons.

As specified in the assumed gene- and isoform-construction models, the locations of these exons

within the gene are known as are the identities and compositions of all isoforms used by this gene.

In order to model isoform expression and cell-type abundance, IsoDeconv examines read counts at

the exon-set level. We define the read count at any exon set e as the number of fragments which

overlap each of the exons in e and only these exons.
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To visualize the following setup, consider the hypothetical gene displayed in figure (3.1). This

gene is composed of m = 4 exons utilized by I = 3 different isoforms. Suppose that isoforms 1, 2,

and 3 compose the set of all isoforms used by this gene and that their structure with respect to the

exons is as given in the figure. Consider the exon set e := {1, 2, 3}. The read count at e is defined

as the number of RNA-Seq reads which, when mapped, overlap exons 1, 2, and 3 but do not overlap

exon 4.

Exon 1  Exon 2  Exon 3  Exon 4  

 

 

 

 

 

 

 

 

Gene: 

Exon 1  Exon 4  

Isoform 1 

Exon 1  Exon 2  Exon 4  

Isoform 2 

Exon 1  Exon 2  Exon 3  Exon 4  

Isoform 3 

Figure 3.1: Hypothetical gene and isoform construction model.

The IsoDeconv model posits three main factors influencing the observed read count at an exon

set e within purified reference sample j of cell type k: the read depth of the RNA-seq experiment

(tkj), the length of the exon-set feature e within each utilized isoform i (xei), and the expression

levels of the isoforms used by cells of type k (γk = (γk1, ..., γkI)
′) . As discussed in Chapter 2,

RNA-seq expression is commonly corrected for read-depth and feature length. Previously, however,

the notion of feature length pertained to the length of the genes or isoforms being measured and

not to the lengths of exon sets. Sun et al. [17] extend the definition of feature length for exon-sets

and name it as effective length of an exon set. It is calculated as the expected number of starting

locations for an RNA-Seq fragment from that exon set. If an exon set is not included in an isoform,

its effective length in the isoform is set as 0. For detailed information on the computation of the

effective lengths of each exon set, please see the supplementary materials of Sun et al [17].
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The negative binomial variant of IsoDeconv models the read count at an exon set e for pure

sample j of cell type k, denoted by Ykje, in the following way:

Ykje ∼ NB (µ = tkjuke, φk) where uke =
I∑
i=1

xeiγki = xTe γk

and φk is a cell-type specific overdispersion parameter. Given the isoform activity levels γk, read

counts are assumed independent across exon sets within a single gene, across genes within a single

sample, and across different samples.

This model is extended to the heterogeneous cell type mixture by introducing cell type specific

abundance parameters. Let Y ∗ke be the unobserved read count at exon set e attributable to cells of

type k within the mixture, Ze be the observed read count of exon set e in the mixture, tm be the

read-depth of the mixture, and pk be the proportion of expression attributable to cells of type k.

Then:

Ze =
K∑
k=1

Y ∗ke

Y ∗ke ∼ NB (µ = tmpkuke, φk)

Assuming that the expression of cells of type k in the mixture is independent of the expressions

across all other cell types, Ze is a convolution of independent, negative-binomially distributed

random variables with differing means and overdispersions.

3.2.2.1 Model Fit Algorithm

Model parameters are estimated through the maximum likelihood framework on a gene-by-

gene basis. Thus, an estimate of pk is obtained independently for each gene and aggregated across

genes to provide a final estimate of cell type abundance. Within a single gene, optimization proceeds

via block coordinate ascent. The steps are as follows:

(1) Assume the γk and φk are fixed, update pk.
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(2) Assume the pk are fixed, update γk and φk.

Steps (1) and (2) are cycled until convergence of the cell type proportions pk. Within step (1),

optimization of the pk proceeds using gradient-free LBFGS. A gradient is not supplied to avoid

the intractability of the likelihood and its gradient in the case of convolved negative binomials.

Optimization in step (2) proceeds using an EM algorithm described in the following section. This

algorithm relies upon use of LBFGS methodology to optimize the γk and φk.

3.2.2.2 EM Algorithm

Optimization in the setting of a convolution of negative binomial random variables is a

challenging problem. Within step (2), an EM algorithm was developed to transform the negative

binomial likelihoods into hierarchical gamma-poisson mixtures to simplify the likelihood. Define

λkje to be the unobserved mean read count at exon set A in pure sample j of cell type k and λ∗ke to

be the same quantity for the mixture sample. We can now recharacterize our model as:

Ykje
∣∣λkje ∼ Pois(λkje)

λkje ∼ Gamma
(
ν = φ−1

k , µ = tkjuke
)

and

Y ∗ke
∣∣λ∗ke ∼ Pois

(
λ∗kje

)
λ∗ke ∼ Gamma

(
ν = φ−1

k , µ = tmpkuke
)

The transformation of this problem into gamma-poisson mixtures allows separation of the complete-

data log-likelihood into K components, one for each cell type, which can be optimized in parallel

when cell type proportions are fixed.

To see this, consider the complete data log-likelihood (`) given below, where: `(j)
ke is the

complete data log-likelihood for pure sample j of cell type k at exon set e; `(m)
e is the complete data
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log-likelihood for the mixture sample at exon set e; `C|D represents the log-likelihood for a random

variable R given another random variable D; f(·) is the density function of the specified random

variable; and λ∗
e is a K × 1 random vector given by [λ∗1e, ..., λ

∗
Ke].

` =
E∑
e=1

{
K∑
k=1

(
nk∑
j=1

`
(j)
ke

)
+ `(m)

e

}

=
E∑
e=1

{
K∑
k=1

[(
nk∑
j=1

`Ykje|λkje + `λkje

)]
+ log

(
f
(
Ze|λ∗

e

) K∏
k=1

f(λ∗ke)

)}

=
E∑
e=1

{
K∑
k=1

[(
nk∑
j=1

`Ykje|λkje + `λkje

)
+ `λ∗ke

]
+ `Ze|λ∗

e

}

Under the gamma-poisson framework, Ze is now a Poisson random variable conditional upon

the missing data λ∗
e since it is the sum of K Poisson variates. Thus, the complete data log-likelihood

within the mixture sample becomes the sum of K independent gamma log-likelihoods
(
`λ∗ke
)

for

each λ∗ke and a Poisson log-likelihood
(
`Ze|λ∗

e

)
where the mean is given by

∑
k λ
∗
ke. As a Poisson

random variable, note that
(
`Ze|λ∗

e

)
only depends upon the sum of the λ∗ke but does not depend on

the parameters γk or φk for any k. Thus, during optimization, this term may be discarded. For a

similar reason, the Poisson likelihoods from the pure samples may be discarded as well.

According to the EM algorithm, parameter updates proceed by maximizing a Q-function given

by Q(γ1, ..., γK , φ1, ..., φK) = E
[
`
∣∣Y11, ..., YKE, Z1, ..., ZE

]
where this expectation is computed

with respect to the unobserved λkje and λ∗ke. Thus, four posterior means found in the remaining

gamma log-likelihood terms are necessary for updates in the expectation step of the EM algorithm

proposed above, namely λkje, λ∗ke, log (λkje) and log (λ∗ke). For the missing parameters λkje, it is
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possible to define closed form posterior expectations. For the λ∗ke, no such closed forms are possible.

E[λkje
∣∣Ykje] =

νk + Ykje
νk/µkje + 1

E[ln (λkje)
∣∣Ykje] = − ln(νk/µkje + 1) + Φ(νk + Ykje)

E[λ∗ke
∣∣Ze] = E

[
νk + Y ∗ke
νk/µ∗ke + 1

∣∣∣∣Ze]
E[ln (λ∗ke)

∣∣Ze] = E

[
− ln(νk/µ

∗
ke + 1) + Φ(νk + Y ∗ke)

∣∣∣∣Ze]

The latter posterior means for the heterogeneous cell type sample can be determined numerically

since Y ∗ke only has mass on the set {0, 1, ..., Ze}. A finite-summation, numerical approximation to

the distribution of convolved negative binomials is utilized to compute the necessary conditional

probabilities[58].

3.2.2.3 Simulation Study

The fit of the negative binomial variant of the IsoDeconv model was first assessed using 9 in

silico mixtures of RNA-seq expression experiments from two cell lines, GM12878 and HSMM.

GM12878 is a non-cancerous blood cell line and HSMM is a non-cancerous human skeletal muscle

myoblasts dataset, both derived from human tissues. Expression experiments for these cell lines

can be found at the Encyclopedia of DNA Elements online database (ENCODE)[59]. The fit was

characterized in the low-sample size setting where only a single reference sample is available for

estimation in each cell type.

To generate a set of simulated mixture and reference samples, two paired-end RNA-seq

experiments each of GM12878 and HSMM were downloaded from the ENCODE database. From

each cell type, read pairs overlapping chromosome 1 from a single replicate were randomly sampled

to obtain files from 1 million to 9 million reads each. These downsampled files are merged in silico

to create mixture files of 10 million reads each. Thus, to create a mixture sample of 30% GM12878
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and 70% HSMM, 3 million reads are downsampled from the GM12878 experiment and 7 million

from HSMM. Reference samples were generated in a similar manner using the remaining replicate

for each cell type.

Composition P̂G No. Clusters Restricted
(φmax ≤ 1.5) P̂G

GM - 10 / HS - 90 0.395 9 0.137
GM - 20 / HS - 80 0.456 13 0.221
GM - 30 / HS - 70 0.551 11 0.287
GM - 40 / HS - 60 0.583 10 0.475
GM - 50 / HS - 50 0.652 9 0.419
GM - 60 / HS - 40 0.708 7 0.445
GM - 70 / HS - 30 0.750 7 0.687
GM - 80 / HS - 20 0.812 7 0.788
GM - 90 / HS - 10 0.880 6 0.813

Table 3.1: Examining estimation quality under biological replicate mixture generation. Composition
defines the structure of the simulated mixture (i.e. GM-10/HS-90 refers to a sample that is 10%
GM12878 and 90% HSMM) and P̂G represents the estimated proportion of GM12878. The final
two columns discuss model estimation characteristics when the estimating gene set is restricted
to genes where maximum overdispersion between GM12878 and HSMM is limited, namely the
number of such genes available and the proportion estimate across these genes.

Reducing the estimating set to approximately 300 genes identified by Cufflinks as differentially

expressed or spliced, the model was fit to nine different simulated mixtures. Examining table (3.1),

we note that the estimation of cell type abundance was poor when the entire estimating set was

used. However, it was also noted that the estimated overdispersions for each cell type (φk) were

quite large for the majority of genes. In fact, for most samples, fewer than 10 of the 300 genes

had a maximum estimated overdispersion across GM12878 and HSMM cell types of less than 1.5.

However, by restricting to genes with lower levels of estimated overdispersion, estimates were seen

to improve (Table 3.1).

These discoveries led to the hypothesis that biological variability across samples was impacting

the results of the IsoDeconvNB model fit. It was supposed that this extra variability was entering the

model through use of different biological replicates to construct the mixtures and reference samples.

In essence, it was supposed that the cell type specific isoform abundances and gene expressions
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varied across biological replicates of a cell type. Thus, the provided reference samples differed too

much from the samples used to generate the mixture tissue. This discrepancy between the mixture

cell types and the reference cell types resulted in poor model fit and inflated the observed variances

in the exon-set level counts.

To test this hypothesis, we utilized the GM12878 cell line and a non-cancerous human mammary

epithelial cell line (HMEC) used for early model validation. A single replicate each of GM12878

and HMEC were selected for examination. While true technical replicates were not available from

ENCODE, pseudo-technical replicates were generated by randomly splitting the given files in half,

generating two non-overlapping sets of reads from each cell type and sample. Mixture files were

then produced by downsampling reads from one of these pseudo-technical replicates and combining

them in the manner discussed previously. The remaining pseudo-technical replicate was used as the

cell type reference. Due to the limited read count available in each file, the range of proportions

used for generating mixture datasets is restricted.

In addition to the use of technical replicates for cell type abundance estimation, three different

methods for restricting the estimating gene set were used. The first restriction limits consideration to

genes noted by Cufflinks as having gene-level or isoform-level differential expression. The second

restriction considers only genes with noted isoform level differential expression. Finally the last

estimating set of genes is restricted to all genes under the first restriction which have estimated

maximum overdispersions less than 1.5. These restrictions were designed to assess the impact

of different estimating sets on the quality of abundance estimates and to examine the impact of

technical replicate use on observed overdispersion.

Immediately, it is seen from table (3.2) that the quality of estimation improves dramatically

over the biological replicate simulations examined in table (3.1). All estimates hover within 5% of

the truth regardless of the estimating gene set used. Restriction sets (1) and (2) estimate similarly

across all samples, suggesting that the use of genes with gene-level expression differences only is

not damaging to IsoDeconvNB’s abundance estimates. Additionally, examining restriction set (3),

the number of available genes with estimated overdispersions less than 1.5 increased by 3- to 4-fold

29



Gene or Isoform Isoform Diff. Overdispersion
Diff. Only Restriction

Composition # Genes P̂G # Genes P̂G # Genes P̂G
GM - 40 / HM - 60 354 0.398 158 0.396 42 0.403
GM - 50 / HM - 50 354 0.481 158 0.481 41 0.491
GM - 60 / HM - 40 354 0.580 158 0.581 38 0.598
GM - 70 / HM - 30 354 0.664 158 0.665 42 0.678
GM - 80 / HM - 20 354 0.760 158 0.761 32 0.801
GM - 90 / HM - 10 354 0.859 158 0.871 35 0.910

Table 3.2: Examining estimation quality under pseudo-technical replicate file generation. Results
are presented for 3 different estimating gene sets: genes with gene or isoform expression differences,
genes with isoform expression differences only, and genes with maximum overdispersions less than
1.5. # genes specifies the number of genes in the estimating set and P̂G details the estimation of the
proportion of GM12878 across these genes.

over the samples seen in table (3.1). These results suggest that the additional variability observed in

previous simulations was likely due to the use of biological replicates instead of technical replicates

in the creation of mixture and reference samples. However, due to to the limitations of the number

of quality replicates for the HMEC cell line, a direct assessment of the impact of technical replicates

compared to biological replicates is not possible in these cell lines.

Thus, a final set of RNA-seq samples were downloaded from ENCODE consisting of two

RNA-seq read experiments from biological replicates of CD20+ monocytes and two biological

replicates of GM12878 experiments. Using these experiments, two sets of reference and mixture

files were generated. In the first set, the pseudo-technical replicate approach described previously

was used to generate references and mixtures. In the second set, the biological replicate approach

described previously was used to generate references and mixtures.

Table (3.3) reinforces the idea that the quality of estimation drops dramatically when inde-

pendent biological replicates are used to produce the mixture and reference samples. While the

the number of genes with maximum overdispersion less than 1.5 does not differ much between

these technical and biological replicates, each cell type displays fewer genes with overdispersion

values less than 1.5 when comparing biological to technical replicates across the majority of the

simulations. We do note a slight discrepancy in this trend for the CD20 cell type at low proportions
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Technical Replicates Biological Replicates
Composition φG φC max(φ) P̂G φG φC max(φ) P̂G
GM - 30 / CDT - 70 41 85 13 0.274 33 58 19 0.232
GM - 40 / CDT - 60 42 69 11 0.371 40 54 18 0.210
GM - 50 / CDT - 50 50 55 19 0.452 42 51 19 0.357
GM - 60 / CDT - 40 50 46 17 0.582 50 45 21 0.380
GM - 70 / CDT - 30 69 41 15 0.658 51 40 15 0.598
GM - 80 / CDT - 20 83 22 14 0.783 63 37 13 0.710
GM - 90 / CDT - 10 108 21 14 0.895 84 30 13 0.760

Table 3.3: Examining change in estimation quality when using the various replicate strategies. φG
and φC summarize the number of genes for each cell type where the overdispersion is less than 1.5.
max(φ) refers to the number of such genes where the maximum overdispersion is less than 1.5. P̂G
considers estimation quality within the set of genes with limited maximum overdispersion (≤ 1.5)
to ensure comparability across replicate settings and previous experiments.

of CD20 in the sample. However, this is matched by a 33% and 25% increase in the number of such

genes when comparing GM12878 technical to biological replicates.

3.2.2.4 Discussion

The preceding simulations suggest that the negative binomial variant of the IsoDeconv model

is questionable for cell type deconvolution in the RNA-seq data setting. It has been demonstrated

that introducing biological variability between the mixture and reference datasets results in poor

estimation quality and a reduction in the number of minimally overdispersed genes. Rather than

expanding the estimation set to consider more genes with sufficiently low overdispersion, the

decision was made to address the extra biological variability observed by restructuring the cell

type abundance model. In particular, an alternative variant of the IsoDeconv model would need to

explicitly account for the biological variation in expression through a probabilistic mechanism for

sample-specific gene and isoform expression parameters to improve estimation. Ultimately, this

necessitated a switch to a multinomial structure for the distribution of read counts within genes

with Dirichlet distributions over gene and isoform expression parameters. It also requires multiple

purified RNA-seq reference experiments for each cell type k to capture both the mean and variance

of these parameters across independent experiments. We detail this model in the following sections.
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3.2.3 IsoDeconv - Multinomial Model with Dirichlet Penalty (IsoDeconvMM)

Pure Sample Expressions
Value Dim. Description
Ykj(E) 1× 1 Total read count outside gene of interest in pure sample j of cell type k.
YkjA 1× 1 Read count at exon set A in pure sample j of cell type k.
Ykj E × 1 Collection of read counts across all exon sets in the given gene for pure sample j

of cell type k.
γkj I × 1 Isoform expression parameters unique to pure sample j of cell type k.
τkj 1× 1 Probability that a randomly selected read maps to the gene of interest in pure

sample j of cell type k.
tkj 1× 1 The total read count in pure sample j of cell type k.

Mixture Sample Expressions
Value Dim. Description
ZA 1× 1 Read count at exon set A in the mixture cell type sample.
Z E × 1 Collection of ZA in a single vector.
Z· 1× 1 Total number of reads mapping to gene of interest in the mixture(

Z· = 1TZ =
∑E
e=1 ZA

)
.

ZkA∗ 1× 1 Read count at exon set A in the mixture cell type sample attributable to cells of
type k.

γ∗k I × 1 Isoform expression parameters unique to cells of type k found within the mixture
cell type sample.

τ∗k 1× 1 The probability that a randomly selected read from cells of type k in the mixture
sample maps to the gene of interest which is unique to the cells in the mixture
sample.

Cell-Type Specific and Cluster Level Parameters
Value Dim. Description
X E × I Matrix of effective lengths for each exon set within each of the isoforms.
Xij 1× 1 Effective length of gene i in isoform j.

l̃ I × 1 Vector of complete effective lengths of each utilized isoform
(
l̃j =

∑E
i=1Xij

)
.

pk 1× 1 Proportion of cell type k present in the mixture tissue.
p K × 1 Collection of abundances for each of the K cell types which compose the mixture.
αk I × 1 Hyperparameters governing average isoform expression levels and variances within

cells of type k.
βk 2× 1 Hyperparameters governing gene expression levels within cells of type k.

Value Dim. Description
◦ NA This operator indicates element-wise multiplication of two vectors.

Table 3.4: Notation for defining the IsoDeconv Model.

In order to specify the multinomial variant of the IsoDeconv model (IsoDeconvMM), revised

definitions of several parameters must be specified and additional model parameters governing gene

and isoform expression must be introduced. As before, the model specification will pertain to a
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single gene only. Each gene will be modeled independently and the per-gene cell type abundance

estimates will be aggregated afterwards.

All parameters for IsoDeconvMM have been described in Table (3.4). Several notes are

necessary to clarify the new meanings of these parameters. Firstly, the γkj values represent the

isoform expression quantities for a single sample. These expressions are interpreted as per-unit-of-

effective-length conditional probabilities that a read maps to isoform i given that it maps to the gene

which utilizes isoform i. Secondly, the gene expression parameters τ are not normalized in a manner

that allows for comparison across genes (e.g. FPKM). These parameters are raw probabilities that a

randomly selected read pair, not a randomly selected transcript, maps to the gene of interest. The

addition of the subscripts kj allows us to capture the biological variation across samples.

Using this notation, the cell type abundance model within purified reference samples can be

detailed as follows:

τkj ∼ Beta(βk)

l̃ ◦ γkj ∼ Dirichlet(αk)Ykj(E)

Ykj

 ∣∣∣∣τkj, γkj ∼ Multinomial

tkj,
 1− τkj

τkjXγkj




(3.1)

where ◦ in l̃ ◦ γkj denotes element-by-element product. In the mixture tissue, then, the cell type

abundance model is given by:

τ ∗k ∼ Beta(βk)

l̃ ◦ γ∗k ∼ Dirichlet(αk)[
Z

] ∣∣∣∣τ ∗k , γ∗k ∼ Multinomial
(
Z·,

[∑K
k=1 pkτ

∗
kXγ

∗
k∑K

k=1 pkτ
∗
k

]) (3.2)

Within the IsoDeconvMM model, independence is assumed across samples and across genes

within samples.
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3.2.3.1 Model Fit Algorithm

Within each gene, the model is fit using a staged estimation approach with three stages. In

stage one, the gene and isoform expression parameters are estimated separately for each purified

reference sample by maximum likelihood estimation. The likelihood used for stage 1 involves only

the multinomial component of equation (3.1). Under such a framework, closed form estimates of

τkj are obvious and a logarithmic adaptive barrier algorithm can be used to obtain estimates of the

γkj subject to boundary constraints. Once obtained for each cell type and sample, these estimates

are held fixed for all further stages.

Within stage 2, the estimated values of τkj and γkj are treated as observations from the Dirichlet

component of equation (3.1). Estimates of αk and βk are obtained via maximum likelihood

estimation within separate Dirichlet models. Once obtained, these estimates of αk and βk are fixed

for stage 3.

Finally, in stage three, the αk and βk estimates are used in Dirichlet distributions as penalty

functions in the estimation of the γ∗k , τ ∗k , and pk. In this way, we regularize estimates of γ∗k and τ ∗k

to be like those estimates obtained in the pure cell type samples. Use of an EM algorithm allows

separation of the full likelihood intoK+1 independent components. The firstK components pertain

to the isoform expression parameters from each of the K cell types. Each of these components

is optimized using a Newton-Raphson algorithm on the log (γ∗k) until convergence of isoform

parameters. The last component contains information regarding the pk and log(τ ∗k ) values, which

are optimized using a quasi-Newton’s method optimization procedure (BFGS). Estimation is seeded

at various start points to identify global maxima. The EM algorithm is iterated until convergence in

the proportion estimates. Proportion estimates across multiple genes are then aggregated using the

spatial median to obtain final estimates of cell type proportions.

3.2.3.2 Explaining Modeling Decisions

Several facets of the preceding discussion deserve illumination. First, consider the switch from

the negative binomial model to the Multinomial-Dirichlet model. In order to incorporate the isoform
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expression parameters as conditional probabilities, the model within a gene must condition on the

number of reads mapped to that gene in the purified reference samples. Supposing this conditioning

is performed and that an independent negative binomial distribution is assumed at each exon set,

the likelihood becomes inconsistent. This arises because the independent negative binomials could

theoretically exceed the read count upon which the model is conditioned. The multinomial model

maintains its consistency despite the conditioning argument.

Secondly, the use of the described staged estimation approach became necessary after an

initial version of the model, which attempted to estimate αk and γk values simultaneously, proved

intractable. This approach led to unstable estimates of the γk and αk parameters wherein the αk

parameters became unbounded. This would suggest little to no variability in the isoform expressions,

an impossibility in the simulated data upon which the model was tested.

Finally, the incorporation of the log(τ ∗k ) and log(γ∗k) transformations was performed after initial

testing with untransformed parameters proved inaccurate. “Hill-climbing” estimation methods such

as Newton Raphson and BFGS require that the likelihood is sufficiently stable across the parameter

space so that the crest of the “hill” is not continually overstepped. The proposed optimization

approach is more stable with respect to the log parameters since the log scale spreads out the small

parameter values. Under these reparametrizations, model accuracy and the mobility of proportion

estimates improved.

3.2.3.3 Simulation Study

In order to evaluate the fit properties of the IsoDeconvMM model, a simulation study was

conducted for the two cell type case. To ensure that simulated gene- and isoform-construction

models are sufficiently complex, the models estimated from the GM12878 and HMEC data are

utilized as the “true” constructions from which to simulate. These simulations seek to capture the

influence of three factors on model fit: variability in isoform expression across subjects, the number

of purified reference samples per cell type, and the number of genes utilized for estimation.
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Figure 3.2: (a) Simulation Results for 3 replicates per cell type (b) Simulation Results for 50
replicates per cell type.
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Simulations are conducted as follows. Suppose that there are 3 purified references per cell

type and that 100 genes will be utilized for estimating cell type proportions. Across these 100

genes, gene expressions will be simulated from a normal distribution with a mean of 130 reads

and a standard deviation of 33. Gene- and isoform expressions will be simulated as described in

the supplementary materials. Of note, the variabilities in isoform expression are set to ensure that

90% of observations fall within X% of the cell-type average where X is allowed to vary from 55 to

100%. To simulate cell-type differences in average isoform expression profiles, average isoform

expression levels are permuted to ensure that there is no overlap in the top 2 or 3 isoforms used by

each cell type.

The results of these simulations are displayed in Figure (3.2). Here we see that IsoDeconvMM

provides strong results across the range of parameters tested. In addition, the results appear

consistent with expectations regarding the effects of larger gene set size and increased isoform

expression variability. As one incorporates more genes into the estimation set, the accuracy and

stability of the estimator improves. As one increases the variability in isoform expression, the

accuracy and stability of the estimates decrease.

We do note that there is decrease in the accuracy of the model when one moves from 3

references per cell type to 50. This counterintuitive result is likely due to the following. Consider

the 3 reference sample case. When one draws these 3 samples very little of the support of the

underlying reference distribution is interrogated. Thus, while drawing three subjects may increase

the variability across repeated sampling, the probability of drawing three highly similar subjects

is greater than the probability of drawing 50 highly similar subjects. In this way, the model’s

perception of variance may decrease for genes in the 3 reference sample setting causing stronger

penalties than those in the 50 reference sample case.

3.2.3.4 Discussion

We have presented two formulations for the IsoDeconv model for cell-type abundance es-

timation utilizing isoform expression information from RNA-seq data. IsoDeconvNB, the first
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variant, was a direct extension of the IsoDot framework proposed by Sun et al [17]. Extensive study

of simulated mixtures generated from genuine RNA-seq read experiments found that estimation

was sound only in the limited variability setting, as was the case when references and mixtures

were generated from non-overlapping samples from a single read experiment. The introduction

of additional variability due to the use of biological replicates saw diminished performance and

an increased perception of variability in exon-set level counts. Due to the limited availability of

RNA-seq experiments performed on purified samples of various tissues, it was decided to extend

the IsoDeconv model to explicitly incorporate biological variation.

The second variant of the IsoDeconv model, IsoDeconvMM, involved a major restructuring

to allow for subject-specific gene and isoform expressions. This restructuring necessitated a shift

to a multinomial framework to maintain coherence in the proposed likelihood. The behavior of

IsoDeconvMM was explored via simulation study. IsoDeconvMM was found to provide quality

estimates of cell type proportions via simulation across a range of simulated parameters. The

impact of increased isoform expression variability and diminished gene set size were consistent

with expectations. Increasing the number of purified reference samples resulted in a counterintuitive

result wherein increasing sample size saw decreasing stability in the proportion estimates.

Future research regarding IsoDeconvNB and IsoDeconvMM should focus on two primary

avenues: decreasing the computational complexity and refining their application to real data.

Both IsoDeconvNB and IsoDeconvMM are computationally complex algorithms. In the case of

IsoDeconvNB, the convolution of negative binomial models with differing means and variances is a

particular challenge. In this setting, we utilized numerical approximations techniques proposed by

[58]. Such a technique introduces approximation error as well as high computational cost due to the

need to compute large sums for K different cell types with each update. The multistage modeling

approach used by IsoDeconvMM and the need for multiple estimation start points creates a slow

down in model optimization. Future study will need to address these complexities to improve the

behavior and time to solution for the model in each gene.
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In addition, both IsoDeconvNB and IsoDeconvMM have shown limited utility in the real data

setting. IsoDeconvNB’s behavior has been thoroughly catalogued in the simulated mixture profiles

developed from real data. IsoDeconvMM was also applied to such a dataset composed of CD8+

T-cell and CD4+ T-cell mixtures from real data with 3 pure sample references per cell type[60].

Results were highly unstable with the majority of genes optimizing at proportions of 0% CD8+

T-cells or 100%. Exploration to uncover the cause of this behavior is needed. It is suspected that this

behavior could result from the limitations of the current pipeline to identify genes with differential

expression of isoforms in the low replicate setting when two highly similar cell types (e.g. CD4+

and CD8+ cells) are considered. Without reliable information regarding which genes experience

differential isoform expression, the model cannot be expected to perform well.

