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Abstract

JOANNA FURNO: Ergodic Theory of p-adic Transformations
(Under the direction of Jane Hawkins)

For a fixed prime p, we examine the ergodic properties and orbit equivalence classes of

transformations on the p-adic numbers. Approximations and constructions are given that

aid in the understanding of the ergodic properties of the transformations. Transformation

types are calculated to give examples of transformations on measure spaces in various

orbit equivalence classes. Moreover, we study the behavior of orbit equivalence classes

under iteration. Finally, we give some preliminary investigations into the Haar measure

and Hausdorff dimension of p-adic Julia sets and possible representations of the Chacon

map as a 3-adic transformation.
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Introduction

The p-adic numbers were introduced over a century ago by Kurt Hensel. Since the

p-adic valuation depends on divisibility by a prime p, the p-adic numbers have long

been a tool in number theory. However, interest has recently spread to other branches

of mathematics. For example, the ergodic properties of various transformations on the

p-adic integers are studied with respect to Haar measure in [4–6, 9, 15, 26, 27, 30, 41,

42, 44–46]. This dissertation explores the ergodic properties and orbit equivalence of

translation and multiplication maps with respect to measures other than Haar measure.

The rational numbers Q are contained in the p-adic numbers Qp, which has a con-

struction similar to the construction of real numbers R. Although the constructions are

similar, the topological structure of Qp has some important differences from the topolog-

ical structure of R. Chapter 1 introduces the p-adic numbers, defines independent and

identically distributed (i.i.d.) product measures on the p-adic integers Zp, and discusses

approximations and constructions of p-adic translations. Chapter 2 explores the ergodic

properties of various transformations.

One theme that appears in the first two chapters is that translation by an element of

Z can behave differently than translation by an element of Zp \Z. The first difference ap-

pears in Section 1.3, which gives a sequence of approximations of translations by periodic

transformations. Proposition 1 states that the approximations converge differently in the

strong topology on the set of endomorphisms, depending on whether the approximated

transformation is translation by an integer or by another element of Zp. The second

difference appears in Section 2.2, where Theorem 4 gives measures that are nonsingular



for translation by an integer but singular for translation by other rational numbers in Zp.

This singularity result has consequences for other transformations considered in Section

2.3. Since nonsingularity is an important part of the definition of orbit equivalence, much

of Chapter 3 focuses on translation by an integer.

Orbit equivalence is a weaker notion of equivalence than isomorphism for measurable

systems. Chapter 3 gives examples of p-adic transformations in different orbit equiva-

lence classes, using an invariant called transformation type. A transformation on Qp is

constructed to give an example for one of the orbit equivalence classes. This transforma-

tion preserves Haar measure on Qp, which is a σ-finite measure that is not finite. Besides

being a representative for the orbit equivalence class, it is an example of a transformation

satisfying properties from infinite-measure ergodic theory of current research interest.

Since all translations have the same transformation type with respect to Haar mea-

sure, it is necessary to consider translations with respect to other i.i.d. product measures

in order to observe other transformation types. Moreover, translation by a positive inte-

ger is an iterate of translation by 1. After showing the existence of certain transformation

types, Chapter 3 examines how the transformation type of an iterate is related to the

transformation type of the original tranformation. The chapter concludes with a dis-

cussion of possible generalizations to the g-adic numbers, where g may be a composite

number.

The final two chapters give some preliminary results that will lead to future work.

The completion of the algebraic closure of the p-adic numbers Cp plays a role similar

to the complex numbers C. In particular, the Julia set of a polynomial with p-adic

coefficients can be defined on Cp. There are known results for the topological properties
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of the certain Julia sets contained in Zp. Chapter 4 examines the Haar measure and

Hausdorff dimension of these Julia sets.

Chapter 5 contains two more directions for future work. Although Theorem 4 states

that translation by a rational number can be singular with respect to an i.i.d. product

measure, Section 2.3 defines an averaged measure for which the translation is nonsingu-

lar. In Section 5.1, we discuss the possibility of calculating the transformation type of

translation by a rational number with respect to this averaged measure. Section 5.2 is

joint work with César Silva. It contains two possible descriptions of the Chacon map as

a 3-adic transformation.
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CHAPTER 1

Introduction to the p-adic Numbers

1.1. Definitions of the p-adic Numbers

In this section, we define the p-adic numbers and discuss their standard field opera-

tions, topology, and Haar measure. Further information and proofs of the facts stated in

this section are found in [5,47,57,59]. For the sake of comparison, we recall the standard

construction of the real numbers R. The absolute value | · | on the rational numbers Q is

defined by

|x| =


x if x ≥ 0

−x if x < 0,

This definition uses the standard linear order on Q. Then the set of real numbers R is

defined to be the topological completion of Q with respect to | · |.

In general, a valuation is a function v from a ring R to R+ such that

(a) v(0) = 0 and v(a) > 0 if a ∈ R\ {0},

(b) v(a+ b) ≤ v(a) + v(b) for all a, b ∈ R, and

(c) v(ab) = v(a)v(b) for all a, b ∈ R.

Moreover, a valuation v that satisfies the strong triangle inequality

(1) v(a+ b) ≤ max {v(a), v(b)} .



is called non-Archimedean because the strong triangle inequality implies that

v(na) ≤ v(a), for all n ∈ N and a ∈ R.

For a fixed prime p ≥ 2, the p-adic absolute value | · |p on Q is a non-Archimedean

valuation that is defined in terms of divisibility by p. If x is a nonzero rational number,

then it can be written uniquely as pn(a/b), for some integer n and relatively prime integers

a and b that are not divisible by p. Then the p-adic order is ordp(x) = n, and the p-adic

absolute value is defined by

|x|p =


p− ordp(x) if x 6= 0,

0 if x = 0.

For example, the 2-adic absolute value gives

|6|2 = |2 · 3|2 = 1/2,

|3|2 = |20 · 3|2 = 1, and

|1/4|2 = |2−2|2 = 4.

The set of p-adic numbers Qp is defined to be the topological completion of Q with respect

to | · |p. Addition and multiplication on Qp are defined by extending the definition on Q

by continuity. Finally, the set of p-adic integers is

Zp = {x ∈ Qp : |x|p ≤ 1} .
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Two valuations are equivalent if they induce the same topology. The trivial valuation

assigns the value 0 to 0 and the value 1 to all other elements of the ring. Ostrowski’s

theorem gives a classification of all nontrivial valuations on Q.

Ostrowski’s Theorem. Every nontrivial valuation on Q is equivalent to | · | or to | · |p

for some prime p.

If v1 and v2 are equivalent valuations on a ring R, then the completion of R with respect

to v1 is homeomorphic to the completion of R with respect to v2. Up to homeomorphism,

Ostrowski’s Theorem implies that R and Qp for primes p ≥ 2 are the only topological

completions of Q with respect to nontrivial valuations.

Alternatively, Qp may be defined as the set of formal Laurent series in p, with coeffi-

cients between 0 and p− 1,

Qp =

{
∞∑
i=n

xip
i : n ∈ Z, 0 ≤ xi ≤ p− 1 for all i ≥ n

}
.

As before, |0|p = |
∑∞

i=0 0 · pi|p = 0. If x is nonzero, then the order of x is ord(x) =

min {i ∈ Z : xi 6= 0}. As above, the p-adic absolute value is defined by |x|p = p− ord(x) =

p−n. Addition and multiplication are defined coordinatewise with carries. In this defini-

tion, the p-adic integers are the formal power series

Zp =

{
∞∑
i=0

xip
i : 0 ≤ xi ≤ p− 1 for all i ≥ 0

}
.

Although we use the formal series notation to express p-adic numbers, we also use the

facts from the first definition that Q ⊂ Qp and Z ⊂ Zp.
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The set Qp is a field under addition and multiplication. Since addition and multipli-

cation are continuous on Qp×Qp, the transformations

Ta : Zp → Zp

x 7→ x+ a

and

Ma : Zp → Zp

x 7→ ax

are continuous for each a ∈ Zp. Although every element of Zp has an inverse in Qp, the

inverse may not be an element of the ring Zp. The set of units in Zp is

Z×p = {x ∈ Zp : there exists y ∈ Zp such that xy = 1} .

Lemma 1. The element x =
∑∞

i=0 xip
i ∈ Zp is a unit if and only if x0 6= 0.

Remark 1. The map
∑∞

i=0 xip
i 7→

∑n−1
i=0 xip

i defines group homomorphism from Zp

onto Fpn , the finite field containing pn elements. This group homomorphism motivates

the definition of equality modulo pn for two elements in Zp. For x =
∑∞

i=0 xip
i and

y =
∑∞

i=0 yip
i in Zp, the equality x = y mod pn holds if

∑n−1
i=0 xip

i =
∑n−1

i=0 yip
i. Thus,

x = y mod pn if and only if |x− y|p ≤ p−n.

7



The p-adic absolute value | · |p is used to define a metric by dp(x, y) = |x − y|p for

x, y ∈ Qp. For r > 0, the ball of radius r centered at a ∈ Qp is

Br(a) = {x ∈ Qp : |x− a|p ≤ r} .

Since the p-adic absolute value of an element of Qp is always a power of p, we can assume

without loss of generality that r = pn for some n ∈ Z. The strong triangle inequality (1)

implies that

|a− b|p = max {|a|p, |b|p} , when |a|p 6= |b|p.

Moreover, the strong triangle inequality implies that every element in a ball is a center

of the ball. Thus, two balls of the same radius are either equal or disjoint. Then Zp is

a disjoint union of pn balls; for example, Zp =
⋃pn−1
i=0 Bp−n(i). Since the “closed” balls

Br(a) are both open and closed, the set of all “closed” balls forms a basis for the metric

topology, which is totally disconnected.

Haar measure on a locally compact abelian group is a translation-invariant measure

that is unique up to multiplication by a constant. Since Qp is a locally compact abelian

group under addition, there exists a unique Haar measure m that is normalized so that

m(Zp) = 1. Under this normalization, the Haar measure of a “closed” ball in Qp is equal

to its radius, that is, m(Br(a)) = r. Bryk and Silva give a nice construction of Haar

measure on Zp from this viewpoint in [9]. Since Zp is a compact subset of Qp that has

Haar measure 1, its role in Qp is similar to the role of [0, 1] in R.
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1.2. The p-adic Integers as a Product Space.

Besides the two definitions already given, the p-adic integers are isomorphic to a

product space. This isomorphism motivates the definition of product measures on Zp.

Haar measure is a special case of these product measures. Ergodic properties are known

for certain p-adic transformations with respect to Haar measure, but other behaviors

are possible with respect to other product measures. Some behaviors follow from known

results for product spaces. However, the group structure of the p-adic numbers prompts

more general questions that do not follow from known results. In this section, we give

the definition of isomorphism for measurable systems, review product spaces, and give

an isomorphism from Zp to a product space.

If a transformation T : (X,A, µ) → (X,A, µ) is measurable, then it is called an

endomorphism of (X,A, µ). If T is also invertible and measure-preserving, then T is

called an automorphism or (X,A, µ). We use the notation (X,A, µ;T ) for the system

consisting of an endoorphism T of a measure space X, and a σ-algebra A of measurable

sets in X. One notion of equivalence between such systems is isomorphism. For two

systems (X1,A1, µ1;S1) and (X2,A2, µ2;S2), a measurable map φ : X1 → X2 is a factor

map if there exist Y1 ∈ B1 and Y2 ∈ B2 such that µ(X1\Y1) = ν(X2\Y2) = 0, φ : Y1 → Y2

is surjective, φ ◦ S1 = S2 ◦ φ on Y1, and µ2(A) = µ1(φ
−1(A)) for all A ∈ A2. If φ is a

factor map that is also injective on Y1, then φ is an isomorphism of measure spaces.

If Xn = {0, 1, . . . , n− 1}, then the product space
∏∞

i=0Xn is the set of one-sided

sequences (x0, x1, x2 . . .), where xi ∈ Xn for all integers i ≥ 0. If Xn has the discrete

topology, then the standard product topology on
∏∞

i=0Xn has a basis made of up cylinder

9



sets of the form

k−1∏
i=0

ai

∞∏
i=k

Xn = {(x0, x1, x2, . . . : xi = ai for 0 ≤ i < k} .

The odometer O :
∏∞

i=0Xn →
∏∞

i=0Xn is defined in the following manner. If we have

x ∈
∏∞

i=0Xn such that xi = n− 1 for all i ≥ 0, then (O x)i = 0 for all i ≥ 0. Otherwise,

there exists an index j = min {i ∈ Z : i ≥ 0 and xi < n− 1}. In this case,

(O x)i =



0 if i < j,

xi + 1 if i = j,

xi if i > j.

A probability vector (q0, q1, . . . , qn−1) defines a probability measure q on Xn by q(i) =

qi. This probability measure on Xn induces a premeasure ν0 that is defined on cylinder

sets by

ν0

(
k−1∏
i=0

ai

∞∏
i=k

Xn

)
=

k−1∏
i=0

q(ai).

Then the Caratheodory construction gives an independent and identically distributed

(i.i.d.) product measure ν on the Borel σ-algebra N of measurable sets. Similarly, a

probability vector (q0, q1, . . . , qp−1) defines a premeasure µ0 on balls of Zp by

µ0

(
Bp−k

(
∞∑
i=0

aip
i

))
=

k−1∏
i=0

q(ai).

Again, the Caratheodory construction gives a measure µ on the Borel σ-algebra M of

measurable sets. We also call µ =
∏∞

i=0 {q0, q1, . . . , qp−1} an i.i.d. product measure. If all

of the weights are equal to 1/p, then the i.i.d. product measure equal to Haar measure.

10



If (q0, q1, . . . , qp−1) is a probability vector used to define both µ on Zp and ν on∏∞
i=0Xp, then

Φ : (Zp,M, µ) →

(
∞∏
i=0

Xp,N , ν

)
∞∑
i=0

aip
i 7→ (a0, a1, a2, . . .)

acts on basis elements by Φ(Bp−k(
∑∞

i=0 aip
i)) =

∏k−1
i=0 ai

∏∞
i=kXn. It follows from this

equality that Φ is measurable and ν = µ ◦ Φ−1. Moreover, Φ is an isomorphism from

(Zp,M, µ;T1) to (
∏∞

i=0Xp,N , ν;O). This isomorphism is used in Chapter 2 to transfer

known results for the odometer on a product space to translation by 1 on Zp.

Finally, a goal of ergodic theory is to understand endomorphisms under iteration. For

an endomorphism T : (X,A, µ) → (X,A, µ), iterates are defined inductively by setting

T 0 = Id and T n = T ◦T n−1 for all integers n ≥ 1. If T is invertible, then negative iterates

are defined by T−n = T−1 ◦ T−n+1 for all integers n ≥ 1.

1.3. Approximations and Constructions of Translations.

An important tool in ergodic theory is the construction of transformations by cutting

and stacking the unit interval. In the first step of the construction, the unit interval is

cut into subintervals, the subintervals are stacked into columns, and the transformation

is defined on all but the top level by mapping linearly up the columns. The rest of

the definition is done recursively, giving a method for cutting the columns from the

previous step and stacking the subcolumns. Examples and more detailed descriptions

of cutting and stacking can be found in [28, 29]. Cutting and stacking are used to

11



construct transformations with specific properties, which is especially useful for giving

counterexamples.

If we map the top level of each stack linearly to the bottom level at each step, rather

than leaving it undefined, then we have a sequence of periodic transformations that

approximate the final construction. This notion of approximation can be extended to

measure spaces other than the unit interval with Lebesgue measure. In [39], Katok and

Stepin prove that various ergodic properties hold for an automorphism of a Lebesgue

space that has an approximation by periodic automorphisms that converges with a given

speed. In this section, we construct perodic transformations that approximate transla-

tions. These approximations are also reminiscent of cutting and stacking. In cutting and

stacking constructions, each interval is mapped linearly onto the one above. In a similar

way, the approximations in this section will map each ball to the ball above by fixing all

coordinates that are not determined by the center of the ball.

We consider two notions of convergence. A sequence of transformations Sn on a

metric space (X, d) converges to S uniformly in x if for all ε > 0, there exists N ∈ N

such that

d(Sn(x), S(x)) < ε

for all n ≥ N and all x ∈ X. On the set of endomorphisms of a measure space (X,A, µ),

the metric defined by

dµ(S, T ) = µ {x ∈ X : S(x) 6= T (x)}

12



induces the strong topology. Hence, a sequence of transformations Sn on a measure space

(X,A, µ) converges to S in the strong topology if

µ {x ∈ X : Sn(x) 6= S(x)} → 0 as n→∞.

We fix a ∈ Z×p and approximate Ta by periodic transformations {tn}n≥1. For the nth

approximation, we consider balls of radius p−n. We stack the balls in the order that Ta

visits them and define tn so that it maps from one level of the stack to the next and fixes

all coordinates with index greater than n− 1. In coordinates, we define

(tn(x))i =


(Ta(x))i if 0 ≤ i < n

xi if i ≥ n.

Since a ∈ Z×p , Lemma 1 states that a0 6= 0, so Ta cycles through all the balls of radius

p−n. Thus tp
n

n (x) = x for all x ∈ Zp, which means that tn is periodic. By construction,

|Ta(x)− tn(x)|p ≤ p−n for all x ∈ Zp, so tn converges uniformly to Ta in x.

Since tn is completely determined by the order in which Ta visits balls of radius p−n,

a useful way to visualize the approximation is similar to a cutting and stacking diagram.

A stack of pn balls are labeled with the centers of the balls, beginning with 0. Figures 1.1

and 1.2 give the first and second stacks of T1 : Z3 → Z3 to illustrate this visualization.

0 

1 

2 

T1 

Figure 1.1. The first stack of T1 on Z3.
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0 + 0·3 

1 + 0·3 

2 + 0·3 

0 + 2·3 

0 + 1·3 

1 + 1·3 

2 + 1·3 

1 + 2·3 

2 + 2·3 

T1 

Figure 1.2. The second stack of T1 on Z3.

