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ABSTRACT 

Steven J. Lippmann: Impacts of High Temperatures on Cause-Specific  

Emergency Department Visits in North Carolina 

(Under the direction of David B. Richardson) 

 

Background: High ambient temperature is associated with a number of physiological and 

psychological responses that may influence the occurrence of emergency department visits. This 

dissertation project uses a cause-specific approach to assess the exposure-response associations 

between high ambient temperature and a wide range of disease and injury types, with the aim of 

more fully describing the impact of heat on emergency department visits in North Carolina.  The 

first aim of this dissertation focuses on temperature and injury-related emergency visits. The 

second aim focuses on temperature and a nearly comprehensive set of diagnosis groups. 

Methods: Data on emergency department visits in North Carolina between April 1st and 

October 31st in 2008-2013 were ascertained from a statewide surveillance system. County-

specific daily mean temperature data were obtained from meteorological archives. For Aim 1, 

injury visits were classified by intent and mechanism using external cause of injury codes. For 

Aim 2, visits were categorized into diagnosis groups using the Clinical Classification Software 

system. Age- and sex-stratified exposure-response trends for the associations between 

temperature and emergency department visits were quantified using Poisson regression 

Results: Over 13 million emergency department visits were categorized. In the first aim, 

unintentional injuries due to drowning among children were positively associated with 

temperature, as were bites and stings and excessive heat in all age groups.  Adverse medical 

effects increased markedly with temperature among older adults. Intentional assault among 
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adolescents and young adults was positively associated with temperature.  In the second aim, 

Injury/Poisoning and Symptoms/Signs were leading causes of ED visits in all ages, and 

Circulatory diagnoses ranked highest in patients ≥65 years old. The exposure-response patterns 

for nearly all age and diagnosis combinations were reasonably well described by a linear 

function of temperature and most of these associations were positive. Mental illness was the only 

diagnosis group that was inversely associated with temperature in all age groups. 

Conclusions: This study offers strong evidence of positive associations between daily 

mean temperatures and wide range of conditions resulting in emergency care, and highlights the 

importance of injury morbidity as a contributor to the overall population health impact of heat. 
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CHAPTER 1. SPECIFIC AIMS 

As climate change awareness increases and governmental agencies develop plans to 

minimize potential health effects of warmer temperatures, it is important to have comprehensive, 

research-based information about the public health impacts of heat. While there is a substantial 

literature on associations between ambient temperature and mortality, primarily among older 

adults residing in urban areas, with a focus on deaths due to cardiovascular and respiratory 

causes, recent studies have found temperature effects across a wider spectrum of causes. This 

study examined the effects of heat exposure on people of all age groups and examined heat 

effects on emergency department visits for a wide range of diseases and injuries. The results of 

this study improve our understanding of the effects of temperature on injury and disease among 

residents of North Carolina of all ages. 

This study utilized state-wide surveillance data for 2008-2013 from the North Carolina 

Disease Event Tracking and Epidemiologic Collection Tool (NC DETECT) system, which has 

captured data on over 99% of all emergency department visits throughout the state of North 

Carolina since 2008. Emergency department visits were categorized into ICD-9-CM diagnosis 

groups using the Clinical Classifications Software, a widely-used standardized diagnosis 

clustering tool developed by the Agency for Healthcare Research and Quality. Injury-related 

emergency department visits were grouped by intent and mechanism based on ICD-9-CM 

external cause of injury codes. These data were merged with ecological data at the county level, 

including daily meteorological data from the North Carolina State Climate Office and annual 
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population estimates from the U.S. Census Bureau to form a time-series analytical database with 

daily emergency department visit counts for each diagnosis and injury group. 

The specific aims addressed by this study were: 

Aim 1: Describe associations between county-level daily average 

ambient temperature and warm-season (April-October) injury-related 

emergency department visits, with detailed attention to variation by 

injury intent and mechanism, as well as by demographic factors 

including sex and age. 

 

Aim 2: Examine the association between warm season daily average 

ambient temperature and emergency department visits for a 

comprehensive set of diagnosis groups, assessing the relative and 

absolute contributions of different diagnosis groups to the overall burden 

of heat and emergency department morbidity. 
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CHAPTER 2. BACKGROUND 

2.1. Overview 

Like all species, humans can thrive in only a relatively narrow band of the temperature 

spectrum. Exposure to temperatures beyond tolerable thresholds can result in illness, injury, and 

death as our body’s natural ability to thermoregulate increasingly fails, resulting in multi-organ 

dysfunction.1,2,3(chap3) Concern about the impact of extreme temperatures on human health is 

growing, especially in light of mass casualties during major recent heat waves 4–9 and projected 

global climate change 10–12.  Many governmental agencies are currently developing or refining 

their heat advisory and preparedness strategies.13–17 More effective emergency preparedness 

policies and programs may be developed if we understand more completely the impact of heat on 

human health outcomes. 

Epidemiological research has consistently found U- or J-shaped curvilinear associations 

between temperature and mortality and morbidity outcomes, with the lowest risk in an optimal 

central range of temperatures and increasingly higher risk at the extremes.18–22 The exact shape 

and inflection points of these curves differ depending on cause of death/morbidity, geographic 

location, population distribution, acclimatization, and availability of technologies such as air-

conditioning, but the basic form remains. This study focused on heat effects, though cold effects 

are equally concerning, especially in cooler climates.23,24 

While there is now a large body of literature on temperature effects on health, several 

important research gaps exist. First, most studies have examined all-cause mortality or cause-

specific mortality limited to cardiovascular, respiratory, or cerebrovascular fatalities.18–20,22 
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Comparatively little research has been conducted on temperature and morbidity, in part because 

morbidity surveillance data are less available than vital statistics and death certificate data.21 

Even within the temperature-morbidity literature, most studies have focused on hospital 

admissions rather than emergency department visits and thus may only capture the most severe 

non-fatal outcomes.25 Addressing this gap is important because studies have shown that the heat-

morbidity patterns can differ considerably from those observed for mortality.26,27 Second, many 

studies have focused exclusively on the impact of specific heat wave episodes using heat-wave 

period versus non-heat-wave period comparisons rather than using time-series or case-crossover 

designs that allow estimation of the effects of temperature over broader time intervals and 

temperature ranges.21 Third, in both the mortality and morbidity literature, researchers have 

usually chosen a limited set of diseases or health outcomes of interest. This practice leaves open 

the possibility that there are unstudied diseases that are, in fact, affected by temperature. Major 

recent studies have all tended to use similar small sets of disease groupings (primarily 

cardiovascular and respiratory diseases), which were selected based on outcomes that were 

historically used in heat-wave-specific studies of mortality. More specifically, nearly all studies 

have excluded health outcomes that are due to external causes, such as injury and poisoning 28–31, 

though the rationale for this exclusion is rarely discussed.  

Recent papers that have cast a wider net are notable exceptions, and have found heat is 

associated with many types of disease and injury.32–34 Additional studies which have focused on 

individual diseases have found temperature is associated with conditions as disparate as renal 

disease 35, gout attacks 36, and preterm birth 37. Together, these findings suggest that temperature-

disease associations may extend beyond the cardiorespiratory outcomes that are typically 

studied, and provide support for this study’s aims of taking a comprehensive, cause-specific 
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approach that includes both disease and injury causes to evaluating the full public health impact 

of high temperatures on emergency department morbidity in North Carolina. 

2.2. Temperature and Injury and other External Causes 

2.2.1 Introduction 

Historically, the possible effect of high temperatures on injury has received little 

epidemiological attention. In fact, many of the largest epidemiologic studies of heat and 

mortality have specifically excluded deaths due to injury and external causes, and focused 

instead on “non-accidental” all-cause, cardiovascular, or respiratory mortality.24,28–31 While this 

exclusion is likely founded on the known excess of cardiovascular and respiratory deaths during 

heat waves, it precludes an investigation of potential associations between temperature and 

injuries.. 

2.2.2 Epidemiological Studies 

Two recent heat-mortality studies have suggested that the effects of heat may include 

external causes.32,33 Both studies found evidence of heat effects on external cause / injury deaths. 

In fact, in both studies the relative effect estimates for some injury causes of death were of 

similar magnitude to those for cardiovascular or respiratory sub-types.32,33 Similarly, a recent 

study of meteorological effects on emergency department visits for nine different diagnosis 

groups in Taipei, Taiwan found that higher temperatures were associated with increased 

emergency department visits categorized into the catch-all group for “accidents” that included all 

ICD-9-CM codes in the range 800-999.38 
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Other epidemiological studies have also found evidence of associations between 

temperature and injuries. Higher temperatures have been associated with higher trauma 

admission volumes 39–42 and with work-related injuries 43,44 In an Australian heatwave-focused 

mortality and morbidity study that incorporated ambulance call-outs, however, there were more 

mixed results. While assault- and work-related ambulance calls increased during heat waves, 

some other injury categories, including sports and falls, had inverse or null associations with 

temperature.45 Weak temperature associations were also reported in a study evaluating the 

usefulness of several weather variables in predicting pediatric injury-related emergency 

department volumes.46 

Interpretation of temperature-injury association findings has been complicated by the fact 

that some prior studies have combined all injuries together 38; this can be problematic because it 

combines heat-related illness (ICD-9-CM code 992.x, which includes heat exhaustion, heat 

stroke, and heat syncope) with other injuries. By not disaggregating injuries, these studies 

preclude estimation of temperature effects on specific types of injuries.  Other studies include 

only heat-related illness and do not include any other injury types.45,47 In these studies, and in 

studies that focus exclusively on heat-related illness, the effect sizes for this diagnosis group 

have been very large.47–49 

2.2.3 Studies from Related Fields 

Studies in fields such as ergonomics and occupational hygiene, military medicine, and 

environmental/social psychology provide support for considering the associations between 

temperature and injury.  From the 1950’s to the 1990’s, researchers in the fields of occupational 

health and ergonomics conducted many experimental and observational studies on the effects of 

heat on human work. In fact, in 1972 and again in 1986, the National Institute of Occupational 
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Safety and Health tried, unsuccessfully, to persuade the Occupational Safety and Health 

Administration to mandate upper limits on occupational heat exposure.50,51 These efforts were 

reinvigorated recently, and a new draft criteria for occupational exposure to hot environments, 

updated with additional research findings,  was distributed for public comment in 2013.13  

Although this NIOSH document primarily focuses on physiological mechanisms such as 

inadequate heat balance that can result in heat illness, it also discusses the cognitive and 

performance effects of heat, which can result in an increased likelihood of injury.13(pp3, 51) 

Some of these cognitive and psychomotor performance effects have been directly studied 

in ergonomic laboratory tests. Performance tasks used in these studies have included measures of 

reaction time; attention/perceptual skill; mathematical processing; and reasoning, learning, and 

memory. Overall, increased temperature has been associated with performance decrements, but 

the results have been somewhat mixed, with some studies finding no effect and others finding 

performance increments with increased temperature.52,53 Some researchers have argued that these 

differences are related to the type of tasks used in the experiments or the type of heat 

exposure.53–56  

In additional to experimental data, the fields of ergonomics and occupational health have 

also provided some observational evidence for potential heat effects on injury. One such study 

examined the effects of workplace temperature on unsafe work behaviors.57 After observing over 

17,000 observations of worker behavior and directly measuring proximal heat exposures, a U-

shaped curve emerged in adjusted models, with the lowest unsafe behavior index measures 

occurring when the temperature was in the range 17°C to 23°C wet-bulb globe temperature 57 In 

a more recent study, Morabito et al. found an association between apparent temperature and 

hospital-admission due to workplace injuries in Tuscany, Italy; interestingly, this study found 
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that workplace injury peaked at high, but not extremely high temperatures, possibly due to 

changes in work behaviors at those extremes.44  

Many of the early findings about heat stress and the physiology of heat-related illness 

emerged from studies conducted by military researchers.58–62 Military studies have also provided 

a mechanism for evaluating whether findings from laboratory observations hold true under real-

world conditions. One such study, conducted by researchers from the Israeli Air Force, examined 

records for 500 randomly selected warm-season helicopter incidents due to pilot error and 

compared the temperature on the day of those events to the temperature on 1000 other days 

during the same period.63 Notably, this study design is similar to a case-crossover design, though 

the authors do not refer to the study as using that method and do not appear to have used 

conditional statistical methods. Again, a curvilinear J-shaped dose-response curve was found, 

with increasing temperatures being associated with more pilot-error-related incidents.63 

Seasonal variations have also been linked to injury rates during military trainings, with 

warmer season training sessions resulting in higher injury rates.64,65 Since military training is 

standardized and runs throughout the year, potential confounding by season-varying task 

activities, a limitation of most sports-related studies, is reduced. In the 2002 study, injuries were 

categorized into overuse (e.g. strains, stress fractures, and tendinitis) or traumatic (e.g. sprains, 

dislocations, lacerations). Interestingly, the risk of injury in summer for both overuse and 

traumatic injury was about twice that in fall, even after controlling for difference in physical 

characteristics of the four training groups.64  

2.2.4 Heat and Violence 

Another way that temperature might affect injury rates is through heat effects on 

aggression and violence. Even our language forms these connections; phrases like “hot under the 
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collar”, “hot tempered”, and “in the heat of the moment” capture the commonly held connection 

between heat and aggression.66 

Heat acts as both a physiological and psychological stressor. Researchers in the field of 

environmental and social psychology have linked temperature with increased aggression or 

violent crime.66–75 There has been considerable debate, however, about whether this relationship 

is linear and monotonically increasing; non-monotonic (with some researchers finding a decrease 

in violence at the highest end of the temperature spectrum); or even a real effect at all.67,70,76–79 

Some researchers have even expanded this potential connection from interpersonal violence to 

climate effects on global inter- and intra-national conflicts.80,81 

2.3. Temperature and Cause-Specific Mortality/Morbidity 

In the heat-health literature, researchers have typically created ad hoc diagnosis groups of 

diseases of interest for each study. Tracing the history of these groupings in many recent papers 

leads back to findings from a seminal paper describing excess hospital admissions during the 

1995 heat wave in Chicago.82 Over time, these groupings have been replicated and augmented by 

other researchers, though much of the focus has remained on cardiovascular and respiratory 

diseases.  

