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ABSTRACT 

Shaun Steele: The Role of Nutritional Virulence in Francisella tularensis Pathogenesis 
(Under the direction of Thomas Kawula) 

 
 

Intracellular pathogens and infected host cells compete with each other for survival and 

limited resources, such as nutrients. To limit infections, host cells have evolved a multitude of 

overlapping innate defense mechanisms; but, intracellular pathogens evade or exploit these 

defenses to replicate within cells. The bacterial pathogen Francisella tularensis manipulates 

several host defense mechanisms to proliferate within cells. F. tularensis replicates to extremely 

high densities within host cells and transfers to uninfected cells without inducing significant host 

cell death. The efficiency of F. tularensis intracellular replication and spread raises two 

fundamental questions that form the core of my dissertation work: how does F. tularensis 

acquire enough nutrients from the host cell to sustain rapid proliferation and how does F. 

tularensis infect new cells while maintaining the viability of infected host cells? Here I show that 

F. tularensis exploits novel host defense mechanisms to acquire intracellular nutrients and to 

transfer between cells. F. tularensis harvests autophagy-derived amino acids from the host to 

sustain rapid intracellular proliferation. These amino acids are used by F. tularensis to build 

proteins and as a carbon source to build other molecules, such as nucleic acids. Additionally, I 

found that F. tularensis transfers to macrophages when the macrophage ingests a portion of 

cytosol from a live, infected neighboring cell, a process that we have termed metadosis. My 

dissertation work contributed to our understanding of how pathogens interact with host cells. My 

work on autophagy helped to lay the groundwork for a paradigm of ‘nutritional virulence’ and 
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my work has translated well in other intracellular pathogens. I anticipate that my work on 

metadosis will lay the foundation for future studies on how bacteria spread within the host and 

how antigen presenting cells acquire antigen to interact with the adaptive immune system. 
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CHAPTER 1: INTRODUCTION 

 

Intracellular pathogens and infected host cells compete with each other for survival and 

limited resources, such as nutrients. To limit infections, host cells have evolved a multitude of 

overlapping innate defense mechanisms; but, intracellular pathogens evade these defenses to 

replicate within cells. In many instances, microbes even co-opt host innate immune defenses to 

enhance microbial survival or replication. For example, host immune cells ingest microbes via 

phagocytosis. Phagocytosis destroys the vast majority of ingested microbes; however, 

intracellular bacterial pathogens must overcome phagocytosis to proliferate within cells. The 

strategies to nullify phagocytosis vary between different bacterial pathogens but generally they 

either escape from the phagosome to enter the cell cytosol or co-opt the phagosome to form a 

replicative niche. By modifying the phagosome, certain bacterial pathogens incorporate an anti-

microbial host defense into a crucial step in their intracellular replication and virulence within 

the host. Manipulating host defenses to benefit the pathogen is a recurrent theme in pathogenesis. 

As a result, intracellular bacteria are frequently used as a tool to characterize many different host 

immune and cell biology pathways. My dissertation work focused on identifying and 

characterizing host anti-microbial pathways that bacterial pathogens exploit to enhance 

intracellular survival or replication. 

 For my dissertation work, I used the model organism Francisella tularensis. F. tularensis 

is a Gram-negative, facultative intracellular bacterium and the causative agent of the disease 

tularemia. F. tularensis is primarily an intracellular pathogen and may be undergoing genome 
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decay to become an obligate intracellular pathogen 1. F. tularensis replicates within virtually 

every cell type tested, but macrophages are the major replicative niche 2. F. tularensis is an 

excellent model organism for characterizing host-pathogen interactions because it is a ‘stealth 

pathogen’ that replicates to high densities in the cytosol without eliciting a substantial host 

response. Cells infected with dozens or hundreds of F. tularensis bacteria will even undergo cell 

division at the same rate as uninfected cells (unpublished data). Despite inhibiting cell death, F. 

tularensis rapidly disseminates to new cells at the site of infection and systemically 2-4. 

Moreover, F. tularensis replicates quickly within cells, often 100 to 1000-fold within 24 hours 5. 

In comparison, most intracellular pathogens, such as Listeria monocytogenes and Salmonella 

typhimurium, replicate approximately 10-fold within cells 6,7. The efficiency of F. tularensis 

intracellular replication and spread raises two fundamental questions that formed the core of my 

dissertation work: how does F. tularensis acquire enough nutrients from the host cell to sustain 

rapid proliferation and how does F. tularensis infect new cells despite inhibiting cell death?   

 

F. tularensis Cytosolic Replication 

 F. tularensis replicates extremely rapidly and to high densities inside the host cell 

cytosol. F. tularensis even has a faster doubling time in macrophages than in Chamberlains 

defined media (unpublished data). This is unusual because only a few bacterial pathogens 

replicate within the host cell cytosol due to the scarcity of readily available nutrients and a 

multitude of host defense mechanisms designed to destroy intracellular bacteria. But F. 

tularensis thrives within the cell cytosol, making F. tularensis an ideal model organism to study 

both immune evasion and nutrient acquisition strategies that other pathogens may also employ. 

To this end, I identified a process whereby F. tularensis exploits the host degradative process of 



 

3 
 

autophagy for nutrients while evading the anti-microbial form of autophagy, a process termed 

xenophagy. 

 

Nutrient Deprivation in the Host Cell Cytosol 

 During infection, the host cell and intracellular pathogen compete for the same nutrients. 

When the bacteria invade the cell, most cellular nutrients are sequestered within macromolecular 

structures. Cells have some free amino acids to build new proteins, but the majority of amino 

acids within the cell are already incorporated into proteins. To secure a large amount of amino 

acids for replication, intracellular bacteria must either increase host cell amino acid import or 

degrade host proteins to acquire amino acids.  

The nutrients that F. tularensis requires for replication are known. F. tularensis requires 

several salts and metals such as iron as well as pantothenate, spermine, thiamine, 13 amino acids 

that F. tularensis cannot synthesize, and a carbon source such as glucose or excess amino acids 8. 

During infections, F. tularensis must acquire each of these nutrients from the host cell. Several 

groups have assessed how F. tularensis acquires iron and select amino acids from the host, and 

we focused our effort on determining the major source of carbon that F. tularensis uses for 

replication.  

 

Iron 

Iron is a critical metal that is available in very low abundances within host cells. Iron 

acquisition is well studied in many bacteria, but there are still several unknown factors in F. 

tularensis iron acquisition. 
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F. tularensis synthesizes siderophores to acquire exogenous iron 9. Iron siderophores are 

required for virulence in the less pathogenic F. novicida and the live vaccine strain of F. 

tularensis, but not in the highly virulent Schu S4 strain 10. Instead, FupA is required for iron 

uptake in Schu S4. The mechanism of FupA iron acquisition is unknown, but does not involve 

siderophores 10. An interesting quirk of F. tularensis iron acquisition is that unlike many other 

Gram-negative bacteria, F. tularensis does not transport iron via TonB 11.F. tularensis still 

transports the iron bound molecules through its membranes via proton motive force, but via a 

different mechanism than other bacteria. 

  

Amino acid uptake 

 Another characterized nutrient acquisition mechanism in F. tularensis is amino acid 

uptake. F. tularensis cannot synthesize 13 amino acids and must acquire these from the host cell. 

Additionally, we found that amino acids are a major carbon source for F. tularensis 5. F. 

tularensis uses a number of synergistic mechanisms to acquire these amino acids. F. tularensis 

degrades glutathione, increases host amino acid transport, and harvests autophagy by-products 

5,12,13.  

 

Glutathione degradation 

 Glutathione (GSH) is tripeptide that is synthesized from glutamic acid, cysteine, and 

glycine. GSH is a highly conserved antioxidant that is critical for detoxifying the cytotoxic and 

carcinogenic material within the cytosol 14. Importantly, GSH is highly abundant in the cytosol 

of mammalian cells 15. 
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 F. tularensis can synthesize glycine and glutamic acid, but is auxotrophic for cysteine 8. 

F. tularensis degrades GSH for its constituent amino acids via a gamma-glutamyl transpeptidase 

(ggt). Deletion mutants of ggt are highly attenuated for replication in cells, but can be 

functionally complemented with exogenous cysteine 13. Although F. tularensis may also import 

glycine or glutamic acids, cysteine is the only required nutrient that F. tularensis obtains from 

GSH. 

Amino Acid transporters 

 The eukaryotic amino acid transporter SLC1A5 (also called ASCT2) imports neutral 

amino acids. F. tularensis infection increases both SLC1A5 mRNA and protein levels in infected 

cells 12. SCL1A5 works with SLC7A5 (LAT1), another amino acid transporter, to balance the 

cytoplasmic pool of amino acids 16. While SLC1A5 levels are increased during infection, 

SLC7A5 has decreased mRNA expression and protein levels during F. tularensis infection 12. 

Altering the ratio of SCL1A5 and SLC7A5 may functionally increase the intracellular level of 

glutamine during F. tularensis infections 12.  

 

Autophagy 

Macroautophagy (hereafter autophagy) is a constitutive process that degrades long lived-

proteins, organelles, and aggregates into their base constituents. Autophagy is a critical, 

constitutive process for nutrient generation and maintenance of cellular homeostasis. In mouse 

embryonic fibroblasts (MEFs), a common cell line used for autophagy research, approximately 

1-2% of the cytosolic volume of the cell is engulfed by autophagosomes at any given time 17. A 

wide range of stimuli increase autophagy. Two major signaling pathways for autophagy 

induction are the activation of the energy sensing protein AMP-activated protein kinase (AMPK) 
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and inhibition of the mammalian target of rapamycin (mTOR). AMPK is activated in response to 

a low ATP to AMP ratio, such as during glucose deprivation 18,19. AMPK induces autophagy 

directly by phosphorylating ULK1 or indirectly through mTOR inhibition 20. mTOR is inhibited 

by several other stress factors besides AMPK, such as amino acid starvation or hypoxia 21.  

The initiation of autophagy results in a complex signaling cascade with several intricacies 

and permutations. In canonical autophagy, AMPK activation or mTOR inhibition result in ULK1 

activation 20. ULK1 phosphorylates Beclin-1 and activates the kinase VPS34. ULK1, Beclin-1, 

and VPS34 as well as their associated complexes localize to an open, double membrane structure 

termed the phagophore. The phagophore is elongated by the ATG5-ATG12-ATG16L complex 

22. The phagophore expands to engulf cytoplasmic material while forming a double membrane 

vacuole termed the autophagosome. Molecules targeted for autophagic degradation are anchored 

to the autophagosome by microtubule associated light chain 3 (LC3). Unprocessed LC3 is 

cytosolic (LC3-I), but LC3 is cleaved, lipidated with phosphatidylethanolamine (LC3-II), and 

embedded into the autophagic membrane upon the initiation of autophagy 23. Molecules targeted 

for autophagic degradation are polyubiquitinated and adaptor proteins including p62, 

OPTINEURIN, or NDP52 bind to both LC3-II and ubiquitinated molecules 24-26. The 

autophagosome then fuses with a lysosome to become an autolysosome. The adaptor molecule 

NDP52 was recently shown to also regulate the fusion of a subset of bacteria containing 

autophagosomes to lysosomes by mediating binding between LC3 (which is embedded in the 

autophagosome), Myosin VI (a myosin motor protein that moves toward the minus end of actin) 

and Tom-1 (which associates with lysosomes) 27. The contents within the autolysosome are 

degraded into their components and exported to the cytosol through an undefined process.  
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Canonical autophagy is the best characterized type of autophagy, but there are several 

versions of non-canonical autophagy. These non-canonical forms also generate double 

membrane, degradative vacuoles with the same basic maturation process (phagophore to 

autophagosome to autolysosome). However, non-canonical autophagosomes are formed through 

different signaling cascades and do not use all of the proteins or protein complexes required for 

canonical autophagy. One recurrent form of non-canonical autophagy in pathogenesis is ATG5-

independent autophagy. ATG5-independent autophagy uses some of the same machinery as 

canonical autophagy, such as ULK1 and Beclin-1, but does not require ATG5, ATG7, or LC3 17. 

LC3 cleavage and ATG5 knockouts are the best characterized autophagy tools that are 

commonly used to assay for xenophagy, a version of autophagy that targets intracellular 

microbes for degradation. Pathogens may preferentially induce ATG5-independent autophagy to 

avoid xenophagy. 

ATG5-independent autophagy is induced by starvation and correlates with mTOR 

inhibition, but mTOR inhibition alone is not sufficient to induce this form of autophagy 5,17. 

ATG5-independent autophagy is critical for Brucella abortus to infect neighboring cells 28. 

Mycobacterium marinum enters autophagosome-like vacuoles in an ATG5-independent manner 

although the function of this vacuole is unknown 29. The differences between ATG5-independent 

autophagy and other forms of autophagy in pathogenesis are not known. It is also unclear how 

ATG5-independent autophagy is preferentially induced during these infections. 

In summary, autophagy generates nutrients for the host cell. This seems like an excellent 

process for pathogens to exploit for nutrients, but autophagy is also a host defense mechanism 

against intracellular microbes. In addition to the previous autophagy induction mechanisms, the 

anti-microbial form of autophagy (xenophagy) is up-regulated by numerous immune stimuli. 
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F. tularensis Immune suppression 

F. tularensis is often referred to as a ‘stealth pathogen’ because infection by this 

organism does not stimulate a robust immune response. F. tularensis evades identification and 

cytokine production in response to infection while resisting innate host cell anti-microbial 

defenses. It is important to note that the closely related F. novicida strain (often referred to as F. 

tularensis novicida in older literature) is highly pro-inflammatory, synthesizes a different LPS 

structure, and has different immune evasion characteristics and interactions with the 

inflammasome 30-32. 

Immune suppression during infection is an important aspect of F. tularensis 

pathogenesis. In addition to transcriptional changes within the cell to destroy microbes, the 

activation of Toll-like receptors (TLRs), the inflammasome, and other changes to cellular 

homeostasis induce xenophagy 33-35. For F. tularensis to successfully harvest autophagy derived 

nutrients, F. tularensis must evade xenophagy.  

 

Toll-like receptors 

 TLRs identify extracellular microbes or microbes within endosomes. 13 different TLRs 

have been identified in mice and humans, although certain TLRs are species specific. TLRs 

recognize conserved microbial features such as lipopolysaccharide (LPS), peptidoglycan, and 

flagella 36.  

 TLR signaling occurs through two major pathways. TRIF-dependent TLR signaling is 

specific to TLR3 and TLR4. F. tularensis does not stimulate TRIF signaling. Treating infected 

cells with the TLR3 agonist polyI:C inhibits bacterial replication, presumably because F. 

tularensis does not inhibit the TRIF pathway 37. The other major TLR signaling pathway is 



 

9 
 

through Myd88. Myd88 is an adapter molecule that interacts with all of the TLRs except TLR3 

to initiate downstream signaling. TLR signaling through Myd88 eventually leads to stimulation 

of several pro-inflammatory transcription factors including NF-kB, IRF3, and IRF7 36. These 

transcription factors lead to transcription of a range of chemokines, cytokines, and the up-

regulation of a number of anti-microbial factors 36.  

TLRs are stimulated in response to most pathogens, but F. tularensis evades and 

suppresses TLR stimulation 38. TLRs are pattern recognition receptors, but the typical bacterial 

agonists that stimulate the various TLRs are structurally different in F. tularensis. For example, 

Gram-negative bacteria typically stimulate TLR4 with lipopolysaccharide (LPS), but F. 

tularensis LPS is structurally different than LPS from other bacteria and does not stimulate 

TLR4 39. Instead, F. tularensis LPS primarily stimulates TLR2, although induction is relatively 

weak 40. In addition to poor stimulation of TLRs, F. tularensis dampens artificial TLR 

stimulation by secreting an uncharacterized lipid 41,42.  

 

Inflammasome 

 The inflammasome is a multimeric complex involved in detecting conserved microbial 

factors within the cytosol. The specific inflammasome complex formed depends on the microbial 

stimuli that are detected. In a simplified model, the inflammasome is composed of an 

inflammasome sensor such as a nucleotide-binding domain, leucine-rich repeat containing 

proteins (NLR), the adaptor molecule ASC, and caspase-1 43. Activation of the sensor molecule 

in this system leads to inflammasome formation and caspase-1 maturation 43. Mature caspase-1 

processes pro- interleukin-1 Beta (IL-1B) and pro-interleukin-18 (IL-18) into their mature forms 
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44. The mature cytokines are then secreted. Robust IL-1B secretion also requires TLR stimulation 

to increase IL-1B transcription 45. 

 F. tularensis infection results in negligible caspase-1 processing and IL-1B secretion, 

suggesting that F. tularensis does not induce caspase-1 inflammasome activation 46. Likewise, F. 

tularensis does not stimulate caspase-11 due to its non-canonical LPS structure 47. Instead, F. 

tularensis suppresses inflammasome activation, even in the presence of strong artificial 

inflammasome stimulation 48. The closely related F. novicida has a very different interaction 

with the inflammasome. F. novicida activates the inflammasome when bacterial DNA binds to 

absent in melanoma 2 (AIM2) 49. 

 

Xenophagy 

 Xenophagy is a form of selective autophagy that sequesters and degrades intracellular 

pathogens. Briefly, bacteria are polyubiquitinated and the polyubiquitin binds to an adaptor 

molecule. The adaptor molecule can be p62/sequestosome 1, NBR1, or opineurin. The adaptor 

molecule recruits LC3 to isolate the bacteria within a phagosome. The targeted bacteria are then 

degraded and antigens from the bacteria are presented via the major histocompatibility complex 

II (MHC-II) 50. 

Xenophagy degrades most microbes that enter the cytosol, so successful intracellular 

pathogens must avoid xenophagy. For example, several serotypes of Group A Streptococcus 

(GAS) are efficiently cleared from the cytosol by xenophagy 51,52. But the GAS protein speB 

degrades the xenophagy adaptor molecule p62 and NBR1 53. GAS strains that normally are 

destroyed in the cytosol can be rescued for intracellular replication when they express speB 53. 
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Not surprisingly, GAS strains that encode speB are much more likely to cause disease than 

strains that lack speB 53. 

Xenophagy has many overlapping and redundant surveillance mechanisms that pathogens 

must avoid. Xenophagy is induced in response to extracellular or phagocytosed microbes 

through the activation of TLRs. TLRs initiate xenophagy when Myd88 or TRIF interact with 

Beclin-1 33,34. Cell to cell signaling can also induce autophagy. IFN-γ activates xenophagy 

through IRGM1 in human cells while CD40 ligation stimulates xenophagy through 

phosphoinositide-3-kinase (PI3K) and Rab7; priming cells to resist microbes 54,55. 

After phagocytosis, certain pathogens escape the phagosome and replicate within the 

cytosol. The host cell mounts a xenophagic response to the membrane damage that occurs during 

phagosomal escape 56. Once microbes reach the cytosol, they can be targeted for xenophagy 

through immune surveillance or by causing cell stress. Several molecules identify microbial 

components within the cytosol and target microbes for xenophagy, such as Nod-1 and Nod-2. 

Nod-1 and Nod-2 induce xenophagy and microbial antigen processing in response to bacterial 

peptidoglycan 57,58. Microbes can also induce xenophagy through a number of cell stress 

mechanisms, such as the unfolded protein response (UPR) or changes in intracellular calcium 

levels 59-61. Lastly, xenophagy can also be directly induced by bacterial proteins. For example, 

Shigella flexneri exports VirG to polymerize actin and propel the bacteria through the cytosol 62. 

ATG5 binds directly to VirG and initiates autophagosome formation without upstream 

autophagy signaling 63. S. flexneri secretes the effector protein IcsB to block ATG5 from binding 

to VirG, which inhibits autophagy 63.  

Although F. tularensis does not stimulate TLRs or the inflammasome, F. tularensis 

infection still activates several signals that typically lead to xenophagy. F. tularensis escapes the 
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phagosome which initiates xenophagy 56. Likewise, F. tularensis infection results in mTOR 

inhibition immediately after late during infection 5. Additionally, F. tularensis uses amino acids 

as a carbon source, which should induce autophagy when ammonium by-products of amino acid 

catabolism are secreted into the cytosol 5,64. Despite the appropriate signals to induce xenophagy, 

F. tularensis does not induce xenophagy or co-localize with xenophagy markers 5,65. F. 

tularensis LPS and O-antigen contribute to resistance to xenophagy, but there is also an active, 

unidentified factor that contributes to xenophagy evasion 65,66. Together, these results suggest 

that F. tularensis both suppresses and resists xenophagy. 

 

F. tularensis Exocytosis 

The final step in the intracellular life cycle of F. tularensis is exocytosis. The mechanism 

for F. tularensis egress is unclear, but is well defined in many other intracellular bacterial 

pathogens. Several bacterial pathogens transfer from cell to cell via actin polymerization or 

syncytia formation. For example, L. monocytogenes secretes ActA to polymerize actin so that 

protrusions containing bacteria propel into and are engulfed by neighboring cells, thereby 

infecting the neighboring cell 67,68. F. tularensis does not contain any homologs to known actin 

polymerization proteins and does not co-localize with actin as determined by fluorescence and 

transmission electron microscopy (unpublished results). Additionally, F. tularensis infected cells 

do not form giant multi-nucleated cells characteristic of syncytia formation (unpublished results). 

As a result, it was assumed that F. tularensis does not transfer directly from infected to 

uninfected cells. 

 However, F. tularensis infects 10-fold more cells than initial inoculum by 24 hours post 

inoculation and rapidly infects new cell types in vivo while eliciting very little cell death 2,69. 
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Although F. tularensis does not polymerize actin or form multi-nucleated syncytia, these results 

suggest that F. tularensis transfers between cells via an alternate mechanism.  

 

F. tularensis Suppression of Cell Death 

 Host cells use several pathways to induce cell death upon infection. This is a highly 

efficient way to ensure that intracellular pathogens cannot survive within a host during infection. 

For optimal intracellular replication, F. tularensis must suppress host cell death. F. tularensis 

mutants lacking FTT1236, FTT1237, or FTT1238 are disrupted for capsule or O-antigen 

production 70,71. These mutants replicate within the cytosol as a similar rate as wild type bacteria, 

but they are significantly more cytotoxic. As a result, these mutants only replicate for 

approximately 12 to 18 hours in cells compared to the 24 hours replication cycle typical of wild 

type bacteria 70. As a result, these mutants are significantly less virulent in mice 71. 

 F. tularensis inhibits infected host cell death. F. tularensis uses a TolC-dependent 

mechanism to inhibit apoptosis 72,73. TolC is an outer membrane channel involved in the export 

of bacterial virulence factors and is likely not the effector protein inhibiting apoptosis 72. 

Caspase-11 induced pyroptosis is another common cell death mechanism in response to 

infection, but F. tularensis does not stimulate caspase-11 47. 

 

F. tularensis Cell to Cell Transfer 

 We were interested in how F. tularensis infects new cells while inducing minimal 

infected cell death. We found that F. tularensis transfers directly from one cell to another by live 

cell imaging and part of my dissertation research was to characterize how F. tularensis 

transferred between cells. Other bacterial species use active processes to transfer between cells, 
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but F. tularensis does transfer between cells via homologous mechanisms. Mammalian cells 

routinely transfer cytosolic components, and we investigated if F. tularensis and other 

intracellular bacteria are transferred via a passive transfer mechanism. 

Francisella containing vacuoles 

F. tularensis enters autophagic vacuoles termed Francisella containing vacuoles (FCVs) 

late during infection 74. Brucella abortus enters an autophagic vacuole late in infection for non-

lytic exocytosis 28, and FCVs have been proposed as a potential mechanism for F. tularensis cell 

to cell transfer. However, FCVs did not affect F. tularensis cell to cell transfer (unpublished 

data). These results prompted us to investigate other potential cell to cell transfer mechanisms. 

 

Cytosolic exchange 

 Cells communicate with one another through a wide variety of mechanisms including 

cytokines, chemokines, hormones, surface proteins, pyroptosis, exosomes, and through the 

exchange of cytosolic material. The exchange of cytosolic material is best studied in the context 

of pore formation between the cells, such as gap junctions 75. But several groups have also found 

that immune cells exchange intracellular proteins, polystyrene beads, and live mitochondria 76-78. 

Cytosolic transfer requires cell to cell contact but the molecular mechanism of cytosolic 

exchange is unknown. There are at least 2 different forms of cytosolic exchange: the formation 

of nanotubules and the phagocytosis of live cells by macrophages 78,79. Human 

immunodeficiency virus (HIV) transfers between cells via nanotubules, but F. tularensis bacteria 

appear to transfer via phagocytosis by macrophages 80. Cytosolic transfer of pathogens is an 

important phenomenon because it is both a mechanism for pathogens to infect new cells and for 
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non-antigen presenting cells (APCs) to transfer antigen to professional APCs to mount an 

adaptive immune response 77,80-82.  

 

Phagocytosis of Live Cells 

 Macrophages are phagocytic cells that are commonly associated with ingesting 

extracellular particles and dead cells. But macrophages also ingest portions of live cells. For 

example, macrophages acquire lipid droplets from live adipocytes without killing the adipocytes 

79. The ingested material can then stimulate an immune response. Macrophage ingestion of 

adipocytes can lead to through NF-KB, leading to interleukin-6 (IL-6) production 79. F. 

tularensis is primarily found within macrophages in vivo and phagocytosis of live cells by 

macrophages is a potential mechanism for F. tularensis to transfer between cells. 

 

Trogocytosis 

 Trogocytosis is a mechanism for cells to exchange proteins embedded in the plasma 

membrane. The intercellular exchange of membrane bound proteins is a cellular communication 

strategy that has been conserved from bacteria to mammalian cells 83,84. Although trogocytosis 

was described several decades ago, trogocytosis is not well understood and there is no described 

molecular mechanism to induce or execute this process. The exchange of plasma membrane 

proteins benefits the host by passing along immune signals 85. One example is the exchange of 

peptide bound major histocompatibility complex I (MHC-I), which presents antigen to CD8+ T 

cells. MHC-I transfers from one cell to an APC via trogocytosis to stimulate a CD8+ T cell 

response 86. Trogocytosis has been implicated in macrophage phagocytosis of adipocytes and 
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Entamoeba histolytica ingestion of human cells 79,87. Our work indicates that cytosolic material 

also transfers during trogocytosis and that this is a mechanism for bacterial spread. 

 

Other Research Related to My Dissertation 

 My dissertation research primarily focused on how F. tularensis exploits host defense 

mechanisms. In addition to my primary research articles, I have helped to write reviews on how 

pathogens interact with the host to acquire nutrients (Appendix 1 and 2). My interest in these 

types of interactions was piqued by a project characterizing how the innate and adaptive immune 

response interacted in response to pathogens, and how pathogens altered this interaction 

(Appendix 3). Although I began this research prior to beginning my dissertation, shaping and 

completing this project in my dissertation lab was instrumental for me to develop as an 

independent scientist. This work was the foundation and inspiration for my research on bacterial 

cell to cell transfer and provided me with the requisite background and skills to complete the 

project. Lastly, I developed several tools and protocols for my lab to assess how F. tularensis 

interacts with the host. The most extensive method I developed and characterized is included in 

Chapter 2. 

An important question we wanted to address is whether one of the secretion systems in F. 

tularensis induces autophagy or contributes to F. tularensis nutrient acquisition. F. tularensis 

encodes a putative secretion system termed the Francisella pathogenicity island (FPI), which 

resembles a Type VI secretion system (T6SS) 88. There are no proteins that are known to be 

exported via the FPI, and the only known function of the FPI is for phagosomal escape 88. We 

postulated that the FPI also contributed to cytosolic replication, but we needed to develop a 

method to test this hypothesis. Part of my dissertation research focused on building a method to 



 

17 
 

bypass the phagosome via intracellular trans-complementation and assess if the FPI played a role 

in intracellular survival and/or replication in the cytosol. We are currently assessing if the FPI 

affects autophagy induction, in part using intracellular trans-complementation. 
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CHAPTER 2: A METHOD FOR FUNCTIONAL TRANS-COMPLEMENTATION OF 

INTRACELLULAR FRANCISELLA TULARENSIS1

 

 

Overview 

Francisella tularensis is a highly infectious bacterial pathogen that invades and replicates 

within numerous host cell types. After uptake, F. tularensis bacteria escape the phagosome, 

replicate within the cytosol, and suppress cytokine responses. However, the mechanisms 

employed by F. tularensis to thrive within host cells are mostly unknown. Potential F. tularensis 

mutants involved in host-pathogen interactions are typically discovered by negative selection 

screens for intracellular replication or virulence. Mutants that fulfill these criteria fall into two 

categories: mutants with intrinsic intracellular growth defects and mutants that fail to modify 

detrimental host cell processes. It is often difficult and time consuming to discriminate between 

these two possibilities. We devised a method to functionally trans-complement and thus identify 

mutants that fail to modify the host response. In this assay, host cells are consistently and 

reproducibly infected with two different F. tularensis strains by physically tethering the bacteria 

to antibody-coated beads. To examine the efficacy of this protocol, we tested phagosomal 

escape, cytokine suppression, and intracellular replication for F. tularensis ΔripA and ΔpdpC. 

ΔripA has an intracellular growth defect that is likely due to an intrinsic defect and fails to 

suppress IL-1β secretion. In the co-infection model, ΔripA was unable to replicate in the host cell 

                                                 
1This chapter was previously published as an article in PLOS One. The citation is: Steele S, Taft-Benz S, Kawula T. 
A method for functional trans-complementation of intracellular Francisella tularensis. PLoS One. 
2014;9(2):e88194. doi: 10.1371/journal.pone.0088194 
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when wild-type bacteria infected the same cell, but cytokine suppression was rescued. Therefore, 

ΔripA intracellular growth is due to an intrinsic bacterial defect while cytokine secretion results 

from a failed host-pathogen interaction. Likewise, ΔpdpC is deficient for phagosomal escape, 

intracellular survival and suppression of IL-1β secretion. Wild-type bacteria that entered through 

the same phagosome as ΔpdpC rescued all of these phenotypes, indicating that ΔpdpC failed to 

properly manipulate the host. In summary, functional trans-complementation using bead-bound 

bacteria co-infections is a method to rapidly identify mutants that fail to modify a host response. 

 

Introduction 

Francisella tularensis is a facultative intracellular bacterial pathogen and is the causative 

agent of the disease tularemia. F. tularensis enters host cells through phagocytosis, escapes the 

phagosome, and replicates in the host cell cytosol while suppressing cytokine secretion 89-92. 

Although substantial progress has been made in understanding the intracellular life cycle of F. 

tularensis, the F. tularensis proteins responsible for manipulating many host cell pathways are 

unknown. Identifying novel host-pathogen effector proteins is difficult because there is no rapid 

method to reliably distinguish between bacterial proteins that modify host processes and proteins 

that are involved in bacterial processes that are required for the bacteria to survive or replicate in 

the intracellular environment. The ability to identify mutants that are deficient for host-pathogen 

interactions is important because it can aid in prioritizing the investigation of genes of interest 

and in downstream experimental design. Moreover, certain mutant phenotypes, such as 

decreased phagosomal escape, hinder investigation of other potential phenotypes. A method to 

specifically complement these phenotypes would allow for further characterizations of certain F. 
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tularensis mutants. Thus we sought to develop a method to easily identify and functionally 

complement mutants that are deficient for interactions with the host. 

In order to distinguish whether a phenotype results from a host-pathogen interaction or an 

intrinsic bacterial defect, we devised a method to functionally complement and thus identify 

host-pathogen interactions in trans. Wild-type and a mutant strain were tethered to the same 

magnetic bead to ensure that both bacteria enter the same eukaryotic cell. Since cells are 

consistently infected with both strains of bacteria via the same phagosome, the wild-type bacteria 

functionally complement the host-pathogen interactions that the neighboring mutant strain fails 

to initiate. For example, a mutant deficient for phagosomal escape that co-infects a host cell with 

wild-type bacteria will escape the phagosome because the wild-type bacteria secrete the effectors 

required for phagosomal escape. Bacterial mutants that exhibit a phenotype caused by intrinsic 

deficiencies such as defective metabolite production or acquisition will not be functionally 

complemented by this method since intrinsic defects cannot be trans-complemented by 

neighboring bacteria.  

To demonstrate the efficacy of this protocol, we functionally complemented cytokine 

suppression, phagosomal escape, and intracellular survival in F. tularensis subsp. holartica live 

vaccine strain (LVS) ΔpdpC and ΔripA. The pdpC gene is located in the Francisella 

pathogenicity island (FPI), which is proposed to encode a secretion and effector system that 

facilitates phagosomal escape 93-101. PdpC contributes to phagosomal escape, intracellular 

survival and cytokine suppression 93,101. We therefore used ΔpdpC as a model of a mutant that 

contributes to a host-pathogen interaction. 

