Microscale Modeling of Fluid Flow in Porous Medium Systems

by

James McClure

A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Environmental Sciences and Engineering.

Chapel Hill
2011

Approved by:

Cass T. Miller, Advisor
William G. Gray, Reader
Matthew Farthing, Reader
David Adalsteinsson, Reader
Sorin Mitran, Reader
Jan Prins, Reader
ABSTRACT
(Under the direction of Cass T. Miller.)

Proper mathematical description of macroscopic porous medium flows is essential for the study of a wide range of subsurface contamination scenarios. Existing mathematical formulations, however, demonstrate inadequacies that preclude the accurate description of many systems. Multi-scale models developed using thermodynamically constrained averaging theory (TCAT) rigorously define macroscopic variables in terms of more well-understood microscopic counterparts, permitting detailed analysis of macroscopic model forms based on microscale simulation and experiment. Within this framework, the primary objectives of microscale modeling are to elucidate important physical mechanisms and to inform both the form of macroscale closure relations as well as associated parameter values. In order to meet these goals, numerical tools must include: (1) simulations that provide accurate microscopic solutions for physical phenomena in large, complex domains; (2) morphological analysis tools that can be used to upscale simulation results to larger scales as dictated by the associated theoretical framework. Development of a numerical toolbox for microscale porous medium studies is considered in line with these objectives, including both implementation and optimization strategies. High-performance implementations of the lattice Boltzmann method are developed to simulate one- and two-phase flows using several computing platforms. A modified marching cubes algorithm is developed to explicitly construct all entities in a two-phase system, including all interfaces between the fluid and solid phases in addition to the three phase contact curve. These entities serve as a numerical skeleton for upscaling multiphase porous medium simulation results to the macroscale. Based on these tools, development of macroscopic constitutive laws is illustrated for a special case of anisotropic flow in porous media. In this example, microscale simulation is used to demonstrate a limitation of existing macroscopic forms for cases in which the momentum resistance depends on the flow direction in addition to the orientation. A modified macroscopic form is proposed in order to properly account for this phenomenon.
TABLE OF CONTENTS

LIST OF TABLES ... vi

LIST OF FIGURES ... vii

1 Introduction ... 1

1.1 Flow and Transport in Porous Media: Scope and Significance 1

1.2 Scale Considerations .. 2

1.2.1 Scales of Interest for Porous Media 3

1.2.2 Microscale Simulation and Macroscale Model Development ... 4

1.2.3 Sources of Microscale Information 5

1.3 Macroscopic Modeling Approaches for Porous Media 7

1.3.1 Thermodynamically Constrained Averaging Theory 9

1.4 Research Objectives .. 11

2 High Performance Implementations of the Lattice Boltzmann Method ... 12

2.1 Introduction ... 12

2.2 Methods ... 14

2.2.1 Model Problems for Porous Media 14

2.2.2 Permeability Measurement ... 14

2.2.3 Capillary Pressure - Saturation Relationships 15
2.2.4 LBM Fundamentals .. 16
2.2.5 Single-Component Multi-Relaxation Time Model 18
2.2.6 Multi-Component Shan-Chen MRT Model 20
2.3 Implementation and Optimization Approaches 21
 2.3.1 Hardware Overview 22
 2.3.2 Serial CPU Implementations (C++) 26
 2.3.3 Parallel Implementation of the LBM (C++/MPI) 28
 2.3.4 Node-level Implementation of the LBM 31
 2.3.5 GPU Implementation of the LBM (CUDA) 31
2.4 Results .. 35
 2.4.1 Serial CPU Implementation 35
 2.4.2 MPI Implementation 38
 2.4.3 GPU implementation 41
 2.4.4 Model Problems for Porous Media 42
2.5 Discussion .. 47
2.6 Conclusions ... 49
3 Morphological Tools .. 51
 3.1 Approximation of Interfacial Properties in Multiphase
 Porous Medium Systems 51
 3.1.1 Introduction 51
 3.2 Methods .. 53
 3.2.1 Marching cubes algorithm 54
 3.2.2 Porous media marching cubes approach 56
LIST OF TABLES

2.1 Reported peak performance based on serial execution of the D3Q19 BGK LBM for a variety of processors [183, 117, 116, 77]. .. 36

2.2 Basic computational and memory reference parameters per lattice site for the LBM models considered in this work. 36

2.3 Overview of hardware specifications and LBM performance for the parallel systems used in this work. 38

3.1 Sets needed for the PMMC algorithm. 57

4.1 Properties for asymmetric porous media constituted of solid grains defined by Eq. (4.28) .. 94
LIST OF FIGURES

1.1 Flow chart depicting a multi-scale modeling framework for porous media .. 10

2.1 Random close-packing of 128,000 identical spheres in a cubic domain. ... 15

2.2 Schematic showing a GPU-accelerated processing node populated with four Intel Nehalem Xeon CPU’s, each with 8 processing cores. ... 23

2.3 Typical GPU setup in which the CPU and GPU are utilized in tandem. ... 25

2.4 Domain structure for serial CPU implementation of the LBM. Regular storage and access patterns are preserved by storing ghost nodes for a halo of lattice sites on the domain exterior and for sites within the solid phase (denoted by shaded gray circles). Interior and exterior lattice sites are identified from index lists, which are used to direct computations. ... 27

2.5 Swap algorithm illustrated for the D2Q9 model: Non-stationary distributions at a lattice site are swapped based on the symmetry of the discrete velocity set. Note that the D3Q19 velocity structure is identical to the D2Q9 structure in each coordinate plane. ... 27

2.6 Schematic summarizing communication between processors p and r in a parallel LB simulation using MPI. Distributions needed by processor r are packed into a send buffer on processor p. Using MPI, these values are provided to a receive buffer on processor r, from which they are unpacked to the proper location. ... 29
2.7 Domain decomposition for GPU implementation of the LBM. In this 2-D analog, the 11×11 spatial domain is divided into grid blocks ($\text{nBlocks} = 4$) with a fixed number of threads per threadblock ($\text{nThreads} = 8$). With nBlocks and nThreads fixed, each thread performs computations for $S = 4$ lattice sites so that the entire spatial domain is accounted for. .. 32

