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“We pharmacologists must acquire a knowledge of the toots which we use. “ R. BUCHHEIM, 1849 (324)

I. Introduction able in the definition of drug action and the design of

THE MAJOR premise of this review is that isolated more effective therapeutic agents for man. In this con-
tissues can be used ef�ctively to obtain information text, the bias of this paper will be pharmacological in
about drugs and drug receptors which transcends species that receptors will be used to gain information about
and function. This information, in turn, should be valu- drugs rather than the more physiological bias of drugs
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used to gain information about receptors. This bias is

reflected in the still very timely statement made by

Buchheim 135 years ago.
The information about drugs obtained from isolated

tissues becomes useful for classification purposes which,
it is hoped, leads to general statements about structure

and activity. The essentially circular nature of the drug
and drug receptor classification process should be kept
in mind. New receptor types or subtypes are discovered

only after the discovery of new selective drugs. Then new
drugs are classified by their interactions with these new

receptors. It will be another bias of this paper that drugs

probably have more than one activity and are selective
rather than specific. This is a parsimonious view in

receptor terms since it seeks to explain selectivity or lack
of it in terms of multiple properties of drugs rather than
multiple subtypes of receptors.

The use of isolated tissues to classify drugs has its

drawbacks in the dependence of this process on previous
classifications. For example, in the early subclassifica-
tion process for �9-adrenoceptors, the guinea pig trachea
was classified as containing �92-athenoceptors and tra-

cheal-selective f3-agonists were accorded the correspond-
ing label of 132-adrenoceptor selective. The advent of data
which suggest that trachea contains both j3�- and �32-

adrenoceptors necessarily must bring into question the
original f32-selective classification of these agonists. Un-

fortunately, there is usually a time lag between the
classification of the drugs and the reclassification of the
tissue and the possibly erroneously classified agonists
may be used to classify other tissues incorrectly. The
potential for a baroque web of conflicting classification

data for tissues and drugs in this process is obvious.
Some of these problems may be avoided if tissue selec-
tivity is not assumed to be receptor selectivity.

In this paper, an attempt will be made to review some
of the null methods available to measure the strictly
drug-receptor-related parameters of affinity and intrinsic

efficacy, and more importantly, the internal checks in
these methods to detect receptor heterogeneity. The ma-
jor advantage of isolated tissue experimentation is the
potential to directly measure relative efficacy of agonists

(235). In this regard, this technique holds advantages
over biochemical binding techniques which primarily
yield estimates of affinity.

A. Isolated Ttssue and Binding Studies

Currently there is controversy over the significance of
the similarities and differences between binding and

isolated tissue data. Unfortunately, there are all too few
laboratories that do both techniques and critically com-
pare the results (159). There are studies that show esti-

mates of affinity of drugs in isolated tissue and binding
studies to be equivalent for a variety of receptors includ-
ing muscarinic receptors (52, 53, 235, 612, 712), f�-adre-
noceptors (458, 459, 699), and a-adrenoceptors (320,
606). However, differences between isolated tissue and

binding studies have been noted as well. For example,

the binding Kd values for some fl2-adrenoceptor agonists

do not correlate well with the relative potencies of these
drugs in isolated tissues (413). Similarly, although the

selectivities of antagonists for fl�- and fl2-adrenoceptors
as measured in binding and isolated tissue studies cor-

relate well, the correlation for agonists is poor (71). This

is most likely because pharmacological agonist activity
depends upon affinity and intrinsic efficacy, the latter

parameter being essentially inaccessible in binding stud-
ies. Agonist activity in broken cell preparations can be

measured (for example, fl-adrenoceptor agonists on ad-

enylyl cyclase) but the lack of amplification which is
present in tissues makes detection of all but quite pow-

erful agonists not possible biochemically. The amplifi-
cation processes inherent in the stimulus-response mech-

anisms of isolated tissues make isolated tissues much
more suitable for prediction of agonist activity in vivo.

Ingenious methods have been applied in binding stud-
ies to differentiate between agonists and antagonists
which theoretically could lead to quantification of rela-

tive efficacy biochemically. Thus the differential effects

of sodium ion on opiate receptor binding (516), the

differences in free energy of binding (691) or effects of

GTP and GpNHpp (439, 699) on fl-adrenoceptor binding
and the differential effects of GABA on benzodiazepine

binding (586) all offer unique approaches to this problem.

One apparent advantage binding studies have over

isolated tissue studies is the ability to measure receptor
density. Care must be taken, however, in interpreting

these estimates of receptor density. The difficulty comes

in predicting the relevance of the actual proportions of
heterogeneous receptor populations to pharmacological

responses; i.e., will a ratio of8O:20 f3�- to �32-adrenoceptors

in a tissue translate to a more �- than fi2-adrenoceptor
profile in terms of pharmacological responses? Actually

the probability of direct correspondence is low in view of
the coupling processes involved between receptor acti-
vation and tissue response. For example, Homburger and

coworkers (325) have noted that even though f�- and /32-

adrenoceptors coexist on single C6 cloned glioma cells,

the coupling of the two receptors to adenyl cyclase is not
of equal efficiency. The effects of receptors coupling on

tissue responsiveness can be demonstrated in ontoge-

netic studies. For example, although /3-adrenoceptors can

be detected in fetal mouse hearts in binding studies, no
responses to isoproterenol can be elicited until later in

the cycle of tissue development (709). A study by Hoff-
mann and coworkers (318) has shown that although the

state of oestrous in female rats greatly affected the

relative number of a-adrenoceptor and /3-adrenoceptor

subtypes, the changes in pharmacological responses did

not coincide with the receptor changes measured in the

binding studies. In view of the influence of receptor
coupling on drug responses, a theoretically more com-

plete approach to the study of the mechanism of action



of drugs would incorporate both binding and isolated seen that complete delivery of dissolved oxygen to the

tissue studies. cells of a given isolated tissue depends upon the partial

. . .
H. Factors in the Choice of Isolated Tissues

pressure of oxygen in the organ bath medium (Po2 bath),
the thickness of the tissue, and the rate of oxygen con-

There are many factors to consider when choosing an sumption of the tissue (Vo2). Thus, for a flat isolated
isolated tissue system for pharmacological experiments. tissue preparation (122):
Numerous techniques have been identified to detect and
eliminate obstacles to the attainment of the primary

requisites for isolated tissues, namely uniformity and

(1)

stability.

.

A. Animals
where PO2(�5ll) is the partial pressure of oxygen in the
tissue wall (torr) at depth X (distance from surface

The use of age-, weight-, and strain-matched animals toward center of the tissue, cm). Wall thickness is T

should reduce the incidence of variation (246). For cer- (cm), S is the solubility coefficient of oxygen within the

tam types of experiments, special animals such as the

spontaneously hypertensive rat (479) or cardiomyopathic
hamsters (619) can be utilized. For other procedures,

wall (ml . cm3 . 760 torr�), and D is the diffusion coeffi-

cient ofoxygen within the wall (cm2 . min’). The oxygen
consumption, Vo2, is in ml . cm3 . h’. With Hill’s origi-

surgically altered animals can yield tissues that approx- nal equation, the so-called “critical” thickness or diam-

imate the effects of pathological conditions in various eter of a tissue can be calculated beyond which a hypoxic

organs observed in man. Thus, cardiac tissues from ani- core of cells would be expected (82, 122). However, cal-

mals in cardiac failure can be obtained from cats which culations of this type assume homogeneous oxygen con-

chronically obstructed pulmonary arteries (248, 251) or sumption and diffusion into the tissue, estimations which

rats with aortic insufficiency, aortocaval fistulae, or aor- probably are oversimplifications making such predictions

tic stenosis (211). For certain tissues, such as myome- only rough guidelines. For example, the oxygen con-

trium, the hormonal state of the animal (oestrous, pre- sumption of cardiac muscle has been shown to vary

oestrous, etc.) also is important (88, 91, 181, 542, 455). greatly with contractile state (82), or age of animal (157).

. . . . .

B. Preservation of Tissue Viability
The dependence of critical thickness upon contractile
state makes it a possibility that an adequately oxygen-

Historically, pioneering work by many researchers ated tissue in the resting state may become hypoxic

such as Tyrode (645) and Krebs (398, 399) has led to the during exposure to an agonist which increases contractile

definition of nutrient solutions capable of preserving function. If, in turn, the functional contractility of the

isolated tissues in a viable state. Different tissues require tissue is dependent upon viable cells (i.e., little contrac-

a different milieu of ions and nutrients. Changes in ionic tile reserve) then the magnitude of the responses to the
content and composition can affect tissue reactivity and agonist may be dependent upon the P02 in the organ

base-line activity. For example, high osmotic pressure bath.

depresses cardiac pacemaker activity (393, 595). Changes The temperature of the medium bathing the isolated
in levels of potassium ion (252, 480, 584, 585) or mag- tissue is another consideration. For example, cooling to
nesium ion (9) can greatly modify isolated blood vessel 32#{176}Creduces spontaneous activity in rat uterus (30).

tone and reactivity to agonists. Specific changes in ionic Cardiac tissue has been shown to provide more stable
composition can eliminate random spontaneous activity basal activity and responsiveness to agonists at temper-
in some tissues and allow stable steady-state responses atures below 37#{176}C(81, 82).

to agonists. For example, the reduction of calcium ion The pH ofthe bathing solution can affect basal activity
(30) or the elimination and graded readdition of calcium and responses of isolated tissues to drugs. For example,
ion (375) to de Jalon solution bathing rat uterus produces the spontaneous rate and force of rabbit atria (333, 671),

a quiescent or regularly contracting tissue suitable for dog atria (561), perfused hearts of guinea pigs (449), and
bioassay. rat atria (392) decrease with lowered bath pH. Alterna-

Adequate delivery of oxygen to the tissue is another tively, deviations in pH may influence ionization of drugs

prime consideration. The basal activity of smooth muscle or charged chemical groups on receptors thereby chang-

(122, 180) and cardiac muscle (82) can be affected by ing the moieties which interact to produce response. The
changes in the partial pressure of oxygen in the organ responses of rabbit atria to histamine are stable when

bath (Po2). For example, the contractile responsiveness the pH of the bathing medium is kept between 7 and 7.6.
of arterial smooth muscle decreases with decreasing Po2, However, at pH <7, the responses to histamine become
the effects being more pronounced for thick- rather than depressed (333). Similarly, the responses of smooth mus-
thin-walled vessels and also for high levels of contractile des to histamine are stable in a pH range of 7.0 to 8.3
stimulus (122, 180). From A. V. Hill’s classic equation but decline sharply at pH <7 (543, 544). The responses
describing diffusion of soluble substances into muscle of rat atria to norepinephrine are increased during al-
(315), as modified by Chang and Detar (122), it can be kalosis and decreased by acidosis (116) while the re-
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TABLE 1

Some commonly used isolated tissues from animals

Receptor Species Tissue

Adenosine Rat Bladder

Ileum

Portal vein

Vas deferens

Guinea pig Atria

, Trachea

Rabbit Ileum

Cat Coronary artery

Dog Atria

Basilar artery

Coronary artery

Mesenteric artery

a-Adrenergic

Angiotensin

References

(102)

(49)

(583)

(130)

(372)

(140, 141)

(7, 225)

(489)

(127)

(469, 630)

(630)

(630)

(258)

(503, 137)

(137)

(587)

(136)

(443)

(505)
(5)

(505, 662)

(503)

(278)

(42)

(136)

(692)

(515)

(472, 42)

(237)

(42, 420)

(230)

(173)

(510)

(42, 505)

(505)

(138)

(319)

(42, 505, 578)

(230)

(42)

(503)

(410)

(70, 282)

(256)

(339)

(42)

(558)

(16, 464)

(311)

(163, 285)

(50)

(137)

(138)

(531, 533)

(138)

(137)

(532)

(437)

(532)

(489)

Rat Aorta

Carotid artery

Colon

Jugular vein

Mesenteric artery

Stomach

Vas deferens

Rabbit Aorta

Cat Coronary artery
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sponses of rat uterus to oxytocin are potentiated by acetic
acid (57).

In general, there is much evidence to show that the
ionic composition, Po2, pH, and temperature ofthe bath-

ing media for isolated tissues can affect viability and

responsiveness.

C. Some Isolated Tissues from Animals and Man

The ideal experimental conditions for various experi-
mental preparations have been reported in the literature

and the subtle variations in experimental conditions that
work best for particular isolated tissues can be obtained

from papers describing pharmacological procedures with

these tissues. A list of some of the isolated tissue prepa-

rations used for the study of receptors for neurotrans-

mitters, autacoids, and hormones is given in table 1. This
list excludes receptors for various biologically active sub-

stances such as leukotrienes, thromboxanes, prostaglan-

dins, calcium ions (channels), and peptides which are

discussed in specialized reviews and monographs. Also
not shown in this table are receptor subclassifications

(i.e. a�- and a2-adrenoceptors) since, for many tissues,

the predominance of the receptor subtype was not clear

at the time of writing. Also, for many of the putative

receptor subclassifications, the pharmacological criteria

for definition by selective agonists and antagonists have

not yet been defined. Shown in table 1 are references to
papers in which the conditions and method of prepara-

tion of the tissue for the specified receptor are described.

Therefore, more than one reference may be given for the

same tissue if different drug receptors are studied that
require different experimental conditions. It should be
noted that the references in table 1 are not necessarily

historically accurate from the point of view of first de-

scribing the isolated tissue for pharmacological experi-

mentation. This is because, in most cases, subsequent

usage of the tissue preparation by other workers has led

to modifications and improvements in the techniques.

Therefore, examples of recent papers where authors have
given methodological details and concentration-response

curves to agonists are cited in the interest of enabling

the reader to use the table as a reference to the isolated

tissue preparations available.

There is a large body of experimental evidence to

suggest that there is pharmacological correspondence

between the drug receptors in animals and man. Ob-
viously there are important ethical considerations in the

testing of drugs in man but certain surgical procedures
and the rapid post-mortem acquisition ofbiological tissue

make possible the testing of drugs in human tissue in

vitro. Some of the tissue preparations isolated from

humans for the study of drugs are shown in table 2.

D. Methods of Tissue Preparation

The method of tissue preparation can be an important

factor in pharmacological experiments. The wide range

of sizes of vascular tissue requires a correspondingly wide

Rat Anococcygeus muscle

Aorta

Carotid artery

Papillary muscle

Portal vein

Portal vein (everted)

Seminal vesicle

Spleen

Vas deferens

Guinea pig Aorta

Atria

Bladder

Jugular vein

Taenia coli

Trachea

Van deferens

Rabbit Aorta

Bladder

Duodenum

Ear artery

Facial vein

Ileum

Inferior vena cava

Jugular vein

Main pulmonary ar-

tery

Spleen

Stomach fundus

Vas deferens

Cat Aorta

Nictitating mem-

brane

Spleen

Mouse Anococcygeus muscle

Spleen

Vas deferens

Dog Basilar artery

Coronary artery

Renal artery

Saphenous vein

Pig Coronary artery



fl.Acfrenergic Rat

Receptor Species Tissue References

TABLE 1-continued

Receptor Species Tissue References

(527)

(6)

(484)
(237)

(169)

(238)

(184)

(259, 422)

(168)

(199)

Ileum
Taenia caeci

Trachea

Rabbit Aorta

Ear artery

Fundus

Detrusor muscle

Cat Anococcygeus muscle

Mouse Ileum
Dog Ventricular muscle

Dopamine Rabbit Mesenteric artery

Middle cerebral ar-

tery

Splenic artery

Cat Middle cerebral ar-

tery

Dog Cerebral artery

Coronary artery
Mesenteric artery

Renal artery

Small femoral artery

Histamine Rat Fundus
(H,)

(666)

(408)

(89)

(30)

(138)

(6)

(150, 194, 200)

(194)

(138)

(152)

(300)

(194)

(194)

(636)

Histamine Rat

(H2)Bradykinin Rat Uterus

Stomach

Rabbit Aorta

Ear artery
Jugular vein

Cat Cerebral artery
Jejunum

Terminal ileum
Dog Carotid artery

Saphenous vein

Cholinergic Rat Aorta
(musca-

nnic)

Stomach fundus (200)

Uterus

Guinea pig Atria
Gall bladder
Papillary muscle

Parenchymal strips
Ventricular strips

Rabbit Atria
Aorta

Trachea
Cat Extracranial blood

(75)
(14)

(408)

(14,60)

(638)

(677)

(521)

(200)

(213, 380)

(194)

(13, 15)

(441)

(258)

(622)

(477)
(666)
(664)

(137)

(137)

(79)

(422)

Anococcygeus muscle
Carotid artery
Fundue

Jugular vein

Mesenteric artery

Portal vein
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Guinea pig Atria
Bladder

TABLE 1-continued

Adipose tissue
Atria

Coronary artery
Jugular vein
Uterus

Guinea pig Atria

Extensor digitorum

longus

Small intestine

Soleus muscle

Trachea

Van deferens

Rabbit Aorta

Atria
Coronary artery

Ear artery

Facial vein

Portal vein

Small intestine

Stomach fundus
Trachea

Vena cava

Vesicourethral mus-

cle

Cat Atria

Coronary artery

Middle cerebral ar-
tery

Nictitating mem-

brane
Papillary muscle
Trachea

Mouse Spleen

Dog Coronary artery

Skeletal muscle ar-

tery

Pig Coronary

Bovine Iris sphincter

Trachea

Anococcygeus muscle

Caecum
Atria

Fundus

Jejunum

Mesenteric artery

Portal vein

(206)
(505)

(50)
(138)

(205, 181)

(79, 230)

(233)

(230)

(679)

(104, 505)

(205)

(94, 194, 230,

505)

(94, 505)

(171)

(169)

(510)

(194)

(230)

(94)
(94)
(194)

(390)

(81)

(489)

(193)

(670)

(363)

(424)

(86)

(46, 86)
(46)

(50, 186, 351)

(502)

(22)

(38)
(40, 666)

(237, 188, 530)

(596)

(39)

(697)

(40)

(38)

(150)

(270)

(137)

5-Hydroxy-
tryptamine

(98)

(492)

(313)

(192)

(631)

(633, 634)

(269)

(269)

(269)

Rat Aorta (137, 139)

(258)

(138)

(488, 666)
(138, 139)

(137)

(137)

Guinea pig Gall bladder
Duodenum

Ileum
Jugular vein
Taenia caeci

Rabbit Aorta

Portal vein

Jugular vein

Renal artery
Trachea
Vena cava

Cat Extracranial blood

vessels

Dog Saphenous vein

vessels

Mouse Stomach (secretion)
Van deferens



TABLE 1-continued TABLE 2

Isolated tissues from humans

Receptor* References

Receptor Species Tissue References

Uterus (247)

Vas deferens (488)

Guinea pig Ileum (151)

Taenia caecum (6)

Rabbit Extracranial arteries (407)

Cat Extracranial arteries (407)

Dog Coronary artery (16, 92)

Extracranial arteries (407)

Saphenous vein (163)

Calf Coronary artery (361)

Trachea (488)

Chicken Oesophagus (488)

Opioid Rat
Guinea pig

Mouse

Vas deferens
Ileum

Vas deferens

Vas deferens

(335)

(291, 397)

(335)

(331, 335)

Substance P Rat

Guinea pig

Rabbit

Cat

Dog

Everted portal vein

Vas deferens

Ileum

Mesenteric vein

Terminal ileum

Carotid artery

(443)

(155, 437)

(155)

(63)

(63, 530)

(156)

Digital

Pilial

Coronary

Pulmonary

range of techniques to measure contractile function.
Thus, very small vessels like the cat coronary artery can
be perfused at a constant rate and the perfusion pressure

used as a measure of vasoconstriction (489). Alterna-
tively, spiral strips from vessels can be cut. The advan-
tage of such a preparation is that enough muscle can be

assayed to allow measurable responses to be obtained
from very small vessels. Also, the effects of receptor

heterogeneity along the length of the blood vessel can be
eliminated. However, there are important geometrical

considerations in the preparation of spiral strips (297,
309, 491, 635). For example, the helical and circular

arrangement of smooth muscle cells in canine muscular

arteries can cause contractile agonists to produce varying

magnitudes ofcontraction, the variation being dependent

upon the pitch of the angle of orientation of the helix

from the transverse axis of the vessel (figure 1A). At the

extreme, paradoxical contraction is observed with the

normally relaxant drug papaverine and paradoxical re-
laxation from the normally contractile drug norepineph-

rine (/3-adrenoceptors blocked) when these preparations

are mounted longitudinally (figure 1B; 491). Similar ef-

fects were observed in aortae from normal and DOCA-
hypertensive rats (297). A convenient alternative is the
use of rings of vascular smooth muscle mounted on
opposing stainless steel hooks (326). These preparations
have the advantages of convenience and ease of prepa-

ration, minimal variation of differences in smooth muscle
cell orientation, and minimal damage to the intimal
surface of the vessel. In view of the importance of the

intima to the tissue responses of blood vessels to some
agonists this could be an important consideration (242).
Perfused vessels, notably the rabbit ear artery, are useful

a

/3

H2

* a, a-adrenergic; 5-HT, 5-hydroxytryptamine; ACh, acetylcholine;

H,, H2, histamine; /3, /3-adrenergic.

in that they allow for the study of agonists exclusively

applied to the intimal or advential side of the blood

vessel (169).

There are numerous methods to prepare other smooth

muscle preparations. In some tissues, attention must be
paid to anatomical differentiation of the muscle as, for
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Tissue

Vascular-arterial

Femoral

Basilar

Popliteal

Umbilical

Crural

Mesenteric

Cerebral

Vascular-venous

Saphenous

Femoral

Crural

Umbilical

Smooth muscle

Bronchiole (lung)

Stomach (duodenum)

Muscularis mucosae

Ileum

Colon

Sphincter pupillae

Internal anal sphincter

Oesophagus
Van deferens

Bladder detrusor

Ureter

Cardiac muscle

a

5-HT

Dopamine

a

ACh,5-HT,a,H,

a

H1,5-HT

a

5-HT

a,

H,, H2
ACh,aj�

H,

a

5-HT

a

a

5-HT,ACh,a,H,

a

ACh

a

a

a

/3
a

H,

ACh

5-HT

a

ACh,a,fl

a

a

/3
ACh

ACh,a

a

a

a

H,,H2

(266)

(220)

(222)

(154)

(268)

(592)

(534)

(467, 602)

(601)

(407)

(12)

(260, 267)

(260)

(454)

(272)

(272, 454)

(453)

(292)

(579, 632)

(154, 349)

(546)

(266)

(453)

(592)

(272, 306, 714)

(62, 78)

(185, 210, 272,

425, 568)

(210, 272)

(62)

(306)

(680)

(154)

(306)

(154)

(364)

(119)

(154)

(302)

(154)

(61)

(571)

(261, 290, 316,

365, 571)

(262, 290, 283,

419)
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FIG. 1. Effect of angle of cut on responses of femoral artery to norepinephrine. A. Responses to 100 MM norepinephrine as a percent of the

maximal contraction. Abscissae: Pitch of helical cut in degrees. Positive values indicate contraction; negative values indicate relaxation. B.

