
Abstract

DONNA G. MARTIN.  Application of a Generalized State-VectorModel  for Radiation-Induced Cellular Transformation to
Multiple  In Vivo Exposures.   (Under The Direction of Dr.
DOUGLAS J. CRAWFORD-BROWN)

A generalized state vector model for radiation induced
cellular transformation is adapted for use in multiple in
vivo chemical and radiation exposures. The model was
designed to describe the process of radiation carcinogenesis
and thus provides for initiation, promotion, and progression
as well as cell killing and repair. The model has been
modified to describe the combined effects of chemical and
radiation induced cell transformation.

Benzo(a)pyrene and polonlum-210 markers for
environmental tobacco smoke and radon, respectively, were
chosen for this study because it is very possible that they
will be present together in a variety of indoor
environments. The data chosen to test the model come from
an experiment by McGandy et al. (1974) in which Syrian
golden hamsters were exposed both simultaneously and
sequentially to polonium-210 and benzo(a)pyrene.

The results demonstrate that the proposed model can
correctly predict that BaP synergism occurs more strongly
with high doses of alpha radiation. In addition, the model
correctly predicts the increase in tumors found at exposure
to low doses of alpha radiation followed by exposure to BaP.
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Introduction

Thousands of Superfund hazardous waste sites containing
complicated mixtures of chemicals have been identified
nationwide. Although primarily sites contaminated by the
chemical and petroleum industries, some of the sites are the
result of transportation spills or once were municipal
landfills now marred by the accumulation of pesticides and
household cleaning solvents (USEPA 1987). Although many of
the sites have similar chemical mixtures, they are not
identical. The chemical mixtures may, however, cause a
similar mixture of cellular and other health effects. The

same thing can be said of environments with ambient or
indoor air contamination such as might arise from
environmental tobacco smoke. Although each environment is
unique, the mixture of pollutants in the air may cause
similar types of effects.

Presently, EPA supports the use of an additive model

for the evaluation of the risk to public health from
Superfund sites. As instructed in the Superfund Public
Health Evaluation Manual (1986), the risk assessor
identifies indicator chemicals, pathways and magnitude of
exposure. Then, in order to determine the risk at the site,
the risk from each individual chemical is modeled amd summed

to estimate the  total potential risk at the site.   In this

NEATPAGEINFO:id=7A731E93-C1B3-4628-B908-3BDE1A5EDDE8



approach, no  provision  is  made  for  the  interaction  of
chemicals at a site. (USEPA 1986)

For an additive model to be correct, all contaminants
would have to exert their effect on the same stage of cell
transformation or development or there might be entirely
different routes to the same effect (cancer). Studies have

shown that this does not occur (NCRP #96). Not all exposures
cause the same type of cellular damage. Chemicals acting as
either initiators or promoters or both can cause a wide
range of cellular and organ effects. These cellular effects

include but are not limited to: genetic damage, hyperplasia,
DNA adduct formation, or cell death. Chemicals can also

affect the organs by altering biokinetics or dosimetry.
Furthermore, many chemicals require metabolism before

exerting their effect.(Farber 1981)

Chemicals can also modify the rate constant of another

pollutant in one of several possible ways. For example, a
contaminant may interact with existing chemicals and modify
the existing chemical before it reaches the cell. Also, a
previous chemical or radiation exposure may alter the
metabolic properties of the cell, causing the cell to react
differently (not normally) to a second exposure.

The generalized state-vector model presented by
Crawford-Brown and Hofmann (1990a) considers the interaction

of these effects in predicting a cancer risk. Their model
asserts that the underlying theory for the multistage  model
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for the development of cancer, first introduced by Nordling
(1953) and later elaborated on by Armltage and Doll (1954),
is valid in form if not in the mathematical details.

Essentially, the multistage model proposes that a normal
cell is transformed by initiation, promotion and progression
through several distinct states or stages before eventually
reaching a final state of uncontrolled growth. The
difference between the multistage model and that of

Crawford-Brown and Hofmann is that the multistage model

posits transition rate constants between states, while the

latter model replaces rate constants by explicit changes in
the structural features of a cellular community.

The model proposed by Crawford-Brown and Hofmann

(1990a) has been tested against in vitro studies for
radiation and shown to provide good fits to previously
unexplained data. In vitro studies, however, are limited.
Specifically, they do not take into account metabolic

activity, often a factor in chemical carcinogenesis. They
also do not include the kinetics of the growth of tumors in

the body.

This raises the question— Can this model be applied to

multiple exposures in vivo? The dose-response of a chemical
is dependent on what state the cell is in at the time of
exposure. In in vivo studies this could interfere with the
predictive ability of the state-vector model and must be
incorporated into the model.
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Contaminants Chosen for Theoretical Study
Benzo(a)pyrene (BaP) and polonium-210 (Po-210) markers

for environmental tobacco smoke (ETS) and radon,
respectively, were chosen for this study because it is very
possible that they will be present together in a variety of
indoor air environments. In addition, these two
contaminants exhibit behaviors which are applicable to the
model. BaP is a carcinogen which acts both as an initiator
and a promoter and causes cytoxicity and hyperplasia. Po-
210, a radon decay product, is an alpha particle emitter and
thus exhibits the behaviors characteristic of alpha
radiation.

The Presence of These Contaminants in Indoor Air

Benzo(a)Dvrene

Over 3800 compounds have been identified in the three
phases of ETS: sidestream smoke, mainstream smoke and gases
that diffuse out from the cigarette while smoking. All
three mixtures contain both a particulate and vapor phase.
(NRC 1986) BaP has been identified as one of the primary
components of the particulate phase of ETS (NRC 1986).
Levels of ETS in the home environment have been

quantified. Most of the research has been done on the
respirable particle faction of cigarette smoke. Spengler et
al. (1981), sampling 80 homes, found that smoking 1 pack of
cigarettes a day contributes approximately 20 ug/m^ to 24-
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hour indoor particle concentrations.  The  24-hour national

ambient air quality standard is 260 ug/m^, Moschandreas et

al. (1987) observed that this level would be exceeded in a

house with two or more smokers. Concentrations, in public

buildings, bars and restaurants have also been quantified.

Repace and Lowry (1980) report levels up to 700 ug/m' in

bars. Levels of ETS usually peak at the time of smoking and

are dependent on the number of smokers and on the type of

ventilation.