Finally, future research should examine simplifying the IsoDeconv framework to account for

highly similar isoforms. Consider the design matrix X for any gene. Isoforms which differ by

the removal of a single exon are likely to induce high correlation in X . This instability in the X

matrix can cause unreliable isoform expression estimation which may influence model estimates. To

this end, a consideration of the IsoDeconv framework which could model groups of highly similar

isoforms or even utilize some form of dimension reduction (e.g. PCA) could improve model fit and

time to solution.

Please see Appendix 1 for the mathematical supplement for this chapter. This supplementary

material contains additional information regarding model optimization, the mathematical founda-

tions behind IsoDeconvNB and IsoDeconvMM, and additional information regarding the simulation

structure for IsoDeconvMM.
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CHAPTER 4: ICED-T PROVIDES ACCURATE ESTIMATES OF IMMUNE CELL
ABUNDANCE IN TUMOR SAMPLES BY ALLOWING FOR ABERRANT

GENE EXPRESSION PATTERNS

4.1 Introduction

The evolving relationship between a cancer and its host’s immune system is well summarized

by a hypothesis known as immunoediting. Immunoediting stresses that the immune system not only

suppresses tumor cells, but also shapes tumor immunogenicity in ways that may promote tumor

growth [32, 61]. For example, consider the relationship between tumors and tumor-infiltrating T

cells. Infiltrating T cells can be cytotoxic, contributing to death of cancer cell populations. However,

these T cells express immune checkpoints which inhibit their function; such checkpoints prevent the

immune system from indiscriminately attacking healthy host cells. Under selective pressure from

the immune system, cancers can evolve defense mechanisms which activate immune checkpoints

and thereby limit the anti-tumor activity of the infiltrating T cells.

Early strategies in immunotherapy were developed based on the insights of immunoediting [35].

Among the best known immunotherapy strategies, immune checkpoint inhibitors block immune

inhibition pathways that restrict effective anti-tumor T cell responses [62]. Checkpoint inhibitors

have achieved phenomenal successes in a fraction of cancer patients, exhibiting response rates

around 40% and 20% for melanoma and lung cancer, respectively [63]. It is of great clinical

interest to identify the subset of cancer patients who may respond to checkpoint inhibitors. Use of

tumor-infiltrating immune cells to predict clinical response to therapy has shown promising results.

Previous studies have shown that the patients with CD8+ T cells around tumor cells have higher

response rate to checkpoint inhibitors [64]. In addition to benefiting development of precision

immunotherapies, immune cell composition estimates of tumor samples have also demonstrated
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prognostic value [38, 39]. Therefore, studying immune cell composition in tumor samples is timely

and potentially has high impact on cancer research.

Several groups have studied immune cell composition using gene expression data from bulk

tumor samples [40, 41, 65, 25, 43, 44]. These pioneering works have demonstrated promising

results, but also bear some limitations. For example, a subset of these works estimate immune

cell presence using the expression of few genes [40, 41], or calculate average expression of the

genes with cell type-specific expression[42] instead of estimating immune cell composition. As

an alternative, several methods have been proposed to estimate immune cell composition using a

regression-based approach, with gene expression from bulk tumor samples as the response variable

and reference gene expression from purified cell types as covariates. CIBERSORT [25] employs

support-vector regression. TIMER [43] uses a linear regression and removes the genes with very

high expression due to their strong influence on model fitting. EPIC [44] is the most recent work. It

uses weighted linear regression to give the genes with lower expression variation higher weights.

These regression-based methods, when applied to tumor expression data, explicitly or implicitly

assume that they start with a set of genes that have negligible expression in tumor cells, and that the

expression of immune cells are conserved between purified reference samples and tumor samples.

These assumptions are questionable as many environmental factors that affect gene expression may

differ between tumor and reference samples.

In this paper, we propose a new statistical method for cell type deconvolution entitled ICeD-T,

which stands for Immune Cell Deconvolution in Tumor tissues. ICeD-T is an extension of existing

regression based methods [25, 43, 44] with two major novel features designed to overcome the

limitations of these methods.

First, ICeD-T employs a likelihood based framework, which assumes that gene expression fol-

lows a log-normal distribution. Previous work has shown that deconvolution should be performed on

linear-scale instead of log-scale of gene expression data since linear-scale mixing of gene expression

better captures the biological realities of cell mixing in a bulk tissue sample [66]. However, since

gene expression variation increases with expression level, genes with higher expression may become
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outliers with great influence on linear scale deconvolution models. Therefore one may need to

remove genes with high expression for robust deconvolution analysis [43]. The log transformation,

often used in expression studies, enjoys variance-stabilizing and skew-mitigation properties which

counteract this relationship in expression data [67, 68]. ICeD-T is able to perform gene expression

deconvolution on the linear-scale while simultaneously incorporating the beneficial properties of

the log-transformation through our method design and the use of log-normal distribution.

Second, ICeD-T automatically identifies the genes whose expressions in tumor samples are

inconsistent with reference profiles due to altered immune cell behavior in the mixture or unexpected

tumor cell expression. Within its estimation algorithm, ICeD-T down-weights the contribution of

such genes in cell type abundance estimation using a mixture model that separates all the genes into

two groups: an “aberrant” group and a “consistent” group.

4.2 Statistical Methods

4.2.1 The Input Data

While ICeD-T can be applied on microarray data, we focus mainly on RNA-seq data as it is

more popular now and in the foreseeable future. We assume that RNA-seq data from bulk tumor

samples are available for n independent subjects. Gene expression from purified samples may be

pre-computed or processed from raw RNA-seq data of multiple replicates for each cell type. Across

reference expression profiles and bulk samples, the RNA-seq measurements of gene expression

are appropriately normalized in a consistent manner using FPKM, FPKM-UQ, or TPM. More

specifically, to calculate FPKM, we divide gene expression (# of RNA-seq fragments) by total

number of mapped fragments (in millions) and the gene length (in kilo bases). FPKM-UQ is a

variant of FPKM where sample-specific read-depth is measured by 75 percentile of gene level

fragment counts across all genes, instead of the total number of mapped fragments. TPM reverses

the order of the two normalization steps. It first divides the gene-level fragment counts by gene
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length, and then divides it by the summation of gene-length corrected fragment counts across all

genes.

Additional information utilized by ICeD-T’s deconvolution model includes a pre-selected gene

set (ideally, genes with immune-specific expression) and tumor purity, if available. Several such

gene sets have been prepared by previous work, such as the gene sets used by CIBERSORT of EPIC

[25, 44]. Provision of tumor purity is optional, and it can be computed, for example, using somatic

copy number aberration data [69].

4.2.2 Statistical Model

Specification of the ICeD-T model begins with a consideration of expression behavior in

purified references samples of constituent cell types. Denote by Zjkh the expression of gene j in the

h-th purified sample of cell type k. ICeD-T assumes that the Zjkh follows independent log-normal

distributions, given by:

log(Zjkh) ∼ N (µjk, σ
2
jk), (4.1)

where

E[Zjkh] = γjk = exp(µjk + σ2
jk/2), and V [Zjkh] = γ2

jk

[
exp(σ2

jk)− 1
]
. (4.2)

Therefore, the distribution parameters for each cell type’s gene expression (e.g., µjk and σ2
jk) may

be estimated by the mean and variance of the log-transformed Zjkh values. Once estimated, these

parameters represent expression profiles for each cell type in our deconvolution model. Optionally,

ICeD-T accepts previously computed profiles which would replace the γjk above.

Shift focus to the n bulk tumor samples. Assuming that each sample is composed of K immune

cell types and other extraneous cell types, the expression of gene j in bulk tumor sample i - denoted
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by Yij - is modeled by

Yij =
K∑
k=1

ρikXijk + εij,

where Xijk represents the expression of gene j for cells of type k in the i-th sample, and ρik is

the proportion of expression attributable to cell type k. The residual error εij represents signals

from other cell types (e.g., tumor cells) or random noise. If tumor purity information is provided,∑K
k=1 ρik = 1− ρiT , where ρiT is tumor purity. If tumor purity is not provided,

∑K
k=1 ρik ≤ 1.

One potential question for the above deconvolution model is: if we only consider genes

expressed in various immune cells, and assume these genes are not expressed in other cell types

(e.g., tumor cells), shouldn’t
∑K

k=1 ρik = 1? This is not true because gene expressions were

normalized by FPKM or TPM using genome-wide gene expression data. Therefore, the expression

of a immune-specific gene is affected by the expression of other genes. For example, if tumor purity

is high, then the expression of some other genes that are expressed in tumor are high, and thus after

FPKM or TPM normalization, the expression of those immune genes are relatively lower, which

will lead to smaller values of ρik estimates, hence reflecting the fact of higher tumor purity.

We begin to develop the probabilistic framework utilized by ICeD-T to model the relationship

posited above by first assuming that there are no aberrant genes (i.e. gene expression of each

cell type in reference samples is consistent with gene expression in tumor microenvironment).

Under such an assumption, Xijk has the same distribution as the Zjkh for any i, h, and j (i.e.

Xijk ∼ Zjkh). The summation of independent log-normal random variables does not have a closed

form distribution function. To address this issue, ICeD-T approximates the distribution of Yij using

another log-normal:

log(Yij) ∼ N
(
µ̃ijC ,∆jσ

2
iC

)
, where µ̃ijC = log

(
K∑
k=1

ρikγjk

)
−∆jσ

2
iC , (4.3)

and ∆j is the weight for the j-th gene.
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The approximation used above is based upon the Fenton-Wilkinson approach which states that

the summation of log-normals can be approximated by another log-normal whose parameters are

obtained via moment-matching [70]. Under a strict Fenton-Wilkinson approach, the distribution of

Yij would be given by:

log (Yij) ∼ N (µ̃ijC , ˜σijC)

where

µ̃ijC = log

(
K∑
k=1

ρikγjk

)
− σ̃2

ijC/2,

σ̃2
ijC = log

 K∑
k=1

(ρikγjk)
2 [exp

(
σ2
jk

)
− 1
]/[

K∑
k=1

ρikγjk

]2

+ 1

 .

We replace the variance structure posited by Fenton-Wilkinson with the weighted variance model of

equation (4.3) as the weighted model demonstrated improved fit and stability in simulated data.

Regarding the variance weights used by ICeD-T, we implement two different options. One

assumes a homogeneous weight for all genes, i.e., ∆j = 1 for all j. Later we refer to this option as

“No Weights”. The second option for the weight of each gene is termed maximal variance weights

or “Max Var Weights”. To define maximal variance weights, let σ∗2j be the maximum expression

variance across all cell types k at gene j:

σ∗2j = max
k

(
σ̂2
jk

)
The weight of a gene j is then specified as follows:

∆j =
σ∗2j

median
j

[
σ∗2j
]
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Thus, a gene’s weight compares its maximal expression variance to the median of all such maxima

across genes. Under this construction, genes with larger variances will have larger variance weights.

Larger variance weights ensure that residuals from such genes will have smaller impact on estimation

of cell type composition.

The ∆j specified above require slight modification to improve stability of the model fit. Unad-

justed, this procedure can provide some genes with excessively small variance weights and some

genes with excessively high variance weights. To control this extreme behavior, the bottom 15% of

variance weights are replaced with the 15th percentile variance weight across all genes. Similarly,

the top 15% of all variance weights are replaced by the 85th percentile variance weight. In this way,

no genes are allowed to become too minimally or maximally important to model fit.

Return to the specification of Yij in equation (4.3). Now assume that some genes in the dataset

are aberrant. For aberrant genes, ICeD-T borrows the expression structure proposed for consistent

genes but inflates the variance. Thus, if gene j is aberrant, the expression of Yij is given by:

log(Yij) ∼ N
(
µ̃ijA,∆jσ

2
iA

)
, (4.4)

where

µ̃ijA = log

(
K∑
k=1

ρikγjk

)
−∆jσ

2
iA and σ2

iA > σ2
iC .

By allowing aberrant genes to have larger variance, the ICeD-T model flattens the likelihood for

such genes, and thus down-weights their contributions to cell type proportion estimates.

Direct use of the likelihoods provided by equations (4.3) and (4.4) within bulk data is impossible

since it is unknown whether a gene is consistent or aberrant a priori. Thus, ICeD-T must model

expression at any gene as a mixture of the log-normal distributions pertaining to consistent and

aberrant genes. The mixture likelihood utilized by ICeD-T is found below:

Yij ∼ piLN
(
µ̃ijC ,∆jσ

2
iC

)
+ (1− pi)LN

(
µ̃ijA,∆jσ

2
iA

)
,

46



where LN denotes the density function of a log-normal distribution, and pi and 1− pi denotes the

proportion of genes being consistent and inconsistent, respectively. This likelihood function can be

maximized using an EM algorithm. Missing data necessary for the EM algorithm is introduced in

the form of class membership indicators Hij , where Hij = 0 or 1 denotes an aberrant or consistent

gene, respectively. Thus, the complete data log-likelihood for the i-th bulk tumor sample is given

by:

`i =

nG∑
j=1

Hij

[
log(pi)− (1/2) log(∆jσ

2
iC)−

(
1/2∆jσ

2
iC

)
(log(yij)− µ̃ijC)2]+

(1−Hij)
[
log(1− pi)− (1/2) log(∆jσ

2
iA)−

(
1/2∆jσ

2
iA

)
(log(yij)− µ̃ijA)2] ,

where nG is the number of genes used in our model.

Within each EM step, maximization of Q function with respect to (ρi1, ..., ρiK , σ
2
iC , σ

2
iA) and

pi are separable. Given the other parameters, the estimate of pi has a closed form. Given pi, the

remaining parameters are grouped into two blocks: the mixture proportions ρik’s (block 1) and the

two variance parameters (σ2
iC , σ

2
iA) (block 2), and the parameters of two blocks are iteratively up-

dated. Given the estimates of (σ2
iC , σ

2
iA) , the mixture proportions ρik are estimated using numerical

optimization (the BFGS algorithm) while the constraints are incorporated using the Augmented

Lagrangian method (R function auglag). Given the estimates of the mixture proportions ρik, the

two variance terms (σ2
iC , σ

2
iA) are involved in separate pieces of the complete data log-likelihood,

and thus can be estimated separately. Given variance weights, each of σ2
iC and σ2

iA is estimated by

numerical optimization (R function optimize). Without variance weights, they can be estimated

by closed form. See Appendix B Section 1.5.2 for details of the parameter estimation steps.

The ρik’s estimated by any regression based deconvolution approach should be interpreted as

the proportion of gene expression contributed by certain cell types. If one seeks to estimate the

proportion of cells, these ρik’s should be adjusted by cell size factors. We borrow the cell size

factors, denoted by sk, from Racle et al. [44] and construct revised relative abundance of immune
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cell types by ρ∗ik = (ρik/sk)/
∑K

i=1(ρik/sk). Further details are provided in the Supplementary

Materials (Section C.2).

4.3 Results

4.3.1 Simulation Study

We conducted a simulation study to evaluate the performance of ICeD-T, CIBERSORT, and

EPIC. For each method, we seek to assess the estimation accuracy and the robustness of estimation

in the presence of aberrant gene behavior. For ICeD-T only, we also assess its ability to identify

aberrant genes.

We simulated reference expression of 250 genes for 5 cell types: one tumor cell type and four

immune cell types. Our simulations assume that these 250 genes were selected to be expressed

in immune cells but not tumor cells. When there are no aberrant genes, the expression of these

250 genes in a bulk tumor sample was simulated by mixing the 4 immune cell types with known

proportions. For each gene, we assume it is expressed in one of the four immune cell types and has

low/background expression in the other three immune cell types. To better mimic the complexity

of real data, we do not assume one homogeneous background expression. Instead, we assume the

background expression has a three-tiered scale to reflect lowly, moderately or highly expressed

genes (range: 2.0-8.0). Average log-transformed expression for the expressed cell type is simulated

from by an up-shift of background expression level (range: 3.5-9.0). See Supplementary Materials

Section B.1 for more details. Using RNA-seq expression data from immune cells taken from

Linsley et al. [60], a mean-variance relationship was computed from FPKM-UQ normalized data

across immune specific genes. The simulated average expression profiles are then mapped to a

corresponding variance using this relationship with allowance for random error. Fifteen reference

samples were simulated for each cell type from its unique expression profile using a log-normal

distribution.
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To generate the expression of a bulk tumor sample, a tumor purity value was simulated from

a normal distribution (mean=0.60, sd=0.15) and truncated at endpoints of 0.17 and 0.95. The

remaining immune cell proportions were then simulated from a Dirichlet distribution with average

abundances ranging from 15% to 40%. For each gene in the bulk tumor sample, its expression in

each immune cell type was simulated from a log-normal distribution and a weighted summation

of these expression values was computed as the expression in the bulk tumor sample. These gene

expression profiles are then perturbed to account for aberrant behavior. Zero or approximately

twenty percent of genes were randomly selected as aberrant genes. Among them, 25% have down-

regulated expression in the highly expressed cell type, 25% have up-regulated expression of the

highly expressed cell type, and 50% have expression in tumor cells at a background level. See

the Appendix B for further details regarding the construction of these simulations and additional

simulation results.

The expression profile of each cell type was estimated from the 15 simulated samples of that

cell type. This reference is used for deconvolution in each of the following models: ICeD-T without

variance weights, ICeD-T with variance weights, LNORM with variance weights, CIBERSORT

(version Jar 1.06), and EPIC. LNORM is a variant of the ICeD-T model which does not consider

aberrant gene behavior.

When there is no aberrance in gene expression, all methods perform well, while ICeD-T

provides the most accurate estimates of cell type proportions (Figure 4.1). When 20% of the 250

genes are aberrant, the performance of LNorm, EPIC, and CIBERSORT all become worse, while

the performance of ICeD-T method remain similar (Figure 4.2). Both EPIC and LNorm’s cell

type proportion estimates suffer from bias and larger variance in the presence of aberrant genes.

CIBERSORT still performs relatively well, but has an apparent inflation of the estimation variance.

While the weighted variant of ICeD-T provides the best results, both weighted and unweighted

ICeD-T are able to maintain high accuracy with minimal estimation variance (Figure 4.2(a)-(b)).

To identify aberrant genes, ICeD-T computes the posterior probability of a gene being consistent.

Examining the distribution of this quantity across consistent and aberrant genes, we see that both the
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Figure 4.1: Visualized results of model fits on simulated data without aberrance. Figure (f)
summarizes the accuracy across all 135 subjects for each model.
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Figure 4.2: Visualized results of model fits on simulated data when∼ 20% of the genes are abberant.
Figure (f) summarizes the accuracy across all 135 subjects for each model.
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Figure 4.3: (a) The posterior probabilities of being consistent for those aberrant genes. (b) The
posterior probabilities of being consistent for those consistent genes. (c) Estimates of the proportion
of consistent genes.

weighted and unweighted versions of ICeD-T separate consistent and aberrant genes reasonably well

(Figure 4.3). The weighted variant of ICeD-T provides more accurate estimate of the proportion

of aberrant genes, and identify consistent genes with higher confidence. For aberrant genes,

the posterior probability of being consistent show a bi-modal distribution, implying that a small

proportion of aberrant genes are missed. This is partly due to our very challenging simulation

setting, with three types of aberrant patterns and three tiers of expression levels for background

genes. Such three tiers of background diminishes the difference between background cell types and

expressed cell types, and further complicates the identification of aberrant genes.

4.3.2 Validation in Microarray Expression of PBMCs

In the CIBERSORT paper, Newman et al. [25] described the collection of peripheral blood

mononuclear cell (PBMC) gene expression data from 20 healthy adults. After extraction of PBMC

samples from each subject, these samples were subjected to microarray expression analysis and

flow cytometric measurement to establish ground-truth cell type proportions. We use this dataset to

evaluate our method and compare its performance with CIBERSORT and EPIC.

To be consistent with the approach used by Newman et al. [25], we use the their LM22

reference of cell type-specific gene expression for all methods. The LM22 reference matrix is

derived from microarray gene expression data, and thus is consistent with the gene expression
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platform of the bulk tissue samples. EPIC had developed its own reference matrices from RNA-seq

data (TRef for bulk tumor samples and BRef for bulk normal samples), but they are inappropriate in

microarray settings. Because EPIC and ICeD-T both require that the gene expression from bulk

samples and reference samples are measured on the same scale, gene expression data from bulk

samples were quantile normalized to a target distribution established by the reference samples used

to derive the LM22 matrix. The results of each method are then restricted to the nine cell-types

examined in Newman et al. [25]: naive B-cells, memory B-cells, CD8+ T-cells, naive/memory

resting/memory activated CD4+ T-cells, γδ T-cells, Natural killer cells, and monocytes. Estimates

for each mixture sample are renormalized so that their summation equals 100 after correction for

cell size of different cell types. The accuracy of each method is assessed by comparing sums of

squared errors and correlations between the expression-based cell type proportion estimates and

flow-cytometry estimates. Correlations are computed by pooling all cell type proportions for all

subjects and all cell types.

Model SSE Cor
ICeD-T (no weight) 13.10 0.53
ICeD-T (w/ weight) 12.05 0.59
CIBERSORT 14.15 0.65
EPIC 29.43 0.31

Model SSE Cor
ICeD-T (no weight) 10.48 0.75
ICeD-T (w/ weight) 9.44 0.78
CIBERSORT 11.02 0.77
EPIC 32.01 0.18

Table 4.1: Validation of immune cell proportion estimates by flow cytometry for 9 cell types [left]
and 6 cell types after grouping naive B-cells and memory B-cells as B cells, and naive/memory
resting/memory activated CD4+ T-cells as CD4+ T cells [right].

Examining the results of the 9 original cell types, ICeD-T provides the most accurate estimates

of cell type proportions in terms of sum of squared errors. CIBERSORT, on the other hand, provides

the most accurate estimates with respect to the correlations (Table 4.1, Figure 4.4). However, the

superior correlation of CIBERSORT is due in part to several cell subsets with positive correlations

but severe bias (e.g. memory activated CD4 T-cells, memory resting CD4 T-cells) (Supplementary

Materials Section C.4). After grouping a few highly similar cell types (e.g., grouping naive B-cells

and memory B-cells as B cells, and naive/memory resting/memory activated CD4+ T-cells as CD4+

T cells), ICeD-T achieves comparable or higher correlation between expression-based cell type
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Figure 4.4: Comparison of cell type proportion estimates by CIBERSORT and ICeD-T versus the
cell type proportions measured by flow cytometry. Red lines indicate the least squares model fit to
the estimated immune proportions.
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proportion estimates and flow-cytometry estimates while maintaining the smallest sum of squared

errors (Table 4.1, Figure 4.4). In this dataset, EPIC has very poor performance, which may be due

to the fact that it is designed for RNA-seq data.

4.3.3 Flow Cytometry Validation in Melanomas

In the EPIC paper, Racle et al. [44] obtained metastatic melanoma samples from the lymph

nodes of four patients with stage III melanomas. A portion of each of these samples was used for a

flow cytometric analysis while the remaining portion was used for bulk RNA-sequencing. Results

from flow cytometry were used to establish a ground-truth cell type composition. TPM-normalized

RNA-seq expressions and flow cytometry measured compositions were extracted directly from the

EPIC R package.

We used EPIC’s TRef matrix as reference gene expression for both EPIC and ICeD-T. ICeD-

T was run in four different modes, with or without variance weights (denoted by wY and wN,

respectively) and with or without sample purity as part of the inputs (denoted by pY and pN,

respectively). For this analysis, purity is defined as the proportion of non-immune content plus the

proportions of cells not assessed via flow cytometry (e.g. Macrophages, CAFs, and Endothelials,

and others). CIBERSORT was fit using both the LM22 and TRef matrices directly to the TPM data.

All cell type proportion estimates were corrected by cell size factors reported by Racle et al. [44].

To allow comparison of ICeD-T and EPIC with CIBERSORT that only computes relative immune

cell abundance estimates, we obtain relative proportions for all methods by normalizing cell type

proportions so that they add up to 1.

Overall EPIC provides more accurate estimates of the total proportion of all immune cells,

while ICeD-T provides more accurate estimation of the relative proportions of immune cells among

the modeled immune cell types (Table 4.2, Figure 4.5). Comparing non-relativized proportions of

the remaining immune cells, ICeD-T (pY, wY) improves upon EPIC’s fit in terms of the overall

sum of squared error (0.043 vs 0.11) while preserving strong correlation (0.924 vs 0.918) across all

subjects.
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Figure 4.5: Plots of EPIC and ICeD-T model estimates against flow cytometry estimates. ICeD-T is
fit using variance weights and sample purity.

Model LAU125 LAU1255 LAU1314 LAU335
CIBERSORT (LM22) 0.12 0.16 0.003 0.010
CIBERSORT (TRef) 0.32 0.10 0.021 0.095
EPIC 0.86 0.15 0.066 0.013
ICeD-T (pN, wN) 1.03 0.10 0.042 0.003
ICeD-T (pN, wY) 1.07 0.14 0.005 0.004
ICeD-T (pY, wN) 0.85 0.08 0.039 0.008
ICeD-T (pY, wY) 0.85 0.14 0.020 0.002

Table 4.2: Sum of Squared Errors for relative immune proportions among all immune cell types.
ICeD-T fits are labeled with (pX, wX) to indicate use of purity (pY=Yes and pN=No) and weight
(wY=Yes and wN=No).
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We also evaluated the performance of CIBERSORT versus the flow cytometry estimates.

Compared with other methods, CIBERSORT has comparable or less accurate estimates of cell

type proportions in three subjects, but much better performance than the other methods in subject

LAU125 (Table 4.2). Based on flow cytometry estimates, this subject has somewhat unexpected

immune cell proportion: almost entirely B-cells. All methods perform much worse in this subject

than other subjects, with larger sum squared errors. CIBERSORT has relatively better performance

for this challenging subject could be due to a combination of its objective function and use of LM22

reference matrix. CIBERSORT’s performance becomes worse when using LM22 instead of TRef

as reference matrix, though it still has much smaller sum squared error than EPIC and ICeD-T.

In addition, we also compare the cell type proportion estimate of one cell type across subjects.

This is arguably more interesting when we want to use immune cell composition as predictor or

treatment response. The limited sample size of this dataset does limit our ability to make comparison,

though we do note that ICeD-T provides the best fit for the CD8+ T-cell subset across subjects

(Supplementary Materials, Section D.3). CIBERSORT and EPIC particularly struggle to capture

the CD8+ T cell proportion for subject LAU1255.

4.3.4 Application to anti-PD-1 Immunotherapy Data

Finally, we use ICeD-T, CIBERSORT, and EPIC to analyze an RNA-seq dataset from bulk

tumor samples of melanoma patients [71]. The RNA-seq data are available in 28 patients before

treatment with pembrolizumab. We seek to predict treatment response (Complete Response, Partial

Response, or Non-response) using CD8+ cell type composition estimated by each of the three

methods.

Fastq files of RNA-seq data were downloaded from NCBI Sequence Read Archive, mapped

to human genome (hg38) and the number of RNA-seq fragment per gene were counted. Then

such counts were normalized by TPM. We ran EPIC and ICeD-T using the TRef reference gene

expression data. ICeD-T was fit without using tumor purity as this information was not available.

CIBERSORT was fit using LM22 reference matrix. Abundance estimates across each method are
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corrected using EPIC’s cell type size factors. In addition, to ensure comparability across all methods,

immune cell proportions are renormalized so that their summation equals to 1.

Differences in relative CD8+ T-cell abundance across response categories was assessed using a

Jonckheere-Terpstra test for trended differences. The Jonckheere-Terpstra test can be considered

as an extension of non-parametric ANOVA tests (e.g. Kruskal-Wallis) to allow greater power to

detect ordered population differences [72]. Previous studies have shown that those cancer patients

with more CD8+ T cells within tumor microenviroment are more likely to respond to anti-PD-1

treatment [73]. Thus, as one moves across response categories from most to least responsive to

therapy, one would expect to see a decrease in CD8+ T cell abundance.
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Figure 4.6: Comparison of model fits to PD-1 Immunotherapy Data
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CIBERSORT and EPIC capture the expected relationship between CD8+ T cell proportion and

immunotherapy response to some extent, but have trouble in separating the members of at least

two groups. For CIBERSORT, individuals in the partial response group behave similarly to those

in the progressive disease group. For EPIC, individuals in the complete response group behave

similarly to those who exhibited partial response. The Jonckheere-Terpstra tests provide numerical

confirmation of these difficulties as the tests are not significant, with p-values for CIBERSORT and

EPIC being 0.30 and 0.14, respectively.

ICeD-T, on the other hand, provides clear visual distinction between these three groups show

less CD8+ T cells for those who do not response to anti-PD-1 treatment. This relationship is

reinforced through consideration of the significant Jonckheere-Terpstra test (p=0.038). Introduction

of variance weights further separates these categories (p=0.017), but does so at the expense of inflated

contributions of CD8+ T-cells to the immune response in the TME. Cell type proportions estimates

by either versions of ICeD-T have higher within group similarities than either CIBERSORT or

EPIC.

4.4 Discussion

In this paper, we have outlined a novel statistical method for immune cell expression decon-

volution within tumor tissues, ICeD-T. ICeD-T utilizes the variance stabilizing properties of the

log-transformation while simultaneously controlling for aberrant gene behavior within the tumor

tissue. In addition, ICeD-T incorporates a variance weighting structure which diminishes the

impact of highly variable genes on abundance estimation. Optionally, ICeD-T can refine cell type

abundance estimation through use of tumor purity information, if available.

