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ABSTRACT 

JULIA CHARLOTTE ALTMAN: Nutrient composition and phytoplankton community 

dynamics in the New River Estuary  

(Under the direction of Hans Paerl) 

 

Inorganic and organic nitrogen loading may be linked to the persistence of algal 

blooms in the New River estuary. Characterizing these loads and investigating their role in 

shaping natural phytoplankton assemblages was the focus of this thesis. Water samples from 

a 10 station transect were analyzed for urea, nitrate, ammonium, orthophosphate, dissolved 

organic nitrogen, chlorophyll a, salinity, and temperature. Nutrient addition bioassays were 

run to examine the effects of varying nutrient loads on an estuarine site. Bioassays indicated 

that dual enrichment by inorganic N and P led to maximum increases in phytoplankton 

biomass, but additional organics may promote the growth of potentially toxic phytoplankton, 

including dinoflagellates and cyanobacteria.  Evaluating the impact of varying nutrient forms 

on phytoplankton dynamics is necessary in order to develop strategies to avoid changes in 

community structure and larger-scale changes in ecosystem health. 
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INTRODUCTION 

The abundance and species composition of phytoplankton has been shown to be strongly 

controlled by resources available such as nutrients and light (Cloern 1999; Reynolds 2006).  

Inorganic nutrient controls of phytoplankton abundance and species composition have been 

widely studied (Harrison and Turpin 1982; Sanders et al. 1987; Fisher et al. 1999).  However, 

organic nutrient influence has been explored mostly in terms of utilization of specific organic 

compounds by phytoplankton isolates in cultures (Wheeler et al. 1974; Palenik and Morel 1990; 

Antia et al. 1991; Moore et al. 2002).  The effects of a bulk DON mixture on natural 

phytoplankton communities have been examined in only a few studies (Peierls and Paerl 1997; 

Seitzinger and Sanders 1999). Here we use an in situ bioassay approach to examine the 

regulation of a natural phytoplankton community in estuarine water, and its production by both 

inorganic and bulk organic nitrogen resources.   

Nutrient enrichment in coastal waters is an increasingly important problem. Nitrogen (N) 

is of particular concern, because it is most often the nutrient controlling primary production and 

promoting eutrophication of these waters (Ryther and Dunstan 1971; Paerl 1988; Boesch et al. 

2001; Conley et al. 2009). The microtidal New River Estuary (NRE), NC is an example of a 

strongly N-limited system that has experienced negative effects of anthropogenic nutrient 

enrichment, including toxic algal blooms, hypoxia, fish kills and benthic habitat degradation 

(Mallin et al. 1997; 2005; Tomas et al. 2007). The NRE receives external N inputs from a variety 

of sources; including surface runoff, municipal wastewater, the atmosphere, and groundwater 
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(Mallin et al. 1997; 2005). These sources supply varying forms of N, including nitrate, nitrite, 

ammonium, and dissolved organic nitrogen (DON) compounds.   

DON is the largest pool of fixed nitrogen in most aquatic environments (Bronk 2002).  

Due to the extremely heterogeneous and cryptic nature of the bulk DON pool, only a small 

portion of it has been identified and quantified.  Sources of the DON bulk pool are of both 

abiotic and biotic origin. Sources include surface runoff, and riverine discharge, groundwater, 

and atmospheric deposition (Seitzinger and Sanders 1999; Bronk et al. 2007). Dissolved 

combined amino acids (DCAAs) may in part be made up of amino acids bound to humics or 

adsorbed to clays. Biologically-produced DCAA and dissolved free amino acid inputs include 

microbial (microautotrophs and heterotrophs), zooplankton grazing and excretion activities, and 

release from cell death.  Humic acids, which can variably account for up to 70% of the DON 

pool (Bronk et al. 2007) arise from microbial degradation and leaching of plant materials. 

Another DON compound, urea, is a by-product of biotic metabolism. It is of particular interest 

because of the increasing amounts of urea in fertilizers and animal feed (Glibert et al. 2006), and 

is of particular concern in eastern North Carolina watersheds since it is also a waste product from 

rapidly-proliferating livestock operations in this region.   

In the past, DON had been considered to be largely unavailable for phytoplankton growth 

because of observations of consistently high, invariant concentrations of DON in aquatic systems 

(Bronk et al. 2007).  Furthermore, its role was thought to be purely in supporting bacterial 

production and it was not considered directly available to phytoplankton (Bronk et al. 2007).  

However, more recent studies have shown that DON compounds may be a source of bioavailable 

N for phytoplankton.  Phytoplankton were also shown to be able to use labeled humic 

compounds in riverine and coastal environments (Bronk et al. 2007).  Humics may be a source of 
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usable N to some toxic dinoflagellate species, including Alexandrium tamarense (Gagnon et al. 

2005) and Alexandrium catenella (Doblin et al. 2000).  Urea uptake and stimulation of 

phytoplankton biomass has been shown in numerous studies (Antia et al. 1991; Glibert et al. 

1991, 2001, 2004; Twomey et al. 2005). Ammonium (NH4
+
)  is the most energetically favorable 

source of inorganic N, and direct evidence of  nitrate (NO3
-
) uptake pathways present in 

phytoplankton cells support its role as a major available source to algae (Owens and Esais 1976), 

but inorganic N forms are not always the exclusive forms of N utilized.   Enzymatic activity on 

the cell surface may enable phytoplankton to access the N in organic molecules (Palenik and 

Morel 1990).  Phytoplankton can act as photo-heterotrophs and take up organic molecules via 

several pathways including active transport, use of proteolytic enzymes, pinocytosis, and 

phagocytosis (Bronk et al. 2007). They may utilize DON during high activity summer months 

when nitrate is depleted (Paerl 1991).  Lastly, phytoplankton can compete with bacteria for 

nutrients when they are scarce, and species that can exploit organic nutrient sources may have a 

competitive advantage (Bronk et al. 2007).  The role of riverine DON in driving phytoplankton 

production therefore warrants addressing.    

