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ABSTRACT

OZGE SAVASCIN: Endogenously Clustered Factor Approach to Macroeconomics
(Under the direction of Neville R. Francis)

This dissertation constructs a novel factor approach to study the comovements of macro-

economic variables and introduces its two practical applications.

Factor models have become useful tools for studying international business cycles.

Block factor models can be especially useful as the zero restrictions on the loadings of some fac-

tors may provide some economic interpretation of the factors. These models, however, require

the econometrician to prede�ne the blocks, leading to potential misspeci�cation. In my coau-

thored paper, we propose an alternative model in which the blocks are chosen endogenously.

The model is estimated in a Bayesian framework using a hierarchical prior which allows series-

level covariates to in�uence and explain how the series are grouped. Using similar international

business cycle data as Kose, Otrok, and Whiteman (2005) we �nd our country clusters di¤er in

important ways to those identi�ed by geography alone. In particular, we �nd that similarities

in institutions �e.g., legal systems, language diversity �may be just as important as physical

proximity for analyzing business cycle comovements.

In another application, I use the endogenously clustered dynamic factor model to gain

a better understanding of commodity price comovements and their determinants. From a large

dataset of commodity prices I extract the fundamental sources behind the price dynamics and

�nd that commodity price comovements are mostly the result of sparse cluster factors that

represent correlations of distinct group of commodities. Endogenous clustering of these groups
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does not represent the standard narrow classi�cations (indexes) of commodity prices as de�ned

by statistical agencies (e.g. International Financial Statistics, Bureau of Labor Statistics).

Characterization analysis on these factors identi�es a wide range of macroeconomic variables

like crude oil prices, fertilizer prices, and the federal funds rate as possible sources of commodity

price comovements.
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CHAPTER 1

INTRODUCTION

In many aspects of science, natural grouping arises in many situations. An individual

who lives in a certain location, in a certain country and belongs to a certain social group

possesses characteristics distinct that come from that certain location, country and social group.

Living styles for an individual may be similar to those who belong to the same social group

even though they live in di¤erent locales. Likewise, di¤erent industries are a¤ected by their

nation�s policies as well as by the things speci�c to their particular market.

The world consists of countries with similar legal backgrounds, language or geography.

These aspects may present commonalities among economic measures such as gross domestic

product, consumption, and prices. These economic measures with similar dynamics can form

a cluster and may also have distinct properties compared to other groups of variables. In

particular, similar dynamics (or comovements) of economic variables can be due to something

general to the economy or due to something speci�c for some particular groups of variables.

Speci�cation of layers is the keystone in analyzing measures with these kinds of hierarchical

structures. In my dissertation, I develop a model for speci�cation of these layers or groups in

investigating the comovements of macroeconomic variables.

One of the well known approaches to study comovements of macroeconomic variables

that constitute a hierarchical structure is factor models. These models describe the variability of

observed variables in terms of fewer measures called factors. The advantage of factor models is

that the researcher could remain agnostic about the structure of the economy by treating these



underlying sources, measures or factors, as unknowns. Therefore one does not need any tight

assumptions or structural models to describe commonalities of variables. The drawback of basic

factor models is that they neglect additional sources of �uctuations that may be o¤ interest.

Foerster et al. (2011) point this out in their paper where they investigate cross sectional

industrial production data. They show that additional cross correlations of any kind could

contaminate the global factor, and if not taken into account can lead to overestimation of the

true nature and the contribution of common factors in explaining cross-product comovements.

A way to introduce these additional cross correlations is to form a block factor model as

it provides a straightforward framework that allows a number of less pervasive factors (depend-

ing on the question these factors could be de�ned as regional or sector-speci�c) that account

for possible correlations that are con�ned within particular groups of series. This technique

however requires the knowledge of these groupings prior to the analysis at hand. For example,

Kose Otrok and Whiteman (KOW, 2005) study international business cycles and de�ne regions

based on geographical con�guration. Their model basically assumes that European countries

form one group and their basic aggregates; gross domestic product, consumption and invest-

ment levels, move together due to a European factor. Likewise, all Latin American countries

form another and share a common cycle; Mexico, USA and Canada are grouped as the North

American cluster and are assumed to exhibit similar patterns, etc. On another paper, Kose

Otrok and Prasad (2008) rely on income distributions to de�ne the regions of a wider set of

country series.

At a less aggregated level, variables such as prices may comove based on common factors

or based on speci�c industry- or product-level factors. Industrial de�nitions are a natural way

to put micro level price data into clusters. In stock price literature for example, it is highly

common to place �rms into clusters according to their SIC codes (King, 1966), �rm sizes (Ng
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et al. (1992), Pindyck and Rotemberg (1993)), or simply according to industry a¢ liations

(Brooks and Del Negro, 2005). Statistical agencies also report subgroups of price indexes based

on industrial similarities. Consumer Price Index has food, beverages, energy and transportation

listed as major subgroups. Commodity prices are grouped similarly as well. The reason we

form indexes is to see what is going on within a market, and as argued by King (1966), a

good index would be the one that is highly correlated within some set of products. However,

some seemingly unrelated products can also be correlated (Pindyck Rotemberg, 1993). This

may cause the market indexes to be contaminated by the spillovers from other industries; hence,

they may no longer represent the general dynamics that are speci�c to that market. Given these

kind of intercorrelations among variables, the factor models that use straightforward industry

de�nitions to introduce industry speci�c factors may fall into potential misspeci�cation which

can alter their results signi�cantly.

Overall, there are many ways a researcher can specify countries into "regions" or prod-

ucts into "industries". The natural question to ask is how we can be so sure that the way we

group our data is the "best" in practice? Relying on the researcher to group the data is a tricky

issue as di¤erent researchers will invariably have di¤erent criteria when forming these groups.

One approach to avoid the researcher-biases with the group assignment would be to form every

possible group and then employ a model selection criterion to determine the best cluster com-

bination. However, with many time series this grid search procedure would be ine¢ cient and

possibly infeasible. The avenue in �nding a model that gives us a tool to select clusters has not

been taken within a factor framework. My dissertation attempts to �ll this gap.

This dissertation introduces a novel approach to modeling comovement of cross-sectional

economic variables and uses it to study International Business Cycles and commodity price dy-

namics. I model the key factors that cause distinct economic units to comove endogenously, in
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a purely data-driven way. Speci�cally, my approach to study synchronicity in economic vari-

ables refrains from imposing any prior belief on which groups of variables ought to comove and

instead allow the data to form its own ex-post groupings. If indeed countries are grouped by

continents than we should see those countries grouping together. Or if all food products share

the same industry source, then data is free to form its clusters that way. The structure of the

factor model is similar to the block factor models with the addition of a membership indicator

determining which block a series belongs to. I estimate this indicator parameter using Bayesian

techniques namely Metropolis Hastings within Gibbs sampling.

In my �rst paper, I study the synchronized dynamics of commodity prices. The past

decade has witnessed a substantial comovement of commodity prices with di¤erent character-

istics that raised several discussions and possible explanations in regards to what has been

deriving these synchronized commodity price movements. A single price increase of a commod-

ity would not be re�ective on the overall economy but if the commodities exhibit persistent

price increases all together, they can pass through to the core in�ation rate and create a need

for action by the monetary authorities.

In this paper, I aim to investigate how and why these commodity prices comove. The

literature has largely focused on the second question and neglected the �rst one (Calvo (2008),

Krugman (2008), Wolf (2008), Frankel (2008), Frankel and Rose (2009)). In order to know

why, we should know how they comove �rst. Therefore, I take a step back and attempt to

answer the �rst question using an endogenously clustered dynamic factor model that combines

a range of factors (one global and several cluster factors) in a systematic way while identifying

the group of commodities that are more likely to share cycles. After I extract the factors, I

also try to understand what they are by additional Bayesian linear estimations to answer the

question why commodity prices comove.
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From a large dataset of non-energy commodity prices, I extract the fundamental sources

behind the price dynamics and �nd that the commodity price comovements are mostly a result

of sparse cluster factors that represent correlations of some groups of commodities. In particular,

I �nd four main groups of products; "Timber", "Co¤ee", "Grains&Oils" and "Mixed". The

latter of these is a highly correlated cluster of commodities consisting of seemingly unrelated

products such as metals, agricultural materials and some food products. Additional analysis

to characterize these correlations indicate the importance of federal funds rate, world demand,

crude oil prices, and speculation in �nancial markets in deriving these common movements.

Vegetable oils and grain prices react to the oil and fertilizer prices while timber industry seems

to be signi�cantly a¤ected by the Chinese demand which could be related to the fact that

Chinese buyers turned to the U.S. and Canada for wood after 2007 since Russia imposed higher

tari¤s on its logs.

In my coauthored paper, we study international business cycles by examining their re-

lationships across countries. Characteristics such as industrial similarity, proximity, language,

trade and coordinated monetary policies can lead some countries�business cycles to be corre-

lated. Empirical models comparing business cycles generally take a block factor approach that

builds on the assumption that countries within a block have cycles which are correlated through

the block factor. As discussed previously, geographic proximity has been widely used to de�ne

county groupings. Perhaps sensible at a �rst glance, this is incomplete at best. For instance,

U.S. and Mexican economies may not be better candidates for synchronous cycles just because

they share a border.

In accord with the issues above, we develop a factor model and relax the assumption

that blocks known ex ante. We utilize a Bayesian framework with hierarchical prior that helps

us to incorporate possible macroeconomic measures which may in�uence how the series are
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grouped. We use measures to account for the legal and linguistic di¤erences among countries,

degree of openness, industrialization and trade. Using annual GDP data growth rates for

60 countries our �ndings suggest some evidence against the prevailing belief that geographic

proximity is a major determinant of cross-country comovements. We �nd that one cluster

represents a set of mostly industrialized nations (U.S., U.K., Australia, Canada, New Zealand,

Denmark, and India). Outside of Denmark, one might interpret this cluster�s comovement as

a re�ection of trade patterns perhaps spawned by commonalities attributable to being former

British Commonwealth countries. Other regional clusters estimated in this paper suggest some

geographic ties but there are still some countries that contradict this result. In particular, we

identify a cluster which includes much of Europe and Japan; and another cluster which includes

most of South America, Mexico, Norway, and Iceland. Our hierarchical prior covariate data

suggests that linguistic diversity and legal institutions signi�cantly determines these "regional"

clusters.

The next sections present the complete papers.
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CHAPTER 2

AN ENDOGENOUSLY CLUSTERED FACTOR APPROACH TO INTERNATIONAL
BUSINESS CYCLES

The nature of business cycles is an issue central to macroeconomics. One way to

better understand business cycles is to examine their relationships across countries, which has

prompted several studies to consider common movements in business cycles across countries.1

A related question asks what determines which countries share common movements in their

business cycles. In particular, we might ask whether some characteristics (e.g., industrial

similarity, proximity, language, trade) lead some countries�business cycles to be correlated.�

For example, Norrbin and Schlagenhauf (1996) estimated the role of industrial similarities in

international business cycles but �nd a limited role for industry-speci�c shocks in explaining

the forecast error variance of output across countries. Alternatively, coordinated (systematic)

policies may be the impetus behind any synchronicity in business cycles across countries. McK-

innon (1982) suggested coordinated monetary policies as a factor for synchronous cross-country

business cycles.2 Finally, correlation between macroeconomic aggregates across countries could

be due to unobservable innovations � e.g., common international shocks or country-speci�c

1The relationship between business cycles across countries is not restricted to simple correlation. For example,
Engle and Kozicki (1993) studied a number of common features across country pairs in the G7 and found common
serial correlation. Clark (1998) and Clark and Shin (2000) �nd that region-speci�c shocks are important sources
of comovement.

2This conclusion was reached after �nding data consistent with the substitutability of national monies. In
particular, McKinnon found that domestic money demand functions are unstable when no controls are made
for foreign exchange rates. Additionally, in an empirical test of the role of borders in the synchronization of
business cycles between US Census regions and across European countries Clark and Wincoop (2001) found
limited roles for both monetary and �scal policies.



shocks having spillover e¤ects. Using structural vector autoregressions, Ahmed, Ickes, Wang,

and Yoo (1993) conclude that spillovers from country-speci�c labor supply shock are more

important than common shocks in generating international business cycles.

Empirical models comparing business cycles across countries generally take one of two

approaches: (1) Country cycles are estimated separately and then compared or (2) Cycles are

estimated jointly with numerous assumptions made on the correlation structure. For the most

part, these approaches are motivated by the need to reduce complexity and potential parameter

proliferation. The former leaves the country combinations unrestricted (i.e., any two countries�

cycles can be correlated), while the latter explicitly excludes this. Which approach is taken can

depend both on the question to be answered and the econometric techniques used to compute

the cycle. For example, the �rst approach might de�ne a country�s cycle based on a Markov-

switching or a trend-cycle decomposition, methods typically reserved for smaller systems of

equations.3 The second approach might de�ne a common cycle via a factor model, where the

factor loadings re�ect the degree of correlation between country cycles [e.g., Bai (2003); Bai and

Ng (2002); Forni, Hallin, Lippi, and Reichlin (2000, 2005); and Stock and Watson (2002a,b)].

In a series of recent papers, Kose, Otrok, and Whiteman (2003, 2008; henceforth KOW)

propose a factor model with a block structure for the factor loadings.4 This block structure

provides a straightforward interpretation that may be lacking in standard factor models. Coun-

tries within a block have cycles which are correlated through a regional factor, while countries

in di¤erent blocks are correlated only through a (set of) global factor(s). The standard factor

model can emulate a block factor model if the loadings on the regional factors are close to

3Exceptions are Hamilton and Owyang (2009) and Kaufmann (2010) which use similar approaches to this paper
in a Markov-switching environment.

4See also Boivin and Ng (2006); Onatski (2007); and Hallin and Liska (2008).
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zero. Even in that case, however, the factors will produce some cross country correlation for

countries outside its block. The signi�cant advantage of the block factor model is that it allows

a larger number of less pervasive (regional) factors, only a few of which a¤ect any particular

country. Thus, correlations across small numbers of countries may be identi�ed in block factor

models but missed in standard factor models in which the correlation is swamped by the large

cross-section. The disadvantage of the block factor structure is that the blocks (or clusters) are

predetermined, meaning we must make signi�cant ex ante assumptions about which countries�

cycles are correlated.

In this paper, we take the block factor approach but relax the assumption that the

blocks are known ex ante. By being agnostic about block membership, we allow the data to

cluster based on both their business cycle features and on country-speci�c characteristics. For

example, countries could form groups based on their proximity, coordinated policies, and/or

structural innovations. In this sense, we are not a priori guided by any one particular theoretical

model. However, once the ex post country groupings are determined, potential commonalities

within groups could aid in determining important features that any successful model of the

international business cycle would need to possess. For example, if we �nd that common

language is a better determinant of cross-correlation than physical distance, models of trade

may consider language rather than geography as the determinant of iceberg costs.

The model has the block factor structure with an additional membership indicator

determining which block a country belongs to. We assume block membership is a multinomial

choice �i.e., a country cannot belong to more than one block. This multinomial approach to the

block structure lends itself to estimation with Bayesian methods.5 In the simplest execution of

5Our model has a similar �avor to the sparse factor model of Carvalho, Lopes, and Aguilar (2010).
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the multinomial approach, we can assume either a uniform or Dirichlet prior on the membership

indicator, giving the model the appearance of a clustering algorithm. For the uniform prior,

cluster membership depends solely on the business cycle characteristics of the country�s data as

compared to the other members of the cluster. For the Dirichlet prior, the size of the cluster

determines the ex ante probability a country is sorted to it. Another approach we explore

is the use of a multinomial logistic prior on cluster membership [see also Frühwirth-Schnatter

and Kaufmann (2008); Hamilton and Owyang (2009)]. The use of the logistic prior allows us

to incorporate country-speci�c characteristics (e.g., location, industrialization, trade patterns)

and enables us to test competing hypotheses about what in�uences which countries comove.

In Monte Carlo experiments with simulated data, we draw an obvious conclusion: em-

pirical results, their economic interpretation, and the degree of con�dence we place in them

depend greatly on the speci�cation of the block structure. For the case in which the clusters

are known (and correct), the standard block factor model performs well. However, we �nd

that small misspeci�cations of the block structure can lead to deviations from the true model

and reductions in �t.

Our empirical application extends KOW�s study of cross-country correlations. Using

annual GDP data growth rates for 60 countries, we �nd that, although some regional/geographic

correlation exists, there is also evidence against the prevailing belief that geographic proximity is

the major determinant of cross-country comovements. We �nd evidence of only three clusters.

The �rst consists of European countries excluding the U.K. and Denmark, along with Japan.

A second cluster is composed of the U.K. and its former British Commonwealth countries:

Australia, Canada, India, New Zealand, and the U.S., among others. A third cluster consists

of South American countries, Mexico, and a few other countries. We �nd that �as opposed

to physical distance � linguistic diversity and legal institutions are among the country-level
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determinants of this �regional� clustering. We also �nd that allowing the data to determine

the clustering leads to higher contribution of the cluster (or regional) factor to the overall

volatility of output.

The balance of the paper is as follows: Section presents the endogenous clustered

factor model. Section outlines the Bayesian techniques we use to estimate the model. In

this section, we focus on estimation of the model with a uniform prior on cluster membership.

Section presents some Monte Carlo evidence showing how well our algorithm identi�es the

clusters and the consequences of exogenously misidentifying them. Section extends the model

and the sampler with a multinomial logistic prior. Section presents results from the model

with international business cycle data. Section summarizes and concludes.

1.1 Empirical Model

Suppose that we are presented with a panel of N series, yn = [yn1; :::; ynT ], each of

length T . We are interested in movements common across the series; these movements can be

sorted into those which a¤ect all series and those which a¤ect only a few series. We will refer

to the former as global factors and we will refer to the latter as cluster factors. Suppose there

is but a single global factor and there are M clusters for which a series yn belongs to a single

cluster i.6 That is, at each period, ynt can be expressed as the sum of the global factor ft; a

single cluster factor Fit; an intercept �n0; and an error term, "nt:

ynt = �n0 + �nGft + �niFit + "nt; (1)

6 Increasing the number of global factors is straightforward. We discuss the choice of M below.
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i = 1; : : : ;M; t = 1; : : : ; T; n = 1; : : : ; N and M � N: Where �nG and �ni are the factor

loadings.

The restriction that each series can belong only to one cluster is equivalent to zero

restrictions on the factor loadings in a panel description of (1), giving it a block structure with

which the factors can be �identi�ed�as regions.7 If we believe that some shocks are global �

i.e., a¤ect all of the series of interest �but some remain con�ned to the region or sector from

which they originate, the model provides a framework with which we can perform regionally-

or industrially-di¤erentiated analysis [see Moench, Ng, and Potter (2009)]. In (1), we have

imposed that series n belongs to cluster i, meaning that it is in�uenced by the ith cluster

factor � in other words, a series�cluster is predetermined. But what if we are unsure which

series should move together? KOW impose that the countries on the same continent comove;

Moench, Ng, and Potter impose that sectoral data comove. While geographic proximity or

industrial similarity may be a reason for two countries comovement, other causes �e.g., trade,

demographics, level of industrialization �may also determine comovement. We, therefore,

augment (1) to allow the clusters to be determined endogenously.

In endogenous clustering, the data choose the groupings. We de�ne a cluster indicator,

ni = f0; 1g, which signi�es whether series n belongs to cluster i, retaining the restriction that

a series can belong only to a single cluster �i.e.,
PM

i ni = 1. Then, we have

ynt = �n0 + �nGft +
MX
i

ni�niFt + "nt: (2)

The model preserves the restrictions on the comovement of the series �series in di¤erent

7Exclusivity can be relaxed but would require modi�cations to the estimation algorithms presented below. These
issues have been explored in other papers [e.g., Frühwirth-Schnatter and Lopes (2009)].
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clusters comove only through the global factor, while series within the same cluster can comove

apart from the global factor. However, in contrast to (1), we can now estimate the membership

indicator, ni, thereby allowing the data to determine the composition of the clusters.

We allow the error terms, "nt, to be serially correlated, following an AR(p") process:

"nt =  n(L)"nt�1 + �nt;

where �nt � N
�
0; �2n

�
and E [�nt�mt] = 0 for all m 6= n. The diagonality of the variance-

covariance matrix implies that comovements between series not in the same cluster arise solely

from the global factor.

Series within the same cluster, on the other hand, can comove via the global factor or

the cluster factor. We assume that each factor (including the global factor) follows an AR(pF )

process of the form:

Fit = �i (L)Fit�1 + eit; (3)

where �i (L) is a polynomial in the lag operator and eit � N
�
0; !2i

�
, where we normalize !2i = 1

as is common in the literature.

1.2 Estimation

The endogenously clustered factor model outlined in the preceding section can be

estimated using Bayesian techniques [see Gelfand and Smith (1990); Casella and George (1992);

Carter and Kohn (1994)]. Bayesian methods allow us to estimate the cluster membership

parameter directly using a single reversible jump Metropolis-Hastings step in the Gibbs sampler.

In principle, one could estimate each cluster combination model using classical techniques and

13



determine the �nal cluster composition via some model selection criteria. However, this would

mean estimating and comparing a very large number of possible models. The optimal number of

clusters (and, thus, the number of factors) are obtained by computing the marginal likelihoods

for models with di¤erent numbers of clusters [see also Ghosh and Dunson (2008)].8

1.2.1 The Sampler

The sampler is an MCMC algorithm which draws from the conditional distributions

of each parameter block conditional on the previous draws from the remaining parameters.

The sequence of draws from the conditional distributions converges to the joint posterior. Let

Y represent the data, � represent the full set of model parameters, and F represent the

full set of factors. The model parameters and factors can be drawn in �ve blocks: (1) the

group membership indicators, , jointly with the intercept and the factor loadings, �, (2) the

innovation variances, �2; (3) the innovation autoregressive parameters,  ; (4) the factors, F;

(5) and the set of factor autoregressive parameters, �. After initializing the sampler, the

posterior distributions are computed with 10,000 iterations after 30,000 iterations discarded for

convergence.