We have demonstrated that ICeD-T is an accurate model in both simulated and real datasets. The

robustness of ICeD-T to misbehaved genes and its ability to identify these genes was demonstrated

in simulated data. ICeD-T’s accuracy was reinforced in real datasets using both microarray and

RNA-seq expression where it was consistently a top performer compared with other methods.

In particular, it was noted that ICeD-T can provide more accurate estimates of the CD8+ T-cell
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proportions than other methods. We applied ICeD-T to study the relation between CD8+ T cell

proportion and response to anti-PD-1 immunotherapy and found significant associations between

CD8+ T cell proportions and patients’ response to immunotherapy.

There is room to further improve the performance of ICeD-T. One direction is to refine the

reference matrix of cell type-specific gene expression. In this paper, we have adopted the reference

gene expression matrix (TRef) used by EPIC’s. TRef was constructed using single cell RNA-seq

(scRNA-seq) data from melanoma cancer samples. Cell type-specific expression was estimated

by pooling cells of the same cell types, identified by clustering method. However, some technical

limitations of scRNA-seq, such as dropout (expression of many genes were measured at 0 while

they may be lowly expressed) [74]. Careful examination of such effects may improve the reference

matrix of cell type-specific gene expression. On the other hand, techniques for scRNA-seq are a

very active research area. New techniques and new data (e.g. Human Cell Atlas [75]) may help

generate higher quality data for such a reference matrix.

Another future direction to improve ICeD-T is to refine the the variance weights. We have

implemented the variance weight for each gene based on the maximum of cell type-specific

variances. Other options that use the variances across all cell types may be more desirable. As is,

some minimally variable genes may be overweighted since the maximal variance was utilized for

weights. By refining the weighting structure, the perception of gene-expression variance in the

mixture could improve and allow for genes to contribute to cell type composition estimation in a

way which more closely mirrors their true behavior. However, with limited cell type-specific gene

expression data, we have not yet identified a clear choice.
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CHAPTER 5: MAPPING TUMOR-SPECIFIC EXPRESSION QTLS IN IMPURE
TUMOR SAMPLES

5.1 Introduction

Genetic variants (e.g. Single Nucleotide Polymorphisms (SNPs)) that are associated with the

expression of one or more genes are referred to as gene expression quantitative trait loci (eQTLs).

Genome-wide eQTL study is a powerful tool for understanding the functional roles of genetic

variants. For example, eQTL analyses can help interpret the results of genome-wide association

studies (GWASs) [46].

There are two types of eQTL, cis-eQTL and trans-eQTL [47, 48], which are distinguished

by the pattern of expression change they induce. To precisely define these eQTL types, we first

define the term “allele”. Consider a diploid genome, which has two homologous copies of each

chromosome: a maternal copy and a paternal copy. As such, each genetic locus (e.g., a SNP or

a gene) has two copies within a cell, which are referred to as the two alleles of this locus. For a

gene affected by a cis-eQTL, the expression of each allele is moderated by the genetic content of

the corresponding homologous chromosome, which leads to allelic imbalance of gene expression.

In contrast, for a gene affected by a trans-eQTL, the expression of both alleles are modified to the

same extent.

The concepts of cis- and trans-eQTLs are crucial to our method development, and thus we

further illustrate them by two examples. Consider a cis-eQTL, which is a SNP with A and T alleles.

The A allele inhibits the binding of a transcription factor, which up-regulates the expression of a

nearby gene. In contrast, the T allele does not affect transcription factor binding. If we refer to the

two alleles of this gene by A or T allele (based on known phase between this cis-eQTL and and the

nearby gene of interest), this cis-eQTL leads to lower expression in the A allele than the T allele.

An example of a trans-eQTL could be a SNP that affects the activity of a transcription factor, which
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in turn regulates the expression of a gene and it has the same influence on the gene expression from

both alleles.

Cis-eQTLs are often falsely conflated with local eQTLs since cis-eQTLs are often located

nearby the genes they affect. Trans-eQTLs, on the other hand, can be located anywhere in the

genome in relation to the genes which they regulate [47]. It is important to reinforce that the defining

characteristics of cis-eQTLand trans-eQTLare not based on their proximity to their target genes, as

local eQTLs can induce cis- or trans- patterns of expression change.

Traditional eQTL mapping methods implicitly assume an eQTL has the same effect on all cells

within a sample. This is a reasonable assumption for samples with a relatively homogeneous cell

population. However, tumor samples invariably contain both tumor cells and infiltrating normal

cells (e.g., immune cells) and eQTL effects could differ between these two types of cells. To

quantitatively capture this concept of inhomogeneity within a tumor cell population, we consider

its tumor purity, defined as the proportion of tumor cells within the tumor sample. Previous eQTL

studies in tumor samples often ignore tumor purity information and directly apply eQTL mapping

methods that assume the tumor samples are composed of homogenous cells [49, 50, 51, 53, 76].

When tumor and normal eQTL are discordant, our results show that ignoring tumor purity may lead

to severely inflated type I error in the identification of tumor-specific eQTL.

In this paper, we focus on eQTL mapping using germline genetic variants. The proposed

methods may be extended to study eQTL mapping using somatic variants, but such extensions must

address the challenge of intra-tumor heterogeneity with respect to somatic mutations. To the best

of our knowledge, only one previous work has considered a similar problem of cell-type-specific

eQTL mapping given cell type proportion estimates [54]. Specifically, Westra et al [54] identify

neutrophil-specific eQTLs using a linear model: y = β0 + β1G + β2P + β3GP where y is gene

expression, G is genotype, and P is an estimate or proxy of neutrophil proportion. Loci where

eQTL effects are different between neutrophil and other cell types were identified by testing the

hypothesis β3 = 0. This approach does not directly estimate or assess cell-type-specific eQTL
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effects. We show in our analysis that a variant of this method that explicitly models a tumor-specific

eQTL effect has lower power than our proposed method.

The proposed methods are applied to the genetic expression data of 547 women with breast

cancer provided by The Cancer Genome Atlas. We examine the agreement and disagreement

between each posited model with respect to eQTL identification as well as a discussion of some

interesting eQTL identified by our method.

5.2 Model

Our model is an extension of the TReCASE method, which performs eQTL mapping using

RNA-seq data [55]. The TReCASE method models RNA-seq data along two dimensions, Total

Read Count (TReC) and Allele-Specific Expression (ASE), and simultaneously uses these two types

of data for eQTL mapping [48, 55]. The TReC for a gene of interest is the total number of RNA-seq

reads mapped to this gene. Under the TReCASE framework, TReCs across samples are modeled by

a negative binomial distribution. The ASE of a gene is quantified by the number of allele-specific

reads that match the genotype of one haplotype, but not the other haplotype of this gene. Thus,

an RNA-seq read is allele-specific if it overlaps with at least one SNP that is heterozygous across

the two haplotypes. The number of allele-specific reads from one allele given the total number of

allele-specific reads follows a beta-binomial distribution in the TReCASE framework.

The TReCASE method jointly analyzes the TReC and ASE data for cis-eQTLs as these two

types of data provide consistent information regarding the effect sizes of cis-eQTLs. In contrast, for

a trans-eQTLthe eQTL effect is non-zero for TReC but zero for ASE, and thus only TReC data

are used for mapping trans-eQTLs. The TReCASE model implicitly assumes eQTL effects are the

same across all the cells within a sample, which may not be correct for tumor samples. In this paper,

we extend the TReCASE model for tumor eQTL studies through the incorporation of tumor purity

and separate tumor- and normal-specific eQTL effects into our likelihood model. We refer to this

new model as pTReCASE.

63



5.2.1 The Data

We assume that phased germline genotype data and RNA-seq data from tumor samples are

available for n independent subjects. Since germline genotype data have been phased, we have

genotypes for each of a subjects’ two haplotypes. We also assume that an estimate of tumor purity

is available for each tumor sample. For example, one could estimate tumor purity using somatic

copy number aberration data [69].

While pTReCASE is designed to be applied across multiple gene-snp pairs, in the following

discussion, we consider the model for a specific gene of interest and a single potential eQTL of this

gene. For clarity and simplicity in the following notation, we suppress subscripts related to gene

and eQTL and note that the given structure applies across any Gene-SNP pairing. Let G(i) be the

genotype of subject i at the potential eQTL. G(i) can take values in {AA,AB,BB} where A and

B denote two alleles of the potential eQTL. Let ρi, di, and xi = (xi1, ..., xip)
T be the tumor purity

estimate, read depth measurement, and a vector of p covariates for the i-th sample respectively.

We set di as the 75-th percentile of the TReCs across all genes in the i-th sample, which is a more

robust way to measure read-depth than the summation of the TReCs across all genes.

5.2.2 Purity Corrected Total Read Count (pTReC) Model

The total read count Yi is defined as the number of RNA-seq reads that are mapped to a

given gene. We assume that Yi follows a negative binomial distribution with over-dispersion φ and

subject-specific mean µi, the likelihood for which is given by:

f(Yi;µi, φ) =
Γ(Yi + 1/φ)

Yi!Γ(1/φ)

(
1

1 + φµi

)1/φ(
φµi

1 + φµi

)Yi
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with E(Yi) = µi and V ar(Yi) = µi + φµ2
i . Summarizing across all n subjects, the log-likelihood

for the pTReC model is:

`TReC =
n∑
i=1

log [f(Yi;µi, φ)] . (5.1)

.

In impure tumor samples, pTReC captures the genetic effects of a potential eQTL on Yi through

its specification of µi (equation 5.3). In order to illuminate the structure of µi , we must first

quantitatively define these genetic effects for both tumor and normal cells. Let µiA and µiB be the

mean expression of alleles A and B for the i-th subject, and use superscripts (T ) and (N) to denote

measurements from tumor and normal cells, respectively. Values of µiA and µiB are allowed to

vary across subjects, but we assume that the ratios of these quantities are fixed across subjects.

Symbolically:

For all i, µ
(N)
iB /µ

(N)
iA = η, µ

(T )
iB /µ

(T )
iA = γ, µ

(T )
iA /µ

(N)
iA = κ.

Thus, γ represents an eQTL effect within tumor tissues that is common to all subjects and η is its

counterpart for tumor tissues. The remaining parameter, κ, is a nuisance parameter that models the

baseline gene expression difference between tumor and normal tissues.

To further elucidate these eQTL effects, focus on γ. When γ = 1, no eQTL effect exists

within the tumor as the mean expression of alleles A and B are identical within a subject
(
for

all i, µiA = µiB
)
. Suppose now that γ < 1; this implies that the B allele is under-expressed

relative to A by a multiplicative factor of γ (e.g. µiB = γµiA). On the other hand, γ > 1 implies

over-expression of the B-allele relative to A. Identical rules govern the interpretation of η for normal

tissues. Note that by specifying common values of η and γ across subjects, we imply that the ratio

of over/under-expression of the B allele relative to A is consistent across subjects while allowing

each subject a unique mean-expression level of alleles A and B.
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Now let ξi = µiB/µiA. Assuming that the mean expression of an allele is the weighted

summation of its expression in tumor and normal cells, we have:

ξi =
µiB
µiA

=
(1− ρi)µ(N)

iB + ρiµ
(T )
iB

(1− ρi)µ(N)
iA + ρiµ

(T )
iA

=
(1− ρi)η + ρiκγ

(1− ρi) + ρiκ
= (1− ci)η + ciγ, (5.2)

where ci = (ρiκ)/(1− ρi + ρiκ). The third equality is obtained by dividing both the numerator and

denominator by µ(N)
iA . Therefore, the overall genetic effect in a tumor sample is a mixture of the

genetic effects within tumor cells and normal cells.

Next we consider modeling the µi across different genotypes. First, if the i-th subject has

genotype AA at the candidate eQTL,

µi = µiA + µiA = 2µ
(N)
iA [1− ρi + ρiκ] .

We model log
(

2µ
(N)
iA

)
using a linear function of log read-depth and p covariates: β0 + βdlog(di) +∑p

j=1 βjxij . Applying similar derivations for the subjects with genotypes AB and BB, we have:

log(µi) =



β0 + βdlog(di) +
∑p

j=1 βjxij + log(1− ρi + ρiκ), if G(i) = AA

β0 + βdlog(di) +
∑p

j=1 βjxij + log(1− ρi + ρiκ) + log
(

1+ξi
2

)
, if G(i) = AB

β0 + βdlog(di) +
∑p

j=1 βjxij + log(1− ρi + ρiκ) + log(ξi), if G(i) = BB

(5.3)

In the pTReC model, estimates of β, κ, η, γ, and φ are obtained by maximizing equation 5.1

with respect to these parameters. We maximize this likelihood using a block coordinate ascent

algorithm. Within block coordinate ascent, optimization proceeds by maximizing the likelihood

with respect to a single set of parameters – called a block – at a time while holding all other blocks

of parameters fixed. Each block of parameters is then optimized iteratively until covergence of

parameter estimates. For pTReC, block 1 consists of parameters κ, η, and γ; block 2 consists

of parameters φ, βd, βj for j = 0, 1, ..., p. Thus, holding the values of all parameters in block

2 constant, a single update of block 1 is accomplished via a quasi-Newton method (LBFGS).
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Then, holding the parameters of block 1 fixed, the parameters in block 2 are updated via negative

binomial regression. As described, we then iteratively update the parameters in blocks 1 and 2 until

convergence.

5.2.3 Purity Corrected Allele Specific Expression (pASE) Model

We refer the reader to Sun and Hu [48] for details on how allele specific reads are counted

in RNA-Seq data. In the following, we briefly describe this process for a single candidate eQTL.

For each subject, we have genotypes available for arbitrarily labeled haplotypes, haplotype 1 and

haplotype 2. We extract all RNA-seq reads that overlap with at least one heterozygous SNP within

the body of the gene and assign each of these reads to the haplotype that matches its nucleotide

sequence. As haplotypes 1 and 2 are arbitrarily labeled for each subject, we ensure comparability

across subjects by relabeling these haplotypes with respect to the genotype of the candidate eQTL.

For subjects who are heterozygous at the candidate eQTL, haplotype A contains the A allele of the

candidate eQTL and haplotype B contains the B allele. For subjects who are homozygous at the

candidate eQTL, haplotypes A and B may be defined arbitrarily without affecting the likelihood

function or statistical inference.

Let RiA and RiB be the number of allele specific RNA-seq reads assigned to haplotypes A

and B, respectively. Let Ri = RiA + RiB be the total number of allele-specific RNA-seq reads.

We model RiB given Ri using a beta-binomial distribution with probability of success πi and

over-dispersion ψ, the likelihood of which is given by:

g(RiB;Ri, πi, ψ) =
Ri!

RiA!RiB!

Γ (ψ−1) Γ (ψ−1πi +RiB) Γ (ψ−1(1− πi) +RiA)

Γ (ψ−1πi) Γ (ψ−1(1− πi)) Γ (ψ−1 +Ri)
.

Incorporating all individuals, we may express the log-likelihood for the ASE model as:

`ASE =
n∑
i=1

log [g (RiB;Ri, πi, ψ)] ,
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where ξi,ASE = µiB/µiA and

πi =


µiB/(µiA + µiB) = ξi,ASE/(ξi,ASE + 1), if G(i) = AB

0.5, otherwise.

Recall that we had defined ξi similarly in equation (5.2). We introduce the slight change in

notation for the pASE model in order to distinguish cis-acting and trans-acting eQTL. For cis-eQTL,

ξi,ASE = ξi as defined in equation (5.2). For trans-eQTL, however, ξi,ASE = 0.5 since expression of

the A and B alleles are impacted to the same extent. A consequence of the above modeling strategy

is that ASE is uninformative regarding κ, η, or γ when an eQTL is trans-acting. In addition, for cis-

eQTL, subjects who are homozygous at the potential eQTL do not contribute to the estimation of the

eQTL parameters κ, η, or γ. However, such subjects are informative regarding the over-dispersion

parameter ψ.

As for pTReC, model fitting in pASE is also achieved via block coordinate ascent using two

blocks of parameters: block 1 consists of parameters κ, η and γ; block 2 consists of the lone

parameter ψ. We employ the cyclical algorithm described in the previous section to iteratively

update the parameters of blocks 1 and 2 until convergence. Updates for each block are accomplished

via LBFGS.

5.2.4 pTReCASE: Unifying pTReC and pASE Models

Restricting to cis-eQTLs, the pTReC and pASE models share the κ, η, and γ parameters allowing

for unification into a single likelihood model:

P (Yi, Ri, RiB|Θ) = P (Yi|Θ)P (Ri|Yi,Θ)P (RiB|Yi, Ri,Θ)

= f (Yi|Θ)P (Ri|Yi) g (RiB|Ri,Θ) ,

where Θ = (κ; η; γ; βj for j = 0, 1, ..p;φ; ηASE; γASE;ψ), the set of all parameters found in the

pTReC and pASE models.
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Note that the likelihood above explicitly relates Yi and Ri. Since the set of allele-specific reads

(Ri) is a subset of all reads mapping to the i-th gene (Yi), it is clear that Ri ≤ Yi. Despite this

relationship between these two variables, it is reasonable to assume that given Yi, the distribution of

Ri does not depend on our covariate or eQTL effects. Given the total read count at the i-th gene, the

number of reads overlapping at least one heterozygous SNP in gene i is a function of the number

of such SNPs present within the gene-body; thus, this value is not likely to be related to eQTL

effects. Therefore, we may remove P (Ri|Yi) from the likelihood function. The log-likelihood of all

n subjects is then given by:

`(Θ) =
n∑
i=1

log [f (Yi|Θ)] + log [g (RiB|Ri,Θ)] = `TReC + `ASE.

Model fitting is achieved via block coordinate ascent using three blocks: block 1 consists of

κ, η and γ; block 2 consists of φ, βd and βj for j = 0, 1, ..., p; and block 3 consists of ψ alone. A

single update is defined by the following steps. First, given the parameters of blocks 2 and 3, the

parameters of block 1 are updated using LBFGS. Then, given the parameters of blocks 1 and 3, the

parameters of block 2 are updated via negative binomial regression. And finally, given the other

parameters, the parameter of block 3 is updated using LBFGS. These cyclical updates are repeated

until convergence.

5.2.5 Hypothesis Testing

Under the proposed models of sections 2.2 through 2.4, there are three critical questions of interest.

Should we use the pTReC or pTReCASE model to assess an eQTL? Does an eQTL exist within

normal tissue? Does an eQTL exist within tumor tissue?

Addressing the first question requires consideration of the biological mechanisms driving cis-

and trans-eQTLs. For a cis-eQTL, the TReC and ASE components share the same parameters for

eQTL effect sizes, and thus jointly modeling TReC and ASE (i.e., TReCASE) increases power. For

a trans-eQTL, expression of both alleles of the affected gene are altered to the same extent, and

69



thus ASE is not informative in the detection of eQTL or estimating eQTL effect size. Therefore,

only TReC data should be used for eQTL mapping of trans-eQTL. We develop a “Cis-Trans” score

test to aid in model selection by addressing a null hypothesis of consistent eQTL effects across the

TReC and ASE components of the model.

To structure this test, let ηASE and γASE be the eQTL effects for a gene and a candidate eQTL

within the ASE component of the model. We still use η and γ to model eQTL effects in TReC

data. Define ηASE = η + αη and γASE = γ + αγ where αη and αγ reflect the discrepancy between

ASE and TReC eQTL effects for normal and tumor tissues, respectively. The null hypothesis of

equivalent eQTL effects in TReC and ASE components of the model is defined using the notation

above by αη = αγ = 0. See the supplementary information for a detailed description and derivation

of this “Cis-Trans” score test. The test statistic and its asymptotic distribution are provided below:

SC = ˙̀
(

Θ̂
)T

I(Θ̂)−1 ˙̀
(

Θ̂
)
∼ χ2

(2),

where Θ̂ are the MLEs of our parameters under the null hypothesis; ˙̀ is the gradient of the TReCASE

likelihood with respect to the parameters; and I(Θ̂) is the Fisher’s Information Matrix.

The presence of eQTL in normal tissue (i.e., η 6= 1) or tumor tissues (i.e., γ 6= 1) can be

assessed using likelihood ratio tests (LRT). These test statistics and their asymptotic distributions

take the form:

Λ = −2
[
`
(

Θ̂0

)
− `
(

Θ̂
)]

∼ χ2
(1),

where Θ̂0 represents parameter estimates under the null and Θ̂ represents estimates under the

alternative. To test for the presence of an eQTL in normal or tumor tissue, Θ̂0 is obtained by fitting

the model under a null hypothesis of η = 1 or γ = 1, respectively.

To identify eQTL within a single gene-snp pair, we propose the following procedure.

(1) Conduct the “Cis-Trans” score test to determine use of pTReC or pTReCASE model.
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(2) Under the prescription of the “Cis-Trans” test, conduct independent LRT of γ = 1 and η = 1

to determine the presence of eQTL effects.

The above algorithm is designed to ensure that inconsistent effects in the pTReC and pASE models

do not limit the power to detect trans-eQTL. For trans-eQTL, the eQTL effect modeled by pASE

should be 1 whereas that modeled by pTReC should be non-unity (6= 1). Thus, joint estimation

using pTReCASE will dilute effect strength resulting in a loss of power. Since the goal of the

“Cis-Trans” score test is to determine whether the eQTL effects modeled by pTReC and pASE are

consistent and not to assess the presence of an eQTL effect, the sampling properties of the eQTL

effect tests should remain unaffected.

5.3 Results

5.3.1 Simulation Study

We conducted a simulation study to compare the statistical power and type I error rate of

pTReCASE and several other methods. Simulations were conducted across a range of eQTL effect

sizes in normal and tumor cells. To assess Type I error, we set γ at 1 and allowed η to vary. To

assess power to detect tumor-specific eQTL, we set η at 1 and allowed γ to vary. For each pair

of η and γ, we simulated 400 replicates of gene expression and genotype data for 500 subjects.

Genotypes were simulated assuming a minor allele frequency of 0.2. Read counts were simulated

according to the pTReCASE model using the following algorithm:

(1) Randomly generate tumor purities from a uniform distribution on (0.5,1) for each of the 500

subjects.

(2) Simulate TReC via a negative binomial model with:

(A) Mean of 100 reads for subjects with genotype AA and tumor purity of 0%.

(B) κ = 1.5 and φ = 0.2.
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(3) Assume that 5% of the simulated TReC reads are allele specific reads, rounded to the nearest

integer. Partition allele specific reads to haplotypes according to the established beta-binomial

model using an overdispersion of ψ = 0.2.

Each considered eQTL model is then fit to the simulated data. For any given modeling procedure,

the type I error is estimated by the proportion of simulations which incorrectly identify a tumor

eQTL when none is present. Power is estimated by the proportion of simulations which correctly

identify a tumor eQTL when one is present.

The competing eQTL models that we considered include the TReC/TReCASE model without

correction for tumor purity, and the TReC model with tumor purity (pTReC). In addition, we

also considered a naı̈ve approach of linear regression ignoring tumor purity, labeled LR, and a

modification of the approach adopted by Westra et al [54] denoted by pLR. To fit a linear model,

we first applied a normal quantile transformation to (read-depth corrected) TReC values of each

gene across n samples, and then used the transformed TReC as a response variable for linear

regression. Specifically, we first replaced TReC values by their ranks across n samples, and then

replaced the ranks by their corresponding normal quantiles. For example, rank r was replaced by

the r/(n + 1)-th normal quantile. Letting Ȳ be the transformed TReC data, the linear model is

given by E
(
Ȳ
)

= β0 + β1G, where G is the genotype of the candidate eQTL.

To test genotype and tumor purity interaction using pLR, we fit a linear model E
(
Ȳ
)

=

β0 + β1G + β2ρ + β3Gρ where ρ is an estimate of tumor purity. The interaction test employed

by Westra et al [54] (i.e. β3 = 0) does not assess the strength of a tumor eQTL. Rather, it tests

whether eQTL effects differ between tumor and normal tissues. Under pLR, we assessed tumor

eQTL effects by testing β1 + β3 = 0 since β1 + β3 is the genetic effect of the candidate eQTL when

tumor purity is 1.

All three methods that control for tumor purity (pTReCASE, pTReC, pLR) control Type I

error at the desired level. As eQTL strength in the normal tissue increases, the methods that do not

account for tumor purity see a rapid increase in Type I error (Figure 1A). In terms of power (Figure

1B), the methods that do not account for tumor purity exhibit the largest statistical power due to
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Figure 5.1: Examining Type I error [A] and Power [B] from simulation studies.

their anti-conservative control of Type I error. Among those methods that control Type I error (i.e.

pLR, pTReC, pTReCASE), pTReCASE has the highest power. This is a result of its joint analysis

of TReC and ASE.

5.3.2 The Cancer Genome Atlas (TCGA) Data

5.3.2.1 Data and Model Fitting

We applied the pTReCASE model to analyze gene expression and germline SNP geno-

type data from 550 breast cancer patients of The Cancer Genome Atlas (TCGA) project. All

the data were downloaded from TCGA data portal (https://tcga-data.nci.nih.gov/

docs/publications/tcga/), which has now been replaced by NCI Genomic Data Com-

mons (https://portal.gdc.cancer.gov/). We started with 728 patients with RNA-seq

data from tumor samples. In order to assess allele-specific gene expression, we downloaded raw

RNA-seq data in bam file format. For genotype data, we downloaded the Affymetrix CEL files. We

restricted our analysis 550 of 728 patients who had available genotype data, passed quality controls

for both genotype and RNA-seq data, and were Caucasian females (See Supplementary Materials
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Section B for details). Males were excluded as breast cancer in men is rare and may have a different

disease etiology. The restriction to Caucasian samples is not necessary, but it helps to eliminate

possible confounders [77].

For the remaining 550 patients, genotype imputation and haplotype phasing was performed by

MACH [78] using reference haplotypes from the 1000 Genomes Project. Starting with ∼800,000

SNPs genotyped by Affymetrix 6.0 array, we imputed the gneotypes for∼36 million SNPs. For each

sample, we used all the SNPs with heterozygous genotypes to estimate allele-specific expression

(See Supplementary Materials Section B for details). For the purposes of eQTL mapping, we

restricted our analysis to those SNPs with MAF ≥ 0.02 (6,825,065 SNPs after imputation) because

there is limited power to detect eQTL at lower values of MAF. Tumor purities were estimated

using ABSOLUTE [69], which led to the exclusion of three additional subjects lacking valid

purity estimates. Estimated haplotypes and tumor purities were treated as truth in the subsequent

pTReCASE and linear regression models.

Linear models for eQTL analysis and the revised Westra approach (i.e. pLR) were fit using

matrixEQTL [79] and customized R code on normal quantile transformed RNA-Seq count data,

respectively. TReC, TReCASE, pTReC and pTReCASE models were fit using our own package.

The median analysis time for a single gene-SNP pair using pTReCASE was 2.71 seconds (IQR =

2.93 seconds). The covariates used for eQTL mapping include read-depth of RNA-seq experiments

(Supplementary Figure 7), RNA sample plates, age, and the top two principal components derived

from the genotype data of the 550 Caucasian samples. Since our method is designed to identify

cis-eQTLs and most cis-eQTLs are local to the genes which they affect, we restricted our analysis

to SNPs located within 100Kb of the gene of interest.

5.3.2.2 eQTL Identification

Figures 5.2A-B illustrate a tumor-specific eQTL identified by the pTReCASE model. The

estimates of effect sizes (ratio of gene expression of the B allele versus the A allele) for normal and

tumor-specific eQTLs are 0.96 (η) and 3.51 (γ), respectively. The fold change of gene expression
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in tumor versus normal cells (for genotype AA) is 0.19 (κ) (Figure 5.2D). In other words, gene

Figure 5.2: (A) Covariate-corrected total expression estimated via pTReCASE plotted against genotype and
tumor purity. Outliers were suppressed for clarity. Dot plot instead of boxplot was used when sample size
of a category is too small. (B) Examination of the allele specific expression corresponding to case shown
(A). (C) Covariate-corrected total expression estimated via pTReC plotted against genotype and tumor purity.
(D) Table providing Gene, SNP, and estimated parameters for the displayed assessments. pCT references the
value of the Cis-Trans score test.

expression in tumor cells is lower than that in normal cells, but the eQTL effect is only present

in tumor cells. These numerical estimates were well demonstrated by Figures 5.2A-B. As tumor

purity increases, gene expression measured by TReC decreases (Figure 5.2A), and the strength

of the eQTL increases. Both TReC and ASE show consistent signals that the B allele has higher

expression, with a “Cis-Trans” test p-value of 0.95.
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To highlight the functioning of the pTReC model, another example of tumor-specific eQTL was

identified and shown in Figure 5.2C. In this example, gene expression from the ASE model was not

used for eQTL mapping due to a significant “Cis-Trans” test using the full model. In this example,

gene expression is higher in tumor compared to normal cells and the B allele has lower expression

than the A allele in tumor cells, but not in normal cells. Note that we can still see some signals of an

eQTL in the category with the lowest tumor purity. This results from TCGA samples being selected

to have relatively higher tumor purity, thereby creating a categorization schema wherein even the

lowest tumor purity category has a non-negligible amount of tumor cells.

