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ABSTRACT 

 

 

Allison J. Hulchanski: MECHANISTIC INSIGHTS INTO THE ROLE OF SILVER IN 

ASYMMETRIC GOLD(I) CATALYZED CYCLOISOMERIZATION OF 1,6-ENE 

ALLENES  

(Under the direction of Michael R. Gagnè and Maurice S. Brookhart) 

 

 This thesis encompasses a series of studies carried out to ascertain the mechanism 

that axially chiral bis(gold) phosphine catalysts undergo to stereoselectivity cycloisomerize 

1,6-ene allenes. The thesis also discusses the role in which silver salts play to not only 

activate the gold catalysts but their role in catalysis that affects catalyst speciation, 

stereoselectivity, and formation of dinuclear intermediates. While previous studies into the 

mechanism of gold(I) catalyzed reactions have focues primarily on monodentate ligated gold 

catalysts, little is known about the mechanism involved with bis(gold) phosphine based 

catalysts. In addition, only recently has it been acknowledged that silver may play an active 

role in catalysis rather than the notion that silver activates gold to become an inactive silver 

halide byproduct.  

The thesis first uses Non-linear effects experiments to determine if oligomers often 

seen in gold coordination chemistry occur during catalysis. Attempts were made at 

synthesizing 3-center-2-electron “digold” species often seen in mono-dentate gold catalyzed 

reaction failed. However, the inability to form stable or isolable “digold” model compounds 
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suggests that axially chiral bis(gold) phosphine catalysts are too strained to form this 

type of intermediate.  

Also described in this thesis is the study of the role of silver in catalysis. The effect of 

the amount of silver used to activate the gold catalyst on the enantiomeric excess of the 

product as well as the catalysts speciation directly shows silver is more than an inactive 

bystander in catalysis. Titration of silver with bis(gold) phosphine aryl model compounds 

with silver at low temperatures demonstrate the potential for dinuclear Au-Ag intermediates. 

Finally, studies removing AgCl byproduct and addition of silver salts with less coordinating 

counter ions that chloride directly impacted enantiomeric excess of the products suggesting 

that the proposed dinuclear Au-Ag species is involved in the stereochemistry determining 

step of the mechanism.  
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CHAPTER 1: Gold(I) Catalyzed Cycloisomerization and Involvement of  Gem-

diaurated Species in Catalysis 

 

1.1. Introduction: Gold(I) Catalyzed Asymmetric Cycloisomerizations and Current 

Mechanistic Insights  

Transition metal catalyzed C-C bond forming reactions have received a great deal of 

attention in the last decade, as the search continues for a transition metal catalyzed room 

temperature reaction that does not require prefunctionalization of each component.
1
  Au(I) 

and Au(III) have shown a preference for forming-complexes with a variety of unsaturated 

bonds including; alkenes, alkynes, allenes, carbonyls, and imines.
2
  Once electrophilically 

activated, these unsaturated bonds are susceptible to intra- and intermolecular nucleophilic 

attack by oxygen, nitrogen, or C-C multiple bonds to form a variety of cyclic structures.
2
  

Au(I) is known to form two coordinate complexes with a forced linear geometry.
3 

This linear 

geometry separates the chiral auxiliary approximately 180˚ and 5 Å from the substrate, 

making the number of asymmetric variants somewhat slower to develop.
3
  

Asymmetric gold catalysis has progressed significantly in the past five years with 

chiral bis(phosphines) ligands, chiral counterions, chiral N-heterocyclic carbenes, and
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monodentate phosphoramidite ligands having been successfully employed for the 

stereoselective synthesis of a variety carbo- and heterocycles.
4,5

  Success has also been found 

by using several of these asymmetric strategies in combination.  Mikami and Toste each 

observed a synergistic effect that led to an increase in ee when combining chiral 

bis(phosphine) with a chiral counterion.
9,10

   

 Though there has been exponential growth in the number of reported Au(I) catalyzed 

reactions, only recently has work investigating the mechanisms of mono-ligated gold(I) 

reactions revealed the intermediates of digold, π-Au, -π-bound digold, Au-vinyl, Au-alkyl, 

Au-carbene, and Au-Ag structures in various reactions.
[7]

 Despite the burgeoning mechanistic 

insights into mono-ligated gold(I) catalytic reactions, little is known about the speciation and  

mechanism of bis(gold) diphosphine catalyzed asymmetric reactions.
[3,4,7]

  

Most proposed bis(gold) phosphine reaction mechanisms are based on indirect 

evidence, literature studies of other proposed monodentate gold-catalyzed, or related 

transition metal reactions without any direct observation or characterization of 

intermediates.
1
  The lack of knowledge of how these transformations proceed and how 

enantioenrichment occurs is an underdeveloped area of study in the field of gold catalysis.   

 Au(I) catalysts first came into use in the Gagné group when previously used 

electrophilic Pt
II
 catalysts for the enantioselective cycloisomerizations of 1,6- and 1,7-dienes 

were found to be ineffective with a similar system of 1,6-eneallenes.
8
  The reactivity of Au(I) 

with unsaturated bonds allowed for asymmetric cycloisomerization of 1,6-eneallenes to 6-

membered rings using (R)-3,5-xylyl-BINAP(AuCl)2 (1) as the pre-catalyst and AgOTf to 

activate the catalyst (Scheme 1-1).
9
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Scheme 1-1. Au(I) catalyzed asymmetric cycloisomerization of 1,6-eneallenes. 

 Michael Tarselli investigated several mechanistic factors, including: the sensitivity of 

regioselectivity to counterions, the role of the alkene as the nucleophile, the sensitivity of 

enantioselectivity to solvent polarity, the dependence of rate on silver-salts and the loss of 

enantioselectivity when using pre-isolated (R)-3,5-xylyl-BINAP(AuOTf)2 (4).
9
  His studies, 

combined with the known reactivity of Au(I) toward -bonds suggested the mechanism first 

involved silver activation of the pre-catalyst to generate cationic Au(I) that would 

electrophilically activate the internal allene double bond, followed by nucleophilic attack of 

the alkene to generate a tertiary carbenium ion.
9
  2,3- or 2,1-elimination of the proton by the 

counterion and protodeauration of the catalyst would turn over the cycle (Scheme 1-2).
9
  

Scheme 1-2. Proposed Au(I) catalyzed cycloisomerization. 
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 This mechanism failed to explain the dependence of rate on the presence of silver-

salts and the loss of enantioselectivity when using 4.  Later mechanistic studies on Au(I) 

catalyzed intramolecular hydroarylation of allenes showed the presence of two gold(I) 

species acting as catalytic resting states in addition to the Ph3PAuNTf2 catalyst and a gold-

vinyl intermediate.
7,10

  One isolated resting state was proposed to contain a three-center two-

electron bond between two Ph3PAu
+
 units and the internal vinylic carbon, a gem-diaurated 

vinyl or “digold” (Figure 1-1(E)).
10

  This structure was based on 
1
H and 

31
P NMR data, as 

well as similar model digolds isolated by Schmidbaur , Fürstner, and Grandberg (Figure 1-

2).
7,14,15

 The second species was proposed to contain an asymmetric three-center two-electron 

bond between Ph3PAu
+
, Ag

+
, and the internal vinylic carbon (Figure 1-1(F)).