Most water quality management practices stress reducing total N inputs to N-sensitive 

estuaries (Bricker et al. 1999; Boesch et al. 2001). However, this approach does not distinguish 

between different N forms. The first research objective of this study was to quantify the 

concentrations of all major forms of dissolved N in the NRE and its proximal major freshwater 

tributary, the New River.  Previously, investigations of spatial and temporal trends of nutrients in 

the NRE have been largely focused on inorganic nutrient species (Mallin et al. 1997), though 

land use in the watershed suggests that DON and urea may be important components of the total 

dissolved nitrogen pool (Mallin et al. 2005).  DON and urea have not yet been delineated in the 
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NRE.  This study aimed to examine the different dissolved nutrient concentrations and forms 

over a one year period and complete seasonal in-situ bioassays designed to mimic nutrient 

loading events observed in the monitoring data.  The second objective of this study was to 

examine the relationship between the chemical composition of nutrients entering the system 

(organic and inorganic N forms and inorganic P (PO4
3-

) and phytoplankton community 

composition and growth in the controlled bioassay experiments.  The research question 

addressed was: How do upstream-derived supplies of DON, DIN, and DIP impact downstream 

estuarine phytoplankton productivity, biomass, and community composition? 
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MATERIALS AND METHODS 

Study Site 

The New River Estuary (NRE) is a relatively small, mid-Atlantic coastal plain estuary 

located in Onslow County, south-eastern North Carolina (Fig. 1).   Most of the estuary resides 

within the United States Marine Corps Base Camp Lejeune (MCBCL).   Jacksonville, a moderate 

sized city (2009 Population: 80,500), is located on the upper part of the estuary on Wilson Bay 

(Fig. 1). With a surface area of 88 km
2
 and an average depth of 3m (NOAA 1999), the NRE is a 

relatively broad and shallow series of lagoons, that is confined by barrier islands at the mouth, 

restricting water exchange with the Atlantic Ocean (Mallin et al. 2005).  Fresh water flushing 

time in the NRE varies seasonally with storm and runoff events, ranging from 8 to 187 days, 

with an average of 70 days (Ensign et al. 2004).  In comparison, the average flushing time of 

neighboring Cape Fear Estuary just to the south is only 7 days (Ensign et al. 2004). The semi-

lagoonal nature of the NRE plays a significant role in its relatively long residence time and 

sensitivity to nutrient inputs, since long residence times allow more time for algal nutrient 

assimilation, growth, and “internal” nutrient recycling. Similar to its neighboring semi-lagoonal 

estuaries to the north- the Neuse River Estuary and Pamlico Sound- the NRE experiences 

periodic phytoplankton blooms(including harmful species, Tomas et al. 2007) and periods of 

bottom water hypoxia on an annual basis (Mallin et al. 2005, Paerl et al. 2007, 2010).   

Watershed-generated, non-point nutrient sources discharged via the New River control 

nutrient loading to the estuary (Paerl et al., unpub data).  The NRE watershed is dominated by 

agricultural activities, including row crop and concentrated feeding operations (CAFOs) (Mallin 

et al. 2005).  Downstream, in the area of Wilson Bay (Fig. 1), there is a history of nutrient inputs 
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from the Jacksonville waste-water treatment plant, which promoted highly eutrophic conditions 

into the late 1990s (Mallin et al. 1997, 2005).  Upstream, non-point source nutrient inputs 

associated with burgeoning CAFO and rowcrop operations have increased significantly over the 

past several decades, leading to sustained eutrophication in the NRE, including exceedances of 

the State of North Carolina’s “acceptable” chlorophyll a concentration (40 g L
-1

) (NCDENR 

2005),  and harmful algal bloom outbreaks (Mallin et al. 2005; Tomas et al. 2007).  

Sampling 

Physical, chemical, and biological water quality parameters were measured monthly at 

stations 1-8 along a downstream transect in the New River estuary from June 2010 to September 

2011(Fig. 1).  Surface (0.2m) samples were collected using a diaphragm pump and dispensed 

into 4L bottles.  Bottles were stored in the dark and  brought back to UNC-Chapel Hill Institute 

of Marine Sciences (IMS) for nutrient (total dissolved nitrogen (TDN), NOx, NH4
+
, and PO4

3-
)  

and phytoplankton biomass analysis.  Surface temperature and salinity were measured at stations 

1-8 using a YSI 6600 sonde. 

Water samples were collected monthly for nutrients and phytoplankton biomass at station 

9 and 10, which are two United States Geologic Survey (USGS) gaging stations located 

upstream of the estuary (Fig.1).  These gaging stations monitor temperature, salinity, and flow 

(data available at http://waterdata.usgs.gov/nwis/qw).  Station 10 was furthest upstream, which 

corresponds to USGS Gum Branch gaging station #02093000 (34°50'57" N,  77°31'10" W).  

Station 9 is further downstream at the approximate head of the estuary and corresponds to USGS 

New River Below Hwy17 gaging station #0209303205 (34°44'56" N,  77°26'16" W).   

http://waterdata.usgs.gov/nwis/qw
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Urea was measured monthly at stations 1-8 from May to September 2011.  Urea was 

measured monthly at stations 9 and 10 from January to July 2011.  The discrepancy in sampling 

periods is due to variations in sample collection and analysis schedules between IMS and USGS.   

Bioassay Water Collection 

Water for the nutrient enrichment bioassays was collected from station “7” (34˚43’14” N, 

77˚25’20” W) on the NRE (Fig.1).  Surface water temperatures for station 7 ranged from 8.0˚C 

to 32.4˚C with an annual average of 23.6 ˚C during the study period.  Salinity ranged from 2.7 to 

24 psu with an annual average of 14.8 psu.  River water used in the bioassays was collected from 

station “10” (Fig. 1).  Surface water temperatures ranged from 5.5˚C to 25.7˚C with an annual 

average of 15.6 ˚C.  This site was virtually fresh year round (psu<0.25). 

Bioassay Design 

The effects of upstream-derived DON and inorganic nutrients on phytoplankton growth 

responses were examined using five nutrient addition bioassays completed in June 2010, 

September 2010, December 2010, April 2011, and July 2011.  On the initial day of each 

experiment, water for the bioassay was collected from near the surface of NRE station 7 (Fig. 1). 

Water was immediately filtered through a 200µm mesh screen on the sampling boat to remove 

zooplankton and particulate debris.  Filtered water was dispensed into 20 L polypropylene 

carboys, returned to UNC-CH Institute of Marine Sciences (IMS), and transferred to a set of 4L 

transparent polyethylene Cubitainers (Hedwin Inc.).  Cubitainers are 80% transparent to 

photosynthetically active radiation (PAR; 400-700nm).  Water was also collected from station 10  

on the initial day of each experiment and brought back to the lab for immediate nutrient analysis 

(described below). Nutrient treatments were added as follows in replicates of four: Control (no 
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additions), DIN (ammonium and nitrate); DIP (orthophosphate), DIN+DIP (nitrate, ammonium, 

orthophosphate), River filtrate (upstream river water), and Urea (Fig. 2). The upstream river 

water addition was made up of 0.8 L of Gum Branch water filtered through pre-cleaned 25 mm 

diameter Whatman glass fiber (GF/F) filters (0.7 µm pore size).   

To determine if natural phytoplankton communities showed a response to heightened 

organic N levels, initial levels of inorganic nutrients measured at station 10 were used to 

formulate the N and P additions in the other treatments.  For the urea treatment, urea was added 

at the same molar N concentration as the DIN treatment in order to compare responses. Inorganic 

nutrients and urea were added to Cubitainers with 0.8 L of Major Ion Solution (MIS; Paerl and 

Bowles 1987) in order to replicate the ionic properties of the river water filtrate addition. 

