
 

 

 

 
 
 
 
 
 

Determining the role of choline dehydrogenase in sperm cell function 
 
 
 

 

Amy Rose Johnson 
 
 
 

 

A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill 
in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the 
Department of Nutrition. 

 

 
 
 
 
 

Chapel Hill 
2011 

 

 
 
 
 
 
 
 
 
 

 Approved by: 
 

 Steven H. Zeisel  

 Rosalind A.Coleman  

 Liza Makowski  

 Mihai D. Niculescu  

 Deborah A O’Brien 

 
 
 
 
 
 
 
 



 

ii 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

© 2011 
Amy Rose Johnson 

ALL RIGHTS RESERVED 
 
 
 
 

 



 

iii 
 

 

 
 
 
 

ABSTRACT 
 
 

AMY ROSE JOHNSON: Determining the role of choline dehydrogenase in sperm cell 
function 

(Under the direction of Steven H. Zeisel) 
 
 
 

 

Approximately 15% of couples suffer from infertility and male factor infertility is 

the suspected cause in about half of these couples. 40-60% these male factor infertility 

cases are idiopathic, but genetic aberrations are associated with infertility in as many as 

30% of these. Although the relationship between nutrition and reproduction is established, 

the role of micronutrient metabolism in male fertility is understudied. Choline, an essential 

nutrient for humans, is important for maintaining a healthy pregnancy and normal fetal 

development. Choline is necessary for normal mating behavior and male fertility in D. 

melanogaster but the reason why remains unknown. 

 

 
 

Choline dehydrogenase (CHDH) catalyzes the conversion of choline into betaine, 

a methyl group donor and osmolyte. Several single nucleotide polymorphisms (SNPs) 

within the CHDH gene may alter the function of the CHDH. A choline dehydrogenase 

knockout mouse (Chdh-/-) was created to model loss-of-function mutations in humans. 

Mutation of Chdh reduced CHDH activity and decreased betaine concentration in all 

tissues that normally express this enzyme. Fetal viability, growth and one-year survival 

rates were not affected. Chdh-/- animals had 59% more plasma homocysteine, but hepatic 
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AdoMet and AdoHcy were unchanged. Chdh-/- males were infertile due to poor sperm 

motility. Abnormal mitochondrial morphology and function were observed in Chdh-/- 

sperm. ATP concentration was 55% lower in  Chdh-/-   sperm.  Dietary  betaine  

supplementation  resulted  in  increased  Chdh-/-   sperm motility, and full restoration of 

ATP concentration. 

 
 

 

CHDH SNP rs12676 (G233T; R→L) and IL17βR SNP rs1025689 (G126C; P→P) 

are associated with changes in mitochondrial function and sperm motility in men. Men who 

were TT for rs12676 produced sperm with dysmorphic mitochondria. Compared to GG 

subjects, sperm produced by GT subjects contained 40% less ATP; men who were TT for 

this SNP had 73% less ATP. Motility characteristics were changed in men with at least one 

minor allele of either rs12676 or rs1025689. CHDH protein was decreased in primary 

hepatocytes from  individuals  who  were  TT  for  rs12676,  indicating  this  SNP  marks  a  

functional haplotype. We propose that aberrant choline metabolism stemming from 

decreased CHDH activity may be an underlying cause of idiopathic male factor infertility 

in men. 
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CHAPTER I 

 

Introduction 

 
 

Significance 
 

 
 

An estimated 15% of couples are affected by infertility [1] and infertility attributed 

to the male partner (male factor infertility) is the suspected cause in 30-50% of these 

couples. An exact cause of male factor infertility can be determined in 40-60% of these 

cases. Common causes include advanced age  (>55 years) [2], endocrine disorders [3], 

congenital defects [4, 5], infection [6-14] , testicular cancer [15, 16] and erectile dysfunction 

[17]. The remaining 40-60% of cases are idiopathic; however genetic aberrations such as 

chromosomal deletions, translocations and single nucleotide polymorphisms (SNPs) are 

associated with infertility in as many as 30% of these men [18]. Depending on the nature of 

the variation and the gene in which they are found, genetic anomalies may affect 

reproductive cellular function by altering processes such as proliferation, apoptosis and 

differentiation, as well as signaling and metabolism. 

 

 
 

Nutritional status is an environmental exposure that can have profound effects on 

cell function. Although the relationship between overall nutritional status and 

reproduction is well known [19-21], the relationship between micronutrient metabolism 

and male infertility is understudied. Of the micronutrients that have been studied in this 

context, researchers have found that vitamin A is necessary for maintenance of germinal 

cells populations [309] and nutrients with antioxidant properties such as α-tocopheral 

(vitamin E), ascorbic acid (vitamin C), and carotenoids are necessary for protecting 
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sperm from oxidative damage [23, 24]. Selenium deficiency is associated with decreased 

sperm motility and abnormal midpiece morphology in these cells [25]. Dietary zinc 

deficiency is associated with hypogonadism and decreased   testosterone   production,   in   

addition   to   abnormal   chromatin   condensation, decreased oxygen consumption and 

acrosin activity in sperm [26-33]. Because of its notable role in nucleic acid biosynthesis, 

and its effectiveness in preventing neural tube defects, the role of folate availability and 

metabolism has been examined with regard to male infertility. However, there is no 

evidence that dietary folate status, per se, is associated with decreased fertility in men [34].  

 

One study examining choline deficiency and male fertility has been published [35]. 

Geer reported that both normal mating behavior and sperm motility required dietary 

choline in Drosophila melanogaster and that carnitine, a proposed choline substitute, was 

unable to support male fertility. Phosphatidylcholine (PtdCho) concentrations decrease 

within tissues during times of dietary choline deficiency [36] and Geer proposed this as an 

explanation for his observation. Indeed, decreased PtdCho in mature sperm may be partially 

responsible for poor motility in human sperm due to changes in phospholipid 

concentrations within these cells [37]. Supporting this hypothesis is the fact that mice 

lacking CTP:phosphocholine cytidylyltransferase are infertile, though infertility is not 

restricted to males [38]. 

 

Depending on the nature of the genetic change, variations in gene sequence resulting 

from DNA deletions, insertions and SNPs may affect cellular function. For example, 

gene transcription rates can be altered by variations in transcription factor binding sites, 
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enhancer element regions or components of epigenetic transcriptional control (as 

discussed i n  t h e  review by Cookson, et al. [39]). Amino acid substitutions can result 

from variations in gene DNA sequence that may alter the function of the protein coded by 

that gene. Therefore, it is highly likely that differences in nutrient metabolism stemming 

from genetic variation contribute to male infertility and may also account for some of the 

causes of idiopathic male factor infertility. For example, although dietary folate deficiency 

is not associated with male factor infertility, SNPs in the folate metabolism-related genes, 

including methylenetetrahydrofolate reductase gene (MTHFR), methionine synthase (MS) 

and methionine synthase reductase (MTRR) have been associated with idiopathic male 

factor infertility in some populations [42, 43] and Mthfr-/- males are infertile [44, 45]. Other 

types of genetic abnormalities may cause male infertility. The presence of an additional X 

chromosome is the cause of Klinefelter syndrome, a disease characterized by male infertility 

[40]. Additionally, male factor infertility is also associated with Y-chromosome deletions 

[41]. 

 

The data presented in this dissertation demonstrate that aberrant choline metabolism, 

either  due  to  deletion  of  the  choline  dehydrogenase  (Chdh)  gene  in  mice  or  to  

a polymorphism in human CHDH is correlated with decreased sperm motility (mouse), 

dysmorphic  mitochondrial  structure  (mouse  and  human),  impaired  function  of  

these organelles (mouse) and decreased ATP concentration (mouse and human). In mice, 

these changes result in male infertility [46]. In humans, the amount of hepatic CHDH 

protein is associated with CHDH SNP genotype. The association between CHDH function 

and male infertility was an unexpected discovery; there is little evidence in the literature 
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linking choline metabolism to fertility in men. 

 

 

Choline is an essential nutrient 
 

 
 
 

In 1998, the Institute of Medicine of the National Academy of Sciences (USA) 

set Adequate Intake (AI) levels for daily choline consumption [47] (Table 1.1). 550 mg/day 

is currently recommended for men and 425 mg/day for non-pregnant, non-lactating 

women. The developing fetus and newborn require large amounts of choline and these 

needs are met by maternal transmission of choline to the fetus across the placenta and to 

the newborn in breast milk [48-51]. Because of this, pregnant and lactating women 

require higher amounts of dietary choline in order to avoid deficiency. 

 

 

Table 1.1: Adequate intake levels of choline. From [52] 
 

Population Age AI UL 

Infants  0 – 6 months 
6 – 12 months  

125 mg/d, 18 mg/kg 
150 mg/d  

Not possible to 
establish  

Children  1 – 3 years 
4 – 8 years 
9 – 13 years  

200 mg/d 
250 mg/d 
375 mg/d  

1000 mg/d 
2000 mg/d  

Males  14 – 18 years 
>19 years  

550 mg/d 
550 mg/d  

3000 mg/d 
3500 mg/d  

Females  14 – 18 years 
>19 years  

400 mg/d 
425 mg/d  

3000 mg/d 
3000 mg/d  

Pregnant women  All ages  450 mg/d  Age – appropriate 
UL  

Lactating women  All ages  550 mg/d  Age – appropriate 
UL  
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Choline and choline metabolites can be found in significant amounts in many 

foods regularly consumed by  humans.  Additionally, some  foods,  such  as  infant  formula  

and children’s vitamins, are fortified with choline.  The United States Department of 

Agriculture (USDA) has recently constructed a database reporting the choline content of a 

wide variety of foods (http://www.nal.usda.gov/fnic/foodcomp/Data/Choline/Choline.html). 

Foods highest in choline content per 100g include beef and chicken liver, eggs and wheat 

germ. Foods with high betaine content per 100g include wheat bran, wheat germ and 

spinach. It is important to take betaine content into consideration since the presence of 

betaine will spare choline from use as a methyl group donor, leaving more choline available 

for acetylcholine (ACho) or PtdCho biosynthesis. Neither dietary recommended intake 

levels nor upper tolerable limits have been established for betaine; however, betaine was 

found to be non-toxic at all levels administered to rodents [53]. 

 

Analysis of the 2003 – 2004 National Health and Nutritional Estimation Survey 

(NHANES) revealed that while most children were eating the recommended amount of 

choline in their diet, only 10% of adults achieved the AI [54].  This is significant 

because dietary choline deficiency is associated with liver and muscle dysfunction [55-59] 

as well as increased   lymphocyte   apoptosis   [60],   renal   failure   [61-64]   and   increased   

plasma homocysteine concentrations, a risk factor for cardiovascular disease [65, 66].  

 

Clinical observations of individuals receiving total parenteral nutrition (TPN) 

demonstrated the role of dietary choline  in  normal  liver  function.  Historically, 

hepatosteatosis was a complication of long-term TPN. Buchman, et al. reported that 
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administration of choline in the TPN diet completely resolved hepatosteatosis in these 

individuals [67]. With this finding, non-alcoholic hepatosteatosis became known as a 

hallmark of dietary choline deficiency (reviewed in [68]). Triacylglycerol (TAG) from the 

diet or synthesized within the liver is distributed to other organs in very-low-density 

lipoprotein particles (VLDL). PtdCho is necessary for construction and secretion of VLDL 

particles, but choline deficiency limits the amount of PtdCho available for this function. The 

result is accumulation of TAG within the liver, which can progress to fibrosis, cirrhosis and 

hepatocellular carcinoma in some model systems [69, 70]. Choline deficiency, even in the 

absence of additional carcinogen exposure, provokes spontaneous hepatocellular carcinoma 

formation in rodents [69]. This phenomenon is enhanced when animals are treated with 

known carcinogens. While the exact mechanisms responsible for choline deficiency-induced 

liver cancer onset are not fully understood, they likely involve epigenetic changes in gene 

expression, changes in cell cycling rates, and increased oxidative stress [69, 71-79]. 

 

da Costa, et al. reported that some individuals have increased plasma levels of 

creatinine phosphokinase (CPK) when fed a choline - deficient diet, indicating muscle cell 

membrane damage [58]. As with hepatosteatosis, reintroduction of choline into the diet 

reverses these effects.   Epidemiological   studies   demonstrate   a   relationship   between   

dietary c h o l i n e  deficiency and breast cancer risk [80], neural tube defects in infants [81, 

82] and increased production of pro-inflammatory markers [83-86]. Rodent models 

demonstrate a link between maternal dietary choline deficiency and the incidence of heart 

defects as well as brain development changes ([87-89] and decreased brain function later in 

life [90-100]. 
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In addition to dietary sources, choline can also be synthesized de novo by the 

enzyme phosphatidylethanolamine N-methyltransferase (PEMT); this occurs primarily 

in the liver [101]. Using phosphatidylethanolamine (PE) and S-adenosylmethionine 

(AdoMet) as substrates, PEMT catalyzes the formation of PtdCho which can be 

incorporated into cell membranes or hydrolyzed, generating the choline moiety. An 

estimated 30% of daily choline requirements can be met through the activity of PEMT 

[102, 103]. 

 
 
 
Genetic polymorphisms affect dietary choline requirements 
 

 
 
 

There is significant variation in individual dietary requirements for choline. Some 

individuals rapidly deplete when deprived of choline (days) while others take much longer 

to become depleted (weeks) [104]. Some people require as much as 850 mg/d to prevent 

organ dysfunction while others need less than 550 mg/d [104], and these differences are 

likely attributable to genetic variation among individuals. These differences are due, in 

part, to common SNPs in the genes associated with choline and folate metabolism [105, 

106]. The Zeisel laboratory has extensively studied the influence of SNP rs1235817, 

located in the promoter region of the human PEMT gene, on susceptibility to dietary 

choline deficiency. Premenopausal women are relatively resistant to developing choline 

deficiency when fed a choline deficient diet; however, approximately 44% of 

premenopausal women do deplete, just as men and post-menopausal women do. Eighteen 

percent of the Raleigh-Durham-Chapel Hill, North Carolina, USA population is 
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homozygous (70% have 1 allele) for rs1235817, which renders them more susceptible to 

dietary choline deficiency (odds ratio 25: risk of becoming choline deficient is increased 

25x, p=0.002) than are those without the SNP, because endogenous production of choline 

molecules via PEMT is impaired [105, 107]. 17- 

beta-estradiol increases PEMT transcription and activity in human hepatocytes via an 

estrogen response element near the transcription start sites in both human and murine Pemt 

genes [107]; the premenopausal women with the rs1235817 PEMT SNP are unresponsive 

to estrogen induction of the gene [107], explaining why they show clinical signs of dietary 

choline deficiency. 

 

Two SNPs that have been identified in the coding region of the human CHDH gene 

may also influence an individual’s requirement for choline. da Costa, et al. report a 

protective effect of rs9001 and increased susceptibility to dietary choline deficiency with 

rs12676 [105]. 

 

 
 

Variability in genes of metabolic pathways associated with choline metabolism 

can also influence daily choline requirements. Choline and folate metabolism intersect 

at the point of methionine regeneration; thus alteration of folate metabolism may elicit a 

compensatory response in choline metabolism leading to choline deficiency. For 

example, individuals with the folate-related SNP rs1750560, located in the 5,10- 

methylenetetrahydrofolate dehydrogenase gene (MTHFD), are 15 times more likely to 

develop liver or muscle dysfunction when fed a choline deficient diet [106]. Caudill, et 

al. have found that rs1801133, a common SNP found in the folate metabolism gene 

MTHFR, influences choline status in Mexican Americans [108]. 
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Choline metabolism 

 

 
 
 

Digestion and absorption 
 
 
 

 

Dietary free choline is absorbed in the jejunum of the small intestine [109-113]. 

Choline is a positively charged quaternary amine and thus requires a transporter to cross 

cell membranes, although passive diffusion occurs at choline concentrations higher than 

4mM [111]. Intestinal choline transporters are not “active” transporters as they do not 

require energy, nor are they sodium dependent [111, 113, 114]. Once absorbed, choline is 

released into the portal circulation and taken up by other tissues [111, 115]. 

 

 
 

PtdCho (also called lecithin, though lecithin is not pure PtdCho) is the major form 

of choline in the diet. PtdCho must be hydrolyzed to lysophosphatidylcholine (lyso-

PtdCho) by pancreatic phospholipase A2 (PLA2) before it is absorbed by enterocytes [115-

119]. Once inside the enterocyte, lyso-PtdCho may be re-acylated, thus regenerating 

PtdCho. Alternatively, lyso-PtdCho can be de-acylated by phospholipase B (PLB) resulting 

in the formation of glycerophosphocholine (GPCho). Chylomicron particles, of which 

PtdCho is a component, are assembled in the endoplasmic reticulum of the enterocyte and 

are subsequently released into the lymphatic circulation where their contents are cleared 

from the systemic circulation via uptake by other organs. Within cells, the metabolism 

of PtdCho leads to the generation of multiple signaling molecules that have important roles 

in cellular function. For example, platelet-activating factor (PAF), a choline-containing 
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phospholipid derived from PtdCho, imparts hormone-like activity and has been 

demonstrated to regulate inflammation  [85,  120],  blood  pressure,  and  glycogenolysis  

among  other  physiological aspects (reviewed in [83-86, 120]). 

 

 
 

GPCho, phosphocholine (PCho) and sphingomyelin (SM) are also present in small 

quantities in the diet. SM is taken up into enterocytes intact; however, it is completely 

degraded in the enterocyte [118, 121]. GPCho is degraded by 3-glycerylphosphocholine 

glycerophosphohydrolase releasing glycerophosphate and free choline that is subsequently 

transported into intestinal cells and released into the portal circulation [118, 119]. PCho 

is likewise degraded by alkaline phosphatase producing free choline and phosphate [122]. 

 

 
 

Dietary betaine is absorbed in the duodenum of the small intestine [123, 124]. 

Betaine uptake into cells occurs either by active Na+ or Cl- coupled transport or by a Na+- 

independent passive transport mechanism via amino acid transport system A or the 

activity of γ-aminobutyric acid transporter protein (BGT-1) [125-128]. Table 1.2 shows the 

structure of biologically active choline metabolites. 

 
 
 
 
 
 
 
 
 
 
 



 

11 
 

 

Table 1.2: Structures of choline - containing molecules. From [68] 
 

Molecule  Chemical structure  Biological function 
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Transport 
 
 
 

 

There are three choline transport mechanisms described in tissues: a high affinity, 

sodium-dependent  active  transport  system  (CHT1),  a  facilitated  diffusion  system 

(polyspecific organic cation transporters; OCT), and a lower affinity active transport 

system (choline transporter-like; CTL) [129]. CHT1 is localized to cells that primarily 

use choline for ACho generation, i.e. cholinergic neurons. Thus, the forebrain, brain stem, 

striatum and spinal cord are the areas within the central nervous system with highest CHT1 

expression [130-134]. OCTs are a family of non-specific organic cation transporters 

primarily expressed in liver, kidney, brain, and intestine [129]. Expression of mouse CTL 

transporters have been detected in many mouse tissues; they are the only choline-specific 

transporters detected in testis to date [129, 135]. CTL1 (also known as SLC44A1) is 

localized primarily to the mitochondrial membrane of cells [136] and deficiency of this 

transporter results in decreased PtdCho [136]. In mouse, Ctl-1/Slc44a1 messenger RNA 

is detected in the epididymis, and male germinal cells [137]. 

 

 
 

Acetylcholine 
 
 
 

 

Figure 1.1 illustrates the major pathways of choline metabolism. A small portion of 

dietary choline is converted to ACho by the enzyme choline acetyltransferase (ChAT). 

This enzyme  is  found  in  high  concentrations  in  cholinergic  neurons,  ensuring  that  

ACho  is available for release by these cells. Since it is unlikely that choline and/or 

acetyl-CoA are present at levels that would saturate the ChAT enzyme, choline 
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availability determines the rate of ACho synthesis [138] and modulates the amount of this 

neurotransmitter released into the synapse [139-141].   Choline-containing phospholipids, 

including PtdCho and SM, incorporated into cholinergic cell membranes serve as a 

reserve of choline available for ACho synthesis in cells with a high demand for this 

molecule [142, 143]. 

 

 
 

Phosphatidylcholine and sphingomyelin 
 
 
 

 

An important role for choline is for biosynthesis of cellular membrane 

phospholipids, such as PtdCho and SM. PtdCho represents more than 50% of the total 

phospholipid content in cell membranes [144]. PtdCho synthesis is highly regulated and 

can occur through two pathways [101]. In the first step of the cytidine diphosphocholine 

(CDP-choline/ Kennedy Pathway) pathway, choline is phosphorylated by choline kinase 

(CK), generating phosphocholine (PCho). 

 

 
 

PCho is converted to cytidine diphosphocholine in a reaction catalyzed by the 

enzyme CTP:phosphocholine cytidylyltransferase (PCYT1A/PCYT1B); this is the rate 

limiting step in the CDP-choline pathway [145]. The rate of this reaction is regulated by 

the phosphorylation status, and thus intracellular localization, of the PCYT1A/PCYT1B 

enzyme. Specifically,  phosphorylated  PCYT1A/PCYT1B  is  inactive  and  primarily  

found  in  the cytosol while dephosphorylated PCYT1A/PCYT1B is active and localized to 

cellular membranes [146-148]. CTP:phosphocholine cytidylyltransferase phosphorylation 

status is regulated by protein kinase A via the second messenger cAMP [147, 149]. 
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The combination of CDP-choline with diacylglycerol results in the formation of 

PtdCho; this reaction is catalyzed by the enzyme CDP-choline:1,2-diacylglycerol choline 

phosphotransferase [150]. As discussed above, an alternative pathway synthesizes PtdCho 

from AdoMet and PE through the enzymatic activity of PEMT. The activity of this enzyme 

is regulated primarily by PE availability and AdoMet/S-adenosylhomocysteine (AdoHcy) 

ratio [151]. 