1.2.1.1 The Prior

For each series, the prior for factor loadings is normal, �n = [�n0; �nG; �ni]
0 � N (b0;B0),

and the innovation variances are inverse gamma, ��2n � � (�0;�0). The factor and measure-

ment error AR parameters also have normal priors, � � N
�
v0;V

�1
0

�
and  � N

�
w0;W

�1
0

�
,

respectively. As a �rst pass, we assume the cluster membership over all clusters is uniform �

8Marginal likelihoods are computed via the subsampling procedures proposed in Chib (1995) and Chib and
Jeliazkov (2001). For more details, see the appendix.
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that is, a priori, a series is equally likely to belong to any cluster. In section , we modify the

sampler to incorporate country-speci�c characteristics into the cluster determination through

a logistic hierarchical prior. The factors are assumed to have unit innovation variances. The

hyperparameters for the prior distributions are given in Table 1. The draws of the variances

and both sets of autoregressive parameters are straightforward and included in the Appendix.

1.2.1.2 Preliminaries

Before discussing conditional distributions for each block, it will be useful to specify a

few key quantities. Let 
i represent the variance-covariance matrix of the stacked vector of

pF lags of the ith factor, which has elements given by

vec (
i) = (I� �i 
 �i)�1 vec
�
u0pF upF

�
;

where

�i =

2664 �0i

IpF�1 0pF�1�1

3775
is the companion matrix associated with the ith factor, and upF is a (pF � 1) vector with a 1

as the �rst element and zeros as the rest. De�ne Ci as the Cholesky factor of 
i,

�i =

266666666664

��ipF � � � ��i1 1 0 � � � 0

0 ��ipF � � � ��i1 1 0
...

...
. . . . . . . . . . . . . . .

...

0 � � � 0 ��ipF � � � ��i1 1

377777777775
;

and
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S�1i =

2664 C�1i 0

�i

3775 :
These quantities will be used to quasi-di¤erence the factors. Similar quantities can be

used to quasi-di¤erence the data. For example, we could produce the analogue of S�1i , call

it ��1n , for each series using the Cholesky factor of �n = (I�	i 
	i)
�1 vec

�
u0p"up"

�
and the

matrix �n formed with the AR parameters for the error terms. Then, we can use S�1i and ��1n

to quasi-di¤erence the data and the factors.

1.2.1.3 Generating ;�j��;�;F;Y

For e¢ ciency reasons, we draw �n and n jointly for each n. The joint draw of � and

 can be written as

q (��n; 
�
nj�;F) = q (�njn;�;Y;F)� (�nj�; �n;Y;F) ;

where we draw a candidate �n from q (�njn;�;Y;F) which may or may not depend on the

past (accepted) value of n. Then, conditional on the candidate 
�
n, we draw a candidate �

�
n

from its full conditional distribution � (�nj�; �n;Y;F). This joint pair is then accepted or

rejected.

Formally, letX�n = [1T ; f ; eF�n], where 1T is a (T � 1) vector of ones and eF = [F1; :::;FM ]
is the collection of cluster factors. Let X

�
n and Y

�
n represent the quasi-di¤erence of X

�
n and

Yn.9 Then, the candidate ��n is drawn from

9See Chib and Greenberg (1994) for the details concerning the quasi-di¤erencing procedure used here.
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�nj���n;n ; 
�
n;F;Y � N (b�n;B

�
n) ; (4)

where B�n =
�
B0 + �

�2
n X

�0
nX

�
n

��1
, b�n = B

�
n

�
B�10 b0 + �

�2
n X

�0
nY

�
n

�
.

Since we are drawing the �n�s from their full conditional densities �i.e., from � (��nj�n;���; ;F;Y),

the value of ��n does not appear in the acceptance probability.
10 In this case, for each n, ac-

ceptance probability is

An; = min

(
1;
jB�nj

1=2

jBnj1=2
exp

�
1
2b

�
nB

��1
n b�n

�
exp

�
1
2bnB

�1
n bn

� � (�n)
� (n)

q (nj�n)
q (�njn)

)
; (5)

where b�n and B
�
n are de�ned as above and bn and Bn are de�ned for n, the value held over

from the past draw.

To close this portion of the algorithm, we need to supply a proposal density for n.

We choose a symmetric density in which we draw a random element of n and set this equal

to one (setting all other elements equal to zero). The choice of the symmetric proposal makes

the last term in (5) identically one.11

1.2.1.4 Generating Fj�;Y

The set of factors are drawn recursively from the smoothed Kalman update densities

using the techniques as described in Kim and Nelson (1999). However, the sign of the factors

are not uniquely identi�ed from the loadings �e.g., switching the signs on both a factor and its

loading produces an observationally equivalent system. For identi�cation, KOW normalize the

10For a formal proof of this assertion, see Appendix 1 in Troughton and Godsill (1997).

11Troughton and Godsill (1997) point out that the  proposal density must allow some nonzero probability of
revisiting the same model. That is, the probability that the candidate � is equal to the last iteration�s 
must be nonzero. If � = , the acceptance probability is 1, but we still redraw �.
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sign of the �rst factor loading in each group. Unlike KOW, we cannot restrict the sign of the

�rst factor loading in each grouping as the clusters are not a priori known. We can, however,

impose a sign on the �rst element (period 1) of each factor to resolve the sign identi�cation

issue. In some cases, this is not su¢ cient to avoid label switching (i.e., cases in which the

sampler alternately draws F and �F ). Thus, we also impose a normalization which selects

either F or �F depending on which is closest to the previous draw in mean squared distance.

The draw of the factors is described in detail in the Appendix.

1.2.2 The E¤ect of Misspeci�cation

Allowing the data to determine the clusters rather than setting them in advance highlights

a tradeo¤ between the estimation uncertainty and potential misspeci�cation. One would,

therefore, want to evaluate the potential risks of each before proceeding with the di¢ cult task

of estimating the clusters. To this end, we perform a set of Monte Carlo (MC) experiments

designed to determine how badly the clusters need be misspeci�ed to outweigh the uncertainty

of estimating them. Our MC experiments give the best chance to pre-speci�cation by correctly

setting the number of clusters �that is, the only source of potential misspeci�cation is incorrectly

assigning a series n to the wrong cluster.

We conduct 1000 MC replications by sampling 60 series of T = 500 evenly divided

among 5 clusters. We begin by estimating the model with the (exogenous) correct cluster

de�nitions and gradually increase the level of misspeci�cation. We measure misspeci�cation by

the percentage of series exogenously allocated to the wrong cluster. Thus, 1:7%misspeci�cation

refers to one series allocated to the wrong cluster with all other series correctly speci�ed. This

format gives the exogenous model the best chance as incorrectly choosing the number of clusters

would lead to obviously large amounts of misspeci�cation. We then estimate the clusters
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endogenously and compute an entropy measure:

E =
NX
n=1

264log(�2n) +
�
Y
�
n �X

�
n�n

�0 �
Y
�
n �X

�
n�n

�
�2n

375
for each case. Higher entropy scores re�ect poorer performance with relative entropy related

to the familiar likelihood ratio statistic.12

Table 2 reports the results of the MC experiments. As expected, less misspeci�cation

is better than more misspeci�cation. Interestingly, knowing the truth (zero misspeci�cation)

is statistically equivalent to estimating the truth (endogenous clustering), with the di¤erences

in the entropy scores likely due to variations in the small sample performances. Thus, we

conclude that, in cases in which the truth is known, imposing the cluster composition is �rst

best. However, if the cluster composition is not certain, allowing the data to determine the

clusters reduces the risk of misspeci�cation. It is important to keep in mind that, in these

experiments, we know with certainty the true number of clusters. If the number of clusters is

unknown, the potential for misspeci�cation increases dramatically.

1.3 Incorporating Prior Beliefs of Cluster Membership

In the previous section, we assumed a �at prior over cluster membership. There

are cases, however, for which prior information could be useful in characterizing the clusters.

For example, similar industrial composition or geographic proximity could lead countries to

respond to the same common factor. In this section, we consider an alternative logistic prior

for the cluster membership indicator, ni. For this multinomial prior, we include additional

12The entropy measure is calculated for each Gibbs iteration and the mean over all iterations is reported. Each
MC replication is estimated with 40000 Gibbs iterations, with the �rst 30000 discarded for convergence.
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blocks consisting of the hyperparameters � and � and the latent vector �. As in Hamilton and

Owyang (2009), we can think of the prior hyperparameters as population parameters signifying

the clusters�relationships.

1.3.1 Adding a prior for cluster membership

Suppose there exists a vector, zni, of variables which may in�uence whether a series n

belongs to cluster i. We assess the probability that series n belongs to cluster i as

Pr [ni = 1jzni] =

8>><>>:
exp

�
z
0
ni�i

�
=
h
1 +

P
exp

�
z
0
ni�i

�i
i = 1; :::;M � 1

1=
h
1 +

P
exp

�
z
0
ni�i

�i
i =M

; (6)

for n = 1; :::; N and where we have normalized �M = 0 for identi�cation. In the multinomial

framework, series n cannot be a¢ liated with more than one idiosyncratic cluster. Note also that

the vector, zni, need not be composed of the same variables for each cluster i. The standard

approach to estimating the multinomial logistic is to augment the system in the spirit of Tanner

and Wong (1987) with a latent vector that has the characteristic that the nonnegative element

also re�ects the cluster to which series n belongs. Formally, let �i = (�1i; :::; �Ni)
0 denote a set

of latent vectors such that

�ni � 0 if ni = 1

�ni < 0 otherwise

: (7)

Each �ni can be thought of as a draw from a truncated logistic distribution. We follow

Holmes and Held (2006) by de�ning a new latent variable, �ni, that will allow us to sample the

hyperparameters of the priors along with the latent variables as additional Gibbs steps in the

algorithm above.
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Suppose that �ni has the limiting distribution of the Kolmogorov-Smirnov test statistic:

p (�ni) = 8
1X
j=1

(�1)j+1 j2�ni exp
�
�2j2�2ni

�
: (8)

If �ni � KS and oni � N (0; 1), then �ni = z
0
ni�i+2�nioni has a logistic distribution with mean

z
0
ni�i and unit scale parameter.

13 The cluster probabilities can be rewritten in terms of the

new latent variables:

Pr (�ni > 0) =
exp

�
z
0
ni�i

�
1 +

PM�1
j=1 exp

�
z
0
nj�j

� :

The following subsections demonstrate how to draw the hyperparameters governing the

cluster prior probabilities.

1.3.2 Augmenting the Sampler

The sampler outlined in Section can be augmented to account for the logistic prior

described above. Conditional on the ni�s, draws of most of the model parameters remain

unchanged. The change to the logistic prior does alter the acceptance probability in the joint

draw of ni and �ni to the probability de�ned by (6). The only other modi�cation is in the

form of two additional blocks sampling the three prior parameters: covariate e¤ects, �; the

logistic variances, �; and the vector of latent variables, �. Each of these blocks is drawn by

iterating (jointly) over the M � 1 unnormalized clusters.

13See Devroye (1986).
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1.3.2.1 Generating �j�; �;�;F;Y

Conditional on � and �, �i are the slope coe¢ cients from a standard Normal regression

model for each of the form:

�i = Zi�i + vi;

where Zi = [z1i; :::; zNi]
0, vi � N (0; � i), and � i = diag [�1i; :::; �Ni]. We assume a normal prior

for the logistic slope parameters, �i � N (di;Di). Thus, the covariate e¤ects can be drawn

from the posterior �ijY;�;F � N (d�i ;D
�
i ), where

d�i =
�
D�1
i + Z

0
i�
�1
i Zi

��1 �
D�1
i di + Z

0
i�
�1
i �i

�

and

D�
i =

�
D�1
i + Z0i�

�1
i Zi

��1
:

1.3.2.2 Generating � and �j�; �;F;Y

If we condition on �ni, then �ni would be Normal, �nij�i; �ni � N (mni; �ni), for the

i = 1; :::;M � 1 unnormalized clusters. The mean of the Normal distribution re�ects this

normalization:

mni = z
0
ni�i

Without that conditioning but given ni, �ni is a truncated logistic with mean mni. The

truncation point is at zero, where ni determines the direction of the truncation: �ni � 0 if

ni = 1 and �ni < 0 if ni = 0.

Then, to sample �ni, Holmes and Held (2006) suggest that we can draw a candidate b�ni
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from a Generalized Inverse Gaussian distribution. The candidate, �̂ni, is accepted or redrawn

based on the algorithm described by Holmes and Held (2006).

1.4 Empirical Application

As an empirical application, we reconsider the model proposed in KOW in which

geography is the sole determinant of cross-country comovements. We include in the hierarchical

prior sets of variables which have been suggested to a¤ect trade between countries. In doing

this, we can assess the sources of business cycle comovements.

1.4.1 Data

Our measure of business cycle activity is the annual constant-price chain-weighted real

GDP growth rate (computed as the di¤erence in the log of real GDP) taken from the 6.3 version

of the Penn World Tables [Heston, Summers, and Aten (2009)].14 To maintain comparison, we

choose the same 60 countries located in seven regional blocks from KOW.15

In addition to the real GDP data, the use of the logistic prior requires covariate data,

Zi. Our covariate dataset includes domestic and international variables as well as indices of

institutional di¤erences. We will focus on the di¤erences in legal and linguistic institutions.

We have a total of seven covariates that inform the logistic prior: (1) The degree of economic

openness, de�ned as the ratio of imports and exports to GDP; (2) Investment share of real

GDP; (3) An index of con�ict resolution and sophistication of the legal system as captured

14KOW�s business cycle data include other series in addition to real GDP, allowing them to estimate country
factors. We focus on the comovements across countries by restricting the model to a single business cycle
indicator. Extension to include country factors is left for future research.

15To increase number of annual observations, we use a later version of the PWT. Ponomareva and Katayama
(2010) discuss the hazards of comparing empirical studies across versions of the PWT. Table 15 in the data
appendix shows the 60 countries in the estimation along with the regional groupings imposed in KOW.
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by the manner in which lower courts facilitate landlords�collection of checks (and remedies for

bounced checks); (4) An index of language diversity within each country; (5) An index of

production dispersion relative to the rest of the world; (6) An index of export dispersion from

each country�s exporting partners; and (7) A similar index of import dispersion from each

country�s importing partners. The covariate data are summarized in Table 3.

Openness measures the size of trade as a fraction of GDP. This variable proxies the

extent of a country�s dependence on foreign economies and exposure to external shocks, with-

out controls for the types of goods traded or the identities of trading partners, allowing us to

determine whether countries cluster based on the (relative) extent of their (direct) exposures

to international shocks. Investment share of GDP is meant to capture the degree of indus-

trialization; similar levels of industrialization may make countries susceptible to similar shocks

inducing comovements.

The indices in (3) and (4) are included to test the extent to which institutions matter

for clustering. Our institutional variables are the level of formality of the civil-court system

and the degree of linguistic-diversity. Djankov et al. (2003) construct the lower court system�s

formalism index in (3) which "measures substantive and procedural statutory intervention in

judicial cases at lower-level civil trial courts [p.469]". We hypothesize that trade �ow between

countries with similar con�ict resolution processes in civil courts could be higher as individuals

may prefer to form relationships in countries with familiar legal set-ups.

The ethnolinguistic index in (4) is taken from La Porta et al. (1999) and measures the

degree of language diversity, the probability that two randomly selected individuals in a given

country speak di¤erent languages, are not speaking the o¢ cial language, or are not speaking

the most widely used language.

Finally, Baxter and Kouparitsas (2003) construct the indices in (5) - (7) to analyze
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how the composition of a country�s production and trade di¤er from the rest of the world and

its trading partners. These indices are akin to variance measures, with the exception that the

export and import dispersions are weighted by sectoral export and import shares. A look at

the trade dispersion indices, (6) and (7), reveals that they capture both the strengths of trading

relations with di¤erent countries and the strength in the diversity of goods traded.16 Baxter

and Kouparitsas �nd that industrialized nations have dispersions similar to the rest of the world

(the average country) for all three indices while developing countries systematically have higher

values of dispersions. On the trade side, this is consistent with the fact that the bulk of trade

of an industrialized nation is with other industrialized nations, while developing nations have

trade relations more evenly spread across developed and developing nations. By including

these indices, we are allowing for the possibility that countries cluster on the similarities in

their production structures (in terms of types of goods produced) and/or on the compositions

of their trade (both in terms of types of goods traded and the trading partners).

1.4.2 Results

We �rst determine the optimal number of country clusters which, for simplicity, we

compute with a �at hierarchical prior on cluster membership. This allows us to determine

the optimal number of clusters based solely on the business cycle properties of GDP. With

�at model priors, the Bayes factors are identically the posterior odds. Table 4 presents these

results. The model with the highest probability is the model with three clusters. Two and

six clusters have the next highest marginal likelihood; however either alternative require more

than 100 times higher prior likelihood to be preferred. The model with seven clusters �the

speci�cation which nests the one estimated by KOW �has one of the lowest likelihood of the

16We refer the reader to the data appendix for more details about the construction of these indices.
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alternatives tested.17

We now estimate the model using the logistic prior for the speci�cation with three

regional factors and one global factor. Figure 1 plots the median of the global factor along

with its 16th and 84th percentiles; the shaded areas show the NBER-de�ned recession dates

de�ned as a year in which any quarter was in recession. While the NBER recessions are de�ned

only for the U.S., they serve as reference points. The global factor roughly represents a global

cycle with most countries� factor loadings being negative. The global factor spikes around

1975, 1982, 1998, and 2001. With the exception of 1998, these periods are roughly associated

with U.S. NBER recessions.

Figure 2 shows the �rst cluster factor along with its 68 percent probability bands and

the NBER recessions. Figure 3 shows the posterior inclusion probabilities for this cluster. Dark

blue indicates countries which are very likely to be included in this cluster. Yellow indicates

countries which are very likely not associated with the cluster. Countries in white are not

included in our sample. Note, in particular, that this cluster does appear to demonstrate some

regional/geographic properties. The cluster includes, with high probability, Japan and many

of the countries in Europe. Some European countries �e.g., Iceland and Ireland �belong with

more than 50 percent probability. Brazil, Thailand, and Pakistan also belong with more than

50 percent probability. Not all of the European countries, however, appear to belong to this

cluster. In particular, the U.K. and Denmark are excluded.

Figure 4 shows the second cluster factor. This factor clearly appears to decline around

NBER recessions. Figure 5 shows why. The U.S. belongs to this cluster with probability 1;

the cluster also includes Australia, Canada, Hong Kong, India, Malaysia New Zealand, and the

17 In this case, the algorithm chooses nearly empty clusters at some Gibbs iterations, suggesting that seven
clusters far exceeds the optimal number.
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U.K. with very high posterior probability. Also included in this cluster are Denmark and many

of the sub-Saharan African countries including South Africa.

Figure 6 shows the �nal factor and Figure 7 shows the composition of its cluster. Again,

the cluster displays some regional/geographic characteristics with some notable exceptions.

The cluster includes with high probabilities most of the countries in South America, with the

exception of Brazil. Mexico, the Philippines, and a few African countries also belong with high

probability.

As opposed to a purely continental approach such as KOW, our results suggest that a

country like Mexico is much more likely to belong have similar cycles to its common language

South American neighbors than its more geographically proximate neighbor, the U.S. These

results suggest that common culture �either through linguistic or legal similarities �matter

more for cyclical commonality than iceberg costs usually associated with geographic proximity.

Table 5 shows the posterior means for the logistic covariates along with the 16th and 84th

percentiles of the posterior distributions. The level of industrialization proxied by the country�s

investment share of GDP is important in determining the clusters. Also, similarities in the

countries� legal systems and in their linguistic diversity also appear relevant. This view is

consistent with the notion that trade �ows �and, therefore, business cycle comovements �are

more likely across countries with similar institutions.

One measure that can jointly capture the importance of both the factor and its loading

can be obtained through a variance decomposition. Table 6 shows the percentage of each

country�s output volatility attributable to the global and regional factors and the idiosyncratic

shock. While the results are, again, not directly comparable to KOW, there are a number

of qualitative similarities and di¤erences that highlight the e¤ect of estimating the clusters.

KOW �nd that, in general, the global factor explains a greater portion of the volatility in the
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more industrialized countries. Moreover, they conclude that the regional factors explain only

a very small portion of macroeconomic �uctuations (about 3.6 percent on average of the 60

countries�output �uctuations). Our results suggest that there exists a much larger role for

the �regional�factor if region is estimated by the countries�cyclical commonality. In fact, our

cluster factors explain an average of 22.5 percent of the countries�output �uctuations.

There are a few reasons this di¤erence may not be surprising. First, KOW�s regional

factors are de�ned as the common component for three series for each country. The inclusion

of the additional two macroeconomic series could potentially contaminate their regional factor�s

ability to explain output �uctuations. Second, imposing rather than estimating the regions

may lead to the same misspeci�cation discussed in the Monte Carlo experiments above. When

countries are included in a region with countries which it does not actually share a common

factor, the factor and the associated loadings may be biased.

Indeed, when the model is estimated with only output with KOW cluster de�nitions,

the di¤erence between the average variances explained by the regional factors in the two models

is not as large, about 1.2 percentage points. The variance explained by the global factor in the

exogenous model is about 4 percentage points lower. The largest di¤erence, however, comes

from the countries in the former British Commonwealth. In the purely geographic model

which would place these countries in three separate regions, the regional factor would explain

36 percent of the variation in output for these countries (Australia, Canada, New Zealand,

the U.K., and the U.S.). In the endogenous model which groups them together, the regional

factor explains 57 percent of their output variation. This increase in explanatory is important,

especially given that these countries account for a substantial share of the total output of the

60 countries in the sample.
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1.5 Conclusions

A great deal of research has been done on measuring the comovement of business cycle

variables across countries. Limited by the potential proliferation of the estimated parameters,

these empirical models typically (1) compare business cycles which are estimated country-by-

country; (2) use models of relatively few countries (e.g., bilateral analyses); and/or (3) impose

the structure of the correlations ex ante. One application of the latter, KOW, estimates a

factor model in which the correlation structure across countries is assumed to be determined

by geographic proximity � that is, countries which share a continent also share a common

unobserved factor.

In this paper, we allow the data to determine which countries share common factors.

Our model allows for a number of possible alternative country characteristics which can a¤ect

how countries are grouped. In Monte Carlo experiments, we show that misspecifying the regions

can have consequences on the �t of the model. In the data, we �nd evidence that common

geographic region is a component but not the only determinant of the country groupings.