Concentration-response curves to norepinephrine. Ordinates: Tension as a percent of maximal contraction. Abscissae: Molar concentrations of

norepinephrine (log scale). Responses from rings [circumferential contraction (0)] and longitudinal preparations (#{149}).For both figures n = 10;

bars represent S.E.M. Reprinted with permission from Ohashi and Azuma (491).

example, in the rabbit urinary bladder base and body

(421) or the longitudinal versus circular muscle of the

rat fundus (666). The guinea pig ileum longitudinal mus-

cle strip holds advantages over the whole ileum in iso-

lated tissue work (527). There are a wide variety of ways

to mount and monitor the contraction of airway smooth

muscle (295).
Cardiac muscle function can be measured either by

perfusion of the heart by the Langendorff technique (95,

409, 523) or measurement of twitch contraction from

isolated atria, papillary muscle, or strips of ventricle (82,
393). Cardiac sinus nodal function can be obtained from
isolated right atria. The electrical stimulation of cardiac

tissue requires attention to the arrangement of the elec-
trodes if release of neurotransmitters is to be avoided

(79-81). The use of a geometrically homogeneous tissue

such as the papillary muscle is an advantage over prep-

arations having irregular geometry for tension develop-

ment such as strips of ventricular muscle (593, 594).

Particular attention must be paid to the thickness of the

cardiac muscle utilized in isolated tissue experiments

since the high oxygen consumption of this tissue makes

hypoxia a distinct possibility in the organ bath (82).

Certain physical procedures can alter existing isolated

tissue preparations to suit special needs. For example,

rabbit aorta can be effectively denervated by excision of

the adventitia (68, 446). Similarly, stripping the serous

coat and mesenteric attachments of vas deferentia effec-

tively denervates this preparation (72).
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E. Measurement of Tissue Responses

There are many methods of measuring the responses

of various isolated tissue preparations to drugs. Re-

sponses can be measured in terms of magnitude as in

isotonic shortening, isometric tonic or phasic contrac-

tion, isometric twitch contraction, or frequency (i.e.,
atrial rate, spontaneous motor activity). In some cases

the method of recording responses does not influence the
sensitivity of the preparation to agonists. Thus the sen-

sitivity of guinea pig ileal longitudinal smooth muscle to
histamine is not appreciably different when contractile
responses are measured isotonically or isometrically

(145). Similarly, the sensitivity of rat tail arteries to
norepinephrine does not differ when isotonic and iso-

metric responses are compared (660). In other tissues

this does not appear to be true and the difference may

depend upon the thickness of the preparation and the

relative amount of muscle mass and receptor activation

required for maximal response. Thus, in contrast to the

guinea pig ileum, there is a significant difference between

the concentration of carbachol required to produce half
maximal isotonic contraction and that needed for half

maximal isometric contraction in frog rectus abdominus

and leech dorsal muscle (451). In these relatively thick

muscles, more agonist is required for isometric tension

than isotonic shortening. This differentiation carries

over to partial agonists where it was observed that,

relative to the maximal response produced by potassium

depolarization, the intrinsic activity of partial agonists

was greater in these muscles when measured isotonically

as opposed to isometrically. In keeping with the concept

of a greater receptor stimulation being needed for iso-

metric contraction, the isometric responses to muscarinic
agonists were more sensitive than isotonic responses to
blockade by receptor alkylating agents (451).

When measuring responses isometrically, it is impor-

tant to do so at Lmax, the length of tissue which produces
the maximal active response (597, 598). In tissues such

as cardiac muscle (593, 594) and muscular, as opposed to
elastic, arteries (693), it is especially important to work

at the optimum resting tension.

F. Sources of Variation in Tissues

A great deal of pharmacological inference is derived
from the relative sensitivity of tissues to agonists. Many
factors including animal variation with respect to agonist

uptake mechanisms, numbers of viable receptors, and
differences in the efficiency of stimulus-response mech-

anisms can cause heterogeneity in sensitivity of tissues

to agonists. To a large extent, increasing the number of

experiments can accommodate these errors (246).

One method of reducing the between animal variation
in experiments is to use paired tissue preparations from
the same animal and make Comparisons between pairs

of treated and control tissues. Some tissues can be di-
vided into equal portions such as atrial halves, rings of

conduit vessels and airway smooth muscles, and seg-
ments of gastrointestinal tract. Other tissues such as

uterus, vasa deferentia, seminal vesicles, and anococcy-

geus muscles conveniently come in matched pairs.
1. Heterogeneous Receptor Distribution. Another factor

to consider in the choice of isolated tissue is the homo-
geneity and distribution of the drug receptors. The pres-

ence of a heterogeneous population of receptors subserv-
ing antagonistic responses with respect to each other can

confound the quantification of drug effects on any one

of the drug receptors. The most common setting for this

situation is found in the study of adrenoceptors. For

example, tissues with a predominant a-adrenoceptor

population in the presence of pharmacologically antago-

nistic /3-adrenoceptors include mouse spleen (339), rat

mesenteric artery (90), and cat nictitating membrane

(588). Tissues with a dominant /3-adrenoceptor popula-

tion in the presence of antagonistic a-adrenoceptors
include guinea pig trachea (470, 515) and rat uterus (99).

Opposing populations of histamine H1 and H2 receptors
have been reported in rat stomach fundus and rabbit

aorta (200). Synergistic a-adrenoceptors in the presence

of dominant 13-adrenoceptors are found in guinea pig and

rabbit atria (278). The most comon method used to detect

and eliminate this problem is by using selective antago-

nists of the interfering receptor population. For example,

the a-adrenoceptor responses of rat veins are strikingly

potentiated when the relaxant /3-adrenoceptors are

blocked by propranolol (136). The potentiation of the

relaxant effects of histamine (H2 receptors) by the an-

tagonism of histamine H1 receptors by chlorpheniramine

in rabbit trachea illustrates another example of mixed
receptors in an isolated tissue (381). The problem of

heterogeneous receptors becomes more important when

dealing with partial agonists. For example, little response

can be elicited in the canine saphenous vein by dobutam-

me. However, blockade of the a-adrenoceptors with
phentolamine reveals a relaxant f3-adrenoceptor response

and blockade of the /3-adrenoceptors with propranolol
reveals an a-adrenoceptor contractile response both of

which cancel each other in the absence of the blocking

drug (370).

There are gradients of responsiveness in tissues to

agonists which coincide with anatomical orientation. For

example, it has been shown that rabbit aorta is not

uniformly sensitive to /3-adrenoceptor agonists (8). There
is a pronounced heterogeneity in rabbit trachea and

bronchus in response to a variety of spasmogens and

relaxants (213). In canine aorta, a gradient of phospho-
diesterase activity has been observed (644). In the rabbit

basilar artery a graded responsiveness to norepinephrine,
increasing from the distal to the proximal portions and

to serotonin and decreasing from the distal to the prox-
imal segment ofthe tissue, has been reported (263). Some
of the observed heterogeneity has been ascribed to the

heterogeneous distribution of receptor types. For exam-
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pie, the urinary bladder of the rabbit can be divided into

the bladder body where a-adrenoceptors predominate

over j3-adrenoceptors and the bladder base where the

opposite predominance occurs (421). In the rabbit aorta,

Fleisch and coworkers (215) found that the thoracic aorta

contained a greater predominance of /3-adrenoceptors
than the abdominal aorta. In the dog, there are mainly

a-adrenoceptors in the common coronary artery, both a-
and /3-adrenoceptors in the proximal portion, and mainly

fl-adrenoceptors in the distal coronary artery (464). Bo-
vine trachea has been shown to possess 37 times the
number of muscarinic receptors and one eighth the num-

ber of /3-adrenoceptors as bovine lung (126). Receptor

subtypes also appear to be heterogeneously distributed

within tissues. For example, responses of rat vasa defer-

entia to selective a-adrenoceptor agonists suggest a het-
erogeneity of pre- and postsynaptic a-adrenoceptors in

the prostatic and epididymal portions of this tissue (427).
In dog femoral and sphaneous veins a1- and a2-adreno-

ceptors appear to coexist while in the dog femoral and
splenic artery, a1-adrenoceptors predominate (177). In

canine trachea a2-adrenoceptors appear predominant
while in the peripheral airways a1-adrenoceptors domi-

nate contraction (45). In guinea pig airways, the re-

sponses to various f3-adrenoceptor agonists and antago-

nists suggest that the proportion of /3k- to f32-adrenocep-

tors decreases from the trachea to the bronchus and

intrapulmonary airways (713).

The heterogeneous distribution of drug receptors in

various isolated tissues should be kept in mind when

quantitative comparisons of drug effects, especially
within tissues, are made. One previously mentioned

method of reducing the consequences of such heteroge-

neity is the use of the complete tissue for assay by, for

example, preparation of a spiral strip.

2. Animal Maturity. Age has been found to affect the

receptor density and/or distribution and the reactivity

of various isolated tissues. For example, the responsive-

ness of rat hearts to ouabain (255), the sensitivity of rat

and guinea pig trachea to isoproterenol (2), the histamine

H2-receptor-mediated responses of rabbit aortae (321),
and the effects of 5-HT agonists in rabbit aortae (301)

have been shown to decrease with animal maturity. The

sensitivity of responses in rat vasa deferentia postulated

to be due to stimulation of presynaptic a-adrenoceptors
also is inversely proportional to age (183). In contrast,

age has been shown to increase the contractions of rat

aortae to norepinephrine and serotonin (135). There is

substantial evidence that /3-adrenoceptor-mediated re-
laxation of rabbit and rat thoracic aortae decreases with

increasing age (201, 212, 215, 288). This is in contrast to

the lack of effects of age on the /3-adrenoceptor-mediated
responses of rat and rabbit portal vein (214). The re-

sponses of rabbit trachea to several agonists was found
to change with age (300). The predominance of one
receptor type over another can vary with animal maturity

as well. For example, the dominant positive inotropic

responses of rat atria to phenylephrine shift from being

predominantly /3-adrenceptor-mediated in young rats to

a-adrenoceptor-mediated in adult rats (299). This is in

accordance to the measured decreased number of /3-

adrenoceptors (128) and increased number of a-adren-

ceptors (403) in rat hearts with age. While the effects of
age would not be expected to produce serious variation
in tissues from carefully matched animals, they could
account for differences observed in different laboratories.

G. Comparisons between Isolated Tissues

Often it is desirable to compare the responses of iso-

lated tissues from animals either between species or in
the same species in different physiological or pathological

states. For example, much research has been conducted

on the relative contractile activity of blood vessels from

normal and hypertensive rats. In these comparisons, the

scale of responsiveness should be carefully normalized to
eliminate differences due to muscle mass and thickness.
Thus, simple comparisons of actual responses in New-

tons may be misleading. It is important to compare the

different tissues not at the same resting tension but
rather at the optimal resting tension for each tissue. One

way to normalize active tension is to use a scale that

makes active muscle tension, as a function of resting or

passive tension (or length), superimposable or parallel
with the same maximum for the two types of tissue

preparations. For example, Wyse found the force per
cross sectional area of muscle a suitable scale for com-

paring muscular arteries and the force per unit of total

volume for comparing elastic arteries of differing mass
in rats (707). In comparing responses to agonists, the
effects of muscle mass on diffusion coupled with differ-

ences in uptake, degradative metabolism, and innerva-

tion also should be considered as complicating factors.

III. Equilibrium Conditions in Isolated Tissues

The equations derived to describe drug and receptor
interactions assume free diffusion and the establishment

of thermodynamic equilibria. In well-mixed biochemical

reactions these are reasonable assumptions but in many
isolated tissue preparations the assumption that these

conditions are attained enters more the realm of wishful
thinking (698). Accurate knowledge of the magnitude of

the independent variable is a prerequisite to the genera-
tion of meaningful dependent variables and in pharma-

cological experiments, the dependent variables that yield

information about drugs and drug receptors are tissue

responses and the critical independent variables are the

concentrations of drug at the receptor. It is important to

know the concentration of drug at the receptor, since it
is from this parameter that all estimates of drug con-

stants such as affinity and efficacy are made.

The need for the attainment of equilibrium conditions
in isolated tissues has been stressed (230, 231, 552, 567,
663). A concise statement of the assumptions made



TABLE 3

Optimal conditions in experiments for the pharmacological characterization of drug receptors in isolated tissues5

1. The response of the tissue preparation to an agonist should be due solely to the direct action of the agonist on one type of receptor. It

should not be resultant of actions on more than one type of receptor, nor should it be due even partially to indirect action (e.g., release of

endogenous noradrenaline).

2. The altered sensitivity to an agonist in the presence of a competitive antagonist should be due solely to competition between the antagonist

and the agonist for the receptor. The altered sensitivity after treatment with an irreversible antagonist should be due solely to inactivation of

the receptor.

3. The response following the addition of a given dose of agonist should be measured at the maximal level reached. In the most suitable

tissues, this maximal level is maintained for a reasonable length of time.

4. In the case of either an agonist or competitive antagonist, the free concentration in the external solution should be maintained at a steady

level at the time a response is measured, and should be known. In the case of an irreversible antagonist, the concentration in the solution should

be essentially zero during the measurement of responses.

5. In the case of either an agonist or competitive antagonist, the concentration in the region ofthe receptors should be in diffusion-equilibrium

with that in the external solution at the time a response is measured. To meet this condition, the rate of removal of drug from this region due to

enzymic action, transport into cells, and binding should be negligible compared with the rate due to diffusion back to the outside solution. In the

case of an irreversible antagonist, the fraction of receptors which is not inactivated should remain constant over the total period during which

responses are measured.

6. The experimental design should include proper controls to permit measurements of, and corrections for, any changes in sensitivity of the

tissue preparation to agonists during the course of an experiment that are not due to addition of an antagonist.

S Reprinted with permission from Furchgott (232).
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(sometimes tacitly) in isolated tissue experiments was

presented by Furchgott (232) and is given in table 3 as a

focus for discussion. Each of these points will be consid-

ered in some detail in this review.
The activation of receptors by drugs in isolated tissues

can be divided into three processes: 1) the delivery of
drug from the organ bath solution to the receptor corn-
partment, 2) the interaction ofthe drug with the receptor,

and 3) in the case of agonists, the transduction of recep-
tor stimulus into tissue responses (27). These latter two

processes have been termed the “pharmadynamic” phase

of drug action by Ariens (23, 25, 271). The first step is

the delivery of drug to the drug receptor, a bulk diffusion
phenomenon that can be affected by chemical, physical,
and biochemical processes.

A. Chemical Degradation of Drugs

Since the driving force of bulk diffusion is a concen-
tration gradient, any process that changes concentration
will affect the rate of diffusion. One way in which drug

concentration can be changed in an organ bath is by

chemical degradation. Perhaps the most well-known ex-

ample of the chemical instability of drugs is the tendency

of catecholamines to oxidize in the presence of trace
amounts of divalent cations or in alkaline pH (293, 294).

The addition of disodium EDTA (228) or ascorbate to
the bathing medium prevents this chemical degradation.
In the absence of these measures, the destruction of

catecholamines can be quite rapid; for example, the half-

time for degradation of 0.3 �M norepinephrine in phys-

iological saline is 8 to 9 mm at 37#{176}Cand 25 to 26 mm at
32#{176}C(330). The half-time at 37#{176}Cis within the time
span required for the attainment of steady state re-
sponses in many isolated tissue preparations such as

rabbit aorta, guinea pig trachea, and guinea pig extensor
digitorum longus, thus inclusion of antioxidants to the

bathing medium would be highly recommended. Another

example of chemical instability in physiological saline is

the rapid inactivation of prostaglandins (219). The deg-
radative process can be optically catalyzed as for example

the photolysis of aqueous solutions of lysergic acid dieth-
ylamide (681) or the well-known instability of the cal-

cium channel antagonist, nifedipine, in the presence of
light.

The adsorption of drugs to the surface of the organ
bath can serve as a physicochemical process of drug
removal from the receptor compartment. This methodo-

logical problem has been encountered with basic antihis-

tamines such as promethazine (442) where substantial

dilution errors were introduced into experiments by the
use of glass containers. Adsorption to glass surfaces has

been encountered with peptides such as substance P. The
addition of 0.1% bovine serum albumin (683), dithio-

threitol (353), or the use of polypropylene organ baths
(223) have been found to eliminate the problem. The
adsorption of substances to surfaces and subsequent
leeching into fresh physiological solution in future ex-
periments also can be a significant methodological prob-
lem. This effect has been encountered with rubber sur-

faces [propranolol (234)], silicone surfaces [haloperidol
(595A)], and glass surfaces [1-isoproterenol (234); gua-
nabenz (427)1.

B. Release of Endogenous Substances

Disparity between the concentration of drug in the

organ bath and active drug at the receptor site can arise

if the drug promotes release of an endogenous substance
in the tissue. It would be expected that the magnitude of

the response would be increased if the endogenous sub-

stance produced the same qualitative response or de-

creased if the substance produced a pharmacologically

antagonistic response. The most common type of release

encountered in pharmacological experiments is that of

endogenous neurotransmitters such as norepinephrine

and acetylcholine. Table 4 shows a number of agonists
that release an endogenous substance (indirect agonist)
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TABLE 4

Some agonists that release endogenous substances in tissues

Agonist Species Tissue Indirect Agonist References

Dopamine

Histamine

Guinea pig

Rat

Cat

Rat

Atria

Trachea
Gastric fundus

Trachea

Atria

Norepinephrine

Norepinephrine
Norepinephrine

Norepinephrine

Norepinephrine

(496)

(395)
(414)

(204, 436)

(3)

4-Methylhistamine Rabbit Atria Norepinephrine (521)

2-(2-Pyridyl)ethylamine Guinea pig

Rat

Heart

Atria

Norepinephrine

Norepinephrine

(402)

(3)

Tolazoline Rabbit

Guinea pig

Atria

Atria

Norepinephrine

Histamine

Histamine

Acetylcholine

(334)

(334)

(334, 378, 423)

(334)
Clonidine Rabbit

Guinea pig

Aorta

Atria

Histamine

Histamine

(87)

(378, 423)

Cimetidine Rat Uterus Norepinephrine (548)

Impromidine Rabbit Atria Norepinephrine (332)

5-Hydroxytryptamine (5- Guinea pig Ileum Acetylcholine (151, 509)

HT)
Bradykinin Rabbit Pupillary sphincter Substance P (115)

Substance P Rat Mast cells Histamine (202)

Adenosine Rat Tail artery 5-HT (100)

to produce responses in some isolated tissues. A compre-

hensive review of phenylethylamines and other drugs
that release norepinephrine has been given by Trende-

lenburg (642).
Various methods are available to eliminate the release

of indirect agonists in isolated tissues. If the indirect

agonist (released substance) produces responses by acti-

vation of a receptor distinct from the receptor of interest,

then selective antagonists can be used to eliminate the

complicating effects. However, this sometimes is not

possible if the indirect agonist activates the same recep-

tor as the direct agonist; i.e., for obvious reasons, the

direct effects of ephedrmne on /3-adrenoceptors cannot be

separated from the effects of released norepinephrine by

the addition of propranolol. The alternative here is to

deplete the tissue stores of endogenous norepinephrine

by 6-hydroxydopamine treatment in vivo (624, 642), or
in vitro (17), by physical removal of the neural plexus

(68, 446) or, most commonly, by pretreatment of the
animal with a catecholamine-depleting drug such as re-

serpine (447, 642).
The effects of a competitive antagonist on concentra-

tion-response curves to an agonist may provide a clue as
to whether the responses to the agonist are due to direct

activation of a receptor or to release of an indirect

endogenous agonist. Black and coworkers (76) have pre-
sented a theoretical model which predicts that under a

variety of circumstances the concentration-response

curve to an agonist that produces an effect by release of

an indirect agonist will be shifted to the right by a

competitive antagonist but also show a depressed maxi-

mal response. Experimentally, this was demonstrated by

the shift and depression of concentration-response

curves to tyramine by propranolol and sotalol in rat atria

(76). As shown in figure 2, the maximal responses to

tyramine are progressively depressed with increasing

dextral displacement of the concentration-response

curves by propranolol. Similar effects have been reported

for tyramine inhibition by propranolol (625) and phen-

tolamine (207). The model predicts that the receptor

.1 � io ‘�#{176}��#{176}�ji.� �o ��O5�O�OOOj

CONTROL

1 10 K�O
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I I AFTER PROPRANOLOL
(5OnM)

FIG. 2. Effects of propranolol on responses of rat left atria to

tyramine. A. Dynograph tracing of electrically stimulated contractions

of rat left atria; responses to tyramine before and after propranolol (50

nM). B. Concentration-response curves to tyramine. Ordinates: Re-

sponses to tyramine as fractions of the maximal control response.
Abscissae: Logarithms of molar concentrations of tyramine. Responses

in absence (#{149},n = 17) and presence of propranolol 10 nM (#{149},n = 5),

50 nM (0, n = 7), and 200 nM (0, n = 5). Bars represent S.E.M.
Reprinted with permission from Black et al. (76).
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occupancy (p) achieved by an agonist [A], which pro-

duces release of an indirect agonist [I], is given by (76):

1

#{176} K11 KA�
1 + �- �1 +

where KA and K1 refer to the equilibrium dissociation

constant of agonist A for the site of release and I for the
receptor, respectively, and 0 a measure of the releasable
pool of indirect agonist (e.g., the maximal concentration

of I achieved by saturating concentrations of A ) with
dimensions of concentration. It can be seen from Eq. 2
that even in the absence of a competitive antagonist, the

maximal receptor occupancy by the indirect agonist may
not be achieved by any amount of agonist A if K1/O is

large; i.e., if the pool is small (low 0) or K1 large (low
affinity of I for the receptor). Depending upon the effec-
tive receptor reserve in the tissue, which is a function of

the efficacy of I and the efficiency of the stimulus re-

sponse mechanisms in the tissue, a high ratio of K1/O
may preclude production of a maximal response by A. In

the presence of a competitive antagonist B, the receptor

occupancy becomes:

1
K1’ K

[B]”
1 + -�- �1 + i-�)(1 +

where KB �S the equilibrium dissociation constant of the
antagonist for the receptor. It can be seen intuitively

. from Eq. 3 that the tendency of values of K1/O to depress
the maximal response to A is exacerbated by the addition

of competitive antagonist; i.e., a competitive antagonist
will tend to depress the maximal responses to agonist A.