 

 
 

Sphingomyelin is derived from the combination of ceramide with the 

phosphocholine provided by PtdCho in a reaction catalyzed by 

phosphatidylcholine:ceramide choline phosphotransferase [152]. 

 

 
 

Betaine 
 
 
 

 

Betaine is formed from choline by two successive, irreversible oxidation reactions 

via the formation of an aldehyde intermediate [153-155]. In mammals, this process 

involves two enzymes: CHDH and betaine aldehyde dehydrogenase (BADH). This 

conversion takes place in the mitochondrial matrix following choline transport into these 

organelles [156]. Betaine is a zwitterionic quaternary amine that freely diffuses down its 

concentration gradient across plasma membranes from the mitochondrial matrix into the 

cytosol [157]. Once in the cytosol, labile methyl groups on the betaine molecule can be 

used for methylation of homocysteine in a reaction catalyzed by betaine:homocysteine 

methyltransferase (BHMT) [158]. The product of the BHMT reaction is methionine and 

dimethylglycine; therefore, betaine availability may play a role in protein turnover 
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within cells [159]. Methionine adenosyltransferase (MAT) converts  methionine  to  

AdoMet,  the  substrate  necessary  for  nucleic  acid  and  protein methylation as well as 

biosynthesis of molecules such as phospholipids and carnitine [160]. 

 

 
 

During times of osmotic stress, cells use betaine that is not degraded by BHMT as 

an organic  osmolyte  to  maintain  hydration  and  volume  [161,  162].  Hyper-osmotic  

stress, induced by high salt and/ or urea exposure stimulates betaine accumulation in cells 

by upregulating expression of the betaine γ-aminobutyric acid transporter (BGT-1), 

particularly in the glomerulus of the kidney [125-128]. In addition, betaine has been 

reported to modulate immune function [163-165], red blood cell ATPase activity [166], 

protect skeletal muscle myosin  ATPases  from  urea-induced  damage  [167],  protect  

rodent  heart  mitochondrial function in models of myocardial infarction [168-170] and is 

effective in preserving protein synthesis mechanisms in osmotically stressed 

preimplantation embryos in vitro [171, 172]. 
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Figure 1.1: Choline metabolism [68]. 
 

 
 

 
 

 
 
 
 
 
 

Choline dehydrogenase 
 

 
 
 

Gene 
 
 
 

 

In humans, CHDH is a 30,000 base pair gene located on chromosome 3 (3p21.1). It 

is composed of 7 exons and is coded on the negative/ minus DNA strand [173]. To date, 

only one full-length CHDH transcript has been characterized in humans [172]. Murine 

Chdh is also composed of 7 exons [173]. It is located on chromosome 14 and is 

approximately 31,000 base pairs in length. There are 3 transcripts reported for Chdh, 

differing in the length of the 5’-untranslated region. The same protein is translated 
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from each of the three transcripts [174]. 

 
 
 

 

Enzyme 
 
 
 

 

CHDH is highly conserved; in addition to humans this enzyme is expressed in 

chimpanzee, dog, cow, mouse, rat, chicken, zebrafish, C. elegans, and A. thaliana, among 

others [173]. The human and mouse CHDH protein are similar in size, 594 and 596 amino 

acids, respectively. 

 

 
 

The active site of CHDH shares homology with the glucose-methanol-choline 

oxidoreductase family of proteins. This protein also contains a NADB_Rossman fold 

in which flavin adenine nucleotide (FAD) is predicted to bind [173, 174].  In humans, 

CHDH is expressed in liver and kidney as well as parathyroid, brain, adipose tissue, testis, 

cervix, embryonic tissue, lung, mammary gland, ovary, eye, intestine, lymph, muscle, 

pancreas, placenta, prostate, stomach and fertilized ovum [175]. Mouse Chdh expression 

has been detected in the same tissues as human with the exceptions of brain, adipose tissue, 

eye, pancreas [176]. Depending on the species, the apparent Km for CHDH ranges from 

0.27mM to 7mM when using choline as a substrate in the presence of the electron acceptor 

phenazine methosulfate [177-179]. Rat CHDH has a Vmax of 6.3nmole betaine formed/mg 

protein/minute [180]. CHDH may also use betaine aldehyde as a substrate, again in the 

presence of phenazine methosulfate indicating that BADH may not be absolutely necessary 

for the complete oxidation of choline to betaine. In this reaction the Km of CHDH is 

reduced (3.1mM) [178]. Interestingly, betaine aldehyde may also inhibit CHDH activity at 
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a slightly higher concentration (3.3mM) [178]. CHDH is most active at a pH of 7.6 and 

within a temperature range from 37°C to 45°C [177]. CHDH requires the association of an 

electron acceptor for activity. In vivo this is FAD while in vitro assays are performed most 

often using phenazine methosulfate as the acceptor [177, 178, 181]. DNA sequence 

variation in the human CHDH gene may affect the activity of the enzyme translated from 

this gene. Rs12676 is one such variation, a non-synonymous SNP located in the coding 

region of the CHDH gene. The presence of the minor allele results in replacement of 

arginine with a leucine 6 amino acids from the FAD binding site of this enzyme (Figure 

1.2).  The frequency in which rs12676 is detected changes with ethnicity. For example, the 

T allele is found in 58% of Caucasians, 23% of individuals of African descent, 4% of 

Mexican Americans and is indictable in Asian Americans (Ziesel laboratory, unpublished 

data).  

 

Figure 1.2: Schematic of CHDH protein 
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Sperm development and choline dehydrogenase 

 
 
 
 

 

In the seminiferous tubules of the testis, sperm cells are formed through the 

process of spermatogenesis [182].   Spermatogenesis begins with the onset of puberty in 

mammals and continues throughout life resulting in continuous production of sperm 

available for egg fertilization. Seminiferous tubules are populated with Sertoli cells; these 

somatic cells form tight junctions with neighboring Sertoli cells and by doing so, separate 

the seminiferous tubule into basal and adluminal compartments. In addition, Sertoli-Sertoli 

cell junctions effectively create a testis-blood barrier that serves to protect developing 

sperm from environmental exposure and immune defense mechanisms [183]. Another 

important function of these cells is to provide the components necessary and, thus create, 

the environment necessary to support spermatogenesis (reviewed in [310]). Sertoli cells 

secrete glycoproteins that have an array of functions. These glycoproteins may act as 

signaling molecules that regulate spermatogenesis, may have hormonal function, and may 

regulate metabolism in the developing spermotgenic cells. S e r t o li  c e l l s  a l s o  

p ro v i d e  n u t r i t i o n  f o r  s p e rm o t g en i c  ce l l s .  Developing sperm are in close 

contact with, and develop in such as way as they are surrounded by, Sertoli cells. 

 

Spermatogenesis can be divided into two major stages: a proliferative phase called 

spermatocytogenesis, followed by spermiogenesis during which extensive differentiation 

and remodeling of spermatids occurs, culminating in the formation of a sperm (Figure 1.3). 
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Spermatogenic stem cells and spermatogonia are located along the basal edge of the 

seminiferous tubule. These are mitotic, diploid cells. Spermatogonial  daughter cells 

can either remain spermatogonia (Type A spermatogonium), thus maintaining the 

population of these cells, or they may can become Type B spermatogonium which will 

eventually give rise to a primary spermatocyte. Next, primary spermatocytes enter meiosis 

I, during which DNA replication  and  chromosomal  recombinations  occur  [182].  This  

stage  ends  with  the production of two haploid secondary spermatocytes from each 

primary spermatocyte. Secondary spermatocytes then enter meiosis II. Meiosis II goes to 

completion rapidly and ends with the generation of two haploid round spermatids from 

each secondary spermatocyte. Round spermatids begin to elongate and enter the second 

stage, spermiogenesis. It is during spermiogenesis that spermatogenic cells acquire their 

characteristic morphology as the principal piece forms and mitochondria are arranged in a 

helical gyrus localized to the newly formed midpiece section. Nuclear chromatin becomes 

highly condensed during spermiogenesis as the majority of histones are replaced by 

transition proteins and finally by small, basic protamines; gene transcription is silenced at 

the onset of spermiogenesis, largely due to chromatin condensation [184]. The Golgi 

apparatus in sperm releases vesicles that eventually form the acrosome, a specialized region 

of the sperm head containing high concentrations of hydrolytic enzymes used by sperm to 

penetrate the zona pellucida of the egg.  Fully  formed  sperm  are  released  from  the  

Sertoli  cells  into  the  lumen  of  the seminiferous tubule and begin migration through 

the efferent ducts to the caput epididymis. Sperm migrate from the caput epididymis to the 

corpus epididymis and are finally stored in the cauda epididymis. Sperm entering the caput 

epididymis are not capable of motility, but as sperm  transit  through  the regions  of the  
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epididymis,  they undergo  further maturation,  a process that includes the addition of 

epididymal proteins to sperm, changes in membrane lipid composition of these cells and 

accumulation of low molecular weight ions and organic osmolytes, presumably for use in 

regulating cell’s volume [185, 183]. Figure 1.4 shows the relative concentrations of 

osmolytes identified in epididymal fluid. Note that epididymal fluid  betaine  

concentrations  have  not  been  measured,  though  because  of  its  role  as  an osmolyte, it 

is expected to be present. Indeed, we have found betaine concentrations in the 

epididymis to be 10 times higher than levels measured in liver (See page 63). Some of this 

betaine may be generated within the male reproductive tract. Ctl-1/Slc44a1 and Chdh 

mRNA expression have been reported in mouse male reproductive tissues (Table 1.3). 

Chdh mRNA has been detected in pachytene spermatocytes and Sertoli cells [137].  At the 

same time, we have found that CHDH protein is expressed in mouse testicular and 

epididymal tissues (Figure 5.2) Therefore, a mechanism is in place to not only 

transport choline into these cells, but also oxidize that same choline to generate betaine.
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Figure 1.3: Spermatogenesis in humans. From [186] 
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Figure 1.4: Concentrations of putative sperm osmolytes in rodent epididymal 
fluid. Adapted from [187] 
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Table 1.3: Expression of choline transporter and Chdh in male reproductive organs. From [137] 

 

 

 

 
 

 
 

 

 
 

 
 

 
 

 

 
 

 
 

Expressions of the Clt-1/Sla44a1 and the Chdh gene has been reported in spermatogenic cells and supportive, somatic cells in the 
testis. This offers a mechanism by which betaine concentration can reach the high levels measured in testis and epididymis
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Sperm motility and energy metabolism 
 

 
 
 

The sperm tail is comprised of four major structures: the connecting piece, the 

midpiece (where mitochondria are localized), the principal piece (where the fibrous 

sheath and glycolytic enzymes are localized) and the end piece [188] (Figure 1.5). The 

axoneme, composed  of  nine  microtubule  doublets  that  surround  a  centrally  located  

doublet,  is connected to the sperm head and spans the length of the sperm tail. Radial 

spokes extend inward from the nine doublets to the central doublets of the axoneme and 

serve to supply structural support for the sperm tail. Dynein arms extend outward from the 

nine doublets and are responsible for generating the force necessary for sperm tail 

movement. Sperm become motile when dynein ATPase hydrolyses ATP, causing sliding of 

the outer microtubule doublets and bending of the tail. 

 

 
 

ATP is required for sperm to be motile, but considerable controversy surrounds the 

source of the ATP. Because mitochondria are only found in the midpiece there is some 

question as to whether ATP generated by oxidative phosphorylation (OXPHOS) can 

diffuse the length of the tail to supply substrate for the dynein ATPases [189]. A creatine 

phosphate shuttle system has been proposed that may traffic ATP from mitochondria 

through the tail, but experimental evidence supporting the existence of this mechanism is 

still lacking [190]. Alternatively, glycolytic enzymes are localized to the principal piece of 

the sperm tail, thus providing a source of ATP at the site in which it will be used [191-

195]. In most species there is evidence that both pathways are active in sperm cells; 

however, the relative importance of each pathway differs among species. For example, 
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OXPHOS-derived ATP supports bull and ram sperm motility [196], while mouse sperm 

has a definitive need for glycolytic generation of ATP for motility [191-195]. The energy 

substrates available in the female reproductive tract are probably the factor dictating which 

pathway sperm of a particular species will use for ATP production. 

 

 
 

Some evidence exists that links betaine to sperm motility. Preserving normal 

motility characteristics in sperm that have been frozen and thawed is an active area of 

research both in the fields of human andrology and veterinary animal husbandry. 

Kroskinen, et al [197] and Sanchez-Partida et al [198] reported increased sperm motility in 

thawed sperm when betaine was added to the cryopreservation media. It is hypothesized 

that betaine may directly interact with membrane lipids and proteins, altering the hydration 

status of these molecules, and thus protecting them through the freeze/thaw cycle [199]. In 

addition, there is some evidence that boar sperm have the capacity to use choline-

containing phospholipids for ATP production [200], but this likely changes depending on 

animal species. 

 

 
 
 
 
 

Animal model nutrition 
 

 
 
 

The Chdh mouse colony, including breeding pairs, was maintained on AIN76A 

purified diet at all times. This diet was formulated to contain 1.1g/kg choline chloride, 

which represents  an  adequate  level  of  dietary  choline  for  rodents  [201].  The  

formulation  of AIN76A, including the concentration of choline metabolites, is presented 
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on Table 1.4. Because  the  Chdh  animals  were  always  ingesting  adequate  amounts  

of  choline,  any differences observed in the Chdh-/- mice were a result of deletion of the 

gene and not dietary deficiency. 

 

 
 

Summary 
 

 
 
 

Approximately half of cases of male factor infertility are idiopathic; genetic 

aberrations are the suspected cause in as many as many as 30% of these. There is evidence 

that altered micronutrient metabolism, stemming either from dietary deficiency or genetic 

variation in metabolism-related genes, may play a role in sperm cell development and 

function. This dissertation details evidence that choline metabolism is required for normal 

sperm morphology, energy homeostasis and motility patterns, both in mice and humans. 
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Figure 1.5: Human sperm cell structure. (Figure legend from reference 201) 

Illustration of a mammalian sperm cell with the cell membrane removed, revealing the 

underlying structure including the details of the axoneme. (a) Regions of the sperm 

flagellum, with representative  approximate  human  sperm  length  scales  indicated  

(Cummins  &  Woodall 1985, Curry & Watson 1995). The acrosomal cap of the sperm 

head and connecting piece are also highlighted. (b) A cross section of the mid-piece 

flagellum (looking from the sperm head to the distal, rear, tip), featuring the presence of 

nine outer dense fibers immediately exterior to the microtubule doublets, a characteristic 

feature of internal fertilizers. The doublets and their associated fibers are labeled with the 

standard convention, clockwise from 1 to 9, with the first doublet and fiber defined by the 

radial vector in the direction perpendicular to both the centerline and the separation of the 

two central microtubules. This structure is also illustrated in panel e. The detailed 

geometry of the outer dense fibers is species specific although fibers 1, 5, and 6 usually 

have larger cross sections, whereas fibers 3 and 8 are typically the shortest. All fibers taper 

and end prior to the distal tip of the sperm, are embedded in the connecting piece, and 

are also bound to their associated doublet at their distal end along the flagellum. In the 

principal piece of the sperm flagellum (a), there is a fibrous sheath with circumferential 

ribs, and two longitudinal columns initially attached to fibers 3 and 8. On moving 

distally, the ribs of the fibrous sheath become thinner and the columns taper; in addition, 

the columns appear to be attached to microtubule doublets 3 and 8 distally  beyond  the  

termination  of  the  outer  dense  fibers  3  and  8,  as  depicted  in panels c and f. The 

end of the fibrous sheath delimits the principal piece from the end piece, where  only the  

axoneme structure persists,  as  depicted  in  panels d and g.  The  axoneme structure is 

further schematically illustrated in panels h and i; in the former the microtubules are 

depicted with their nexin bridges and radial links, whereas the latter illustrates the inner and 

outer dynein arms, which exert a shearing force between the microtubule doublets. This 

force bends the microtubules and their associated accessory structures, driving the flagellar 

waveform. Figure adapted from  Fawcett (1975), copyright 1975, and  Olson & Linck 

(1977), copyright 1977, with permission from Elsevier (2283601155396 and 

2370901182457, respectively). 
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Figure  1.5: Human sperm  cell structure. From [202] 
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Table 1.4. Formulation of AIN76A purified diet. From [201] 
 

 

Ingredient % of total diet 
 

Casein 20.0 
 

DL-methionine 0.3 
 

Cornstarch 15.0 
 

Sucrose 50.0 
 

Fiber 5.0 
 

Corn oil 5.0 
 

AIN mineral mix 3.5 
 

AIN vitamin mix 1.0 
 

Choline chloride* 0.2 
 

AIN76 Vitamin Mix Per kg mixture 
 

Thiamine-HCl                                                              600mg 

Riboflavin                                                                        600mg 

Pyridoxine-HCl                                                               700mg 

Nitcotinic acid                                                                       3g 

D-calcium pantothenate 1.6g 

Folic acid 200mg 

D-biotin 20mg 

Cyanocobalamine (B12) 1mg 

Retinyl palmitate or acetate (vitamin A 400,00 international units (IU) 

DL-α-tocopheryl acetate (vitamin E) 5000 international units (IU) 

Cholecalciferol (vitamin D3) 2.5mg 

Menaquinone (vitamin K) 5.0mg 
 

Sucrose, finely powdered Up to 1kg 
 
 
 

Continued on next page 
 

*original formulation contains choline bitartrate. Our 
laboratory routinely substitutes and equimolar amount of 
choline chloride 
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AIN76 Mineral Mix g/kg mixture 
 

Calcium phosphate dibasic (CaHPO4) 500.0 
 

Sodium chloride (NaCl) 74.0 
 

Potassium citrate, monohydrate (K2C4H5O7-H2O) 220.0 
 

Potassium sulfate (K2SO4) 52.0 
 

Magnesium oxide (MgO) 24.0 
 

Manganous carbonate (43-48% Mn) 3.5 
 

Ferric citrate (16-17% Fe) 6.0 
 

Zinc carbonate (70% ZnO) 1.6 
 

Cupric carbonate (53-55% Cu) 0.3 
 

Potassium iodate (KIO2) 0.01 
 

Sodium selenite (Na2SeO2-5H2O) 0.01 
 

Chromium potassium sulfate [CrK(SO4)2-12H2O] 0.55 
 

Sucrose, finely powdered Up to 1kg 
 

Choline metabolites nmol/g (Total choline 1368mg/kg) 
 

Betaine 0 
 

Choline 12915 
 

GPCho 6 
 

PCho 0 
 

PtdCho 84 
 

SM 149 
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Abstract: 
 
 
 

 

Choline dehydrogenase (CHDH) catalyzes the conversion of choline to betaine, an 

important methyl donor and organic osmolyte.   We have previously identified single 

nucleotide polymorphisms (SNPs) in the human CHDH gene that, when present, seem 

to alter the activity of the CHDH enzyme. These SNPs occur frequently in humans.  We 

created a Chdh-/- mouse to determine the functional effects of mutations that result in 

decreased CHDH activity. Chdh deletion did not affect fetal viability or alter growth or 

survival of these mice.  Only one of eleven Chdh-/- males was able to reproduce. Loss of 

CHDH activity resulted in decreased testicular betaine and increased choline and PCho 

concentrations. Chdh+/+ and Chdh-/- mice produced comparable amounts of sperm; the 

impaired fertility was due to diminished sperm motility in the Chdh-/-  males.   

Transmission electron microscopy revealed abnormal mitochondrial morphology in Chdh-/- 

sperm.   ATP content, total mitochondrial dehydrogenase activity and inner mitochondrial 

membrane polarization were all significantly reduced in sperm from Chdh-/- animals.   

Mitochondrial changes were also detected in liver, kidney, heart and testis tissues. We 

suggest that men who have SNPs in CHDH that decrease the activity of the CHDH enzyme 

could have decreased sperm motility and fertility. 
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Introduction: 
 
 
 

 

Betaine is an important methyl donor required for the conversion of homocysteine to 

methionine [203, 204], and it is an organic osmolyte that is needed for normal kidney 

glomerular function [205, 206]. Betaine can be obtained from the diet (from wheat, 

shellfish, spinach, and sugar beets, for example) [158, 207, 208] and it is formed, in 

mammals and some microorganisms, via the oxidation of choline in 2 steps catalyzed by 

choline dehydrogenase (E.C. 1.1.99.1; CHDH) in the inner mitochondrial membrane [153, 

154, 181, 209, 210] and betaine aldehyde dehydrogenase (EC 1.2.1.8; BADH) in the 

mitochondria and cytosol [155]. Choline oxidase (EC 1.1.3.17; CO), also found 

microorganisms and in some plants, is capable of catalyzing both oxidation reactions [211-

214]. The oxidation of choline is irreversible, committing the choline moiety to the methyl-

donation pathway for use in one- carbon metabolism [101]. Choline that is not used to form 

betaine can be acetylated to form acetylcholine, or phosphorylated to form 

phosphatidylcholine and sphingomyelin [101]. 

 

 
 

CHDH activity can influence tissue homocysteine (Hcy) concentrations because betaine 

donates a methyl group to homocysteine in a reaction catalyzed by betaine:homocysteine 

methyl transferase (EC 2.1.1.5; BHMT). The product of this reaction is methionine, which 

is the precursor for S-adenosylmethionine (AdoMet), the most important methyl donor in 

biochemical  reactions  (including  DNA,  RNA,  protein  and  phospholipid  methylations). 

Dietary betaine supplementation is effective in lowering plasma total Hcy (tHcy) 

concentrations in humans [215]; elevated plasma tHcy concentration is associated with 
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increased risk of cardiovascular disease [216, 217]. 