Semenza et al. considered nearly all ICD-9-CM diagnosis categories in their study of 

excess hospital admissions during the catastrophic 1995 heat wave in Chicago. Both primary and 

secondary discharge diagnoses were evaluated. The conditions that exhibited an excess as 

primary diagnoses during the heat wave were related to dehydration, heat-related illness, or renal 

failure. However, when considering primary discharge diagnoses together with secondary 

diagnoses, which were thought to represent comorbidities and existing conditions, 

cardiovascular, cerebrovascular, respiratory, renal, and endocrine diseases were highlighted as 
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important underlying conditions that elevated risk of hospital admission during the heat wave. 

Semenza et al. are careful to note that by using admission data, they may be not be adequately 

representing illnesses that are treatable in the emergency department or another outpatient 

provider.82(p276) They also point to incomplete E-coding as potentially limiting their ability to 

detect excesses in external cause admissions.82(p276) Unfortunately the details of these limitations 

have seemingly been lost over time and the implicit exclusion of external causes and certain 

other diagnoses, justified on the basis of a lack of evidence of an excess in injury admissions in 

this paper, continues to propagate.  

Several recent heat-health studies have taken a different approach, however. These 

studies have focused on systematically and consistently modeling the cause-specific associations 

between heat and various diseases, both by widening the set of disease groups under study and 

by disaggregating sub-types of major disease categories such as cardiovascular and respiratory 

disease. Together, these studies serve as models for our approach to assess the heat effects on 

cause-specific emergency department visit morbidity. 

Two of these studies investigated cause-specific mortality.32,33 Using a shared modeling 

strategy for each cause of death, these studies provided evidence on the relative contribution of 

each cause to the total health impact of heat. Gasparrini et al. examined cause-specific 

temperature-mortality relationship across 33 different cause of death categories and included 

groups for “all external causes”, “accidents/injuries”, and “intentional self-harm”.32 Basagaña et 

al. studied 66 cause-of-death groups, including eight external cause of injury subgroups.33  

This approach has also been used in two studies of hospital admissions: one in Australia34 

and another among Medicare patients in the United States83. In the Medicare study, the 
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researchers used the same Clinical Classification Software diagnosis grouping system that we 

employ in Aim 2 of this dissertation project.  

Since mortality and hospital admission research involve only the most serious cases, 

disproportionate emphasis may be placed on certain diseases that are either more fatal or require 

greater medical intervention, or populations whose health may already be compromised, such as 

older adults. Prior research has already found important differences between mortality and 

hospital admissions resulting from heat 26,27 and it is likely that emergency department visit 

patterns will differ from both deaths and hospital admissions.   The literature on ambient 

temperature and emergency department visits is very limited. Two studies in California have also 

looked at cause-specific effects across many disease categories, first in a study of hospital 

admissions and emergency department visits focused on a 2006 heatwave, in which 11 groups 

were used 25, and a case-crossover study of temperature effects on hospital admissions in nine 

California counties, in which 16 groups were formed.84  

Only a few studies have looked at cause-specific associations at the emergency 

department level. Two studies in California, one focused on heat waves 25 and the other a case-

crossover design 47 examined cardiovascular and respiratory diseases (each disaggregated into 

sub-types in the Basu et al. paper), as well as electrolyte imbalance, cerebrovascular disease, 

renal failure, diabetes, and heat-related illness. A recent study of emergency department visits in 

Taipei, Taiwan, examined temperature effects on nine different diagnosis groups.38 In these 

studies, however, the outcomes of interest do not comprehensively encompass the different types 

of diseases or injuries that are treated in the emergency department. 
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CHAPTER 3. METHODS 

3.1. Study Design 

3.1.1 Study Designs in Existing Literature 

Three main study designs have been used in the temperature-health literature: 1) case 

series studies, such as those enumerating the impact of specific heat wave events5,82,85; 2) time-

series studies, which model the temporal associations between heat exposures and health 

effects32,86; and 3) case-crossover studies, which compare heat exposures at the time of the event 

(case) to those during a sample of other time points (crossover).31,47  Case series studies of heat 

wave mortality have been informative in revealing risk factors and vulnerable populations 

including being elderly, lower socio-economic status, having a mental illness, African-

Americans, and having co-morbid conditions such as cardiovascular or respiratory disease.19,87 

Protective factors included air-conditioning and access to transportation.19,88–90  Methodological 

research has demonstrated the equivalence of rate ratios obtained from time-series and case-

crossover designs in the special case where exposures are shared by the population and are 

measured at the ecological level, such as air pollution or temperature.91–93 

Many heat-health studies have focused on comparing “heatwave” periods to “non-

heatwave” periods.25,33,45 This approach can be problematic, however, because heat wave 

definitions vary widely in temperature thresholds and duration requirements94, and different 

definitions can yield disparate effect estimates.24,95 Despite these challenges, there has also been 
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interest in assessing whether there is an added effect of a heat wave above and beyond the effects 

of high temperature itself.23,96–98  

3.1.2 Study Design for this Project 

This study linked emergency department visit data from a state-wide surveillance system 

with meteorological observations and population estimates to estimate the associations between 

daily county-level temperatures and county-level emergency department visit rates for a large set 

of disease and injury groups. The study used a time-series design with outcomes and potential 

confounders or modifiers measured at the individual level and exposures shared at the 

geographical level. The combined data were analyzed using Poisson generalized linear 

regression models.91,99–101 

3.2.  Study Setting and Population 

The source population was all residents of the state of North Carolina in the years 2008-

2013. North Carolina residency was determined by the patient’s recorded county of residence. 

Since NC DETECT, the source of emergency department visit data, captures nearly all 

emergency department visits in North Carolina, we considered the full state as the catchment 

area and calculated rates using Census population denominators. 

North Carolina is a large and growing Southeastern state with a 2010 population of 

approximately 9.5 million people, making it the 10th most populous US state 102. North Carolina 

is divided into 100 counties, with Census 2010 total populations ranging from 4,400 (Tyrell 

county) to 920,000 (Mecklenburg county) and land areas ranging from 172.5 (Chowan county) 

to 949.2 (Robeson county) square miles. The state has a varied topography and is geographically 

divided into three main regions: the Coastal Plains abutting the Atlantic Ocean and extending 
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westward to Interstate 95 and beyond to a natural fall line running from Halifax County 

southwest to Scotland County; the Piedmont, in the center of the state, containing the fast-

growing population centers connected by Interstates 85 and 40--Charlotte-Mecklenburg, 

Greensboro-Winston-Salem-High Point (the “Triad”), and Raleigh-Durham-Chapel Hill (the 

“Triangle”); and the Appalachian Mountains region in the western portion of the state, 

containing the Blue Ridge and Smoky Mountain ranges. The topography of these geographic 

regions also produces distinct climates, with the Coastal Plains typically having a warmer and 

moister climate due to its proximity to the Atlantic Ocean, and the Mountains experiencing 

cooler temperatures throughout the year as a result of its higher elevation. 

3.3. Data Sources and Acquisition 

3.3.1 Outcome Data: Emergency Department Visit Data 

The NC DETECT surveillance data system has been collecting data on emergency 

department visits in North Carolina since the early 2000’s, but it expanded into a comprehensive, 

statewide system after the NC legislature mandated that all hospitals with 24-hour acute care 

emergency departments must provide their data for public health surveillance purposes, effective 

January 1, 2005. Hospitals now report de-identified visit data to NC DETECT electronically, in 

near real time, via the North Carolina Hospital Emergency Surveillance System. By 2008, nearly 

all hospitals contributed data, with only a few small, rural hospitals as temporary holdouts. 

Psychiatric, military and veteran’s hospitals are not included in the data available for research. 

As of August 13th, 2013, there were 122 active hospitals reporting to the system, though this 

number fluctuates as new hospitals come online and others either close or have gaps in data such 

as when electronic medical record systems are upgraded. Figure 1 displays the geographic 
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distribution of the EDs that report to NC DETECT. An estimated 99.5% of all emergency 

department visits statewide in 2008 were captured in NC DETECT 103; with essentially all 

hospitals reporting, the effective catchment area for this surveillance system encompasses the 

whole state, allowing us to calculate population-based rates using Census denominators. Over 4 

million emergency department visits are recorded in the NC DETECT system each year. 

 

Figure 3.1 Map of participating hospitals contributing data to NC DETECT, 2013.104 

 

 

 

For this dissertation project, I obtained state-wide visit-level data for all emergency 

department visits made by North Carolina residents to civilian 24/7 acute-care hospital-affiliated 

emergency departments during the period between January 1st, 2008 and December 31st, 2013 

under a data use agreement with the NC Public Health Data Group and NC DETECT data 
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oversight committee. The following data elements from NC DETECT were used to develop the 

analysis dataset: age, sex, discharge diagnosis codes (up to 11 ICD-9-CM diagnoses), coded 

cause of injury (up to 5 ICD-9-CM E-codes), date and time of visit, and patient’s county of 

residence. Demographic information other than age and sex are unavailable in the NC DETECT 

system; race and ethnicity data were not collected prior to June 2015. 

3.3.1.1. Categorization of Injury Types (Aim 1) 

Injury-related emergency department visits were categorized using both ICD-9-CM 

diagnosis codes and external cause of injury codes, also known as E-codes. Each injury-related 

visit record in the NC DETECT data includes up to five ICD-9-CM external cause of injury 

codes, or “E-codes”. These codes provide additional information about the precipitating event 

that resulted in the patient being injured and needing emergency care.  

In the language of the ICD-9-CM codebook, the term “external causes”, and their 

corresponding “E-codes”, refers to an additional classification scheme that was developed to 

describe the circumstances under which an injury, poisoning, or adverse effects event 

occurred.105 E-codes are prefixed with an “E” followed by a 3-5 digit number, and range from 

E800-E999.xx. A fully-coded data record for a patient treated for an injury, poisoning, or adverse 

effect at the emergency department should receive both diagnosis code(s) and E-code(s). For 

example, a patient who falls on a set of stairs and breaks her ankle would receive a diagnosis 

code reflecting the ankle fracture itself (such as 824.8) and an E-code reflecting the fact that the 

fracture was the result of a fall from stairs (such as E880.9).  

Emergency department visits were identified as “injury-related” if they contained either 

an ICD-9-CM diagnosis code in the 800-999 range, or an ICD-9-CM external cause of injury 

code (E-code) in the E800-E999 range.  Injury-related visits were further disaggregated into 
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groups using the CDC’s injury matrix framework for ascribing E-codes to different types of 

injury.106,107 Due to the more complex meteorological effects on motor vehicle crashes, such as 

the effects of precipitation and fog, and the lack of driving exposure metrics and detailed crash 

data, we chose to exclude motor vehicle crashes from this study. 

There are two primary axes by which injuries are categorized: Intent and Mechanism 106. 

Intent is divided into six groups: 1) Self-Inflicted, which includes suicide and other self-harm; 2) 

Assault, which includes injuries intentionally inflicted by others; 3) Unintentional, which 

includes “accidental” injuries such as falls; 4) Undetermined, including injuries for which intent 

could not be adequately discerned; 5) Adverse Effects, which includes adverse reactions to 

medications and medical misadventures; and 6) Other, which includes legal intervention (injuries 

resulting from legal police actions) and operations of war. Mechanism of injury describes the 

physical causes of the injury, such as falls, poisoning, cutting/piercing, fight/brawl, fire, natural 

and environmental factors, firearms, or suffocation.  

In addition to intent and mechanism, E-codes can also be used to describe the place of 

occurrence. Place codes are listed in the E849.0-E849.9 range, and include the following 

categories: Home, Farm, Mine and quarry, Industrial place and premises, Place for recreation 

and sport, Street and highway, Public building, Residential institution, Other specified place, or 

Unspecified place. In 2010, two new sets of E-codes were introduced into the ICD-9-CM to 

describe the status and activity of the patient at the time of the injury. Status codes are useful for 

differentiating between occupational, military, and recreational injuries. Status categories 

include: civilian activity done for income or pay, military activity, other external cause status, 

and unspecified. Activity codes describe the type of activity that the patient was doing at the time 
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of the injury. They are particularly useful for identifying sports and recreational activities that 

resulted in injury, since each sport has its own code.  

Despite their utility in providing additional details about injury events, these place, 

status, and activity E-codes are not consistently coded by hospitals. This is particularly true for 

activity and status codes because these codes were introduced in the middle of the study period 

and are still being adopted by hospitals in North Carolina. As a result, the data for this study did 

not have sufficient inclusion of place, status, and activity codes to use them for categorizing 

injury-related emergency department visits.   

For the Aim 1 analyses, we assigned visits to injury groups based on the first-listed E-

code that represents intent and mechanism. Since place, activity, and status codes can be present 

amongst the five possible E-code positions, I developed data management routines to scan 

through each set of E-codes and skip over E-codes that indicate only the place, activity, or status 

of the injury event. While the second- or lower-listed E-codes may provide additional 

information, researchers commonly focus on the first-listed code both for practicality given the 

quantity of data and because the first-listed E-code is supposed to represent the primary intent 

and mechanism of injury which resulted in the emergency department visit.108 Furthermore, it 

has been reported that in the NC DETECT system more than 50% of injury-related emergency 

department visits in 2010 received only one E-code 108, limiting the possible gains from also 

considering the 2nd-5th codes. 

3.3.1.2. Categorization of ICD-9-CM Diagnosis Codes (Aim 2) 

With the proliferation of electronic medical records and health surveillance systems, the 

vast magnitude of health data accentuates the need for standardized classification schemes. 