Bioassays were incubated under natural light and temperature conditions by suspending the 

Cubitainers in the experimental ponds at IMS under a layer of neutral density screening (~ 60% 

of surface irradiance) to avoid photoinhibition. Cubitainers were incubated for 8 days and 

subsampled for phytoplankton growth parameters on days 0, 2, 4, and 8.  At sampling time 

points, approximately 500 mL was collected from each Cubitainer in polyethylene bottles.  In the 

laboratory, water was partitioned into appropriate volumes for (1) nutrient analysis, (2) 

phytoplankton biomass analysis, (3) primary productivity determination, and (4) phytoplankton 

community composition analysis 

Laboratory Protocols and Analysis 

Nutrient Analysis: Sample water was gently filtered through pre-cleaned 25 mm diameter 

Whatman GF/F filters (0.7 µm pore size).  Filtrate was analyzed for total dissolved nitrogen 

(TDN), NOx, NH4
+
, and PO4

3-
 using the Lachat/Zellweger Analytics QuickChem 8000 flow 
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injection autoanalyzer using standard protocol (Lachat method numbers 31-107-04-1-C, 31-107-

06-1-B, and 31-115-01-3-C, respectively). Bulk DON concentrations were calculated by 

subtracting DIN from TDN.  Urea concentration was determined using the room temperature 

calorimetric diacetylmonoxime method as described by Goeyens et al. (1998). 

Phytoplankton Biomass (Fluorometric Chlorophyll a Analysis): Approximately 150 mL of 

sample water were vacuum filtered onto pre-combusted 25 mm GF/F filters. Filters were stored 

at -4˚C until they were sonicated and extracted overnight in 90% acetone. Extracted chlorophyll 

samples were analyzed using a Turner Designs TD-700 fluorometer. 

Primary Productivity: Primary productivity measurements were made on days 2 and 4 of the 

bioassays using the 
14

C method according to Paerl (2002). Four light and one dark 76 ml 

polyethylene bottle per treatment type were filled with sample water and 0.3 ml 
14

C-NaHCO3 

(ICN Radiochemicals; 58μCi μmol
-1

 specific activity).  The bottles were incubated in the IMS 

outdoor pond for approximately 4 hours under neutral density screening.  Following incubation, 

samples were filtered onto 25mm GF/F filters, which were then fumed for at least 2 hours in a 

plastic container with concentrated HCl in order to remove abiotically precipitated 
14

C-NaHCO3.  

Filters were then placed in vials with 5ml of CytoScint scintillation cocktail, and counted on a 

Beckman Coulter LS 6500 liquid scintillation counter.  Dissolved inorganic carbon DIC) content 

of the samples was determined using a Shimadzu Total Organic Carbon Analyzer (TOC-

5000A0.  Using the method of Paerl (2002), we converted counts to total CO2 fixed. 

Community Composition Analysis: Major algal taxonomic groups were partitioned and 

identified by using high performance liquid chromatography (HPLC; Shimadzu model LC-

20AB) equipped with a photodiode array spectrophotometric detector (Shimadzu SPD-M20AC) 

(Pinckney et al. 1996, 1999). Approximately 100ml aliquots were filtered onto pre-cleaned 
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25mm diameter Whatman GF/F filters and frozen until extraction. Filters were extracted in 100% 

acetone via sonication and stored at 20˚C for approximately 24 h.  Pigment extracts (200 µl) 

were autoinjected and separated using column configurations described by Pinckney et al. 2001. 

Pigments were identified and quantified based on their absorption spectra calibrated against pure 

pigment standards (DHI, Denmark).  HPLC results were periodically verified using inverted 

microscopy (Utermöhl 1958) of preserved (1% Lugol’s solution) water samples. 

 

Statistical Analysis  

JMP statistical software program was used for all statistical tests conducted on the data.  

To determine if environmental factors influenced variations in DON, urea, and chlorophyll a, 

linear regression models were fitted to response variables.  Significance was indicated by a p 

value < 0.05. Bioassay results were analyzed using analysis of variance (ANOVA).   Chlorophyll 

a, 
14

C fixation, and accessory pigment concentration data were used to determine significant 

differences between response in control and five treatments. If a difference in response means 

existed among the treatments (p value < 0.05), we followed up with Dunnett’s post-hoc test (for 

comparisons with control). 

(Author’s Note: for December and April bioassay experiments, responses observed in 

River filtrate treatment were excluded from statistical analysis due to laboratory error. Incorrect 

baseline nutrient calculations lead to this treatment having disproportionately lower dissolved 

nutrients than the other treatments). 
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RESULTS  

Monitoring 

Abiotic Environmental Parameters 

During the period observed (June 2010 to September 2011) surface water temperatures 

varied little across stations on the New River Estuary (stations 1-8) at any given time (Fig. 3)  

The estuary as a whole was coldest in the winter, with a whole estuary average of 8.2˚C.  The 

minimum temperature observed during the study period was 6.6˚C, which was recorded on 

January 4, 2011 at station 5. Spring was considerably warmer with an average water temperature 

of 21˚C, though colder water temperatures persisted slightly longer into the spring at the lower 

stations close to the ocean.  Fall was slightly warmer than spring with an average surface water 

temperature of 24˚C.  Water temperatures measured during the summer months were warmest, 

averaging at 29.6˚C. The warmest temperature recorded was 32.6˚C on August 8, 2011 at station 

8. 

Salinity was typically lowest upstream and increased with distance downstream (Fig. 4).  

Station 8 had slightly higher salinities than station 7 because of its location, which is actually 

slightly more downstream than station 7.  Averaged seasonally, salinity was highest in the 

summer, followed by the winter.  Spring had lower salinities, and fall had the lowest salinities.  

Low fall salinity values during the study period were likely influenced by two major rain events: 

a 100 year flood event in October 2010 and Hurricane Irene in late August 2011. 

Mean NOx, NH4
+
, PO4

3-
, DON, and urea concentrations for stations 10, 9, 7, 5, and 1 

during the sampling periods are shown in Table 1.   For all seasons, N-NOx was highest in the 

riverine stations and decreased rapidly in the estuarine stations (Table 1, Fig. 5). The highest N-
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NOx concentrations were measured upstream at stations 9 and 10 and were observed during the 

winter.  Downstream, within the estuary, the highest N-NOx concentrations were observed in the 

fall, which was concurrent with periods of high discharge. N-NOx values were extremely low in 

the estuarine stations during the rest of the year. At station 7, N-NOx was below detection limit 

for all of the summer sampling dates and portion of fall and spring as well.   N-NH4
+
 

concentrations showed similar spatial trends as N-NOx (Table 1, Fig. 6).  Concentrations 

decreased from upstream to downstream in all seasons except the winter, when N-NH4
+
 

remained fairly constant across all stations (Fig. 6).  Highest N-NH4
+
 concentrations upstream in 

the river were observed during the fall whereas highest N-NH4
+
 concentrations downstream in 

the estuary were observed during the winter.  N-NH4
+
  was only below detection on one occasion 

July 12, 2010, compared to chronic below detection levels of N-NOx in the estuary.  Dissolved 

inorganic phosphorus (P-PO4
3-

) followed the spatial trend of decreasing with distance from the 

upstream to downstream throughout the year (Table 1, Fig. 7).  P-PO4
3-

 concentrations were 

highest in the river and the estuary in the fall and summer.  During the spring and winter P-PO4
3-

 

levels from station 7 seaward were generally extremely low (less than 10 µgL
-1

 P-PO4
3-

). 