 

 
 

Several single nucleotide polymorphisms (SNPs) in CHDH occur frequently in humans. 

One such SNP, rs12676, is located in the coding region of the CHDH gene with 42 - 47% of 

the population having one allele and 9% being homozygous [80, 105]. Eighty-three 

percent of pre-menopausal women who were heterozygous for the rs12676 allele 

developed organ dysfunction (liver or muscle) when fed a choline deficient diet compared 

to only 20% of women who were wild type [105], suggesting that this SNP alters CHDH 

function. 

 

 
 

The functional effects of null mutations of the CHDH gene have not been further 

investigated, but it would be reasonable to predict that they would decrease betaine 

concentrations and increase choline and homocysteine concentrations in tissues, alter 

osmolyte-dependent functions of the renal glomerulus, and might perturb mitochondrial 

function (as the enzyme is located on the inner mitochondrial membrane and 

concentrations of betaine in the mitochondria are µmole/L [218]). In order to better 

characterize the role of CHDH,  we  created  a  Chdh-/-   mouse  and  now  present  

evidence  that  Chdh  mutation 

 

contributes  to  impaired  mitochondrial  function  in  several  tissues  with  the most  

striking effects observed in sperm. 
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Materials and Methods: 
 

 
 
 

Generation of Chdh-/- Mice: Chdh chimeric mice were generated using a gene targeting 

vector that removed exons 1 though 3 of the gene. The 5' arm of homology was derived 

from the region of the gene immediately 5' of exon 1 (approximately 5.5 kb) and the 3' arm 

was derived from the region 3' of exon 3 (approximately 1.5 kb) and encompassed 

exons 4 through 7 (Figure 2.1). The vector, containing positive and negative selection 

cassettes (neo and TK, respectively), was electroporated into E14TG2a ES cells. PCR-

positive clones were confirmed for homologous recombination by Southern hybridization. 

Targeted cells were injected into blastocysts derived from mouse strain C57Bl/6 (B6) to 

create transmitting chimeras. 

 

 
 

Chdh chimeric mice were bred to B6 mice. Chdh+/- breeding pairs were used to 

generate litters composed of Chdh+/+ , Chdh+/- and Chdh-/- mice, which were used in these 

experiments.  These  animals  are  on  a  mixed  129/B6  genetic  background.  Mice  

were maintained on AIN-76A diet containing 1.1 g/kg choline chloride (Dyets, Bethlehem, 

PA). Genomic DNA was isolated from tail biopsies collected at weaning using 

phenol:chloroform:isoamylalcohol purification. Animals were genotyped by multiplexing 

PCR using TaKaRa Ex Taq DNA polymerase (TaKaRa Bio USA, Madison, WI, USA) 

and the following primer sequences: Chdh+/+ 5’ - 

AGGGCCACAAGTGTGGGCTGGCTGAAACTG-3’, Chdh common 5’ – 

GCTAGCTTGAACCCTTTGAAGGGTCTTCTCAGACTC – 3’ and   Chdh neo 5’ – 

ACGCGTCACCTTAATATGC – 3’. The primer locations are illustrated in Figure 

2.1A. PCR conditions were as follows: 95ºC for 3 minutes, 94°C for 30 seconds, 56°C for 
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30 seconds, 72°C for 3 minutes (repeated 35 times), and 72°C for 10 minutes. Chdh+/+ 

reactions produced a product 2.3kb in size. The Chdh neo product was 1.6 kb in size 

(Figure 2.1B). The Institutional Animal Care and Use Committee of the University of North 

Carolina at Chapel Hill approved all experimental protocols. 

 

 
 

Body length, total body weight, fetal viability and survival: Body length and total body 

weight of Chdh+/+ , Chdh+/-  and Chdh-/-  mice were measured at weaning (postnatal day 21; 

P21), P42 and P63. Mice were weighed on a scale and a ruler was used to measure “Body 

length” (the distance between the tip of the nose to the end of the buttock when the mouse is 

lying on its stomach). The genotype distribution of litters produced by 20 Chdh+/-  

mating pairs over a 3 year period was recorded. 10 Chdh-/- mice were maintained over the 

course of one year  to determine whether or not Chdh mutation affected the one-year 

survival rates. 

 
 
 

 

Measures of liver, kidney and muscle function: Plasma alanine transaminase (ALT) 

activity, plasma total bilirubin concentration, blood urea nitrogen (BUN) concentration and 

plasma creatinine concentration were measured by the Animal Clinical Chemistry and Gene 

Expression Facility located at the UNC - Chapel Hill using an automatic chemical analyzer 

(Johnson and Johnson VT250, Rochester, NY, USA).  Plasma creatinine phosphokinase 

(CPK) activity was determined using a Creatine Kinase-SL assay kit according to 

manufacturer’s instructions (Diagnostic Chemicals Limited, Oxford, CT, USA). Urine 

collection and specific gravity measurement study was performed as described [219]. Urine 

specific gravity was measured using a refractometer (AO Instrument Company, Buffalo, 
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NY, USA) by the UNC - Chapel Hill Department of Laboratory Animal Medicine 

Veterinary and Technical Services Facility. 

 

 
 
 

CHDH  enzymatic  assay:  Chdh+/+   and  Chdh-/-   mice  were  anesthetized  with  halothane 

(Henry Schein, Inc, Melville, NY, USA) until they no longer responded to a hard pinch of 

their tail or foot. Tissues were harvested from animals and immediately snap frozen in 

liquid nitrogen. Liver, kidney, testis, brain, skeletal muscle (vastus medialis) and heart 

were then pulverized in liquid nitrogen and stored at -80° C until CHDH activity was 

assayed. 

 

 
 

200 mg of liver or kidney was homogenized in 500 µL cold homogenization buffer 

(250  mM  sucrose,  50  mM  Tris,  0.1  mM  EDTA,  pH  7.8)  using  a  motorized  

tissue homogenizer (Talboys Engineering Corporation, Montrose, PA, USA). The entire 

brain, skeletal muscle or heart was homogenized in 300µL cold homogenization buffer.  

Both testes from one animal were homogenized together in 300uL of homogenization 

buffer. Protein concentrations  were  measured  by  Lowry  assay  [220].  CHDH  activity  

was  measured  in Chdh+/+ sperm that were treated with betaine in vitro. CHDH activity 

assay was measured as previously described [221]. The amount of betaine formed was 

determined by HPLC as described previously [222] using a Varian ProStar solvent delivery 

system (PS-210, Varian Inc., Palo Alto, CA, USA), and a Pecosphere Silica column (3 µM, 

4.6 x 83mm) (Perkin Elmer, Norwalk, CT, USA) with a Pelliguard LC-Si guard column 

(Supleco, Bellefonte, PA). Radiolabeled choline and betaine peaks were detected using a 

Berthold LB506 C-1 radiodetector (Oak Ridge, TN, USA). 
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Targeted metabolomics: 
 

Choline metabolites: Liver, brain, kidney, skeletal muscle, heart and testis tissues were 

collected from 7.5-week-old Chdh+/+  and Chdh-/-  mice, quick frozen in liquid nitrogen and 

then pulverized under liquid nitrogen. Mitochondria were isolated using a Percoll gradient 

following previously described methods [223-225]. All procedures for mitochondria 

isolation were performed at 4ºC. The concentration of choline metabolites was measured by 

liquid chromatography-electrospray   ionization-isotope   dilution   mass   spectrometry   

(LC–ESI– IDMS) as previously described [226]. 

 

 
 

Plasma Total Homocysteine (tHcy):  Blood from Chdh+/+  and Chdh-/-  anesthetized 

animals was collected via cardiac puncture. Plasma was isolated from other blood 

components by centrifugation at 400 x g for 5 min at room temperature. Samples were 

derivatized using 7- fluorobenzofurazan-4-sulfonic acid (SBD-F) as described previously 

[227]. tHcy concentration was measured by HPLC using a ProStar solvent delivery system 

(PS-210, Varian Inc., Palo Alto, CA), a Microsorb-MV C18 (5µm, 100 Å, 25cm, Varian) 

and a fluorescence spectrophotometric detector (Varian Prostar model 360) with an 

excitation wavelength of 385 nm and an emission wavelength of 515 nm. Ten µM 

cysteamine was used as an internal standard. 

 

 
 

S-adenosylmethionine   (AdoMet)  and   S-adenosylhomocysteine   (AdoHcy):   AdoMet   

and AdoHcy concentrations were measured in 50 mg of pulverized liver tissue using HPLC 

[228, 229].  The  assay  was  performed  on  a  Varian  ProStar  HPLC  system  (PS-210)  

using  a Beckman Ultrasphere ODS 5µm C18 column, 4.6mm x 25cm (Fullerton, CA, cat# 

235329) at 55°C with an online Gilson 118 UV/VIS detector (Middleton, WI). 
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Tissue  histology:  7.5-week-old  Chdh+/+   and  Chdh-/-   mice  were  anesthetized  and  liver, 

kidney, skeletal muscle, heart and brain were collected. The tissues were fixed in 4% 

paraformaldehyde/ 0.2% gluteraldehyde for 72 hours, processed, paraffin embedded and 

sectioned for hemotoxylin and eosin staining using standard techniques. Brain sections were 

stained with Luxol blue. Reproductive organs from adult (14 - 17 weeks old) Chdh+/+  

and Chdh-/-  male mice were fixed for 24 hours in modified Davidson’s fixative. Testis 

and epididymal sections were stained with hemotoxylin and eosin as well as with periodic 

acid- Schiff stain (PAS) for histological analysis. A UNC - Chapel Hill Department of 

Laboratory Animal Medicine veterinary pathologist examined all tissues except brain. An 

expert in neuroanatomy examined brain sections. 

 

 
 

Transmission electron microscopy: Epididymal tissue was harvested from 8 to 10 week 

old Chdh+/+  and Chdh-/-  mice. The tissue was fixed in 2% paraformaldehyde, 2.5% 

gluteraldehyde, 0.2% picric acid in 0.1M sodium cacodylate, pH 7.2.  Liver, kidney, 

brain, skeletal muscle, heart and testis tissues were harvested from animals perfused via 

cardiac puncture of the left ventricle using a gravity perfusion system (IV-140, Braintree 

Scientific, Braintree, MA, USA) with the same fixative. The UNC-Chapel Hill Microscopy 

Services Laboratory processed tissues for TEM according to standard techniques. TEM 

grids were observed and photographed using a Zeiss EM-10A transmission electron 

microscope (LEO Electron Microscopy, Inc., Thornwood, NY) with an accelerating voltage 

of 60kV. 

 

 

Sperm count and motility: Sperm from the cauda epididymis were collected from 8-

10 week old Chdh+/+ , Chdh+/- and Chdh-/- male mice into M16 media (Sigma Aldrich, St. 
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Louis, MO, USA). Sperm count was determined by counting cells with a hemocytometer. 

Percent progressive motility was determined by counting the number of progressively 

motile sperm per total number sperm present using a hemocytometer. “Progressively motile 

sperm” refers to sperm that swim forward in a somewhat straight line. 

 

 
 

MTT assay: 3-(4,5-dimethyl thiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) acts as 

a hydrogen acceptor in oxidation reactions and its conversion from a yellow substrate to a 

blue product measures total mitochondrial dehydrogenase activity. We assayed this 

conversion using a commercially available kit (CellTiter 96 Non-radioactive Cell 

Proliferation Assay, Promega, Madison, WI) with some modifications. To assay MTT 

conversion in sperm, 100 

µL of sperm/media suspension were incubated in F10 media (Gibco, Carlsbad, CA) in a 96 

well plate with 15 µL of MTT solution at 37ºC/ 5% CO2 for 2 h [230]. Following 

solubilization, the absorbance of each sample was read at a wavelength of 562nm using 

a BioTek plate reader (Winooski, VT). Absorbance was normalized to the number of 

sperm assayed. 

 

 
 

Mitochondria from fresh liver, kidney, brain and testis were isolated at 4ºC using a 

Percoll gradient following previously described methods [223-225].  An aliquot of each 

sample (approximately 10-20 µg mitochondrial protein) was incubated in 100 µL of 

assay buffer (AB; 110mM KCl, 10mM ATP, 10mM MgCl2, 10mM sodium succinate, 1mM 

EGTA in 20mM MOPS, pH 7.5) and 15 µL MTT solution (from kit) for 15 min at 37ºC 

with 5% CO2. Absorbance was normalized to the amount of mitochondrial protein assayed. 
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ATP assay: ATP concentration in sperm and isolated mitochondria was measured using an 

ATP  Bioluminescence  Assay  Kit  CLS  II  (Roche  Diagnostics,  Mannheim,  

Germany) according  to  manufacturer’s  instructions.  ATP  concentration  was  normalized  

to  either number of sperm or amount of mitochondrial protein assayed. 

 

 
 

JC-1 assay (inner mitochondrial membrane potential,Ψm): Membrane potential 

across the inner mitochondrial membrane was estimated using the fluorescent indicator dye 

JC-1 (Sigma Aldrich, St. Louis, MO, USA). Sperm were incubated with JC-1 dissolved in 

DMSO at a final concentration of 10 µg/mL in F10 media (Invitrogen, Carlsbad, CA, USA) 

at 37º C for 10 min. Sperm were pelleted at 800 x g for 1 min. The supernatant was 

discarded and sperm were resuspended in 37º C PBS. 20 µL of each stained sample was 

examined with a fluorescence microscope (Olympus BX50, Center Valley, PA, USA) and 

large band epifluorescence filters. Cells that fluoresced red in the sperm midpiece were 

counted in 5 random fields of vision for each sample and results are expressed as a percent 

of total cells in those fields. 

 

 
 

Mitochondria (approximately 100µg protein)  were incubated with  1.72  mL of 

assay buffer  (AB)  and  18  µL  of  0.2mg/mL  JC-1  dissolved  in  DMSO  for  10  min  at  

room temperature protected from light. A mitochondrial sample from Chdh+/+  liver, 

treated with valinomycin (1:200 final dilution, Sigma Aldrich, St. Louis, MO, USA) for 20 

min, was used as a negative control.  Fluorescence was measured using an excitation 

wavelength of 490nm and an emission wavelength scan from 500nm to 700nm on a Hitachi 

F-2500 fluorescence spectrophotometer (Hitachi HTA, Pleasanton, CA, USA). A peak at 

595nm corresponds to red fluorescence of J-aggregates.  Fluorescent units (FLU) were 
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normalized to the amount of mitochondrial protein assayed. 

 

 
 

Oral betaine supplementation: For betaine supplementation experiments, 8 – 10 week old 

Chdh+/+ , Chdh+/-  and Chdh-/-  mice were given free access to drinking water 

supplemented with betaine (Sigma Aldrich, St. Louis, MO, USA) to a final 

concentration of 2% for 42 days. 2% betaine was chosen as it was previously shown to be 

an optimal concentration for treating animals with other fertility problems [44, 45, 231]. 

 

 
 

Statistics: Statistical differences were determined using JMP software, version 6.0 (SAS 

Institute,  Cary,  NC,  USA)  using  ANOVA,  Tukey-Kramer  HSD,  and  Student’s  t-

test assuming equal variances. All tests were performed at α = 0.05. 

 
 
 
 
Results: 
 
 
 

 

Chdh deletion has no effect on fetal viability, growth or liver, kidney or muscle function 

The genotype distribution for litters born to Chdh+/- mating pairs (total 604 pups) was 

23% Chdh+/+ , 51% Chdh+/- and 27% Chdh-/-.  Litter size for Chdh+/- mated pairs was 6 – 11 

pups. Wild type C57 mating pairs typically produce litters of similar size.  Mating a Chdh-/- 

female with a male Chdh+/-  mouse resulted in normal size litters (6 – 9 pups). 

However, ten of eleven pairs of Chdh-/- males mated with female Chdh-/- mice had no litters 

over the course of eight months; during this time one mating pair had a litter of 2 pups, 

both of which showed impaired growth. 
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There were no differences among Chdh+/+ , Chdh+/- and Chdh-/- mice in growth either 

in terms of body length or total body weight (data not shown). Selected tests of liver, 

kidney and muscle function showed no changes in the Chdh-/- animals (Table 2.1). Mean 

plasma alanine aminotransferase (ALT) activity, a measure of hepatic damage, was 

unchanged (16.7±2.6 U/I in Chdh-/-  vs. 19.1±4.0 U/I in Chdh+/+ mice; p = 0.64, N= 

10/group). Plasma total bilirubin concentrations, a measure of hepatic function, was 

unchanged (0.23 ± 0.02 mg/dL in Chdh-/- vs. 0.24 ± 0.03 mg/dL in Chdh+/+ mice; p = 0.71, 

N= 10/group). Blood urea nitrogen (BUN) concentrations, a measure of renal function, was 

unchanged (13.0 ± 0.8 mg/dL in Chdh-/-  vs. 13.2 ± 1.2 mg/dL in Chdh+/+  mice; p = 0.88, 

n = 10/group). Plasma creatinine concentrations, a measure of renal function, were normal 

(less than 0.1 mg/dL) in both Chdh+/+ and Chdh-/- mice. Additionally, urine specific gravity 

following water deprivation and vasopressin injection was unchanged in Chdh-/- mice (1.081 

± 0.004, n = 14) compared to Chdh+/+ animals (1.080 ± 0.008, n = 12). Plasma creatine 

phosphokinase (CPK) activity, a measure of muscle damage, was unchanged in Chdh-/-   

(235 ± 28 U/L) vs. Chdh+/+ mice (165 ± 25 U/L); p = 0.07,  N= 12/group); these values 

were higher than CPK activity ranges previously reported for C57 mice (102 – 139 U/I). 

All other measured values were within the published normal ranges for C57 mice. No 

differences were observed when data were analyzed for sex-specific effects. Chdh-/- mice 

lived for at least one year without any obvious serious health problems. 

 

 
 

Chdh deletion results in loss of CHDH enzyme activity:  In wild type mice, kidney, 

liver and testis had the highest activity of CHDH, with almost no activity detected in brain 

and skeletal muscle; CHDH activity was undetected in heart. Reduced CHDH activity was 
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detected in tissues of Chdh-/- mice compared to Chdh+/+ mice (Figure 2.2). Liver 

samples from Chdh+/-  mice had 37% of the CHDH activity measured in Chdh+/+  samples 

(data not shown). 
 

 
 
 

Choline metabolite profiles are changed in Chdh-/- in whole tissue and isolated 

mitochondria: Chdh-/-  mice had greatly diminished hepatic betaine concentrations as 

compared to Chdh+/+ mice (by 85%; p< 0.001), while having more than doubled hepatic 

choline concentrations (p<0.01) (Table 2.2 and Table 2.3). Hepatic phosphatidylcholine 

(PtdCho) concentrations were decreased in Chdh-/-  mice, but this was a sex-specific 

effect. There were no differences in hepatic PtdCho between male Chdh+/+ and Chdh-/- mice; 

however, female Chdh-/- mice had significantly less hepatic PtdCho (17,226 ± 86 

nmol/g) then did their female Chdh+/+ littermates (20,108 ± 540 nmol/g, p< 0.05; n = 

6/group). Chdh--  mice had  significantly lower hepatic sphingomyelin  (SM)  

concentrations  compared  to Chdh+/+   mice  (p<  0.05).  This  change  was  not  sex-specific.  

There  were  no  sex-related changes in hepatic glycerophosphocholine (GPCho) or 

phosphocholine (PCho) concentrations. 

 

Chdh-/- mice had less than 2% of renal betaine concentrations compared to Chdh+/+ 

mice (p< 0.001), increased renal choline concentrations (p< 0.05) and more than doubled 

renal PCho concentrations (p< 0.0005) as did Chdh+/+ littermates. There were no changes in 

renal GPCho or SM concentrations. While there were no significant differences in PtdCho 

concentrations between Chdh+/+ and Chdh-/- mice compared grouped or by sex, male 

Chdh+/+ animals had significantly higher renal PtdCho concentrations (25,983 ± 1558 
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nmol/g) than did Chdh+/+ females (13,276 ± 1102 nmol/g; p< 0.001, N = 9/group). 

 

 
 

In brain, betaine concentrations were very low in both wildtype and knockout mice. 

Brain PCho concentrations were increased in Chdh-/-  mice (p< 0.05) compared to Chdh+/+ 

littermates.  Brain  choline,  PtdCho,  SM  and  GPCho  concentrations  were  not  different 

between groups. 

 

 
 

In skeletal muscle, Chdh-/- animals had 1% (p < 0.001) of the amount of betaine 

and369% (p < 0.001) of the amount of choline found in Chdh+/+ animals. PCho 

concentrations were significantly increased in Chdh-/- skeletal muscle tissue (p < 0.01). 

There were no changes in GPCho, PtdCho or SM concentrations. 

 

 

Betaine concentrations in Chdh-/- heart tissue were significantly lower than Chdh+/+ 

heart tissue (p < 0.001) and choline concentrations significantly higher (p < 0.01). No 

changes were measured in GPCho, PCho, PtdCho, or SM in this tissue. 

 

Among the tissues examined in the wild type mice, testis had the highest betaine 

concentrations (3.5 fold higher than the kidney). Testicular betaine concentrations were 

diminished by more than 99% in Chdh-/-  mice as compared to Chdh+/+  mice (p < 

0.001). Also, testicular choline concentrations were nearly twice as high in Chdh-/- mice (p 

< 0.001) and testicular PCho concentrations were increased (p < 0.05). There were no 

changes in testicular GPCho, PtdCho or SM concentrations. 
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Betaine concentrations were undetectable in mitochondria purified from liver, kidney, 

brain, skeletal muscle, heart and testis of Chdh-/- mice, while there were nmol/mg protein 

concentrations of betaine in mitochondria from liver, kidney, heart and testis of Chdh+/+ 

mice (Table 2).  Betaine was not detected in mitochondria from brain and skeletal muscle of 

Chdh+/+ mice. Choline concentrations were significantly increased in isolated 

mitochondria from liver (p <0.05) and kidney (p <0.001) and testis (p< 0.001) in Chdh-/- 

animals as compared to Chdh+/+ mice. There were no changes in choline concentrations in 

mitochondria from brain, skeletal or heart due to genotype. Additionally, no changes due to 

genotype were noted in any tissue’s mitochondria for GPCho, PCho, PtdCho or SM 

concentrations with the exception of PCho in testis mitochondria where concentrations were 

increased by 85% in Chdh-/- mice (p< 0.001). There was no sex-effect. 