ΔripA can escape the phagosome but is defective for intracellular growth and cytokine 

suppression 90,102. ΔripA replication is reduced in defined media at a pH of 7.5 compared to a pH 
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of 6.5, which implies that cytosolic pH, rather than a host-pathogen interaction, is responsible for 

decreased intracellular proliferation 103. Furthermore, RipA regulates the activity of LpxA, a 

protein required for F. tularensis lipid A synthesis (our unpublished data). The ΔripA strain does 

not proliferate within host cells, but ΔripA strains encoding lpxA suppressors are able to replicate 

within host cells (our unpublished data). These data imply that ΔripA fails to replicate inside of 

host cells due to irregular regulation of lipid A synthesis and therefore intracellular proliferation 

of this mutant should not be restored by co-infection with wild-type organisms.  

 

Results 

Two bacterial strains consistently bind to the same bead 

Reliable functional complementation of mutants within infected cells requires that both 

the mutant and complementing strain consistently enter host cells together. To achieve this result 

we tethered two different F. tularensis strains to individual magnetic beads. To test if the two 

different strains consistently bound to the same bead, we combined anti- F. tularensis 

lipopolysaccharide (LPS) antibody coated beads with a 1:1 mixture of F. tularensis expressing 

either GFP or DsRed. By microscopy, virtually every observed bead had GFP and DsRed 

bacteria bound to it (Figure 2.1 A-C). We quantified the amount of beads that bound to both GFP 

and Cell Trace Far Red labeled F. tularensis by flow cytometry and found that 97.3 +/- 0.7% 

(mean +/- SD) of the beads bound to both GFP and Cell Trace Far Red labeled bacteria (Figure 

2.1 D-F). This indicates that in infection experiments where wild-type and mutant bacteria are 

bound to beads, the majority of cells will be infected with both bacterial strains.  

Although this method requires multiple bacteria to be present on each bead, too many 

bacteria infecting the same cell may skew results or phenotypes compared to a normal infection. 
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To quantify the number of bacteria per bead, F. tularensis LVS containing a luciferase plasmid 

was bound to beads and the amount of luminescence per bead was compared to a standard curve. 

The median bacteria per bead was 3.43 (SEM = 6.69, 4 independent experiments). Additionally, 

6.66 +/- 2.52 intracellular wild-type bacteria per cell were present at 4 hours post inoculation 

(average +/- SEM, n=23 from 9 independent experiments, assumptions described in materials 

and methods). Taken together, we estimate that the average cell is infected with 3 to 8 bacteria 

using bead co-infections.  

 

F. tularensis is transiently linked to the bead 

 Tethering the bacteria to the same bead ensures that cells are co-infected with different 

strains, but irreversible binding of F. tularensis to the bead could affect the intracellular life 

cycle of F. tularensis. Thus, we took advantage of a binding mechanism that should allow the 

bacteria to detach from the bead over time by linking the bacteria to beads coated with antibodies 

to F. tularensis LPS. Each bacterium should initially link to the bead by binding to several anti-

LPS antibodies, which should create a high avidity between the bead and the bacterium. The 

advantage of binding F. tularensis to the bead by an anti- LPS antibody is that Gram-negative 

bacteria, including F. tularensis, shed LPS. Thus, viable F. tularensis should detach from the 

bead over time. Indeed, the majority of bacteria were bound to beads immediately prior to 

infection as determine by flow cytometry (Figure 2.2A). Intracellular bacteria dissociated from 

beads within 2 hours during an infection of J774A.1 macrophage-like (J774) cells, presumably 

due to the bacteria shedding LPS (Figure 2.2A). Furthermore, microscopy of cells infected with 

GFP LVS bound to beads shows that some bacteria are spatially separated from the bead by 4 

hours post inoculation (Figure 2.2B). These data demonstrate that the described methodology 
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results in bacteria bound to beads upon initial infection, but that the bacteria detach from the 

bead following host cell entry. The bacteria also released from beads at similar rates when left in 

PBS for 2 hours, suggesting that bacterial release from the bead is not mediated by infection 

(data not shown). 

 

Bead co-infections functionally complement cytokine suppression 

 F. tularensis suppresses host cell production or secretion of several different cytokines, 

including interleukin 1β (IL-1β) by both active (such as MAPK inhibition) and passive 

mechanisms (such as via LPS modifications) 90,92,93,104-106. Since wild-type F. tularensis actively 

suppresses inflammatory responses, co-infection of cells with wild-type bacteria should 

complement a mutant that fails to suppress the immune response. To test the efficacy of bead co-

infections on rescuing immune suppression, we co-infected murine bone marrow derived 

macrophages (mBMDM) with wild-type F. tularensis bound to beads with either ΔpdpC or 

ΔripA and measured IL-1β secretion. 

Infections of mBMDMs with ΔripA results in increased IL-1β secretion compared to 

wild-type 90.  Similarly, cells infected with ΔripA bound to beads also induced increased IL-1β 

secretion compared to cells infected with bead-bound wild-type F. tularensis (Figure 2.3). 

However, co-infecting cells with wild-type bacteria and ΔripA resulted in reduced IL-1β 

secretion compared to ΔripA alone (Figure 2.3). ΔripA bound to beads and typical ΔripA 

infections elicit similar levels of IL-1β, even though the cells infected with beads should contain 

more bacteria initially (data not shown). Thus the decrease of IL-1β secretion during co-

infections was not due to fewer ΔripA infecting each cell. Together, these data demonstrate that 
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active immune suppression mechanisms expressed by wild-type F. tularensis was sufficient to 

inhibit the inflammatory response induced by ΔripA. 

We also measured IL-1β secretion of ΔpdpC infected mBMDMs and found that cells 

infected with ΔpdpC bound to beads also had slightly increased IL-1β secretion when compared 

to wild-type infected cells (Figure 2.3). Co-infecting cells with wild-type and ΔpdpC bacteria 

resulted in decreased IL-1β secretion compared to ΔpdpC bacteria alone (Figure 2.3). Thus, 

ΔpdpC failed to entirely suppress the host immune response but suppression could be rescued by 

the presence of wild-type bacteria. Wild-type bacteria fully complemented suppression of IL-1β 

secretion during mixed infections of wild-type and ΔpdpC (p=0.77) but there was a slight 

increase in the wild-type and ΔripA mixed infection when compared to wild-type infections 

alone (p=0.01). We hypothesize that the observed increase in IL-1β secretion during co-

infections with ΔripA is due to a small subset of cells that are infected by beads bound only to 

ΔripA bacteria combined with the increased magnitude of IL-1β secretion observed during ΔripA 

infections compared to ΔpdpC infections. However, we cannot rule out the possibility that ΔripA 

may stimulate the immune response via a pathway that cannot be entirely suppressed by wild-

type bacteria. In summary, co-infections of mutant and wild-type bacteria can rescue a 

phenotype caused by the inability of the mutant to properly modify the host cell.  

 

Phagosomal escape is functionally complemented during bead co-infections 

Several FPI mutants, including ΔpdpC, as well as killed F. tularensis do not effectively 

escape the phagosome 93-101. Therefore, F. tularensis phagosomal escape is a F. tularensis 

mediated process. As a result, wild-type bacteria should facilitate release of escape-defective 

mutants so long as the mutant and wild-type bacteria are within the same phagosome. To test this 
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hypothesis, we bound ΔpdpC containing a GFP-expressing plasmid (GFPΔpdpC) to beads and 

quantified the amount of GFPΔpdpC present in the cytosol of J774 cells. We found that 

GFPΔpdpC had reduced phagosomal escape at 2 hours post inoculation compared to GFP 

expressing wild-type bacteria and GFPΔpdpC phagosomal escape was rescued by the presence of 

wild-type bacteria within the same phagosome (Figure 2.4). This result is consistent with other 

published analyses of ΔpdpC mutant phenotypes and indicates that PdpC contributes to, but is 

not absolutely required for, F. tularensis LVS phagosomal escape 93,101. More importantly, wild-

type bacteria export the necessary effector protein(s) to allow both wild-type and ΔpdpC to 

escape the phagosome. 

Bead co-infections achieve functional complementation of phagosomal escape across an 

entire population. This allows for the further characterization of phagosomal escape deficient 

mutants in the cytoplasmic environment. One caveat to using wild-type bacteria for 

complementation is that wild-type bacteria may out-compete certain mutants in the cytosol or 

obscure additional host-pathogen interactions. We hypothesized that any mutant strain that 

escapes the phagosome can be used to complement phagosomal escape of escape deficient 

mutants. To test this hypothesis, we co-infected cells with GFPΔpdpC and ΔripA. The ΔripA 

strain escapes the phagosome with similar kinetics as wild-type bacteria, but does not replicate 

inside the host cell 102. Indeed, ΔripA functionally complemented GFPΔpdpC phagosomal escape 

when GFPΔpdpC entered through the same phagosome as ΔripA (Figure 2.4). Our data 

demonstrate that infecting cells with ΔpdpC and a phagosome escape competent F. tularensis 

bacterium results in phagosomal escape of both bacteria. Thus, pairing a phagosomal escape 

deficient mutant with an escape competent mutant will allow for further characterization of 

cytoplasmic phenotypes associated with the phagosomal escape deficient mutant. 
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Bead co-infections complement intracellular survival 

 F. tularensis mutants can be deficient for intracellular survival or replication due to the 

inability of the mutant to perform a required interaction with the host or due to an intrinsic 

intracellular survival or replication defect. Co-infections with both mutant and wild-type bacteria 

can be used to determine whether the mutant fails to properly control a host-pathogen interaction 

The ripA gene encodes a hypothetical protein of unknown function that is required for F. 

tularensis intracellular proliferation, likely through regulation of lipid A synthesis 102 (our 

unpublished data). We found that co-infecting J774 cells infected with wild-type F. tularensis 

did not complement ΔripA intracellular growth (Figure 2.5A). Likewise, individual cells had 

similar numbers of ΔripA expressing GFP regardless of whether or not wild-type F. tularensis 

was present in the same cell (Figure 2.5D, 2.5E). These data further indicate that ripA is involved 

in an intrinsic bacterial process essential for intracellular bacterial proliferation.  

The PdpC protein is encoded on the FPI and ΔpdpC bacteria are deficient for intracellular 

proliferation 93,101. Intracellular proliferation of ΔpdpC is not consistent across the entire 

population, as this strain replicates to high numbers in a small subset of cells 101. Since the FPI is 

proposed to encode a secretion system, the failure of FPI gene deletion strains to replicate in the 

host cell is likely due to the inability to initiate host-pathogen interactions 107. Thus ΔpdpC 

replication may be rescued by the presence of wild-type bacteria. Consistent with previous 

reports, the amount of viable intracellular LVS ΔpdpC bacteria decreased over time (Figure 

2.5B) 93,101. On average, the number of ΔpdpC organisms decreased over 2 orders of magnitude 

between 4 and 22 hours post inoculation (9 independent experiments). However, when J774 cells 

were co-infected with a mixture of wild-type and ΔpdpC bound to beads, ΔpdpC survival was 

functionally complemented by the wild-type bacteria (Figure 2.5B). Specifically, we observed a 
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slight increase in ΔpdpC replication during co-infections with wild type between 4 and 22 hours 

(2.0 +/- 0.3 fold, n=7 independent experiments, p=0.0014) (Figure 2.5B, 2.5D, 2.5E). We 

conclude that wild-type bacteria complemented the defect of ΔpdpC  by secreting the effector(s) 

necessary to manipulate the host cell into being permissive for F. tularensis survival. Thus, F. 

tularensis LVS ΔpdpC does not survive inside of J774 cells due to its inability to properly 

manipulate an interaction(s) with the host that F. tularensis requires for intracellular survival.  

Although ΔpdpC replicated slightly when wild-type bacteria were present in the same 

cell, ΔpdpC replication did not achieve wild-type levels. This is interesting because ΔpdpC 

escaped the phagosome, albeit at lower levels than wild-type, but was still inhibited by the host 

cell during individual infections (Figure 2.4, 2.5B) 93,101. Thus, wild-type bacteria may promote 

ΔpdpC survival in the host cytosol (Figure 2.5B) but wild-type F. tularensis either out-competes 

ΔpdpC or pdpC is also required for a cell intrinsic process to fully restore intracellular 

replication. To distinguish between these possibilities, we co-infected cells with ΔpdpC and 

ΔripA. The ΔripA strain has an intact FPI and rescues ΔpdpC phagosomal escape, but since 

ΔripA does not replicate, it should not out-compete ΔpdpC. We found that co-infections with 

ΔripA and ΔpdpC resulted in ΔpdpC survival but proliferation did not increase to wild-type 

levels (Figure 2.5C). Thus, we conclude that PdpC is required for intracellular survival through a 

host-mediated process but has a secondary function that enhances bacterial proliferation. 

Together, the ΔpdpC and ΔripA intracellular replication data demonstrate that co-

infecting cells with wild-type and mutant bacteria can differentiate between mutants that fail to 

replicate due to defective host-pathogen interactions and mutants that are defective for growth 

due to intrinsic replication defects. 
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Discussion 

We developed and optimized a method to reliably deliver two distinct F. tularensis 

bacteria into the same host cell. Co-infection of cells with bacteria bound to beads allows for 

functional complementation of host-pathogen interactions, which can be used to identify mutants 

that fail to induce a host-pathogen interaction or to complement a specific host-pathogen 

interaction. 

The ΔripA strain fails to replicate inside of cells and induces IL-1β secretion 90,102,103. 

With the described co-infection method, neighboring wild-type bacteria functionally complement 

IL-1β suppression in ΔripA infected cells but not ΔripA intracellular proliferation. The 

Francisella novicida ΔripA strain has also been shown to have increased intracellular lysis 

compared to wild-type F. novicida bacteria, which leads to increased cytokine secretion via the 

AIM2 inflammasome 108. Herein we show that wild-type F. tularensis LVS bacteria can suppress 

cytokine secretion in cells infected with ΔripA bacteria. Assuming that RipA has an identical 

function between the different Francisella species, these data indicate that wild-type LVS 

bacteria, but not ΔripA, suppress the AIM2 inflammasome. 

Interestingly, wild-type F. tularensis bacteria replicated in cells that contained ΔripA 

bacteria, which indicates that the cell cytosol remains permissive for F. tularensis replication and 

that the proliferation defect is specific to ΔripA bacteria. These data also indicate that increased 

cytokine secretion and intracellular proliferation phenotypes seen in ΔripA infections occur 

through different mechanisms because one phenotype is functionally complemented while the 

other is not. Additionally, we were able to genetically distinguish between ΔripA cytokine 

suppression and intracellular replication. A chromosomal ripA N21A point mutant of LVS 

proliferated in the cytosol at a rate comparable to wild-type bacteria, but failed to suppress IL-1β 
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secretion (data not shown). Taken together, the described co-infection method indicates that 

RipA is involved in cytokine suppression (a host-pathogen interaction) and a separate, intrinsic 

bacterial process for intracellular replication. 

The ΔpdpC strain was functionally complemented for phagosomal escape, intracellular 

survival, and IL-1β suppression. Thus, PdpC contributes to those host-pathogen interactions. 

Interestingly, ΔpdpC replication never reached the same level as wild-type bacteria during co-

infections even though ΔpdpC escaped the initial phagosome with the wild-type bacteria. These 

data hint that PdpC is involved in an intrinsic bacterial replication process that is required for 

optimal growth. It is also possible that a local host-pathogen interaction is required that is not 

reliably complemented by neighboring bacteria. Further investigation is needed to determine if 

the intracellular growth defect is specific to ΔpdpC or if other FPI genes are required for 

replication in the host cell cytosol. 

The antibody used throughout these experiments has been used to identify F. tularensis 

Schu S4 by microscopy and for purifying Schu S4 from infected cell lysates 5,109. As described, 

this method should be compatible with a range of F. tularensis species with O-antigen structures 

similar to F. tularensis LVS. More importantly, the described co-infection method is compatible 

with any biotinylated antibody, so antibodies specific to surface molecules of F. tularensis 

novicida or other bacterial species can be used to link bacterial cells to beads.  

Binding bacteria to beads does alter some aspects of infection that must be taken into 

consideration when designing experiments. The beads are dense and sink to the bottom of the 

well, allowing for a substantially lower multiplicity of infection (MOI) while maintaining a high 

infection frequency. More bacteria are phagocytosed per cell when bacteria are bound to beads 

compared to a typical infection. This may require time points to be taken earlier than a typical 
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infection and the magnitude of certain phenotypes, particularly intracellular proliferation, are 

slightly different. Lastly, we expect that phagocytosis of beads coated in bacteria will primarily 

occur through typical phagocytic routes of a given bacteria because bacteria on the bead surface 

still interact with the cell. But phagocytosis may occasionally occur through a different 

mechanism than in a typical infection. For example, some Fc receptor mediated phagocytosis 

likely occurs in some cells due to antibodies bound to the beads. Despite these potential pitfalls, 

our individual infection controls for IL-1β secretion, phagosomal escape, and intracellular 

proliferation resulting from infection with bead-bound bacteria are consistent with previously 

published data based on infection by free bacterial cells 90,93,101,102. 

Bead co-infections provide a consistent method of functionally complementing most 

intracellular bacterial manipulations of the host cell. However, there are a few specialized cases 

in which further characterization beyond bead co-infections is necessary. We expect that some 

gain of function mutants and host-pathogen interactions that require local manipulation will not 

be reliably complemented. For example, immune signaling phenotypes that are not 

complemented by wild-type bacteria are likely gain of function mutations because the mutants 

stimulate the immune system in a manner that wild-type bacteria cannot suppress. Likewise, 

xenophagy evasion and re-entry into Francisella containing vacuoles likely requires local host-

pathogen interactions. As a result, a lack of complementation for mutants that are strongly 

suspected of manipulating the host cell can also narrow down potential functions for a given 

protein. Altogether, bead co-infections are a reliable method to gain insight into the function of a 

gene of interest, identify mutants that fail to initiate a host-pathogen interaction, and to aid in 

downstream experimental design. 
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Materials and Methods 

Bacteria and plasmids 

 Francisella tularensis subsp holartica LVS was obtained from the CDC Atlanta, GA. A 

pdpC deletion construct was made by splice overlap extension (SOE) PCR as described 

previously 102.  Primers were used to delete all but the first five amino acid (MNDKY) and the 

last five codons (KISS stop) while keeping the deletion in frame.  After blunt end cloning into 

pCR BLUNT II (Invitrogen), the SOED pdpC fragment was removed by BamHI-Not I digest 

and cloned into suicide vector pMP812 110.  Integrants were selected on kanamycin (10 ug/ml).  

Resolved integrants were selected by growth overnight in brain heart infusion (BHI) broth (BD 

Biosciences) supplemented with isovitalex followed by plating on chocolate containing 10% 

sucrose.  Resolved integrants were sequenced to confirm in-frame deletion of pdpC and integrity 

of the flanking sequence. Deletion of both pdpC genes was verified by PCR. Genetic 

complementation of pdpC by constitutively expressing the pdpC gene on pMP822 restored 

intracellular proliferation (Supplemental Figure 1) 111. The ΔripA in-frame deletion and 

GFPΔripA strains were previously generated 112.  

GFP wild-type LVS (GFP-wt) was generated by Hall et al 2 and GFP-ΔpdpC was 

generated using the same GFP plasmid. DsRed LVS and luciferase expressing LVS were 

generated with the plasmids from DsRed Schu S4 and luciferase expressing Schu S4 respectively 

5. Hygromycin B resistant ΔpdpC and ΔripA were generated by transforming the deletion mutant 

bacteria with the hygromycin B resistance plasmid pMP831 111. The kanamycin resistant wild-

type strain was generated by transforming wild-type bacteria with the kanamycin resistance 

plasmid pMP828 and kanamycin resistant ΔripA with the pkkMCS plasmid 102,111. 
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Cell Culture 

 J774A.1 Macrophage like cells were obtained from ATCC and grown in DMEM with 4.5 

g/L glucose and supplemented with 10% FBS, L-glutamine and sodium pyruvate (all from 

Gibco). Mouse bone marrow derived macrophages were generated from a C57Bl/6 as previously 

described 113. All animal studies were conducted according to the Institutional Animal Care and 

Use Committee guidelines of the University of North Carolina- Chapel Hill (IACUC ID 13-213). 

 

Binding F. tularensis to the magnetic beads 

800 nm streptavidin coated magnetic beads (Solulink) were blocked with sterile filtered 

Tris buffered saline (TBS) containing 0.1% casein for 20 minutes. The beads were washed 4 

times with antibody wash buffer (100 mM Tris, 150 mM NaCl and 0.05% tween 20 in distilled 

water, pH 8.0). For every 10 ug of beads, we added 2.5 μg of anti-Francisella tularensis LPS 

antibody (US Biological) that was previously biotinylated using a FluoReporter Mini-Biotin-XX 

Protein Labeling Kit (Invitrogen) following the manufacturer’s instructions. The antibody was 

suspended in antibody wash. After 30 minutes of rocking at 4°C, the beads were washed twice in 

antibody wash buffer and twice in PBS. 10 μg of magnetic beads coated with anti- LPS antibody 

were mixed with 8x108 bacteria for 20 minutes. Each sample was then washed twice in PBS to 

remove unbound F. tularensis. After the final wash, the beads were suspended in cell culture 

media and ready to use for the given experiment. All washes were performed by placing a 12 x 

75 mm round bottom tube containing the sample on a BD IMagnet (BD biosciences) and waiting 

approximately 2 minutes for the beads to move toward the magnet. After all wash steps, 

approximately 1x107 beads bound to bacteria were present for every 10 ug of beads initially 

added (based on plating bacteria bound to beads on chocolate agar). The amount varied up to 4 x 
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106 beads between experiments. All experiments were inoculated assuming 1x107 bacteria bound 

to beads per 10 ug of starting beads.  

For samples where multiple strains were added together, 4x108 of each strain was added. 

For all mixed infections, the inoculum of each type of bacteria was plated and compared to 

ensure both types of bacteria were equally represented. Typically the ratio of one type of bacteria 

to the other was between 1: 0.8 and 1: 1.2 (data not shown). Infecting cells at a MOI higher than 

1 can result in each cell taking up a substantial number of beads, which may impact results (data 

not shown). Bead aggregates can form over time which may impact the number of bacteria that 

enter each cell. 

 

Microscopy 

 For micrographs of bacteria on beads, GFP-LVS and/or DsRed labeled LVS were coated 

onto the beads as described above. The bacteria bound beads were fixed in 4% paraformaldehyde 

and were placed into an 8 well chamber slide (Nunc). The beads were allowed to settle and the 

fixative was carefully removed.  

 For images of infected cells, beads were prepared as above with the indicated bacteria. 

J774 cells were inoculated for 2 hours and then the media was removed and replaced with media 

containing 25 μg/ml of gentamicin. The cells were washed and fixed with 4% paraformaldehyde 

at 4 or 22 hours post inoculation. Cells were treated with 50 mM ammonium chloride for 10 

minutes and then stained with 10 μg/ml of AF647 wheat germ agglutinin (Invitrogen) where 

indicated. 

All samples were mounted using a DAPI containing mounting media (Vector Shield). 

Images were acquired using a Zeiss 700 confocal laser scanning microscope (Zeiss) using Zen 
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image acquisition software (Zeiss) or an Olympus FV500 confocal scanning laser microscope 

(Olympus). Images were cropped and scale bars were added using ImageJ 114. 

 

Flow Cytometry 

  To assess the frequency of both types of bacteria binding to a single bead, beads were 

prepared as above with GFP-LVS and/or Cell Trace Far Red DDAO-SE (Invitrogen) labeled 

wild-type LVS. Immediately following the final wash, the beads were stained with pacific blue 

conjugated anti- F. tularensis LPS antibody (US biological) (Pacific blue antibody labeling kit 

[Invitrogen] following the manufacturers protocol). The beads were washed once more and then 

immediately fixed using 4% paraformaldehyde. The event trigger on the flow cytometer was set 

to only record Pacific Blue positive events.  

Phagosomal escape assays were performed as previously described 74. Briefly, J774 cells 

were inoculated with beads coated with the indicated wild-type or deletion mutants bacteria 

(prepared as above). 2 hours post inoculation, the cells were suspended and stained with pacific 

blue conjugated anti- Francisella tularensis LPS antibody to label extracellular bacteria. After 

the antibody was washed away with KHM buffer, the cells were permeabilized with 100 ul of 10 

μg/ml digitonin and the cells were stained with AF647 conjugated anti- Francisella tularensis 

LPS antibody to stain cytosolic bacteria. The cells were lysed and the samples were then 

analyzed by flow cytometry. We compared the ratio of intracellular cytosolic bacteria (GFP+ 

AF647+ Pac Blue-) to bacteria in the phagosome (GFP+ AF647- Pac Blue-). The data from these 

experiments includes both bacteria bound to beads and unattached bacteria. No significant 

difference in localization was seen between F. tularensis attached to beads and unbound bacteria, 

although bacteria bound to beads tended to escape the phagosome at higher rates. Control cells 
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were stained with calnexin to assay the percentage of cells that were permeabilized. The 

percentage of permeabilized cells was used to determine the total percentage of bacteria that 

escaped the phagosome. 

To assay for bacterial dissociation from the beads prior to inoculation, GFP-LVS was 

bound to beads as previously described and stained with pacific blue conjugated anti- F. 

tularensis LPS antibody. The fixed sample was then analyzed for the percentage of bacteria 

bound to beads. To assess the amount of dissociation from beads inside of cells, GFP-LVS was 

bound to beads as previously described. The cells were removed from the plate, washed in KHM 

buffer 74, and permeabilized with digitonin 2 hours post inoculation. The permeabilized cells 

were stained with an AF647 conjugated anti- F. tularensis LPS antibody (US biological). The 

antibody was washed away and then the infected cells were lysed by vortexing the cells in 

distilled water. AF647+, GFP+ events were analyzed for attachment to a bead based on size.  

 All samples were analyzed using a Cyan Flow Cytometer (Dako) with the event trigger 

set to record only pacific blue positive events or GFP positive events depending on the 

experiment. All histograms were pre-gated so that only single events were analyzed. 

 

Intracellular bacterial proliferation assay 

 The indicated LVS mutants were coated on beads as previously described. J774 cells 

were seeded at approximately 2.5x105 cells per well the night before infection and were infected 

with an approximate multiplicity of infection (MOI) of 1 bead per cell (assuming 5x105cells 

prior to infection). The media was replaced with media containing 25 μg/ml of gentamicin 2 

hours post inoculation. At 4 and 22 hours post inoculation, the cells were scraped off the plate, 

lysed, serially diluted and plated on chocolate agar containing isovitalex and either kanamycin or 
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hygromycin to assess bacterial proliferation. As expected, hygromycin resistant colonies did not 

form under kanamycin selection and vice versa (data not shown). 

 

Quantification of bacteria per bead 

 F. tularensis LVS containing a luciferase –expressing plasmid was bound to beads 

following the previously described method. Half of the sample was plated on chocolate agar to 

assay for the number of beads bound to bacteria and the other half was placed into an Infinite 

M200 Pro plate reader (Tecan) and the amount of light produced was quantified and compared to 

a standard curve consisting of know quantities of F. tularensis LVS containing the luciferase 

plasmid.   

 The number of bacteria per cell was determined based on the results at 4 hours post 

inoculation of the wild-type bacteria from the intracellular proliferation assay described 

previously. We assumed that 60% of the cells were infected based on flow cytometry of similar 

samples examined 2 hours post inoculation. Since gentamicin is added 2 hours post inoculation, 

additional cells should not be infected. We also assumed that the J774 cells doubled overnight, 

resulting in 5x105 cells, that each cell was infected with 1 bead, that 100% of bacteria were 

bound to beads and no bacterial death or replication occurred between 0 and 4 hours post 

inoculation.  

 

IL-1β ELISA 

 Murine bone marrow derived macrophages were seeded at 5x105 cells per well in 24-well 

plates. Beads coated with the appropriate bacterial strains and were used to inoculate the cells at 

an MOI of approximately 1 bead per cell. The cell supernatant was collected 22 hours post 
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inoculation and the amount of IL-1β was measured using a BD OptEIA mouse IL-1β ELISA set 

(BD biosciences) following the manufacturers protocol. 

 

Statistics 

 All statistics were performed using an unpaired Student t-test using the compiled data 

from all experiments performed. Intracellular proliferation assays were log10 transformed prior to 

statistical analysis. 
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Figures  

 

Figure 2.1: Multiple F. tularensis bacteria reliably bind to the same bead.  

Representative flourecence micrographs of beads bound to (A) GFP LVS, (B) DsRed LVS, or 

(C) a mixture of GFP LVS and DsRed LVS. All scale bars represent 2 μm. Representative flow 

cytometry histograms of three independent experiments depicting beads bound to (D) GFP LVS, 

(E) CellTrace Far Red labeled LVS, or (F) a one to one mixture of GFP LVS and CellTrace Far 

Red labelled LVS. Histograms were pregated on size to exclude aggregates and non-specific 

events. Quantification was compiled from all 3 experiments and represents the mean +/- the 

standard deviation. 
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Figure 2.2: F. tularensis separates from the beads inside host cells.  

(A) Percentage of events representing bacteria that were bound to a bead prior to infection (n=3) 

and the percentage of events representing intracellular bacteria bound to a bead 2 hours post 

inoculation (n=9), as quantified by flow cytometry. Bar graph represents the mean +/- the 

standard deviation. (B) Representative fluorscence micrograph of a cell infected with beads 

bound to GFP (green) expressing LVS. The white arrow indicates the location of the bead. The 

image was taken 4 hours post inoculation. The scale bar represents 5 uM.  
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Figure 2.3: Functional trans-complementation via bead-bound bacteria complements 

suppression of cytokine secretion.  

IL-1β ELISA of murine bone marrow derived macrophages that were inoculated with single or 

mixed inoculations of wild-type, ΔpdpC or ΔripA LVS (triplicates, n=3). All samples were 

bound to beads prior to infection. Bar graph represents the mean +/- SEM.  **p<.01, ***p<.001 
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Figure 2.4: Functional trans-complementation via bead-bound bacteria complements 

phagosomal escape.  

J774 cells were inoculated with either GFP wild-type LVS or mixtures of GFP ΔpdpC, wild-type 

LVS, or ΔripA (n=4 independent experiments). The amount of cytosolic GFP positive bacteria 

was quantified by flow cytometry and normalized based on the amount of permeabilized cells, as 

determine by calnexin staining controls. All samples were bound to beads prior to infection. Data 

includes bacteria attached and detached from beads in the same sample. Bar graph represents the 

mean +/- SEM. * p<.05, **p<.01 
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Figure 2.5: Functional trans-complementation via bead-bound bacteria complements 

intracellular proliferation of ΔpdpC but not ΔripA.  

(A) Kanamycin resistant wild-type LVS or hygromycin resistant ΔripA were individually or co-

inoculated into J774 cells and assayed for intracellular proliferation at 4 and 22 hours post 

inoculation. (B) Kanamycin resistant wild-type LVS or hygromycin resistant ΔpdpC were 

individually or co-inoculated into J774 cells and assayed for intracellular proliferation at 4 and 

22 hours post inoculation. (C) Kanamycin resistant wild-type LVS, kanamycin resistant ΔripA or 
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hygromycin resistant ΔpdpC were individually or co-inoculated into J774 cells and assayed for 

intracellular proliferation at 4 and 22 hours post inoculation. Results are from 3 independent 

experiments performed in duplicate or triplicate. Bar graphs represent the mean +/- the standard 

deviation. (D) Representative fluorescence micrographs of J774 cells inoculated for 22 hours 

with GFP wild-type, GFPΔpdpC or GFPΔripA bacteria attached to beads. (E) Representative 

fluorescence micrographs of J774 cells inoculated with beads bound to DsRed LVS and either 

GFP WT, GFPΔpdpC or GFPΔripA. Blue represents the nucleus (DAPI), green represents the 

indicated GFP LVS mutants, red represents DsRed wild-type LVS, and white represents the 

plasma membrane stain wheat germ agglutinin (WGA). All scale bars represent 10 μm. All 

samples were bound to beads prior to infection. Not significant (ns), p>.05, * p<0.05, 

***p<0.005 
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Figure 2.6: Genetic complementation of ΔpdpC intracellular proliferation.  

Supplemental figure 1 

Intracellular proliferation assay of J774 cells infected with wild-type, ΔpdpC or ΔpdpC with a 

complementation plasmid containing the pdpC gene. The bar graph represents the mean +/- the 

standard deviation. Data is a compilation of 3 independent experiments performed in triplicate. 