It is difficult to predict what fraction of these

particulates is Bap. Ventilation systems, depending on

their efficency and sophistication, may filter out the

particulate fraction of ETS which contains BaP. (NRC 1986)

It is clear, however, that Bap is present in the air of

homes contaminated by environmental tobacco smoke.

Polonium 21Q

Although it is not usually referred to as a radon

daughter (short-lived solid isotopes of Rn-222) primarily

because of its 138 day half life, Po-210 is also part of the

radon decay chain. It, like Po-214 and Po-218, emits alpha

particles during decay. Previous studies have demonstrated

the ability of alpha particles to induce tumors in. vivo (NAS

1988), thus, polonium-210 exhibits behavior applicable to

this study.

NEATPAGEINFO:id=E2BBCA1F-FE05-41DC-8CC3-8D7FD24D3B79



Polonium 210 has also been found in tobacco smoke. The

parent isotope for Po-210, lead 210, can be detected in ETS

in the form of "hot" particles (McGandy et al. 1974) which

heavily irradiate small volumes of the lung.

The purpose and scope of this study

The purpose of this study is to determine if the state-

vector model is a good predictor of the effect of multiple

chemical exposure in. vivo. The data used to test the model

in vivo was generated in experiments performed and reported

by McGandy et al. (1974) and Little et al. (1978). In this

experiment (described in more detail later), Syrian golden

hamsters were exposed to Po-210 and BaP both simultaneously

and sequentially via Intratracheal instillation. Upon death

or sacrifice (when moribund), the animals were examined

histopathologically for the formation of lung tumors. The

results of all the experiments will be used simultaneously

to test the coherence of this model to observed in vivo

data.

The study design includes: First, the general model is

described with a discussion of the assumptions and the

theoretical solution. Then, the experimental data are

presented and the necessary parameters are calculated.

These parameters and the experimental exposure levels are

then applied to the model and the results observed.

Finally, there is a discussion of the applications of this

model in environmental management.

6   ͣ ͣͣ
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The Model

A Brief Review of Carcinogenesis

Although the exact mechanism of carcinogenesis Is far
from being understood, it is generally accepted that the
process involves three basic sequential events; initiation,
promotion and progression. Each event has its own
characteristics and pathways which lead ultimately to a
state of uncontrolled cell growth and the death of an
organism.

The process of initiation involves several stages. When
cells are exposed to chemical insults, the first stage is

biochemical, can be repaired, and is assumed to Involve one
damage event. It is thought that the chemical forms an
electrophilic reactant (often after the chemical has been
metabolized) which enables it to bind to and alter

components, primarily DNA, in the cell. It is not clear
whether the alteration is a small structural or regulatory
mutation or a complex rearrangement of large parts of the
DNA. (Pitot 1986} With radiation exposure, DNA damage

occurs as two, not one, distinct events (Crawford-Brown and
Hofmann 1990a; Lloyd et al. 1979) and (for alpha radiation)
involves direct breakage of DNA by the deposited energy.
Both radiation and chemical damage are followed by cell
proliferation which fixes the damage. The ultimate effect
of initiation by both chemicals and radiation, is generally

7
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a permanent alteration of some sort in the DNA, RNA, protein

or other cellular components. (Farber 1981)

It is not certain what characterizes an Initiated cell.

These cells in tissues in the skin and colon appear to have

lost some ability to program or control growth (Farber

1981), while some initiated liver cells demonstrate an

"acquired resistance to the inhibitory effects of

carcinogens on cell proliferation" (Farber 1981). It is

clear, however, that the number of Initiated cells is

dependent on dose, a dose that exhibits no threshold (Pitot

1986).

Initiated cells are subsequently stimulated to

proliferate to neoplastic lesions. The exact mechanism of

this clonal expansion stage is unknown.(Farber 1981) Unlike

the process of initiation, promotion to a neoplasm

demonstrates a threshold effect and a maximum response.

Promotion can also be affected by such factors as diet,

environment or hormones (Pitot 1986).

Promotion to a neoplasm is followed by progression.

Progression has generally been "characterized by

demonstrable changes associated with increased growth rate,

increased invasiveness, metastases, and alterations in

biochemical and morphologic characteristics of the neoplasm"

(Pitot 1986). Like promotion, the mechanism of progression

is unclear. It is proposed, however, that the changes seen

in progression are often correlated with aneuploidy, a

8
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change in the number  o£ chromosomes in the cells.(Pitot

1986)

A History of State-Vector Models

Scott and Ainsworth (1980) were the first to employ a

state-vector model to describe the multistage process of

carcinogenesis. Building on an idea proposed by Armitage

and Doll (1954) and later elaborated on by Moolgavkar

(1978), Moolgavkar and Knudson (1980) and others, Scott and

Ainsworth postulated that the development of cancer involved

the passing of a cell through several successive stages or

states to the ultimate state of uncontrolled cell growth.

State-vector models can be used to calculate the fraction of

cells in each state or stage. Probabilities of transitions

between states (either as a function of dose or dose-rate)

are determined from experimental data.

The model used in this study is an adaptation of a

generalized state-vector model for radiation-induced cell

transformation proposed by Crawford-Brown and Hofmann

(1990a). The model was designed to describe the process of

radiation carcinogenesis and thus includes initiation,

promotion, and progression as well as cell killing and

repair. The model has been adapted to describe the combined

effects of chemical and radiation -induced cell

transformation.
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General Features of the Model

The model, a modification of the model for radiation

induced cellular transformation described and tested in

vitro by Crawford-Brown and Hofmann, is shown in figure 2.1.
State 0 represents cells in the "normal" state. These

cells have not as yet experienced a radiation or chemical

insult which would result in cellular damage.

Cells in State 1 have experienced specific radiation

induced DNA damage such as a strand break. Cells exposed to

chemicals, instead of radiation, skip this state and go

directly to State 2. Cells that have incurred this damage

can undergo repair and revert back to state 0.

A cell reaches State 2 when it experiences a second,

radiation induced DNA damage (probably another strand

break). This damage is less specific than that required to

move from state 0 to state 1, and it is thought to be

necessary for the two radiation-induced breaks to interact

for initiation to occur (Crawford-Brown and Hofmann 1990a).

A cell can also reach this state by incurring chemically

induced damage to the DNA, RNA or other cellular components.

These cells can also undergo repair and revert back to state

0 (for BaP) or state 1 (for radiation).