Standardized categorizations allow for comparability across studies, and, when developed with 
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physicians, help to ensure that the disease groupings are clinically relevant. Taking a health 

informatics approach, we used a standardized classification algorithm for grouping the thousands 

of illnesses and other conditions codified in the ICD-9-CM into a more manageable set of 

clinically-related diagnosis groups.109 

Emergency department visits were categorized into diagnosis groups based on ICD-9-CM 

diagnosis codes using the Clinical Classification Software (CCS) diagnosis clustering system.109 

The CCS is actively maintained by the Healthcare Cost and Utilization Project and sponsored by 

the Agency for Healthcare Research and Quality. Also referred to as a “clinical grouper”, the 

CCS is a diagnosis categorization scheme that condenses the more than 14,000 individual ICD-9-

CM diagnosis codes into 285 clinically-meaningful diagnosis groups.109 Although other 

diagnosis clustering tools are available, the CCS was previously found to have the best coverage 

for the types of diagnoses that are typically encountered in the emergency department 110 and has 

been used successfully with NC DETECT data in earlier studies.111 

There are two forms of the CCS system: a single-level version with 285 clusters and a 

multi-level version that hierarchically positions the single-level groups into larger super-groups 

and also provides even finer sub-groups for some conditions.109 For example, the ICD-9-CM 

diagnosis code “493.02 Extrinsic asthma with acute exacerbation” is labeled in the single-level 

version as group “128 (Asthma)”. In the multi-level version, however, it is labeled as group 

“8.3.2.3”, where each digit represents a different level in the hierarchy: “8 (Diseases of the 

respiratory system)” > “8.3 (Asthma)”  > “8.3.2 (Other and unspecified asthma)” > “8.3.2.3 

(Other asthma with acute exacerbation)”. Note that in this case, the single-level CCS group 

corresponds to the 2nd level in the multi-level version. This is the most common pattern for 
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bridging the two versions, but some single-level groups correspond instead to the 1st, 3rd or 4th 

levels. 

While the 285 single-level CCS groups are far more manageable than the thousands of 

individual ICD-9-CM codes, it is still impractical to estimate effects for all 285 groups. In order 

to reduce the number of groups but still retain a comprehensive and exhaustive approach, we 

used the highest level of the multi-level form of the CCS as the basis for grouping diagnoses.  

3.3.2 Exposure Data: Meteorological Data 

3.3.2.1. Temperature Metrics 

Several metrics are available to characterize meteorological exposure; some are directly 

measured, such as ambient temperature, while others combine multiple variables algorithmically 

to incorporate both temperature and the potential effects of other factors such as humidity, dew 

point temperature, wind speed, or solar radiation 112–114. These algorithmic “biometeorological” 

measures, such as heat index and apparent temperature, were originally developed to characterize 

human thermal comfort and are often presented alongside temperature forecasts in media outlets 

because they are informative for choosing weather-appropriate apparel, but they have also been 

used extensively in heat-health research.19,87 

The question of which of these metrics to use in heat-health research has been an active 

area of deliberation. Further complicating this decision, each of these measures can also be 

summarized at the daily level with many different statistics, including daily mean, median, 

maximum, or minimum. Several comparison studies have tested various metrics against each 

other to determine which performs best at predicting health outcomes, but no clear winner has 

emerged. The optimal predictive metric has varied by disease, by location, or by age group.115–120 
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Furthermore, for epidemiological studies, where less emphasis is placed on the purely predictive 

quality of models, it has been concluded that these metrics tend to produce similar exposure-

response patterns, largely due to the fact that these metrics are highly correlated.116,120,121 For 

practical purposes, these studies have suggested that these metrics are largely interchangeable 121 

and have advocated selecting a metric for which the available data are most spatially and 

temporally complete116 and which is most easily measured and interpreted to aid effective 

communication in heat-warning systems.121  In North Carolina, like elsewhere, average daily 

ambient temperature data are most spatially and temporally complete; and, it is for these reasons 

that I will use this temperature metric in my dissertation analyses. 

3.3.2.2. Meteorology Data 

Meteorological data, including the daily maximums, minimums, and means for ambient, 

dewpoint, and heat index temperatures (where available), were obtained from the NC Climate 

Retrieval and Observations Network Of the Southeast (NC CRONOS) system via a data request 

to the State Climate Office of North Carolina.  

Weather conditions throughout the state of North Carolina are continually monitored at 

first order automated weather stations, including Automated Weather Observing System 

(AWOS), Automated Surface Observing System (ASOS), Agricultural Weather Network 

(AgNet), and North Carolina Environment and Climate Observing Network (NC ECONet) 

stations maintained by the Federal Aviation Administration (AWOS and ASOS), the National 

Weather Service (ASOS), the Department of Defense (ASOS), the NC Agricultural Research 

Service (AgNet), and the NC State Climate Office (AgNet and NC ECONet). These first order 

monitoring stations record ambient and dewpoint temperature observations on an hourly basis 

year-round and also provide daily summary statistics for each midnight-to-midnight 24 hour 
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period. In addition to the first order stations, there is also an additional network of non-

automated Cooperative Observing Program (COOP) monitoring stations, maintained by a 

network of volunteers and contractors organized by the National Weather Service, in areas of NC 

where first order stations are not available. These COOP stations record 24-hour-period 

minimum and maximum ambient temperatures, though the time of observation varies from 

station to station and is typically not midnight-to-midnight as with the first order stations. Data 

from both the first order and COOP monitoring stations are aggregated in NC CRONOS and 

made available to researchers through data requests to the NC State Climate Office. 

Meteorological exposures were assigned by county and day, by linking the patient’s 

county of residence and the visit date recorded in the NC DETECT system to measurements 

taken at monitoring stations within that county. If more than one monitoring station was situated 

in a given county, the stations’ values were averaged. If one or more of the monitoring stations in 

a county had missing or invalid data for a given day, the average of the remaining functioning 

monitors was used. 

One limitation of using the patient’s county of residence is that we cannot guarantee that 

the precipitating events that led to the emergency department visit occurred in that same county 

or in another county. For example, if a Wake County resident went to the emergency department 

while vacationing in New Hanover County, it is possible to introduce exposure misclassification 

by assigning the temperature in Wake County to that emergency department visit. An alternative 

approach would be to use the county in which the emergency department facility is located, with 

the presumption that patients are usually brought to the nearest emergency department. However, 

due to restrictions in NC DETECT data use agreements, we were prohibited from identifying 

individual hospital facilities; since many counties have only one emergency department, we were 
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also restricted from obtaining facility’s county because that information would identify the 

facility itself. To address this concern empirically, we created larger regional clusters of 

counties; instead of identifying the location of each facility at the county level, we were able to 

identify which region it was in. With this information, we compared the region of the facility to 

that of the patient’s county of residence to evaluate the extent to which travel outside of the 

county of residence might affect our results.  

Exposure assessment at the individual-level was neither available nor practical for this 

study. Exposure misclassification may occur as a result of the use of ecologic, rather than 

personal, ambient temperature. However, an exposure assessment study conducted in Baltimore 

with a small group of elderly subjects using personal ambient temperature monitors found that 

personal ambient temperatures were well correlated with temperatures measured in downtown 

and at Baltimore Washington International airport, though the personal ambient temperatures 

were slightly lower than those measured by weather stations.122 Another concern is that outdoor 

temperatures may not reflect the actual exposures that the population experiences; for example, 

office workers may typically experience lower temperatures during work hours due to the 

cooling effects of air conditioning. This potential misclassification can go in the opposite 

direction, too; a study of the homes of older adults in Detroit found that indoor temperatures 

often exceeded outdoor ambient temperatures.123 The correlation between outdoor ambient 

temperature and personal ambient temperatures, however, is likely to vary by factors such as 

geography (for example, microclimate differences, such as elevation or forestation, between 

where an outdoor temperature is measured and where a person resides) or occupation (for 

example, outdoor workers versus workers in air-conditioned office settings.) Although air 
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conditioning prevalence is likely to be appreciably higher in North Carolina than in the cooler 

climate of Detroit, actual usage is highly dependent on economic factors. 

3.3.3 Population Estimates 

Age-group and sex-specific county-level mid-year population estimates for each study 

year were obtained from the U.S. Census Bureau’s Intercensal Population Estimates (2008-2009) 

and Current Estimates (2010-2013).  These data serve in the current analysis as population 

denominators in calculations of incidence rates.124,125 These data were available with five-year 

age groups. To match the breakpoints in the Census population data, we used the following six 

groups: 0-9, 10-19, 20-44, 45-64, 65-74, and 75 and older. 

3.4. Data Examination and Quality Assurance 

Several data quality steps were performed to address the presence of incomplete or 

erroneous data points in the input datasets.  

Meteorology: Data in the NC CRONOS system are the raw measurements taken by 

weather monitoring stations and are not processed through data quality checks prior to inclusion 

or dissemination. When monitoring stations malfunction, the data contributed to NC CRONOS 

can contain implausible values, such as midsummer temperatures of -40°F; if the malfunction 

persists, there can be long strings of unusual values in the time series. Potentially erroneous 

meteorological values were identified using range checks based on climate normals for North 

Carolina. Values that fell outside of the expected range were vetted by comparing them to values 

from nearby stations for the same time period. When we determined that a value was likely to be 

the result of monitor malfunctions, the erroneous values was set to null. These checks were run 

on a monitor-level prior to the calculation of county-level daily averages; since we were 
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averaging monitor values when 2 or more monitors were situated in a given county, we could 

still generate an average from the remaining monitors after removal of the erroneous values 

stemming from a malfunctioning  monitor. 

NC DETECT: When new hospital electronic medical records systems are deployed or 

when existing systems experience technical problems, there can be temporal discontinuities in 

the data feeds that are aggregated into the NC DETECT system. In many instances, these 

discontinuities are able to be repaired with data updates at a later time, but in other cases, the NC 

DETECT data remain incomplete. This may affect all data elements coming from a given 

hospital, or can be specific to one or more variables. The duration of these gaps can be as short 

as a day or as long as several months.  

Additionally, some hospital data feeds into NC DETECT are more systematically missing 

certain elements, such as diagnosis codes or E-codes, for a substantial proportion of visits. For 

example, some hospitals’ data are regularly missing diagnosis codes for approximately 40-50% 

of their visits. Since these codes are necessary for categorizing emergency department visits into 

disease or injury groups, this under-coding can affect our ability to accurately enumerate 

diagnosis- or injury-specific visit counts and may result in underestimates of rates and outcome 

misclassification in the time-series analyses.  

To address this issue, we examined the emergency department visit data; since the data 

use agreement did not include hospital identifiers, these data quality checks were performed at 

the county level. Temporal discontinuities were identified through visual inspection of county-

specific time-series plots for each variable of interest. Systematic data incompleteness was 

assessed by calculating the proportion of all visits made in a given county on a given day that 

contained only missing values for the variable of interest.   
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We developed a threshold for missing diagnosis codes or E-codes after considering both 

the need to remove from the analysis those county-days that lacked adequate data with which to 

generate accurate visit counts and the cost of removing county-days in terms of reduced power 

and rate stability. When the data completeness in a given county on a given day crossed that 

threshold, both the visit count numerators and the corresponding person-time were removed prior 

to the calculation of rates and regression analyses. 

3.5. Statistical methods 

3.5.1 Data Transformations 

NC DETECT data were structured as a line-listing with each row consisting of a single 

emergency department visit. Data elements in the NC DETECT, meteorological, and population 

data were categorical or continuous, and some of these data values were transformed for analysis 

(Table 3.1). The emergency department visit data were grouped by county, day, age group, and 

sex. Next, these data were linked to meteorological data by county and day, and to population 

data by county, age group, sex, and year to form a grouped data table. 

 

Table 3.1. Description of data elements, sources, and transformations. 

  

Variable Data Sources Original 

data type 

Data 

Transformation(s) 

Ecological 

Level 

Outcome     

Age  NC DETECT Continuous Six age groups: 

0-9, 10-19, 20-44, 

45-64, 65-74, and 

≥75 

Individual Visit 

Patient’s county 

of residence 

NC DETECT Categorical 100 NC counties Individual Visit 

Diagnosis code 

(ICD-9-CM) 

NC DETECT Categorical Grouped by Clinical 

Classification 

Software 

Individual Visit 
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Injury E-code 

(ICD-9-CM) 

NC DETECT Categorical Grouped by Intent 

and Mechanism 

Individual Visit 

Exposure     

Ambient 

temperature 

NC CRONOS Continuous Daily mean: Either 

mean of minimum 

and maximum 

temperatures or mean 

of hourly temperature 

values, based on 

weather station type. 

Parameterizations: 

Categorical (approx. 

5F increments); 

linear; natural cubic 

spline 

County 

Population      

Age group 

specific mid-

year population 

estimates 

U.S. Census 

Bureau 

Categorical Six age groups: 

0-9, 10-19, 20-44, 

45-64, 65-74, and 

≥75 

County 

Day of year NC DETECT 

(visit date); NC 

CRONOS (date 

of temperature 

observation) 

Integer 

(April 1=1 

to October 

31=214) 

Smoothing function 

for longer term time 

trends (spline) 

N/A 

Day of week NC DETECT 

(visit date); NC 

CRONOS (date 

of temperature 

observation) 

Integer (1-7) Indicator term for 

weekday vs weekend 

N/A 

Year NC DETECT 

(visit date); NC 

CRONOS (date 

of temperature 

observation) 

Integer 

(2008-2013) 

Indicator for year N/A 

 

The analysis dataset was a matrix constructed from the cross-classification groups of 

county, day, sex (Aim 1 only) and age, with additional variables for each diagnosis/injury group. 