***p<0.005 
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CHAPTER 3: FRANCISELLA TULARENSIS HARVESTS NUTRIENTS DERIVED VIA 

ATG5-INDEPENDENT AUTOPHAGY TO SUPPORT INTRACELLULAR GROWTH2

 

  

Overview 

Francisella tularensis is a highly virulent intracellular pathogen that invades and 

replicates within numerous host cell types including macrophages, hepatocytes and 

pneumocytes. By 24 hours post invasion F. tularensis replicates up to 1000-fold in the cytoplasm 

of infected cells. To achieve such rapid intracellular proliferation, F. tularensis must scavenge 

large quantities of essential carbon and energy sources from the host cell while evading anti-

microbial immune responses. We found that macroautophagy, a eukaryotic cell process that 

primarily degrades host cell proteins and organelles as well as intracellular pathogens, was 

induced in F. tularensis infected cells. F. tularensis not only survived macroautophagy, but 

optimal intracellular bacterial growth was found to require macroautophagy. Intracellular growth 

upon macroautophagy inhibition was rescued by supplying excess nonessential amino acids or 

pyruvate, demonstrating that autophagy derived nutrients provide carbon and energy sources that 

support F. tularensis proliferation. Furthermore, F. tularensis did not require canonical, ATG5-

dependent autophagy pathway induction but instead induced an ATG5-independent autophagy 

pathway. ATG5-independent autophagy induction caused the degradation of cellular constituents 

                                                 
2This chapter was previously published as an article in PLOS Pathogens. The citation is: Steele S, Brunton J, Ziehr 
B, Taft-Benz S, Moorman N, Kawula T. Francisella tularensis harvests nutrients derived via ATG5-independent 
autophagy to support intracellular growth. PLoS Pathog. 2013;9(8):e1003562. doi: 10.1371/journal.ppat.1003562; 
10.1371/journal.ppat.1003562. 
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resulting in the release of nutrients that the bacteria harvested to support bacterial replication. 

Canonical macroautophagy limits the growth of several different bacterial species. However, our 

data demonstrate that ATG5-independent macroautophagy may be beneficial to some 

cytoplasmic bacteria by supplying nutrients to support bacterial growth.  

 

Author Summary 

Francisella tularensis is a highly virulent bacterial pathogen that infects hundreds of 

different animal species including humans. During infection F. tularensis bacteria invade and 

rapidly multiply inside host cells. Within the host cell environment basic nutrients that bacteria 

require for growth are in limited supply, and the majority of nutrients are tied up in complex 

molecules that are not readily available in forms that can be used by bacteria. In this study we 

asked and answered a very simple question; how does F. tularensis harvest sufficient carbon and 

energy sources from the host cell to support rapid intracellular growth? We found that F. 

tularensis induces a host recycling pathway in infected cells. Thus the host cell degrades 

nonessential proteins and releases amino acids. F. tularensis harvests the host-derived amino 

acids to generate energy and build its own more complex molecules. When we inhibited the host 

recycling pathway, growth of the intracellular bacteria was limited. Therefore, manipulation of 

host cell metabolism may be a means by which we can control the growth of intracellular 

bacterial pathogens during infection. 

 

Introduction 

When intracellular bacterial pathogens invade host cells, the bacteria must scavenge 

energy sources and anabolic substrates from the nutrient-limited intracellular environment. Most 
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of the potential nutrient sources inside a host cell are stored within complex structures such as 

lipid droplets, glycogen and proteins that are not immediately available to intracellular 

pathogens. To obtain nutrients for proliferation, intracellular bacteria must degrade these 

complex structures into their constituents (fatty acids, carbohydrates and amino acids 

respectively) or increase nutrient import. The strategies that bacteria use to acquire nutrients 

could potentially have widespread effects on the host cell. For example, pathogens that import 

amino acids from the host cell cytoplasm may starve the cell. Host cell amino acid starvation 

leads to mammalian target of rapamycin (mTOR) inhibition, thereby inhibiting mRNA 

transcription and other critical cellular homeostatic processes 115. Thus, nutrient acquisition is an 

important step in the pathogenesis of intracellular bacteria and is critical to understand how a 

pathogen interacts with the host. 

Autophagy is a highly conserved eukaryotic cell process that can be initiated by a variety 

of factors such as amino acid starvation, energy depletion, mTOR inhibition and immune 

signaling 116,117. Autophagy is a process by which multi-membranous vesicles called 

autophagosomes surround and degrade cellular constituents (during starvation) or cytoplasmic 

bacteria (during infection through a related innate immune response termed xenophagy 118). The 

autophagosomes fuse with lysosomes to become autolysosomes, which then degrade the 

engulfed material. During starvation, autophagy can degrade nonessential proteins, thereby 

releasing free amino acids that are recycled into new proteins and organelles. Current studies of 

the interactions between host autophagy and intracellular bacterial pathogens are primarily 

focused on xenophagy 119-121. However, a few intracellular pathogens are known to benefit from 

autophagy 122-124. Autophagosome formation is induced during infection with Anaplasma 

phagocytophilum and the autophagy derived nutrients are harvested and used by A. 
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phagocytophilum to enhance intracellular replication [9]. Likewise, dengue virus uses autophagic 

byproducts to acquire lipids for viral replication 123,124. Pathogens such as Listeria 

monocytogenes express active mechanisms that prevent bacterial degradation via xenophagy, yet 

autophagy still occurs in the infected cell and has the potential to provide nutrient sources for the 

bacteria 125. These and other recent studies highlight the potential role of autophagy in providing 

nutrients or other benefits for intracellular pathogens. 

Francisella tularensis is a facultative intracellular bacterium that infects over 200 

different species (from amoeba to humans) 126. The highly virulent F. tularensis subsp. tularensis 

Schu S4 strain has an infectious dose of fewer than 25 bacteria and a mortality rate of 30-60% in 

untreated pneumonic infections 127,128. F. tularensis infects a diverse range of cell types including 

macrophages, which are a key replicative niche for F. tularensis in humans and other susceptible 

mammals. F. tularensis also invades and replicates within several other cell types including 

epithelial cells and endothelial cells 2,126. F. tularensis enters the host cell through phagocytosis 

and proceeds to escape the phagosome and replicate in the host cell cytoplasm. By 24 hours post 

inoculation, F. tularensis replicates up to 1000-fold inside host cells. This rapid intracellular 

replication plays a major role in F. tularensis pathogenesis but the mechanisms by which this 

organism acquires nutrients are not well characterized. Therefore, we sought to determine how 

these nutrients become available to support efficient F. tularensis intracellular replication.  

In primary murine macrophages, F. tularensis induces the formation of a multi-

membranous, autophagosome-like structure termed the Francisella containing vacuole (FCV) 

through an autophagy related process 74. FCV formation occurs between 20 and 36 hours post 

inoculation, after the majority of F. tularensis replication has taken place. Blocking FCV 

formation late during infection does not increase F. tularensis proliferation, suggesting that FCV 
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formation does not play a role in controlling intracellular F. tularensis replication 74. However, 

the formation of FCVs hints that autophagy may be induced during F. tularensis infection. 

Additionally, replication deficient and chloramphenicol treated F. tularensis bacteria, but not 

wild type F. tularensis bacteria, are degraded via canonical autophagy 129. This observation 

implies that F. tularensis avoids xenophagy. Lastly, treating F. tularensis infected macrophages 

2 hours post inoculation with chloroquine or autophagy- inhibiting levels of ammonium chloride 

impairs F. tularensis intracellular replication 130-132. Although chloroquine and ammonium 

chloride inhibit acidification of cellular compartments and have broad effects on the host cell, 

these data raise the intriguing possibility that autophagy may contribute to F. tularensis 

intracellular replication. 

Taken together these observations suggest that intracellular F. tularensis avoids 

xenophagy yet induces autophagy or an autophagy-like process that contributes to F. tularensis 

proliferation. We therefore examined the potential role of autophagy in aiding F. tularensis 

intracellular growth.  

 

Results 

Host cell constituents are sufficient to support F. tularensis intracellular proliferation. 

F. tularensis replicates efficiently and rapidly in host cells. Indeed, transmission electron 

microscopy analysis showed that F. tularensis consumed over half of the area of the cell 

cytoplasm of infected mouse embryonic fibroblasts (MEFs) by 16 hours post inoculation (Figure 

S1). F. tularensis cannot make all of the nutrients it needs de novo and must interact with the 

host to acquire certain metabolites to support rapid proliferation. In particular, F. tularensis is 

auxotrophic for 13 amino acids, some of which mammalian cells also do not synthesize. Thus, 
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for sustained proliferation within infected cells, the bacteria must either take up amino acids 

imported by the host cell or degrade host proteins and reuse the resulting amino acids. To 

distinguish between these possibilities, we determined if decreasing the availability of free amino 

acids limited F. tularensis intracellular growth. We replaced the media on infected MEFs with 

media lacking amino acids at 3 hours post inoculation. F. tularensis replicated to similar 

numbers with or without amino acids present in the tissue culture media (Figure 3.1A). This 

result demonstrates that F. tularensis can acquire the amino acids it needs to sustain growth 

directly from the host cell. Since the majority of host amino acids are typically sequestered in 

proteins inside the cell, protein degradation likely occurs to provide sufficient amino acids to 

support F. tularensis intracellular growth. Additionally, amino acid depletion results in starvation 

induced autophagy 133. Starvation induced autophagy will degrade proteins to produce amino 

acids. Thus, F. tularensis may take advantage of host cell autophagy to acquire free amino acids. 

 

Autophagy supplies energy and anabolic substrates that support F. tularensis growth in 

Fibroblasts. 

To determine if autophagy had any impact on F. tularensis intracellular growth we 

measured bacterial replication inside cells treated with several different autophagy inhibitors. 

MEFs were treated with 3-methyladenine (3MA), which inhibits autophagosome formation, 

thereby blocking autophagy. F. tularensis replication inside 3MA treated MEFs was significantly 

reduced (Figure 3.1B), suggesting that intracellular F. tularensis benefit from host cell 

autophagy. Since autophagy is both a starvation response and a process by which damaged 

organelles and non-essential proteins are degraded we considered the possibility that F. 

tularensis may scavenge and utilize amino acids released by this process. We therefore wanted to 
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determine if exogenous amino acid supplementation would rescue F. tularensis growth in MEFs 

that have impaired autophagy function. Indeed, F. tularensis intracellular growth in the presence 

of 3MA was restored by the addition of excess amino acids to the culture media (Figure 3.1B). 

These results, which were corroborated using confocal fluorescence microscopy of cells infected 

with GFP-expressing F. tularensis Schu S4 (Figure 3.1C) indicate that autophagy provides a 

source of nutrients that support F. tularensis replication. 

To determine if degradative autophagy was responsible for optimal bacterial growth, we 

quantified F. tularensis intracellular growth in the presence of Bafimoycin A(1) (Baf) or 

chloroquine (CQ), each of which inhibits autophagy by blocking functional autolysosome 

formation. We tested the effect of these drugs on F. tularensis replication kinetics by infecting 

MEFs with F. tularensis containing a bioluminescence reporter plasmid (Schu S4-LUX) 134and 

measuring luminescence every 30 minutes to determine the bacterial growth kinetics. The limit 

of detection for this assay was approximately 50 relative light units (RLUs) or approximately 105 

bacteria in a 96 well format (data not shown). We verified this technique by treating F. tularensis 

infected cells with 3MA or 3MA supplemented with amino acids and saw similar results to the 

standard intracellular proliferation assays (Figure S2A, S2B). Additionally, CQ significantly 

reduced F. tularensis growth and amino acid supplementation rescued bacterial growth in CQ 

treated cells (Figure S2C, S2D). Similar to 3MA and CQ, treating MEFs with Baf also 

significantly reduced F. tularensis intracellular growth and growth was rescued with amino acid 

supplementation (Figure S2E, S2F). None of the inhibitors affected F. tularensis growth in broth 

culture. Although 3MA, CQ, and Baf were each cytotoxic to MEFs, viability was comparable 

between treatments with and without amino acid supplementation (Figure S3A, S3B). Thus, the 
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observed rescue was not due to increased eukaryotic cell viability upon amino acid 

supplementation. 

Since all chemical inhibitors have the potential to confer off-target or non-specific effects 

on host cell processes we wanted to confirm the inhibitor results using genetic approaches. 

Beclin-1 is required for autophagosome formation in most autophagy pathways 135. We therefore 

reasoned that depletion of Beclin-1 should limit bacterial replication if autophagy is required for 

F. tularensis growth. We created two Beclin-1 knock down MEF cell lines, Beclin-1 KD-1 and 

KD-2  that expressed 63.8% (+/- 14.4%) and 59.2% (+/- 12.9%) of the scrambled shRNA control 

Beclin-1 mRNA, respectively (Figure S4).   Despite the relatively modest reduction of Beclin-1 

mRNA F. tularensis replication was significantly reduced in the knockdown cell lines compared 

to the scrambled control (Figure 3.1D); supporting the conclusion that autophagy may have a 

pro-bacterial role in F. tularensis infected cells. Interestingly, the infection frequency of the 

knock down cell lines was approximately 2-fold higher than the scrambled control (data not 

shown) suggesting that Beclin-1 activity may modestly impair F. tularensis infection of host 

cells.  

 

Autophagy supports F. tularensis replication in primary human monocyte derived 

macrophages. 

During the course of infection F. tularensis invade and replicate within many different 

cell lineages and types.  Intracellular growth properties of F. tularensis vary depending on host 

cell type.  For example, F. tularensis infects monocytes at a significantly higher frequency than 

epithelial cells or fibroblasts.  On the other hand, F. tularensis intracellular growth is more 

prolonged, and achieves nearly 10-fold higher peak numbers in MEFs as compared to 
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monocytes.  Growth within monocytes is a property that is fundamental to F. tularensis 

virulence. F. tularensis is also a human pathogen; we therefore wanted to determine the 

relevance of autophagy in supporting F. tularensis growth within human macrophages.  

Inhibition of autophagy with 3MA significantly decreased F. tularensis growth in hMDMs, and 

growth was rescued in 3MA treated hMDMs by supplementing the media with excess amino 

acids (Figure 3.1E). Therefore, autophagy provides amino acids that support F. tularensis 

intracellular growth in primary human monocytes, a property that is crucial to F. tularensis 

pathogenesis.  

 

F. tularensis infection increases autophagic flux. 

We compared the rate of degradation of long-lived proteins in uninfected and infected 

cells to determine if F. tularensis infection impacted autophagic flux.  Since we were attempting 

to quantify a specific infected host cell response we performed this analysis in the J774 

monocyte cell line where the F. tularensis infection frequency is much greater than the infection 

frequency in MEFs (data not shown). We first labeled cellular proteins by incubating J774 cells 

in media containing 35S methionine and cysteine for 18 hours and chased for 2 hours to remove 

any remaining labeled free amino acids. The labeled cells were inoculated with F. tularensis and 

incubated for 16 hours. Following infection, infected cells had a 49.5% +/- 7.9% (Average +/- 

SEM) decrease of 35S label in the TCA insoluble fraction of the cytoplasm (which will primarily 

contain proteins) compared to uninfected J774 cells (Figure 3.2A). Thus, infected cells had 

increased turnover of long lived proteins than uninfected cells. This result is consistent with 

autophagy induction in F. tularensis infected J774 cells. The decrease of total 35S label in both 

host and bacterial proteins in infected cells is also consistent with F. tularensis using the majority 
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of amino acids for energy rather than for protein synthesis, but may indicate that the transfer of 

amino acids from the host to the bacteria is inefficient. Uninfected and infected J774 cells had 

similar levels of cytotoxicity at 16 hours post inoculation, indicating that the loss of label in 

infected compared to uninfected cells was not due to cell lysis (Figure S3D). 

 

Autophagy derived amino acids are transferred from host proteins to F. tularensis 

To confirm that F. tularensis imports amino acids derived from host proteins, we 

monitored transfer of radiolabeled amino acids from host proteins into bacterial proteins. MEFs 

were first metabolically labeled with 35S-labeled methionine and cysteine for 18 hours to fully 

label all host proteins. Then the radiolabel was removed and the cells were incubated in 

unlabeled media for two hours prior to infection with F. tularensis to remove 35S that was not 

incorporated into protein. At 16 hours post infection (18 hours after the radiolabel was removed) 

we lysed the MEFs and purified F. tularensis by mixing cell lysate from either uninfected or 

infected cells with magnetic beads linked to an anti- F. tularensis lipopolysaccharide (LPS) 

antibody. We then determined if F. tularensis proteins contained radiolabeled amino acids by 

examining the trichloroacetic acid (TCA) insoluble fraction of purified F. tularensis. There was a 

significant increase of radiolabel in the TCA insoluble, F. tularensis bead purified fraction from 

infected MEFs as compared to uninfected control samples (Figure 3.2B). Indeed, 6.22% +/- 

4.15% (average +/- SEM, n=5 samples) of the TCA insoluble radiolabel present prior to 

infection transferred to the bacteria during the 16 hour infection. To control for possible direct 

transfer of labeled amino acids that were not incorporated into host proteins we analyzed infected 

MEFs that were treated with cycloheximide during 35S labeling prior to infection. There were 

negligible amounts of radiolabel present in the bead purified fraction of cycloheximide treated 
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cells (Figure 3.2B). F. tularensis survived and replicated within cycloheximide pre-treated cells 

and F. tularensis was present in the bacterial purified fraction (data not shown). Thus, host cell 

lysis due to the cycloheximide treatment was not solely responsible for the lack of radiolabel in 

the bacterial fraction. 35S radiolabel was primarily incorporated into host proteins, rather than as 

free 35S labeled amino acids. Taken together, these data demonstrate that F. tularensis 

synthesized proteins using amino acids derived from host cell proteins.  

Treating the radiolabeled cells with either Baf or 3-MA resulted in significantly 

decreased incorporation of the radiolabel by F. tularensis (Figure 3.2C). Since F. tularensis 

proliferation is reduced in 3MA and Baf treated MEFs, several fold fewer bacteria were present 

in the bacteria purified fraction of the treated MEFs (data not shown). Nevertheless, the median 

35S counts per bacteria were significantly lower in the 3MA or Baf treated samples compared to 

untreated samples (untreated: 0.016 CPM/bacteria, 3MA: 0.000 CPM/bacteria, Baf: 0.000 

CPM/bacteria [n= 3 experiments done in duplicate]). Therefore, transfer of radiolabeled amino 

acids to bacterial proteins was reduced by both 3MA and Baf treatment, indicating that under 

normal culture conditions, amino acids derived by the degradation of host cell proteins via 

autophagy were used by F. tularensis. 

 

F. tularensis uses autophagy by- products primarily for energy. 

F. tularensis is capable of using amino acids as an energy source when simple 

carbohydrates such as glucose are not available (Figure 3.3A). Thus, autophagy derived amino 

acids could conceivably be used by intracellular F. tularensis for either the synthesis of new 

proteins or to provide energy for other bacterial processes. Although we found that F. tularensis 

uses host-derived amino acids for protein synthesis (Figure 3.2B), the proportion of amino acids 
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used for protein synthesis as opposed to energy is unknown. To determine if F. tularensis uses 

autophagy-derived amino acids primarily as anabolic precursors or as an energy source, we 

supplemented autophagy inhibited, F. tularensis infected MEFs with either serine or the 

metabolite pyruvate. Annotation of the F. tularensis genome indicates that F. tularensis encodes 

the protein L-serine dehydratase, which degrades serine directly into pyruvate. The addition of 

either pyruvate or serine alone rescued F. tularensis intracellular growth in Baf treated cells 

(Figure 3B). Fibroblasts cannot convert serine or pyruvate into all of 13 of the amino acids 

required to fulfill F. tularensis auxotrophies. Thus, host autophagy-derived nutrients are used by 

F. tularensis primarily as a source of energy. Although F. tularensis can incorporate autophagy 

derived amino acids into bacterial proteins (Figure 3.2B), these data indicate that energy, rather 

than amino acids for protein synthesis, was the limiting factor for F. tularensis proliferation in 

autophagy-deficient cells cultured in tissue culture media.  

 

ATG5 is not required for autophagy in Francisella infected cells. 

Canonical autophagy is typically induced by the inhibition of mammalian target of 

rapamycin (mTOR) during starvation or upon treatment with either rapamycin or Torin1. Thus, 

monitoring mTOR activity through downstream substrates such as S6 kinase is likely to correlate 

well with canonical autophagy induction. To determine if F. tularensis infection activates the 

autophagy signaling cascade, we assessed mTOR activity in infected J774 cells by measuring 

phosphorylation of the mTOR substrate S6 ribosomal protein. The ratio of phospho- S6 

ribosomal protein to unphosporylated S6 ribosomal protein decreased progressively over the 

course of infection, which is consistent with mTOR inhibition and thus autophagy induction 

(Figure 3.4A, 3.4B) 136. However, loss of phospho - S6 ribosomal protein was not evident before 
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8 hours post inoculation suggesting that mTOR inhibition occurred after some bacterial 

replication had already taken place.  

In the canonical autophagy pathway the protein ATG5 is essential for autophagosome 

formation.  Thus, we would predict that ATG5 expression would be required for autophagic 

degradation of host proteins to amino acids that support F. tularensis intracellular growth.  

However, it was recently shown that F. tularensis replicates efficiently within ATG5-/- 

macrophages 129. We also found that F. tularensis replication was not impaired in ATG5-/- MEFs 

(Figure 3.5A).  In fact, there was a slight but statistically significant increase in bacterial 

replication in ATG5-/- MEFs compared to wild type MEFs (Figure 3.5A). Therefore, ATG5 is 

not required for efficient F. tularensis intracellular proliferation. Treatment of ATG5-/- MEFs 

with 3MA resulted in decreased bacterial proliferation and bacterial growth was rescued by 

supplementing treated cells with amino acids (Figure 3.5B). Taken together, these data suggest 

that F. tularensis intracellular growth is supported by nutrients generated by an ATG5-

independent autophagy pathway.  

Unlike canonical autophagy, ATG5-independent autophagy generates autophagosomes 

from the trans-Golgi apparatus 17. Brefeldin A (Bref A) inhibits ATG5-independent 

autophagosome formation but does not affect canonical autophagosome formation 17. To 

determine if ATG5-independent autophagy provides metabolites for F. tularensis in 

macrophages, we measured F. tularensis replication in J774A.1 macrophage-like cells (J774 

cells) in the presence and absence of Bref A. Cells were infected with Schu S4-LUX and growth 

was monitored by measuring luminescence every 30 minutes. We found that F. tularensis 

replication was significantly reduced in Bref A-treated J774 cells (Figure 3.5C, D), and growth 

was significantly rescued in Bref A treated cells by the addition of amino acids (Figure 3.5C, 
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3.5D). Bref A cytotoxicity was comparable regardless of amino acid supplementation, indicating 

that the increase in bacterial replication was not due to decreased eukaryotic cell cytotoxicity in 

amino acid treated cells (Figure S3C). The ability of amino acids to rescue bacterial replication 

in Bref A-treated cultures indicates that Bref A affects F. tularensis nutrient availability. This 

result is consistent with the conclusion that ATG5-independent autophagy provides nutrients that 

support F. tularensis growth in macrophages as well as in MEFs. 

We wanted to determine the extent to which autophagosomes are formed during F. 

tularensis infection, and the spatial relationship between the bacteria and autolysosomes in 

ATG5-/- cells. Analysis of transmission electron microscopy (TEM) micrographs revealed that 

autophagic vacuoles constituted a greater percentage of the cytoplasm in F. tularensis infected as 

compared to uninfected ATG5-/- MEFs (Figure 3.6A-D) confirming that autophagy is induced in 

ATG5-/- MEFs.  

Since morphological analysis of autophagic structures by TEM is inexact, we used 

fluorescence confocal microscopy as a secondary means to identify acidified autophagic 

vacuoles in infected MEFs. We stained and quantified the number of LysoTracker Red positive 

acidic vacuoles in infected and uninfected ATG5-/- MEFs. There were significantly more acidic 

vacuoles in the infected ATG5-/- MEFs as compared to uninfected ATG5-/- MEFs (Figure 3.6E). 

LysoTracker Red can also stain other acidic vacuoles including lysosomes and phagosomes. 

However, the increased number of acidic vacuoles found in infected wild type and ATG5 -/- 

MEFs as compared to uninfected and 3MA treated infected control cells strongly argues that the 

increase in acidic vacuoles was an increase in autophagic vacuoles. Combined with the 

morphological analysis of the infected-cell vacuoles by TEM this data demonstrates that F. 

tularensis induced ATG5-independent autophagy in infected cells. 
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Neither canonical autophagy nor xenophagy are induced during F. tularensis intracellular 

replication. 

The slight but statistically significant increase in F. tularensis growth observed in ATG5  

-/- MEFs suggested that canonical autophagy may be induced in infected cells and exert some 

control over bacterial growth.   It is also possible that in addition to destroying the bacteria, 

canonical autophagy could serve as a redundant mechanism for nutrient acquisition. To 

determine if canonical autophagy was induced in addition to ATG5-independent autophagy 

during infection with F. tularensis, we analyzed infected MEFs that were transiently transfected 

with a GFP-LC3 plasmid for an increase in GFP-LC3 puncta. LC3 puncta formation is 

stimulated by canonical autophagy; however, ATG5-independent autophagy does not induce 

LC3 puncta formation 17,137. LC3 puncta levels were unchanged in infected compared to 

uninfected MEFs at 16 hours post inoculation, whereas both the amino acid starvation and 

Torin1 controls conferred an increase in LC3 puncta (Figure 3.7A, B). Thus, it appears that 

canonical autophagy remained at basal levels in F. tularensis infected cells during late stages of 

infection.  

To determine if induction of canonical autophagy would either increase bacterial 

clearance or generate additional nutrients that support bacterial replication, we artificially 

induced autophagy throughout infection with the mTOR inhibitor Torin1. Torin1 treatment 

throughout infection had no impact on F. tularensis intracellular survival or growth in MEFs 

(Figure 3.7C). Thus, F. tularensis evades destruction by canonical autophagy and increased 

canonical autophagy did not benefit F. tularensis intracellular replication.  
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F. tularensis induces ATG5-independent autophagy while canonical autophagy remains 

at basal levels during infection. Little is known about the functional differences between 

canonical and ATG5-independent autophagy. However, xenophagy is known to occur via 

canonical autophagy whereas xenophagy via ATG5-independent autophagy has not been 

addressed. In canonical autophagy, cytosolic pathogens including chloramphenicol treated F. 

tularensis are targeted for xenophagy when bound to p62/SQSTM1 and polyubiquitin 129,138-140. 

We therefore investigated the role of polyubiquitin and p62/SQSTM1 in ATG5 independent 

autophagy induction in F. tularensis infected cells. 

There was a significant decrease in the number of polyubiquitin puncta in the cytoplasm 

of infected wild type and ATG5-/- MEFs as compared to uninfected MEFs (Figure 8A). If 

polyubiquitin was degraded upon ATG5-independent autophagy induction, we would expect a 

corresponding increase in co-localization between polyubiquitin and acidic vacuoles in infected 

cells. However, the number of acidic vacuoles co-localizing with polyubiquitin in uninfected 

cells (15.2 % +/- 2.2%) and infected cells (20.0% +/- 3.5%) was not significantly different (n 

>25 cells, mean +/- SEM) (Figure 3.8B). These data indicate that the decrease in polyubiquitin 

aggregates in infected cells was independent of autophagy.  

In addition, there were similar numbers of p62/SQSTM1 puncta in infected MEFs 

compared to uninfected MEFs (Figure 3.8C, S5C-S5E). Interestingly, although there were 

similar total numbers of p62/SQSTM1 puncta, there was increased co-localization of 

p62/SQSTM1 with acidic vacuoles in infected wild type MEFs. However, there was no 

difference in p62/SQSTM1 co-localization between uninfected and infected ATG5-/- MEFs 

(Figure 3.8D). The increased co-localization of p62/SQSTM1 with acidic vacuoles may indicate 

that some basal level of xenophagy is occurring in an ATG5-dependent manner, which is 
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consistent with the increase in bacterial replication that we observed in ATG5-/- MEFs. Taken 

together, these data indicate that F. tularensis induced ATG5-independent autophagy is not 

associated with polyubiquitin, LC3B, or p62/SQSTM1.  

 

F. tularensis is adjacent to autophagic vacuoles. 

A recent study demonstrated that Salmonella enterica associates with ubiquitinated 

aggregates that are degraded by autophagy 141. Although these aggregates likely target S. 

enterica for degradation rather than supplying nutrients, these data suggest that mechanisms exist 

which target autophagosomes to bacteria or vice versa. We hypothesized that F. tularensis may 

recruit autophagic vacuoles putting them in close proximity to facilitate nutrient acquisition. F. 

tularensis was frequently found within 250 nm of autophagic vacuoles in both ATG5-/- MEFs 

and J774 cells as determined by TEM (Figure S6A, S6B). Indeed, 25.8 +/- 4.0% (average +/- 

SEM) of the autophagic vacuoles in ATG5-/- MEFs were also within 250 nm of a bacterium.  

We confirmed the TEM results using confocal microscopy. Since ATG5-independent autophagy 

does not appear to require ubiquitination or any known target marker, we were limited to 

examining the relationship between bacteria and acidified vacuoles. Infected cells were stained 

with LysoTracker Red and Z-stacks from infected cells were analyzed by confocal microscopy. 

28.0% +/- 3.7% of bacteria in wild type MEFs and 35.1% +/- 5.1% of bacteria in ATG5 -/- MEFs 

were within 250 nm of an acidic vacuole (Average +/- SEM, n>10 cells) (Figure S6 C-H). At 

least 1 bacterium was within 250 nm of an acidic vacuole in every cell. The number of bacteria 

within 250 nm of an acidic vacuole was significantly lower in 3MA treated MEFs compared to 

the untreated MEFs (p=.01) (Figure S3 H). These data suggest that F. tularensis may recruit or 

traffic to autophagic vacuoles. Further investigation may reveal that not only autophagy 
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induction, but also proximity to an autophagic vacuole contributes to F. tularensis nutrient 

acquisition. 

 

Discussion 

Intracellular pathogens have evolved to thrive within the hostile nutrient-limited host cell 

environment. Successful pathogens disarm or avoid innate and adaptive immune responses while 

simultaneously extracting carbon and energy sources to support their proliferation. Autophagy is 

a highly conserved degradation process that serves a multitude of functions including cell 

development, stress response and resistance to cytoplasmic pathogens. Herein we investigated 

the interaction between F. tularensis and the host cell autophagy response. Our results 

demonstrate that ATG5-independent autophagy is triggered in F. tularensis infected cells and 

that intracellular bacterial replication was enhanced by this process. Furthermore, F. tularensis 

can replicate in cells when there are no amino acids present in the media, indicating that F. 

tularensis obtains all of the amino acids necessary to fulfill its 13 amino acid auxotrophies from 

the host cell through processes such as autophagy. F. tularensis acquires amino acids, and 

possibly other nutrients, via autophagy. These nutrients are then used for both energy and protein 

synthesis, although decreased bacterial replication in ATG5-independent autophagy deficient 

cells is primarily due to a lack of available energy. Autophagy derived nutrients are necessary for 

optimal F. tularensis replication, but F. tularensis still replicated in ATG5-independent 

autophagy deficient MEFs. This indicates that F. tularensis uses other nutrient acquisition 

strategies in conjunction with ATG5-independent autophagy to supply nutrients for rapid and 

efficient proliferation.  
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Rapid bacterial proliferation requires readily available and abundant carbon and energy 

sources, commodities that are typically limited in the eukaryotic cell environment. Intracellular 

pathogens must acquire all required nutrients from the host cell, but the strategies that these 

pathogens employ to accomplish this task are only beginning to be characterized and vary widely 

between pathogens 123,124,142-144. For example, Legionella pneumophila uses the byproducts of 

host proteosomal degradation rather than autophagy to obtain amino acids for energy 142. Dengue 

virus growth is supported by autophagy mediated release of lipids while autophagosome 

formation increases nutrient availability for Anaplasma phagocytophilum 123,124. It is likely that 

other intracellular pathogens that successfully avoid autophagic destruction benefit from the 

nutrients that are released by this process. Thus, autophagy subversion through various means 

may be a more common strategy for pathogens to acquire nutrients from the host than previously 

thought. 