Cells in State 3 have undergone division subsequent to

incurring DNA damage In State Two. According to Crawford
Brown and Hofmann (1990a)  this division must occur  for a

cell to reach state 3, and it occurs with a fixed

10
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Figure 2.1:  The General Model
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probability and  prevents regression  of  the cell  back  to

previous states.

By the time cells reach State 4, they have undergone

promotion to a neoplastic lesion. This is proposed to occur

through the loss of cellular intercommunication, at times

referred to as contact inhibition. The concept of contact

inhibition removal, although vague, supposes a cell

surrounded by dead cells loses its ability to communicate

and consequently enters into a state of Increased growth.

While localized cell death may result in the loss of

communication, there clearly are other biochemical routes

for this change. As a result, chemicals and radiation may

produce the change by different pathways.

Cells In State 5, the final state, have progressed to

a stage of uncontrolled cell growth. It is not known how

long it takes, or what triggers, a neoplastic lesion in

state four to progress to this state. Some Idea of the

length o£ time presumably may be obtained by observing the

latency period, which may be decades in solid tumors. The

latency period may, however, also Include the time to

promotion.

The transition constant, k«, represents the rate of

removal of a cell from any of the six stages due to

radiation or chemical -Induced cell death. Its units are in

inverse dose (or dose-rate) and its value is obtained from

cell survival curves. All chemicals and types of radiation

12
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have different cell survival curves, thus it follows that

the cell death transition rate constants obtained from the

curves will be unique.

K^ and k = ,e«<a represent the rate of repair of cellular

damage caused by chemical and radiation exposure

respectively, allowing cells to move out of state two or one

and back to state one or zero. The probability of repair is

dependent on time and upon the source of damage (radiation

or chemical).

The transition constant ko,i represents the

transformation of a cell from the zero state to state one.

It is quantified by the probability per unit dose that some

type of DNA damage occurs. This value, which is in units of

inverse dose, is different for each type of radiation.

The radiation-induced transformation of a cell from

State 1 to State 2 is represented by kaL,^. It is the

probability per unit dose that a second less specific damage

occurs and interacts with the first damage.

It is assumed that chemicals, specifically BaP,

exhibit single hit kinetics (see Grimmer et al. 1988) As a

result, only one chemically-induced damage event, not two,

is required to transform a cell to state 2. In this model

the probability of a cell damaged by chemicals reaching

state 2 is represented by k... It, like ko,i and ki,,, is

dependent upon the chemical to which the cell is exposed.

13
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Transition k^,, represents the fixed probability that a

division related event will occur prior to repair or cell

death. It has been demonstrated that the cellular rate of

division, and subsequently k2,3, is dose dependent (Shuman

1989). The cellular rate of division also depends upon the

presence of hyperplastic agents (such as BaP)

^3,* represents the transition from State 3 to State 4.

It is the probability that contact inhibition will occur,

thus causing the cell to Increase its rate of growth to a

neoplastic lesion. Because contact inhibition is dependent

on cell death (for radiation), a dose dependent event, this

transition, like the previous ones, is also dose dependent.

For chemicals, the transition is related to hyperplasia and

is dependent upon dose-rate.

Finally, k^,^ represents the probability of progression

to a final state of uncontrolled cell growth.

Identifying The Stages of Promotion and Progression

Although this model represents promotion and

progression as separate and distinct stages, in reality it

is not this clear cut. Without additional research, it is

not possible to discern where promotion ends and progression

begins or, which is most likely the case, where the two

stages overlap. As a result, these stages are collapsed in

the present study, implying that progression occurs with a

fixed probability. (Little et al. 1978)

14
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Accepting the Model in vivo

In order to apply this model in. vivo it must be assumed
that in. vitro neoplastic cell transformation is
representative of the mechanism of cancerous transformation
in vivo. This assumption is supported by the work of Lloyd
et al. (1979) in which C3H mice injected with cells

transformed jji vitro by alpha particles developed
malignancies. It is assumed here, therefore, that the in
vitro model may be applied in vivo with appropriate changes
due to the differences in the kinetics of cellular growth
and repair.

15
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Theoretical Solution of the Model

Assumptions Necessary for a Workable solution

In order to provide a workable solution for this study,

several additional assumptions had to be made.  They are:

Cellular Environment. For the purposes of this study,

it is assumed that there is a constant number of cells in an

organ. In addition, there is a constant, steady state

concentration of chemical and chemical metabolites

throughout the period of exposure.

Dose. The mucous membrane layer of the lung affects

the migration of the contaminant to the cellular level.

Therefore, in order to simplify the equation, the dose to

the organ is considered to be a constant fraction of the

amount applied directly to the surface. Furthermore, it is

assumed that the spatial pattern of dose rate in the lung

does not affect the model.

Cell killing. Cell killing Is assumed to occur at a

constant rate during the period of exposure and Is

Independent of other transitions in the model. In addition,

if a cell makes it to the division stage, the chance of

dying does not depend on age of the cell. It will be
assumed that BaP does not cause significant cell killing

compared to radiation. The effects of cytotoxicity caused

by BaP will be Included In determined parameter values.

16
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Division and Repair.  It is assumed that a cell is no

longer able to repair its damage once it has undergone
division leading to state three. In addition, repair is
assumed to be independent of the first three transitions.
(Crawford-Brown and Hofmann 1990a; Shuman 1989) Alpha
radiation Induced damage does not repair itself at all
(Heiber et al. 1987), except when the cell is stimulated by
promoting agents (Crawford-Brown and Hofmann 1990b).

Contact Inhibition__Removal-  It is assumed that every
cell surrounded by the correct number of dead cells (n=4)
will experience contact inhibition removal. This value was
calculated by Crawford-Brown and Hofmann (1990a) for in
vitro irradiation. For layers of epithelial cells, the
total number of neighboring cells is six (Crawford-Brown and
Hofmann 1990a, see figure 5.1).

Promotion. It is assumed that there is a background

probability of promotion equal to 0.1 (Crawford-Brown and
Hofmann 1990a). In addition, it is assumed that growth to
the pre-neoplastic stage occurs rapidly with respect to the
animals lifetime in the high dose-rate experiments used
here. The lag between exposure and promotion is not modeled
here, as might be required if temporal hazard functions were
used to estimate the effects of competing risk. Latency has
not been explicitly considered in this model.