13
  The structure 

of species F was proposed based on 
1
H and 

31
P NMR data as well as the intra- and 

intermolecular Au-Au and Au-Ag bonds or “aurophilic interactions” seen throughout gold 

literature.
3,7

  These interactions are 8-15 kcal/mol bonds formed by the stabilization from d
10

 

closed shell interactions and are comparable in strength to strong hydrogen bonding.
3 

 

(E)                (F) 

Figure 1-1. (E) Gem-di-aurated vinyl. (F) Au-Ag vinyl. 
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Figure 1-2: 3-center-2-electron bond gem-diaurated species found in the literature.
5,14,15 

This evidence gives rise to a more complex mechanism for the Au(I) catalyzed 

hydroarylation of allenes (Scheme 1-3).
7,13

  It also raises the question, of whether Au-Au and 

Au-Ag intermediates are involved in the asymmetric Au(I) catalysis of 1,6-ene allenes to 

vinylcyclohexenes.  One project goal is the isolation of model digold compounds for 

comparison to initial 
31

P NMR studies on the 1 catalyzed cycloisomerization of dimethyl-2-

(1,2-butadienyl)-2-(cyclohex-1-enylmethyl)-malonate (2) because vinyl and aryl digolds 

have similar 
31

P chemical shifts. 
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Scheme 1-3. Proposed mechanism for the hydroarylation of 1,6-eneallenes. 

1.2 Diphosphine Au-Au Aryl Complexes as Model Compounds 

 
31

P NMR of cyclohexene-allenyl malonate treated with 5 mol% (1) and 15 mol% (2)  

in d3-nitromethane revealed a small amount of diactivated catalyst at 29 ppm, a major peak at 

41.3 ppm and five minor signals between 39 and 44 ppm.  To determine if any species 

contained an Au-Au bond, bis(phosphine) gold aryls were targeted as potential model 

compounds for digold intermediates in the catalytic system based on known gold-vinyl and 

aryl digold chemical shifts. Based on preparation of (1), various bis-phosphine gold chlorides 

were prepared and isolated. The bis(phosphine) gold aryls were then formed using a known 

procedure for transmetallating using alkyl Grignards (Scheme 1-4).   
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Scheme 1-4. Initial preparation of bis(phosphine) gold aryls. 

Bis(phosphine) gold aryls were isolated as white and cream foams but quickly 

decomposed into yellow-brown oils despite storage in air, moisture, and light free 

atmospheres and at lowered temperatures.  Therefore, various bis(phosphines) and aryl 

Grignards were used to see if complex stability depended on the ligand, aryl, or both.  Initial 

attempts at purification by recrystallization seemed to only further decompose the 

compounds. 
1
H NMR of the compounds showed a mixture of indiscernible species that are 

assumed to be product, excess protonated Grignard aryls, and various decomposition 

products.  Attempts to simplify preparation of bisphosphine gold aryls and screen various 

bis(phosphines) efficiently included an attempt at transmetallating the gold starting material, 

chloro(dimethylsulfide)gold(I) with 2- and 3-biphenyl Grignards.  However, this synthesis 

only resulted in immediate decomposition. An efficient and successful method of preparation 

combined formation of the bis(phosphine) gold chloride and transmetallation into a one pot 

synthesis (Scheme 1-5).  Using BINAP and 3,5-xylyl-BINAP as the bis(phosphine) a range 

of aryl and alkyl bis(gold)phosphine were successfully synthesized and isolated via 

recrystallization from diethyl ether.   

 Attempts at using Fürstner
14

 or Grandberg
15

 type synthetic methods for creating 

bis(gold) phosphine digold model complexes failed, leading to extensive decomposition. 

Molecular models suggest that axial chiral ligands may create too much strain to achieve the 
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three-center two electron bonds required to form a digold. Bis(gold) phosphines obtained in 

the literature generally contain flexible methylene backbones supporting that axially chiral 

ligands are too strained to feasibly create digold intermediates during catalysis.
15

 The 

inability to make axially chiral bis(gold) phosphines demonstrates that this class of gold 

catalysts may undergo a different mechanism than traditional bisphosphine based gold 

catalysis.  

 

Scheme 1-5. One-pot synthesis of P2(AuAr)2. 

1.3. Experimental 

General Information 

Dichloromethane, chloroform, diethyl acetate, hexanes, pentanes, and diethyl ether 

were purchased from Fisher Scientific and used without further purification. Anhydrous THF 

was purchased from Fisher Scientific in an Acros-Seal bottle and stored under nitrogen.  (S)-

3,5-xylyl-BINAP and (R)-3,5-xylyl-BINAP were purchased from Strem Chemicals Inc. and 

used without further purification.  
1
H, 

13
C and 

31
P NMR data were collected on a Bruker 500 

and 600 MHz Avance spectrometer. Chemical shifts are referenced to residual solvent peaks 

and reported in ppm for 
1
H and 

13
C NMR. Chemical shifts are referenced to a phosphoric 

acid external standard for 
31

P NMR taken at room temperature and reported in ppm.  
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General Procedure for Synthesis of P2Au2R2 Model Compounds: To a flame dried 100 

mL schlenk flask under N2(g) atmosphere, (S)-BINAP (1.0 eq, 0.1625 mmol) and 

chloro(dimethylsulfide)gold(I) (1.98 eq, 0.3106 mmol) was added  and stirred in anhydrous 

THF (20 mL) at room temperature for 1 hour.  The reaction was cooled to 0°C and Grignard 

(2.5 eq, 0.4100 mmol) was added drop wise.  The reaction was then stirred at 0°C for 1 hour 

then allowed to warm to room temperature over 1 hour becoming a pale yellow solution.  

The reaction was quenched with H2O until the solution became cloudy and bubbles stopped 

forming.  The mixture was extracted 4 x 25 mL of Et2O and dried over potassium sulfate 

before concentrating to form foam.  Product was recrystallized by slow evaporation of Et2O 

to form clear, colorless crystals. 