The conclusion that autophagy derived amino acids were sufficient to rescue intracellular 

growth was supported by the fact that the absence of amino acids in tissue culture media did not 

appreciably affect F. tularensis intracellular replication. Thus, host cell amino acid import was 

not required to support bacterial growth. This result would seem to contradict the recent 

observation that knocking down expression of the amino acid transporter SLC1A5 decreases F. 

tularensis LVS growth approximately 2-fold 143. LVS is an attenuated F. tularensis vaccine 

strain that, like fully virulent F. tularensis, grows within macrophages and other cell types, but is 

significantly less virulent than F. tularensis and other wild type F. tularensis strains in humans 

and animal models of infection. Unlike F. tularensis Schu S4, we found that LVS intracellular 

growth was significantly impaired in ATG5-/- MEFs and growth in these cells was restored by 

supplying excess amino acids, implying that LVS harvests nutrients via ATG5-dependent 
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autophagy or another ATG5-dependent mechanism (data not shown). It is therefore likely that 

LVS is less reliant on ATG5-independent autophagy to support efficient intracellular growth. It 

is also possible that SLC1A5 contributes to the export of free amino acids out of autolysosomes 

thereby making autophagy derived amino acids available to the cytoplasmic bacteria. Amino 

acid transporters export amino acids from autolysosomes to the cytosol in Saccharomyces 

cerevisiae, and a similar system likely exists in mammalian cells 145. This latter possibility 

highlights the fact that currently little is known about how free amino acids derived from 

autophagic degradation of host proteins are transported within eukaryotic cells.  

Canonical autophagy destroys several different pathogens, including replication deficient 

and chloramphenicol treated F. tularensis 129. The slight increase in bacterial replication in 

ATG5 -/- MEFs compared to wild type MEFs supports the notion that canonical autophagy can 

degrade wild type bacteria in MEFs, although this may be cell type specific as there is no 

difference in F. tularensis replication between wild type and ATG5 -/- bone marrow derived 

macrophages 129. Also, induction of autophagy by starvation or Torin1 treatment did not reduce 

bacterial replication. Surprisingly, although we saw mTOR inhibition in J774 cells and 

autophagy induction in ATG5 -/- MEFs, our results suggest that canonical autophagy is either at 

or close to basal levels 16 hours post inoculation. Our results suggest that F. tularensis 

suppresses canonical autophagy downstream of mTOR or that mTOR is inhibited in ATG5-

independent autophagy and other signals help determine which autophagy pathway is induced.  

In contrast to xenophagy via canonical autophagy, ATG5-independent autophagy is 

involved in the lifecycle of two other intracellular bacterial pathogens. Mycobacterium marinum 

and Brucella abortus are each sequestered into an autophagosome-like structure via an ATG5-

independent pathway as part of their intracellular lifecycles 122,146. It is unclear why M. marinum 
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is sequestered, but bacterial sequestration by autophagy appears to be part of the B. abortus 

intracellular lifecycle and may benefit the bacteria by increasing cell to cell spread rather than 

providing nutrients 122,146. Both of these interactions with ATG5-independent autophagy are 

different from that of F. tularensis. What remains to be determined is if this difference is due to 

bacterial manipulation, if there are multiple ATG5-independent autophagy pathways, or if there 

are different functions for the same ATG5-independent autophagy pathway. Unfortunately, there 

is little information about how the various autophagy pathways are functionally different. We 

found that ATG5-indepdendent autophagy, unlike canonical autophagy, does not appear to use 

two proteins associated with xenophagy during infection. Further characterization of how 

xenophagy and ATG5-independent autophagy are associated may reveal why certain pathogens 

induce ATG5-independent autophagy.  

Little is known about how ATG5-independent autophagy is induced or the role that it 

plays in a healthy eukaryotic cell, let alone during pathogenesis. However, there appears to be 

distinct benefits for certain pathogens to induce ATG5-independent autophagy over the 

canonical autophagy pathway. Determining how this pathway is induced in F. tularensis infected 

cells will give us insight as to how different autophagy pathways are initiated and how these 

pathways differentially impact intracellular pathogen survival and growth.  

 

Materials and Methods 

Bacteria and Plasmids 

Francisella tularensis subsp. tularensis Schu S4 was obtained from Biodefense and Emerging 

Infections Research Resources Repository. For inoculation of eukaryotic cells Schu S4, Schu 

DsRed, Schu S4-GFP 2 and Schu S4 – LUX (plasmid from 134) were each grown initially on 
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chocolate agar supplemented with 1% isovitalex then overnight in Chamberlain’s defined broth 

media (CDM). 

 

Cell Culture 

 J774A.1 (J774) cells were maintained in 4.5 g/L glucose Dulbecco’s minimal essential 

media (DMEM) with 10% FBS and supplemented with L-glutamine and sodium pyruvate. 

Mouse embryonic fibroblasts (MEFs) were maintained in 4.5 g/L glucose DMEM with 10% 

FBS. For treatment of MEFs without amino acids, DMEM with 4.5 g/L glucose was made 

following the ATCC DMEM protocol without adding amino acids and supplemented with 10% 

dialyzed FBS.  

Human monocyte derived macrophages (hMDMs) were obtained by isolating peripheral 

blood mononuclear cells (PBMCs) from blood via ficoll gradient centrifugation. PBMCs were 

cultured for 2 hours in RPMI with 10% FBS and then washed to remove non-adherent cells. The 

adherent cells were cultured for 2 weeks in RPMI containing 10% FBS and 3ng/ml GM-CSF 

(Biolegend). The media was replaced every 2 days. Experiments were performed using PBMCs 

isolated from peripheral blood from 2 healthy volunteers who gave informed, written consent 

following a protocol approved by the Institutional Review Board for human volunteers at 

University of North Carolina at Chapel Hill. Peripheral blood was obtained specifically for these 

experiments. 

Stable Beclin-1 knockdown (TRCN0000087291 or TRCN0000087291) and scramble cell 

lines were generated by transducing MEFs with lentivirus encoding each shRNA. Cells were 

propagated in media containing 1 μg/ml puromycin for 2 weeks prior to the first experiment to 

select for transduced cells. Concurrent with the first experiment and last intracellular bacterial 
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proliferation assay in the knockdown cell lines, mRNA was harvested from the transduced cells, 

subjected to reverse transcription, and was analyzed by quantitative RT-PCR to determine the 

amount of Beclin-1 mRNA present in each sample. The results were normalized to a GAPDH 

control. Primer sequences in Supplemental Table 1. 

 

Drug Treatments 

3-methyladenine (10 mM) (Sigma), bafilomycin A(1) (200 nM) (Sigma), and chloroquine 

(160 μM) (Sigma) were each added with 25 µg/ml of gentamicin to the MEFs 3 hours post 

bacterial inoculation. Brefeldin A (17 μM) (Sigma) was added to J774 cells 3 hours post 

inoculation. Torin1 (250 nM) (Tocris Biosciences) was added overnight prior to inoculation and 

maintained throughout the infection. The excess amino acid mixture (12 mM L-amino acids 

containing aspartic acid, arginine, cysteine, histidine, isoleucine, leucine, lysine, methionine, 

proline, serine, threonine, tyrosine, and valine), L- serine (15 mM) or pyruvate (18 mM) were 

added at the same time as the inhibitors. All media was brought to a pH of 7.5.  

Inhibitor cytotoxicity in MEFs was determined using a Live/Dead Fixable Green Dead 

Cell Stain kit (Invitrogen) following the manufacturer’s instructions. Drugs were placed on cells 

for the same duration they would be on cells during infection (21 hours for Baf and CQ, 29 hours 

for 3MA). Percent cytotoxicity by flow cytometry was determined by gating. Cytotoxicity of F. 

tularensis in J774 cells 16 hours post inoculation was determined by testing the amount of lactate 

dehydrogenase (LDH) in the supernatant with a CytoTox-Glo cytotoxicity kit (Promega) 

following the manufacturer’s instructions. Percent cytotoxicity was determined based on media 

and digitonin treated controls. Brefeldin A cytotoxicity was determined 21 hours post treatment 

using an In vitro Toxicology Assay Kit (Sigma) to measure LDH release from J774 cells. 
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Intracellular Growth Assays 

MEFs were plated at 2x105 cells per well in 24 well tissue culture treated plates and 

grown overnight. MEFs were inoculated with a multiplicity of infection (MOI) of 100 with wild 

type Schu S4. The media was removed 3 hours post inoculation and replaced with media 

containing 25 µg/ml of gentamicin to inhibit the growth of any remaining extracellular bacteria. 

MEFs were lysed by vortexing for 1 minute and the lysates were serially diluted and plated on 

chocolate agar to calculate the number of intracellular bacterial cells at the indicated times.  

hMDM cells were inoculated with an MOI of 100 wild type Schu S4 in RPMI containing 10% 

FBS. At 2 hours post inoculation, the media was replaced with media containing 10 µg/ml of 

gentamicin. At 4 hours post inoculation, the media was replaced with media that did not contain 

gentamicin. Intracellular bacteria were quantified as described previously. 

Bacterial intracellular growth kinetics was calculated by measuring luminescence of Schu 

S4 – LUX infected MEFs or J774 cells. MEFs and J774 cells were plated at 5x104 cells per well 

in 96 well black wall clear bottom polystyrene plates (Corning) the night before infection. Each 

well was inoculated at an MOI of 100 with Schu S4- LUX and treated with gentamicin and 

inhibitors as described above. Luminescence was measured every 30 minutes using an Infinite 

M200 Pro plate reader (Tecan) maintaining constant 37°C temperature and 5% carbon dioxide. 

All intracellular growth assays were performed in triplicate for each independent experiment. All 

of the inhibitors were added 3 hours post inoculation to reduce the impact of the inhibitors on F. 

tularensis phagosomal escape. 
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Growth Curves 

Bacterial growth curves of broth cultures were generated by measuring the optical density 

at 600 nm (OD600 every 15 minutes) using an Infinite M200 Pro plate reader (Tecan) 

maintaining constant temperature (37°C). To test toxicity of each drug on Schu S4, the bacteria 

were grown in CDM overnight, and then diluted to an OD600 of 0.05 in CDM containing the 

indicated inhibitors. CDM glucose substitution media were made without added glucose and 30 

mM of the defined amino acid or carbon source. 50 mM MES buffer was added to all CDM 

media in the glucose substitution experiments.  

 

Fluorescence Microscopy 

For confocal fluorescent microscopy images depicting the number of bacteria in drug 

treated cells, MEFs were plated at 1x104 cells per well in an 8 well chamber slide (Nunc) and 

grown overnight. MEFs were inoculated at a MOI of 100 with Schu S4-GFP or Schu S4- DsRed 

and treated with 25 µg/ml of gentamicin as described above. At the indicated time post 

inoculation, the MEFs were washed and fixed with 4% paraformaldehyde for 15 minutes and 

then washed again in PBS. To stain the plasma membrane, 10 µg/ml of AF647 conjugated wheat 

germ agglutinin (Invitrogen) was added to the fixed cells for 5 minutes and then washed away. 

DAPI containing mounting media (Vector Shield) was added to the slides to identify the nucleus.  

Infection frequency was determined by fixing GFP infected MEFs 5 or 6 hours post inoculation 

and comparing the number of cells containing green puncta to the total number of cells 

completely within the field of view. 

To quantify LC3B puncta, GFP-LC3 MEFs were generated by transfecting MEFs 

attached to an 8 well chamber slide (Nunc) with an eGFP-LC3 plasmid (Addgene plasmid 
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21073) 137. 18 hours after transfection, the media was replaced with fresh media for one hour. 

After one hour, the cells were either infected with Schu-DsRed or placed in fresh media. 3 hours 

post inoculation, the media in all wells was replaced with media containing 25μg/ml gentamicin. 

14 hours post inoculation, Torin1 or media lacking amino acids was added to the appropriate 

wells. The cells were fixed as above and stained with a mouse anti-GFP antibody (1:250 dilution, 

Millipore) followed by an AF488 anti-mouse secondary antibody (Invitrogen) as previously 

described. 

To quantify acidic vacuoles and determine co-localization with polyubiquitin and p62, 

MEFs were initially prepared as described above but were incubated for 2 hours in the presence 

of 150 ng/ml of LysoTracker red (Invitrogen) beginning at 14 hours post inoculation. The cells 

were washed and MEF media was added for an additional 10 minutes at 16 hours post 

inoculation. The cells were fixed in 4% paraformaldehyde and treated with 10 mM ammonium 

chloride following fixation. The MEFs were incubated with a polyubiquitin antibody (1:1000 

dilution, Enzo Life Sciences) or a p62/SQSTM1 primary antibody (1:250 dilution, Abnova) 

followed by an AF647 conjugated anti-mouse secondary antibody (Invitrogen). DAPI containing 

mounting media (Vector Shield) was added to the slides to identify the nucleus. Images were 

acquired using a Zeiss 700 confocal laser scanning microscope (Carl Zeiss SMT, Inc.). Image 

acquisition, contrast adjustments, and cropping were all performed using Zen 2011 (Carl Zeiss 

SMT, Inc.). 

Acidic vacuoles, p62, and polyubiquitin puncta were quantified by setting thresholds 

using ImageJ 114. Only polyubiquitin puncta outside of the nucleus were counted. Co-localization 

of p62 or ubiquitin puncta with acidic vacuoles was determined by manual counting overlap. 
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Any acidic vacuole or bacteria that overlapped any portion of the puncta was considered to co-

localize.  

To determine the distance between acidic vacuoles and F. tularensis, Z-stacks of 

LysoTracker red stained cells were taken using a Flow View 500 confocal laser scanning 

microscope (Olympus America). The distance between the bacteria and the acidic vacuoles was 

determined using ImageJ 114and Corsen 147, following the protocols described in Jourdren et al. 

Additional protocol information and ImageJ plug-ins were available at 

http://transcriptome.ens.fr/corsen. The distance between objects was measured from the surface 

of the bacteria to the closest surface of the nearest acidic vacuole. To decrease the impact of 

noise, acidic vacuoles and bacteria with a volume of less than 0.05 µm (as determined by the 

Corsen program) were not included in the analysis. 

 

Radiolabel Experiments 

 To monitor transfer of amino acids from the host cell to F. tularensis, 4x105 MEFs were 

incubated in cysteine and methionine free DMEM containing 10% dialyzed FBS and 0.125 mC 

of S35 radiolabeled cysteine and methionine (EasyTag Express 35S, Perkin-Elmer) for 18 hours. 

10 ug/ml of cycloheximide was added with the radiolabel in the indicated sample. The MEFs 

were then washed once and then incubated with DMEM containing 10% FBS for 2 hours. 

DMEM contains in excess of 100,000 times more cysteine and methionine than the initial 

radiolabel. The MEFs were then inoculated with F. tularensis Schu S4 at an MOI of 100 for 3 

hours in fresh media. At 3 hours post inoculation, the media was replaced with media containing 

25 ug/ml of gentamicin and either Baf or 3MA, as indicated, and supplemented with either a 12 

mM amino acid mixture or 18 mM serine. The cells were washed in PBS, scraped from the plate, 
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and lysed by vortexing the in PBS 16 hours post inoculation. The cell lysates were mixed with 

streptavidin coated magnetic beads (Solulink) that were pre-bound to biotinylated anti-F. 

tularensis lipopolysaccharide antibody (US biological). The anti-F. tularensis LPS antibody was 

biotinylated using a Biotin-xx protein labeling kit following the manufacturer’s instructions 

(Invitrogen). The bead lysate mixture was incubated at room temperature for 20 minutes and 

then washed three times on a magnet. After the final wash, an equal volume of beads was added 

to 20% trichloroacetic acid (TCA) to make a final concentration of 10% TCA. The TCA mixture 

was mixed with an equal volume of 5% BSA and spun to pellet the TCA insoluble fraction. The 

TCA soluble fraction was removed and the TCA insoluble fraction was resuspended in PBS, 

added to scintillation fluid, and the number of counts was measured. An aliquot of the sample 

after the final wash was plated on chocolate agar to determine the number of bacteria present. 

The percent of radiolabel that was incorporated into F. tularensis was calculated by dividing the 

radiolabel counts from samples taken immediately prior to infection by the difference between 

the infected and uninfected samples. 

 To evaluate host protein degradation, J774 cells were radiolabeled for 24 hours, chased 

with non-radioactive media, inoculated and treated with gentamicin as described above. At 16 

hours post inoculation, the cells were washed in PBS and lysed in RIPA buffer. The lysate was 

spun immediately to pellet the insoluble fraction. The soluble fraction was harvested and added 

to an equal volume of 20% TCA. The TCA insoluble fraction was then prepared and quantified 

as above. 

 

 

 



 

73 
 

Electron Microscopy 

 Uninfected and Schu S4 infected J774 cells or ATG5 -/- MEFs were maintained on small 

plastic tissue culture dishes. 25 µg/ml of gentamicin was added 2 hours post inoculation for J774 

cells and 3 hours post inoculation for MEFs. 16 hours post inoculation the cells were fixed for 1 

hour at room temperature in 2% paraformaldehyde, 0.5% glutaraldehyde in 0.15 M sodium 

phosphate buffer at pH 7.4. The cells were then rinsed in buffer and post-fixed with 0.5% 

osmium tetroxide/0.15 M sodium phosphate buffer, pH 7.4, for 10 minutes.  

TEM samples for J774 cells were prepared similarly, although the cells were post-fixed for 1 

hour in 1% osmium tetroxidein 0.15 M sodium phosphate buffer at pH 7.4 and then stained en 

bloc with 2% aqueous uranyl acetate for 20 minutes. 

Both fixed samples were dehydrated in ethanol (30%, 50%, 75%, 100%, 5 minutes each 

step) and infiltrated and embedded in L.R. White Resin (Electron Microscopy Sciences). The 

dehydrated samples were sectioned en face (parallel to the substrate) at 70 nm, mounted on 200 

mesh nickel grids, and post-stained with 4% uranyl acetate followed by Reynolds' lead citrate. 

Samples were observed with a LEO EM910 transmission electron microscope operating at 80 kV 

(Carl Zeiss SMT, Inc.) and digital images were acquired using a Gatan Orius SC1000 CCD 

Digital Camera with Digital Micrograph 3.11.0 (Gatan). 

 

Western Blot Analysis 

 For the phospho- S6 ribosomal protein western blots, J774 cells were inoculated with 

Schu S4 at an MOI of 100 and treated with 25 μg/ml gentamicin 2 hours post inoculation. The 

uninfected sample had media replaced and media containing gentamicin added at the same times 

as infected samples. The uninfected samples were harvested 24 hours post inoculation. At the 
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indicated times, cells were lysed by adding water containing phosphatase (Roche) and protease 

inhibitor cocktails (Pierce) and vortexing. The lysates were filtered through two 0.22 μm filters, 

separated on an SDS-PAGE gel under reducing conditions and then transferred to a 

nitrocellulose membrane. The membranes were probed with rabbit anti- S6 ribosomal protein or 

rabbit anti- phospho S6 ribosomal protein (Ser 235/236). All primary antibodies were obtained 

from Cell Signaling Technologies. Membranes were then probed with a horse radish peroxidase 

conjugated goat anti-Rabbit IgG (KPL) and bands were detected using an ECL Western Blotting 

Detection Kit (GE Life Sciences). Densitometry analysis was performed using ImageJ and 

comparing the amount of phosphor S6 ribosomal protein to the total amount of S6 ribosomal 

protein at the same time point 114. The densities were then normalized to the uninfected sample.  

 

Data Analysis 

Fold change was determined by subtracting each sample from the average of 3 samples 

taken at 5 hours post inoculation and a Mann-Whitney test was used to determine significance. 

The rest of the bacterial proliferation assays were pooled across experiments, log10 transformed, 

and then analyzed by a two-tailed Student’s t-test were used to measure statistical significance. 

Significance for bacterial kinetic experiments was performed by pooling the maximum 

luminescence of each replicate for each experiment and performing a Mann-Whitney test. 

Statistical significance for the distance measurement between F. tularensis and acidic vacuoles 

was performed using a two tailed Student’s t-test on the pooled distance measurements across all 

3 experiments for each sample. Significance for radiolabel incorporation into F. tularensis was 

determined by a Mann-Whitney test. All data represents data pooled from 3 independent 

experiments unless otherwise stated. 
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Morphology analysis was performed on the transmission electron micrographs by 

outlining the whole cell, nucleus, and each bacteria or autophagic vacuole in ImageJ to determine 

the area of each 114. Morphology was determined with the aid of the following references 148-150. 

Any rips in the slice were excluded from this analysis. Each micrograph depicted the nucleus and 

all infected cells had at least one bacteria present in the slice. The area of cytoplasm was 

determined by subtracting the area of the nucleus and bacteria from the area of the whole cell. At 

least 20 cells of each sample were examined and significance was determined by a two tailed 

Student’s t-test. 
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Figures 

 

Figure 3.1: Autophagy derived nutrients enhance F. tularensis intracellular growth.  

(A) Intracellular bacterial proliferation was measured in MEFs cultured in DMEM with or 

without amino acids (mean +/- SD, 4 independent experiments). (B) Intracellular bacterial 

proliferation in untreated and 3MA (10 mM) treated MEFs with or without amino acid 

supplementation (AA) (mean +/- SD, 3 independent experiments) (* p<0.05, **p<0.01 by 

Student’s t-test). (C) Representative confocal microscopy images of infected MEFs 24 hours 

post inoculation that were untreated, 3MA treated or each treatment with amino acid 

supplementation. Each scale bar represents 10 µm. GFP- Schu S4 bacteria are depicted in green, 

DAPI in blue, and wheat germ agglutinin (WGA) in red. (D) Intracellular bacterial proliferation 

in MEFs transduced with a scrambled control or one of two different shRNA’s to Beclin-1 (mean 

+/- SD, 5 independent experiments). (* p<0.05, **p<0.01 by Mann-Whitney test). 
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Figure 3.2: F. tularensis harvests amino acids via host cell autophagy.  

(A) S35 counts in the TCA insoluble fraction of uninfected or infected J774 cells 16 hours post 

inoculation (mean +/− SEM, 3 independent experiments). (B) S35 counts in the bead purified F. 

tularensis fraction that was TCA insoluble from either uninfected MEFs or F. tularensis infected 

MEFs exposed to the indicated treatments (mean +/− SEM, 6 independent experiments) (* 

p<0.05, **p<0.01, *** <0.001). 
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Figure 3.3: F. tularensis uses autophagy derived nutrients for energy and anabolic 

substrates.  

(A) Representative experiment of F. tularensis growth in Chamberlin’s defined media (CDM) 

without glucose supplemented with 30mM of a specific amino acid or carbon source (each point 

represents an average of triplicate wells, 3 independent experiments). (B) Intracellular 

proliferation assay of untreated or Baf (200 nM) treated MEFs. MEFs were supplemented with a 

12 mM amino acid mixture, 15 mM serine, or 18 mM pyruvate (mean +/- SD, 3 independent 
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experiments). (C) Representative confocal microscopy images of infected MEFs 24 hours post 

inoculation that were untreated, Baf treated or each treatment with amino acid supplementation. 

Each scale bar represents 10 µm. GFP- Schu S4 bacteria are depicted in green, DAPI in blue, and 

wheat germ agglutinin (WGA) in red. (***p<0.001 by Student’s t-test) 
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Figure 3.4: S6-P is reduced in F. tularensis infected cells. 

(A) A representative immunoblot of S6 ribosomal protein phosphorylation states from J774 cells 

uninfected and over the course of infection (3 independent experiments). (B) The ratio of 

phosphorylated ribosomal S6 to total ribosomal S6 as determined by densitometry from panel B. 

Densities were normalized to total ribosomal S6 protein using ImageJ and expressed as a 

percentage of the uninfected control. 
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Figure 3.5: ATG5 is not required for efficient F. tularensis intracellular replication. 

(A) Number of intracellular F. tularensis 5 and 24 hours post inoculation of wild type and 

ATG5−/− MEFs (mean +/− SD, 3 independent experiments). (B) Maximum luminescence values 

expressed in relative light units (RLUs) from kinetic growth assays for Schu S4 –LUX infected 

wild type or ATG5−/− MEFs treated with 3MA and supplemented with amino acids as indicated 

(mean +/− SEM, 6 independent experiments). (C) Representative intracellular bacterial growth 

kinetics of F. tularensis Schu S4 LUX in untreated and brefeldin A treated J774 cells with or 

without amino acid supplementation (each point represents an average of triplicate wells) as 

measured by luminescence (3 independent experiments). (D) Maximum luminescence values 

expressed in relative light units (RLUs) from kinetic growth assays for Schu S4 LUX infected 

J774 cells untreated and treated with brefeldin A (4 independent experiments). (* p<0.05, ** 

p<.01, *** p<0.001). 
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Figure 3.6: F. tularensis induces ATG5-independent autophagy in late logarithmic growth. 

Representative transmission electron micrographs of (A) uninfected and (B) infected ATG5 -/- 

MEFs. (C) Higher magnification of representative infected MEF. F. tularensis is depicted with 

open faced arrows (>) and autophagosomes with solid arrows (►).All scale bars represent 0.5 

um. (D) The percentage of cytoplasm that is autophagic in ATG5 -/- MEFs in uninfected and 

infected cells (• represents 1 cell, n ≥20 per sample). (E) The number of acidic vacuoles per cell 

in wild type and ATG5 -/- MEFs. MEFs were uninfected, infected, or infected and treated with 

10 mM 3MA (mean +/- SEM, n>30 cells per sample). (* p<0.05, **p<0.01, ***p<0.001 by 

Student’s t-test) 
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Figure 3.7: F. tularensis does not induce canonical autophagy during late logarithmic phase 

of intracellular growth. 

(A) Representative confocal microscopy images depicting LC3-GFP transfected MEFs with the 

indicated treatments. DAPI is represented in blue, LC3 in green, and F. tularensis in red. (B) The 

number of GFP puncta in LC3-GFP transfected MEFs that were untreated, infected for 16 hours, 

Torin1 treated for 2 hours, or amino acid starved for 2 hours (mean +/− SEM, n>30 cells per 

sample, 4 independent experiments). (C) Number of intracellular F. tularensis 5 and 24 hours 

post inoculation of untreated or Torin1 treated MEFs (mean +/− SD, 3 independent experiments). 

(ns p>0.05). 
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Figure 3.8: p62/SQSTM1 and polyubiquitin are not required for F. tularensis induced 

ATG5-independent autophagy  

(A) The number of polyubiquitin puncta in the cytoplasm of uninfected and F. tularensis 

infected wild type and ATG5−/− cells 16 hours post inoculation (• represents 1 cell, n≥25 per 

sample, 3 independent experiments). (B) The number of acidic vacuoles that co-localized with a 

polyubiquitin puncta per cell in uninfected and F. tularensis infected wild type MEFs 16 hours 

post inoculation (mean +/− SEM, n>25 cells per sample, 3 independent experiments). (C) The 

numbers of p62/SQSTM1 puncta per cell in uninfected and F. tularensis infected wild type and 

ATG5−/− cells 16 hours post inoculation (• represents 1 cell, n≥35 per sample, 3 independent 

experiments). (D) The numbers of p62 positive acidic vacuoles in wild type or ATG5−/− MEFs 



 

85 
 

that were untreated, infected, or infected and treated with 3MA where infected samples were 

enumerated16 hours post inoculation (mean +/− SEM, n>30 cells per sample, 3 independent 

experiments). (ns p>0.05, * p<0.05, **p<0.01, ***p<0.001). 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

86 
 

 

Figure 3.9: F. tularensis replicates to high densities in the host cell cytoplasm. 

Supplemental Figure 1.  

Representative transmission electron micrographs depicting (A) uninfected or (B) infected MEFs 

at 16 hours post inoculation. The scale bars represent 5 um. 
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Figure 3.10: Autophagy derived nutrients enhance F. tularensis intracellular growth. 

Supplemental Figure 2.  

Representative intracellular bacterial growth kinetics of F. tularensis intracellular growth in 

untreated and (A) 3MA, (C) CQ, or (E) Baf treated MEFs with or without amino acid 

supplementation (each point represents an average of triplicate wells). Maximum luminescence 

values from kinetic growth assays for Schu S4 –LUX infected J774 cells treated with (B) 3MA 

(10 independent experiments), (D) CQ (13 independent experiments), or (F) Baf (4 independent 

experiments). Error bars represent the mean +/- SEM. 
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Figure 3.11: Autophagy inhibitor cytotoxicity. 

Supplemental Figure 3.  

(A) Cytotoxicity of the indicated drugs in MEFs with and without amino acid supplementation 

(AA) (3 independent experiments, mean +/- SD). (B) Representative F. tularensis growth curve 

in Chamberlin’s defined media (CDM) containing the indicated drug (curve represents the 

average of triplicates in a single experiment, 3 independent experiments). (C) Cytotoxicity of 

Brefeldin A in J774 cells with and without amino acid supplementation (AA) (4 independent 

experiments, mean +/- SD). (D) Cytotoxicity of F. tularensis in J774 cells at 16 hours post 

inoculation (3 independent experiments, mean +/- SD). 
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Figure 3.12: Beclin-1 shRNA depletes Beclin-1 mRNA in MEFS. 

Supplemental Figure 4.  

qRT-PCR analysis of the amount of Beclin-1 mRNA in MEFs transduced with a lentivirus 

encoding a Beclin-1 or scramble shRNA. Results were normalized to GAPDH and expressed as 

a percent of the scramble control. 
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Figure 3.13: F. tularensis infection decreases polyubiquitin puncta but increases the 

number of p62+ acidic vacuoles. 

Supplemental Figure 5.  

Representative fluorescent confocal micrographs of (A) uninfected and (B) infected wild type 

MEFs depicting polyubiquitin. Representative fluorescent confocal micrographs of (C) 

uninfected, (D) infected, or (E) infected 3MA treated wild type MEFs stained for p62/SQSTM1. 

Scale bars represent 10 um at the low magnification and 2 um for the higher magnification inset. 

DAPI is depicted in blue, GFP-Schu is depicted in green, acidic vacuoles are depicted in red, and 

polyubiquitin or p62/SQSTM1 are depicted in white.  
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Figure 3.14: F. tularensis localizes adjacent to autolysosomes. 

Supplemental Figure 6.  

Representative transmission electron (TEM) micrograph of Schu S4 (open faced arrows [>]) 

adjacent to an autophagosome (solid arrows [►]) in (A) J774 cells or (B) ATG5 -/- MEFs 16 

hours post inoculation. The scale bar for the TEM micrograph represents 200 nm. Representative 

compiled Z-stack images showing the distance (yellow line) between Schu S4 (green) and acidic 

vacuoles (red) in (C) wild type untreated, (E) ATG5 -/- untreated or (G) wild type 3MA treated 

MEFs 16 hours post inoculation. Scale bars for the 3D images represent 10 µm. The distance 

between Schu S4 and the closest acidic vacuole in (D) untreated (n=342 bacteria), (F) ATG5 -/- 

(n=401 bacteria) or (H) 3MA treated (n=194 bacteria) MEFs. The distribution histograms are 

pooled from 3 independent experiments 
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Table 3.1: Quantitative RT-PCR primer sequences. 

Supplemental Table 1.  

Primer sequences for assaying the amount of Beclin-1 or GAPDH mRNA in lentiviral 

transduced MEFs by qRTPCR. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Primer Sequence (5’ to 3’) 

Beclin-1 Forward CAGCCTCTGAAACTGGACACGA 

Beclin-1 Reverse CTCTCCTGAGTTAGCCTCTTCC 

GAPDH Forward CATCACTGCCACCCAGAAGACTG 

GAPDH Reverse ATGCCAGTGAGCTTCCCGTTCAG 
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CHAPTER 4: TROGOCYTOSIS-ASSOCIATED TRANSFER OF INTRACELLULAR 

PATHOGENS 

 

Overview 

Macrophages are myeloid-derived phagocytic cells and one of the first immune cell types 

to respond to microbial infections. However, a number of bacterial intracellular pathogens are 

resistant to the antimicrobial activities of macrophages and can actively grow within these cells.  

Macrophages also have other immune surveillance roles within the host that include the 

acquisition of cytosolic components from multiple types of host cells. We hypothesized that 

intracellular pathogens that can replicate within macrophages exploit cytosolic transfer to 

facilitate bacterial spread. Here we show that viable Francisella tularensis bacteria transfer from 

infected cells to uninfected macrophages along with other cytosolic material through a transient, 

contact dependent mechanism. Bacterial transfer occurs when the host cells exchange plasma 

membrane proteins and cytosol via a trogocytosis related process that leaves both donor and 

recipient cells intact and viable. Trogocytosis was strongly associated with infection in a mouse 

infection model, suggesting that direct bacterial transfer occurs by this process in vivo. 

Furthermore Salmonella enterica serovar Typhimurium bacteria or fluorescent beads also transfer 

via this same process demonstrating that trogocytosis-associated cell to cell spread is not limited 

to Francisella. Our results demonstrate that macrophages can become infected with live 

intracellular bacteria upon contact with infected cells.  