For a rational number a ∈ Z×p and a fixed radius p−n, we construct the stack for Ta

from the stack for T1. Constructing the stack for Ta in this manner illustrates relationships

between the two definitions of the p-adic integers. First, we consider the case where a = k

is a positive integer that is relatively prime to p. Writing Tk = T k1 , we see that Tk is an

iterate of T1. We begin the stack for Tk with the ball centered at 0. Beginning at the

bottom of the stack for T1, we go up k levels to find the next level of Tk. We repeat this

process until the stack for Tk is complete. When we reach the top of the stack for T1, we

simply return to the bottom and continue. The first two iterations are shown in Figure

1.3 and Figure 1.4 for the second stack for T5 on Z3. The completed second stack for T5

on Z3 is shown in Figure 1.5.

Next, we consider the case a = 1/k, where k is a positive integer in Z×p . Writing

T1 = T k1/k, we see that T1 is the kth iterate of T1/k. Again, we begin the stack for T1/k

with the ball centered at 0. We label every kth level in the stack for T1/k with consecutive

levels of T1. When we reach the top of the stack for T1/k, we return to the bottom and

continue until all levels of the stack have been labels. Figure 1.6 illustrates the third

14



0 + 0·3 

1 + 0·3 

2 + 0·3 

0 + 2·3 

0 + 1·3 

1 + 1·3 

2 + 1·3 

1 + 2·3 

2 + 2·3 

0 + 0·3 

2 + 1·3 

T1 T5 

Figure 1.3. The first step in constructing the second stack for T5 on Z3.

iteration of this process for the second stack of T1/4 on Z3. The completed second stack

is given in Figure 1.7

Similar considerations give a construction for any rational number a ∈ Z×p . If a = j/k

is a reduced fraction, then a ∈ Z×p implies that both j and k are not divisible by p. If

a is positive, then we begin the stack for Tj/k with the ball centered at 0, as usual. In

order to construct the rest of the stack, we go up j levels in the stack of T1 for every k

levels that we go up in the stack of Tj/k. If a is negative, then we can replace the stack

for T1 with the stack for T−1 and proceed as before.

Section 1.1 gives two definitions of the p-adic numbers. In one definition, the p-adic

numbers are defined as the completion of the rational numbers with respect to the p-adic

absolute value. In the other definition, the p-adic numbers are defined as formal Laurent

series in p. One step in the proof of the equivalence of these definitions is expressing

rational numbers as formal power series. Any rational number can be written in the

form pn(j/k), where n ∈ Z and j, k are relatively integers that are not divisible by p.

If j is a positive integer, then it has a finite expansion in p, so it ends in repeating

0’s. Similarly, a negative integer ends in repeating p − 1’s. In particular, we note that

15



0 + 0·3 

1 + 0·3 

2 + 0·3 

0 + 2·3 

0 + 1·3 

1 + 1·3 

2 + 1·3 

1 + 2·3 

2 + 2·3 

0 + 0·3 

2 + 1·3 

T1 T5 

1 + 0·3 

Figure 1.4. The second step in constructing the second stack for T5 on Z3.

−1 =
∑∞

i=0(p−1)pi. A power of p shifts the coordinates. The main difficulty is expressing

1/k as formal Laurent series. We find the coefficients of this power series by using the

Euclidean algorithm.

The Euclidean algorithm is the process of finding coefficients that satisfy the linear

combination in the following theorem from basic number theory:

Theorem 1. Let a and b be two natural numbers such that gcd(a, b) = d. Then there

exist integers x and y such that xa+ yb = d.

Since the k chosen above is not divisible by p, we have gcd(k, pn) = 1 for all n ∈ N.

Using the Euclidean algorithm and rearranging the equation, we find integers xn and yn

such that xnk = 1 + ynp
n. This linear combination implies that 1/k ≡ xn mod pn, so

the first n coordinates of 1/k agree with the first n coordinates of xn.

For the balls of a fixed radius p−n, the construction of the stack for T1/k from the

stack for T1 is a process that serves the same purpose as the Euclidean algorithm. The

ball that contains 1/k is the level directly above the base of the stack for T1/k. In order

to label the pn levels of the stack, we cycle through the levels k at a time. Hence, we

label the first level above the base when we reach a multiple of k that is congruent to 1
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0 + 0·3 

1 + 0·3 

2 + 0·3 

0 + 2·3 

0 + 1·3 

1 + 1·3 

2 + 1·3 

1 + 2·3 

2 + 2·3 

0 + 0·3 

2 + 1·3 

1 + 0·3 

0 + 1·3 

0 + 2·3 

2 + 0·3 

1 + 2·3 

2 + 2·3 

1 + 1·3 

T1 T5 

Figure 1.5. The second stacks of T1 and T5 on Z3.

modulo pn. In terms of the equation xnk = 1 + ynp
n, going up k levels xn times cycles

through the entire stack yn times and ends at the first level above the base.

For example, in the construction of the second stack for T1/4, we assign a ball to every

fourth level. On the seventh iteration of this process, we have cycled through the stack

three times and assign a ball to the first level above the base. Since 7 · 4 = 1 + 3 · 32, we

conclude that 7 = 1 + 2 · 3 ≡ 1/4 mod 32.

For a fixed a ∈ Z×p , the periodic endomorphisms {tn}n≥1 converge to Ta uniformly in

x ∈ Zp. By construction, if n ≥ N , then |Ta(x)− tn(x)|p ≤ pN for all x ∈ Zp. However,

the convergence of the approximations in the strong topology differentiates the natural

integers Z from the other elements of Zp, as we see in Proposition 1.

Proposition 1. For a ∈ Z×p , we define Ta(x) = x+ a and define tn(x) by

(tn(x))i =


(Ta(x))i if 0 ≤ i < n

xi if i ≥ n.

With respect to an i.i.d. product measure µ =
∏∞

i=0 {q0, . . . , qp−1}, the sequence of endo-

morphisms {tn}n≥1 converges to Ta in the strong topology if and only if a ∈ Z.
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0 + 0·3 

1 + 0·3 

2 + 0·3 

0 + 2·3 

0 + 1·3 

1 + 1·3 

2 + 1·3 

1 + 2·3 

2 + 2·3 

0 + 0·3 

2 + 0·3 

T1/4 T1 

1 + 0·3 

0 + 1·3 

Figure 1.6. The third step in constructing the second stack for T1/4 on Z3.

Proof. By definition, Ta(x) = tn(x) implies that (x + a)i = xi for all i ≥ n. This

equality can occur in one of two ways. First, we consider the case that
∑n−1

i=0 xip
i +∑n−1

i=0 aip
i < pn, so that the addition does not result in a carry to the nth coordinate.

Then (x+ a)n = xn + an is equal to xn if and only if an = 0. If an = 0, then xn + an < p,

which again does not result in a carry. This serves as the base case for an induction

argument. As an induction hypothesis, we suppose that xi−1 + ai−1 < p for some i ≥ n.

Then (x + a)i = xi + ai is equal to xi if and only if ai = 0. Moreover, if ai = 0, then

xi + ai < p. It follows by induction that if xn−1 + an−1 < p, then Ta(x) = tn(x) if and

only if ai = 0 for all i ≥ n. If there exists an n ∈ N such that ai = 0 for all i ≥ n, then a

is a positive integer.

On the other hand, we consider the case that
∑n−1

i=0 xip
i +

∑n−1
i=0 aip

i ≥ pn. This

inequality implies that there is a carry to the nth coordinate. Hence, we have (x+ a)n =

xn +an + 1, which is equal to xn if and only if an = p− 1. Then (x+a)n = xn +an + 1 =

xn + p ≥ p results in a carry to the next coordinate. An induction argument similar

to the previous case implies that Ta(x) = tn(x) if and only if ai = p − 1 for all i ≥ n.
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0 + 0·3 

1 + 0·3 

2 + 0·3 

0 + 2·3 

0 + 1·3 

1 + 1·3 

2 + 1·3 

1 + 2·3 

2 + 2·3 

0 + 0·3 

1 + 2·3 

2 + 1·3 

0 + 2·3 

0 + 1·3 

1 + 0·3 

2 + 2·3 

1 + 1·3 

2 + 0·3 

T1/4 T1 

Figure 1.7. The second stacks of T1/4 and T1 on Z3.

Similarly, if there exists an n ∈ N such that ai = p− 1 for all i ≥ n, then a is a negative

integer.

Thus, if a is not an integer, then Ta(x) 6= tn(x) for all x ∈ Zp. In terms of the metric

on the space of endomorphisms, we have

dµ(Ta, tn) = µ(Zp) = 1

for all n ∈ N. Therefore, if a is not an integer, then tn fails to converge to Ta in the

strong topology.

It remains to show that convergence holds when a is an integer. If a ∈ Z×p is a positive

integer, then Lemma 1 implies that a is not divisible by p. For n > logp(a), we consider

tn approximating Ta. Since n > logp(a) implies that a < pn, we have ai = 0 for all i ≥ n.

If
∑n−1

i=0 xip
i + a < pn, then there is no carry to the the nth coordinate. An induction

argument, similar to the one in the first paragraph, shows that (x + a)i = xi + ai = xi

for all i ≥ n. In this case, Ta(x) = tn(x). On the other hand, if
∑n−1

i=0 xip
i + a ≥ pn, then

there is a carry. Thus, we have (x+ a)n = 1 + xn + an = 1 + xn 6= xn, which implies that
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Ta(x) 6= tn(x). If W = max0≤i<p qi is the maximal weight, then

dµ(Ta, tn) = µ

(
pn−1⋃

k=pn−a

Bp−n(k)

)
≤ aW n.

Since W < 1, we conclude that aW n → 0 as n→∞. Therefore tn converges to Ta in the

strong topology.

Keeping a and n as in the previous paragraph, we now consider tn approximating

T−a. Since pn > a, we have (−a)i = p − 1 for all i ≥ n. We note that −a ≡ pn − a

mod pn and that pn − a > 0. If
∑n−1

i=0 xip
i +
∑n−1

i=0 (−a)ip
i =

∑n−1
i=0 xip

i + pn − a ≥ pn,

then there is a carry to the nth coordinate. A standard induction argument, similar to

the one in the second paragraph, shows that (x+a)i = 1+xi+ai mod p = 1+xi+p−1

mod p = xi for all i ≥ n. This equality implies that T−a(x) = tn(x). On the other hand,

if
∑n−1

i=0 xip
i + pn − a < pn, then there is not a carry, so T−a(x) 6= tn(x). Thus, we have

dµ(T−a, tn) = µ

(
a−1⋃
k=0

Bp−n(k)

)
≤ aW n.

Since aW n → 0 as n→∞, it follows that tn converges to T−a in the strong topology. 2

When a is an integer, an approximation tn is the same as Ta on some levels but

different on other levels. In order to have a finer structure, we give a construction with

multiple stacks, so that tn is the same as Ta on every level except the top levels. For

positive integers a, k ∈ N such that 0 ≤ k < pn, we consider x ∈ Bp−n(k). In the

proof of Proposition 1, we see that x + a has a carry after the nth coordinate if and

only if pn − a ≤ k < pn. With this observation as motivation, we use multiple stacks to

construct a translation by a positive integer, so that {Bp−n(k)}p
n−1
k=pn−a are the top levels of

the stacks. In Chapter 2, we define the Radon-Nikodým derivative and show in Theorem
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2 that it is constant on each level of the stacks except for the top levels. A collection of

stacks at a particular step is called a tower.

We set N = min {n ∈ N : a < pn}. The first tower in the construction has a stacks

containing balls of radius p−N . The bases of the stacks are Bp−N (k) for 0 ≤ k < a. The

rest of the balls are added to the stacks so that Bp−N (k + a) is directly above Bp−N (k)

for all 0 ≤ k < pn − a. We note that tN(x) = Ta(x) for x in all levels except the top

levels. The top levels of the stacks are the balls where x + a has a carry after the Nth

coordinate. Since 22 > 3, Figure 1.8 illustrates the first tower for T3 on Z2.

0 + 0·2 

1 + 1·2 

1 + 0·2 0 + 1·2 

T3 

Figure 1.8. The first tower of T3 on Z2, with cuts.

If we have a tower with balls of radius p−n for some n ≥ N , then we constuct the next

tower by a type of cutting and stacking. Each stack with base Bp−n(i) for 0 ≤ i < p is cut

into p substacks with bases Bp−n−1(i + j · pn) for 0 ≤ j < p. For a ≤ k < pn, if Bp−n(k)

is in the stack with base Bp−n(i), then Bp−n−1(k + j · pn) is in the substack with base

Bp−n−1(i+ j ·pn). Again, the bases of the stacks for the new tower are the balls Bp−n−1(i)

for 0 ≤ i < a. The substacks from the previous tower are stacked on each other so that

Bp−n−1(i + a) is directly above Bp−n−1(i) for all 0 ≤ i < pn+1 − a. Again, the top levels

of each tower are the balls where x + a has a carry after the nth coordinate. With cuts

as in Figure 1.8, the substacks are then stacked to give the second tower in Figure 1.9.

These towers help us understand the Radon-Nikodým derivative and motivate density

arguments in Chapters 2 and 3.
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T3 

1 + 1·2 + 0·22 

0 + 0·2 + 0·22 

0 + 1·2 + 1·22 

1 + 0·2 + 0·22 

0 + 0·2 + 1·22 

1 + 1·2 + 1·22 

0 + 1·2 + 0·22 

1 + 0·2 + 1·22 

Figure 1.9. The second tower of T3 on Z2.
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CHAPTER 2

Ergodic Properties of p-adic Translation and Multiplication

Maps

2.1. Ergodic Properties of Translation by an Integer

In this section, we define the ergodic properties that are the focus of this chapter

and are necessary for the definition of orbit equivalence in Chapter 3. We discuss known

results and then prove statements for translations by a ∈ Z. In particular, Theorem

2 and the density argument in the proof of Theorem 3 play key roles in the proof of

Theorem 8 in Chapter 3.

A measure µ on a σ-algebra A is absolutely continuous with respect to another mea-

sure ν if ν(A) = 0 implies that µ(A) = 0 for all A ∈ A. The two measures are mu-

tually absolutely continuous or equivalent when µ(A) = 0 if and only if ν(A) = 0 for

all A ∈ A. For an endomorphism T on (X,A, µ), we define a new measure µT−1 by

µT−1(A) = µ(T−1(A)) for all A ∈ A. If µ and µT−1 are equivalent measures, then T

is nonsingular with respect to µ. If µ and µT−1 are not equivalent measures, then T is

singular with respect to µ. In other words, T is singular with respect to µ if there exists

A ∈ A such that one of µ(A) or µT−1(A) is zero, but the other is nonzero. We also say

that µ is nonsingular (resp. singular) for T when T is nonsingular (resp. singular) with

respect to µ.



Radon-Nikodým Theorem If µ1 on (X,A) is absolutely continuous with respect to

µ2 on (X,A), then there exists a measurable function dµ1/dµ2 such that

µ1(A) =

∫
A

dµ1

dµ2

dµ2, for all A ∈ A.

The function dµ1/dµ2 is called the Radon-Nikodým derivative of µ1 with respect to µ2.

For a nonsingular endomorphism T , the function dµT−1/dµ is called the Radon-Nikodým

derivative of T with respect to µ. To aid the study of iterates, Proposition 2 gives a basic

fact about compositions of endomorphisms.

Proposition 2. For endomorphisms T and S on a measure space (X,B, µ), if both

T and S are nonsingular with respect to µ, then T ◦ S is nonsingular with respect to µ.

Proof. For a measurable set A, we have µ(A) = 0 if and only if µT−1(A) = 0

because T is nonsingular with respect to µ. Since S is nonsingular with respect to µ, we

have µT−1(A) = µ(T−1(A)) = 0 if and only if µS−1(T−1(A)) = 0. Thus, µ(A) = 0 if and

only if µ(T ◦ S)−1(A) = µS−1(T−1(A)) = 0, so T ◦ S is nonsingular with respect to µ. 2

Since µ Id−1(A) = µ(A) for all A ∈ A, the identity map is nonsingular with respect

to every measure. If an endomorphism T is invertible, then T is nonsingular with respect

to µ if and only if T−1 is nonsingular with respect to µ. Finally, an induction argument

using Proposition 2 implies that if an invertible endomorphism T is nonsingular with

respect to µ, then T n is nonsingular with respect to µ for all integers n.

It is well-known that the odometer is nonsingular with respect to i.i.d. product mea-

sures. For example, Aaronson shows that the odometer on
∏∞

i=0X2 is nonsingular and

24



ergodic with respect to i.i.d. product measures in [1]. Hence, translation by 1 is non-

singular for all i.i.d. product measures on Zp, by the isomorphism in Section 1.2. For

a ∈ Z, the equality Ta = T a1 implies that Ta is nonsingular with respect to i.i.d. product

measures µ. Therefore, the Radon-Nikodým derivative of Ta with respect to µ exists.

Theorem 2 and Corollary 1 give an explicit description of the Radon-Nikodým derivative

of T−1a with respect to µ.

Theorem 2. For a ∈ N ( Zp, we take the translation Ta : (Zp, µ)→ (Zp, µ) and an

i.i.d. product measure µ. For n and k in N such that 0 ≤ k < pn−a, the Radon-Nikodým

derivative is

(1)
dµ ◦ Ta
dµ

≡
µ(Bp−n(k + a))

µ(Bp−n(k))

on the ball Bp−n(k).

Proof. For a positive integer a, the proof of Proposition 1 shows that x+a does not

have a carry after the nth coordinate for x ∈ Bp−n(k) when 0 ≤ k < pn − a. In Section

1.3, this fact is used in the construction of Ta by multiple columns. Moreover, this fact

is the reason that the Radon-Nikodým derivative is constant on these balls.