We use another example to demonstrate the utility of the Cis-Trans score test (Figure 5.3).

Considering only the TReC data, the B allele has slightly higher expression than the A allele when

tumor purity is high (Figure 5.3A). In contrast, considering only the ASE data, the B allele has

much lower expression than A across all tumor purity levels. This inconsistency between TReC

and ASE data led to a highly significant Cis-Trans p-value (Figure 5.3C). In such cases, only the

TReC data is trusted and used to estimate eQTL effects. ASE tends to be noisier in real data as

mapping biases, incorrect genotype data, and/or other biological and technical factors can lead to

the observed ASE imbalance as opposed to eQTL effects. Failure to consider the Cis-Trans test

could lead to the acceptance of spurious eQTL results.

Next, we systematically compare the results for all eQTLs using the pTReCASE, TReCASE,

and pLR approaches at various p-value cutoffs. One way to compare the results is to check the

overlap of each significant eQTL association, i.e., each gene-SNP pair (Supplementary Table 2).

However, due to LD, the expression of one gene may be associated with multiple SNPs that are in

close proximity to one another and often represent redundant eQTL signals. Therefore, we focus on

the eQTL results summarized at the gene level. In other words, for a given p-value cutoff, we count

the number of genes with at least one eQTL with a p-value falling below the cutoff (Table 1).

Compared to pTReCASE, the TReCASE model identifies eQTLs in a larger number of genes.

For those genes where TReCASE identifies a significant eQTL and pTReCASE does not, the

significant findings of the TReCASE model are most likely driven by an eQTL in normal tissue.
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Figure 5.3: Demonstrating the utility of the Cis-Trans score test. (A) Covariate-corrected total
expression plotted as a function of genotype and tumor purity. (B) Allele Specific Expression with
respect to genotype and tumor purity. (C) Table containing relevant modeling information for A and
B. pCT provides the p-value of the Cis-Trans score test.
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Genes

P-value Cutoff Category pTReC(ASE) TReC(ASE) pLR

# of Genes 1245 2982 268
5× 10−6 overlap/alternative – 27.0 85.4

overlap/pTReC(ASE) – 64.7 18.4

# of Genes 496 1612 110
5× 10−8 overlap/alternative – 21.4 93.6

overlap/pTReC(ASE) – 69.6 20.8

Table 5.1: Summarizing the results of pTReC(ASE), TReC(ASE), the Westra-inspired models for
TCGA data. Here the notation pTReC(ASE) indicates that we used the pTReCASE or pTReC model
depending on the results of the Cis-Trans test. “Overlap” represents the genes with at least one
significant eQTL identified by both pTReC(ASE) and an alternative method. “Overlap/alternative”
is the number of overlaps divided by the number of findings using the alternative method. “Over-
lap/pTReC(ASE)” is the number of overlaps divided by the number of findings using pTReC(ASE).
If we consider the results of pTReC(ASE) as true findings, then “overlap/alternative” is the true
discovery rate and “overlap/pTReC(ASE)” is the sensitivity

TReCASE recaptures around two-thirds of eQTL findings identified by pTReCASE. The one-third

missed by TReCASE are more likely to have weaker effect size and/or are only present in tumor

cells.

Across p-value thresholds, the pLR model identifies relatively fewer significant gene-SNP

pair relationships. Of those relationships identified by the pLR model, 85- to 93- percent are also

identified by pTReCASE. The pLR model also misses at least 73% of significant results identified

by pTReCASE. Possible reasons for the poor performance of the pLR model could arise from the

fact that ASE is not incorporated and/or the relationship between transformed gene expression and

tumor purity is not examined on the linear scale.

At the time of this writing, these authors were unable to find many studies seeking to identify

eQTL in breast cancer tissues. Of those available, none utilized information regarding tumor purity

when constructing analysis models which may limit the comparability of results. However, we

identified one such study of breast cancer eQTL which controls for both somatic copy number

and methylation [53]. We compare the results of pTReCASE against those in Li to determine

the extent of overlap in their eQTL calls [53]. At the 5e-6 significance level, Li identifies 165
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genes in common with pTReCASE whereas 91 genes would be expected by chance. In fact, the

hypergeometric probability of observing 165 or more genes in common is 1.6.e-14. At the 5e-8

level, Li identifies 86 genes in common with pTReCASE whereas 37 genes would be expected by

chance (hypergeometric p = 3.5e− 14). Note, Li et al examine eQTL using a reduced set of SNPs,

a reduced sample size, and expression data derived from microarrays and not RNA-seq. The lack of

stronger overlap between Li et al and pTReCASE could be due to Li’s use of microarray expression

instead of RNA-seq, smaller set of considered SNPs, and smaller sample size of breast cancers.

5.3.2.3 Assessing Copy Number Effects

Within tumor samples, copy number aberrations (CNA) are pervasive. Involving the addition

or deletion of copies of genomic loci (e.g. SNPs or genes), CNA can increase or decrease the

expression of various genes by virtue of adding or deleting copies of this gene. At present, the

pTReC and pTReCASE methods do not assess the impact of copy number aberration on gene

expression. Future extension of these models is needed to account for such impacts. However, we

contend that CNA are unlikely to result in false positive results for pTReC and pTReCASE, instead

resulting in a likely loss of power.

To examine the extent of copy number aberration within the TCGA dataset examined above,

we define the following terms. Cij is the total copy number of gene i in sample j. Ni is the ploidy

of subject i. To determine the impact of CNA on a subject’s gene expression, consider the metric

Dij where:

Dij = Cij −Ni.

Thus, Dij represents the difference between a gene’s copy number and the average copy number

across all loci within the subject. For a single subject and gene, we define a copy number event to

occur whenever |Dij| > 0.5.
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To motivate the use of Dij to define copy number events, compare a sample a with no CNA

across the entire genome to a sample b with CNA such that, on average, any gene is expected to have

one additional copy (e.g. Ni = 3). Assuming identical expressions of each copy of a gene in the

two samples and equivalent sampling depth during measurement, sample b would experience gene

expressions 1.5 times larger than those in sample a. However, if one were to relativize expression

within these samples (i.e. using FPKM, FPKM-UQ), the CNA across all genes within sample

b would be eliminated. This is a direct result of the fact that the measure of read-depth would

incorporate a consistent increase in expression due to the CNA seen in b. Thus, CNA should only

impact relative gene expression when a gene’s copy number is different from the average such copy

number across the genome. Since pTReC and pTReCASE incorporate measures of read-depth

within their mean structures, these models benefit from the properties of relativized expression

comparisons.
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Figure 5.5: Evaluating the extent of copy number aberration within the TCGA dataset. [A]
Distribution of the correlations between Dij and Cij for subjects where |Dij| ≤ 0.5 summarized
across all 18,134 genes. Red line indicates density of N(0,1/

√
296). [B] Distribution of the

correlations between Dij and relative gene expression summarized across all 18,134 genes [C] The
distribution of the number of subjects with |Dij| > 0.5 across all 18,134 genes.

To justify use of |Dij| > 0.5 to define copy number events, consider figure (5.5). Focusing on

subjects such that |Dij| ≤ 0.5, or the group of subjects assumed not to have experienced a copy

number event, we would expect to see no relationship between relative gene expression (Yij/di)

and Cij . Thus, assuming relative expression can help mitigate the effects of CNA, the distribution

of the correlation between Cij and (Yij/di) should be approximately 0. Indeed, panel (A) suggests

this to be a reasonable assumption. While there is a slight positive skew, the correlation strengths

remain low and are reasonably consistent with their expected distribution assuming the true mean
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is 0. As an additional note, the expected distribution is computed assuming that all correlations

are computed with the same group size. However, the number of subjects not experiencing a CNA

varies across gene and thus is not meant to provide an exact alignment.

Further, consider the relationship between a variable

Gij =


0 if Dij < −0.5,

1 if |Dij| ≤ 0.5

2 if Dij > 0.5

and relativized expression (Yij/di). Under the argument posited above, one would expect to see a

positive correlation between these two variables. This would indicate that as one increases the CN

of a gene relative to the ploidy of the individual, the relative expression should also increase. Panel

(B) provides support for this assertion, demonstrating positive correlations the bulk of which fall

between 0.0 and 0.6.

Thus, considering the support displayed above, panel (C) suggests that approximately 75% of

genes have 50% or fewer subjects impacted by copy number events. Indeed, copy number aberration

is pervasive within the TCGA dataset.

However, the presence of copy number aberrations is unlikely to indicate the presence of false

positive calls from pTReC and pTReCASE. If the correlation between copy number and eQTL

genotype is weak or non-existent, CNA would add noise to the statistical models but would not

induce false signal. To substantiate this claim within the TCGA dataset, we examine the correlation

between Dij and eQTL genotype. For each gene with at least one significant eQTL at the 5× 10−6

level, we select its most significant SNP and compute the correlation between Dij and the genotype

of this SNP. Figure (5.6) plots the distribution of these correlations across the 1,271 significant

genes with the red-line indicating the expected distribution assuming that these correlations have

mean 0. Figure (5.6) demonstrates that these correlations are often weak, and thus pTReC and

pTReCASE are unlikely to suffer from false positives due to CNA.
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5.4 Discussion

Due to contamination of tumor samples with infiltrating normal cells, the identification of

eQTL within tumor tissues poses several challenges. First and foremost, one needs to separately

estimate the eQTL signals in tumor and normal cells. Second, while total gene expression has

been widely used for transcriptome studies, it is important to leverage the additional information

provided by allele-specific expression which can be effectively derived using RNA-seq data. We

have developed a statistical model and software package, pTReCASE, to address these issues. The

desirable performance of pTReCASE has been validated using simulations and real data analysis.

In constrast, a naı̈ve approach for eQTL mapping that ignores tumor purity may lead to a large

fraction of false positives.

Readers may note that the mean structure utilized by pTReCASE involves two critical assump-

tions: (1) Expression in the tumor is composed of two cell groups, tumor and normal; and (2) the

mean structure precludes the modeling of dominant and recessive eQTL effects. As mentioned

in the introduction, intra-tumor heterogeneity is an ongoing challenge in the analysis of cancer

expression data that provides a natural challenge to the assumption in (1). However, assumption
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(1) allows pTReCASE to identify eQTL effects that are common to the majority of tumor cells

across samples. Further refinement of eQTL effects into effects arising within different subclones is

likely not possible due to the high degree of difference between subclones across cancers. Thus,

assumption (1) does not seek to imply that it is impossible for certain subclones to experience

different eQTL regulation. Instead it restricts the ability of pTReCASE to identify eQTL that are

present in poorly represented subclones.

With regard to assumption (2), the additive structure used by pTReCASE is a natural conse-

quence of cis-acting regulation. Should dominance and recessive relationships exist, it is unlikely to

result from cis-acting regulation and thus one should not incorporate ASE information in the model.

The pTReC model could be modified to capture dominance and recessive relationships in future

studies.

In addition, the effects of γ and η on mean expression through formulas involving ξi rather than

introducing a genotype covariate directly into the regression equation. The relationship between

genotype and genetic expression is assumed to occur on the linear scale. The relationship between

genetic expression and covariates is assumed to occur on the log-scale. Thus, replacing η and γ

with extra elements in the covariate vector β is impossible due to the different scales.

Within the current established framework for pTReC(ASE), there are three additional avenues

for further development and research. The first is to improve the computational efficiency of our

software package. Using the current implementation, it takes about thousands of CPU hours for

genome-wide local eQTL mapping. This can be easily done using a moderately sized computing

cluster, but is not computationally feasible for a single computer. High computational costs also

prevent us from using permutations to assess the significance of eQTL results. Thus, we recommend

use of Bonferroni correction, Benjamini-Hochberg FDR control [80], or calculation of the number

of independent tests by examining the correlation structure of the genotype data [81].

We have assumed that the haplotypes connecting candidate eQTLs and the SNPs within the

gene body are known. In practice, such haplotypes are imputed/phased using statistical methods.

Phasing is usually accurate within short genetic distances around the gene of interest. However, if
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we would like to consider potential eQTLs further from the gene, there is a possibility of phasing

error. The second avenue for improving the posited model is to allow for uncertainty in the haplotype

phasing by following the approach of Hu et al [56].

Lastly, both the TReC and ASE components of the pTReCASE model have assumed no copy

number change across subjects. Suppose that an eQTL for a given gene modifies expression through

copy number changes. More specifically, suppose the B allele at the candidate eQTL is associated

with a larger copy number in tumor tissues. This would lead to increased expression from the B

allele and would be interpreted by the pTReCASE model as higher expression of B allele. In such a

scenario, the pTReCASE model is applicable without modification. However, if both eQTL and

copy number affect gene expression independently, the pTReCASE model should be adjusted for

copy number differences. We have demonstrated in section 3.2.3 that, despite not controlling for

pervasive CNA in its analysis, pTReC(ASE) is unlikely to have experienced false positive calls as

the correlation between SNP genotype and gene copy number are often weak.

Given estimates of allele-specific copy number, our model can be modified to address copy

number variation across subjects. Estimation of allele-specific copy number in tumor samples is a

very challenging task due to the confounding effects of tumor purity, ploidy, and the possibility of

subclonal copy number changes [82, 83]. It is desirable to systematically study the effects of both

germline SNPs, somatic copy number changes, and even somatic point mutations (single nucleotide

variants or indels) while also accounting for intra-tumor heterogeneity, but such explorations are

beyond the scope of this paper and warrant a series of future studies.
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CHAPTER 6: CONCLUSIONS AND FUTURE WORK

Within this dissertation, we have explored the analysis of bulk expression experiments from

heterogeneous cell type samples. Two main problems from such data have been examined: esti-

mating the cell type abundance profile from which the mixture expressions were generated and

conducting cell-type specific differential expression analyses controlling for cell type abundance.

While the abundance estimation and differential expression analyses are of interest in general cell

type samples, we focused the majority of our model development and application on tumor tissue,

namely estimating immune cell abundance within tumor samples and identifying tumor-specific

eQTL.

Within chapter 3, we posited an RNA-seq framework (IsoDeconv) for cell type abundance

estimation using isoform expression information. The presented work displays the promise of

isoform expression for use within the cell type deconvolution setting, but challenges remain. As

noted in chapter 3, future work on the IsoDeconv model should focus on reducing its computational

complexity and refining its application to real data settings. In particular, excessive variation has

been shown to hamper the estimation process. Strategies for mitigating the impact of this variation

have been proposed but require further development. Improving IsoDeconvs ability to handle higher

levels of expression variance is critical for its use in capturing the additional information regarding

cell type identity provided by isoform expression.

Chapter 4 provided an alternative cell type abundance estimation framework for use within

tumor tissues. The presented model, ICeD-T, was found to be both accurate and robust to aberrant

gene behavior within mixture expression experiments. Future work on the ICeD-T model should

focus on the development of superior reference matrices for immune cell deconvolution and a refined

set of variance weights for use in the estimation process. By refining the reference matrices and

variance weights, the accuracy of ICeD-Ts estimates and its ability to detect aberrant gene behavior
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is likely to improve. Single cell RNA-seq is a promising technology for the development of superior

reference matrices and variance weights. scRNA-seq experiments represent an opportunity to

capture reference immune cell expressions within the tumor context. As the variability and accuracy

of scRNA-seq improves, so too will our ability to accurately capture immune cell expression within

references.

Finally, the problem of cell-type specific eQTL was addressed within chapter 5. Our model,

pTReCASE, was demonstrated to properly control Type I error and provide superior power in the

analysis of tumor-specific eQTL when compared to alternative modeling strategies. One avenue

for future improvement of the pTReCASE model includes the incorporation of copy number

aberration data. While it was found that copy number aberration data was unlikely to introduce false

positives to the pTReCASE model, incorporating CNA data could improve its power in tumors types

with high levels of CNA. In addition, extension of pTReCASE to the study of somatic mutations

could reveal the biological processes behind the behavior of tumor subclones. While the study of

somatic mutations is promising, such work must overcome the challenge of estimating intra-tumor

heterogeneity, an ongoing topic of research.
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APPENDIX A: SUPPLEMENT FOR CHAPTER 3

A.1 IsoDeconvNB: Supplementary Methods

A.1.1 Notation Table

Pure Sample Expressions
Value Dim. Description
Ykje 1× 1 Total read count at exon set e in pure sample j of cell type k.
tkj 1× 1 Measure of read-depth (e.g. total read count) in pure sample j of cell type

k.
γk I × 1 A vector of Isoform expression levels unique to cells of type k.
νk 1× 1 An overdispersion parameter governing read count variance at exon sets for

expression in cells of type k.
nk 1× 1 Number of pure samples of cells of type k.

Mixture Sample Expressions
Value Dim. Description
Ze 1× 1 Read count at exon set e in the mixture cell type sample.
Y ∗ke 1× 1 Unobserved read count attributable to cells of type k at exon set e in the

mixture.
tm 1× 1 Measure of read-depth (e.g. total read count) in the mixture sample.
pk 1× 1 Abundance of cell type k in the mixture sample.
p K × 1 Vector of cell type abundances in the mixture across all K cell types.

Cluster Level Parameters
Value Dim. Description
X E × I Matrix of effective lengths for each exon set within each of the isoforms.
Xij 1× 1 Effective length of gene i in isoform j.
Xe I × 1 e-th row of effective length matrix X .

Gamma-Poisson Mixture Parameters
Value Dim. Description
λkje 1× 1 Unobserved, gamma-distributed, Poisson-mean read count at exon set e for

pure sample j of cell type k.
λ∗ke 1× 1 Unobserved, gamma-distributed, Poisson-mean read count at exon set e for

cells of type k in the mixture.
λ∗e K × 1 Vector of the λ∗ke values such that λ∗e = [λ∗1e, ..., λ

∗
Ke].

Function Definitions
Value Dim. Description
Ψ0() NA The digamma function, defined as the first derivative of the lnΓ () function.

Table A.1: Notation for defining the IsoDeconv Model.
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A.1.2 Optimization Algorithm

PROCESS PURE / MIXTURE DATA 
Gene + Isoform Models: 
• Construct read length distn.
• Construct non-overlapping

exons and exon sets
• Compute effective lengths

for each exon-set-isoform pair

UPDATE 𝜸𝜸𝒌𝒌 and 𝝂𝝂𝒌𝒌 
EM Algorithm: 
Gamma-Poisson Missingness separates cell types 

UPDATE p 
constrOptim:  
Gradient-free, constrained optimization 

COMPILE PER-GENE ESTIMATES 

Mixture + Pure Samples: 
• Summarize reads by exon set
• Group into R List object

Figure A.1: Visual representation of the IsoDeconv Negative Binomial algorithm from early stage
data processing to iterative update algorithm.

Model parameters in the IsoDeconv model are estimated through a maximum-likelihood

framework on a gene-by-gene basis. An estimate of pk is obtained for each gene and then aggregated

across genes to provide a final abundance estimate. Within each gene, optimization proceeds via

block coordinate descent. The steps are as follows:

(1) Assume the pk are fixed, update γk and νk.

(2) Assume the γk and νk are fixed, update the pk.

Steps (1) and (2) are cycled until convergence of the cell type proportions, pk. Within step (2),

optimization of the pk terms proceeds using a gradient-free, numerical optimization routine, R’s
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constrOptim. Use of the gradient free approach is incorporated to avoid the intractability of a

gradient function in the convolution of negative binomials model. Within step (1), optimization

proceeds under an EM algorithm, described in section 4 of Appendix 1. We derive some useful

results first.

90



A.1.3 Derivations involving Gamma-Poisson Random Variables

The optimization procedure utilized by IsoDeconv relies upon the categorization of a nega-

tive binomial random variable as a gamma-poisson mixture. To see this, consider the following

hierarchical framework for two random variables Y and λ:

Y
∣∣λ ∼ Poisson (λ) and λ ∼ Γ (µ, ν)

Integrating out the random variable λ, we obtain the marginal distribution of Y :

fY (y) =

∫ ∞
0

fY |λ(y, λ)fλ(λ)∂λ

=

∫ ∞
0

(
λY e−λ

y!

)(
λν−1(ν/µ)νe−(ν/µ)λ

Γ(ν)

)
∂λ

=

[
(ν/µ)ν

Γ(ν)y!

] ∫ ∞
0

λy+ν−1e−(ν/µ+1)λ∂λ

=

[
(ν/µ)ν

Γ(ν)y!

] [
Γ(y + ν)

(ν/µ+ 1)y+ν

] ∫ ∞
0

λy+ν−1(ν/µ+ 1)y+νe−(ν/µ+1)λ

Γ(y + ν)
∂λ

=

[
Γ(y + ν)

Γ(ν)y!

](
ν

ν + µ

)ν (
µ

ν + µ

)y

We recognize this as the density function of a negative binomially distributed random variable, as

desired. It is clear from the properties of gamma random variables, poisson random variables, and

conditional expectations that:

E[Y ] = E {E[Y |λ]}

= E [λ]

= µ

V [Y ] = E {V [Y |λ]}+ V {E[Y |λ]}

= E[λ] + V [λ]

= µ+ (1/ν)µ2
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where ν can be characterized as our overdispersion parameter for the negative binomial distribution.

The optimization algorithm that follows relies upon certain conditional expectations developed

under this framework. Thus, we specify the following additional necessities constructed from

Gamma-Poisson mixtures.

(1) Conditional Distribution of λ|Y

(2) Conditional Expectation of λ|Y

(3) Conditional Expectation of log(λ)|Y

(4) Sums of Gamma-Poisson Mixtures

Each of these necessities are developed below.

D.1 - Conditional Distribution of λ|Y :

By properties of conditional distributions, we know that

fλ|Y (λ, y) ∝ fY |λ(y, λ)fλ(λ)

∝
(
λY e−λ

) (
λν−1e−(ν/µ)λ

)
= λY+ν−1e−(ν/µ+1)λ

We recognize this as the kernel of a gamma distribution. Thus, it is clear that:

λ|Y ∼ Γ

(
µ′ =

Y + ν

ν/µ+ 1
, ν ′ = Y + ν

)
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D.2 - Conditional Expectation of λ|Y :

By properties, of the gamma distribution we know that

E[λ|Y ] = µ′ =
Y + ν

ν/µ+ 1

D.3 - Conditional Expectation of log(λ)|Y :

Consider the moment generating function (MGF) of the random variable R = log(λ) given Y.

MR|Y (t) = E
[
etR
∣∣Y ] = E

[
et log(λ)

∣∣Y ]
= E

[
λt|Y

]
=

∫ ∞
0

λt
(
λν
′−1(ν ′/µ′)ν

′
e−(ν′/µ′)λ

Γ(ν ′)

)
∂λ

=

[
Γ(ν ′ + t)(µ′/ν ′)t

Γ(ν ′)

] ∫ ∞
0

λν
′+t−1 (ν ′/µ′)ν

′+t e−(ν′/µ′)λ

Γ(ν ′ + t)
∂λ

=

[
Γ(ν ′ + t)(µ′/ν ′)t

Γ(ν ′)

]

The existence of this MGF implies the existence of the moments of R. We compute the first such

moment by taking the derivative of this MGF and evaluating at t = 0.

E[R|Y ] =
∂MR|Y (t)

∂t

∣∣∣∣
t=0

=
Γ̇(ν ′ + t)

Γ(ν ′)
(µ′/ν ′)t +

Γ(ν ′ + t)

Γ(ν ′)
(µ′/ν ′)t [log(µ′)− log(ν ′)]

∣∣∣∣
t=0

= Ψ0(ν ′) + log(µ′/ν ′)

= Ψ0(ν + Y )− log (ν/µ+ 1)

D.4 - Sums of Gamma-Poisson Mixtures:

Consider a framework wherein we haveK independent Gamma-Poisson mixtures and are examining
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their sum Z. Symbolically, we are examining:

Z =
K∑
i=1

Yk

where

Yk|λk ∼ Poisson(λk)

λk ∼ Gamma(µk, νk)

and

(Yj, λj) ⊥ (Yk, λk) ∀j 6= k

Now, we’ll consider variations of D.2 and D.3 defining instead the following conditional frameworks:

(D.3.1) Conditional Expectation of λk|Z

(D.3.2) Conditional Expectation of log (λk) |Z

For the first conditional expectation, the properties of double expectation in combination with D.2

provide:

E[λk|Z] = E
{
E[λk|Y1, ..., YK , Z]

∣∣∣Z}
= E

{
E[λk|Y1, ..., YK ]

∣∣∣Z}
= E

{
Yk + νk
νk/µk + 1

∣∣∣∣Z}
=

Z∑
y=0

(
y + νk

νk/µk + 1

)
fYk|Z(y)
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For the second conditional expectation, the properties of double expectation in combination with

D.3 provide:

E
[
log(λk)

∣∣Z] = E
{
E[log(λk)|Y1, ..., YK , Z]

∣∣∣Z}
= E

{
E[log(λk)|Y1, ..., YK ]

∣∣∣Z}
= E

[
Ψ0(Yk + νk)

∣∣∣Z]− log (νk/µk + 1)

=
Z∑
y=0

Ψ0(Yk + νk)fYk|Z(y)

We note that the remaining expectations are now finite sums over the support of Yk from 0 to Z.

Thus, in order to compute this value, we need only the following piece:

fYk|Z(y, z) =
fYk(y)fZ−Yk(z − y)

fZ(z)

Using an approximation to the distribution of a convolution of negative binomial pieces utilized

by Efron, we can approximate the densities fZ−Yk() and fZ(). Thus, we render this expectation

computable. If K = 2, no approximation is necessary as fZ(), fY1 , and fZ−Y1() = fY2 are easily

computed.
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A.1.4 EM Algorithm: Update γk and νk

Recall the likelihood framework established within the text of “IsoDeconv: Cell Type Abun-

dance Estimation using RNA Isoform Expression”. We restate it briefly here for completeness

utilizing the notation specified in the table in section A.1. For purified samples of cells of type k,

we have:

Ykje|γk, νk ∼ Neg.Bin.
(
µ = tkjX

T
e γk, φ = 1/νk

)
Within the mixture tissue, reads attributable to cells of type k are assumed to arise from the following

model:

Y ∗ke
∣∣γk, νk ∼ Neg.Bin.

(
µ = tmpkX

T
e γk, φ = 1/νk

)
Ze =

K∑
k=1

Y ∗ke

In order to construct an EM algorithm, we need to represent the given stochastic system using

missing values. The missing values in this setting become evident when we re-characterize the

negative binomials as Gamma-Poisson mixtures. Within these mixtures, the poisson mean for each

cell type’s read count is unknown–specified by λkje for pure samples and λ∗ke in the mixture. Thus,
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we can specify a complete data, log-likelihood as follows:

` =
E∑
e=1

{
K∑
k=1

(
nk∑
j=1

`
(j)
ke

)
+ `(m)

e

}

=
E∑
e=1

{
K∑
k=1

[(
nk∑
j=1

`Ykje|λkje + `λkje

)
+ `λ∗ke

]
+ `Ze|λ∗

e

}

=
E∑
e=1

{
K∑
k=1

[(
nk∑
j=1

−λkje + Ykje log(λkje)− log(Ykje) + (νk − 1) log(λkje)+

νk [log(νk)− log(µkje)]− (νk/µkje)λkje − lnΓ (νk)

)
+

(νk − 1) log(λ∗ke) + νk [log(νk)− log(µ∗ke)]− (νk/µ
∗
ke)λ

∗
ke − lnΓ (νk)

]
−(

K∑
k=1

λ∗ke

)
+ Ze log

(
K∑
k=1

λ∗ke

)
− log(Ze)

}

Grouping like terms, we have:

` =

E∑
e=1

{
K∑
k=1

[
(νk − 1)

 nk∑
j=1

log(λkje) + log(λ∗ke)

+

νk

(nk + 1) log(νk)−
nk∑
j=1

log(tkj)− log(tm)− log(pk)

−
νk(nk + 1) log(XT

e γk)−
(

νk
XT
e γk

) nk∑
j=1

λkje/tkj + λ∗ke/tmpk

]+

f (Ye,λe, Ze,λ
∗
e)

}

Thus, without explicitly specifying the utilized functions, it is clear that we can regroup by cell

type to construct:

` =
K∑
k=1

{
E∑
e=1

`ke(γk, νk) + (1/K)f (Ye,λe, Ze,λ
∗
e)

}

This regrouping makes it explicitly clear that we can perform optimization separately within each

cell type.
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Optimization in k-th Cell Type: Isoform Gradient

To assist in the numerical optimization routines used within the R software, we compute the gradient

of the likelihood with respect to the isoform parameters. To this end, we specify the restricted

portion of our likelihood containing only that information necessary for the optimization of the

isoform parameters:

`(k)
γ = −νk

 E∑
e=1

(nk + 1) log(XT
e γk) +

(∑nk
j=1 λkje/tkj + λ∗ke/tmpk

)
XT
e γk


Computing the gradient of this function with respect to the isoform parameters, we have:

˙̀(k)
γ = −νk

 E∑
e=1

(
nk + 1

XT
e γk

)
Xe −

(∑nk
j=1 λkje/tkj + λ∗ke/tmpk

)
(XT

e γk)
2 Xe


= −νkXT∆

where

∆ =


(
nk+1
XT

1 γk

)
− (

∑nk
j=1 λkj1/tkj+λ

∗
k1/tmpk)

(XT
1 γk)

2

...(
nk+1
XT
Eγk

)
− (

∑nk
j=1 λkjE/tkj+λ

∗
kE/tmpk)

(XT
Eγk)

2


Optimization in K-th Cell Type: Overdispersion Gradient

To assist in the numerical optimization routine used with the R software, we compute the gradient of

the likelihood with respect to the overdisperion parameter νk. To this end, we specify the restricted

portion of our likelihood containing only that information necessary for the optimization of the
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overdispersion parameter:

`(k)ν =

E∑
e=1

[
(νk − 1)

 nk∑
j=1

log(λkje) + log(λ∗ke)

+ νk

(nk + 1) log(νk)−
nk∑
j=1

log(tkj)− log(tm)− log(pk)

−
νk(nk + 1) log(XT

e γk)−
(

νk
XT
e γk

) nk∑
j=1

λkje/tkj + λ∗ke/tmpk

− (nk + 1)lnΓ (νk)

]

Computing the gradient of this function with respect to the overdispersion parameter νk, we have:

˙̀(k)
ν =

E∑
e=1

[(
nk∑
j=1

log(λkje) + log(λ∗ke)

)
+(

(nk + 1) log(νk)−
nk∑
j=1

log(tkj)− log(tm)− log(pk)

)
+ (nk + 1)−

(nk + 1) log(XT
e γk)−

(∑nk
j=1 λkje/tkj + λ∗ke/tmpk

XT
e γk

)
− (nk + 1)Ψ0(νk)

]
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A.1.5 Choosing Aggregation Technique

Simulations similar to those in section 2.2.2.3 are performed to determine the best method

for aggregating per-gene estimates of cell type abundance. To generate a set of simulated mixture

and reference samples, one paired-end RNA-seq experiment each of GM12878 and HMEC were

downloaded from the ENCODE database. Reference samples were generated similarly by again

downsampling the GM12878 and HMEC files to 10 million reads apiece.