 

94 
 

 

Introduction 

 Mammalian cells routinely exchange cytosolic components such as antigens, lipid 

droplets and mitochondria 78,79,151. The exchange of cytosolic components has been described in 

over 40 reports across a wide range of distinct cells types 152. Importantly, foreign material can 

also transfer between cells during cytosolic exchange. Both bacteria and polystyrene beads 

transfer directly between macrophages without entering the extracellular space when 

macrophages phagocytose a portion of the neighboring cell 78. However, the prevalence of 

bacterial transfer during cytosolic exchange and the effects of this process on bacterial 

pathogenesis are unknown. We hypothesized that macrophage-tropic intracellular bacteria 

exploit cytosolic exchange to facilitate infection of new cells and sustain infection without 

entering the extracellular space. 

 To define how macrophages and bacteria interact during cytosolic exchange, we used the 

macrophage-tropic, facultative intracellular bacterium Francisella tularensis. F. tularensis 

rapidly infects new cells and cell types during infections despite inducing minimal cell death in 

infected cells 2,3,70. Although these data suggest that bacterial transfer may occur, F. tularensis 

does not encode homologs of any proteins that other bacterial species use for cell to cell spread. 

As such, the transfer of live bacteria during cytosolic exchange and trogocytosis is a potential 

explanation for the rapid increase in the number of newly infected cells in murine tularemia.  
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Results and Discussion 

Francisella tularensis transfers between macrophages during cytosolic exchange. 

Macrophages phagocytose portions of neighboring cells to acquire cytosolic material, 

such as lipid droplets from adipocytes 79. The macrophages can then generate a cytokine 

response to the ingested material 79. It is likely that macrophages undergo a related process to 

acquire bacteria from infected cells. By live cell imaging, we observed GFP-expressing F. 

tularensis bacteria transfer from infected to uninfected macrophages upon cell to cell contact 

(Figure 1A, Supplemental Video 1, 2). After bacterial transfer, both macrophages were typically 

motile suggesting that both the donor and recipient macrophages remained viable after bacterial 

transfer (Figure 1A). These data are consistent with macrophages ingesting a portion of an 

infected cell without killing the infected cell. When the ingested portion contains bacteria, they 

can infect the recipient macrophage. Our data further indicates that nanotube formation is not 

required for bacterial transfer 78.  

We quantified bacterial transfer in several macrophage cell lines using flow cytometry. In 

these experiments, we infected the macrophage with F. tularensis, added the antibiotic 

gentamicin to destroy extracellular bacteria, and then co-incubated the infected macrophages 

with uninfected, Cell Trace Red labeled macrophages. F. tularensis transferred from infected to 

uninfected recipient J774A.1 macrophage-like cells (J774s), mouse bone marrow derived 

macrophages (BMDMs) and primary human monocyte derived macrophages (hMDMs) (Figure 

1B). F. tularensis replicates within the host cell cytosol. Thus, F. tularensis transfer suggests that 

portions of the cytosol also transfer between cells. As predicted, F. tularensis transfer strongly 

correlated with the transfer of the cytosolic dye calcein between cells (Figure 1C, 1D). These 
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data suggest that F. tularensis transferred between cells during the exchange of other cytosolic 

material.  

 

Bacterial transfer requires cell to cell contact. 

The concurrent transfer of cytosol with bacteria indicates that the bacteria transferred to 

the previously uninfected cell without first exiting the initially infected cell. We verified that cell 

contact was the predominant method of intercellular transfer through several experiments.  First, 

direct cell to cell contact significantly increased bacterial transfer to uninfected cells (Figure 1E, 

Experimental Design in Supplemental Figure 1). Additionally, the number of cells infected over 

time was significantly higher than the number of extracellular bacteria (Supplemental Figure 2A, 

B). Further decreasing the number of extracellular bacteria by inhibiting cell lysis through 

apoptosis or necrosis had no detectable effect on the number of cells infected (Supplemental 

Figure 2C). Taken together, these data demonstrate that F. tularensis bacteria primarily transfer 

between cells in a host cell contact dependent manner. 

 

Viable bacteria transfer between cells to propagate infection. 

F. tularensis bacteria transferred between cells, but it is unclear if the transferred bacteria 

were viable or sustain an infection. To assess bacterial viability after transfer, we permeabilized 

the host cell and measured bacterial viability by propidium iodide exclusion. The percent of 

viable bacteria was similar between the donor and recipient populations, indicating that bacteria 

were not killed during transfer between cells (Figure 2A, B). To test if the transferred bacteria 

could propagate infection, we infected approximately 1% of the BMDMs then inhibited cell to 

cell contact dependent bacterial transfer with soy lecithin (Figure 2C) and monitored bacterial 
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viability over 3 days. Both treated and untreated cells reached peak infection at 24 hours post 

inoculation, but the lecithin treated samples had significantly fewer viable bacteria compared to 

untreated samples at 48 and 72 hours post inoculation (Figure 2D). In the soy lecithin treated 

samples, the majority of bacteria should be within the initially infected cells. As such, the 

bacterial death observed at the later time points is likely due to gentamicin entering the initially 

infected cells when they lose membrane integrity. Thus, bacterial transfer enhances bacterial 

survival. F. tularensis exploits cell to cell transfer to extend infection by invading previously 

uninfected cells without entering the extracellular space.  

Lecithin treatment almost completely blocks bacterial transfer (Figure 2C), but we were 

unable to ascertain the mechanism behind this inhibition. Treating infected cells with individual 

phospholipid components of soy lecithin did not affect bacterial transfer (data not shown). Other 

complex phospholipid mixtures such as bovine lung surfactants (Survanta) also decreased 

bacterial transfer, likely through a related mechanism (data not shown). 

 

Bacterial transfer is cell type specific. 

 Many bacterial species transfer from cell to cell through bacterial mediated processes, 

such as actin based motility. Since these transfer mechanisms are driven by bacterial effectors, 

transfer occurs across a diverse range of cell types 62,153,154. In contrast, cytosolic transfer varies 

widely between cell types 152. We assessed bacterial transfer in different cell types to test if F. 

tularensis transferred between cells via a host or bacterial mediated process. Macrophages and 

epithelial cells are both well documented for organelle transfer 152, so we evaluated F. tularensis 

transfer in TC-1 epithelial cells compared to macrophages. Although F. tularensis replicates well 

in TC-1 epithelial cells 112(data not shown), F. tularensis did not transfer between these epithelial 
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cells (Figure 3A, B). However, we tested and found that Francisella transferred from infected 

epithelial cells to macrophages (Figure 3C).  These data indicate that bacterial transfer only 

occurs when the uninfected recipient cell is a specific cell type. As such, F. tularensis transfer is 

likely a host mediated process. 

 

F. tularensis does not transfer via previously described bacterial transfer mechanisms. 

Recipient cell type specificity suggests that F. tularensis does not use similar transfer 

mechanisms of cell to cell spread as other bacterial pathogens. F. tularensis did not form actin 

tails that are characteristic of bacterial pathogens such as Listeria monocytogenes, further 

suggesting that F. tularensis does not use actin based motility (Supplemental Figure 3 7A-C). 

Likewise, actin based motility requires continual bacterial protein synthesis 153; but, bacterial 

protein synthesis was not required for F. tularensis transfer (Supplemental figure 3D). A 

proposed alternative form of F. tularensis spread is through an autophagy related mechanism 

74,122, but inhibiting autophagy with 3-methyladenine (3MA) or using ATG5 knockout BMDMs 

did not block bacterial transfer (Supplemental figure 3E, data not shown). Altogether these data 

are consistent with F. tularensis exploiting host-mediated cytosolic transfer for cell to cell 

spread.  

These results raise the question of why certain bacterial species require a bacterial driven 

transfer mechanism for optimal virulence rather than exploiting cytosolic exchange. Only 5-10% 

of macrophages became infected with F. tularensis via trogocytosis-associated transfer in a 6 

hour interval (Figure 3B). Bacteria that encode mechanisms such as actin based motility likely 

increase the rate of cell to cell spread. Separately, certain bacterial species that use actin based 

transfer between epithelial and endothelial cells 62,154,155. It is possible these transfer mechanisms 



 

99 
 

evolved so that these bacteria can transfer between cells types other than macrophages. As such, 

bacterial mediated transfer likely evolved to enhance bacterial spread and allow for spread 

between cell types that do not undergo trogocytosis-associated bacterial transfer. 

 

Bacterial transfer correlates with trogocytosis. 

One mechanism for cytosolic exchange observed in cytotoxic T cells (CTL) occurs when 

pores connecting the cytosol form between CTL with the target cell 156. During this cytosolic 

intermingling, the cells also exchange specific plasma membrane proteins 156. The cell to cell 

exchange of intact and functional plasma membrane proteins that retain their orientation is 

termed trogocytosis 81. We noted a similar phenomenon during bacterial transfer. Newly infected 

recipient BMDMs frequently acquired plasma membrane proteins as well as cytosolic material 

from the initially infected cell (Figure 4A, B). Transferred plasma membrane proteins retained 

their orientation; so membrane proteins that were surface exposed on the initially infected cell 

were also surface exposed on the newly infected recipient cell (Figure 4A, 4B). These data are 

consistent with trogocytosis and imply that trogocytosis occurs at the same time as bacterial 

transfer. Importantly, trogocytosis can be used as a marker for bacterial transfer and differentiate 

direct bacterial transfer from more conventional mechanisms such as infection via extracellular 

bacteria.  

To quantify how often bacterial transfer resulted in detectable levels of trogocytosis, we 

monitored major histocompatibility complex I (MHC-I) transfer between infected donor and 

uninfected recipient BMDMs 86,157. We infected C57BL/6 (B6) BMDMs (MHC-I H2-Kb) and 

added uninfected Balb/c BMDMs (MHC-I H2-Kd) to the infected B6 cells. After 6 hours of co-

incubation, we assayed the Balb/c BMDMs for both F. tularensis infection and the acquisition of 
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B6 MHC-I. We found that infection increased the amount of Balb/c BMDMs that acquired B6 

MHC-I (Supplemental Figure 4A). Newly infected Balb/c cells were significantly more likely to 

acquire B6 MHC-I than neighboring Balb/c cells that did not become infected (Figure 4C). As 

with bacterial transfer, MHC-I transfer did not require de novo host or bacterial protein synthesis 

(Supplemental Figure 5). We also observed MHC-I exchange during bacterial transfer when 

monitoring hMDMs (Figure 4D). Additionally, the surface exposed MHC-I likely remained 

functional after transfer because it was capable of binding the ovalbumin derived peptide 

SIINFEKL (Figure 4E). Taken together, these data confirmed that trogocytosis occurs concurrent 

with bacterial transfer. 

  

Infected cells undergo increased levels of trogocytosis in a mouse infection model. 

 Because trogocytosis is a marker for cell to cell transfer, we assessed the exchange of 

plasma membrane proteins in infected splenocytes as a surrogate for bacterial transfer in vivo. 

We generated chimeric mice by injecting irradiated F1 B6 and Balb/c mice with wild type Balb/c 

and transgenic CD45.1+ B6 bone marrow. In these mice, no cells encode both CD45.1 and the 

MHC-I H2-Kd. Thus, cells must undergo trogocytosis if both CD45.1 and H2-Kd are present on 

the surface of an individual cell. We infected these mice for 3 days and assayed their splenocytes 

for trogocytosis. Consistent with our in vitro data, F. tularensis infection increased trogocytosis 

and infected cells were significantly more likely to transfer plasma membrane proteins than 

uninfected splenocytes from the same mouse (Figure 4F, Supplemental Figure 4B). Indeed, the 

majority of infected splenocytes had undergone detectable levels of trogocytosis. Combined with 

our in vitro data, these results suggest that cell to cell bacterial transfer occurs in a mouse 

infection model. 
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 The percent of cells that underwent trogocytosis varied widely between different cell 

types. Of the cell types we tested, macrophages and monocytes underwent significantly more 

trogocytosis than dendritic cells or a compilation of all of the other cell types (Supplemental 

Figure 6) (p<.05 for both cell types from raw data). These data further indicate that the rate of 

trogocytosis, and likely bacterial transfer, are cell type specific. 

 

Trogocytosis-associated bacterial transfer is a general phenomenon.  

 Recipient cell type specificity suggests that trogocytosis-associated bacterial transfer is a 

host mediated event. As a result, we should observed similar results in other bacterial species. 

We therefore assessed bacterial transfer and trogocytosis with Salmonella enterica serovar 

Typhimurium (S. typhimurium) infected cells. Similar to F. tularensis cell to cell transfer, S. 

typhimurium infection increased trogocytosis and bacterial transfer correlated with the exchange 

of MHC-I (Figure 5A, Supplemental Figure 4C). We also measured the transfer of beads 

between cells to test if transfer was specific to bacterial infections. Unlike infections, beads did 

not increase the level of trogocytosis above the basal level (Supplemental Figure 4D). However, 

the Balb/c macrophages that acquired beads also acquired B6 MHC-I (Figure 5B). Taken 

together, our data demonstrate that macrophages acquire cytosolic material and plasma 

membrane proteins from neighboring cells at a basal rate that is enhanced during infection. 

 An unexpected observation from our work was that the rate of trogocytosis increased 

during infection. Trogocytosis is an important immunological process with broad consequences 

on host engraftment, vaccine efficacy, immune regulation and tumor recognition 158-161. Our 

results indicate that a bacterial stimulus triggers trogocytosis. Future efforts to discern the 
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bacterial products or processes responsible for trogocytosis up-regulation may lead to a specific 

tool to manipulate trogocytosis. 

 Interestingly, cells infected with F. tularensis or S. typhimurium participated in 

trogocytosis more frequently than uninfected cells (Supplemental Figure 4A-C). These results 

suggest that infected cells expressed a signal of some kind that initiated, enhanced, or stabilized 

trogocytosis.  This signal is likely not soluble or generalizable because the frequency of 

trogocytosis does not increase in the uninfected cells neighboring infected cells. The molecular 

mechanism for trogocytosis is unknown, but an infection model could be exploited to determine 

the factors responsible for initiating trogocytosis. 

 

Concluding remarks 

Our study demonstrates that intracellular bacteria can exploit a host cell cytosolic 

exchange mechanism to transfer directly from infected cells to macrophages. The bacteria are 

viable after transfer and can sustain infection without entering the extracellular space. During 

infections, trogocytosis-associated transfer is a likely mechanism for F. tularensis to disseminate. 

Shortly after infection, F. tularensis infects dendritic cells and then traffics to the draining lymph 

node within these infected dendritic cells 4. But alveolar macrophages are the primary cell type 

initially infected by F. tularensis following inoculation 3. Direct cell to cell transfer is a likely 

mechanism for the bacteria to transfer from alveolar macrophages to dendritic cells because the 

kinetics of F. tularensis infected cell death are typically longer than for dissemination 70. F. 

tularensis may then use analogous mechanisms to transfer systemically from the lymph node. 

 Bacterial transfer via trogocytosis requires the recipient cell to be a specific cell type, 

suggesting that this transfer mechanism is a host mediated event. The spread of bacteria aids in 
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expanding the replicative niche and possibly dissemination, but could intercellular transfer of 

live bacteria also benefit the host? In cancer biology, trogocytosis of pMHC-I and pMHC-II 

results in a cytotoxic T cell response to the tumor 159,162. The immune system may use a similar 

tactic during infection. The transfer of plasma membrane proteins such as MHC-I during 

infection may initiate or amplify a cytotoxic T cell response that ultimately aids in pathogen 

clearance. Trogocytosis-associated transfer may spread antigen between antigen presenting cells 

to improve the likelihood of stimulating a specific T cell receptor. In other cell types such as 

epithelial cells, trogocytosis-associated transfer may result in trafficking pMHC-I to cells capable 

of initiating a cytotoxic T cell response. Separately, epithelial cells transfer whole antigen to 

macrophages and dendritic cells to initiate a T cell response via a cytosolic mechanism 151. As 

such, bacterial transfer could be a mechanism for cells to transfer an antigen source to antigen 

presenting cells.  

Trogocytosis-associated bacterial transfer is likely beneficial to the host or bacteria 

depending on the context and the microbe. Future studies on how this process impacts 

pathogenesis will likely improve our understanding of how bacteria spread in the host and how 

the innate immune system acquires antigen to initiate the adaptive immune response. 

  

Materials and Methods 

Bacterial growth 

Francisella tularensis subsp. tularensis Schu S4 was obtained from Biodefense and 

Emerging Infectious Research Resources Repository (BEI Resources) and Francisella tularensis 

subsp. holartica live vaccine strain (LVS) expressing GFP was generated as described 2. Schu S4 

was used for all experiments shown except live cell imaging. Prior to infection, F. tularensis was 
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grown overnight in Chamberlin’s defined media. L. monocytogenes and S. typhimurium were 

grown overnight in Luria broth. 

 

Antibodies and Critical Reagents 

 The clone numbers for the antibodies used in these experiments: F. tularensis 

lipopolysaccharide (1.B.288, US Biologicals), MHC I H2-Kd (SF1-1.1.1, eBioscience), MHC I 

H2-Kb (AF6-88.5.5.3, eBioscience), MHC I HLA-A2 (BB7.2, eBioscience), CD45.1 (A20, 

eBioscience), CD45 (30-F11, eBioscience), MHC I H2-Kb-SIINFEKL (25-D1.16, eBioscience). 

 The catalog number and company for critical reagents used in these experiments: Cell 

Trace Red DDAO-SE (C34553, Life Technologies), Calcein-AM (C3099, Life Technologies), 

Soy Lecithin (Cas number 8002-43-5, Acros), phalloidin (A22287, Life Technologies), 3 um 

pore Transwells (3402 Costar), gentamicin (15750-060, Gibco) 

The beads (M-1002-010, Solulink) used in these experiments were labelled with AF488 

succinimidyl ester (A-20100, Life Technologies) to make fluorescent beads.  

 

Cell Culture 

 TC-1 lung epithelial cells (ATCC CRL-2785) were maintained in RPMI supplemented 

with sodium pyruvate, L-glutamine and non-essential amino acids in 10% fetal bovine serum 

(FBS). J774A.1 macrophage-like cells (ATCC TIB-67) were maintained in DMEM containing 

10% FBS supplemented with sodium pyruvate and L-glutamine. All cell types were kept at 37°C 

and 5% CO2. All cell types were checked for proper morphology prior to every experiment and 

consistently monitored for changes in cell replication that might indicate Mycoplasma 

contamination. 



 

105 
 

 For the BMDM, TC-1 and J774 transfer experiments, cells were seeded the night before 

the experiment at 250,000 cells per well in non-tissue culture treated 12 well dishes or 500,000 

cells per well in a 6 well dish on coverslips for microscopy. BMDMs were generated as 

previously described 163. Unless otherwise indicated, cells were infected with F. tularensis at a 

multiplicity of infection (MOI) of 100 bacteria, S. typhimurium at an MOI of 10 or beads at an 

MOI of approximately 1. 10 ug/ml of gentamicin was added at 2 hours post inoculation when 

BMDMs or J774s were infected or 3 hours post inoculation for TC-1 cells. For co-incubation 

experiments, the indicated recipient cell type was added to the infected cells at 18 hours post 

inoculation unless otherwise indicated for F. tularensis. 

Primary human monocyte derived macrophages were generated by acquiring human 

blood in heparin tubes and isolating the peripheral blood mononuclear cells (PBMC) and serum 

on a ficoll gradient. The cells were plated in Iscove’s modified Dulbecco’s medium (IMDM) for 

2 hours. The non-adherent cells were washed away and the media was replaced with IMDM 

containing 5% autologous human serum. Primary human cells were cultured for 7 days prior to 

infection. The blood was isolated from several healthy volunteers who gave informed, written 

consent following an approved protocol by the Institutional Review Board for human volunteers 

at the University of North Carolina at Chapel Hill. Blood was obtained specifically for these 

experiments. Different donors were used for each experiment. 

The infected cells were seeded onto a coverslip for all experiments involving primary 

human cells. The coverslip was inverted in a well of uninfected cells so that the infected cells 

were in contact with the uninfected cells. The reciprocal setup was used for TC-1 to BMDM 

transfer experiments. Other methods to transfer the cells resulted in large amounts of cell lysis. 
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Bacterial transfer inhibition assay 

 BMDMs were seeded at 500,000 cells the night before infection. Cells were infected with 

an MOI of 0.5 bacteria and 10 ug/ml of gentamicin was added at 2 hours post inoculation. 0.5 

mg/ml of soy lecithin (Acros) was added with gentamicin at 6 hours post inoculation. 50% of 

each sample was used for viable bacteria quantification through serial dilutions and plating on 

chocolate agar. The remaining 50% of the sample was used to determine the number of cells 

infected as previously described. Soy lecithin is composed of phospholipids, but treatment of 

cells with the major phospholipid components of soy lecithin, such as phosphatidylcholine, did 

not block bacterial transfer (data not shown). 

 

Live Cell Imaging 

 For live cell imaging, J774 cells were infected at an MOI of 500 with GFP-expressing 

LVS bacteria in a synchronous infection. Briefly, the J774 cells were chilled on ice for 30 

minutes, the media was exchanged with media containing the bacteria, centrifuged for 5 minutes 

and then the bottom of the plate was placed in a 37°C water bath for 2 minutes. The cells were 

incubated for 15 minutes in an incubator at 37°C and 5% carbon dioxide and then the media was 

replaced with media containing gentamicin. The cells were then imaged every 5 minutes for 24 

hours using a 40x objective on an Olympus IX70 microscope in a temperature and carbon 

dioxide contained chamber. All data were analyzed using ImageJ 114.  

 

Flow Cytometry Assays 

 When analyzing surface markers (CD45, H2-KD, H2-KB, or H2-KB-SIINFEKL), cells 

were stained in the wells in which they were infected. We added 2.4G2 cell supernatant (Fc 
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blocking buffer) to infected cells for 5 minutes. The 2.4G2 was removed and antibodies were 

added. After 5 minutes, the cells were washed twice in PBS containing 2% fetal bovine serum 

(FBS) then fixed in 4% paraformaldehyde.  

 F. tularensis within infected cells were detected by permeabilizing the plasma membrane 

with 0.1% saponin (Millipore) in PBS and 2% FBS (Gibco). The cells were stained with an anti-

F. tularensis lipopolysaccharide antibody (US biological) conjugated to either Pacific blue, 

AF488, or AF647 by combining the antibody with a succinimidyl ester of the dye. The 

conjugated antibody was separated from unbound dye by a 30,000 molecular weight filter and 

repeated washes with PBS and glycine. Conjugation efficiency was then assayed for each batch. 

All mouse plasma membrane protein transfer experiments included a doublet control. 

Uninfected cells from both populations were each stained with all antibodies. Each population 

was removed from the plate and combined in 4% paraformaldehyde. We were able to detect 

bacteria at 1 hour post-inoculation when as few bacteria as 1 bacteria per cell were present (data 

not shown).  

 We stained for both extracellular and intracellular bacteria and found that 1% or less of 

the infected BMDMs were positive due to surface bound extracellular bacteria (data not shown). 

Due to the low number of false-positive events, we did not stain specifically for extracellular 

bacteria in the majority of assays so that we could minimize spectral overlap of our panel. 

  

Transfer of cytosolic dyes 

 BMDMs were infected for 18 hours and then stained with calcein-AM following the 

manufacturer’s protocol (Invitrogen). Uninfected BMDMs were concurrently stained with Cell 

Trace Red (Invitrogen) following the same protocol. The different populations were either fixed 
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immediately for controls or combined and co-incubated for 6 hours. The cells were then stained 

for F. tularensis as described above. 

 

Transwell assay 

 The day before infection, BMDMs were seeded either in a 12 well plate or in the 

chamber of 12 mm, 3.0 uM pore transwell. Each chamber (transwell and plate) was kept 

separate. One chamber per pair was infected and 10 ug/ml of gentamicin was added at 2 hours 

post inoculation to kill any extracellular bacteria. At 6 hours post-inoculation, the gentamicin 

was removed and the infected and uninfected chambers were combined. We then separated and 

harvested each chamber at either 6 or 18 hours post inoculation.  

 To test for bacteria traversing the membrane, we combined the chambers, added bacteria 

directly to the media of the indicated chamber (MOI 100) and tested for the number of infected 

cells in each chamber 2 hours later (Supp 1B). 

 

Extracellular bacterial enumeration 

 BMDMs were infected for two hours and then gentamicin was added. At 6 hours post 

inoculation, the media was exchanged for media with or without gentamicin. At 6 hour intervals, 

the cells were harvested and stained for intracellular F. tularensis and the media was serially 

diluted and plated on chocolate agar. To approximate the number of cells infected every 6 hours, 

we used the change in infection percentage between intervals and assumed the number of 

BMDMs doubled overnight.  

 

Cell Death and Autophagy Inhibition 
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 BMDMs were infected and gentamicin was added at 2 hours post inoculation. At 6 hours 

post inoculation, the media was exchanged for media containing gentamicin and the indicated 

treatment. Z-Vad(OMe)-FMK (Cayman Chemicals) was used at 20 uM and Necrostain-1 

(Cayman Chemicals) at 10 uM. At 6 or 24 hours, samples were harvested and analyzed for 

intracellular bacteria. 

 Autophagy inhibition experiments were performed in the same manner, with 10 uM 3-

methyladenine (Cayman Chemicals) added at 18 hours post inoculation. 

 

Saponin Permeabilization 

 Cell Trace Red BMDMs were added to infected BMDMs 18 hours post inoculation. At 

24 hours post inoculation, the cells were treated with 0.1% saponin in PBS and 2% FBS for 15 

minutes at room temperature (wash buffer). 3 uM propidium iodide was added to the cell for 12 

minutes in wash buffer. The cells were washed 3 times and then fixed in paraformaldehyde.  

 

Epithelial to BMDM transfer 

 TC-1 epithelial cells were infected for 6 hours as described above. A cover slip seeded 

with BMDMs was inverted on top of the infected TC-1 cells and the cells were co-incubated for 

18 hours in media containing gentamicin. At 24 hours post inoculation, the slide was removed 

and the TC-1 and BMDM cells that migrated from the cover slip to the bottom of the plate were 

stained for CD45 to determine cell type, fixed, and then stained with F. tularensis LPS as 

described above. The 0 hour co-incubation represents TC-1 cells that were infected for 24 hours 

but did not have BMDMs added to the well. 
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Mice  

 All mice were obtained from Jackson Laboratory (Bar Harbor, ME) and were housed in 

specific pathogen free housing at the University of North Carolina- Chapel Hill. All mouse 

experiments were performed under approved protocols from the University of North Carolina- 

Chapel Hill Institutional Animal Care and Use Committee. All mice used were female. The age 

of mice for bone marrow macrophage production varied widely (6 weeks to 6 months old). All 

mice used to generate chimeric mice were 6 weeks old at the time of irradiation or bone marrow 

harvest.  

 

Bone Marrow Chimera Mouse Experiment 

 F1 mice from a mating of C57Bl/6 and Balb/c mice were irradiated with 1000 cGY using 

an X-ray irradiator. About 5 hours after irradiation, the irradiated mice were reconstituted by 

intravenous injection of 10 million T cell depleted bone marrow cells per mouse (T cells 

depleted using Miltenyi CD3e Microbead Kit following the manufacturers protocol). The bone 

marrow cells were approximately a 1:1 mixture of cells from wild-type Balb/c mice and CD45.1 

C57bl/6 mice (B6.SJL-PTprca Pepcb/ BojJ). No blinding was performed in these studies. 

 5-7 weeks after irradiation, half of the bone marrow chimera mice in each irradiation 

group were infected intranasally with approximately 500 colony forming units of GFP-

expressing F. tularensis Schu S4. Mice were randomly assigned to each group. At 3 days post 

inoculation, the spleens were harvested and made into a single cell suspension. The cells were 

treated with ammonium chloride lysing buffer to removed red blood cells. The splenocytes were 

then stained with anti CD45.1 and H2-KD (Balb/c MHC I) antibodies, washed, fixed in 4% 

paraformaldehyde, stained for intracellular F. tularensis and analyzed by flow cytometry.  
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Plasma Membrane Protein Transfer (Trogocytosis) Assays 

 C57BL/6 BMDMs were infected and gentamicin was added at 2 hours post inoculation. 

At 18 hours post inoculation, Balb/c BMDMs were added to the infected B6 cells in the presence 

of gentamicin. For select experiments, 0.5 ug of the ovalbumin peptide SIINFEKL (ova 257-264) 

(AnaSpec Inc) was also added at 18 hours post inoculation. At 24 hours, the cells were stained 

and harvested for flow cytometry. All flow cytometry experiments included a doublet control, 

where stained and paraformaldehyde fixed B6 and Balb/c cells were mixed at approximately a 1 

to 1 ratio with a similar cell concentration as the rest of the samples. The doublet control sample 

represents the background level of false positives for plasma membrane protein transfer due to 

doublets. 

 Experiments with S. typhimurium or magnetic beads were performed by infecting B6 

BMDMs with an MOI of 10 GFP expressing S. typhimurium bacteria or an MOI of 1 streptavidin 

coated magnetic bead (Solulink) conjugated to AF488. At 2 hours post inoculation, the cells 

were washed and media containing 25 ug/ml of gentamicin was added. At 10 hours, Balb/c 

BMDMs were added and the samples were harvested at 16 hours. The samples were surface 

stained as previously described. 

 For microscopy, infected BMDMs were biotinylated at 18 hours post inoculation 

(Thermo Scientific; EZ-Link Sulfo-NHS-LC-biotin following the manufacturer’s protocol). Cell 

Trace Red labeled BMDMs were added to the infected cells immediately following biotinylation. 

1 to 2 hours later, the samples were stained with AF568 or PE conjugated streptavidin, fixed in 

4% paraformaldehyde, and mounted using DAPI containing mounting media. Images were 

acquired using the 63x objective on a Zeiss CLSM 700 Confocal Laser Scanning Microscope. 
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Images were acquired using Zen software (Zeiss). All data were analyzed using ImageJ 114. 3D 

images were generated using Imaris software (Bitplane). 

For human samples, HLA-A2 negative, biotinylated MDMs were added to infected HLA-

A2+ MDMs at 18 hours post inoculation. The cells were co-incubated for 6 hours and then the 

recipient cell population was stained with biotin and HLA-A2 to assess plasma membrane 

protein transfer. 

 

Protein synthesis inhibition 

 Recipient BMDMs and the indicated treatment (0.1 ng/ml cycloheximide or 50 ug/ml 

chloramphenicol) were added to infected BMDMs at 18 hours post inoculation. The samples 

were assessed as described above. At these concentrations, cycloheximide increased the basal 

rate of plasma membrane protein transfer while chloramphenicol decreased the basal rate of 

plasma membrane protein transfer. 

 

Actin localization 

 Cells were infected with an MOI of 1 for L. monocytogenes or 100 for F. tularensis. Cells 

were harvested at 16 hours post inoculation, fixed, permeabilized and stained with AF647 

conjugated phalloidin.  

 

Data Analysis 

 All statistics were performed by a 2 tailed, unpaired Student t-tests using raw data values. 

Confocal microscopy experiments represent all cells from 100 total fields of view from 2 

independent experiments. For statistics, each field of view was treated as an independent sample. 
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Chimeric mouse experiments were performed with 2 mice per group in 4 independent 

experiments. We estimated the size for these animal studies based on our results in tissue culture. 

All other experiments were performed in triplicate for each group in at least 3 independent 

experiments unless otherwise indicated.  
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Figures  

 

Figure  4.1: F. tularensis transfers between macrophages during cytosolic transfer.  

A) Representative live cell imaging micrographs of F. tularensis infected J774 cells transferring 

bacteria. Time- hour: minutes post inoculation; * - initially infected cell; White arrow- first 

bacterial transfer event; Orange arrow- second bacterial transfer event. Movie available as 

Supplemental Video 1. B) The amount of recipient macrophages infected after a 6 hour co-

incubation between the indicated macrophage cell types (3 independent experiments performed 

in triplicate). C) A representative histogram of the amount of calcein that transferred to recipient 

cells (log10 fluorescence). D) The percent of infected or uninfected cells that exchanged cytosolic 

content (positive for both Cell Trace Red and calcein). The uninfected population represents cells 

in the infected well that did not become infected. DC refers to a doublet control (2 independent 

experiments performed in triplicate) E) The percent of BMDMs infected in each transwell 

chamber. ■ Transwell (initially infected). ● Bottom. The percentages indicate the change in 

infected BMDMs over time. The difference in the number of BMDMs infected over time was 
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significant (p<0.001) (3 independent experiments performed in triplicate). (Mean +/- SEM). 

(***p<0.001) 

 

Figure  4.2 Live bacteria transfer to macrophages during bacterial transfer.  

A) The percent of viable bacteria (propidium iodide negative) in donor and recipient BMDMs (2 

independent experiments, 50 fields of view each) B) Micrographs of permeabilized BMDMs. 