Synthesis of (S)-BINAP(Au(p-tol))2: Complex was prepared according to General 

Procedure for Synthesis of P2Au2R2 Model Compounds.   
1
H NMR: (600MHz, CD2Cl2) δ = 

7.98  (d, JH-H  = 8.4Hz,  2H), 7.84 (d, JH-H = 8.4H,  2H), 7.74 (m, 4H), 7.49 (t, JH-H = 8.4Hz 

2H), 7.38 (t, JH-H = 7.8Hz, 2H), 7.27-7.32 (m, 8H), 7.14 (m, 8H), 7.03 (t, JH-H = 7.2Hz, 4H), 

6.97 (s, 2H), 6.96 (s, 1H), 6.81 (t, JH-H = 8.4Hz 2H), 6.59 (d, JH-H=8.4Hz, 2H), 2.28 (s, 6H, 

CH3). 
31

P NMR: (600MHz, CD2Cl2, phosphoric acid standard = 0 ppm) = 37.61 ppm (s). 

Synthesis of (S)-BINAP(AuPh)2: Complex was prepared according to General Procedure 

for Synthesis of P2Au2R2 Model Compounds.   
1
H NMR: (600MHz, CD2Cl2) δ = 7.98  (d, JH-

H=12 Hz,  2H), 7.84 (d, JH-H= 12Hz,  2H), 7.74 (m, 4H), 7.49 (t, JH-H = 7.8 Hz, 2H), 7.37 (t, 

JH-H=7.8Hz, 2H), 7.25-7.31 (m, 8H), 7.1-7.14 (m, 16H), 6.98 (t, JH-H = 7.2 Hz, 2H), 6.79 (t, 

JH-H = 7.8 Hz, 2H), 6.57 (d, JH-H = 7.8 Hz, 1H). 
31

P NMR: (600MHz, CD2Cl2, phosphoric acid 

standard = 0 ppm) = 36.56 ppm (s). 
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Synthesis of (S)-BINAP(Au(o-tol))2: Complex was prepared according to General 

Procedure for Synthesis of P2Au2R2 Model Compounds.   
1
H NMR: (600MHz, CD2Cl2) δ = 

8.03  (d, JH-H = 7.2 Hz,  2H), 7.81 (d, JH-H = 8.4Hz,  2H), 7.71 (m, 4H), 7.48 (t, JH-H = 8.4Hz 

2H), 7.31 (t, JH-H  = 7.8Hz, 4H), 7.22-7.28 (m, 8H), 7.14 (m, 6H), 6.92-7.06 (m, 10 H), 6.63 

(t, JH-H = 8.4Hz, 2H), 6.43 (d, JH-H = 8.4Hz, 2H), 2.29 (s, 6H, CH3). 
31

P NMR: (600MHz, 

CD2Cl2, phosphoric acid standard = 0 ppm) = 38.34 ppm (s). 

Synthesis of (S)-BINAP(Au(4-methoxyphenyl))2: Complex was prepared according to 

General Procedure for Synthesis of P2Au2R2 Model Compounds.   
1
H NMR: (600MHz, 

CD2Cl2) δ = 7.95  (d, JH-H = 8.4Hz,  2H), 7.84 (d, JH-H = 7.8Hz,  2H), 7.75 (m, 4H), 7.37 (t, JH-

H = 7.8 Hz 2H), 7.26-7.31 (m, 8H), 7.27-7.32 (m, 8H), 7.11-7.14 (m, 8H), 7.06 (m, 4H), 6.78 

(t, JH-H = 7.8Hz, 2H), 6.71 (d, JH-H = 7.8Hz, 1H), 6.56 (d, JH-H = 8.4Hz. 2H), 3.79 (s, 6H, 

OCH3). 
31

P NMR: (600MHz, CD2Cl2, phosphoric acid standard = 0 ppm) = 37.83 ppm (s). 

Synthesis of (S)-BINAP(Au(3,5-dimethoxyphenyl))2: Complex was prepared according to 

General Procedure for Synthesis of P2Au2R2 Model Compounds.   
1
H NMR: (600MHz, 

CD2Cl2) δ = 7.98  (d, JH-H  = 7.8Hz,  2H), 7.78-7.82 (m,  6H), 7.54 (t, JH-H = 7.2Hz, 2H), 7.33 

(t, JH-H = 7.8Hz, 4H), 7.22-7.28 (m, 6H), 7.19 (t, JH-H = 8.4Hz, 4H), 7.09 (t, JH-H = 8.4Hz, 4H), 

6.76 (t, JH-H = 7.8Hz 2H), 6.51 (d, JH-H = 8.4Hz, 2H), 6.44 (m, 4H),  3.67 (s, 12H, OCH3). 
31

P 

NMR: (600MHz, CD2Cl2, phosphoric acid standard = 0 ppm) = 37.79 ppm (s). 

Synthesis of (S)-BINAP(Au(3,5-di-
t
Bu-phenyl))2: Complex was prepared according to 

General Procedure for Synthesis of P2Au2R2 Model Compounds.   
1
H NMR: (600MHz, 

CD2Cl2) δ = 8.05  (d, JH-H  = 9.0Hz,  2H), 7.82 (d, JH-H  = 7.8Hz,  2H), 7.74-7.77(m,  4H), 7.57 

(t, JH-H = 8.4Hz, 2H), 7.26-7.32 (m, 10H), 7.12 (t, JH-H = 7.8Hz, 4H), 7.02-7.06 (m, 10H), 
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6.66 (t, JH-H = 7.2Hz 2H), 6.47 (d, JH-H = 8.4Hz, 2H), 1.28 (s, 45H, 
t
Bu). 

31
P NMR: (600MHz, 

CD2Cl2, phosphoric acid standard = 0 ppm) = 37.65 ppm (s). 

Synthesis of (S)-3,5-xylyl-BINAP(AuMe)2: Complex was prepared according to General 

Procedure for Synthesis of P2Au2R2 Model Compounds.   
1
H NMR: (600MHz, CD2Cl2) δ = 

8.00  (d, JH-H  = 13.2Hz,  2H), 7.93 (d, JH-H  = 12.0Hz,  2H), 7.55  (t, JH-H = 10.8Hz, 2H), 7.40  

(t, JH-H = 12.0Hz, 2H), 7.24 (m, 6H), 7.01 (d, JH-H = 12.6Hz, 2H), 6.69 (s, 2H), 6.81 (s, 2H),  

6.78 (s, 2H), -0.42 (d, JH-H  = 12.0Hz,  6H, AuCH3). 
31

P NMR: (600MHz, CD2Cl2, phosphoric 

acid standard = 0 ppm) = 39.83  ppm (s). 
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CHAPTER 2. Non-Linear Effects 

2.1. Introductions to Non-Linear Effects 

  Work in asymmetric catalysis before the 1980’s generally assumed that ee of the 

product would vary directly with the ee of the chiral auxiliary.
1
  Kagan observed deviations 

from linearity when varying the ee of the Sharpless catalyst during the epoxidation of (E)-

geraniol and noticed the product ee did not correlate as expected, developing a  non-linear 

effect (NLE) experiment.
1,2

  NLE studies vary the ee of the chiral auxiliary and plot it against 

the resulting product ee.   The resulting plot gives information about the structure of the 

catalytically active species and molecularity of the reaction, which provides useful 

information about the mechanism of an asymmetric reaction.
2
  

In a linear system where one chiral auxiliary interacts with one substrate molecule, 

the product ee divided by the ee of the auxiliary gives the theoretical or maximum ee which 

is the slope of the expected straight line (Equation 1).
2-5

   

eemax = eeproduct/eeauxiliary   (1) 

In cases when a non-linear effect is observed, Equation 1 no longer applies unless a 

correction factor, , is applied (Equation 2).
2-5

  When higher product ee than predicted is 

obtained with non-enantiopure catalyst, a positive  L  “(+)- L ” has occurred.  The 
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opposite effect, a negative  L  “(-)- L ”, occurs when the product obtained has lower ee 

than predicted.  

eeproduct = eemax * eeauxiliary *    (2) 

Deviations from linearity occur in higher order systems such as a ML
*
2 where there 

are two chiral auxiliaries per metal or a dimeric (ML
*
)2 species.