The amount of depression of the maximal response by B

will depend upon the size of the releasable pool 0, the
affinity and efficacy of the indirect agonist I, and the
efficiency of the stimulus response mechanisms in the

tissue. Therefore, in a tissue with a high receptor reserve
and a large pool of releasable endogenous agonist, a
competitive antagonist may produce parallel shifts of the
control concentration-response curve (with no depres-
sion of maximum) to a releasing agent. This situation
would closely resemble what would be expected of a direct

agonist. However, if the concentration-response curves
to an agonist are shifted to the right and depressed by a
competitive antagonist in a pattern like that shown in
figure 2, this would suggest that the agonist was releasing
an endogenous agonist in the tissue.

Finally, the effects of drugs not mediated by drug
receptors can obscure isolated tissue experiments. For
example, the effects of high concentrations of histamine
on organ bath pH have been noted in rabbit atria (178,
332), guinea pig pulmonary artery (296), and rabbit tra-

chea (381). In this latter preparation, relaxant responses
to histamine could be elicited which were insensitive to
histamine H2-receptor-blocking drugs but were elimi-

nated by neutralization of the acidic stock solution of

histamine.

(2) C. The Removal of Drugs by Tissues

1. Diffusion into Isolated Tissues. A drug added to the
solution bathing a tissue in an organ bath must diffuse
into the receptor compartment to produce an effect.

There are mathematical models to describe this process

which are relevant to this discussion because they high-
light some factors that can seriously affect parameters
thought to reflect drug-receptor interactions in tissues.

For the purposes of these discussions, the bathing solu-

tion is assumed to be an infinite reservoir of drug at

constant concentration.
The dissolution of drug from the point of injection into

a well-mixed organ bath occurs relatively rapidly. For
example, Cuthbert and Dunant (164) found that con-

ductance changes across electrodes in a 50-ml bath pro-
duced by injection of potassium chloride solution oc-

curred within 0.05 sec of injection. However, there are
reasons to suppose that the process of free diffusion

which controls the access of drug to the surface of the

tissue does not describe the entry of drug into the tissue.
It is known that the diffusion coefficient of drugs in

(3) tissues is slower than in free solution (101, 315, 401). For
example, the diffusion of acetylcholine into rat dia-
phragm is 0.14 times that in free solution (400) while the
diffusion of norepinephrine in the medial layer of rabbit
aorta is 0.1 times the rate in free solution (67). One
method of accommodating these phenomena is by defin-
ing a tortuosity factor (494, 495, 672) designated A. Thus

the diffusion coefficient of a drug in a tissue ‘ relates
to the diffusion coefficient of the drug in free solution D
by the following equation:

D’=�. (4)

The rationale for such a factor is that while the diffusion

coefficient measures the random rate of travel by a
straight line, the path that a drug must take through a
tissue is considerably longer since it must accommodate
the numerous obstructions in the morphological organi-
zation of the muscle.

With diffusion equations derived by Crank (158), it is
possible to calculate the theoretical rate of diffusion of a
drug into tissues. Thus, for a tissue which can be ap-
proximated geometrically by a cylinder, the rate of
change of drug concentration (aC/at) across the radius
of the muscle r is given by:

aC ia D#{212}C
-=--r�. (5)
at r#{244}r or

A graphic solution for Eq. 5 was provided by Venter (672)

for a cat papillary muscle 1 mm in diameter with a
tortuosity factor, estimated to be 1.44 for this tissue

(495), and is shown in figure 3. It is interesting to note
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FIG. 3. Calculated distribution of isoproterenol and polymeric iso-

proterenol (12,800 mol. wt.) in a 1-mm diameter cat papillary muscle

at 25�. Ordinates: Fraction of organ bath concentration within the

muscle. Abscissae: Distance from muscle surface. Numbers refer to

time in seconds for free isoproterenol and, in parentheses, polymeric

isoproterenol. Reprinted with permission from Venter (672).

that complete diffusion of isoproterenol to the center
core of the tissue requires 10 mm.

The rate of equilibration of the extracellular space
with [3H]inulin is known to vary with tissue type. Wat-

son (682) has shown this time to be 30 sec in guinea pig
ileal longitudinal muscle and 300 sec in rat vas deferens.

Michelson and Shekovnikov (451) have shown a range
from 10 sec in guinea pig ileum to 400 sec in the protrac-

tor pharynx of holothura. One factor thought to be
responsible for these differences in diffusion rates for
different tissues is tissue thickness. The diffusion time
is related to tissue thickness (L) by the following equa-
tion (573):

L2
t = �-n-��

Considering the morphological architecture of tissues to
be reflected by the tortuosity factor, this equation can be
modified to:

L2A2
t =

where D is the diffusion coefficient of the drug in free

solution. Factors which affect L will correspondingly

alter diffusion time.
Another determinant of diffusion time is the confor-

mation of the extracellular space. The extracellular space
is a complex structure (274) and should be considered a

dynamic compartment rather than a stiff box (650). The
size of the extracellular space is affected by stretching

and relaxation (693) and this can affect diffusion. For

example, the hydrolysis of acetylcholine by acetylcholin-

esterase is greater in stretched rather than contracted
guinea pig ileum (462). The orientation ofthe tissue may

be a factor as well in that diffusion paths for drugs may
be longer in some physical configurations of tissues. For
example, the T112 for diffusion into thin but twisted
longitudinal muscle strips of guinea pig ileum is longer

than that for whole guinea pig ileum (164). Finally,

changes in the effective extracellular space must be con-

sidered for drugs that have no visible effect on muscle

tone but do nevertheless affect T112 for diffusion (650).
The effects of diffusion on drug entry into tissues are

not in themselves capable of seriously affecting the meas-

urement of drug receptor parameters. However, these
factors, when coupled to an active uptake process for

drugs within the isolated tissue, take on a new dimension

of relevance to in vitro experiments.
2. Drug Removal Processes in Isolated Tissues. When

a tissue possesses an active removal mechanism for a

drug then the response to that drug is governed by the

steady-state concentration of the drug in the receptor

compartment which in turn is controlled by the relative

rate of drug entry (by diffusion) and removal (by tissue

uptake). Depending upon these relative rates there could

be a constant deficit of drug at the receptor when Corn-

pared to the concentration in the organ bath. Thus, if

the rate constant for tissue uptake of a drug exceeds the

rate constant for diffusion into the tissue by a factor of

10, then a 10 sM drug concentration in the organ bath

translates to a steady-state concentration at the receptor

of 1 zM; i.e., tissue uptake shifts concentration-response

curves of agonists to the right. Inhibition of tissue uptake

corrects this deficit and allows more of the drug added

to the organ bath to reach the receptor thus the concen-

tration-response curves to agonists taken up by tissues
shift to the left after inhibtion of the tissue uptake
processes, i.e. tissue sensitization to the agonist. This

type of sensitization, termed deviation supersensitivity

by Fleming (216), should be distinguished from changes
in tissue sensitivity brought about by changes in stimulus

response mechanisms. The maximal deviational sensiti-
zation obtained in any one tissue reflects the effective

importance of uptake in that tissue (the magnitude of

drug deficit at the receptor) and is controlled by those
factors which control the rate of drug entry (D, A, L) and

(7) removal (the Km and Vmax of an uptake process described

by Michaelis-Menten kinetics).

Differences in the factors reflecting tissue size and

morphology (A, L) can cause differences in the effects of
uptake within a given tissue type. Ebner and Waud (191)
have derived a useful model to describe certain effects of

tissue geometry on the observed sensitization of tissues

to agonists. Thus, variable tissue thickness (L) was ex-
pressed as an increased volume to surface area ratio ( V/

5). Eq. 8 describes the concentration of agonist in the
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receptor compartment [A1] as it relates to the concentra-

tion in the organ bath [A0] for a tissue of volume V,

surface area 5, with an uptake process having a Michae-
lis-Menten constant designated Km and maximal velocity

of uptake Jm (191).

[A1] = -#{189}[-[A0] + Km + (Jm/kin)(V/S)]

+ #{182}1’/4[[Ao] + Km + (Jm/kin)(V/S)]2 + KmEA0] (8)

where kn refers to a permeation constant encompassing
diffusion and tortuosity. Note how the concentration of
agonist in the receptor compartment [A1] relates to the

concentration in the organ bath [A0], the avidity of
uptake (Jm, Km) and the diffusional (kn) and geometrical

( V/S) characteristics of the tissue. Ebner (189) used
Eq. 8 to calculate the theoretical deficit of agonist at the
receptor produced by an uptake process with given values
of (Jm/kin), (V/S), and Km. Figure 4 shows the relation-
ship between the concentration of an agonist in the organ

bath and the concentration at the receptor (extracellular
space). This figure illustrates the three general regions
of deficit of agonist in the receptor compartment: 1) at

concentrations of [A0] below the effective Km for agonist
uptake, there is a constant ratio between the steady-
state concentration at the receptor and that in the organ
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FIG. 4. The effect of agonist uptake on concentrations of agonist in

the receptor compartment. Ordinates: Logarithms of molar concentra-

tions of agonist in the extracellular space (receptor compartment).

Abscissae: Logarithms of molar concentrations of agonist in the organ

bath. Relationships shown for uptake processes with various rates and

tissues with various geometrical shapes (V/S). Reprinted with permis-

sion from Ebner (189).

bath; 2) as the concentration of agonist in the organ bath

approaches, equals, and surpasses the effective Km of
uptake in the tissue, the concentration in the receptor

approaches the concentration in the organ bath (nonlin-

ear portions of the curves in figure 4); and 3) when the
concentration of drug in the organ bath is well above the

effective Km of uptake in the tissue, then uptake is
saturated and the concentration of agonist at the recep-
tor equals the concentration in the organ bath. Ebner

and Waud (191) used Eq. 8 to predict the effects of

various ratios of V/S on concentration-response curves.
Figure 5A shows that as V/S increases, concentration-

response curves shift to the right and become steeper
than the concentration-response curve to the agonist
which would be obtained in the absence of uptake. In an

elegant series of experiments, they then went on to
correlate the sensitivity of guinea pig papillary muscles

to norepinephrine with the thickness of the muscle (fig-
ure SB), a positive correlation which graphically illus-

trated the tangible effect of V/S on uptake and the
estimation of agonist potency.

When dealing with complex whole tissues, certain
other geometrical factors become important such as
whether the uptake process functions as an effective

diffusion barrier (356) and the relative geometry of up-
take and receptors (643). Ingenious experiments with
techniques such as surface-selective perfusion of blood

vessels (169) and inhibition of diffusion into strips (499)

or rings (448) by application of selective diffusion bar-

riers have demonstrated nonhomogeneously distributed

removal mechanisms in vascular smooth muscle. For

example, the greater sensitivity of perfused rabbit ear

artery to norepinephrine when applied to the intimal
rather than the adventitial surface (170, 172, 355) has

been attributed to the nonhomogeneous distribution of

adrenergic innervation in this tissue (170, 172). A non-

homogeneous distribution of neuronal and extraneuronal

uptake mechanisms has been proposed for rabbit aorta

(65, 66, 420, 500). Heterogeneity in the relative location

of uptake processes within a tissue can be compounded
by uneven sensitivity of muscle cells to agonists within
the tissue. This latter factor has been proposed for rabbit

aorta (501) and sheep carotid artery (279).

The aspects of heterogeneous distribution of uptake

processes that are relevant to drug receptor responses

relate to the relative geometry of the sites of uptake and
the receptors. For example, considering the neuronal

uptake of catecholamines as the site of loss, Trendelen-

burg (643) shows the poor correlation between the den-
sity of adrenergic innervation of tissues and the sensitiv-

ity to norepinephrine and highlights the correlation of

sensitivity to neuromuscular interval (the distance from
the nerve terminal to the muscle) given by Verity (676).

It should be noted that neuromuscular distance may be

superseded in importance in some tissues by asymmetry

of innervation [i.e., rabbit ear artery (170, 174)]. Relative
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FIG. 5. Effect of geometry on sensitivity of tissues to agonists

subject to uptake. A. Calculated effects of various geometrical shapes

(V/S). Ordinates: Response calculated by a general logistic function E

= 100 (A105)/(A105 + 1.5#{176}�).Ordinates: Logarithms of agonist concen-

tration. A, calculated from Eq. 8 with k,,, = 3, J,.,,jh� = 300. Different

curVes show the effects of changes in V/S (Eq. 8). B. Correlation

between geometry and sensitivity. Ordinates: Logarithms of molar

concentrations of norepinephrine required for half maximal response

in guinea pig papillary muscle. Abscissae: Volume to surface ratios

assuming a cylindrical shape for muscles (n = 34). Reprinted with

permission from Ebner and Waud (191).

geometry of uptake and receptors can lead to some ex-
traordinary effects such as different effective receptor

compartments for the one drug in one tissue acting on

different receptors. For example, in the dog saphenous
vein Guimares and Paiva (286) have postulated different

biophases for a- and /3-adrenoceptors, the a-adrenocep-

tors being closer to nerve terminals. A similar proposal
describing the opposite situation has been described in
rabbit facial vein where the /3-adrenoceptors appear to

be more under the influence of nerve terminals than a-
adrenoceptors (703). In general, there is a considerable

body of evidence which suggests different receptor corn-

partments for a- and /3-adrenoceptors in vascular smooth
muscle (287) and guinea pig cardiac muscle (190, 191).

3. Consequences of Uptake Inhibition in Isolated Tis-

sues. The previous discussion has considered how an
uptake mechanism for an agonist in a tissue coupled with

various diffusion parameters can combine to produce a
deficit of agonist at the receptor with respect to the

concentration in the organ bath. Under these conditions,
the potency of that agonist will be underestimated. To
measure the true potency of an agonist for which the
tissue possesses an uptake mechanism the uptake mech-
anism must be adequately inhibited or made otherwise

inoperative. Inhibition of agonist uptake produces sinis-
tral displacement of the concentration-response curve to

the agonist if the conditions regarding the relative rate
constants for uptake and diffusion are favorable and the

concentrations of agonist in the organ bath do not satu-

rate the uptake process (i.e., [A]1 << Km). In a poorly
coupled tissue where very high agonist concentrations
are required to produce responses, intuitively it might be

supposed that a saturable uptake process may not be an

important determinant of tissue sensitivity since pre-
sumably the high agonist concentrations would saturate

uptake. However, the concentrations required to saturate
uptake in a structured isolated tissue may differ from
those predicted from biochemical experiments. There are
two possible reasons for this. Firstly, the true Km for the
uptake process in a tissue may be greater because’of the

stationary water layer surrounding all isolated tissues in

an organ bath. This layer functions as a diffusion barrier
and can cause low permeability coefficients for transport
processes and a higher than normal Km (702). The thick-

ness of this unstirred layer, estimated in tissues to be
from 70 to 220 �m, can be made larger by an increase in
the viscosity of the bathing medium (164) and decreased

by stirring (165). For example, the thickness of the
unstirred layer for rat jejenum decreased from 198 zm to
141 �m and in rat ileum from 217 �m to 159 �tm with

stirring (702). The half-time for diffusion (T112) is related
to the thickness ofthe unstirred layer (d) by the following

equation (702):

0.38d2
ti!2 = D (9)

where D is the coefficient of diffusion of the drug in free
solution. Eq. 9 shows the effects that large unstirred

layers, and therefore lack of stirring in the organ bath,
can have on diffusion of drugs into the tissue.

The unstirred layer can grossly affect Km of an uptake
process in a tissue. The differences between the Km

observed in an isolated tissue and that obtained in a
well-mixed biochemical experiment (difference = �Km)

is given by (589):

AU � max
�‘�m D
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It can be seen from Eq. (10) that the greater the maximal
velocity of the uptake process and the larger the thick-
ness of the unstirred layer (d), the more disparate is the

Km in isolated tissues from the biochemical estimate.

Henseling (308) has pointed out that in rabbit aorta,
diffusional barriers falsify the kinetic constants for the
uptake of [3H]norepinephrine and noted a steep concen-
tration gradient of norepinephrine within this tissue if
entry was restricted to one surface only.

A disparity between the effective Km of the uptake
process in the tissue and a biochemical estimate can

occur also because of the concentration gradient of sub-
strate created by the combination of ordered matrix of

uptake sites in a tissue and slow diffusion. Thus, while a
concentration of drug greater than the Km may be present
in the organ bath, the fact that the drug must pass
through a matrix of uptake sites which depletes the
concentration as it diffuses into the tissue may produce
a large deficit between the concentration in the organ
bath and that in the tissue (317). The importance of this
effect is, as expected, dependent upon the relative rates
of diffusion and uptake (281):

i��d-1_( Vmax (12-r2
[A0] \n.D’.[Ao]

where [A1] is the concentration of substrate at point r in
a tissue of radius 1, [A0] is the concentration of substrate
in the bathing medium, Vmax the maximal velocity of

uptake and D’ the diffusion coefficient of the drug in the
muscle (i.e., X2.D). For this equation it is assumed that
[A0] � Km and n = 2, 4, 6 depending upon whether the
tissue can be approximated by a slice, cylinder, or a
sphere, respectively. Thus, in the case of a very high
[A0], [A1]/[A0] will approach unity but under conditions
where [A0] is already greater than Km, and especially
when Vmax �S high and diffusion is slow, a concentration
gradient of substrate can still be formed in the tissue.
There are examples of this effect in isolated tissues where
it was found that the apparent Km for the degradation of

acetylcholine by acetylcholinesterase in rat diaphragm
(460, 461) and guinea pig ileum (462) was 10 times greater
than that in tissue homogenates. These disparities arise
because the concentrations of acetylcholine in the extra-
cellular space are considerably lower than those in the
organ bath. Green (281) gives numerous other examples
of this phenomenon.

The quantitative relationship between the degree of
uptake inhibition by a competitive inhibitor of uptake I

(with an equilibrium dissociation constant for the site of
uptake of K1) can be predicted from an equation based
on models by Waud (685) and Furchgott (232). Thus,
assuming [A ]‘ � Km, the sensitization of a tissue to an
agonist can be predicted by (367, 371):

/ [I]

�k’ �
[I]

y+k;

where [A ] and [A ‘] refer to equiactive molar concentra-

tions of agonist before and after uptake inhibition, re-

spectively, and the ratio [A]/[A ‘], designated x, refers to

the sensitization of the tissue to the agonist produced by

uptake inhibitor [I]. The maximal sensitization obtain-

able in any tissue (after complete inhibition of uptake,

[I] � K1), designated y, is given by (232):

max

�‘ktKm � ( [A]1\�1 (13)
�\1 + Km)

In this equation, Vmax and Km refer to the maximal

rate of uptake and the equilibrium dissociation constant

of [A ] for the uptake sites. The term k� is a transfer rate

constant [the reciprocal of the resistance term used by

Waud (685)]. Before considering the quantitative rela-

tionship between tissue sensitization (x) and uptake

inhibition some interesting aspects of the maximal sen-

sitization (y) should be noted. From Eq. 13 it can be seen

that if [A]1 � Km, i.e. if the concentration of agonist

saturates uptake, then y will tend toward unity. In this

case, the saturation of the uptake process allows no

effective removal and therefore no deficit of [A ] at the

receptor and no sensitization will be observed upon up-

take inhibition. Large maximal sensitizations will occur

if the tissue has a high maximal rate of uptake (large

Vmax) or poor diffusion characterisics (low kr). The dif-

fusion characteristics depend upon geometrical and mor-

phological factors and since these can vary within the

same tissue type (i.e., with age of animal, variations in

the removal of access barriers such as fatty tissue or

adventia), variance in y, the maximal sensitization ob-

tamable, could be expected to occur. For example, the

maximal sensitization of guinea pig trachea to isoproter-

enol after inhibition of extraneuronal uptake can be quite

variable [5.0 (483); 8.5 (367); 30 (222)]. Figure 6A shows

theoretical concentration-response curves for two tissues

both with identical uptake processes (equal Km and Vmax).

However, the diffusion characteristics differ in that k�

for tissue II is 0.1 x k� for tissue I. The slower diffusion

into tissue II produces a 10 times greater deficit of agonist

at the receptor; i.e., the potency of A in tissue I is 10
times greater than in tissue II (curve A). This calculation

illustrates that diffusional differences alone can produce

varying effects of an uptake process with a given Km and

Vmax in a variety of tissues. This is shown by the differ-

ences between the true concentration-response curves to

the agonist and the observed potency as distorted by the

uptake process.

The relative rates of uptake and diffusion also have

relevance to the concentrations of uptake inhibitor re-

(12) quired to completely inhibit the uptake process in a
tissue. From Eq. 12 it can be seen that the larger is y,

the greater must [I]/K1 be to produce maximal sensiti-
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zation. Figure 6A shows that a given concentration of
TISSUE II uptake inhibitor ([I]/K1 = 30) produces very near maxi-

y : 50 mal sensitization for tissue I but less than maximal

/______� /________/___ sensitization in tissue II (compare curves B and C for
7 7 7 each tissue). The dependence of tissue sensitization, as

I I I a fraction of the maximal sensitization possible, upon

I 7 7 the concentration of uptake inhibitor is shown in figure

B A 6B for a series of tissues with different maximal possible
sensitizations (variable y). Note that for tissues that
demonstrate a low maximal sensitization to agonists (y
= 2), the concentration of uptake inhibitor required for

near maximal sensitization (i.e., 90%) is 10 times the K1

for uptake inhibition. This concentration of uptake in-
hibitor would produce only 20% maximal sensitization

in a tissue with a large maximal sensitization (i.e., y =

50) (367). In these terms it would be incorrect to extrap-
olate maximally effective concentrations ofuptake inhib-
itors from one tissue to another. Experimental evidence

for this effect was obtained by comparing the sensitiza-
tion ofvarious tissues from guinea pigs to norepinephrine
produced by cocaine (see figure 6C).

A logarithmic metameter of Eq. l� can be used to

estimate the effective K1 for an uptake inhibitor in an

isolated tissue (371),

log[Y����)] = log[I] - log KI (14)

where x is the sensitization of the tissue to the agonist

produced by concentration (I) of the uptake inhibitor

andy the maximal sensitization after complete inhibition

of uptake (see insert figure 6C). This method was used

to measure the K1 for inhibitors of neuronal and extra-
neuronal uptake of catecholamines (371) and the inhi-
bition of adenosine uptake by benzodiazepines (372) in

a variety of isolated tissues and yielded values compara-
ble to those measured biochemically. On the surface,
these results suggested that Eq. 14 could be used as a

quantitative method to estimate uptake inhibitor po-

tency in isolated tissues. However, it is difficult to assess
the significance of these findings since there are theoret-
ical reasons for the estimates obtained by this method
and biochemical methods to be different. These theoret-

inhibitor (A), in the presence of a submaximal concentration of uptake
inhibitor [1)/K1 = 30 (B), and when uptake completely blocked (C).