In this dataset, there was one data row for every cross-classification of county (n=100), day 

(n=214*6=1284, for the 214 days between April 1 and October 31, and 6 data years from 2008-

2013, inclusive), age group (n=6), and sex (n=2) for a total of 1,540,800 possible rows. This data 
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structure also included the spatio-temporally linked meteorological and population data 

corresponding to each county-day-age-sex group. Additional variables indexed the selected 

diagnosis/injury groupings, and contained the daily disease/injury-specific emergency 

department visit counts enumerated for each county-day-age-sex group combination. 

3.5.2 Statistical Analysis 

Descriptive statistics included cause-specific emergency department visit counts and 

rates, as well as cross-tabulations by age, sex, and temperature intervals. Cells sized >0 and <10 

were suppressed in compliance with the NC DETECT data use agreement with NC DPH. 

Distributional plots and statistics for ambient temperature such as mean, median, and range were 

also generated. 

In both aims, count-based Poisson generalized linear regression models were used to 

estimate the exposure-response patterns for the associations between temperature and cause-

specific emergency department visit rates, and to adjust for potential confounders.99,100 The 

natural logarithm of the population estimate for the relevant age group, sex, county, and year 

strata was used as an offset term for incorporating the population denominator into the Poisson 

model in order to model the log-rate instead of the log-count as the dependent variable.126 
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We modeled the exposure-response curve for the association between warm-season 

county-level average daily mean temperature and emergency department visits for each disease 

or injury group separately, using a series of generalized linear models of the form: 

ln(𝑐𝑜𝑢𝑛𝑡𝑖𝑗𝑘𝑙) = 𝛼 + 𝑓(𝛽; 𝑡𝑖𝑗 , ) + 𝛾𝑌𝐸𝐴𝑅𝑗+ 𝛾𝐷𝑂𝑊𝑗 + 𝑓(𝛾; DOY𝑗 , )

+ ln(𝑝𝑒𝑟𝑠𝑜𝑛𝑦𝑒𝑎𝑟𝑠𝑖𝑗𝑘𝑙/100,000) 

where: 

i indexes county; 

j indexes calendar day; 

k indexes age group; 

l indexes sex; 

ln(𝑐𝑜𝑢𝑛𝑡𝑖𝑗𝑘𝑙) is the natural logarithm of the daily emergency 

department visit count for county i, day j, age group k, 

and sex l; 

𝛼  represents the intercept; 

𝑓(𝛽; 𝑡𝑖𝑗 , 𝑠) is a set of beta coefficients representing the functional 

form of the parameterization of the county-specific daily 

mean ambient temperature (and optionally, including 

product interaction terms for potential effect measure 

modifiers s); 

𝛾𝑌𝐸𝐴𝑅𝑗 Represents the coefficients for the indicator term for 

calendar year; 

𝛾𝐷𝑂𝑊𝑗 represents the coefficients for the indicator term for day 

of week (weekday vs weekend); 

𝑓(𝛾; DOY𝑗 , ) is the set of coefficients representing the functional form 

of the smoothing function for day of year; and 

ln(𝑝𝑒𝑟𝑠𝑜𝑛

− 𝑦𝑒𝑎𝑟𝑠𝑖𝑗𝑘𝑙

/100,000) 

is the population denominator offset term: the natural 

logarithm of the county-year-age-sex-specific population 

estimate represented as person-years divided by 100,000. 

 

To evaluate the shape of the exposure-response relationship, our modelling approach 

explored several parameterizations for temperature. Modelling of ambient temperature started 

with a simple categorical parameterization of this variable, with indicator terms for each 5°F 
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interval, and then proceed to more flexible natural cubic spline parameterizations.  Some recent 

papers consider lagged effects of temperature on morbidity or mortality, examining for example 

the association between the rate of disease on day j and average daily ambient temperature on 

day j, j-1,  j-2,…j-n.127  The current analysis examines only unlagged associations. To account 

for longer term time trends, we included in the model a smoothing function for day of year, a 

term for day of week (weekend vs weekday), and a term for calendar year, with no regression 

model adjustment for sex or age.  Some heat-health studies have considered air pollution as a 

potential confounder; this is particularly true for heat studies that are offshoots of air pollution – 

health studies. However, recent methodological commentaries have called this practice into 

question using directed acyclic graphs, on the grounds that air quality is a causal intermediate of 

the heat-health association and not a confounder of this relationship. 128,129 For this reason, we 

did not adjust for air pollution concentrations in this study.  

 While age and sex were not considered important potential confounders a priori, we 

were interested in modification of ambient temperature-disease associations by sex and age.  To 

examine heterogeneity in these associations, we repeated the analysis using interaction terms for 

sex and age group. Figures depicting the stratified exposure-response curves on the log-rate scale 

were produced for each diagnosis or injury group, including 95% confidence bands. Where 

summarization with simpler models was possible, we also produced tables and forest plots with 

estimates of the incidence rate ratios and 95% confidence intervals.  
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CHAPTER 4. TEMPERATURE, INJURIES, AND ADVERSE EFFECTS 

4.1. Introduction 

Despite the extensive literature on the effects of high temperatures on human mortality18–

20,22,130 and morbidity21,25,34,38,48,83,84,131,132, few epidemiological studies have quantified the 

effects of temperature on injuries39–43,45,46,133,134. In fact, many of the largest recent heat-health 

studies have specifically excluded external cause outcomes a priori.24,29,30,135 

Such exclusions are noteworthy since research in fields such as ergonomics, psychology, 

and criminology provides support for considering the associations between temperature and 

injury generally, and not just the patent increased risk of heat-related illnesses such as heat 

exhaustion and heat stroke, which are also classified as external cause of injury events.48 Heat 

acts as both a physiological and psychological stressor, and can lead to increased cognitive and 

psychomotor fatigue, decreased concentration, or other performance decrements53,55 that may 

increase the risk of unintentional injury to self or others. High temperature has also been posited 

to affect intentional injury rates through heat effects on aggression, violence, or mental health. 

Researchers in the field of environmental and social psychology have linked temperature with 

increased aggression and violent crime.66–70,72,74,75  

The current study examines associations between county-level average daily mean 

temperature and the leading causes of injury-related emergency department visits in North 

Carolina in 2008-2013 using state-wide surveillance data from the North Carolina Disease Event 

Detection and Epidemiologic Collection Tool (NC DETECT), including detailed analyses of 
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variations in the exposure-response patterns by injury intent and mechanism, as well as 

modification by age and sex. 

4.2. Methods 

4.2.1 Study Setting 

This study examines associations between heat and injury-related emergency department 

visits among residents of North Carolina, the 10th most populous US state in 2010136, during the 

warm months (April through October) in the years 2008-2013. Seven of the 100 counties in 

North Carolina had no weather stations during this period and were excluded from this study 

(Alleghany, Camden, Catawba, Clay, Greene, Jones, Perquimans counties); these are counties 

with relatively small populations and contain only 2.4% of the 2010 state population. 

4.2.2 Meteorological Data 

Daily mean ambient temperature data were obtained from the NC Climate Retrieval and 

Observations Network of the Southeast (NC CRONOS), a large meteorological database 

developed and maintained by the NC State Climate Office. This system aggregates observed 

values from over 300 weather stations throughout the state, and includes both automated and 

non-automated stations.  Automated stations record temperature observations on an hourly basis 

year-round and also provide daily summary statistics for each midnight-to-midnight 24 hour 

period. In addition to the automated stations, there is also an additional network of non-

automated Cooperative Observing Program (COOP) monitoring stations, maintained by a 

network of volunteers and contractors organized by the National Weather Service, in areas of NC 

where automated stations are not available. These COOP stations record 24-hour-period 
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minimum and maximum ambient temperatures, though the time of observation varies from 

station to station and is typically not midnight-to-midnight as with the automated stations. Daily 

mean values for each station were calculated as the average of the 24 hourly observations for 

automated stations, and the average of the 24-hour minimum and maximum values for non-

automated stations.  Non-automated stations do not capture heat index, apparent temperature, or 

other humidity-related metrics; by choosing daily mean temperature as our exposure metric, we 

were able to retain 16 counties that contained only non-automated stations. 

Same-day meteorological exposures were assigned by county and day. If more than one 

monitoring station was situated in a county, the stations’ values were averaged. If one or more of 

the monitoring stations in a county had missing or invalid data for a given day, the average of the 

remaining functioning monitors was used. The number of monitors contributing to each county-

day’s average ranged from 1 to 10 with a mode at 2 monitors; 67% of the county-days averages 

were composed from 1, 2, or 3 monitors. 

Potentially erroneous meteorological values were identified using range checks based on 

typical temperature values for North Carolina. Monitor values were manually reviewed and 

compared to values from nearby stations for the same time period if the daily mean temperature 

was <25F or >90.5F; if the daily maximum temperature was <30F or >110F; or if the daily 

minimum temperature was <10F or >90F. 169 potentially implausible temperature values were 

identified and reviewed; 119 of these were excluded prior to the calculation of county-day 

average daily mean temperatures. In all 119 cases, however, other monitors in the same counties 

were functioning properly, so no county-days were lost due to implausible values. Additionally, 

six mountaintop research stations, all at elevations above 4,000 feet, were excluded since they do 

not reflect population exposures; other monitors in those counties were available for calculating 
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daily averages. In order to focus on higher temperatures and attenuate potential non-linearity 

introduced by cold effects, we truncated the temperature range so that observations less than 

40F were excluded from the regression analyses. This truncation resulted in the removal of 266 

county-days; these all occurred during April or October, at the tails of our study season, and were 

concentrated in mountainous counties in Western North Carolina. 

4.2.3 Emergency Department Visit Data 

Emergency department data from April 1st through October 31st for the years 2008 to 

2013 were obtained from the North Carolina Disease Event Tracking and Epidemiologic 

Collection Tool (NC DETECT) system, a statewide public health syndromic surveillance system. 

EDs operating in 24/7 acute-care civilian hospitals electronically report de-identified emergency 

department visit data in near real time to this legislatively-mandated system; beginning in 2008, 

an estimated 99.5% of emergency department visits statewide have been captured in NC 

DETECT.103 As of December 2013, 123 hospital EDs were actively submitting data to the 

system, though this number fluctuates as new hospitals come online and others either close or 

have temporary data feed gaps, such as when electronic medical record systems are upgraded.  

Residency in NC was confirmed by the patient’s reported county of residence. 

In addition to basic patient demographic information, NC DETECT data include up to 

eleven International Classification of Diseases, 9th Revision, Clinical Modification (ICD-9-

CM)105 diagnosis codes and up to five external cause of injury codes, also known as “E-codes”. 

These E-codes provide additional information about the precipitating events that resulted in the 

patient being injured and needing emergency care.  
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4.2.4 Outcomes of interest 

Our primary analyses focus on the three leading causes of injury-related emergency 

department visits: unintentional injuries, adverse medical effects, and intentional assault. Injury 

emergency department visits for which intent was categorized as intentional self-harm 

(n=36,096), undetermined (n=13,396), or “intentional - other” (n=2,592) are not reported here.  

In addition, unintentional injuries due to motor vehicle crashes (n=419,609) are not reported in 

this paper; we chose to exclude these due to the more complex meteorological effects involved in 

crashes and the unavailability of driving exposure metrics.   

Emergency department visits were categorized as injury-related if they contained either 

an ICD-9-CM diagnosis code in the 800-999 range, or an ICD-9-CM E-code in the E800-E999 

range.  To classify each injury-related visit into a single intent and mechanism category, we 

identified the first-listed ICD-9-CM E-code recorded for each visit that encoded intent and 

mechanism of the injury event. We used this code to categorize the intent and mechanism of the 

precipitating event according to the Centers for Disease Control and Prevention’s injury matrix 

framework for ascribing E-codes to different types of injury.106,107 Some records contained only 

E-codes that provided information other than intent or mechanism, such as place of occurrence, 

and could not be categorized. E-codes for excessive heat (E900.*) were separated from the 

CDC’s “Natural and Environmental Factors” mechanism group and assigned to their own group, 

“Excessive Heat”. The adverse medical effects category includes “Drugs, Medicinal and 

Biological Substances causing adverse effects in therapeutic use” (E930-E949), “Misadventures 

to patients during surgical and medical care” (E870-E876), and “Surgical and medical 

procedures as the cause of abnormal reaction of patient or later complications, without mention 

of misadventure at the time of the procedure” (E878-E879).105 
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Although hospitals are mandated to submit all diagnosis and E-codes that they record for 

administrative purposes, these data elements are missing for some emergency department visits. 

To account for these missing data, we calculated the proportion of missing data for each day in 

each county and established a threshold for inclusion. We dropped both the visit counts and the 

person-time contribution for any county-day where more than 50% of visits in that county-day 

were missing diagnosis codes, or if more than 50% of visits receiving an injury-related diagnosis 

code in a given county-day were missing E-codes.   

4.2.5 Census data 

Age-group and sex-specific county-level population estimates for were obtained from the 

U.S. Census Bureau’s Intercensal Population Estimates (2008-2009) and Current Estimates 

(2010-2013) datasets for use as population denominators in calculations of incidence rates.124,125 

These annual, mid-year (July 1st) estimates were assigned to all study days within their 

respective years. These data were available with five-year age groups. To match the breakpoints 

in the Census population data, we used the following six groups in age-stratified analyses: 0-9, 

10-19, 20-44, 45-64, and 65-74, and 75 and older.  