1-5
  In higher order systems 

when non-enantiopure chiral auxiliary is present then at least two diastereotopic species, 

homochiral (M)LRLR or (M)LSLS as well as a meso species (M)LSLR, are present in 

equilibrium (Scheme 4).  

 

Scheme 2-1. Formation and reaction of diasteriotopic catalyst species. 

“” is determined by the relative reactivity and concentrations of the diastereotopic 

species (Equation 3).   The relative reactivity, g, of the compounds is the ratio of the rates at 

which the meso and homochiral species react with substrate (Equation 4).
1-4

  The relative 

concentrations of the various species is dependent on whether there is irreversible formation 

of diastereomers (Equation 5) or if fast ligand exchange is occurring with distribution close 

to thermodynamic equilibrium (Equation 6).
1-4

  

 = (1 + )/(1 + g)    (3) 

M LR LS M(LR)2 M(LS)2 MLRLS

x y z

kRR kSS=kRR kRS

+eemax -eemax
ee'max = 0

ee of the product

K
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(g = kRS/kRR)                        (4) 

[ = z/(x+y)]      (5) 

      K = z2/(xy)            (6) 

  
       

  √       
            

  

          
   (7) 

 In the limits of fast ligand exchange a normal (+)-NLE (Figure 2, Line c) occurs when 

the reactivity and/or concentration of the meso species is lower than that of the homochiral 

species.
1,2

  A normal (-)-NLE (Figure 2-1, Line b) occurs when the reactivity and/or 

concentration of the homochiral species is lower than that of the meso species.
1-4

  A reservoir 

effect (Figure 2-1, Lines d and e) occurs when any of the species are so unreactive that they 

act as a sink to capture a portion of the chiral auxiliary.
3
  If some of the racemic portion of 

the auxiliary is captured in the sink, the active chiral auxiliary becomes more enantiopure and 

asymmetric amplification occurs (Figure 2-1, Line d).
3
  While if some of the auxiliary in 

excess is captured, making the active chiral auxiliary more racemic, an extreme (-)-NLE can 

occur (Figure 2-1, Line e).
3
  Occasionally in higher order systems, the relative reactivities 

and concentrations can balance to make it appear as though a linear effect is occurring, 

making other mechanistic studies done in conjunction with non-linear effect studies 

imperative.  
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Figure 2-1. Plot of various linear and non-linear effects. 

 In Au(I) catalyzed asymmetric reactions using chiral bis(phosphines), NLE studies 

become an important experiment for determining the molecularity of the reaction due to the 

possibility of the catalyst bridging substrate molecules.  It has also been established that 

bidentate ligands and Au(I) form multinuclear complexes and oligomers due to inter-

molecular aurophilic interactions. Therefore, to help determine the mechanism and 

molecularity of the reaction of the cyclization of 1,6-eneallenes, a goal of the project is to run 

a NLE experiment. 

2.2 Results and Conclusions 

 Two independent non-linear effect experiments were performed on 3 with final 

product ee of 3b determined via chiral GC.  The enantiomers of product 3a had poor 

separation in the GC so were not used to determine ee%.  Results of the studies have a linear 

trend suggesting the molecularity between ligand and substrate is in a one to one ratio and 

that oligomers are unlikely in the stereochemistry determining step (Figure 2-2).  However, 

NLE studies alone do not rule out higher order systems where thermodynamics and kinetics 



19 

 

between formation of diastereomers and rate of reaction with substrate are balanced to give 

the appearance of a linear trend.  Current results must be combined with additional kinetic 

studies to support the theory of a ML
*
 system and linear effect. 

 

 

Figure 2-2. Linear Effect observed in the cycloisomerization of 1,6-ene allenes  

2.3 Experimental Section 

2.3.1. General Information  
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Gold-catalyzed reactions were carried out in air in 20 mL vials purchased from Fisher 

Scientific. AgPF6, AgBF4, AgNTf2, AgOTf, AgOTs, and AgCl were purchased from Aldrich 

and used without purification. The aforementioned silver salts were stored and weighed in a 

glove box charged with nitrogen before immediately reacted with gold in air for catalysis. 

CD3NO2 was purchased from Cambridge Isotope Laboratories and used without further 

purification. CH3NO2 was purified according to literature procedure
6
, dried with MgSO4 

overnight and distilled from CaSO4. CD3NO2 and CD3NO2 were stored over 3 Å molecular 

sieves. Dichloromethane, chloroform, diethyl acetate, hexanes, pentanes, and diethyl ether 

were purchased from Fisher Scientific and used without further purification. Anhydrous THF 

was purchased from Fisher Scientific in an Acros-Seal bottle and stored under nitrogen.  (S)-

3,5-xylyl-BINAP and (R)-3,5-xylyl-BINAP were purchased from Strem Chemicals Inc. and 

used without further purification.  Dimethyl-2-(1,2-butadienyl)-2-(2-methylallyl)malonate
2
 

(2) and Ph3PagOTf
3
 were prepared as previously reported. 

1
H, 

13
C and 

31
P NMR data were collected on a Bruker 500 and 600 MHz Avance 

spectrometer. Chemical shifts are referenced to residual solvent peaks and reported in ppm 

for 
1
H and 

13
C NMR. Chemical shifts are referenced to a phosphoric acid external standard 

for 
31

P NMR taken at room temperature and reported in ppm. Enantiomeric excess was 

determined with an Agilent 6890 chiral gas chromatograph outfitted with an Agilent β-

 yclosil column using the following parameters: inlet temperature 7  ˚ , 19.99 psi of 

helium  oven temperature held at 9  ˚  for  0 min then ramped to 10  ˚  at 0.  ˚ /min, held 

for   min, then ramped to 1 0 ˚  at  .0 ˚ /min, and held for   min. The  0 m chiral column 

with   0 μm diameter was run using 19.99 psi at  .  mL/min  the F   detector was held at 
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  0 ˚  with a flow rate of  0 mL/min H2, 450 mL/min air and makeup flow of 45 mL/min 

helium. 