Arrow- propidium iodide positive bacterium. Scale bar- 10 uM. C) The number of cells infected 

in untreated or soy lecithin treated BMDMs. D) The number of viable bacteria in untreated or 

soy lecithin treated BMDMs. Lecithin was added at 6 hours post inoculation (All other results 

from 3 independent experiments performed in triplicate).  (Mean +/- SEM). (ns p>0.05, * 

p<0.05, **p<0.01, ***p<0.001). 
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Figure  4.3: Bacterial transfer is cell type specific.  

A) Percentage of infected J774 macrophages or TC-1 epithelial cells at the indicated time post 

inoculation for the represented histogram (log10 fluorescence). B) A compilation of the number 

of J774 or TC-1 cells infected over time. Statistics represent tested for a significant increase in 

the number of cells infected compared to the previous 6 hour time point. C) TC-1 to TC-1 

transfer vs TC-1 to BMDM transfer after a 0 or 18 hour co-incubation. (All results from 3 

independent experiments performed in triplicate) (Mean +/- SEM). (ns p>0.05, * p<0.05, 

**p<0.01). 
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Figure  4.4: Plasma membrane protein transfer correlates with bacterial transfer.  

A) Fluorescence micrographs of BMDMs before, during, and after trogocytosis. B) A donor 

[white plasma membrane] and trogocytosis positive recipient BMDM [red cell] exchanging 

cytosolic material and bacteria. The bottom panel is a 3D rendering of the Z-stack from the cells 

in the top panel. Percent of trogocytosis positive recipient cells that are in C) BMDMs or D) 

hMDMs. E) The percent of recipient macrophages that acquired SIINFEKL peptide bound 

MHC-I from B6 BMDMs. F) The percent of infected splenocytes that underwent trogocytosis in 

a mouse infection model (8 or 9 mice per group from 4 independent experiments). DC refers to a 

doublet control. (All other data are from 3-4 independent experiments performed in triplicate) 

(Scale bar- 10 um) (Mean +/- SEM). (ns p>0.05, * p<0.05, **p<0.01, ***p<0.001) 
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Figure  4.5: Bacterial transfer is a general phenomenon.  

The percent of recipient cells that underwent PMP transfer in response to A) Salmonella 

typhimurium or B) fluorescent beads with the recipient BMDMs that acquired bacteria or beads 

grouped separately from recipient cells in the same well that did not acquire foreign material. DC 

refers to a doublet control. (All results from 3-4 independent experiments performed in triplicate) 

(Mean +/- SEM). (ns p>0.05, **p<0.01, ***p<0.001) 
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Figure  4.6: Experimental design and bacterial motility for transwell assay. 

Supplemental Figure 1 

 A) An experimental design of the transwell assay performed in Figure 1. B) F. tularensis was 

added to the indicated chamber for 2 hours and both chambers were assessed for the number of 

BMDMs that became infected. (3 independent experiments performed with a single replicate) 

(Mean +/- SEM).  
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Figure  4.7: The extracellular space is not a major source of infectious bacteria. 

Supplemental Figure 2 

The total number of BMDMs infected per 6 hour interval compared to the number of 

extracellular bacteria in 1 milliliter of media either A) with or B) without gentamicin. All 

samples were treated with gentamicin between 2 and 6 hours post inoculation to destroy 

extracellular bacteria from the inoculum. C) BMDMs were assessed for the number of infected 

cells at 6 or 24 hours post inoculation. Z-Vad(OMe)-FMK or necrostatin-1 were added at 6 hours 

post inoculation. (All experiments from 3 independent experiments performed in triplicate) 
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(Mean +/- SEM). (ND- not determined, bacterial counts below limit of detection, ns p>0.05, 

**p<0.05,**p<0.01, ***p<0.001) 
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Figure  4.8: F. tularensis does not transfer via actin based motility or autophagy. 

 Supplemental Figure 3 

 Representative micrographs of A) uninfected, B) F. tularensis infected, or C) Listeria 

monocytogenes infected BMDMs 16 hours post inoculation. DAPI is depicted in blue, phalloidin 

(actin) in red and the bacteria in green. The scale bar represents 10 uM. B) Transfer of bacteria to 

recipient cells in the presence of host (cycloheximide [CHX]) or bacteria (chloramphenicol 

[Chlor]) protein synthesis inhibitors. E) F. tularensis transfer to recipient BMDMs after a 6 hour 

co-incubation in the presence or absence of 3-methyladenine. (All experiments from 3 

independent experiments performed in triplicate) (Mean +/- SEM). (ns p>0.05, * p<0.05). 
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Figure  4.9: Plasma membrane protein exchange increases during infection. 

 Supplemental Figure 4 

A) The percent of Balb/c recipient BMDMs that acquired B6 MHC-I from F. tularensis infected 

or uninfected donor B6 BMDMs. B) The percent of splenocytes that exchanged MHC-I in 

infected or uninfected mice (8 or 9 animals per group from 4 independent experiments). The 

percent of Balb/c recipient BMDMs that acquired B6 MHC-I from uninfected or C) S. 

typhimurium or D) bead infected donor B6 BMDMs. (Mean +/- SEM). (All other experiments 

from 3 independent experiments performed in triplicate) (* p<0.05, **p<0.01, ***p<0.001) 
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Figure  4.10: Plasma membrane protein transfer does not require de novo protein 

synthesis. 

Supplemental Figure 5 

 The change in MHC-I transfer induced by infection when host (cycloheximide [CHX]) or 

bacteria (chloramphenicol [Chlor]) protein synthesis is inhibited. The uninfected cells were 

averaged for each experiment and each infected or uninfected sample was compared to this 

average because cycloheximide and chloramphenicol altered the basal level of MHC-I exchange. 

(Mean +/- SEM). (n=2 independent experiments performed in triplicate) (ns p>0.05, * p<0.05, 

**p<0.01). 
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Figure  4.11: Trogocytosis in various cell types in mouse splenocytes. 

Supplemental Figure 6 

 The percent of Balb/c H2-Kd positive cells that had surface exposed CD45.1 in each represented 

population. Macrophage: F4/80+; Monocyte: F4/80-, CD11b+; Dendritic Cell: F4/80-, CD11c+; 

Other: F4/80-, CD11b-, CD11c-. Results for each cell type were normalized to the ‘Other’ 

population. (8 or 9 animals per group from 4 independent experiments) 
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CHAPTER 5: DISCUSSION, FUTURE DIRECTION AND CONCLUSIONS 

 

The characterization of a novel interaction between bacterial pathogens and autophagy. 

Intracellular pathogens manipulate host defense mechanisms to enhance microbial 

proliferation. One such example is autophagy. Autophagy is a well characterized anti-microbial 

host defense that is manipulated by a wide range of pathogens for intracellular survival and 

replication. Autophagy induction inhibits cell death, increases the amount of intracellular 

nutrients by degrading macromolecules, and autophagosomes are a non-canonical secretion 

mechanism for select proteins, including the cytokine IL-1B 164-166. Viral pathogens manipulate 

autophagy to maintain infected cell viability or exploit autophagy for non-lytic exocytosis (Table 

B.1). Prior to my dissertation, one important question was whether pathogens could out-compete 

the host for autophagy-derived nutrients. Cells infected with Dengue virus use autophagy derived 

triglycerides to increase intracellular ATP levels for the host cell, presumably to maintain host 

cell viability for Dengue virus replication 124. But Dengue virus does not directly use autophagy 

by-products 124. My work indicated that select pathogens are able to directly harvest autophagy 

by-products while evading xenophagy. These data were confirmed in A. phagocytophilum 123. 

My dissertation research was one of the first to describe precisely how autophagy benefits a 

bacterial pathogen during infection.  
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How can pathogens benefit from autophagy induction? 

 My work on how F. tularensis harvests nutrients from ATG5-independent autophagy 

helped to change the model for how intracellular pathogens acquire nutrients from the host. Prior 

to this project, the paradigm for bacterial nutrient acquisition was that intracellular microbes 

simply scavenged the host cell cytosol for available nutrients. The rationale for this model was 

that bacteria acquire iron and a few other nutrients in this manner. Basically, iron acquisition 

generally relies on bacteria exporting iron chelating molecules (siderophores) or breaking down 

host iron containing compounds such as heme 167. Both of these mechanisms are active bacterial 

processes and can function in the absence of a host cell. Since iron acquisition occurs through 

bacteria-mediated scavenging, many groups focused on bacterial scavenging to acquire other 

nutrients from the host. These investigations have been successful at characterizing certain 

individual nutrients. For example, F. tularensis degrades glutathione (GSH) for cysteine and 

Mycobacterium tuberculosis degrades cholesterol for lipids 13,168.  

 But bacterial nutrient scavenging requires the required nutrients to be present in 

structures that are conserved in each host the bacteria infect. GSH is important for enzyme 

detoxification in species ranging from aerobic amoebae to mammals and is likely present within 

each host that F. tularensis infects 13,169. But certain nutrients are in complex macromolecules 

that vary widely between different hosts, such as amino acids being sequestered primarily within 

proteins or peptides. Instead of secreting effectors to degrade these macromolecules, we 

hypothesized that F. tularensis exploits host protein degradative mechanisms to increase 

intracellular amino acids levels.  

We found that autophagy, a critical host degradative pathway, is a major source of 

nutrients for F. tularensis. Autophagy derived by-products are a source of the amino acids that F. 
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tularensis cannot synthesize and a major source of carbon that F. tularensis uses to synthesize 

amino acids, LPS, nucleic acids, and other critical molecules. Around the same time we 

published our results; two other groups confirmed that intracellular bacteria exploit autophagy or 

host cell proteosomal degradation for amino acids 123,142. Collectively, our work shifted the 

paradigm for intracellular nutrient acquisition by bacteria. The current paradigm now focuses on 

pathogens exploiting host degradative pathways for nutrients, a process termed ‘nutritional 

virulence’ 170. Nutrient scavenging is required for intracellular bacteria to acquire certain specific 

nutrients. But nutrients that are needed en masse, such as a primary carbon source, are likely 

generated by manipulating host degradative or import processes. Together, these processes work 

synergistically to provide the bacteria with host derived nutrients. 

 My research on the interactions between F. tularensis and autophagy characterized how 

F. tularensis acquires amino acids and carbon from host cells. Yet there are still several 

questions that need to be addressed. F. tularensis may acquire other nutrients from autophagy 

besides amino acids, such as carbohydrates or lipids. It is also not clear how F. tularensis 

induces autophagy or how F. tularensis biases the infected cell to promote ATG5-independent 

autophagy over canonical autophagy. Identifying how F. tularensis exploits this pathway should 

yield important information about how autophagy functions and host regulation of the different 

forms of autophagy.  

The only bacteria that benefit from autophagy through known mechanisms are F. 

tularensis, A. phagocytophilum, and B. abortus 122,123. Yet most bacterial pathogens induce 

autophagy and evade xenophagy (Table B.1). It is unclear if or how these pathogens benefit from 

autophagy induction. Autophagy is actively induced by and increases replication in Coxiella 

burnetti and Burkholderia pseudomallei, but the exact role of autophagy in these pathogens is 
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unclear 171-174. It is likely that other bacterial pathogens that induce autophagy also benefit from 

autophagy.  

There are several different ways that pathogens can benefit from autophagy. In contrast, 

pro-microbial benefits of autophagy have been well defined for many viral pathogens. Viruses 

promote viral replication, increase host cell survival, and for non-lytic exocytosis (Table). As 

previously mentioned, Dengue virus benefits from autophagy due to the increase in intracellular 

triglycerides 124. Intracellular bacterial pathogens require nutrients, host cell viability, and a 

mechanism of escape. Yet very little is known about if or how bacteria manipulate autophagy to 

accomplish these goals, and these events may be linked (Table B.1). Even the bacterial 

pathogens that have a known benefit from autophagy may also exploit autophagy for other 

advantages, such as enhanced cell viability.  

 Finally, my research on autophagy also characterized how F. tularensis interacts with 

xenophagy. Until recently, autophagy induction was viewed as a critical anti-microbial process. 

But recent studies indicate that microbes intentionally stimulate autophagy and use separate 

mechanisms to evade xenophagy (Table B.1). F. tularensis is frequently located adjacent to 

autophagosomes in cells. These data suggest that F. tularensis recruits or moves to 

autophagosomes while avoiding engulfment by xenophagy. It is unclear how F. tularensis 

evades xenophagy except that it occurs through an active process and O-antigen passively 

contributes to xenophagy resistance 66,175. Another important question is how F. tularensis 

localizes adjacent to autophagosomes without becoming engulfed by the autophagosome. 
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Why do we care that pathogens acquire nutrients via autophagy? 

 Nutritional virulence is an important area of study because the bacteria rely on host 

mechanisms for a fundamental part of their survival: nutrients. For example, autophagy 

inhibition is a potential therapeutic intervention for F. tularensis. Treating a F. tularensis 

infected patient with the FDA approved autophagy inhibitor chloroquine should decrease F. 

tularensis replication and help the patient clear the infection. Additionally, several drugs are in 

clinical trials for tumor treatment that inhibit autophagy 176-178. F. tularensis cannot easily 

compensate for impaired autophagy and would need to evolve alternate nutrient acquisition 

mechanisms before this treatment became ineffective. At the moment, this method is impractical 

because chloroquine and other autophagy drugs inhibit a variety of host processes that will result 

in significant side effects and antibiotics are a safer treatment option. But future work on how F. 

tularensis induces autophagy may identify specific inhibitors for F. tularensis induced 

autophagy, leading to a viable host directed therapy. Admittedly, F. tularensis is not a highly 

relevant organism for this type of therapy because it is susceptible to several antibiotics; 

however, this example is relevant to other pathogens that induce autophagy or for F. tularensis 

bio-defense purposes.  

 In summary, my research on autophagy as a nutrient acquisition strategy is part of the 

foundation for the nutritional virulence paradigm. Future research on how pathogens interact 

with autophagy will hopefully lead to host directed therapies to inhibit microbial replication. 

 

Macrophages acquire live bacteria from neighboring infected cells. 

The second major finding of my dissertation research was that intracellular bacteria 

transfer from infected cells to macrophages through a host-mediated process. Unlike my work on 
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autophagy, there is very little background information on this project and previous research on 

this topic comes from a diverse set of fields. Several studies have demonstrated that 

macrophages can acquire intracellular material from neighboring cells, such as proteins for 

antigen presentation 76-78. Unfortunately, this process has several different names, including 

trogocytosis and ‘nibbling’ 77,79,80,87.  

It is important to note that trogocytosis has two different connotations. Historically, 

trogocytosis refers to the exchange of plasma membrane components between neighboring cells 

81. Antigen cross dressing refers to dendritic cell acquisition of peptide-bound MHC-I or MHC II 

via trogocytosis 86,179. This is the definition I use for trogocytosis in my writing. However, 

trogocytosis has recently been used in reference to a cell ingesting part of another live cell. In 

these works, trogocytosis refers to macrophages that gnaw on adipocytes to acquire intracellular 

lipid droplets and E. histolytica gnawing on live human cells for nutrients 79,87.  

My research explicitly links the exchange of intracellular material to the exchange of 

plasma membrane material. This is important because the implications of this link could have 

important ramifications on how immune cells interact with one another. When macrophages 

acquire portions of tumor cells, they are likely also acquiring intracellular antigens. This may 

impact antigen presentation or processing and could have important implications on cancer 

therapeutics. Conversely, when macrophages acquire intracellular content from adipocytes or 

other cell types, they may also acquire certain plasma membrane proteins that alter their 

function. 

In addition to linking these two cell biology processes, my work demonstrated a novel 

mechanism for pathogen transfer. The consequences of this work are potentially vast. Briefly, 

this mechanism of bacterial transfer could impact bacterial dissemination, mounting an adaptive 
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immune response and provide a new mechanism of cell to cell communication during infection. 

This work is not only relevant to bacterial pathogenesis, but is also highly relevant for tissue 

engraftment, vaccine development, tumor biology, and the link between the innate and adaptive 

immune systems. 

 

What are the implications of live cell phagocytosis by macrophages? 

 Macrophages ingest portions of living cells to generate immune responses upon cell to 

cell contact 79. I found that when the ingested cell is infected, bacteria transfer to and infect the 

recipient macrophage. We have temporarily termed phagocytosis of live cell as metadosis 

(metadosi is Greek for ‘transfer’ or ‘communicate’). Interestingly, bacterial infections increase 

the rate of metadosis by macrophages, suggesting that this is a protective mechanism for the host 

during infection. My work on bacterial transfer during metadosis should have far reaching 

implications on microbial dissemination, the adaptive immune response, and cell to cell 

communication during infections.  

 The benefits of direct cell to cell transfer of live bacteria in microbial pathogenesis are 

relatively straightforward. By transferring via metadosis, the bacteria can infect new cells and 

gain access to a new replicative niche without encountering extracellular anti-microbial factors 

such as antibodies or complement. The newly infected macrophage can also migrate from the 

site of infection to potentially disseminate the bacteria.  

Macrophages enhance trogocytosis and bacterial transfer in response to infection, 

implying that this process is host mediated. But how does the host benefit when macrophages 

acquire live bacteria from other cells? Only select immune cell types can generate a systemic 

immune response to pathogens through antigen presentation. Metadosis may be a mechanism for 
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antigen presenting cells (APCs) to acquire antigen from non-APCs to generate a T cell response. 

Additionally, the newly infected macrophages may migrate away from the site of infection, but 

they will likely migrate to lymph nodes or other immunological strongholds. Thus, intracellular 

bacteria may benefit from transfer in the short term through dissemination and moving to new 

replicative niches, but metadosis is a potential mechanism to prime the adaptive immune 

response and eventually clear the pathogen. 

Metadosis may also help macrophages limit bacterial replication immediately following 

transfer. Macrophages serially transfer F. tularensis, but the increase in infected cells did not 

result in an increase the total number of viable bacteria. Instead, the total number of viable 

bacteria significantly decreased after peak infection. These data indicate that the macrophages 

that become infected via metadosis are resistant to infection. As previously mentioned, F. 

tularensis infection does not lead to robust cytokine secretion. Other extracellular cell 

communication signals may occur, but a more likely explanation centers on the transfer of bulk 

cytosolic material with bacteria during metadosis. The newly infected macrophages may acquire 

anti-microbial signals in addition to live bacteria. For example, cytosolic DNA leads to the 

production of the second messenger cGAMP 180. cGAMP binds to STING to activate the 

transcription factors IRF3 and NF-kB, leading to the transcription of type 1 interferon 181. If 

cGAMP transfers to a newly infected cell along with the bacteria, the recipient macrophage may 

immediately shift its transcriptional profile to be anti-microbial. Several other immune sensing 

intermediates, RNA molecules, or other anti-microbial factors could also transfer with bacteria 

upon live cell phagocytosis. Importantly, we only tracked metadosis when bacteria transferred, 

but macrophages may frequently phagocytose portions of infected cells without becoming 

infected. Thus, macrophages may be primed to destroy the pathogen prior to becoming infected. 
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Why is enhancing macrophage trogocytosis important? 

 We also found that macrophages enhance the transfer of plasma membrane proteins in 

response to bacterial stimuli. Specifically, macrophages were more likely to exchange functional 

MHC-I. Trogocytosis is a constitutive immune cell process and the observed increase in MHC-I 

transfer during infection likely improves antigen transfer to stimulate an immune response. 

Artificial up-regulation of MHC-I trogocytosis may have several therapeutic applications. 

Trogocytosis is important for the generation of an immune response to recognition of tumors and 

foreign material. MHC-I trogocytosis is important for several clinically important fields, 

including vaccine efficacy, tumor identification, and tissue engraftment.  

For tumor identification, dendritic cells acquire peptide bound MHC-I from tumor cells 

via trogocytosis and generate a cytotoxic T cell response solely from the acquired peptide-bound 

MHC-I 182. Importantly, the amount of transferred peptide-bound MHC-I affected the CD8+ T 

cell response 182. Artificially increasing trogocytosis by the addition of bacterial agonists should 

increase MHC-I trogocytosis between tumor cells and APCs to improve tumor clearance. 

Interestingly, infecting tumors with bacterial pathogens increases anti-tumor immune responses 

in human patients and has been used as a cancer therapy for over 100 years 183,184. Pathogens 

have extremely broad effects on the immune response, but my data suggests that one benefit of 

infection is increased MHC-I trogocytosis. Further research into how bacterial pathogens 

enhance trogocytosis should make these procedures safer and more efficient.  

Furthermore, MHC-I trogocytosis by dendritic cells enhances vaccine efficacy. Dendritic 

cells acquire antigen to stimulate T cells via trogocytosis 160. Identifying how cells up-regulate 

trogocytosis in response to pathogens should improve adjuvant and/or vaccine design. Likewise, 
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trogocytosis is likely important in tissue engraftment. When mice are injected with human cells, 

the cells that acquire mouse CD45 via trogocytosis are far more likely to survive than human 

cells that do not acquire this protein 158. Thus trogocytosis may enhance tissue engraftment. 

Taken together, future research into how trogocytosis is regulated or the mechanisms to 

manipulate trogocytosis is likely to have clinical benefits. 

 In summary, my work on cell to cell transfer of intracellular pathogens should further our 

understanding of how macrophages function in the immune response and describes a new 

mechanism for bacterial transfer. Future research into this phenomenon may have wide ranging 

clinical applications. 

 

Conclusions 

 Host cells have evolved intricate innate immune defense mechanisms that are highly 

effective at destroying the overwhelming majority of microbes that cells encounter. But 

intracellular pathogens not only evade these defenses, they often manipulate these defenses to 

enhance intracellular survival and proliferation. Identifying how pathogens manipulate the host is 

important for several reasons. These host processes can be targeted for therapeutic intervention 

to enhance or replace antibiotic therapies. Secondly, pathogens, or specific microbial structures, 

stimulate a range of host defense pathways and are a tool to identify new host immune defenses. 

This identification strategy has been effective at finding a wide range of immunological and 

mammalian cell biology processes. We used F. tularensis to track metadosis and found that 

bacteria can transfer from cell to cell via this process. Further research into this phenomenon is 

likely to link metadosis to the interaction between the innate and adaptive immune responses. 
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Finally, the microbial proteins responsible for manipulating host defenses can be used as tools to 

better define cellular pathways and for therapeutic development 185,186.  

 My dissertation research improved our understanding of how intracellular pathogens 

manipulate the host to enhance bacterial replication or survival. Although my work has vast 

potential for future research directions, one important unresolved question for both of my 

dissertation topics is the molecular mechanisms for both microbial induction and host execution. 

Hopefully future work on these pathways will reveal the precise interactions necessary for these 

host-pathogen interactions to occur, allowing the translation of my research to clinical 

applications. 
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APPENDIX 1: FEEDING UNINVITED GUESTS: MTOR AND AMPK SET THE TABLE 

FOR INTRACELLULAR PATHOGENS3

 

 

Introduction 

Most pathogenesis studies focus on pathogen virulence attributes that mediate host 

colonization, toxicity, or immune evasion. Some studies focus on how pathogens employ active 

mechanisms to acquire essential nutrients such as iron and vitamins from the host by producing 

siderophores or avidins. In order to prevent pathogen nutrient acquisition, host cells employ a 

process called nutritional immunity to sequester these nutrients, particularly iron, from invading 

pathogens 187. However, relatively little attention has been paid to understanding the mechanisms 

by which pathogens parasitize energy and catabolic substrates from the host even though several 

host and pathogen metabolic genes, including those in central carbon metabolism, are regularly 

identified as required for growth in the host 188,189. This issue is particularly important for 

intracellular pathogens that must compete with the host cell for energy and nutrient sources. 

How and where do intracellular pathogens obtain sufficient amounts of energy and 

nutrients to support their replication? Pathogens may either parasitize existing energy stores or 

manipulate the host cell to create usable energy and anabolic precursor metabolites. Several 

recent studies have identified the host AMP-activated protein kinase (AMPK) and mammalian 

target of rapamycin (mTOR) kinases as two important regulators of cellular metabolism whose 

activities are often altered during infection. However, the AMPK/mTOR pathway also regulates 

autophagy, which can destroy cytosolic pathogens. While the evasion of autophagy by pathogens 

                                                 
3This article was previously published in PLOS Pathogens. The citation is: Brunton J, Steele S, Ziehr B, Moorman 
N, Kawula T. Feeding uninvited guests: mTOR and AMPK set the table for intracellular pathogens. PLoS Pathog. 
2013;9(10):e1003552. doi: 10.1371/journal.ppat.1003552  
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is well appreciated, recent work suggests that both the AMPK/mTOR pathway and autophagy 

itself can provide intracellular metabolites that support intracellular pathogen replication. 

 

AMPK and mTOR Regulate Energy Homeostasis 

During times of limited nutrient availability, intracellular ATP levels fall, with a 

corresponding increase in AMP levels. Within eukaryotic cells the increased AMP∶ATP ratio 

induces AMPK activity, which in turn initiates a series of signaling events that stimulate energy 

and nutrient acquisition 190. For example, activated AMPK stimulates glycolytic flux, increases 

glucose uptake, and induces fatty acid oxidation (Figure A1.1). Together these events allow the 

cell to use its existing metabolic stores and also acquire new sources of energy. At the same time, 

activated AMPK limits energy consuming processes. Activated AMPK conserves energy by 

globally reducing protein synthesis, which perhaps is the most energy-intensive process in 

eukaryotic cells. AMPK limits protein synthesis by antagonizing the mTOR kinase, and mTOR 

kinase activity is necessary for formation of the elF4F complex, which is critical for translation 

initiation. In addition, mTOR and AMPK inversely regulate the recycling of existing intracellular 

metabolites through their effects on autophagy. Active AMPK stimulates autophagic breakdown 

of macromolecular complexes in the cell, thus producing energy and nutrients. In contrast, active 

mTOR suppresses autophagy to promote cell growth and proliferation. In a simplified view, 

when energy is low AMPK is active and mTOR is inhibited. This stimulates energy-producing 

processes and inhibits energy consumption thereby providing sufficient energy to support cell 

viability. Although AMPK and mTOR have additional roles outside of cellular metabolism, here 

we focus on the effects of AMPK and mTOR on cellular metabolism during infection by 

intracellular pathogens. 
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Manipulation of Both AMPK and mTOR by Intracellular Pathogens 

In order to achieve optimal levels of proliferation, many pathogens must manipulate 

activity of AMPK and mTOR. Interestingly, several viral pathogens have evolved strategies that 

allow for the induction of both AMPK and mTOR activity. For example, infection with human 

cytomegalovirus (HCMV) increases both AMPK and mTOR activity 191. To acquire sufficient 

energy for viral growth, HCMV infection increases glycolytic flux in an AMPK-dependent 

manner 189,192. However, HCMV must strictly regulate AMPK activity during infection, as 

treatment of infected cells with chemicals that strongly activate or inhibit AMPK can limit viral 

replication 192,193. Interestingly, HCMV replication also requires fatty acid synthesis, which 

should be inhibited when AMPK is activated. Yet fatty acid synthesis is maintained during 

HCMV infection through a mechanism that requires mTOR activation 194. How does HCMV 

allow for the activation of both AMPK and mTOR? The answer lies in part in the activity of the 

HCMV UL38 protein (pUL38). pUL38 binds and inhibits the TSC1/2 complex, which is 

necessary for antagonism of mTOR by activated AMPK 195. HCMV thus uncouples 

AMPK/mTOR signaling resulting in increased energy production and lipid synthesis, both of 

which contribute to virus replication. 

Simian virus 40 (SV40) infection also stimulates both AMPK and mTOR activity. SV40 

small T antigen is both necessary and sufficient for AMPK activation 196,197. This function of 

small T antigen may provide critical nutrients needed for viral replication. mTOR activity is 

induced early in infection but inhibited as infection progresses. The mechanism driving the early 

induction of mTOR activity is unknown, but may be the result of Akt activation by the SV40 T 

antigens. However, the inhibition of mTOR activity during the late stage of infection is due to 

the effects of the SV40 small T antigen 197. While activated AMPK would seemingly reduce 
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SV40 protein synthesis, the expression of SV40 late proteins is driven by an internal ribosome 

entry site (IRES) that allows for efficient late mRNA translation when mTOR is inhibited 196. It 

is likely that other pathogens employ active mechanisms to balance AMPK and mTOR signaling 

to allow for both catabolic and anabolic processes essential for pathogen replication, similar to 

HCMV and SV40. 

 

Inhibiting AMPK or Inducing mTOR Can Provide Essential Substrates for Pathogen 

Replication 

Enveloped viruses require host lipids to generate the virion membrane. Activated mTOR 

stimulates fatty acid and lipid synthesis, and therefore could prove beneficial for virus assembly. 

In fact, host lipid metabolism is essential for the hepatitis C virus (HCV) life cycle and is highly 

regulated during infection 198,199. HCV infection limits AMPK activity and chemical induction of 

AMPK suppresses viral replication and inhibits fatty acid synthesis in HCV-infected cells 200. 

Consistent with AMPK suppression, mTOR activity is increased during HCV infection through 

increased Akt signaling and decreased TSC1/2 expression 201. However, this raises the question 

of how HCV acquires significant energy sources for viral replication in an AMPK-inhibited, 

mTOR-activated metabolic state? The answer may be the temporal regulation of host signaling 

and nutrient usage. Glucose import is required for viral replication and glycolytic flux is induced 

early during HCV infection 199,202. The products of glycolysis are likely diverted to fatty acid 

synthesis, as TCA flux and oxidative phosphorylation are reduced in HCV-infected cells 199,203. 

Later during infection, glucose uptake is reduced, while β-oxidation and amino acid catabolism 

are increased 199. It is therefore possible that HCV temporally regulates AMPK and mTOR 

activity to achieve significant viral protein translation and lipid production, yet still obtain 
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sufficient energy to support virus replication. Some bacterial pathogens may benefit from 

inhibiting AMPK and activating mTOR by inducing lipid synthesis, as Mycobacterium 

tuberculosis and Chlamydia trachomatis utilize fatty acids derived from lipid droplets 204,205. 

However, it is unknown how these bacteria affect host metabolic signaling to acquire nutrients. 

AMPK activation also inhibits the replication of several arboviruses, including Rift 

Valley fever virus (RVFV) 206. RVFV replication can be rescued in the presence of activated 

AMPK by providing cells with excess palmitate 206. This suggests that AMPK inhibition is 

required to provide lipids essential for viral replication. The HIV-1 Tat protein inhibits the host 

SIRT1 protein resulting in AMPK inhibition 207. Interestingly, AMPK induction inhibits lytic 

HIV replication, but is involved in reactivation of latent HIV genomes suggesting that AMPK 

activity may have different roles in acute and persistent infection 208. 

 

AMPK Activation May Benefit Replication of Diverse Pathogens 

It takes a lot of energy to make hundreds, thousands, or potentially millions of new 

parasites, bacteria, or viruses. It seems logical that intracellular pathogens that undergo 

significant intracellular growth would activate AMPK due to the energetic demands placed on 

the infected cell. Activation of AMPK could provide several benefits for intracellular pathogens. 

The increased glucose uptake, glycolysis, and fatty acid breakdown would increase available 

intracellular energy and nutrient pools needed for pathogen replication. For example, Leishmania 

donovani amastigotes (the parasitic form that grows inside macrophages) preferentially generate 

energy through fatty acid oxidation and amino acid catabolism 209, suggesting L. donovani 

acquires fatty acids and amino acids from the infected host cell. Consistent with this finding, 

transcriptomic analysis of macrophages infected with the related parasite Leishmania major 
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suggests that infected cells increase glucose transport, glycolysis, and starch degradation 210. 

While it is currently unknown how Leishmania alters host metabolic processes, a reasonable 

hypothesis is that intracellular Leishmania activates AMPK to benefit parasite replication. 

Activated AMPK could stimulate increased glucose utilization and autophagy, thus creating 

elevated levels of anabolic precursor pools for parasite growth. Parasite replication requires the 

Leishmania protein GP63, which cleaves and inactivates mTOR to reduce type I interferon 

production, thus AMPK activation could further benefit parasite replication by inhibiting mTOR 

211. Viral pathogens may also benefit from AMPK activation. Measles virus requires β-oxidation 

for replication 212, but it is unknown if the virus manipulates AMPK for energy generation. It 

would be interesting to determine if these intracellular pathogens and others induce AMPK to 

generate energy and nutrients for growth. 