Bulk DON had different patterns across space and time than the inorganic N and P 

species.  Bulk DON concentrations were the highest across all the stations during fall and 

summer (Fig. 8).  During these two seasons, DON increased downstream from station 10, peaked 

at station 7, and decreased continuing downstream.  In the winter and spring however, bulk DON 

was highest in the river and decreased with distance downstream. Urea was measured monthly at 

the riverine stations from January through July 2011, and in the estuarine stations from May to 

October 2011.  Overall mean urea measured in the river from January to July 2011 was 26.6 

µgL
-1 

N-CO(NH2)2   and median was 14.04 µgL
-1 

N-CO(NH2)2.  Mean urea measured in the 

http://en.wikipedia.org/wiki/Carbon
http://en.wikipedia.org/wiki/Carbon
http://en.wikipedia.org/wiki/Nitrogen
http://en.wikipedia.org/wiki/Nitrogen
http://en.wikipedia.org/wiki/Carbon
http://en.wikipedia.org/wiki/Carbon
http://en.wikipedia.org/wiki/Nitrogen
http://en.wikipedia.org/wiki/Nitrogen
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estuary from May 2011 to October 2011  was 6.8 µgL
-1 

N-CO(NH2)2  and median was 5.4 µgL
-1 

N-CO(NH2)2.  Spatially, there were no consistent observable patterns in urea concentration from 

upstream to downstream except during the spring (Table 1, Fig.8).  In the spring, urea 

concentrations showed a general trend of decreasing with distance downstream, but the trend did 

not hold for the summer and fall sampling times. Temporally, urea was highest in the spring at 

station 9 and 10, but there was no clear temporal pattern at other stations.  The maximum urea 

value detected in the river was 163 µgL
-1 

N-CO(NH2)2 at station 10 on April 27, 2011. 

Factors influencing variation in DON and Urea 

 In order to examine environmental factors that might influence variation in DON and 

urea concentrations that were observed in the NRE stations 1-10, we used JMP statistical 

software to perform linear regressions. Results are summarized in Table 2. The models regressed 

DON and urea separately against temperature, salinity, NOx, NH4
+
, PO4

3-
, chlorophyll a, and 

each other (interaction).  The models indicated that DON was positively correlated with 

temperature, NOx, NH4
+
, PO4

3-
, chlorophyll a, and urea.  The model indicated that DON was 

negatively correlated with salinity.  The second set of regression models indicated that urea was 

positively correlated with NOx, NH4
+
, PO4

3-
, and DON.  Temperature, salinity, and chlorophyll a 

content did not appear to correlate with urea concentration. 

Chlorophyll a 

Mean chl a concentrations for stations 10, 9, 7, 5, and 1 during the sampling period are 

shown in Table 1.   Phytoplankton biomass as chlorophyll a varied greatly over space in the NRE 

(Table 1, Fig. 9).  During all seasons, chlorophyll a was virtually absent from station 10, but 

rapidly increased with distance downstream until peaking at station 7 and then again decreasing 

http://en.wikipedia.org/wiki/Carbon
http://en.wikipedia.org/wiki/Carbon
http://en.wikipedia.org/wiki/Nitrogen
http://en.wikipedia.org/wiki/Nitrogen
http://en.wikipedia.org/wiki/Carbon
http://en.wikipedia.org/wiki/Carbon
http://en.wikipedia.org/wiki/Nitrogen
http://en.wikipedia.org/wiki/Nitrogen
http://en.wikipedia.org/wiki/Carbon
http://en.wikipedia.org/wiki/Carbon
http://en.wikipedia.org/wiki/Nitrogen
http://en.wikipedia.org/wiki/Nitrogen
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with distance downstream.  Seasonally, average chlorophyll a concentrations were highest in the 

fall and spring, but high chlorophyll a values at station 7 were observed during all seasons. 

Notable bloom events included  a fall bloom on November 1, 2010  at station 7 (149 µgL
-1

), a 

winter bloom on February 1, 2011 at station 7 (68 µgL
-1

),  and a spring bloom on May 31, 2011 

at station 8 (86 µgL
-1

). 

Factors influencing variation in phytoplankton biomass 

Linear regression model results for chlorophyll a against various environmental 

parameters are summarized in Table 3.  Only chlorophyll a was positively correlated with DON. 

Chlorophyll a was negatively correlated with salinity, NOx, and PO4
3-

.  Temperature and urea did 

not appear to correlate with chlorophyll a in the NRE. 

Bioassays 

Summary of nutrient additions 

Initial concentrations of nutrients present in the control and five treatments varied for 

each experiment, since concentrations at sampling sites varied.  Background nutrient conditions 

at sample sites are shown in figure 10.  Mean ambient nutrient concentrations in Cubitainers on 

initial day of experiment in the treatments are listed in Table 4. External molar inorganic N:P 

ratios varied for each bioassay (Fig. 11). In the control, the external molar N:P ratio was less than 

16 for all time points except for T8 of the June 2010 bioassay and T0,T2,T4 of the December 

2010 bioassay.   

Summer I Bioassay- June 2010 
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Primary productivity was observed at significantly elevated levels compared to the 

control in each of the treatments, at different time-points (Fig. 12). At T2, primary productivity 

was significantly higher than control in the DIN, DIN+DIP, River Filtrate, and Urea treatments.  

At T4 none of the treatments had primary productivity rates greater than controls.  At T8, only 

the DIP treatment yielded a primary productivity rate significantly greater than the control (Fig. 

12).  Initial chlorophyll a concentration was 31.3 µgL
-1

 in June 2010 (Fig. 13). Chlorophyll a 

concentrations were significantly elevated for 67% of the time sampled in all of the treatments 

except for DIN, which had no responses that were significantly greater than the control (Fig. 14).  

The initial estuarine phytoplankton community was dominated by diatoms (fucoxanthin), 

cyanobacteria (zeaxanthin), and dinoflagellates (peridinin) respectively (Fig. 15). Phytoplankton 

community shifted during the course of the experiment to a cyanobacteria dominated community 

in all treatments (Fig.16); however some treatments stimulated certain major diagnostic pigments 

more frequently than others over the whole bioassay.  Dinoflagellate (peridinin) biomass was 

greater than the control in the River Filtrate addition 67% of the time (2 out of 3 time points) and 

was greater in all of the other treatments only 1 out of the three time points (Fig. 16).  DIN, 

DIN+DIP, River Filtrate, and Urea yielded significant cyanobacteria (zeaxanthin) and 

chlorophyte (chlorophyll b) biomass  responses an equal number of times. Diatom biomass 

(fucoxanthin) was significantly higher than the control in the Urea treatment 100% of the times 

sampled and 67% of the time in the DIN, DIN+DIP, and River Filtrate treatments (Fig. 16).  