We fix n ≥ N = min {n ∈ N : a ≤ pn} and consider a ball of radius p−n and center

x =
∑n−1

i=0 xip
i < pn − a. For ease of notation, we define y =

∑n−1
i=0 yip

i by

Ta

(
n−1∑
i=0

xip
i

)
=

n−1∑
i=0

yip
i < pn,
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so Bp−n(x+a) = Bp−n(y). For an i.i.d. product measure µ defined by a probability vector

(q0, q1, . . . , qp−1), we use a monotone class argument to show that

dµ ◦ Ta
dµ

≡
µ(Bp−n(k + a))

µ(Bp−n(k))
on Bp−n(x).

We let A be the collection of measurable A ⊂ Bp−n(x) such that (1) holds. For a subball

B = Bp−n−m

(∑n−1
i=0 xip

i +
∑n+m−1

i=n zip
i
)
, we have

µ ◦ Ta(B) = µ(Bp−n−m(
n−1∑
i=0

yip
i +

n+m−1∑
i=n

zip
i))

=
n−1∏
i=0

q(yi)
n+m−1∏
i=n

q(zi).

Multiplying and dividing by
∏n−1

i=0 q(xi) yields

µ ◦ Ta(B) =

∫
B

∏n−1
i=0 q(yi)∏n−1
i=0 q(xi)

dµ

=

∫
B

µ(Bp−n(k + a))

µ(Bp−n(k))
dµ.

Thus, A contains all subballs of Bp−n(x). We note that the subballs form a generating

algebra for the measurable subsets of Bp−n(x). Moreover, A is a monotone class. Hence,

A contains all measurable subsets of Bp−n(x), so equation (1) holds on Bp−n(x). 2

The equation

dµT−a
dµ

(x) =
dµT−1a

dµ
(x) =

1
dµTa
dµ

(T−ax)

and Theorem 2 imply the following corollary.

Corollary 1. For a ∈ N, we take the translation T−a : (Zp, µ) → (Zp, µ) and an

i.i.d. product measure µ. For n and k in N such that a ≤ k < pn, the Radon-Nikodým
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derivative

dµ ◦ T−a
dµ

≡
µ(Bp−n(k − a))

µ(Bp−n(k))

on the ball Bp−n(k).

An endomorphism T on (X,A, µ) is ergodic with respect to µ if A ∈ A and T−1A = A

imply that µ(A) = 0 or µ(X\A) = 0. We also say that µ is ergodic for T when T is

ergodic with respect to µ. An endomorphism T is totally ergodic with respect to µ if T n

is ergodic with respect to µ for all n ∈ N.

There are many known results for ergodicity of the odometer with respect to i.i.d.

product measures. For example, it is known that the odometer on
∏∞

i=0X2 is ergodic

with respect to i.i.d. product measures, and it is known that the odometer on
∏∞

i=0Xn is

not totally ergodic with respect to i.i.d. product measures. These results can be stated

for translation by 1, through the isomorphism in Section 1.2. Moreover, conditions for

ergodicity are stated for translations on Zp with respect to Haar measure in [4,9,26,27].

These results are special cases of Theorem 3, which states the conditions for ergodicity in

the full generality required for Chapter 3. Moreover, the proof given for Theorem 3 is a

density argument that reappears in the proof of Theorem 3.8. We begin with Lemma 2,

which states that a set of positive measure is arbitrarily dense in some ball. Lemma 2 is

a consequence of the Lebesgue Density Theorem. Since the full strength of the Lebesgue

Density Theorem is not needed in what follows, we give a short proof of the lemma.

Lemma 2. If µ is an i.i.d. measure on Zp, then we take A to be a measurable subset

of Zp such that µ(A) > 0. For all 0 < α < 1, there exists a ball Bα such that

µ(A ∩Bα)

µ(Bα)
> α.
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Proof. Since α < 1 and µ(A) > 0, we can set ε = µ(A)(1 − α) > 0. Since µ is a

regular measure, there exists an open set U such that A ⊂ U and µ(U\A) < ε. Then

µ(U) = µ(U\A) + µ(A ∩ U)

< ε+ µ(A ∩ U).

Since A ⊂ U , we have µ(A) ≤ µ(U), so

µ(A ∩ U)

µ(U)
>
µ(U)− ε
µ(U)

= 1− ε

µ(U)
.

By the definition of ε, we have

µ(A ∩ U)

µ(U)
≥ 1− µ(A)(1− α)

µ(A)
= α.

The open set U is a countable union of disjoint balls, U =
⋃∞
i=0Bi. Since µ(A∩U)/µ(U) >

α, there exists a ball Bi of positive measure such that µ(A ∩Bi)/µ(Bi) > α. 2

In Theorem 3, we prove a condition equivalent to ergodicity. An invertible, nonsin-

gular endomorphism T on (X,A, µ) is ergodic with respect to µ if for all sets A1 and

A2 of positive measure, there exists n ∈ N such that µ(T−nA1 ∩ A2) > 0 [28]. In the

proof, we consider sets A1 and A2 of positive measure. Each of these sets is arbitrarily

dense in some ball. In terms of the tower construction, if we cut and stack enough times,

then parts of each ball end up in the same stack. Since the Radon-Nikodým derivative

is constant on each level of the stack except the top, the density of A1 in the one ball

does not change as it is mapped up the stack by the translation to the ball in which A2

is dense.
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Theorem 3. For an i.i.d. product measure µ on Zp and an integer a ∈ Z ( Zp, the

translation Ta is ergodic with respect to µ if and only if a ∈ Z×p .

Proof. Since Ta is invertible, the transformation Ta is ergodic with respect to µ if

and only if T−a is ergodic with respect to µ. Hence, we can assume that a ≥ 0, without

loss of generality.

If a is not a p-adic unit, then a0 = 0. For all x ∈ Bp−1(0), we have T−1a (x) =

x − a = 0 mod p, so T−1a (x) ∈ Bp−1(0). Thus, Bp−1(0) is an invariant set for Ta. Since

0 < µ(Bp−1(0)) < 1, the translation Ta is not ergodic with respect to µ.

If a is a p-adic unit, then we begin by fixing N ∈ N such that 0 < a < pN . Next, we

set β = min0≤i<pN µ(Bp−N (i)) and α = 1 − β/4. Given two measurable sets A1 and A2

of positive measure, we find an n ∈ N such that µ(T−nA1 ∩A2) > 0. By Lemma 2, there

exist balls Bi such that

(2)
µ(Ai ∩Bi)

µ(Bi)
> α, for i = 1, 2.

Since each ball is a disjoint union of balls of a smaller radius, we can assume that B1

and B2 are balls of the same radius. There exist k ∈ N and 0 ≤ bi < pk, such that

Bi = Bp−k(bi). The set Bi has a partition
{
Bp−k−N (bi + j · pk)

}pN−1
j=0

. Since a ∈ Z×p and

a is an integer, we have gcd(p, a) = 1, so gcd(pk, a) = 1. Thus, pk is invertible modulo

a. Therefore, there exist integers ci such that 0 ≤ ci < a < pN such that bi + ci · pk ≡ 0

mod a for i = 1, 2. In terms of the tower construction, this equivalence means that

Bp−k−N (bi + ci · pk) is in the first stack of a tower—the stack with base Bp−k−N (0).

Without loss of generality, we suppose that b2 + c2 · pk ≥ b1 + c1 · pk. Hence, there

exists an integer 0 ≤ m < a such that m · a = (b2 + c2 · pk) − (b1 + c1 · pk). Thus
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b1 + c1 · pk + i · a ≤ b2 + c2 · pk − a < pk+N − a for all 0 ≤ i ≤ m− 1. By Theorem 2, this

implies that dµTa/dµ is constant on Bp−k−N (b1 + c1 · pk + i · a) for all 0 ≤ i < m. Since

the Radon-Nikodým derivative dµTma /dµ is constant on Bp−k(b1 + c1 · pk), we have

µ(Tma (A1) ∩Bp−k−N (b2 + c2p
k))

µ(Bp−k−N (b2 + c2pk))
=

µ(Tma (A1 ∩Bp−k−N (b1 + c1p
k)))

µ(Tma (Bp−k−N (b1 + c1pk)))
(3)

=
µ(A1 ∩Bp−k−N (b1 + c1p

k))

µ(Bp−k−N (b1 + c1pk))
.

By (2), the choice of α, and

µ(Bp−k−N (bi + ci · pk)) = µ(Bp−N (ci))µ(Bp−k(bi))

≥ βµ(Bi),

it follows that

(4) µ(Ai ∩Bp−k−N (bi + cip
k)) > 0.75µ(Bp−k−N (bi + cip

k)).

Then (3) and (4) imply that µ(Tma A1 ∩A2) > 0.5 > 0. Hence, Ta is ergodic with respect

to µ. 2

2.2. Ergodic Properties of Translation by a Rational Number

Since Haar measure is translation-invariant, translations are certainly nonsingular

with respect to Haar measure. In Section 2.1, we extend known results for the odometer to

show that translation by an integer is nonsingular with respect to i.i.d. product measures.

Moreover, any translation can be approximated by translations by an integer. For a =∑∞
i=0 aip

i ∈ Zp, we define the partial sums sn =
∑n−1

i=0 aip
i ∈ Z. Then sn → a as
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n → ∞, from which it follows that Tsn(x) converges uniformly in x to Ta(x). Based on

this convergence, we might guess that µ and µT−1a are mutually absolutely continuous.

However, this guess would be incorrect. In fact, translation by any rational number,

other than an integer, is singular with respect to any product measure, other than Haar

measure. We call a ∈ Q \Z a nonintegral rational number. This singularity result is the

main theorem of this section.

Theorem 4. If a ∈ Zp is a nonintegral rational number, and if µ is an i.i.d. product

measure other than Haar measure, then Ta : Zp → Zp is singular with respect to µ.

Before giving the proof, we discuss the distinguishing characteristics of integers and

rational numbers in Zp. These characteristics are then used in the proof of a technical

result (Proposition 3). After giving examples that illustrate the proof of Proposition

3, we review the Birkhoff Ergodic Theorem and the shift map. Finally, we use these

elements to give a proof of Theorem 4.

We recall from Section 1.3 that the Euclidean algorithm is the tool used to express

a rational number as a formal power series. A positive integer has a finite expansion, so

its coordinates eventually end in repeating zeros. Similarly, the coordinates of a negative

integer eventually end in repeating p− 1’s. In general, an element in Zp is rational if and

only if there is eventually a block of repeating coordinates [51,57]. Thus, if a =
∑∞

i=0 aip
i

is also an element of Q, then there exist integers l and r such that ai+r = ai for all i ≥ l.

Although l and r are not unique, there are unique minimal choices for each. For a fixed

rational number a ∈ Zp and a fixed choice of l and r, we call
∑l−1

i=0 aip
i the leading part of

a, c =
∑r−1

i=0 al+ip
i the repeating segment of a, and A =

∑∞
i=0 cp

ir the repeating part of a.
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The following technical proposition gives the measurable sets that define characteristic

functions in the proof of Theorem 4.

Proposition 3. Assuming the hypotheses from Theorem 4 and notation from the

previous paragraph, there exists a ball B ⊂ Zp such that

(5) µ(B) > µ(TAB) + µ(T1+AB).

Proof. Since the repeating segment has length r, we begin by considering balls

of radius p−r. Since translations are invertible isometries, we have TA(Bp−r(x)) =

Bp−r(TA(x)). Since a ball of radius p−r is determined by the first r coordinates of its

center, we also have Bp−r(TA(x)) = Bp−r(c + x). Similarly, we have T1+A(Bp−r(x)) =

Bp−r(1 + c+ x). For a ball Bp−r(x) that has maximal measure among the balls of radius

p−r, we set

M = µ(Bp−r(x)),

m0 = µ(Bp−r(c+ x)), and

m1 = µ(Bp−r(1 + c+ x)).

Using this notation, we define the following three conditions on the ball Bp−r(x):

(i) M > m0, M > m1, and x = pr − c− 1,

(ii) M > m0 and 0 ≤ x < pr − c− 1, or

(iii) M > m1 and pr − c− 1 < x < pr.

First, we show that if there is a ball of maximal measure satisfying one of these conditions,

then we can find a ball satisfying (5). Next, we consider various cases for the measure
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µ, showing that in each case we can find at least one ball of maximal measure satisfying

one of the three conditions.

If there is a ball of maximal measure Bp−r(x) that satisfies Condition (i), then we

define m = max {m0,m1} and fix an integer

N > logM/m 2.

The ball B = Bp−rN (
∑N−1

i=0 xpir) has measure

µ(B) =
N−1∏
i=0

µ(Bp−r(x)) = MN .

If x = pr − c− 1, then c + x = pr − 1 < pr, so adding the first r coefficients of A to the

first r coefficients of x does not result in a carry. Thus, each of the following groups of

coefficients taken r at a time from A+ x are the same as the first group of r coefficients

of c + x, so µ(TAB) = mN
0 . Similarly, we have 1 + c + x = pr, so adding the first r

coefficients of 1 + A to the first r coefficients of x does result in a carry. Thus, each of

the next groups of coefficients taken r at a time from 1 +A+ x are the same as the first

r coefficients of 1 + c+ x, so µ(T1+AB) = mN
1 . Finally, the choice of N implies that

µ(B) = MN

=

(
M

m

)N
mN

> 2mN

≥ mN
0 +mN

1

= µ(TAB) + µ(T1+A(B)),
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so (5) is satisfied.

If there is a ball of maximal measure Bp−r(x) that satisfies Condition (ii), then we fix

an integer

N > logM/m0

m0 +m1

m0

.

Again, the ball B = Bp−rN (
∑N−1

i=0 xpir) has measure MN . If x < pr−c−1, then c+x < pr,

so adding the first r coefficients of A to the first r coefficients of x does not result in a

carry. Thus, it again follows that µ(TAB) = mN
0 . Similarly, we have 1 + c + x < pr, so

adding the first r coefficients of 1 + A to the first r coefficients of x does not result in a

carry. Thus, each of the following groups of coefficients taken r at a time from 1 +A+ x

are the same as the first r coefficients of c + x, so µ(T1+AB) = m1m
N−1
0 . Finally, the

choice of N implies that

µ(B) = MN

=

(
M

m0

)N
mN

0

>
m0 +m1

m0

mN
0

= mN
0 +m1m

N−1
0

= µ(TAB) + µ(T1+A(B)),

so (5) is satisfied.

A similar argument proves that Condition (iii) implies that (5) is satisfied. The only

changes are switching m0 and m1, switching the defining inequalities for x, and observing

that the additions do result in carries after each group of coefficients taken r at a time.
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So far, we know that each of the three conditions on a ball of radius p−r implies that

we can find a ball, possibly of smaller radius, that satisfies (5). Now, we show that it

is always possible find a ball of radius p−r that satisfies one of the three conditions. We

split the remainder of the proof into cases that depend on the measure µ. Since µ is

not Haar measure, it is determined by a probability vector (q0, q1, . . . , qp−1) such that

the weights qi are not all equal. We let Q = maxi qi be the largest weight. Either the

probability vector that defines µ has a unique largest weight or it does not. If there is a

unique largest weight, then a ball satisfying one of the three conditions has an explicit

description. We now prove this case.

If there exists a unique largest weight, then there exists a weight qj such that qj = Q

and qi < qj for all i 6= j. Then Bp−r(
∑r−1

i=0 jp
i) is the unique ball of radius p−r that has

maximal measure. If a is a positive integer or zero, then a ends in repeating zeros, which

gives A = 0. If a is a negative integer, then a ends in repeating p − 1’s, which gives

A = −1. By the assumption that a is not an integer, A is not equal to 0 or −1. Since A

is not zero, Bp−r(A+
∑r−1

i=0 jp
i) is not equal to Bp−r(

∑r−1
i=0 jp

i). Uniqueness then implies

that M > m0. Similarly, since A is also not −1, Bp−r(1 + A +
∑r−1

i=0 jp
i) is not equal to

Bp−r(
∑r−1

i=0 jp
i). Again, uniqueness implies that M > m1. Thus, Bp−r(

∑r−1
i=0 jp

i) satisfies

Condition (i) if
∑r−1

i=0 jp
i = pr−c−1, Condition (ii) if

∑r−1
i=0 jp

i < pr−c−1, or Condition

(iii) if
∑r−1

i=0 jp
i > pr − c− 1.

If p = 2 and µ is not Haar measure, then the two weights are not equal. Thus, there

is a unique largest weight and the proof of this case is complete. Thus, we can assume

that p ≥ 3 for the remainder of the proof of the proposition.

If there is not a unique largest weight, then we let I be the set of i ∈ Xp such that

q(i) = Q and let k be the cardinality of I. If there is not a unique largest weight,
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then k > 1. Since µ is not Haar measure, we must also have k < p. Since we have k

possibilities for maximal coefficients and since a ball of radius p−r is determined by r

coefficients, there are kr distinct balls of radius p−r of maximal measure. We observe

that p does not divide kr, because p is prime and 1 < k < p. By not requiring that r is

the minimal period, we can assume that r ≥ 2. If k ≥ 2 and r ≥ 2, then kr ≥ 2k. Thus,

either it is the case that

A0 = {Bp−r(x) : 0 ≤ x < pr − c− 1}

contains at least k balls of maximal measure, or it is the case that

A1 = {Bp−r(x) : pr − c− 1 < x < pr − 1}

contains at least k balls of maximal measure.

Before we consider these two cases, we prove one more fact. For the collection Ai,

we suppose that for each j ∈ I there exists a ball Bp−r(xj) in Ai such that xj = j

mod p and Ti+c(Bp−r(xj)) = Bp−r(Ti+c(xj)) has maximal measure. We define a group

homomorphism Ti+c mod p on Fp by k 7→ k+i+c mod p. If a ball has maximal measure,

then the first coordinate must also have maximal weight. Thus, the orbit of each j ∈ I

under Ti+c mod p is contained in I. Since Ti+c mod p is a group homomorphism of Fp,

the minimal period of each j ∈ I divides p. Since µ is not Haar measure, I does not

contain all indices. Hence, the minimal period is not p, so every j ∈ I is fixed point.

Since j + (i+ c) = j mod p, it follows that p divides i+ c.