2.8 Overview of data flow in GPU implementation of the LBM. The example shows memory access for $\text{nthreads} = 8$ with $\text{blockIdx.x} = 2$, $s = 2$. ... 33

2.9 Serial performance for various implementations of the LBM as a function of domain size. Once the lattice arrays exceed the L2 cache size, performance is limited by available memory bandwidth. ... 35

2.10 Parallel efficiency based on a fixed problem size (200^3) for various implementations of the LBM on three supercomputing systems. ... 39

2.11 Parallel efficiency based on constant sub-domain size per core for various implementations of the LBM on (a) Top-sail (2 cores/node) and (b) Franklin. ... 39

2.12 Performance on NVidia QuadroPlex Model IV Quadro FX 5600 for a range of problem sizes using implementations of the BGK, MRT and Shan-Chen LBM. 41

2.13 Permeability estimation .. 42

2.14 Resolution dependence for wetting-phase drainage curve based on simulations performed in a packing of 250 equally sized spheres. ... 43
2.15 Equilibration of the Shan-Chen LBM for drainage performed in a packing of 250 identical spheres: (a) equilibration of the saturation (b) equilibration of the density fluctuation. ... 45

2.16 Non-physical dissolution phenomena observed for two non-wetting fluid blobs trapped at different capillary pressures. Due to the dependence of dissolution equilibrium criteria on the density, the blob trapped at higher capillary pressure (left) dissolves and its mass is subsequently transferred to the blob at lower capillary (right) pressure. Simulation density profiles for non-wetting phase are shown for (a) 1×10^5 iterations (b) 5×10^5 iterations (c) 1×10^6 iterations (d) 1.5×10^6 iterations. ... 46

3.1 Analog of the MC algorithm for a two-dimensional system illustrating computation of the contour defined by $G(\mathbf{x}) = 0.5$. ... 56

3.2 Solid-phase triangles containing a common curve segment are subdivided along this segment, creating three triangles, which are then incorporated into the appropriate surface. In this example, two of the vertices, and resultant triangles, are located in a region where $\hat{F}(\mathbf{x}) > \nu_{wn}$ and are assigned to Ω_{ns}, and the other triangle becomes part of the Ω_{ws}. ... 60

3.3 The construction of the component surfaces and common curve for a grid cell in which all three phases are present: (a) solid surface (grey) is constructed using the MC algorithm and extrapolated values of $F(\mathbf{x})$ are estimated at solid phase vertices; (b) $V_{wns,t}$ (orange) are found using by using linear interpolation between pairs of solid-phase vertices; (c) the solid surface is subdivided along the common curve to form members of \mathcal{T}_{ns} (blue) and \mathcal{T}_{ws} (brown); and (d) Ω_{wn} is approximated using V_{wns} and V_{wn} yielding \mathcal{T}_{wn} (green). ... 61
3.4 Refinement of the common curve resulting from a single subdivision of the common curve line segments shown in Fig. 3.3 (d) and refinement of all locations using the HOPMMC approach. .. 63

3.5 Slice of a porous medium data set generated using the LB method: (a) F is comprised of the fluid density distribution and shown by color shading, and (b) the known location of a spherical solid-phase is used to create a signed-distance function and Ω_s is represented in black after being constructed using the PMMC algorithm. 64

3.6 Flow chart depicting the formatting procedure used to obtain input data for the PMMC approach using information available from a porous medium LB simulation. 65

3.7 Formatting procedure used to obtain input data for the PMMC approach when integers are used to represent the phases in a three-phase system. 66

3.8 Slice of the bridge geometry shown with values of F computed using $\nu_{wn} = 0.5$, $R_s = 0.5$, $r_c = 0.2$, and $R = 1.4$. 67

3.9 Relative error for ϵ_{wn} as computed using the approach of Dalla et. al. compared to PMMC. .. 69

3.10 Relative error for integer data representation for (a) interfacial area ϵ_{wn}, (b) interfacial area ϵ_{ns}, and (c) common curve length ϵ_{wns}. .. 70

3.11 Relative error for real number data representation for (a) interfacial area ϵ_{wn}, (b) interfacial area ϵ_{ns}, and (c) common curve length ϵ_{wns}. .. 71

3.12 Contact angle in a three-phase system. 76

3.13 Maximum relative error for estimated contact angle 76
3.14 (a) Sphere packing of 250 lognormally distributed sphere
with \(\phi = 0.34722 \) (b) Histogram of radii plotted beside
the lognormal distribution with \(\mu = -2.76, \sigma^2 = 0.2 \) 77

4.1 Smoothed triangular solid grains are defined by the grain
width \(w_g \), grain height \(h_g \), and smoothing radius \(r_g \) 87

4.2 Morphology of the stretched ellipsoid grain shape with
\(r_x = 0.4, r_y = 0.36 \). Asymmetry is controlled via the
parameter \(s \), which attains the values: (a) 0.0 (b) 0.5 (c)
1.0 (d) 1.5 88

4.3 Morphology of a 2-D flow: Streamlines show the region
of “conductive” flow; the vertical component of \(v_w \) is
shown in color. Streamlines remain relatively constant
with flow direction and Reynolds number for \(|Re| < 1 \); as
\(|Re| \) increases, inertial effects distort the flow field,
which is manifested differently depending upon the flow
direction. The associated values of \(|Fo| \) are: (a) 1.179 (b)
209.79 (c) 984.96 (d) 2084.22 (e) 4328.96 (f) 8807.87 (g)
17524.6 (h) 34050.7 92

4.4 Simulation of non-Darcy flow in 3-D: non-Darcy curves
obtained from simulation in a domain containing smoothed
triangular grains with \(w_g = 0.8, h_g = 0.44 \) and \(r_g = 0.2 \).
(a) For large values of \(|Re| \), significant deviations are ob-
served in the flow behavior depending on the flow direc-
tion. (b) Results show good agreement with the model
form proposed in Eq. (4.21) 93