Reprinted with permission from Kenakin and Leighton (389). B. Sen.

sitization as a function ofconcentration ofuptake inhibitor. Ordinates:
Sensitization of tissues to agonist an a fraction of the maximal possible

sensitization. Abscissae: Molar concentration of uptake inhibitor as a
fraction of the equilibrium dissociation constant of the inhibitor for

the site of uptake. Curves calculated for tissues with varying amounts

of maximal sensitization (y = 2 to 50). C. Sensitization of guinea pig
tissues to norepinephrine an a function of the concentration of cocaine.

Ordinates: Sensitization to norepinephrine an a fraction ofthe maximal

sensitization. Abscissae: Molar concentration concentrations of co-

caine. Guinea pig left atria (0, n = 20), trachea (#{149},y = 11, n = 15)

data from Kenakin (367); right atria (#{149},y = 13) data from Trendelen-

burg (641); trachea (�, y = 36) data from Foster (222). Bars represent

S.E.M. Figures B and C reprinted with permission from Kenakin (367).
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ical aspects relate to the differences in the diffusional

pathways of substrate (agonist) in pharmacological and

biochemical experiments. Biochemical estimates of the

potency of inhibitors of active removal processes can

vary, the magnitude of the variation being dependent
upon the importance of the formation of substrate con-

centration gradients within the tissue. If diffusion and
substrate uptake and/or degradation limits the entry of
substrate into the tissue, then inhibition of the removal

process may increase the degree of penetration of sub-
strate which in turn would distort the estimate of the

extent of inhibition of the removal process (281). For

example, in a tissue homogenate, where substrate con-
centration gradients would not be expected to occur, 80%

to 90% inhibition of acetylcholinesterase by DFP is

required before acetylcholine effects are potentiated (48).

However, in a structured tissue, concentrations of DFP
which inhibit acetylcholinesterase by 20% are sufficient

to potentiate responses to acetylcholine (195, 303). This
disparity may be due to the fact that inhibition df an
outer core of acet�rlcholinesterase may enable acetylcho-

line to penetrateinto and stimulate more muscle (281).
Thus, the biochemical K1 and concentrations of uptake

inhibitor required to potentiate responses may not be the

same.
The selectivity of the uptake inhibitor is of paramount

importance in isolated tissue experiments. Theoretical

� calculations show that an extraordinary degree of selec-

tivity is required for an uptake inhibitor to fully poten-

tiate the effects of an agonist in a tissue (367). For

example, if the uptake inhibitor were a very weak recep-

tor blocking agent (i.e., at concentrations 100 times those
needed for uptake inhibition), complete sensitization
would not be observed at any concentration. The receptor

blocking properties would become manifest at the high

concentrations of uptake inhibitor ([I]/K1 > 300) re-

quired to fully inhibit uptake processes in some tissues
and produce shifts of the concentration-response curves

to the right thereby cancelling deviational sensitization.

Examples of uptake blockers which also antagonize re-

ceptors can be found in metanephrine [pK1 for extraneu-

ronal uptake = 5.4, PKB for /3-adrenoceptors = 4.2 (367)]

and amitriptyline [pKj for neuronal uptake = 7.2, PKB

for a-adrenoceptors = 7.0 (380)]. In guinea pig trachea,

metanephrine produces only 3% of the maximal possible

sensitization to isoproterenol, a value consistent with the
relatively low selectivity ratio (16 times) of potency for

uptake over receptors (367). In rat anococcygeus muscle,
virtually no sensitization to norepinephrine can be ob-

served with amitriptyline probably because of the corn-

parable potency of this drug for uptake inhibition and

the PKB for a-adrenoceptors (380, 415).
Most commonly, uptake inhibition produces sensiti-

zation of tissues to agonist substrates with no increase

in maximal responses. This is to be expected if contrac-

tion coupling in the tissue is efficient and not all of the

muscle mass needs to be activated by the agonist to

produce the maximal response. There is experimental

evidence in many isolated tissues that this is the case.

For example, in the cat papillary muscle it has been

shown that activation of the superficial muscle layers is
sufficient to activate the complete muscle (51, 327, 672)

and myogenic propagation has been proposed in blood

vessels as well (69).

To date, there are two examples where inhibition of

uptake processes in isolated tissues produce increases in

the maximal responses of isolated tissues to agonists.
One is in the dog saphenous vein where inhibition of

catechol-O-methyl transferase increases the maximal re-

laxation obtained with isoproterenol, an effect more ev-

ident in thick rather than thin tissues (284). Another is

the rat vas deferens where inhibition of neuronal uptake

by either cocaine or desmethylimipramine increases the

maximal responses to norepinephrine but not those to

methoxamine (368). The mechanisms responsible for

such increased maximal responses are not clear but a

reasonable hypothesis could involve desensitization as a
causative factor. In tissues with poor diffusion charac-

teristics, severe concentration gradients for agonists

could develop (as discussed previously) thereby causing

the outer shell of muscle cells to be exposed to a much

higher concentration of agonist than the inner core. This,

in turn, could induce rapid receptor or muscle desensiti-

zation at the surface of the muscle. If cell-to-cell coupling

within the muscle is poor and a large body of cells needs

to be activated by agonist to produce the maximal re-

sponse then the concentration gradient and desensitiza-

tion process could combine to produce a condition
whereby the mass of tissue needed to be activated for

maximal response may never be achieved. Thus, the true

tissue maximal response may not be realized until after

the removal of the agonist concentration gradient by

uptake inhibition. The rat vas deferens may be a tissue

prone to such effects since cell-to-cell coupling is poor

(277) and desensitization rapid (472, 695). A concentra-

tion gradient for catecholamines is further suggested by

the 40 times greater estimate of the K1 for cocaine

inhibition of neuronal uptake, when compared to other

tissues, in rat vas deferens (187). A concentration differ-

ential for norepinephrine within this tissue is supported

by two findings by Pennefather who observed that the

maximal response to exogenously added but not neuron-

ally released norepinephrine was increased by cocaine

(513) and that, after desensitization of this tissue by

incubation with high concentrations of exogenous added

norepinephrine, the maximal responses to nerve stimu-

lation were larger than the maximal responses to exoge-

nous norepinephrine (512). Both results would be

predicted if the muscle mass activated by exogenous

norepinephrine and neurally released norepinephrine

were different.
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Iv. Quantification of Responses to Agonists

A. Dose-Response Curves

All parameters of drug receptor interaction are derived
from models which in one way or another rely upon dose-
response curves. A dose-response curve can essentially

be described by three parameters: a maximum ordinate,
a location parameter, and slope. There are many factors

not related to drug receptor interaction which can affect
these parameters (410, 514), thus reliable information

about drug receptor constants cannot be obtained di-
rectly from the dose-response curve. Instead, null meth-

ods have been devised which neutralize the unknown

influences of stimulus-response mechanisms on tissue
responses. Various non-receptor-related phenomena can

still confound these methods by affecting the dose-re-

sponse parameter from which most, if not all, drug re-

ceptor information is derived, namely the location pa-
rameter of the dose-response curve. This parameter de-
fines the concentration at which a defined dependent

variable, a certain level of response, is obtained. The
most commonly used location parameter is the EC5O
(effective concentration for 50% of maximal response)
which serves as the measure of potency of an agonist.

Obviously, the success of a pharmacological procedure
is contingent upon accurate location parameters for dose-

response curves. One of the most common sources of

potential error is a disparity between the agonist concen-
tration added to the organ bath and that which is present

at the receptor; this problem has been dealt with in
previous sections of this paper. Other possible problems
involve random or systematic alterations in stimulus-

response characteristics or receptors to produce errors in

location parameters. Systematic decreases in tissue sen-
sitivity can occur with time and frequency of exposure

to an agonist, a phenomenon often given the term “de-

sensitization.” This can be because of receptor events
such as an agonist-induced conformational change of the

receptor into a less sensitive form (179, 358) or a non-
selective event [i.e., “fatigue,” (684)]. For example, the
ionic content of smooth muscle changes after exposure
to acetylcholine (508), a factor which could contribute to
altered muscle sensitivity. The change need not be a
decrease in responsiveness. In some tissues, response can
be increased, such as the three-fold increased maximal
response to a-adrenoceptor stimulation observed over a

7.5-h equilibration period in the guinea pig oesophageal

muscularis mucosa (646). Spontaneous muscle tone adds

another dimension of complexity to isolated tissue ex-

periments. For example, the sensitivity of guinea pig
trachea to relaxants is greatly affected by the degree of

contractile tone of this muscle (105, 106). If during the

course of the experiment this were to change, a sys-
tematic error in the location parameters of the concen-

tration-response curves to relaxants in this tissue would

be introduced.
Dose-response curves can be obtained by addition of

single concentrations of agonist to the organ bath (either

in a random or ascending order) or by cumulative addi-

tion of concentrations (661). Different tissues are more

suited to one or the other method. For example, the rat
vas deferens is notorious for rapid desensitization to

agonists (472, 695), thus a single-dose addition procedure

with adequate quiescent periods between doses gives

much more satisfactory results than does cumulative
addition. Guinea pig parenchymal strip also demon-

strates different sensitivity to agonists depending upon
whether random single-dose or cumulative-dose proce-

dures are used (93). Tissues with slowly developing

responses such as guinea pig trachea or rabbit aorta are

more suited to cumulative concentration-response

curves.

Uncontrolled changes in tissue sensitivity can be dev-

astating to pharmacological experiments designed for

drug receptor analysis. Control experiments considering

these factors should be carried out to determine proce-
dures to minimize such changes. Furchgott (238) suggests
a “bracketing” procedure of a concentration-response
curve of a standard before and after the test agonist.

Another possibility would be the use of matched prepa-

rations for comparisons of single concentration-response

curves or correction for changed sensitivity in untreated

tissues. These latter procedures involve tacit assump-

tions which subordinate them to the use of a stable tissue

that can function as its own control.

Agonist potency is most often measured by the EC5O

(-log EC5O = pD2). The statistical parametric proce-

dures designed for determination of differences in po-

tency are based upon normal distributions, thus it is
important that, when dealing with log normal data from

semi-logarithmic concentration-response curves, geo-

metric means be used. These, unlike converted EC5O

data, are normally distributed and give proper estimates

of the means and errors (218, 245, 246).

There are numerous ways to analyze data from dose-
response curves (687, 688, 690). A method used to mini-

mize subjective errors is to fit the data to a general
logistic function (175, 687, 689). The threshold concen-

trations at the lower end of the dose-response curve are

often especially subject to error. Where accurate corn-

parisons in this region of the dose-response curve are

required, a linearizational method such as the logit func-

tion (59, 197) may be useful (675). On the other end of
the dose-response curve, the maximum response at infi-

nite dose can be estimated by a double reciprocal meta-

meter (153, 508). This transformation relies on the good-

ness of fit of the data to a hyperbola and assumes this

function describes the dose-response relationship to the

maximum.

Once quantitative data is obtained from the dose-

response curve which reliably reflects agonist receptor

interaction, then a variety of statistical methods and
procedures may be applied to the data (111, 114, 182,



246, 615). From this point onwards in this paper, unless
stated otherwise, it will be assumed that 1) the responses

of the isolated tissue emanate only from agonist added
directly to the organ bath, 2) the concentration of drug

at the receptor is equal to the concentration of drug
added to the organ bath, 3) the responses of the tissue
are a direct result of drug receptor interaction, and 4)

these responses are not modified unpredictably by the

stimulus response mechanism of the tissue or any other

factor. Under these circumstances (exclusively) can re-
liable information about drug receptor interaction be

obtained. As a preface to the discussion of the methods
available to do this, a brief review of the rudiments of
drug receptor theory is useful.

B. Drug Receptor Theory

The ideas and models, which on a molecular level serve

to characterize the interactions of drugs with drug recep-
tors, will collectively be referred to as drug receptor

theory. There are numerous comprehensive reviews of
this topic to which the reader is referred for more detailed

information than will be given here (21, 228, 229, 232,

551, 654, 655, 684). Various models have been put for-
ward to explain the complexities of drug receptor inter-

action, the most common one being occupation theory
where it is assumed that the occupation of a receptor by
a drug leads to stimulus and subsequent response. An

alternative to this hypothesis is rate theory (506) which
assumes efficacy to be a product of the rate of drug
receptor interaction. These approaches are given conti-
nuity in the receptor inactivation theory proposed by

Gosselin (275, 276). Other approaches include the con-
formational perturbation theory (54), the dynamic recep-
tor hypothesis (83), the flux carrier hypothesis (428), the
ion exchange model (620), and the mobile receptor by-

pothesis (56, 160, 347). Allosteric two-state models of

receptors also have been proposed (125, 357, 627). A

particularly useful comparison of the variants of allo-
steric models to each other and to occupation theory has
been given by Colquhoun (143). Convenient comparisons

of all of these models have been given by MacKay (431),
Gosselin (276), and Ruffolo (551). The following analyses
and procedures are derived from occupation theory but
it should be noted that the resulting parameters calcu-
lated often correspond to similar constants in other

receptor theories.
The Law of Mass Action is used to describe the binding

of drugs to receptors (132, 133, 314, 411):

Although this appears to be the case for many drug
receptor interactions there are exceptions to this scheme.
For example, two molecules of acetylcholine must bind

to two apparently identical but cooperatively linked sites

on a single nicotinic receptor in skeletal muscle to open
the ion channel (580A). The concept of full and partial

agonism was introduced by Ariens (20) in the form of a

proportionality constant termed “intrinsic activity” (a):

(16)

where EA and Em refer to the response to a given concen-

tration of A and the tissue maximal response, respec-
tively. On the basis of the idea that response was not
necessarily directly proportional to receptor occupancy,

Stephenson (599) introduced the concept ofstimulus (S)
which assumed that response was some undefined func-
tion of stimulus:

(17)

the requirements for the function being that it be mon-

otonic and continuous. Thus responses in a given tissue
could be produced by concentrations of two agonists that

produced equal stimuli regardless of their relative recep-

tor occupancy. The parameter that related stimulus to

occupancy was termed “efficacy” (e):

:��?�_ ( e.[A] 18

Em ��[A] + KA

Implicit in this hypothesis was the fact that, given a
nonlinear relationship between stimulus and response,
not all of the receptors need be occupied to produce the

tissue maximal response.
As defined by Stephenson (599), efficacy was a drug

an4 tissue dependent term. Furchgott (229) modified this
model to differentiate the drug and the tissue factors of
efficacy by defining intrinsic efficacy(e):

e=e.[R�]. (19)

In these terms intrinsic efficacy was strictly a drug-
related parameter which should be constant for given

drug receptor pairs across species and tissues (373). The
various tissue and receptor-related factors of agonist
response are defined in Eq. 20:

�- (e.[R�].[A] 20

Em’\[A]+KA

(15) Thus, the tissue-related factors are 1) f, the function

relating stimulus and response, and 2) the total receptor

concentration (Ri]. The receptor-related factors are 1)
KA, the equilibrium dissociation constant of the drug for
the receptor, and 2) e, the intrinsic efficacy. Insofar as
the agonist may be removed from the receptor compart-

ment by the tissue, [A ] may be influenced by tissue

where [Re] refers to the total concentration of receptors,

[A . R] the concentration of drug receptor complex, and

KA the equilibrium dissociation constant of the drug for
the receptor. Implicit in Eq. 15 is the assumption that a

single drug molecule binds to a single site on the receptor.
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[A.R] [A]

[Re] - [A] + KA

E,�a[A.R] a.[A]

Em [Ri] [A]+KA

�=f(S)



factors but if meaningful drug receptor parameters are for other partial agonists, a hyperbolic relationship can
to be estimated, these influences must be minimized. The be demonstrated. This has been shown for oxymetazoline

following analyses are all aimed at defining various con- in rat aorta (551), normorphine in ileum from morphine

stants describing solely drug receptor parameters by tolerant guinea pigs (522) and pirbuterol and prenalterol

utilization of null methods which cancel the tissue fac- in rat atria (383). There are two factors that determine

tors. As a preface, a discussion of some of the factors the efficiency of the stimulus response mechanism in a

relevant to the translation of receptor stimulus to tissue tissue: the number of receptors and the nature of the
response is appropriate. functions which translate receptor stimulus into tissue

C. The Relationship between Stimulus and Response

The simplest relationship between receptor stimulus

and tissue response is a linear one (direct relationship)
and for some weak partial agonists this may be an

accurate approximation (551). However, there is a wealth

of evidence to suggest that in many isolated tissues the
relationship between receptor occupancy (by the occu-

pation model this is a direct function of stimulus) and
tissue response is nonlinear. This has been proposed on

theoretical grounds (599) and also is suggested by the

fact that irreversible inactivation of a fraction of the
available receptor pool can lead to dextral displacement
of concentration-response curves to strong full agonists

with no concomitant depression of the maximal response
(27, 228, 229, 474, 673). This phenomenon is cited as

evidence for “spare receptors” (receptor reserve, spare

receptor capacity) in tissues, the rationale being that if

an alkylating agent inactivates 99% of the viable recep-
tors and the agonist still produces the tissue maximal
response then 99% of the receptor population is “spare”;

i.e., not required for the production of the maximal
response. The term “receptor reserve” (spare receptors)

is sometimes associated with tissues; e.g., the guinea pig

ileurn may be said to have a cholinergic receptor-reserve

but, of course, this term cannot be applied generically to

tissues but rather must be associated with a given agonist
and tissue. Thus, the receptor reserve for two agonists
in one tissue may be quite different.

response. It is worth considering these separately.
� Tissue Response as a Function of Stimulus. Since

stimulus is a linear function of intrinsic efficacy, receptor
occupancy and receptor number, the function relating

stimulus and response must produce the nonlinearity
between receptor occupancy and response if such is ob-

served Amplifier systems are common in biological sys-

tems (25, 271, 541) and ifone step in the amplifier system
reaches saturation, then a spare capacity results. Such
systems hold advantages since they allow amplification

and alternative regulatory input (271). A successive se-

ries of nonlinear functions where the product of one
saturable process becomes a substrate or catalyst for the
next saturable process provides for a much more skewed

relationship between receptor occupancy and response
than any one of the individual processes (541). A well-
kno� cascade of this type is the formation of glucose

by /3-adrenergic drugs. In this system an amplification
factor ofeight orders of magnitude can be achieved (271),

thus demonstrating a striking disparity between receptor
occupancy and tissue response (figure 7).

There have been several mathematical models put
forth to describe the nonlinear relationships between

hormone binding and biological response which focus on

the coupling between receptor and effector subunits (58,
� 229, 347, 355). An interesting model that centers on
the sequential nature of the second messenger theory has
� put forward by Strickland and Loeb (605). This
model is based on the interaction of the hormone with

Since the advent of pharmacological procedures to
estimate the equilibrium dissociation constants of full
agonists and the refinement of biochemical binding stud-

ies, quantitative evidence for nonlinear relationships be-
tween receptor occupancy and tissue response has accu-
mulated. Table S shows examples of isolated tissues and
drugs for which there is a disparity between the concen-
trations required for half maximal binding to receptors

and those required for production of half maximal re-
sponse. A plot of tissue response as a function of receptor

occupancy for these full agonists (by the Langmuir ad-
sorption isotherm) demonstrates a necessarily nonlinear

the receptor leading to the generation of an intracellular
intermediate which interacts with an intracellular recep-
tor to generate a response. The interesting aspect of this
model is the mathematical consequence that the equilib-

rium dissociation constant for the overall process (KT0�l)

must be lower in magnitude than the equilibrium disso-
ciation constant of the hormone binding to the extracel-

lular receptor (Kd). Thus (605):I K

KTOthl = �K + a . R�,

function typically hyperbolic in shape [for example, see where K is the equilibrium dissociation constant for the
Besse and Furchgott (64)]. The steepness of this hyper- binding reaction between the intracellular mediator and

bolic function reflects the efficiency of the stimulus- intracellular receptor, a is a proportionality constant

response mechanism in the tissue. It should not be as- reflecting the size of the pool of intracellular mediator
sumed that for drugs that have no receptor reserve (par- and R� is the number of extracellular hormone receptors.
tial agonists) the relationship between receptor occu- It can be seen from Eq. 21 that the concentration-
pancy and tissue response is linear. For some weak response curve for the overall process must lie to the left

agonists a direct relationship is observed (387, 551) but of the receptor occupancy curve along the concentration
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TABLE 5
Relationship between EC5O and equilibrium dissociation constants of agonists

A. K4 Measured Pharmacologically5

Receptor Species Tissue Agonist -Log (EC5O) PKA Reservet References

Muscarinic Guinea pig Ileum Acetylcholine 7.23 5.6-5.1 190-398 (560)

Carbachol 7.3-6.5 4.92 38-240 (235)

Pilocarpine 6.3 5.35-5.48 6.6-9 (235)
Left atrium Carbachol 6.76 4.95 64 (229)

Rabbit Aorta Carbachol 6.06 4.8 18 (229)

Stomach fundus Carbachol 7.26 4.8 288 (229)

a-Adrenergic Rat

Rabbit

Anococcygeus muscle Norepinephrine 7.5
Oxymetazoline 7.5

Aorta l-Norepinephrine 7.9

7.47

l-Epinephrine 7.92

7.49

l-Phenylephrine 7.2

6.74

Papillary muscle l-Phenylephrine 6.03
Dopamine 5.63

5.66

l-Metaraminol 5.49

Spleen l.Norepinephrine 7.37

l-Epinephrine 7.47

l-Phenylephrine 5.62
Dopamine 4.47

6.3
6.7

6.47

6.8

6.69

6.53

5.95

5.9

5.5

4.2

4.8

4.8

6.13

6.62

4.87
3.89

16

6.3

21

4.7

17.2

9.1

18.3

7.0

3.4

27

7.0

5.0

17.3

7.1

5.6
3.8

(370)

(377)

(64)

(578)

(64)

(578)

(64)

(578)

(580)

(64)

(578)

(578)

(578)

(578)

(578)
(578)

Opioid Guinea pig Ileum Normorphine 6.6 5.8 6.2 (522)

Histamine Guinea pig Ileum Histamine 6.8 5.0 63 (229)

/3-Adrenergic Rabbit Papillary muscle Isoproterenol 8.5

B. K� Meanured in Binding Studies�

6.6 79 (580)

Receptor Species Tissue Agonist -Log (EC5O) pK� Reservet References

Muscarinic

a-Adrenergic

Guinea pig

Mouse

Rabbit

Rat

Ileum Acetylcholine 7.24
Methacholine 7.15

Carbachol 7.25-6.5

7.4

Oxotremorine 7.65

Bethanechol 5.95

Pilocarpine 6.3
5.9

Ileum Methacholine 6.65
Oxotremorine 6.65

Bethanechol 5.45

Detrusor muscle Carbachol 6.57

Van deferens Norepinephrine 6.92

Epinephrine 7.04

Methoxamine 5.54

Phenylephrine 5.85

5.7-5.4

5.77

4.7-4.5

4.89�

6.3

4.79

6.15-6.04
5.1

6.04
6.1

4.6

4.37

4.95

5.13

4.13

4.88

35-69

24

562-63

323

22

14.6

1.4-2
6.2

4

3

7

155

93

82

25

9.2

(235)

(612)

(235)

(109)

(612)

(612)

(235)
(612)

(612)

(612)

(612)

(11)

(456)

(456)

(612)

(456)

/3-Adrenergic Rat

Cat

Cardiocytes Isoproterenol 7.051
9.43

Dichloroisoproterenol 7.82

Papillary muscle Isoproterenol 9.1

Dichloroisoproterenol 6.7
Epinephrine 8.1

Norepinephrine 8.0

6.1
6.96

7.59

6.7

6.2
5.8

5.7

9
295

1.7

251

3.2
200

200

(535)
(360)

(360)

(360)

(360)

(360)

(360)

S Method of Furchgott (229).

t Defined as antilog [-log EC5O-pKA (or pK�)J.