True Pg Median Mean
0.0 0.02 0.17
0.1 0.13 0.22
0.2 0.23 0.30
0.3 0.33 0.37
0.4 0.43 0.45
0.5 0.53 0.55
0.6 0.61 0.62
0.7 0.71 0.70
0.8 0.80 0.76
0.9 0.90 0.83
1.0 0.99 0.86

Figure A.2: Estimates of the proportion of GM12878 using Median and Mean aggregation of
per-gene estimates.

The mixture sample generation methodology described here was found to be flawed. Oversam-

pling of the GM12878 and HMEC files created references and mixtures which were exceedingly

similar. Thus, the accuracy of the observed results was determined to be a function of this similarity

and not the appropriateness of the IsoDeconvNB model. Despite this fact, these original examina-

tions allowed determination of the most appropriate way to aggregate cell type abundance estimates

across genes. As is seen in figure (A.2), the median per-gene estimate of cell type abundance

provides superior estimation of the overall cell type abundance within the sample. Thus, in the

following results, per-gene estimates of cell type abundance are aggregated using the median.
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A.2 IsoDeconvMM: Supplementary Methods

A.2.1 Notation Table

Pure Sample Expressions
Value Dim. Description
Ykj(E) 1× 1 Total read count outside gene of interest in pure sample j of cell type k.
Ykje 1× 1 Read count at exon set e in pure sample j of cell type k.
Ykj E × 1 Collection of read counts across all exon sets in the given gene for pure sample j

of cell type k.
γkj I × 1 Isoform expression parameters unique to pure sample j of cell type k.
τkj 1× 1 Probability that a randomly selected read maps to the gene of interest in pure

sample j of cell type k.
tkj 1× 1 The total read count in pure sample j of cell type k.

Mixture Sample Expressions
Value Dim. Description
Ze 1× 1 Read count at exon set e in the mixture cell type sample.
Z E × 1 Collection of Ze in a single vector.
Z· 1× 1 Total number of reads mapping to gene of interest in the mixture(

Z· = 1TZ =
∑E
e=1 Ze

)
.

Zke∗ 1× 1 Read count at exon set e in the mixture cell type sample attributable to cells of type
k.

γ∗k I × 1 Isoform expression parameters unique to cells of type k found within the mixture
cell type sample.

τ∗k 1× 1 The probability that a randomly selected read from cells of type k in the mixture
sample maps to the gene of interest which is unique to the cells in the mixture
sample.

Cell-Type Specific and Cluster Level Parameters
Value Dim. Description
X E × I Matrix of effective lengths for each exon set within each of the isoforms.
Xij 1× 1 Effective length of exon set i in isoform j.
l̃ I × 1 Vector of complete effective lengths of each utilized isoform across all exon sets(

l̃j =
∑E
i=1Xij

)
.

pk 1× 1 Proportion of cell type k present in the mixture tissue.
p K × 1 Collection of abundances for each of the K cell types which compose the mixture.
αk I × 1 Hyperparameters governing average isoform expression levels and variances within

cells of type k.
βk 2× 1 Hyperparameters governing gene expression levels within cells of type k.

Value Dim. Description
◦ NA This operator indicates element-wise multiplication of two vectors.

Table A.2: Notation for defining the IsoDeconv Model.
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A.2.2 Lemmas Involving Multinomial Distribution

PROCESS PURE / MIXTURE DATA 
Gene + Isoform Models: 
• Construct read length distn.
• Construct non-overlapping

exons and exon sets
• Compute effective lengths

for each exon-set-isoform pair

UPDATE 𝜸𝜸∗ 
Section A.5 (M-Step 2): 
Constrained, Numerical Optimization with gradients 

UPDATE EM EXPECTATIONS 
Section A.5 (E-Step): 
Closed-form updates for 𝐸𝐸[𝑍𝑍𝑗𝑗𝑒𝑒∗|𝑍𝑍1, … , 𝑍𝑍𝐸𝐸, 𝜏𝜏∗, 𝛾𝛾∗] 

COMPILE PER-GENE ESTIMATES 

Mixture + Pure Samples: 
• Summarize reads by exon set
• Group into R List object

UPDATE p and 𝝉𝝉 ∗ 
Section A.5 (M-Step 1): 
Constrained, Numerical Optimization with gradients 

STAGE 1: Expression Profiles in Pure Samples 
Estimate Isoform Expression: 
• Numerical Opt. (Section A.3)
• Each subject est. separately

STAGE 2: Construct Mixture Penalties 
Estimate Isoform Penalty: 
• Fix 𝛾𝛾�𝑘𝑘𝑘𝑘  from stage 1
• Dirichelet MLE
• Independent of Gene Penalty

Estimate Gene Penalty: 
• Fix 𝜏̂𝜏𝑘𝑘𝑘𝑘  from stage 1
• Dirichelet MLE
• Independent of Isoform Penalty

Estimate Gene Expression: 
• Closed-form update (Section A.3)
• Each subject est. separately

STAGE 3: EM Algorithm

Figure A.3: Visual representation of the IsoDeconv Multinomial algorithm from development of
reference matrices to Stage 3 EM Updates.
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A.2.3 Lemmas Involving Multinomial Distribution

Prior to specification of the IsoDeconv model, we develop a set of lemmas for the multinomial

distribution which will allow easier specification in the following materials. For completeness,

we define a multinomially distributed vector X = (X1, ..., XR) with size n and proportions ρ =

(ρ1, ..., ρR). The density function of X ∼ Multinomial (n, ρ) is given by:

P

{
X1, ..., XR

∣∣∣∣n, ρ} =

 n

X1, ..., XR

 R∏
i=1

ρXii

Lemma 1.1: Sum over Groups

W.L.O.G. construct the sum X· = X1 + ... + Xg and consider the grouped multinomial X ′ =

f(X) = (X·, Xg+1, Xg+2, ..., XR). Let S represent the set of vectors X such that X ′ = f(X) = x

where x is an arbitrary (R− g + 1)-dimensional non-negative vector summing to n. The density of

this random variable is given by:

P

{
X ′ = x

∣∣∣∣n, ρ} =
∑
X′∈S

 n

X1, ..., XR

 R∏
i=1

ρXii

=

 n

x1, x2..., xR−g+1

 R∏
i=g+1

ρxii

∑
X∈S

 x1

X1, ..., Xg

 g∏
i=1

ρXii


=

 n

x1, x2..., xR−g+1

( g∑
i=1

ρi

)x1 R∏
i=g+1

ρ
xi−g+1

i

Thus, it is clear that X ′ ∼ Multinomial (n, ρ′) where ρ′ = (ρ1 + ...+ ρg, ρg+1, ..., ρR).

Lemma 1.2: Marginal of a Single Element

We extend (1.1) to the case where X· = X1 + ... + XR−1 and consider the distribution of X ′ =

f(X) = (X·, XR). Using (1.1) it is clear that X ′ ∼ Multinomial (n, (1− ρR, ρR)). Thus, it is
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obvious that:

XR ∼ Bin (n, ρR)
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Lemma 2.1: Conditional over Multiple Elements

W.L.O.G. consider conditioning on the first g elements. Thus, we seek to specify the conditional

density of X∗ = (Xg+1, ..., XR) given (X1, ..., Xg). By lemma (1.1), we know that:

P {X1, ..., Xg} =

 n

X1, ..., Xg, n−X1 − ...−Xg

[ g∏
i=1

ρXii

]
(1− ρ1 − ...− ρg)n−X1−...−Xg

Thus, applying this to the definition of conditional densities, we have:

P

{
X∗
∣∣∣∣X1, ..., Xg

}
=
P {X∗ ∩ (X1, ..., Xg)}

P {X1, ..., Xg}

=

 n

X1, ..., XR

∏R
i=1 ρ

Xi
i

 n

X1, ..., Xg, , n−
∑g

r=1Xr

[∏g
i=1 ρ

Xi
i

]
(1−

∑g
r=1 ρr)

n−X1−...−Xg

=

n−X1 − ...−Xg

Xg+1, ..., XR

[ R∏
i=g+1

(
ρi

1− ρ1 − ...− ρg

)Xi]

Thus, it is clear that:

X∗
∣∣ (X1, ..., Xg) ∼ Multinomial (n−X1 − ...−Xg, ρ

∗)

where ρ∗ =
(

ρg+1

1−ρ1−...−ρg , · · · ,
ρR

1−ρ1−...−ρg

)
.

Lemma 2.2: Conditional of a Single Element

We consider a specific case of lemma (2.1) where X∗ = (X2, · · · , XR). Thus, it is clear that:

X∗
∣∣X1 ∼ Multinomial (n−X1, ρ

∗
1) where ρ∗1 =

(
ρ2

1− ρ1

, · · · , ρR
1− ρ1

)
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Lemma 3: Conditional Over Sums

Under the original framework, consider splitting the R elements of X into K distinct groups.

W.L.O.G. we specify:

Group 1 Group 2 · · · Group K
X1, · · · , Xk1 Xk1+1, · · · , Xk2 · · · XkK−1

, · · · , XR

ρ1, · · · , ρk1 ρk1+1, · · · , ρk2 · · · ρkK−1
, · · · , ρR

For convenience, define Sj =
∑kj

i=kj−1+1Xi where k0 = 1. Additionally, define ρ∗j =
∑kj

i=kj−1+1 ρi.

Thus, we examine the following conditional density:

P

{
X1, ..., XR

∣∣∣∣S1, · · · , SK
}

=
P {X1, · · · , XR}
P {S1, · · · , SK}

=

 n

X1, ..., XR

∏R
j=1 ρ

Xj
j

 n

S1, ..., SK

∏K
j=1 ρ

∗Sj
j

=
K∏
j=1


 Sj

Xkj−1
, ..., Xkj

 kj∏
l=kj−1+1

(
ρl
ρ∗j

)Xl
The second equality holds through repeated application of Lemma 1.1. The final equality demon-

strates that the desired conditional distribution is the product of independent multinomials. Symbol-

ically, we have:

X1, · · · , XR

∣∣S1, · · · , SK ∼
K∏
j=1

Multinomial
(
Sj, ρ

′
j

)

where ρ′j =
(
ρkj−1+1, · · · , ρkj

)
/ρ∗j .
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A.2.4 Stage 1 Estimation: Pure Sample Necessities

For the following, refer to Table A.2 regarding notation. Additionally, note that the following

specification is performed for a single gene only; subscripts related to gene identity are omitted for

clarity. The following structure holds for a single purified reference sample and gene:

Ykj(E)

Ykj

 ∼ Multinomial

tkj,
 1− τkj

τkjXγkj




Implicit in this construction are restrictions upon the τkj and γkj . As a single probability value, it

must be that 0 ≤ τkj ≤ 1. However, the γkj pose a more complicated set of restrictions. Consider

the following:

1 = (1− τkj) + τkj1
TXγkj

= 1TXγkj

It is clear from the above that the Xγkj are conditional probabilities and thus must be non-negative.

To ensure this, we restrict the γkj to be non-negative since the elements of Xkj are non-negative by

definition. Using our summation constraints, we have:

1 = 1TXγkj =
I∑
i=1

l̃iγkji

This shows that the l̃iγkji are probabilities that a randomly selected read is attributable to isoform i

for reference j of cell type k. Thus, it is clear that the γkj are collections of per-unit of effective

length conditional probabilities that a read belongs to isoform i given that it maps to the gene of

interest.
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Thus, the likelihood for sample j of cell type k is given by:

`kj = Ykj(E) log (1− τkj) +
E∑
e=1

Ykje log
(
τkjX

T
e γkj

)
= Ykj(E) log (1− τkj) +

(
1TYkj

)
log (τkj) +

E∑
e=1

Ykje log
(
XT
e γkj

)
Given the gene and isoform expressions, the reference samples within and across cell types are

independent. Thus, we may estimate the τkj and γkj separately within each sample.

Estimate τkj:

The maximum likelihood estimate of τkj is given by:

τ̂kj =
1TYkj
tkj

Estimate γkj:

In order to estimate the isoform expressions for a single subject, we make some simplifying

alterations to the effective length matrix X and reparametrize the isoform expression parameters.
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Consider the following, where Xcj refers to the j-th column of X.

Xc1 Xc2 · · · XcI∣∣∣∣ ∣∣∣∣ ∣∣∣∣


γkj1

...

γkjI

 =

Xc1/l̃1 Xc2/l̃2 · · · XcI/l̃I∣∣∣∣ ∣∣∣∣ ∣∣∣∣


l̃1γkj1

...

l̃1γkjI


=

[
I−1∑
i=1

(
Xci

l̃i

)(
l̃iγkji

)]
+ (1−

I−1∑
r=1

l̃rγkjr)

(
XcI

l̃I

)

=

[
I−1∑
i=1

(
Xci

l̃i
− XI

l̃I

)(
l̃iγkji

)]
+

(
XcI

l̃I

)

=

X∗c1 X∗c2 · · · X∗cI∣∣∣∣ ∣∣∣∣ ∣∣∣∣



e−γkj1

...

e−γkj,I−1

1


where:

X∗cs =
[
Xs −

(
l̃s/l̃I

)
XcI

]
for j ∈ {1, 2, ..., I − 1}

X∗cI =
XcI

l̃I

X∗ =

[
X∗c1 · · · X∗cI

]
γkji = e−γ

r
kji for i ∈ {1, 2, ..., I − 1}

γ′kj = (γkj1, ..., γkj,I−1, 1)

We optimize the likelihood with respect to these isoform expression parameters using R’s constrOptim

from the alabama package. To this end, we specify the derivative to improve efficiency of the

routine. This derivative is found on the next page.
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In the following, let X∗e refer to the e-th row of the matrix X∗ and Xe,(I) be the truncated version of

this row excluding the last column entry. :

∂`kj
∂γ′kj

= −
E∑
e=1

(
Ykje

X∗Te γ′kj

)[
X∗e,(I) ◦ e

−γrkj
]
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A.2.5 Stage 2 Estimation: Defining Penalties

We must now incorporate the estimates from purified reference samples to guide estimation

within the mixture. We choose to accomplish this using a penalty function over the isoform

expression parameters within the mixture. As we have allowed for biological variance in gene and

expression parameters across subjects and because these parameters are probabilities, it is natural to

propose a dirichelet distribution over these parameters.

Normally, by placing a dirichelet distribution over these parameters, one would construct a

likelihood function containing both pieces simultaneously. This likelihood would then be optimized

with respect to all parameters, including hyperparameters, at the same time. However, we found

this approach to be unstable. Thus, we separate the estimation of individual expression parameters

from the hyperparameters to improve results. Fixing the individual gene and isoform expression

parameters, we construct a likelihood optimization using the dirichelet piece. Optimization of this

likelihood proceeds numerically using quasi-Newton methods and non-negativity constraints. The

following derivatives improve accuracy of the estimates obtained from R’s nlminb.

Gene Expression Penalty:

The likelihood for this penalty is given below

`τk =

nk∑
j=1

[lnΓ (αk1 + αk2)− lnΓ (αk1)− lnΓ (αk2) + (αk1 − 1) log(τkj) + (αk2 − 1) log(1− τkj)]

The necessary derivatives are provided here. Denote the digamma function by ϕ() and trigamma by

ϕ1() for this derivatives.
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∇`τk = nk

ϕ(αk1 + αk2)− ϕ(αk1)

ϕ(αk1 + αk2)− ϕ(αk2)

+

 ∑nk
j=1 log(τkj)∑nk

j=1 log(1− τkj)



Hess (`τk) = nk

ϕ1(αk1 + αk2)− ϕ1(αk1) ϕ(αk1 + αk2)

ϕ(αk1 + αk2) ϕ(αk1 + αk2)− ϕ(αk2)



Isoform Expression Penalty:

As for the gene expression penalty, we define the likelihood here. To clarify the following terms,

define βk· =
∑I

i=1 βki and utilize the same definitions for ϕ and ϕ1.

`γk =

nk∑
j=1

[
lnΓ

(
βk· −

I∑
i=1

lnΓ (βki)

)
+

I∑
i=1

(βki − 1) log
(
l̃iγkji

)]

The necessary derivatives are specified below:

∇`γk = nk


ϕ(βk·)− ϕ(βk1)

...

ϕ(βk·)− ϕ(βkI)

+


∑nk

j=1 log
(
l̃1γkj1

)
...∑nk

j=1 log
(
l̃IγkjI

)


Hess (`γk) = nk
(
11Tϕ1 (βk·)− diagi (ϕ1(βki))

)
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A.2.6 Stage 3 Estimation: Mixture Sample Estimation

To structure the likelihood model within the mixture sample, consider the following underlying

likelihood model. In this model, we assume that the number of reads mapping to each cell type

within each gene and outside of it can be observed and that tm represents the total read count in the

mixture.



Z1(E)∗ · · · ZK(E)∗

Z11∗ ZK1∗

...
...

Z1E∗ ZKE∗


∣∣∣∣τ ∗k , γ∗k ∼ Multinomial

tm,
p1(1− τ ∗1 ) · · · pK(1− τ ∗K)

p1τ
∗
1Xγ

∗
1 · · · pKτKXγ

∗
k




When allowing IsoDeconv to consider genes mapping outside of the gene of interest, initial

simulations demonstrated that these terms dominated estimation. This occurs since over 99% of all

reads map outside the gene of interest and thus drown out the information within the gene due to

sheer abundance. Restricting to reads within the gene of interest only, estimation behavior was seen

to improve (not shown). Thus, using lemma 1.1 to combine all contributions of cell types outside

the gene and then lemma 2.2 to condition on this quantity, we have:


Z11∗ ZK1∗

...
...

Z1E∗ ZKE∗


∣∣∣∣τ ∗k , γ∗k ∼ Multinomial

(
ZG,

[
p1τ∗1Xγ

∗
1∑K

k=1 pkτ
∗
k

· · · pKτKXγ
∗
k∑K

k=1 pkτ
∗
k

])
(A.1)

However, due to the properties of bulk expression datasets, we do not observe the number of

reads mapping to each cell type. Thus, we only observe the sums from all cell types at each exon

set.
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Z =


Z1

...

ZE


∣∣∣∣τ ∗k , γ∗k ∼ Multinomial

(
ZG,

[∑K
k=1 pkτ

∗
kXγ

∗
1∑K

k=1 pkτ
∗
k

])

The update of such a likelihood is a computationally difficult problem - we have I+2 parameters

being measured for each cell type and all must be optimized simultaneously. To improve the

tractability of such a numerical optimization technique, we utilize the EM algorithm.
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For this problem, the missing data that we will assume is the expression from each individual

cell type. Thus, we revert to the likelihood given above in equation (A.1). The complete data

log-likelihood is given by:

` =
K∑
k=1

{
E∑
e=1

[
Zke∗

(
log[p1τ

∗
1 ]− log

[∑
prτ
∗
r

]
+ log(XT

e γ
∗
k)
)]

+

lnΓ (αk·)− lnΓ (αk1)− lnΓ (αk2) + (αk1 − 1) log(τ ∗k ) + (αk2 − 1) log(1− τ ∗k )

lnΓ (βk·)− lnΓ (βk1)− · · · − lnΓ (βkI) +
I∑
i=1

(βki − 1) log
(
l̃iγ
∗
ki

)}

The EM algorithm utilized to solve this problem is composed of three separate steps.

1 E-Step: Update Posterior Means of Zke∗

2 M-Step (1): Update (p1, ..., pk, τ
∗
k )

2 M-Step (2): Update γ∗k

These steps are outlined below.

E-Step: Update Posterior Means of Zke∗:

Recall that the observed expression values, the Ze, represent the sum of all counts from each cell

type. Thus, Ze =
∑K

k=1 Zke∗ . By grouping elements of the multinomial according to exon set, a

simple application of lemma 3 provides:

(Z11∗ , ..., ZK1∗ , ..., Z1E∗ , ...ZKE∗)
∣∣∣Z1, ..., Ze, τ

∗, γ∗ ∼
E∏
e=1

Multinomial (Ze, ρ
′
e)

where

ρ′e =

(
p1τ

∗
1Xγ

∗
1∑K

k=1 pkτ
∗
kXγ

∗
k

, · · · , pKτ
∗
KXγ

∗
K∑K

k=1 pkτ
∗
kXγ

∗
k

)
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Thus, it becomes clear by property of the multinomial distribution that:

E
[
Zje∗

∣∣∣Z1, · · · , ZE, τ ∗, γ∗
]

= Ze

(
pjτ
∗
jXγ

∗
j∑K

k=1 pkτ
∗
kXγ

∗
k

)

M-Step (1): Update (p1, ..., pK , τ
∗
K):

It is clear from the complete data log-likelihood specified above that the cell type proportions

and gene expression parameters must be updated simultaneously. These terms are inextricably

linked within the log function. We do note that this set of parameters is separable from the isoform

parameters as the likelihood can be partitioned into a sum of two independent pieces, one containing

the gene expression parameters and cell type proportions and the other containing the isoform

parameters. Thus, we consider recasting the likelihood to include only the cell type proportions and

gene expression parameters.

` (p, τ ∗) =
K∑
k=1

{
E∑
e=1

[
Zke∗

(
log[pkτ

∗
k ]− log

[∑
prτ
∗
r

])]
+ (βk1 − 1) log(τ ∗k )+

(βk2 − 1) log(1− τ ∗k )

}

=
K∑
k=1

{
Zk·∗

(
log[pkτ

∗
k ]− log

[∑
prτ
∗
r

])
+ (βk1 − 1) log(τ ∗k ) + (βk2 − 1) log(1− τ ∗k )

}

=

{
K∑
k=1

Zk·∗ log[pkτ
∗
k ] + (βk1 − 1) log(τ ∗k ) + (βk2 − 1) log(1− τ ∗k )

}
− Z· log

[∑
prτ
∗
r

]
=

{
K∑
k=1

Zk·∗ log[pk exp{−τ ′k}] + (βk1 − 1) log(exp{−τ ′k})+

(βk2 − 1) log(1− exp{−τ ′k})

}
− Z· log

[∑
pr exp{−τ ′r}

]
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Taking the expectation of this likelihood will result in the use of quantities found in (1) to

replace the Zke∗ pieces. In the following, we leave the the Zk· notation for simplicity of notation,

but please note that these values have been replaced by their expectations.

Taking the derivative of `(p, τ ∗) with respect to the reparametrized τ ∗, we have:

˙̀
τ ′r(p, τ

∗) = −Zr· − (βk1 − 1) +
(βk2 − 1) exp{−τ ′r}

1− exp{−τ ′r}
+ Z·

(
pr exp{−τ ′r}∑
pk exp{−τ ′k}

)

To consider the derivatives of the proportions, we consider the natural linearity constraints to

rewrite the likelihood as follows and subsequently take the derivative:

`(p, τ ∗) u

[
K−1∑
k=1

Zk· log (pkτ
∗
k )

]
+ ZK· log ((1− p1 − ...− pK−1)τ ∗K)−

Z· log

(
K−1∑
s=1

ps(τ
∗
s − τ ∗K) + τ ∗K

)

˙̀
pr(p, τ

∗) =

(
Zr·
pr

)
− ZK·

(
1

1− p1 − ...− pK−1

)
− Z·

[
τ ∗r − τ ∗K∑K
s=1 psτ

∗
s

]

The update of the procedures proceeds using a joint, constrained optimization approach using

R’s constrOptim.

M-Step (2): Update γ∗k:

As noted above, we may update the γ∗k separately from one another and from the proportion and

gene expression parameters. The piece of the likelihood governing the update of isoform expression
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parameters for cells of type k is given by:

` (γ∗k) =

(
E∑
e=1

Zke log
(
XT
e γ
∗
k

))
+ lnΓ (αk·)−

I∑
i=1

lnΓ (αki) +
I∑
i=1

(αki − 1) log
(
l̃iγki

)
=

(
E∑
e=1

Zke log
(
XT
e γ
∗
k

))
+ lnΓ (αk·)−

I∑
i=1

lnΓ (αki) +
I−1∑
i=1

(αki − 1) log
(
l̃iγki

)
+

(αkI − 1) log
(

1− l̃1γ∗k1 − · · · − l̃I−1γ
∗
k,I−1

)

For simplicity of notation in the following, we suppress the notation regarding expectations of

the missing parameters. Note, however, that these values are replaced by their expectations derived

in the E-step.

Recall the special definitions of X∗, X∗e and X∗e,(I) from their use in the pure sample expression

materials. In addition, we define reparameterized isoform expression parameters for the mixture

given by γ∗ki = exp {−γ∗rki } to simplify constraints. Finally, we define l̃(I) as the l̃ vector with the

I-th entry removed. Taking the derivative, we have:

˙̀
γr∗k

(γ∗k) =
E∑
e=1

−Zke

(
X∗e,(I) ◦ exp{−γr∗k }

X∗Te γ∗k

)
− (βk − 1)+(

βkI − 1

1− l̃1 exp{−γ∗rk1} − · · · − l̃I−1 exp{−γ∗rk,I−1}

)(
l̃(I) ◦ exp{−γr∗k }

)

Thus, given the restrictions outlined for the pure sample case, we utilize this derivative in R’s

constrOptim to update the isoform expression parameters.
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A.2.7 Simulation Supplement

To construct a single simulated mixture composed of two cell types, we must construct fac-

similes to the following components of real RNA-seq experiments: Gene and Isoform construction

models, Gene expression averages, Isoform expression level averages for an arbitrary cell type 1,

and isoform expression level averages for an arbitrary cell type 2.

Gene and Isoform Construction Models:

Approximately 400 genes and corresponding gene/isoform construction models were extracted

from the IsoDeconvNB in silico mixtures using GM12878 and HMEC cell lines. Therefore, these

construction models contain genuine gene and isoform constructions as well as realistic distributions

of RNA fragment lengths for construction of an effective length matrix.

Gene Expression Level:

To simulate expression at a single gene, the average read count for cell type 1, r1, is randomly

drawn from a normal random variable with mean 130 and standard deviation 33. From this, we

may construct β1 = v
(
r

1e7
, 1− r

1e7

)
where v is a Chebyshev derived variance inflation factor. This

provides a mean expression level for an arbitrary cell type 1. For 25% of simulated genes, the

average expression of the gene in cell type 1 is upregulated by 20% for cell type 2. An additional

25% of genes see downregulated expression by 20% for cell type 2. The remaining genes exhibit no

gene-level expression differences across cell types.

Isoform Expression Level (Cell Type 1):

In order to construct an isoform expression profile, simulation methods were developed according

to the number of isoforms used by the gene being simulated. Genes with 1 or fewer isoforms are

excluded from consideration.
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Two Isoforms:

(A) Simulate isoform probability averages from a Dirichlet(7.5,2.5) distribution.

(B) Randomly permute these averages across isoform identities to obtain α∗k.

(C) Utilize a Chebyshev Derived Variance Factor (v) to multiply isoform averages in order to

control variance in simulated isoform expressions. Thus, α1 = vα∗1.