 

 
 

Chdh-/- mice have increased tHcy: Deletion of Chdh resulted in a significant increase 

in tHcy concentrations (from 6.1µmol/L ± 0.9 in wild type to 10.4µmol/L ± 0.9 in 

knockouts) (p <0.01). Hepatic AdoMet concentrations were the same in Chdh+/+ mice (73.4 

± 6.2 pmole/mg liver), Chdh+/-  mice (70.0 ± 4.2 pmole/mg liver) and Chdh-/-  mice (57.8 

± 5.4 pmole/mg liver) (p = 0.11, N = 6/ genotype). Hepatic AdoHcy concentrations did not 

change (Chdh+/+ , 51.2 ± 6.9 pmole/ mg liver; Chdh+/-, 57.0 ± 14 pmole/mg liver; Chdh-/-, 

54.0 ± 11.7 pmole/mg liver; p=0.95, N=6/genotype). The AdoMet/AdoHcy ratio was not 

different among genotypes (p=0.49, N=6/genotype). 

 

 
 

Mitochondrial  morphology  is  altered  in  Chdh-/-   sperm:  Gross  anatomic  and 

histopathologic examination at the light microscopy level of testis revealed no difference 

between Chdh+/+ and Chdh-/- mice (Figure 2.3). Transmission electron microscopic 
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examination of sperm ultrastructure revealed that mitochondria in the midpiece of the Chdh-

/- sperm had malformed cristae and were enlarged/ swollen compared to Chdh+/+ 

mitochondria (Fig 3B; top, cross-sectional view; bottom, longitudinal view). Skeletal 

muscle was the only other tissues examined to show similar morphological changes (Figure 

2.4). 

 
 
 

 

Chdh  deletion  resulted  in  decreased  sperm  motility  and  ATP  content  which  was 

partially reversed by dietary betaine supplementation : Although they display normal 

mating behavior, Chdh-/- males were largely unable to sire litters (as noted earlier, one out 

of eleven Chdh-/- males fathered a litter of two pups). Female Chdh-/- mice had no 

reproductive impairment. There were no differences in sperm counts among Chdh+/+ , 

Chdh+/- and Chdh-/- males (Figure 2.5A). Normal sperm counts for C57/129 mixed mice are 

21 x 106 per mL [232]. Chdh-/- males had significantly decreased sperm motility, with only 

16% of sperm classified  as  being  progressively  motile  (Figure  2.5B).  In  contrast,  

wild  type  and heterozygous males had 58% progressively motile sperm (p <0.01 different 

from Chdh-/-) and bred successfully.  Betaine supplementation did not have any effect on 

sperm concentration in Chdh+/+ , Chdh+/- or Chdh-/- mice. Sperm motility, however, was 

increased to 30% progressively motile sperm in treated Chdh-/- males compared to 

untreated Chdh-/- mice, but this was still significantly lower than the motility of treated 

and untreated  Chdh+/+  and Chdh+/- males (Figure 2.5B). There was an interaction between 

genotype and treatment (p = 0.004). 

 
 
 

MTT conversion (a measure of total dehydrogenase activity in mitochondria) was 
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diminished in sperm from Chdh-/- mice compared to sperm from wild type and 

heterozygous animals (p<0.05) (Figure 2.5C). Betaine treatment decreased MTT conversion 

in Chdh+/+ sperm by 67%, but did not alter MTT conversion in Chdh+/- or Chdh-/-; mice.  

There was an interaction between genotype and treatment (p = 0.02) (Figure 2.5C). 

 
 

Sperm from Chdh-/- males had 55% less ATP than did Chdh+/+ mice (p<0.05); there 

were no differences in ATP content between Chdh+/+  and Chdh+/-  sperm (Figure 2.4D). 

Betaine supplementation restored ATP content of Chdh-/- sperm, but had no effect on 

Chdh+/+ or Chdh+/- sperm. There was no interaction between genotype and treatment. 

Significantly fewer sperm from Chdh+/-  and Chdh-/-  mice were able to maintain an Ψm 

of at least -160mV (Figure 2.5E) and betaine treatment did not correct these differences. 

 

 
 
 

Mitochondrial function is altered in Chdh-/-  non-testicular tissues: Mitochondria from 

Chdh-/- liver had 62% lower ATP concentration than Chdh+/+ liver mitochondria (p< 

0.01) and Chdh-/-  heart mitochondria had double the ATP concentration than did 

mitochondria from Chdh+/+ heart (p<0.05) (Figure 2.6A). Ψm was increased in 

mitochondria samples from Chdh-/-   testis  as  compared  to  Chdh+/+   testis  (Figure    2.6B)  

(p  <0.05).  There  were  no genotype-specific differences in Ψm in the other tissues tested. 

Deletion of Chdh resulted in a decrease in the total mitochondrial dehydrogenase activity in 

liver and kidney (p<0.05, Figure 2.6C). There were no differences in brain, skeletal muscle 

or heart mitochondria for MTT conversion. 
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Discussion: 
 
 
 

 

We report, for the first time, the successful creation of a mouse in which the Chdh gene 

has  been  deleted.  Fetuses  from  heterozygous  mating  were  viable,  grew  normally,  and 

survived to at least one year of age without presenting any obvious health problems. 

The most striking phenotype observed in these animals was severely impaired sperm 

motility in Chdh-/- males. 

 

 
 

Deletion of Chdh greatly reduced CHDH activity in all tissues which normally 

express this gene (Fig 2).  The small residual activity detected probably reflects activity of 

other dehydrogenases that can use choline as a substrate.  These were probably cytosolic 

enzymes, as mitochondrial betaine was not detectable in knockout mice (Table 2.3). 

Liver samples from Chdh+/- mice had 37% of the CHDH activity measured in Chdh+/+ 

samples, suggesting that there is one copy of the Chdh gene present in mice and that it is 

biallelically expressed. 

 

 
 

Chdh-/- mice had significantly higher plasma tHcy concentrations than did their Chdh+/+
 

littermates, again suggesting that Chdh deletion limited methyl-group availability for 

the methylation of homocysteine which is removed by three pathways: it can be 

methylated using betaine as a methyl donor, or methylated using methyltetrahydrofolate as a 

methyl donor, or condensed with serine to form cystathionine [233]. An accumulation of 

tHcy has been associated with an increased risk of cardiovascular disease [216, 217] and 

betaine has been employed as a treatment for elevated tHcy [204, 234-236]. Based on the 

Chdh-/- mouse model, we would predict that individuals who harbor SNPs that decrease 



 

50 
 

CHDH activity will have higher plasma tHcy concentrations and may be at greater risk for 

developing cardiovascular disease. 

 

 
 

In all tissues studied, deletion of the gene resulted in extremely low concentrations 

of betaine; the small remaining amounts likely were derived from dietary betaine (AIN76A 

diet contains 70.4 nmole betaine/g diet) or from activity of cytosolic dehydrogenases. We 

note that testis, liver and kidney are the tissues where CHDH activity was highest and where 

betaine and choline concentrations were most changed by the gene deletion (Figure 

2.2. Table 2.2 and Table 2.3). Betaine concentrations were nmole/mg protein in 

mitochondria from liver, kidney and testes in wild type animals (in agreement with 

previously published results for liver mitochondria [218]), but in Chdh-/-   mice almost no 

betaine was detected in mitochondria (Table 2.3). Assuming approximately 10% of a cell is 

protein; we estimate that betaine concentrations in the mitochondria are between 2 and 7 

times more concentrated than concentrations measured in the whole cell, depending on 

the tissue. The failure to convert choline to betaine resulted in the accumulation of choline 

in some tissues (in testis and liver, choline concentrations nearly doubled in Chdh-/- 

animals), while in others PCho accumulated due to the activity of choline kinase (in 

kidney, brain and testis whole tissue).   Testicular betaine concentrations were the highest 

of all tissues studied - almost 10 times higher than concentrations found in the liver, the 

organ thought of as the primary site of choline metabolism. This data, in conjunction with 

the asthenospermic phenotype of the male Chdh-/- mice suggest that betaine plays a critical 

role in testicular function. 
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In females, deletion of Chdh was associated with diminished PtdCho concentrations 

in liver and, in females and males, with diminished SM concentrations in liver (SM is 

formed from PtdCho). A major pathway for PtdCho synthesis is the methylation of 

phosphatidylethanolamine catalyzed by phosphatidylethanolamine-N-methyltransferase 

(PEMT); this gene is induced by estrogen [107]. We speculate that Chdh deletion limited 

methyl-group availability for this pathway. However, we observed no decrease in 

hepatic AdoMet concentrations in Chdh-/- mice. 

 
 
 

 

Sperm function, though not viability (ARJ, unpublished data), was severely 

compromised in Chdh-/- males. Homozygous males were largely infertile due to decreased 

motility of their sperm. We present evidence that a decrease in spermatic ATP content 

contributes to the poor motility of these cell. Chdh+/- males did not demonstrate any 

impairment in sperm motility, likely because developing sperm share cytosolic 

components during spermatogenesis [237, 238] and the products of choline oxidation 

(reducing equivalents, betaine) could be shared between cells. Indeed, we routinely use 

Chdh+/- mice to generate animals used in our studies. 

 

 
 

A constant supply of ATP, both from mitochondrial oxidative phosphorylation and 

glycolysis, is required for sperm motility [239-241]. It is important to note that in sperm, 

the processes of oxidative phosphorylation and glycolysis are separated by permanent 

compartmentalization. Mitochondria are localized to the sperm midpiece while glycolytic 

enzymes are found in the sperm principal piece. When CHDH, an enzyme localized to the 

inner mitochondrial membrane, is absent, mitochondria in the sperm midpiece appeared 
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grossly abnormal when examined by electron microscopy (Figure 2.3B). Additionally, 

these cells showed a decrease in mitochondrial dehydrogenase activity and ATP content 

and, Chdh-/-sperm mitochondria were unable to maintain an electrochemical gradient 

across the inner mitochondrial membrane of at least -160mV. Measuring the ability of 

mitochondria to reduce MTT is a measurement of the activity of the sum total of 

mitochondrial dehydrogenases; therefore, a decrease in the amount of MTT reduction in the 

Chdh-/- sperm reinforces the idea that CHDH activity represents a significant portion of the 

total mitochondrial reductive capacity. The JC-1 assay measures the polarity across the 

mitochondrial inner membrane (Ψm), a mitochondrial characteristic not necessarily related 

to the activity of mitochondrial dehydrogenases. For example, inhibiting the electron 

transport chain will reduce the Ψm [242,  243]but  may not  have  an  effect  on  

mitochondrial  dehydrogenase  activity.  Ψm is directly related to oxidation of NADH 

[244]; therefore, a lack of NADH could result in a collapse of the inner membrane 

polarity. In this case, a smaller number of protons will be transported into the inner 

membrane space and Ψm may be compromised. A decrease in either mitochondrial 

dehydrogenase activity or Ψm – or both – can ultimately result in a decrease in ATP 

production by the mitochondria. These results suggest that Chdh-/-  sperm did not generate 

sufficient ATP through oxidative phosphorylation and that ATP generated by substrate-

level phosphorylation during anaerobic glycolysis was inadequate to support sperm 

motility, although all necessary substrates were provided in the media (M16 media 

contains 1.0 g/L glucose, 0.036 g/L pyruvic acid and 4.35 g/L lactic acid).sperm motility, 

although all necessary substrates were provided in the media (M16 media contains 1.0 

g/L glucose, 0.036 g/L pyruvic acid and 4.35 g/L lactic acid). 
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The oxidation of choline to form betaine produces electron transport chain 

substrates. The addition of choline to isolated rat hepatic mitochondria increased resting 

state respiration (State   II),   accelerated   ADP-stimulated  respiration   (State   III)   and   

slightly  increased respiration  in  the  presence  of  oligomycin  (State  IV)  (Bruce  Kristal,  

personal communication). Functional CHDH enzyme contains a flavin adenine dinucleotide 

(FAD) prosthetic group, which acts as an electron acceptor during the oxidation of choline to 

betaine aldehyde, producing FADH2. Further oxidation of the betaine aldehyde intermediate 

to betaine, catalyzed by mitochondrial betaine aldehyde dehydrogenase, produces NADH 

[180]. Therefore, oxidation of one choline molecule to betaine results in the generation of 5 

ATP molecules by the mitochondrial electron transport chain [245]. We present data 

showing that choline and betaine are highly concentrated in mitochondria, suggesting that 

choline flux through CHDH is high in this organelle and, therefore, choline is likely an 

important source of energy for the sperm. 

 

 
 

When Chdh+/+ , Chdh+/- and Chdh-/-  males were supplemented with betaine via 

drinking water for 42 days, the asthenospermic phenotype of Chdh-/-  males was 

improved, but not fully rescued, by betaine supplementation. In addition, the ATP content 

of the Chdh-/- sperm was increased with betaine supplementation. Though the proposed 

defect in mitochondrial ATP production mechanism described above is appealing, it 

does not explain why betaine supplementation restored normal sperm ATP concentrations 

(as no new oxidation of choline occurs due to this treatment). The conversion of choline 

to betaine cannot be the only defect in production of ATP; there must be another 

mechanism responsible for this effect. 
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As noted earlier, betaine is an important osmolyte, and we suggest that perturbation of 

betaine production in mitochondria resulted in fluid shifts that distorted the 3-dimensional 

architecture of the mitochondria in Chdh-/-  mice. Treatment with betaine may allow 

mitochondria to accumulate betaine as they should, establish osmotic balance, and restore 

function. It is possible that ionic effects of reduced betaine alter ATP-dependent ion pumps 

and increase utilization of ATP. ATP from the mitochondria may not diffuse out fast 

enough to sustain activity at the distal end of the sperm flagellum [241]. Glycolytic 

enzymes are concentrated in the principal piece, and some are bound to the fibrous sheath 

of the flagellum [193]. Glycolysis produces ATP adjacent to the site where it is required 

to support active sliding of the flagellar filaments [241]. It is possible that betaine, via 

osmotic effects, alters glycolysis. When the maturing sperm leave the testis, they are non-

motile and their full maturation, including potential to display motility, takes place during 

transit through the epididymis [246]. The maturational changes in sperm are caused by 

changes in the luminal ion concentration and the proteins secreted into the lumen by 

the epididymal epithelium [246]. It is possible that betaine, via osmotic effects, alters 

sperm maturation.  The volume of the entire sperm is modulated by intracellular 

osmolarity, and this too influences sperm motility and flagellar movement [247]. 

 

 
 

No improvement in MTT conversion was achieved because this measurement is a 

reflection of the mitochondrial dehydrogenases in these cells, as discussed above. 

Since CHDH was still absent from the Chdh-/-  sperm we would not expect a restoration 

of MTT conversion with betaine supplementation. 
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Unexpectedly, MTT conversion in sperm was decreased in betaine – supplemented 

Chdh+/+ mice compared to untreated Chdh+/+ mice. The simplest explanation would be 

that CHDH activity (which can catalyze MTT conversion to formazan) was inhibited by 

the reaction’s product, betaine; however, we found that this is not the case when this 

hypothesis was tested in vitro (data not shown). Perhaps betaine suppresses the activity of 

other mitochondrial dehydrogenases or somehow interferes with uptake of the MTT by the 

mitochondria. Taken together, these results indicate that while sperm motility is partially 

dependent on the presence of betaine, full motility may require intact choline oxidation. 

 

 
 

Mitochondrial abnormalities were not limited to sperm in Chdh-/- mice.  MTT assays 

performed in isolated mitochondria from liver and kidney show that deletion of CHDH 

compromised mitochondrial dehydrogenase activity (Figure 2.6C); however, unlike in 

sperm, Ψm  was  maintained  in  mitochondria  from  these  tissues  (Figure  2.6B).  

Interestingly, compared  to  mitochondria  from  Chdh+/+   testis,  more  mitochondria  from  

Chdh-/-   testis maintain Ψm. The testis contains 12 times more betaine than liver and 

about 3 times more than kidney (Table 2.2 and Table 2.3). Therefore, a loss of betaine via 

Chdh deletion would significantly reduce the amount of organic osmolyte available to the 

cells of the testis. This would create a hypo-osmotic cytosol with regard to the 

mitochondrial matrix. Devin, et al. have reported that when mitochondria are studied in a 

hypo-osmotic media there is an increase in State III respiration and in the Ψm across the 

inner mitochondrial membrane [248, 249]. The JC-1 assay only indicates whether the 

electrochemical gradient across the inner mitochondrial membrane is at least -160mV and 

does not measure hyperpolarization; it is possible that all of the testis mitochondria are in 

fact hyperpolarized. 
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The decrease in liver mitochondrial dehydrogenase activity is associated with a 

decrease in ATP content in mitochondrial from this tissue; however, this was not true in 

kidney mitochondria.  Interestingly, Chdh-/-   heart  mitochondria  had  double  the  ATP  

content  of Chdh+/+ mitochondria. Because CHDH activity was undetectable in this organ 

the change in ATP content must result from a mechanisms other than a direct effect of 

CHDH, perhaps metabolic changes in other tissues that affect energy metabolism in 

heart. Skeletal muscle mitochondria appeared abnormal in Chdh-/- mice when examined by 

TEM (Figure 2.4) although indicators of mitochondrial function in this tissue were not 

different than in Chdh+/+ animals. It is possible that more extensive studies of 

mitochondrial function in this tissue will reveal more subtle abnormalities not detected by 

the assays performed thus far. 

 

 
 
 

Our studies in the Chdh-/- mouse suggest that functional CHDH gene polymorphisms 

in humans may have important consequences, including elevated tHcy concentrations and 

male infertility. The rs12676 SNP, located in the coding region of the human CHDH gene, 

occurs at a high frequency in the human population (9% have two variant alleles, [80]), 

and is associated with an increased risk of breast cancer and renders pre-menopausal 

women more susceptible to developing fatty liver when they are ingesting a choline-

deficient diet [105]. Several other CHDH SNPs have been identified in humans but have 

unknown functional consequences.  It  is estimated that approximately 20% of human 

couples worldwide are infertile; in 50% of these couples the infertility was attributed to 

male factor infertility [250]. Of these, asthenospermia was diagnosed in 15% - 17% of 

these men [251, 252]. It would be interesting to explore whether these men have mutations 
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in CHDH. 
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Figure 2.1: Mutation of the Chdh gene. A. Targeting vector used to generate Chdh-/- 

mice. 1. Wild type Chdh allele. 2. Targeting vector. 3. Targeted Chdh allele with exons 1 

through 3 replaced with neor  cassette. B. Chdh mouse genotyping. Tail biopsies were 

collected from mice at weaning. Tail tissue was digested in buffer containing proteinase 

K and genomic DNA purified by phenol:choloroform extraction. DNA was used for PCR-

mediated genotyping of all animals. neor , neomycin resistance cassette; TK, thymidine 

kinase 
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Figure 2.1: Mutation of the Chdh  gene 
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Table 2.1: Indicators of Organ Function Were Normal in Chdh-/- Mice. Selected tests of 

liver, kidney and muscle function were performed. Mean plasma alanine aminotransferase 

(ALT) activity, a measure of hepatic damage, was unchanged (16.7±2.6 U/I in Chdh-/-  

vs. 19.1±4.0 U/I in Chdh+/+ mice; p = 0.64, N= 10/group). Plasma total bilirubin 

concentrations, a measure of hepatic function, was unchanged (0.23 ± 0.02 mg/dL in Chdh-

/- vs. 0.24 ± 0.03 mg/dL in Chdh+/+ mice; p = 0.71, N= 10/group). Blood urea nitrogen 

(BUN) concentrations, a measure of renal function, was unchanged (13.0 ± 0.8 mg/dL 

in Chdh-/-  vs. 13.2 ± 1.2 mg/dL in Chdh+/+ mice; p = 0.88, n = 10/group). Plasma 

creatinine concentrations, a measure of renal function, were normal (less than 0.1 mg/dL) in 

both Chdh+/+ and Chdh-/- mice. Additionally, urine specific gravity following water 

deprivation and vasopressin injection was unchanged in Chdh-/- mice (1.081 ± 0.004, n = 

14) compared to Chdh+/+ animals (1.080 ±  0.008,  n  =  12)  Plasma  creatine  

phosphokinase  (CPK)  activity,  a  measure  of  muscle damage, was unchanged in Chdh-/-    

(235 ± 28 U/L) vs. Chdh+/+  mice (165 ± 25 U/L); p = 0.07,  N= 12/group); these values 

were higher than CPK activity ranges previously reported for C57 mice (102 – 139 U/I). All 

other measured values were within the published normal ranges for C57 mice. No 

differences were observed when data were analyzed for sex-specific effects. 
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Table 2.1: Measures of liver, kidney and muscle function 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Organ Measure Chdh+/+ Chdh-/- Normal range [253] 

Liver Plasma alanine aminotransferase (U/L) 19.14 ± 3.95 16.60 ± 2.58 ~ 10 U/L  

 Plasma total billirubin (mg/dL) 0.24 ± 0.03 0.23 ± 0.02 < 1.0 mg/dL  

     

Kidney Plasma blood urea nitrogen (mg/dL) 13.22 ± 1.21 13.00 ± 0.80 ~10 mg/dL 

 Plasma creatinine (mg/dL) <0.01 < 0.01 <1.0 mg/dL 

 Urine specific gravity     

     

Muscle Plasma creatine phosphokinase activity (U/L) 165 ± 25 235 ± 28 102 – 129 U/L  
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Figure 2.2: Chdh-/-  animals have reduced CHDH enzyme activity. Liver, kidney, 

brain, skeletal muscle, heart and testis were collected from  Chdh+/+  and Chdh-/-  mice. 