Myxoxanthophyll (cyanobacterial pigment) was only greater than the control one time: T8 in the 

DIP treatment.  On T8, cyanobacterial pigments were greater in the DIP treatment than all other 

treatments and chlorophyll a was measured at over 64 µgL
-1

 (Fig. 16).   

Fall Bioassay - September 2010 
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Significant responses in primary productivity rates were seen only on T2, but were observed 

in all N-containing treatments (Fig. 12).  The DIP treatment did not yield significant responses in 

primary productivity or chlorophyll a.  Initial chlorophyll a levels were low (6.9 µgL
-1

) and 

remained low throughout the experiment (Figs. 13 and 17). Nonetheless, chlorophyll a was 

significantly higher than the control in the DIN, DIN+DIP, River Filtrate, and Urea treatments at 

both T2 and T4.  At T8, no treatments yielded a significant response (Fig. 17).  Initial 

phytoplankton community was dominated by cyanobacteria (zeaxanthin) and diatoms 

(fucoxanthin) respectively (Fig. 18).  Dinoflagellates (peridinin) and chlorophytes (chlorophyll 

b) were also present in smaller proportions.  The phytoplankton community at the end of the 

experiment was similar to the initial and had the same dominant groups (Fig. 19). Cyanobacteria 

biomass (zeaxanthin) was observed at significantly elevated levels compared to the control in the 

DIN treatment 100% of the times sampled and in the DIN+DIP and Urea treatments 33% of the 

time sampled (Fig. 19). Another cyanobacterial pigment, myxoxanthophyll, was significantly 

elevated most frequently in the River Filtrate addition.  Peridinin and chlorophyll b were also 

stimulated most frequently by the River Filtrate addition. Fucoxanthin was stimulated most 

frequently by DIN (Fig. 11). 

Winter Bioassay - December 2010 

Initial chlorophyll a concentration was 15.8 µgL
-1

 in the December experiment (Fig. 13) and 

grew to 25 µgL
-1

 at the end of the experiment in the dual DIN+DIP addition.  Primary 

productivity rates were not higher than the control in any treatments until 96 hours (T4), when 

they were greater in only the DIP and DIN+DIP treatments (Fig. 12). On T8, primary 

productivity was only greater in the DIN+DIP treatment. Biomass as chlorophyll a however, was 

elevated in the DIP treatment during all time-points and in DIN+DIP on T2 and T4, but was not 
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greater in any other treatments on any time-points (Fig. 20). Initial phytoplankton community 

had a relatively even distribution of cyanobacteria, diatoms, cryptophytes (alloxanthin), and 

dinoflagellates. (Fig. 21).  Chlorophytes were also present in small concentrations initially.  By 

the end of the experiment, the same groups remained (except chlorophytes, which completely 

diminished) in varying proportions depending on treatment type (Fig. 22). There were no 

significant responses of any of the major pigments in any treatments until T4. Pigments 

peridinin, alloxanthin, and fucoxanthin were all significantly higher than the control most 

frequently in the DIN+DIP treatment.  Zeaxanthin was only significantly greater than the control 

once, at T4 in the DIP treatment.  Chlorophyll b was also only significantly elevated compared to 

the control  in the DIP and Urea treatments (Fig. 22). 

Spring Bioassay - April 2011 

Initial chlorophyll a concentration was low (5.2 µgL
-1

 ) but peaked at 25 µgL
-1

 on T8 in 

DIN+DIP treatment (Figs. 13 &23).  Primary productivity rates were significantly elevated most 

frequently by the DIN+DIP treatment, but were also elevated one time each in the DIN and Urea 

treatments (Fig. 12).  Significant chlorophyll a responses mirrored primary productivity 

responses point for point (Fig. 23).  Initial phytoplankton community was dominated by 

dinoflagellates and cryptophytes respectively (Fig. 24).  However, community shifted to diatom 

dominance by T8 (Fig. 25). All the pigments were greater than the control most frequently in the 

DIN+DIP treatment.  Diatoms and dinoflagellates were also stimulated by Urea and DIN 

treatments.  DIP did not stimulate and pigments significantly from the control. 

Summer II Bioassay - July 2011 
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Initial chlorophyll a concentration was 12.6 µgL
-1

 (Fig. 13)  and peaked at 16 µgL
-1

 on T2 

before declining in all treatments (Fig. 26).  Primary productivity rates were significantly greater 

than the control in all the treatments except DIP on T2 and all the treatments except DIP and 

Urea on T4 (Fig. 12).  There were no significant responses on T8.  Chlorophyll a was most 

frequently stimulated by DIN+DIP during this bioassay (Fig. 26). Initial phytoplankton 

community was dominated by cyanobacteria and chlorophytes and these two groups remained 

prevalent throughout (Figs. 27 & 28).  Zeaxanthin was most frequently elevated in the DIN and 

Urea treatments, where-as myxoxanthophyll was most frequently elevated in DIN, DIN+DIP, 

and River Filtrate.  Chlorophyte responses mirrored that of myxoxanthophyll, and diatoms were 

most frequently stimulated by DIN+DIP and River Filtrate. 

Summary of Bioassay Results 

Percentiles of total significant responses of growth parameters for each treatment are 

shown in Fig. 29.  Across all 5 bioassay and all 15 time points, DIN+DIP was the most 

stimulatory treatment of primary productivity and total biomass.  Chlorophyll a was greater than 

the control in DIN+DIP 80% of the time sampled followed by 67% in the River Filtrate 

treatment.  DIP yielded significant responses the least number of times. Maximum primary 

productivity and phytoplankton biomass values for all five experiments occurred on day 8 of the 

June 2010 experiment in the DIP treatment (Figs. 12 and 14).  Primary productivity was 

measured at 463.41 mg C m
-3

 h
-1

 and mean chlorophyll a was 64.6 µgL
-1

.   

Major phytoplankton pigments were also stimulated significantly more often in some 

treatments. Peridinin (dinoflagellate) was greater in the River Filtrate treatment 56% of the times 

sampled followed by 40% in the DIN+DIP treatment.  Myxoxanthophyll (cyanobacteria) was 
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similar to peridinin in that it was most frequently stimulated by River Filtrate (44%) followed by 

DIN+DIP (26%).  Chlorophyll b (chlorophyte) was also most stimulated by River Filtrate (55%) 

followed by DIN+DIP (40%) .  Zeaxanthin (cyanobacteria) was most frequently stimulated by 

DIN+DIP (60% of the time) followed by DIN (47%).  Fucoxanthin (diatoms) and alloxanthin 

(crptophytes) were most often stimulated by DIN+DIP, then River Filtrate. 
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DISCUSSION 

Dissolved nutrients in the NRE 

In the current study concentrations of inorganic N and P were greater above the estuary in 

the oligohaline section than in the mesohaline sections of the mid and lower estuary (Figs. 5-8).  