These results, then, verify some of the underlying reasoning behind KOW�s selection of shared

continent as the basis of de�ning a region. However, while there do appear to be some localized

comovements (e.g., South America, and Europe), these comovements stretch beyond what would

be narrowly considered geographic regions and exclude some countries which would ordinarily

be associated by continent. In particular, continental Europe appears to share a common

cyclical component with Japan but not with the U.K. and the bulk of South America appears

to share a cycle with Mexico but less so with Brazil. One cluster consisting of the U.S., U.K.,

and some other former British Commonwealth countries belies geography or proximity as the

driving force behind the cyclical commonality and suggests other fundamental forces linking

the countries.

29



1.6 Tables and Figures

Priors for Estimation - I

Parameter Prior Distribution Hyperparameters
�n N (b0;B0) b0 = 0� I3 ; B0 = I3 8n
��2n �

�
�0
2 ;

�0
2

�
�0 = 6 ; �0 = 0:1 8n

n U (�0) or Logistic �0 =
1
M 8n

� N (v0;V0) v0 = 0pF ;V0 =
1
2IpF 8i

 N (w0;W0) w0 = 0p" ;W0 =
1
2Ip" 8n

�i N (d0;D0) d0 = 0� I7 ; D0 = 2� I7

Table 1: Priors for Estimation - I. Notes: n denotes the series. i indicates the cluster, where
M is the total number of cluster factors. p�s are the maximum number of lags in the error and
factor lag polynomials.

Cluster Misspeci�cation

60% 40% 20% 6:7% 5% 3:4% 1:7% None Endo

Entropy 3372.2 3339.4 3302.7 3299.76 3295.30 3291.49 3289.98 3288.80 3287.45

Table 2: Cluster Misspeci�cation. Notes: The table reports the median for 1000 Monte Carlo
replications with sample size of 50 periods. Unless otherwise speci�ed, each sample contains 60
series, 5 cluster factors, and 1 global factor. The panel compares the results from the endogenous
cluster algorithm to the exogenous cluster algorithm for di¤erent degrees of missepci�cation.
The column headers indicate the percent of the series in the exogenous clusters are misallocated.
�None�speci�es the exogenously clustered model with known clusters. 1 misallocated series out
of 60 equates to 1.66 percent misspeci�cation, etc.

Covariate Data

Purpose Variable Mnemonic
Trade Openness OPEN
Industrialization Investment Share of GDP KI
Formalism Index Collection of Bounced Checks CHECK
Linguistic Diversity within a Country Ethnolinguistic Fraction LIN
Production Dispersion Production Dispersion versus World ProDisp

Export Dispersion versus Export Partners ExDisp
Import Dispersion versus Import Partners ImDisp

Table 3: Covariate Data.
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Model Choice

ln f (Yj��) ln� (��) ln b� (��jY) ln bm (Y) Odds
f = 2 -6772 -2173 211 -9157 -58
f = 3 -6746 -2193 159 -9099 0
f = 4 -6893 -2206 114 -9214 -115
f = 5 -6999 -2221 91 -9312 -213
f = 6 -6879 -2229 12 -9121 -22
f = 7 -7008 -2236 55 -9301 -202

Table 4: Model Choice. Notes: The table shows the log marginal likelihood for model with
various numbers of clusters estimated with the empirical data. The third column shows the
di¤erence in the log marginal likelihoods between the best model and each other model. The
last column shows how much more likely the best model is compared to each other model.

Logistic Coe¢ cients

Variable Cluster 2 Cluster 3

OPEN -0.19 0.46
(-0.77 0.39) (-0.11 1.01)

KI -0.49 -1.21
(-1.12 0.14) (-1.82 -0.54)

CHECK -1.86 2.47
(-2.47 -1.24) (1.82 3.09)

LIN 0.99 -0.89
(0.29 1.71) (-1.48 -0.31)

ProDisp -1.61 -1.24
(-2.89 -0.34) (-2.48 -0.03)

ExDisp -1.47 -0.93
(-2.82 -0.16) (-2.26 0.41)

ImDisp -1.90 -1.42
(-3.21 -0.61) (-2.76 -0.07)

Table 5: Logistic Coe¢ cients. Notes: Posterior means are reported for each of the covariate
variable in clusters 2 and 3. The �rst cluster (cluster 1) covariate coe¢ ents are normalized
to zero. Values in bold indicate coe¢ cients for which zero is not within the 68-percent cov-
erage interval. The numbers in parentheses are the 16th and 84th percentiles of the posterior
distributions.
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Variance Decompositions - Posterior Means

Country Global Cluster Idio. Country Global Cluster Idio.
Argentina 0.1 21.7 78.2 Japan 22 8.9 69.1
Australia 6.5 49.7 43.8 Kenya 0 4.4 95.6
Austria 21.4 49.2 29.3 Korea 60.3 0.9 38.7

Bangladesh 0.6 0.1 99.3 Luxemburg 7.9 36.9 55.2
Belgium 21.6 66.2 12.2 Malaysia 72.3 0.7 27
Bolivia 3.1 19.5 77.4 Mexico 7.1 19 73.8
Brazil 5 24.8 70.3 Morocco 0 0.2 99.8

Cameroon 7.4 3.7 88.9 Netherlands 12.4 44.3 43.3
Canada 6.5 77.9 15.6 New Zealand 0.9 25.2 73.9
Chile 20.6 11.8 67.6 Norway 3.9 21.8 74.2

Colombia 22.2 27.3 50.5 Pakistan 0.2 11.6 88.2
Costa Rica 0.9 28 71.2 Panama 3.9 9.3 86.8
Ivory Coast 0.7 2.5 96.8 Paraguay 0 7.8 92.2
Denmark 9.6 33.4 57 Peru 0.6 16.5 82.9

Dom. Republic 4.7 10.2 85.1 Philippines 11.9 15 73.1
Ecuador 1.1 25.5 73.5 Portugal 23.8 34.3 42
El Salvador 0.6 23.1 76.3 Senegal 15.7 0.1 84.2
Finland 5.5 40.8 53.7 Singapore 55.1 0.3 44.5
France 12.5 73.2 14.3 South Africa 1 0.1 98.9
Germany 31.9 16.7 51.4 Spain 0.7 22.1 77.2
Greece 14 18.5 67.5 Sri Lanka 5.2 16.9 77.9

Guatemala 30.9 18.1 51 Sweden 8.6 59.6 31.8
Honduras 0.5 19.3 80.2 Switzerland 4.8 69.9 25.3
Hong Kong 36.4 7 56.5 Thailand 57 3.9 39.2
Iceland 0 14.1 85.9 Trinidad & Tobago 10.2 5.7 84.1
India 1.5 7.1 91.4 United Kingdom 14.5 52.5 32.9

Indonesia 58.8 0.3 40.9 United States 24.6 64.3 11.1
Ireland 21.8 14.6 63.6 Uruguay 2.3 18.6 79.1
Italy 22.6 53.4 24 Venezuela 0.4 21 78.5

Jamaica 2.5 0 97.5 Zimbabwe 0 0.6 99.4

Table 6: Variance Decompositions - Posterior Means. Notes: The table summarizes the variance
decompositions in percentages. Each row shows the variation in GDP growth that is attributable
to the global, cluster and idiosyncratic factors. In calculation of the variance share of clusters,
members are assumed to belong to a cluster if they pick the said cluster majority of the Gibbs
run. In other words, the modal values for the indicator function is used to determine which
cluster a country is in, then the variance attributable to that speci�ed cluster is calculated.
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Figure 1: Global Factor. Notes: The red solid line is the median of the posterior distribution
of the global factor. Dashed lines represent the 16th and 84th percentiles. Shaded regions are
annual NBER recessions, where a recession is de�ned as a year in which any quarter was in
recession according to the Business Cycle Dating Committee turning points.
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Figure 2: Cluster 1 Factor. Notes: The red solid line is the median of the posterior distribution
of Cluster 1�s factor. Dashed lines represent the 16th and 84th percentiles. Shaded regions are
annual NBER recessions, where a recession is de�ned as a year in which any quarter was in
recession according to the Business Cycle Dating Committee turning points.

Figure 3: Cluster 1 Composition. Notes: The map shows the posterior probabilities of countries
included in Cluster 1. Countries in white are omitted from the sample.
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Figure 4: Cluster 2 Factor. Notes: The red solid line is the median of the posterior distribution
of Cluster 2�s factor. Dashed lines represent the 16th and 84th percentiles. Shaded regions are
annual NBER recessions, where a recession is de�ned as a year in which any quarter was in
recession according to the Business Cycle Dating.

Figure 5: Cluster 2 Composition. Notes: The map shows the posterior probabilities of countries
included in Cluster 2. Countries in white are omitted from the sample.
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Figure 6: Cluster 3 Factor. Notes: The red solid line is the median of the posterior distribution
of Cluster 3�s factor. Dashed lines represent the 16th and 84th percentiles. Shaded regions are
annual NBER recessions, where a recession is de�ned as a year in which any quarter was in
recession according to the Business Cycle Dating Committee turning points.

Figure 7: Cluster 3 Composition. Notes: The map shows the posterior probabilities of countries
included in Cluster 3. Countries in white are omitted from the sample.
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CHAPTER 3

THE DYNAMICS OF COMMODITY PRICES: A CLUSTERING APPROACH

In recent years the world has witnessed a commodity boom that has raised several

questions and various explanations about the characteristics of commodity prices. Prices of

grains such as corn, soybeans, wheat, and rice more than doubled during the 2006� 2008 peak

period. Crude oil prices reached $147 per barrel in July 2008 almost �ve times higher than

what it was in 2003: The surge in prices created worldwide concern over energy costs and food

security. The economic and social aspects of these price increases have led many researchers

to speculate about the fundamentals of commodity prices. Commonly suggested determinants

have been easy monetary policies, the devaluation of the dollar, excess liquidity, speculation in

commodity markets, and high world demand.

The debates about what drives commodity price comovements had just commenced

when the world was hit by the recent global downturn. With a sudden reversal around summer

2008, the soaring energy and food prices fell back to their 2006 values, signaling for a moment

that this sudden price upsurge was nothing but a short-run phenomenon. But not long after,

a second wave of rapidly increasing commodity prices came about. Beginning in May 2009,

another surge in commodity prices is under way, reminding us what Frankel and Rose (2009)

had pointed out: �...it cannot be a coincidence that almost all commodity prices rose together

during much of the past decade...�

A rise in price of a single commodity would usually re�ect something speci�c to that

commodity and would not be informative about the overall economy. However, the synchronized



movements of several commodities have di¤erent implications that a researcher should care

about. These kinds of simultaneous movements could a¤ect headline and core in�ation of

open economies or create concerns about food security for developing countries. Assume policy

makers know which particular group of commodities share cycles and exhibit synchronized

in�ation and are also aware of the type of factors behind these dynamics. This would give them

informational advantage in terms of which variables to carefully watch. If, say, oil prices, world

demand, and interest rates are responsible for the upsurge in most of the commodity prices;

then during expansionary periods when oil prices are trending up, contractionary monetary

policy could dampen the price surge and prevent likely spillovers to core in�ation.

The synchronicity of commodity prices is not new in macroeconomics. In a seminal

paper, Pindyck and Rotemberg (1990) argue that there is �excess comovement�of seemingly

unrelated commodities that cannot be explained by macroeconomic determinants such as in-

terest rates or oil prices. They conclude that it is actually the herding behavior of market

participants that causes the comovement in prices. Excessive or not, the consensus is that

commodity prices do comove, whether it is through common macroeconomic fundamentals or

through complementarity or substitutability in production and consumption or through a set

of possible factors.

Most of the existing empirical work takes for granted that all commodity prices (or at

least the ones de�ned under speci�c categories such as food and metals) move together (Ba¤es

(2009), Hockman et al. (2010), Lombardi et al. (2010)). However, none consider how likely

some group of commodities comove. If there are multiple factors driving primary commodities,

di¤erent groups of commodities will share cycles due to di¤erent sources. We need to �rst

identify the comovements of the commodities before we begin to talk about the determinants.

In light of above arguments, this paper addresses several questions. Which groups of
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commodities are likely to share cycles? Is there a common source behind the price comovements

or are there multiple forces a¤ecting di¤erent groups of commodities? How important are these

possible factors or determinants behind the price dynamics and can we characterize them? To

answer these questions we need to systematically decipher the correlation structure into its

determinants, preferably with an empirical model suited for such an analysis.

The empirical model selection is important when it comes to analyzing the interrelations

of many macroeconomic variables. Bernanke et al. (2005) suggest that VAR techniques su¤er

from a degrees of freedom problem, which puts restrictions on the number of variables that

can be included in the system. They further emphasize the importance of dynamic factor

models that can summarize the information from a large number of time series by a small set

of indexes, or factors.18 They propose a Factor Augmented VAR model to understand the

common dynamics of many variables. In particular they apply a two-step approach: they �rst

uncover the common space spanned by the factors of the data and then run a VAR of these

estimated factors on possible determinants as a second step.

Likewise, in this paper I use a dynamic factor model to extract information from all the

available non-energy commodity prices. I recognize that some comovements may not be simply

due to a global factor like world demand but may also be a result of more sector-speci�c factors

like droughts, �oods or biofuel production that a¤ect only smaller groups of commodities.19

Novel to the paper is the use of an endogenous clustering procedure on a large data set of

primary commodities to study these price dynamics. This approach was �rst introduced by

18Using dynamic factor models also provides advantages compared with the simpler cross correlation analysis
that has been selected as a tool to investigate synchronous cycles.

19The estimation procedure applied in this paper requires that the determinants of the factors should be outside
of the sample when conducting the factor model. Therefore, I focus only on non-energy products and use the
crude oil prices in the ex-post analysis to determine their e¤ects on the model factors and look for the validity
of the claims made in the studies that list oil prices as the fundamental source of the price correlations.
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Francis, Owyang, and Savascin (hereafter FOS, 2012) to study international business cycles.20

Such an approach allows the data to freely choose from a set of possible unobservable factors

and de�ne their own groups. The empirical model will allow commodities to share similar cycles

beyond that driven by a common global factor �an avenue overlooked by the literature. In

particular, the empirical model includes a global factor and several group-speci�c factors where

the groups are not de�ned a priori. After successfully extracting the fundamentals (factors)

behind commodity price movements, I then try to characterize these underlying factors using

Bayesian auxiliary least square regressions.21

The endogenous clustering analysis reveals that unrelated commodities that belong to

the metal, agricultural materials and food families share cycles not only through global determi-

nants but also through cluster factors. The global factor is the most important determinant for

only vegetable oils (excluding olive oil), while the cluster factors carry greater importance for

the rest of the commodities. Even though the commodity world seems to be coupling overall,

there is still a considerable amounts of decoupling of particular commodities. In particular some

commodity clusters show similarities in ways identi�ed by speci�c product characteristics. For

example, timber industry isolates itself from the rest of the agricultural raw materials and form

a separate cluster. Likewise co¤ee forms another. Grains and vegetable oils decouple from the

rest of the food category products and share most of their correlations through their cluster fac-

tor. Overall, commodity clusters found in this paper are not representative of standard narrow

classi�cations (indexes) of commodity prices as de�ned by statistical agencies like International

20Factor models are extensively used to study various topics from international business cycles to regional analysis.
Examples include: Kose et al. (2003, 2008), Hamilton and Owyang (2010), Neely and Rapach (2009).

21 In a work similar to this, Vansteenkiste (2009) uses a clustered approach where she de�nes 4 groups exogenously
for only 11 commodities. She tries only to link the global factor to possible macro factors while neglecting the
cluster factors.

40



Financial Statistics (IFS). This implies that these narrower de�nitions, or subgroups, by these

agencies do not consist of homogeneously moving products.

Bayesian regression analysis reveals that the world demand proxied by industrial pro-

duction growth of many economies is a determinant of the global shock a¤ecting all commodities.

While vegetable oils and grain prices react to crude oil and fertilizer prices, other foodstu¤ are

a¤ected by the same variables as metals and materials. Through the cluster factor, metals,

materials, and some food products seem to be reacting to a combination of many potential

factors discussed in the literature: namely, interest rates, world demand, oil prices, and stock

market indexes. Simple examination of these group-speci�c commodity comovements implies

that in times of high oil prices and high growth in world production, low interest rates can

amplify the increases in their price levels and further quantitative easing may indicate higher

in�ation in commodity prices which could make the economy more vulnerable to in�ationary

pressures.

The reminder of the paper is as follows: Section 2 provides motivation for the paper.

Section 3 presents a review of the literature. Section 4 describes the empirical model and the

estimation procedure. Section 5 describes the data. Section 6 reports the �ndings and �nally

section 7 concludes.
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2.1 Motivation

Commodity prices carry great importance, with their potential impact on aggregate

output and the balance of payments and transmission of business cycle disturbances across coun-

tries by connecting commodity exporters and importers from developed to developing countries

(Borenzstein and Reinhart, 1994). Changes in commodity price levels can create in�ationary

pressures on an economy that could make monetary policies harder to conduct. If commodity

production constitutes a larger percentage of aggregate output, then their price movements

should be taken into account in the design of policy. The same is true even for the monetary

authorities that target the core in�ation rate, which excludes volatile food and energy prices.

For instance, the Fed pays attention to and targets the core in�ation rate, claiming that it has

resulted in better forecasts than the headline in�ation rate over the past 25 years.22 It is true

that the recent commodity price boom has not been re�ected in core in�ation largely because of

the recent economic downturn, which resulted in strong disin�ationary pressures, as the FOMC

members expected. But what if the Fed is wrong about the expected moderation in global

growth and high commodity prices do spillover the core in�ation?

Commodities are used as inputs of production in many industries. For example, cotton

is a major input for textile industry, which accounts for 4.6 percent of core personal consump-

tion expenditure (PCE) in�ation. Again, "Shelter" for the U.S. accounts for around 30 percent

of core CPI and "Vehicles" around 6 percent. These groups (shelters, vehicles) include housing

materials, equipment, and automobiles that are produced with extensive use of basic commodi-

ties such as copper, iron (used in steel production), rubber, timber, and lead. The price surge of

22Targeting core in�ation has its own debate. Any central bank that wants to reconnect with households and
businesses, which care more about food and energy price changes than bankers and hedge funds, should target
headline in�ation as suggested by Bullard (2011).
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these commodities is expected to alter the cost structure of many industries and, hence, create

high prices that can heat up an economy�s in�ation rates. That could make targeting in�ation

di¢ cult and create an environment in which easy monetary policy could overheat in�ation, like

back in 1970�s.

Identifying comovements of prices allows for diversi�cation of in�ationary risk not just

for monetary authorities. For example, if economic agents in a commodity-exporting country

were to know which commodities are likely to experience price increases and the degree to

which commodities comove, then these agents (households and/or �nancial institutions) could

diversify some of the risk by expanding the range of export commodities they invest in, sell, or

hold. They could diversify by trading in commodities that have weak linkages and do not share

common cycles with the commodities they currently export �a point stressed by Cashin et al.

(1999). In �nancial markets, participants can settle their portfolio and investment decisions

securely if information about comovements of commodities is known. Moreover, Lu and Neftci

(2008) examine the use of commodity options to hedge against the vagaries of international

commodity prices for developing nations.

Given the importance of commodity prices, any kind of theory that aims to investigate

the policy implications of commodity price dynamics should rely on detailed empirical investi-

gations. Without a diagnosis of the cause of price peaks, we cannot talk about policies that may

alleviate the costs of price increases or take precautionary actions to prevent large �uctuations

in prices that may result in a crisis.

Recent literature has looked for possible explanations of what has been driving the syn-

chronized commodity price movements. Several factors are considered, from global factors such

as high global demand to more market-speci�c factors such as the rise in biofuel production.23

23To cite a few: Krugman (2008), Wolf (2008), Frankel (2005, 2008), Calvo (2008), Lombardi et al. (2010),
Ba¤es and Haniotis (2010), Lescaroux (2009), Cashin, McDermott and Scott (2002), and Vansteenkiste (2009).
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The widely accepted view is that the correlations across commodities are solely a result

of common factor(s) (Byrne et al. (2011), Vansteenkiste (2009), Cashin et al. (2002), Lescarux

(2009)).24 This may seem plausible at �rst, but it is incomplete at best. As Foerster et al.

(2011) argue, additional cross correlations of any kind could contaminate the global factor, and

if not taken into account, can lead to overestimation of the true nature and the contribution

of common factors in explaining cross-product comovements. Using disaggregate industrial

production data, Foerster et al. (2011) show that the common factors are contaminated by the

unmodelled sectoral linkages. Likewise, common factors behind commodity price dynamics may

re�ect not only global shocks but also the propagation of idiosyncratic shocks within particular

groups, usually by way of less pervasive factors.

The sparse factors can be thought of �rst as re�ecting the di¤erent market properties

across commodities. Shocks related to those speci�c markets may not spill over to other indus-

tries. In particular, shocks that generally emerge from climatic conditions or adverse weather

such as �oods and droughts directly a¤ect agricultural products while their propagation into

the mining industry is less likely. Similarly, for metals and even for some agricultural raw

materials, such as timber or rubber, fertilizer costs may not be as relevant.

The traditional way to introduce the sparse industry factors is to exogenously group

similar commodities; for example, one could ex-ante de�ne �Food� and �Energy� clusters.

While plausible, this may not be the best practice. Even within the same ex-ante categories

we might have di¤erent underlying driving factors behind the commodity movements. In other

words, assuming one �Food� sector will not allow for possible within-sector heterogeneity of

Hockman (2010) and Mueller (2011) look also at the biofuel e¤ect on food commodities.

24Oil prices have been cited as the classic example of a common factor. As almost all industries are energy
dependent (even when oil is not used directly in production, it is used in transportation), oil prices feed into
the cost functions of almost all commodities.
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particular commodities. Besides, seemingly unrelated commodities are argued to exhibit ex-

cess comovement.25 Therefore if the ex-ante grouped commodities are "closely related", such

groupings would not allow for unrelated commodities to share cycles other than through the

global factor.

Due to the characteristics of the food commodities, natural disasters like �oods and

droughts might only a¤ect some small group of products. Droughts in grain-producing regions

over the last years have helped lower the world grain supply, which was thought to have signi�-

cant impact on the grain price levels (Trostle, 2008). Australia has been su¤ering from a severe

drought since 2004, which considerably reduced its production of agricultural products. Figure

8 presents the growth rate in total supply in metric tons for Australia during the drought pe-

riod from 2004 to 2007. While total meat, vegetables, and corn supply showed big �uctuations,

�sh supply was relatively more stable compared with the other food commodities. One gets a

similar graph for China, which has been experiencing the worst drought of their recent history.