4.5 Effect of asymmetry using data from Table 4.1: (a) asym-
metry quantification demonstrates a one-to-one relation-
ship between \(G_{xx}^a \) and \(s \); (b) asymmetry is shown to de-
termine the magnitude of the extended anisotropic effect,
determined by the coefficient \(\hat{\epsilon} \) 95
Chapter 1

Introduction

1.1 Flow and Transport in Porous Media: Scope and Significance

Groundwater systems contain a majority of the fresh water present on earth, providing a repository of water that is essential to both human society and ecological systems. Residence times for groundwater range from hundreds to thousands of years, making it a water source that is largely independent of the seasonal caprices associated with many surface water sources. As a primary source of drinking water worldwide, protection of this resource is critical to ensure widespread access to reliable sources of clean water. Instances of groundwater contamination are common, and many can be identified with significant risks to public health. Unfortunately, long residency times often extend to groundwater contamination, and pollutants can be associated with long-term deleterious impacts on contaminated resources.

Non-aqueous phase liquids (NAPLs) represent a class of contaminants for which existing remediation strategies are particularly inadequate. NAPL contaminated systems are common, arising from improper disposal of solvents used in industry, leakage of underground storage tanks containing petroleum products, spills and byproducts of refinement and coal gasification [31, 123, 124]. NAPLs are immiscible in water, and most are soluble in trace amounts. Once NAPLs have been introduced into a system contamination can persist for decades or even centuries [197, 195]. Development of effective remediation strategies for these systems has been largely unsuccessful, and standard mathematical modeling approaches used to describe flow behavior for these systems are subject to a number of deficiencies, severely limiting their predictive capability [126, 128]. Existing modeling approaches fail to properly account for multiple
fluid phases, and more precise mathematical descriptions are needed to assess risks associated with contamination, advance fundamental understanding of system behavior, and develop remediation strategies associated with these systems.

Consideration of porous media within a multi-scale framework is an emerging strategy that takes advantage of the more mature state of understanding that applies at smaller length scales as a means to advance the description of larger scale systems. Many physical systems can be associated with a hierarchy of length scales, each associated with a particular mathematical formulation that describes the system behavior at that scale. Multi-scale frameworks elucidate the relationship between these various descriptions, leading to a hierarchy of mathematical formulations. When applied to porous media, this approach can be used to tie macroscopic thermodynamic forms and conservation equations to those that apply at the pore-scale, otherwise known as the microscale. This is advantageous when macroscopic closure relationships are unreliable or incomplete; microscopic closure relationships are usually better understood. Microscopic simulations can therefore be applied to provide insights into macroscopic behavior, assess simplifying assumptions, and generate reliable macroscopic closure relationships. Such studies rely heavily on computational methods to provide accurate and efficient solutions for the microscopic physics of porous medium flows. Computational advances provide opportunities to incorporate larger and more realistic descriptions of microscale system behavior into macroscopic modeling strategies.

The objective of this chapter is to provide an overview of the role played by microscopic simulation in development of macroscopic porous medium models. While the treatment of one- and two-phase systems is of particular interest, the conceptual framework outlined herein is by no means limited to these cases. Remaining chapters detail specific aspects of this process.

1.2 Scale Considerations

Understanding the scales of interest in porous media is an essential aspect of model development for these systems. In order to advance a useful mathematical description for phenomena of interest, it is important to identify the appropriate length and time scales associated with those processes. If the spatial and temporal scales are too large, a mathematical description will fail to adequately resolve the behavior of interest. If the spatial and temporal scales are too small, the mathematical description will resolve superfluous details that increase the computational burden and complicate solution
procedures. For macroscopic descriptions of porous media, the length scale of interest may vary from centimeters in the laboratory to tens or hundreds of kilometers in field applications. Parameter values may attain different values depending on the scale, underscoring the importance attached to scale considerations for these problems.

1.2.1 Scales of Interest for Porous Media

Many physical systems exhibit different behavior for different length and time scales. Appropriate description of physical processes is consequently linked to the time and length scales relevant for a particular system. It is often the case that length and time scales are inextricably linked through the physics of a particular problem. For porous media, the hierarchy of length scales can be summarized as follows:

- **Molecular scale:** At a length scale ℓ_{mo} on the order of nanometers, the movements of all molecules in a system may be considered in a deterministic way. Computational molecular dynamics algorithms compute the force on each molecule and update the molecular positions and momenta using Newton’s second law of motion. The simplicity of this approach allows for simulations to be carried out for a wide range of systems since the physics of molecular interactions are generally well understood. However, computational approaches at the molecular scale are severely limited due to the fact that the length and time scales that may be considered are very small.

- **Microscale:** We define the microscale to be the smallest length scale ℓ_{mi} at which a continuum model may be applied. While this length scale is not necessarily greater than that for the mesoscale, it is distinct in that molecular behavior is ignored in favor of continuum approximations.

- **Resolution Scale:** The resolution scale ℓ_r is the scale needed to resolve the features of a given flow, and is related to the natural length scale of a porous medium system. The length ℓ_r may vary widely depending upon the specific problem studied. Ideally this is the length scale at which microscale simulations are carried out.

- ** Macroscale:** The complexity of microscale flow patterns, in addition to the fact that details of pore space configurations are inaccessible for most porous medium systems, necessitate larger scale continuum modeling approaches which
describe the behavior in an average sense. This approach has the advantage of neglecting many smaller scale details that do not ultimately effect transport at the larger scale. The macroscale is the length scale \(\ell^{ma} \) at which the properties of this larger system are invariant with respect to system size. The goal of most microscale approaches is to simulate a domain large enough to achieve the lower end of this scale.