1.3.2. General Procedure for Catalyst Synthesis 

In air, 1.97 eq. of (DMS)AuCl and 1.0 eq. of (R)- or (S)-3,5-xylyl-BINAP were added to 20 

mL vial equipped with a stir bar and dissolved in 5 mL of dichloromethane. The mixture was 

stirred for 2 to 4 hours before purification via elution through a small silica plug with 

dichloromethane and recrystallization from dichloromethane/pentanes vapor overnight.  

Racemic Mixture of (R/S)-3,5-xylyl-BINAP(AuCl)2: In air, 25.1 µL of (S)-1 (0.083M in 

CH2Cl2, 2.5 mol%), 31.9 µL of (R)-1 (0.066M in CH2Cl2, 2.5 mol%), and 220.0 µL of 

AgOTf (0.058M in CH3NO2, 14.9 mol%) stock solutions were added to a 20 mL vial.  The 

suspension was stirred for 5 minutes before 450.0 µL of 2 (0.189M in CH3NO2, 100.0mol%) 

was added and the reaction stirred for 16 hours. Products were obtained using preparative 

TLC (hexanes/EtOAc = 80:10, Rf = 0.), extracted from the silica gel with EtOAc, and 

rotovaped down to a colorless oil. 0.4% ee of 3b. 

25% Enantiomeric Excess of (S)-3,5-xylyl-BINAP(AuCl)2: In air, 31.3 µL of (S)-1 

(0.083M in CH2Cl2, 3.1 mol%), 23.9 µL of (R)-1 (0.066M in CH2Cl2, 1.9 mol%), and 220.0 

µL of AgOTf (0.058M in CH3NO2, 14.9 mol%) stock solutions were added to a 20 mL vial.  

The suspension was stirred for 5 minutes before 450.0 µL of 2 (0.189M in CH3NO2, 

100.0mol%) was added and the reaction stirred for 16 hours. Products were obtained using 

preparative TLC (hexanes/EtOAc = 80:10, Rf = 0.), extracted from the silica gel with EtOAc, 

and rotovaped down to a colorless oil. 15.2% ee of 3b. 
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50% Enantiomeric Excess (S)-3,5-xylyl-BINAP(AuCl)2: In air, 37.6 µL of (S)-1 (0.083M 

in CH2Cl2, 3.8 mol%), 16.0 µL of (R)-1 (0.066M in CH2Cl2, 1.3 mol%), and 220.0 µL of 

AgOTf (0.058M in CH3NO2, 14.9 mol%) stock solutions were added to a 20 mL vial.  The 

suspension was stirred for 5 minutes before 450.0 µL of 2 (0.189M in CH3NO2, 100.0mol%) 

was added and the reaction stirred for 16 hours. Products were obtained using preparative 

TLC (hexanes/EtOAc = 80:10, Rf = 0.), extracted from the silica gel with EtOAc, and 

rotovaped down to a colorless oil. 28.1% ee of 3b. 

75% Enantiomeric Excess (S)-3,5-xylyl-BINAP(AuCl)2: In air, 43.9 µL of (S)-1 (0.083M 

in CH2Cl2, 4.4 mol%), 8.0 µL of (R)-1 (0.066M in CH2Cl2, 0.6 mol%), and 220.0 µL of 

AgOTf (0.058M in in CH3NO2, 14.9 mol%) stock solutions were added to a 20 mL vial.  The 

suspension was stirred for 5 minutes before 450.0 µL of 2 (0.189M in CH3NO2, 100.0mol%) 

was added and the reaction stirred for 16 hours. Products were obtained using preparative 

TLC (hexanes/EtOAc = 80:10, Rf = 0.), extracted from the silica gel with EtOAc, and 

rotovaped down to a colorless oil. 38.6% ee of 3b. 

100% Enantiomeric Excess (S)-3,5-xylyl-BINAP(AuCl)2: In air, 50.1 µL (S)-1 (0.083M in 

CH2Cl2, 4.4 mol%) and 220.0 µL of AgOTf (0.058M in CH3NO2, 14.9 mol%) stock 

solutions were added to a 20 mL vial.  The suspension was stirred for 5 minutes before 450.0 

µL of 2 (0.189M in CH3NO2, 100.0mol%) was added and the reaction stirred for 16 hours. 

Products were obtained using preparative TLC (hexanes/EtOAc = 80:10, Rf = 0.), extracted 

from the silica gel with EtOAc, and rotovaped down to a colorless oil. 55.7% ee of 3b. 
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CHAPTER 3. Effects of Silver in Catalysis 

 

3.1. Introduction to Silver Effects 

Often in gold(I) catalysis silver(I) salts are used to abstract halides from gold, 

allowing organogold –complexes to form.
1,2

 The comon belief has been that after activating 

gold, silver precipitates as AgCl to become an unreactive biproduct.  However,  recent work 

has shown that contrary to popular belief , silver may play a role in catalysis influencing rate, 

selectivity, or form Au-Ag intermediates.
3
 

 When the (R)-3,5-xylyl-BINAP(AuCl)2 (1) catalyzed system for the asymmetric 

cycloisomerization of 1,6-eneallenes was developed, the role that silver played outside of 

activating the gold catalyst was not yet understood.  It was also assumed that the active form 

of the catalyst was the diactivated 4 because this species was independently isolated and 

characterized by 
1
H and 

31
P NMR.  However, 4 was significantly less reactive and selective 

than the in situ generated catalytic species.
3f

  

 

Scheme 3.1. Standard reaction conditions for the cycloisomerization of 2.
3f
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Recent work by Zhang et al. using (R)-C1-tunephos(AuCl)2 for intermolecular tandem 

cyclization and [3+3] cycloadditions of 2-(1-alkynyl)-2-alken-1-ones with nitrones showed 

that one equivalent of silver-salt, not two as generally assumed, provided the highest 

enantioselectivities.
3a

  Like Zhang, Mikami et al observed that one equivalent of silver-salt 

provided the highest enantioselectivies in his system.
3h

  Meanwhile, Mikami also observed 

independently synthesized diactivated (R)-DM-BIPHEP(AuCl)2 (5) afforded lower rates and 

selectivities than diactived (5).
3h

  Attempts at isolation of a monoactivated gold complex by 

reacting one equivalent of (5) and one equivalent of chiral silver-phosphate afforded three 

species by 
31

P NMR.  The species were in a 0.5/1.0/0.3 ratio and were determined to be 5, 

monoactivated 5, and diactivated 5.
3h

  Toste also observed that when varying the metal-to-

anion ratios in catalytic tests with non-coordinating counterions, that the monoactivated gold 

complex may be the catalytically active species.
3i

  These findings support a project goal of 

determining if a mono- or diactivated 1 is the active form of the catalyst in the studied 

system.  Studies on the impact of varied amounts of 2 and its impact on product ee and 

independent synthesis and characterization the monoactivated form of 1 will help achieve 

this research goal.   