CHDH activity was measured using a radioenzymatic assay. Black bars are Chdh+/+ and 

white bars are Chdh-/-. Data are presented as mean ± SEM. ***p<0.001 different from 

Chdh+/+ by ANOVA and Tukey-Kramer HSD test. N=6 animals per group. ND, not 

detected. 
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_Figure 2.2: Chdh-/- animals have reduced CHDH enzyme activity 
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Table 2.2: Choline metabolites in liver, kidney, brain, testis, skeletal muscle and heart 

tissue. Liver, kidney, brain, testis, skeletal muscle and heart were collected from Chdh+/+ 

and Chdh-/-   mice  and  choline  metabolites  were  measured  using  LC-ESI-IDMS.    

Data  are presented as mean ± SEM.  *p<0.05, **p<0.01, ***p<0.001 different from 

Chdh+/+ by Student’s t test. Interaction between genotype and gender tested by two-factor 

ANOVA. For liver,   N= 6 animals/group; kidney, n = 9 animals/group; brain, N= 11 

(Chdh+/+ ) and 19 (Chdh-/-); testis, N= 5 animals/group; skeletal muscle, N= 9 (Chdh+/+ ) 

and 7 (Chdh-/-); heart, N= 9 (Chdh+/+ ) and 7 (Chdh-/-). GPCho, glycerophosphocholine; 

PCho, phosphocholine; PtdCho, phosphatidylcholine; SM, sphingomyelin. 



 

 

65

 Betaine 
(nmol/g) 

Choline 
(nmol/g) 

GPCho 
(nmol/g) 

PCho 
(nmol/g) 

PtdCho 
(nmol/g) 

Liver  

Chdh+/+
 

 

358±37 
 

202±54 
 

741±196 
 

248±68 
 

19226±337 
 

 Chdh-/-
 56±23*** 432±82** 664±124 305±70 17913±376* 

 

Kidney 
 

 

Chdh+/+
 

 

 

1388±207 

 

 

3028±184 

 

 

11608±2196 

 

 

615±60 

 

 

17512±2283 

 

 

 Chdh-/-
 25±8*** 4226±389* 8214±1440 1221±46*** 18068±1358 

 

Brain 
 

 

Chdh+/+
 

 
 

20±5 

 
 

238±20 

 
 

781±30 

 
 

361±21 

 
 

22322±951 

 
 

 Chdh-/-
 10±3 208±11 794±26 437±14** 22518±692 

 

Testis 
 

 

Chdh+/+
 

 
 

4589±401 

 
 

367±30 

 
 

816±45 

 
 

4030±111 

 
 

9176±773 

 
 

 Chdh-/-
 31±11*** 722±32*** 836±26 4861±229* 9599±819 

Skeletal 
Muscle 

 
Chdh+/+

 

 

20± 2 
 

79±15 
 

43±6 
 

47±5 
 

6232±220 
 

 Chdh-/-
 ND*** 292± 17*** 43±4 74±8** 5917± 307 

Table 2.2: Choline metabolites in liver, kidney, brain, testis, skeletal muscle and heart tissue
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Table 2.3: Choline metabolites in purified mitochondria from liver, kidney, brain, 

testis, skeletal muscle and heart. Mitochondria were purified from fresh liver, kidney, 

brain, testis, skeletal muscle and heart tissues and choline metabolites were measured using 

LC-ESI- IDMS.  Results  are  presented  as  mean  ±  SEM  per  mg  mitochondrial  protein.  

*p<0.05, **p<0.01,  ***p<0.001  different  from  Chdh+/+   by  Student’s  t  test.  

Interaction  between genotype and gender tested by two-factor ANOVA. For all tissues 

N= 4 animals/group, except testis where  N= 4 (Chdh+/+ ) and 5 (Chdh-/-). ND indicates 

metabolite concentration was  below  the  detectable  limit  of  the  assay.  GPCho,  

glycerophosphocholine;  PCho, phosphocholine; PtdCho, phosphatidylcholine; SM, 

sphingomyelin. Data is expressed as nmol per mg mitochondrial protein. 
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Table 2.3: Choline metabolite concentrations in isolated mitochondria 
(from liver, kidney, brain, testis, skeletal muscle and heart) 

 

 

 

Betaine Choline GPCho PCho PtdCho SM 

Liver Chdh+/+
 20±6 1±0.3 49±37 14±9 204±30 9±1 

Mitochondria Chdh-/-
 ND* 4±1* 30±13 6±1 178±42 8±2 

 

Kidney 
 

Chdh+/+
 

 

26±5 
 

0.6±0.4 
 

40±18 
 

2±1 
 

270±34 
 

11±2 
Mitochondria Chdh-/-

 ND** 21±2*** 40 ±3 1±0.0 222±7 11±1 

 

Brain 
 

Chdh+/+
 

 

ND 
 

4±2 
 

23±12 
 

4±2 
 

327±74 
 

9±3 
Mitochondria Chdh-/-

 ND 4±2 10±2 4±1 211±24 3±1 

 

Testis 
 

Chdh+/+
 

 

296±33 
 

4±4 
 

101±35 
 

332±36 
 

4452±364 
 

92±20 
Mitochondria Chdh-/-

 ND*** 119±10*** 103±44 617±23*** 5266±346 89±14 

 
Skeletal Muscle 

 

Chdh+/+
 

 
ND 

 

3±1 
 

4±2 
 

2±1 
 

103±40 
 

5±1 

Mitochondria Chdh-/-
 ND 1±0.3 4±2 1±0.5 69±10 3±0.4 

 
Heart 

 

Chdh+/+
 

 

7±11 
 

10±2 
 

28±37 
 

2±1 
 

172±13 
 

16±2 

  Mitochondria  Chdh-/- 
                      ND                       6± 2                  16± 17                 1± 0.5                 167± 32              13± 3      
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Figure 2.3: Testis histology and sperm transmission electron microscopy in Chdh+/+ 

and Chdh-/-  mice. A. Testes were harvested from 14 -17 week old Chdh+/+ and Chdh-/- 

males, fixed, and 5 µm sections were stained with hematoxylin and eosin. (Periodic acid-

Schiff stain showed similar results). Images shown are 20X and are representative of N=4 

animals/group. B. Electron microscopy of sperm cross-sectional view (top two panels) and 

longitudinal view (bottom two panels). For transmission electron microscopy, cauda 

epididymides was harvested and processed as described in methods. 70nm ultrathin sections 

were analyzed with an electron microscope with an accelerating voltage of 60kV. Images 

shown are 50,000X and are representative of N=2 animals/group. Arrows indicate typical 

mitochondria in sperm midpiece. 
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Figure 2.3: Testis histology and sperm transmission electron microscopy in Chdh+/+ 

and Chdh-/- mice 
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Figure 2.4: Skeletal muscle mitochondria morphology. Animals were fixed by gravity 

perfusion via cardiac puncture. Following fixation, tissues were collected and examined by 

transmission electron microscopy for mitochondrial morphology. Representative images 

shown, N= 2 animals/ group. Images are 50,000X. Arrows indicate typical mitochondria. 
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Figure 2.4: Transmission electron microscopy of skeletal muscle mitochondria 
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Figure 2.5: Sperm counts, motility and mitochondria function. A. Counts. Sperm 

were harvested from 8 – 10 week old CHDH+/+ (+/+ ), Chdh+/-  (+/-) and Chdh-/-  (-/-) mice. 

Sperm count was determined by counting cells using a hemocytometer. Black bars 

represent untreated animals, gray bars represent betaine-supplemented animals. Results 

are presented as mean ± SEM. N=11 (Chdh+/+ , untreated), 5 (Chdh+/-, untreated) and 8 

(Chdh-/-, untreated) mice per group. For betaine supplementation study,  N=11 (Chdh+/+ ), 5 

(Chdh+/-), 7 (Chdh-/-) mice per group.  B. Motility. Sperm were harvested from 8 – 10 

week old Chdh+/+ Chdh+/- and Chdh-/-  mice. Motility assays were performed by counting 

the number of progressively motile sperm per total number of sperm in 5 squares of a 

hemocytometer. Results are presented as mean ± SEM. N=11 (Chdh+/+ , untreated), 5 

(Chdh+/-, untreated) and 8 (Chdh-/-, untreated) mice per group. For betaine 

supplementation study, N=11 (Chdh+/+ ), 5 (Chdh+/-), 7 (Chdh-/-) mice per group. 

**p<0.01 by two-factor ANOVA and Tukey-Kramer HSD, *** p< 0.001. There is an 

interaction between genotype and treatment, p = 0.0004. C. MTT reduction. MTT reduction 

determined as described in methods. Absorbance values were normalized to the number of 

sperm assayed. All assays were performed in duplicate. The value for each animal is the 

mean of 4 assays (2 cauda epididymides, each assayed in duplicate per animal). Results are 

presented as the mean ± SEM.  *p<0.05 by two-factor ANOVA and Tukey-Kramer HSD. 

There is an interaction between genotype and treatment, p = 0.02.  N=5 mice per group. D. 

ATP content in sperm. Results are presented as the mean % of untreated Chdh+/+   mean ± 

SEM.  * p<0.05 by Student’s t test. N=5 mice per group. E. Membrane potential. JC-1 

staining determined as described in methods. The number of cells that fluoresced red in the 

sperm midpiece was counted in 5 random fields of vision for each sample and results are 

expressed as a percent of the total cells in those fields. Results are presented as mean ± 

SEM. *p<0.05, **p<0.01 by two-factor ANOVA and Tukey-Kramer HSD. There is no 

interaction between genotype and treatment.  N=5 mice per group. 
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Figure 2.5: Sperm counts, motility and mitochondrial function 
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Figure  2.6:  Functional  assays  of  mitochondria  isolated  from  liver,  kidney,  brain, 

skeletal muscle, heart and testis. A. ATP content. Mitochondria were purified from 

fresh tissue  as  described.  Black  bars  are  Chdh+/+   and  white  bars  are  Chdh-/-.  Values  

were normalized to the amount of mitochondrial protein assayed. Results presented as 

are the mean % of Chdh+/+ mean ± SEM, * different from Chdh+/+ , p<0.05 by Student’s t 

test N= 5 animals/group. B. Membrane Potential. Mitochondria were purified from fresh 

tissues and JC-1 staining determined as described in methods. Values were normalized to 

the amount of mitochondrial protein assayed. Results presented as are mean ± SEM, 

*different from Chdh+/+ , p<0.05 by Student’s t test N=5 mice per group. C. MTT 

reduction. Mitochondria were purified from fresh liver, kidney, brain, skeletal muscle, 

heart and testis tissues and MTT reduction determined as described in methods. Black 

bars are Chdh+/+ and white bars are Chdh-/-. Values were normalized to the amount of 

mitochondrial protein assayed. Results are presented as mean ± SEM, *p<0.05 different 

from Chdh+/+ by Student’s t test. N= 9-11 animals/group. 
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Figure 2.6: Functional assays of mitochondria isolated from liver, kidney, brain, 
skeletal muscle, heart and testis 
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Abstract: 
 
 
 

 

Approximately 15% of couples are affected by infertility and up to half of these 

cases arise from male factor infertility. Unidentified genetic aberrations such as 

chromosomal deletions, translocations and single nucleotide polymorphisms (SNPs) may 

be the underlying cause of many cases of idiopathic male infertility. Deletion of the choline 

dehydrogenase (Chdh) gene in mice results in decreased male fertility due to 

diminished sperm motility; sperm  from  Chdh-/-   males  have  decreased  ATP  

concentrations  likely  stemming  from abnormal sperm mitochondrial morphology and 

function in these cells. Several single nucleotide polymorphisms (SNPs) have been 

identified in the human CHDH gene that may result  in  altered  CHDH  enzymatic  

activity.  rs12676  (G233T),  a  non-synonymous  SNP located in the CHDH coding region, 

is associated with increased susceptibility to dietary choline deficiency and risk of breast 

cancer. We now report evidence that this SNP is also associated with altered sperm 

motility patterns and dysmorphic mitochondrial structure in sperm. Sperm produced by 

men who are GT or TT for rs12676 have 40% and 73% lower ATP  concentrations,  
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respectively,  in  their  sperm.  rs12676  is  associated  with  decreased CHDH protein in 

human hepatocytes. A second SNP located in the coding region of an adjacent gene 

IL17BR, rs1025689, is linked to altered sperm motility characteristics. 

 
 
 
 
 
 

Introduction: 
 
 
 

 

An estimated 15% of couples are affected by infertility [1] and male factor 

infertility is the suspected cause in 30-50% of these couples. Although the exact cause of 

many of these cases are unknown, chromosomal deletions, translocations and SNPs are 

associated with infertility in as many as 30% of these men [18]. Identifying and 

understanding how genetic anomalies affect spermatogenesis and fertilization will improve 

the likelihood of overcoming male infertility. Conversely, effective male contraception 

may be developed based on data showing associations between genetic variation, nutrient 

metabolism and male factor infertility. 

 

 
 

Although the relationship between overall nutritional status and reproduction is well 

documented [20, 21, 254], the relationship between micronutrient metabolism and 

reproduction is understudied. There is some evidence that aberrant micronutrient 

metabolism may play a causative role in male factor infertility. Dietary deficiencies of 

vitamins A, C and E as well as trace metals such as zinc and selenium are associated 

with male infertility in animals and humans [22-33, 309]. Choline is an essential nutrient 

for humans [255] and is important for normal fetal development [256]. A link between 
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choline metabolism and male fertility has been demonstrated in only one paper [35]. 

Geer reported both normal mating behavior   and   sperm   motility   required   adequate   

choline   availability   in   Drosophila melanogaster and that carnitine, a proposed choline 

substitute, was unable to support male fertility. We discovered that choline dehydrogenase 

(CHDH) is necessary for normal male fertility in mice [46]. Male choline dehydrogenase 

knockout mice (Chdh-/-) are infertile due to severely compromised sperm motility; 

decreased motility is the result of abnormal mitochondrial structure and function in sperm 

cells. 

 

 
 

Betaine (N,N,N-trimethylglycine), a metabolite of choline, donates methyl groups 

for the formation of methionine from homocysteine and is an organic osmolyte used by 

cells to regulate cell volume [257]. Dietary sources of betaine include wheat, shellfish, 

spinach and sugar beets [158, 207]. In addition, betaine can be made de novo via the 

oxidation of choline in a series of reactions catalyzed by CHDH and betaine aldehyde 

dehydrogenase [153-155, 181, 209, 210]. Conversion of choline to betaine takes place in 

the mitochondrial matrix following the transport of choline across mitochondrial 

membranes [136, 258, 259]. The betaine formed is a zwitterion at neutral pH and diffuses 

out of mitochondria for use in one-carbon metabolism [157]. 

 

 
 

SNPs have been identified in the human CHDH gene. Rs12676 (G233T) is a non- 

synonymous SNP located in exon 3 of the CHDH gene.  Occurrence of the variant T 

allele results in the replacement of arginine, a polar, hydrophilic amino acid, with leucine, a 

hydrophobic amino acid. 38 - 40% of individuals are heterozygous and 2 – 9% are 
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homozygous for rs12676 [80, 105].   The CHDH minor T allele is associated with 

increased susceptibility to developing clinical symptoms of dietary choline deficiency 

(steatosis and muscle cell damage) [105] as well as increased risk of breast cancer [80]. 

Although not in the CHDH gene, a SNP in the interleukin 17 beta receptor (IL17βR), 

rs1025689, is associated with increased susceptibility to developing choline deficiency 

specifically in men (Zeisel Laboratory, unpublished data). We now present data indicating 

that the rs12676 genotype is also associated with dysmorphic mitochondrial structure, 

changes in sperm motility patterns and decreased energy status in human sperm. 

Hepatocytes harboring the TT rs12676 genotype have less CHDH protein when compared 

to hepatocytes from humans with GG ro GT genotypes, suggesting that this SNP is 

functional. In addition, rs1025689 is linked to changes in sperm motility patterns, 

suggesting that these SNPs may be contributing factors in the occurrence of idiopathic 

male infertility. 

 

 
 
 
 
 

Materials and Methods: 
 
 
 

 

Chemicals  and  Reagents:  All  chemicals  and  reagents  used  were  obtained  from  

Sigma Aldrich (St. Louis, MO), unless otherwise noted. 

 

 

Study design and recruitment: This study was conducted at the University of North 

Carolina at   Chapel   Hill   Nutrition   Research   Institute   (Kannapolis,   North   Carolina)   

and   was implemented in two phases – screening subjects for genotypes of interest and 
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analysis of semen and sperm specimens collected from subjects with SNPs of interest. All 

procedures were approved by the University of North Carolina at Chapel Hill Office of 

Human Research Ethics Institutional Review Board. Subjects were at least 18 years of age 

and were recruited from the Charlotte – Kannapolis, North Carolina region. Informed 

consent was obtained at the initial screening visit. Subjects were compensated up to $125 

for their participation in the study. 

 

 
 

Blood collection and DNA isolation: In order to screen subjects for the SNPs of interest, 

blood was collected into Vacutainer Cell Preparation Tubes (CPT tubes; BD Diagnostics, 

Franklin Lakes, NJ) containing sodium citrate; lymphocytes were separated from other 

blood components for subsequent genomic DNA extraction. All CPT tubes were stored on 

ice if not processed immediately; all CPT tubes were processed within 1 hour of sample 

collection. Briefly, CPT tubes were centrifuged in a Sorvall RC-3B centrifuge 

equipped with an H-2000B rotor (Thermo Fisher Scientific, Waltham, MA) at 1500 x g 

for 30 minutes at room temperature. Plasma was aliquoted into 2mL microfuge tubes and 

stored at -80˚ C for choline metabolite analysis. The lymphocyte layer was washed with 

PBS, transferred to a 15mL conical  tube  and  was  pelleted  by  centrifugation  at  1000  x  

g  for  5  minutes  at  room temperature. Pellets were again washed with PBS, transferred to 

1.5mL microfuge tubes and pelleted by centrifugation in an Eppendorf 5415D 

microcentrifuge at 800 x g for 5 minutes at room temperature. 

 

 
 

Genomic DNA was purified from lymphocyte pellets using a QIAamp DNA Mini 

Kit (Qiagen, Valencia, CA) according to manufacturer’s instructions with some 
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modification. Specifically, lymphocyte pellets were equilibrated to room temperature and 

resuspended in 500µL PBS. The amounts of Qiagen Protease, Buffer AL and ethanol 

(96%-100%) were adjusted  proportionally  as  indicated  by  the  manufacturer’s  

instructions.  Two  separate elutions of 100µL with Qiagen Buffer AE were performed. 

Samples were incubated at room temperature for 5 minutes prior to each elution. Both 

elutions were collected in the same 1.5mL microfuge tube for a final volume of 200µL. 

DNA quality and concentration was determined  using  a  Nanodrop  8000  

Spectrophotometer  (Thermo  Scientific,  Wilmington, DE). 

 

 
 

rs12676 genotyping: rs12676 genotype was determined by direct sequencing. A 260 

base pair region of the CHDH gene containing rs12676 was PCR amplified using Deep 

VentR 
TM (exo-) DNA polymerase (New England Biolabs, Ipswich, MA) according to 

manufacturer’s recommendations.    The primers used for amplification were: CHDH 

forward 5’- ATTCCCCTCCGTGGATCAG-3’ and CHDH reverse 5’-

TGTCGTCGCACAGGTTGG-3’. Each 50µL reaction contained 600ng of genomic 

DNA, primers at a final concentration of 200nM, and 4 units of Deep VentR 
TM (exo-) 

DNA polymerase. The PCR conditions were: an initial denaturing step at 98˚C for 10 

minutes followed by 30 cycles of denaturing at 98˚C for 1 minute and annealing/extension 

at 72˚C for 5 minutes. PCR products were purified from other reaction components using a 

QIAquick PCR Purification Kit (Qiagen, Valencia, CA) and    the    resulting    DNA    

concentration    was    determined    using    Nanodrop    8000 Spectrophotometer (Thermo 

Scientific, Wilmington, DE). Purified CHDH fragments were sequenced using BigDye® 

Terminator chemistries (Applied Biosystems, Carlsbad, CA) by Eton  Bioscience,  Inc  

(Research  Triangle  Park,  NC)  using  the  CHDH  forward  primer. rs12676 genotype was 
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determined by examining sequencing chromatograms using Sequence Scanner software 

(version 1.0, Applied Biosystems, Carlsbad, CA). 

 

 

rs1025689 genotyping: rs1025689 genotype was determined using a TaqMan® SNP 

genotyping assay (Applied Biosystems, Carlsbad, CA) according to manufacturer’s 

instructions. PCR reactions were performed using a StepOne™ Real Time PCR System 

and 2X TaqMan® Genotyping Master Mix (Applied Biosystems, Carlsbad, CA). 

 
 
 
 

 

Semen collection and processing: Subjects were asked to refrain from sexual activity for 48 

hours prior to semen donation. Semen was produced by masturbation and collected 

into 50mL sterile sample cups. Olive oil was provided as a lubricant to use as necessary. 

Samples were incubated at room temperature for 30 minutes to allow for liquefaction. 