It is clear that for a given system \(\ell_{mo} < \ell_{mi} < \ell_{r} < \ell^{ma} \). Additionally, sub-molecular length scales can be important when quantum mechanical effects are significant, and at larger macroscopic length scales (sometimes called field scale, regional scale or megascale) can be important, especially when large-scale heterogeneity must be accounted for. Consideration of the issues associated with these systems is beyond the scope of this work.

1.2.2 Microscale Simulation and Macroscale Model Development

The hierarchy of length scales can be exploited within a multi-scale framework by developing strategies to transfer information between spatial scales. The primary objective of a multi-scale simulation framework is to use microscale simulation data to generate insights about system behavior at the macroscale. Length-scale considerations are intimately tied to computational cost for most simulation procedures, and simulations must be sufficiently large to bridge the gap between spatial scales. An appropriate theoretical framework is also a necessity; in order to transfer information from the microscale to the macroscale, the relationships among respective variables must be explicitly defined. This requirement is discussed further in §1.3.1. Provided that the details of the microscale system are known, the macroscopic system may be computed directly. Hence a given micro-state will correspond with exactly one macro-state. The converse is not true, as a given macroscopic state will often correspond with infinitely many micro-states. This is indicative of loss of microscopic detail associated with the macroscopic formulation. In practice, this information is not omitted entirely, instead aspects are reconstituted in the form of constitutive laws.

Multi-scale simulation approaches generally fall within two categories: (1) direct approaches in which information from a larger scale simulation is used to initialize a simulation performed at a smaller scale, which in turn returns information directly to the larger scale simulation; (2) indirect approaches in which microscopic simulations
are used to quantify constitutive laws relating macroscopic variables. As the direct approach relies on the larger scale simulation to initialize the smaller scale simulation, their application is primarily heuristic; it would be straightforward to replace the small scale simulation with a derived constitutive law. Since microscale simulations are computationally expensive, constitutive laws provide an efficient way to incorporate microscale simulation data into macroscopic forms that allow simulation data to be reused many times.

In recent years, microscale study of porous medium systems has expanded considerably. This is in large part due to computational advances that now provide access to simulations of sufficiently large, three-dimensional domains as necessary to obtain results that are extensible to macroscopic systems. In addition to the development of constitutive laws, microscale studies provide opportunities to consider macroscopic systems in the absence of simplifying assumptions, access information that is not available from macroscopic approaches, and improve conceptual understanding of system behavior. Where macroscopic descriptions are incomplete, microscale information provides a platform to study assumptions and approximations related to their establishment. In cases in where macroscopic model forms are relatively well established, microscale information can be used to expand the range of validity for these forms and estimate associated macroscopic model parameters. Particular attention has been paid to microscale study of multiphase systems. Significant gaps are present in our understanding of macroscopic multiphase systems, particularly concerning the proper description of thermodynamic forms [66, 68, 70, 69, 57]. Although open questions remain even at the microscale, thermodynamic forms and constitutive laws are more well established and allow for useful simulation [49, 132, 91, 103, 170].

1.2.3 Sources of Microscale Information

Network Modeling

Developing a computationally tractable simulation procedure which can be used to study macroscopic behavior while adequately describing flow processes in porous media is one of the principle challenges to the computational study of microscopic porous medium systems. In order to obtain realistic insights into macroscopic behavior, large domains must be considered. Network models construct idealized approximations of the pore space so that flow processes are described by simple analytical expressions. These simplifications allow for the consideration of much larger systems than what
could be considered using other methods. Network models have been extended to consider a wide range of porous medium systems [28, 171, 46, 20, 45, 2]. However, the simplified physics and pore structure significantly limit the utility of these approaches, particularly as computational capabilities increase the viability of alternative simulation procedures.

Lattice Boltzmann Modeling

Direct simulation of fluid flows in realistic porous media is a computational intensive process. Traditional fluid mechanics approaches are not well-suited to dealing with the complexity of solid boundaries and fluid interfaces present in porous media. The lattice Boltzmann method has become a primary tool for simulation of porous medium flows in part due to the simplicity by which fluid and solid interfaces are treated. Porous medium calculations are routinely performed for single- and multiphase systems [137, 175, 138, 139, 150, 159, 167, 148]. A proliferation of multiphase lattice Boltzmann schemes have resulted from the desire to increase physical accuracy and to expand the range of systems that can be considered using this approach [33, 74, 84, 100, 85, 122, 101, 86, 102, 47, 96, 172]. Schemes have been devised to model a wide range of physical phenomena in addition to single- and multi-phase flows, particularly approaches to simulate transport of fluids and dissolved components and with consideration of reactive transport [178, 9, 93, 10, 8, 11, 92].

Computed Micro-Tomography

Tomographic imaging provides a non-invasive way to obtain high-resolution, three-dimensional images of real porous medium systems. This approach can be used to generate hi-resolution images of real porous medium systems, and is most typically used to obtain images of equilibrium configurations in multiphase porous media [80, 37, 191, 188, 192, 190, 3, 162, 189, 149]. A primary limitation of tomographic imaging is that dynamic information is typically inaccessible, limiting studies to cases of mechanical equilibrium.
1.3 Macroscopic Modeling Approaches for Porous Media

Porous medium models are typically formulated at sufficiently large length scales so that any microscopic dynamics that do not directly impact the macroscopic behavior can be neglected. While such formulations are properly considered as averages of the microscopic behavior, many existing porous medium models have been constructed without giving due consideration to the definitions of derived variables, particularly those which pertain to thermodynamics. Traditional models are often applied outside their range of validity, are plagued by unrealistic or oversimplified assumptions regarding system behavior, and suffer from the lack of a sufficiently general modeling framework to provide guidance when models fail. In order to overcome these shortcomings, it is necessary to consider alternative strategies to produce the rigorous and flexible models needed to accurately describe the behavior of porous medium systems. Given that systems are usually better understood at smaller scales, it is logical to develop models by establishing a connection to smaller scale physics. In this section, we review the typical model formulations applied to describe single- and multi-phase systems in porous media, and provide an introduction to thermodynamically constrained averaging theory as a means to generate more reliable models.