 

Autophagy Provides Intracellular Pathogens with Nutrients 

Autophagy is an essential cellular process that recycles cellular constituents from 

macromolecular complexes under conditions of nutrient stress. As discussed above, autophagy is 

positively regulated by AMPK and negatively regulated by mTOR. However, autophagy also 

functions as a host defense mechanism that destroys intracellular pathogens through a process 

termed xenophagy. While generally viewed as detrimental for intracellular pathogens, some 

bacteria and viruses use autophagosomes as a replicative niche 213. Whether these pathogens 

benefit or simply tolerate residing in autophagosomes remains unclear. However, it may be that 

replicating in a site where free nutrients are accumulating provides pathogens with a competitive 

edge for the acquisition of nutrients. This concept is supported by recent evidence that 

intracellular pathogens may use autophagy to acquire energy and nutrients for growth. Dengue 
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virus–induced autophagy degrades lipid droplets. This increases free fatty acids levels in the cell 

and stimulates β-oxidation, which is required for efficient dengue virus replication 124. Similarly, 

we have found that Francisella tularensis growth is impaired in autophagy-deficient host cells. 

Bacterial growth was restored in autophagy-deficient cells by supplying the infected cells with 

excess pyruvate or amino acids. Since F. tularensis replicates within the cytosol of host cells, our 

results suggest that intracellular F. tularensis uses autophagy to increase cytosolic nutrient pools 

that support bacterial growth 5. Interestingly, F. tularensis avoids engulfment by classical 

autophagosomes 129 and instead induces an alternative form of autophagy that is required for 

bacterial replication 5. It is attractive to speculate that other intracellular pathogens manipulate 

autophagy to avoid xenophagic destruction, while simultaneously benefiting from autophagy-

derived nutrients. 

 

Conclusion 

AMPK and mTOR are critical regulators of host cell metabolism making them logical 

targets for manipulation by invading pathogens. The energetic burden of the host cell to create 

hundreds or more pathogens should deplete cellular ATP levels, thus activating AMPK. AMPK 

induction stimulates host processes to produce energy and nutrients that the pathogen could then 

steal from the host. This idea suggests AMPK activation may be a common theme among 

infection by successful intracellular pathogens. On the other hand, mTOR signaling stimulates 

protein and lipid synthesis, which could be beneficial for many viral pathogens; whereas mTOR 

modulation is likely less important for free-living bacteria pathogens and parasites that supply 

their own biosynthetic and translation machinery. Identifying what nutrient sources are required 

for intracellular growth and how host metabolic signaling is manipulated by infection is being 
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investigated in viral pathogenesis, yet remains poorly understood in bacterial and parasitic 

pathogenesis. 

Manipulating host metabolism is an attractive approach to controlling infection as 

targeting the host rather than the pathogen should considerably reduce the ability of pathogens to 

develop drug resistance. Several drugs already in clinical use target the AMPK or mTOR kinases 

to treat diseases such as cancer and diabetes. The studies described above suggest that these 

drugs may have additional uses in treating infections with intracellular pathogens. As our 

understanding of pathogen manipulation of host metabolism grows, it may also be possible to 

develop inhibitors of specific host metabolic pathways hijacked by intracellular pathogens. 

Identifying the essential nutrients required for intracellular pathogen proliferation and the host 

pathways manipulated to acquire these nutrients will be a significant step in understanding the 

requirements for viral, bacterial, and parasitic pathogenesis and identifying new targets for novel 

therapeutics. 
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Figures 

 

Figure A1. 1: Infection by Diverse Pathogens Impacts AMPK and mTOR Signaling. 

Several intracellular pathogens manipulate the AMPK/mTOR pathway during infection through 

either directly targeting AMPK or mTOR or by targeting the upstream or downstream pathways. 

Depicted here are specific points of manipulation in the mTOR/AMPK pathway by human 

cytomegalovirus (HCMV), hepatitis C virus (HCV), Rift Valley fever virus (RVFV), simian 

virus 40 (SV40), Leishmania, and Francisella species. The table summarizes the resulting effects 

on the activities of mTOR and AMPK from infection by the specific pathogen. 
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APPENDIX 2: THE ROLE OF AUTOPHAGY IN INTRACELLULAR PATHOGEN 

NUTRIENT ACQUISITION4

 

  

Overview 

Following entry into host cells intracellular pathogens must simultaneously evade innate 

host defense mechanisms and acquire energy and anabolic substrates from the nutrient-limited 

intracellular environment. Most of the potential intracellular nutrient sources are stored within 

complex macromolecules that are not immediately accessible by intracellular pathogens. To 

obtain nutrients for proliferation, intracellular pathogens must compete with the host cell 

for newly-imported simple nutrients or degrade host nutrient storage structures into their 

constituent components (fatty acids, carbohydrates and amino acids). It is becoming increasingly 

evident that intracellular pathogens have evolved a wide variety of strategies to accomplish this 

task. One recurrent microbial strategy is to exploit host degradative processes to break down host 

macromolecules into simple nutrients that the microbe can use. Herein we focus on how a subset 

of bacterial, viral and eukaryotic pathogens leverage the host process of autophagy to acquire 

nutrients that support their growth within infected cells. 

 

Introduction 

 Food and reproduction are basic necessities for life.  Intracellular pathogens infect host 

cells and are dependent on them for nutrients to propagate.  While there is an abundance of food 

inside host cells, molecules are mostly sequestered in complex compounds or structures such as 

glycogen, lipid droplets, and proteins; forms that are not readily usable by microbial intruders. 
                                                 
4 This chapter was previously published as an article in Frontiers Cellular and Infection Microbiology. The citation 
is: Steele S, Brunton J, Kawula T. The role of autophagy in intracellular pathogen nutrient 
acquisition. Front. Cell. Infect. Microbiol. 2015 Jun 9;5:51. doi: 10.3389/fcimb.2015.00051 
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Therefore, simply gaining access to the interior of a host cell and avoiding potent innate 

antimicrobial host defenses is not sufficient to guarantee successful occupation and growth.  

Once inside, pathogens must either stimulate host cell import of metabolites or degrade 

intracellular storage molecules into compounds that can be transported and metabolized. There 

are multiple mechanisms by which intracellular pathogens accomplish this goal. For example, 

Mycobacterium tuberculosis encodes proteins to degrade host-derived lipids, such as cholesterol, 

for a carbon source 168. Pathogens can also take advantage of host signaling pathways to acquire 

nutrients. Both Brucella abortus and Salmonella enterica thrive on the increased glucose that is 

imported upon activation of various peroxisome proliferation-activated receptors (PPARs) in 

alternatively activated monocytes 214,215. Recently, several pathogens have been demonstrated to 

exploit host cell macroautophagy, hereafter autophagy, for nutrients. Autophagy is a critical 

mechanism that host cells use to increase nutrient availability when stressed. Since infection 

should exert a wide range of stresses on cells, it is not surprising that a diverse range of microbes 

exploit autophagy.  

Autophagy is a highly conserved, multi-faceted eukaryotic process that maintains cellular 

homeostasis by degrading cytosolic material. Autophagy was noted as early as 1957 during the 

characterization of kidney cells by transmission electron microscopy 216,217. In 1964, autophagy 

was identified as a mechanism to degrade cytosolic components and mitochondria under 

starvation conditions 166. Since then, autophagy has been linked to a wide range of functions 

including antigen presentation through major histocompatibility complex II (MHC-II), 

unconventional secretion of inflammatory mediators, and cell viability 50,164,165.  

Autophagy is divided into several subsets based on the components being degraded. Bulk 

autophagy refers to non-specific cytoplasmic turnover while selective autophagy refers to 
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autophagic degradation of specific structures. There are several distinct types of selective 

autophagy, which target specific cellular components such as mitochondria (mitophagy) or lipids 

(lipophagy). During infections, intracellular microbes are recognized, targeted, and degraded 

through a form of selective autophagy termed xenophagy. Although xenophagy is efficient at 

destroying microbes that enter the cytosol, intracellular pathogens have developed numerous 

evasion strategies to avoid destruction by xenophagy, including the degradation or inhibition of 

autophagy components, camouflaging itself in host proteins, or blocking autophagosome 

maturation (Table B.1).  

Several pathogens that evade xenophagic killing have incorporated autophagy into their 

intracellular life cycle. These microbes exploit autophagy to sustain host cell viability, increase 

nutrient production, and/or for non-lytic exocytosis (Table B.1). Viruses also use autophagy or 

autophagy components for viral assembly and maturation (Table B.1). In this review, we will 

focus on how pathogens avoid destruction by xenophagy while harvesting nutrients from 

autophagic degradation of host components.  

 

What is Autophagy? 

Autophagy is a constitutive process that degrades long lived-proteins, organelles, and 

aggregates. In mouse embryonic fibroblasts (MEFs), a common cell line used for autophagy 

research, the basal rate of autophagy is approximately 1-2% of the cytosolic volume of the cell 

17. A wide range of stimuli increase autophagy over the basal rate. Two major autophagy 

signaling nodes are the activation of the energy sensing protein AMP-activated protein kinase 

(AMPK) and inhibition of the mammalian target of rapamycin (mTOR). AMPK is activated in 

response to a low ATP to AMP ratio, such as during glucose deprivation 18,19. AMPK induces 
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autophagy directly by phosphorylating ULK1 or indirectly through mTOR inhibition 20. mTOR 

is inhibited by several other stress factors besides AMPK, such as amino acid starvation or 

hypoxia 21.  

For an in-depth review of canonical autophagy signaling, see the following reviews 218-

220. Briefly, AMPK activation or mTOR inhibition result in ULK1 activation 20. ULK1 

phosphorylates Beclin-1 and activates the kinase VPS34. ULK1, Beclin-1, and VPS34 as well as 

their associated complexes localize to an open, double membrane structure termed the 

phagophore. The phagophore is elongated by the ATG5-ATG12-ATG16L complex 22. The 

phagophore expands to engulf cytoplasmic material while forming a double membrane vacuole 

termed the autophagosome. Unprocessed LC3 is cytosolic (LC3-I), but LC3 is cleaved, lipidated 

with phosphatidylethanolamine (LC3-II), and embedded into the autophagic membrane upon 

autophagy initiation 23. Molecules targeted for autophagic degradation are polyubiquitinated and 

adaptor proteins including p62, OPTINEURIN, or NDP52 bind to both LC3-II and ubiquitinated 

molecules 24-26. The autophagosome then fuse with a lysosome to become an autolysosome. The 

adaptor molecule NDP52 was recently shown to also regulate the fusion of a subset of bacteria 

containing autophagosomes to lysosomes by mediating binding between LC3 (which is 

embedded in the autophagosome), Myosin VI (a myosin motor protein that moves toward the 

minus end of actin) and Tom-1 (which associates with lysosomes) 27. The contents within the 

autolysosome are degraded into their components and exported to the cytosol.  

Canonical autophagy is the best characterized form of autophagy, but there are several 

forms of non-canonical autophagy. These non-canonical forms also generate double membrane, 

degradative vacuoles with the same basic maturation process (phagophore to autophagosome to 

autolysosome). However, these non-canonical autophagosomes are initiated through different 
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mechanisms and do not use all of the proteins or protein complexes required for canonical 

autophagy. One recurrent form of non-canonical autophagy in pathogenesis is ATG5-

independent autophagy. ATG5-independent autophagy uses some of the same machinery as 

canonical autophagy, such as ULK1 and Beclin-1, but does not require ATG5, ATG7, or LC3 17. 

LC3 cleavage and ATG5 knockouts are commonly used to assay for xenophagy; pathogens may 

preferentially induce ATG5-independent autophagy to avoid xenophagy. 

ATG5-independent autophagy is induced by starvation and correlates with mTOR 

inhibition, but mTOR inhibition alone is not sufficient to induce this form of autophagy 5,17. 

ATG5-independent autophagy is critical for Francisella tularensis replication and the ability of 

B. abortus to infect neighboring cells 5,28. Mycobacterium marinum enters autophagosome-like 

vacuoles in an ATG5-independent manner although the function of this vacuole is unknown 29. It 

is unclear how ATG5-independent autophagy is preferentially induced over canonical autophagy 

during these infections. 

 

Pathogens Induce Xenophagy 

Inhibition of mTOR induces xenophagy in response to extracellular or phagocytosed 

microbes through Toll-like receptors (TLRs). TLRs recognize conserved microbial factors and 

initiate several anti-microbial processes, including xenophagy via Myd88 and TRIF interacting 

with Beclin-1 33,34. Cell to cell signaling can also induce autophagy. Interferon gamma (IFN-γ) 

activates autophagy through IRGM1 in human cells while CD40 ligation stimulates autophagy 

through PI3K and Rab7; priming cells to resist microbes 54,55. 

After phagocytosis, many pathogens escape the phagosome to replicate within the 

cytosol. The host cell mounts a xenophagic response to the membrane damage that occurs during 
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phagosomal escape 56. Once microbes reach the cytosol, they can be targeted for xenophagy 

through immune surveillance or by causing cell stress. Several molecules identify microbial 

components within the cytosol to target microbes for xenophagy, such as Nod-1 and Nod-2. 

Nod-1 and Nod-2 induce xenophagy and microbial antigen processing in response to bacterial 

peptidoglycan 57,58. Microbes can also induce xenophagy through a number of cell stress 

mechanisms. B. abortus secreted TcpB to induce endoplasmic reticulum stress via the unfolded 

protein response (UPR) pathway while Toxoplasma gondii increases intracellular calcium levels 

to induce autophagy 59-61.  

Lastly, xenophagy can also be directly induced by microbial proteins (Table B.1). For 

example, Shigella flexneri exports VirG to polymerize actin and propel the bacteria through the 

cytosol 62. ATG5 binds to VirG and initiates autophagosome formation without upstream 

autophagy signaling 63. To prevent xenophagy from targeting S. flexneri, S. flexneri produces 

IcsB to block ATG5 from binding to VirG 63. Likewise, the viral protein NS4B in Hepatitis C 

virus (HCV) induces autophagy by interacting with a Rab5/ Beclin-1/ VPS34 complex 221.  

 

Pathogens have evolved complex xenophagy evasion mechanisms 

 Xenophagy is typically extremely effective at destroying microbes that enter the cytosol. 

For example, some serotypes of Group A Streptococcus (GAS) invade host cells, escape into the 

cytosol, and are then destroyed by xenophagy 51,52. Xenophagy effectively blocks these serotypes 

from using the cytosol as a replicative niche. To defend themselves from xenophagy, most 

intracellular pathogens have evolved mechanisms to either inhibit or evade xenophagy (Table 

B.1). Some GAS serotypes encode SpeB, which degrades the xenophagy adaptor proteins p62 



 

152 
 

and NRB1 53. GAS serotypes that are normally destroyed by xenophagy can be functionally 

complemented for xenophagy evasion and intracellular replication by expressing SpeB 53.  

To inhibit autophagy, pathogens frequently impair the function of xenophagy machinery. 

The RavZ protein secreted by Legionella pneumophila inactivates LC3, effectively blocking 

autophagy in infected cells 222. Human Cytomegalovirus (HCMV), Herpes Simplex virus, and 

Kaposis sarcoma herpesvirus inactivate Beclin-1 to inhibit autophagy at specific points in their 

life cycle (Table B.1). Many viruses, such as Coxsackievirus, Hepatitis B virus, and HIV, inhibit 

autophagosome-lysosome fusion, functionally inhibiting xenophagy (Table B.1). The exact 

mechanism by which these viruses block autophagosome maturation is unknown, but many 

different RNA viruses encode proteins that interact with LC3, p62, NDP52, or NRB1 223,224. 

These proteins have several roles in xenophagy, but microbes may alter autophagosome 

maturation by manipulating these proteins 27. 

A few pathogens evade xenophagy without inhibiting autophagy. Listeria monocytogenes 

camouflages itself by binding to the host proteins ARP2/3, major vault protein (MVP), and 

ena/VASP 225,226. Many bacterial and eukaryotic pathogens modify phagosomes and are likely 

hidden from xenophagy targeting by remaining within a modified vacuole. M. tuberculosis and 

S. enterica typically reside in modified phagosomes but bacteria that disrupt the phagosomal 

membrane are rapidly destroyed by xenophagy 56,227. Vacuolar M. tuberculosis and T. gondii are 

degraded via autophagy when autophagy is stimulated by external sources, such as CD40 

ligation or IFN-γ 54,55,228. Certain pathogens evade xenophagy by altering or destroying the 

components that target the microbes for degradation. S. enterica de-ubiquitinates aggregates with 

the effector protein SseL to prevent the aggregates from being degraded via autophagy 229. 

Likewise, B. pseudomallei encodes the de-ubiquitinase TssM which blocks several innate 
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immune signals including the NF-kB and type 1 IFN pathways and has been proposed as a 

potential autophagy evasion mechanism 230,231. A few other cytosolic pathogens, such as Orientia 

tsutsugamuchi and F. tularensis, induce autophagy but the mechanisms of xenophagy evasion 

are not clear 5,232,233.  

 

Pathogens harvest autophagy derived nutrients for replication 

Intracellular microbes acquire nutrients from a range of sources, but generally rely on 

macromolecule degradation or nutrient import. Most basic nutrients within cells (amino acids, 

fatty acids, and carbohydrates) are incorporated into macromolecules (proteins, lipid droplets and 

glycogen respectively). In uninfected cells, these macromolecules are primarily degraded by 

autophagy to increase the amount of basic nutrients so the cell can build new structures. Thus, 

autophagy can increase the intracellular pool of nutrients that pathogens can access. Microbes 

can divert the nutrient by-products of autophagy toward microbial replication rather than for use 

by the cell. Dengue virus, F. tularensis, Anaplasma phagocytophilum, and T. gondii all induce 

autophagy, evade autophagic degradation, and harvest the autophagy derived nutrients for 

replication through different mechanisms 5,61,234,235. Additionally, B. pseudomallei, Coxiella 

burnetti, and Leishmania amazonensis have impaired replication when autophagy is inhibited 

and nutrient acquisition has been implicated as a potential explanation for this phenotype. 

Dengue virus requires the degradation of lipid droplets via autophagy for optimal 

replication 235. Dengue virus infections increase cellular levels of autophagy and the resulting 

autophagosomes form around and degrade lipid droplets. The triglycerides derived from the lipid 

droplets are catabolized via mitochondrial β-oxidation, generating ATP. Thus, autophagy 

produces energy for the cell to indirectly enhance viral replication 235. In addition to energy 
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production, Dengue modifies autophagosomes or amphisomes to form a replicative niche 236-238. 

Rather than being degraded through xenophagy, autophagy contributes to the maturation of 

infectious particles 237.  

F. tularensis replicates in the cytosol of infected cells and induces an ATG5-independent, 

non-canonical form of autophagy. F. tularensis harvests amino acids from ATG5-independent 

autophagy for optimal intracellular replication. The amino acids are used for protein synthesis 

and are also metabolized as a major carbon source. F. tularensis bacteria are frequently adjacent 

to autophagosomes 5, indicating that F. tularensis is in the optimal physical location to compete 

with the host for autophagy derived nutrients. Although F. tularensis bacteria are frequently 

adjacent to autophagosomes, live bacteria are rarely degraded by xenophagy 5,175. O-antigen 

contributes to F. tularensis xenophagy evasion, but other effectors are also likely to be involved 

66. 

A. phagocytophilum replicates in a vacuolar compartment and recruits autophagosomes 

directly to its replicative inclusions. A. phagocytophilum induces autophagy with the type IV 

secretion system (T4SS) effector Ats-1. Ats-1 binds to Beclin-1 and induces autophagosome 

nucleation directly rather than signaling through mTOR. Ats-1 induced autophagosomes localize 

with the inclusion membrane, suggesting that autophagosomes fuse with the inclusion body so 

that the bacteria can acquire the by-products of autophagic degradation. Inhibition of autophagy 

decreases A. phagocytophilum replication due to amino acid deficiency 234,239. Likewise, C. 

burnetti induces autophagy to enhance replication 173,174,240. C burnetti enters cells upon 

phagocytosis and modifies the phagosome to form a C. burnetti containing vacuoles (CCV). 

CCVs promiscuously fuse with other CCVs, endosomes and autophagosomes using the T4SS 

effector Cig2 174,240. When autophagy is impaired, CCVs do not fuse with one another and there 
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is a severe replication defect 173,240. The autophagosomes recruited to the CCV contain LC3, p62 

and LAMP-1, suggesting that the autophagosomes that are recruited to CCVs have already fused 

with lysosomes 174,241. Since artificially enhancing autophagy further increases C. burnetti 

replication, the fusion of autophagosomes with the CCV has been postulated as a nutrient and 

membrane acquisition mechanism 173,174.  

T. gondii induces autophagy in infected host cells in a calcium dependent, mTOR 

independent manner 61. Inhibiting autophagy decreases T. gondii replication and parasite 

replication is rescued by supplementing with additional amino acids. Unlike its bacterial 

counterparts, fusion of T. gondii containing parasitophorous vacuoles (PVs) with 

autophagosomes leads to parasite destruction 242. T. gondii activates EGFR and AKT to inhibit 

PV-autophagosome fusion with EGF-MICs, primarily MIC3 and MIC6 242.  

Exploiting autophagy for nutrients is a recurrent theme in the pathogenesis of a diverse 

range of microbes. Several other microbes have enhanced replication when autophagy is induced 

and impaired intracellular replication when autophagy is inhibited, such as Chikungunya virus, 

B. pseudomallei and L. amazonensis 171,243,244. B. pseudomallei encodes the protein BPSS0180, 

which induces autophagy and is required for optimal intracellular replication 171. Similarly, L. 

amazonensis induces autophagy and has a replication defect when cells are deficient for 

autophagy 243. The role of autophagy in enhancing replication of these pathogens is unknown, 

but nutrient acquisition is a likely explanation for these phenotypes. 

 

Conclusions and Perspectives 

Autophagy has been linked to both nutrient acquisition and pathogen destruction for 

decades and it has recently become clear that a diverse range of pathogens harvest autophagy 
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derived products to enhance replication 5,61,234,235. Autophagy derived nutrient acquisition is 

relatively straightforward in bacterial pathogens. F. tularensis is adjacent to autophagosomes 

while C. burnetti and A. phagocytophilum recruit autophagosomes to their replicative vacuoles 

5,173,234,240. These pathogens likely harvest the autophagy derived nutrients immediately after 

macromolecules are degraded. T. gondii acquires nutrients via host cell autophagy, but it is 

unclear how the parasites out-compete the host for autophagy by-products 61.  

In contrast, the role of autophagy in viral nutrient acquisition is difficult to discern. For 

example, Dengue virus does not directly incorporate the autophagy by-products into structural 

components. Instead, autophagy increases the amount of intracellular ATP 235. Additionally, 

many viruses benefit from other facets of autophagy, such as enhanced cell viability or the 

maturation of infectious particles, further confounding the role of autophagy in viral nutrient 

acquisition (Table B.1). Viruses that induce autophagy are likely to benefit from the increase in 

intracellular nutrients, although this benefit may be indirect, as with Dengue virus. It is important 

to note that autophagy still degrades host macromolecules in cells infected with microbes that 

block autophagy, indicating that autophagy derived nutrients are available to microbes that can 

outcompete the host 245. Further investigation is needed to determine if autophagy derived 

nutrients are incorporated into viral macromolecules. 

Autophagy is one of many mechanisms that intracellular pathogens use to acquire 

nutrients. Intracellular pathogens must acquire nutrients from the host cell to survive and 

propagate. These pathogens can acquire nutrients either by altering eukaryotic cell metabolism to 

increase nutrient import or by degrading macromolecules within the host through processes such 

as autophagy. For example, HCMV increases the expression of GLUT4 to increase glucose 

import for replication while L. pneumophila co-opts proteosomal degradation for amino acids 
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142,246. Since intracellular microbes invade cells primarily for nutrients, microbes likely have 

multiple, additive mechanisms of nutrient acquisition. F. tularensis requires autophagy and L. 

pneumophila requires proteosomal degradation for optimal replication, but both of these 

pathogens also up-regulate the expression of the host amino acid transporter SLC1A5 in 

macrophages to further enhance replication 247,248. Inhibiting macromolecule degradation or 

import for these bacteria impairs, but does not block, replication, suggesting that these different 

nutrient acquisition strategies are additive. This is likely a common theme for microbial nutrient 

acquisition. 

Research into how pathogens acquire nutrients is still in its infancy, particularly in how 

microbes acquire nutrients via autophagy. There are several outstanding questions in how 

intracellular microbes harvest autophagy-derived by-products. Foremost is if other intracellular 

microbes harvest nutrients via autophagy, even if it supplements another nutrient acquisition 

strategy for that pathogen. Additionally, ATG22, Avt3, and Avt4 are responsible for amino acid 

efflux from autophagosomes in yeast, but the mechanism mammalian cells use for nutrient efflux 

from the autophagosome is unclear 249. Other critical questions that are largely unanswered are 

which nutrients microbes acquire from autophagy and how much microbes rely on autophagy for 

nutrients. Either glucose or amino acids rescues T. gondii replication in autophagy deficient cells 

while F. tularensis and A. phagocytophilum acquire amino acids from autophagy, but may need 

other nutrients as well 5,61,234. It is also not clear how much microbes depend on autophagy for 

nutrients compared to other sources, such as nutrient import. Autophagy constitutively degrades 

macromolecules to generate basic components such as amino acids. Even microbes that do not 

induce autophagy or inhibit autophagy can compete with the host for these nutrients. It is unclear 
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if the host attempts to sequester these nutrients or all intracellular pathogens use autophagy 

derived molecules to varying degrees. 



 

 
 

Pathogen 
Autophagy up-
regulation 

Mechanism of 
autophagy evasion 

Pro-microbial effect 
of autophagy Ref 

Anaplasma 
phagocytophilum 

Increases autophagy 
via the effector ATS-1 

Converts replication 
vacuole to modified 
autophagosome 

Nutrient source 

234,239 

Brucella abortus 

Likely induces via 
unfolded protein 
response (UPR) 

Converts replication 
vacuole to modified 
autophagosome 

-Promotes 
subsequent infections 
-May increase 
intracellular 
replication 
(controversial) 

28,60,25

0  

Burkholderia 
pseudomallei 

Increases LC3 puncta 
formed via the 
bacterial effector 
BPSS0180 

-deaminates Gln40 
of ubiquitin, 
potentially blocks 
polyubiquitination 
-TSSM may de-
ubiquitinate 
autophagy targets 
-B. cenocepacia 
blocks 
autophagosome 
maturation 

-Proposed as a 
nutrient acquisition 
mechanism (not 
explicitly tested) 

171,172,

231,251 

Chlamydia 
trachomatis 

-Bacterial protein 
synthesis enhances 
LC3 cleavage 
-LC3 has autophagy 
independent pro-
bacterial effects and 
may not indicate 
increased autophagy 

  

252-255  

Coxiella burnetti 

LC3 lipidation 
increases, but not p62 
turnover 

Converts replication 
vacuole to modified 
autophagosome 

- Autophagy 
induction enhances 
replication 
- Autophagy 
inhibition decreases 
replication 

173,174,

240,256  

Francisella 
tularensis 

-Increases ATG5-
independent autophagy 
- Canonical autophagy 
remains at basal rate 

- O-antigen 
contributes to 
xenophagy evasion 
- Other factors likely 
involved 

Nutrient source 

5,66,175,

247 

Group A 
Streptococcus 

Infection increases 
xenophagy 

-SpeB degrades the 
autophagy adaptor 
molecules p62 and 
NRB1 
- Not all serotypes 

  

51,53 
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encode SpeB 

Legionella 
pneumophila 

Irreversibly inactivates 
LC3 with the bacterial 
effector RavZ to 
inhibit autophagy 

Inhibits autophagy  

142,222,

248  

Listeria 
monocytogenes 

LLO enhances 
autophagy through 
rupture of phagosomal 
membrane 

-Camouflage via 
major vault protein, 
ARP2/3, and 
Ena/VASP 
-PlcA/PlcB reduce 
autophagic flux 

  

225,226,

257-259  

Mycobacterium 
tuberculosis 

-Targets bacteria when 
ESX-1 permeabilizes 
the phagosome 
-autophagy is anti-
bacterial, particularly 
in a mouse model 

Unknown, likely by 
remaining in a 
modified phagosome 

  

168,227 

Orientia 
tsutsugamuchi 

Infection induces 
autophagy 

Unknown, but 
requires live bacteria 

 

260,261  

Salmonella 
enterica serovar 
typhimurium 

Increases autophagy 
when phagosome is 
damaged 

-SseL 
deubiquitinates 
bacterial products 
-recruits autophagy 
components to the 
replicative vacuole 

  

 56,229 

Shigella flexneri 

Increases autophagy 
through amino acid 
starvation and mTOR 
inhibition 

-IcsB through by 
blocking ATG5 from 
binding to VirG  
-VirA suppresses 
autophagy  

  

56,63,26

2  

     
Pathogen 

Autophagy up-
regulation 

Mechanism of 
autophagy evasion 

Pro-microbial effect 
of autophagy Ref 

Chikungunya 
virus 

Increases autophagy 
through ER stress and 
unfolded protein 
response (UPR)   

-Promotes viral 
replication  
-delays caspase-
dependent cell death 244,263  

Coxsackievirus  

Increases LC3 
cleavage, but not p62 
degradation  

Limits 
autophagosome and 
lysosome fusion 

- Enhances  viral 
replication 
- Autophagosomes 
used for replication 264-266  
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complexes  
- Viral exocytosis 

Dengue Virus 

-Increases autophagy 
-Increases lipophagy 

 -Autophagy-derived 
lipids increases ATP 
production 
- maturation of 
infectious particles 
- Autophagosomes 
used for replication 
complexes  
 235-238 

Epstein Barr 
virus (EBV) 

-Rta induces 
autophagy through 
extracellular signal 
regulated kinase 
(ERK) signaling 
- LMP1 induces 
autophagy, likely via 
UPR 

Blocks 
autophagosome-
lysosome fusion 

-Autophagy enhances 
replication 
-Autophagosomes 
contribute to 
exocytosis 

267-270  

Hantavirus 
The glycoprotein Gn 
induces autophagy 

 Enhances replication 
271 

Hepatitis B virus 
(HBV) 

-small surface protein 
induces autophagy 
through the unfolded 
protein response,  
-X protein promotes 
Beclin-1 translation. 
Observed increase in 
autophagosomes may 
be due to decreased 
autophagic flux 

Viral X protein 
impairs 
autophagosome 
maturation, leading 
to autophagosome 
accumulation 

-Autophagosome 
formation enhances 
viral replication 
-Autophagy 
contributes to HBV 
envelopment 

272-274  

Hepatitis C virus 
(HCV) 

-NS5A induces 
autophagy  
-NS4B induces 
autophagy, likely via 
interactions with Rab5, 
Beclin-1 and VPS34  
 

-autophagosome 
maturation impaired 
- impaired long-lived 
protein degradation 

-Enhances viral 
replication 
-Replication does not 
occur in 
autophagosomes 

221,245,

275-277  

Herpes Simplex 
Virus (HSV) 

-ICP34.5 protein 
suppresses autophagy 
by binding to Beclin-1 
-US11 inhibits 
autophagy through 
PKR 

   An 
AMPK/AKT/mTOR/
Beclin-1 independent 
form of autophagy 
has been proposed to 
enhance cell viability 278-280 
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Human 
Cytomegalovirus 
(HCMV) 

-Induces autophagy 
early independent of 
viral protein synthesis 
-Inhibits autophagy 
late through the viral 
protein TRS1 
interacting with 
Beclin-1 

    

246,281  

Human 
immunodeficienc
y virus (HIV) 

-Infection increases the 
number of 
autophagosomes by 
electron microscopy 
-Infection results in 
fewer LC3 puncta and 
decreased Beclin-1 
protein levels 
-Discrepancy may be 
due to maturation 
defects or cell types 

-Nef inhibits 
autophagosome 
maturation through 
an interaction with 
Beclin-1 
-Tat inhibits 
autophagy in 
bystander cells 

-autophagy enhances 
the number of 
infectious virions 
- autophagy 
processes Gag 

282-285 
Human 
parvovirus 

Infection increases 
LC3 cleavage 

  Increased infected 
cell survival 286 

Influenza A virus 

Infection increases 
LC3 cleavage  

-Matrix 2 ion 
channel blocks 
autophagosome-
lysosome fusion  
- Matrix 2 ion 
channel  redistributes 
LC3 to the plasma 
membrane 

-Increases cell 
survival 
- increases 
replication 
(controversial) 
 

287-289 

Kaposis sarcoma 
herpesvirus 
(KSHV) 

Timing dependent: 
- Viral BCL-2 binds to 
Beclin-1 and inhibits 
autophagy  
-vFlip (K13) binds to 
ATG3 and prevents 
ATG3-LC3 
interactions 
-RTA induces 
autophagy during lytic 
cycle 

  Autophagy enhances 
lytic reactivation 

290-292  

Rotavirus 

NSP4 leads to 
increased cytoplasmic 
calcium levels, 
resulting in autophagy 

blocks 
autophagosome 
maturation 

enhances viral 
replication 

293 
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Table B. 1: A summary of the mechanisms employed by select pathogens to induce 

autophagy, evade destruction through xenophagy, and pro-microbial benefits of autophagy 

induction.  