The previous paragraph shows that if there are k maximal balls in Ai that map

to maximal balls under Ti+c, such that every maximal index is equal modulo p to the
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center of one of these balls, then i + c is divisible by p. For future reference, we give

the contrapositive of this statement. For a collection of k maximal balls in Ai such that

every maximal index is equal modulo p to the center of one of the balls, if i + c is not

divisible by p, then one of the balls in Ai does not map to a maximal ball under Ti+c.

With these observations, we proceed to prove the last two cases.

First, we suppose that A0 contains all balls of maximal measure. If T nc (Bp−r(x)) =

Bp−r(T nc (x)) is a ball of maximal measure for all integers n, then x mod pr is periodic

under Tc mod pr. Since Tc mod pr is a group homomorphism of the finite group Fpr ,

the period must be divisible by p. There are kr balls of maximal measure, with kr distinct

centers x. Since p does not divide kr, there must be an x that is not periodic under Tc

mod pr. Thus, there exists an x < pr − c− 1 such that µ(Bp−r(T n−1c x)) is maximal but

µ(Bp−r(T nc (x))) is not, that is, M > m0. Since Bp−r(T n−1c x) has maximal measure, our

initial assumption implies that it must be in A0. Thus, Bp−r(T n−1c x) is a ball satifying

Condition (ii).

Next, we suppose that A0 contains at least k balls of maximal measure, but none of

the balls satisfy Condition (ii). It follows from the previous paragraph that there are balls

of maximal measure Bp−r(x) such that pr − c − 1 ≤ x < pr. We show that one of these

balls must satisfy Condition (iii). If A0 contains at least k balls of maximal measure but

none of them satisfy Condition (ii), then we have k maximal balls that map to maximal

balls under Tc, such that every maximal index is equal modulo p to the center of one of

the balls. Thus, c is divisible by p. We now argue that Bp−r(pr−c−1) cannot be the only

ball of maximal measure with center x such that pr − c− 1 ≤ x < pr. Since c is divisible

by p, it follows that x = pr− c−1 = p−1 mod p. Thus, if Bp−r(pr− c−1) has maximal

measure, then p−1 must have maximal weight. Thus, Bp−r(pr−1) = Bp−r(
∑r−1

i=0 (p−1)pi)
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also has maximal measure. We have shown that whether or not p − 1 has maximal

weight, there exists a ball of maximal measure in A1. Suppose that this ball has center∑r−1
i=0 xip

i. For all j ∈ I, the ball with center j +
∑r−1

i=1 xip
i will also have maximal

measure. Since c is a multiple of p, if pr − c − 1 <
∑r−1

i=0 xip
i < pr, then it is also true

that pr − c− 1 < j +
∑r−1

i=1 xip
i < pr. Thus, every maximal index is equal mod p to the

center of a ball in A1. Since p divides c, it cannot divide 1 + c. This implies that there

must be a maximal ball Bp−r(x) such that M > m1 and pr − c− 1 < x < pr, so we have

satisfied Condition (iii).

If it is the case that A1 contains at least k balls of maximal measure, then the

argument is similar to the case for A0. The only changes are switching A0 and A1, c and

c+ 1, Conditions (ii) and (iii), and the defining inequalities for x. 2

Before giving the proof of Theorem 4, we illustrate Proposition 3 with three examples.

Example 1. For the i.i.d. product measure µ =
∏∞

i=0

{
2
11
, 3
11
, 2
11
, 2
11
, 2
11

}
on Z5, we

consider a = A =
∑∞

n=0 3 · 5n = −3/4 and take c = 3. Since q1 = 3/11 is the unique

greatest weight, we consider the ball Bp−1(1). Since

µ(Bp−1(1)) =
3

11
>

2

11
= µ(Bp−1(T3(1))) = µ(Bp−1(T4(1)))
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and 1 = 5 − 3 − 1, the ball Bp−1(1) satisfies Condition (i). If we take N = 2 > log3/2 2,

then we have

µ(Bp−2(1 + 1 · 5)) =
3

11
· 3

11
=

9

121
,

µ(Bp−2(TA(1 + 1 · 5))) = µ(Bp−2(3 + 3 · 5 + · · · ))

=
2

11
· 2

11
=

4

121
, and

µ(Bp−2(T1+A(1 + 1 · 5))) = µ(Bp−2(4 + 4 · 5 + · · · ))

=
2

11
· 2

11
=

4

121
,

so Bp−2(1 + 1 · 5) satisfies (5).
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Figure 2.1. Tables for Examples 2 and 3.

Example 2
T3(x) T4(x)

x 0 ≤ x < 21 21 < x < 24
0 + 0 · 5 3 + 0 · 5
1 + 0 · 5 4 + 0 · 5
2 + 0 · 5 0 + 1 · 5
3 + 0 · 5 1 + 1 · 5
4 + 0 · 5 2 + 1 · 5
0 + 1 · 5 3 + 1 · 5
1 + 1 · 5 4 + 1 · 5
2 + 1 · 5 0 + 2 · 5
3 + 1 · 5 1 + 2 · 5
4 + 1 · 5 2 + 2 · 5
0 + 2 · 5 3 + 2 · 5
1 + 2 · 5 4 + 2 · 5
2 + 2 · 5 0 + 3 · 5
3 + 2 · 5 1 + 3 · 5
4 + 2 · 5 2 + 3 · 5
0 + 3 · 5 3 + 3 · 5
1 + 3 · 5 4 + 3 · 5
2 + 3 · 5 0 + 4 · 5
3 + 3 · 5 1 + 4 · 5
4 + 3 · 5 2 + 4 · 5
0 + 4 · 5 3 + 4 · 5
1 + 4 · 5
2 + 4 · 5 1 + 0 · 5
3 + 4 · 5 2 + 0 · 5
4 + 4 · 5 3 + 0 · 5

Example 3
T15(x) T16(x)

x 0 ≤ x < 9 9 < x < 24
0 + 0 · 5 0 + 3 · 5
1 + 0 · 5 1 + 3 · 5
2 + 0 · 5 2 + 3 · 5
3 + 0 · 5 3 + 3 · 5
4 + 0 · 5 4 + 3 · 5
0 + 1 · 5 0 + 4 · 5
1 + 1 · 5 1 + 4 · 5
2 + 1 · 5 2 + 4 · 5
3 + 1 · 5 3 + 4 · 5
4 + 1 · 5
0 + 2 · 5 1 + 0 · 5
1 + 2 · 5 2 + 0 · 5
2 + 2 · 5 3 + 0 · 5
3 + 2 · 5 4 + 0 · 5
4 + 2 · 5 0 + 1 · 5
0 + 3 · 5 1 + 1 · 5
1 + 3 · 5 2 + 1 · 5
2 + 3 · 5 3 + 1 · 5
3 + 3 · 5 4 + 1 · 5
4 + 3 · 5 0 + 2 · 5
0 + 4 · 5 1 + 2 · 5
1 + 4 · 5 2 + 2 · 5
2 + 4 · 5 3 + 2 · 5
3 + 4 · 5 4 + 2 · 5
4 + 4 · 5 0 + 3 · 5

Example 2. For the i.i.d. product measure µ =
∏∞

i=0

{
1
6
, 2
9
, 2
9
, 2
9
, 1
6

}
on Z5, we consider

a = A =
∑∞

n=0(3 + 0 · 5)52n = −1/8 and take c = 3 + 0 · 5. The centers of the balls

of radius 5−2 are listed in the first column of the left table in Figure 2.1. The second

column contains the images of the balls in A0 under the translation Tc. Finally, the third

column contains the images of the balls in A1 under the translation T1+c. The centers of

maximal balls are in bold.
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Since all balls of maximal measure have center less than pr− c− 1 = 25− 3− 1 = 21,

all balls of maximal measure are in A0. There are two balls of maximal measure that map

to other balls of maximal measure under Tc. These correspond to rows that have bold

entries in both the first and second column. However, there are seven balls of maximal

measure that map to balls of smaller measure under Tc. These correspond to rows that

have a bold entry in the first column but not in the second column. Thus, we have seven

balls that satisfy Condition (ii).

For example, we could pick B5−2(1 + 1 · 5). Taking N = 3 > log4/3 2, we make the

following additions with carries:

1 + 1 · 5 + 1 · 52 + 1 · 53 + 1 · 54 + 1 · 55

+ 3 + 0 · 5 + 3 · 52 + 0 · 53 + 3 · 54 + 0 · 55 + · · ·

4 + 1 · 5 + 4 · 52 + 1 · 53 + 4 · 54 + 1 · 55 + · · ·

1 1

1 + 1 · 5 + 1 · 52 + 1 · 53 + 1 · 54 + 1 · 55

+ 3 + 0 · 5 + 3 · 52 + 0 · 53 + 3 · 54 + 0 · 55 + · · ·

0 + 2 · 5 + 4 · 52 + 1 · 53 + 4 · 54 + 1 · 55 + · · · .
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By examining the first six coefficients of the center of each ball, we find

µ

(
B5−6

(
5∑
i=0

1 · 5i
))

= q61 =

(
2

9

)6

,

µ

(
B5−6

(
A+

5∑
i=0

1 · 5i
))

= (q4q1)
3 =

1

273
, and

µ

(
B5−6

(
1 + A+

5∑
i=0

1 · 5i
))

= q0q2(q4q1)
2 =

1

273
.

Since
(
2
9

)6
> 1

273
+ 1

273
, the ball B5−6(

∑5
i=0 1 · 5i) satisfies (5).

Example 3. For the i.i.d. product measure µ =
∏∞

i=0

{
3
14
, 3
14
, 1
7
, 3
14
, 3
14

}
on Z5, we

consider a = A =
∑∞

n=0(0 + 3 · 5)52n = −5/8 and take c = 0 + 3 · 5.

The centers of balls of radius 5−2 are listed in the first column of the left table in Figure

2.1. The second column contains the images of the balls in A0 under the translation Tc.

Finally, the third column contains the images of the balls in A1 under the translation

T1+c. The centers of maximal balls are in bold.

In this example, all balls of maximal measure with center less than pr − c − 1 =

25 − 15 − 1 = 9 map to another ball of maximal measure under Tc. As we expect from

the proof of Proposition 3, p = 5 divides c = 15. On the other hand, there are five balls

of maximal measure that map to balls of smaller measure under T1+c. These correspond

to rows that have a bold entry in the first column but not in the third column. Thus, we

have five balls that satisfy Condition (iii).
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For example, we could pick B5−2(1 + 3 · 5). Taking N = 3 > log3/2(5/2), we make the

following additions with carries:

1 1

1 + 3 · 5 + 1 · 52 + 3 · 53 + 1 · 54 + 3 · 55

+ 0 + 3 · 5 + 0 · 52 + 3 · 53 + 0 · 54 + 3 · 55 + · · ·

1 + 1 · 5 + 2 · 52 + 1 · 53 + 2 · 54 + 1 · 55 + · · ·

1 1 1

1 + 3 · 5 + 1 · 52 + 3 · 53 + 1 · 54 + 3 · 55

+ 0 + 3 · 5 + 0 · 52 + 3 · 53 + 0 · 54 + 3 · 55 + · · ·

2 + 1 · 5 + 2 · 52 + 1 · 53 + 2 · 54 + 1 · 55 + · · · .

By examining the first six coefficients of the center of each ball, we find

µ

(
B5−6

(
2∑
i=0

(1 + 3 · 5)52i

))
= q31q

3
3 =

(
3

14

)6

,

µ

(
B5−6

(
A+

2∑
i=0

(1 + 3 · 5)52i

))
= q21(q2q1)

2 =

(
3

14

)2(
3

98

)2

, and

µ

(
B5−6

(
1 + A+

2∑
i=0

(1 + 3 · 5)52i

))
= (q2q1)

3 =

(
3

98

)3

.

Since
(

3
14

)6
>
(

3
14

)2 ( 3
98

)2
+
(

3
98

)3
, the ball B5−6(

∑5
i=0 1 · 5i) satisfies (5).
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Next, we review the Birkhoff Ergodic Theorem and the definition of the shift. The

proof of Theorem 4 is done when we apply the Birkhoff Ergodic Theorem to an iterate

of the shift and characteristic functions.

Birkhoff Ergodic Theorem. If (X,B, µ) is a probability space, S : (X,B, µ) →

(X,B, µ) is ergodic and measure-preserving, and f ∈ L1(µ), then

lim
n→∞

1

n

n−1∑
i=0

f(Six) =

∫
X

fdµ

almost everywhere.

The one-sided shift is an endomorphism σ :
∏∞

i=0Xn →
∏∞

i=0Xn, which is defined

by (σx)i = xi+1. We note that the shift is not invertible. The shift on a product space

(
∏∞

i=0Xn,N , ν) is a standard example of a system where the transformation is measure-

preserving and ergodic with respect to the measure. The shift is also totally ergodic with

respect to i.i.d. product measures. For a fixed prime p, the isomorphism in Section 1.2

defines a shift σ on Zp, which acts by σ(
∑∞

i=0 xip
i) =

∑∞
i=0 xi+1p

i. By the isomorphism,

the shift σ is measure-preserving and totally ergodic with respect to i.i.d. product mea-

sures. Thus, for all n ∈ N, the iterate σn satisfies the conditions on S in the Birkhoff

Ergodic Theorem. We finally give the proof of Theorem 4.

Proof of Theorem 4. Assuming that a ∈ Zp is a nonintegral rational number and that

µ is an i.i.d. product measure other than Haar measure, our goal is to show that Ta is

singular with respect to µ. Since Ta is invertible, we do this by finding a set X such that

µ(X) > 0 but µ(TaX) = 0.
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If A is the repeating part of a, then Proposition 3 gives a ball B of radius p−rN

for some N ∈ N such that µ(B) > µ(TAB) + µ(T1+AB). Since B and TAB ∪ T1+AB

are measurable sets, the characteristic functions 1B and 1TAB∪T1+AB are in L1(µ). Since

the shift σ is totally ergodic and measure-preserving with respect to the i.i.d. product

measure µ, the iterate σrN is ergodic and measure-preserving with respect to µ. By the

Birkhoff Ergodic Theorem, the sets

X =

{
z ∈ Zp : lim

n→∞

1

n

n−1∑
i=0

1B(σl+rNiz) = µ(B)

}
and

Y =

{
z ∈ Zp : lim

n→∞

1

n

n−1∑
i=0

1TAB∪T1+AB(σl+rNiz) = µ(TAB ∪ T1+AB)

}

have full measure.

For x ∈ X, if σl+rNix ∈ B, then there are two possibilities for σl+rNiTax. If adding a

to x does not result in a carry after the l+ rNi− 1st coordinate, then σl+rNiTax ∈ TAB.

If adding a to x does result in a carry after the l+rNi−1st coordinate, then σl+rNiTax ∈

T1+AB. In either case, σl+rNiTax ∈ TAB ∪ T1+AB. This inclusion implies that

lim
n→∞

1

n

n−1∑
i=0

1TAB∪T1+AB(σl+rNiTax) ≥ lim
n→∞

1

n

n−1∑
i=0

1B(σl+rNiz)

= µ(B) > µ(TAB ∪ T1+AB).

Thus, Ta(x) is not in Y . Since Ta(X) ⊂ Zp \Y and µ(Y ) = 1, it follows that µ(Ta(X)) =

0. Since µ(X) = 1 > 0 but µ(TaX) = 0, the translation Ta is singular with respect to µ.

�
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2.3. Other Transformations and Measures

Since the proof of Theorem 4 depends heavily on the repetitive structure of rational

numbers, the proof does not generalize to Zp \Q. It is still an open question as to

whether or not translation by an irrational p-adic integer is nonsingular with respect

to product measures other than Haar measure. The method of proof does not seem

to extend to translation by elements of Zp \Q, but it can be used to show which i.i.d.

product measures are singular for another transformation P . This transformation is then

used to determine which i.i.d. product measures are nonsingular for multiplication by −1.

We give this proof and then give Theorem 5, which completely describes when product

measures are nonsingular for multiplication by a rational p-adic integer.

We define a transformation P that switches k with p− 1− k at every coordinate of a

p-adic integer. A probability vector (q0, q1, . . . qp−1) is palindromic if q(k) = q(p− 1− k)

for all 0 ≤ k ≤ p− 1.

Proposition 4. For an i.i.d. product measure µ on Zp defined by a probability vector

(q0, q1, . . . qp−1), if the probability vector is palindromic, then the transformation

P : Zp → Zp

∞∑
i=0

xip
i 7→

∞∑
i=0

(p− 1− xi)pi

preserves µ. If the probability vector is not palindromic, then P is singular with respect

to µ.
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Proof. Since

P 2(
∞∑
i=0

xip
i) = P (

∞∑
i=0

(p− 1− xi)pi)

=
∞∑
i=0

(p− 1− (p− 1− xi))pi

=
∞∑
i=0

xip
i,

we have P−1 = P . If the probability vector is palindromic, then q(k) = q(p− 1− k) for

all 0 ≤ k ≤ p− 1. On balls in Zp,

µ

(
PBp−n

(
∞∑
i=0

aip
i

))
= µ

(
Bp−n

(
∞∑
i=0

(p− 1− ai)pi
))

=
n−1∏
i=0

q(p− 1− ai)

=
n−1∏
i=0

q(ai)

= µ

(
Bp−n

(
∞∑
i=0

aip
i

))
.

Since the set of balls form a semi-algebra that generates the Borel sets, the transformation

P preserves µ.

If the probability vector is not palindromic, then there exists an index k such that

q(k) 6= q(p − 1 − k). Without loss of generality, we suppose that q(k) > q(p − 1 − k).
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Applying the Birkhoff Ergodic Theorem to the sets

X =

{
z ∈ Zp : lim

n→∞

1

n

n−1∑
i=0

1Bp−1 (k)(σ
iz) = q(k)

}
and

Y =

{
z ∈ Zp : lim

n→∞

1

n

n−1∑
i=0

1Bp−1 (p−1−k)(σ
iz) = q(p− 1− k)

}
,

we conclude that µ(X) = 1 and µ(Y ) = 1. If x ∈ X, then σix ∈ Bp−1(k) implies that

σiPx ∈ Bp−1(p− 1− k). Thus,

lim
n→∞

1

n

n−1∑
i=0

1Bp−1 (p−1−k)(σ
iRx) ≥ q(k) > q(p− 1− k).