Semen volume was measured with a pipette. Sperm were separated from other seminal fluid 

components by layering the sample over a 45% ISolate®/ human tubular fluid (HTF; 

190mM NaCl, 9mM KCl,  0.7mM  KH2PO4,  0.3mM  MgSO4-7H20,  4mM  CaCl2   –  

2H20,  0.025mM  NaHCO3, 2.78mM D-glucose, 21.4mM lactate, 0.33mM pyruvate and 

5mg/mL BSA (Fraction V), 5M NaCl was added as necessary to adjust osmolality) media 

gradient followed by centrifugation at 300 x g for 20 minutes at room temperature using a 

Beckman-Coulter Allegra X-15R Centrifuge and SX4750A rotor.  ISolate® was purchased 

from Irvine Scientific (Santa Ana, CA). The supernatant was discarded and the resulting 

sperm pellet was washed twice in 3mL HTF followed by centrifugation at 300 x g for 10 
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minutes at room temperature. Sperm were resuspended in 4 mL HTF and used for 

subsequent analyses. 

 

 
 

Sperm counts: The total number of sperm per ejaculate and sperm concentration were 

determined by counting cells in a hemocytometer. 

 

Sperm motility: Sperm were diluted 1:10 – 1:15 in HTF for motility measurements. 200µL 

of diluted sperm were placed into a 35mm glass bottom dish and covered with a coverslip. 

For each sample, video of 10 random, unique microscope frames were recorded using a 

Zeiss Axio Observer (Carl Zeiss, Inc, Thornwood, NY) inverted microscope equipped with 

a temperature controlled incubation chamber equilibrated to 37˚C. Sperm were viewed 

under phase contrast conditions with a 20X objective lens. 

 

 
 

Motility parameters including mean velocity (MVUS), curvilinear velocity (VCL), 

straight distance velocity (VSL) and mean tortuosity (MT)) were determined using Zeiss 

AxioVision (release 4.7) image tracking software (Carl Zeiss, Inc, Thornwood, NY) as 

previously described [260]. 

 

 
 

Electron microscopy: Approximately 500µL of washed sperm were transferred to 1.5mL 

microfuge tubes; sperm were pelleted by centrifugation at 16,000 x g for 5 minutes at room 

temperature. The supernatant was discarded and sperm pellets were fixed for transmission 

electron microscopy in 2% paraformaldehyde, 2.5% gluteraldehyde, 0.2% picric acid in 

0.1M sodium cacodylate, pH 7.2. The pellet was encapsulated in 2% agarose buffered with 



 

 84

0.1M sodium cacodylate buffer, pH 7.2. The encapsulated pellet was post-fixed in 1% 

osmium tetroxide in 0.1M sodium cacodylate buffer for 1 hour. Samples were washed in 

deionized water, dehydrated through an ethanol series, transferred to propylene oxide, 

infiltrated and embedded in Polybed 812 resin (Polysciences, Inc., Warrington, PA). 70nm 

ultrathin sections were  post-stained  in  4%  aqueous  uranyl  acetate  and  0.4%  lead  

citrate.  Samples  were examined and photographed using a Zeiss EM-10A transmission 

electron microscope (LEO Electron Microscopy, Thornwood, NY) with an accelerating 

voltage of 60kV. 

 

 
 

ATP assay: ATP concentration in sperm was measured using an ATP 

Bioluminescence Assay Kit CLS II (Roche Diagnostics, Mannheim, Germany) 

according to manufacturer’s instructions. Luminescence was measured using a 1420 

VICTOR2 microplate reader (Perkin Elmer, Waltham, MA). ATP concentration was 

normalized to number of sperm analyzed. 

 

 
 

CHDH expression: Primary human hepatocyte protein lysates were made in 

radioimmunoprecpitation  assay  (RIPA)  buffer  and  protein  concentration  measured  

using BCA assay (Pierce/ Thermo Scientific, Rockford, IL). Equal volumes of lysate (80 – 

200µg protein) were resolved by SDS-PAGE and transferred to PVDF as described above. 

The membrane was incubated with anti-CHDH antibody (1:1000 dilution in 5% BSA/ 

PBS-T; ProteinTech Group, Inc., Chicago, IL) at 4˚C overnight. A 1:10,000 dilution of 

HRP- conjugated anti-rabbit secondary antibody (Millipore, Billerica, MA) was incubated 

with the membrane and bands detected with enhanced chemiluminescence (SuperSignal® 

West Pico ECL, Thermo Scientific, Rockford, IL). The number of pixels in the CHDH 
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band was quantitated using the lasso tool in Adobe Photoshop (Adobe Photoshop CS3 

Extended v.10.0.1) and the number of pixels per microgram of total protein loaded was 

calculated. As an external control for protein integrity, the abundance of beta-actin protein 

was determined using a mouse monoclonal anti-beta-actin antibody (1:10,000 dilution in 

5% BSA/PBS-T; Abcam, Cambridge, MA) and an HRP-conjugated goat anti-mouse 

secondary antibody (1:10,000 dilution in 5% BSA/PBS-T; Abcam, Cambridge, MA) 

 

Plasma choline metabolite analyses: The concentrations of choline and its metabolites 

[choline, betaine, phosphatidylcholine (PtdCho), and sphingomyelin (SM)] in plasma were 

measured by liquid-chromatography ionization-isotope dilution mass spectrometry (LC-

ESI- IDMS) as previously described [226] 

 

 
 

Statistical analyses: Statistical differences among genotypes were determined using JMP 

9.0 software (SAS Institute, Cary, NC) using ANOVA and Tukey-Kramer HSD. Statistical 

tests were performed on log 10 transformed data for semen volume, total sperm per ejaculate 

and sperm concentration as these data failed test of normality. Only data from sperm 

recorded for at least 3 seconds were included in statistical analyses. In order to address the 

intra-individual variation in the sperm motility data the following method was used to 

determine statistical differences.  For  each  continuous  measure  (MT,  MVUS,  VCL  and  

VSL)  cutpoints  for quartiles were determined from all observations having the wild 

type/wild type (WW) genotype for that SNP.  Then using those cutpoints, all observations 

were placed into a quartile and an association between SNP level and the most extreme 

quartiles (1 and 4) was assessed via a repeated measures logistic regression with quartile (1 
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or 4) as the response and SNP as the predictor.  The repeated measures on subject were 

taken into account by using a compound symmetric correlation matrix for observations 

within the same subject.  P-values less than 0.05 were considered statistically significant.  

 

Results: 
 
 
 

 

rs12676 and rs1025689 distribution frequencies: rs12676 and rs1025689 distribution 

frequencies were calculated for the population of men screened for inclusion in this 

study. For rs12676, 52% of subjects were GG, 41% were GT and 7% were TT (Table 3.1). 

For rs102689, 22% were GG, 48% were GC and 30% were CC. These results are in 

agreement with published data regarding these two SNPs [80, 105] and K. da Costa, 

unpublished data). It is important to note that 100% of men who were homozygous for 

rs12676 had at least one minor C allele of rs1025689; 83% of men with the TT rs12676 

genotype were also CC for rs1025689. In addition, 91% of men who were GT for rs12676 

had at least 1 C allele for rs1025689. 

 

 
 

Study population: Average age, average number of biological children per subject and 

occurrence of abnormal semen characteristic or infertility were calculated from self-reported 

information provided by the health questionnaire form completed on Day 1 (Figure 3.1). 

The average age of the entire screen population was 33.5 years and subject age ranged from 

18 to76 years. The average number of biological children per subject was calculated by 

dividing the total number of children per genotype by the number of subjects who answered 

this question. Men who were TT for rs12676 reported the lowest number of biological 
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children per subject (0.33) while men who were wild type for rs1025689 reported the 

highest (0.94). The average number of biological children for the other genotypes was: 

rs12676 GG, 0.80; GT, 0.78; rs1025689 GC 0.70; CC, 0.61. 33% (2 of 6) of men with 

rs12676 TT genotype reported semen abnormalities or infertility; these were reported by 

9.7% (4 of 41) of men who were wild type for rs12676.  Men who were GT for this SNP 

did not report any abnormalities. For rs1025689, 11.7% (2 of 17) of GG, 5.2% (2 of 38) of 

GC and 8.3% (2 of 24) of CC subjects reported semen abnormalities or infertility. 

 
 
 

 

Semen parameters: The rs12676 genotype was not associated with changes in semen 

volume, number of sperm per ejaculate or sperm concentration (Table 3.2). Men who were 

homozygous for rs1025689 had decreased sperm concentration compared to men who were 

heterozygous for this SNP.   Mean values for these parameters were all within the 

normal range expected of the general human population [261]. 

 

 
 

Sperm motility characteristics: Sperm from men who were homozygous for rs12676 had 

increased curvilinear velocity and tortuosity when compared to sperm from men who were 

wild  type  for  this  SNP  (Figure  3.2,  Table  3.3).  Sperm  produced  by  men  with  the  

GT genotype for rs12676 traveled greater distances at a faster rate and had more tortuous 

paths than sperm collected from men who were GG for this SNP. No differences between 

sperm from heterozygous and homozygous subjects were detected. 

 

 
 

Sperm from men who were CC for rs1025689 had increased average velocity as 

well as curvilinear and straight line velocity when compared to sperm collected from 
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men who were wild type for this SNP (Figure 3.3, Table 3.3). Men who were homozygous 

for rs1025689 produced sperm that traveled in more tortuous paths as compared to sperm 

from men who were heterozygous for this SNP. Subjects who were GC for rs1205689 

produced sperm  with  higher  measures  of  average  velocity,  curvilinear  and  straight  

line  velocity compared to sperm from men with the GG genotype. Tortuosity was 

decreased in sperm from heterozygous men compared to sperm from men who were CC 

for rs1025689. 

 

 
 

Sperm mitochondrial ultrastructure and energy levels: Abnormal mitochondrial structure 

was observed in sperm collected from men who had two copies of the rs12676 minor allele 

(Figure 3.4). Mitochondria in the midpiece of these sperm appeared swollen with 

disordered cristae structure. Sperm from men with one variant allele of rs12676 (GT) 

had 40% less ATP than sperm produced by men who were GG for this SNP (Figure 3.5). 

Men carrying two variant alleles (TT) produced sperm with 73% less ATP than men 

who were GG. 83% of subjects who were homozygous for rs12676 were also 

homozygous for rs1025689, but when mitochondrial morphology and ATP concentrations 

were analyzed in men who were homozygous for rs1025689 only, we found there was no 

relationship between rs1025689 genotype and these measures (Figure 3.6). 

 

 
 

CHDH protein expression: Individuals who harbored the TT rs12676 genotype had a 

lower CHDH:β-ACTIN due to decreased amounts of CHDH protein in their hepatocytes 

compared to individuals who were wild type for this SNP (Figure 3.7). The CHDH proteins 

levels in heterozygous hepatocytes were not significantly changed from either GG or TT 
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hepatocytes. β-ACTIN protein expression was not changed among the genotypic groups 

(data not shown). 

 

 
 

Plasma choline metabolite concentrations: Choline metabolite concentrations in plasma 

and sperm were measured using LC-ESI-IDMS. Men who were homozygous for rs12676 

minor allele had a small, but significant increase in plasma free choline concentrations 

(Table 3.5). There were no differences in plasma betaine, PtdCho or SM among the 

other rs12676 or rs1025689 genotypes. 

 

 
 
 
 
 

Discussion: 
 
 
 

 

We previously reported that Chdh mutation in mice results in male infertility due to 

compromised sperm motility. We now present evidence that rs12676, a common SNP in 

the human CHDH gene, is associated with altered sperm motility patterns, dysmorphic 

mitochondrial ultrastructure and decreased ATP concentrations in sperm. Humans who 

were homozygous for this SNP had less CHDH protein in their liver than those who 

were wild type or heterozygous. Further studies are required to determine whether this is a 

result of decreased CHDH mRNA translation or increased CHDH protein degradation. 

Either way, these data suggest that rs12676 is a functional SNP, or that it is a tag SNP that 

marks a functional haplotype of the CHDH gene.   In addition, rs1025689, a SNP 

located in the IL17βR gene that is highly associated with increased susceptibility to 

dietary choline deficiency particularly in men, is correlated with changes in sperm motility 
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patterns. 

 

 
 

The allele frequency distributions of the screened population for both rs12676 

and rs1025689 were in agreement with previously reported frequencies ([80, 105] and 

Zeisel laboratory unpublished data). The average age of the genotypic groups was not 

significantly different; therefore, we conclude that any changes detected in semen 

characteristics or sperm cell function were not due to differences in age among the 

groups. The rs12676 TT genotype group reported the lowest number of biological 

children per subject (0.33) and the highest rate of semen abnormality/infertility diagnosis 

(33%) of all groups.  Unfortunately, the health questionnaire items were not worded in 

such a way that we would be able to accurately and specifically calculate decreased 

fertility. Interestingly, however, subjects who were homozygous for rs12676 had higher 

free choline concentrations in their plasma. This would be expected with a decrease in 

CHDH activity, as less choline would be converted to betaine. We did not detect a decrease 

in betaine in these men probably because we did not require the subjects to fast prior to 

their blood draw, and betaine can be obtained from the diet. 

 

 
 

Sperm  from  men  who  harbor  at  least  one  variant  allele  of  rs12676  were  

less progressively motile, as indicated by an increase in curvilinear velocity and tortuosity 

(Figure 3.2, Table 3.3). However, we do not know whether these data indicate that these 

sperm were less progressively motile from the time of ejaculation, or if they achieve 

hyperactivation earlier than sperm from men who are wild type for this SNP, as 

hyperactivated motility could also be described by similar changes. Mean velocity was 
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significantly increased in sperm from heterozygous and homozygous subjects. The 

association between rs12676 genotype and mean velocity was stronger in sperm from 

men of the GT genotype; the association was weak in sperm from men who were TT for 

rs12676. It is possible that more sperm from rs12676 heterozygous men were hyperactivated 

at the time of measurement based on the vigorous, non-linear path in which these cells are 

moving. Hyperactivated sperm are those displaying motility patterns characterized by 

vigorous, non-linear trajectories [262] and are in contrast to progressively motile sperm 

which move forward in a somewhat linear path [263]. Sperm released from the cauda 

epididymis typically are progressively motile at first and their transition to hyperactivated 

motility when incubated in media formulated to support this process   [262].   Sperm   

collected   from   the   female   reproductive   tract   are   generally hyperactivated [262]. 

Similar changes were observed in sperm from men with at least one minor C allele of 

rs1025689. On the other hand, sperm from men who were TT for rs12676 may be less 

progressively motile from the time of ejaculation as suggested by the increased curvature of 

their path and relative lack of change in speed from wild type sperm. 

 

 
 

rs12676, but not rs1025689, was associated with dysmorphic mitochondrial 

structure (Figure 3.4 and Figure 3.6). ATP concentration was inversely correlated in a 

dose-dependent manner  with  the  number  of  rs12676  minor  alleles    (Figure  3.5)  

Although  the  exact mechanism causing these changes remains unknown, these results 

are very similar to those we observed in the Chdh-/- mice [46]. 

 

 
 

As noted before, humans who are homozygous for the minor T allele of rs12676 are 

more likely to develop clinical symptoms of dietary choline deficiency (e.g. liver or muscle 
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dysfunction) when fed a choline-deficient diet [105]. Since we have demonstrated this 

genotype is associated with decreased CHDH protein, we hypothesize that aspects of 

choline deficiency are a direct result of a lack of betaine; perhaps stemming from a 

reduction of S- adenosylmethionine (AdoMet) available for methylation reactions.   This 

change may be reflected in sperm membrane phospholipid composition. AdoMet is 

required for the de novo generation  of  phosphatidylcholine  (PtdCho)  from  

phosphatidylethanolamine  (PE)  in  a reaction   catalyzed   by   phosphatidylethanolamine   

N-methyltransferase   (PEMT).   Sperm contain high levels of PtdCho in which 

polyunsaturated fatty acids, such as docosahexanoic (DHA, 22:6n3) or arachidonic acid 

(AA, 24:4n6), represent the majority of the fatty acid species  incorporated  into  this  

molecule  [264,  265].  This  type  of  PtdCho  is  generated primarily via the PEMT 

pathway [266-269] and Pemt expression has been reported in spermatogenic cells, Sertoli 

cells and epididymal tissue [137]. Chdh-/- sperm have 56% less PtdCho than sperm 

produced by Chdh+/+  males (ARJ, unpublished data) and changes in sperm membrane 

composition can impair sperm motility [264, 270]. Although this is an attractive 

explanation it is unlikely to be the only cause of impaired sperm function as there are no 

reports of male infertility in Pemt-/-  mice. Additional evidence arguing against lack of 

methyl groups from betaine as the root cause of poor sperm function include the fact that 

betaine:homocysteine methyltransferase knockout (Bhmt-/-) males are fertile [271]. These 

animals are unable to use methyl groups from betaine to remethylate homocysteine, 

thus forming methionine that can be converted to AdoMet [272]. The Bhmt-/-  males 

have very high concentrations of betaine in all tissues except testis, suggesting the presence 

of a mechanism for controlling betaine accumulation in this tissue and implying that 
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betaine concentration is possibly controlled to protect testicular function. At the same time, 

dietary folate may provide labile methyl groups to compensate for a lack of betaine and 

serve as an alternate means for providing methyl groups (reviewed in [273]). 

 

It is possible that the betaine molecule itself plays an important role in maintaining 

testicular and sperm cell function. Betaine is an organic osmolyte used by cells for 

protection during times of osmotic stress [161, 162]. Sperm mature as they move from the 

lumen of the testis and through the caput, corpus and cauda regions of the epididymis 

[187]. During transit, sperm accumulate molecules found within the epididymal 

environment including organic osmolytes such as glycerophosphocholine and carnitine 

[187]. We measured betaine concentrations  in  the  mouse  epididymis  and  found  levels  

10  times  greater  than  those measured in liver (ARJ, unpublished data). The epididymal 

environment is relatively hyperosmotic (~340mmol/kg, [183]). In comparison, the 

osmolality of unliquified whole semen and of the fluid in the female reproductive tract is 

approximately 276 – 302mmol/kg [274, 275]  suggesting that epididymal sperm experience 

an osmotic “challenge” within the male urethra [183]. An inability to regulate volume in 

response to the varied osmotic environments would render sperm susceptible to swelling 

which can impair motility [275]. In addition increased osmotic stress due to a reduction of 

betaine can also account for decreased PtdCho  concentrations  observed  in  Chdh-/-    

sperm.  Phospholipase  A2    (PLA2),  w h i c h  i s  highly expressed in sperm [276], 

catalyzes the hydrolysis of the fatty acid in the sn-2 position of PtdCho, resulting in the 

release of the fatty acid and the generation of lyso-PtdCho [264]. PLA2 activity is enhanced 

by osmotic stress [277, 278]. Increased osmotic stress may increase hydrolysis of sperm 
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PtdCho, resulting in the release of free DHA and AA and increasing concentrations of lyso-

PtdCho. All of these molecules have been shown to inhibit sperm motility [264]. 

 

 
 

rs1025689 is a synonomous SNP located in the coding region of human 

IL17βR [279]. Individuals, particularly men, who were homozygous for the minor C 

allele, were more likely to develop signs of liver or muscle dysfunction when ingesting a 

choline- deficient diet (Zeisel laboratory, unpublished data). Because the presence of this 

SNP does not result in an amino acid change, it most likely tags a functional haplotype 

within this gene.  CHDH and IL1βBR are situated in a head-to-head orientation on opposite 

strands on human chromosome 3 and mouse chromosome 14 [280, 281]. According to 

available data, rs12676 and rs1025689 are not in linkage disequilibrium; however, we noted 

a high degree of concurrence of these SNPs within our study population. Because they 

share a promoter region, it is likely that transcriptional regulation of CHDH and IL17βR 

are similar. For example, transcription of these genes is enhanced by estrogen; an estrogen 

response element is  located within  the  shared  promoter  region  [280].  Aberrant  

expression  of  CHDH  and IL17βR has been associated with breast cancer survival 

prognosis [280, 281]. Ours is the first report linking the function of this chromosomal region 

to male sperm cell function. 

 

 
 

Our data suggest that rs12676 is the primary predictor of abnormal sperm 

mitochondrial morphology and ATP concentration, and this hypothesis is strengthened 

by the finding that CHDH protein abundance is decreased in hepatocytes from individuals 

who were homozygous for this variant. No changes in mitochondrial ultrastructure or ATP 



 

 95

level were detected in sperm from individuals who were CC for rs1205689, but not TT for 

rs12676 (Figure 3.6). Together, this evidence indicates that altered CHDH activity due to 

rs12676 genotype may be an underlying cause of iodiopathic male factor infertility in men. 

This is an especially  interesting  finding  because  deficits  in  CHDH  function  could 

potentially  be  overcome  by dietary supplementation with betaine. Indeed, sperm motility 

and ATP concentration were improved in Chdh-/- male mice that ingested betaine-

supplemented drinking water [46]. 
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Figure 3.1: Study design. On Day 1, all subjects gave informed consent, completed a 

health questionnaire form and blood samples were collected. Plasma was separated 

from other blood components and reserved for measures of choline metabolites. Genomic 

DNA was isolated from purified lymphocytes and used to genotype subjects for rs12676 and 

rs1025689 SNPs. Individuals with the genotypes of interest were invited to complete Day 2 

of the study which entailed leaving a semen sample for measures of semen characteristics, 

sperm motility, ATP concentration and mitochondrial morphology. 
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Figure 3.1: Study design. 
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Table 3.1: rs12676 and rs1025689 SNP distribution frequencies in the screened 

population. Allele distribution frequency was calculated as a percentage of the total screened 

population following genotyping by direct sequencing (rs12676) or TaqMan assay 

(rs1025689). N = 79. 
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Table 3.1: rs12676 and rs1025689 SNP distribution frequencies in the screened 
population. 
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Table 3.2: Semen parameters by rs12676 and rs1025689 genotype. Semen volume, total 

number of sperm per ejaculate and sperm concentration was determined by measuring 

the volume of the ejaculate before washing and counting the number of sperm using a 

hemocytometer. For rs12676 N = 19 (GG), 22 (GT) or 5 (TT). For rs1025689 N = 12 

(GG), 22 (GT), 11 (CC). Values are mean ± SEM. Statistical differences among groups were 

tested on log 10 transformed data using ANOVA and Tukey-Kramer HSD. * indicates P 

<0.05. 