These observations suggest that drought may not have a signi�cant e¤ect on countries�seafood

supply but severely in�uence the grains and livestock production. Therefore we may want to

avoid grouping seafood with other grain and meat products.

Simple examination of the nature of commodities also advises against taking an ex-ante

stance on commodity clusters. In particular, consider corn and rice. These two commodities

experienced high prices during the price boom and their price rise was argued to be related to

the same factor. Krugman (2008) argued that biofuel production caused farmers to expand the

portion of their land used to cultivate more corn as it has become more pro�table for farmers

to invest the corn proceeds in ethanol production. This reduced the hectares of land used for

25Pindyck and Rotemberg (1994).
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other grain plantings (e.g., soybeans). Since climatological and land conditions are di¤erent for

corn and rice, farmers are unlikely to substitute land between them. While biofuel production

might have had a direct e¤ect on some grain products, we may not argue the same thing for

rice crops.

From a more analytic view, FOS (2012) document the consequences of possible grouping

(clustering) misspeci�cations in the Monte Carlo analysis they conduct. The idea of their

simulation is to emphasize what may happen if the researcher unknowingly puts a time series

in the wrong group and uses the traditional exogenously de�ned block factor approach in

estimation.26 They show that even small degrees of misspeci�cation can cause a reduction

in the model�s overall �t. Speci�cally the entropy measure and mean square errors for the

estimated factors increase with misspeci�cations, causing inconsistent model estimates.

Given these arguments I choose not to apply the traditional ways of de�ning groups of

commodities; instead, I employ the FOS (2012) endogenously clustered dynamic factor model

that places no initial restrictions on the groupings to study the synchronous movements of

commodity prices. With the aid of this unrestricted model, the commodity groups can be

formed based on any one or combination of any possible factors, such as those discussed above,

without the fear of model misspeci�cations.

2.2 Literature Review

After a stable phase of commodity price in�ation for over two decades, the late 2000�s

have seen price increases reaching record high levels and causing the world to experience one of

the longest and broadest post World War II price booms. The previous price boom happened

26The time series in the simulation can represent many economic variables, such as a country�s GDP or a
commodity�s price level, a city-speci�c housing price, or industrial production.
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in the early1970�s and was followed by a period of low levels in the 1980�s. While commodity

price levels maintained stability in the 1990�s, nominal prices for grains (such as corn, soybean,

palm oil, wheat, and rice), energy, and metals more than doubled during the 2006-2008 boom

(see �gure 2). The consequences for some developing nations were more severe than others.

Riots and violent demonstrations over the soaring costs of basic food have been reported in

many countries including Bangladesh, Haiti, Yemen, Egypt, Morocco, and Mexico. Due to the

severe social aspect of high food and fuel prices, organizations around the world held meetings,

and discussed possible coordinated policy actions and interventions in order to aid the societies

that could not maintain su¢ cient dietary requirements. (Examples include the recent G-20

meeting, UNICEF Food Prices Increases/Nutrition Security: Action for Children and Food and

Agriculture Organization�s High-Level Conference on World Food Security.27 Right after the

crises, International Fund for Agricultural Development made available up to US$200 million to

provide support for farmers). By the end of 2008, energy and food prices signi�cantly declined

in the wake of the �nancial crises and the global economic downturn. However, another surge

in prices started in May 2009 and the rise continues as of the 3rd quarter of 2011.

All of the aforementioned changes in commodity prices raised interest in the deter-

minants of such changes and a great deal of research has been devoted to understanding the

comovements across commodities. Along the line of these studies, Calvo (2008) suggests excess

liquidity and low interest rates as the cause of the recent price boom. Wolf (2008) blames it on

increased world demand. Krugman (2008) argues that the increase in oil prices caused govern-

27G-20 meeting: Communiqué - Meeting of Finance Ministers and Central Bank Governors, Washington DC,
14-15 April 2011. Unicef link can be found at http://www.unicef.org/eapro/Food_Prices_Technical_Note_-
july_4th.pdf. FAO Conference tried to make a strategy to deal with hunger and unrest resulted from soaring
food and oil prices. Delegates of the conference also focused on increased biofuel production and how it relates
to food production and prices. The conference however hit a snag over the debates about embargos and export
restrictions.
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ments to support biofuel production, which provides incentives for farmers to supply corn to be

used in bio-ethanol production.28 Farmers also switched land between corn and other grains,

which reduced the overall supply for grains, which led to the increase in food prices.

In an attempt to summarize the studies about commodity price dynamics, Frankel

and Rose (2009) list three competing theories explaining the recent boom. The �rst one is

�global demand growth�, which accelerated with the inclusion of high-demand countries such

as China and India, causing the observed high prices.29 Yet, this line of argument is criticized

by researchers looking at the early e¤ects of the sub-prime mortgage crisis that hit the U.S.

in 2007. Economic growth downgraded for many countries lowering the production (hence the

demand) for commodities globally during the time of crises, while commodity prices were still

on the rise in the �rst 3 quarters of the recession, contradicting the obvious link between the

two.

The second theory focuses on �nancial markets and argues that �speculation� was

the main cause of the commodity boom.30 Given there are futures markets for commodities,

when market participants expect high prices they may hold long positions. If there is no

particular reason to expect higher prices but the �nancial agents continue to do so, the resulting

buying behavior can in�ate a speculative bubble that creates high stock prices in commodity

markets. Opponents of this explanation of speculative buying of commodity futures draw

attention to the low inventory levels of commodities. As stated by Krugman (2008): if there

were a bubble then we should have seen high inventories, which were not evident. However,

28Corn based ethanol is used to produce biofuels therefore ethanol production is usually used to proxy the biofuel
production in empirical analysis.

29Wolf (2008), Svensson (2008).

30Citations include Hamilton (2009), Wolf (2008), Ba¤es and Haniotis (2010), Frankel (2008).
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Frankel (2008) continues to acknowledge speculative explanations by claiming that inventories

were not measured correctly. For example, the standard data exclude the amount of crude oil

that still lies underground which is much larger than what has been measured as inventories.

The third and maybe the most popular explanation is �easy monetary policy." Low

interest rates reduce the cost of holding inventories, since it is no longer pro�table for the pro-

ducers to invest the proceeds. Hence, by keeping interest rates at low levels, the Fed indirectly

and presumably unwillingly causes decreased production and high prices. Furthermore, low

interest rates create excess liquidity that can �nd its way into commodity markets as more

and more people switch from Treasury funds to commodity contracts, thereby causing prices

to rise.31 Critiques of the interest rate channel use the same argument that was used against

�speculation�: Where are the inventories?

Empirical investigations try to make theoretical links between commodity prices and

their determinants. For instance, Ba¤es and Haniotis (2010) analyzed the e¤ects of excess

liquidity, speculation, food demand growth from emerging countries, and biofuel production

on food prices. They found strong links between energy and non-energy commodities and less

evidence for the e¤ect of biofuel production on food prices. Instead they argue that it is the

�new money,� the excess liquidity, which has found its way into the commodity markets and

caused a speculative bubble �and hence the boom. Byrne et al. (2008) identify a common

factor behind commodity price comovements by applying non-stationary panel analysis. Then

they relate this common factor to potential macroeconomic variables using a FAVAR approach

and �nd evidence of interest rate in�uence on commodity prices. Lombardi et al. (2010)

run separate VARs for each of 15 non-energy products to look for e¤ects of global industrial

31Frankel (2008), Wolf (2008), Akram (2009).
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production, the U.S. e¤ective exchange rate, the U.S. interest rate and the price of crude oil.

They support the link between exchange rate and commodity prices and reject the e¤ects of

interest rates and oil prices.

Using dynamic factor analysis, Vansteenkiste (2009) investigates the relative impor-

tance of common factors for the non-fuel commodity price dynamics of 32 commodities for the

period 1957-2008. She �nds evidence of a common factor that becomes increasingly important

throughout the sample period. As a robustness check, she also includes group-speci�c factors

in estimation and looks for the e¤ects of the global factor for 11 commodities.32 She suggests

that the global factor is more important than the group speci�c factors. However, her variance

decomposition suggests this is true for only 3 (wheat, maize and cotton) out of the 11 products;

for the rest the group speci�c factors seem more important. She later used IV regressions to

test the potential e¤ects of crude oil, fertilizer prices, dollar e¤ective exchange rate, interest rate

and global demand (proxied by the industrial production of OECD and 6 major non-OECD

countries) on the extracted global factor component. She �nds evidence that oil, exchange

rate and interest rates are important. No attempt was made to characterize the group speci�c

factors.

2.3 Empirical Model and Estimation Methodology

I employ a dynamic factor model where each commodity price in�ation is a¤ected by a

global factor common to all and a block factor common to particular group to in�ation series.

In�ation rates across blocks can only be correlated through the global factor. There are in total

32The reason she reduced her sample for the exogenously de�ned factor analysis is that she only grouped the
commodities she knows are in one way or anotherrelated. She avoids misspeci�cation by this means. In this
sense my analysis is the �rst one to introduce group-speci�c factors for the whole set of commodity price data
without the fear of misspeci�cation.
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J block-speci�c factors (clusters) and one global factor. Assumptions of the dynamic factor

model will be that the factors are unobservable and orthogonal to each other, and all cross-

correlation of the series comes only through the factors, i.e., the variance-covariance matrix

of the factors is diagonal. There are thus, K (K = 1 + J) dynamic factors to determine the

comovements of in�ation rates. As for the sector-speci�c factors, I follow the FOS (2012)�s

endogenous clustering algorithm which gives the data the freedom to choose its own grouping.

Let I denote the number of goods and T denote the length of the time series. Then for

an observable in�ation rate denoted by yi;t for commodity i, we have

yi;t = �i + �i;0F0;t +

JX
j=1

i;j�i;jFj;t + "i;t; (9)

where �i is a vector of intercepts; �i;0 and �i;j are diagonal matrices of factor loadings; F0;t

is the global factor a¤ecting each series; Fjt are the group factors; and "i;t is a series-speci�c

idiosyncratic error term. As noted in FOS, i;j = f0; 1g is a grouping indicator that de�nes

whether series i belongs to group j. Further, each series is restricted to one single group

obtained by the restriction
P

j i;j = 1: Factor loadings are speci�c to each series, which allows

for di¤erent responses of in�ation in response to the same shock.

The evolution of each factor and the idiosyncratic error term are determined by an

autoregressive equation of order qf and q"; respectively;

Fk;t = �k;1Fk;t�1 + �k;2Fk;t�2 + :::+ �k;pFk;t�qf + ek;t for k 2 f1; :;Kg; (10)

"i;t = 'i;1"i;t�1 + 'i;2"i;t�2 + :::+ 'i;q"i;t�q" + �i;t for i 2 f1; :; Ig ; (11)

where ek;t is a factor-speci�c idiosyncratic error term with variance �2k; and �i;t is the idio-

syncratic disturbance with variance �2i . The disturbance terms, e and �, are uncorrelated and
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each distributed normally with zero mean and their respective variances. As the factors are

unobservable the sign of the factors and the sign of the factors�loadings have to be separately

identi�ed. Following FOS, I normalize the �rst element of each factor to be positive to overcome

the issue. Another identi�cation problem is to identify the scale of the factors. Here I follow

KOW (2003), Sargent and Sims (1997), and others in assuming that �2k is constant.

I estimate the model presented in equation (9) with Bayesian Markov Chain Monte

Carlo (MCMC) techniques. To sample the factors, I follow Kim and Nelson (1999) and apply

Kalman �lters. Once the factors are known (or given) I follow Chib and Greenberg (1995)

to sample the model parameters. Sampling iteratively from the conditional distribution of

the model�s parameters given the factors and from the conditional distribution of the factors

given the parameters is repeated many times. This is the essence of Gibbs sampling and

under the regulatory assumptions (see Chip and Greenberg, 1995) these sequences of draws

from the conditional distributions converge to the joint posterior density of the entire system,

independent of initial values selected. The technical details of the estimation are provided in

the appendix.

The endogenous clustering model represented here can be estimated using either Bayesian

or classical techniques. The classical algorithm can solve the problem by forming every possible

group and then employing a model selection criterion to determine the best clusters. However,

with a large panel of data this grid search-like procedure would be ine¢ cient and possibly

infeasible.

The Bayesian approach o¤ers several other advantages in estimation. First of all,

Bayesian inference provides computational easiness for latent variable models like the one pre-

sented in this paper. As noted in Paap (2002) the likelihood function of classical estimations

of these models includes many integrals and numerical integrations which make standard esti-
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mation models like maximum likelihood infeasible whereas the Bayesian MCMC approach only

considers the likelihood function conditional on the simulated unobserved variables; therefore,

it does not require computing the unconditional likelihood function of the model itself. This

makes the estimation easier and much faster than most of the standard classical techniques.

Paap also argues that Bayesian modeling allows a more convenient way of dealing with parame-

ter uncertainty, which needs to be taken into account when dealing with unobserved variables.

Another important advantage of the Bayesian method concerns its small sample prop-

erties. It has been argued that MCMC computation works equally well for large and small

samples.33 Recently, with the wide use of the disaggregated data, researchers have utilized

dynamic panel data econometrics. However, these models have been documented to perform

poorly in estimation and inference without correcting for the small sample biases if the sample

size is small. 34 The use of Bayesian methods o¤ers an advantage in the sense that it does

not require a correction when dealing with small samples. As Berger (1985, page 125) says

Bayesian analysis would be preferable to any particular large sample classical techniques. He

further adds that Bayesian analysis would be equivalent to the classical large sample procedures

with large sample size and would be reasonable to use with moderate and small sample sizes

where many classical estimation techniques fail.

33Western (1998), Martin (2005), Berger (1985).

34 IMRR(2003), Chen and Engel (2005), Phillips and Sul (2007), and many others use several methods to account
for small sample biases. The most commonly known small sample bias correction is Killian�s bootstrap after
bootstrap method. However this method has been proved to perform poorly with highly persistent series. The
Andrews (1993) and Andrews and Chen (1994) median unbiased estimator is another way to correct for the
bias. However this method does not work well if true AR(1) is near unity. Another method is by Pesaran Zhao
(1999) who extends Killian�s method for long-run coe¢ cients that are nonlinearly dependent on the short-run
ones. The Bayesian methodology performs equally well for large and small samples and provides an estimation
tool that does not need any correction for small samples.
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2.3.1 Model Selection

While cluster memberships are endogenously determined, the number of clusters still

have to be exogenously selected. However we can also endogenize the number of clusters by

computing the Bayes factors. This paper applies Chib (1995) for every Gibbs sample block

and follows Chib and Jeliazkov (1995) where Metropolis Hastings is implemented. The basic

marginal likelihood identity (BMI) of the model is given as:

ln bm (Y) = ln f (Yj��) + ln p (��)� ln bp (��jY) ; (12)

where � is the full set of model parameters. The expression requires the evaluation of the

log likelihood function ln bm (Y) ; the prior ln p (��), and an estimate of the posterior ordinate

ln bp (��jY) evaluated at a high density point �� (e.g., a modal point) of the posterior draws of

the parameters.35 The log likelihood and the priors at the modal values of the parameters can

be directly computed from the whole set of posterior draws gathered from the Gibbs estimation

of the model (the Gibbs output). However, the posterior ordinate needs to be estimated with

additional Gibbs sampling steps of the same model but with reduced samplers. Details for

sampling each posterior ordinate as well as the model likelihood and priors are all supplied in

the appendix.

In this framework, the models are distinguished by the number of clusters. In particular,

the empirical model and the BMI is estimated assuming a di¤erent number of clusters one at

a time. Then the marginal likelihoods are used to decide which model to select. The model

that maximizes the marginal likelihood reveals the optimum number of clusters. In principle

35Chib points out that the BMI holds for all values of � and the choice of the �� is not critical but for
the e¢ ciency considerations �� is selected to be a high density point so that the density can be accurately
estimated.
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one needs to calculate the Bayes factors of two models l and h, using the BMI as

Bl;h = exp (ln bm (Y)l � ln bm (Y)h) :
If Bl;h > 1; then model "l" is favorable to model "h". Comparing the bivariate Bayes factors

for all models and �nding the superior model is equivalent to maximizing the BMI given all

models. Hence in the results section, I only list the BMI with its components.

2.3.2 Bayesian Linear Estimation on Factors

Once the factors are carefully extracted, in the next step I try to characterize them

with additional analysis. Let �t represent the set of the variables we want to test on the factors

(global and clusters), Fk;t: Then we can estimate the linear regression of the form

Fk;t = $k�t + �k (13)

where the error term � is assumed to be normally distributed with mean zero and variance �2k:

The estimation procedure is a simple Gibbs application with two sampler blocks of parameters,

namely $ and �2: The issue with such an estimation is that it makes use of the estimated

factors as the regressand. The problems of using generated regressors are documented in Pagan

(1984) and ideally one has to correct for the uncertainty coming from the generated regressor

term for the inference to be correct as the posterior distribution of the model (13) depends on

which factor Fk;t is selected. .

If the factor is an observed variable, then the Gibbs application on (13) would converge

to the unconditional posterior distribution of the parameters, i.e., p($j�): However if the factor

is not observed and rather has a distribution, the Gibbs sampling yields a posterior distribution
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of the parameters conditional on the selected factor, say p($j�; �F ): Therefore to make inferences

from p($j�);we can integrate p($j�; �F ) over the distribution of F :

p($j�) =
Z
F
p($j�; F )p(F jY )dF; (14)

where p(F jY ) is the posterior distribution of the factor from the �rst step (factor analysis).

Analytically we cannot solve this integral; instead we can approximate it by drawing large

numbers of F from its posterior distribution and calculating the p($j�; F ) by repeating the

Gibbs sampling for each of these factor draws. This will result in an approximation of the

unconditional posterior distribution of the parameters that we can make inferences from. Details

are in the appendix.

2.4 Data

Monthly time series data for 42 non-energy commodity prices spanning from 1980

to 2011 are gathered from the International Monetary Fund (IMF)�s International Financial

Statistics (IFS) Database. The commodities are selected on the basis of availability for the

entire sample period. Fertilizer and energy prices are excluded so that they could be used in

auxiliary regressions to see if energy prices are the main fundamental driving force behind the

commodity price movements as argued in several studies. The details of the data can be found

in the appendix.

Data are �rst seasonally adjusted (Census X12 multiplicative adjustment ) and then

converted to quarterly frequency mainly to increase the signal-to-noise ratio and to save some

computational time. Since the empirical model requires stationary series, I log-di¤erence the

data, thereby computing the in�ation rates for each commodity. Finally, I follow the factor

model literature and normalize these in�ation rates by demeaning each commodity price and
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dividing it by each series�standard deviation.36

Figure 10 plots the pairwise cross correlations of the commodity sample. Since simple

cross correlations are static and cannot represent joint moves of many commodities these re-

sults should only serve as a preliminary check of possible linkages. The nominal prices of the

product sample exhibits high positive cross correlations. Measures used in the literature such

as concordance de�nes comovements as the same direction synchronized movements. However,

the pairwise correlations suggest there are some products that exhibit negative relationships.

Just because commodities move in the opposite direction does not necessarily mean that they

cannot share the same source. The factor analysis presented in this paper do not exclude these

kind of inverse movements and will recover commonalities, positive or negative.

The data for the auxiliary regressions come from several sources. The interest rate is

proxied by the federal funds rate extracted from the Board of Governors of the Federal Reserve

System. The exchange rate, Dow Jones stock market index, and U.S. house prices come from

the St. Louis Fed�s Federal Reserve Economic Data (FRED). The IFS database also provides

crude oil and fertilizer prices (measured by phosphate rock). The federal funds rate and the

U.S. e¤ective exchange rate are de�ated using U.S. consumer price index. The world demand is

proxied by the industrial production of 30 countries from the IFS database where the countries

are selected based on data availability. Ethanol production that accounts for biofuels is gathered

from the Renewable Fuels Association. To measure climate changes, I use the global surface

temperature anomalies from National Climatic Data Center (NCDC) of National Oceanic and

Atmospheric Administration (NOAA) database.37

36There were some questions raised about standardization. I compared the results for both standardized and
non-standardized data and found variance decomposition for both cases to be similar.

37As stated in the database, the anomalies are observed temperature departures from the 20th century (1901-
2000) average of global temperature. An increase in these departures is evidence of global warming.
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2.5 Empirical Results

2.5.1 The Optimum Number of Clusters via Bayesian Model Selection

The optimal model is the one that maximizes the marginal likelihood, which results in

4 clusters. Table 7 presents the details of the Bayesian Model selection outcome. Intuitively the

posterior ordinates can be thought as a penalty of having additional clusters; and as one can

see, the posterior ordinates are decreasing as the number of factor increases, thereby validating

its purpose. The results also look consistent in the sense that the optimal model maximizes the

marginal likelihood as well as the likelihood.

Table 8 presents in sample performance of the endogenously clustered factor model

compared to the benchmark cases where the same data is estimated via a simple factor model

with one global factor, a simple factor model with two global factors and an exogenously clus-

tered factor model with clusters de�ned by IFS de�nitions.38 The log marginal likelihood is

maximized with the endogenously clustered model. Comparing marginal likelihoods in lev-

els reveals that endogenously clustered factor model is 1:20 � 106 times more likely than the

exogenously clustered model given the commodity price data used in the analysis.

2.5.2 Results for the Optimal Model

2.5.2.1 Inclusion Probabilities

Table 9 lists the commodities with their probability range across clusters. For each

commodity the algorithm produces a posterior distribution of its indicator function. This means

that each commodity has a probability, whether strong or weak, of belonging to each cluster.

38Based on the IMF industry classi�cations, the data can be clustered into 4 categories; Food, Agricultural Raw
Materials, Beverages and Metals. Once I de�ne these categories, I estimate the exogenously clustered factor
model.
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In table 9, I report the highest probability of belonging to one cluster for each commodity. Logs

and wood in�ation rates are strongly correlated through the �rst cluster. Lamb also belongs to

this cluster with a weaker probability of 0.54.39 However, since it constitutes only 20 percent

of the cluster size and since it selects the cluster only half of the time, the corresponding factor

should be dominated by the timber industry, re�ecting the industry-speci�c properties of logs

and wood.40

Consistent with observations in the commodity price boom, the second cluster consists

of vegetable oils and grains. These products were responsible for the food price index spike

more than any other commodities (Mueller et al., 2010), and it would contradict many related

studies if they were not grouped together.