Traditional Model Formulation for Single Phase Systems

For the case of a porous medium is fully saturated with a single fluid phase, flow behavior is typically described using Darcy’s law. Darcy’s law was initially obtained as an empirical expression relating the total change in head \(h \) across a system with the volumetric flow rate \[41\]. This expression has been generalized into a differential form with which Darcy’s law has become synonymous:

\[
\varepsilon^\alpha \mathbf{v}^\alpha = -\mathbf{K} \cdot \nabla h, \tag{1.1}
\]

where \(\varepsilon^\alpha \) is the volume fraction of the fluid, \(\mathbf{v}^\alpha \) is the flow velocity, and \(\mathbf{K} \) is the permeability tensor for the porous media. Expressions such as Eq. (1.1) have been applied broadly, well beyond the range of support of the original experiments \[58\]. Subsequently, theoretical approaches have succeeded in deriving Darcy’s law from first principles, which has provided more precise definitions for the variables appearing in Eq. (1.1) as well as insights in to its range of validity \[184, 60\]. Such approaches have
also been used to derive extensions to Darcy’s law, such as the Forchheimer equation [152, 153, 185]. These expressions are widely used, and generally considered to be useful.

Systems containing a single fluid phase within the solid matrix are typically described by inserting a differential form of Darcy’s law into an equation for conservation of mass formulated at the macroscale:

$$\frac{\partial (\rho^\alpha \epsilon^\alpha)}{\partial t} + \nabla \cdot (\rho^\alpha \epsilon^\alpha \mathbf{v}^\alpha) = 0,$$

(1.2)

where ρ^α is the fluid density. By inserting Eq. (1.1) into Eq. (1.2) and applying various approximations, one obtains the standard equations used to model single phase flow in porous media [16]. While these approaches are generally effective, there is some cause for concern. For example, by formulating conservation principles directly at the macroscale the precise definitions of quantities appearing in Eq. (1.2) are obscured [58]. Although the physical meaning of these variables may be intuitive, this still presents a problem because the relationship among variables appearing in the mathematical formulation and variables which are actually measured is not clear. In order to resolve this issue, it is necessary to provide additional information so that the relationship among variables at different scales is clear.

Model Formulation for Multiphase Systems

The standard mathematical formulation for description of multiphase systems is similar to the single phase formulation, constructed by inserting an extension of Darcy’s law into the mass conservation equation given by Eq. (1.2) for each phase α. For the multiphase formulation, the extension to Darcy’s law is given by [29]:

$$\epsilon^\alpha \mathbf{v}^\pi = -\frac{\kappa^\alpha_r}{\mu^\alpha} (\nabla p^\alpha - \rho^\alpha \mathbf{g}^\pi).$$

(1.3)

New quantities introduced in this equation are the intrinsic permeability κ, the dynamic viscosity μ^α, the fluid pressure p^α, and the gravitational acceleration \mathbf{g}^π. The relative permeability κ^α_r is included to account for the effective change in permeability due to the presence of additional fluid phases. While theoretical work exists to support the single phase form of Darcy’s law, no sound theoretical approach has been used to justify the multiphase extension given by Eq. (1.3). In fact, limitations associated with this formulation are widely recognized and its inclusion is largely attributable to the lack
of a suitable alternative [130, 83, 79]. An inherent limitation of this approximation is that Eq. (1.3) serves as a replacement for a formal momentum equation, yet offers no mechanism to include the effects of potentially important processes such as viscous coupling between the fluid phases present in the system [12, 13, 14, 15, 104].

An additional problem has been introduced into the multiphase flow formulation due to the fact that the fluid pressure and relative permeability for each phase are unknown. In order to close this equation, constitutive laws are introduced in which \(p^\alpha \) and \(\kappa_r^\alpha \) are provided as functions of known variables. In most cases, it assumed that both variables are functions of the fluid saturation \(\epsilon^\alpha / \epsilon^s \) alone. In each case, the existence of such a functional relationship has been called into question. In many instances, \(p^\alpha \) and \(\kappa_r^\alpha \) will depend on other variables, such as interfacial area. Ignoring these dependencies leads to hysteresis in derived constitutive relations [23, 24, 25, 22, 26, 21, 104, 163, 155]. Accurate description of multiphase systems cannot be accomplished without an appropriate deterministic set of macroscopic variables. Pore-scale studies are an essential tool for identification of these variables and quantification of the associated relationships [39, 154, 65, 76, 30, 109, 119, 120, 151]

1.3.1 Thermodynamically Constrained Averaging Theory

Thermodynamically constrained averaging theory (TCAT), provides a systematic approach for obtaining porous medium flow models models. This framework has been used to advance approaches to model flow and transport for a wide range of systems. In order to construct a macroscopic description of particular system, macroscopic conservation equations, thermodynamic forms, and an entropy inequality are constructed by averaging their microscopic counterparts. This ensures that macroscopic variables are rigorously defined in terms of microscale variables, eliminating ambiguity with respect to these variables [59, 127, 60, 129, 62, 87, 61, 63]. This framework provides solutions to many of the shortcomings associated with traditional modeling approaches:

- Macroscale variables are rigorously defined;
- Firm connection of scales;
- Flexible modeling framework;
- Constrained by 2nd law of thermodynamics;
The methodology applied in TCAT owes much to prior work done in the field of volume averaging [64, 64, 143, 144, 146, 145, 186, 187]. However, it is distinctly different from prior approaches in the way the macroscopic thermodynamics are treated. While most approaches postulate thermodynamic forms at the macroscale, TCAT defines macroscopic thermodynamic variables in terms of their more familiar microscale counterparts, thus assuring that the macroscopic thermodynamic forms are properly understood. Because the approach elucidates the relationship between variables at different scales, multi-scale studies fit naturally into the TCAT framework.