 

 
†World Health Organization reference values for human semen characteristics, 
2010. 
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Table 3.2: Semen parameters by rs12676 and rs1025689 genotype 

 

                                                                                                                     rs12676                                                   rs1025689  

 
Parameter Normal Range† 

 
GG 

 
GT 

 
TT 

 
GG 

 
GC 

 
CC 

 
Semen volume (mL) 

 
0.8 – 7.0 

 
1.9 ± 0.3 

 
2.5 ± 0.4 

 
2.4 ± 0.8 

 
1.6 ±  2.2 

 
2.8 ±  0.4 

 
1.9 ±  0.3 

 
Total sperm per ejaculate (million sperm) 

 
11 – 772 

 
21.9 ± 6.9 

 
48.9 ± 16.7 

 
30.6 ± 24.5 

 
24.9 ±  8.8 

 
50.7 ±  15.9 

 
16.4 ±  11.3 

 
Sperm concentration (million sperm per mL) 

 
4 – 237 

 
9.7 ± 2.6 

 
22.0 ± 6.6 

 
11.2 ± 8.0 

 
14.4 ±  4.0 

 
20.9 ±  6.3 

 
6.7 ±  3.7* 
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Figure 3.2: Motility characteristics of sperm change with rs12676 genotype. Mean 

velocity (MVUS, A), curvilinear velocity (VCL, B), straight line velocity (VSL, C) and 

mean tortuosity (MT, D) were determined for sperm. Sperm were prepared and motility 

characteristics measured as described in the Methods section. N = 2756 (GG), 2553 

(GT), 827 (TT) sperm.  Statistical analyses were performed as described in the Methods 

section; refer to Table 3.3 for p-values. X-axis values indicate the upper limit of each 

quartile; the line at 25% represents values for sperm from GG subjects. 
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Figure 3.2: Motility characteristics of sperm change with rs12676 genotype 
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Figure 3.3: Motility characteristics change with rs1025689 genotype. Mean velocity 

(MVUS, A), curvilinear velocity (VCL, B), straight-line velocity (VSL, C) and mean 

tortuosity (MT, D) were determined for sperm. Sperm were prepared and motility 

characteristics measured as described in the Methods section. N = 1708 (GG), 2709 

(GC), 1719 (CC) sperm.  Statistical analyses were performed as described in the Methods 

section; refer to Table 3.3 for p-values. X-axis values indicate the upper limit of each 

quartile except for last label which indicates the lower limit of the fourth quartile; the line 

at 25% represents values for sperm from GG subjects. 
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Figure 3.3: Motility characteristics change with rs1025689 genotype 
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Table  3.3:  Significance  values  for  sperm  motility  analyses.  Statistical  analyses  

were conducted as described in the Methods section. N.S, not significant. 
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Table 3.3: Significance values for sperm motility analyses 
 

 

SNP 
 

Motility measure 
Overall 
p-value 

  

Specific comparison 
 

rs12676   GG vs. GT GG vs. TT GT vs. TT 
 MVUS 0.003 0.001 (GT > GG) 0.047 (TT > GG) N.S. 

 VCL 0.002 0.0006 (GT > GG) 0.02 (TT > GG) N.S. 

 VSL N.S. N.S. N.S. N.S. 

 MT <0.0001 0.0001 (GT > GG) 0.0009 (TT > GG) N.S. 

rs1025689   GG vs. GC GG vs. CC GC vs. CC 

 MVUS <0.0001 <0.0001 (GC > GG) <0.0001 (CC > GG) N.S. 

 VCL <0.0001 <0.0001 (GC > GG) <0.0001 (CC > GG) N.S 

 VSL <0.0001 <0.0001 (GC > GG) 0.005 (CC > GG) N.S 

 MT 0.02 N.S. 0.69 0.01 (CC > GC) 
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Table 3.4: Range of values for motility measures. Mean velocity, micrometers per second 

(MVU), curvilinear velocity, micrometers per second (VCL), straight line velocity, 

micrometers per second (VSL), mean tortuosity, VCL/VSL (MT).
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Table 3.4: Range of values for motility measures 
 

 

SNP 

 
Motility 
measure 

  

 
 

rs12676  GG GT TT 
 

MVUS 0 - 237 0 - 212 0 - 169 

 VCL 0 – 236 0 - 117 0 - 157 

 VSL 0 - 181 0 - 116 0 - 155 

 MT 0 – 746 0 – 1082 0 - 759 

rs1025689  GG GC CC 
 

MVUS 0 – 95 0 – 212 0 - 237 

 VCL 0 – 96 0 – 117 0 - 236 

 VSL 0 - 91 0 - 116 0 - 181 

 MT 0 - 746 0 - 1082 0 -1759 
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Figure 3.4: rs12676 TT genotype is associated with dysmorphic mitochondrial 

structure in  sperm.  Sperm  were  fixed  and  processed  for  transmission  electron  

microscopy  as described in the Methods section. Longitudinal and cross-sectional 

sections of sperm were examined   for   mitochondria   structure   anomalies.   

Representative   images   for   rs12676 genotypes (GG, panel A and D; GT, panel B and E; 

TT, panel C and F) are shown. N = 5 per genotype. Micrographs shown are at 80,000X 

magnification and arrows indicate mitochondria. 
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Figure 3.4: rs12676 genotype TT was associated with dysmorphic mitochondrial 
structure in sperm. 
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Figure 3.5: The rs12676 minor T allele is associated with decreased ATP 

concentrations in sperm. ATP concentrations were determined in sperm using a 

commercially available bioluminescent  assay  kit  and  ATP  concentration  was  

normalized  to  number  of  sperm assayed. A, Men who were heterozygous or 

homozygous for the rs12676 variant T allele have reduced ATP concentrations in their 

sperm. N = 17 (GG), 18 (GT) and 5 (TT). * indicates difference from GG by ANOVA and 

Tukey-Kramer HSD, p-value<0.05. B, ATP concentrations are not different with 

rs1025689 genotype. N = 10 (GG), 21 (GC) and 9 (CC). Data presented are mean ± SEM. 
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Figure 3.5: The rs12676 minor T allele is associated with decreased ATP 
concentrations in sperm. 
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Figure 3.6: Sperm mitochondrial morphology and ATP concentrations are not changed 

in samples from men who are homozygous for rs1025689, but not rs12676. A. 

Representative longitudinal section of sperm midpiece. B. Representative cross-sectional 

section  of  sperm  midpiece.  Arrows  indicate  mitochondria.  C.  ATP  concentrations  

as measured previously; “CC” group only contains data from men who are CC for 

rs1025689 and not TT for rs12676. Data presented are mean ± SEM. N = 9 (GG), 22 (GC) 

and 5 (CC). 
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Figure 3.6: Sperm mitochondrial morphology and ATP concentrations are not changed 

in samples from men who are homozygous for rs1025689, but not rs12676. 
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Figure 3.7: Expression of CHDH protein is decreased in primary hepatocytes from 

humans who are homozygous for the rs12676 SNP. The abundance of CHDH protein in 

hepatocyte lysates was measured by  blot and expressed as the number of pixels per µg of 

protein. Blots were probed for β-ACTIN and data presented are the mean ± SEM of the 

ratio of CHDH:β-ACTIN protein. Statistical differences were tested by ANOVA and 

Student’s t test. * indicates different from GG, p-value < 0.05. N = 3 per genotype. 
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Figure 3.7: Expression of CHDH protein is decreased in primary hepatocytes from 
 

humans who are homozygous for the rs12676 SNP 
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Table 3.4: Choline metabolite concentrations in plasma. Concentrations of choline and 

its metabolites were measured in plasma collected during the Day 1 clinic visit as described 

in Methods. For rs12676 N = 40 (GG), 30 (GT) and 6 (TT). For rs1025689 N = 15 (GG), 37 

(GC) and 24 (CC). Data are mean ± SEM. ANOVA and Tukey-Kramer HSD were used to 

detect statistical differences among groups. * indicates p<0.05. 
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Table 3.5: Choline metabolite concentrations in plasma 
 
 
 

 
 

rs12676  
 

GG 
 

GT 
 

TT 

 Betaine (nmol/L) 62.2 ± 2.5 65.1 ± 2.8 75.3 ± 6.4 
 Choline (nmol/L) 11 ± 0.4 10.5 ± 0.5 13.0 ± 1.0* 

 PtdCho (nmol/L) 

SM (nmol/L) 

1802.4 ± 60.1 

727.8 ± 26.0 

1938.9 ± 70.3 

780.0 ± 30.0 

1964.6 ± 157.2 

759.6 ± 67.2 

 

rs1025689  
 

GG 
 

GC 
 

CC 

 Betaine (nmol/L) 57.4 ± 4.0 66.0 ± 2.6 66.3 ± 3.2 
 Choline (nmol/L) 10.4 ± 0.7 18.9 ± 0.4 10.8 ± 0.6 

 PtdCho (nmol/L) 1872.3 ± 99.8 1924.6 ± 63.5 1781.5 ± 78.9 

 SM (nmol/L) 728.4 ± 42.8 766.4 ± 27.2 741.1 ± 33.8 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

CHAPTER IV 
 

 
 

 

SUMMARY AND FUTURE DIRECTIONS 
 
 
 

 

The data presented in this dissertation illustrate that normal sperm cell function, in 

both mice and men, relies, in part, on CHDH activity; however, the exact mechanism 

responsible for changes in sperm function accompanying decreased CHDH activity 

remains unknown. Because the altered sperm function observed is involved in many 

aspects of cellular function, it is likely to be the result of a complex array of cellular 

changes stemming from decreased CHDH activity, including shifts in cell membrane 

composition and epigenetic regulation of gene transcription. Further studies are necessary 

to understand CHDH activity and betaine support male fertility and suggested future 

research directions are presented below. 

 

 
 

Future research directions 
 
 
 

 

Finding the intersection between choline and carbohydrate metabolism: 

detailed characterization of energy producing pathways and substrate utilization in sperm 

 

 
 

In order to successfully migrate to and fertilize an egg, sperm cells must have a 

sufficient supply of ATP for use by dynenin motors responsible for bending of the 

sperm principal piece and, thus, motility of these cells (reviewed in [202]). As described 

earlier in this dissertation, there is some controversy as to the source of the ATP used for 
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this purpose. 

 

We found that Chdh-/- sperm have lower ATP concentration than sperm from 

Chdh+/+ males, but were surprised by this finding because HTF media contains glycolytic 

substrates and we are unaware of how deletion of CHDH could perturb glycolytic activity in 

cells. Glycolysis is necessary for normal motility in mouse sperm [191-193, 282, 283], 

while mitochondrial function may not be [195, 284]. 

 

 
 

Measurements of mitochondrial respiration (oxygen consumption rates, OCR) and 

glycolytic activity (extracellular acidification, ECAR) were made in Chdh+/+ and Chdh-/- 

sperm and the results are shown in Figure 4.1. As glycolysis continues any pyruvate that is 

not taken into mitochondria is converted to lactate; as it accumulates, lactate is extruded 

from the cells, thus acidifying the media. Deletion of Chdh results in a reduction of both 

OCR and ECAR in Chdh-/- sperm. As there are several possible explanations for this 

finding, a  series  of  studies  should  be  conducted  to  characterize  and  determine  the  

causes  of differences in mitochondrial respiration and glycolysis in Chdh-/- sperm. 

 

 
 

Assessment  of  mitochondrial  respiration  in  Chdh-/-    sperm  should  begin  

with measuring the relative abundance of electron transport chain proteins as well as the 

activity of each of the individual electron transport chain complexes. Functional deficits in 

the electron transport chain, not stemming from decreased protein abundance, can be pin-

pointed by  measuring  OCR  in  the  presence  of  electron  transport  chain  modulators  

such  as oligomycin, rotenone, antimycin A and carbonyl cyanide p-[trifluoromethoxy]-

phenyl- hydrazone (FCCP). 
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 Because ECAR is not a direct measure of glycolytic rate, the decreased activity 

of this  pathway  inferred  from  the  ECAR  data  should  be  confirmed  by  measuring  

the concentration of lactate in the HTF media in which Chdh+/+ and Chdh-/- sperm have been 

incubated.  As glycolysis proceeds in sperm, lactate formed by the conversion of pyruvate to 

lactate is extruded from the cells into the culture media. Certain glycolytic enzymes 

have been shown to be necessary for normal sperm motility in mice. They include, 

glyceraldehyde 3-phosphate dehydrogenase, spermatogenic (GAPDHS), phosphoglycerate 

kinase -2 (PGK- 2) and lactate dehydrogenase – c (LDH-c) [191, 192, 283]. The activity of 

each of these enzymes should be measured once it is determined that lactate production is 

decreased in the Chdh-/- sperm. In addition, expression of glucose transporters (Glut 8 and 

Glut 9) and uptake of 2-deoxyglucose should be compared in Chdh+/+  and Chdh-/-  sperm 

to determine if an impairment in glycolytic rate is due to decreased glucose transport into 

the Chdh-/- sperm. 

 

Epigenetic control of gene transcription may offer another means by which aberrant 

choline metabolism may affect sperm energy metabolism. For example, expression of genes 

that encode proteins necessary for oxidative phosphorylation, glucose uptake, and glycolysis 

may be altered by methylation patterns associated with these genes. Choline availability 

and, specifically, CHDH activity can influence the epigenetic status of a cell buy 

modulating betaine concentrations. Betaine availability can modulate AdoMet 

concentrations, which can modulate methylation patterns on genes [285-289]. During 

spermatogenesis, the process of epigenetic mark placement on DNA is dynamic. For 

example, Pgk-2, one of the glycolytic enzymes necessary for normal sperm motility, is 
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methylated at one specific restriction site in spermatogenic stem cells. That same site is 

unmethylated in spermatogia, spermatocytes and spermatids [290] suggesting the presence 

of a de-methylation mechanism. Interestingly, this site becomes re-methylated, and 

remains so, at some stage before sperm reach the corpus epididymis. The expression of 

many genes involved in sperm motility, including genes that code for structural proteins and 

enzymes required for ATP production, may be regulated by DNA  methylation  [192,  291-

297].  The  relationship  between  Chdh  genotype,  epigenetic status and gene expression 

should involve the following studies: 1.) quantification of the concentrations of AdoMet and 

AdoHcy in testis tissue to determine if deletion of Chdh corresponds to a decrease in 

AdoMet in this tissue; 2.) transcriptomic assessment in isolated spermatocytes, either by 

gene expression array or next generation high-throughput sequencing; 3.) determination of 

the methylation status of genes found to be differentially expressed between Chdh+/+ and 

Chdh-/- spermatocytes using methylation-specific polymerase chain reaction and 

pyrosequencing techniques. 

 
 
 

 

Chromatin  condensation  is  another  epigenetic  mechanism  by  which  gene 

transcription can be regulated. Gene transcription is silenced at the spermiogenesis stage 

largely due to extensive chromatin condensation that occurs as histones are replaced with 

highly b as i c  p r o t a m i n e s  ( reviewed i n  [ 184]).  Defects i n  c h r o m a t i n  

c o n d e n s a t i o n  a r e  associated with a failure to initiate progressively motility [298], 

poor semen quality [299], and negative outcomes with the use of assisted reproductive 

technology [300]. A fluorescence-based  assay  using  acridine  orange  can  be  used  to  

evaluate  the  degree  of chromosomal c o n d e n s a t i o n   in  Chdh+/+    and  Chdh-/-    
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sperm  [300].     In  a d d i t i o n , t h einappropriate presence of histone in mature sperm 

chromatin can be detected by staining with analine blue [301]. 

 

 Changes in testicular energy metabolism should also be investigated in the Chdh-

/- male mice. CHDH is expressed in testis and betaine concentrations in this tissue are 10 

times higher than concentrations found in liver [46]. In addition, inner mitochondrial 

membrane potential is increased in mitochondrial isolated form testis which, together, may 

indicate hyperpolarization of the mitochondria.  ATP  concentrations  are  not  decreased  

in  Chdh-/-
 testis;  however  measurements  comparing  Chdh+/+   and  Chdh-/-   testis  

metabolic  profiles indicate changes in carnitine and branched-chain amino acid 

metabolism as a result of Chdh deletion (Table 4.1). Characterization of these two 

pathways, including gene expression, protein abundance and enzymatic activities are a 

necessary starting point in determining the cause of these aberrations. 
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Figure 4.1: Oxygen consumption rates (OCR) and extracellular acidification rates 

(ECAR) in Chdh+/+ and Chdh-/- sperm. Sperm were released from the cauda 

epididymides from Chdh+/+ and Chdh-/- male mice into modified HFT media as previously 

described [46]. Modified HTF did not contain sodium bicarbonate, but did contain 1mM Sp-

5,6-dichloro-1- beta-D-  ribofuranosylbenzimidazole-3',5'-monophosphorothioate  (Sp-5,6-

DCl-cBiMPS),  a cell   permeable   cAMP   analog,   and   1mM   3-isobutyl-1-

methylxanthine   (IBMX),      a phosphodiesterase inhibitor. Together, these additives are a 

substitute for sodium bicarbonate in the HTF media. Sodium bicarbonate signaling increases 

cAMP levels in sperm which is a signal necessary for achieving capacitation.  4 million 

sperm were aliquoted into each well of a 24 well Seahorse Bioscience tissue culture plate. 

Modified HTF media was added so that the final volume in each well was 500µL. The 

Seahorse analyzer was calibrated and equilibrated according to manufacturer’s instructions. 

OCR and ECAR measurements were recorded over the course of ~ 100 minutes following 

a protocol of mixing for 2 minutes, waiting for 3 minutes and measuring for 4 minutes. N 

= 5 (Chdh+/+ ) and 3 (Chdh-/-); data are mean ± SEM for each genotype group. 
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Figure 4.1: Oxygen consumption rates (OCR) and extracellular acidification rates 
 

(ECAR) in Chdh+/+ and Chdh-/- sperm 
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Table 4.1: Relative changes in carnitine and branched-chain amino acid metabolites 

in Chdh+/+  and Chdh-/-  testis. Testis was collected from 5 week-old male Chdh-/- or 

wildtype littermate control animals. All animals were fed AIN76A purified diet containing 

1.1gm/kg choline (Dyets, Inc., Bethlehem, PA) chloride ad libitum and housed in a climate-

controlled facility with a 12-hour light:dark cycle. Animals were fasted for 4 hours, 

anesthetized with Isofluorane until they no longer responded to pain stimuli at which time 

the testes were dissected from the animal, immediately snap frozen and pulverized in 

liquid nitrogen. The relative abundance of testis metabolites was measured by liquid 

and gas chromatography mass spectrometry by Metabolon (Research Triangle Park, NC). 

Metabolon performed statistical analyses; data presented are a ratio of Chdh+/+ to Chdh-/-. 

N = 5 animals per genotype. Red indicates a relative increase and green a relative decrease 

in metabolite concentration. 
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Table 4.1: Relative changes in carnitine, creatine and branched-chain amino acid metabolites in Chdh+/+ and Chdh-/- testis. 
 

 
 

 

 
SUB PATHWAY 

 

 
BIOCHEMICAL NAME 

 
CHDH KO 
CHDH WT 

 
 
 
 
 
 
 
 

 
Valine, leucine and isoleucine metabolism 

3-methyl-2-oxovalerate 0.80 

alpha-hydroxyisocaproate 0.94 

isoleucine 1.00 

leucine 1.00 

N-acetylleucine 1.10 

valine 1.04 

2-hydroxyisobutyrate 0.99 

4-methyl-2-oxopentanoate 0.74 

alpha-hydroxyisovalerate 0.82 

isobutyrylcarnitine 0.36 

2-hydroxy-3-methylvalerate 0.89 

2-methylbutyroylcarnitine 0.40 

isovalerylcarnitine 0.24 

hydroxyisovaleroyl carnitine 0.17 

 
Creatine metabolism 

creatine 1.22 

creatinine 1.32 

 
Fatty acid metabolism (also BCAA metabolism) 

propionylcarnitine 0.38 

butyrylcarnitine 0.27 

Fatty acid metabolism valerylcarnitine 0.36 

 
 

 
Carnitine metabolism 

deoxycarnitine 3.27 

carnitine 0.35 

3-dehydrocarnitine 0.46 

acetylcarnitine 0.48 

hexanoylcarnitine 0.38 
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Determining the role of structural changes in sperm motility 
 

 
 

Dysmorphic mitochondrial structure is apparent in sperm from Chdh-/- mice and 

men who are homozygous for the rs12676 CHDH SNP. Whether this is a result of 

alterations in sperm development or a response to changes in the environment in which 

they develop and mature remains unknown. 

 

 
 

As discussed in the introduction section, sperm undergo extensive molecular 

changes as they move from the lumen of testis into the caput, and through the corpus and 

cauda epididymis. Sperm mature as they exchange and accumulate molecules found within 

the epididymal environment, for example organic osmolytes such as GPCho and carnitine 

[187]. Although there are no reports in the literature, we would expect – and have found 

(Table 4.2) betaine to be present, possibly due to its function as an organic osmolyte. The 

epididymal environment is relatively hyperosmotic (~340mmol/kg, [183]). In comparison, 

the osmolality of unliquified whole semen and of the fluid in the female reproductive tract 

is approximately 276 – 302mmol/kg ([274, 275]), suggesting that epididymal sperm 

experience an osmotic “challenge” within the male urethra [183]. An inability to regulate 

volume in response to the varied osmotic environments would render sperm susceptible to 

swelling which can impair motility [275]. 