The third cluster consists of food, metal, and agricultural materials. The clustering

analysis shows evidence that metals such as aluminium, copper, uranium, and zinc are strongly

correlated with food products such as olive oil, �sh, �shmeal, and sugar and weakly correlated

with food products such as beef, lamb, oranges, bananas, and rice. Comovements of seemingly

unrelated commodities are nothing new to the literature; for example, copper and wheat are

found to be correlated by Pindyck and Rotemberg (1990). All metal prices in this cluster are

highly correlated with other metals except iron. Cuddington and Jerrett (2008) o¤er empirical

support for super cycles (long cycles for more than 15 years) of metal prices and posit the recent

Chinese industrialization and urbanization as a likely cause. Therefore it would be interesting

to check for this claim and test for Chinese demand on the cluster-3 factor.

Co¤ee products and iron belong to the last cluster. In particular, iron is the only

39The case of lamb is rather interesting since it also belongs to the cluster-3 almost equally likely (with a
probability of 0.46).

40Lamb meat is 1 out of 5 commodities of cluster-1. Therefore it occupies 20 percent of the cluster size.
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metal that does not share strong linkages with other metals. It is out of the scope of this

paper to understand why iron shares cycles with co¤ee rather than with copper; however, this

�nding may open up an interesting avenue of research about these commodities. Moreover,

the variance share of iron attributable to this cluster factor is only 4 percent (the complete

variance decompositions listed under table 12); therefore, it would not be incorrect to claim

that cluster-4 is de�ned by mostly the co¤ee industry and can be labeled as "Co¤ee Cluster".

Another interesting conclusion is the case of rice. Even though rice is listed under "grain

products" in commodity price indices (along with barley, wheat, soybeans and corn) it does not

share cycles with other grains �not even through the global factor.41 What is more rice has the

weakest probability of belonging to any cluster in the all the commodity sample used in this

paper (it only achieves a maximum of 0.34 for cluster-3). What makes rice decouple and stand

alone? This might stem from the fact that rice goes through di¤erent agricultural processes

with speci�c needs for rainfall. Wheat needs a dry, mild climate to grow. Soybean �elds

should be well drained for its cultivation. And corn is a warm weather drought-resistant crop

that requires relatively less moisture when developing toward maturity. Whereas, rice needs

extreme humidity, and prolonged sunshine, it requires standing water throughout its growing

period and is best suited for regions with high amounts of water supply. Other than these

agricultural di¤erences, country-speci�c e¤ects (which are not accounted for in this analysis)

may also be responsible for this "rice decoupling" since, apart from palm oil, cluster-2 products

come from North America and United Kingdom while rice prices are taken from Thailand.

Overall, looking at the strongly correlated (p(i;j) > 0:9) commodity cluster forma-

tions we can de�ne 4 distinct categories (and I will refer to them as such hereafter): "Timber",

41The expained variance arrtibutable to the global factor for rice is 0: See the next section or appendix for the
varaince-decompositions tables.
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"Co¤ee", "Grains & Oils"(except olive oil) and a "Mixture" of agricultural raw products (e.g.,

wool, hides, rubber) metals (e.g., copper, lead) and food commodities (e.g., sugar, olive oil,

salmon). This cluster formation provides evidence against distinct industrial categorization of

commodities. In other words, these clusters are not representative of standard narrow classi-

�cations (indexes) of commodity prices as de�ned by statistical agencies. In particular, food

products are spread across all clusters (weather weakly or strongly): While some of them share

cycles with metals and agricultural raw materials, some of them decouple from the rest of the

food sector (co¤ee and rice).

In related work, Vansteenkiste (2011) sets up an exogenously de�ned clustered factor

model. She pools jointly produced or consumed commodities together into groups and de�nes 4

clusters: (1) Co¤ee and cocoa, (2) cotton-maize-sugar-wheat, (3) palm oil and soybean oil, and

(4) copper-zinc-lead. This paper provides evidence against this kind of cluster formation. In

particular, once the data are free to form their own clusters, cocoa and co¤ee fall into di¤erent

groupings and sugar does not �nd its way into the same cluster as grain commodities.

2.5.2.2 Variance Decompositions

This section reports the variance decompositions where the clusters are constructed

with the posterior values of the indicator function, i;j . Since an observation may change

clusters over the Gibbs iterations, we need a �xed estimate for the indicator function for the

variance calculations. Table 10 reports the "weak probability variance decompositions," where

an observation is assumed to belong to a particular cluster if it picks that cluster for the majority

of the Gibbs run, i.e., i 2 j if p(i;j = 1) > p(i;k = 1) 8k: In this case all the commodities are

matched to one cluster and we get the cluster memberships exactly as listed in table 9.42

42One of the drawbacks of such a calculation is that some of the interrelations among commodities are rather
weak. Weakly correlated products share smaller portion of their cycles through factors which reduce the
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Looking at the average variance decomposition percentages of table 10, the global factor

is not playing a signi�cant role in explaining the bulk of the commodity sample developments

except for cluster-2 ("Grains & Oils). The cluster factors on average explain about 27 percent

of commodity price variations, which dominates the e¤ect of the global factor, which is only

7:2 percent. In particular, for cluster-1 ("Timber") and cluster-4 ("Co¤ee") the global factor

is negligible; the market and production processes of these products may be too speci�c and

closed to global developments. Overall Table 10 suggests that the dominant source behind

commodity price comovements is the interrelations that come through more sparse cluster

factors. This �nding contradicts many studies that assume only one or two commons factors

behind commodity price dynamics.43

The simultaneous move in prices of grains (corn, soybeans, wheat, rice) oils and meat

have led many studies to agree on the existence of a single shared source for the food sector

(Byrne et al. 2010; Vansteenkiste, 2009). To have a better insight into this claim, Table

11 highlights the variance decompositions of these products. Surprisingly, the source of the

�uctuations seems to be di¤erent even for similar grain products that are in the very same

cluster-2 ("Grains & Oil") such as corn and wheat. Corn, soybeans, and soybean meal are

highly dominated by the cluster factors, while vegetable oils are mainly driven by the global

factor. However for wheat, rice, and meat, it is idiosyncratic shocks that matter the most.44

In summary, the world factor does not seem to have a strong e¤ect on corn, rice, wheat,

meat, soybeans, and soybean meals prices, which invalidates explanations such as those that

variance decompotion values for each cluster. Once the commodities that have probability of belonging to a
cluster below 0:9 are excluded from the data sample, the e¤ects of global and cluster factors get increasingly
large, explaining 46 percent of the whole sample variations compared with 34 percent of "weak probaility
variance decomposition".

43Byrne et al. (2010), Vansteenkiste (2010), Cashin et al. (2010)), Lombardi et al. (2010).

44Rice and meat belong to cluster-3 decoupling from the rest of the food commodities investigated in table 12.
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assert food commodities move together mainly due to, for example, increased world demand.

Rice in particular is dominated by market-speci�c factors rather than aggregate factors as

discussed in the previous section. The global factor does not have a signi�cant e¤ect on rice

price �uctuations, which contradicts Vansteenkiste�s (2009) �ndings where she �nds 12 percent

of rice price variations resulting from the global factor.45

Overall, the premise is that there is no single common factor driving the major com-

modity prices over time; instead commodities are interrelated through a set of cluster factors

which contribute to the recent price peak more than the common factor. "Timber" and "Co¤ee"

decouple from the rest of the sample, exhibiting di¤erent and probably more product-speci�c

sources. However, more in-depth analysis is needed on the global and cluster factors to validate

such claims.

2.5.2.3 Characterizing Factors

Figures 11 to 15 plot the factors along with NBER recessions dates.46 The downturns in

the commodity factors coincides with the U.S. recessions. In particular the global, second, and

third cluster factors show a great slump during the Great Recession of the late 2000�s, which

suggests all of them were a¤ecting the price �uctuations of food, metals, and materials during

the commodity price burst. The big fall that corresponds to year 1994 in cluster-4 ("Co¤ee",

45The di¤erence is likely to originate from empirical model speci�cations. She uses a dynamic factor approach
with one global factor and her global factor is su¤ering from overestimation due to the additional correlation
of commodities that are not accounted for in her analysis.

46The factor loadings are almost all positive for commodity prices expect a few commodities. Namely, swine
which belongs to cluster-4 is negatively related to the cluster-4 factor and hard logs, shrimp, soft Logs, soft
sawnwood, soybean meal and again swine are negatively related to the global factor. Looking at the individual
variance decompositions (see appendix) the average explained variation of these commodities attributable to
the global factor is only 1:85: Which implies that the average in�ation for those commodities due to the global
factor during recession is negligible. Besides, once combined with the cluster factor e¤ect (which explains 35
percent of their variations) the overall impact will be positive.
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�gure 8) is consistent with the Brazilian co¤ee plantation expansion and Vietnam�s entry into

the market, which put pressures on the supply and lowered co¤ee prices.47

The variance decompositions of the previous section provided some evidence of multiple

important factors behind the commodity price comovements. This section focuses on identifying

these factors to see if any macroeconomic variables are correlated with the estimated factors.

In order to highlight the sources of these factors, I run Bayesian auxiliary regressions of

the estimated factors on possible determinants that have been mentioned, argued, or strongly

supported in the literature. In a related paper, Bryne et al. (2011) use a two-step FAVAR

approach as described in Bernanke et al. (2005) and relate the common factor to the real

U.S. short-run interest rate, global demand as proxied by U.S. real GDP growth, real crude

oil prices, and risk measured by standard deviations of closing value of Dow Jones average.

Vansteenskiste (2009) also employs a dynamic factor approach and test the global factor on

possible determinants. In particular I use variables similar to those of Vansteenkiste (2009) �

namely; the federal funds rate, U.S. dollar e¤ective exchange rate, fertilizer prices, industrial

production, and stock market index. In addition to these variables, I also test for U.S. housing

prices, biofuel production, Chinese demand, and climate changes. Detailed description of the

variables used in this paper are listed below.

1. De�ated E¤ective Federal Funds Rate (FFR), Quarterly: The nominal rate is de�ated by

the Consumer price index. Given the arguments in the literature, it is expected to have

a negative impact on the commodity prices.

2. U.S. dollar Real E¤ective Exchange Rate (EER), Quarterly: Devaluated dollar (repre-

sented as a fall in the EER) causes the commodities to get cheaper in terms of foreign

47The "Timber" cluster factor ( �gure 4) seem to be recovered from big �uctuations of the 80�s and early 90�s
and is relatively stable during the rest of the 2000�s.
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currencies, which in turn puts on a positive pressure on the prices.

3. Dow Jones Stock Market Index, Quarterly: It is used to measure the speculation bubble

e¤ects on the commodity price. It should result in higher commodity prices implying an

expected positive sign in the regressions.

4. World Industrial Production, Quarterly: I use the quarterly industrial production of 30

countries, which includes developed economies as well as emerging and underdeveloped

countries to proxy for world demand.48

5. Crude oil Prices, Dubai, Quarterly: Oil price increases cause a cost increase and higher

commodity prices.

6. Fertilizer Prices, Quarterly: This should result in higher prices for many food and some

agricultural materials (such as wool) due to cost increases.

7. Housing Prices, Quarterly: Recent subprime mortgage crises have spread around the globe

and initiated the latest Great Recession. The burst in housing prices may not directly

have caused the commodity price boom; however, it may have reduced the demand for

its basic inputs: logs, metals, and materials. Hence, we can expect to see a positive

relationship between house prices and their input prices.

8. Ethanol Production, Annual: To account for the increase in biofuel production, I use its

main ingredient �corn-based ethanol production. High ethanol production growth could

cause high food prices, especially for grains and oils, due to reasons described previously

in this paper.

48The countries include Australia, Austria, Barbados, Belgium, Canada, Denmark Finland, France, Germany,
Hungary, India, Ireland, Israel, Italy, Japan, Jordan, Republic of Korea, Luxembourg, Malaysia, Mexico,
Netherlands, Norway, Portugal, Senegal, Spain, Sweden, Switzerland, Turkey, United Kingdom, and United
States.

65



9. China Volume of Exports and Imports (China Trade), Quarterly: Emerging countries,

especially China, took on a larger role in world trade while increasing the demand for

commodities as well as their prices. The widely used measures for a country�s demand are

its industrial production or its gross domestic product. However, both of these variables

for China are not available in quarterly frequency in 1980-2011 time period. Therefore,

as an alternative, I use the total volume of exports and imports to account for quarterly

Chinese demad.

10. Chinese Gross Domestic Product (China GDP), Annual: As discussed above, this variable

is included to account for the increased Chinese demand. The cross correlation between

volume of trade and GDP is 0.95; therefore, I do not use these two variables in the same

regression to avoid multicollinearity issues.

11. Weather Anomalies, Quarterly and Annual: Climate changes could cause adverse weather

conditions that could a¤ect crop growth and reduce agricultural supplies. These anomalies

are provided as departures from the 20th century average (1901-2000) and can be used

as measures of adverse weather. An increase in temperature anomaly is an harbinger of

global warming, which indicates the possibility of adverse weather reactions. To construct

quarterly data, I aggregate monthly values for these global temperature anomalies across

seasons.

The estimated factors are measured at a quarterly frequency. As a result, I conduct

two separate analyses. First I look for the contemporaneous relationship of the quarterly

factors with the interest rate, exchange rate, Dow Jones stock market index, world industrial

production, U.S. housing prices, fertilizer prices, and climate anomalies. Additionally, to test for

the biofuel e¤ect (which is not available in quarterly frequency), I estimate annual regressions
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using annualized factors along with annual variates of everything listed above while substituting

China Trade with China GDP. The caveat of aggregating the factors is that the regression results

can potentially lose short-run information and can su¤er from aggregation bias.

Quarterly Regression Results: Table 13 shows the results where each column represents

a separate regression of the determinants listed in the rows. The global factor looks like it is

capturing the world industrial production. The intuition is straightforward. When industrial

production increases, demand for metals and materials accelerates. Higher income due to higher

production tends to increase the demand for food, thereby spreading around the e¤ects of the

high global demand to almost all sectors.

Chinese volume of trade seems to have a signi�cant e¤ect on the factor that drives

the correlation structure of the cluster-1 ("Timber"), which includes wood and logs from two

countries: U.S. and Malaysia. So how can we link Chinese trade with these commodities? China

is one of the top �ve importers of Malaysian timber. Chinese buyers also turned to the U.S.

and Canada for wood after 2007 when Russia imposed higher tari¤s on its logs. Chinese lumber

imports from North America more than quadrupled from 4 percent in 2005 to 18 percent in

2010.49 This revived the U.S. timber industry back from a depressed state since the subprime

mortgage crisis. The Wallstreet Journal reports 10 to 15 percent expected increase in log

harvests from big U.S. timber companies due to the recent export surge from China. These

may be the reasons why we see a signi�cant Chinese demand on cluster-1 ("Timber") factor.

Crude oil prices are found to be signi�cant for cluster-2 ("Grains & Oils"). The farming

sector is highly energy intensive; therefore, oil prices a¤ect its cost structure. For example,

49Source: International Centre for Trade and Sustainable Development Bridges Trade BioRes, Volume 11, Num-
ber 18, 17th October 2011, pp 14.
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Murray (2005) draws attention to the high use of fossil fuels in the U.S. farming industry

with this comparison: "The U.S. food system uses over 10 quadrillion Btu (10; 551 quadrillion

Joules) of energy each year, as much as France�s total annual energy consumption." Growing

food without packaging, storage, or transportation accounts for 20 percent of this total amount.

Besides, food travels from farms to distributors around the world, which ampli�es the industry�s

dependence on fuel use. The conclusion is simple: fossil fuel reliance can alter grain commodity

prices and hence can be re�ected as this cluster�s factor.

Most of the variables discussed in the literature as potential determinants of the com-

modity prices; namely, federal funds rate, speculation, world demand, and crude oil prices are

found to be a part of "Mixed" cluster commodity commovements. Mining and manufactur-

ing metals are energy intensive which help to link oil prices to this cluster-3 factor. From a

monetary policy perspective, the federal funds rate can a¤ect the dynamics of a large group of

commodities of metals, materials, and some foodstu¤. Intuitively this means that if the Fed

keeps its quantitative easing policies in e¤ect at times of high oil prices and high world demand,

it would amplify the increases in commodity price in�ation.

Lastly, cluster-4 ("Co¤ee") factor fails to highlight a signi�cant presence of any of the

variables tested in this analysis. This could be due to missing important macro variables or

simply because this cluster represents shocks speci�c to the co¤ee industry that cannot be

accounted for easily. For example, co¤ee markets are highly controlled by the International

Co¤ee Organization (ICO), which was formed in 1963 in an attempt to stabilize prices through

international cooperation. With members that account for 97 percent of world co¤ee exports

and 80 percent of world co¤ee imports, ICO claims to achieve a balanced and sustainable

world co¤ee economy and promotes co¤ee consumption. For example, it launched Co¤eeClub

Network in 2008 and implemented the Co¤ee Quality Improvement Programme in 2002 in
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order to stimulate demand through better standards of quality. The e¤ects of these acts and

agreements are likely to have an impact on the co¤ee industry, but are hard to measure.

Annual Regression Results: This section adds the remaining regressors �namely, ethanol

production and China demand as measured by GDP � to the regression analysis and lists

the �ndings in Table 14. The signi�cant variables in each regression are consistent with the

�ndings from the quarterly regressions. Additionally, speculation, fertilizer prices, and the U.S.

dollar-e¤ective exchange rates become signi�cant to clusters 1, 2, and 3, respectively.

The global factor helps to feed the e¤ect of global demand into the commodity prices

as also shown in quarterly analysis. Cluster-1 ("Timber") factor now adds speculation to its

possible determinants. Cluster-2 ("Grains & Oils") is a¤ected by fertilizer prices, which is not

a surprising result as fertilizers are used in cultivation to improve plant growth. In particular,

corn, soybeans, and wheat are the three major crops associated with high consumption of

fertilizers.

Cluster-3 "Mixed" factor is now explained by the changes of the exchange rate along

with the federal funds rate. The devaluation of the dollar may reduce the price competitiveness

of non-U.S. countries and diminish production of exporting goods for these countries. On the

demand side, a devalued dollar can cause prices of a product to become cheaper in foreign

currencies, this may increase the demand and alter the price dynamics. The combination of

both supply and demand e¤ects can accelerate the increase in its price level.

Finally, world demand a¤ects the last cluster ("Co¤ee"). This could be linked to

successful attempts of the ICO�s co¤ee demand stimulation acts described previously.

Looking for the impact of biofuels on commodity prices, I cannot provide evidence in

favor of Krugman�s (2008) argument that increased biofuel production is one of the main causes
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of the grain price surge.

2.6 Conclusion

The dynamics of commodity prices have been changing over the last half of the decade.

No economy is immune to in�ation, and if price increases are synchronized and remain persistent

enough they can pass through to the core in�ation rate, creating a need for action by the

monetary authorities. This paper investigates the comovements of commodity prices and what

drives them from a statistical point of view. Summarizing information from a large panel

set of commodity prices, I �nd that commodity cluster compositions do not represent the

standard narrow classi�cations (indexes) of commodity prices as de�ned by statistical agencies

like International Financial Statistics (IFS). For example, timber products isolate itself from

other agricultural raw materials, and form a separate cluster. Likewise co¤ee forms another.

I also �nd another cluster of commodities consisting of seemingly unrelated products, such as

metals, agricultural materials, and some food products. Additional analysis to characterize

these correlations indicates the importance of the federal funds rate, high world demand, high

crude oil prices, fertilizer prices, Chinese demand, and speculation in �nancial markets in driving

these products�common movements.
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2.7 Tables and Figures

BMI Estimation-Model Selection

No:of Clusters ln f (Yj��) ln p (��) ln bp (��jY) ln bm (Y)
2 -6123 -1036 308.6 -7468
3 -5954 -1048 278.5 -7287
4 -5797 -1051 269.5 -7118
5 -5802 -1056 278.0 -7137
6 -7689 -1068 222.5 -8979

Table 7: BMI Estimation - Model Selection. Notes: First column shows the likelihood of the
model, Second column refers to the prior value at the modal points. Third column represents
the sum of the posterior ordinates calculated from the reduced runs described in the appendix.
And �nally last column shows the model marginal likelihood.

Model Comparison

Model log ML Di¤. Ratio
Basic Factor Model (1 global) �9211:4 �2092:6 inf
Basic Factor Model (2 global) �7627:9 �509:1 1:25� 1022

Exo. Block Factor - IMF de�nitions �7132:8 �14 1:20� 106
Endo. Block Factors �7118:8 n=a n=a

Table 8: Model Comparison. Notes: The table shows the log marginal likelihood for di¤erent
factor models. The �rst row presents the outcome from a basic factor model with one global
factor and no cluster factors. The second model has two global factors and no cluster fac-
tors. The third one represents the exogenously clustered factor model with IMF de�nitions for
clusters (Food, Metals, Beverages and Agricultural Raw Materials). The last model shows the
results from endogenously clustered factor framework. All models are estimated with the same
commodity price data. The �rst column shows the logarithm of the marginal likelihoods. The
second column shows the di¤erence in the log marginal likelihoods between the best model and
each other model. The last column shows how much more likely the best model is compared to
each other model.
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Inclusion Probabilities Across Clusters

Cluster-1 Cluster-2 Cluster-3 Cluster-4

p() � 0:9 Hard Logs Barley Aluminum Tin Co¤ee, Arabia
Hard Sawnwood Corn Copper Wool,Coarse Co¤ee, Robusta

Soft Logs Soybean Oil Fishmeal Wool,Fine
Soft Sawnwood Wheat Hides Zinc

Soybean Meal Lead Salmon
Soybeans Nickel Sugar,US
Palm oil Olive Oil Uranium
Canola oil Rubber Sugar,World

0:8 � p() < 0:9 Cotton Cocoa
Groundnuts
Poultry

Sun�ower Oil

0:5 � p() < 0:7 Lamb Iron

0:3 � p() < 0:5 Beef Shrimp
Oranges Swine
Tea

Bananas
Rice

Table 9: Inclusion Probabilities Across Clusters. Notes: The table summarizes the posterior
inclusion probabilities for each cluster and lists the members. For each commodity highest
probability of belonging to one cluster is reported.