3.2. Effects of Amount of Silver on Enantioselectivity and Catalyst Speciation 

Previously in the Gagnè group it was observed that both enantioselectivity and rate were 

dependant on in situ activation of the catalyst and the presence of a slight excess of silver 

salt.
3f

 To determine the effect of excess silver triflate on enantioselectivity, catalytic reactions 

were set up with 5 mol% (R)-1 and increasing amounts of silver triflate. It was observed that 
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the highest product ee% was achieved with 15 mol% AgOTf and that further increase of 

silver caused a decrease in the enantioselectivity of the products [Figure 3-2]. 

 

 

Figure 3-1. Effect of the amount of AgOTf on the enanteoselectivity of 3b. 

While taking insitu NMR of these catalytic reactions it was observed that increasing the 

amount of silver triflate also had an effect on the speciation of the catalyst. Careful addition 

of one to two equivalents of AgOTf to 1 shows a major 
31

P signal at 32 ppm for (S)-3,5-

xylyl-BINAP(AuOTf)2 [Figure 3-3], with mono- and unactivated catalysts insoluable in 

nitromethane and therefore unobserved. As additional silver triflate was added, a broad signal 
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was observed at 23 ppm as the amount of silver increased. This observation and the well 

documented gold-silver metallophilic interactions suggests that a gold-silver species may 

form in the presence of excess silver salt during catalysis.
3-5

 

 

 

Figure 3-2. Effect of the equivalents of AgOTf on catalyst speciation.  
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3.3. Model Au-Ag Compounds and Low Temperature Dynamic NMR 

As increasing equivalents of AgOTf added for in situ catalyst activation impacted both 

product enantioselectivity and catalyst speciation, it was hypothosized that a dinuclear Au-

Ag intermediate may be an intermediate in catalysis. Previous work by Laguna provides 

evidence for gold-silver metallophilic interactions in solution supporting the possibility of a 

gold-silver intermediate in our system.
5
 In addition, work by Jones, Straub, and others show 

the role of gold-silver intermediates mono-gold(I) catalyzed reactions.
6
 To see if a gold-silver  

intermediate was possible in a bis(gold) phosphine system, 1.25 equivalents of Ph3PAgOTf 

was added to a solution of (S)-BINAP(Au(p-tol))2 in dichloromethane and observed at 

varying temperature with 
31

P NMR. At 295K [Figure 4d] one signal at 41 ppm with an 

integration of 2 was observed for the BINAP back bone along with a doublet of doublets at 

15 ppm with an integration of 1 for the Ph3PAg that was split twice by the spin ½ isotopes of 

silver, 
107

Ag and 
109

Ag.
7
 At lower temperatures the signal at 41 ppm BINAP signal began to 

broaden and at 185K split into two signals at 43.89 and 37.13 ppm.  This observation 

suggests that at low temperatures the phosphorus in the BINAP backbone loose their C2 

symmetry due to coordination of silver to one gold atom. The coalescence of the BINAP 

signals at 200 K is consistant with a dynamic process where the silver exchanges between the 

two gold atoms.
7,8 

 

 



29 

 

 

 

Figure 3-3. a) (S)-BINAP(Au(p-tol))2 and 1.25 eq. of Ph3PAgOTf at 185 K and temperature 

raised to 295 K. Tc determined to be 200K. 
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To determine if exchange happens via an associative or dissociative mechanism 

Arrhenius and Eyring plots wer created, Figure 5 and Figure 6. Using the intercept it was 

determined that S
ǂ
 = 24.2 e.u. A large, positive gain in entropy in the transition state 

suggests that silver exchages between gold atoms via a dissociative mechanism  as seen in 

Scheme 2.    

 

Figure 3-4. Arrhenius plot showing the temperature dependence of Ph3PAgOTf exchange 

between gold atoms on (S)-BINAP(Au(p-tol))2. 
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Figure 3-5. Eyring plot showing the temperature dependence of Ph3PAgOTf exchange 

between gold atoms on (S)-BINAP(Au(p-tol))2. 

 

Scheme 3-2. Dissociation mechanism of Ph3Ag
+
 exchange between gold atoms. 
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With a dinuclear Au-Ag model compound observed in solution, it was postulated that 

this species could be involved in the stereochemistry determining step. A dinuclear Au-Ag 

catalyst could aslo explain why excess silver with a less coordinating conterion than the 

AgCl generated during activation is needed to achieve good enantioselectivity. To prove this 

hypothesis, a series of catalytic reactions were undergone where 10 mol% of (R)-1 was 

activated with 20 mol% of AgOTf and then the resulting AgCl precipitate was filtered off 

insitu using a syringe filter.  The resulting solution of 10 mol% (R)-3,5-xylyl-

BINAP(AuOTf)2 was mixed with 10 mol% of silver additive before reacting with 2.  Without 

any 10 mol% silver added to the insitu generated (R)-3,5-xylyl-BINAP(AuOTf)2, ee% of the 

product dropped to 45% from an ee% of 72% normally observed under standard reaction 

conditions.
[15]

  Silver additives with tightly binding counter ions also appeared to cause a 

drastic decrease in enantioselvtivity, with 10% AgCl additive giving the lowest selectivity of 

34% (Table 3-1). Use of silver additives with loosely binding counterions gave product 

enantioselectivity between 69 to 77%. The necessity of excess silver with a loosly 

coordinating counterion to achieve high enantioselectivity suggests a dinuclear Au-Ag 

intermediate is involved during the stereochemistry determining step. 
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Entry 10 mol% AgX
[a]

 ee% of 3b
[b]

 

1 None 45 

2 

Ag (R)-(-)-1,1′-binaphthyl- , ′-diyl 

phosphate
10 

51 

3 

Ag (S)-(-)-1,1′-binaphthyl- , ′-diyl 

phosphate
10 

53 

4 AgSbF6 71 

5 AgBF4 74 

6 AgPF6 77 

7 AgNTf2 69 

8 AgOTf 74 

9 AgOTs 70 

10 AgCl 34 

Table 3-1. Effects of 10 mol % of silver additive on the enantioselectivity of 3b as 

determined by chiral GC.  [a] AgCl(s) generated during activation of 10 mol% 1 with 20 

mol% AgOTf is removed by syringe filter before addition of 10 mol % of silver additive.  [b] 

Only regioisomer 3a was not used due to poor separation of enantiomers in the chiral GC. 
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Our studies have shown that in a bis(gold) phosphine system that 1) gold oligamers 

and aggregates are unlikely as an Linear Effect is observed. 2) Failed attempts at creating a 

bisphosphine digold model compound suggests that strain in the backbone of an axially 

chiral ligand may prevent digold intermediates from forming. 3) The change of catalyst 

speciation and loss of C2 symmetry in 
31

P NMR in the presence of excess silver cation 

suggests that an equilibrium between a gold-silver catalyst and free silver cation. 4) A large 

and positive S
ǂ
 of 24.3 e.u. suggests a dissociative mechanism of silver exchange between 

gold atoms on bis(gold) phosphines. 5)  The impact of excess silver with a loosly 

coordinating counterion to on enantioselectivity suggests that a silver cation is needed to 

interact with one gold atom during the stereochemistry determining step. These observations 

support the theory of the presence of a gold-silver intermediate in the gold(I) catalyzed 

cycloisomerization of 1,6-ene allenes. These new insights into the role of silver in asymmetic 

catalysis by bis(gold) phosphine has could greatly impact how silver is viewed and used to 

affected stereochemisty in this class of reactions. 