Figure 1.1: Flow chart depicting a multi-scale modeling framework for porous media

Formulation of a TCAT model begins with the specification of the entities for a system of interest. These include all phases, interfaces, films, common curves and common points where present. For each entity, conservation equations are written for mass, momentum an energy at the microscale. Macroscale transport equations are then obtained by averaging the microscale equations. In contrast with other approaches, macroscopic thermodynamic forms are obtained by direct averaging of microscopic forms, ensuring that thermodynamic variables are defined in a concrete way. A macroscopic entropy inequality is developed for the system as a whole, which plays a critical role in model closure. Due to the second law of thermodynamics, the entropy inequality can be exploited to generate closure relationships after it has been established in an appropriate form. While this approach can be used to identify dependencies required for constitutive laws, the final form and parameter values must be obtained externally. Microscale
simulation is a natural candidate to finalize constitutive laws because a wide range of systems may be considered and local values of microscopic variables are known, permitting computation of their macroscopic counterparts.

1.4 Research Objectives

Microscopic simulation can play a vital role in the development of macroscopic porous medium models. Construction of appropriate numerical tools is an essential aspect of constitutive law development. The objective of this document is to detail the development of microscale simulation and analysis tools, to evaluate the viability of these tools for various porous medium simulation scenarios, and to advance the state of understanding for macroscopic flow processes using simulation and analysis.

The specific research objectives to be accomplished are as follows:

1. High performance parallel lattice Boltzmann schemes targeted toward microscale simulation of one and two phase flows in porous media;

2. Construct a comprehensive set of tools designed to accurately measure geometric and morphological properties from real and simulated data sets;

3. Demonstrate insufficiencies in the form of momentum approximations used to describe non-Darcy flow in anisotropic porous media and demonstrate how TCAT can be used to guide the construction of extended models.
Chapter 2

High Performance Implementations of the Lattice Boltzmann Method

2.1 Introduction

The lattice Boltzmann Method (LBM) occupies a prominent role in the development of porous medium flow and transport models. The principal objective of associated pore-scale study is to advance understanding of macroscopic system behavior such that the microscopic details of flow can be neglected. In such cases critical aspects of the microscopic physics must be provided to macroscopic model formulations in the form of closure relations [59]. Pore-scale simulation provides a mechanism to study these relations provided that simulations are able to accommodate the complex solid morphology and large domain sizes needed to produce results that can be scaled to a macroscopically significant length scale, and to resolve adequately the relevant physical mechanisms.

The LBM is well-suited to simulation of porous medium flows and has become a primary tool for simulation of single- and multiphase flow in porous media. The significance of this role is evidenced by widespread efforts to evaluate and predict porous medium permeability values for single-phase flows based on microscopic simulation [115, 137, 166, 164]. LBM investigations of multiphase flow behavior represent an even more important niche due to well-documented deficiencies in existing macroscopic model formulations [126, 87]. Widely used constitutive relationships relating capillary pressure and saturation exhibit strong hysteresis, an effect which is being actively studied using the LBM [138, 104, 159, 168, 1]. The necessity for large, efficient simulations motivates the development of scalable parallel implementations, which allow for the simulation of
larger scale systems than would be possible on single processor or even a single node with multiple processing cores.

Achieving high performance requires concurrency for the computations performed at all levels of hierarchically organized parallel computing systems. This objective has been investigated in detail for distributed memory systems, for which concurrent computations can be achieved by subdividing computations between processors by constructing an appropriate domain decomposition strategy [140, 182, 181, 179]. Trends in processor design are establishing new paradigms for LBM computing. Individual processor speeds are no longer increasing at a rapid rate and hardware-based acceleration therefore hinges on exploiting multiprocessing throughout the hierarchical structure of modern parallel computing systems [72]. LBM’s are particularly challenging since their performance is dominated by memory bandwidth that does not always scale uniformly with the number of processors in many modern architectures [77]. Newer developments address this bottleneck, which have not been fully tested in parallel implementations of the LBM. Graphics processing units (GPU’s) have become a popular target for accelerating the LBM due to their high-memory bandwidth and performance that scales well with the number of processor cores and often outperform CPU’s for memory-limited computations [50]. In recent years, the capabilities and tools associated with computational science applications on GPU’s have evolved rapidly. GPU implementations have been associated with significant speedup for single-component, 3-D implementations of the LBM [135, 50, 174, 95, 180, 98]. Myre et. al. found that this high performance can be scaled to multiple GPU’s for both single and multiple component implementations of the LBM [131].

Algorithm advancements and hardware evolution have important ramifications for porous medium flow simulations. Unfortunately, many performance studies have focused exclusively on implementations that utilize a simple BGK approach for single fluid component systems. More computationally intensive multi-relaxation time (MRT) schemes are essential to reproduce accurately certain aspects of the fluid physics, and performance results for the BGK scheme are not representative of such methods [139]. Assessments of parallel performance often make use of outdated data structures and algorithms such that scaling results are derived from serial code that is not optimal. Furthermore, many advanced algorithms and data structures have not been considered in the context of the multi-component schemes typically used to study multiphase flow, which impose both higher computational demands and more complex algorithmic constraints. The extension of state-of-the-art algorithms to the simulation of multiphase
flow in porous medium systems has not been detailed in the literature. Furthermore, the range of problems that can and cannot be addressed, even using the very best methods, have not been considered in the literature. Lastly, physical mechanisms manifest in multiphase porous medium systems pose special challenges that have not yet been sufficiently documented in the literature.

The overall goal of this work is to advance LBM modeling of multiphase flow in porous medium systems. The specific objectives of this work are: (1) to detail the formulation of state-of-the-art algorithms for LBM modeling of multiphase flow in porous medium systems; (2) to illustrate approaches that produce an efficient simulator on a single processor; (3) to summarize methods needed to produce a multiphase LBM simulator that scales well across multiple processors; (4) to extend a state-of-the-art multiphase LBM to a GPU computing environment; (5) to derive limits on the scale of multiphase LBM simulations that are feasible using efficient methods as a function of the computing resources available; and (6) to illustrate challenges remaining to simulate efficiently, and with high fidelity, multiphase flow in porous medium systems.