It follows that PX ⊂ Zp \Y , so µ(PX) = 0. Since µ(X) = 1 but µ(PX) = 0, the

transformation P is singular with respect to µ. 2

Theorem 5. For an i.i.d. product measure µ on Zp defined by a probability vector

(q0, q1, . . . qp−1), the multiplication M−1 : Zp → Zp is nonsingular with respect to µ if and

only if the probability vector is palindromic. Moreover, if a ∈ Z×p \ {1,−1} is a rational

number, then the multiplication Ma : Zp → Zp is nonsingular with respect to µ if and

only if µ is Haar measure.

Proof. 2 If x =
∑∞

i=0 xip
i, then

(Px+ x)i = p− 1− xi + xi = p− 1

for all integers i ≥ 0. Thus, we have Px + x = −1 for all x ∈ Zp, so Px = −x − 1 =

M−1 ◦ T1x for all x ∈ Zp. Since T1 is nonsingular with respect to µ, the multiplication

M−1 is nonsingular with respect to µ if and only if P is nonsingular with respect to µ,
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by Proposition 2. By Proposition 4, P is nonsingular with respect to µ if and only if the

probability vector is palindromic.

If µ is Haar measure and a ∈ Z×p , then Ma preserves Haar measure, as shown in

[9, 15, 26, 27]. If Ma preserves Haar measure, then Ma is certainly nonsingular with

respect to Haar measure.

To prove the converse, we suppose that µ is not Haar measure and a ∈ Z×p \ {1,−1}.

Since Ma is invertible, Ma is nonsingular with respect to µ if and only if M−1
a = Ma−1 is

nonsingular with respect to µ. If a is an integer other than 1 or −1, then a−1 is not an

integer. Thus, without loss of generality, we can assume that a is not an integer. Note

that Ta = Ma ◦ T1 ◦M−1
a . By Theorem 4, Ta is nonsingular with respect to µ, because µ

is not Haar measure and a is a rational number but not an integer. On the other hand,

the translation T1 is nonsingular with respect to µ. By Proposition 2, Ma is singular with

respect to µ. 2

For a rational number a ∈ Zp, there exist integers r and s such that a = r/s. If r and

s are relatively prime and s > 0, then we say that a = r/s is in reduced form. Since a is

not an integer, Theorem 4 states that Ta is singular for all i.i.d. product measures other

than Haar measure. However, we can define another measure that is nonsingular for Ta.

If µa = (1/s)
∑s−1

i=0 µT
−i
a , then

µaT
−1
a =

s−1∑
i=0

µT−i−1a

= µT−sa +
s−1∑
i=1

µT−ia

= µT−1r +
s−1∑
i=1

µT−ia .
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Since r is an integer, Tr is nonsingular with respect to µ. Since µT−1r and µ are equivalent,

it follows that µaT
−1
a and µa are equivalent. Thus, Ta is nonsingular with respect to µa.

If a is an integer, then µa = µ. Also, if µ is Haar measure, then the invariance of Haar

measure under translations implies that µa = µ. Interpreting µa appropriately, Theorem

3 implies a more general statement.

Theorem 6. For an i.i.d. product measure µ and a rational number a = r/s ∈ Zp in

reduced form, the transformation Ta is ergodic with respect to µa if and only if a ∈ Z×p .

Proof. As observed in the proof of Theorem 3, if a /∈ Z×p , then Bp−1(0) is an invariant

set for Ta. Since T−ia (Bp−1(0)) is another ball of radius p−1, we have 0 < µT−ia (Bp−1(0)) <

1 for all 0 ≤ i < s. Thus 0 < µa(Bp−1(0)) < 1, so Ta is not ergodic with respect to µa.

If a is in Z×p , then r is also in Z×p . Thus, Theorem 3 implies that µ is ergodic for Tr.

If A is an invariant set for Ta, then T−ia (A) = A for all i ∈ Z. Since T−sa = T−1r , the set

A is also invariant for Tr. By ergodicity, it follows that µ(A) is either 0 or 1. Moreover,

T−ia (A) = A implies that

µa(A) =
1

s

s−1∑
i=0

µT−ia (A)

=
1

s

s−1∑
i=0

µ(A)

= µ(A).

Hence, µa(A) is either 0 or 1, so Ta is ergodic with respect to µa. 2
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CHAPTER 3

Orbit Equivalence and Transformation Types of p-adic

Translation Maps

3.1. Existence of Type II p-adic Transformations

In this section, we define orbit equivalence and an invariant called transformation

type. The survey article [40] by Katznelson and Weiss contains more information on orbit

equivalence and transformation types and uses Rokhlin towers to prove the invariance

of transformation types. The type II transformations divide into two subtypes that are

complete invariants. It is trivial to give an example for one of the subtypes. The focus

of the section is an example for the other subtype, an example that preserves an infinite

measure. We define some properties and tools that are used in the ergodic theory of

infinite measure preserving transformations. Then Theorem 7 states the desired ergodic

properties satisfied by the example that is constructed in the proof.

Orbit equivalence is a weak notion of equivalence that is defined between invertible,

nonsingular, and ergodic transformations on measure spaces. Two such transformations,

T on (X,B, µ) and S on (Y, C, ν), are orbit equivalent if there exists a bimeasurable,

nonsingular map Φ : X → Y such that for almost every x ∈ X

{Φ(T nx) : n ∈ Z} = {Sm(Φx) : m ∈ Z} .



A transformation on a nonatomic measure space is a type II transformation if it is orbit

equivalent to a transformation that preserves a σ-finite measure. A transformation on

a nonatomic measure space is a type III transformation if it is not orbit equivalent

to a transformation that preserves a σ-finite measure. These transformation types are

invariants for orbit equivalence.

The type II transformations can be further subdivided into two subtypes. A type

II transformation is type II1 if it is orbit equivalent to a transformation that preserves

a finite measure. A type II transformation is type II∞ if it is orbit equivalent to a

transformation that preserves an infinite σ-finite measure. The transformation types II1

and II∞ are complete invariants for orbit equivalence. The fact that any two measure-

preserving transformations are orbit equivalent is called Dye’s Theorem [21, 22]. This

section gives a representative transformation for each these two transformation types.

The first example of a type III transformation was given by Ornstein in [52]. Type III

transformations and their subtypes are discussed further in Section 3.2.

For a ∈ Z×p , the translation Ta is ergodic and measure-preserving with respect to Haar

measure, so Ta on (Zp,B,m) is a type II1 transformation. Diao and Silva prove in [18]

that no rational function—a quotient of two polynomials—is both measure-preserving

and ergodic on Qp with respect to Haar measure. Thus, we cannot look to polynomials

or rational functions for an example of a type II∞ transformation. Hence, the example

of a type II∞ transformation on Qp that we construct in Theorem 7 is not a polynomial

or rational function. Before constructing the transformation, we discuss some desirable

properties for transformations on infinite-measure spaces.
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For a nonsingular transformation T on a σ-finite measure space (X,A, µ), a setW ∈ A

is a wandering set if the sets {T−iW}∞i=0 are pairwise disjoint. A nonsingular transforma-

tion is conservative if every wandering set has measure zero. A set A ∈ A is a sweep-out

set for T if µ(A) < ∞ and X\
⋃∞
i=0 T

−iA is a set of measure zero. If T is measure-

preserving and (X,A, µ) is σ-finite, then Maharam’s Recurrence Theorem states that

the existence of a sweep-out set for T implies that T is conservative [50].

Since it is often easier to work with finite-measure systems than infinite-measure

systems, induced transformations are an important tool in infinite ergodic theory. For

a conservative transformation T on (X,A, µ) and a set A ∈ A of positive measure, the

return-time function nA(x) = min {n ∈ N : T nx ∈ A} is defined µ-almost everywhere.

Then the induced transformation TA is defined on A by TA(x) = T nA(x)(x). The return-

time partition of A consists of the sets

Ri = {x ∈ A : nA(x) = i} , for i ∈ N .

More generally, a partition of a measure space (X,A, µ) is a collection of pairwise-

disjoint, measurable sets whose union is all of X, up to a set of measure zero. To define

entropy, we assume that T is measure-preserving transformation on a finite measure space

(X,A, µ). The entropy of a partition α = {Ai}∞i=0 is

H(α) = −
∞∑
i=0

µ(Ai) log µ(Ai).
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For a finite partition α = {A0, A2, . . . , Ak−1}, the refinement
∨n−1
i=0 T

−iα is the partition

with sets of the form
⋂n−1
i=0 T

−1Aji . Then the entropy of T with respect to α is

h(T, α) = lim
n→∞

1

n
H

(
n−1∨
i=0

T−iα

)
.

Finally, the entropy of T is a supremum over measurable partitions,

h(T ) = sup
α
h(T, α).

This definition of entropy does not extend immediately to infinite measure spaces.

In particular, any finite partition of an infinite measure space contains a set of infinite

measure. If T is a conservative transformation on a σ-finite measure space (X,A, µ), then

the Krengel entropy is the entropy of the induced transformation on a set of positive

and finite measure. Any set of postive measure is a sweep-out set for a conservative

transformation T . In [48], Ulrich Krengel shows that any sweep-out set yields the same

entropy for the induced transformation, so the Krengel entropy is well-defined.

Krengel entropy is not the only attempt to define entropy on an infinite measure

space. Other notions of entropy are Parry entropy [54] and Poisson entropy, defined by

Roy Emmanuel. These definitions do not always give the same number, as seen in [36].

However, Janvresse et al. show in [37] that the three definitions do give the same entropy

when the transformation is quasi-finite. A conservative transformation is quasi-finite if

the entropy of the return-time partition is finite.

We can define Haar measure by defining the measure of a ball to be equal to the

radius of the ball. This definition extends naturally to define Haar measure on Qp. Since

Haar measure is translation invariant,it is also possible to construct Haar measure on
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Qp from Haar measure on Zp in the same way Lebesgue measure on R is constructed

from Lebesgue measure on the unit interval. Then the Haar measure of a measurable set

A ⊂ Qp is found by considering the intersection of A with Zp and with the translates of

Zp by {i/pn : i, n ∈ N, 0 < i < pn}. Since Zp-Haar measure is the same as the restriction

of the Qp-Haar measure to Zp, we use m for both Haar measures. For example, the radius

of the ball tells us that m(B3(0)) = 3. Moreover, we can write B3(0) the disjoint union

of three balls of radius one

B3(0) =
2⋃
i=0

B1

(
i

3

)
=

2⋃
i=0

Ti/3(Z3),

which also implies that m(B3(0)) = 3.

We define spheres in Qp by

Sr(a) = {x ∈ Qp : |x− a|p = r} .

Since the p-adic absolute value of an element of Qp is always a power of p, it follows that

a sphere in Qp is empty unless r is a power of p. Moreover, we have

Qp = Zp

⋃(
∞⋃
n=1

Spn(0)

)
.

Theorem 7. There exists a transformation f : Qp → Qp that is invertible, (infinite)

measure-preserving, conservative, ergodic, and quasi-finite with respect to Haar measure.

Moreover, the transformation has Krengel entropy 0 with respect to Haar measure.

Proof. We define a transformation f : Qp → Qp in steps, so that standard induction

proofs easily give the desired properties. The definition has two main goals. The first
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goal is to have Zp as a sweep-out set. To this end, iterates of balls of Zp sweep out part

of Qp and then return to Zp. In each sphere of Qp, we send some balls back to Zp and use

another to sweep out the rest of the sphere and continue to the next sphere. The second

goal is to define an ergodic transformation. To avoid invariant sets, the transformation

“rotates” the points when they are sent back to Zp. The remaining properties follow

from understanding the induced transformation on Zp.

The first step defines f on balls of radius p−1 in Zp. For all 0 ≤ j < p− 1, we define

f

(
j +

∞∑
i=1

xip
i

)
= j + 1 +

∞∑
i=1

xip
i.

This “rotates” the balls, so that S1(−1) is mapped to S1(0). For the final ball centered

at p− 1, we define

f

(
p− 1 +

∞∑
i=1

xip
i

)
=

1

p
+
∞∑
i=1

xip
i,

so the ball is sent to Sp(0). For example, Figure 3.1 illustrates the action of f on each

ball of radius 1/3 in Z3.

0

1 2

Figure 3.1. Construction of f on Q3, step 1.
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For n ≥ 2, the nth step defines f on balls of radius p−n in Spn−1(0). For all 0 ≤ j <

p− 1, we define

f

(
1

pn−1
+ jpn−1 +

∞∑
i=n

xip
i

)
= (j + 1)pn−1 +

∞∑
i=n

xip
i,

which sends p−1 balls to Zp, with a “rotation” in the coefficient of pn−1. Next, we define

f so that iterates of Bp−n((p − 1)/pn−1 + jpn−1) sweep out the rest of the sphere. In

order to have a conservative transformation, it does not really matter in which order we

iterate through the balls. For simplicity, we use the dictionary order on the coordinates

that determine the balls. If a−n+1a−n+2 . . . an−2an−1 is a word of length 2n − 1 and j is

the largest index such that aj < p− 1, then the word with next largest dictionary order

has bi = 0 for all j < i ≤ n − 1, bj = aj + 1, and bi = ai for all −n + 1 ≤ i < j. For

balls Bp−n(
∑n−1

i=−n+1 aip
i) such that a−n+1a−n+2 . . . an−2an−1 has dictionary greater than

or equal to (p− 1)0 . . . 1 and strictly less than (p− 1)(p− 1) . . . (p− 1), we define

f

(
n−1∑

i=−n+1

aip
i +

∞∑
i=n

xip
i

)
=

n−1∑
i=−n+1

bip
i +

∞∑
i=n

xip
i.

Finally, we define

f

(
n−1∑

i=−n+1

(p− 1)pi +
∞∑
i=n

xip
i

)
=

1

pn
+
∞∑
i=n

xip
i,

which sends Bp−n(
∑n−1

i=−n+1(p− 1)pi) into the next largest sphere, Spn(0).

For p = 3, the second step defines f on balls of radius 1/9 in S3(0) ⊂ Q3. Two

of these balls are mapped back into Z3. Then f acts on the balls according to the

dictionary order on the first three coordinates of the centers. Thus, the transformation
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f maps B3−2(1
3

+ 0 + 2 · 3) to B3−2(1
3

+ 1 + 0 · 3) to B3−2(1
3

+ 1 + 1 · 3) to B3−2(1
3

+ 1 + 2 · 3)

and so on. Finally, the last ball is mapped into S9(0). Figure 3.2 extends Figure 3.1 to

illustrate the action of f on the balls in B3(0).

Figure 3.2. Construction of f on Q3, step 2.

Since each step of the definition of f maps balls in Qp to balls of the same radius, the

transformation f preserves the Haar measures of these balls. Since finite unions of balls

in Qp form a generating algebra of the Borel sets of Qp, it follows that f preserves Haar

measure.

We next define a transformation g : Qp → Qp such that g = f−1. The definition of

g is also given in steps, so that it is easy to compute the composition with f . The first

step defines g on balls of radius p−1 in S1(0) by

g

(
j +

∞∑
i=1

xip
i

)
= j − 1 +

∞∑
i=1

xip
i

for all 0 < j ≤ p− 1.
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For n ≥ 2, the nth step defines g on balls of radius p−n in Sp−n+1(0)∪Spn−1(0). First,

we define g on the balls in Sp−n+1(0) by

g

(
jpn−1 +

∞∑
i=n

xip
i

)
=

1

pn−1
+ (j − 1)pn−1 +

∞∑
i=n

xip
i

for all 0 < j ≤ p − 1. If b−n+1b−n+2 . . . bn−2bn−1 is a word of length 2n − 1 and j is the

largest index such that bj > 0, then the word with next smallest dictionary order has

ai = p− 1 for all j < i ≤ n− 1, aj = bj − 1, and ai = bi for all −n+ 1 ≤ i < j. For balls

Bp−n(
∑n−1

i=−n+1 bip
i) such that b−n+1b−n+2 . . . bn−2bn−1 has dictionary strictly greater than

(p− 1)0 . . . 1 and less than or equal to (p− 1)(p− 1) . . . (p− 1), we define

g(
n−1∑

i=−n+1

bip
i +

∞∑
i=n

xip
i) =

n−1∑
i=−n+1

aip
i +

∞∑
i=n

xip
i.

Finally, we define

g

(
1

pn−1
+

∞∑
i=n−1

xip
i

)
=

n−2∑
i=−n+2

(p− 1)pi +
∞∑

i=n−1

xip
i.

which sends Bp−n+1(p−n+1) into the next smallest sphere, Spn−1(0).

Comparing the nth step of both constructions, we see that g ◦ f = Id on all but

the final ball, Bp−n(
∑n−1

i=−n+1(p − 1)pi). For this ball, we compare the nth step in the

construction of f with the n + 1st step in the construction of g to see that g ◦ f = Id.

Moreover, g also preserves Haar measure. Thus, f is invertible and g is the inverse.

In Zp, we have −1 =
∑∞

i=0(p− 1)pi. To prove that Zp is a sweep-out set, we consider

Sp−n(−1) for n ≥ 0 and count how many iterations of f it takes to reach Sp−n(0). In

this way, we calculate the return times and the induced transformation. We begin by
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considering the first step in the definition of f , which defines f on Zp. In this step, we

see that f maps the sphere S1(−1) =
⋃p−2
j=0 Bp−1(j) to the sphere S1(0) =

⋃p−1
j=1 Bp−1(j),

so nZp(x) = 1 for all x ∈ S1(−1). Moreover, we observe that the induced transformation

is fZp
(x) = x + 1 = T1(x) for all x ∈ S1(−1). On the other hand, f maps Bp−1(−1) to

Bp−1(p−1) ⊂ Sp(0) by

f

(
(p− 1) +

∞∑
i=1

xip
i

)
=

1

p
+
∞∑
i=1

xip
i.