3.4. Experimental 

3.4.1. Effects of Increasing AgOTf on Enantiomeric Excess of 3b 

10 mol% AgOTf and 5 mol% (R)-1: In air, 200.0 µL of (R)-1 (0.015M in CH2Cl2, 0.003 

mmol, 3.6 mg), 66.7 µL of AgOTf (0.09M in CH3NO2, 0.006 mmol, 1.5 mg), and 233.3 µL 

of CH3NO2 were added to an NMR tube.  The suspension was stirred for 5 minutes before 

600.0 µL of 2 (0.100M in CH3NO2, 0.060 mmol, 14.3 mg) was added and the reaction stirred 

for 16 hours. Products were obtained using preparative TLC (hexanes/EtOAc = 80:10, Rf = 
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0.), extracted from the silica gel with EtOAc, and rotovaped down to a colorless oil. 36.7% 

ee of 3b. 

15 mol% AgOTf and 5 mol% (R)-1: In air, 200.0 µL of (R)-1 (0.015M in CH2Cl2, 0.003 

mmol, 3.6 mg), 100.0 µL of AgOTf (0.09M in CH3NO2, 0.009 mmol, 2.3 mg), and 200.0 µL 

of CH3NO2 were added to an NMR tube.  The suspension was stirred for 5 minutes before 

600.0 µL of 2 (0.100M in CH3NO2, 0.060 mmol, 14.3 mg) was added and the reaction stirred 

for 16 hours. Products were obtained using preparative TLC (hexanes/EtOAc = 80:10, Rf = 

0.), extracted from the silica gel with EtOAc, and rotovaped down to a colorless oil. 74.0% 

ee of 3b. 

20 mol% AgOTf and 5 mol% (R)-1: In air, 200.0 µL of (R)-1 (0.015M in CH2Cl2, 0.003 

mmol, 3.6 mg), 133.3 µL of AgOTf (0.09M in CH3NO2, 0.012 mmol, 3.1 mg), and 166.7 µL 

of CH3NO2 were added to an NMR tube.  The suspension was stirred for 5 minutes before 

600.0 µL of 2 (0.100M in CH3NO2, 0.060 mmol, 14.3 mg) was added and the reaction stirred 

for 16 hours. Products were obtained using preparative TLC (hexanes/EtOAc = 80:10, Rf = 

0.), extracted from the silica gel with EtOAc, and rotovaped down to a colorless oil. 71.3% 

ee of 3b. 

25 mol% AgOTf and 5 mol% (R)-1: In air, 200.0 µL of (R)-1 (0.015M in CH2Cl2, 0.003 

mmol, 3.6 mg), 166.7 µL of AgOTf (0.09M in CH3NO2, 0.015 mmol, 3.8 mg), and 133.3 µL 

of CH3NO2 were added to an NMR tube.  The suspension was stirred for 5 minutes before 

600.0 µL of 2 (0.100M in CH3NO2, 0.060 mmol, 14.3 mg) was added and the reaction stirred 

for 16 hours. Products were obtained using preparative TLC (hexanes/EtOAc = 80:10, Rf = 
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0.), extracted from the silica gel with EtOAc, and rotovaped down to a colorless oil. 70.7% 

ee of 3b. 

30 mol% AgOTf and 5 mol% (R)-1: In air, 200.0 µL of (R)-1 (0.015M in CH2Cl2, 0.003 

mmol, 3.6 mg), 200.0 µL of AgOTf (0.09M in CH3NO2, 0.018 mmol, 4.6 mg), and 100.0 µL 

of CH3NO2 were added to an NMR tube.  The suspension was stirred for 5 minutes before 

600.0 µL of 2 (0.100M in CH3NO2, 0.060 mmol, 14.3 mg) was added and the reaction stirred 

for 16 hours. Products were obtained using preparative TLC (hexanes/EtOAc = 80:10, Rf = 

0.), extracted from the silica gel with EtOAc, and rotovaped down to a colorless oil. 67.6% 

ee of 3b. 

35 mol% AgOTf and 5 mol% (R)-1: In air, 200.0 µL of (R)-1 (0.015M in CH2Cl2, 0.003 

mmol, 3.6 mg), 233.3 µL of AgOTf (0.09M in CH3NO2, 0.021 mmol, 5.4 mg), and 66.7 µL 

of CH3NO2 were added to an NMR tube.  The suspension was stirred for 5 minutes before 

600.0 µL of 2 (0.100M in CH3NO2, 0.060 mmol, 14.3 mg) was added and the reaction stirred 

for 16 hours. Products were obtained using preparative TLC (hexanes/EtOAc = 80:10, Rf = 

0.), extracted from the silica gel with EtOAc, and rotovaped down to a colorless oil. 66.0% 

ee of 3b. 

40 mol% AgOTf and 5 mol% (R)-1: In air, 200.0 µL of (R)-1 (0.015M in CH2Cl2, 0.003 

mmol, 3.6 mg), 266.7 µL of AgOTf (0.09M in CH3NO2, 0.024 mmol, 6.1 mg), and 33.3 µL 

of CH3NO2 were added to an NMR tube.  The suspension was stirred for 5 minutes before 

600.0 µL of 2 (0.100M in CH3NO2, 0.060 mmol, 14.3 mg) was added and the reaction stirred 

for 16 hours. Products were obtained using preparative TLC (hexanes/EtOAc = 80:10, Rf = 
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0.), extracted from the silica gel with EtOAc, and rotovaped down to a colorless oil. 55.3% 

ee of 3b. 

45 mol% AgOTf and 5 mol% (R)-1: In air, 200.0 µL of (R)-1 (0.015M in CH2Cl2, 0.003 

mmol, 3.6 mg) and 300.0 µL of AgOTf (0.09M in CH3NO2, 0.027 mmol, 6.9 mg)  were 

added to an NMR tube.  The suspension was stirred for 5 minutes before 600.0 µL of 2 

(0.100M in CH3NO2, 0.060 mmol, 14.3 mg) was added and the reaction stirred for 16 hours. 