(D) Simulate 3 or 50 purified reference sample isoform expressions utilizing a Dirichlet(α1)

Three Isoforms:

(A) Simulate isoform probability averages from a Dirichlet(6.0,3.0,1.0) distribution.

(B) Randomly permute these averages across isoform identities to obtain α∗k.

(C) Utilize a Chebyshev Derived Variance Factor (v) to multiply isoform averages in order to

control variance in simulated isoform expressions. Thus, α1 = vα∗1.

(D) Simulate 3 or 50 purified reference sample isoform expressions utilizing a Dirichlet(α1)

Four + Isoforms:

(A) Simulate isoform probability averages from a Dirichlet(4.5,2.5,1.5,J) where J is a vector of

length I − 3 with values 1.5/(I − 3) for each entry.

(B) Randomly permute these averages across isoform identities to obtain α∗k.

(C) Utilize a Chebyshev Derived Variance Factor (v) to multiply isoform averages in order to

control variance in simulated isoform expressions. Thus, α1 = vα∗1.
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(D) Simulate 3 or 50 purified reference sample isoform expressions utilizing a Dirichlet(α1)

Isoform Expression Level (Cell Type 2):

To simulate isoform expression level averages in cell type 2, the averages of cell type 1 are permuted

in such a way that none of the top 2-3 isoforms of cell type 1 are the major isoforms of cell type 2.

For genes with 2 or 3 isoforms, this is accomplished by permuting the largest element of α1 to a

new location in α2 and randomly ordering the remainder. For genes with four of five isoforms, the

top two largest elements of α1 are permuted to new locations in α2 and the remainder are randomly

ordered. For genes with 6+ isoforms, the top 3 elements of α1 are permuted to new locations in α2

and the rest are randomly ordered.

Chebyshev Derived Variance Factor:

Chebyshev’s rule states that 90% of observations fall with 3 standard deviations of the mean.

To derive the variance control factor based on Chebyshev’s rule and a desire to have 90% of

observations fall within Z*100% of the truth, we have:

3
√
p(1− p)(v + 1)−1 = Zp

v =

[
1− p
p

]
(9/Z2)− 1

For isoform expressions, variance is largest when p = 0.5. Thus, to specify the value v for isoforms,

we utilize an assumption of p = 0.5 to control the variance in the worst-case setting.

Simulate Mixture Expression:

After the preceding steps have been accomplished, the Dirichlet structure specified in the paper is

fully specified. Thus, we plug these simulated parameters into the multinomial structure to simulate

a single mixture experiment.
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APPENDIX B: SUPPLEMENT FOR CHAPTER 4

B.1 Supplementary Methods

B.1.1 Notations and overview

B.1.1.1 Notation Table

The following table contains the notation used to develop and mathematically interrogate the

ICeD-T model and its variants. Subscripts for aberrant genes, denoted by (·) in the following table,

may take values (A) or (C); (A) indexes quantities pertaining to aberrant genes and (C) indexes

those in consistent genes.

Model Design Quantities
Value Dimension Description
n 1× 1 The number of mixed cell type samples for deconvolution.
nk 1× 1 The number of purified samples of cell type k.
K 1× 1 The number of constituent cell types, excluding the tumor.
nG 1× 1 The number of signature genes used in cell type modeling.

Pure Sample Quantities
Value Dimension Description
µjk 1× 1 Mean log-transformed expression of gene j in cell type k.
σ2
jk 1× 1 The variance of log-transformed expression of gene j in cell type k.
γjk 1× 1 The mean expression of gene j in cell type k on the untransformed scale.
γ nG ×K Matrix of mean expression across all genes and cell types.
γj K × 1 Vector of mean expressions of gene j across the K cell types (j-th row of γ).
Zjkh 1× 1 Normalized expression of gene j in purified sample h of cell type k.
Zk nG × nq Collection of Zjkh across all genes and purified samples.

Mixture Sample Quantities
Value Dimension Description
µ̃ij(·) 1× 1 Mean expression of gene j in mixture sample i
ρik 1× 1 Proportion of RNA expression attributable to cells of type k in mixture i.
ρi K × 1 Collection of ρik across cell types for subject i only.
σ2
ij(·) 1× 1 Variance of expression for gene j in mixture sample i.
σ2
i(·) 1× 1 Unweighted variance parameter governing expression in mixture sample i.

∆j 1× 1 Optional variance weight for gene j.
Yij 1× 1 Normalized expression of gene j in mixture sample i.
Yi nG × 1 Collection of Yij across genes for subject i only.

Table B.1: Notation for defining the ICeD-T model.

122



B.1.1.2 Overview of Optimization Algorithm

 

REFERENCE MATRIX  
Reference Cell Types: 

• 𝜇𝜇𝑗𝑗𝑗𝑗 ,𝜎𝜎𝑗𝑗𝑗𝑗2  
• Use all samples 
• Fixed after est. 

INITIALIZE PARAMETERS 
Weights �𝚫𝚫𝒋𝒋�: 

• Estimate once 
• Not Updated 

 
Proportions (𝝆𝝆𝒊𝒊): 

• Linear model per subject 
• 𝐸𝐸�𝑌𝑌𝑖𝑖𝑖𝑖� =  ∑ 𝜌𝜌𝑖𝑖𝑖𝑖𝛾𝛾𝑗𝑗𝑗𝑗𝐾𝐾

𝑘𝑘=1  

UPDATE 𝒑𝒑𝒊𝒊 
Section A.5.2 –  

• Closed form update  

Prior Constructed Reference 
• LM22 (CIBERSORT) 
• TRef (EPIC) 
• BRef (EPIC) 

Consistent / Aberrant Variance: 
• See (A.5.1) 
• Genes w/ residuals in 

upper 25% from LM are 
“Aberrant” for 
initialization 

 
 

UPDATE 𝝆𝝆𝒊𝒊 
Section A.5.2 –  

• (Un)weighted GLM 
• Constrained Numerical Opt. 

 

UPDATE 𝝈𝝈𝒊𝒊(∙)𝟐𝟐  
 Section A.5.2 –  

• Constrained Numerical Opt 
 

UPDATE 𝒘𝒘𝒊𝒊𝒊𝒊 
Section A.5.1 –  

• Closed form update 

FURTHER ANALYSES 

EM ALGORITHM 

- OR -  

Figure B.1: Visual representation of the ICeD-T algorithm from development of reference matrices
to EM algorithm.
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B.1.2 Pure Sample Optimization

We focus first on estimation using purified reference samples. Recall that for reference sample

h of cell type k, the expression at marker gene j is assumed to follow a log-normal distribution,

given by:

Zjkh ∼ LN
(
µjk, σ

2
jk

)
.

The first and second central moments of which are given by:

E[Zjkh] = γjk = exp
(
µjk + σ2

jk/2
)
,

V [Zjkh] = γ2
jk

(
exp

(
σ2
jk

)
− 1
)
.

Assuming independence of expression across genes within a sample and across samples, the

estimators of µjk, σ2
jk and γjk are obvious:

µ̂jk =

∑nq
r=1 log(Zjkh)

nk
,

σ̂2
jk =

∑nq
r=1 [log(Zjkh)− µ̂jk]2

nk − 1
,

γ̂jk = exp
(
µ̂jk + σ̂2

jk/2
)
.

In the low sample size setting, we may borrow information across cell types for estimating the

variance. We do this in the following way:

σ̂2
j =

∑K
k=1

∑nk
h=1 [log(Zjkh)− µ̂jk]2

nP − 1
,

giving

σ̂2
jk =

(
nk
nP

)
σ̂2
jk +

(
nP − nk
nP

)
σ̂2
j .
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B.1.3 Variance Weight Selection

The ICeD-T model allows for the provision of variance weights to be used in optimization of

the log-normal model. In essence, variance weights increase or diminish the importance of residuals

across various genes. The larger the weight, the more a residual at the given gene is discounted.

We suggest the following weight schema be used in the ICeD-T model. In order to compute these

weights, the user must provide the variance of the log-expression for each cell type and each gene.

Option 1: Homoscedastic Weights

“Homoscedastic Weights” is a misnomer as this corresponds to setting ∆j = 1 for all j. No dis-

counting is performed as each gene is assumed to have the same variance.

Option 2: Maximal Variance Weights

The second option utilized by ICeD-T is termed “Maximal Variance Weights”. For this weight

structure, the weights are given by:

∆j =
max
k

(
σ̂2
jk

)
median

j

[
max
k

(
σ̂2
jk

)] .
Robustness Considerations

To ensure that the variance weights do not make some genes too over- or under-influential, we let the

top 15% of weights take 85th-percentile value and the bottom 15% take the 15th-percentile value.

This will ensure that outliers causing inflated variances in certain genes are not overly influential

upon results.
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B.1.4 Fenton-Wilkinson Approximation

To simplify the maximum likelihood optimization used by the ICeD-T algorithm, we seek a

closed-form approximation to the distribution of a sum of independent log-normals. The Fenton-

Wilkinson approximation to the distribution of a sum of log-normals provides such an approach.

Consider a simplified framework of random variables Yj for j = 1, ..., K where Yj ∼ LN (µk, σ
2
k)

and the variable of interest Y =
∑K

k=1 Yk. Fenton-Wilkinson approximates the distribution Y by

another log-normal whose parameters are defined by moment-matching on the first and second

central moments. Thus:

Y ∼ LN
(
µ̃, σ̃2

)
Where we define:

exp
(
µ̃+ σ̃2/2

)
=

K∑
k=1

E[Yk] =
K∑
k=1

γk,

and

exp
(
2µ̃+ σ̃2

) [
exp

(
σ̃2
)
− 1
]

=
K∑
k=1

V [Yk] =
K∑
k=1

γ2
k

(
exp

(
σ2
k

)
− 1
)
.

This provides the following closed forms for µ̃ and σ̃2:

µ̃ = log

(
K∑
k=1

γk

)
− σ̃2/2,

and

σ̃2 = log

 K∑
k=1

γ2
k

[
exp

(
σ2
k

)
− 1
]/[

K∑
k=1

γk

]2

+ 1

 .
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B.1.5 Mixture Sample Optimization

The ICeD-T model assumes that distribution of expression at a single gene in tumor sample i

is a mixture over two log-normals, one component assuming the gene is a consistent gene and the

other an aberrant one. This distribution is given by:

Yij ∼ piLN
(
µ̃ijC , σ

2
ijC

)
+ (1− pi)LN

(
µ̃ijA, σ

2
ijA

)
,

where:

µ̃ij(·) = log

(
K∑
k=1

ρikγjk

)
− σ2

ij(·)/2,

σ2
ij(·) = ∆jσ

2
i(·).

ICeD-T can be run using two options. Option (1) represents a homoscedasticity assumption and as-

sumes ∆j = 1 for all j. Option (2) allows for these variance weights to differ and must be specified

before optimization. Utilizing these assumptions for variance provide superior performance in the

estimation of cell type proportions compared to a direct application of Fenton-Wilkinson.

We also note that the separating feature between consistent and aberrant genes is the assumed

variance. In particular, aberrant genes are assumed to have a larger variance. In essence, a larger

variance for aberrant genes ”flattens” the observed likelihood, allowing for values inconsistent with

the model proportions to become more likely.

In order to optimize this mixture distribution, we utilize an EM algorithm. We introduce missing

data in the form of indicators of class membership, Hij . When Hij is 1, the gene is assumed

consistent and when Hij is 0, aberrant. Thus, a complete data log-likelihood for subject i is given
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by:

`i =

nG∑
j=1

Hij

[
log(pi)− (1/2) log(σ̃

2,(C)
ij )−

(
1/2σ̃

2,(C)
ij

)(
log(yij)− µ̃(C)

ij

)2
]

+

(1−Hij)

[
log(1− pi)− (1/2) log(σ̃

2,(A)
ij )−

(
1/2σ̃

2,(A)
ij

)(
log(yij)− µ̃(A)

ij

)2
]
.

The EM algorithm will replace Hij with their posterior expectations wij = E
[
Hij

∣∣Yij, φ] prior to

optimization at each iteration where φ is a collection of current estimates of abundances, individual

variances, and aberrance proportions.
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B.1.5.1 Update Posterior Means

For a set of parameter estimates arising from iteration (t), it is readily seen that when:

wij = E
[
Hij

∣∣Yij , φ]
=

(
pi

σ̃
(C)
ij

)
exp

{(
−1

2σ̃
2,(C)
ij

)(
log(Yij)− µ̃(C)

ij

)2}
(

pi

σ̃
(C)
ij

)
exp

{(
−1

2σ̃
2,(C)
ij

)(
log(Yij)− µ̃(C)

ij

)2}
+

(
1−pi
σ̃
(A)
ij

)
exp

{(
−1

2σ̃
2,(A)
ij

)(
log(Yij)− µ̃(A)

ij

)2} .

B.1.5.2 Update pi, σ̃
2,((·))
i , and ρi

It is simple to show that the likelihood is separable with respect to pi and
(
ρTi , σ

2
iC , σ

2
iA

)
. Thus,

we may estimate these parameters separately.

Update pi:

We update pi with its MLE estimate, given by:

p̂i =

∑nG
j=1 E[Hij

∣∣Yij, φ]

nG
.

Update
(
ρTi , σ

2
iC , σ

2
iA

)
The cell type proportions and variance parameters are not separable within the likelihood and must

be updated simultaneously. We opt for a block coordinate ascent algorithm consisting of two blocks;

cell type proportions compose block 1 and variance terms compose block 2. Block 1 is updated

while block 2 is held fixed, then block 2 is updated while block 1 is fixed. This process is repeated

until convergence.

Consider first the variance terms without variance weights. Holding the cell type proportions

fixed, the terms pertaining to aberrant and consistent genes are separable. We focus on the portion
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of the complete data log-likelihood pertaining to the consistent variance term, though similar results

hold for σ2
iA:

`i

(
σ̃

2,(C)
i

)
=

nG∑
j=1

wij

[
−(1/2) log

(
∆jσ̃

2,(C)
i

)
−
(

1/2∆jσ̃
2,(C)
i

)(
log(Yij)− µ̃(C)

ij

)2
]

=

nG∑
j=1

wij

[
−(1/2) log

(
∆jσ̃

2,(C)
i

)
−
(

1/2∆jσ̃
2,(C)
i

)(
νij + ∆jσ̃

2,(C)
i /2

)2
]

where νij = log (Yij)− log
(∑K

k=1 ρikγjk

)
.

Taking the first derivative with respect to the consistent variance term, we have:

˙̀
(
σ̃

2,(C)
i

)
=

nG∑
j=1

wij

[(
−1

2σ̃
2,(C)
i

)
+

(
1

2∆jσ̃
4,(C)
i

)(
νij + ∆jσ̃

2,(C)
i /2

)2

−(
1

∆jσ̃
2,(C)
i

)(
νij + ∆jσ̃

2,(C)
i /2

)]
.

Under option (2), we did not find a closed form update for these variance terms opting to use

numerical optimization. Under option (1), we can further reduce this equation by plugging in

∆j = 1 for all j:

˙̀
(
σ̃

2,(C)
i

)
=

nG∑
j=1

(
1

2σ̃
4,(C)
i

)[
−σ̃2,(C)

i + ν2
ij + νijσ̃

2,(C)
i + σ̃

4,(C)
i /4− σ̃2,(C)

i νij − σ̃4,(C)
i /2

]
=

nG∑
j=1

(
1

2σ̃
4,(C)
i

)[
−
(
σ̃

4,(C)
i /4 + σ̃

2,(C)
i

)
+ ν2

ij

]
=

nG∑
j=1

(
1

2σ̃
4,(C)
i

)[(
σ̃

2,(C)
i /2 + 1

)2

+ ν2
ij

]
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Setting equal to 0 and solving, we have a closed form update for σ̃2,(C)
i :

σ̃
2,(C)
i = 2

[√∑nG
j=1wijν

2
ij∑nG

j=1wij
+ 1− 1

]
.

We now turn to the cell type proportions piece, assuming the variance terms are held fixed. The

complete data log-likelihood pertaining to these parameters is given by:

`i =

nG∑
j=1

wij

[
log(pi)− (1/2) log(σ̃

2,(C)
i )−

(
1/2σ̃

2,(C)
i

)(
log(Yij)− µ̃(C)

ij

)2
]

+

(1− wij)
[
log(1− pi)− (1/2) log(σ̃

2,(A)
i )−

(
1/2σ̃

2,(A)
i

)(
log(Yij)− µ̃(A)

ij

)2
]
.

Before constructing the derivative of this likelihood with respect to our cell type proportions, we

examine derivatives an interior of the likelihood to improve clarity of the full derivation. In the

following, let ηij =
∑K

k=1 ρikγjk.

∂µij(·)
∂ρi

=
∂

∂ρi

[
log

(
K∑
k=1

ρikγjk

)
− σ2

ij(·)/2

]
=

γj∑K
k=1 ρikγjk

=
γj
ηij
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Plugging this value into the gradient for the complete data log-likelihood, we have:

˙̀
i =

nG∑
j=1

wij

[
(1/σ̃

2,(C)
ij )

(
log(Yij)− µ̃(C)

ij

)](∂µ(C)
ij

∂ρi

)
+

(1− wij)
[
(1/σ̃

2,(A)
ij )

(
log(Yij)− µ̃(A)

ij

)](∂µ(A)
ij

∂ρi

)

=

nG∑
j=1

γj

wij
(

log(Yij)− µ̃(C)
ij

)
σ̃

2,(C)
ij ηij

+

(1− wij)
(

log(Yij)− µ̃(A)
ij

)
σ̃

2,(A)
ij ηij


= γT

wij
(

log(Yij)− µ̃(C)
ij

)
σ̃

2,(C)
ij ηij

+

(1− wij)
(

log(Yij)− µ̃(A)
ij

)
σ̃

2,(A)
ij ηij


j

.

To ensure proper constraints during fit, numerical optimization routines from R’s constrOptim

function in the alabama package are used to optimize the log-likelihood with respect to ρi.

When no information is assumed for the proportion of a (K + 1)-st cell type (e.g. a tumor cell

type), these proportions are non-negative and allowed to sum to a value less than 1. If the proportion

of a (K + 1)-st cell type is assumed (e.g. tumor purity), the proportions are constrained to sum

to 1− ρK+1. As noted in the main paper, the (K + 1)-st cell type is assumed not to express or to

express at a minimal level across the nG genes used for optimization.
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B.2 Simulations Supplement

The first assessment of the estimation properties of the ICeD-T model was performed on

in silico simulated datasets. For each simulation, we constructed two sets of expression pseudo-

experiments: reference expression datasets from 5 simulated reference cell types and reference

expression datasets from 135 mixture datasets composed of expression from 4 of these 5 cell types.

Each expression experiment consists of expression values across 250 common loci. Within the

mixtures, one cell type represents a ”missing” cell type for each sample; this cell type is known to

be present in the mixture but it does not express at the 250 modeled loci.

These simulations were built in three main steps: Step (1) generates purified reference sample

expressions and variance measures; Step (2) generates mixture expression files for deconvolution;

and step (3) edits the output expressions from step 2 to allow for aberrant gene behavior.

B.2.1 Step 1 - Generating Pure Sample Expressions

The first element in generating pure sample expressions is to define profiles from which each

”purified reference” sample is simulated. For each locus separately, it is randomly determined

whether the locus is lowly, moderately, or highly expressed. In addition, one of the four expressed

cell types is labeled the indicated cell type for this locus while the remaining cell types are considered

background. We then simulate a mean log-expression for each gene and cell type according to the

following table:

Level Pct. Loci Background Indicated

Low 33% Uniform(2.0, 4.0) Uniform(3.5, 5)

Moderate 33% Uniform(4.0, 6.0) Uniform(5.5, 7)

High 33% Uniform(6.0, 8.0) Uniform(7.5, 9)

Once the mean log-expressions are simulated, we must construct a reasonable variance schema

for these average log-expression profiles. We construct a mean-variance relationship in the log-
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expression setting by mirroring an example found in FPKM-normalized RNA-seq data.

Read counts from purified samples of B-cells (20), CD4 T-cells (20), CD8 T-cells (20), Monocytes

(20), Neutrophils (20) and Natural Killers (14) were downloaded from the Array Express website

from the Linsley et al study [60]. The read counts for each sample are FPKM normalized, utilizing

the (75th-percentile read count/1000) instead of total read depth for each subject. The mean-variance

relationship is modeled across 441 immune-related genes for each of these six cell types using a

Loess curve, similar to the procedure utilized by VOOM [67]. This Loess curve was used to map the

simulated log-expression means for each gene and cell type to a data-supported variance measure.

Random error was also introduced.

Following the generation of the mean and variance profiles, the 5 or 15 purified, reference-sample

pseudo-experiments are generated for each cell type from its profile via a log-normal distribution.

B.2.2 Step 2 - Generating Mixture Expressions

We must now generate the mixture expression pseudo-experiments. We first generate the

proportion of the missing cell type from a standard normal distribution with mean 0.60 and standard

deviation 0.15. In addition, any of these proportions falling below 17% or above 95% are set at 17%

and 95% respectively. The remaining proportions are simulated from a Dirichlet distribution with

average abundances ranging from 15% to 40%.

With the proportions generated for each of the 5 cell types and each subject, we turn to simu-

lating the expression experiments. For each subject individually, we construct mixture experiments

according to the following algorithm.
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(1) Simulate Pure Sample Expression for non-missing cell types

Xijk ∼ exp

(
N
(
µjk, σ

2
jk

))

(2) Mix Pure Sample Expressions

Yij ∼
4∑

k=1

ρikXijk

Thus, these mixture expression experiments are simulated as true convolutions of independent

log-normals. In this way, we can examine the adequacy of our approximated distribution.

B.2.3 Step 3 - Edit Mixtures to Create Aberrance

The final step in the mixture experiments is to allow loci to misbehave. We allow 3 mechanisms

for misbehavior. Mechanism 1 takes the expression of the indicated cell type and downregulates

it to 25% - 75% of its true level; mechanism 2 takes the expression of the indicated cell type and

upregulates it to 133% - 400% of its true level; and mechanism 3 allows the missing cell type to

express at the background levels established above. The table below summarizes these mechanisms.

Mechanism Pct. Ab. Loci Indicated CT Effect Missing CT Exp.
1 - Downregulate 25% Uniform(25%, 75%) 0
2 - Upregulate 25% Uniform(133%, 400%) 0
3 - Missing Exp. 50% 0 Uniform(., .)

Table B.2: Pct Ab. Loci = Percentage of Aberrant Loci Effected, Indicated CT Effect = Effect on
the expression of Indicated Cell Type, Missing CT Exp = Expression Level of Missing Cell Type

For impacted loci, expression is resimulated as in B.2 with the revised expression profiles. The

number of loci impacted is allowed to vary from 0% to 30% of the total expression and the resulting

estimates are examined.
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B.2.4 Results

Pct Ab. = 0%, No. Rep. = 5

Figure B.2: Visualizing simulation results with 5 reference samples per cell type and no aberrance.
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Pct Ab. = 0%, No. Rep. = 15

Figure B.3: Visualizing simulation results with 15 reference samples per cell type and no aberrance.
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Pct Ab. = 15%, No. Rep. = 5

Figure B.4: Visualizing simulation results with 5 reference samples per cell type and 15% of genes
behaving aberrantly.
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Model Aberrant 1Q Med 3Q
ICeD-T (No Weight) Yes 0.000 0.114 0.607

No 0.625 0.748 0.824
pi 0.572 0.612 0.655

ICeD-T (Weights) Yes 0.004 0.468 0.823
No 0.804 0.884 0.931
pi 0.718 0.768 0.803

Table B.3: Summarizing ICeD-T’s ability to detect aberrant gene behavior (Pct. Ab. = 15%, No.
Rep. = 5).
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Pct Ab. = 18%, No. Rep. = 15

Figure B.5: Visualizing simulation results with 15 reference samples per cell type and 18% of genes
behaving aberrantly.
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Model Aberrant 1Q Med 3Q
ICeD-T (No Weight) Yes 0.000 0.043 0.538

No 0.647 0.769 0.838
pi 0.579 0.613 0.657

ICeD-T (Weights) Yes 0.000 0.114 0.744
No 0.797 0.872 0.920
pi 0.697 0.738 0.772

Table B.4: Summarizing ICeD-T’s ability to detect aberrant gene behavior (Pct. Ab. = 18%, No.
Rep. = 15).
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Pct Ab. = 30%, No. Rep. = 5

Figure B.6: Visualizing simulation results with 5 reference samples per cell type and 30% of genes
behaving aberrantly.
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Model Aberrant 1Q Med 3Q
ICeD-T (No Weight) Yes 0.001 0.194 0.645

No 0.618 0.659 0.791
pi 0.530 0.555 0.587

ICeD-T (Weights) Yes 0.011 0.552 0.824
No 0.780 0.862 0.897
pi 0.673 0.707 0.725

Table B.5: Summarizing ICeD-T’s ability to detect aberrant gene behavior (Pct. Ab. = 30%, No.
Rep. = 5).
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Pct Ab. = 35%, No. Rep. = 15

Figure B.7: Visualizing simulation results with 15 reference samples per cell type and 35% of genes
behaving aberrantly.

Model Aberrant 1Q Med 3Q
ICeD-T (No Weight) Yes 0.002 0.202 0.582

No 0.574 0.678 0.734
pi 0.480 0.503 0.529

ICeD-T (Weights) Yes 0.013 0.406 0.730
No 0.714 0.790 0.837
pi 0.597 0.621 0.643

Table B.6: Summarizing ICeD-T’s ability to detect aberrant gene behavior (Pct. Ab. = 30%, No.
Rep. = 15).

144



We see from the above that the ICeD-T model with and without weights provides the best fit

for these simulated data in terms of both sum of squared error and correlation. The aberrance model

adequately handles the misbehavior across loci even up to 30% aberrance, with the weighted model

providing the strongest estimation. It most closely estimates the proportion of aberrant genes and

provides stronger distinctions in the probabilities of aberrance given the data.

As we reach 30% aberrance, we do note a slight bias in ICeD-T’s results beginning to become

evident near the tails. However, even when compared against CIBERSORT–a method which

provides a very strong runner-up in these simulated data– we see that ICeD-T is superior. This is a

classic case of the bias-variance trade-off. ICeD-T allows some bias to impact results as aberrance

increases, but maintains a strong linear relationship. CIBERSORT, on the other hand, experiences in-

creasing variability and a slightly diminshed linear relationship as the amount of aberrance increases.

We also fit the ICeD-T model without using estimates of tumor purity (data not shown). The

model performs well up to 30% aberrance, however, at around 30% aberrance it begins to struggle

to capture aberrant genes appropriately. Regardless of this fact, the ICeD-T model with weights

continues to be one of the strongest performers even up to 30% aberrance.
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B.3 CIBERSORT Flow Cytometry Validation

The second assessment of the performance properties of the ICeD-T model is performed in

real data. In their paper ”Robust Enumeration of Cell Subsets from Tissue Expression Profiles,” the

creators of CIBERSORT validate their modeling procedure on peripheral blood mononuclear cells

(PBMCs) extracted from 20 adult subjects. We reanalyze this dataset using CIBERSORT’s web

application, the ICeD-T model, and EPIC.

B.3.1 Data

PBMCs were extracted from each of 20 adult subjects. For each sample, expression profiles

were created using microarray expression analysis. Additionally, each sample was examined using

flow cytometry to measure the ground-truth abundance of each of the immune cell types composing

the PBMCs. The resulting datasets were provided to us directly by Newman et al. In addition, the

microarray expression data from purified samples of 22 immune cell types used to construct LM22

were also provided.

B.3.2 Cell Type Size Correction

The authors of EPIC advocate the use of cell size factors to correct regression results for

differences in the productivity of various cell types composing mixture experiments. In their work,

“Simultaneous Enumeration Of Cancer And Immune Cell Types From Bulk Tumor Gene Expression

Data,” they note that cells of various types produce differing levels of mRNA. We borrow these cell

size factors here and use them to correct the results of CIBERSORT and ICeD-T as was performed

below. The cell size factors utilized here are provided below. Cell size factors are incorporated into

model estimates after running the ICeD-T or CIBERSORT models as was done in EPIC. Define sk

to be the cell size factor for a cell type k. Then the revised estimate of abundance for cell type k is
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Cell Size Factor Extensions

B-Cells 0.40 Naive and memory B-cells

T-Cells 0.40 Naive, memory-resting and memory-activated CD4 T-cells;
CD8 T-cells; Delta-Gamma T-cells

NK cells 0.42 None

Monocytes 1.40 Macrophages, Dendritic Cells

Neutrophils 0.15 Eosinophils, Mast Cells

Table B.7: EPIC-derived cell type size factors with extensions to cell types not explicitly measured.

given by:

ρ∗k =
ρk/sk∑K
i=1(ρk/sk)

.
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B.3.3 Model Fit Description

CIBERSORT:

The CIBERSORT web application (Version: CIBERSORT Jar 1.06) was used to fit these microarray

data. The model was fit using the LM22 signature matrix run with quantile normalization and 500

permutations.

EPIC:

The EPIC library was downloaded from https://github.com/GfellerLab/EPIC in February 2018. The

mixture expression data is quantile normalized and fit to the LM22 reference matrix using EPIC

with default options, except scaleExprs set to FALSE.