Proceeding to the second step, we have

f 2

(
(p− 1) + jp+

∞∑
i=2

xip
i

)
= f

(
1

p
+ jp+

∞∑
i=2

xip
i

)

= (j + 1)p+
∞∑
i=2

xip
i,

for all 0 ≤ j < p − 1. Thus nZp(x) = 2 and fZp
(x) = T1(x) for all x ∈ Sp−1(−1). Using

dictionary order on the first three coordinates, the iterates of f map f(Bp−2(−1)) =

Bp−2(p−1 + (p − 1)p) through the rest of the balls of radius p−2 in Sp(0), fixing all

coordinates with index greater than 1. In order to count iterates, we need to know how

many balls are left in Sp(0)\Bp−1(p−1). A ball Bp−2(a) ⊂ Sp(0) is determined by the

three coordinates a−1, a0, and a1. Since a−1 must be nonzero, there are (p− 1)p2 balls of

radius p−2 in Sp(0). However, there are p balls of radius p−2 in Bp−1(p−1), so there are

only (p− 1)p2 − p balls of radius p−2 in Sp(0)\Bp−1(p−1). Hence

f (p−1)p2−p+1

(
(p− 1) + (p− 1)p+

∞∑
i=2

xip
i

)
= f (p−1)p2−p

(
1

p
+ (p− 1)p+

∞∑
i=2

xip
i

)

=
1∑

i=−1

(p− 1)pi +
∞∑
i=2

xip
i.
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Having considered these base cases, we proceed by induction to calculate the re-

turn times and induced transformation. For notational convenience, we define s(n) =∑n
k=2[(p− 1)p2k−2 − (p− 1)] for n ≥ 2. For some n ≥ 2, we suppose that

f s(n)

(
n−1∑
i=0

(p− 1)pi +
∞∑
i=n

xip
i

)
=

n−1∑
i=−n+1

(p− 1)pi +
∞∑
i=n

xip
i.

From the nth step of the definition, we have

f s(n)+1

(
n−1∑
i=0

(p− 1)pi +
∞∑
i=n

xip
i

)
= f

(
n−1∑

i=−n+1

(p− 1)pi +
∞∑
i=n

xip
i

)

=
1

pn
+
∞∑
i=n

xip
i.

From the n+ 1st step of the definition of f , we have

f s(n)+2

(
n−1∑
i=0

(p− 1)pi + jpn
∞∑

i=n+1

xip
i

)
= f(

1

pn
+ jpn +

∞∑
i=n+1

xip
i)

= (j + 1)pn +
∞∑

i=n+1

xip
i

for all 0 ≤ j < p − 1. Thus nZp(x) = s(n) + 2 = 2 +
∑n

k=2[(p − 1)p2k−2 − (p − 1)]

and fZp
(x) = T1(x) for all x ∈ Sp−n(−1). In the n + 1st step in the construction of f ,

iterates of f send Bp−n−1(p−n + (p − 1)pn) through all of the balls of radius p−(n+1) in

Spn+1(0)\Bp−n(p−n), according to the dictionary order of their first 2n + 1 coordinates.

Since the first coordinate is nonzero and Bp−n(p−n) contains p balls of radius p−(n+1),

61



there are (p− 1)p2n+1 − p balls in Spn+1(0)\Bp−n(p−n). Thus

f s(n+1)

(
n∑
i=0

(p− 1)pi +
∞∑

i=n+1

xip
i

)

= f s(n)+(p+1)p2n+1−p+1

(
n∑
i=0

(p− 1)pi +
∞∑

i=n+1

xip
i

)

= f (p−1)p2n+1−p+1

(
n∑

i=−n+1

(p− 1)pi +
∞∑

i=n+1

xip
i

)

= f (p−1)p2n+1−p

(
1

pn
+ (p− 1)pn +

∞∑
i=n+1

xip
i

)

=
n∑

i=−n

(p− 1)pi +
∞∑

i=n+1

xip
i.

We observe that this is our induction hypothesis with n+ 1 in place of n.

It follows by induction that Zp is a sweep-out set. If x ∈ Zp and x is not −1, then

x ∈ Sp−n(−1) for some n. Thus nZp(x) is defined, and x ∈ f−nZp (x) Zp. If x ∈ Qp \Zp,

then x ∈ Spn(0) for some n > 0. If xi is not p − 1 for some i > n, then we let k be

the minimal such index. It follows that x is in the orbit of an element y ∈ Sp−k(−1),

so x ∈
⋃nZp (y)

i=1 f−i Zp. Since there are only countably many elements of Qp that end in

repeating p − 1’s, the set Qp \ ∪∞i=1 f
−i Zp has Haar measure zero, so Zp is a sweep-out

set. Since a sweep-out set exists, f is conservative by Maharam’s Recurrence Theorem.

Moreover, we have fZp
(x) = T1(x) for all x ∈ Zp \{−1}. We recall that T1 is ergodic

with respect to Haar measure on Zp. Since the induced measure on Zp is Haar measure

on Zp, we also have that fZp
is ergodic with respect to the induced measure on Zp. Since

Zp is a sweep-out set for the conservative transformation f , the ergodicity of the induced

transformation with respect to the induced measure implies that f is also ergodic with

respect to Haar measure on Qp.
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From calculating the return-time function, we see that the return-time partition is

α = {Sp−n(−1)}∞
n=0

. The entropy of this partition,

H(α) = −
∞∑
n=0

m(Sp−n(−1)) log m(Sp−n(−1)) = −
∞∑
n=0

p− 1

pn+1
log

p− 1

pn+1
,

is finite. Thus, the transformation f is quasi-finite with respect to Haar measure. Since f

is quasi-finite, all definitions of entropy for infinite measure spaces give the same result.

Since fZp
is a translation on a compact group, it has entropy 0 with respect to Haar

measure on Zp. Since the induced transformation has entropy 0, the transformation f

has Krengel entropy 0. 2

Since f is invertible, conservative, and measure-preserving, and since m is a σ-finite

measure, f is isomorphic to the Kakutani skyscraper over fZp
= T1 with height function

nZp . In general, if S is a conservative, nonsingular transformation on a σ-finite measure

space (X,A, µ), then the Kakutani skyscraper over S with height function h : X → N is

the transformation

T (x, n) =


(x, n+ 1) if n < h(x),

(S(x), 1) if n = h(x)

on the set

Y = {(x, n) : x ∈ X, 1 ≤ n ≤ h(x)}

with the measure ν such that for A ∈ A

ν(A× {n}) = µ(A).
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The induced transformation T1 on Z2 is isomorphic to the odometer on
∏∞

i=0X2, which

is isomorphic to the odometer on the unit interval. The Hajian-Kakutani transformation

is also a Kakutani skyscraper over the odometer on the unit interval. However, it is

not the same Kakutani skyscraper as the Kakutani skyscraper over fZp
= T1 with height

function nZp , because the height functions are different. Hajian and Kakutani define their

skyscraper in [31] to give an example of an ergodic, measure-preserving transformation on

an infinite measure space that has an exhaustive weakly wandering set of measure 1. A set

W is weakly wandering for an invertible transformation T on a measure space (X,A, µ)

if there exists a sequence of nonnegative integers {ni}∞i=0 such that T−niW ∩ T−njW = ∅

for all i 6= j. A weakly wandering set W for T is exhaustive if (
⋃∞
i=0 T

−niW = X, up

to a set of µ-measure 0. Eigen, Hajian, and Prasad study the weakly wandering sets of

general Kakutani skyscrapers over the odometer in [23]. For future work, their paper

could be applied to investigate the weakly wandering sets of f .

3.2. Existence of Type III p-adic Transformations

In this section, we discuss type III transformations. We begin by defining the ratio

set, which then defines subtypes. Theorem 8 simplifies the calculation of the ratio set to

the calculation of the measures for finitely many balls. The remainder of the section gives

examples for the transformation types that are complete invariants for orbit equivalence.

Since translation by an integer is an iterate of translation by 1, these examples are

used to examine how orbit equivalence classes behave under iteration. Measure-theoretic

isomorphism classes are preserved by iteration. If φ : (X,B, µ)→ (Y, C, ν) is an isomor-

phism from T on (X,B, µ) to S on (Y, C, ν), then the definition and the invertibility of φ
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imply that S = φ ◦ T ◦ φ−1. For k > 0, this equality implies that

Sk = (φ ◦ T ◦ φ−1)k = φ ◦ T k ◦ φ−1,

so T k on (X,B, µ) is isomorphic to Sk on (Y, C, ν). Thus, if two transformations of

measures spaces are isomorphic, then all iterations are also isomorphic. In Theorem 9,

we see that this is not the case for orbit equivalence. We find transformations on measure

spaces that are orbit equivalent, but an iteration of the transformations breaks the orbit

equivalence.

Since all translations on Zp are type II1 transformations with respect to Haar measure,

we examine translations with respect to other i.i.d. product measures to find examples of

type III transformations. Although not all type III transformations are orbit equivalent,

the ratio set defines subtypes, many of which are complete invariants for orbit equivalence.

Definition 1. For an invertible, nonsingular and ergodic transformation T on a

measure space (X,A, µ), a real number r ∈ [0,∞] is in the ratio set R(T, µ) if for all

ε > 0 and for every measurable set A of postive measure, there exists B ⊂ A of positive

measure and an n ∈ Z \ {0} such that T nB ⊂ A and |(dµT n/dµ)(x) − r| < ε for all

x ∈ B.

The ratio set R(T, µ) depends only on the absolute continuity equivalence class of

µ. The ratio set is closed, and R(T, µ) ∩ (0,∞) is a multiplicative subgroup of (0,∞).

The possibilities for multiplicative subgroups give the following possibilities for ratio sets,

which are used to define the transformation types IIIλ for 0 ≤ λ ≤ 1.
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Transformation Type Ratio Set R(T, µ)

Type II {1}

Type III0 {0, 1, ∞}

Type IIIλ {λn : n ∈ Z} ∪ {0, ∞}, λ ∈ (0, 1)

Type III1 [0, ∞]

The transformation types IIIλ for 0 < λ ≤ 1 are complete invariants for orbit equiva-

lence. Although the definition of the ratio set is complicated, Theorem 8 below reduces

the problem to calculating a generating set. Before giving the theorem, we make some

comments about the notation. If an ergodic transformation T on a measure space is

invertible, then it follows from the definition and properties of the Radon-Nikodým de-

rivative that T and T−1 have the same transformation type. For a negative integer a,

the transformation type of translation by a is the same as the transformation type of

translation by the positive integer −a. Therefore, Theorem 8 is stated for positive in-

tegers, which simplifies the proof. Since the i.i.d. product measures are required to be

probability measures, knowing p−1 of the weights is enough information to calculate the

pth weight. To reflect this fact and simplify calculations, we can write the i.i.d. product

measure in the form µ =
∏∞

i=0

{
1
Q
, q1
Q
, . . . , qp−1

Q

}
, where Q = 1 +

∑p−1
i=1 qi.

Theorem 8. For a ∈ N∩Z×p , N ∈ N such that pN > a, and an i.i.d. product measure

µ =
∏∞

i=0

{
1
Q
, q1
Q
, . . . , qp−1

Q

}
with Q = 1 +

∑p−1
i=1 qi, the ratio set R(Ta, µ) is the closure of

the multiplicative subgroup generated by

r(Ta, µ) =

{
µTa(B1/pN+1(k))

µ(B1/pN+1(k))
qjp−1 : j ≥ 0, 0 ≤ k < pN+1 − a

}
.
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Proof. We begin by showing that the elements of r(Ta, µ) are the values of the

Radon-Nikodým derivative of T−1a with respect to µ. More precisely, we show that

dµTa
dµ

(x) ∈ r(Ta, µ) for almost every x ∈ Zp. If W = max {1/Q, q1/Q, . . . , qp−1/Q}, then

µ

(
a⋃
i=1

Bp−n(pn − i)

)
< aW n

for all n > N . Since limn→∞ aW
n = 0, the set

Z =
∞⋃
n=N

pn−a−1⋃
i=1

Bp−n(i)

has µ-measure 1. Thus, for almost every x =
∑∞

i=0 xip
i, there exists an n > N such that∑n−1

i=0 xip
i < pn − a. If

∑N−1
i=0 xip

i < pN − a, then adding a does not result in a carry to

the Nth coordinate. If Ta(x) =
∑N−1

i=0 yip
i mod pN , then

x0 + x1p
1 + · · ·+ xN−1p

N−1 + xNp
N + · · ·+ xnp

n + · · ·

+ a0 + a1p
1 + · · ·+ aN−1p

N−1 + 0 pN + · · ·+ 0 pn + · · ·

y0 + y1p
1 + · · ·+ yN−1p

N−1 + xNp
N + · · ·+ xnp

n + · · · .

Thus, Proposition 2 implies that

dµTa
dµ

(x) =
µTa(Bp−n(

∑n−1
i=0 xip

i))

µ(Bp−n(
∑n−1

i=0 xip
i))

=
µTa(B1/pN+1(

∑N
i=0 xip

i))

µ(B1/pN+1(
∑N

i=0 xip
i))

,

which is an element of r(Ta, µ). If
∑N−1

i=0 xip
i ≥ pN − a, then adding a does result in a

carry to the Nth coordinate. We let k be the least index such that k ≥ N and xk 6= p−1.
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Then the carry to the Nth coordinate results in further carries until the k− 1st digit, so

1 · · · 1 1

x0 + · · ·+ xN−1p
N−1 + (p− 1)pN + · · ·+ (p− 1)pk−1 + xkp

k + · · ·

+ a0 + · · ·+ aN−1p
N−1 + 0 pN + · · ·+ 0 pk−1 + 0 pk + · · ·

y0 + · · ·+ yN−1p
N−1 + 0 pN + · · ·+ 0 pk−1 + (xk + 1)pk + · · · .

Thus, Proposition 2 implies that

dµTa
dµ

(x) =
µTa(Bp−n(

∑n−1
i=0 xip

i))

µ(Bp−n(
∑n−1

i=0 xip
i))

=
µTa(B1/pN+1(

∑N−1
i=0 xip

i + xkp
N))

µ(B1/pN+1(
∑N−1

i=0 xipi + xkpN))
qk−Np−1 ,

which is an element of r(Ta, µ).

Next, we show that r = dµTa/dµ(x) ∈ r(Ta, µ) is an element of the ratio set

R(Ta, µ). With n chosen for x as in the previous paragraph, we set x̄ =
∑n−1

i=0 xip
i,

β = min {µ(Bp−n(x)), µTa(Bp−n(x))} and α = 1− β/4. By Lemma 2, we can find a ball

C such that µ(A∩C) > αµ(C). Without loss of generality, there exists an integer m ≥ 0

and an integer 0 ≤ k < pm such that C = Bp−m(k). Since x̄+ a ≤ pn − 1, we have

k + pmx̄+ pma = k + pm(x̄+ a)

≤ k + pm(pn − 1)

= k − pm + pn+m

< pn+m.
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Since k + pmx̄ < pn+m − pma, Proposition 2 implies that for y ∈ B1/pn+m(k + pnx̄)

dµT p
m

a

dµ
(y) =

µ(B1/pn+m(T p
m

a (j + pmx̄)))

µ(B1/pn+m(j + pmx̄))

=
µ(B1/pn(Ta(x̄)))

µ(B1/pn(x̄))
= r.

To satisfy the definition of the ratio set, we set B = A∩T−pma (A∩T pma (B1/pn+m(k+pnx̄))).

By construction, we have B ⊂ A. Since Ta is invertible, the construction implies that

T p
m

a B ⊂ A. Since µT p
m

a (B1/pn+m(k + pnx̄)) = µTa(B1/pn(x̄))µ(C) and

µ(A ∩ C) >

(
1− β

4

)
µ(C) ≥

(
1−

µ(TaB1/pn(x̄)

4

)
µ(C),

it follows that

µ(A ∩ T pma B1/pn+m(k + pnx̄)) ≥ (3/4)µTa(B1/pn(x̄))µ(C)

= (3/4)µT p
m

a (B1/pn+m(k + pnx̄)).

By Proposition 2, the Radon-Nikodým derivative of T p
m

a is constant on B1/pn+m(k+pnx̄),

so

µ(T−p
m

a (A ∩ T pma B1/pn+m(k + pnx̄))) ≥ (3/4)µ(B1/pn+m(k + pnx̄))

= (3/4)µ(B1/pn(x̄))µ(C).

Since

µ(A ∩ C) >

(
1− β

4

)
µ(C) ≥ (3/4)µ(B1/pn(x̄))µ(C),
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it follows that

µ(B) = µ(A ∩ T−pma (A ∩ T pma (B1/pn+m(k + pnx̄))))

≥ (1/2)µ(B1/pn(x̄))µ(C) > 0.

Finally, since B ⊂ B1/pn+m(k + pnx̄), we have dµT p
m

a /dµ(y) = r for all y ∈ B.

Since every element of r(Ta, µ) is an element of the ratio set, the closed multiplicative

subgroup generated by r(Ta, µ) is contained in the ratio set. To show the reverse inclusion,

we suppose that r ∈ R(Ta, µ). For each n ∈ N, the definition of the ratio set implies that

there exists a set Bn ⊂ Zp of positive measure and an integer jn such that |dµT jna /dµ(y)−

r| < 1/n for all y ∈ Bn. Since Ta and T−1a are nonsingular, µ(Z) = 1 implies that

µ(
⋂
i∈Z T

i
aZ) = 1. Since Bn has positive measure, there exists xn ∈ Bn such that xn ∈⋂

i∈Z T
i
aZ. Thus T ia(xn) ∈ Z for all i ∈ Z. If jn ≥ 0, then the chain rule for Radon-

Nikodým derivatives, proved in [60], implies that

dµT jna
dµ

(xn) =
dµTa
dµ

(xn)
dµTa
dµ

(T 1
axn) · · · dµTa

dµ
(T jn−1a xn).