Products were obtained using preparative TLC (hexanes/EtOAc = 80:10, Rf = 0.), extracted 

from the silica gel with EtOAc, and rotovaped down to a colorless oil. 53.7% ee of 3b. 

3.4.2. Effects of Excess AgOTf on Catalyst Speciation in 
31

P NMR 

1.0 eq.  AgOTf and 1.0 eq. (S)-1: In air, (S)-1 (0.0083 mmol, 10.0 mg) was weighed into an 

NMR tube then 104.3 µL of AgOTf (0.08M in CH3NO2, 0.0083 mmol, 2.1 mg) and 445.7 µL 

of CH3NO2 were added.  The suspension was stirred for 5 minutes before 
31

P NMR spectra 

was taken on a 600 MHz Bruker NMR. 
31

P NMR: (600MHz, CH3NO2, phosphoric acid 

standard) = 30.84 ppm (s). 

2.0 eq.  AgOTf and 1.0 eq. (S)-1: In air, (S)-1 (0.0083 mmol, 10.0 mg) was weighed into an 

NMR tube then 208.5 µL of AgOTf (0.08M in CH3NO2, 0.0167 mmol, 4.3 mg) and 341.5 µL 

of CH3NO2 were added.  The suspension was stirred for 5 minutes before 
31

P NMR spectra 

was taken on a 600 MHz Bruker NMR. 
31

P NMR: (600MHz, CH3NO2, phosphoric acid 

standard) = 30.84 ppm (s) and 23.12 ppm (s) peaks in a ratio of 7.18 : 1.0 

3.0 eq.  AgOTf and 1.0 eq. (S)-1: In air, (S)-1 (0.0083 mmol, 10.0 mg) was weighed into an 

NMR tube then 312.8 µL of AgOTf (0.08M in CH3NO2, 0.0250 mmol, 6.4 mg) and 237.2 µL 
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of CH3NO2 were added.  The suspension was stirred for 5 minutes before 
31

P NMR spectra 

was taken on a 600 MHz Bruker NMR. 
31

P NMR: (600MHz, CH3NO2, phosphoric acid 

standard) = 30.78 ppm (s) and 23.26 ppm (s) peaks in a ratio of 2.55 : 1.0 

4.0 eq.  AgOTf and 1.0 eq. (S)-1: In air, (S)-1 (0.0083 mmol, 10.0 mg) was weighed into an 

NMR tube then 417.0 µL of AgOTf (0.08M in CH3NO2, 0.0334 mmol, 8.6 mg) and 133.0 µL 

of CH3NO2 were added.  The suspension was stirred for 5 minutes before 
31

P NMR spectra 

was taken on a 600 MHz Bruker NMR. 
31

P NMR: (600MHz, CH3NO2, phosphoric acid 

standard) = 30.74 ppm (s) and 23.40 ppm (s) peaks in a ratio of 1.49 : 1.0 

5.0 eq.  AgOTf and 1.0 eq. (S)-1: In air, (S)-1 (0.0083 mmol, 10.0 mg) was weighed into an 

NMR tube then 521.3 µL of AgOTf (0.08M in CH3NO2, 0.0417 mmol, 10.7 mg) and 28.7 µL 

of CH3NO2 were added.  The suspension was stirred for 5 minutes before 
31

P NMR spectra 

was taken on a 600 MHz Bruker NMR. 
31

P NMR: (600MHz, CH3NO2, phosphoric acid 

standard) = 30.73 ppm (s) and 23.69 ppm (s) peaks in a ratio of 0.75 : 1.0 

3.4.3. Low Temperature Experiments of Au-Ag Model Compound 

In air, (S)-BINAP(Au(p-tol))2 (24.2 mg, 0.0202 mmol) was weighed into an NMR tube and 

dissolved in 0.2 mL of CH2Cl2 then cooled to -78 ˚C. In air, Ph3PAgOTf
9
  (13.1 mg, 0.0252 

mmol, 1.25 eq.) was weighted into a 20 mL vial, dissolved in 0.6 mL of  CH2Cl2, and 

transferred to the NMR tube. 
31

P NMR was recorded on a 500 MHz Bruker starting at 185 K 

and taken every 5 K to 245 K  and every 10 K from 245 K to 297 K.  

3.4.4. Dynamic NMR Analysis:  
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Using spectra acquired at 185 K and TopSpin 3.1 DNMR software a module was created by 

manually fitting line broadening, rate, and intensity to 
31

P peaks at 43.89 and 37.13 ppm then 

having the software line fit the data. Exchange rates were collected at the following 

temperatures: 185 K, 190 K, 195 K, 200 K (coalescence temperature), 205 K, and 210 K by 

allowing the software to adjust line broadening (LB), intensity, and rate (k). Values found for 

k at 185 to 210 K are listed in Table. Arrhenius and Erying plots were used to determine: Ea, 

G
ǂ
, H

ǂ
, and S

ǂ
. 

Temp (K) 1/T (K
-1

) k (s
-1

) Ln(k) Ln(k/T) Gǂ (kcal/mol) 

185 0.0054 455.7 6.12 0.90 8.40 

190 0.0053 1127.4 7.03 1.78 8.30 

195 0.0051 2575.3 7.85 2.58 8.21 

200 0.0050 5811.9 8.67 3.37 8.10 

205 0.0049 14332.8 9.57 4.25 7.95 

210 0.0048 35407.6 10.47 5.13 7.78 

 

Table 3.2: Table of exchange rates and 
ǂ
 as determined at temperatures between 185 K 

and 210 K using DNMR line shape analysis with TopSpin 3.1 software. 

3.3.5. 10 mol% Silver Additive Cycloisomerization Procedure  

In air, (R)-1 (15.1 mg, 0.0126 mmol) and AgOTf (6.5 mg, 0.0250 mmol) were added to a 20 

mL vial then dissolved in 0.5 mL of CD2NO2. The slurry was stirred for 5 minutes before 

the mixture was pushed through a 0.  μm  TF  syringe filter into a  0 mL vial containing 
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AgSbF6 (4.4 mg, 0.0126 mmol). The syringe filter was rinsed twice with (0.25 mL 

CD3NO2).  The slurry was stirred for five minutes then 250 µL of 1 (0.5M in CD2NO2, 30.0 

mg, 0.1258 mmol) was added. The reaction was stirred for 8 hours and turned dark blue-grey 

upon completion.  Products were obtained using preparative TLC (hexanes/EtOAc = 80:10, 

Rf = 0.), extracted from the silica gel with EtOAc, and rotovaped down to a colorless oil. 

Enantiomeric excess of regioisomer 3a (major product): ent-1, 51.6 min.; ent-2, 52.4 min. 

Enantiomeric excess of regioisomer 3b (minor product): ent-1, 61.2 min.; ent-2, 62.7 min. 

Enantiomeric excess is reported using only enantiomers of 3b as poor separation of 

enantiomers of 3a limits it use. 
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