17
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The Solution

Considering the above assumptions, the probability that

a cell will reach state 5, a state of uncontrolled cell

growth, can be predicted by the following equation:

P«= kNaCtXf^) (f»«pm +k,aD„)

(f»-pm +2kaf)„ + k^)

1 -e
-(A + k"f».B> + f„i)

where:

k= a normalization constant including k«,s/ the number
of cells at risk and the fraction of divisions
leading from state 2 to state 3 (see Crawford-Brown
and Hofmann 1990a).

N2(t)= the number of cells in state 2 at time, t

t= time (in weeks)

-k,.DT
fs= (1- e     )/ ktfDT ,where f^ is the fraction of N^

cells which survive the radiation after one day

£»««>= the fractional increase in hyperplasia due to
exposure to BaP proportional to De

Dc= the dose-rate of the chemical (in mg/wk)

m= the rate of mitosis In undamaged cells

kei= the rate constant for alpha radiation induced cell
killing

D^= the dose-rate of radiation (in rads/wk)

kc= the rate of repair of radiation induced cell damage

A= the background probability of promotion

k"= a parameter relating D^ to the probability of
promotion

fei= the probability of contact inhibition removal
occurring

18
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Derivation of the Solution

In order to obtain the above solution, it is necessary

to first solve the differential equations for NaCt).

Solving for Nr>(t)

The first part of the equation accounts for cell

transformation/initiation, bringing cells into the second

state. Solving for NzCt) requires first solving for the

number of cells in the zeroth state.

dNoi_tl= k^Nx(t) - (k^D^ + ko,iD^ + k=D« )No(t)
dt

where:

No(t)= the number of cells in the zeroth state at time, t

Ni(t)= the number of cells in the first state at time, t

k„  = the repair rate constant

ko,a. = the rate constant for radiation induced cell
transformation from state 0 to state 1, in rads"^

k«  = the cell killing rate constant

ke   = the rate constant for chemical induced cell
transformation from state 0 to state 2

k»Ni(t), the rate of repair back to state 0 is small compared

to the transformation frequency, therefore the equation

becomes:

dNo(t) + (k^h^   + ko,a.*D= + k«D=)Ni(t)= 0

solving using Bernoulli's solutions (Kells 1960), yields

-(kab^ + ko,ib^ + k=5e)t
No(t)= Noe

19
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Next, it is then necessary to solve for the number of cells in

the first state.

dN-, (t)= ko,iD^No(t) - k3.,=D^N3.(t) - kaD^N3.(t)- k^N3.(t)- k^D^N:^(t)
dt

where:

N2(t)= the number of cells in the second state at time, t

kx,2 = the rate constant for radiation induced
transformation from state 1 to state 2, in rads~^

Again, solving with the aid of Bernoulli's solutions (Kells

1960)

(ki.,sD^+k=Dc=+keiDe+k^)t
N3.(t)e

= /ko,3.D=No(t) e dt +N3
.t             , ...
(kx,2D=+kaD^+k=D«+k^)t -(kaD^+ko,xD,r+kcD<=)t

(ke=Dc:+kaD„+k^+ki,2D^)t
e

0 ,t

»i

= ko ,D^No / e e dt•o , i^="o

+ N.  0

,,3.D„No ) e
(ki,2De-ko,xD^+k„)t

= kcxD^No I e dt    +Nx
0

Therefore, the number of cells in the first state equals,

/  -(kaD^+ko,iD„+k„De)t  -(kx,2D^+k^D^+k«+kcD„)t\
Na.(t)= ko,iLrNoXe________________________:^-^________________________/

k„+ka.,26,,-ko,a.6»

-(ki,2Ds+kaDe+k.=Dc:+k„)t
+ NiC

Finally, the number of cells in the second state can be

calculated in the same manner by inserting in the above

equations.

dN,(t)=   kx,2D^Nx(t)   -k^NaCt)   -k^D^N^Ct)   +  kebcNi(t)+   k«b.,No(t)
dt
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Because we are only Interested In ways into state 2

(pathways out are being accounted for in later terms), the

equation becomes ;

dN2ltl= k3,,2D^Ni(t) + k^D^No(t) + k^D^N3.(t)
dt

Therefore,
A t.

N2(t)= / (kx,2D,, + k«D=)  Ni(t)dt +/k,=D«  No(t)dt +N2
0 0

A^-(k.,D^+ko,a.D^+k«b^)t
= (k^D^No) / e dt

+ (ka.,2D^ + k«D«) / Ni(t)dt   +N2
0'

Thus, N2(t) equals

= (k=D=No)
(kaD^+ko,iD=+k=D=)t

(kaD»+ko,xD^+kc=6cr)

+ (kx,2D^+k„D»)(ko,a.D„No) 1- e
-(kaD»+ko,xI>=+k«D«)t

(k^+ki,2D„-ko,a.f)e)(kaD»+ko,a.C=+k«D=)

- {kx,s.D^+k«D«)(ko,xD=No) 1- e
- (k.ab^+k x, ab^+k^D^+k,,) t

(ke+ki,26^-ko,ibx:) (k«6»+ki,aD^+k^Dc+kicr)

+   (k3.,sD=+k«D«XNi) 1- e
- (k«D„+ka., 2D»+kerD=+ke ) t

(keiD^+kx, sD^+k«D=+k„)

+ N:
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Solving for N,{t)

The number of cells in state three, Na(t), is the

number of cells transformed into state 2 which have

subsequently divided prior to being repaired or killed. To

solve for NsCt), the number of cells in state 2 is

multiplied by (1) f^ and (2) the rate of mitosis divided by

the sum of the rate of mitosis and the rate of repair and

rate of cell killing.

i.e. P2,3= f»«s>m + kaD»

f».s>m + ka5c + kat)e + kt

It is assumed here that cell killing stimulates division of

the remaining cells.