§ The affinity of many agonists in radioligand binding studies is dependent upon experimental conditions and it is not yet clear which affinity

state is relevant to the pharmacological KA. Therefore, the reserves calculated may be substantially in error.

:1:Potassium and rubidium efflux.
I Adenyl cyclase activity.
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axis, the degree of shift depending upon the size of the

pool of the intracellular messenger and number of hor-
mone receptors.

In pharmacological systems, there are many examples

oftissues that demonstrate hyperbolic functions between
receptor occupancy and mechanisms which precede tis-

sue response. For example, there is evidence to suggest

nonlinear relationships between muscarinic receptor oc-

cupancy and calcium transport across cell membranes
(11, 337, 338) and potassium efflux (109). A well-known

example is the nonlinear relationship between j3-adre-

noceptor occupancy and adenylyl cyclase activation.

Thus, an “enzyme reserve” has been noted in postnatal

rat hearts (360, 535) and kitten papillary muscle (359).

There also are examples of nonlinear relationships be-

tween intermediate steps in the stimulus-response chain

and tissue response. Thus, in many tissues, submaxirnal

cyclic AMP production is associated with maximal tissue
responses (121, 360, 572, 605). Lastly, the degree of cell-

to-cell coupling may determine how much of the tissue

must be activated for syncytial responses (69, 327, 672,

674). For example, experimental evidence suggests that

isoproterenol need activate only a small fraction of the

total muscle mass of cat papillary muscle for complete

activation of the tissue (51, 327, 672, 674). In general,

there are numerous examples of saturable nonlinear

functions relating receptor occupancy and processes

which in turn initiate events leading to tissue response.

Often these events are multiple which can increase the

amplification factor. Cell-to-cell amplification factors

may further skew the nonlinear relationship between

receptor occupancy and tissue response.
2. Receptor Density. The other tissue factor that de-

termines the magnitude of the agonist response is the

number of viable receptors in the tissue. From Eq. 20 it

can be seen that the larger the number of receptors, the

more agonist response should be obtained. This also is

evident in the second messenger model by Strickland

and Loeb (605; Eq. 21). There are examples of correla-

tions between receptor density and hormonal response

(121, 250, 342, 396, 438, 450). For example, the relative

potency of oxotremorine on guinea pig and mouse ileurn

(8:1) correlates well with the number of muscarinic re-

ceptors estimated in binding studies [7.6:1 (647)]. Take-

yasu and coworkers (612) have shown a loss of sensitivity

of mouse and guinea pig ileum to cholinergic stimulation

with dibenamine treatment which parallels the reduction

in cholinergic receptors as measured by 3H-quinuclidinyl

benzilate binding. On the other hand, desensitization of

rat atria by implantation of mini-osmotic pumps deliv-

ering isoproterenol produces a reduction in �3-adrenocep-

tors that is not directly proportional to the decrease in

the sensitivity of atria to isoproterenol (388). Correla-

tions between receptor density and tissue sensitivity can

be misleading. For example, mouse thymus has 4.6 times

more �3-adrenoceptors than mouse spleen but the spleen

is 20 times more sensitive to isoproterenol (519).

V. Methods of Drug Receptor Classification

Theoretically there are numerous methods to classify
drug receptors (73, 74). For example, receptors can be
classified in terms of the different stimuli imparted to

the stimulus-response mechanism of tissues (24). There
could be further classification on the basis of chemical
messenger (26). Another approach is classification by

anatomical location, a well-known example being pre-
and postsynaptic receptors. Another case of this type of

differentiation is the relative innervation of a- and f3-

adrenoceptors being associated with receptor subtypes

(25, 26). As pointed out by Ariens and coworkers (24)
these types of classification can lead to ambiguity; the
recent discoveries ofpostsynaptic a2-adrenoceptors being
an example where classification by location is unsatis-
factory (629).

A theoretically more sound and experimentally more
fruitful approach has been classification by pharmaco-

logical criteria (73). The null methods which are used in

these procedures hopefully yield parameters for drugs
and receptors that transcend function and location and

have relevance to studies in man. There are four corn-
monly used pharmacological methods of drug and drug
receptor classification: 1) agonist potency ratios (rank
order of potency); 2) selective agonism; 3) comparison of
agonist affinity and relative intrinsic efficacy; 4) quan-
tification of competitive antagonist affinity (pKB).

It is worth considering each of these separately.

A. Agonist Potency Ratios

The relative potency of agonists has long been (41)

and is still often used for receptor classification but a
number of caveats should be made to this method.
Firstly, the effects of uptake processes must be elimi-
nated since selective uptake can produce serious errors

in agonist potency ratios. For example, the selective
potency ofsalbutarnol over norepinephrine (20:1) is elim-
mated (0.9:1) in guinea pig trachea by cocaine inhibition

of neuronal uptake (367). Leighton (415) has shown that
rank order of potency as well as potency ratios can
change in rat anococcygeus muscle after cocaine inhibi-
tion of neuronal uptake. Thus, a potency ratio of 50:1
for methoxamine over norepinephrine in this tissue was

changed to 0.2:1 after cocaine (415).
The relative potency of full and partial agonists can

vary capriciously from tissue to tissue because of van-
ances in receptor number and the relative efficiency of
stimulus response relationships. This is because differ-

ences in receptor coupling cause differences in the loca-
tion parameters of concentration-response curves to full
agonists (shifts along the concentration axis) but not

partial agonists. Instead, differences in receptor coupling
produce changes in the maximal responses to partial
agonists but little displacement of the concentration-



DRUGS AND DRUG RECEPTORS IN ISOLATED TISSUES 189

response curves. Thus, in two different tissues with iden-

tical receptors but different stimulus-response character-

istics, a full and a partial agonist may have different
potency ratios [see figure 1 of Furchgott (232)]. There-

fore, it is theoretically more sound to compare potency
ratios of full agonists.

Assuming that the KA for full agonists significantly

exceeds the concentrations required for response (KA �
[A]), then the stimulus to an agonist can be given by:
S = � . [Ri] . [A ]/KA. Therefore, in any single tissue ( [Re]

constant) the respective stimuli to agonists A1 and A2 is:

e1[A1] e2[A2]
51= �, and 52= �,

�Ai �A2

(22)

The potency ratio (pr) of these two full agonists in
producing equal responses (S� = 52) is:

[A1] #{128}2#{149}KA1
pr = - =

[A2] �l#{149}KA2
(23)

As can be seen from Eq. 23, the potency ratio for two
full agonists in a tissue (assuming an adequate receptor

reserve) reflects only the drug receptor parameters � and
KA and therefore is tissue independent. Under these

circumstances, the potency ratio is a powerful quantita-
tive constant for drug receptor classification. The impor-
tance ofpr as a quantity and not a qualitative statement
of rank order of potency should be stressed. The rank
order of potency is a crude and misleading parameter
which has limited value in drug receptor classification.

Agonists could have the same order of potency in differ-

ent tissues but a different relative potency ratio. The
quantitative data, namely the actual magnitudes of the

potency ratios, would suggest that the receptors are
different while the rank order would suggest identity of
receptors. Assuming that pr reflects relative � and KA,

the quantitative data would be correct.

A specialized approach related to agonist potency ra-
tios is the use of optical isomers to classify receptors
(517). Thus, the ratio of activities of two optical isomers
of the same drug should be unique for a given receptor

and yield an isomeric ratio for receptor classification
purposes. The reader is referred to a comprehensive

review by Patil and coworkers (504) on this method for

further details.

B. Selective Agonism

Frequently, judgments are made about the presence or

absence of a certain receptor in a tissue on the basis of
the observation of the presence or absence of responses
to a selective agonist (classified on some other tissue or

tissues). There are two settings for these types of exper-
irnents. In one, the receptors of a new tissue, as yet
unclassified, are subjected to trial by selective agonism.
In the other, a given tissue, which responds to selective
agonists, is modified either by receptor alkylation, recep-
ton desensitization, or selective modification of stimulus-

response characteristics and the resulting effects on the
responses to the selective agonists are used for classifi-

cation purposes. There are criteria to be met for either

of these procedures to be successful from the point of

view of unequivocal receptor classification.
In the first type of experiment the tissue either re-

sponds or does not respond to the selective agonist. If

the tissue does not respond it means either that the
receptors for the particular selective agonist are not

present in the tissue or that the stimulus-response mech-

anism of the tissue produced insufficient amplification
of the receptor stimulus to generate a response. An
example of the latter was observed with prenalterol, a

relatively weak �3-adrenoceptor partial agonist shown to

have affinity and efficacy for fl1-adrenoceptors (379). An

apparent paradox was observed when prenalterol pro-

duced no agonist responses in canine coronary artery, a
f31-adrenoceptor-containing tissue (46, 464, 382). How-
ever, it was found that prenalterol proved to be a corn-

petitive antagonist of isoproterenol, a more powerful

agonist in this tissue (382), and yielded a PKB consistent

with �31-adrenoceptor antagonism. These experiments

showed that the canine coronary artery simply did not

possess an adequately efficient stimulus-response mech-

anism to allow this weak f3-adrenoceptor partial agonist

to demonstrate a response.
If a selective agonist produces a response in a tissue

then this constitutes circumstantial evidence that the

receptor for which the agonist is selective is present in

the tissue. However, a distinction should be made be-

tween selectivity and specificity. To assume that the
selective agonist only has affinity and efficacy for one

receptor is to confer upon it specificity. Pharmacological

experience with drugs shows this to be the exception and

not the rule. For example, the putative fl1-adrenoceptor

selective agonists prenalterol, dobutamine, and tazolol

all produce full agonist responses in rat uterus, a tissue
generally thought to contain fi2-adrenoceptors. This ob-

servation leads to two possible conclusions: 1) the rat

uterus contains previously undetected 31-adrenoceptors,

and 2) the putative f31-adrenoceptor selective agonists

have affinity and efficacy for 92-adrenoceptors. Expeni-

ments with selective antagonists showed the second al-

ternative to be true for rat uterus (375) and illustrates

the importance of not assuming strict specificity for
agonists.

Selective desensitization of responses to a certain ago-
nist (47) or selective irreversible inhibition of responses

by an alkylating agent have been techniques used to
differentiate drug receptors in tissues. Coupled with the

technique of selective alkylation is the selective protec-

tion of drug receptors by drugs during the alkylation

process (227). However, these techniques have a major

drawback is that they can give completely misleading
information if the receptor reserves for the two agonists

concerned are different. For example, if one agonist has



a 90% receptor reserve and another a 40% recept9r
reserve, then the responses to the latter agonist will be

more sensitive to removal of portions of the receptor

pool either by desensitization or alkylation. This point
has been stressed for experiments with full and partial

agonists (684) but can be extended to two full agonists

as well. For example, consider the responses of rat ano-

coccygeus muscle to oxymetazoline and norepinephrine

(figure 8A). In control tissues, oxymetazoline is a slightly

more potent agonist than norepinephrine (uptake

blocked) but as the a-adrenoceptor population of the
tissue is irreversibly inactivated by controlled exposure

to the alkylating agent phenoxybenzarnine, it can be seen
from figure 8A that the responses to oxymetazoline, the
more potent agonist, are disproportionately more de-

pressed than those of norepinephrine (377). This is be-

cause the efficacy of norepinephrine is greater than that
of oxymetazoline; this fact makes the maximal response

to norepinephrine more resistant to decreases in receptor

number than oxymetazoline. This latter agonist is more

potent in untreated tissue because it has a higher affinity

for a-adrenoceptors (377). In fact these agonists illus-

trate a general prediction from classical occupation the-

ory namely that the maximal responses to agonists of

high efficacy are less sensitive to decreases in receptor
number or general efficiency of stimulus-response cou-

pling than those of agonists of lower efficacy. Figure 8B

shows a theoretical example of two agonists, A1 and A2;

A1 has 5 times the affinity but only 0.2 times the efficacy
of A2. The concentration-response curve to A2 (broken

line) is more easily depressed by serial decreases in

receptor number.
This principle can be extended to the effects of ago-

nists in two different tissues differing in stimulus-re-

sponse characteristics. It can be seen from figure 8C that

oxymetazoline, an agonist with a higher affinity but
lower efficacy for a-adrenoceptors than norepinephnine,
is a more potent full agonist than norepinephrine in rat

anococcygeus muscle, a tissue with an efficient stimulus-

response apparatus. However in rat vas deferens, a tissue
with a less efficient stimulus response mechanism, oxy-

metazoline is a weak partial agonist when compared to

norepinephrine by virtue of its low intrinsic efficacy

relative to norepinephrine. The profile of reversed ago-

nist activities for these two drugs in rat anococcygeus

muscle and vas deferens resembles receptor selectivity

but, in these experiments, no evidence of heterogeneous
a-adrenoceptor populations was found (377) and the

theoretical calculations (figure 8B) show that none is

required to explain the experimental results.
The theory and the data illustrate that receptor alkyl-

ation or desensitization will preferentially block the re-

sponses to the agonist with the lower intrinsic efficacy.

Therefore, if two agonists produce responses in a tissue

and alkylation or desensitization selectively eliminates
the responses to one of the agonists, this need not imply

that the two agonists activate separate receptors in the

tissue.
The same caveat should be made regarding selective

modulation of stimulus-response mechanisms in tissues.
For example, recent evidence suggests that external cal-
ciurn ion is required for the production of responses

subserved by a2-adrenoceptors in contrast to a1-adreno-
ceptors which appear to use intracellular calcium stores

(628, 656, 658, 659, 667). The evidence for this hypothesis
is the disparately greater degree of antagonism of re-

sponses to putatively selective agonists for a2-adrenocep-
tons, compared to those of a1-adrenoceptors, produced
by calcium entry inhibitors. The rationale, therefore, is

that the responses to a2-adrenoceptors rely on the entry
of extracellular calcium. It should be noted, however,
that the selective a2-adrenoceptor agonists are partial
agonists in these preparations while the a1-adrenoceptor

agonists are full agonists leading to questions about
sensitivity of these two types of agonist to differences in

receptor reserves or receptor coupling. The hypotheses
equating receptor type with calcium source rely on sub-
jective assessments of antagonism of agonist; i.e., a given

concentration of calcium antagonist may produce a small
shift (1.5- to 2-fold) of the full a1-agonist and a 40%

decrease in the maximal response to the partial a2-
agonist. Unfortunately, the degree of maximal response
depression of a partial agonist for a given shift to the
right of a full agonist for a uniform modulation of recep-

ton coupling is not known and, in fact, depends upon the
nature of the stimulus response coupling. For example,
a good estimation of experimental stimulus response

curves can be obtained by the general logistic function

of the form:

(24)

where S is the stimulus, and fi and n are fitting factors.
With this model, a wide range of efficiencies of receptor

coupling can be accommodated. Figure 9 shows the ef-
fects of a two-fold decrease in the efficiency of coupling
in three tissues with different states of coupling (n = 1,

2, 3, Eq. 24). It can be seen from this figure that the

degree of depression of maximal response to the partial

agonist for a given shift to the right ofthe concentration-
response curve to the full agonist is not constant. The
important aspect of this calculation is the prediction that

decreases in receptor number (i.e., receptor alkylation)
should mimic the effects of calcium antagonists in these
systems. However, the testing of the hypothesis with
alkylating agents requires care as to the selective alkyl-
ation of a1- or a2-adrenoceptors (147, 148) and obvious
problems with usage of alkylating agents in vivo (i.e., the

pithed rat). A paper by Rimele and coworkers (539)

suggests an alternative hypothesis, namely that the de-
gree of dependence on activator calcium is not associated
with receptor type as much as with the functional differ-
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FIG. 8. The effects of changing receptor number on agonists with different ratios of efficacy and affinity. A. Experimental concentration-

response curves in rat anococcygeus muscle. Ordinates: Response an a function of maximal control response. Abscissae: Logarithms of molar

concentration of agonists. Responses to norepinephrine (#{149})and oxymetazoline (0) in untreated tissues (n = 6), treated with phenoxybenzaznine

30 nM for 10 mm (n = 6) and 0.1 �zM for 10 mm (n = 6). Bars represent S.E.M. B. Theoretical concentration-response curves to two agonists;

broken line for agonist with 5 times the affinity but 0.2 times the efficacy of agonist designated by solid line. Ordinates: Responses calculated by

Eq. 18 and 24 ($:0.1). Abscissae: Logarithms of molar concentrations of agonists. Effects of a 100-fold decrease in receptor number ([R,) = 1 to

0.01). C. Experimental concentration-response curves. Ordinates and abscissae an for part B. Responses of norepinephrine (#{149})and oxymetazoline
(0) in rat anococcygeus muscle (n = 6) and rat vase deferentia (n = 6). Bars represent S.E.M. Reprinted with permission from Kenakin (377).
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RECEPTOR OCCUPANCY

428, 430) is widely used to measure the equilibrium
dissociation constant of a full agonist for a receptor. The

basic premise of the method is that equiactive concen-

trations of agonist before and after irreversible elimina-
tion of a fraction of the drug receptors can be equated to

yield differences that depend upon receptor number and

agonist affinity. The mathematical manipulation of the

equation allows cancellation of the receptor number term
to yield an estimate of KA. The null nature of this method

cancels effects of stimulus-response mechanisms but as
originally described requires that the only difference in
the tissue after treatment with alkylating agent is the

-� number ofviable drug receptors. Thus equiactive concen-
trations of a full agonist before ( [A ] ) and after ([A’])

partial alkylation of the receptor pool are compared in
the following double reciprocal equation (229, 429, 430):

1 _ 1 1� 1 (1-q) 25

[A][A’]q KA q

where q is the fraction of viable receptors left in the

tissue after alkylation. The KA then can be calculated
by:

Slope - 1
KA (26)

Intercept

There are methodological considerations to the effec-

tive use of this technique. For example, the concentra-

tion-response curve after receptor alkylation should have
a depressed maximal response. Thron (626) has shown

that values near to the top of the depressed concentra-
tion-response curve yield the best estimate of KA with

this method. While the linearization of the equations by
a double reciprocal technique is convenient, Parker and

Waud (498) have shown an improved fit of data points
directly to the hyperbolic form of the relationship. Corn-
puter analysis has been applied to advantage with this

technique as well (498, 714).
To use the method of partial receptor alkylation, as

defined, an irreversible antagonist of the receptor is

required. A useful group of drugs in this regard has been
the /�-haloalkylamines. Within this class are irreversible
drugs for a-adrenoceptors (227, 578, 609), cholinoceptors
(229, 257, 560), histamine H1 receptors (227, 229, 386,
387), and serotonin receptors (227). These agents are

convenient in that the noncyclized chemical species can
be chemically removed from the bathing medium by
addition of a large excess of thiosulphate ion (226, 386,
377, 475) thereby stopping the alkylation process and

allowing fine control of the procedure.

There are a number of other irreversible drugs avail-
able for drug receptors. The extreme chemical reactivity
of azides has led to the development of photoaffinity

labels for receptors. This approach theoretically can pro-
duce very selective irreversible drugs since they alkylate

only after transformation to a highly reactive species
(i.e., nitrene) upon irradiation with light (289, 582).

FIG. 9. The effects of receptor coupling on responses to full and

partial agonists. Ordinates: Fractions of maximal response to the full

agonist. Abscissae: Logarithms of molar concentrations of the agonist

as a multiple of KA for concentration-response curves and fractional

receptor occupancy by the full agonist for occupancy-response curves.
Solid and broken lines refer to response before and after a decrease in

the efficiency of receptor coupling $ = 0.1 to 0.2, Eq. 24). Stimuli

calculated from Eq. 18 with the ratio of efficacy for the full and partial
agonist of 100.

entiation of the vascular smooth muscle (see also 468,
668, 669). This alternative highlights the quantum jump
involved in associating tissue differences with receptor
differences.

C. Measurement of Agonist Affinity and Relative

Efficacy

1. Agonist Affinity. Affinity is defined as the reciprocal

of the equilibrium dissociation constant of the drug for
the receptor (KA, Eq. 15). This parameter determines

what fraction of the free receptors will be occupied by a

given concentration of drug and thus defines the “...

signal-to-noise ratio in the chemical cacophony which
surrounds every cell” (74). There are null methods avail-
able to estimate this important drug constant.