2.2 Methods

2.2.1 Model Problems for Porous Media

Microscale simulation of flow in porous media requires detailed knowledge of pore structure in order to provide boundary conditions to the LBM. This information is usually obtained either by using advanced imaging techniques to obtain a three-dimensional picture of a real porous medium system or by generating a synthetic representation of a porous medium system [191, 192, 190, 162]. In this work, surrogate porous media are constructed by generating random close packings of equally-sized spheres [194]. All media considered have a porosity of 0.369, slightly above the known minimum value. A packing of 128,000 spheres is shown in Fig. (3.14). Sphere packings are provided to the LBM code in digitized form, with D being the diameter of each sphere expressed in lattice units.

2.2.2 Permeability Measurement

Permeability measurement has become a standard calculation for the LBM in porous media. For sufficiently small flow rates, the 1-D macroscopic flow behavior obeys
Darcy’s law:

\[U = -\frac{\kappa}{\rho \nu} \left(\frac{\partial p}{\partial z} + \rho g_z \right), \]

(2.1)

where \(U \) is the mass-averaged macroscopic flow velocity, \(\rho \) is the fluid density, \(\nu \) is the kinematic fluid viscosity, \(p \) is the fluid pressure, and \(g_z \) is an external body force. The permeability \(\kappa \) is a function of the pore morphology and topology, and it is therefore a function of the porous medium properties. Permeability estimates can be obtained by generating a steady-state solution for the microscopic velocity field in a given media then upscaling the velocity based on volume averaging to obtain the macroscopic velocity \(U \). With all remaining variables known, a permeability estimate can then be obtained by inverting Eq. (4.1) to obtain the corresponding value of \(\kappa \).

2.2.3 Capillary Pressure - Saturation Relationships

A classical macroscopic description of multiphase flow in porous medium systems relies on extensions to Darcy’s law in which closure for the fluid pressures \(p^n \) and \(p^w \) is obtained from empirical expressions that state a dependence between capillary pressure
\(p_c \) and fluid saturation \(s_w \):

\[
p^n - p^w = p_c(s^w). \tag{2.2}
\]

The mathematical form of this relationship was first investigated experimentally. In a typical experimental setup, reservoirs of wetting and non-wetting fluids are established on opposite sides of the domain, and flow of the two fluids is controlled by varying the capillary pressure difference \(p_c \) as determined by the pressure difference between the fluid reservoirs [110]. Problematically, the relationship stated in Eq. (2.2) depends on the system history, an effect that is due, at least in part, to the dependence of the relationship on typically neglected variables such as specific interfacial areas, specific common curve lengths, and average interfacial curvatures [70, 87]. Lattice Boltzmann investigations into multiphase behavior are of interest because they provide a straightforward way to evaluate microscale properties directly from highly resolved pore-scale simulations [148].

2.2.4 LBM Fundamentals

The LBM can be used to model a wide range of physical systems that are of interest to the study of porous media. From an implementation standpoint, these schemes share much in common. In this work, we consider schemes that utilize a three-dimensional, nineteen velocity vector (D3Q19) structure. For the planes in the \(x \)-, \(y \)- and \(z \)- directions, the D3Q19 structure matches the velocity structure of the familiar two-dimensional, nine velocity vector (D2Q9) model. The computational domain \(\Omega \) is defined by a rectangular prism discretized to obtain regularly spaced lattice sites \(\mathbf{x}_i \) where \(i = 0, 1, \ldots, N - 1, N = N_x \times N_y \times N_z \). The number of lattice sites in the \(x \), \(y \) and \(z \) directions are denoted as \(N_x, N_y \) and \(N_z \). For the D3Q19 velocity structure, the microscopic velocity space is discretized to include 19 discrete velocities [73]

\[
\xi_q = \begin{cases}
\{0, 0, 0\}^T & \text{for } q = 0 \\
\{\pm 1, 0, 0\}^T, \{0, \pm 1, 0\}^T, \{0, 0, \pm 1\}^T & \text{for } q = 1, 2, \ldots, 6 \\
\{\pm 1, \pm 1, 0\}^T, \{\pm 1, 0, \pm 1\}^T, \{0, \pm 1, \pm 1\}^T & \text{for } q = 7, 8, \ldots, 18.
\end{cases} \tag{2.3}
\]

A set of discrete distributions \(f^\alpha_q \) is constructed to track the fluid behavior for each fluid component \(\alpha \in \mathcal{E} \), where the component set \(\mathcal{E} \) is model specific. For each component,
the density and velocity are obtained directly from the discrete distributions

\[
\rho^\alpha = \sum_{q=0}^{Q-1} f_q^\alpha, \quad (2.4)
\]

\[
u^\alpha = \frac{1}{\rho^\alpha} \sum_{q=0}^{Q-1} \xi_q f_q^\alpha. \quad (2.5)
\]

The total density and average velocity are obtained by summing over all components

\[
\rho = \sum_{\alpha \in \mathcal{E}} \rho^\alpha, \quad (2.6)
\]

\[
u = \frac{1}{\rho} \sum_{\alpha \in \mathcal{E}} \rho^\alpha \nu^\alpha. \quad (2.7)
\]

Since density and velocity can be obtained directly from the distributions, a numerical solution for \(f_q^\alpha\) implies a solution for \(\rho^\alpha\) and \(\nu^\alpha\). This solution is obtained by solving the lattice Boltzmann equation, which may be expressed in the general form

\[
f_q^\alpha(x_i + \xi_q, t + 1) - f_q^\alpha(x_i, t) = C_{\alpha q}. \quad (2.8)
\]