This pattern of decreasing nutrient concentrations with distance downstream has been established 

by studies monitoring estuarine processes in the area including the nearby Neuse River Estuary 

(Mallin et al. 1991, Twomey et al. 2005).  This discussion will focus primarily on DON and urea 

dynamics, since less is known about their patterns in the New River Estuary.  Average DON 

concentrations obtained in this study were similar to those reported for other estuaries in the US.  

A collection of estuarine DON values are reported by Bronk (2002; Table 1).  The mean of these 

values is approximately 315 µgL
-1

, while the mean DON value we observed in the NRE was 

approximately 345 µgL
-1

.  Bronk (2002) also reports various urea values ascertained from 

estuarine monitoring.  An approximate average of the values reported is 28 µgL
-1

.  The mean we 

obtained for the NRE from January to September 2011 was 14.8 µgL
-1

.  However, urea at station 

10 tended to be higher and had a mean of 34.9 µgL
-1

.  The range of urea values observed in this 

study is greater than the range that Twomey et al. (2005) observed in the Neuse River estuary.  

Our maximum detected value of 163 µgL
-1

 was over three times higher than the maximum value 

he detected. Using the data from this study we can conclude that urea is a small source of N in 

the New River estuary, making up to 30% of the DON pool on some sampling points.  Given that 

DON is the largest pool of nitrogen in most estuarine systems (Bronk et al. 2007), and makes up 

an average 40% of the total dissolved N pool in this system (not shown), urea merits being 

considered a significant available source of nitrogen in the NRE. 
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Linear regression models were used to analyze potential correlations between DON and 

urea and various other parameters.  DON and urea were both significantly positively correlated 

with  NOx , PO4
3-

, and NH4
+
.  Nitrate is commonly referred to “external N” since it originates 

from sources outside the river via runoff, groundwater, wastewater, and rainfall (Paerl et al. 

1995).  Thus positive correlations with NOx suggest that DON and urea may be allochthonous 

and arrive via similar mechanisms.  However, ammonium and phosphate were also positively 

correlated with DON and urea.  While NH4
+
 and PO4

3-
,   may originate from some external 

sources (waste, rainfall), these nutrients are mainly considered to be internally supplied in 

estuaries, by reminalization in the sediments and water column (Paerl et al. 1995, Twomey et al. 

2005).  Thus this positive correlation suggests that DON and urea may be internally supplied.  

Both scenarios are plausible given that DON and urea can have both internal and external 

origins.  Externally supplied DON is transported via runoff, groundwater, wastewater, and 

rainfall as humics, amino acids adsorbed to clay particles, or other unknown compounds (Bronk 

et al. 2007).  Internally, DON can originate from phytoplankton and bacteria as metabolites, 

excretions, and cell releases during senescence.  Urea, which was also positively correlated to 

NOx , NH4
+
 and PO4

3-
,  can be both internally and externally supplied as well.  Urea is produced 

in situ by fish and zooplankton excretions, bacterial metabolism, and sediment release (Glibert et 

al. 2004).  Externally, urea may come from animal waste runoff and fertilizer runoff.  Urea’s 

inclusion in fertilizers is a trend that is escalating on a global scale (Glibert et al. 2005).  

Although urea was not significantly influenced by temperature or salinity in this study, DON was 

positively correlated to temperature and negatively correlated to salinity.  Since DON may be 

supplied by biological activity and metabolism, a positive correlation with temperature is likely, 

given that biological activity increases with temperature.  The negative correlation with salinity 
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is evident in the monitoring data (Fig. 8).  This spatial pattern of decreasing with distance 

downstream is similar to patterns seen in concentrations of inorganic nutrients in the NRE (Figs. 

5-7).  This correlation suggests that the estuary functions as a net sink of DON. 

Phytoplankton biomass in the NRE 

Total Chl a concentrations obtained in this study were similar to those previously 

reported in the NRE (Mallin et al. 2005, Tomas et al. 2007).  These results also show similar chl 

a distribution trends with the chl a maximum occurring in the mesohaline section of the estuary.  

In the present study chl a maximum was station 7.  At station 7, chl a, was highest in the fall. 

Given that fall was a period of high discharge during our study, this agrees with other findings 

that phytoplankton abundance is controlled by external nutrient loading (Paerl et al. 2003).  For 

the rest of the stations, chl a varied minimally seasonally (Fig. 9).  This suggests that chlorophyll 

a  did not necessarily respond to growth condition factors such as light and temperature.  Our 

regression analysis results showed that temperature did not significantly influence chl a (Table 

3), which corroborates our observations of minimal variation in seasonal trends for chl a in the 

NRE.  However, these results differ from widely documented trends that show temperature to be 

an influential factor controlling phytoplankton abundance (Eppley, 1972). 

Chorophyll a was negatively correlated with salinity in the NRE.  Mallin et al. (1991) 

also observed an inverse relationship between chl a and salinity in the Neuse River estuary.  Chl 

a  was negatively correlated with NOx and PO4
3- 

 (Table 3).  However, chronic low 

concentrations of these nutrients in the estuary during this study period may have affected these 

results.  Rapid uptake of nitrate and phosphate by phytoplankton make relationships between chl 

a and  these nutrients difficult to interpret. Thus the negative correlations observed must not be 
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interpreted as evidence that these nutrients are not linked to phytoplankton abundance.  Quite to 

the contrary, many studies have established the occurrence of high phytoplankton densities 

following nutrient loading events (Paerl et al. 2007).  Higher resolution sampling regimes and 

models that account for time-lags might provide more insight into correlations between these 

parameters. The regression model also showed that chl a was positively correlated with DON 

(Table 3).  This suggests that phytoplankton abundances are high when DON levels are high.  

Moreover, the DON maximum in the estuary occurred station 7; the same station as the chl a 

maximum (Figs. 8 and 9).  Phytoplankton have been shown to utilize and simultaneously 

produce DON (Bronk et al. 2007). Thus the potential for phytoplankton to serve as both a source 

and a sink for DON may influence the correlation observed. 

Total phytoplankton biomass response during bioassays 

Riverine loading is the dominant source of new nutrients to the NRE (Hall et al., personal 

communication). Thus, elevated nutrient loads from upstream are transported downstream to the 

estuary where physical conditions including lowered turbidity, relatively long residence time, 

and periodic vertical stratification are favorable for excessive algal growth.  This study 

demonstrated that nutrient enrichment was likely an important factor promoting phytoplankton 

growth, but there were substantial differences in terms of the magnitudes and types of 

phytoplankton community stimulation promoted by individual and combined forms of N and P.   