ICeD-T:

The ICeD-T model was fit to the LM22 reference without specifying the proportions of extraneous

cell types in the model and no weights, maximal variance weights, and maximal expression variance

weights. Variance weights were computed using the variance of log-transformed expression across

all purified references of a given cell type.

Quantile Normalization:

EPIC and ICeD-T require that the modeled mixture data be measured on the same scale as the

design matrix utilized for modeling. To this end, the purified references used to compose the LM22

matrix are quantile normalized. The mixture data are then quantile normalized to the target distri-

bution specified by the purified references using the preprocessCore library and its functions

normalize.quantiles.determine.target and

normalize.quantiles.use.target. This normalization is performed prior to specifica-

tion of gene and cell type variance measures.
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Result Renormalization:

Results are handled in the manner suggested by Newman et al in personal correspondence as was

performed for their manuscript. All estimated cell type proportions are restricted to the ten examined

cell types: B-cells naive, B-cells memory, CD8+ T-cells, naive CD4+ T-cells, resting memory CD4+

T-cells, activated memory CD4+ T-cells, Delta-gamma T-cells, Activated and resting natural killer

cells, and Monocytes (including the modeled macrophage populations). These proportions are then

renormalized to sum to 100.
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B.3.4 Fit Comparison

The following table details the correlations and sum of squared errors for each of the fit models.

As noted above, each of these measures use cell size corrected proportions for examination.

Model SSE Cor
ICeD-T (No Wgt) 13099.93 0.53
ICeD-T (Max Var Wgt) 12050.67 0.59
CIBERSORT 14146.59 0.65
EPIC 29427.74 0.31

Table B.8: Fit summary statistics for each model compared against flow cytometry measured
ground-truth.

We note from the above that the CIBERSORT model provides the best results in terms of correla-

tions. However, each of the fit ICeD-T models provide superior fit in terms of sums of squared errors.

When using variance weights, the correlations between ICeD-T estimates and CIBERSORT become

comparable as well (∼0.60 vs. 0.65). Thus, it appears that the ICeD-T method is comparable to

CIBERSORT in terms of correlation and provides superior results in terms of error.

In the following considerations, we will focus on the ICeD-T model with maximal variance

weights. Despite the fact that the maximal expression weights produced the best fit for both overall

correlation and sum of squared errors, it has notably weaker fit for many important cell types

(e.g. CD4, CD8). Compared to CIBERSORT, in addition to having lower overall error, ICeD-T

appears to provide superior performance for memory B-cells, naive CD4 T-cells, and gamma-delta

T-cells. Both CIBERSORT and ICeD-T provide comparable performance with respect to monocyte

expression. Both models struggle with CD8 T expression despite being well correlated for this cell

type as CIBERSORT tends to overestimate expression by in the upper tail where ICeD-T seems to

underestimate.

The results provided by the EPIC model are very poor for this dataset. However, this is not a

condemnation of EPIC’s use in real data. EPIC was designed for RNA-seq data, not for microarrays.
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Thus, the weighting structure and gene selection for the fit shown here may not be suitable for

EPIC’s off-the-shelf options.
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Figure B.8: Plotting true, relative abundances of 9 immune cell subpopulations against ICeD-T (no
weights) estimates.

152



ICeD-T, Max Variance Weights
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Figure B.9: Plotting true, relative abundances of 9 immune cell subpopulations against ICeD-T
(weights) estimates.
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CIBERSORT
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Figure B.10: Plotting true, relative abundances of 9 immune cell subpopulations against CIBER-
SORT estimates.
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B.4 EPIC Melanoma Data Validation

The third examination of the estimation properties of ICeD-T is performed on validation data

provided by Racle et al. It offers an opportunity to evaluate the performance of ICeD-T on RNA-seq

experiments from tumor samples.

B.4.1 Data

For more information regarding this dataset, see ’Simultaneous Enumeration of Cancer and

Immune Cell Types from Bulk Tumor Gene Expression Data’ from Racle et al. In brief, cells were

extracted from the lymph nodes of four patients with stage III melanomas. A portion of each of the

single cell suspensions obtained from these subjects was used for a flow cytometric analysis while

the remaining portion was used for bulk RNA-sequencing.

The data was extracted directly from the EPIC library, file accession pathway given here:

EPIC-master/data/melanoma data.rda. This RData files contains a single list object

melanoma data, which houses fields containing the TPM-normalized RNA-seq expression for

each subject, the flow-cytometry measured cell type proportions, and the predicted EPIC cell type

proportions obtained using the TRef reference matrix.

B.4.2 Model Fit Description

CIBERSORT:

The CIBERSORT web application (Version: CIBERSORT Jar 1.06) was used to fit these TPM

normalized RNA-seq data. The model was fit using the LM22 signature matrix and run with quantile

normalization disabled.
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EPIC:

The EPIC model was fit to these TPM normalized RNA-seq data using its TRef reference matrix

and all default options.

ICeD-T:

The ICeD-T model is fit using all 4 combinations of the following options: (1) Use Tumor Purity:

Yes or no? (2) Use maximal variance weights: Yes or No?. For the purposes of this analysis, tumor

purity is obtained from the flow cytometry results by combining the proportions of cancer cells and

other cells.
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B.4.3 Fit Results

For the results shown below, all immune content is corrected for cell type size and renormalized

so that proportions are computed with respect to the immune cells in the mixture (B-cells, CD4+

T-cells, CD8+ T-cells, and Natural Killers).

Table B.9: Melanoma Data - True relative proportions of Immune cells

Table B.10: Melanoma Data - True relative proportions of Immune cells

It is clear from the above that CIBERSORT would produce the minimum sum of squared error

among all model fits due in chief to the manner in which it handles subject LAU125. ICeD-T with
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use of Tumor information (both with weights and maximal variance weights), produced the second

best fit by sum of squared error. EPIC would produce the third best fit by sum of squares. Finally,

ICeD-T without tumor purity would produce the worst results.

Examining subject LAU125, this subject is highly anomalous. This subjects immune response in

this sample is composed almost entirely of B-cells. Both EPIC and ICeD-T struggle to estimate the

B-cell proportions for this subject - a likely consequence of their use of the same reference matrix.

CIBERSORT does not struggle as greatly with this single subject and thus experiences smaller sums

of squared error.

Across the remaining individuals, ICeD-T using any option produces the best results for LAU1255

and LAU335. ICeD-T without tumor purity and using maximal variance weights produces the

best results for LAU1255, LAU1314 and LAU 335. Thus, outside of the strange subject LAU125,

ICeD-T is able to provide the most competitive results across remaining subjects.

Focus now on the estimation of CD8 T-cell abundance across all methods. The use of ICeD-

T without Tumor purity provides the best fit across the singular cell type among all individuals.
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B.5 PD-1 Checkpoint Therapy Use in Melanomas

The final validation datasets for the ICeD-T method examine its application to a set of RNA-seq

experiments derived from patients on PD-1 Checkpoint inhibitor therapies [71].

B.5.1 Data

The raw fastq files of RNA-seq data were downloaded from Sequence Read Archive (https:

//www.ncbi.nlm.nih.gov/sra), under the accession numbers SRP067938 and SRP090294.

We mapped the RNA-seq reads to hg38 reference genome using STAR with gene annotation from

GENCODE version 27. Then the number of RNA-seq fragments per gene were counted using R

function GenomicAlignments/summarizeOverlaps.

B.5.2 Fit Method

CIBERSORT:

The CIBERSORT web application (Version: CIBERSORT Jar 1.06) was used to fit these TPM

normalized RNA-seq data. The model was fit using the LM22 signature matrix and run with quantile

normalization disabled.

EPIC:

The EPIC model is fit to the TRef reference matrix using TPM-normalized RNA-seq data.

ICeD-T:

The ICeD-T model is fit to the TRef reference matrix using TPM-normalized RNA-seq data. It

is fit both without weights and with maximal variance weights derived from the TRef reference

data. This is made possible through a function, EPIC.Extract, which extracts the fitted data and

reference matrix from the EPIC library’s function and outputs them in a form usable by ICeD-T.
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TPM-normalization:

As noted above, data were provided in gene count form. As such, computation of TPM values using

software such as RSEM is not possible. Thus, we transform the raw counts into TPM values using

the following formula:

TPMj = 106

(
rj/lj∑nG
j=1 rj/lj

)
.
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APPENDIX C: SUPPLEMENT FOR CHAPTER 5

C.1 Supplementary Methods

C.1.1 Notation Table

The following table contains the notation used to develop the TReC and TReCASE models

for an arbitrary gene a candidate eQTL of this gene. Subscripts specifying the gene and eQTL are

suppressed. The A allele and B allele are defined based on the genotype of the candidate eQTL.

TReC + ASE Quantities
Value Dimension Description
G(i) NA The genotype of subject i at the specified eQTL. Can take values:

AA – homozygous for A allele
AB – heterozygous
BB – homozygous for B allele

ρi 1× 1 Estimate of the tumor purity for the tumor sample of subject i, defined as
the proportion of cells that are tumor cells.

TReC Only Quantities
Value Dimension Description
Yi 1× 1 Total read count at the given gene in the tumor sample of subject i.
µiA 1× 1 The mean TReC for subject i at A allele.
µiB 1× 1 The mean TReC for subject i at B allele.
µi 1× 1 The mean TReC for subject i.
φ 1× 1 The overdispersion parameter for the distribution of TReC.
xi P × 1 Vector of covariate values for subject i
β P × 1 Vector of covariate impacts on log total read count.
di 1× 1 Read depth of RNA-Seq experiment for subject i.

ASE Only Quantities
Value Dimension Description
Ri 1× 1 The total number of allele specific reads for subject i.
RiB 1× 1 The number of allele specific reads mapped to the B allele for subject i.
ψ 1× 1 The overdispersion parameter for the distribution of the ASE.

eQTL Parameters
Value Dimension Description
η 1× 1 The eQTL effect in normal tissue: µ(N)

iB /µ
(N)
iA .

γ 1× 1 The eQTL effect in tumor tissue: µ(T )
iB /µ

(T )
iA .

κ 1× 1 An over-expression effect in the tumor for A allele: µ(T )
iA /µ

(N)
iA .

ξi 1× 1 The ratio of gene expression of B allele versus A allele for subject i,
defined as µiB/µiA.

Table C.1: Notation for defining the TReC and TReCASE models.

161



C.1.2 Optimization Algorithm

As mentioned in main text, the optimization routine for solving the TReC and TReCASE

models uses a coordinate block ascent routine with the following steps.

(0) Select initial estimates for κ, η, and γ.

(1) Holding κ, η, γ, and ψ constant, use negative binomial regression to update β and φ.

(2) Holding β, φ and ψ constant, use a Quasi-Newton method (LBFGS) to update κ, η, and γ.

(3) Holding β, φ, κ, η, and γ constant, update ψ using a Quasi-Newton method (LBFGS).

(4) Iterate steps (1)-(3) until convergence

The algorithm above is specified for the TReCASE model. A similar algorithm is used for

TReC model except that we need to remove step (3) and iterate steps (1) and (2) repeatedly (while

removing ψ from estimation procedures) until convergence.

To fully define the algorithm above, a discussion of Step (0) is warranted. Under the null

hypothesis η = 1, model fit proceeds following the above algorithm starting at position κ = 1 and

γ = 1 and holding η fixed at 1. Under the null hypothesis γ = 1, model fit proceeds as above,

starting at position κ = 1 and η = 1 and holding γ at 1 throughout. To fit the full model, we choose

initial values for κ, η, and γ in accordance with the fit of the null hypothesis, either η = 1 or γ = 1,

which gives larger likelihood value at its MLE. This initialization method ensures that the suggested

likelihood ratio tests are well-defined by avoiding situations where the likelihood of full model is

less than the likelihood of a restricted model.
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C.1.3 Mathematical Details for Optimization

Mathematical details for section (A.2) are presented in the following. Note that, as defined,

κ, η and γ are strictly positive parameters. Thus, we estimate log(η), log(γ), and log(κ) in the

optimization process to guarantee that κ, η and γ are all positive, and avoid constrained optimization

when working directly with κ, η and γ.

C.1.3.1 Total Read Count (TReC) Model Component

To motivate the structure of the TReC model, consider the ratio of the mean expressions for

alleles B versus allele A for subject i. Assume that the expression of each allele is a weighted sum

of its expression in normal and tumor tissues, weighted by the proportional composition of the

sample with respect to each type. One can then specify this ratio for subject i as:

ξi =
µiB
µiA

=
(1− ρi)µ(N)

iB + ρiµ
(T )
iB

(1− ρi)µ(N)
iA + ρiµ

(T )
iA

=
(1− ρi)

(
µ

(N)
iB /µ

(N)
iA

)
+ ρi

(
µ

(T )
iB /µ

(T )
iA

)(
µ

(T )
iA /µ

(N)
iA

)
1− ρi + ρi

(
µ

(T )
iA /µ

(N)
iA

)
=

(1− ρi)η + ρiκγ

1− ρi + ρiκ
= (1− ci)η + ciγ,

where ci = (ρiκ)/(1− ρi + ρiκ). Assuming now that the total expression for subject i is the sum of

the expressions from each constituent allele and modelling µ(N)
i,AA = exp(xTi β), the above implies

that our mean takes the following form:

µi =


ex

T
i β(1− ρi + ρiκ), if G(i) = AA

ex
T
i β(1− ρi + ρiκ)(1 + ξi)/2, if G(i) = AB

ex
T
i β(1− ρi + ρiκ)ξi, if G(i) = BB
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Under a negative binomial distribution, the likelihood component for the TReC model for a single

subject is given by:

f(Yi;µi, φ) =
Γ(Yi + 1/φ)

Yi!Γ(1/φ)

(
1

1 + φµi

)1/φ(
φµi

1 + φµi

)Yi
.

Thus, the log-likelihood for this component takes the form:

`TReC =
N∑
i=1

`
(i)
TReC

=
N∑
i=1

[
ln

{
Γ(yi + 1/φ)

yi!Γ(1/φ)

}
− (1/φ+ yi) log(1 + φµi) + yi log(φ) + yi log(µi)

]
.

Letting λ denote one of κ, η, or γ, we have:

∂`TReC
∂ log(λ)

=
N∑
i=1

(
∂`

(i)
TReC

∂µi

)(
∂µi
∂λ

)(
∂λ

∂ log(λ)

)
.

We derive each of these components in turn. First, consider ∂`(i)
TReC/∂µi:

∂`
(i)
TReC

∂µi
=
yi
µi
− 1 + φyi

1 + φµi
.

For utility in later steps, lets consider derivatives of the form ∂ξi
∂λ

and ∂ci
∂κ

:

∂ξi
∂κ

= (γ − η)

(
∂ci
∂κ

)
,

∂ci
∂κ

= κ−1ci(1− ci),
∂ξi
∂γ

= ci, and
∂ξi
∂η

= 1− ci.

Next, consider ∂µi/∂λ. It is easiest to consider this component separately for each genotype. For

G(i) = AA, µi is dependent on κ, but free of η and γ. Thus:

∂µi
∂κ

= ex
T
i βρi, and

∂µi
∂η

=
∂µi
∂γ

= 0.
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For G(i) = AB, we have:

∂µi
∂κ

= ex
T
i β

[
ρi

(
1 + ξi

2

)
+ (1− ρi + ρiκ)(1/2)

(
∂ξi
∂κ

)]
= ex

T
i β(ρi/2)(1 + γ),

∂µi
∂η

= ex
T
i β(1− ρi + ρiκ)(1/2)

(
∂ξi
∂η

)
= ex

T
i β(1/2)(1− ρi),

∂µi
∂γ

= ex
T
i β(1− ρi + ρiκ)(1/2)

(
∂ξi
∂γ

)
= ex

T
i β(ρi/2)κ.

Finally, for G(i) = BB, we have:

∂µi
∂κ

= ex
T
i β

[
ρiξi + (1− ρi + ρiκ)

(
∂ξi
∂κ

)]
= ex

T
i βρiγ,

∂µi
∂η

= ex
T
i β(1− ρi + ρiκ)

(
∂ξi
∂η

)
= ex

T
i β(1− ρi),

∂µi
∂γ

= ex
T
i β(1− ρi + ρiκ)

(
∂ξi
∂η

)
= ex

T
i βρiκ.

While not used for the C++ implementation of the model, the R-version uses the Hessian matrix

with respect to the κ, η, and γ variables. We derive it here for completeness. Let ˙̀
TReC = ∂`TReC

∂log(λ)

where λ is one of κ, η, and γ. As specified above:

˙̀
TReC = λ

N∑
i=1

{(
∂`

(i)
TReC

∂µi

)(
∂µi
∂λ

)}
.
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Then:

∂2 ˙̀
TReC

∂ log(λ)2
=

(
∂ ˙̀

TReC,κ

∂κ

)(
∂κ

∂ log(κ)

)
= κ

(
∂ ˙̀

TReC,κ

∂κ

)

= ˙̀
TReC,κ + κ2

N∑
i=1

(
∂2`

(i)
TReC

∂µi∂κ

)(
∂µi
∂κ

)
+ κ2

N∑
i=1

(
∂`

(i)
TReC

∂µi

)(
∂2µi
∂κ2

)

= ˙̀
TReC,κ + κ2

N∑
i=1

(
∂2`

(i)
TReC

∂µ2
i

)(
∂µi
∂κ

)2

+ κ2

N∑
i=1

(
∂`

(i)
TReC

∂µi

)(
∂2µi
∂κ2

)

= ˙̀
TReC,κ + κ2

N∑
i=1

(
∂2`

(i)
TReC

∂µ2
i

)(
∂µi
∂κ

)2

.

The last equality holds since ∂2µi
∂κ2

= 0 and we may plug in:

∂2`
(i)
TReC

∂µ2
i

= −
(
yi
µ2
i

)
+

φ+ φ2yi
(1 + φµi)2

.

Similar results hold for η and γ and are given below:

∂2`TReC
∂ log(η)2

= ˙̀
TReC,η + η2

N∑
i=1

(
∂2`

(i)
TReC

∂µ2
i

)(
∂µi
∂η

)2

,

∂2`TReC
∂ log(γ)2

= ˙̀
TReC,γ + γ2

N∑
i=1

(
∂2`

(i)
TReC

∂µ2
i

)(
∂µi
∂γ

)2

.

To complete the Hessian, we compute the remaining results:

∂2`TReC
∂ log(κ)∂ log(η)

= ηκ

N∑
i=1

(
∂2`

(i)
TReC

∂µ2
i

)(
∂µi
∂κ

)(
∂µi
∂η

)
,

∂2`TReC
∂ log(κ)∂ log(γ)

= γκ

N∑
i=1

[(
∂2`

(i)
TReC

∂µ2
i

)(
∂µi
∂κ

)(
∂µi
∂γ

)
+

(
∂`

(i)
TReC

∂µi

)(
∂2µi
∂κ∂γ

)]
,

∂2`TReC
∂ log(η)∂ log(γ)

= ηγ
N∑
i=1

(
∂2`

(i)
TReC

∂µ2
i

)(
∂µi
∂η

)(
∂µi
∂γ

)
,
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where ∂2µi
∂κ∂η

= ∂2µi
∂η∂γ

= 0 and

∂2µi
∂κ∂γ

=


0, if G(i) = AA

(1/2)ex
T
i βρi, if G(i) = AB

ex
T
i βρi, if G(i) = BB

C.1.3.2 Allele Specific Expression (ASE) Model Component

In the following, let µi1 represent the number of reads that are expressed by allele 1 on average

for subject i and µi2 be its counterpoint for allele 2. Within a sample prepped for RNA-seq, the pool

of reads for the given gene contains µi1 + µi2 reads. The proportion of reads belonging to allele 1

on average is then given by:

πi =
µi1

µi1 + µi2
=

(µi1/µi2)

1 + µi1/µi2
.

Thus, viewing the RNA-Seq sampling procedure as drawing a group of reads at random and allowing

for extra-binomial variation, we can model the data-generation mechanism via a beta-binomial dis-

tribution. Extra-binomial variation is often observed in genetic studies and in the case of ASE reads

can in part be attributed to incorrectly genotyped alleles resulting from genotyping or imputation

error.

In order to model a consistent eQTL effect within the TReC and ASE components of the model,

define allele 1 as that containing the minor allele B for heterozygous subjects. In homozygous

subjects, an arbitrary allele is selected as the expression between the two alleles is assumed to be

equal on average. Thus, by the statement above and previous definitions, we may model the average
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reads for allele 1 as:

πi =


ξi/(1 + ξi), if G(i) = BB

(1/2), otherwise

Thus, the likelihood for the ASE component of the model is given by:

f(riB; ri, πi, ψ) =

 ri

riB

[ Γ (ψ−1)

Γ (ψ−1πi) Γ (ψ−1(1− πi))

]
×

[
Γ (ψ−1πi + riB) Γ (ψ−1(1− πi) + ri − riB)

Γ (ψ−1 + ri)

]
.

Define `(i)
ASE be the ASE likelihood from the i− th sample. Then:

`ASE =
n∑
i=1

`
(i)
ASE =

n∑
i=1

log [f(riB; ri, πi, ψ)] .

It can be seen that the gradient functions for πi and ψ are given by:

∂`
(i)
ASE

∂πi
= ψ−1

[
Ψ0

(
ψ−1πi + riB

)
−Ψ0

(
ψ−1(1− πi) + ri − riB

)
−Ψ0

(
ψ−1πi

)
+

Ψ0

(
ψ−1(1− πi)

) ]
,

∂`ASE
∂ψ

=
n∑
i=1

−ψ−2πi
[
Ψ0

(
ψ−1πi + riB

)
−Ψ0

(
ψ−1πi

)]
−

n∑
i=1

ψ−2(1− πi)
[
Ψ0

(
ψ−1(1− πi) + ri − riB

)
−Ψ0

(
ψ−1(1− πi)

)]
−

n∑
i=1

ψ−2
[
Ψ0

(
ψ−1

)
−Ψ0

(
ψ−1 + ri

)]
.

Before deriving the remaining components necessary for the gradient, we note that only individuals

of heterozygous genotype contribute to the gradient of κ, η and γ, whereas all individuals contributed
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to the gradient of ψ. Thus, we have:

∂`ASE
∂ log(λ)

≡ ˙̀
ASE,λ =

∑
i;G(i)=AB

(
∂`

(i)
ASE

∂πi

)(
∂πi
∂ξi

)(
∂ξi
∂λ

)(
∂λ

∂ log(λ)

)

= λ
∑

i;G(i)=AB

(
∂`

(i)
ASE

∂πi

)(
∂πi
∂ξi

)(
∂ξi
∂λ

)
.

To calculate the above quantity, we need:

∂πi
∂ξi

= (1 + ξi)
−2,

∂ξi
∂η

= 1− ci,
∂ξi
∂γ

= ci,
∂ξi
∂κ

= (γ − η)ci(1− ci)κ−1.

As noted in the previous section, the C++ fit routine does not utilize the Hessian but we provide its

derivation here for completeness. We will make repeated use of the following terms, so they are

presented here for later reference.

∂2`
(i)
ASE

∂π2
i

= ψ−2

[
Ψ1

(
ψ−1πi + riB

)
+ Ψ1

(
ψ−1(1− πi) + ri − riB

)
−Ψ1

(
ψ−1πi

)
−

Ψ1

(
ψ−1(1− πi)

) ]
∂2πi
∂ξ2

i

= −2(1 + ξi)
−3

∂2ξi
∂κ2

= (γ − η)

[
κ−1(1− 2ci)

(
∂ci
∂κ

)
− κ−2ci(1− ci)

]
,

where

Ψ0 (x) =
∂lnΓ (x)

∂x
and Ψ1 (x) =

∂2lnΓ (x)

∂x2
.
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We complete the derivation in the following.

∂2`ASE
∂ log(κ)2

=

(
∂ ˙̀
ASE,κ

∂κ

)(
∂κ

∂ log(κ)

)
= κ

(
∂ ˙̀
ASE,κ

∂κ

)

= ˙̀
ASE,κ + κ2×∑
i;G(i)=AB

{(
∂2`

(i)
ASE

∂π2
i

)(
∂πi
∂ξi

)2(
∂ξi
∂κ

)2

+

(
∂`

(i)
ASE

∂πi

)(
∂2πi
∂ξ2i

)(
∂ξi
∂κ

)2

+

(
∂2`

(i)
ASE

∂π2
i

)(
∂πi
∂ξi

)(
∂2ξi
∂κ2

)}
.

Similarly for η and γ, we have:

∂2`ASE
∂ log(η)2

= ˙̀
ASE,η + η2

∑
i;G(i)=AB

(1− ci)2
[(

∂2`
(i)
ASE

∂π2
i

)(
∂πi
∂ξi

)2

+

(
∂`

(i)
ASE

∂πi

)(
∂2πi
∂ξ2i

)]
,

∂2`ASE
∂ log(γ)2

= ˙̀
ASE,γ + γ2

∑
i;G(i)=AB

c2i

[(
∂2`

(i)
ASE

∂π2
i

)(
∂πi
∂ξi

)2

+

(
∂`

(i)
ASE

∂πi

)(
∂2πi
∂ξ2i

)]
.

Finally, for the “mixed” second derivatives, we have:

∂2`ASE
∂ log(η)∂ log(κ)

= κη
∑

i;G(i)=AB

[{(
∂2`

(i)
ASE

∂π2
i

)(
∂πi
∂ξi

)2

−

(
∂`

(i)
ASE

∂πi

)(
∂2πi
∂ξ2i

)}(
∂ξi
∂κ

)
(1− ci)−(

∂`
(i)
ASE

∂πi

)(
∂πi
∂ξi

)(
∂ci
∂κ

)]
,

∂2`ASE
∂ log(γ)∂ log(κ)

= κγ
∑

i;G(i)=AB

[{(
∂2`

(i)
ASE

∂π2
i

)(
∂πi
∂ξi

)2

+

(
∂`

(i)
ASE

∂πi

)(
∂2πi
∂ξ2i

)}(
∂ξi
∂κ

)
ci+(

∂`
(i)
ASE

∂πi

)(
∂πi
∂ξi

)(
∂ci
∂κ

)]
,

∂2`ASE
∂ log(γ)∂ log(η)

= γη
∑

i;G(i)=AB

ci(1− ci)

[(
∂2`

(i)
ASE

∂π2
i

)(
∂πi
∂ξi

)2

+

(
∂`

(i)
ASE

∂πi

)(
∂2πi
∂ξ2i

)]
.

C.1.4 Cis-Trans Score Test

Recall that eQTL come in two varieties: cis- and trans-eQTL. cis-eQTLs induce allelic im-

balance of gene expression whereas trans-eQTLs affect the expression of two alleles to the same
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degree. [55] and [56] have developed and refined a “Cis-Trans test” to identify whether eQTL act in

a cis- or trans- fashion. Under the null hypothesis (cis-), the eQTL effect sizes are the same between

TReC and ASE models. A small p-value using this test leads to rejection of the null hypothesis,

and thus the conclusion that the given Gene-SNP pair behave in a trans-eQTL manner. In that case,

only the TReC data should be used for eQTL mapping.

To develop this test for eQTL mapping in tumor tissues, we follow [56] by extending the

likelihood framework through the introduction of new parameters which allow eQTL effects to

differ between TReC and ASE components. Specifically, we define:

ηASE = η + αη, and γASE = γ + αγ,

where η and γ are the TReC-specific eQTL effects in normal and tumor tissues, respectively;

ηASE and γASE are the ASE-specific counterparts; αη and αγ are the discrepancies of eQTL ef-

fects between ASE and TReC components of the model in normal and tumor tissues, respectively.

Then to test cis- versus trans-eQTL, we employ a score test for the two-dimensional hypothesis:

αη = αγ = 0.

C.1.4.1 Structure of the Score Test

Define the following groups of parameters: ε = (κ, η, γ)T ; α = (αη, αγ)
T ; and Θ =

(βT , εT , αT , φ, ψ). Let ` = `TReC + `ASE be the full data log-likelihood, ˙̀ be the first deriva-

tive of the log-likelihood with respect to the parameters, and I (Θ) be the Fisher’s Information
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Matrix. We may specify the Fisher’s Information Matrix in the following way:

I(Θ) =



Iβ,β Iβ,ε Iβ,φ Iβ,ψ Iβ,α

Iε,β Iε,ε Iε,φ Iε,ψ Iε,α

Iφ,β Iφ,ε Iφ,φ Iφ,ψ Iφ,α

Iψ,β Iψ,ε Iψ,φ Iψ,ψ Iψ,α

Iα,β Iα,ε Iα,φ Iα,ψ Iα,α


=

M1 M2

MT
2 Iα,α

 ,

where M1 is the upper-left block of the Fisher’s Information matrix through Iψ,ψ and M2 is the

remaining block excluding Iα,α.

Following the developments of [84], we may compute the score test of αη = αγ = 0 in the

following way:

SC = ˙̀
(

Θ̂
)T

I
(

Θ̂
)−1

˙̀
(

Θ̂
)

=

(
∂`
∂αη

∂`
∂αγ

)(
Iα,α −MT

2 M
−1
1 M2

)−1

 ∂`
∂αη

∂`
∂αγ

∣∣∣∣
Θ=Θ̂

,

where θ̂ is the estimate of our parameters under the null. SC is asymptotically chi-squared with two

degrees of freedom under the null.