Variance Decompositions Across Clusters

Factor Cluster 1 Cluster 2 Cluster3 Cluster4 Sample Average
Global 1.04 18.69 3.64 0.86 7.2
Cluster 37.74 31.29 20.09 35.36 26.9

Global +Cluster 38.78 49.98 36.22 23.74 34.1
Idiosyncratic 61.2 49.98 76.24 63.8 65.9

Table 10: Variance Decompositions Across Clusters. Notes: The table summarizes the variance
decompostion in percentages where the clusters are estimated with the endogenous clustering
algorthim.The clusters are constucted with the posterior values of the indicatior function. An
observation is assummed to belong to one cluster if the said observation picked that cluster
more of the time over the Gibbs run than the other clusters.
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Variance Decompositions for Grains, Oils and Meat

Product Name Global Group Idiosyncratic
Corn (2) 8.8 46 45.2
Soybeans (2) 2.3 92.8 4.9
Soybean meal (2) 5.3 90.3 4.3
Soybean oil (2) 49.3 39.1 11.6
palm oil (2) 49.4 14 36.6
canola oil (2) 52.6 11.9 35.5
Wheat (2) 4.2 21.9 73.9
Rice (3) 0 7.7 92.2
Meat (3) 6.5 1.7 91.8

Table 11: Variance Decompositions for Grains, Oils and Meat. Notes: The table summarizes
the variance decompostion in percentages. Members are allocated to clusters that they picked
the most over the Gibbs run. The paranthesis indicates each commodity�s selected cluster.
Bold values represents the highest variance decomposition for each product.

Variance Decompositions for All Commodities

Product Name Global Group Idio. Product Name Global Group Idio.
Hard Logs (1) 1.2 72.6 26.2 Copper (3) 5.9 60.7 33.3
Hard Sawnwood (1) 0 68.8 32.2 Fish-Salmon (3) 2.1 11.2 86.7
Lamb (1) 0.4 10.1 89.5 Fishmeal (3) 1.1 18.8 80.1
Soft Logs (1) 2.9 25.4 71.6 Hides (3) 0.8 16.1 83.3
Soft Sawnwood (1) 0.7 11.8 87.5 Lead (3) 1.9 22.1 76.1
Barley (2) 14.8 31.1 54.1 Nickel (3) 3.4 40.9 55.7
Corn (2) 8.8 46 45.2 Olive Oil (3) 0 16.6 83.3
Soybeans (2) 2.3 92.8 4.9 Oranges (3) 0.3 1.4 98.3
Soybean meal (2) 5.3 90.3 4.3 Rubber (3) 9.5 45 45.5
Soybean oil (2) 49.3 39.1 11.6 Sugar, Free Market (3) 0.7 7.8 91.5
palm oil (2) 49.4 14 36.6 Sugar, US (3) 1.2 2.9 95.8
canola oil (2) 52.6 11.9 35.5 Tea (3) 0.8 2.9 96.2
Wheat (2) 4.2 21.9 73.9 Tin (3) 13.5 15.5 71
Cotton (2) 6.5 14.1 79.3 Uranium (3) 1.9 12.6 85.6
Groundnuts (2) 1.6 5.5 92.8 Wool, coarse (3) 7,2 23.9 68.8
Poultry (2) 0.1 4 95.9 Wool, �ne (3) 9.5 23.5 67
Sun�ower Oil (2) 29.4 5.6 64.9 Zinc (3) 2.6 41.6 55.8
Rice (3) 0 7.7 92.2 Co¤ee, Robusta (4) 0.7 80.9 13.4
Meat (3) 6.5 1.7 91.8 Co¤ee, Other (4) 0.2 85.5 14.3
Aluminium (3) 6 55.8 38.2 Iron (4) 2.4 4 93.6
Cocoa beans (3) 4.9 12.6 82.5 Shrimp (4) 0.7 1.8 97.5
Bananas (3) 0.4 0.7 98.9 Swine (4) 0.3 4.6 95.2

Table 12: Variance Decompositions for All Commodities. Notes: The table summarizes the
variance decompostion in percentages. The members are allocated to clusters given the modal
value of the cluster probability. The paranthesis indicates each commodity�s selected cluster.
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Quarterly Regression Results

V arible Name Global Cluster-1 Cluster-2 Cluster-3 Cluster-4

Federal Funds Rate -0.02 -0.01 -0.02 -0.05* -0.02
(-0.06 0.02) (-0.05 0.03 ) (-0.05 0.02) (-0.08 -0.02) (-0.05 0.02)

World IP 0.22* -0.16 0.05 0.34* 0.18
( 0.04 0.39) (-0.35 0.03) (-0.13 0.23) (0.18 0.51) ( -0.02 0.38)

Dow -0.02 -0.002 0.01 0.04* -0.02
(-0.04 0.01 ) (-0.03 0.03) ( -0.02 0.04) ( 0.01 0.06) (-0.05 0.01)

Oil Price 0.01 0.01 0.01* 0.02* -0.002
(-0.00 0.02) (-0.00 0.02) (0.008 0.03) ( 0.01 0.03) (-0.02 0.01)

Fertilizer Prices 0.01 0.01 0.005 -0.01 0.002
( -0.02 0.00) (-0.01 0.02) ( -0.01 0.02) ( -0.02 0.002) (-0.01 0.02)

US House Price -0.06 0.06 -0.001 0.02 -0.16
( -0.22 0.09) (-0.10 0.24) (-0.16 0.16) (-0.11 0.16) ( -0.34 0.02)

Exchange Rate 0.001 -0.001 0.000 -0.001 0.002
( -0.01 0.01) (-0.01 0.01) (-0.01 0.01) ( -0.01 0.00) (-0.00 0.01)

China Trade 0.000 0.04* -0.004 -0.001 0.02
( -0.02 0.02) (0.02 0.07) (-0.02 0.02) ( -0.02 0.02) (-0.01 0.04)

Climate Anomaly 0.35 0.19 0.25 -0.12 0.01
( -0.28 0.98) (-0.49 0.87) (-0.39 0.89) ( -0.67 0.42) ( -0.64 0.66)

* denotes statistical signi�cance

Table 13: Quarterly Regression Results. Notes: Each column represents a seperate Bayesian
Regression on the variables listed in rows. Constant is excluded as in estimation. China Trade
is measured as the volume of exports and imports. Variables except FFR and Exchange Rate
are all percentage growth rates. FFR and Exchage rate are in de�ated levels. Credible Intervals
that are measured by the 5th and 95th percentiles are shown below of each coe¢ cient.
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Annual Regression Results

V ariable Name Global Cluster-1 Cluster-2 Cluster-3 Cluster-4

Federal Funds Rate -0.001 -0.037 -0.009 -0.06* -0.04
(-0.06 0.05) (-0.02 0.09) (-0.05 0.036) (-0.11 -0.01) (0.1 -0.01)

World IP 0.14* -0.098 -0.074 0.037 0.13*
(0.25 0.3) (-0.02 0.22) (-0.16 0.02) (-0.06 0.136) (0.02 0.24)

Dow -0.02 0.02* 0.002 0.01 -0.01
(-0.04 -0.002) (0.001 0.04) (-0.01 0.02) (-0.01 0.03) (-0.03 0.01)

Oil Price -0.001 0.01 0.002 0.0073 -0.0085
(-0.01 0.01) (-0.001 0.02) (-0.01 0.01) (-0.00 0.02) (-0.02 0.001)

Fertilizer Prices 0.003 -0.001 0.01* -0.003 -0.001
(-0.01 0.01) (-0.01 0.01) (0.00 0.01) (-0.01 0.00) (-0.01 0.01)

US House Price -0.017 0.044 0.028 0.059 -0.008
(-0.09 0.06) (-0.04 0.13) (-0.03 0.09) (-0.01 0.12) (-0.08 0.07)

Exchange Rate -0.004 -0.011 -0.004 -0.01* -0.01
(-0.01 0.01) (-0.02 0.001) (-0.01 0.01) (-0.02 -0.002) (-0.02 0.00)

China GDP 0.0154 0.04* 0.026 0.024 0.03
(-0.02 0.05) (0.003 0.07) (-0.00 0.05) ( -0.01 0.05) (-0.06 0.003)

Bio Fuel -0.001 0.003 -0.009 0.01 0.016
(-0.02 0.02) (-0.02 0.02 ) (-0.02 0.004) (-0.00 0.03) (-0.001 0.03)

Climate Anomaly -0.21 0.75 -0.48 -0.19 -0.43
(-0.97 1.4) (-0.5 1.96) (-1.52 0.57) (-1.3 0.92) (-1.65 0.78)

* denotes statistical signi�cance

Table 14: Annual Regression Results. Notes:Each column represents a seperate Bayesian Re-
gression on the variables listed in rows. Constant is excluded as in estimation. Variables except
FFR and Exchange Rate are all percentage growth rates. FFR and Exchage rate are in de�ated
levels. Credible Intervals that are measured by the 5th and 95th percentiles are shown below
of each coe¢ cient.
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Figure 8: Supply Growth. Notes: Total supply growth in metric tones of Maize, Meat (total),
Seafood (total) and Vegetables (total) for Australia during the draught period. Annual data is
gethered from Food and Agriculture Organization of the United Nations Statistics (FAOSTAT).
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Figure 9: Commodity Price Indexes. Notes: Nominal Commodity Price Index and Nominal
Commodity Price indices for major subgroups, metals, food, energy and materials. The quar-
terly series extracted from IFS database.
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Figure 10: Cross Correlations. Notes: Histogram lists all the pairwise cross correlations across
42 non-energy nominal commodity prices.
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Figure 11: Estimated Median Global Factor. Notes: Shaded areas represent the NBER reces-
sions.
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Figure 12: Estimated Median Cluster-1 ("Timber"). Notes: Shaded areas represent the NBER
recessions. This cluster is dominantly made of logs and wood, lamb meat weakly belong to this
cluster.
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Figure 13: Estimated Median Cluster-2 ("Grains, Oil"). Notes: Shaded areas represent the
NBER recessions. This cluster is dominantly made of grains (except rice) and vegetable oils
(except olive oil). Some other food products and cotton weakly belong to this cluster.
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Figure 14: Estimated Median Cluster-3 ("Mixed"). Notes: Shaded areas represent the NBER
recessions. This cluster consists of metals (except iron), agricultural raw materials (except
cotton and timber) and some food products.
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Figure 15: Estimated Median Cluster-4 ("Co¤ee"). Notes: Shaded areas represent the NBER
recessions. This cluster is dominantly made of co¤ee. Iron, shrimp and swine also weakly
belong to this cluster with the degrees in the written order.
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APPENDIX A

Appendix For Chapter 2

A.1 Technical Details

The following subsections contain the draws omitted from the main text and more

details on the draw of the factors.

A.1.1 Generating �2j���2 ;F;Y

Next, we draw �2n conditional on Y, F, and ���2n . LetYn re�ect the quasi-di¤erence of

the vector Yn and Xn re�ect the quasi-di¤erence of the vector Xn = [1T ; f0; eFn], conditioned
on the accepted value of n. The innovation variance is a straightforward draw from an inverse

gamma posterior

��2n jY;X;���2n � �
 
�0 + T

2
;
�0 +

�
Yn �Xn�n

�0 �
Yn �Xn�n

�
2

!
:

A.1.2 Generating  j�� ;F;Y

The set of serial correlation coe¢ cients,  n =
�
 n1; ::; np"

�
, can be sampled, condi-

tional on �� , F,and Y, in an MH step [Chib (1993); Chib and Greenberg (1994)]. We draw

a candidate  �n from the proposal density:  �n � N (wn;Wn), where

Wn =W0 + �
�2
n "

0
n"n;

wn =Wn

�
W�1

0 w0 + �
�2
n "

0
nb"n0� ;

"n = [b"n1; :::;b"np" ], b"nk = ["n;p"+1�k; :::; "n;T�k]0, and
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"nt = ynt � �n0 � �nGft �
MX
i

ni�niFit:

Once we have obtained a candidate, it is accepted with probability

An; = min

�
	( �n)

	 ( n)
; 1

�
; (15)

where

	( n) = j�nj�1=2 exp
�
� 1

2�2n
(Yn �Xn�n)

0��1n (Yn �Xn�n)

�
;

the quantity �n is the function de�ned above of either the candidate or last iteration value of

 n, and the denominator in (15) is computed with the value from the previous iteration. Thus,

the acceptance probability is the ratio of the pseudolikelihoods for the candidate and the past

accepted draw.

A.1.3 Generating �j���;F;Y

The draw for �i =
�
�i0;�i1; ::;�ipF

�
for i = 1; :::;M is similar to the draw of  n the

subsection. The candidate factor AR coe¢ cients are drawn from the proposal: ��i � N (vi;Vi),

where

vi = Vi

�
V�1
0 v0 + e

0
ibei0� ;

Vi = V0 + "
0
i"i;

ei = [bei1; :::; beipF ], beik = [ei;pF+1�k; :::; ei;T�k]0, and
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eit = Fit � �i (L)Fit�1:

As before, the candidate is accepted with a probability

An;� = min

8<: 	(��i )

	
�
�
[g�1]
i

� ; 1
9=; ;

where the pseudolikelihood, 	(�i), is

	(�i) = j
ij�1=2 exp
�
�1
2
be0i0
�1i bei0�

with 
i de�ned as above. The same algorithm is repeated to obtain the AR parameters for

the global factor.

A.1.4 Generating Fj�;�;Y

The factors are generated recursively from posterior distributions obtained from the

modi�ed Kalman �lter described in Kim and Nelson (1999). For notational simplicity, we

describe the case in which the factors and observation errors have the same lag order, p. Let

eyt = yt � �0 represent the conditionally demeaned data and �t = [F
0
t ; "

0
t; :::; F

0
t+1�p; "

0
t+1�p]

0 be

the state vector. De�ne N =M +N +1. Then, the state-space representation is described by

eyt = H�t; (16)

where

H =

�
�G � 1N�N 0N�N(p�1)

�
;
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�t = G�t�1 + ût; (17)

G =

26664 G1 � � � Gp

1N(p�1)�N(p�1) 0N(p�1)�N

37775 ;

Gi = diag
�
�G;i; �1;i; :::; �M;i;  1;i; :::;  N;i

�
; ût =

h
e0t; �

0
t;0

0
N�(p�1)

i0
; Et [ûtû0t] = Q; and

Q =

2664 diag
�
!2G; !

2
1; :::; !

2
M ; �

2
1; :::; �

2
N

�
0N�N(p�1)

0N(p�1)�N 0N(p�1)�N(p�1)

3775 :

The Kalman �lter sequentially updates the linear projection for the system (16) and

(17) above. Given an initialization for the state vector, �0j0, and for the unconditional density

of the state vector; P0j0, the Kalman �lter computes the prediction density by propagating the

state vector through the transition equation, (17), to obtain an estimate of the state vector at

period t conditional on information available at time t� 1:

�tjt�1 = G�t�1jt�1;

Ptjt�1 = GPt�1jt�1G
0 +Q:

The �lter then updates this prediction given the new (observable) information realized at time

t as:

�tjt = �tjt�1 + Ptjt�1H
0(H 0Ptjt�1H +R)�1(eyt �H�tjt�1);

Ptjt = Ptjt�1 � Ptjt�1H 0(H 0Ptjt�1H +R)�1HPtjt�1:
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The factors are then sampled recursively from a Gaussian distribution with one addi-

tional step. Because Q is singular and we are only interested in drawing the factors, Kim and

Nelson (1999) show that the dimensions of Q, G, and the state variable must be reduced. They

de�ne Q� as the upper (M + 1)� (M + 1) submatrix of Q and

G� =

�
G1 0(M+1�N) G2 0(M+1�N) � � � Gp 0(M+1�N)

�
;

where Gi is de�ned above.

The last iteration of the Kalman �lter yields �T jT and PT jT from which we can draw

FT . Then, we recursively draw Ft�1 from N
�
�tjt;��t+1 ; Ptjt;�

�
t+1

�
, where

�tjt;��t+1 = �tjt + P
0
tjtG

�0(G�PtjtG
�0 +Q�)�1(��t+1 �G��tjt);

Ptjt;��t+1 = Ptjt � PtjtG�0(G�PtjtG�0 +Q�)�1G�Ptjt:

A.1.5 Computing the Bayes Factors

Chib (1995) uses the basic marginal likelihood identity to approximate the marginal

likelihood using the output from the Gibbs sampler:

ln bm (Y) = ln f (Yj��) + ln� (��)� ln b� (��jY) ; (18)

where � is the vector of model parameters, ln bm (Y) is the log marginal likelihood, ln f (Yj��)

is the log likelihood evaluated at a given � = ��, ln� (��) is the log of the prior evaluated at

��, ln b� (��jY) is the posterior ordinate, and �� is any high density value of � (e.g., a modal

point).

The posterior ordinate ln b� (��jY) can be computed by expanding the expression
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b� (��jY) as

b� (��jY) = � (��1jY)� � (��2jY;��1)� :::� �
�
��N jY;��1; :::;��N�1

�
;

where here N represents the number of blocks in the sampler. The �rst term can be obtained

from the initial run of the Gibbs sampler. A typical term for block n in the above representation

is �
�
��njY;��1; :::;��n�1

�
, which can be estimated by additional sampling of f�n+1:::;�N ;Fg

holding constant f��1; :::;��ng. In general, the estimate of the posterior ordinate, b� (��njY), is
then

b� (��njY) = 1

G

GX
g=1

�
�
��njY;��1; :::;��n�1;�

(g)
n+1; :::;�

(g)
N ; F

(g)
0 ; F

(g)
1 ; :::; F

(g)
M ; f

(g)
1 ; :::; f

(g)
N

�
:

For the blocks requiring an MH step, we employ the method of Chib and Jeliazkov

(2001), which computes the posterior ordinate as proportional to the sum of the candidates

weighted by their appropriate acceptance probabilities.
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A.2 Data

The indices in (1), (2) and (3) above are obtained from Baxter and Kouparitsas (2003).

Openness is measured in constant prices (percent in 2005 constant prices); exports + imports

divided by RGDPL and represents the total trade as a percentage of GDP. Investment share

of real GDP per capita (RGDPL) is de�ned in 2005 constant prices. Real GDP chain per

equivalent adult in 2005 constant prices computes output with weights of 1.0 to all persons over

15 and 0.5 for those under age 15.

Country Listing

Oceania Latin America Europe Africa Asia 1 Asia 2
Australia C. Rica Bolivia France Italy Cameroon Bangladesh H.K.
N.Z. D. Repub. Brazil Austria Lux. I. Coast India Japan

El Salv. Chile Belgium Neth. Kenya Indonesia S. Korea
N. America Guat. Columbia Denmark Norway Morocco Pakistan Malaysia
Canada Hond. Ecuador Finland Portugal Senegal Philippines Sing.
U.S. Jamaica Paraguay Germany Spain S. Africa Sri Lanka Thailand
Mexico Panama Peru Greece Sweden Zimbabwe

Trinidad Uruguay Iceland Switz.
Argentina Venezuela Ireland U.K.

Table 15: Country Listing. Notes: Regions in bold re�ect the groupings imposed in Kose,
Otrok, and Whiteman (2003).
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A.3 Full Posterior Distributions

Posterior Means and Coincidence Intervals for Cluster Loadings - I

�1 �2 �3
Mean 16th-84th Mean 16th-84th Mean 16th-84th

Argentina -0.56 -0.89 -0.27 0.57 0.57 0.57 1.19 0.79 1.59
Australia NA NA NA 1.24 1 1.5 NA NA NA
Austria -1.06 -1.25 -0.87 1.42 1.31 1.64 NA NA NA

Bangladesh 0.14 -0.27 0.54 0.27 -0.18 0.68 -0.06 -0.43 0.33
Belgium -1.3 -1.49 -1.13 1.18 0.69 1.65 0.93 0.64 1.31
Bolivia -0.14 -0.43 0.23 0.21 -0.18 0.59 0.74 0.36 1.09
Brazil -1.23 -1.63 -0.85 -0.06 -0.57 0.47 1.23 0.82 1.63

Cameroon -0.01 -0.55 0.5 0.68 0.15 1.2 0.39 -0.14 0.89
Canada -1.1 -1.37 -0.74 1.69 1.46 1.93 0.99 0.83 1.27
Chile -0.08 -0.53 0.48 0.15 -0.46 0.75 0.88 0.44 1.34

Colombia -0.34 -0.57 -0.2 0.3 0.3 0.3 0.64 0.45 0.82
Costa Rica -0.65 -0.75 -0.52 0.98 0.61 1.22 0.93 0.66 1.19
Ivory Coast -0.87 -1.36 -0.35 0.54 0.01 1.08 -0.06 -0.56 0.44
Denmark -1.02 -1.31 -0.73 1.15 0.87 1.43 NA NA NA

Dom. Republic -0.56 -1.02 -0.14 0.93 0.47 1.39 0.85 0.44 1.26
Ecuador -0.34 -0.76 0.07 -0.31 -0.6 0.05 1.01 0.63 1.38
El Salvador -0.32 -0.6 -0.03 0.78 0.4 1.2 0.74 0.4 1.1
Finland -1.78 -2.09 -1.47 NA NA NA NA NA NA
France -1.26 -1.47 -1.06 1.33 0.68 1.94 0.77 0.05 1.49
Germany -0.55 -0.76 -0.33 0.36 0.15 0.59 0.2 -0.01 0.38
Greece -1.03 -1.47 -0.61 0.87 0.51 1.27 0.36 -0.03 0.74

Guatemala -0.47 -0.7 -0.17 0.1 -0.26 0.45 0.65 0.37 0.92
Honduras 0.28 -0.11 0.54 0.2 -0.27 0.69 0.88 0.57 1.19
Hong Kong -0.65 -1.15 -0.16 0.96 0.43 1.51 0.92 0.44 1.43
Iceland -1.07 -1.56 -0.58 1.25 0.74 1.76 1 0.53 1.49
India -0.22 -0.61 0.14 0.56 0.14 0.97 0.11 -0.29 0.49

Indonesia 0.03 -0.36 0.43 0.16 -0.33 0.64 0.14 -0.24 0.52
Ireland -0.92 -1.31 -0.52 0.8 0.37 1.23 0.3 -0.17 0.77
Italy -1.34 -1.56 -1.11 NA NA NA NA NA NA

Jamaica 0.05 -0.39 0.49 -0.01 -0.47 0.45 -0.19 -0.64 0.28

Table 16: Posterior Means and Coincidence Intervals for Cluster Loadings - I. Notes: The
columns show posterior means, 16th and 84th percentiles for the cluster loadings.
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Posterior Means and Coincidence Intervals for Cluster Loadings - II