Bacterial, viral, and eukaryotic pathogens are separated into individual sections. This list is not 

necessarily comprehensive for what is currently known about how each pathogen interacts with 

autophagy. 

 

 

 

 

Pathogen Autophagy up-
regulation 

Mechanism of 
autophagy evasion 

Pro-microbial effect 
of autophagy 

Ref 

Leishmania 
amazonensis 

Infection increases 
LC3 cleavage 

  enhances parasite 
replication  

294,295 

Toxoplasma 
gondii 

Autophagy increase is 
calcium dependent but 
independent of mTOR 

T. gondii 
micronemal proteins 
(MICs) prevents 
parasitophorous 
vacuole-lysosome 
fusion via activation 
of EGFR-Akt 
signaling 

enhances nutrient 
acquisition 

61,242 

Candida 
albicans 

  Increase in LC3 
cleavage 

    
 
 

 296 

Cryptococcus 
neoformans 

    Autophagosomes 
fuse to C. 
neoformans 
containing vacuole, 
but structure has a 
single membranes 

Enhances non-lytic 
exocytosis 

297 



 

 
 

APPENDIX 3: IDENTIFICATION OF EARLY INTERACTIONS BETWEEN 

FRANCISELLA AND THE HOST5

 

 

Overview 

The adaptive immune response to Francisella tularensis is dependent on the route of 

inoculation. Intradermal inoculation with the F. tularensis live vaccine strain (LVS) results in a 

robust Th1 response in the lungs, whereas intranasal inoculation produces fewer Th1 cells and 

instead many Th17 cells. Interestingly, bacterial loads in the lungs are similar early after 

inoculation by these two routes. We hypothesize that the adaptive immune response is influenced 

by local events in the lungs, such as the type of cells that are first infected with Francisella. 

Using fluorescence-activated cell sorting, we identified alveolar macrophages as the first cell 

type infected in the lungs of mice intranasally inoculated with F. novicida U112, LVS, or F. 

tularensis Schu S4. Following bacterial dissemination from the skin to the lung, interstitial 

macrophages or neutrophils are infected. Overall, we identified the early interactions between 

Francisella and the host following two different routes of inoculation. 

 

Introduction 

Immune responses following bacterial infections are influenced by the route of infection 

298-300. Cytokines produced by the innate immune response are critical in shaping the adaptive 

immune response (reviewed in reference 301). For example, if a naive CD4+ T cell encounters 

antigen in the presence of interleukin 12 (IL-12), it will differentiate into a Th1 effector T cell, 

but if it encounters IL-6 and transforming growth factor β (TGF-β) during antigen presentation, it 

                                                 
5This appendix was previously published in Infection and Immunity. The first three authors share a co-first 
authorship. The citation is: Roberts LM, Tuladhar S, Steele SP, et al. Identification of early interactions between 
francisella and the host. Infect Immun. 2014;82(6):2504-2510. doi: 10.1128/IAI.01654-13 
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will differentiate into a Th17 effector T cell 301. Our previous experiments with mice using 

intranasal or intradermal inoculation with Francisella tularensis subsp. holarctica live vaccine 

strain (LVS) demonstrated striking differences in the adaptive immune response in the lungs 

when these two inoculation routes were compared 300. Upon either intradermal or intranasal 

inoculation with LVS, bacteria rapidly disseminate and are found in the spleen, liver, and lungs 

24 h after inoculation 300. After 3 days, equivalent bacterial burdens are found in the spleen and 

lungs of mice inoculated via either route 300. Despite similar burdens early after inoculation, 

intradermally inoculated mice clear the infection more rapidly than intranasally inoculated mice 

and have an increased gamma interferon (IFN-γ) response. Intradermal inoculation leads to 

significantly more CD4+ and CD8+ T cells producing IFN-γ in both the spleen and lungs on day 

7 post-inoculation than does intranasal inoculation 300. Faster bacterial clearance in intradermally 

inoculated mice correlates with the increased IFN-γ-mediated immune response. IFN-γ is 

required for controlling F. tularensis infection, and administration of recombinant IFN-γ 

decreases bacterial burdens 302-304. Intranasal infection leads to an expansion in the lungs of Th17 

cells, a CD4+ T cell population not found in intradermally inoculated mice 300,305,306. We 

conclude that T cell effector function is influenced by the inoculation route. Thus, it is important 

to understand the initiation of the immune response and identify the earliest cells infected by 

Francisella in the lungs. 

Francisella tularensis is a facultative intracellular, Gram-negative coccobacillus. 

Infection with F. tularensis causes the zoonotic disease tularemia, which is endemic in regions of 

the United States and Europe. Three strains of Francisella are commonly used by researchers. 

Francisella tularensis subsp. tularensis Schu S4 is a type A strain and highly pathogenic in 

humans and mice. Francisella tularensis subsp. holarctica live vaccine strain (LVS) is an 
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attenuated, type B strain and does not cause severe disease in humans 307. Murine infection with 

LVS closely resembles human infection 308. The 50% lethal dose (LD50) for intranasal 

inoculations is approximately 103 CFU, and that for intradermal inoculation is approximately 106 

309,310. F. novicida U112 does not cause disease in immunocompetent humans but causes severe 

disease in mice with a course similar to that in mice inoculated with Schu S4. Intranasal 

inoculation with U112 or Schu S4 is typically fatal in mice before an adaptive immune response 

can occur, but low-dose inoculations with LVS in mice allow for the observation of the adaptive 

immune response to Francisella. 

Due to similar bacterial burdens early after inoculation but very different adaptive 

immune responses for these inoculation routes, we hypothesized that the adaptive immune 

response to Francisella was shaped by events early after inoculation, such as what type of cell 

was initially infected. We therefore sought to identify host cells infected with F. tularensis early 

after intranasal and intradermal inoculation. We examined three strains of Francisella to 

determine whether all strains exhibit similar tropisms or if different strains target different cell 

types. Previously, we found that alveolar macrophages comprised between 50 and 80% of cells 

infected with U112 or LVS 24 h after intranasal inoculation 2. These experiments, however, 

identified more infected cells than the initial bacterial inoculum, suggesting that multiple rounds 

of infection had occurred. Therefore, we were interested in identifying the infected cells 4 h post-

inoculation, before re-infection of new cell types occurred. We found that alveolar macrophages 

were the primary cell type infected after intranasal inoculation and that interstitial macrophages 

and neutrophils were the first lung cell types infected following intradermal inoculation and 

bacterial dissemination. Together, our data demonstrate that the cell types initially infected with 
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Francisella are dependent on the inoculation route and are common among the different strains 

of Francisella. 

 

Materials and Methods 

Bacteria.  

Francisella novicida U112 was obtained from Colin Manoil (University of Washington). 

F. tularensis subsp. holarctica live vaccine strain (LVS; ATCC 29684) was obtained from the 

American Type Culture Collection (Manassas, VA). F. tularensis subsp. tularensis Schu S4 

(NR-643) was obtained from BEI Resources (Manassas, VA). Bacteria were grown on chocolate 

agar supplemented with 1% IsoVitaleX (Becton, Dickinson) at 37°C. Bacterial inoculations were 

prepared by removing bacteria from a lawn grown on chocolate agar and resuspended in sterile 

phosphate-buffered saline (PBS) at an optical density at 600 nm (OD600) of 1 (equivalent to 1 × 

107 CFU/μl). To achieve the desired inoculation dose, appropriate dilutions were made using 

sterile PBS. Viable bacteria in each preparation were quantified by serial dilution and plating on 

chocolate agar. All experiments using Schu S4 were performed at the Duke University NIAID-

Regional Biocontainment Laboratory (RBL) under biosafety level 3 (BSL3) containment. 

 

Mice.  

C57Bl/6J (B6) mice were obtained from The Jackson Laboratory (Bar Harbor, ME). All 

mice were housed under specific-pathogen-free conditions at the University of North Carolina at 

Chapel Hill, the RBL, or the University of Arizona in accordance with their respective 

Institutional Animal Care and Use committees. Female mice used for experiments were between 

7 and 12 weeks of age. 
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Inoculation of mice.  

For intranasal bacterial inoculations, mice were anesthetized with 575 mg/kg (of body 

weight) of tribromoethanol (Avertin; Sigma) administered intraperitoneally. Mice were then 

intranasally inoculated with 1 × 104 CFU of U112, LVS, or Schu S4 suspended in 50 μl of PBS. 

For intradermal inoculations, mice were inoculated with 5 × 105 CFU of U112 or LVS in 25 μl in 

the tail. The inoculum was divided between three injection sites along the tail. 

 

Single-cell suspension of mouse lung.  

Following humane euthanasia, lungs were aseptically removed after perfusion with PBS 

and digested into a single-cell suspension as previously described 311. For intranasally inoculated 

mice, 50 μg/ml of gentamicin (Sigma) was added to the digestion mix to kill extracellular 

bacteria. Red blood cells were lysed using ammonium chloride-potassium lysis buffer (Gibco) 

and washed with RMPI 1640 supplemented with 10% fetal calf serum (Atlas), l-glutamine, 

sodium pyruvate, and β-mercaptoethanol. The total number of viable cells was determined using 

a hemocytometer by trypan blue exclusion. 

 

Bead enrichment of CD45+ cells.  

Lung single-cell suspensions were stained for 20 min on ice with CD45-allophycocyanin 

(CD45-APC; clone 30–F11; Biolegend). After washing the cells to remove unbound antibody, 

IMag anti-APC magnetic particles (BD) were used to enrich CD45-APC-positive cells according 

to the manufacturer's instructions. CD45 enrichment was determined by flow cytometry. 
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Enriched eukaryotic cells were directly plated on chocolate agar containing 10 μg/ml of 

ampicillin (Sigma), and the CFU were counted 72 h later. 

 

Identification of infected lung populations.  

Lung cells in a single-cell suspension after intranasal inoculation with Francisella had Fc 

receptors blocked with 2.4G2 to prevent nonspecific staining and were then stained with F4/80 

phycoerythrin (PE; clone BM8; eBioscience), CD11b Pacific blue (clone M1/70; Biolegend), 

and CD11c APC (clone N418; eBioscience). Lung cells from intradermally inoculated mice had 

Fc receptors blocked with 2.4G2 and were then stained with F4/80 PE, CD11b Pacific blue, 

CD11c APC, and GR-1 Pacific orange (clone RB6-8C5; Invitrogen). The cells were sorted using 

a Reflection cell sorter (iCyt/Sony; UNC) or FACSAria II (Becton Dickinson Immunocytometry 

Systems [BDIS]; RBL and University of Arizona) into four populations based on surface marker 

expression (Table C.1) using the gating scheme shown in (Figure C.1). Sorted populations were 

plated directly on chocolate agar containing 10 μg/ml of ampicillin without lysis, and bacterial 

CFU were counted 24 to 72 h later to enumerate the infected cells. 

 

Statistical analysis.  

A Kruskal-Wallis test was used to determine whether the distribution of infected cells 

was significantly different and not due to random sampling. GraphPad Prism (v.5.04) was used 

for analysis. 
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Results 

LVS infects myeloid cells after intranasal inoculation.  

The adaptive immune response to LVS is influenced by the route of infection despite 

similar bacterial burdens, and therefore antigen load, early after inoculation 300. We hypothesized 

that the adaptive immune response in the lungs was shaped by the cell type(s) infected 

immediately after intranasal inoculation or after bacterial dissemination to the lungs after 

intradermal inoculation. We therefore sought to identify which cell populations were infected 

following inoculation. A previous study reported that a variety of lung cell types are infected 

with Francisella 24 and 72 h after intranasal inoculation 312. Although the majority of infected 

cells 24 h after intranasal inoculation with green fluorescent protein (GFP)-expressing 

Francisella strains were myeloid, alveolar type II epithelial cells were also identified as an 

infected cell type by flow cytometry 312. Therefore, our initial investigation into identifying the 

first infected lung cells sought to determine whether cells initially targeted by LVS were of the 

myeloid or nonmyeloid lineage. We chose to use 4 h after inoculation so that Francisella had 

sufficient time to reach and infect the cells it initially targets but not time for multiple rounds of 

reinfection. An intranasal inoculum dose of 1 × 104 CFU yielded approximately 100 infected 

cells out of 1 × 107 host lung cells at 4 h post-inoculation for all strains, giving us confidence that 

we were identifying the initially infected cells. 

B6 mice were intranasally inoculated with 1 × 104 CFU of LVS and euthanized 4 h later. 

Lung tissue was digested into a single-cell suspension in the presence of gentamicin to kill 

extracellular bacteria. Cells were then stained with anti-CD45-APC, and anti-APC magnetic 

beads were used to positively select for myeloid cells. Figure C.2 shows representative flow 

cytometry histograms of CD45 staining within the pre-enrichment, negative selection (CD45−), 
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and positive selection (CD45+) samples. Eukaryotic cells were directly plated on chocolate agar, 

and the colonies within the CD45− and CD45+ pools were counted. A total of 99% of the 

resulting LVS colonies were on the CD45+ plates, indicating that LVS initially targets myeloid 

cells for infection (Figure C.2B). Although we did not repeat these experiments using U112 or 

Schu S4, we predicted similar results between strains and indeed did observe that all strains 

targeted the same cell types after intranasal inoculation (see below). 

 

Alveolar macrophages are the dominant infected cell type after intranasal inoculation in all 

Francisella strains.  

Of the myeloid cells in the lungs, we predicted that alveolar macrophages, interstitial 

macrophages, and dendritic cells were the cell types most likely to be initially infected with 

Francisella after intranasal inoculation. To identify infected cells in the lung early after 

intranasal inoculation, B6 mice were intranasally inoculated with 1 × 104 CFU of U112, LVS, or 

Schu S4 and euthanized 4 h post-inoculation. Lung tissue was digested in the presence of 

gentamicin to kill extracellular bacteria. The lung single-cell suspensions were stained for F4/80, 

CD11c, and CD11b, and cell populations were sorted based on expression of these surface 

markers (Table C.1 and Figure C.1). Sorted eukaryotic cells were plated directly on chocolate 

agar without lysis of the cells, and the resulting colonies were counted. Data from multiple mice 

were combined for each Francisella strain, and a weighted average was used to identify which 

cell type made up the majority of infected cells (Figure C.3). Approximately 90% of infected 

cells were alveolar macrophages for each Francisella strain, indicating that these cells were 

initially targeted by Francisella after intranasal inoculation. The remaining 10% of infected cells 

consisted of a mixture of interstitial macrophages, dendritic cells, and others. The results were 
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consistent across individual mice, although more variability was observed in the minor infected 

cell populations (interstitial macrophages, dendritic cells, and others) (Table C.2). In individual 

mice, alveolar macrophages constituted 86 to 96% of infected cells after U112 inoculation, 71 to 

93% of infected cells after LVS inoculation, and 93 to 96% of infected cells after Schu S4 

inoculation (Table C.2). Furthermore, determination of number of LVS CFU per 105 sorted cells 

showed that the alveolar macrophage population contained at least 7-fold more CFU per 105 

sorted cells than did interstitial macrophages, dendritic cells, or others (Figure C.4). Together, 

these data indicate that alveolar macrophages are the dominant first infected cell type 

immediately after intranasal inoculation with each of the three distinct strains of Francisella. 

 

Interstitial macrophages and neutrophils are the dominant infected cell types in the lungs 

after intradermal inoculation.  

We observed very different adaptive immune responses in the lungs after intranasal 

versus intradermal inoculation 300 and therefore hypothesized that different innate immune events 

occurred early after infection. One possibility was different infected cell types in the lungs 

depending on the route of infection, particularly since one inoculation route introduced bacteria 

directly into the lungs, whereas intradermal inoculation required bacteria to disseminate from the 

skin to the lungs. We therefore sought to identify the early infected cell type(s) in the lungs after 

intradermal inoculation and subsequent bacterial dissemination to the lungs. Mice were 

intradermally inoculated with 5 × 105 CFU of U112 or LVS. Pilot experiments determined that 

euthanizing mice 48 h post-inoculation allowed enough time for bacteria to disseminate from the 

skin to the lungs and that 48 h was the earliest time point that bacteria could be reproducibly 

found in the lungs. Lung single-cell suspensions were stained and sorted as previously described. 
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In contrast to the case with intranasal inoculation, interstitial macrophages and neutrophils 

together comprise >90% of all cells infected with Francisella after intradermal inoculation and 

bacterial dissemination to the lungs (Figure C.5 and Table C.3). Importantly, alveolar 

macrophages were not appreciably infected with Francisella in the lungs following bacterial 

dissemination from the skin (<2% of infected cells). Additionally, when we calculated the 

number of CFU per 105 sorted cells for each population, we found that interstitial macrophages 

and neutrophils were both infected at a rate over 30 times greater than alveolar macrophages for 

both LVS and U112 inoculation (Figure C.6). We detected less than 500 infected cells in the 

mice intradermally inoculated with LVS. Although we detected more infected cells (100 to 

6,000) in the mice intradermally inoculated with U112, the percentage of each infected cell 

population was similar to findings for LVS, even with variability in the number of infected cells, 

allowing us to be confident that we were observing early infection events in the lungs following 

bacterial dissemination. These results indicate that pulmonary interstitial macrophages and 

neutrophils are infected with Francisella in the lungs after intradermal inoculation. Furthermore, 

these results indicate that different cell types are infected with Francisella in the lungs depending 

on the inoculation route and support our hypothesis that the differences observed in the adaptive 

immune response are a result of different infected cell types. 

 

Discussion 

Francisella is capable of infecting a variety of cell types upon inoculation 2,91,312,313. The 

early interactions between the host and pathogen set the stage for the adaptive immune response. 

We and others have shown that the route of inoculation influences the type of adaptive immune 

response that develops 299,300. We were particularly interested in the early interactions between 
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Francisella and the host following intranasal and intradermal inoculations because of differential 

adaptive immune responses in the lungs. Intranasal and intradermal inoculations with LVS lead 

to similar bacterial burdens early after inoculation, yet the adaptive immune responses are very 

different 300. We hypothesized that the cell type infected with Francisella immediately after 

inoculation shaped the adaptive immune response. We therefore sought to identify the cells that 

were infected with Francisella after inoculation that were likely responsible for shaping 

subsequent adaptive immunity. 

We identified infected cells by sorting individual populations using fluorescence-

activated cell sorting. This technique only identified host cells infected with live Francisella, 

since our experimental readout was colonies grown on agar. We had to intranasally inoculate 

mice with 1 × 104 CFU to have detectable infected cells after sorting. This inoculum dose is 20-

fold higher than our typical LVS intranasal inoculation dose. We believe that the higher dose 

increased the number of infected cells without altering the distribution of infected cell types 

because nearly all of the infected cells were alveolar macrophages. 

All three strains of Francisella predominantly infected alveolar macrophages following 

intranasal inoculation. Alveolar macrophages are the resident macrophages of the airway and 

interact with inhaled antigens. It is therefore not surprising that inhalation of Francisella leads to 

infection of alveolar macrophages. Other pathogens, like Mycobacterium tuberculosis, 

Mycoplasma pulmonis, and Legionella pneumophila, target alveolar macrophages upon infection 

as well 314-317. Experiments found that LVS infects pulmonary dendritic cells 1 h after 

intratracheal inoculation with 5 × 104 CFU using flow cytometry to detect carboxyfluorescein 

succinimidyl ester (CFSE)-labeled bacteria inside host cells 313. A potential explanation for the 

seemingly disparate results between the two experiments is the use of different surface markers 
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to define airway dendritic cells and alveolar macrophages. Surface markers used to define lung 

cellular populations by our group and others are shown in Table C.1. The markers described by 

Bosio and Dow 313 for alveolar macrophages best fit with our definition of interstitial 

macrophages, and their definition for airway dendritic cells best fits with our definition of 

alveolar macrophages (Table C.1). More recently, Guth et al. reported that alveolar macrophages 

express middle levels of DEC-205 and CD11c, giving this macrophage cell subset a more 

dendritic-cell-like surface phenotype 318. We also observed mid-level expression of DEC-205 of 

alveolar macrophages. Therefore, the cell populations are likely the same based on surface 

marker phenotype. 

While we did not pursue experiments to determine the underlying mechanisms 

responsible for bacterial dissemination, we identified interstitial macrophages and neutrophils as 

the dominant infected cell types in the lungs after intradermal inoculation and bacterial 

dissemination. We carefully timed the lung harvest after intradermal inoculation so that we were 

identifying infected cells soon after bacteria disseminated to the lungs. These results indicate that 

not only does the route of infection shape the adaptive immune response but also two different 

types of innate cells are initially infected with Francisella in the lungs, which we predict helps 

shape the different downstream adaptive responses. In the lungs, the differences in infected cell 

types between the two different inoculation routes may simply be spatial. Alveolar macrophages 

are located primarily in the alveoli. This spatial location would put them in direct contact with 

Francisella after an intranasal inoculation but out of the way during bacterial dissemination from 

the skin. 

Because alveolar macrophages were infected following intranasal inoculation with LVS, 

we sought to determine whether the disease course was altered in the absence of alveolar 
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macrophages. Alveolar macrophages express high levels of CD11c and can therefore be depleted 

in CD11c.DOG mice upon intranasal treatment with diphtheria toxin (DT). We chose to use 

CD11c.DOG mice instead of other depletion strategies so that alveolar macrophages were 

specifically depleted while other phagocytic cells remained untouched. Alveolar macrophages 

can also be depleted by intranasal administration of liposomal clodronate; however, this 

treatment is nonspecific and depletes >90% of lung and airway antigen-presenting cells 313. 

Although we successfully depleted alveolar macrophages from the lungs of CD11c.DOG mice 

with intranasal inoculation of diphtheria toxin, this treatment caused changes to the cytokine and 

chemokine milieu prior to infection with LVS (unpublished data). Diphtheria toxin also changed 

the proportion and absolute number of lung cellular populations (unpublished data). Although we 

observed an increase in LVS lung bacterial burdens when CD11c.DOG mice were depleted of 

alveolar macrophages prior to LVS inoculation, the changes in the lungs' cytokine and 

chemokine milieu as well as cellular distribution made it impossible to ascribe increased 

bacterial burdens simply to the lack of alveolar macrophages. 

Alveolar macrophages have been shown in other models to be both protective and 

detrimental during infection 313,314,319-321. CBA/J mice succumb rapidly (day 3) to Klebsiella 

pneumoniae in the absence of alveolar macrophages and have significantly higher bacterial 

burdens in the plasma and lungs, suggesting that alveolar macrophages control bacterial 

replication in the lungs 319,321. B6 mice, normally resistant to Mycoplasma pulmonis, were more 

susceptible to infection in the absence of alveolar macrophages, indicating that alveolar 

macrophages are important for host defense during M. pulmonis infection 320. In contrast, during 

Mycobacterium tuberculosis infection, mice lacking alveolar macrophages were less susceptible 

to infection and had decreased mycobacterial burdens in the lungs and liver, suggesting that the 
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presence of alveolar macrophages is detrimental during infection 314. Bosio and Dow found that 

depletion of alveolar macrophages with clodronate followed 18 h later by intratracheal 

inoculation with a lethal dose of LVS led to decreased bacterial burdens and an increase in mean 

time to death 313. It is possible that the difference in bacterial burdens observed in untreated and 

clodronate-treated mice was due to the absence of cells to infect, because nearly all phagocytic 

cells were reported to be depleted, leaving few cells for LVS to infect 313. While specific 

depletion of alveolar macrophages might address this possibility, selective depletion of alveolar 

macrophages without other changes in cellular composition has not been possible. 

Several groups have reported that LVS vaccination prior to lethal challenge with a highly 

virulent, type A strain of Francisella must be administered intranasally and not intradermally in 

order to achieve protective immunity 322,323. The failure of intradermally vaccinated mice to 

survive a lethal type A challenge suggests that the T cell response is not successfully primed via 

this route. We have demonstrated that the adaptive immune response is different depending on 

the route of LVS inoculation 300. Herein, we have shown that different cell types are initially 

infected with LVS, again depending on the route of inoculation. Taken together, these data 

suggest that alveolar macrophages could play a role in successful T cell priming (via antigen 

presentation and/or cytokine milieu), leading to a T cell response that is protective after 

secondary challenge with virulent Francisella. Alternatively, when interstitial macrophages are 

among the cells initially infected, an environment is established in which the T cells successfully 

clear the primary infection but fail to protect upon secondary challenge. 

Overall, we have shown that alveolar macrophages are initially infected with Francisella 

in the lungs after intranasal inoculation. We also determined that interstitial macrophages and 

neutrophils are infected with Francisella in the lungs following bacterial dissemination from 
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intradermal inoculation in the skin. We had previously observed a differential adaptive immune 

response following intranasal and intradermal inoculation, despite similar bacterial burdens early 

after inoculation. We predicted that there would be differences in the innate immune response in 

the lungs that contributed to the development of two distinct T cell responses, and this was the 

case; different types of cells were infected in the lungs following each inoculation route. 
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Figures 

Figure C. 1: Lung gating scheme.   

Single cells were discriminated from doublets by plotting side scatter height (SSC-H) versus side 

scatter area (SSC-A).  Cells were selected by plotting SSC-A versus forward scatter area (FSC-

A).  F4/80- and F4/80+ cells were gated on by plotting FSC-A versus F4/80.  From the F4/80+ 

gate, alveolar macrophages (AMs) were discriminated from interstitial macrophages (IMs) by 
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plotting CD11c versus CD11b.  Of the F4/80- cells, dendritic cells were identified by plotting 

CD11c versus CD11b and neutrophils were identified by plotting CD11b versus GR-1.  For each 

gate, the percent of the parent gate is indicated in bold (for example, AMs are 4.6% of the cells 

within the F4/80+ gate). 
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Figure C. 2: LVS infects myeloid-derived cells following intranasal inoculation.   

B6 mice were intranasally inoculated with 1x104 CFU LVS.  4 hours post-infection mice were 

sacrificed and lungs were removed and digested into a single cell suspension.  Cells were stained 

with CD45 APC and then CD45+ cells were enriched using magnetic beads.  A) Representative 

flow cytometry analysis of CD45 enrichment.  B) CD45+ and CD45- populations were directly 

plated on chocolate agar and the number of colonies were counted 72 hours later.  We counted 

123 total CFU among 4 mice.  Data are weighted by the total number of CFU and presented as 

the % of CFUs within a population from 4 infected mice in 2 independent experiments. 

 

http://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click on image to zoom&p=PMC3&id=4019147_zii9990907100002.jpg�


 

182 
 

 

Figure C. 3: Alveolar macrophages are the primary infected cell type in the lung after 

intranasal inoculation with Francisella.   

B6 mice were intranasally inoculated with 1x104 CFU U112, LVS, or Schu S4.  4 hours post-

inoculation mice were sacrificed and lungs were removed and digested into a single cell 

suspension and stained for sorting.  Alveolar macrophages, interstitial macrophages, dendritic 

cells, and other cell populations were sorted and directly plated on chocolate agar.  Resulting 

colonies were counted 24-72 hours later.  Data are weighted by the total number of CFU and 

presented as the % of CFUs within a population  from 2 mice (U112; 139 total CFU), 6 mice 

(LVS; 132 total CFU), or 3 mice (SchuS4; 398 total CFU) from 1 (U112), 3 (LVS), or 2 

(SchuS4) independent experiments.  A Kruskal-Wallis test was used to determine whether the 

distribution of infected cells was significantly different.  U112: ns (p=0.1767); LVS: **; Schu 

S4: *. 
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Figure C. 4: Alveolar macrophages are infected with LVS at the highest frequency.   

B6 mice were intranasally inoculated with 1x104 CFU LVS.  4 hours post-inoculation mice were 

sacrificed and lungs were removed and digested into a single cell suspension and stained for 

sorting.  Alveolar macrophages, interstitial macrophages, dendritic cells, and other cell 

populations were sorted and directly plated on chocolate agar.  The total number of sorted cells 

for each population was recorded during the sort.  Resulting colonies were counted 72 hours 

later.  Data are represented as the number of CFU per 10^5 sorted cells for each population from 

6 mice in 3 independent experiments.  
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Figure C. 5: Interstitial macrophages and neutrophils are the primary cell types infected 

with U112 or LVS in the lung after intradermal inoculation.   

B6 mice were intradermally inoculated with 5x105 CFU U112 or LVS in 50 μL PBS at the base 

of the tail.  48 hours post-inoculation mice were sacrificed and lungs were removed and digested 

into a single cell suspension and stained for sorting.  Alveolar macrophages, interstitial 

macrophages, dendritic cells, and neutrophil cell populations were sorted and directly plated on 

chocolate agar.  Resulting colonies were counted 24-72 hours later.  Data are weighted by the 

total number of CFU and presented as the % of CFUs within a population from 4 mice (U112; 

9344 total CFU) or 2 mice (LVS; 537 total CFU) from 1 experiment per strain.  A Kruskal-

Wallis test was used to determine whether the distribution of infected cells was significantly 

different.  U112: ns (p=0.1184); LVS: ns (p=0.1116).   
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Figure C. 6: Interstitial macrophages and neutrophils are infected with U112 and LVS at 

the highest frequency.   

B6 mice were intranasally inoculated with 1x104 CFU U112 or LVS.  4 hours post-inoculation 

mice were sacrificed and lungs were removed and digested into a single cell suspension and 

stained for sorting.  Alveolar macrophages, interstitial macrophages, dendritic cells, and other 

cell populations were sorted and directly plated on chocolate agar.  The total number of sorted 

cells for each population was recorded during the sort.  Resulting colonies were counted 24 or 72 

hours later.  Data are represented as the number of CFU per 105 sorted cells for each population 

from 4 (U112) or 2 (LVS) mice in 1 experiment per strain.   
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Table C.1: Identification of lung cell types. 

amid, medium level; var, variable level; pos, positive expression; neg, not expressed. 

 

  

 

 

 

 

 

 

 

 

Cell type Surface markersa 
Alveolar macrophages F4/80high, CD11chigh, CD11bmid, DEC-

205mid 
Interstitial macrophages F4/80high, CD11cvar, CD11bhigh 

Dendritic cells F4/80low, CD11chigh, CD11blow 

Neutrophils F4/80low,CD11bhigh, GR-1high 

Other F4/80low, CD11clow, CD11bvar 

Alveolar 
macrophages304 

F4/80pos, CD11cneg, CD11bpos, DEC-
205neg 

Airway dendritic cells 
304 

F4/80var, CD11cpos, CD11bvar, GR-1var, 
DEC-205pos 

Alveolar macrophages 
318 

F4/80low, CD11chigh, CD11bneg, DEC-
205mid 
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Table C.2: Mean percentage of infected cells in the lung 4 hours post intranasal                 

inoculation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Bacterial 
Strain 

Alveolar 
Macrophages 

Interstitial 
Macrophages 

Dendritic 
Cells Other 

F. novicida 
U112  

90.82 ± 6.65%  4.32 ± 0.16%  3.51 ± 3.47%  1.41 ± 1.40%  

(n=2)  (86.11-95.52%)  (4.17-4.48%)  (0.0-6.94%)  (0.0-2.78%)  
F. tularensis 
LVS  

87.86 ± 7.72%  8.13 ± 10.6%  1.67 ± 4.08%  3.72 ± 4.81%  

(n=6)  (71.43-92.86%)  (0.0-28.57%)  (0.0-10%)  (0.0-9.52%)  
F. tularensis 
Schu S4  

94.27 ± 1.27%  3.45 ± 2.96%  1.90 ± 2.69%  0.38 ± 0.36%  

(n=3)  (93.33-95.71%)  (0.83-6.67%)  (0.0-4.98%)  (0.0-0.71%)  
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Table C.3: Mean percentage of infected cells in the lung 48 hours post intradermal 

inoculation Mean ± standard deviation (range). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Bacterial 
Strain 

Alveolar 
Macrophages 

Interstitial 
Macrophages Dendritic Cells Neutrophils 

F. novicida 
U122 

1.21 ± 1.84%  62.89 ± 
26.82%  

0.036 ± 0.044%  35.86 ± 26.75%  

n=4 (0.0-3.89%)  (38.46-100%)  (0.0-0.089%)  (0.0-61.54%)  
F. tularensis 
LVS 1.26 ± 1.47%  

32.91 ± 
11.97%  4.13 ± 5.53%  61.69 ± 18.98%  

n=2 (0.22-2.30%)  
(24.44-
41.38%)  (0.22-8.05%)  (48.28-75.11%)  
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