4.2.6 Statistical Methods 

Daily emergency department visit counts for each intent and mechanism category were 

enumerated for each level in the cross-classification of county, day, sex, and age (in six groups 

defined as 0-9, 10-19, 20-44, 45-64, and 65-74, and 75 and older), to form a grouped count data 

structure with no age adjustment within age groups. Visits where the patient’s sex was missing, 

unknown, or other were excluded (n=164). These data were linked to meteorological data by 

county and day, and to population data by year, sex, and age group.  
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Adjusted and unadjusted Poisson regression models were fitted to evaluate the 

association between average daily temperature and each injury type, yielding estimated incidence 

rate ratios (IRR) and corresponding 95% confidence intervals (CI).  To evaluate the shape of the 

exposure-response relationships, we evaluated several parameterizations for temperature, starting 

with simple linear and categorical parameterizations, and proceeding to cubic spline forms, 

which allow more flexibility but still restrict the tails where uncertainty is typically greatest, to 

be linear. We used only same day temperatures and did not evaluate lag functions; previous 

research has indicated the heat effects are usually apparent with very short lag periods, such as 

same day or previous day.24,127 Modification was modeled using product interaction terms 

between the functional forms of temperature and a variable that indexed combinations of sex and 

age group to obtain our stratified log-rate temperature trend estimates. As in previous research 

focusing on short-term effects of ambient temperature on disease occurrence99,100, our adjusted 

models included a smoothed function for day of year to adjust for longer-term intra-seasonal 

variation in emergency department visit rates, an indicator term for day of week (weekend vs. 

weekend) to account for differential usage of EDs on weekends, and an indicator term for 

calendar year to account for longer term secular trends in emergency department visit rates. The 

natural logarithm of the population estimates for the relevant age group, sex, county, and year 

strata were used as offset terms for incorporating the population denominator into the Poisson 

model in order to model the log-rate instead of the log-count as the dependent variable.126 

Figures depicting the spline-based exposure-response curves and 95% confidence bands from 

both the adjusted and unadjusted models, stratified by sex and age group combinations, were 

produced for each major injury intent group. The exposure-response patterns for age-sex-specific 

temperature-emergency department visit associations from the unadjusted models closely 
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resembled those estimated from the adjusted models; results from the adjusted models are 

presented in the subsequent text except where specified and the unadjusted figures are presented 

in electronic appendix eFigures 2-4. All regression analyses were performed in SAS (SAS 

Institute, Cary, NC) version 9.4 using the GLIMMIX and PLM procedures.  

4.3. Results 

During the months of April through October in the years 2008 to 2013, there were 

2,616,285 eligible emergency department visits for unintentional injury (excluding motor vehicle 

crashes), adverse medical effects, and intentional assault (Table 4.1), out of the 3,827,134 total 

visits that contained either an injury-related ICD-9-CM diagnosis code or E-code. A detailed 

summary of all inclusion/exclusion criteria and the number of visits and county-days affected is 

provided in Appendix eTable A.1. The final analysis dataset had temperature values for 103,391 

county-days with a mean of 69.3F and standard deviation of 9.4F. 

Table 4.1 provides a summary of the counts and rates of eligible injury-related 

emergency department visits by sex and age group. For both males and females, overall injury 

rates were highest in the ≥75 year old age group, reaching over 17,000 per 100,000 person-years 

for females and over 12,600 per 100,000 person-years for males. Males had higher rates than 

females in the 0-9, 10-19, and 20-44 year old age groups, but lower rates in the older age groups.   

Unintentional injuries made up the largest proportion of injury-related visits, accounting for over 

2.2 million emergency department visits during the study period.  Similar to overall injury rates, 

unintentional injury rates were higher for males than females up to age 64; female rates overtook 

male rates at ages 65 or older.  Unintentional injury rates for females in the 75 and older age 

group were substantially higher than those for younger females and all male age groups, likely 

due to their greater propensity to fall-related injuries. Adverse effects made up the second largest 
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group of external cause emergency department visits and increased with age for both sexes. 

Rates of intentional assault peaked in the 20-44 year old age group and were lower in the 

younger and older groups. 

Table 4.2 reports crude incidence rates by injury intent and mechanism and by categories 

of average daily temperature. Overall, unintentional injury emergency department visit rates 

tended to increase with temperature to about 70F and then diminish at higher temperatures; 

however, exposure-response trends differed by mechanism.  Table 4.2 reports crude 

unintentional injury incidence rates for 4 selected mechanisms of unintentional injury; additional 

unintentional injury mechanisms are presented in Appendix eTable A.2. Incidence rates 

increased with increasing daily mean temperature for unintentional injuries with mechanisms 

including drowning, excessive heat, and bites and stings, while rates for injury due to 

overexertion increased with temperature until about 70 degrees and decreased with further 

increasing temperatures. Rates of emergency department visits for adverse effects, and for 

intentional assault increased with increasing daily mean temperature (Table 4.2); rates for 

specific mechanisms of intentional assault are presented in Appendix eTable A.2. 

Exposure-response patterns for unintentional injury differed across injury mechanisms. 

The panels of Figure 4.1 depict temperature-response associations for 4 selected mechanisms of 

unintentional injury, stratified by age group and adjusting for day of year, calendar year, and 

weekday; associations for additional unintentional injury mechanisms are presented in 

eAppendix Figure A.1. Patterns were similar for males and females (results not shown). 

Emergency department visits for drowning (Panel A) increased sharply with higher temperatures 

in the youngest age group, but were flat for most other age groups. Visits for excessive heat 

increased exponentially in all age groups as temperatures increased (Panel B). Visits for bites 



40 

and stings (Panel C) followed an inverted U-shaped curve with rates peaking between 70-80F 

for all age groups, though the strongest effects were for children under 10. Temperature-

emergency department visit rate patterns for overexertion (Panel D) were flat for the three oldest 

age groups, but decreased with increased temperature in the younger groups, with the steepest 

decrease in the 10-19 year old group.  For most age groups, the rate of emergency department 

visits for unintentional injury due to falls (Appendix eFigure A.1 Panel A) appear to vary 

minimally with temperature over the range from about 40F to 70F and then slightly decrease at 

the highest temperatures; for the oldest age group, however, rates decreased monotonically over 

the whole temperature range. Visit rate patterns for unintentional injuries categorized as “struck 

by, against” (Appendix eFigure A.1 Panel B) were mostly flat or slightly increasing with 

temperature for young children and all adults, but dropped precipitously among children aged 

10-19 years. In most age groups, visits for unintentional injuries resulting from cutting/piercing 

instruments (Appendix eFigure A.1 Panel C) were either flat or increased slightly from 40F 

through 70F and then receded at higher temperatures. Rates for unintentional injuries labeled 

with an “unspecified” mechanism (Appendix eFigure A.1 Panel D) increased substantially for 

adults aged 20 and older, but had a slightly inverse-U-shaped curve for the children and 

adolescents. 

Visit rates for adverse medical effects increased with age for both males and females and 

reached over 3000 per 100,000 person-years in the ≥75 year old group (Figure 4.2).  Adverse 

effects increased markedly with higher temperatures in the middle and older age groups, but 

were not as strongly associated with increased temperature in children and adolescents (Figure 

4.2). These patterns were similar for males and females in each age group.  
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Figure 4.3 illustrates the association between temperature and emergency department 

visits for intentional assault by sex and age groups. The strongest positive associations between 

daily mean temperature and emergency department visits for intentional assault (Figure 4.3) 

were observed among adolescents and adults; rates were comparatively low and flat for children 

aged 0-9 years and adults 65 years old or older. Rates of intentional assault emergency 

department visits were highest among males 20-44 years old, followed by females of the same 

age group. Exposure-response curves for the association between intentional assault and 

temperature for females aged 10-19 and 20-44 had an inverted U-shape, with rates peaking 

between 60-70F and around 80F, respectively. For males aged 10-19, rates increased up to a 

temperature between 60-70F and then fluctuated at higher temperatures. For males in the 20-44 

year old age group, rates increased up to around 80F, then plateaued. For both men and women 

in the 45-64 year old group, rates appear to increase monotonically with increasing temperatures.  

4.4. Discussion 

We found evidence of associations between high daily mean temperatures and rates of 

emergency department visits for some of the leading external causes of morbidity. We observed 

substantial differences in the magnitude of the rates and in the exposure-response trends, by 

injury type and by sex and age. 

With regards to unintentional injuries, in our study there was considerable heterogeneity 

in the associations between temperature and unintentional injury by both injury mechanism and 

age group. The mechanisms that had the strongest positive associations with temperature were 

bites and stings, drowning, excessive heat, cutting/piercing instruments, and unspecified 

mechanism, although for some of these mechanisms, rates decreased at the highest temperature 

after peaking at more moderate temperatures (Appendix eFigure A.1). Since they are so 
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common, emergency department visits for falls were very influential on the overall unintentional 

injury trends, especially for the older age groups. Emergency department visits for bites and 

stings also occurred in large numbers and appeared to be strongly associated with temperature; 

this is likely due to a combination of biological life-cycles and increased human outdoor 

exposure at moderately high, but not extremely high temperatures.  

With regards to adverse effects or medical misadventures, we found substantial positive 

associations between temperature and rates of emergency department visits for adverse effects or 

medical misadventures. These associations were strongest in older adults. Although prior 

epidemiological studies have found temperature impacts related to illicit drug overdoses137 and 

psychiatric medications138,139, and  pharmacological studies have identified certain classes of 

drugs that alter or inhibit thermoregulatory response140, the impact of temperature on adverse 

effects is not frequently cited as a major component of heat-health effects. This may be because 

previous studies often have excluded mortality or morbidity due to external causes a priori. Not 

all of the adverse effects included in this category are related to medications; this category also 

includes adverse effects of medical or surgical care. Additional research is needed to further 

differentiate which sub-types of adverse effects are most impacted by temperature and to develop 

interventions targeted to those specific conditions. 

Finally, with regards to intentional injuries, we found strong associations between 

temperature and intentional assault emergency department visits among adolescents and young 

adults. Research in social psychology and criminology has suggested that aggression and violent 

crime increase with heat.66–68,70 Our study corroborates those findings and demonstrates that the 

heat-effects on violence can generate not only interpersonal strife, but also substantial increases 

in serious health outcomes such as emergency department visits. Interestingly, we found that the 
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association between heat and assault-related emergency department visits was largely confined 

to the 10-19 and 20-44 year old age groups, and was present for both male and female victims. 

One area of debate in the psychological literature on heat and aggression has been whether this 

effect tapers or recedes at the most extreme temperatures.75,76 Although there is considerable 

uncertainty at this tail, our models suggest a slight decrease in intentional assault emergency 

department visit rates at the highest temperatures.  

This study draws upon a large, comprehensive database in NC of statewide emergency 

department visit data.  Much of the prior literature on heat-related effects has relied upon either 

mortality or morbidity measured by hospital admissions. Since many injuries require only 

emergency care and do not result in hospitalization or death, examination of these relationships 

at this level of morbidity is crucial. Another strength of this study is that, by disaggregating 

injuries, we were able to distinguish the exposure-response patterns for different age groups and 

for different injury intents and mechanisms. Previous studies have either lumped all injuries 

together32,38, or have grouped them by the physical type of injury (e.g. laceration, fracture, 

sprain)133 rather than by the characteristics of the precipitating events leading up to the injury, 

which are captured in the E-codes we used to categorize injury-related emergency department 

visits in this study. Since falls make up such a large portion of injury-related emergency 

department visits, the relationship between temperature and falls dominates the overall heat-

injury response pattern; separating visits by age group and sex and by injury intent and 

mechanisms provides insight into the heterogeneity in these responses and may also suggest 

potential areas for targeted public health interventions. 

One limitation of using the patient’s county of residence is that we cannot guarantee that 

the precipitating events that led to the emergency department visit occurred in that same county. 
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For example, if a resident of the centrally located Wake County went to the emergency 

department while vacationing in New Hanover County along the coast, exposure 

misclassification could potentially be introduced by assigning the temperature in Wake County 

to that emergency department visit. To address this limitation, we compared the region in which 

the patient resided (four regions, based on aggregation of North Carolina counties by climatic 

zones) to the region in which the emergency department was located. We found that only 4.4% 

of injury visits were made in regions that differed from the patient’s home region. Furthermore, 

given the strong spatial correlations in daily temperatures within the state, we do not believe that 

this potential misclassification greatly affected our results. Another limitation is that we did not 

have humidity data with which to calculate biometeorological metrics such as heat index or 

apparent temperature from all counties. Previous research, however, has advocated using 

whichever temperature metric has the least missing data and the greatest spatial/temporal 

coverage since all of these metrics are highly correlated.116  

Some prior studies have examined outcomes due to external causes, and have also 

suggested that the effects of heat may extend well beyond the cardiovascular and respiratory 

causes that are the typical heat-health concern. Two recent cause-specific heat-mortality studies 

that included external causes found evidence of heat effects on injury deaths; in both studies, the 

relative effect estimates for some injury causes were of similar magnitude to those for 

cardiovascular or respiratory sub-types.32,33 Similarly, a recent study of meteorological effects on 

emergency department visits for nine different diagnosis groups in Taipei, Taiwan, found that 

higher temperatures were associated with increased emergency department visits categorized into 

a catch-all “accidents” group that included all ICD-9-CM codes in the range 800-999.38 In a 

study in cities in South Korea, researchers categorized injury-related ambulance calls into 
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traumatic and non-traumatic injuries; they found that increased temperature was positively 

associated with ambulance calls for non-traumatic injuries, but found a more complex non-linear 

exposure-response curve for traumatic injuries, wherein ambulance calls increased through the 

moderate temperature range but then decreased at the highest temperatures.133 Other 

epidemiological studies have also found evidence of associations between temperature and 

injuries. Higher temperatures have been associated with higher trauma admission volumes39–42  

and with work-related injuries43,44,134. Mixed or weak associations have also been reported, 

however, in a study of ambulance calls45 and another on pediatric injury-related emergency 

department volumes46. 