�1 �2 �1
Mean 16th-84th Mean 16th-84th Mean 16th-84th

Japan -0.74 -1.05 -0.42 0.03 -0.27 0.37 -0.04 -0.48 0.45
Kenya -0.34 -0.7 0.04 0.54 0.15 0.94 0.34 0.03 0.68
Korea -0.27 -0.69 0.13 0.73 0.27 1.19 -0.51 -0.87 -0.17

Luxemburg -1.41 -1.82 -1.02 0.94 0.55 1.43 0.11 -0.34 0.56
Malaysia -0.12 -0.5 0.27 0.24 -0.16 0.65 0.43 -0.04 0.91
Mexico -0.53 -0.93 -0.06 0.56 0.01 1.1 0.87 0.5 1.26
Morocco -0.53 -1.11 0.06 -0.4 -0.92 0.13 -0.22 -0.77 0.31

Netherlands -0.95 -1.17 -0.74 0.9 0.65 1.15 0.66 0.66 0.66
New Zealand -0.42 -0.9 -0.02 1.13 0.74 1.52 -0.16 -0.16 -0.16
Norway -0.65 -0.87 -0.41 0.32 0.02 0.67 0.75 0.44 1.1
Pakistan -0.51 -0.77 -0.25 0.26 -0.05 0.56 0.33 0.03 0.62
Panama -0.45 -0.97 -0.07 -0.4 -0.45 -0.35 0.7 0.32 1.06
Paraguay -0.32 -0.73 -0.01 -0.08 -0.26 0.06 0.52 0.14 0.92
Peru -0.74 -1.22 -0.24 0.77 -0.09 1.56 1.1 0.65 1.55

Philippines -0.4 -0.77 0 0.15 -0.38 0.67 0.76 0.44 1.09
Portugal -1.55 -1.92 -1.19 NA NA NA -0.03 -0.27 0.15
Senegal 0.19 -0.14 0.54 -0.15 -0.53 0.24 0.07 -0.21 0.34
Singapore -0.19 -0.67 0.3 0.2 -0.39 0.8 0.41 -0.11 0.89
South Africa -0.16 -0.5 0.16 0.05 -0.24 0.35 0.08 -0.37 0.43

Spain -1.17 -1.45 -0.9 NA NA NA -0.37 -0.73 -0.09
Sri Lanka -0.89 -1.21 -0.57 0.14 -0.24 0.49 0.39 0.08 0.75
Sweden -1.15 -1.35 -0.95 NA NA NA NA NA NA

Switzerland -1.17 -1.37 -0.97 NA NA NA NA NA NA
Thailand 0.46 0.09 0.82 -0.46 -0.87 -0.05 -0.15 -0.53 0.18

Trinidad&Tobago -0.98 -1.54 -0.46 -0.07 -0.68 0.55 1.02 0.42 1.53
United Kingdom NA NA NA 1.19 0.96 1.43 NA NA NA
United States -1.4 -1.99 -1.03 1.72 1.45 1.98 NA NA NA
Uruguay 0.07 -0.32 0.48 0.17 -0.4 0.7 1.12 0.6 1.61
Venezuela -0.25 -0.95 0.04 NA NA NA 1.36 0.91 1.8
Zimbabwe -0.58 -1.26 0.1 -0.52 -1.29 0.3 -0.2 -0.97 0.65

Table 17: Posterior Means and Coincidence Intervals for Cluster Loadings - II. Notes: The
columns show posterior means, 16th and 84th percentiles for the cluster loadings. �NA�rep-
resents that the observation never chose that cluster and its corresponding loading was not
sampled.
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Posterior Means and Coincidence Intervals for Parameters - I

�0 �G �2

Mean 16th-84th Mean 16th-84th Mean 16th-84th
Argentina 0.05 -0.71 0.82 0.07 -0.4 0.54 13.13 10.17 16.07
Australia 0.6 0.04 1.15 -0.33 -0.6 -0.06 2.79 2.17 3.4
Austria 0.05 -0.37 0.49 -0.62 -0.85 -0.39 1.7 1.31 2.09

Bangladesh 0.78 0 1.54 0.14 -0.29 0.58 13.73 10.88 16.52
Belgium -0.41 -0.81 -0.02 -0.66 -0.87 -0.45 0.79 0.49 0.91
Bolivia -0.31 -0.98 0.36 -0.27 -0.63 0.08 6.13 4.79 7.47
Brazil -0.02 -0.83 0.8 -0.49 -0.95 -0.02 9.82 7.69 11.92

Cameroon 0.43 -0.44 1.33 0.71 0.15 1.27 20.92 16.61 25.3
Canada 0.23 -0.34 0.81 -0.36 -0.63 -0.09 0.72 0.38 0.97
Chile 0.04 -0.82 0.89 -1.07 -1.56 -0.59 12.43 9.7 15.14

Colombia 0.38 -0.1 0.86 -0.53 -0.75 -0.3 1.6 1.2 1.99
Costa Rica 0.72 0.11 1.34 -0.15 -0.51 0.21 5.52 4.26 6.76
Ivory Coast -0.25 -1.1 0.59 -0.21 -0.71 0.29 24.75 19.7 29.8
Denmark 0.37 -0.25 1 -0.46 -0.78 -0.14 4.38 3.45 5.31

Dom. Republic 0.99 0.22 1.79 -0.53 -1.02 -0.05 16.69 15.64 23.76
Ecuador 0.04 -0.74 0.8 -0.19 -0.61 0.23 8.78 6.87 10.64
El Salvador 0.17 -0.48 0.81 -0.11 -0.44 0.23 5.23 4.06 6.37
Finland 1.16 0.47 1.86 0.58 0.2 0.95 3.93 2.86 4.98
France -0.25 -0.68 0.17 -0.46 -0.68 -0.24 0.94 0.66 1.16
Germany -0.28 -0.9 0.33 -0.67 -0.89 -0.45 1.4 1.08 1.72
Greece 0.23 -0.59 1.08 -0.79 -1.24 -0.35 9.42 7.45 11.4

Guatemala -0.39 -1.08 0.3 -0.78 -1.06 -0.5 3.13 2.39 3.86
Honduras -0.09 -0.76 0.6 -0.12 -0.51 0.27 10.27 8.01 12.52
Hong Kong 0.64 -0.21 1.51 -1.61 -2.1 -1.12 11.66 9.13 14.21
Iceland 0.87 0.02 1.7 0 -0.55 0.54 22.09 17.54 26.7
India 1.60 0.79 2.4 -0.19 -0.6 0.21 8.56 6.79 10.28

Indonesia 0.23 -0.53 1 -1.71 -2.1 -1.32 6.66 5.07 8.26
Ireland 0.50 -0.35 1.36 -0.99 -1.41 -0.57 7.3 5.78 8.82
Italy -0.60 -1.1 -0.1 -0.77 -1.04 -0.5 1.87 1.42 2.32

Jamaica 0.10 -0.73 0.94 -0.31 -0.77 0.16 12.64 10.08 15.22

Table 18: Posterior Means and Coincidence Intervals for Parameters - I. Notes: The columns
show posterior means, 16th and 84th percentiles for the parameters: intercept, global factor
loading and the idiosyncratic variance.
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Posterior Means and Coincidence Intervals for Parameters - II

�0 �G �2

Mean 16th-84th Mean 16th-84th Mean 16th-84th
Japan 0.22 -0.68 1.13 -1.03 -1.4 -0.65 4.72 3.68 5.77
Kenya -0.11 -0.87 0.63 -0.01 -0.38 0.36 12.87 10.22 15.49
Korea 1.43 0.56 2.28 -1.95 -2.38 -1.52 8.9 6.73 11.06

Luxemburg 0.1 -0.74 0.91 -0.58 -1.02 -0.14 7.63 6.03 9.21
Malaysia 0.73 -0.01 1.46 -1.81 -2.19 -1.43 4.75 3.49 6.05
Mexico 0.24 -0.46 0.94 -0.49 -0.91 -0.07 9.85 7.77 11.9
Morocco 0.21 -0.78 1.2 0 -0.59 0.6 23.83 19.09 28.6

Netherlands 0.03 -0.47 0.52 -0.44 -0.7 -0.19 2.22 1.73 2.7
New Zealand 0.19 -0.56 0.93 -0.16 -0.56 0.25 7.94 6.29 9.54
Norway 1.52 0.97 2.08 -0.24 -0.51 0.02 2.93 2.3 3.55
Pakistan 1.56 0.85 2.29 -0.06 -0.39 0.26 4.77 3.79 5.73
Panama 1.13 0.42 1.84 -0.41 -0.84 0.01 15.03 11.89 18.15
Paraguay 0.34 -0.45 1.13 0.01 -0.44 0.47 9.83 7.82 11.79
Peru 0.49 -0.3 1.3 0.2 -0.32 0.71 13.54 10.5 16.62

Philippines -0.02 -0.73 0.7 -0.62 -1.09 -0.15 8.99 7.09 10.88
Portugal -0.64 -1.4 0.11 -1.14 -1.58 -0.69 6.84 5.29 8.35
Senegal 0.82 0.12 1.53 0.81 0.44 1.2 13.2 10.33 15.96
Singapore 0.60 -0.23 1.42 -2.17 -2.7 -1.64 13.83 10.29 17.31
South Africa 0.85 0.1 1.6 -0.12 -0.45 0.22 3.46 2.76 4.17

Spain 0.42 -0.54 1.37 -0.18 -0.5 0.13 3.14 2.45 3.81
Sri Lanka 0.74 -0.05 1.53 -0.44 -0.8 -0.07 6.4 5.06 7.77
Sweden 1.05 0.5 1.58 0.39 0.09 0.68 1.55 1.12 1.97

Switzerland -0.52 -0.99 -0.05 -0.27 -0.51 -0.03 1.47 1.14 1.8
Thailand 1.70 0.93 2.49 -1.58 -2.01 -1.16 6.28 4.59 7.94

Trinidad&Tobago 0.1 -0.84 1.03 -1.16 -1.78 -0.53 28.9 22.77 35.02
United Kingdom 0.29 -0.25 0.84 -0.46 -0.71 -0.22 1.71 1.32 2.1
United States -0.66 -1.25 -0.05 -0.8 -1.07 -0.5 1.07 0.71 1.41
Uruguay -0.13 -0.92 0.68 -0.36 -0.87 0.15 13.85 10.89 16.83
Venezuela -0.79 -1.6 0.03 -0.18 -0.69 0.32 21.42 16.7 26.08
Zimbabwe -0.12 -1.05 0.81 0.05 -0.69 0.78 86.19 69.1 103.16

Table 19: Posterior Means and Coincidence Intervals for Parameters - II. Notes: The columns
show posterior means, 16th and 84th percentiles for the parameters: intercept, global factor
loading and the idiosyncratic variance.

89



Cluster Probabilities - Posterior Means

Cluster 1 Cluster 2 Cluster 3 Cluster 1 Cluster 2 Cluster 3
Argentina 0 0 1 Japan 0.95 0.04 0.01
Australia 0 1 0 Kenya 0.07 0.89 0.04
Austria 1 0 0 Korea 0.43 0.38 0.19

Bangladesh 0.27 0.25 0.48 Luxemburg 0.95 0.03 0.02
Belgium 0.98 0.02 0 Malaysia 0.09 0.9 0.01
Bolivia 0.01 0 0.99 Mexico 0.03 0 0.96
Brazil 0.69 0.02 0.28 Morocco 0.15 0.04 0.81

Cameroon 0.07 0.79 0.14 Netherlands 1 0 0
Canada 0.01 0.99 0 New Zealand 0.01 0.99 0
Chile 0.02 0 0.98 Norway 0.9 0.03 0.07

Colombia 0 0 1 Pakistan 0.52 0.35 0.13
Costa Rica 0 0 1 Panama 0.01 0 0.99
Ivory Coast 0.23 0.66 0.1 Paraguay 0.01 0 0.99
Denmark 0.2 0.8 0 Peru 0.03 0 0.97
Dom. Rep. 0.07 0.02 0.91 Philippines 0.06 0.05 0.88
Ecuador 0.02 0 0.98 Portugal 1 0 0
El Salvador 0.03 0.03 0.94 Senegal 0.09 0.29 0.62
Finland 1 0 0 Singapore 0.45 0.42 0.13
France 0.99 0.01 0 South Africa 0.03 0.97 0
Germany 0.91 0.06 0.04 Spain 1 0 0
Greece 0.88 0.07 0.05 Sri Lanka 0.9 0.02 0.08

Guatemala 0.02 0 1 Sweden 1 0 0
Honduras 0 0 0 Switzerland 1 0 0
Hong Kong 0.05 0.95 0 Thailand 0.62 0.37 0.02
Iceland 0.59 0.1 0.31 Trinidad & Tobago 0.55 0.44 0.1
India 0.12 0.85 0.03 United Kingdom 0 1 0

Indonesia 0.21 0.62 0.17 United States 0 1 0
Ireland 0.63 0.35 0.01 Uruguay 0.02 0.01 0.97
Italy 1 0 0 Venezuela 0 0 1

Jamaica 0.47 0.48 0.04 Zimbabwe 0.19 0.77 0.04

Table 20: Cluster Probabilities - Posterior Means. Notes: Each value represents the posterior
means of cluster membership indicator for each country.
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APPENDIX B

Appendix For Chapter 3

B.1 Estimation Details

Following FOS (2012) and Kose et al. (2003), I estimate the model presented in

equation (9) via Gibbs sampling. In particular, I utilize Metropolis-Hastings in Gibbs sampling

to draw from the joint posterior distribution of the factors and the model�s parameters. Given

an initial draw of model�s parameters, the factors can be extracted using Kalman �lters based

on Kim and Nelson (1999). In the next step, taking these factors as given, one can sample from

the conditional density of the parameters. Once the parameters are known, Kalman �ltering

technique is applied again to extract the factors. Sampling from the conditional densities of

the parameters and the factors is repeated many times. This is known as Gibbs sampling and

under the regulatory assumptions (see Chip and Greenberg, 1995) these sequence of draws

from the conditional distributions converge to the joint posterior density of the entire system,

independent of the initial values selected.

To describe the sampler fully, letY represent the data, � represent the full set of model

parameters and let F represent the factors. We can de�ne the set of blocks of parameters

to be estimated in the sampler as: (1) the set of intercepts, �i and global factor loadings,

�i0 collected in the set � =f�i; �i0g; (2) the set of innovation variances, �2 = f�2i g; (3) the

set of autoregressive parameters for the factors, � = f�0; :; �Jg, (4) the sectoral factor loadings

� = f�i;jg joint with the group probabilities  = fi;jg, (5), the set of factors, F = fF0;Fjg and

(6) the set of autoregressive parameters for the factors, ' = f'1; :; 'Ig

The steps of the Gibbs algorithm to sample from the joint distribution of �;F are

given as follows:
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Step 1: Specify starting values �(0); F(0) and set n = 0.

Step 2: Simulate the unknown variables;

2.1: Sample �(n+1) from p( �j(�2)(n); �(n); (�; )(n); '(n); F (n); Y );

2.2: Sample (�2)(n+1) from p( �2j�(n+1); �(n); (�; )(n); '(n); F (n); Y );

2.3: Sample (�;)(n+1) from p( �;j�(n+1); (�2)(n+1); �(n); '(n); F (n); Y );

2.4: Sample �(n+1) from p( j�(n+1); (�2)(n+1); (�; )(n+1); '(n); F (n); Y );

2.5 Sample '(n+1) from p( 'j�(n+1); (�2)(n+1); (�; )(n+1); �(n+1); F (n); Y );

2.6 Apply Kalman Filter and sample F(n+1) .

Step 3: Set n = n+ 1 and go to step 2.

This iteration loop is repeated 30,000 times and the initial 25,000 draws are discarded

to allow for convergence. To initialize the sampler, I generate factors from a uniform normal

distribution, and run the regressions of (9) and (10) separately. The coe¢ cient estimates of

factor loadings, factor AR parameters and variances for measurement errors are then used to

start the sampler.

B.1.1 The Prior Distributions

The prior distributions and their corresponding hyperparameters are given below:

Priors for Estimation - II

Parameter Prior Distribution Hyperparameters
�i =

�
�i; �i;0

�0
N (r;R) r = 02 ; R = I2 8 i

�i;j N (b;B) b = 0 ; B = 1 8 i; j
�2i I�

�
�
2 ;

�
2

�
� = 6 ; � = 0:1 8 i

i;j Uniform (�) �ij =
1
J 8 i; j

� N (�;�) � = 0qf ; � =
1
2Iqf 8 j

' N
�
��; ��

�
�� = 0q"; �� =1

2Iq" 8 i

Table 21: Priors for Estimation - II.

Note that the cluster membership indicator has a uniform prior over all clusters �that

is, a priori, a series is equally likely to belong to any cluster. Also, recall that the factor
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innovation variances, �2k, are constant and predetermined.

B.1.2 Notations

� The variance-covariance matrix for each factor k is �2k�k, where

vec (�k) =
�
I � �Fk 
 �Fk

��1
vec

�
u0qfuqf

�
;

and

�Fk =

2664 �k

Iqf�1 0qf�1�1

3775
is the companion matrix associated with autoregression (10). uqf is a

�
qf � 1

�
vector with a 1

as the �rst element and zeros as the rest.

� The variance-covariance matrix for each observation is �2i
i where

vec (
i) = (I � Zi 
 Zi)�1 vec
�
u0q"up"

�
:

Zi =

2664 'i

Iq"�1 0q"�1�1

3775
is the companion matrix associated with autoregression (11). uq" is a (q" � 1) vector with a 1

as the �rst element and zeros as the rest. To quasi-di¤erence the factors following Chib and

Greenberg (1994) (Otrok and Whiteman, 1998 as well) I use the matrix de�ned below;
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S�1i =

2664 C�1i 0

�"i

3775 :
where Ci is the Cholesky matrix of 
i, and

�"i =

2666666666666664

�'iq" � � � �'i1 1 0 � � � � � � 0

0 �'iq" � � � �'i1 1 0 � � �
...

... 0 �'iq" � � � �'i1 1 0
...

...
...

. . . . . . . . . . . .
...

...

0 0 � � � � � � �'iq" � � � �'i1 1

3777777777777775
:

S�1i is used to quasidi¤erence the data.

� From (10), kth factor measurement error is given by

ekt = Fkt � �k (L)Fkt�1

Then, one can stack the factor measurement error as a vector bekq = �ek;qf+1�q; :::; ek;T�q�0
and de�ne

ek =
�bek1; :::; bekqf � :

� Similarly, From (11) ith idiosyncratic measurement error is given by;

"it = yit � �i � �i;0F0;t �
JX
j

i;j�i;jFjt:

Then stack "it as a vector b"iq = ("i;q"+1�q; :::; "i;T�q)0 and de�ne
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"i = [b"i1; :::;b"iq" ] :
� Let I be the total number of observations. i = (1; 2::: J) denotes the probability

of belonging to clusters from 1 to J for each series i. By assumption only one of i�s

elements is 1 where all the others are zero.

B.1.3 The Sampler

B.1.3.1 Generating �j���;F;Y

Given previous draw of factors, the equations in (9) are just i independent regressions

with serially correlated errors. Following Chib and Greenberg (1994) we need to account for the

serially correlation in the error structure before writing down the distribution of the parameter

block. This can be done by building the likelihood for the �rst q" observations and continue

building the posterior distribution for the rest. To begin de�ne X�i = [1T ; F0], where 1T is a

(T � 1) vector of ones and F0 is the last draw of the global for series i; respectively and let

Y�
i = Yi �

PJ
j=1 ij�ijFj;t. The following steps lists the process as in Chib and Greenberg

(1994)

1. eX�i;1 =
26666664
1 F0;1

::: :::

1 F0;q"

37777775denote the �rst q
" rows of X�i ;

2. eY�
i;1 = (Y

�
i;1; Y

�
i;2; :::;Y

�
i;q") denote the �rst q

" observations of Y�
i ;

3. eXi;1 = Q�1i
eX�i;1 and eYi;1 = Q�1i

eY�
i;1;

4. eXi;2 be a (T � q")� 2 matrix with tth row given by 'i(L)(X�i;t)
0
;

5. eYi;2 be a vector of length (T � q") with tth row given by 'i(L)(Y�
i;t)

0
;
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6. Finally, in stack form de�ne eXi =

2664 eXi;1

eXi;2

3775 and eYi =

2664 eYi;1

eYi;2

3775 :
Then for each observation i; �i = [�i; �i0]

0 is drawn from

�ij���i ;F;Y �N (ri;Ri) ;

where Ri =
�
R�10 + ��2i

eX0i eXi

��1
and ri = Ri

�
R�10 r0 + �

�2
i
eX0i eYi

�
.

B.1.3.2 Generating �2j���2 ;F;Y

�2i conditional on Y and ���2i , can be drawn from the inverse gamma posterior;

��2i jY;X;���2i� �
�
�0 + T

2
;

2

d0 + d0idi

�
;

where di = eYi � eXi�i.

B.1.3.3 Generating ;�j��;�;F;Y

This step samples the cluster probability and the cluster loadings jointly following FOS

(2012). FOS simply utilize an algorithm similar to that of sections 2.5 and 2.6 in Holmes and

Held (2006). The joint distribution we are interested in is:

p (�;j�;F) = p (j�;F) p (�j�;;F) :

As the closed form for the joint density is not available, this step requires a Metropolis-

Hastings sampler within Gibbs draw. Following, Holmes and Held (2006) we can de�ne a joint

proposal density, q (��i ; 
�
i ) as;
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q (��i ; 
�
i ) = p (��i j�i ;�;F) q (�i ji) ;

where ��i and 
�
i are the candidates and �i and i are held over from the last draw.

The idea is to draw �i from a proposal density and to sample �
�
i from its full conditional

distribution given this current draw of �i : The candidates �
�
i and 

�
i are then accepted with an

acceptance probability �: If the candidates are rejected, then the past draws are retained.

The proposal density for i; is assumed to be symmetric in which one draws a random

element i;j and set it equal to 1, while setting all other elements of i to zero. Given this draw

of cluster probability, one can sample the candidate ��i from the full conditional distribution.