The method of partial alkylation of receptors (229,
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Thus, photoaffinity labels have been reported for �-

adrenoceptors (304, 412, 557), histamine H1 receptors

(208, 209, 481), muscaninic receptors (391), adenosine
receptors (208, 482), angiotensin receptors (203, 249),

and dopamine receptors (345). The incorporation of 4’-

amino-3’,5’-diiodophenylalanine into peptides and sub-

sequent conversion in situ to 4’-azidiphenylalanine in

theory makes possible the design of photoaffinity labels

for many peptides (203). Other irreversible ligands in-

dude some toxins for muscaninic receptors (166) and

halo-acetyl compounds for 13-adrenoceptors [Ro 03-7894

(96, 473, 529, 701); brornoacetylated alprenolol (34);

NHNP-NBE (31, 673)]. A thiadiazole, L-643,441, has

been shown to irreversibly inhibit histamine H2 receptors

(43, 511, 639). Benextrarnine (BHC) is an irreversible

inhibitor of a-adrenoceptors and rnuscarinic receptors

(55) and a-chlornaltrexarnine irreversibly binds to opiate

receptors (120, 524, 562). Some amino derivatives of

strong analgesics also have been shown to irreversibly

bind to opiate receptors (537). A unique approach has

been the incorporation of multiple pharmacophores into

molecules to produce drugs with essentially irreversible

kinetics (518).

Given the variety of irreversible antagonists the

method of partial receptor alkylation has been applied

to numerous receptor types including �3-adrenoceptors

(580, 701), a-adrenoceptors (64, 346, 370, 377, 578, 714),

histamine H1 receptors (43, 229), histamine H2 receptors

(43), muscaninic receptors (229, 238, 257, 497, 540, 560,

612), and opiate receptors (522).

Although this method was designed for use with irre-

versible receptor antagonists, other methods to alter the

stimulus response characteristics of tissues have been

applied. For example, functional antagonism of re-

sponses to full agonists has been utilized to estimate KA

values for full agonists (105, 106, 704). Functional antag-

onism can be achieved either by addition of a drug which

by an action on some other receptor produces a stimulus

that opposes the primary stimulus or by a drug which in

some way modulates the primary stimulus as it is con-

verted into tissue response. There are a number of ca-

yeats to be made to the use of functional antagonism

with this method. The primary rationale is that func-

tional antagonism produces effects on the concentration-
response curves to full agonists which closely resemble

the effects of alkylating agents. However, functional

antagonism is a very complex phenomenon (198, 433,

652, 653) and there is no theoretical basis for its appli-

cation to the partial receptor alkylation technique. Com-

parisons of equal tissue state as opposed to equal re-
sponses should be utilized (433). Thus, if a spasmogen is

used to physiologically antagonize a relaxant in a tissue,

the concentration-response curves to the relaxant should

not first be “normalized” (i.e., percent maximum) and

then compared. Rather, relaxant doses producing equiv-

alent contractile states (i.e., actual tension) should be
used.

There have been relatively few quantitative cornpani-
sons made of KA estimates by partial alkylation and by
functional antagonism. Those studies which have been

done have yielded mixed results. For example, Siegl and

McNeill (580) found in rabbit papillary muscle that the

estimates of KA for phenylephnine acting on a-adreno-
ceptors made by partial alkylation of receptors (with

dibenamine) agreed with estimates made by functional
antagonism with the calcium channel antagonist D-600.
However, the estimates for the KA of isoproterenol with

the alkylating agent (Ro 3-7894) and D-600 were quite

different. In rabbit aorta, Hurwitz and coworkers (337)

estimated the KA for norepinephnine in rabbit aorta by
comparing concentration-response curves in the pres-

ence of varying concentrations of calcium and obtained

an estimate very similar to one by Besse and Furchgott
(64) who used dibenamine as an alkylating agent. How-

ever, the calcium technique yielded a KA for acetylcholine
in guinea pig ileum longitudinal smooth muscle which

was much lower (337) than that obtained by alkylation

of receptors (538, 560). Recently, Leighton and Su (416)
have used functional antagonism to calculate KA values
for presynaptic a-adrenoceptors. By altering extracellu-

lan calcium concentration or transmural stimulus con-
ditions, clonidine was converted from a full to a partial

agonist. Estimates of KA values for clonidine made by

these methods were not significantly different from those
obtained by the receptor alkylation method. Theoretical
analyses (198, 433) indicate that functional antagonism

possibly might be suitable for estimation of KA for ago-

nists of low efficacy but not those of high efficacy.
Experimental support for this idea was obtained in
guinea pig left atria where the KA estimated by functional
antagonism and by receptor alkylation agreed quite well

for the low efficacy muscaninic agonist pentyltrirnethyl-
ammonium but not so well for furmethide and oxo-

trernorine, agonists of higher intrinsic efficacy (198).

A novel method of obtaining KA for an agonist is by

application of perturbation techniques. In this method,
some variable is changed suddenly and the kinetics of
return to or relaxation to (hence the term, relaxation

method) equilibrium are observed. The perturbation can
be a change in concentration, membrane potential, tern-

perature, or irradiation. The disturbing influence should
produce a sudden change in a steady-state response (ge)

to some agonist [A]. A time constant (r), the time
required for the response to recover to 0.37 times the
original response, is recorded. This time constant is
related to the kinetics of agonist binding by:

�: k1 [A] + k2
r

(27)

where k1 and k2 are the rates of onset and offset of the
agonist. Thus, the repetition of this process at a number



of agonist concentrations furnishes data for a regression If [A ] ‘�E KA, then an error term is introduced into the

of 1/r upon [A ] and KA = k2/k1 = intercept - slope. estimate (385, 429, 430):
There are several caveats to be made for the use of this [P] . Slope ( ep�

technique in pharmacological experiments (144). Diffu- K� = (1 Slope \1 �/ (32)

sion must be shown not to be rate-limiting and the
perturbation must only disturb the equilibrium between which diminishes to zero if CA �‘ �l. The regression of [A]

drug and receptor and not any of the processes in the upon [A ‘] can be greatly improved by weighting factors

stimulus-response chain for the method to yield valid (440). With this method, one estimate of K� may be

estimates of KA. An intriguing approach by Lester (419) made for every concentration of partial agonist at which
utilized a light activated agonist and rapidly changed the the analysis is done. Kaumann and Marano (366) have
concentration of the agonist with brief flashes of light. derived an equation which utilizes data from a range of

Ultraviolet radiation has been used as a perturbing influ- concentrations of partial agonist. Thus, the repeated
ence in pharmacological experiments in rabbit aortae analysis by Eq. 30 yields a range of slopes for a given
(346, 614, 616, 617). range of concentrations of partial agonists which can all

When dealing with partial agonists, the preceding and be used to generate an estimate of K� by (366):

other methods can be utilized to measure the KA as well

but there are certain specialized procedures available for log(511 �) log[P] - log K� (33)

the estimation of the equilibrium dissociation constant
of these drugs. Two important methods utilize compari-
sons of concentration-response curves to a full and a By its very nature, a partial agonist will produce corn-

partial agonist in the same tissue. Both methods assume petitive antagonism of responses to a full agonist. This

that the concentrations of full agonist needed to produce antagonism may be analyzed by the Schild method (vide
submaxirnal responses are much less than the KA ([A] � infra) to yield an estimate of the K� but the intrinsic
KA). Under these circumstances equiactive concentra- efficacy of the partial agonist complicates the analysis.
tions of full and partial agonist can be equated by (44, Specifically, the relationship between stimulus and re-

686): sponse in the tissue introduces an error factor of un-
known magnitude into the calculation if the relationship

1 _�_� K� 1 �A 1

i�_i - Cp � �;: � i:�i � ;; � k:� � (28) ‘S not one-to-one (350, 661). For example, if the tissueresponse is a rectangular hyperbolic function of stimulus,

The equilibrium dissociation constant of the partial ago- then the intercept of the Schild regression yields the

nist (Kr) can be calculated by K� = slope + intercept. If, logarithm of the K� modified by a term which depends
in fact, the tissue does not have a significant receptor upon the relative efficacy of the full and partial agonist
reserve for the full agonist, an error term will be intro- (350):
duced into the calculation and the procedure will over- Intercept = log K� (1 - a)’ (34)

estimate K� (385):

where a is the intrinsic activity (20) ofthe partial agonist.
K� = Slope (� _ !.!�) (29) Clearly, if �A �‘ �P, this error will be negligible but not so

Intercept \ CA/ if the partial agonist produces a sizeable response (high

The error diminishes to zero as the difference between Cp). In these cases, techniques have been developed to

the intrinsic efficacy of the full and partial agonist in- eliminate the responses to the partial agonist so that the
creases (429). Linear regressional analysis of 1/[A ] upon K� may be estimated unambiguously by the Schild
1/[PJ makes this method convenient and accessible but method. Owing to the fact that partial agonists have no

a direct fit of the data points to a hyperbola by computer receptor reserve and that irreversible alkylation of a
gives a more accurate value (498). portion ofthe receptors depresses the maximal responses

An estimate of K� can be made by comparing equiac- to partial agonists (27, 665), one method available is the
tive doses of a full agonist (again assume [A ] � KA) in controlled alkylation of a portion of the receptors such
the absence [A ] and presence [A ‘] of a fixed concentra- that the responses to the partial agonist are eliminated
tion of partial agonist [P]. The equation relating these and those to the full agonist are not. Under these circum-
concentrations is (143, 599): stances, the partial agonist may be utilized as a compet-

itive antagonist and the K� estimated by Schild analysis
__________ KA

(30) (238, 370, 377, 498, 685). A variant of this method is the
. ( + i_�i’� use of physiological antagonism to eliminate the agonist

\ K�,
responses to the partial agonist (105, 106, 379).

A method which will yield the K� of a partial agonist

by comparison of concentration-response curves of a full

(31) (it need not be assumed that [A] � KA) and a partial
agonist, providing that the KA of the agonist is known,

to yield an estimate of K� by:

K� - [P] . Slope
- 1 - SlopeS
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In these models the fluidity of the lipid matrix (84, 85,

341, 550, 581) and the hydrophobicity of the receptor

complex (161, 280, 348) would affect intrinsic efficacy.
In the Black and Leff (77) model, efficacy would be

defined as [Rt]/KE where [Re] �S the concentration of

receptors and KE the equilibrium dissociation constant
(35) of the drug receptor complex and the effector unit.

Mechanistic considerations need not be a hindrance
to the use of quantitative estimates of relative efficacy

for drug and drug receptor classification. Null methods
have been described which enable estimates to be made

of the relative intrinsic efficacy of two agonists. These
measurements must be of the relative efficacy of two
agonists since presently there is no absolute independent

scale of efficacy. Attempts have been made to define the
absolute efficacy of agonists in terms of Stephenson’s
(599) original formulation, namely that e equals unity at

the reciprocal of the fractional receptor occupancy at
50% maximal response (253). However, this method can-
not be used as a scale of intrinsic efficacy for the classi-

fication of agonists since it is tissue and not receptor-
dependent. Therefore agonists will have a different effi-
cacy for every tissue in keeping with Stephenson’s (599)

formulation of efficacy but no so in terms of Furchgott’s
(229) concept of intrinsic efficacy. The latter but not the
former term is drug-receptor related and therefore of
value in drug-receptor classification.

The relative efficacy of two agonists can be estimated
by comparison of their respective concentration response
curves (429, 430). A double reciprocal relationship be-

tween equiactive concentrations ofagonists [A1] and [A2]

yields a measure of the relative order of efficacy of the
agonists:

1 _ 1 (K2 Ei’\ � � (� �2 36

[A1] [A2] � \K1 � C21 E2.K1 \ �i � ( )

The arithmetic sign of the intercept indicates the
relative order of the intrinsic efficacy of the agonists; if

�2 > �1 the intercept will be positive and if �2 < e�, it will
be negative (429, 430). A technical difficulty related to

the effective use of this method occurs when the concen-
tration-response curves are parallel causing the intercept

to tend toward unity. Providing KA for one ofthe agonists

is known, a numerical estimate of the relative efficacy of

the agonists can be calculated from (429, 430, 553):

!� (1 + Intercept . K1r’. (37)

Furchgott (229) has described a widely used method of
estimating the relative efficacy of two agonists. Consid-

ering two agonists which give equal stimuli (S1 and S2)
to a tissue such that S1 = � . Pi � [Re] and S2= C2 . P2 � [Rd

where p is the fractional receptor occupancy, then (229):

Pi

P2 �1
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(38)

has been proposed by Gero and Tallarida (254). If equiac-

tive concentrations of full [A1] and partial [P1] agonists

are determined along with the concentration of full ago-
nist which is equiactive to the maximal response to the
partial agonist [Ar], then (254):

K - KA ([Ap] [A1]) [P1]
P - [A1] ([Ap] + KA)

2. Agonist Efficacy. Some drugs bind to receptors and

produce a tissue response while others produce no agonist
response; the differentiating factor between these two

drugs is that the former is said to possess intrinsic
efficacy while the latter does not. This property of drugs
which enables some drugs to “sit at the piano and play

. . .‘, while others only sit (23A) has evoked much interest
in pharmacology.

Because competitive antagonists produce no agonist
responses, they are often said to possess no intrinsic

efficacy. This is a theoretical concept, however, which
disregards the limitations in the sensitivity of our sys-
terns to detect efficacy. For example, the well-known

competitive antagonists propranolol and phentolamine

both generate agonist responses in a primary cell culture
of neonatal rat ventricle (310). These cells are 100 times

more sensitive than intact neonatal rat hearts to a- and
�9-adrenoceptor agonists, a hypersensitivity presumably
due to extraordinarily efficient receptor coupling. It may

be that all drugs possess affinity and efficacy and that
our tissue systems for detecting efficacy can be thought

to possess windows with thresholds of detection for this

property of drugs.
The mathematical functions to express efficacy have

been given in a previous section of this review where it

should be noted that, in terms of occupation theory,

efficacy is an empirical proportionality constant the rnag-
nitude of which has no implications as to mechanism of
response production. Nevertheless, there are drug recep-

tor models that describe efficacy in molecular terms.
Efficacy is most often thought of as being the ability of
a drug to produce a protein conformational change by,
for example, causing the drug receptor protein to take

on a lower free energy (“conformational induction”)

(107). Drugs can be efficacious by completing the active

site of an enzyme as in the case of certain polypeptide

hormones (549) or by allosteric generation of an active
site in an enzyme (24). The two-state model describes

the efficacy of a drug as its relative affinity for the active
and inactive state of the receptor (“conformational selec-

tion”) (107, 125, 357).
An operational model of efficacy has recently been

presented by Black and Leff (77) in which the receptor
is considered to have cognitive and transitive properties.

Thus, the binding of drug to the receptor is followed by
the binding of the complex to an effector, a model similar

in mathematical formulation to the floating receptor
model (347, 610, 637) or the ternary complex model (176).
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The responses to the two agonists are expressed as

functions of log p and the displacement between the

curves on the abscissal scale equals the logarithm of the
relative efficacy of the two agonists [e.g., figure 4 of

Furchgott and Bursztyn (238); figure 4 of Kenakin

(370)].

3. Experimental Manipulation of Receptor Number

and Efficiency of Stimulus-Response Coupling. Clearly,

an estimate of the efficacy of an agonist cannot be made

in an isolated tissue unless the agonist produces a re-

sponse in that tissue. Also, with the methods currently

available, an unambiguous estimate of the affinity of the

agonist is required for the estimation of efficacy. Unfor-

tunately, the production of an agonist response by a drug
often hampers the estimation of the affinity of that drug

for the receptor. Under these circumstances it is advan-

tageous to control the magnitude of response to an ago-

nist in a tissue so that estimates of affinity and efficacy

can be made independently. This is most easily done

with agonists of low intrinsic efficacy.

Before discussion of interventions that can control the

mechanisms for response in given isolated tissues, a

related approach will be considered. This is the analysis

of drug receptor parameters in tissues differing in stirn-
ulus-response characteristics but shown by other meth-

ods to have a homogeneous receptor poulation with re-
spect to each other. Basically, in this analysis the agonist

with the ,lower intrinsic efficacy is utilized as an antag-

onist of the agonist with higher intrinsic efficacy in

tissues with poorly coupled receptors, and the resulting

estimate of KA used to calculate relative efficacy in

tissues with the more efficient receptor coupling. This
approach is based on the fact that the maximal responses

to agonists of lower efficacy are more subject to the

efficiency of receptor coupling than agonists of higher

efficacy (i.e., see figure 8A). Therefore, in a series of
tissues with progressively less efficient receptor coupling,

the potency of the full agonist should decrease (increas-
ing EC5O) and the maximal response to a partial agonist

should decrease correspondingly. The exact relationship

between the maximal respnse to the partial agonist in a
tissue with a given sensitivity to a full agenist depends

upon the actual nature of the coupling (e.g., figure 9) but

some good correlations between sensitivity of tissues to
full agonists and maximal responses to partial agonists

can be found. For example, figure 1OA shows the range

of sensitivities oftissues, all containing /31-adrenoceptors,
to (-)-isoproterenol while figure lOB shows the corre-
sponding concentration-response curves to the partial

agonist prenalterol. Isoproterenol has 220 times the in-

trinsic efficacy of prenalterol (379) and, as predicted by

classical receptor theory, the maximal responses to the
drug with the lower intrinsic efficacy are depressed by

reductions in the efficiency of coupling of receptors while

the location parameters of the drug with the higher
efficacy are displaced to the right. Figure 1OC shows the

correlation between sensitivity of these tissues to isopro-
terenol and the maximal response to prenalterol (379,

381). Similar results have been reported by Mattsson
and coworkers (444). Figure 1OD shows the wide range

of efficiencies of receptor coupling in some fl1-adrenocep-

tor-containing tissues and highlights the choices of tis-

sues available for this type ofapproach. Such correlations
would be predicted for full and partial agonists for all

receptors. A similar relationship between the sensitivity

of tissues to oxotrernorine and the maximal responses to
pilocarpine, full and partial agonists for cholinergic re-

ceptors, respectively, can be calculated (712).

The data in figures 1OA and lOB shows the importance
of receptor coupling for agonists of low intrinsic efficacy;
even though both the rat right atria and canine coronary

artery have �1-adrenoceptors, the former tissue responds

both to isoproterenol and prenalterol while the latter
tissue produces responses only to isoproterenol. The

tissue selectivity of prenalterol does not depend upon
receptor selectivity in these tissues (379, 381). Assuming

identity of receptors across the tissue types, an unambig-

uous estimate of the affinity of prenalterol can be made

in canine coronary artery (by the Schild method) and

applied to any of tissues, which respond to prenalterol,

in measurements of relative efficacy.

Differences other than inherent stimulus-response re-
lationships between tissues can be eploited to control the

sensitivity of tissues to full agonists and the maximal
responses to partial agonists. In previous sections of this

review, it was shown how differences in tissue sensitivity

to agonists could be determined by the age of the animal

or the anatomical location of the tissue preparation. An
example of the latter is the differences in sensitivity of

various parts of the urinary bladder to /3- and a-adreno-

ceptor agonists. Thus, Levin and Wein (421) have shown

that methoxamine produces a 40% maximal response in

the bladder body and 100% maximal response in the

bladder base. Another determinant of sensitivity may be
the method of measurement of responses. As noted ear-
her, the sensitivity of some tissues to cholinoceptor ag-

onists is greater when the measurements are made iso-
tonically rather than isometrically. Thus, in the frog

rectus abdorninus, carbachol is a full agonist for produc-

tion of both isotonic and isometric responses, but with a

larger contractile (receptor) reserve, as measured by re-

ceptor alkylation, under conditions of isotonic recording

(451).
In general, these approaches introduce uncontrolled

variables into the comparisons (i.e., species, tissue type)

and theoretically are less sound than the modification of

tissue stimulus-response characteristics to make the

measurements of affinity and efficacy in the same tissue.

The two tissue-related determinants of agonist response,

namely receptor number and the efficiency of the mech-
anisms which convert receptor stimulus into response,

are the primary targets for this type of experiment. As a
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% RECEPTOR OCCUPANCY

preface to discussion of modifying stimulus-response
characteristics of tissues, the need for appropriate con-
trols should be stressed. The numerous interventions
which affect responsiveness may or may not affect the
nature of the drug receptors, thus experiments with

competitive antagonists before and after intervention
would be required. Schild analysis to indicate possible
significant differences in the PKB for a range of antago-
nists before and after intervention would be a useful
check of receptor identity in these procedures.

A. THE MANIPULATION OF RECEPTOR NUMBER. Re-
ceptor number either can be modified chemically in vitro
or with procedures which utilize the cells’ own mecha-
nisms for control of receptor number in vivo. The most
widely used in vitro modification of drug receptor number

is treatment of tissues with receptor alkylating agents.
As discussed in the section on affinity, such treatments
preferentially depress the maximal responses to partial
agonists (27, 665) allowing them to be utilized as corn-
petitive antagonists.

The cellular control of receptor number has become
relevant to human disease states (19, 37, 113, 149, 162,

348), drug tolerance (146, 224, 493), drug withdrawal
(142, 526, 528), and aging (404-406, 678), and a number
of chronic stimuli are capable of producing alteration of
receptor number in laboratory animals. For example, the
implantation of osmotic mini pumps delivering 400 �g
kg’h’ of l-isoproterenol was shown to decrease the
number of fl-adrenoceptors in rat myocardiurn (123, 124,
388) and correspondingly to shift the concentration-
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response curve in rat atria to isoproterenol to the right

and completely depress the maximal responses to the
partial agonists prenalterol and pirbuterol (388) (figure

hA). In desensitized rats these drugs produced no ago-
nist responses and therefore estimates of affinity for f�-
adrenoceptors were made by the Schild method (figure
11B). This then allowed for an estimate of the relative
efficacy of these drugs by the method of Furchgott (229);
see Eq. 38) in normal atria (383). Some common methods
of decreasing receptor number involve chronic treatment

with drugs either by repeated injection, implantation of
mini osmotic pumps or pellets, or changes in the hor-
mona! status of animals (i.e., thyroid state). Some ex-

amples of treatments for decreasing the number of re-

ceptors in various isolated tissues is given in table 6.
Increases in receptor number also can be utilized in

measurements of drug receptor parameters. For example,
in a poorly coupled tissue, the affinity of a weak partial
agonist, which produces no agonist response, could be

FIG. 11. The effect of chronic isoproterenol (by osmotic mini-pump

delivery) on rat atrial responses to 1-isoproterenol and prenalterol. A.

Ordinates: Responses of paced rat left atria as fractions of the maximal

responses to 1-isoproterenol. Abscissae: Logarithms of molar concen-

trations of agonist. Responses of normal atria to 1-isoproterenol (#{149},n

= 5) and prenalterol (�, n = 5) and atria from desensitized rats (400

�Lg kg1 hr’ 1-isoproterenol for 4 days) (1-isoproterenol, 0, n = 6;

prenalterol, � n = 6). From Kenakin and Ferris (388) with permission.