Like those prior studies cited above, our primary analyses adjust for temporal factors 

including day of year, calendar year, and day of week.  Recent methodological discussions in the 

epidemiological literature have questioned some of the adjustment variables that have been 

standard in previous heat-health analyses. For example, in the past, adjustment for ozone levels 

had been considered essential; now, it has been suggested that such adjustment is contraindicated 

in most cases.128,129 The current practice in heat-health studies is to adjust for long-term and 

intra-season time trends by including smoothing terms for day of year and indicator terms for 

year. In our study, we found little impact of adjustment for day of year, calendar year, or day of 

week on the estimated temperature-emergency department visit associations reported in eFigures 

B.1-B.3 (Appendix B); this may be due, in part, to several factors, such as the absence of any 

reason to suspect that ambient temperatures would differ between weekends and weekdays and 

the restriction of our analyses to relatively narrow ranges of calendar years (2008-2013), months 

within those years (April-October), and temperatures within those months (>40⁰ F).  
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In summary, this study offers strong evidence of positive associations between average 

daily temperature and emergency department visits due to a variety of types of injury, including 

unintentional injuries among youth primarily due to heat, bites, and stings, intentional assault 

injuries among adolescents and younger adults, and adverse effects of medication and medical 

care.  The latter is noteworthy both due to the magnitude of association, its evidence of 

substantial excess rates at older ages, and the sizable increase in visits observed on hot days 

among older adults.  The findings suggest important directions for further research on heat in 

relation to injury.
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4.5. Tables and Figures 

Table 4.1 Summary statistics on injury-related emergency department visit counts and rates by sex and age group. North Carolina, 

April-October, 2008-2013. 

 

  Intent (Count) Person-time 

(person-years) 

Overall incidence 

Rate (per 100,000 

person-years) 
Unintentionala Adverse Effects 

/ Medical 

Misadventures 

Intentional 

Assault 

Totalb  

 

Sex / Age Group         

Female        

  0-9   142,427 5,532 940 148,899  1,834,781 8,115.4  

  10-19  130,032 6,155 8,305 144,492  1,866,106 7,743.0  

  20-44  381,423 37,959 35,436 454,818  4,846,575 9,384.3  

  45-64  229,420 40,599 7,678 277,697  3,863,749 7,187.2  

  65-74  74,327 19,693 476 94,496  1,160,767 8,140.8  

  75 or older  142,670 27,227 402 170,299  999,952 17,030.7  

           

Male            

  0-9   192,376 7,060 1,069 200,505  1,917,062 10,459.0  

  10-19  206,082 4,652 12,210 222,944  1,963,787 11,352.8  

  20-44  437,754 21,316 46,660 505,730  4,799,162 10,537.9  

  45-64  205,201 32,543 13,275 251,019  3,575,036 7,021.4  

  65-74  49,391 17,587 734 67,712  992,634  6,821.4 

  75 or older  58,464 18,846 364 77,674  615,880  12,611.9 

Total  2,249,567 239,169 127,549 2,616,285 28,435,492 9,200.8 
a Excludes motor vehicle crashes.      
b Includes only injury intent categories listed.
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Table 4.2 Select injury-related emergency department visit rates by county-level daily mean temperature (F).  North Carolina, April-

October 2008-2013. 

 

  

Crude incidence rate per 100,000 person-years, 

by county-level daily mean temperature (F) 

40-<50 50-<55 55-<60 60-<65 65-<70 70-<75 75-<80 ≥80 

Person-years  

      

851,226  

      

1,361,312  

      

2,433,709  

      

3,495,886  

      

4,148,380  

      

5,790,587  

      

6,726,151  

      

3,628,241  

          

Unintentional    6,815.7   7,422.5   7,480.0   7,618.0   8,050.0   8,210.9   8,107.9   7,921.1  

Drowning   0.7   0.8   0.9   1.4   2.2   5.0   7.5   9.9  

Excessive heat   1.1   0.8   2.3   4.2   9.5   22.7   51.8   153.3  

Bites and Stings   270.6   355.6   387.1   465.9   590.4   713.8   799.5   817.9  

Overexertion   806.8   893.4   892.4   897.2   920.0   908.8   873.8   837.7  

          

Adverse Effects or 

Medical Misadventures 

  758.9   795.0   802.7   815.0   837.4   847.7   870.6   867.6  

          

Intentional - Assault    361.7   398.4   413.9   428.2   444.7   456.5   469.4   483.7  
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Figure 4.1 Predicted incidence rates and 95% confidence bands for emergency department visits 

for selected unintentional injury types, by age group.  North Carolina, April-October 2008-2013. 

 

Panel A. Drowning 

 
Panel B. Excessive heat 

 
Panel C. Bites and stings 

 
Panel D. Overexertion 

 
Footnote to Figure 4.1. We used a natural cubic spline for daily mean temperature with the 

lowest knots set at 60.4F (40%ile of the temperature range).  Models are adjusted for calendar 

year, weekday, and day of year.   Figures for additional injury types are presented in eFigure 1 in 

online appendix 1.
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Figure 4.2 Predicted incidence rates and 95% confidence bands for emergency department visits for adverse effects and medical 

misadventures, by sex and age group.  North Carolina, April-October 2008-2013. 
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Figure 4.3 Predicted incidence rates and 95% confidence bands for emergency department visits for intentional assault, by sex and age 

group.   North Carolina, April-October 2008-2013. 
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CHAPTER 5. TEMPERATURE AND CAUSE-SPECIFIC EMERGENCY 

DEPARTMENT VISITS 

5.1. Introduction  

Exposure to high ambient temperature has long been recognized as hazardous.  

Epidemiological studies have convincingly demonstrated excesses in all-cause mortality in the 

period during, and shortly after, exceptionally high temperatures.18,20,24  More recently, 

associations between heat and human health have been the topic of more detailed study, 

examining morbidity as well as mortality, and the effects of ambient temperature not only on 

exceptionally hot days, but also across the range of temperatures experienced in a region.21,47,84.  

While prior studies have examined all-cause mortality or morbidity in aggregate, or 

focused narrowly on cardiovascular and respiratory effects, a few recent studies have used a 

cause-specific approach to systematically examine the impact of heat on mortality32,33 and 

hospital admissions34,83 across a broad array of disease groups. Findings from these cause-

specific studies provide a fuller description of the health impact of ambient heat and the range of 

effects that can occur when our bodies’ natural thermoregulatory systems are overtaxed.1 

In the current study, we examine associations between temperature and a broad range of 

causes for emergency department visits. Prior research has found important differences between 

mortality and hospital admissions resulting from heat (Kovats, Hajat, and Wilkinson 2004; 

Linares and Diaz 2008); patterns relating heat to emergency department visits may differ still. In 

comparison to studies for those higher-severity outcomes, studies of emergency department visits 

can expose relationships between heat and less medically-intensive or fatal conditions, and draw 
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conclusions that extend beyond already-compromised populations, such as older adults, who 

receive more emphasis based on their preponderance in research that relies only on mortality or 

admissions data.  

In this study, we analyzed data from a state-wide surveillance system that captured all 

emergency department visits in North Carolina during the typically warm months of April 

through October in 2008-2013. Using an age-stratified and cause-specific approach, we examine 

the exposure-response relationships between county-level average daily mean temperature and 

emergency department visits for a comprehensive set of clinically-related diagnosis groups 

constructed using an existing validated diagnosis clustering system.  

5.2. Methods 

We obtained data on all emergency department visits recorded in the North Carolina 

Disease Event Tracking and Epidemiological Collection Tool (NC DETECT) during the months 

of April through October in 2008-2013. This statewide surveillance system includes visit-level 

administrative data from all civilian, 24/7 hospital-based emergency departments in North 

Carolina, including patients’ age, sex, and county of residence as well as the visit date and 

selected clinical information such as chief complaint and discharge diagnoses. Emergency 

department visits by non-residents of North Carolina were excluded. 

Up to 11 discharge diagnosis codes can be recorded for each emergency department visit 

in NC DETECT; we selected the first-listed diagnosis, coded according to the International 

Classification of Diseases, 9th Revision, Clinical Modification (ICD-9-CM).105 We then 

categorized these individual ICD-9-CM diagnosis codes into diagnosis groups using the multi-

level version of the Agency for Healthcare Research and Quality’s (AHRQ’s) Clinical 

Classification Software (CCS) diagnosis clustering system.109 Also referred to as a “clinical 
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grouper”, the CCS is a diagnosis categorization scheme that condenses the more than 14,000 

individual ICD-9-CM diagnosis codes into a more manageable set of clinically-meaningful 

diagnosis groups.109 Although other diagnosis clustering tools are available, the CCS was 

previously found to have the best coverage for the types of diagnoses that are typically 

encountered in the emergency department 110 and has been used successfully in previous studies 

with NC DETECT data.111 

The multi-level version of the CCS assembles diagnosis groups hierarchically. We 

categorized emergency department visits into the 18 groups at the highest level of aggregation in 

the CCS and all groups were retained in the analyses of total emergency department visits and 

displayed in Table 1. Two groups, “Congenital anomalies” and “Residual Codes” were not 

reported separately elsewhere, however. The former are suppressed due to low numbers, while 

the latter are not displayed because this group is relatively non-specific compared to the others. 

Although the “Symptoms/signs” group is also relatively non-specific, we chose to keep it in our 

analyses because it includes many non-specific ailments, such as abdominal pain, fever, 

nausea/vomiting, and syncope, that commonly present in the emergency department. Although 

this group of codes does not point to specific disease diagnoses, it represents a major portion of 

emergency department utilization. 

Annual mid-year population data for each county, stratified by age group and sex, were 

collated from the Intercensal Population Estimates (2008-2009) and the Current Estimates (2010-

2013) databases from U.S. Census Bureau.124,125  From these data, we assembled six age groups 

which are used as population denominators throughout the analysis: 0-9, 10-19, 20-44, 45-64, 

65-74, and 75 or older, with no age adjustment within these categories. 
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Diagnosis codes were missing for some records. When the percentage of visits with zero 

recorded diagnosis codes exceeded 50% in a given county on a given day, we removed both the 

visit counts and the population person-time denominators for that county-day in the calculation 

of rates and in the grouped data used for the regression analyses. 

5.2.1 Meteorological Data 

Daily temperature observations were provided by the NC State Climate Office from their 

meteorological archive database, the NC Climate Retrieval and Observations Network of the 

Southeast (NC CRONOS). To maximize the spatial extent of our study, we queried both 

automated and non-automated monitoring stations throughout the state since some counties, 

particularly in rural areas, are equipped with only non-automated stations. Seven counties 

(Alleghany, Camden, Catawba, Clay, Greene, Jones, and Perquimans) had no monitoring 

stations and were excluded from the study. 

To evaluate the meteorological data quality, we generated time series and distribution 

plots to identify potential data errors. Gross outliers were removed with range checks based on 

NC climate normals; more proximal outliers were manually reviewed by comparing them to 

values from nearby stations. Additionally, values from six monitors in sparsely populated high-

elevation areas were excluded. 

Daily mean values for each station were calculated either as the mean of the 24 hourly 

observations from automated stations, or as the average of the daily minimum and maximum 

temperatures recorded at non-automated stations. In counties with more than one monitor, we 

calculated a county-level average daily mean temperature by averaging all of the county’s non-

missing station-level daily means. To focus on the effects of heat, observed temperatures less 

than 40F were excluded. 
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5.2.2 Statistical Methods 

We ascertained the number of emergency department visits for each of CCS diagnosis 

groups for every combination of county, age group, and sex for each study day. These grouped 

data were merged with temperature data at the county-day level and with population data at the 

year-sex-age level to assemble the final analysis dataset. 

Using this grouped time-series data, we fit Poisson regression models, restricted by age 

group, to evaluate the age-specific exposure-response patterns for each CCS group. We 

evaluated both linear and non-linear (restricted cubic spline) parameterizations for temperature 

for each model. Covariates included indicator terms for calendar year, an indicator term for day 

of week (weekend vs. weekday), and a flexible B-spline smoothing function for day of year.99,100 

We also included the natural logarithm of the county-year-age-specific population estimates as 

an offset term. All regression analyses were performed in SAS (SAS Institute, Cary, NC) version 

9.4 using the GLIMMIX and PLM procedures.  

Age-group-specific incidence rate curves and 95% confidence bands from both spline 

and linear temperature parameterizations were plotted for each CCS diagnosis group.  Each plot 

includes two lines: one based on a natural cubic spline parameterization of county-level daily 

mean temperature, shown with its corresponding 95% confidence band, and the other based on a 

model with temperature entered as a continuous term (dashed line). We also report the incidence 

rate ratio and 95% confidence interval for a 10F increase, derived from the model with the 

linear parameterization of temperature, recognizing that such summarization to a linear trend is 

an oversimplification of more nuanced non-linear exposure-response associations. 
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While we focus on the leading causes of emergency department visits in reporting our 

results, electronic Appendix 1 provides the temperature-response for all major CCS diagnosis 

groups, by age group. 

5.3. Results 

A total of 13.2 million emergency department visits with diagnosis codes that matched 

categories in the CCS grouping system were recorded in NC DETECT during the months of 

April through October in 2008-2013 for the 93 counties with available meteorological data. 

Table 5.1 provides crude incidence rates of emergency department visits for each of the 18 top-

level CCS diagnosis groups, stratified by age group, during the study period. Injury/Poisoning 

and Symptoms/Signs consistently ranked in the top three CCS groups with the highest incidence 

rates, though Circulatory diagnoses overtook them in the oldest three age groups. Figure 5.1 

contains the exposure-response associations for the top three CCS groups by incidence rate in 

each age group, which we describe below. Graphs of the age-specific exposure-response 

association for the remaining CCS groups are presented in Appendix eFigures C.1-C.6. 

The three leading diagnosis groups for emergency department visits among children age 

0-9 years old were Injury/Poisoning, Symptoms/Signs, and Respiratory diagnoses, respectively 

(Table 5.1). The association between temperature and emergency department visits for 

Injury/Poisoning followed an inverted U-shaped curve (Figure 5.1, Row 1). Symptoms/Signs 

exhibited a hockey-stick shape, with a flat section at the lower tail of the temperature range 

followed by a shallow, but monotonically increasing trend at warmer temperatures. The curve for 

Respiratory diagnoses was U-shaped, with higher rates at the tails of the temperature range. 