In order to compute it, similar to the draw for �i; �rst de�ne Xi =
P

j 
�
ijFj and Yi =�

Yi � �i1t � �0;iF0
�
, and let;

1. X
�
i;1 =

26666664
P

j 
�
i;jFj;1

:::P
j 

�
i;jFj;q"

37777775denote the �rst q
" rows of Xi;

2. Y
�
i;1 = (Yi;1; Yi;2; :::;Yi;q") denote the �rst q" observations of Yi;

3. bX�i;1 = Q�1i X
�
i;1 and bY�

i;1 = Q�1i Y
�
i;1;

4. bX�i;2 be a vector of length (T � q") matrix with tth row given by 'i(L)(Xi;t)
0
;

5. bY�
i;2 be a vector of length (T � q") with tth row given by 'i(L)Yi;t;

6. Finally, in stack form de�ne bXi =

2664 bX�i;1
bX�i;2

3775 and bXi =

2664 bY�
i;1

bY�
i;2

3775 :
Then,candidate ��i can be drawn from the full conditional distribution below:

�ij���; ; 
�
i ;F;Y �N (b�i ;B�i ) ; (19)
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where B�i =
�
B0 + �

�2
i
bX0i bXi

��1
, b�i = B

�
i

�
B�10 b0 + �

�2
i
bX0i bYi

�
.

The acceptance probability is written in the following form:

� = min

�
1;
f (yj�; ��;���; ; F )
f (yj; �;���; ; F )

p (��)

p (�)

p (�)

p ()

q (j�)
q (�j)

q (�j��)
q (��j�)

�
; (20)

where the �rst term is the likelihood; the second term is the prior for  evaluated at either

the candidate or the past draw; the third term is the prior for �; and the last two terms are

the probability of a move. This acceptance probability can be simpli�ed further. First o¤ all,

�0s are drawn from the full conditional densities which cancels out the probabilities with �0s

from above. The choice of the symmetric proposal density for n implies that the probability of

moving from �i to i is exactly the same as moving from i to 
�
i ; so that q (

�
i ji) = q (ij�i ) :

Given also that  has a uniform prior, which implies p (�) = p () ; equation(20) reduces to;

� = min

�
1;
f (yj�; ��;�; F )
f (yj; �;�; F )

�
:

Finally, incorporating the normal likelihoods yields:

�i = min

(
1;
jB�i j

1=2

jBij1=2
exp

�
1
2b

�
iB

��1
i b�i

�
exp

�
1
2biB

�1
i bi

� ) ; (21)

where b�i and B
�
i are de�ned as above and bi and Bi are calculated using the value for i from

the past draw. Note that, the draw of the indicator i determines which series enter into the

distribution of each group factor.
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B.1.3.4 Generating �j���;F;Y

Since the conditional density of � has an unknown form, it cannot be sampled directly.

I apply Chib and Greenberg (1994) in drawing � = [�0;�1; ::;�k] conditional on the factors,

data, and remaining parameters using a Metropolis-Hastings algorithm. For each iteration, one

generates a candidate draw �� from the proposal distribution below:

��k � N
�b�k;V�1

k

�
;

where

Vk = �
�1
k + �2kekek

50

and

b�k = V�1
k

�
��1k �k + �

2
ke
0
kbek0� :

The candidate �� is then accepted with a probability that is determined by the likeli-

hood of the data: �k = min fb�k; 1g, where

b�k = 	(��k)

	
�
�
(n�1)
k

� ;
and

	(�k) = j�k (�k)j�1=2 exp
�
� 1

2�2k
be0k0��1k (�k) bek0� ;

with the superscript n�1 re�ecting the previous iteration. If the draw is less than the acceptance

50Refer to the "notations" above for the equation of ek:
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probability, the candidate is accepted. If not, the past draw is retained. Overall, the draw works

as follows:

1. First generate the candidate from the proposal density, ��;

2. Draw from a standard uniform distribution,

3. If the draw is less than the acceptance probability, �k; set �(n) = ��

4. Otherwise, retain past draw, �(n) = �.

Generating 'j���;F;Y

The draw for ' follows the same steps as the draw for �. The autoregression coe¢ cients

for the innovation coe¢ cients, ' = ['1; ::;'i], conditional on the factors, data, and remaining

parameters are drawn from

'�i � N
�
�i;�

�1
i

�
;

where �i, �i and the pseudolikelihood 	('i), follows from above with the necessary change

in notation. Here we would have �i = ��i + ��2i "i"i; �i = ��1
i

�
��i��i + �

�2
i "

0
ib"i0� and 'i =

j
i ('i)j�1=2 exp
h
� 1
2�2i
b"0i0
�1i ('i)b"i0i :

Generating Fj�;Y

I follow Kim and Nelson (1999) in sampling from the conditional posterior density of the

factors given the model�s parameters, where the draw of the indicator ij determines which series

enter into the distribution of each cluster factor. Assume for simplicity that factors and obser-

vation errors have the same lag length (qf = q") and denote it by q. Ley Yt = (y1;t ; y2;t ; ::: yi;t) ,

Ft = (F0;t; F1;t ::: Fk;t) ,"t = ("1;t; "1;t; ::: "i;t) , et = (e0;t; e1;t; ::: ek;t) and �t = (�0;t; �1;t; ::: �k;t) then
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we can write the state space as by stacking the state variables (factors and observation error

terms):

Measurement Equation:

[Yt] = A + [H]

2666666666666666666666664

Ft

"t

Ft�1

"t�1

...

Ft�q

"t�q

3777777777777777777777775
where A = (�1 ; �2 ; ::: �i)0 and H is (I � (K + I)q)51 matrix given below:

H =

266666666664

�1;0 1;1�1;1 � � � i;J �i;J 1 � � � � � � 0 0 � � � 0

�2;0 2;1�2;1 � � � i;J �i;J 0 1 � � � 0 0 � � � 0

...
...

. . .
...

...
. . . . . .

...
...
. . .

...

�i;0 i;1�i;1 � � � i;J �i;J 0 0 0 1 0 � � � 0

377777777775
with zero variance covariance matrix (R = 0), since we stacked all the observation error terms

("t) as state variables.

Transition Equation:

51K = 1 + J where J is the maximum number of clusters.
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2666666666666664

Ft+1

"t+1

...

Ft+2�q

"t+2�q

3777777777777775
= F

2666666666666664

Ft

"t

...

Ft�q

"t�q

3777777777777775
+

2666666666666664

et+1

�t+1

0

...

0

3777777777777775
where F is (K + I)q � (K + I)q matrix given by,

F =

26664 diag
�
�0;1; �1;1; :::; �J;1;  1;1; :::;  I;1

�
� � � diag

�
�0;q; �1;q; :::; �J;q;  1;q; :::;  I;q

�
1(K+I)(q�1)�(K+I)(q�1) 0(K+I)(q�1)�(K+I)

37775
with variance-covariance matrix;

Q =

2664 diag(�20; �
2
1; :::; �

2
J ; �

2
1; :::; �

2
I) 0(K+I)�(K+I)(q�1)

0(K+I)(q�1)�(K+I) 0(K+I)(q�1)�(K+I)(q�1)

3775
Then the standard Kalman �ltering technique can be applied. Let the state vector

represented as St = [Ft "t ::: Ft�q "t�q]0

Given initial values for S1j0 and for the unconditional density of the state vector P1j0 the

Kalman �lter is run from t = 1 to t = T following the steps below:

The prediction Step:

Stjt�1 = FSt�1jt�1

Ptjt�1 = FSt�1jt�1F 0 +Q
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Update:

Stjt = Stjt�1 + Ptjt�1H
0(H 0Ptjt�1H +R)�1(Yt �A�HStjt�1)

Ptjt = Ptjt�1 � Ptjt�1H 0(H 0Ptjt�1H +R)�1HPtjt�1

Once the Kalman �ltering step is over, the factors can be sampled from a Gaussian

distribution. However as the Q matrix is singular, an additional step is required to modify

these densities as in Kim and Nelson (1999). Their approach is to shrink the size of Q so that

it only contains non-zero elements. Here we only want to sample the factors so we reduce the

Q matrix to size K �K and the F matrix to size K � (q(I +K)). Let ��s denote the reduced

rank matrices, so we can rewrite:

Q� = diag(�20; �
2
1; :::; �

2
J):

and

F� =
�
F1 0(I�I) F2 0(I�I) ::: Fq 0(I�I)

�
where;

Fn = diag(�0;n; �1;n; :::; �J;n) for n = 1 : q:

The last iteration of the Kalman �lter provides us with mean, S�tjt and variance PtjT

which we use to draw the forward period state vector, St+1 from a Normal distribution. Since,

this state vector is full in size we keep its �rstK elements and denote it as S�t+1. Now we start to

interate backwards to gather the state vector for previous time periods. For t = T�1; T�2; :::1,
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the updating equations are derived as;

Stjt;S�t+1 = Stjt + PtjtF�0(F�PtjtF�0 +Q�)�1(S�t+1 �F�Stjt);

Ptjt;S�t+1 = Ptjt � PtjtF�0(F�PtjtF�0 +Q�)�1F�Ptjt:

Again, we have to keep only the �rst K elements of Stjt;S�t+1 and Ptjt;S�t+1for inference.

Let�s denote them with S�tjt;S�t+1
and P �tjt;S�t+1

; respectively. Finally, we can recursively sample

the reduced rank state vector, S�t ; i.e. the factors, form a normal distribution with mean S
�
tjt;S�t+1

and variance P �tjt;S�t+1
. This completes the process for the draw of the factors.

B.2 Implementation of Chib�s Bayes factor algorithm

The method follows Chib (1995). The marginal likelihood of the model itself is given

as:

ln bm (Y) = ln f (Yj��) + ln p (��)� ln bp (��jY) ;

where � is the vector of model parameters, ln bm (Y) is the log marginal likelihood, ln f (Yj��)

is the log likelihood evaluated at a given � = ��, ln p (��) is the log of the prior evaluated

at ��, and ln bp (��jY) is an approximation of the posterior ordinate. �� need only be a high

density value of � (e.g., a modal point). The posterior ordinates can be approximated using

the Gibbs output of the full model run. In particular, the posterior ordinate for N sampler

blocks that were previously de�ned is given as;

bp (��jY) = p (��1jY)� p (��2jY;��1)� :::� p
�
��N jY;��1; :::;��N�1

�
;
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where a typical term is written as;

bp (��njY) = 1

G

GX
g=1

p
�
��njY;��1; :::;��n�1;�

(g)
n+1; :::;�

(g)
N ; F

(g)
0 ; F

(g)
1 ; :::; F

(g)
J

�
:

Excluding the latent factors, there are 6 blocks of parameters to determine the posterior

ordinates for. Sections below describes each one of them.

B.2.1 Calculation of the posterior ordinate bp (��jY)
De�ne � =

�
�; �2; '; [; �] ; �

	
along with F (g)0 , and F (g)1 ; :::; F

(g)
J where g denotes the

number of Gibbs iterations. Let �� be the posterior mode of �. Recall that prior of � is

N (r0;R0) and the posterior is N (ri;Ri) for each i, where and

Ri =
�
R�10 + ��2i

eX0i eXi

��1
;

ri = Ri

�
R�10 r0 + �

�2
i
eX0i eYi

�
;

and eXi and eYi are de�ned appropriately from above. Then, p (��jY) is approximated by

bp (��jY) = 1

G

GX
g=1

N
�
��jy;�(g);F(g)

�
;

where N (:) is the normal pdf with mean and variance de�ned by the full Gibbs run. As noted

in Chib (1995) when calculating the posterior ordinate for the �rst block we do not need to

resample a reduced Gibbs run. Instead the draws from the full Gibbs run should be used to

evaluate the following posterior ordinate:
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bp (��jY) = 1

G

GX
g=1

N
�
��; r

(g)
i ;R

(g)
i

�
; (22)

where r(g)i and R(g)i as de�ned above are saved from the Full Gibbs run along with the values

of F(g) and �(g).

B.2.2 Calculation of the posterior ordinate bp ��2�jY; ���
Next, we require bp ��2� jY; ���, which is obtained from an additional (reduced) G runs

of the Gibbs sampler holding the previous block �xed at its modal values and sampling all the

other model parameters including �2 and latent factors,i.e.
n
�2(g); �(g); '(g); �(g); (g);F(g)

o
.

Then the posterior estimate is calculated using these draws from the reduced conditional Gibbs

run as;

bp��2� jY; ��� = 1

G

GX
g=1

��1
�
�2

� jY; ��;�(g)
��;F

(g)
�
;

where ��1 (:) is the pdf of the inverted gamma distribution. This is operationalized by recalling

that �2i is assumed to have a prior distribution �
2
i � ��1

�
�0
2 ;

�0
2

�
. The posterior distribution

from the reduced Gibbs run is saved for each iteration. Then the posterior pdf is evaluated at

the modal value of �2
�
: The average across iterations yields the posterior distribution as;

bp��2� jY; ��� = 1

G

GX
g=1

��1

 
�2

�
;
�0 + T

2
;
�0 + e"(g)0iT e"(g)iT

2

!
: (23)

B.2.3 Calculation of the posterior ordinate bp ���jY; ��; �2��
Next, we require bp ���jY; ��; �2��, which �because the parameter is drawn via an MH-

in-Gibbs step � is obtained from the method of Chib and Jeliazkov (2001). Their method

requires us to save the original draws from the full run and to resample additional G draws
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of the Gibbs sampler denoted by
n
�(g); '(g); �(g); (g);F(g)

o
for the numerator holding the

previous blocks �xed at �� and �2
�
. The denominator needs an additional M reduced Gibbs

run for
n
'(g); �(g); (g);F(g)

o
holding the aforementioned previous blocks as well as the current

block �xed (��) at their corresponding modal values. We can then compute

bp���jY; ��; �2�� = 1
G

P
g b���(g); ��j�(g)

��;�2 ;F
(g)
� bq ��(g); ��j�(g)

��;�2 ;F
(g)
�

1
M

P
j b����; �(m)j�(m)

��;�2;�;F
(m)
�

where bq ��(g); ��� = N
�b��i ;V��1

i

�
and the acceptance probabilities are de�ned above. A

similar procedure follows for the posterior ordinate of '.

B.2.4 Calculation of the posterior ordinate bp ���; �jY; ��; �2� ; ���
Next, we require bp ���; �jY; ��; �2� ; ���, which is obtained from both the retained full

run and an additional G runs of the Gibbs sampler. De�ne % = [�; ]. This step follows

from Chib and Jeliazkov (2001) as described in the previous section. The posterior ordinate

estimate is calculated with additional G runs for the numerator and additional M runs for the

denominator given as below:

bp�%�jY; ��; �2� ; ��� = 1
G

P
g �
�
%(g); %�jF (g)

�
q
�
%(g); %�jF(g)

�
1
M

P
j �
�
%�; %(m)jF(m)

� ;

where the proposal density, q (:; :), and the acceptance probability, � (:; :) are de�ned above.52

B.2.5 Calculation of the log likelihood evaluated at ��

The log likelihood evaluated at the modal point, ��, can be computed by Monte Carlo

integration from the average of the likelihoods for draws of the underlying latent variables:

52Note that the notation here is a move from the �rst to the second.
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ln f (Yj��) = 1

G

GX
g=1

ln f
�
Yj��;F(g)

�
: (24)

To compute this, we would set the model parameters at the mode and use factors sampled from

the full Gibbs run to compute the likelihood at each point. The log-likelihood would then be

the average of these likelihoods across iterations.

B.2.6 Calculation of the prior evaluated at ��

The second term in (12) represents the prior distributions evaluated at their modal

values and can be evaluated as

ln p (��jy) = ln p (��1) + ln p (��2) + :::+ ln p (��i ) :

B.3 Application of Bayesian Linear Regression

We are interested in approximating equation (14). To do so, we can save every 50th draw

from the full posterior distribution of the model factors, and run Bayesian linear regression on

each of the saved factor draws. �t represents the set of the variables we want to test on the

factors Fk;t: Then we can estimate the linear regression of the form

Fk;t = $k�t + �k

where the error term � is assumed to be normally distributed with mean zero and variance

�2k: The estimation is a simple Gibbs application with two sampler blocks of parameters, namely

$ and �2: Let the prior distributions for the coe¢ cients and the variance be represented with

N(a; b) and IG
�
c
2 ;

d
2

�
respectively (a = 0; b = 2; c = 6; d = 0:1):
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B.3.1 Generating $j�2F;�

The conditional distribution can be drawn from

$kj�2;F;��N (Ak;Bk) ;

where Ak =
�
b�1 +��2k �0�

��1
and Bk = Ak

�
b�1a+��2k �0Fk

�
.

B.3.2 Generating �2j$;F;�

��2 conditional on F;� and $, can be drawn from the gamma posterior;

��2k j$;F;� � �
�
c+ T

2
;

2

d+D0
kDk

�
;

where Dk = Fk �$k�t:

Recall that for each factor k, we saved every 50th draw. We apply the steps above to

each saved draw of Fk;t for 1000 iterations while burning in the �rst 500. This gives us many

posterior distributions for each block $k and ��2k : Then the posterior distributions of these

parameter blocks are pooled together from which we can make inferences. From these pooled

posterior distributions I report the mean of$ along with the Bayesian con�dence intervals. The

con�dence interval is the 5th and 95th percentile interval endpoints of the pooled distribution.

B.4 Data

The list of primary commodities and their explanations are directly taken from IFS

database.

Wheat: United States, No.1 Hard Red Winter, ordinary protein, FOB Gulf of Mexico, US$

per metric tonne.
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Maize (corn): United States. No.2 Yellow, FOB Gulf of Mexico, U.S. price, US$ per

metric tonne.

Rice: Thailand, 5 percent broken milled white rice, Thailand nominal price quote, US$ per

metric tonne.

Barley: Canada, no.1 Western Barley, spot price, US$ per metric tonne.

Soybean Meal: United States, Chicago Soybean Meal Futures (�rst contract forward)

Minimum 48 percent protein, US$ per metric tonne.

Soybean Oil: United States, Chicago Soybean Oil Futures (�rst contract forward) ex-

change approved grades, US$ per metric tonne.

Soybeans: United States., Chicago Soybean futures contract (�rst contract forward) No.

2 yellow and par, US$ per metric tonne.

Fishmeal: Peru, Fish meal/pellets 65% protein, CIF, US$ per metric tonne.

Sun�ower oil: United Kingdom, US export price from Gulf of Mexico, US$ per metric

tonne.

Olive Oil: United Kingdom, extra virgin less than 1% free fatty acid, ex-tanker price U.K.,

US$ per metric tonne.

Palm oil: Malaysia, Palm Oil Futures (�rst contract forward) 4-5 percent FFA, US$ per

metric tonne.

Rapeseed (referred as Canola) oil: United Kingdom, crude, fob Rotterdam, US$ per

metric tonne

Groundnuts (peanuts): Nigeria, 40/50 (40 to 50 count per ounce), US$ per metric tonne.

Beef : Australia and New Zealand, 85% lean fores, CIF U.S. import price, US cents per

pound.

Lamb: New Zealand, frozen carcass Smith�eld London, US cents per pound.
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Swine (pork): United States, 51-52% lean Hogs, US cents per pound.

Poultry (chicken): United States, Whole bird spot price, Ready-to-cook, whole, iced,

Georgia docks, US cents per pound.

Fish (salmon): Norway, Farm Bred Norwegian Salmon, export price, US$ per kilogram.

Shrimp: United States, No.1 shell-on headless, 26-30 count per pound, Mexican origina,

New York port, US cents per pound.

Sugar: World, Free Market, Co¤ee Sugar and Cocoa Exchange (CSCE) contract no.11

nearest future position, US cents per pound.

Sugar: United States, U.S. import price, contract no.14 nearest futures position, US cents

per pound (Footnote: No. 14 revised to No. 16).

Oranges: France, miscellaneous oranges CIF French import price, US$ per metric tonne.

Bananas: Central America and Ecuador, FOB U.S. Ports, US$ per metric tonne.

Co¤ee: Africa not speci�ed, Robusta, International Co¤ee Organization New York cash

price, ex-dock New York, US cents per pound.

Co¤ee, Other Mild Arabicas, International Co¤ee Organization New York cash price, ex-

dock New York, US cents per pound.

Cocoa beans: Ghana, International Cocoa Organization cash price, CIF US and European

ports, US$ per metric tonne.

Tea: Mombasa, Kenya, Auction Price, US cents per kilogram, From July 1998,Kenya auc-

tions, Best Pekoe Fannings. Prior, London auctions, c.i.f. U.K. warehouses.

Hard Logs: Malaysia, Best quality Malaysian meranti, import price Japan, US$ per cubic

meter.

Soft Logs: United States, Average Export price from the U.S. for Douglas Fir, US$ per

cubic meter.
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Hard Sawnwood: Malaysia, Dark Red Meranti, select and better quality, C&F U.K port,

US$ per cubic meter.

Soft Sawnwood: United States, average export price of Douglas Fir, U.S. Price, US$ per

cubic meter.

Cotton: United States, Cotton Outlook �A Index�, Middling 1-3/32 inch staple, CIF Liv-

erpool, US cents per pound.

Wool coarse: United Kingdom, 23 micron, Australian Wool Exchange spot quote, US

cents per kilogram.

Wool �ne: United Kingdom, 19 micron, Australian Wool Exchange spot quote, US cents

per kilogram.

Rubber: Malaysia, No.1 Smoked Sheet, Singapore Commodity Exchange, 1st contract, US

cents per pound.

Hides: United States, Heavy native steers, over 53 pounds, wholesale dealer�s price, Chicago,

fob Shipping Point, US cents per pound.

Copper: United Kingdom, grade A cathode, LME spot price, CIF European ports, US$

per metric tonne.

Aluminum: Canada, 99.5% minimum purity, LME spot price, US$ per metric tonne.

Iron Ore: China import 62% FE spot (CFR Tianjin port), US cents per dry metric tonne

unit.

Tin: United Kingdom, standard grade, LME spot price, US$ per metric tonne.

Nickel: United Kingdom, melting grade, LME spot price, CIF European ports, US$ per

metric tonne.

Zinc: United Kingdom, high grade 98% pure, US$ per metric tonne.

Lead: United Kingdom, 99.97% pure, LME spot price, CIF European Ports, US$ per metric

112



tonne.

Uranium: World, NUEXCO, Restricted Price, Nuexco exchange spot, US$ per pound.

Crude Oil: Arab Emirates, Dubai, medium, Fateh 32 API, fob DubaiCrude Oil (petro-

leum), Dubai Fateh Fateh 32 API, US$ per barrel.
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