Hence dµT jna /dµ(xn) is in the multiplicative subgroup generated r(Ta, µ). If jn < 0, then

dµT jna
dµ

(xn) =
1

dµT−jn
a

dµ
(T jnxn)

is in the multiplicative subgroup generated by r(Ta, µ). Since dµT jna /dµ(xn) → r as

n → ∞, it follows that r is in the closure of the multiplicative subgroup generated by

the values of the Radon-Nikodým derivative. 2
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If µ in Theorem 8 is Haar measure, then qp−1 = 1 and all of the Radon-Nikodým

derivatives equal 1. Hence, Theorem 8 implies that R(Ta,m) = {1}, which implies that

translation is type II with respect to Haar measure. This agrees with the discussion at

the beginning of Section 3.1.

Next, we use Theorem 8 to give examples of type IIIλ transformations, for 0 < λ < 1.

For a = 1, Propositions 5 and 6 are generalizations of the examples given by Hamachi

and Osikawa for the odometer on the product spaces
∏∞

i=0X2 and
∏∞

i=0X3. Moreover,

we see that it is possible for all ergodic iterates to have the same transformation type.

Proposition 5. For 0 < λ < 1 and an integer a ∈ Z×p , the transformation Ta on Zp

is type IIIλ with respect to the measure µ1 =
∏∞

i=0

{
1
Q1
, . . . , 1

Q1
, λ
Q1

}
, where Q1 = p−1+λ.

Proof. We fix N such that pN > a. Using Theorem 8, we want to show that

r(Ta, µ) =

{
µ1Ta(B1/pN+1(k))

µ1(B1/pN+1(k))
λj : j ≥ 0, 0 ≤ k < pN+1 − a

}

generates {λi : i ∈ Z}. For all 0 ≤ k < pN+1, if np−1(k) is the number of p − 1s in

the p-adic expansion of i, then µ1(B1/pN+1(k)) = λnp−1(k)/QN+1
1 . In other words, the

measure of every ball of radius p−N−1 has a power of λ in the numerator and QN+1
1 in

the denominator. Then the fraction

µ1T1(B1/pN+1(k))

µ1(B1/pN+1(k))
=
µ1(B1/pN+1(k + 1))

µ1(B1/pN+1(k))

is a power of λ for all 0 ≤ i < pN+1 − a. Thus, we have r(Ta,m1) ⊂
{
λk : k ∈ Z

}
.
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In particular, if k = 0 and j = np−1(0)− np−1(a) + 1, then

µ1Ta(B1/pN+1(0))

µ1(B1/pN+1(0))
λj =

µ1(B1/pN+1(a))

µ1(B1/pN+1(0))
λj

=
λnp−1(a)

λnp−1(0)
λj = λ.

Thus, the set r(Ta, µ1) generates
{
λk : k ∈ Z

}
. Therefore, R(Ta, µ1) = {λn : n ∈ Z} ∪

{0, ∞}, so Ta has transformation type IIIλ with respect to µ1. 2

Two real numbers r1, r2 ∈ R are rationally independent if q1, q2 ∈ Q such that q1r1 +

q2r2 = 0 implies that q1 = q2 = 0.

Proposition 6. For p ≥ 3, if λ1, λ2 ∈ (0, 1) such that log λ1 and log λ2 are rationally

independent, then the transformation T1 on Zp is type III1 with respect to the measure

µ2 =
∏∞

i=0

{
1
Q2
, . . . , 1

Q2
, λ2
Q2
, λ1
Q2

}
, where Q2 = p− 2 + λ1 + λ2.

Proof. For all 0 ≤ i < pN+1, if nj(i) is the number of j’s in the p-adic expansion of

i, then µ1(B1/pN+1(i)) = λ
np−2(i)
2 λ

np−1(i)
1 /QN+1

1 . For k =
∑N

i=0(p− 2)pi < pN+1, we have

µT1(B1/pN+1(k − 1))

µ(B1/pN+1(k − 1))
=

µ(B1/pN+1(k))

µ(B1/pN+1(k − 1))

= λ
np−2(k)−np−2(k−1)
2 λ

np−1(k)−np−1(k−1)
1

= λ
N−np−2(k−1)
2 λ

−np−1(k−1)
1 .

Since np−2(k − 1) < N , the multiplicative subgroup generated by λ
N−np−2(k−1)
2 and λ1 is

contained inR(T1, µ2). If log λ1 and log λ2 are rationally independent, then (N−np−2(k−

1)) log λ2 and log λ1 are also rationally independent. Hence, the values λ
N−np−2(k−1)
2 and

λ1 generate a dense multiplicative subgroup of (0,∞). Thus, Theorem 8 implies that
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R(T1, µ2) = [0,∞]. By the definition of the transformation types, T1 is type III1 with

respect to µ2. 2

For the measure µ1, the ergodic iterates have the same transformation type as the

original transformation. In general, it follows from the definition of the ratio set that

R(T n, µ) ⊂ R(T, µ). In the next proposition, we see that it is possible to have a strict

inclusion.

Proposition 7. For 0 < λ < 1, the translation T1 on Z3 has transformation type

IIIλ with respect to µ3 =
∏∞

i=0

{
1

2+λ
, λ
2+λ

, 1
2+λ

}
. However, the iterate T2 = T 2

1 on Z3 has

transformation type IIIλ2 with respect to µ3.

Proof. Since both 1 and 2 are less than 3, we take N = 1 in Theorem 8. Since

q2 = 1, we have

r(T1, µ3) =

{
1

λ
, λ

}
r(T2, µ3) =

{
1

λ2
, 1, λ2

}
.

Therefore, R(T1, µ3) = {λn : n ∈ Z} ∪ {0, ∞}, so T1 has transformation type IIIλ with

respect to µ3. However, R(T2, µ3) = {λ2n : n ∈ Z} ∪ {0, ∞}, so T2 has transformation

type IIIλ2 with respect to µ3. 2

For 0 < λ ≤ 1, the transformation type IIIλ is a complete invariant for orbit equiva-

lence. Hence, the previous propositions imply that orbit equivalence is not preserved by

iteration.
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Theorem 9. For 0 < λ < 1, there exist transformations T on (X,B, µ) and S on

(Y, C, ν) that both have transformation type IIIλ, but the iterates T 2 on (X,B, µ) and S2

on (Y, C, ν) have different transformation types.

Proof. For 0 < λ < 1, the transformations T1 on (Z3,M, µ1) and T1 on (Z3,M, µ3)

both have transformation type IIIλ, so they are orbit equivalent. However, the iter-

ate T2 = T 2
1 on (Z3,M, µ1) has transformation type IIIλ, but the iterate T2 = T 2

1 on

(Z3,M, µ3) has transformation type IIIλ2 . Hence, the iterates are not orbit equivalent.

2

If two transformations on measure spaces are isomorphic, then the isomorphism be-

tween them also gives an isomorphism of the iterates. To emphasize that this may fail for

orbit equivalent transformations, we give an orbit equivalence between T1 on (Z3,M, µ1)

and T1 on (Z3,M, µ3). Then we show that it is not an orbit equivalence between T2

on (Z3,M, µ1) and T2 on (Z3,M, µ3). The measures µ1 and µ3 differ by switching the

weights of 1 and 2. Thus, we examine the transformation η : (Z3,M, µ1)→ (Z3,M, µ3)

defined by switching 1’s and 2’s; that is,

(η(x))i =



0 if xi = 0,

2 if xi = 1,

1 if xi = 2.

Since η2(x) = x for all x ∈ Z3, it follows that η is invertible and η−1 = η. The measures µ3

and µ1 ◦ η−1 are not only equivalent, but also equal. For a fixed x ∈ Z3, the composition

η ◦ T1 ◦ η−1 changes only finitely many coordinates of x. Thus, there exists k ∈ Z,

depending on x, such that η◦T1◦η(x) = Tk(x) = T k1 (x). Since η is invertible, this implies
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that η preserves orbits. Therefore, η is an orbit equivalence between T1 on (Z3,M, µ1)

and T1 on (Z3,M, µ3). However, η is not an orbit equivance between T2 on (Z3,M, µ1)

and T2 on (Z3,M, µ3). If x ∈ B1/3(0), then

η−1 ◦ T2 ◦ η(x) = η ◦ T2 ◦ η(0 +
∞∑
i=1

xi · 3i)

= η ◦ T2(0 + η(
∞∑
i=1

xi · 3i))

= η ◦ (2 + η(
∞∑
i=1

xi · 3i))

= 1 +
∞∑
i=1

xi · 3i = x+ 1.

Since T1(x) = x + 1 is not in the orbit of x under T2, the transformation η does not

preserve orbits for x ∈ B1/3(0). Since µ1(B1/3(0)) > 0, we conclude that η is not an orbit

equivalence between T2 on (Z3,M, µ1) and T2 on (Z3,M, µ3).

3.3. Generalizations to the g-adic Numbers

In the first part of [51], Mahler discusses the g-adic numbers in great detail, where

g ≥ 2 is a fixed integer that may be composite. Most of the preceding work does not

depend on the fact that p is a prime number. For a composite number g, the definitions

follow as in Section 1.1, with a couple of exceptions. As before, the pseudo-valuation | · |g

is defined on Q in terms of divisibility by g. If x is a nonzero rational number, then it

can be written uniquely as gn(a/b), for some integer n and relatively prime integers a

and b that are not divisible by g. The g-adic order of x is ordg(x) = n and the g-adic
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absolute value is

|x|g =


g− ordg(x) if x 6= 0

0 if x = 0.

If g is a composite number, then | · |g may fail to be a valuation. In particular, the

multiplicative condition

(3) v(ab) = v(a)v(b) for all a, b ∈ R

may fail to hold. For example, we have |2|6 = 1 and |3|6 = 1, but |2 · 3|6 = |6|6 =

1/6. Instead of being a valuation, | · |g may only be a psuedo-valuation, in which the

multiplicative condition of a valuation is weakened to a submultiplicative condition

(3’) v(ab) ≤ v(a)v(b) for all a, b ∈ R.

Nevertheless, a pseudo-valuation still defines a metric, so Qg is defined as the com-

pletion of Q with respect to the metric induced by | · |g. Moreover, Qg may not be a field.

It is a ring, but it may have zero divisors. As before, we define the set of g-adic integers

and its set of units by

Zg = {x ∈ Qg : |x|g ≤ 1} and

Z×g = {x ∈ Zg : there exists y ∈ Zg such that xy = 1} .

Then Lemma 1 is generalized as follows.

Lemma 3. The element a =
∑∞

i=0 aig
i ∈ Zg is a unit if and only if gcd(a0, g) = 1.

76



The ring Qg can also be defined as the set of formal Laurent series in g, with Zg

defined as the set of formal power series in g. The pseudo-valuation | · |g is still non-

Archimedean and defines a totally disconnected topology. The g-adic integers are iso-

morphic to the product space
∏∞

i=0Xg. Again, the Caratheodory construction defines

i.i.d. product measures on Zg, beginning with a probability vector (q0, q1, . . . , qg−1) that

defines a premeasure µ0 on balls of Zg by

µ0

(
Bg−k

(
∞∑
i=0

aig
i

))
=

k−1∏
i=0

q(ai).

After replacing a0 6= 0 with gcd(a0, g) = 1, the approximations and constructions in

Section 1.3 follow verbatim.

Theorem 10. For a ∈ Zg, we define Ta : Zg → Zp by Ta(x) = x+ a and consider an

i.i.d. product measure µ.

(A) For a ∈ Z×g and n ∈ N, we define tn : Zg → Zp by

(1) (tn(x))i =


(Ta(x))i if 0 ≤ i < n

xi if i ≥ n.

With respect to µ, the sequence of endomorphisms {tn}n≥1 converges to Ta in the

uniform topology if and only if a ∈ Z.

(B) For a ∈ N ( Zg and 0 ≤ i < gn − a, the Radon-Nikodým derivative is

dµ ◦ Ta
dµ

≡
µ(Bg−n(i+ a))

µ(Bg−n(i))

on the ball Bg−n(i).
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(C) For a ∈ N and a ≤ i < gn, the Radon-Nikodým derivative

dµ ◦ T−a
dµ

≡
µ(Bg−n(i− a))

µ(Bg−n(i))

on the ball Bg−n(i).

(D) For a ∈ Z ( Zp, the translation Ta is ergodic with respect to µ if and only if a ∈ Z×g .

(E) For a rational number a = r/s ∈ Zg in reduced form, the transformation Ta is ergodic

with respect to µa = (1/s)
∑s−1

i=0 µT
−i
a if and only if a ∈ Z×g .

(F) There exists a transformation f : Qg → Qg that is invertible, (infinite) measure-

preserving, conservative, ergodic, and quasi-finite with respect to Haar measure.

Moreover, the transformation has Krengel entropy 0 with respect to Haar measure.

(G) For a ∈ N∩Z×g , N ∈ N such that gN > a, and µ =
∏∞

i=0

{
1
Q
, q1
Q
, . . . , qg−1

Q

}
with

Q = 1 +
∑g−1

i=1 qi, the ratio set R(Ta, µ) is the closure of the multiplicative subgroup

generated by

r(Ta, µ) =

{
µTa(B1/gN+1(k))

µ(B1/gN+1(k))
qjg−1 : j ≥ 0, 0 ≤ k < gN+1 − a

}
.

(H) For 0 < λ < 1 and an integer a ∈ Z×g , the transformation Ta on Zg is type IIIλ with

respect to the measure µ1 =
∏∞

i=0

{
1
Q1
, . . . , 1

Q1
, λ
Q1

}
, where Q1 = g − 1 + λ.

(I) For g ≥ 3, if λ1, λ2 ∈ (0, 1) such that log λ1 and log λ2 are rationally independent,

then the transformation T1 on Zg is type III1 with respect to the measure µ2 =∏∞
i=0

{
1
Q2
, . . . , 1

Q2
, λ1
Q2
, λ2
Q2

}
, where Q2 = g − 2 + λ1 + λ2.

Proof. The proofs of most of these results are exactly the same as the proofs already

given for prime g. The only exceptions are the forward directions of (D) and (E). For

completeness, we give the more general proof of the contrapostive of the forward direction
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of (D) for composite g. In other words, we prove that if a ∈ Z×g , then Ta is not ergodic

with respect to µ. The proof for the forward direction of (E) follows similarly.

If a /∈ Z×g , then gcd(a, g) = gcd(a0, g) > 1. For k = g/ gcd(a, g), the set

A =
k−1⋃
i=0

B1/g(i · gcd(a, g))

is invariant under Ta. Since the balls are disjoint,

µ(A) =
k−1∑
i=0

µ(B1/q(i · gcd(a, g))).

Since 0 < k < g, this sum is strictly between 0 and 1. Therefore Ta is not ergodic. 2

It is not known whether or not rational translations are singular; i.e. whether Theorem

4 in Section 2.2 extends completely to the case where g is composite. In particular, the

proof of Proposition 3 in Section 2.2 does not generalize, and the proposition was needed

to prove Theorem 4. In Proposition 3, the integer k is the number of maximal weights

in the probability vector that defines the measure µ. When µ is not Haar measure, we

have 1 ≤ k < p, which implies that the powers kr and pr are relatively prime. The

corresponding statement can fail for a composite number g.

With regard to the algebraic structure, if g = pn1
1 p

n2
2 · · · p

nk
k is the prime decom-

position, then Qg and Qp
n1
1
× Qp

n1
1
× · · · × Qp

n1
1

are isomorphic as rings. Moreover,

we see that Qp and Qpn are isomorphic as rings via the isomorphism
∑∞

i=0 xip
i 7→∑∞

i=0(
∑n−1

j=0 xni+j)p
ni. For the purposes of studying the ring structure, we can simply

study Qp. Moreover, for the purposes of studying the topological structure, Ostrowski’s

theorem states that it is enough to study Qp. However, the measure-theoretic structure

may be more complicated. For example, we could put an i.i.d. product measure µi on Zpi
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for each 1 ≤ i ≤ k, then take the product of these measures
∏k

i=1 µi to put a measure on

Zp1 ×Zp2 ×· · ·×Zpk . Although there is a ring isomorphism from Zp1 ×Zp2 ×· · ·×Zpk to

Zp1p2···pk = Zg, the ring isomorphism may not be an isomorphism of measure spaces from

Zp1 × Zp2 × · · · × Zpk with the measure
∏k

i=1 µi to Zg with any i.i.d. product measure.

Since the measurable structures could be different, it is left for future work to determine

ergodic properties and the transformation types of translations on Zp1 × Zp2 × · · · × Zpk

with respect to measures of the form
∏k

i=1 µi.
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CHAPTER 4

Haar Measure and Hausdorff Dimension of p-adic Julia Sets

This chapter examines two standard examples of Julia sets of polynomials on Cp.

Unlike the translation and multiplication maps in the previous chapters, polynomial

maps of degree greater than or equal to 2 are not invertible, since Cp is algebraically

closed. We begin by defining the Fatou and Julia sets for polynomial functions, then

we review the known topological structure of the Julia sets for the examples. New work

appears in Proposition 8 and Theorem 11. Since the Julia set of each example is contained

in Zp, in Remark 2 and Proposition 8 we calculate the Haar measure m of the Julia set,

as a subset of Zp. After reviewing the definition of Hausdorff dimension, we calculate the

Hausdorff dimension of balls in Proposition 9 and the Hausdorff dimensions of the Julia

sets in Corollary 2 and Theorem 11.

4.1. Definitions and the Haar Measure of Julia Sets

When considering a polynomial function with coefficients in the real numbers, we

often consider it as a function on the complex numbers, which is the algebraic closure of

the real numbers. Similarly, when considering polynomial functions with coefficients in

the p-adic numbers, we would like to work over an algebraically closed field that contains

Qp. Unlike the complex numbers, the algebraic closure of Qp is neither a finite extension

of Qp nor complete. However, the completion of the algebraic closure of Qp remains

algebraically closed and is denoted by Cp. In general, Zp in Qp is like an interval in the



real line, and Qp in Cp is like the real line in the complex plane. Since Cp is not a locally

compact group, it does not have a Haar measure. To avoid this difficulty, we restrict our

attention to polynomial functions such that the Julia set is contained in Zp, which does

have a Haar measure m. More information on p-adic analogues of complex dynamics can

be found in Silverman’s book [62].