B. Antagonism of responses of desensitized atria to 1-isoproterenol by

prenalterol 0 �M (#{149},n = 5), 0.3 �M (0, n = 2), 1 �tM (�, n = 3), 3 �M

(0, n = 2) and 10 �iM (�, n = 3). Bars represent S.E.M. or range if n

< 3. From Kenakin and Beck (383) with permission.

estimated by the Schild method. Treatment ofthe animal

with procedures which promote receptor proliferation

would produce sensitization to full agonists and may

produce a tissue which demonstrates an agonist response

to the partial agonist. This concentration-response curve

then could be utilized for efficacy measurements. Some
interventions which have been shown to increase recep-

tor number are given in table 7.
B. MANIPULATION OF THE EFFICIENCY OF STIMU-

LUS-RESPONSE COUPLING. If the receptor could be

though of, in electronic terms, as the preamplifier then

the stimulus-response machinery of the tissues is the
power amplifier which converts the pre-amp signal (re-

ceptor stimulus) into the response. There are numerous

ways of adjusting the level of the power amplifier. When

doing this type of experiment, care must be taken to see

that the receptor profile ofthe tissue is not altered. Thus,
control experiments with full agonists and competitive

antagonists should always be done before and after the
interventions which modify tissue responsiveness to test
for changes in receptors by Schild analysis.

Functional (physiological) antagonism of agonist re-

sponses has often been used to depress the maximal
responses of partial agonists for Schild analysis. This

technique is especially useful in tissues in which a drug

is needed to induce a given pharmacological tone for
agonist responses to be observed. For example, guinea

pig trachea requires some other intrinsic or pharmaco-

logical tone in order for relaxant responses to be studied.

The degree of tone in this tissue greatly modifies the

location of concentration-response curves to relaxants
(105, 106, 484). Other methods of modulating agonist
responses involve specific cations. For instance, Burgen

and Spero (110) found that the sensitivity of guinea pig
ileum was greatly dependent upon calcium and/or mag-

nesium ion. Takeyasu and coworkers (612) found that

reduction of calcium ion makes pilocarpine, normally a
full agonist in guinea pig ileum, into a partial agonist.

The differential utilization of calcium by blood vessels

makes adjustment of calcium concentration a powerful

method of adjusting the sensitivity of blood vessels to
contractile agonists (329, 448). Tissue sensitivity to ag-
onists can be decreased by a number of in vivo treat-

ments. Table 8 lists some methods used to decrease tissue
sensitivity to agonists; it should be noted that many of

these treatments may decrease receptor number as a

mechanism of action but since binding data corroborat-
ing this is not given in these papers, the effects will be

referred to as a general decrease in sensitivity.

Potentiation of responses can occur by augmentation
of some step or the inhibition of some modulatory influ-

ence in the stimulus-response chain. An example of this

latter mechanism is the inhibition of phosphodiesterase

to potentiate the effects of drugs which increase cellular

cyclic AMP. It is well known that inhibition of this

enzyme produces sinistral displacement of concentra-



Rat Heart

TABLE 6
Methods to decrease receptor number

Receptor ResponsetSpecies Tissue Method References

Guinea pig

Van a

Lung ACh

Uterus
Soleus

Tibialis

Submaxillary gland ACh
Submaxillary gland

Renal cortex

Lung

Ileum ACh

Urinary bladder ACh

ACh

I

* �, fi-adrenergic; a, a-adrenergic; ACh, acetylcholine.

t I� Decreaned response; -, response not tested.

I

(647)

(648)
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a

ACh

Lung

Frog Erythrocyte

Mouse Small intestine

Chronic isoproterenol

I Chronic isoproterenol
(miniosmotic pump)

I Low dose propranolol

- Hypothyroid state
� Deoxycorticosterone and

salt, renal hyperten-

sive

- Training

- Alloxan-induced diabetes
� Deoxycorticosterone and

salt

- Hyperthyroid state

i In vitro isoproterenol

- Thyroidectomy

I Chronic metaproterenol

- Chronic desmethylimip-

ramine

- Thyroidectomy
� Chronic isoproterenol

- Chronic isoproterenol

- Chronic isoproterenol
- Hyperthyroid state

- Hypothyroid state

- Implant pheochromacy-

toma

Haemophilus influenzaa

virus

Chronic desmethylimip-

ramine

- Bacterial infection

- Chronic diisopropyl

phosphorofluoridate
- Chronic diisopropyl

phosphofluoridate

(478)

(388)

(33)

(36, 129, 700)

(705, 709)

(611)

(340)

(709)

(574)

(4)

(32)

(563)
(696)

(32)

(352)

(651)

(651)

(574)

(520)

(590)

(569)

(569)

(570)
(708)

(708)

In vitro isoproterenol (452, 694)

I Chronic diisopropyl

phosphorofluoridate
Cold stress

tion-response curves to full agonists and theoretical con-

siderations would predict increases in the maximal re-
sponses to partial agonists. This effect was used to meas-

ure the relative efficacy of drugs in guinea pig papillary

muscle. In this tissue, prenalterol does not produce an
agonist response and can be used as a competitive antag-
onist of responses to l-isoproterenol. The phosphodies-
terase inhibitor, isobutylmethylxanthine, generates a
shift to the left of the concentration-response curve to
isoproterenol and produces a tissue in which prenalterol
demonstrates a concentration-response curve. The esti-
mate of affinity from the normal tissue and agonist
responses from sensitized tissue allow for an estimate of
relative efficacy to be made (384). The potentiation may

be brought about chemically as, for example, the poten-
tiation of agonist response in arterial tissues produced

by sulfhydryl reagents (29). Chronic treatments can pro-

duce supersensitivity in tissues by receptor proliferation

but also by other means (217). Thus, chronic reserpine

treatment selectively potentiates responses of rabbit

aorta to norepinephrine, phenylephrine, acetylcholine,

and potassium but not serotonin, histamine, or angioten-

sin (328, 621). These effects, termed nondeviational su-

persensitivity by Fleming (216), can involve changes in

calcium binding or flux, partial depolarization of tissues

or the increase of tight junctions between muscle cells.

Table 9 lists some treatments that have been found to

produce supersensitivity in tissues. As with table 8, re-

ceptor number was not studied biochemically thus it is

not known whether the effects are due to receptor num-

her or to some other factor.



200 KENAKIN

TABLE 7
Methods to increase receptor number

Species Tissue Receptor* Responset Method References

Rat Heart - Chronic guanethidine (265)

- Chronic propranolol (264)

(injection)

- Chronic propranolol (1)

(mini-pump)

Isoproterenol, - 6-Hydroxydopamine (476)

Norepinephrine, I (neonatally)

- Hyperthyroid state (700)

ACh - Hypothyroid state (574)

I Chronic isoprotere- (478)

nol

Lung j3 - Chronic propranolol (1)

(mini-pump)

Salivary gland ACh, VIP �, I Chronic atropine (307)

Submaxillary gland ACh - Hypothyroid state (520)
- Hyperthyroid state (520)

Lymphocyte - Chronic propranolol (1)

Vas deferens a - Chronic prazosin (696)

Cat Superior cervical ganglion ACh - Denervation (618)

Mouse Small intestine ACh I Chronic hexametho-

nium

(649)

* fi, �9-adrenergic; ACh, acetylcholine; VIP, vanoactive intestinal peptide; a, a-adrenergic.

t , 1’ Increased response; - response not tested.

TABLE 8

Methods to decrease tissue sensitivity to agonists

Species Tissue Receptors Method References

Rat Atria fi Immobilization stress (710)

ACh Hyperthyroid state (343)

Aorta $ Chronic isoprotere- (608)

nol (mini-pump)

a Chronic phenyleph- (608)

rine (mini-pump)

Chronic propranolol (623)

and withdrawal

Uterus �3 Restricted diet (600)

Fat cells �9 Chronic salbutamol (224)

Guinea pig Atria

Ileum

Soleus muscle

Extensor digi-

torum lon-

gus muscle

f�
Opioid

fi

�

In vitro isoproterenol

In vitro morphine

Subcutaneous mor-
phine pellets

Terbutaline in food

Chronic isoprotere-

nol

Terbutaline in food

(381)

(536)

(273, 522)

(322)

(112)

(322)

Cat Atria �9 In vitro isoproterenol (362)

C $� $-adrenergic; ACh, acetylcholine; a, a-adrenergic.

D. Competitive Antagonism

1. The Schild Regression. For the most part, the defin-

itive classification of the major drug receptor types and
subtypes has been accomplished with selective competi-
tive antagonists. In fact, antagonists are generally more
selective for receptor subtypes than are agonists. There

may be chemical reasons for this phenomenon if antag-

onists, generally larger and more flexible molecules and
often bearing the chemical structure of agonists with

added lipophilic structural groups (24, 465), bind to ac-
cessory sites around the agonist binding site of the re-

ceptor. This idea, discussed as a “complirnentarity prin-
ciple” by Ariens and coworkers (24) dictates a sharper
differentiation of receptor subtypes by antagonists rather
than agonists. For larger molecules such as antagonists,
variations in accessory sites, as perhaps expected with

differences in the membrane constituents in various
cells, may be important determinants of binding.

Ideally, the potency of a competitive antagonist de-
pends upon its equilibrium dissociation constant (KB)

for the drug receptor, a chemical term governed only by

the molecular forces that control the rate of onset and
offset of the antagonist to and from the tertiary struc-
tural and cognitive components of the drug receptor
protein. Therefore the KB, like the K1 for inhibition of a
competitive enzyme inhibitor for an enzyme, is a chem-
ical term which hopefully is independent of receptor

function, location, and animal species. Considering the
importance of reliable estimates of KB for antagonists it

is not surprising that much pharmacological literature is
concerned with efforts to make accurate estimates of KB

values.
The first independent scale for antagonist potency

with theoretical relevance to equilibrium dissociation

constants was devised by Schild (566) and given the
name the pA scale. Within this nomenclature, the pA2 is
an empirical parameter that defines the negative loga-
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TABLE 9

Methods to increase tissue sensitivity to agonists

Species Tissue Receptor Method References

Rat Atria

Aorta

Aorta

Adipocytes

Lipolysis

Uterus

fi

a

ACh

13

fi

fi
13

a

Chronic propranolol and

withdrawal

Acute thyroxine

Hypothyroid state
Hypothyroid state
Chronic phenylephrine

(mini-pump)

Chronic propranolol and

withdrawal

Starvation

Demedullation

Diet restriction

(623)

(196)

(344)
(344)

(608)

(623)

(167)

(224)

(600)

Guinea pig Atria /3 Reserpine

Chronic thyroxine

(640)

(382)

Rabbit Aorta

Ear artery

Saphenous vein

Coronary artery

a
5-HT

a
a

5-HT

1nI�Hypothyroidism

Hyperlipidemia

Denervation
Estrogen, progesterone

Hyperlipidemia

(547)

(711)

(18)
(545)

(711)

* /3, $-adrenergic; a, a-adrenergic; ACh, acetylcholine; 5-HT, 5-hydroxytryptamine.

rithm of the molar concentration of an antagonist which

produces a twofold shift to the right of a concentration-
response curve (564, 565).

By using Gaddum’s classic formulation for simple corn-

petitive antagonism (243, 244):

p=
1

KAf [B]
1 + i�Aj �‘ �

where fractional receptor occupancy (p) is a function of

the molar concentrations of agonist [A ] and antagonist
[B] and their respective equilibrium dissociation con-

stants (KA and KB), Schild derived a useful equation to
calculate the KB of a competitive antagonist (28):

log(dr - 1) = n . log[B] - log KB

where dr refers to the ratio of equiactive concentrations

of agonist in the absence and presence of an antagonist

[B]. The above equation, often referred to as the Schild
equation, allows for a convenient estimation of KB by a

linear regression of a series of dose ratios [in the form
log(dr - 1)] obtained with a range of concentrations of
antagonist (regression upon log[B]). Providing the
regression is linear and that the slope is unity (n = 1),

the intercept is -log KB (termed the PKB). A Schild
regression slope of unity implies a one-to-one relation-
ship between antagonist and receptor with no substantial

cooperative effects. In a comprehensive comparison of
antagonist kinetics based on the standard occupation
model of drug action and various cooperative models,
Coiquhoun (143) has shown that the Schild regressions
will not differ under a variety ofcircumstances. However,
Sine and Taylor (580A) show that the KB calculated by

(40)

Schild analysis could differ appreciably from the antag-

onist binding constant in systems where the two drug
molecules must bind to two cooperatively linked sites to

activate a receptor (i.e., the nicotinic receptor on skeletal
muscle) if the affinity of the antagonist for the two sites
differs substantially. It can be seen from Eq. 40 that the

(39) zero value of the ordinate at the PKB is obtained when
dr = 2 thus the PKB is also the empirical constant pA2.
The converse, namely that the pA2 is also the PKB, is
very often not true, a fact that has led to periodic con-
fusion in the classification of receptors. The Schild
method has two criteria which must be met before the
pA2 can be considered to be a representation of the pKB;
the regression must be linear and have a slope of unity.
In practical terms these criteria are extremely important
in experimental pharmacology for two reasons. Firstly,

although many drugs which are not competitive antago-
nists produce parallel displacement of agonist concentra-
tion-response curves in a manner identical to competitive

antagonists (244), the quantitative relationship between
the concentration of drug and degree of shift does not
follow simple competitive kinetics. This fact often can
be detected by Schild analysis where the slope of the
regression will not be unity over a large concentration
range. Secondly, the slope and linearity of a Schild
regression can be sensitive indicators of nonequilibrium
conditions in an isolated tissue. Thus, if a nonlinear

Schild regression is obtained in a given isolated tissue
with a known competitive antagonist, it would signify

deviation from equilibrium either with respect to the
concentrations of agonist and antagonist, temporal equil-
ibration or homogeneity of the receptor population. It is
worth considering each of these conditions and how they
relate to Schild regressions.



A. SLOPE <1. The first experimental condition to con-
sider is the Schild regression with a slope less than unity
either over the complete concentration range or a portion

of the antagonist concentrations tested. One of the most
common causes of slopes less than unity are agonist

uptake processes in isolated tissues. For example, in a
tissue with an agonist uptake process, a fraction of the
agonist added to the organ bath will not reach the recep-

tors and a steady-state deficit of agonist between organ
bath and receptor compartment concentrations of ago-
nist will develop (i.e., see figure 4). Therefore, the control

concentration-response curve to the agonist will be
shifted to the right of the true curve. Then, if a concen-

tration of antagonist produces conditions such that the
concentration-response curve to the agonist is shifted far

to the right and large concentrations of agonist, which

saturate the uptake process, are required for responses,
then uptake ceases to be a consideration for this shifted
curve. In terms of the discussion for figure 4, the control
curve is in region 1 and the shifted curve in regions 2 or
3 of the uptake-concentration relationship. Since uptake
removes no appreciable fraction of agonist from the

shifted curve, a potentiation of agonist response is ef-
fected and the antagonism is reduced by a multiple factor
relating to the importance of the uptake process. This

reduction of antagonism is reflected in a Schild regres-

sion (or portions thereof) with a slope less than unity.

The same phenomenon can occur if the competitive
antagonist for the receptors also blocks the uptake of

agonist at some concentration. Where, along the log[B]
axis these effects are observed is determined by the
relationship between the concentrations of agonist (and
antagonist) and the Km for uptake and the equilibrium
dissociation constants for the receptors. The effects on

Sehild regressions can be complex, from nonlinear bio-
phasic curves to linear parallel shifts to the right. A
concise model by Furchgott (232, 239) is useful for the

description and prediction of these effects. Thus, the

concentration of agonist in the organ bath [A5] is related
to that at the receptor [Ab]0 by the following equation
(232):

[Aa] [Ab]o (1 + [B]/KB)

m

k . KAU

1�[Ab]o(1+[B]/��Is)+i�.i � ( )

KAU KB � KBU

where [B] refers to the molar concentration of the an-

tagonist, KA and KB the equilibrium dissociation con-
stants for the receptor of the agonist and antagonist,
respectively, k the transfer rate constant of the agonist
into the receptor compartment, KAU the Michaelis-Men-

ten constant of the agonist for the site of uptake, KBU

the equilibrium dissociation constant of the antagonist
for the site of uptake, and Urn the maximal rate of uptake.
This equation is based on a model which equates the rate

of entry of agonist into the receptor compartment by
bulk diffusion to the rate of removal of agonist by an
uptake process with Michaelis-Menten kinetics. With

Eq. 41, given the KAU for an uptake process and equilib-
riurn dissociation constants for the receptors, theoretical
Schild regressions may be calculated which show a van-

ety of contours and displacements (for calculated exam-
ples see 232, 239, 380, 385, 490). The maximal rates of
diffusion and uptake are not required as a prerequisite

to the use of this equation since the ratio of these terms
can be estimated by the maximal degree of sensitization

to the agonist after complete uptake inhibition (see Eq.
10). The conversion of nonlinear into linear Schild
regressions by inhibition of agonist uptake processes has

been shown in a variety of isolated tissues (103, 104, 131,

232, 239, 336, 380, 385, 410, 426, 463, 490).
Virtually any mechanism that potentiates the response

to the agonist (e.g., inhibition of phosphodiesterase) or

produces an additional response (i.e., release of endoge-
nous agonist) at some point in the Schild analysis can
produce nonlinear Schild regressions. Chemical effects
also may be relevant as in the relaxation of rabbit trachea

by pH effects after addition to the organ bath of acidic
solutions of histamine (381). The activation of another
receptor also may produce nonlinearity and will be dis-

cussed separately.

B. SLOPE >1. Schild regressions with slopes greater

than unity can be produced by inadequate periods of
equilibration for the tissue with the antagonist if drug-
receptor interaction and not diffusion is the rate-limiting

step (369). The theoretical Schild regressions can be

calculated by (369):

log(dr� - 1) = log[B] - log KB

+ log1 � � (exp(-k2([B]/KB + 1)t))
Li + ([B]/KB)(exp(-k�([B]/KB + i)t))

where dr� is the dose ratio at time t, k2 is the rate of
offset of antagonist from the receptor, and KB is assumed
to be k�/k1 (k1 being the rate of onset of antagonist for
receptors). Thus, over inadequate equilibration times,

the fractional antagonist receptor occupancy (as corn-
pared to that at equilibrium) will be greater for higher
concentrations and less for lower concentrations (near
the PKB) and a nonlinear Schild regression with portions
of slope >1 is predicted. As is evident in Eq. 42, the effect
is time-dependent as well as antagonist-concentration
dependent thus the concentrations of antagonist over
which the slope is greater than unity varies with equili-

bration time. The potency of antagonists has long been

known to be dependent upon equilibration time (230,
247, 369, 506, 525, 564) and demonstration of time-
independent PKB estimates clearly is a prerequisite to
the use of antagonists for drug and drug-receptor classi-
fication. Other experimental conditions which could pro-
duce steep slopes for Schild regressions could involve
antagonist induced tissue depression if these effects are
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regression with a slope of unity is consistent with but of agonist. As the rate constant of the antagonist in-

more prominent at higher rather than lower concentra-

tions of antagonist.

C. SLOPE = 1, BUT SPURIOUS PKB. If diffusion and not
drug receptor interaction is the rate-limiting step in an

isolated tissue, then inadequate equilibration times will
not affect the slope of the Schild regression but rather

will cause it to be shifted to the right of the true Schild

regression. The degree of shift is inversely proportional

to � (the rate of diffusion of the antagonist out of the
diffusion barrier) and the equilibration time. The equa-
tion to describe these effects is (369):

log(dr� - i) = log[B] - log KB

+ log(i - exp(-k0��t)) (43)

where dr� is the dose ratio at time t. Note how in Eq. 43

there is no term containing both t and [B] therefore no
aberration of slope should occur.

Schild regressions may be shifted to the right (with a
slope ofunity) by injudicious overuse ofuptake inhibitors

if the uptake inhibitors possess affinity for the drug
receptors. For example, use of arnitriptyline as an inhib-
itor of neuronal uptake in the rat anococcygeus muscle

produces an increase in the slope of the Schild regression
to phentolarnine from 0.5, in the absence of uptake
inhibition, to 1.0 after inhibition ofuptake. However, the
regression in the presence of amitriptyline, although

linear with a slope not significantly different from unity,
is shifted to the right of the correct one by a factor of 50

and yields a spurious PKB (380). This is because of the

significant a-adrenoceptor blocking properties of arni-
triptyline (380, 4i5). The Schild regression for a tissue

possessing an agonist uptake process which is partially
inhibited by an uptake inhibitor with receptor-blocking

properties can be calculated by an equation similar to

Furchgott’s (380):

[A5] = [Ab]o(i + � + �i .

1 + �4.�Lo (�
KAU\

+ i�i + it_i . �
KB K1 4��/

+ if�i
K1

where I is the uptake inhibitor, KI the equilibrium dis-

sociation constant of the inhibitor for the site of uptake,
and 4 the ratio of the equilibrium dissociation constants

of the inhibitor for the receptor (KIR) and K1 (/ = KIR/
K1). The other parameters are as for Eq. 4i. Theoretical
calculations show that the ratio of equilibrium dissocia-
tion constants of the uptake inhibitor for the receptor

and site of uptake should be 20 or greater to prevent
significant error in the estimation of a PKB. Experimen-
tal results indicate that i2.5 is insufficient (380).

Finally, the corroborative nature of the Schild regres-
sion slope should be stressed in that a linear Schild

not proof of simple competitive antagonism of a homo-
geneous population of receptors. For example, the phys-

iological antagonism of carbachol induced contractions
of guinea pig trachea by l-isoproterenol produces dose

ratios which yield a linear Schild regression with a slope
ofunity (374).

Considering the variety of ways in which a single
estimate of the pA2 can be in error with respect to the
true PKB, receptor classification on the basis of pA2
values theoretically is unsound. Rather, a PKB value with

an adequate estimation of the slope of the Schild regres-
sion is much more preferable since the slope gives a
measure of the confidence with which the intercept can

be equated to the equilibrium dissociation constant of
the antagonist for the receptor.