N,(t) therefore = N^Ct) * lLa,,L_______ * f«
ke+ka, 3De+k,aDe

where:

The fraction of cells going from .state two to state
three equals ka,aD«/(k^+k2,3De+kaD^). That is the
fraction of cells which will move to state 3 within one
day before being killed or repaired

ka,aD = the fractional rate of mltosis= faa^in + k^Dxr
Therefore the above fraction = (f»«B»» + k^D^)/(f».s,m +
2kaD. +k,^)

£^=  the fraction of state 2 cells that survive the
remaining radiation after one day

Given t=o at the beginning of exposure and t=T at

the end of exposure, the probability of a cell

which moves into state 2 at time, t, surviving to

time, T,

equals e'

actThe fraction of cells surviving to time, T

= /K e-*'-""-*"'^*'-*=* dt
0
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OT /   +0 . OlS ͣ_    T^    -O-Oa-S-JOT /   +0.01STDT  j i.
0 '

_    «    -0.01.e7DT  /  O . Oa.S7DT_-i \

0.0167DT

=  K (i-e-°-°=-«-'^')
0.0167DT

but K = l therefore, f^ =  (i_e-o • °io "'="ͣ)

0.0167DT

Solving for N^(t)

The probability a cell moves from state 3 to state 4 is

dependent on  the probability that the cell is surrounded by
n dead cells at the moment of a division and the increase in

hyperplasia due to chemical exposure. Thus,  the number  of

cells in state 4 equals:

-(A+ f«i +k"f,.^)
N-.(t)= N3(t) * (1- e )

where;
A= background probability of promotion = 0.1 (Crawford

-Brown and Hofmann 1990a)

f=i.=  x! f" (l-f)"""

(x-n)l n!
f=  the fraction of cells, surrounding a

state 3 cell, which are dead at any
moment. In general, f= (m + k,aD^)/R.

m= fractional rate of mitosis= 0.01 day~^
(Hall 1985)

R= fractional rate of removal= 1 day"*"
(Crawford-Brown and Hofmann 1990a)

x= total number of neighboring cells

n= number of dead cells required for contact
inhibition removal to occur

k*= a parameter relating hyperplasia and
promotion

fB«p= the fractional increase in hyperplasia due
to BaP

23

NEATPAGEINFO:id=0BC040E6-0FB5-440C-A27B-4E4996247220



Solving for N^(t)

Finally, the probability of a cell exposed to both

chemical and radiation reaching state 5, a stage of

uncontrolled cell growth is equal to

P== kN=(t)(f^)

where:

-(A + k*f».B,
(fn-B^m +kaD^)     111 -e

+ i^x)\

(f»«pm +2kaD^ + k^)

k= a normalization constant including k^^sr   the number
of cells at risk and the fraction of divisions
leading from state 2 to state 3 (see Crawford-Brown
and Hofmann 1989).

N2(t)= the number of cells in state 2 at time, t

t= time, in weeks

tnm»=  the fractional increase in hyperplasia due to
exposure to BaP

m= the rate of mitosis in undamaged organs.

ka= the rate constant for radiation induced cell
killing

D^= the dose-rate of radiation in rads/wk

k^= the rate of repair of chemical induced cell damage

A= the background probability of promotion

k*= an undetermined parameter as described earlier

fe,j.= the probability of contact  inhibition removal
occurring

f^ = the fraction of state 2 cells that survive the
remaining irradiation after one day
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Experimental Data

As discussed in previous chapters, the state-vector
model derived for this study allows for the prediction of
the probability of a cell exposed to both BaP and Po-210
reaching a stage of uncontrolled cellular growth. Such
predictions require the determination of necessary parameter
values from experimental data. Alpha-emitting radiation and
BaP have been shown to cause initiation, cell
transformation, cell killing, hyperplasia, and contact
inhibition removal. All of these effects play a significant
role in modelling the probability of a cell reaching a stage
of uncontrolled cellular growth. In this chapter, observed
data from experiments with BaP and Po-210, given both
together and alone, will be described, and parameter values
necessary to the theoretical model will be calculated.

Cell Survival

The cell survival curve for alpha radiation is taken
from an experiment by Lloyd et al. (1979). In this study
C3H Tl/2, clone 8 cells were irradiated with 5.6 MeV alpha
radiation. The resulting cell survival curve shown in
figure 4.1 demonstrates that cell killing takes on an
exponential form with a mean lethal dose. Do, of 60 rads
(4.4E-06 alphas/cm*).  This yields a survival fraction of
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Source:  Lloyd et al. 1979

Figure 4.1:  Fraction of Surviving Cells vs. Dose of Alpha
Radiation
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-kaD
S(D)=  e

where:

S(D)=survlvlng fraction at dose, D

e=  natural logarithm

D=  dose In rads

kesi= cell killing rate constant In rads"^

From the data,  k^ for alpha radiation equals 1/60 rads or

1.67E-02 rads"^.

Cytotoxicity data for benzopyrene are provided by

Gelboln et al. (1969). Gelboln et al. (1969) exposed

normal hamster cells to very low doses of benzopyrene. The

results, shown In figure 4.2 as a percentage of surviving

colonies In treated plates versus dose of benzopyrene in

ug/ml, demonstrate that very low doses will apparently kill

a substantial percentage of normal hamster cell colonies.

These results conflict with In vivo results reported by

McGandy et al. (1974). This study, discussed in greater

detail later, found that 7.6 percent of hamsters exposed to

a total dose of BaP of 4.5 mg developed frank tumors. Given

that the mass of a hamster lung is 0.74 + 0.02 gms (Bivan et

al. 1987), a dose of 4.5 mg would be equivalent to 6.08E+03

ug/ml. At this dose, Gelboln et al. (1969) would predict

very low survival, suggesting no tumors.
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Figure 4.2:  Cell Survival vs. Dose of Benzopyrene
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In order to reconcile the discrepancies between these

two experiments, it has been assumed for the purpose of this

study that the amount of BaP instilled on the lung surface

does not constitute the delivered dose in cells in. vivo. It

is further assumed that BaP does not cause significant cell

killing when compared to alpha radiation, which is a potent

cytotoxic agent. The effects of any cytotoxicity will,

therefore, be hidden in the determined parameter values for

k* and kc.

Initiation/ Cell Transformation

In the proposed model, a cell is assumed to be

initiated by the time it reaches state 3 (for model and

formula see chapter 2).

As discussed previously, radiation induced

transformation is thought to be a two step process. The

first step, represented in the model as ko,i. is the

transition between state 0 and state 1 which requires the

radiation to induce some type of DNA damage such as a strand

break. Crawford-Brown and Hofmann (1990a) have calculated

that the value of ko,i Is l.OE-04 times the alpha radiation

cell killing rate constant, k«. This yields a value of ko,x

equal to 1.67E-06 rad"*". based on a physical argument
focusing on target size.

The ki,! transition, requiring a second less specific

DNA insult,  has been determined by a curve fit of data by
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Crawford-Brown and Hofmann (1990a). They estimate the value
of ki,2 for alpha radiation to be 0.04 rads"^. This value
has been adopted for this study.