C.1.4.2 TReC Derivatives

Preceding development of the gradients and Hessians of the TReC components in the following

section, it will be helpful to compose a list of definitions and useful derivatives for later use. Recall
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that µi is the mean read count in the TReC component of the model, given by:

µi =


ex

T
i β [1− ρi + ρiκ] , if G(i) = AA,

ex
T
i β [1− ρi + ρiκ]

[
1+ξi

2

]
, if G(i) = AB,

ex
T
i β [1− ρi + ρiκ] ξi, if G(i) = BB,

where ξi = (1− ci)η + ciγ and ci = (ρiκ)/(1− ρi + ρiκ). It is clear that:

∂ci
∂κ

= κ−1ci(1− ci)

∂2ci
∂κ2

= κ−1(1− 2ci)

(
∂ci
∂κ

)
− κ−2ci(1− ci)

This allows us to compose the following derivatives for ξi:

∂ξi
∂κ

= (γ − η)

(
∂ci
∂κ

)
∂ξi
∂η

= (1− ci)

∂ξi
∂γ

= ci

The Hessian for ξi is provided by the following

∂ξi
∂ε∂εT

=


(γ − η)

(
∂2ci
∂κ2

)
−∂ci

∂κ
∂ci
∂κ

0 0

0



173



The gradient of µi with respect to ε is provided below:

∂µi
∂ε

∣∣∣∣
G(i)=AA

= ex
T
i β


ρi

0

0



∂µi
∂ε

∣∣∣∣
G(i)=AB

= ex
T
i β


[
ρi
(

1+ξi
2

)
+ (1− ρi + ρiκ)(1/2)

(
∂ξi
∂κ

)][
(1− ρi + ρiκ)(1/2)

(
∂ξi
∂η

)]
[
(1− ρi + ρiκ)(1/2)

(
∂ξi
∂γ

)]


∂µi
∂ε

∣∣∣∣
G(i)=BB

= ex
T
i β


[
ρiξi + (1− ρi + ρiκ)

(
∂ξi
∂κ

)][
(1− ρi + ρiκ)

(
∂ξi
∂η

)]
[
(1− ρi + ρiκ)

(
∂ξi
∂γ

)]


The Hessian for µi is identically 0 for genotype AA. However, for genotypes AB and BB, we have

the following where we define δi = 1− ρi + ρiκ.

∂2µi
∂ε∂εT

= ex
T
i β


[
ρi

(
∂ξi
∂κ

)
+ (1/2)δi

(
∂2ξi
∂κ2

)]
(1/2)

[
ρi

(
∂ξi
∂η

)
+ δi

(
∂2ξi
∂κ∂η

)]
(1/2)

[
ρi

(
∂ξi
∂γ

)
+ δi

(
∂2ξi
∂κ∂γ

)]
(1/2)

[
ρi

(
∂ξi
∂η

)
+ δi

(
∂2ξi
∂κ∂η

)]
0 0

(1/2)
[
ρi

(
∂ξi
∂γ

)
+ δi

(
∂2ξi
∂κ∂γ

)]
0 0



∂2µi
∂ε∂εT

= ex
T
i β


[
2ρi

(
∂ξi
∂κ

)
+ δi

(
∂2ξi
∂κ2

)] [
ρi

(
∂ξi
∂η

)
+ δi

(
∂2ξi
∂κ∂η

)] [
ρi

(
∂ξi
∂γ

)
+ δi

(
∂2ξi
∂κ∂γ

)]
[
ρi

(
∂ξi
∂η

)
+ δi

(
∂2ξi
∂κ∂η

)]
0 0[

ρi

(
∂ξi
∂γ

)
+ δi

(
∂2ξi
∂κ∂γ

)]
0 0



To simplify the notation in our derivation, we define the following n × n diagonal matrices,

∆1 through ∆6. Elements on the diagonal are contained within the diag() notation below and are
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specified for a single subject.

∆1 = diag
(

µi
V ar[Yi]

)
∆2 = diag

(
µ2
i

V ar[Yi]

)
∆3 = diag

(
µ3
i (yi − µi)
V ar[Yi]2

)
∆4 = diag

(
µ2
i (yi − µi)
V ar[Yi]2

)
∆5 = diag

(
1

V ar[Yi]

)
∆6 = diag

(
(yi − µi)(1 + 2 ∗ φµi)

V ar[Yi]2

)

The log-likelihood for the TReC component is given by:

`TReC =
N∑
i=1

lnΓ (yi + 1/φ)− lnΓ (1/φ)− lnΓ (yi + 1)− [1/φ+ yi] ln (1 + φµi) +

yi (ln(φ) + ln(µi))

It can be shown that the following hold for derivatives involving β:

∂`

∂β
=

N∑
i=1

(
yi − µi
1 + φµi

)
xi = XT∆1(Y − µ)

∂2`

∂β∂βT
= −

N∑
i=1

[
µi

1 + φµi
+
φµi (yi − µi)
(1 + φµi)2

]
xix

T
i = −

[
XT∆2X + φXT∆3X

]
∂`

∂β∂εT
= −

N∑
i=1

[
1

1 + φµi
+
φ(yi − µi)
(1 + φµi)2

]
xi
∂µi
∂ε

T

= −
[
XT∆1Dµ(ε) + φXT∆4Dµ(ε)

]
∂`

∂β∂φ
= −

N∑
i=1

[
(yi − µi)µi
(1 + φµi)2

]
xi = −XT∆3JN
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Regarding derivatives involving ε, we have:

∂`TReC
∂ε

=
N∑
i=1

[
yi − µi
µi + φµ2

i

]
∂µi
∂ε

= Dµ(ε)T∆5 (Y − µ) ,

∂`TReC
∂ε∂εT

=
N∑
i=1

−

[
1

µi + φµ2
i

+
(yi − µi)(1 + 2φµi)

(µi + φµ2
i )

2

](
∂µi
∂ε

)(
∂µi
∂ε

)T
+

(
yi − µi
µi + φµ2

i

)(
∂2µi
∂ε∂εT

)

= −
[
Dµ(ε)T∆5Dµ(ε) +Dµ(ε)T∆6Dµ(ε)

]
+

N∑
i=1

(
yi − µi
µi + φµ2

i

)(
∂2µi
∂ε∂εT

)
,

∂`

∂ε∂φ
= −

N∑
i=1

(yi − µi)µ2
i

(µi + φµ2
i )

2
= −Dµ(ε)T∆4JN .

Finally, derivatives involving φ are provided below:

∂`

∂φ
=

N∑
i=1

−φ−2
[
Ψ0(yi + φ−1)−Ψ0(φ−1)− ln(1 + φµi)

]
− (φ−1 + yi)

[
µi

1 + φµi

]
+
yi
φ

∂`

∂φ2
=

N∑
i=1

2φ−3
[
Ψ0(yi + φ−1)−Ψ0(φ−1)− ln(1 + φµi)

]
+ φ−4

[
Ψ1(yi + φ−1)−Ψ1(φ−1)

]
+ 2φ−2

[
µi

1 + φµi

]
− yi
φ2

+ (φ−1 + yi)

[
µ4
i

V [Yi]2

]

C.1.4.3 ASE Derivatives

Preceding development of the gradients and Hessians of the ASE component in the following

section, it will be helpful to compose a list of definitions and useful derivatives for later use. Recall

the definitions of ξAi and πi:

ξAi = (1− ci)(η + αη) + ci(γ + αγ)

πi =


ξAi /(1 + ξAi ) , if G(i) = AB

0.5 , otherwise
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For genotypes AA and AB, πi is independent of our parameters. Only genotype AB will be

considered. Thus, consider the gradient of ξAi with respect to our parameters.

∂ξAi
∂(ε, α)

=



[(γ + αγ)− (η + αη)]
(
∂ci
∂κ

)
1− ci

ci

1− ci

ci


The Hessian of ξi is presented below:

∂ξAi
∂(ε, α)∂(ε, α)T

=



[(γ + αγ)− (η + αη)]
(
∂2ci
∂κ2

)
−∂ci

∂κ
∂ci
∂κ
−∂ci

∂κ
∂ci
∂κ

−∂ci
∂κ

0 0 0 0

∂ci
∂κ

0 0 0 0

−∂ci
∂κ

0 0 0 0

∂ci
∂κ

0 0 0 0


Then for an arbitrary λ, we have:

∂πi
∂λ

= (1 + ξAi )−2

(
∂ξAi
∂λ

)

∂2πi
∂λ1∂λ2

= −2(1 + ξAi )−3

(
∂ξi
∂λ1

)(
∂ξi
∂λ2

)
+ (1 + ξAi )−2

(
∂2ξAi
∂λ1∂λ2

)

The log-likelihood for the ASE component of the data is given below:

`ASE =
n∑
i=1

lnΓ (ri + 1)− lnΓ (riB + 1)− lnΓ (ri − riB + 1) + lnΓ
(
ψ−1

)
− lnΓ

(
ψ−1πi

)
−

lnΓ
(
ψ−1(1− πi)

)
+ lnΓ

(
ψ−1πi + riB

)
+ lnΓ

(
ψ−1(1− πi) + ri − riB

)
−

lnΓ
(
ψ−1 + ri

)
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Let λ represent a single parameter from either ε or α. For such terms, it can be shown that:

∂`ASE
∂λ

=
n∑
i=1

ψ−1Bi

(
∂πi
∂λ

)
∂2`ASE
∂λ1∂λ2

=
n∑
i=1

ψ−1Bi

(
∂2πi
∂λ1∂λ2

)
+ ψ−1

(
∂Bi

∂πi

)(
∂πi
∂λ1

)(
∂πi
∂λ2

)
∂`ASE
∂λ∂ψ

=
n∑
i=1

−ψ−2Bi

(
∂πi
∂λ

)
+ ψ−1

(
∂Bi

∂ψ

)(
∂πi
∂λ

)

Where we define Bi and it’s derivatives in the following way:

Bi = −Ψ0

(
ψ−1πi

)
+ Ψ0

(
ψ−1(1− πi)

)
+ Ψ0

(
ψ−1πi + riB

)
−Ψ0

(
ψ−1(1− πi) + ri − riB

)
∂Bi

∂πi
= ψ−1

[
−Ψ1

(
ψ−1πi

)
−Ψ1

(
ψ−1(1− πi)

)
+ Ψ1

(
ψ−1πi + riB

)
+

Ψ1

(
ψ−1(1− πi) + ri − riB

) ]
∂Bi

∂ψ
= −ψ−2πi

[
−Ψ1

(
ψ−1πi

)
+ Ψ1

(
ψ−1πi + riB

)]
+

− ψ−2(1− πi)
[
Ψ1

(
ψ−1(1− πi)

)
−Ψ1

(
ψ−1(1− πi) + ri − riB

)]
Derivatives involving ψ are specified below:

∂`ASE
∂ψ

=

NAS∑
i=1

−ψ−2Ai,

∂2`ASE
∂ψ2

=

NAS∑
i=1

2ψ−3Ai − ψ−2

(
∂Ai
∂ψ

)
,
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where Ai and its derivatives are specified by:

Ai = πi
[
−Ψ0

(
ψ−1πi

)
+ Ψ0

(
ψ−1πi + riB

)]
+

(1− πi)
[
−Ψ0

(
ψ−1(1− πi)

)
+ Ψ0

(
ψ−1(1− πi) + ri − riB

)]
+[

Ψ0

(
ψ−1

)
−Ψ0

(
ψ−1 + ri

)]
,

∂Ai
∂ψ

= −ψ−2π2
i

[
−Ψ1

(
ψ−1πi

)
+ Ψ1

(
ψ−1πi + riB

)]
−

ψ−2(1− πi)2
[
−Ψ1

(
ψ−1(1− πi)

)
+ Ψ1

(
ψ−1(1− πi) + ri − riB

)]
−

ψ−2
[
Ψ1

(
ψ−1

)
−Ψ1

(
ψ−1 + ri

)]
.

C.1.4.4 Fisher’s Information: Observed or Expected

The traditional form of the score test involves use of the expected Fisher’s Information Matrix.

In the case where the expected value of the Fisher’s Information Matrix is difficult to compute,

the observed Fisher’s Information Matrix is often used [85]. In some situations, while use of

the observed Fisher’s Information Matrix still provides a statistically valid test under the null, it

can be unstable and produce inconsistent estimates of the variance matrix for MLEs [85]. In the

likelihood framework proposed by this paper, there is an inherent, stochastic dependence of Ri on

Yi. Namely, the value of Ri depends on the number of heterozygous SNPs present within the gene

body and cannot exceed Yi. This makes computing the expected Fisher’s Information Matrix chal-

lenging as it becomes an infinite sum of finite sums containing the digamma and trigamma functions.

As such, we may compute an approximation to the expected Fisher’s Information Matrix

which assumes that Yi and Ri are stochastically independent or we may use the observed Fisher’s

Information Matrix. The observed Fisher’s Information Matrix can be computed as in the previous
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section using untransformed κ, η, γ, and ψ or the log-transformations of these quantities. The log

transformation variant of the observed score test, termed Observed Score test (log), is slightly more

stable than its untransformed competitor. A comparison of these three methods [observed, observed

(log), expected] on simulated data is provided below. To evaluate Type I error of the Cis-Trans score

test, simulations follow the structure provided for the power simulations in the body of Chapter

5. To evaluate power, ξi,ASE is set to 0.5 for all subjects regardless of eQTL genotype and eQTL

effect strength. This behavior is designed to mimic trans-eQTL behavior. In the case of numerical

instability for the observed information Cis-Trans score tests, the expected information variant is

substituted.

Observed Score Test Observed Score Test (log) Expected Score Test
γ Value Power Type I Error Power Type I Error Power Type I Error

1.0 – 8.4 (7) – 8.9 (4) – 6.6 (5)
1.2 25.8 (6) 8.0 (2) 25.3 (4) 8.0 (4) 15.5 (0) 5.3 (1)
1.4 66.8 (38) 9.5 (10) 63.5 (35) 8.5 (3) 48.8 (0) 3.5 (0)
1.6 89.0 (88) 9.3 (2) 86.3 (66) 8.5 (4) 82.3 (0) 4.3 (0)
1.8 99.0 (185) 8.5 (2) 98.5 (164) 10.3 (3) 97.3 (0) 3.8 (0)

Table C.2: Summarizing the power and Type I error of the derived score tests. Number in parentheses
represents the number of failures due to numerical instability.

As we can see from Supplementary Table C.2, the observed information matrix variants of

the Cis-Trans Score test display superior power to the expected information variant at the cost of

an inflated type I error (∼8%). In addition, we note that the numerical instability of the observed

information variants leads to a high rate of computation failure for the Cis-Trans score test. Due to

its superior stability and Type I error, we opt to use the approximated expected Fisher’s Information

matrix within the real data analysis.
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C.2 Supplementary Results for Real Data Analysis

C.2.1 Sample Size

Among these 728 patients, 178 were excluded from our analysis: 18 did not have genotype data

(Affymetrix 6.0 array) from both tumor and paired normal samples, 35 failed Affymetrix genotype

quality control (QC), 22 were male or of unknown gender, and 112 were non-Caucasian individuals,

and 1 failed RNA-seq QC (Supplementary Figure C.1).

728 samples
with tumor RNA-

seq data

710 samples
with affy 6.0 SNP data for 
tumor and normal tissues

685 samples
663 female, 7 male, 

and 15 unknown

663 female 
samples

551 female 
Caucasians
RNA-seq @ 
tumor tissue

PCA with 
HapMap samples

Affy6 QC 

550 female 
Caucasians
RNA-seq @ 
tumor tissue

RNA-seq
QC

Figure C.1: Sample size after each step of filtering.

C.2.2 Genotype Data Preparation

C.2.2.1 Genotype calling and quality control (QC)

We started our genotype data analysis with raw data in CEL files. After downloading all

the CEL files of Affymetrix 6.0 arrays, we saved the file locations of these CEL files into file

cel_files_normal.txt and ran the following APT (Affymetrix Power Tools) command to

check genotype quality.

apt-geno-qc \

--cdf-file /path_to_lib_files/GenomeWideSNP_6.cdf \

--qcc-file /path_to_lib_files/GenomeWideSNP_6.r2.qcc \

--qca-file /path_to_lib_files/GenomeWideSNP_6.r2.qca \

--cel-files /path_to_working_folder/cel_files_normal.txt \
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--out-file /path_to_working_folder/apt-geno-qc.txt

Low quality samples were determined via low contrast QC (contrast.qc ≤ 0.4) or low QC call rate

(qc.call.rate.all ≤ 0.8) (Supplementary Figure C.2).

Figure C.2: Results of genotype QC by APT. Each sample is labelled by the plate it belongs to. The
cutoff we use to select samples are QC call rate > 0.8 and contrast QC > 0.4.

After removing low quality samples, the new list of 685 remaining CEL files were recorded

in file cel_files_normal_after_qc.txt. We called genotypes and genders for these 685

samples using birdseed-v2 implemented as part of APT.

apt-probeset-genotype \

-o ../genotype_normal \

-c /path_to_lib_files/GenomeWideSNP_6.cdf \

--set-gender-method cn-probe-chrXY-ratio \

--chrX-probes /path_to_lib_files/GenomeWideSNP_6.chrXprobes \

--chrY-probes /path_to_lib_files/GenomeWideSNP_6.chrYprobes \
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--special-snps /path_to_lib_files/GenomeWideSNP_6.specialSNPs \

--read-models-birdseed /path_to_lib_files/GenomeWideSNP_6.birdseed-v2.models \

-a birdseed-v2 \

--cel-files /path_to_working_folder/cel_files_normal_after_qc.txt

To determine sample ethnicity, we performed PCA using genotype from TCGA samples together

with genotypes from HAPMAP CEU (Caucasian), YRI (African), and CHB (Asian) samples. The

PC1 versus PC2 plot clearly separated CEU, YRI, and CHB samples, and the TCGA samples that

were clustered with CEU samples in the PC1 versus PC2 plot were classified as Caucasian samples

(Supplementary Figure C.3).
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Figure C.3: The left panel shows eigen-values of the PCA, and the right panel shows PC1 versus
PC2 plot. Based on this plot, we choose the Caucasian samples as those with PC1 < 0 and PC2 < 0.

C.2.2.2 Genotype Imputation

We imputed genotype data for the 551 samples that passed all the genotype-related filters. The

output of birdseed includes genotype calls for 909,622 SNPs. We removed those SNPs without

chromosome location information or with more than 5% of missing values leaving 832,334 SNPs

which passed these filters. We used MACH [78] (mach.1.0.18.Linux) to phase and impute the

genotypes using the 1000 Genome Reference (∼36 million SNPs), which were downloaded from
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MACH website (http://csg.sph.umich.edu/abecasis/MaCH/download/1000G.

2012-02-14.html).

C.2.3 RNA-seq Data Preparation

We downloaded RNA-seq bam files from the TCGA data portal. First, we pre-processed

these bam files using the R function prepareBAM of R package asSeq (http://research.

fhcrc.org/sun/en/software/asSeq.html), to remove duplicated reads, or reads with

average sequencing quality or mapping quality lower than 10. Next the expression of each gene

in a sample is calculated as the number of RNA-seq reads that overlap with the exonic regions of

this gene, obtained using R function asSeq/countReads. Annotations of exonic regions of

each gene were obtained from Ensembl (version Homo sapiens.GRCh37.66). Based on this version

of gene annotation, we obtained read counts for 53,561 genes. Many of these genes have zero

expression across most of the samples. We selected the 18,827 genes for which the 75 percentile of

gene expression is equal or larger than 20. In other words, we remove those genes whose expression

is less than 20 in more than 75% of samples.

To obtain allele-specific read counts for each sample, we first extracted all the heterozygous

SNPs per sample, and then extracted those RNA-seq reads that overlap with at least one heterozy-

gous SNP by R function asSeq/extractAsReads. Such RNA-seq reads were saved into three

bam files, one for reads that match haplotype 1, one for those that match haplotype 2, and one for

those with conflicts. For example, a conflicting read may overlap with more than one heterozygous

SNPs, and its haplotype assignment is not consistent across these heterozygous SNPs. Usually the

number of reads assigned to the conflict bam file is much smaller than the number of reads assigned

to the two other bam files, otherwise it indicates errors in the data files or the data processing pipeline.

Approximately 3.4% of the RNA-seq reads are classified as allele-specific reads (Supplementary

Figure C.4) across all 551 samples, with one apparent outlier (sample ID: A15R), which is labeled

184

http://csg.sph.umich.edu/abecasis/MaCH/download/1000G.2012-02-14.html
http://csg.sph.umich.edu/abecasis/MaCH/download/1000G.2012-02-14.html
http://research.fhcrc.org/sun/en/software/asSeq.html
http://research.fhcrc.org/sun/en/software/asSeq.html


●

●

●

●●

● ●

●

●

●

●

●
●
●

●

● ●
●●

●

●

●
●
●

●

●

●

● ●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●●

●
●

●

●

●

●
● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●●

●
●

●

●●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●●

●

●

●●

●●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●
●

●

●

●

●

●

●

●

●

●●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●
●

●●

●

●
●

●
●

●

●

●

●

●
●
●●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●●
●

●

●
●

●

20 40 60 80 100

1.
0

2.
0

3.
0

Total # of reads per sample

To
ta

l #
 o

f A
S 

re
ad

s

(million)

y = 0.034 x

●

●

●

●

●●

● ●

●

●

●

●

●
●
●

●

● ●
●●

●

●

●
●
●

●

●

●

● ●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●●

●
●

●

●

●

●
● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●●

●
●

●

●●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●●

●

●

●●

●●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●
●

●

●

●

●

●

●

●

●

●●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●
●

●●

●

●
●

●
●

●

●

●

●

●
●
●●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●●
●

●

●
●

●

20 40 60 80 100

1.
0

2.
0

3.
0

Total # of reads per sample

To
ta

l #
 o

f A
S 

re
ad

s

(million)

y = 0.034 x

Figure C.4: The total number of reads (across all genes) per sample versus the total number of
allele-specific reads per sample. The red point indicates a sample (A15R) that has unexpected low
proportion of allele-specific reads and it is excluded from further analysis.
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as red in Supplementary Figure C.4. We removed this sample in the following analysis.

For any association analysis using TReC per gene, one has to account for read-depth difference

across samples. One way to quantify read-depth of a sample is to simply add up the total number

of reads of this sample. Here we adopted a more robust approach, to quantify read-depth using 75

percentile of TReC across all the genes of a sample. In fact, in this data set, the two measurements

of read depth are highly correlated (Supplementary Figure C.5).
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Figure C.5: The total number of reads (across all genes) per sample versus the 75 percentile of the
TReC of all the genes within a sample.
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C.2.4 eQTL mapping results

We summarize the agreement and disagreement of each tested model in the table below. This

table summarizes the agreement of each model with respect to individual gene-SNP pairs.

Gene-SNP Pairs

P-value Cutoff Category pTReC(ASE) TReC(ASE) pLR

# of gene-SNP pairs 133,599 436,021 48,717
5× 10−4 overlap/alternative – 19.8% 69.4%

overlap/pTReC(ASE) – 64.6% 25.3%

# of gene-SNP pairs 43,605 208,546 14,285
5× 10−6 overlap/alternative – 16.8% 80.5%

overlap/pTReC(ASE) – 80.2% 26.4%

# of gene-SNP pairs 19,867 131,795 6,593
5× 10−8 overlap/alternative – 13.5% 78.5%

overlap/pTReC(ASE) – 89.8% 26.0%

Table C.3: Summarizing the results of pTReC(ASE), TReC(ASE) and Westra models for TCGA
data analysis. Here the notation pTReC(ASE) indicate that we use pTReCASE or pTReC model,
depending on the results of Cis-Trans test. “overlap” represents the gene-SNP pairs identified by both
pTReC(ASE) and an alternative method. “overlap/alternative” is the number of overlaps divided by
the number of findings by the alternative method. “overlap/pTReC(ASE)” is the number of overlaps
divided by the number of findings by pTReC(ASE). If we consider the results of pTReC(ASE)
as true findings, then “overlap/alternative” is true discovery rate and “overlap/pTReC(ASE)” is
sensitivity.

In addition, we perform the same summary with respect gene-level estimates. In this table, we

summarize the number of genes with at least 1 significant eQTL and the prescribed p-value cutoff.
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Genes

P-value Cutoff Category pTReC(ASE) TReC(ASE) pLR

# of Genes 4788 7793 2055
5× 10−4 overlap/alternative – 42.7 70.2

overlap/pTReC(ASE) – 69.5 30.3

# of Genes 1245 2982 268
5× 10−6 overlap/alternative – 27.0 85.4

overlap/pTReC(ASE) – 64.7 18.4

# of Genes 496 1612 110
5× 10−8 overlap/alternative – 21.4 93.6

overlap/pTReC(ASE) – 69.6 20.8

Table C.4: Summarizing the results of pTReC(ASE), TReC(ASE), the Westra models for TCGA
data at gene level. The results are presented in the same format as Table 5.1, though the results are
summarized at gene level instead of the level of SNP-gene pairs.
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C.2.5 Additional results

Using the omic data prepared by [86], we examined the correlation between gene expression

before and after removing copy number effects. Such correlations are very high for most of the

genes. For example, it is larger than 0.8 for 86% of 15,284 genes with both gene expression and

copy number data.

Correlation

F
re
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en

cy
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0
20

00
50

00

Figure C.6: The distribution of correlations between gene expression before and after removing
copy number effects using a linear regression.

We also checked whether copy number of DNA methylation may confound the eQTLs reported

in Figure 2 of the main paper. The first example is about gene ENSG00000115525 (ST3GAL5). Its

expression is not associated with its copy number (p-value 0.22, R2 = 0.039), but is associated with

the methylation level of two CpG’s: cg10017626 (p-value 6.2e-05, R2 = 0.039) and cg07214715

(p-value 2.8e-05, R2 = 0.043) after correcting for tumor purity and cell type compositions [86].

The second example is about gene ENSG00000142794 (NBPF3). Its expression is not associated

with DNA methylation but is associated with its copy number (p-value 1.3e-07, R2 = 0.067). These

associations are illustrated in Figure C.7.

Next we check whether the associations between eQTL SNP genotype and gene expression are

affected after controlling DNA methylation of gene expression measurement. We conducted this
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Figure C.7: Scatter plots demonstrate the associations between gene expression and copy number
of two genes ST3GAL5 and NBPF3 (upper panel), and the associations between gene expression of
ST3GAL5 and DNA methylation of two CpG’s.
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analysis in 328 samples (a subset of the 550 samples in main analysis) with all the data needed: SNP

genotype, copy number, gene expression, and DNA methylation. Using a simple linear regression of

gene expression versus SNP genotype (without using allele-specific expression), the eQTL p-value

for ST3GAL5 is 2.3e-4, and after controlling for methylation, the p-values remain similar (1.8e-4

for cg10017626 and 5.4e-4 for cg07214715). The eQTL p-value for NBPF3 is also similar before

and after controlling for copy number (t-statistics being 9.309 and 9.295 before and after controlling

for copy number and p-value < 2e-16 in both cases).
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Figure C.8: Scatter plots demonstrate the associations between eQTL and gene expression before or
after conditioning on two CpG’s for gene ST3GAL5 (upper panel), and associations between eQTL
and gene expression before or after conditioning on copy number alteration for gene NBPF3 (lower
panel).

In the following, we provide visual justification for considering a copy number event as the

difference between a gene’s copy number and a samples ploidy. Each figure utilizes a different
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cutoff for this different in determining a copy number event. These figures also examine the extent

of copy number events in the breast cancer data.
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Figure C.9: Evaluating the extent of copy number aberration within the TCGA dataset. [A]
Distribution of the correlations between Dij and Cij for subjects where |Dij| ≤ 0.25 summarized
across all 18,134 genes. Red line indicates density of N(0,1/

√
232). [B] Distribution of the

correlations between Dij and relative gene expression summarized across all 18,134 genes [C] The
distribution of the number of subjects with |Dij| > 0.25 across all 18,134 genes.
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Figure C.10: Evaluating the extent of copy number aberration within the TCGA dataset. [A]
Distribution of the correlations between Dij and Cij for subjects where |Dij| ≤ 0.40 summarized
across all 18,134 genes. Red line indicates density of N(0,1/

√
296). [B] Distribution of the

correlations between Dij and relative gene expression summarized across all 18,134 genes [C] The
distribution of the number of subjects with |Dij| > 0.40 across all 18,134 genes.
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Figure C.11: Evaluating the extent of copy number aberration within the TCGA dataset. [A]
Distribution of the correlations between Dij and Cij for subjects where |Dij| ≤ 0.5 summarized
across all 18,134 genes. Red line indicates density of N(0,1/

√
296). [B] Distribution of the

correlations between Dij and relative gene expression summarized across all 18,134 genes [C] The
distribution of the number of subjects with |Dij| > 0.5 across all 18,134 genes.
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