Among adolescents aged 10-19 years old, the top three causes of emergency department 

visits were Injury/Poisoning, Symptoms/Signs, and Nervous/Sense diagnoses, respectively 
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(Table 5.1). As in the younger children, the exposure-response curve for Injury/Poisoning 

followed an inverted U-shaped curve (Figures 5.1, Row 2) and the curve for Symptoms/Signs 

followed a hockey-stick shape, increasing steadily with temperature after a flatter section at the 

lowest temperatures. The rate for the Nervous/Sense group generally increased with temperature, 

though the slope was steeper at temperatures above 65-70F. 

Injury/Poisoning, Symptoms/Signs, and Musculoskeletal diagnoses were the leading 

three CCS group among 20-44 year olds (Table 5.1). For all three diagnosis groups, the 

incidence rates increased linearly to between 70-80F, then tapered off at the highest 

temperatures (Figure 5.1, Row 3) 

Injury/Poisoning and Symptoms/Signs ranked 1st and 3rd, respectively, for 45-64 year 

olds (Table 5.1). Circulatory diagnoses appeared among the top 6 groups for the first time in the 

45-64 year old age group, where it ranked 2nd. Injury/Poisoning visits increased with 

temperature, though the slopes were flatter at the tails than in the central temperature range 

(Figure 5.1, Row 4). Circulatory diagnoses increased with temperature and had a steeper slope 

above an inflection point between 60-70F. Symptoms/signs exhibited a non-monotonic step-like 

pattern, with increasing rates overall, but flat or slightly negative sections between 55-65F and 

above 80F. 

The top three diagnosis groups for the 65-74 age group were Circulatory, 

Injury/Poisoning, and Symptoms/Signs (Table 5.1). Both Circulatory diagnoses and 

Injury/Poisoning increased linearly with temperature (Figures 5.1, Row 5). Symptoms/Signs 

generally increased with temperature, but had mild downturns at the tails. 

Circulatory, Injury/Poisoning, and Symptoms/Signs were also the top three diagnosis 

groups for the oldest adults (Table 5.1). For Circulatory diseases, the rate increased with 
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temperature, with a minor upturn in the exposure-response function at the very highest 

temperatures (Figure 5.1, Row 6). Injury/Poisoning had a slightly U-shaped curve, with the 

lowest rate between 60-70F. Symptoms/Signs generally increased with temperature, but dipped 

at the tails.  

Figure 5.2 provides a forest plot summarizing the exposure-response associations for 

each age group and for total emergency department visits and each of the CCS groups, derived 

from models where temperature is parameterized as a linear term. The values plotted represent 

the estimated incidence rate ratio and 95% confidence interval for a 10F increase in county-

level average daily mean temperature. The linear assumption gains simplification, but at the 

acknowledged expense of obscuring indications of threshold-like trends (e.g., pregnancy and 

birth related admissions age 10-19 and mental illness age 20-44 (Appendix eFigures C.2 and 

C.3), U-shaped trends (e.g., respiratory age 10-19 (Appendix eFigure C.2)), dome-shaped trends 

(e.g., genitourinary age 0-9 (Appendix eFigure C.1)) and other potential non-linearities. 

Incidence rate ratios for total emergency department visits ranged from 1.022 (95%CI: 

1.021, 1.024) for 20-44 year olds to 1.063 (95%CI: 1.061, 1.065) for 45-64 year olds (Figure 

5.2). In each age group, the incidence rate ratios for nearly all disease groups were above the null 

and the 95% confidence intervals were narrow (Figure 5.2). As noted above, Mental Illness was 

an exception; the point estimate for the incidence rate ratio for this set of diagnoses was below 

the null in all age groups. Aside from Mental Illness, Digestive diagnoses among 20-44 year olds 

was the only combination in which both the point estimate and the upper 95% confidence limit 

were below the null.   
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5.4. Discussion 

We found positive associations, with evidence of non-linearity in several cases, between 

county-level average daily mean temperature and emergency department visit rates for most of 

the major categories in the CCS diagnosis classification system in each age group, with relative 

increases in estimated incidence rates of up to 12% of their baseline values for each 10F 

increment. The highest incidence rate ratios were for Pregnancy/birth diagnosis codes; among 

10-19 and 20-44 year olds, rates of emergency department visits resulting in pregnancy-related 

diagnoses increased approximately 12% of their baseline values per 10F increment. 

When arranged by the absolute magnitude of the mean incidence rates in the observed 

temperature range, however, Injury/Poisonings and Symptoms/Signs rise to the forefront among 

the leading causes for all age groups, while Circulatory diseases predominated among the older 

age groups. Although the incidence rate ratios for these leading diagnosis groups appear modest, 

in the range of 1% to 7% of the baseline values per 10F increment, they represent substantial 

numbers of excess emergency department visits as temperatures increase. Injury has received 

relatively little attention in the epidemiological literature in this area of research, but the few 

cause-specific studies that have included a category for injuries have noted positive 

associations.32,33,38 Emergency department data is well-suited to studying injury, since 

approximately 9 out of 10 injury-related emergency department visits result in discharge to home 

and therefore would not appear in hospital admission records. More detailed study of the 

relationship between temperature and injury is warranted. 

The Symptoms/signs diagnosis group, which was among the top 3 causes in all age 

groups, includes common ailments such as abdominal pain, fever, nausea, and vomiting. Relative 

excess rates for this group ranged from approximately 3% to 7%. Since these symptoms are 
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generic and not tied to specific diseases, previous cause-specific studies may have overlooked 

these common, yet difficult-to-categorize, types of visits. Unfortunately, the non-specific nature 

of these diagnosis codes makes it difficult to draw any etiologic conclusions from them or 

develop potential prevention strategies to reduce them.  

Cardiovascular and respiratory diseases have been a common focus in the heat-health 

literature.38,141,142 In this study, rates for the Circulatory diagnosis group (which includes 

cardiovascular diseases) increased with temperature in all age groups, although the absolute 

magnitude of these increases was greatest in the older age groups where overall incidence rates 

for Circulatory diseases was highest. Interestingly, however, trends for Respiratory diseases were 

fairly flat in the 65-74 and 75 and older age groups where the overall rates were highest. 

Our finding of an inverse relationship between temperature and emergency department 

visit rates for Mental Illness differs from some previous studies which have found increases in 

mental or psychiatric disorders. 32,34,143,144  

Strengths of this study include the large number of emergency department visits captured, 

the state-wide nature of the surveillance system, and the use of a standardized, validated method 

for grouping ICD-9-CM diagnoses. This study extends previous research into the effects of heat 

on cause-specific outcomes by using emergency department visits records instead of hospital 

admissions or mortality, and by examining these associations across all age groups. By doing so, 

we capture heat impacts on some conditions that do not typically necessitate admission or result 

in death, but are still important constituents of overall morbidity burden and healthcare 

utilization, such as Injury/Poisoning and Symptoms/Signs. Injury in particular has received little 

attention in the epidemiological literature on heat-health effects, but was found to be a major 

contributor to the overall impact of heat on emergency department visit rates in our study. 



 

62 

 Several limitations apply to this study. First, we use only the first-listed diagnosis code to 

characterize each visit; while this code is presumed to describe the main reason for the visit, we 

cannot definitively confirm the primacy of this diagnosis over other assigned diagnoses. Second, 

by aggregating to the highest level of the CCS hierarchy, we may be masking intra-group 

heterogeneity. Third, we examine only same-day effects of temperature and do not consider 

lagged effects; previous research has found that heat effects tend to accrue quickly, within the 

same day or the first subsequent day. Finally, we did not have humidity or humidity-related 

metrics such as apparent temperature from many counties and did not evaluate humidity as a 

potential confounder or effect-measure modifier of the temperature-emergency department visit 

associations; however, previous research has indicated that since these alternate 

biometeorological metrics are typically highly correlated with temperature, the overall exposure-

response patterns are often little-changed when different measures are used.116,121 

5.5. Conclusions 

This study contributes additional evidence supporting the impact of heat on a broad array 

of health conditions. By assessing the relative measures of effect in the context of the absolute 

magnitude of the incidence rates for each diagnosis group, we also shift the attention of previous 

research from cardiovascular and respiratory diseases to outcomes that are commonly seen in the 

emergency department, such as injury and general symptoms, especially among the younger age 

groups. Along with studies of mortality and hospital admissions, studies of emergency 

department morbidity are necessary for fully appreciating the full impacts of heat on human 

health. 
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5.6. Tables and Figures 

Table 5.1 Crude incidence rates (per 100,000 person-years) of emergency department visits, grouped by discharge diagnosis using the 

multi-level version of the Clinical Classification Software, April-October 2008-2103, North Carolina. 

 
 Age Group (years) 

Clinical Classification Software Group, Multi-level 

version 
≤9 10-19 20-44 45-64 65-74 ≥75 

1. Infectious and parasitic diseases  1,673.7 667.1 846.0 552.7 659.0 1296.1 

2. Neoplasms  17.0 17.2 78.4 224.5 452.0 653.4 

3. Endocrine; nutritional; and metabolic diseases and 

immunity disorders  

210.8 288.2 965.0 1,762.1 2,509.9 4,040.4 

4. Diseases of the blood and blood-forming organs  88.2 96.7 248.8 202.5 349.5 785.6 

5. Mental illness  166.4 1,552.1 3,465.6 2,192.5 1,160.0 1,968.9 

6. Diseases of the nervous system and sense organs  3,902.3 2,317.0 4,385.2 2,884.1 2,274.2 3,282.2 

7. Diseases of the circulatory system  173.0 702.5 2,818.1 5,102.3 7,316.7 12,842.5 

8. Diseases of the respiratory system  7,783.2 3,589.3 4,179.1 3,259.7 4,098.9 6,560.1 

9. Diseases of the digestive system  1,625.8 1,205.8 3,579.1 2,254.5 2,334.8 3,931.7 

10. Diseases of the genitourinary system  866.27 1,813.1 3,615.7 1,753.8 2,331.5 4,714.8 

11. Complications of pregnancy; childbirth; and the 

puerperium  

a 858.0 1,661.8 a a a 

12. Diseases of the skin and subcutaneous tissue  1,703.6 1,244.7 2,051.8 1,042.5 720.6 956.5 

13. Diseases of the musculoskeletal system and connective 

tissue  

784.1 2,063.48 4,845.7 4,094.5 3,031.5 4,258.1 

14. Congenital anomalies  49.7 15.3 17.9 14.8 19.6 31.1 

15. Certain conditions originating in the perinatal period  349.4 a a a a a 

16.  Injury and poisoning  8,317.4 8,852.2 8,508.2 5,229.2 4,706.1 9,298.6 

17. Symptoms; signs; and ill-defined conditions and factors 

influencing health status  

7,980.7 4,658.3 7,188.1 4,714.1 4,840.8 7,842.0 

18. Residual codes; unclassified; all E codesb 417.6 326.5 727.7 721.7 862.2 1,810.5 

Total 36,110.3 30,268.6 49,183.6 36,014.8 37,669.2 64,276.2 
a Cells were suppressed where age group and disease/condition pairings are incongruous; visit counts from these cells were retained in 

the calculation of Total emergency department visit rates. 
b E-codes are stored in a separate set of fields in the NC DETECT data; therefore this group is composed only of diagnosis codes in 

CCS group 18.
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Figure 5.1 Predicted incidence rates of emergency department visits by county-level average 

daily mean temperature for the three highest-incidence Clinical Classification Software groups in 

each age group, North Carolina, April-October 2008-2013.  

Solid line and 95% confidence band: Temperature as natural cubic spline. Dashed line: 

Temperature as linear term. Note: Y-axes are log-scaled and the ranges are age-group specific. 

CCS group names are abbreviated; refer to Table 1 for full CCS group names. Not sorted by 

rank. 
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Figure 5.2 Cause-specific incidence rate ratios for a 10F increase in county-level average daily mean temperature, by age group, in 

North Carolina, April-October 2008-2013, from a model with a linear parameterization of temperature.  

CCS group names are abbreviated; refer to Table 5.1 for full CCS group names. Disease and age group combinations that are 

incongruous are displayed as “NA” (see also Table 5.1). 
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CHAPTER 6. CONCLUSIONS 

6.1. Overview 

This dissertation project aimed to describe the exposure-response associations between 

ambient temperature and a broad range of diseases and injuries resulting in emergency 

department visits among North Carolina residents. We used data for the months of April-October 

2008-2013 from a state-wide surveillance system that captured all emergency department visits 

in North Carolina during that period, along with daily meteorological monitor data, to model 

these associations using Poisson regression.  

6.2. Strengths  

This dissertation project benefits from the strong surveillance capability of the NC 

DETECT system. With several years of data now accumulated, this system is a rich database for 

epidemiological research. We also benefit from the geographic coverage of meteorological 

monitoring stations in North Carolina, which is enhanced by the presence of the ECONET 

network of stations maintained by North Carolina State Climate Office. In both aims, we take 

advantage of existing, standardized categorization schemes for grouping emergency department 

visits into meaningful clusters. We also stratified by age and sex, allowing us to examine 

heterogeneity by these strata in the exposure-response associations. 

By using emergency department visit data, we extend the heat-health literature beyond 

the level of mortality and hospital admissions that predominates our current understanding of the 

effects of heat on health outcomes. We also extend the current literature by examining injuries 

and other external causes, including adverse medical effects, which have been excluded from 
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many previous studies. Since injuries requiring emergency care are very frequent but in most 

cases do not result in hospital admission or fatality, having information at this level of morbidity 

is essential for understanding the associations between temperature and injury. The same can be 

said for other diseases or conditions that have high rates of emergency department visits but are 

typically non-fatal and can be addressed effectively in the emergency department without 

admission—these simply would not be present in studies that include only the most serious 

outcomes of morbidity at the hospital admission level and mortality. 