No/ Ni, and Nz represent the number of cells in state
0, state 1, and state 2 before receiving any radiation or
chemical exposure. The number of cells, as a proportion of
the total number of cells in the organ, has been determined
by Crawford-Brown and Hofmann (1990a) to be 0.94, 0.06, and
0.001, for No, Nj., and Nz, respectively. These values are
referred to as the initial state vector. In the initial

state, although they have not as yet received a radiation or
chemical Insults, cells can be moved from the zeroth state
to the second state by background radiation, spontaneous
transformations, or other miscellaneous cellular
effects.(Crawford-Brown and Hofmann 1990a; Shuman 1989)

These values were determined for the initial in vitro

state vector, in the absence of in vivo data. Although
there will certainly be differences between the In. vitro and
the in. vivo state vectors, at this time the in vitro values
represent the best available estimate and were adopted for
this study.

It will be shown later that BaP is only producing a
small fraction of initiation above the initial state vector.
In the presence of radiation, BaP appears to function
primarily as a promoter.
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DNA Repair

Damage caused by alpha radiation can not be repaired
(Crawford-Brown and Hofmann 1990a) unless stimulated by the
presence of strong hyperplastic agents (Crawford-Brown and
Hofmann 1990b). DNA damaged (in the form of DNA adducts) by
BaP has, however, been shown to undergo repair in hamster
cells at a rate of 50% or 0.5 per day (Eastman et al, 1981).
For the purpose of this study, repair is assumed to be
constant over time. Therefore, k^ equals 0.5 per day for
the BaP experiments. The value of k. for alpha damage in
the presence of BaP will be determined during curve fitting.

Promotion

The probability that BaP will cause promotion is
characterized for the purpose of this study by its ability
to cause hyperplasia. Chouroulinkov et al. (1979) applied
BaP (or acetone control) to an area of clipped dorsal skin

of 45 day old CDI female mice. The treatment was repeated
every other day until three treatments had been completed.
The mice were killed eight days after the last treatment and
examined histopathologically. The results demonstrate a
linear increase in hyperplasia with increasing dose. The
results were extrapolated to higher doses for the purpose of
this study (see figure  4.3).
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Figure 4.3:  Hyperplasia (as % of Control) vs. Dose of Benzo(a)pyrene
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Experiment with Benzo(a)pyrene and Polonium-210

McGandy et al.(1974) exposed Syrian golden hamsters

both simultaneously and sequentially by intratracheal

instillation to Po-210 and BaP. Upon death or sacrifice

(when moribund) the lungs and trachea were removed together

and examined histopathologically for the formation of

tumors.

The dosing regime and percent of animals in each group

developing tumors are presented in Table 4.1. McGandy et

al. (1974) originally reported exposing the animals to lower

radiation doses than appear in this table. This experiment

was reported again by Little et al. (1978) with these doses.

Personal communication with J. Little (2/22/90) revealed

that the doses which appear in table 4.1 are correct.

The next chapter will use this dosing regime to

calculate the remaining constants which are necessary in

order to solve the model. Experiment 1 in which animals

were exposed to 75 rads/15 weeks, allows for the calculation

of the rate constant, k. The value of k includes the value

of k*,B. Given that no frank tumors developed, it is

assumed that the cells remain in state 3. Experiments 7 and

9 together provide k*, the fractional increase in cancer due

to promotion from BaP of cells Initiated by radiation.

Experiments 4 and 5 allow for the calculation of k^, the

33

NEATPAGEINFO:id=EA6CF341-67F6-4128-BA5B-C63DFFA73DD3



Table 4.1:  Dosing Regime of Syrian Golden Hamsters
Dosing Regime:

Group!1]      Treatment [2] % w/tumours
(intratracheal instillation)

Simultaneous Series:

1 (82)        Po-210 ferric oxide 12.2
(1.25 nCi X 15 wks) (~75 rads)[3]

2 (83)        Po-210 ferric oxide 10.8
(0.25 nCl x 15 wks) ("15 rad3)[31

3 (66)        BaP ferric oxide 7.6
(0.3 mg X 15 weeks)

4 (73)        1 and 3 simultaneously 34.2
on same ferric oxide particles

5 (74)        2 and 3 simultaneously 10.8
on same ferric oxide particles

Sequential Series:

6 (65)       Po-210 ferric oxide 0.0
(0.04 uCi, single instillation)

7 (74)        Po-210- Saline 1.4
(0.04 uCi, single instillation)

8 (72)       6 and 18 wks later BaP ferric oxide    18.0
(0.3 mg X 7 wks)

9 (63)       7 and 18 wks later BaP ferric oxide    15.9
(0.3 mg X 7 wks)

[1] Number in parentheses is number of animals at risk.
Animals that died during the treatment process were not
Included In prevalence rates.

[2] Treatment periods began when animals were 12 wks of
age.

[3] McGandy et al. (1974) orginally reported lower doses.
This experiment was reported again by Little et al.
(1978) with these doses. Personal communication with
J. Little (2/22/90) revealed that the above doses are
correct.
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rate constant for the repair of DNA damage caused by BaP and

radiation. Finally, experiment 3 in which the hamsters

were exposed to BaP alone, permits the calculation of kcs/

the rate at which BaP transforms cells Into state 2.
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Determination of Parameter Values

The experimental data discussed in the previous
chapter, can be used to calculate the remaining constants.

fei.: In order to move into the fourth state, the cell
must experience a loss of contact inhibition. Contact
inhibition removal occurs when the cell is surrounded by a
minimum of n dead cells. The formula for the probability of
contact inhibition removal occurring is represented by a
binomial distribution and equals:

f=t= x! f"(l-f)"-"

(x-n)t n!

where f, the fraction of dead cells present in the
organ = (m + kaD^)/R (Crawford-Brown and Hofmann
1990b)

For the purpose of this study it Is assumed (based on the
cell structure of the lung as seen in figure 5.1) that n
equals 4 and x (the total number of neighboring cells)
equals 6. Given m equals 0.01 day~^, k« equals 0.0167 rad"^
and R equals 1 day"*, f equals 0.0124 and 0.0219 for dose-
rates of 1 and 5 rads/wk, respectively. It then follows
that for 1 rad/wk f«,i equals 3.5E-07 and for 5 rads/wk f^
equals 3.3E-06.

f»«s>5 For the purposes of this study, fa.pf the
fractional increase in hyperplasia, represents the
promotional capabilities of BaP. chouroulinkov
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MUCUS LAYER-, GOBLET CELLS