Total biomass was most frequently stimulated by DIN+DIP, followed by River filtrate, Urea, 

DIN, and DIP respectively.  Total phytoplankton biomass response to nutrient enrichment may 

have been linked to nutrient limitation as indicted by external molar N:P ratios. Molar ratios of 

N:P less than 16 indicate nitrogen limitation (Redfield 1958). The N:P ratios were consistently 

less than 16 in the water during the majority of the five experiments (Fig. 11), which indicates a 
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trend of N-limitation in NRE estuary.  This observation agrees with other findings that the NRE 

is strongly N-limited (Mallin et al., 1997, Hall et al. in prep.). In the present experiment, 

production of new biomass was more often stimulated by nutrient additions containing additional 

N and P rather than N alone (Fig. 29). An explanation for the strong response to combined N and 

P may be that single nutrient enrichments by either N or P alone may quickly induce limitation 

by the nutrient not supplied (Elser et al. 2007).  P limitation is generally indicated by N:P ratios 

greater than 16 (Redfield 1958; Smith 1990; Justić et al. 1995). The molar N:P ratio of the 

control water was greater than 16 on day 8 of the June 2010 bioassay.  The only treatment that 

elicited a significant chlorophyll response at this time point was DIP, which backs up that it was 

a P limited environment as indicated by the molar ratio. Moreover, high chlorophyll a and 

cyanobacterial pigment concentrations indicated a cyanobacterial bloom at this sampling point.  

Microscopic examination(not shown) revealed the bloom to be composed of a heterocystous 

cyanobacterium (Anabaenopsis sp.).  Since the phytoplankton in these Cubitainers had been 

supplied with extra P, Anabaenopsis sp. was likely able to grow and supply itself with N through 

N2-fixation (a high frequency of heterocysts was observed, indicative of N2 fixation; Horne 

1979).  Cyanobacteria likely did not thrive in the other Cubitainers due to constraints on P 

supply. 

This series of experiments reiterated similar findings by other studies that urea additions 

may stimulate phytoplankton growth (Twomey et al. 2005; Glibert et al., 2006).  Elevated 

chlorophyll a levels were seen more often in the Urea treatment than in the DIN treatment.  This 

observation is notable considering combined inorganic sources of N are considered to be the 

preferred forms of N for phytoplankton (Owens and Esaias 1976). These results create 

compelling reason to further the investigation of urea and its sources in our rivers and estuaries 
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since urea may be a significant source of N to some nuisance algal bloom taxa (Glibert et al. 

2006).  Due to increased use of urease inhibitors in fertilizers, which can delay the hydrolysis 

reaction to ammonium carbonate by many weeks, urea may be making it into our waterways in 

substantial concentrations (Glibert et al. 2006).  Our study may agree with this phenomenon 

since we found urea to make up a portion of the N pool in the New River estuary. 

 Implications for bloom formations of specific taxa 

Phytoplankton groups that were promoted by specific nutrient forms and combinations 

varied.  The most commonly identified photopigments were peridinin, zeaxanthin, fucoxanthin, 

myxoxanthophyll, and chlorophyll b.  One pigment that showed a distinct connection to a 

particular treatment was peridinin, which was observed at elevated levels in the River filtrate 

addition over half of the time sampled (Fig. 29).  The link between organic N supply and 

dinoflagellate productivity has been shown in other studies in recent years (Palenik and Morel, 

1990; Doblin et al., 2000; Dyhrman and Anderson, 2003; Gagnon et al., 2005). 

Myxoxanthophyll (cyanobacteria) and chlorophyll b (chlorophytes) were also more frequently 

stimulated by River filtrate, indicating that phytoplankton from these groups were able to exploit 

some portion of the DON in the addition.  A recent study by Wawrik et al. (2009) demonstrated 

the ability for a cyanobacterium, Synechococcus spp. to actively incorporate N from a variety of 

organic compounds.  In contrast, zeaxanthin (cyanobacteria), fucoxanthin (diatoms), and 

alloxanthin (cyptophytes) did not appear to be significantly stimulated by the extra organic 

nitrogen in the River filtrate addition. The same study by Wawrick et al. (2009) found that 

diatoms did to take up amino acids or glutamate, suggesting that diatoms may not exploit DON.  

These pigments were most frequently stimulated by the inorganic N & P addition.   
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The findings presented here of a possible link between organic N enrichment and the 

growth of specific taxa such as dinoflagellates may have significant implications for 

eutrophication in nutrient-sensitive waters such as the NRE.  Dinoflagellate blooms have been 

observed in the NRE on numerous occasions (Mallin et al. 2005; Tomas et al. 2007).  Blooms 

comprised of this group are linked to the production of toxic metabolites, bottom water oxygen 

depletions, reductions in water clarity, and successional adverse effects on fish and shellfish 

habitat (NCDENR 2005, Diaz and Rosenberg 2008). 

 

Synthesis and Future Work 

In this study, which involved both monitoring and experimental components, we 

investigated the trends of multiple nutrient forms in the NRE, delineated urea for the first time in 

this system, and assessed phytoplankton response to additions that mimicked nutrient loading 

events from the river.  In five in-situ bioassay experiments, we evaluated phytoplankton response 

to inorganic N & P, a known organic N compound (urea), and a bulk DON mixture made up of 

river water. However, individual organic compounds present in the bulk organic mixture were 

not measured. This makes interpretation of the effects of DON enrichment challenging, since 

organic compounds may go through a series of biochemical transformations before being used 

by phytoplankton and the role of bacteria may be important in mediating these processes. A 

somewhat unexpected finding in our study may be attributed to the role of bacteria.  We found 

that total phytoplankton biomass was less frequently stimulated by the River filtrate addition 

than by the DIN+DIP addition despite the two treatments having equal concentrations of 

inorganic nutrients and the River filtrate having more TDN (Table 4, Fig. 29). Since we 

accounted for dilutions in all of our treatments with major ion solution, the explanation left is 
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that there may have been something inhibitory to phytoplankton growth in the river water on 

some occasions. This inhibition may be attributed to competition for nutrients with bacteria in 

the River filtrate.  Competition for inorganic N resources between phytoplankton and bacteria 

and resulting suppression of phytoplankton growth is reviewed by Bronk (2007).   Although it 

was filtered through clean GF/Fs, the river filtrate likely contained a population of bacteria.  The 

major ion solution, which was made up with deionized water and assorted minerals, did not 

contain additional bacteria.  

In estuaries, where nutrient loading is often dominated by river discharge, nutrients arrive 

in various forms and magnitudes, which can shape phytoplankton community structure (Valdes-

Weaver et al. 2006; Paerl et al. 2007). Evaluating the potential for these various nutrient forms to 

promote phytoplankton growth, especially by HAB species, is important in order to develop 

targeted, nutrient-specific coastal management strategies.  Future work evaluating nutrient 

resource use should continue to use naturally occurring phytoplankton communities rather than 

axenic cultures since they may not be representative of the ecosystem population.  Additionally, 

as advanced techniques have been developed that can characterize more components of the DON 

pool, these compounds should be delineated in eutrophic environments and evaluated for 

availability to estuarine primary producers. 
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Table 1. Sampling period means of dissolved nutrients and Chl a at stations 10, 9, 7, 5, and 1. 