The p-adic chordal metric on Cp is defined by

ρp(y, x) =
|y − x|p

max {|x|p, 1}max {|y|p, 1}
.

This metric is the same as dp(x, y) = |y − x|p for x, y ∈ Zp. Moreover, points near

infinity—points with large p-adic absolute value—are near each other under ρp.

Definition 2. The Fatou set of a polynomial function is the largest open set in Cp

on which the iterates of the polynomial function are equicontinuous under the p-adic

chordal metric. The Julia set is the complement of the Fatou set.

For a polynomial function γ, we denote the Fatou set by F(γ) and the Julia set

by J (γ). As in complex dynamics on C, the Fatou and Julia sets of a polynomial are

completely invariant under the polynomial. In other words, we have

F(γ) = γ(F(γ)) = γ−1(F(γ)) and

J (γ) = γ(J (γ)) = γ−1(J (γ)).

Hence, the polynomial function restricted to the Julia set is a dynamical system in its

own right. The following examples have Julia sets contained in Zp. Thus, we consider

the polynomial restricted to the Julia set, with respect to Haar measure on Zp.
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The first example is

φp(z) : Cp → Cp

z 7→ zp − z
p

.

In [35], Hsia shows that J (φp) = Zp and that φp on Zp is homeomorphic to the shift σ

on
∏∞

i=0Xp. In [65], Woodcock and Smart construct such a homeomorphism indepen-

dently of Hsia and also show that the system (Zp,M,m;φp) is isomorphic to the system

(
∏∞

i=0Xp,N ,
∏∞

i=0 {1/p, . . . , 1/p} ;σ).

Remark 2. It is a simple observation that m(J (φp)) = m(Zp) = 1.

For p > 2, the second example is

ψp(z) : Cp → Cp

z 7→ z2 − z
p

.

In [62], Silverman throroughly discusses the Julia set of ψp. He proves that the set

Λ =
{
z ∈ Cp : ψnp (z) is bounded for all n ≥ 0

}
⊂ B1/p(0) ∪B1/p(1)

is contained in Qp and defines the itinerary map

β : Λ →
∞∏
i=0

X2

z 7→ [β0, β1, β2, . . .],
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if ψnp (z) ∈ B1/p(βn) for all n ≥ 0. For any prime p > 2, he proves that ψp on Λ is

homeomorphic to the shift map on
∏∞

i=0X2. Since the shift map is uniformly expanding,

the Julia set of the shift map is all of
∏∞

i=0X2. It follows from the homeomorphism that

J (ψp) = Λ. The same method of proof can be used to show that J (φp) = Zp.

The map ψp is an example of a general result of Benedetto, Briend, and Perdry in [8].

They prove that if ϕ is a quadratic polynomial on Cp such that the Julia set is nonempty,

then ϕ on J (ϕ) is homeomorphic to σ on
∏∞

i=0X2. Since Zp is itself homeomorphic to the

product space
∏∞

i=0X2, the measure of the Julia set is not immediately clear. Examining

preimages of these balls gives the next result.

Proposition 8. For p > 2, the transformation ψp : Cp → Cp is defined by ψp(z) =

(z2 − z)/p. With respect to Haar measure on Zp, the Julia set J (ψp) ( Zp has measure

zero.

Proof. First, we examine how ψp acts on balls. For a, b ∈ Cp, factoring gives

ψp(a)− ψp(b) =
1

p
(a− b)(a+ b− 1).

If a and b are in B1/p(0) or B1/p(1), then a+ b is equal to 0 or 2 modulo p. In either case,

it follows that |a+ b− 1|p = 1. Thus, if a, b are both in B1/p(0) or B1/p(1), then

(1) |ψp(a)− ψp(b)|p = p|a− b|p.

The next step of the proof is an induction argument that hinges on equation (1).
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Since J (ψp) ⊂ B1/p(0) ∪ B1/p(1), the remaining p − 2 balls of radius 1/p in Zp are

contained in the Fatou set. Hence, we begin the base case by setting

J0 = B1/p(0) ∪B1/p(1).

For each i = 0, 1, equation (1) implies that ψp maps distinct balls of radius 1/p2 in B1/p(i)

to distinct balls of radius 1/p in Zp. The function ψp maps exactly 2 of these balls to J0.

We define J1 to be the 22 balls of radius 1/p2 in J0 that map to ball of radius 1/p in J0

under ψ. Since the Fatou and Julia sets are invariant under iteration and preimages, we

conclude that J (ψp) ⊂ J1.

For an induction hypothesis, we assume that there exists an integer k ≥ 1 such that

the Julia set is contained in a set Jk that consists of 2k balls of radius 1/pk such that 2

of these balls are contained in each ball of radius 1/pk−1 in Jk−1. If B1/pk(a) ⊂ Jk, then

equation (1) and the definition of ψp imply that the p balls of radius 1/pk+1 in B1/pk(a)

are mapped to the p balls of radius 1/pk in B1/pk−1(a). By the induction hypothesis, 2

of these balls are in Jk−1. Then we define Jk+1 to be the union of the 2 disjoint balls of

radius 1/pk+1 from each of the 2k balls of radius 1/pk in Jk. Again, the invariance of the

Julia set under preimages implies that J (ψp) ⊂ Jk+1.

The final step of the proof calculates the measure of J (ψp) in Zp. Since J (ψp) ⊂ Jk

for all k ≥ 0, the Haar measure of the Julia set is bounded above by

m(Jk) =
2k

pk
.

Since p > 2, the upper bound implies that m(J (ψp)) = 0.

2
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4.2. Hausdorff Dimension of Julia Sets

Although m(J (ψp)) = 0 for all p > 2, the Hausdorff dimension of J (ψp) varies

with p. Since the distance induced by the p-adic absolute value makes Qp a separable

metric space, it is possible to calculate the Hausdorff dimension of subsets of Qp. In

order to set notation, we begin by reviewing the Caratheodory construction of Hausdorff

measures and the definition of Hausdorff dimension. First, an outer measure is defined

from countable covers of a set by balls with diameter less than δ > 0. Since every point

in a ball is a center of the ball, the diameter of a ball is equal to its radius. For A ⊂ Qp

and s ≥ 0,

h∗s,δ(A) = inf

{
∞∑
i=0

(ri)
s : A ⊂

∞⋃
i=0

Bri(ai), ri ≤ δ, ai ∈ Qp

}

is an outer measure. Then

h∗s(A) = lim
δ→0

h∗s,δ(A)

is also an outer measure. The restrictions of h∗s,δ and h∗s to measurable sets are the

measure hs,δ and the s-dimensional Hausdorff measure hs, respectively. Finally, the

Hausdorff dimension of a measurable set A ⊂ Qp is

Hdim(A) = sup {s ≥ 0 : hs(A) > 0} .

As might be expected, balls in Qp have Hausdorff dimension 1.

Proposition 9. If BpN (a) is a ball in Qp, then the Hausdorff dimension of (BpN (a))

is 1.

Proof. For one inequality, we use specific covers to give a bound on the s-dimensional

Hausdorff measure. The ball of radius pN is covered by pNpn pairwise disjoint balls of
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radius 1/pn. If 1/pn < δ, then

hs,δ(BpN (a)) ≤ pNpn
(

1

pn

)s
= pNpn(1−s).

Thus, the upper bound

hs(BpN (a)) = lim
δ→0

hs,δ(BpN (a))

≤ lim
n→∞

pNpn(1−s)

=



0 if s > 1

pN if s = 1

∞ if 0 ≤ s < 1

implies that Hdim(BpN (a)) ≤ 1.

Next, we show that h1(BpN (a)) > 0. If {Bri(ai)}i≥1 is a countable cover of Bpn(a) by

balls, then

∞∑
i=1

ri =
∞∑
i=1

m(Bri(ai))

≥ m(
∞⋃
i=1

Bri(ai))

≥ m(BpN (a)) = pN .

For all δ > 0, these inequalities imply that h1,δ(BpN (a)) ≥ pN , which implies that

h1(BpN (a)) = pN > 0. Therefore Hdim(BpN (a)) = 1. 2
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Corollary 2. The Hausdorff dimension of Zp is 1.

As J (φp) = Zp is a ball in Qp, Proposition 9 implies that Hdim(J (φp)) = 1. Next,

we calculate Hdim(J (ψp)).

Theorem 11. For p > 2, Hdim(J (ψp)) = log 2/ log p.

Proof. In the proof of Proposition 8, the set Jn = Zp \
⋃n
k=0 Fk is a cover of J (ψp)

made up of 2n disjoint balls of radius 1/pn. For 1/pn < δ, this cover yields the inequality

hs,δ(J (ψp)) ≤ 2n
(

1

pn

)s
=

(
2

ps

)n
,

which implies that

hs(J (ψp)) ≤ lim
n→∞

(
2

ps

)n

=



0 if s > log 2/ log p

1 if s = log 2/ log p

∞ if 0 ≤ s < log 2/ log p.

Therefore Hdim(J (ψp)) ≤ log 2/ log p.

For s = log 2/ log p, we show that hs(J (ψp)) ≥ 1. By the proof of Proposition 8,

J (ψp) is a totally bounded subset of the metric space Qp. Hence, the set J (ψp) is

relatively compact. Thus, a countable cover of J (ψp) by balls contains a finite subcover,

B1/pni (ai) where ni ∈ N and ai ∈ Zp for i = 0, . . . , k. If m = max0≤i≤k ni, then a ball

B1/pni (ai) contains pm/pni = pm−ni ball of radius 1/pm. If Jm ∩ B1/pni (ai) is nonempty,
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then it is equal to 2m−ni disjoint balls of radius 1/pm. Since 2 = ps, we have

m(B1/pni (ai))
s =

(
1

pni

)s
=

(
pm−ni

pm

)s
= 2m−ni

(
1

pm

)s
.

Thus,

hs(J (ψp)) ≥
k∑
i=0

m(B1/pni (ai))
s

≥ 2m
(

1

pm

)s
= 1.

Therefore Hdim(J (ψp)) = log 2/ log p. 2

4.3. Further Examples of Haar Measure for Julia Sets

So far, we have seen two examples of polynomials where the Julia set is contained

in Zp. One Julia set had Haar measure 0, and the other had Haar measure 1. Is there

a polynomial such that the Julia set is contained in Zp and has Haar measure strictly

between 0 and 1? If φp is conjugated by Mp(z) = pz, then Φk = Mk
p ◦ φp ◦M−k

p is the

polynomial

Φk : Cp → Cp

z 7→ z

p

((
z

pk

)p−1
− 1

)
.

89



Since J (φp) = Zp and Mp is a homeomorphism on Cp, it follows that

J (Φk) = Mk
p (J (φp)) = B1/pk(0).

Thus, the Julia set of Φk is contained in Zp and has Haar measure 1/pk, which is strictly

between 0 and 1.

From this family of examples, we see that Zp plays the role in Qp that the interval

[−1, 1] plays in R. In this regard, φp is similar to χ2(z) = 2z2 − 1, which is a Chebyshev

polynomial. The Julia set of χ2 is the interval [−1, 1]. Moreover, if χ2 is conjugated

by multiplication by a real number r > 0, then the resulting map has Julia set [−r, r].

Thus, we can shrink or expand the measure of the Julia set of χ2, with respect to the

1-dimensional Lebesgue measure on the real line.

A more difficult question is whether or not there exists a polynomial map on C

such that the Julia set has positive 2-dimensional Lebesgue measure as a subset of the

Riemann sphere but is not the entire Riemann sphere. An example of such a polynomial

is given by Buff and Chéritat in [10–12]. While Cp is a complete, algebraically closed

set containing Qp, it is not locally compact and lacks other desirable properties for

working with measures. Berkovich space is a compact, simply connected metric space

that contains Cp. It has shown promise as a more appropriate setting to ask dynamical

questions and to prove results similar to those in complex dynamics. A polynomial map

can be extended to Berkovich space and used to construct a natural measure that is

supported on the Julia set and used to prove equidistribution results [7, 62]. To ask

an analogous question for polynomial maps on Berkovich space, an analog of Lebesgue

measure on the Riemann sphere needs to be defined and understood.
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Additionally, Berkovich space has a tree structure on which there exist inequivalent

metrics. If these metrics are separable, then each would define a Hausdorff dimension.

One possible future direction is to determine whether the different metrics give different

Hausdorff dimensions to the Julia set of a polynomial function.
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CHAPTER 5

Future Work

5.1. Transformation Type of Translation by a Rational Number

Theorem 4 in Section 2.2 states that translation by a nonintegral rational number is

singular with respect to i.i.d. product measures other than Haar measure. Nevertheless,

we define an averaged measure in Section 2.3. If a = r/s ∈ Z×p is in reduced form and µ

is an i.i.d. product measure, then Ta is nonsingular and ergodic with respect to

µa =
1

s

s−1∑
i=0

µT−ia .

However, Ta does not preserve µa, unless µ is Haar measure. Thus, the transformation

type of Ta with respect to µa is not obvious. Since Ta is nonsingular with respect to µa,

we know that the Radon-Nikodým derivative exists. We can approximate the Radon-

Nikodým derivative by taking ratios of balls of smaller and smaller radii. The linearization

ϕ : Zp → [0, 1]

∞∑
i=0

xip
i 7→

∞∑
i=0

xi
pi+1

,

is given by Robert in [57]. To plot the approximation, we identify x =
∑∞

i=0 xip
i ∈ Zp

with ϕ(x) ∈ [0, 1]. For example, we find a very clear picture of the values in the ratio set

by using ratios of balls of radius 1/28 to approximate the Radon-Nikodým derivative of



T3 : Z2 → Z2 with respect to the measure µ =
∏∞

i=0 {1/3, 2/3}. Using the identification

x ∼ ϕ(x), Figure 5.1 is a plot of the points (x, µ(B2−8(x))/µ(B2−8(x+ 3))), for integers x

such that 0 ≤ x < 256. Since the values of the ratio set appear to be powers of 2, we can

correctly guess from the plot that T3 has transformation type II1/2 with respect to µ.
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Figure 5.1. Approximation of dµT−13 /dµ.
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Figure 5.2. Approximation of dµ1/3T
−1
1/3/dµ1/3.
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However, this approximation does not give as clear a picture for rational numbers.

Figure 5.2 is a plot of the points (x, µ1/3(B2−8(x))/µ1/3(B2−8(x + 1/3))) for integers x

such that 0 ≤ x < 256. It is clear from the plot that 1 should be in the ratio set, but 1

is always in the ratio set. Even for this example, the transformation type is unknown.

5.2. The Chacon Map as a 3-adic Transformation

This section contains preliminary work in progress with César Silva on representing

the Chacon map as a 3-adic transformation. Chacon defines his map in [14] to give an

example of a transformation that is weakly mixing but not strongly mixing. The Chacon

map is defined on an interval by a cutting and stacking construction with spacers. For the

base case, the first stack is the unit interval. Inductively, we cut the nth stack into three

substacks of equal width, and we take a spacer that is the same width as the substacks.

From left to right, the second substack is placed over the first, a spacer is placed above

the second substack, and the third substack is placed above the spacer. Adding up the

lengths of the spacers, we find that the Chacon map C is a transformation on the interval

[0, 3/2]. We can also start the construction with the interval [0, 2/3], so that the final

transformation is a map on [0, 1]. We call this construction the normalized Chacon map

C̄. Since the Chacon map preserves a finite measure, it has transformation type II1.

For 0 ≤ λ ≤ 1, type IIIλ and type II∞ versions of the Chacon map are constructed

and studied in [17,34]. These transformations are contructed by cutting each stack into

substacks of unequal widths.
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The Chacon map can also be represented as a tower over T1 : Z3 → Z3. For example,

as a tower over T1 with the height function

h(x) =


1 if x =

∑k−1
i=0 2 · 3i + 1 · 3k +

∑∞
i=k+1 xi3

i for some k ≥ 1,

0 otherwise.

The representation of the Chacon map in terms of T1 on Z3 can be useful for studying

its ergodic properties. For example, this description is used in [38, 56] to study the

spectral properties of the Chacon map. This section gives two possible representation

of the Chacon map as a p-adic transformation. Unlike the tower representation, these

representations are defined as transformations on a subset of Qp, without resorting to

towers. Since these representations act on a subset of Qp, perhaps more of the algebraic

structure of the p-adic numbers can be used with these representations to explore the

ergodic properties of the Chacon map.

For the first representation C1, we use elements of Q3 \Z3 to play the role of the

second level of the tower. We let

S = Z3 ∪

{
1

3
+

k−1∑
i=0

2 · 3i + 1 · 3k +
∞∑

i=k+1

xi3
i : k ≥ 1

}
.

In coordinates, we define C1 : S → S by

C1(x) =



T1(x) if x = 0 +
∑∞

i=1 xi3
i

1/3 + x if x =
∑k−1

i=0 2 · 3i + 1 · 3k +
∑∞

i=k+1 xi3
i for some k ≥ 1

T1(x− 1/3) if x = 1/3 +
∑k−1

i=0 2 · 3i + 1 · 3k +
∑∞

i=k+1 xi3
i for some k ≥ 1.
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While C1 may be a useful representation, we would also like a representation that is

an automorphism on Z3. This can be done by using the isomorphism ϕ : Z3 → [0, 1]

given in Section 5.1. We define C2 : Z3 → Z3 by C2(x) = ϕ−1 ◦ C̄ ◦ ϕ(x). While this

representation is an automorphism of Z3, it is unclear how to write C2 in coordinates. In

fact, preliminary calculations suggest that C2 is not a continuous function on Z3.

For future work with these representations, we could try to generalize them to include

representations of the type IIIλ and type II∞ versions of the Chacon map. Examining

the coefficients of the Mahler or van der Put series for a continuous representation could

be used as an aid in studying the ergodic properties of the Chacon map. Previous work

on the relationship between ergodicity and the coefficients of the Mahler or van der Put

series can be found in [6,42,46].
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