SEROUS FLUID
BATHING CILIA

BASAL CELLS

CILIATED
CELLS

BASEMENT MEMBRANE

Figure 5.1: Epithelial Cell Layer o£ the Lung

Source: Cothern and Smith 198 7
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et al. (1979) demonstrate that in in vivo studies f

increases with increasing dose. It is assumed that fb«B,

calculated iri vivo is proportional to the dose rate of BaP

applied in. vivo over the entire surface area of the

tracheobronchial region. Thus, given that the surface area

of the hamster tracheobronchial region is 8.10361 cm^

(Kennedy et al. 1978), doses of 2.1 mg and 4.5 mg (which

both equal a dose-rate of 0.3 mg/wk) would correspond to a

fto.p of 1.9.

k: k, a normalization constant including k«,9, the

number of cells at risk and the fraction of divisions

leading from state 2 to state 3 can be obtained by solving

the following equation for lung tumors in hamsters caused by

exposure to alpha radiation only.

f= (k) Ns(t) (f.) (k2,3D,)

(k»+k,aD»+k2,3D»)

-(A + f^i)
(1-e        )

where:

f= fraction of animals developing frank tumors

N2(t)= the number of cells in state 2 at time, t

f^= the fraction of cells in state 2 that survive the
remaining radiation after one day

1^2,3= the transition constant from state 2 to state 3

D^= the dose rate of radiation in rads/week

fci.= the probability of contact inhibition removal
occurring

A= the background probability of promotion

k»== the repair rate constant for the repair of alpha
radiation
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#

ka= the rate constant for alpha radiation induced cell
killing

Because damage from alpha radiation cannot be repaired,

k^ equals  0.   Given k2,3b^  equals m+ k^D^ (where  m= the

fractional rate  of mitosis) and the  above assumptions, the

equation becomes

f= (k) Ns(t) (f^) (m+k^D^)

(m+2kaDzr)

-(A + f«^)
(1-e )

Using the data from McGandy et al. (1974) in which 12.2% of

animals exposed to 75 rads over 15 weeks developed tumors, k

equals 75.8.

k*: k*, the fractional increase in cancer in cells

initiated by alpha radiation due only to the promotion from

BaP, can be calculated by dividing the percent of tumors

caused by an acute dose of radiation by the percent of

tumors caused by a dose of radiation followed by several

doses of BaP. Using the results of McGandy et al. (1974)

experiments 7 and 9 the equation for k* equals:

-(A+f„^)

0.014 = kN,(t. radiation) (1-e____________L
-(A+f«i+k*f».s.)

0.124  kN3(t, radiation)(1-e )

where:

0.014= percent of animals with tumors given an
acute alpha radiation dose

0.124= percent of tumors caused by promotion by
BaP. The percent of tumors initiated by
BaP have been subtracted out [15.9-
7.6(2.1/4.5)]= 12.4
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• k= a normalization parameter previously explained

N3(t)= the number of cells in the third state at
time, t

A= the background probability of promotion

fei.= the probability o£ contact inhibition removal
occurring

k*=  the fractional increase in hyperplasia due to
exposure to BaP of cells initiated by
radiation

fB«s»= the fractional increase in hyperplasia due
to exposure to BaP

Solving the above equation yields a k* equal to 1.2.

k^:  ke/  the probability per unit dose that a cell

damaged by BaP will reach state 2,  can be calculated using

the results of experiment 3 by McGandy et al.  (1974) in

which 7.6% of hamsters exposed to a total dose of 4.5 mg BaP

only developed tumors. The equation for k^, Is as follows:

0.076= lN;,itilil«-RlZi—^m_±_k«l
0.069   (N2(t))(f..pm/f..B»m + k»)

-k„b„t
=  C(l-e     ) +0.0011 (0.037)

0.001

where:

0.069= the approximate percent of tumors that
would be calculated by the model if
BaP caused no initiation or repair.

N2(t)= the number of cells in state 2 at time, t
N2(t) for 6.9 percent would equal the value
of Na, the fraction of cells in state 2
before receiving any radiation or chemical
damage

£b,p= the fractional increase in hyperplasia due
to exposure to BaP
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m= the typical rate of mitosl3= 0.01 day~^ (Hall
1985)

ke= the repair rate constant for repair of DNA
damage caused by BaP only= 0.5 day"'"

The above equation yields a ke equal to 0.0065 dose"^. The
data demonstrate that the fraction of cells in state 2 due

to damage by BaP is only 0.00001 above the initial state
vector. It appears as if BaP is acting primarily as a
promoter, promoting cells that have already reached state 3,
and not as an initiator.

k^: ke is the repair rate constant for the repair of
alpha radiation and chemical damage in the presence of BaP.
It is obtained by separately solving McGandy et al. (1974)
experiments 4 and 5 for k^ and then calculating the average
of the two. The k,: for experiment 4, in which 34.2% of
hamsters exposed simultaneously to 75 rads of Po-210 and 4.5
mg of over a period of 15 weeks developed tumors, equals
0.77 wk~^. The k. for experiment 5, in which 10.8% of
hamsters exposed simultaneously to 15 rads of Po-210 and 4.5
mg of over 15 weeks developed tumors, equals 1.9 wk~^.
Averaging the two values yields a k« equal to 1.3 wk~^.
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Results

Using the values determined in the previous chapters,

the model can now be used to predict the results of all five

of the simultaneous exposure experiments reported by McGandy

et al. (1974). The parameter values are summarized In table

6.1.  The results predicted by the model are as follows.

Experiment 1:

P«== kN2{t)(f„) (f»«B,m +kaD,;)

-(A + k*f».B. + f^i)'
fl -e

(f»«i>m +2kaD:c + k^)

= (75.8)(0.0427)(0.65)(0.57)(0.1)= 12%

Experiment 2:

?== (75.8)(0.0252)(0.84)(0.884)(0.1)= 14%

Experiment 3:

P«= (75.8){0.0011)(1)(0.91)(1)= 7.6%

Experiment 4:

P^= (75.8)(0.0427)(0.14)(0.57)(0.91)= 24%

Experiment 5:

P,,= (75.8)(0.0252)(0.1)(0.884)(0.91)= 15.4%

#
These results are compared with the observed results in

table 6.2.
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Table 6.1: Parameter Values

Parameter value Source
A 0.1 Crawford-Brown and

Hofmann 1990a

0.3 mq/wk McGandy et al. 197 4

D^ 5 rads/wk Personal
or 1 rad/wk Communication

with J. Little
(2/22/90)

f B«E> 1.9 (mg/wk)""- Chouroulinkov et al.
1978

fc:^  (for 1 rad/wk) 3.5E-07 calculated

(for 5 rads/wk) 3.3E-06 calculated

k 75.8 calculated

k- 1.2 (mg/wk)-=^ calculated

ko, 1 1.67E-06 rad""^ Crawford-Brown and

ki, 2

Na(t)
(for 1 rad Po-210/wk)

(for 5 rad Po-210/wk)

0.04 rad"""

6.5E-03 mg"*-

0.0167 rad~^

1.3 wk-=^

0.0252 cells

0.0427 cells

A

t

0.01 day

15 weeks

-3.