All values listed in µgL
-1

 

Station N-NOx N-NH4
+
 P-PO4

3-
 N-DON N-Urea Chl a 

10 1271.7 83.2 147 377.3 34.9 1.3 

9 260.7 55.4 49.2 432.9 15.5 21.6 

7 44.6 22.4 24.4 431.9 10 38.8 

5 18.8 26.2 13.6 375.7 4.9 23.5 

1 7.7 32.3 7 110 8.5 6.6 

Mean  320.7 43.9 48.2 345.6 14.8 18.4 
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Table 2. Linear regression results expressed as p values for factors correlated to DON and urea 

concentrations. Significance indicated by asterisks, and positive or negative correlations 

indicated by + and -, respectfully. 

Parameter DON Urea 

Temperature 
.0052* 

+ 
.6257 

Salinity 
<.0001* 

- 
.0526 

NOx 
<.0001* 

+ 

<.001* 

+ 

NH4
+
 

<.0001* 

+ 

<.0001* 

+ 

PO4
3-

 
<.0001* 

+ 

<.01* 

+ 

Interaction  
<.01* 

+ 
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Table 3. Linear regression results expressed at p values for factors correlated to Chlorophyll a. 

Significance indicated by asterisks, and positive or negative correlations indicated by + and -, 

respectfully. 

 

Parameter Chlorophyll a 

Temperature .3514 

Salinity 
<.0001* 

- 

NOx 
.0253* 

- 

NH4
+
 .0927 

PO4
3-

 
.0111* 

- 

DON 
<.001* 

+ 

Urea .7978 
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Table 4. Mean ambient nutrient concentrations in Cubitainers for each treatment on initial day of 

experiment. Concentrations measured in Control and River filtrate, then extrapolated to other 

treatments based on treatment.  BDL = below detection limit. All concentrations are reported in 

µgL
-1

. Dash indicates value not measured or reported. Note: some responses to river filtrate 

addition not analyzed due to set-up error. See methods. 

 Treatment 

  Control DIN DIP DIN+DIP River 

Filtrate 

Urea 

JUNE   N-NOx- BDL 338 BDL 338 338 BDL 

   N-NH4+ 8 14 8 14 14 8 

   P-PO4
-3

 3 3 27 27 27 3 

   N-Urea - - - - - 338 

   N-DON 379 379 379 379 451 379 

        

SEPT   N-NOx- BDL 121 BDL 121 121 BDL 

   N-NH4+ 10 14 10 14 14 10 

   P-PO4
-3

 6 6 19 19 19 6 

   N-Urea - - - - - 121 

   N-DON 321 321 321 321 341 321 

        

DEC   N-NOx- 48 391 48 391 - 48 

   N-NH4+ 25 145 25 145 - 25 

   P-PO4
-3

 6 6 20 20 - 6 

   N-Urea - - - - - 391 

   N-DON 219 219 219 219 - 219 

        

APR   N-NOx- 1 244 1 244 - 1 

   N-NH4+ 21 46 21 46 - 21 

   P-PO4
-3

 7 7 17 17 - 7 

   N-Urea - - - - - 244 

   N-DON 270 270 270 270 - 270 

        

JULY   N-NOx- 1 201 1 201 201 1 

   N-NH4+ 13 24 13 24 24 13 

   P-PO4
-3

 3 3 35 35 35 3 

   N-Urea - - - - - 225 

   N-DON 283 283 283 283 363 283 
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Figure 1.  Map of  the New River Estuary, North Carolina, USA and its watershed.  All 

numbered shapes represent stations sampled monthly. Square symbol marks station 7, the 

bioassay sample site for estuary water. Triangle marks the river water collection site used in 

bioassays. 
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Figure 2. Schematic diagram of bioassay treatments. 
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Figure 3. Time series plot of temperature measured at stations 1 to 8 

through the entire time period of the study (June 2010 – September 2011). 
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Figure 4.  Salinities measured at stations 1 to 10 over the study period.  Colored lines represent 

seasonal average salinities.  Station numbers increase from river to mouth. 

 

 

 

 

 

 



36 
 

 

Figure 5.  N-NOx concentrations measured at stations 1 to 10 over the study period.  Colored 

lines represent seasonal averages. 
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Figure 6.  N-NH4
+
 concentrations measured at stations 1 to 10 over the study period.  Colored 

lines represent seasonal averages. 
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Figure 7.  P-PO4
3-

 concentrations measured at stations 1 to 10 over the study period.  Colored 

lines represent seasonal averages. 
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Figure 8.  DON (top) and urea (bottom) concentrations measured at stations 1 to 10 over the 

study period.  Colored lines represent seasonal averages. 
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Figure 9.  Chlorophyll a concentrations measured at stations 1 to 10 over the study period.  

Colored lines represent seasonal averages. 
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Figure 10. Nutrient concentrations at Station 10 (Gum Branch) and Station 7 on the New River 

June 2010 through July 2011.  Times of bioassay experiments are highlighted by yellow 

rectangles. 
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Figure 11. Mean dissolved inorganic N/P molar ratios in Control cubitainers on sampling days. 

Horizontal line indicates N:P = 16 
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Figure 12.  Primary productivity rates measured throughout each bioassay.  Red star indicates 

significantly greater than control (p < 0.05). 
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Figure 13.  Initial (TO) chlorophyll a values for each bioassay . 
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Figure 14. June bioassay T2, T4, and T8 chlorophyll a results. Red star indicates significantly 

greater than control (p < 0.05). 
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Figure 15.  June bioassay T0 major diagnostic photopigments. 
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Figure 16. June bioassay T2, T4, and T8 HPLC photopigment results. Red star indicates 

significantly greater than control (p < 0.05). 
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Figure 17. September bioassay T2, T4, and T8 chlorophyll a results. Red star indicates 

significantly greater than control (p < 0.05). 
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Figure 18.  September bioassay T0 major diagnostic photopigments. 
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Figure 19. September bioassay T2, T4, and T8 HPLC photopigment results. Red star indicates 

significantly greater than control (p < 0.05). 
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Figure 20. December bioassay T2, T4, and T8 chlorophyll a results. Red star indicates 

significantly greater than control (p < 0.05). 
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Figure 21.  December bioassay T0 major diagnostic photopigments. 
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Figure 22. December bioassay T2, T4, and T8 HPLC photopigment results. Red star indicates 

significantly greater than control (p < 0.05). 
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Figure 23. April bioassay T2, T4, and T8 chlorophyll a results. Red star indicates significantly 

greater than control (p < 0.05). 
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Figure 24.  April bioassay T0 major diagnostic photopigments. 
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Figure 25. April bioassay T2, T4, and T8 HPLC photopigment results. Red star indicates 

significantly greater than control (p < 0.05). 
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Figure 26. July bioassay T2, T4, and T8 chlorophyll a results. Red star indicates significantly 

greater than control (p < 0.05). 
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Figure 27.  July bioassay T0 major diagnostic photopigments. 
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Figure 28. July bioassay T2, T4, and T8 HPLC photopigment results. Red star indicates 

significantly greater than control (p < 0.05). 
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Figure 29. Frequency of significant responses of growth parameters for each treatment 

expressed as percent of occurrence out of all sub-sampling time-points.  Note: percent of 

significant responses for river filtrate addition only out of 9 time-points. 
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