6.3. Limitations 

Several general limitations apply to this dissertation project. As with any study where 

exposure is assessed at an aggregate level, exposure misclassification may have occurred if 

personal temperature exposures differ greatly from the temperatures reported from the 

monitoring stations; however, the spatial and temporal auto-correlation of temperature 

potentially ameliorates the degree to which this misclassification can influence our results. 

Incomplete, implausible, or missing data, both in the health data and the meteorological data, 

required us to exclude some data points. We did not assess lagged temperature effects and thus 

can only comment on the effects of same-day temperatures.  

Although the use of existing categorization systems is beneficial, it also has the potential 

to mask sub-group heterogeneity in the exposure-response associations. In this project, for 

example, we did not investigate sub-types of cardiovascular disease as some previous researchers 

have, and instead emphasize the comprehensiveness of our approach. 

One methodological tension in this type of research is finding the right balance between 

detail and summarization in the interpretation of exposure-response associations that exhibit 

some degree of non-linearity, as did many of the associations in this project. In Aim 2 of this 
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project, we modeled temperature with both flexible and linear parameterizations, and we present 

both results graphically. We describe the shapes of the flexibly-modeled exposure-response 

associations, and also report incidence rate ratios derived from the linear parameterization of 

temperature. These two ways of representing the associations can be at odds with each other, 

however, when the exposure-response associations begin to deviate from a purely linear trend. 

The difficult task, then, is to arbitrate the conflicting priorities of adequately acknowledging any 

non-linearity while also providing useful numeric summarizations that capture the macro-level 

associations.  

Previous cause-specific heat-health studies involving a large number of causes of 

morbidity or mortality have either modeled temperature as a continuous term or have 

dichotomously compared incidence during heat wave periods to that during non-heat wave 

periods.32–34,83 By design, both of those approaches result in single, summarized effect estimates 

for the associations between heat and each cause, even when some of those relationships may, in 

fact, be non-linear over the temperature spectrum.  While our approach yields more nuanced 

information, it also poses new challenges in interpreting both sets of results. 

6.4. Summary of Findings and Conclusions 

In our analyses addressing Aim 1, we examined injury-related emergency department 

visits and grouped these visits based on injury intent and mechanism, as coded with ICD-9-CM 

external cause of injury codes. We focused on the associations between temperature and the 

three leading causes of injury-related emergency department visits: unintentional injury, adverse 

medical effects, and intentional assault. We found heterogeneity in the associations between 

temperature and different mechanisms of unintentional injury; the strongest positive associations 

were for bites and stings, drowning, excessive heat, cutting/piercing instruments, and unspecified 
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mechanism. We also found positive associations between temperature and adverse medical 

effects; these associations were strongest among older adults. Finally, we found that emergency 

department visits resulting from intentional assault increased with temperature among 

adolescents and young adults of both sexes. 

In our analyses addressing Aim 2, we expanded our scope to examine age-stratified 

associations between temperature and a comprehensive set of diagnoses, grouped into clinically-

meaningful clusters using the Clinical Classification Software system. Total emergency 

department visits increased with temperature in each age group. Temperature was also positively 

associated with most of the diagnosis groups in each age group, with incidence rate ratios of up 

to 1.12 for each 10F increment when summarized with linear temperature trends. Ranked by 

absolute magnitude of mean incidence rates, Injury/Poisonings and Symptoms/Signs rose to the 

forefront as being among the top three causes in all age groups, while Circulatory diseases 

ranked highest among the older age groups. Even though the incidence rate ratios in these groups 

were relatively modest, they represent a large number of excess emergency department visits 

when temperatures rise. This study offers strong evidence of positive associations between daily 

mean temperatures and wide range of conditions resulting in emergency care, and highlights the 

importance of injury morbidity as a contributor to the overall population health impact of heat. 
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 CHAPTER 4 APPENDIX 1 

eTable A.1 Description of inclusion and exclusion criteria for injury-related emergency department visits. 

 

 
Visits 

Excluded 

Visits 

Retained 

County-days 

Excluded 

County-days 

Retained 

A. Visit-level exclusions   

1.  Full dataset, all emergency department visits - 26,116,073 - 219,200 

2.  Reduce to April-October 10,739,079 15,376,994 90,800 128,400 

3.  Identify injuries by diagnosis code or E-code 11,549,860 3,827,134 - 128,400 

4.  Exclude injury visits with no E-code 423,916 3,403,218 - 128,400 

5.  Include only visits with first-listed intent E-codes for: 

Unintentional (excluding motor vehicle crashes) 

Adverse effects/ medical misadventures 

Intentional assault 

533,770 2,869,448 - 128,400 

6.  Exclude if sex was missing/other 164 2,869,284 - 128,400 

      

B. County or county-day exclusions   

7. Exclude 7 counties that had zero meteorological stations 83,459 2,785,825 8,988 119,412 

8. Exclude county-days where diagnosis or E-code missingness 

crossed 50% threshold 

145,713 2,640,112 14,671 104,741 

 

9. Exclude county-days based on meteorological dataa, where either: 

a) All monitors in a county were missing for daily mean 

temperatures (1234 county-days), or  

b) Calculated county-level average daily mean temperatures 

were <40F (266 county-days) 

23,827 2,616,285 1,350 103,391 

a Note: Although 119 individual monitor observations were removed due to implausible values, none of these removals caused a 

whole county-day to be set to missing. In each case, other monitors in the county were still supplying valid temperature values and we 

could still calculate the county-level average daily mean temperature. There were 1500 county-days that met these meteorological 

exclusion criteria, but 150 of them were already excluded due to missing diagnosis or E-code data. 
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eTable A.2 Intent- and mechanism-specific injury-related emergency department visit rates by county-level daily mean temperature 

(F). North Carolina, April-October 2008-2013. 

 

  

Crude incidence rate per 100,000 person-years, 

by county-level daily mean temperature (F) 

40-<50 50-<55 55-<60 60-<65 65-<70 70-<75 75-<80 ≥80 

Person-years  

      

851,226  

      

1,361,312  

      

2,433,709  

      

3,495,886  

      

4,148,380  

      

5,790,587  

      

6,726,151  

      

3,628,241  

          

Unintentional    6,815.7   7,422.5   7,480.0   7,618.0   8,050.0   8,210.9   8,107.9   7,921.1  

Caught in/between 

objects 

  118.7   128.0   126.6   122.0   130.5   127.1   126.4   122.0  

Cutting/piercing 

instruments 

  487.2   540.0   551.8   559.7   606.5   640.7   650.3   647.0  

Drowning   0.7   0.8   0.9   1.4   2.2   5.0   7.5   9.9  

Falls   2,640.7   2,796.1   2,772.2   2,774.6   2,871.7   2,849.3   2,703.7   2,509.1  

Fire/burns   110.2   109.6   114.3   116.9   122.5   132.3   137.8   142.5  

Firearms   30.7   37.3   35.3   31.9   32.3   36.1   33.0   31.5  

Foreign body   146.7   169.5   171.1   173.1   179.5   181.6   189.9   189.6  

Late effects of injury   54.9   49.6   48.8   50.2   52.6   52.2   52.8   49.7  

Machinery   41.5   40.0   39.6   41.2   40.5   38.3   35.5   31.9  

Excessive heat   1.1   0.8   2.3   4.2   9.5   22.7   51.8   153.3  

Bites and Stings   270.6   355.6   387.1   465.9   590.4   713.8   799.5   817.9  

Natural or 

environmental 

factorsa 

  10.1   8.1   8.7   9.1   9.0   7.3   9.3   9.5  

Other specified, NEC   213.3   231.0   221.6   224.2   244.7   250.4   243.4   222.6  

Other transportation   92.7   121.3   132.5   141.1   150.4   164.2   153.3   138.2  

Overexertion   806.8   893.4   892.4   897.2   920.0   908.8   873.8   837.7  

Poisoning   132.6   148.5   148.2   146.9   158.5   166.4   165.7   162.0  

Struck by, against   961.6   1,061.7   1,097.7   1,106.4   1,133.7   1,108.0   1,057.7   1,011.7  

Suffocation   6.5   7.2   7.1   7.4   7.7   7.5   7.7   7.2  

Unspecified   689.4   724.0   721.9   744.5   787.7   798.9   808.9   827.9  
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Adverse Effects / 

Medical Misadventures 

  758.9   795.0   802.7   815.0   837.4   847.7   870.6   867.6  

          

Intentional - Assaultb   361.7   398.4   413.9   428.2   444.7   456.5   469.4   483.7  

Cutting/piercing 

instruments  

 24.4   28.9   27.9   31.2   31.3   33.0   36.6   37.8  

Firearms   9.0   11.8   11.7   11.4   12.0   12.3   14.4   16.1  

Late effects of injury   5.4   5.2   5.1   6.1   6.1   5.5   6.0   5.8  

Other specified, NEC   81.3   86.2   96.8   96.8   99.8   106.2   106.2   108.1  

Struck   188.7   208.8   215.0   219.7   227.0   230.5   235.7   246.1  

Unspecified   51.3   56.2   55.9   61.3   67.0   67.5   69.0   68.4  

          
a Excluding excessive heat and bites/stings. 
b Includes poisoning and suffocation, not shown due to small cell sizes. 
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eFigure A.1 Predicted incidence rates and 95% confidence bands for emergency department 

visits for additional selected unintentional injury types, by age group, in North Carolina, April-

October 2008-2013, adjusted for calendar year, weekday, and day of year.  

 

Panel A. Falls 

 
Panel B. Struck by, against 

 
Panel C. Cutting/piercing instruments 

 
Panel D. Unspecified 

 
Footnote to eFigure A.1. For the models presented in eFigure A.1, we used a natural cubic spline 

for daily mean temperature with the lowest knots set at 60.4F (40%ile of the temperature range) 

to restrict the slope below that temperature to be linear. 
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Unadjusted Models: Results below are for models that are not adjusted for calendar year, 

weekday, or day of year. 

 

eFigure B.1 Predicted incidence rates and 95% confidence bands for emergency department 

visits for selected unintentional injury mechanisms, by age group. North Carolina, April-October 

2008-2013. Unadjusted model. 

 

Panel A. Falls 

 
Panel B. Struck by, against

 
Panel C. Cutting/piercing instruments

 
Panel D. Drowning
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Panel E. Excessive heat

 
Panel F. Bites and stings

 
Panel G. Overexertion

 
Panel H. Unspecified

 
 

Footnote to eFigure B.1. For the models presented in eFigure B.1, we used a natural cubic spline 

for daily mean temperature with the lowest knots set at 60.4F (40%ile of the temperature range) 

to restrict the slope below that temperature to be linear. 
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eFigure B.2 Predicted incidence rates and 95% confidence bands for emergency department 

visits for adverse effects and medical misadventures, by sex and age group, in North Carolina, 

April-October 2008-2013. Unadjusted model. 
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eFigure B.3 Predicted incidence rates and 95% confidence bands for emergency department 

visits for intentional assault, by sex and age group, in North Carolina, April-October 2008-2013. 

Unadjusted model. 
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eFigure C.1 Predicted incidence rates of emergency department visits for the top-level Clinical 

Classification Software groups for ages 0-9 years, North Carolina, April-October 2008-2013. 

Solid line and 95% confidence band: Temperature as natural cubic spline. Dashed line: 

Temperature as linear term. Note: Y-axes are log-scaled and the ranges decrease with each row. 

CCS group names are abbreviated; refer to Table 1 for full CCS group names. 
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eFigure C.2 Predicted incidence rates of emergency department visits for the top-level Clinical 

Classification Software groups for ages 10-19 years, North Carolina, April-October 2008-2013. 

Solid line and 95% confidence band: Temperature as natural cubic spline. Dashed line: 

Temperature as linear term. Note: Y-axes are log-scaled and the ranges decrease with each row. 

CCS group names are abbreviated; refer to Table 1 for full CCS group names.  
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eFigure C.3 Predicted incidence rates of emergency department visits for the top-level Clinical 

Classification Software groups for ages 20-44 years, North Carolina, April-October 2008-2013. 

Solid line and 95% confidence band: Temperature as natural cubic spline. Dashed line: 

Temperature as linear term. Note: Y-axes are log-scaled and the ranges decrease with each row. 

CCS group names are abbreviated; refer to Table 1 for full CCS group names. 
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eFigure C.4 Predicted incidence rates of emergency department visits for the top-level Clinical 

Classification Software groups for ages 45-64 years, North Carolina, April-October 2008-2013. 

Solid line and 95% confidence band: Temperature as natural cubic spline. Dashed line: 

Temperature as linear term. Note: Y-axes are log-scaled and the ranges decrease with each row. 

CCS group names are abbreviated; refer to Table 1 for full CCS group names.  
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eFigure C.5 Predicted incidence rates of emergency department visits for the top-level Clinical 

Classification Software groups for ages 65-74 years, North Carolina, April-October 2008-2013. 

Solid line and 95% confidence band: Temperature as natural cubic spline. Dashed line: 

Temperature as linear term. Note: Y-axes are log-scaled and the ranges decrease with each row. 

CCS group names are abbreviated; refer to Table 1 for full CCS group names. 

 

  



 

83 

eFigure C.6 Predicted incidence rates of emergency department visits for the top-level Clinical 

Classification Software groups for ages ≥75 years, North Carolina, April-October 2008-2013. 

Solid line and 95% confidence band: Temperature as natural cubic spline. Dashed line: 

Temperature as linear term. Note: Y-axes are log-scaled and the ranges decrease with each row. 

CCS group names are abbreviated; refer to Table 1 for full CCS group names. 
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