 

 
 

The activity of some enzymes can be enhanced by osmotic stress. Phospholipase A2 

(PLA2) is one such enzyme [277, 278]. PLA2 catalyzes the hydrolysis of the fatty acid in 

the sn-2 position of PtdCho resulting in the release of the free fatty acid and formation of 

lysophosphatidylcholine (lysoPC) [302]. PLA2 is highly expressed in sperm [276]. There 
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are many isoforms of PLA2  that range in size from small secretory isoforms of 13-

18kDa to large, cytosolic forms that can be as large as 85kDa [303]. Secretory PLA2 

protein has been detected in bull, hamster and human sperm [304, 305]. Sperm 

phospholipids most often contain docosahexanoic acid (DHA, 22:6n3), docosapentanoic 

acid (DPA, 22:5n3) or arachidonic acid (AA, 20:4n6) in this position; therefore, increased 

PLA2 activity in response to osmotic stress should result in increased free DHA, DPA and 

AA and lysoPC - all of which can inhibit sperm motility [265, 302]. Although the 

mechanistic cause of this inhibition is unclear, it is presumed that poor motility results 

from changes in plasma membrane composition [270, 302, 306, 307]. It is possible that 

this is the mechanism by which Chdh deletion (and subsequent lack of betaine) causes 

diminished sperm motility. Chdh-/-  sperm have significantly decreased concentrations of 

PtdCho (Figure 4.2); an attempt was made at measuring PLA2 activity in epididymal 

homogenates and sperm, but the assay requires further optimization , and no data was 

collected to date. 
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Table 4.2: Choline metabolite concentrations in Chdh+/+ and Chdh-/- epididymis. 

Chdh+/+ and Chdh-/-  male mice, at least 10 weeks of age were anesthetized using 

Isofluorane until they no longer respond to a pain stimulus. Caput, corpus and cauda 

epididymides were collected; both whole epididymides were pooled together for each 

animal. Tissues were snap frozen in liquid nitrogen, sonicated for 1 minute and processed 

for choline metabolite measurements as described [226]. N = 6 (Chdh+/+ ) and 3 (Chdh-/-

). Data are presented as mean ± SEM. Student’s t test was used to test for statistical 

differences between genotypic groups. * indicate p-value > 0.05, ** indicate p-value > 

0.01.
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metabolite concentrations in Chdh+/+ and Chdh-/- epididymisis  
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Figure 4.2: PtdCho and GPCho concentrations in Chdh+/+  and Chdh-/-  sperm. 

Chdh+/+ and Chdh-/-  male mice, at least 10 weeks of age, were anesthetized using 

Isofluorane until they no longer responded to a pain stimulus. Sperm were released into 

HTF media from the cauda epididymis as described previously [46]. After a 2 hour 

incubation in HTF, 4 million sperm from each animal were pelleted in a 1.5mL 

microcentrifuge tube and processed for choline metabolite analysis as described previously 

[226]. N = 5 animals per genotype. Data are presented as mean ± SEM. Student’s t test was 

used to test for statistical differences between genotypic groups. ** indicate p-value > 0.01. 

Only metabolites in which there were significant changes are shown. 
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Figure 4.2: PtdCho and GPCho concentrations in Chdh+/+ and Chdh-/- sperm 
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Dietary betaine intervention study with human subjects 
 

 
 
 

Betaine administration to Chdh-/-  mice improves, but does not fully rescue the 

male infertility phenotype observed in these animals [46]. While the exact dose of betaine 

should be optimized in future experiments, this study provides compelling evidence 

that human male  factor  infertility  may  be  improved  either  by  increasing  dietary  

betaine  intake  or ingestion of betaine supplements. A cross-over study design would be 

appropriate for investigating whether increased betaine intake was associated with 

improvement in measures of sperm motility and morphology. The subject population 

would include a case cohort comprised of men suffering from idiopathic infertility and an 

equal number of age-matched controls. Typical choline and betaine intakes should be 

determined for each subject using food frequency questionnaires or 3 day food records. 

Baseline measurements of sperm concentration, motility, morphology and plasma choline 

metabolites would be made after which betaine supplementation would be initiated and 

continued for approximately 85 days (the human spermatogenic cycle takes 64 days). 

Periodic urine or blood samples would be collected throughout the treatment period to 

measure betaine concentrations and monitor compliance. At the end of the treatment period 

sperm concentration, motility, sperm morphology and choline metabolite measures would 

be repeated. The next phase would be a washout period of 85 days followed by a no-

treatment period of 85 days. Again, periodic urine or blood choline metabolite 

measurements will be analyzed to test for compliance (to ensure subjects are not taking 

betaine supplements) and measures of sperm concentration, motility, morphology and 

choline metabolite concentrations will be repeated. Statistical analyses of the data collected 

would be used to evaluate the effect of betaine supplementation on fertility characteristics. 
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Special consideration would have to be made in the study design regarding SNPs in the 

choline dehydrogenase gene. 

 

 

 

The effect of decreased CHDH activity on Sertoli cell function 
 
 
 Chdh mRNA has been detected in Sertoli cells, somatic cells that support 

spermatogenesis in a variety of ways [310]. Altered function of these cells could possibly 

have detrimental effects on the spermatogenic process and may account for some of the 

structural and biochemical changes observed in the Chdh-/- sperm or sperm produced by men 

who were homozygous variant for the rs12676 SNP. Further animal studies can differentiate 

the relative importance of decreased CHDH activity in Sertoli cells versus spermatogenic 

cells. A conditional Chdh knockout mouse could be generated and be used to selectively 

delete Chdh in Sertoli cells or spermatogenic germ cells. Alternatively, spermatogenic cells 

could be isolated from Chdh-/- males and transplanted into recipient Chdh+/+  males, and vice 

versa.



 

 

CHAPTER V 
 
 
 

 

SUPPLEMENTAL DATA AND EXPERIMENTS SUGGESTED 
BY COMMITTEE MEMBERS 

 

 
 

1. Expression of Chdh with mutation of the gene 
 

 
 
 

Purpose: To determine whether any Chdh mRNA is expressed in the Chdh-/- model 
system 

 

 
 
 

Methods: Chdh+/+ and Chdh-/- liver tissue was collected from animals that had been 

anesthetized using Isofluorane as described previously. Liver was snap frozen and then 

pulverized in liquid nitrogen. Total RNA was extracted using a Qiagen RNeasy kit 

(Valencia, CA) according to manufacturer’s instructions. RNA concentration and purity 

was determined using a Nanodrop 8000 spectrophotometer (Thermo Scientific, 

Wilmington, DE). RNA was reverse transcribed to cDNA using a High Capacity Reverse 

Transcription Kit (Applied Biosystems, Calsbad, CA). Relative expression levels of Chdh 

were determined by semi- quantitative real-time PCR using a Chdh-specific TaqMan 

gene expression assay (Applied Biosystems, Carlsbad, CA). Changes in relative 

expression of Chdh were calculated suing the ∆∆Ct method. See Figure 5.1 for results. 
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Figure 5.1: Chdh mRNA expression in Chdh+/+ and Chdh-/- liver. RNA was isolated 

from Chdh+/+  and Chdh-/-  liver tissues. Expression of Chdh was measured using a Chdh-

specific TaqMan gene expression assay and calculated by the ∆∆Ct method. Data are mean 

± SEM. N = 5 animals per group. *** indicates different from Chdh+/+ p – value <0.001 

by Student’s t test. 



 

139 
 

Figure 5.1: Chdh mRNA expression in Chdh+/+ and Chdh-/- liver 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

***  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Conclusions:  Removal  of  Chdh  gene  exons  1  through  3  results  in  decreased  
mRNA abundance of Chdh. 



 

140 
 

2. CHDH  mRNA  and  protein  expression  in  mouse  epididymis/  CHDH  

protein expression in sperm 

 

 
 

Purpose: To confirm that CHDH protein is expressed in epididymal tissue and mature 

sperm cells. 

 

 
 

Methods: 
 

 
 
 

Epididymis – 10 week old Chdh+/+ and Chdh-/- males were anesthetized using Isofluorane 

as described above. Epididymides were microdissected from other structures and snap 

frozen in liquid nitrogen. Epididymal tissue is difficult to homogenize; therefore, 

epididymides were homogenized in RLT buffer (from Qiagen RNA extraction kit) or RIPA 

buffer (for  blot) using a Bullet Blender and 0.5mm zirconium oxide beads (Next Advance, 

Averill Park, NY). Samples were homogenized on speed 9 for 3 minutes followed by 

speed 10 for 3 minutes; samples were cooled on ice between. 

 

 
 

For real-time PCR, total RNA was extracted using a Qiagen RNeasy kit 

(Valencia, CA) according to manufacturer’s instructions. RNA concentration and purity 

was determined using a Nanodrop 8000 spectrophotometer (Thermo Scientific, 

Wilmington, DE). RNA was reverse transcribed to cDNA using a High Capacity Reverse 

Transcription Kit (Applied Biosystems, Calsbad, CA). Relative expression levels of Chdh 

were determined by semi- quantitative real-time PCR using a Chdh-specific TaqMan 

gene expression assay (Applied Biosystems, Carlsbad, CA). 
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For  blotting, protein concentration was determined by BCA protein assy. 20µg of 

protein lysate were resolved by SDS-PAGE and transferred to nitrocellulose membrane. 

CHDH  blot was conducted as described in Methods, Chapter 3. 

 

 

 

Sperm  -  week  old  Chdh+/+   and  Chdh-/-   males  were  anesthetized  using  Isofluorane  as 

described previously. Sperm were released into HTF media, pelleted by centrifugation and 

washed twice with 1X PBS. Sperm pellets were lysed in a buffer of 2% w/v SDS, 0.375M 

Tris, pH 6.8, 10% sucrose [308]. Lysates were boiled at 100˚ C for 5 minutes and clarified 

by centrifugation at 16.1 x g for 10 minutes at 4˚ C. Protein concentration was determined 

by BCA protein assy. 20µg of protein lysate were resolved by SDS-PAGE and 

transferred to nitrocellulose membrane. CHDH  blot was conducted as described in 

Methods, Chapter 3. See Figure 5.2 for results. 
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Figure 5.2: Chdh mRNA and protein expression in epididymis, protein expression in 

sperm. RNA was isolated from Chdh+/+ and Chdh-/- epididymal tissue. Expression of 

Chdh was measured using a Chdh-specific TaqMan gene expression assay and 

calculated by the ∆∆Ct method. Data are mean ± SEM. N = 5 animals per group. *** 

indicates different from Chdh+/+ p – value <0.001 by Student’s t test. CHDH  blot of 

epididymal tissue and sperm cells. N = 3 per genotype. 
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Figure 5.2: Chdh mRNA and protein expression in epididymis, protein expression 
in sperm 

 

A. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

***  
 
 
 
 
 
 

 

B. 
 

 
 
 
 

 

Conclusions:  Chdh  mRNA  is  expressed  in  epididymis  and  protein  is  found  in  

both epididymis and mature sperm. 
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3. Localization of CHDH in sperm cells and testis tissue 
 
 
 

 

Purpose: The purpose of this study was to confirm that CHDH protein is localized to 

the midpiece of sperm cells and pachytene spermatocytes and Sertoli cells in the testis, as 

expected based on gene expression array data [137]. 

 

 
 

Methods: 
 

 
 
 

Sperm  –  Chdh+/+   and  Chdh-/-   males  were  anesthetized  using  Isofluorane.  Sperm  were 

released from the cauda epididymis into 1 X PBS, sperm concentration was determined and 

adjusted to 5 x 106  sperm per mL An aliquot of sperm were spread onto SuperFrost 

Plus slides (Fisher Scientific) and air dried for 15 minutes. Slides were fixed in freshly 

prepared 4% paraformaldehyde for 15 minutes, washed with PBS then permeabalized in 

0.2% Triton X-100 for 5 minutes. Autoflourescence was quenched by incubating the slides 

in 10mg/mL sodium borohydride at room temperature for 40 minutes. Slides were washed 

in PBS-T and blocked in 4% normal goat serum for 30 minutes at room temperature. Slides 

were incubated in a 1:500 dilution of anti-CHDH primary antibody (ProteinTech Group, 

Inc., Chicago, IL) in PBS-T overnight at 4˚ in a humid chamber. The next day slides were 

warmed to room temperature and washed in PBS-T. Goat anti-rabbit-Alex488 secondary 

antibody (Molecular Probes, Carlsbad, CA), diluted 1:2000 in PBT-T, was incubated with 

the slides for 1 hour. Slides were washed again and sperm were counter-stained with 4',6-

diamidino-2- phenylindole (DAPI), washed and coverslipped. Staining was examined 

using an Olympus BX61 microscope and Velocity imaging software available in the UNC 

Microscopy Services Core Facility. Sperm were examined with a 40X oil objective lens. 
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Testis – Testes were collected from Chdh+/+ and Chdh-/- males at least 10 weeks of age 

and were fixed overnight in Bouin’s fixative. Testes were embedded in paraffin and 5µm 

sections cut for immunohistochemistry. CHDH staining was performed by the UNC 

Laboratories for Reproductive Biology Core Facility using anti-CHDH primary antibody. 

Three primary antibody dilutions were tested for this staining protocol; however, a high 

degree of non- specific staining is observed and this protocol requires additional 

optimization. No results are presented. 
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Figure 5.3: CHDH Localization in mouse sperm. Chdh+/+ and Chdh-/- sperm were 

released from the cauda epididymis into 1X PBS and fixed onto Super Frost Plus glass 

slides. CHDH protein was detected as described above. A. Chdh+/+ sperm, DIC; B. 

Chdh+/+ sperm stained for CHDH (green) and DNA (blue). C. Chdh-/- sperm, DIC; D. 

Chdh-/- sperm stained for CHDH (not detected) and DNA (blue). Arrows indicate areas 

of positive staining in the sperm midpiece. 
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Figure 5.3: CHDH localization in mouse sperm 
 
 
 

 

 
 
 
 

 

Conclusion: CHDH protein is localized to the midpiece region and is detected in 
Chdh+/+ , but not Chdh-/-, sperm. 
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4. Testicular and epididymal choline metabolite concentrations with betaine 

supplementation 

 

 
 

Purpose: To determine the extent to which a 2% solution of betaine in drinking water 

increases betaine concentration in testis and epididymis in Chdh-/- males. 

 

 
 

Methods: Testis and epididymides were collected from animals at the end of the betaine 

feeding study described in Chapter 2. Choline metabolite concentrations were measured as 

described [226]. See Table 5.1 and Table 5.2 for results. 
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Table 5.1: Testis choline metabolite concentrations with and without betaine 

supplementation. Measures of choline metabolite concentrations in testis from un- 

supplemented Chdh-/- males and males who were supplemented with betaine in their 

drinking water were performed as described in Chapter 2.  For un-supplemented animals, 

N = 5 per genotype. For betaine-supplemented animals, N = 6 (Chdh+/+ , un-supplemented), 

3 (Chdh-/-, un-supplemented), 5 (Chdh+/+ , supplemented) and 3 (Chdh-/-, supplemented). 

Data presented are mean ± SEM. ND, not detected. Statistical differences were determined 

by ANOVA and Tukey-Kramer HSD. *p<0.05 different from Chdh+/+ (un-supplemented). 

†indicates different from un-supplemented group of the same genotype, p<0.05. ζ 

indicates different from un- supplemented of the opposite genotype, p<0.05. ∞ indicates 

different from Chdh+/+ , supplemented, p<0.05. Values are expressed in nmol/g tissue.
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Table 5.1: Testis choline metabolite concentrations with and without betaine supplementation 
 
 

 

 

 

 

 

 

 

 

 

 

 

Conclusions: Betaine concentrations are not detectable in Chdh-/- testis; betaine supplementation via drinking water increases 

betaine concentrations in Chdh-/-  testis, but is inadequate for completely restoring to Chdh+/+  levels. Choline 

concentrations tend to be increased in Chdh-/-  tissues, but differences do not reach statistical significance. There are no 

significant changes in GPCho, PCho,PtdCho or SM among genotype and treatment groups. 
 
 
 
 
 
 
 
 
 
 

  Betaine 

supplementation 

Betaine Choline GPCho PCho PtdCho SM 

Testis  No       

 Chdh+/+  3539±810 847±120 456±46 4840±537 14396±1313 1953±190 

 Chdh-/-  ND 1219±144 446±45 5342±292 15690±735 2033±96 

  Yes       

 Chdh+/+  4838±156 859±22 416±45 4493±131 14608±691 2049±65 

 Chdh-/-  642±31†ζ∞ 1202±136 573±59 5960±254 15686±600 2210±60 
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Table 5.2: Epididymal choline metabolite concentrations with and without betaine 

supplementation. Measures of choline metabolite concentrations in epididymides from un- 

supplemented Chdh-/- males and males who were supplemented with betaine in their 

drinking water were performed as described in Chapter 2.  For un-supplemented animals, 

N = 5 per genotype. For betaine-supplemented animals, N = 6 (Chdh+/+ , un-supplemented), 

3 (Chdh-/-, un-supplemented), 5 (Chdh+/+ , supplemented) and 3 (Chdh-/-, supplemented). Data 

presented are mean ± SEM. Statistical differences were determined by ANOVA and Tukey-

Kramer HSD. *p<0.05 different from Chdh+/+ (un-supplemented). † indicates different from 

un- supplemented group of the same genotype, p<0.05. ζ indicates different from un- 

supplemented  of  the  opposite  genotype,  p<0.05.  ∞  indicates  different  from  

Chdh+/+ , supplemented, p<0.05. 
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Table 5.2: Epididymal choline metabolite concentrations with and without betaine supplementation 
 

 
 
 

 
      

Conclusion: Chdh-/- epididymal tissue has less betaine than Chdh+/+ and supplementation of Chdh-/- animals with drinking water 

containing 2% betaine. Choline concentrations were increased in Chdh-/- epididymis, but differences did not reach statistical 

significance likely due to small numbers of individual samples in some groups. GPCho concentrations were increased in 

Chdh-/-epididymal tissue; there was no effect of betaine supplementation. No significant changes were detected in PCho, PtdCho 

or SM. 
 

  Betaine 

supplementation 

Betaine Choline GPCho PCho PtdCho SM 

Testis  No       

 Chdh+/+  2607±688 1442±188 20582±1389 952±60 14085±917 2256±105 

 Chdh-/-  1±2* 2235±287 32406±3584* 799±172 12234±2203 2525±168 

  Yes       

 Chdh+/+  4860±288† 1231±53 19106±140 1090±48 14111±36 2585±52 

 Chdh-/-  2655±186† 1930±160ζ 30474±1508ζ∞ 1161±60 13563±500 2531±64 
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5. Analysis of sperm ultrastructure by TEM in the caput, corpus and cauda 
epididymis 
 
 
 

 

Purpose: The purpose of this study was to determine if sperm mitochondrial structure 

becomes  abnormal  in  a  specific  region  of  the  epididymis,  or  if  these  structures  

are dysmorphic in sperm released from the testis. 

 

 
 

Methods: Epididymides were collected from Chdh+/+ and Chdh-/- male mice, all at least 

10 weeks of age, and cut into caput, corpus and cauda regions. The three regions from one 

epididymis were fixed for TEM as described in Chapter 2. The remaining segments from 

the second epididymis were snap frozen in liquid nitrogen for choline metabolite analysis. 

N = 6 per genotype. 

 

 
 

Results: No results have been obtained for this study to date.  
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6. Test fatty acid oxidation capacity in Chdh+/+ and Chdh-/- sperm 
 

 
 
 

Purpose: The purpose of this study was to determine whether sperm, in particular Chdh-

/-sperm, are capable of oxidizing fatty acid for ATP production. 

 

 

Methods: Chdh+/+ and Chdh-/- male mice were anesthetized using Isofluorane. The cauda 

epididymides were dissected from the males and placed into a dish containing modified 

HTF media as described on page 121. Sperm concentration was determined by counting 

cells with a hemocytometer and 4 million sperm were plated into a 24 well Seahorse 

Biosciences tissue culture plate in HTF. Measurements of OCR and ECAR were made at 

baseline and repeated following treatment with fatty acid-free bovine serum albumin - 

conjugated oleate. Final oleate concentration in each well was 200µM. See Figure 5.4 for 

results. 
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Figure 5.4: Oxygen consumption rates (OCR) and extracellular acidification rates 

(ECAR) in Chdh+/+ and Chdh-/- sperm treated with oleate. Sperm were released from 

the cauda epididymides from Chdh+/+ and Chdh-/- male mice into modified HFT media as 

previously described [46].  4 million sperm were aliquoted into each well of a 24 well 

Seahorse Bioscience tissue culture plate. Modified HTF media was added so that the 

final volume in each well was 500µL. The Seahorse analyzer was calibrated and 

equilibrated according to manufacturer’s instructions. OCR and ECAR measurements were 

recorded over the course of ~ 70 minutes following a protocol of mixing for 2 

minutes, waiting for 3 minutes and measuring for 4 minutes. N = 3 for each genotype; 

data are mean ± SEM for each genotype group. 



 

156 
 

Figure 5.4: Oxygen consumption rates (OCR) and extracellular acidification rates 
(ECAR) in Chdh+/+ and Chdh-/- sperm treated with oleate. 

 
 

 
 

Conclusion: Both OCR and ECAR are reduced in Chdh-/- sperm, as previously 

observed. 200µM oleate transiently decreased OCR and ECAR of Chdh+/+ and Chdh-/-  

sperm, suggesting that the oleate treatment might by somewhat toxic to the sperm. 

Notably, ECAR returned to baseline within 35 minutes after oleate treatment 

indicating that, even if the sperm were able to use oleate for energy production, mouse 

sperm have an obligate need for glycolysis. 
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