D. THE “HEMI-EQUILIBRIUM” STATE. There are ki-
netic conditions under which competitive antagonists

shift agonist concentration-response curves to the right
but also depress the maximal responses. This is most

commonly encountered with persistent (low rate of off-
set) antagonists and low efficacy agonists. Described by

Paton and Waud as a “hemi-equilibriurn” state between

agonist, antagonist and receptors (506A, 507), the equi-
librium of the antagonist is not changed by the presence
of the agonist and the agonist equilibrates with only a
portion of the total receptor population. Under these
conditions, the antagonist behaves as an essentially ir-
reversible blocker and produces insurmountable antago-

nism. The degree of depression of the maximal response
for any given dose ratio is dependent upon the intrinsic

efficacy of the agonist. Figure i2 shows the depression

of concentration-response curves of guinea pig ileal lon-
gitudinal smooth muscle strips to n-octyltrirnethylam-
monium by hyoscine (527A). An estimate of the KB of

the antagonist can be made with the following equation
(507):

1 1. p i i

[A]K�(i-p)�(i-p)[A’] (45)

where [A ] and [A ‘] refer to equiactive concentrations of

agonist in the presence and absence of antagonist (B),

respectively, and KA the equilibrium dissociation con-
stant of the agonist. Therefore, a double reciprocal
regression of i/[A ] upon i/[A ‘] should yield a straight
line with a positive intercept. The KB then can be cal-
culated by:

KB [B] � (46)
(slope - i)

Using Eq. 45, Rang (527A) calculated the KB for hyoscine
with three alkyl-trimethylammoniurn compounds and
found agreement with independent estimates by hyoscine

antagonism of rnethylfurrnethide.
This method is most accurate when the dissociation

rate constant of the antagonist is much lower than that



methylfurmethide

2�

a

II

C8-.TMA relative amounts of stimuli the various agonists generate

from each receptor type. The apparent PKB values out-

wardly satisfy the requirements of true equilibrium dis-
sociation constants for homogeneous receptors yet are

artifacts of the Schild method.
This problem was first modelled by Furchgott who

calculated responses from two receptors in terms of
classical occupation theory assuming that the stimuli
from each receptor type was additive. Response was

x taken to be a rectangular hyperbolic function of total

stimulus (general logistic Eq. 24 where f3 = 1 and n = 2).

In the calculations, Furchgott assumed that the agonist
had equal intrinsic efficacy for the two receptor types
but that both the agonist and antagonist had different
affinities for the two sites. A biphasic Schild plot was

calculated as shown in figure i3B. Of note here are the
linear portions of the regression illustrating the potential

for the observation of apparently simple kinetics (linear
Schild regression with a slope of unity) in a complex

system. In terms of this model, the factor which deter-
mines whether or not the Schild regression in a tissue

with a heterogeneous receptor population has a slope of
unity or less than unity is the concentration range of

antagonist over which the analysis is carried out.

A useful model by Lernoine and Kaurnann (417), which
assumes a receptor reserve for both agonists, has been

used recently to calculate theoretical Schild regressions

in two receptor systems. The regressions were calculated

by (4i7):

0I..I I I I I I I I I I

5 10 20 405 10 20 50 100 200

flM

FIG. 12. Antagonism of responses of guinea pig ileal longitudinal

smooth muscle to methylfurmethide and C8-tetramethylammonium.

Responses in the absence (#{149})and presence of hyoscine 0.16 nM (x)

and 0.3 nM (0). Data points for methylfurmethide are means of six

responses; C3-TMA individual responses. From Rang (527A) with

permission.

creases, relative to that of the agonist, simple competitive
kinetics would be expected (506A).

E. RECEPTOR HETEROGENEITY AND ESTIMATIONS

OF THE PKB. The Schild equation predicts a linear
regression with a slope of unity when a simple competi-

tive antagonist competitively binds to a homogeneous
population of receptors to chemically titrate the number

of free receptors for agonist binding. The resulting pKB
under these circumstances is a constant which reflects

only antagonist receptor interaction and is independent
of the agonist used. However, in practice, there are
isolated tissues where agonist dependent Schild regres-

sions have been obtained and under conditions which
preclude consideration of agonist uptake processes (233,

234).

Figure i3A gives data from Furchgott (235) showing
linear Schild regressions with slopes of unity which yield

agonist dependent PKB values for propranolol in guinea
pig trachea. This is a striking finding since on the surface

it suggests three separate fl-adrenoceptors in this tissue
corresponding to the three distinct PKB values for pro-
pranolol. However, theoretical models, based on occu-

pation theory, suggest an alternative hypothesis which
explains the data in terms of a mixture of two receptor
types with varying affinity for propranolol and the three
agonists. The apparent PKB values would then be an
amalgam of the equilibrium dissociation constants of

propranolol for fir- and �32-adrenoceptors. The bias in
terms of how much �- and how much f32-adrenoceptor
character this apparent PKB will have depends upon the

log(dr - i) = log[B]

- 1 J(IQKBQ + cTRKBR)[B] + KBQKBR (47)

og � [B] + �7RKBQ + aQKBR

where aQ and �R referred to the fractional stimuli elicited

by the agonist from receptor types Q and R, respectively,

and KBQ and KBR referred to the respective equilibrium
dissociation constants of the antagonist for each receptor
subtype. Figure i4 illustrates clearly the linear character

of portions of Schild regressions calculated for tissues
with heterogeneous receptor populations. The calculated
regression provided an acceptable fit to data from guinea
pig trachea (4i7).

Just as different Schild regressions can be obtained
for one antagonist in a tissue bearing a heterogeneous
receptor population with different agonists, so too could
different Schild regressions be obtained for the same

agonist-antagonist pair in different tissues if those tis-
sues have different relative proportions of two receptor

types. Assuming a population oftissues with two receptor
subtypes, R1 and R2, the stimulus from R1 produced by
an agonist [A ] in the presence of an antagonist [B]

would be:

SI = ei.[Ri] (48)
K1’ fB]\

i + i�A�i (,�i +
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FIG. 13. Schild regressions in tissues with mixed receptor populations. A. Schild regressions in guinea pig trachea. Ordinates: Logarithms of

equiactive dose-ratios-i. Abscissae: Logarithms of molar concentrations of propranolol. Antagonism of responses to salbutamol (0, SAL, n = 5),

isoproterenol (& ISO, n = 2) and norepinephrine (#{149},NE, n = 4). Bars represent S.E.M. Reprinted with permission from Furchgott (235). B.

Theoretical Schild regressions calculated for data points for isopropylmethoxamine (1PM) antagonism of responses to isoproterenol (ISO) in

guinea pig trachea. Ordinates as for part A. Abscissae: Logarithms of molar concentrations of 1PM; logarithms of molar concentrations of 1PM
an fractions of a calculated KB for �32-adrenoceptors and again as fractions of the K5 for fl,-adrenoceptors. Mean (0) and individual (#{149})data

shown. Curved line calculated from model described by Furchgott (236) assuming KAl/K� = 2 (isoproterenol han 2 times the affinity for � an

�1-adrenoceptors) and e, = e2 = 5. The two dashed lines are what would be expected if the tissue contained purely f32-adrenoceptors (PKB = 6.63)

or purely $1-adrenoceptors (PKB = 4.85). Curved line calculated from model assuming an equal concentration of both receptor types. Reprinted

with permission from Furchgott (236).

where K1 and KB1 refer to the equilibrium dissociation

constants of the agonist and antagonist for the receptor,
respectively. Likewise for the stimulus from R2:

S2 = (49)

Using these equations, Schild regressions for systems
with various relative proportions of [R1] and [R2] were
calculated. A modification of the additive stimulus as-
surnption used by Furchgott (236) and Lemoine and

Kaumann (417) was introduced into this calculation to
allow for unequal coupling of receptor populations. Thus,

secondary stimuli S1’ and S2’ products ofsaturable func-
tions of the primary stimuli, were considered additive.
This is formally identical to the subsequent stimuli hy-
pothesis outlined by Mackay (434) where the secondary
stimulus (S0) is related to the primary stimulus (Sa) by:

eral logistic with fitting constants f� and fl2 (Eq. 24).

Note that Eq. 50 is a special case of the general logistic
function (n = a = i, b = fi). The response was considered

to be a general logistic function (fitting constant �3�) of
the arithmetic sum of S1’ and S2’. It should be noted

that these mathematical expedients do not affect the

outcome of predictions for the two receptor models on

Schild regressions but simply build in the concepts of a
nonlinear function between receptor occupancy and tis-

sue response and unequal coupling of the two receptor
populations. There is no reason a priori for two receptor
populations to be coupled with equal efficiency such that

there is a direct correspondence between relative nurn-
bers of the two receptor populations and the relative

stimulus derived from each.
With this model, theoretical Schild regressions for an

agonist with equal efficacy and affinity for R1 and R2 and
an antagonist with iOO times the affinity for R1 as R2

were calculated in a range of tissues with varying relative
proportions of R1 and R2 ([R,]/[R2] = i000 to 0.Oi). For

illustrative purposes, equal coupling of R1 and R2 for the
response mechanism was assumed for this example but
it should be stressed that the relationship between the

observed pA2 and the ratio of [R1]/[R2] is a direct result
ofthis assumption and therefore is not meaningful. How-
ever, there is value in this calculation since it shows the

relationship between the location ofthe Schild regression

(50)

where a and b are chain constants.

In these calculations, the secondary stimulus S1 ‘ =

(S1) and S2’ = f2 (S2) where fi and f2 need not be identical.
The function chosen for these calculations was the gen-
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diate mixtures of receptor types, the regressions are

A JKBQ=45 nmoI�’

- KBR=3.l J
- a0O.77

3
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FIG. 14. Effects on Schild regressions ofvariable fractional stimulus

from a heterogeneous receptor population. Ordinates and abscissae an
for figure 13A. Data points from (+)bupranolol antagonism of guinea

pig tracheal responses to (-)norepinephrine. Non-linear Schild regres-

sions calculated from Eq. 47. Top panel: Data points fitted by Eq. 47
assumingthat 77% ofthe norepinephrine stimulus wan due to a receptor
Q with low affinity for (+)bupranolol (Ks� 45 nM) and 23% to a

receptor R with a high affinity for (+)bupranolol (KBR = 3.1 nM).

Middle panel: Schild regression for agonist which produced equal
stimuli from receptors Q and R. Lower panel: Sehild regression for

agonist which produced 23% ofstimulus from receptor Q and 77% from

receptor R. Reproduced by permission from Lemoine and Kaumann

(417).

and the slope as it relates to receptor heterogeneity. This

relationship is not dependent upon the relative affinity
and efficacy of the drugs for the receptor types or the
relative efficiency of coupling of the receptor types. Fig-
ure i5A shows the effects of changing relative receptor
number on the Schild regression. The designated KB for

R1 is iO nM and for R2 is i �.sM (KB2/KB1 iOO). At the
extremes of nearly homogeneous populations of R1 ([R1]

/[R2] = i000) or R2 ([R1]/[R2] = 0.Oi), the regressions
are linear with slopes of unity and yield the correct PKB
for the respective receptor types. However, at interme-

I I I

0 1 2 3 4

-2 -1 0 1 2

Log (R1)F[R2J)

FIG. 15. Theoretical Schild regressions for heterogeneous receptor

populations. A. Ordinates and abscissae an for figure 13A. Schild

regression calculated for an antagonist with 100 times the affinity for

receptor 1 over receptor 2 (K51/K52 = 0.01) producing antagonism of

responses to an agonist with equal affinity and efficacy for both

receptors. Different regressions are from a range of tissues with varying

fractional predominance of one receptor over the other ([R1J/[R2J =

1000 to 0.01). It is assumed that the receptors are coupled equally in

all tissues (flu = I�2). B. Slopes of the Schild regressions shown in part

A. Ordinates: Slopes of the Sehild regressions. Abscissae: Logarithms

ofthe dose ratios -1. Slopes shown for varying fractional predominance

of receptor populations ([R1]/[R2J = 1000 to 0.01). C. Calculated pA2

values for Schild regressions from tissues with heterogeneous receptor

populations. Ordinates: Observed pA2. Abscissae: Logarithm of relative

proportions of receptors types 1 and 2 in a given tissue. Calculations

made for agonists with varying selectivities for one of the receptor

types.

displaced with a linear portion generally at log (dr - i)

>i and a nonlinear segment near the pA2. Figure 15B
shows the slopes of the regressions at various ratios of



receptor types. The calculations indicate that while PKB values for a spectrum of receptor configurations.

slopes less than unity could be expected at dose ratios This concept differs from the discrete two-receptor idea

from 2 to 30, larger dose ratios yield regressions in which which would predict chimerical or artifactual PKB values

nonlinearity would be difficult to detect. This is in agree- within this grey area.

ment with numerous published Schild regressions in 2. Other Methods to Cakulate PKB. The Schild method

tissues with heterogeneous receptor populations which is by far the most ubiquitous in pharmacology for the

have slopes of unity (235,485-487,554,555,558). In terms measurement of equilibrium dissociation constants of

of satisfying the conditions for simple competitive antag- competitive antagonists (374). Useful guidelines for sta-

onism, a linear Schild regression with a slope of unity tistical manipulations with this method have been given

would constitute evidence for the intercept to be consid- by MacKay (432) and Tallarida and coworkers (6i3).

ered the PKB. However, as the foi�egoing analysis mdi- There are other methods available for the calculation

cates, the intercept would reflect an artifactual PKB value ofpKB values. A method utilizing the “L transformation”

as a weighted average the PKB for two receptor types in has been proposed by MacKay and Wheeler (435). A

a tissue containing two types of receptor. Figure i5C method with theoretical advantages over the Schild

shows the influence of relative efficacy of the agonist for regression is one utilizing the “Clark plot” (603,604).

two receptors on the observed PKB of Schild regressions Brazenor and Angus (92) have shown that estimates of

in tissues with varying relative amounts of the two re- the PKB using the Clark plot and Schild regression can

ceptor types (KB2/KB1 100). The actual value of the differ significantly. A method based on an equation by

PKB equated to a given ratio of [R1]/[R2] depends upon

the coupling of the two receptor populations to the tissue
response machinery. The calculations in Figure 15C as-

surned equal coupling.

Ariens termed the “dynamic approach” has been pro-

posed by Arnidon and Buckner (10). In this method, a

fixed ratio Q of agonist [A’] and antagonist [B] are
physically mixed and the mixture used to obtain a con-

There are an increasing number of tissues found to
have heterogeneous receptor subpopulations as measured

by binding studies (97,305,318,457-459,466,47i,556). In

some cases the receptor heterogeneity found in binding

centration-response curve in a tissue. This curve is corn-

pared to a control curve to the agonist alone [A ] and
equiactive agonist concentrations are equated with the

following relationship:

studies can be corroborated in pharmacological studies

with isolated tissues, but in others the heterogeneous

receptor subpopulations found by binding are not re-

i � i

[A]KB�[A’] (5i)

flected in tissue responses. For example, in the rabbit

uterus binding studies showed that a�- and a2-adreno-

ceptors were coexistent but responses appeared to be

Thus, the reciprocal of the intercept of a double recip-
rocal plot of 1/[A] versus i/[A’] x Q yields an estimate
of the KB.

mediated only by the a1-adrenoceptors (3i8).
Pharmacological experiments in isolated tissues mdi-

cate a heterogeneous population of �i-adrenoceptors in
guinea pig trachea (233-235,240,241,485), cat heart

(i17,i18), and rat adipose tissue (298). Heterogeneous

populations of postsynaptic a-adrenoceptors may be
present in dog basilar artery (558), rat perfused hind

quarters (657), dog saphenous vein (i48,607), and rat tail

artery (3i2).
The foregoing theoretical analyses suggest that a spec-

trurn of apparently linear Schild regressions could be
expected from a range of tissues with varying relative

quantities of two discrete receptor types which subserve
the same type of response. Alternatively, if accessory
binding sites around the active site of the receptor are

required for antagonist binding, then a continuous spec-

trurn of binding constants might be expected with differ-

ing lipid constituents of biological membrane which

could, in turn, affect the conformation of the receptor

protein. This scheme of “multiple environment” as op-
posed to “multiple receptors” has been proposed to ex-
plain the profusion of opiate receptors (465). This hy-

The basis of drug and drug receptor classification is
the unequivocal measurement and comparison of param-

eters which depend only upon drug and receptor inter-
action. The philosophical step from such data to the
postulate of a new receptor type or agonist/antagonist

selectivity is, in the end, still subjective (432). The sound-
est approach would appear to be to eliminate as many
obfuscating factors as possible that make organ selectiv-

ity appear to be due to receptor selectivity (373,376) and
quantitatively compare, with appropriate statistical pro-
cedures, the drug receptor parameters. A popular guide-
line set forth by Furchgott (232) for distinguishing re-

ceptors with competitive antagonists is the postulate that
a threefold difference in K5 values constitutes evidence
for differences in receptors. Another possibility is the use
of analysis of covariance of regression lines (591) to
compare linear regression lines with respect to slope and
elevation (385). Thus, all ofthe data in Schild regressions
could be utilized instead of only the intercept. This

pothesis would predict a grey area of binding constants procedure lends itself to any method that utilizes linear
between two extremes which would reflect a range of regressions.
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VI. Operational Concepts in Receptor

Classification
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VII. Relevance to New Drugs

Isolated tissues are widely used in industry for the

finding of new therapeutic entities for the treatment of

diseases in man. A valuable byproduct of this process is

the discovery of selective drugs for the classification of
drug receptors (445,575-577). An effective, iflabor inten-

sive, approach towards this end is the random screening

of many chemical compounds in appropriate in vitro test
systems. In this context, the term random refers to the
a priori lack of rationale for the choice of chemical to be

tested; this opens the doors to the finding of a novel drug

(445). The methodological concepts which refer to the
proper preservation of tissue viability and caveats to

universal ascription of drug selectivity observed in a
given tissue to all tissues have relevance to these screen-

ing procedures. However, some theoretical concepts un-
der the vague heading of receptor theory may be helpful

in the search for new drugs. Intuitively, it might be
supposed that a screening program should be targeted to

the finding of the most active and selective drug possible

but there may be exceptions to both of these criteria.
Firstly, the most potent agonist may not be the most

useful if the potency is related mainly to a high efficacy

rather than a high affinity. As shown in figure lOB, drugs

of high affinity but low efficacy are much more suscep-

tible to the efficiency of receptor coupling than are drugs
of high efficacy. Support for this idea can be found in
the wide range of agonist activities of prenalterol, a �3-

adrenoceptor agonist of low efficacy in different tissues
(figure i2B). Therefore, organ selectivity in vivo may be

better achieved by choosing the agonist of lower efficacy.
In the early formulations of receptor theory, Clark and

Raventos (i34) distinguished “. . . the capacity to bind
and the capacity to excite. . . .“ There are numerous

studies that show the structure activity relationships for

affinity and efficacy to be quite different (553-555,599).
Figure i6 shows the separate structure-activity relation-

ships of some drugs for a-adrenoceptors and highlights
the independence of the properties of affinity and effi-
cacy in drugs. For example, synephrine (4-OH, figure
i6A) and 3-hydroxytolazoline (3-OH, figure i6B) show
comparable activity in guinea pig aorta (555) and it would

be predicted that these agonists would be equiactive full

agonists in tissues with large receptor reserves (i.e., a
potency ratio of i.88 by Eq. 23). However, the agonist
profiles of these two agonists would be very different

(i.e., synephrine �‘ 3-hydroxytolazoline) in tissues with
little receptor reserve. This would be due to the differ-

ences in efficacy of the two drugs. Without knowledge of

the relative efficacy of these drugs, the screening results

on different tissues could be misleading. For example, if
screened on tissues with large receptor reserves, the drugs
would be assumed to be equiactive with a corresponding

assumption that this profile would be true in vivo. Alter-
natively, if screened on a tissue with a low receptor
reserve, the disparate agonist profiles might suggest ar-

tifactual receptor selective effects. Knowledge of both

efficacy and affinity could be useful in the predictions of
agonist effects in man.

Secondly, the concept of high selectivity may be over-

stressed as well. A screening program targeted to the
finding of a drug with a single unique action presupposes

the existence of a unique and convenient hitherto unde-
tected receptor or mechanism that will subserve the

desired activity. This is, of course, possible but there are
elements of wishful thinking in this approach. Another

possibility would be the conscious design of two proper-

ties within one molecule to produce a drug which, when

interacting with organs possessing the two mechanisms
with which the drug has activity, produces a selective

effect. The selectivity would stern from the varying rel-

ative importance the two mechanisms may have in dif-
ferent organs. For example, rnetanephrine is an inhibitor

of the extraneuronal uptake of catecholamines (i08) and

also is a �3-adrenoceptor blocking agent (367,37i). Since
the former mechanism sensitizes some tissues to cate-

cholamines and the latter mechanism produces dextral

displacement of concentration-response curves to cate-

cholamines, there is a potential for self cancellation.
However, diffusional and uptake characteristics of dif-

ferent tissues make extraneuronal uptake of catechol-
amines (uptake2) of varying importance. For example,

inhibition of uptake2 produces no significant sensitiza-

tion of guinea pig atria (706) but a 5- to 30-fold sensiti-
zation of guinea pig trachea (367). Thus rnetaphrine

produces organ selective a-blockade in these tissues; i
mM metanephrine produces a dose ratio of 3 in guinea

pig trachea and 25 in guinea pig atria.

Two activities in one molecule may be critical to the
selectivity or overall activity of that molecule in vivo.

For example, it is probable that the antihypertensive

activity of labetalol relates to the combined a- and fi-
adrenoceptor blocking properties of the molecule. The

weak partial agonist activity of dobutamine for a-adre-
noceptors coupled with stronger �3-adrenoceptor agonist

activity may be critical to the selective inotropy observed
with this drug in vivo (370).

The elucidation of these mechanisms may be impor-

tant to the process of finding new drugs. It may be more

beneficial for a medicinal chemist to know that a given
molecule is selective in vivo because of a combination of

activities as opposed to the presumption that it stimu-

lates some hitherto unknown new receptor. Also, the

design of drugs with two or more activities increases the

chemical starting points for a medicinal chemist in the

design of new molecules.
There are indications that combining two properties

in one molecule may be useful. Baldwin and coworkers
(35) term this the “symbiotic approach” and have used

the idea to successfully produce a vasodilator-�3-blocking
drug. Unfortunately, the full utility of this agent could

not be elucidated because of observed teratogenicity.
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VIII. Conclusions

This paper reviews some ofthe large body of knowledge
concerning the process of isolating a tissue and keeping
it viable and stable for a period of time sufficient for the
testing of drugs. Pharmacological experience shows that
very often the observed responses to drugs do not reflect
drug receptor events but rather are related to the gauntlet
of hazards the drugs must overcome on the way to the
receptor or the complex translation ofthe receptor events
by the tissue. Various null methods have been devised
with simple kinetic models which, theoretically at least,
provide parameters for drugs relating only to receptor
action. If these parameters can be measured accurately
and reliably they should provide the basis for the classi-
fication of drugs and receptors. Also, the collection of
quantitative data describing drug affinity and efficacy
should be useful for the creative design of new and better
drugs for man. The superiority of isolated tissues for the
quantification of agonist efficacy coupled with the econ-
omy of effort involved in the procedures and the wealth
of experience available in the literature make in vitro
experimentation in isolated tissues important in this
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process.
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