Hofmann 1990a

Crawford-Brown and
Hofmann 1990a

calculated

Lloyd et al. 1979

calculated

calculated

calculated

Hall 1985

McGandy et al. 1974
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Table 6.2: comparison of observed Results to
Predicted Results

Simultaneous Series
Percent of Animals

with Tumors

Experiment # Observedtll Predicted

Experiment 1
Po-210 ferric oxide
(1.25 nci X 15 wks) ("75 rads)

12.2 12

Experiment 2
Po-210 ferric oxide
(0.25 nCi X 15 wks) (~15 rads)

Experiment 3
BaP ferric oxide
(0.3 mg X 15 weeks)

Experiment 4
1 and 3 simultaneously
on same ferric oxide particles

Experiment 5
2 and 3 simultaneously
on same ferric oxide particles

10.8

7.6

34.2

10.8

14

7.6

24

15.4

[1]    Source:  McGandy  et  al.  (1974)
communication with J. Little (2/22/90)

and  personal
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conclusion

The results of this study demonstrate that the proposed

model Is able to correctly predict that the synergism of BaP

and alpha radiation occurs more strongly at high doses of

radiation than at low doses. This is clearly shown by

comparing the ratio of the result of experiment 4 to that of

experiment 1, and the ratio of the result of experiment 5 to

the result of experiment 2:

Ratio of Experiment 4 to experiment 1:

Measured: experiment 4 =34t2 =2.8
experiment 1 12.2

Modeled:  experiment 4 =2A  =2.0
experiment 1 12

Ratio of Experiment 5 to experiment 2:

Measured: experiment 5 =10.8 = 1.0
experiment 2  10.8

Modeled:  experiment 5 =15.4 = 1.1
experiment 2  14

From this comparison. It may be seen that the ratio is

higher for experiment 4/1 that for experiment 5/2, both in

the case of measurement and model predictions. Thus, in

response to McGandy et al.'s statement of uncertainty

concerning their results, "It is not clear why this

synergistic effect in the simultaneous series appeared to be
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associated only with the higher radiation exposure groups",

it can be clearly shown that it occurs as a result of the

kinetics explicated by the present model.

In addition, the model correctly predicts the ten-fold

increase in tumors in animals exposed to low doses of

radiation and BaP versus animals exposed to low doses of

radiation only. This increase in tumors is due to the

saturation of the promotional effect of BaP. Because A (the

background rate o£ promotion) Is equal to 0.1, the

probability of promotion can only Increase ten-fold before

the promotional term becomes saturated. In this study,

£»«E>k* was shown to be large enough to saturate the

promotional term. If BaP were actually causing significant

initiation at this dose, there would have been a higher

yield of tumors above a ten-fold increase.

The results demonstrate that the model is predictive of

observed in. vivo results in the form presented and with

these two contaminants. This result does not, however,

confirm that the model would be predictive with other

contaminants or In other environments. For the purpose of

this study, BaP, a chemical which has been suggested to

exhibit single hit kinetics in the initiation phase of

carcinogenesis, served as the model for chemical exposures.

If a chemical were shown to require more than one Initiation

step, the form of the model would have to be adapted to

account for this different Information.   In particular
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additional stages or a non-linear model would be required.

The model, as presented, does not account for the

temporal appearance of effects following exposure or

temporal changes in the relationship between exposure and

dose-rate. specifically, it was assumed here that the

amount of chemical or radiation that reached the cell per

unit time was constant over the period of exposure. This is

probably not the case. In reality, the amount of chemical

or radiation that reached the cell should be greatest when

the dose was initially Instilled on the surface. In

addition, the concentration of metabolites might change with

time. The form of the model would remain the same if this

were taken into consideration but the dose-rate would become

an explicit function of time.

Future Research

Although there are uncertainties concerning the

validity of the model in different situations, the model has

been shown to be a good predictor of the experimental

results presented here. Additional research in the

following areas would clarify the uncertainties and

strengthen the evidential base of the assumptions of the

present model, consequently strengthening its precision and

accuracy when it is applied more broadly.

[1] At this time it is not possible to discern where

promotion ends and progression begins, or if the two stages
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overlap. As a result, the stages have been collapsed

together in this model. New information about the two

stages, with an explicit modeling of tumor growth kinetics,

could affect the predictions of the model.

[2] The initial state vector, the number of cells in

states 0, 1, and 2 prior to any chemical or radiation

insult, used in this study has been taken from in. vitro

studies. The values, if an initial state even exists in

vivo, may be different and consequently lead to a different

predicted risk of cancer.

[3] The results of this study have been obtained

assuming that the cellular concentration of BaP has reached

equilibrium. This suggests that there may be a problem if

the ratio of BaP to Its metabolites changes rapidly. It is

important to know what the active metabolite is and its

ratio to BaP in different cell populations and at different

times following the onset of exposure.

[4] In order to simplify the model It was assumed that

the dose to the organ is considered to be a constant

fraction of the amount applied directly to the surface. In

reality this is not the case, since there will be

homogeneity of dose within cellular subpopulations. Doses

to the epithelial cells will have to be estimated at some

time to fully incorporate the toxicological data.
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•
151 The mechanism of contact inhibition removal Is not

well understood. Additional research would add insight into

its role in the promotional stages of cell transformation.

The results presented In this study demonstrate that

this model could prove useful in predicting the risks of

chemical and radiation exposure in. vivo. Applying this

model, instead of the additive model advocated by the EPA,

at Superfund sites or in polluted Indoor air environments

could provide a more accurate picture of the probability of

developing cancer and may have a significant affect on

clean-up or so called safe-levels presently advocated. In

the future, an effort should be made to test this model with

more complex combinations of chemicals and chemicals and/or

radiation.
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