The model-specific collision operator \(C_{\alpha q}\) accounts for changes in \(f_q^\alpha\) due to the intermolecular interactions and collisions. The collision term depends only on local values of the distributions, but may depend non-locally on conserved moments of the distributions. Solution of Eq. (2.8) is usually accomplished in two steps, referred to as streaming

\[
f_q^{\alpha*}(x_i + \xi_q, t + 1) = f_q^\alpha(x_i, t), \quad (2.9)
\]

and collision, which accounts for molecular collision and interaction

\[
f_q^\alpha(x_i, t + 1) = f_q^{\alpha*}(x_i, t + 1) + C_{\alpha q}. \quad (2.10)
\]

The streaming step defined by Eq. (2.9) propagates the distributions on the lattice, a process that depends only on the discrete velocity set \(\xi_q\). Since streaming is independent of the model-specific collision operator \(C_{\alpha q}\), optimization of the streaming step depends only on the velocity structure and the number of components. For all models considered in this work, the solid phase is assumed immobile and boundary conditions are prescribed by the bounce-back rule [54]. To explore the optimization of
LBM methods, we consider three common approaches used to simulate flow in porous medium systems. Collision structures for the BGK, MRT and Shan-Chen schemes are given below, and implementation and optimization details are provided in §2.3.

Single-Component BGK Model

The simple BGK model remains a widely applied collision rule for the LBM [89, 118, 114, 88, 133]. For a single component w, this approximation assumes that the distributions relax at a constant rate toward equilibrium values $f_{eq,w}$ prescribed from the Maxwellian distribution [73]:

$$\mathcal{C}_{wq} = \frac{1}{\tau_w} \left(f_{eq,w} - f_q \right). \tag{2.11}$$

The relaxation rate is specified by the parameter $\tau_w > 0.5$, known as the relaxation time, which is related to the kinematic viscosity of the fluid:

$$\nu = \frac{1}{3} \left(\tau - \frac{1}{2} \right). \tag{2.12}$$

Based on a quadrature scheme for the Maxwellian distribution, the equilibrium distributions take the form:

$$f_{eq,w} = w_q \rho^w \left[1 + 3(\xi_q \cdot u^w) + \frac{9}{2}(\xi_q \cdot u^w)^2 - \frac{3}{2}(u^w \cdot u^w) \right], \tag{2.13}$$

where $w_0 = 1/3$, $w_{1,...,6} = 1/18$ and $w_{7,...,18} = 1/36$. In choosing the equilibrium distributions, conservation of the fluid density ρ^w and momentum $j^w = \rho^w u^w$ is ensured by:

$$\rho^w = \sum_{q=0}^{Q-1} f_q = \sum_{q=0}^{Q-1} f_{eq,q}, \tag{2.14}$$

$$j^w = \sum_{q=0}^{Q-1} \xi_q f_q = \sum_{q=0}^{Q-1} \xi_q f_{eq,q}. \tag{2.15}$$

2.2.5 Single-Component Multi-Relaxation Time Model

In the BGK approximation to the collision term as given by Eq. (2.11), all non-conserved hydrodynamic modes relax toward equilibrium at the same rate, specified by the relaxation time τ_w. Multi-relaxation time (MRT) schemes are constructed such that
different hydrodynamic modes relax at different rates. Many physically significant hydrodynamic modes are associated with linear combinations of the distributions f^w_q [99, 44]:

$$\hat{f}_m^w = \sum_{q=0}^{Q-1} M_{m,q} f^w_q,$$ \hspace{1cm} (2.16)

where $M_{m,q}$ represents a set of constant coefficients associated with a particular mode m. Since there are Q independent, linear combinations of f^w_q, coefficients are defined for $m = 0, 1, 2, \ldots, Q - 1$. The coefficients must be chosen carefully in order to ensure that moments correspond with physical modes that are hydrodynamically significant. Based on the approach of d’Humières and Ginzburg [44], the coefficients $M_{m,q}$ are obtained by applying a Gram-Schmidt orthogonalization to polynomials of the discrete velocities ξ_q. The resulting set of moments include density, momentum, and kinetic energy modes, as well as modes associated with elements of the stress tensor. Once the transformation coefficients are known, the relaxation process is carried out in moment space, with each mode relaxing at its own rate specified by λ^w_m:

$$\mathcal{C}_{w,q} = \sum_{m=0}^{Q-1} M_{q,m}^* \lambda^w_m \left(\hat{f}_{eq,w}^m - \hat{f}_m^w \right).$$ \hspace{1cm} (2.17)

The inverse transformation coefficients $M_{q,m}^*$ map the moments back to distribution space, and are obtained by applying a matrix inverse using the values of the transformation coefficients, $M_{m,q}$. In the MRT formulation, the equilibrium moments $\hat{f}_{eq,w}^m$ are functions of the local density ρ^w and momentum j^w. In order to minimize the dependence of the permeability on the solid wall location, the relaxation parameters take the form [139]:

$$\lambda^w_1 = \lambda^w_2 = \lambda^w_9 = \lambda^w_{10} = \lambda^w_{11} = \lambda^w_{12} = \lambda^w_{13} = \lambda^w_{14} = \lambda^w_{15} = \frac{1}{\tau^w},$$ \hspace{1cm} (2.18)

$$\lambda^w_4 = \lambda^w_6 = \lambda^w_8 = \lambda^w_{16} = \lambda^w_{17} = \lambda^w_{18} = \frac{8(2 - \lambda^w_1)}{8 - \lambda^w_1}. \hspace{1cm} (2.19)$$

Since the density and momentum modes do not undergo relaxation, there is no need to specify relaxation parameters for the associated moments.
2.2.6 Multi-Component Shan-Chen MRT Model

Description of multi-component mixtures and immiscible fluid flows, which is the focus of this work, can be accomplished by introducing modified collision operations, which account for these interactions. While a number of schemes have been constructed to achieve this purpose, the Shan-Chen scheme represents the simplest and most widely-used approach for simulating multi-component flows in porous media. We consider the Shan-Chen model for binary mixtures, $\mathcal{E} = \{w, n\}$. In this approach, a quasi-molecular interaction force is introduced to approximate the force acting on component α due to component β:

$$F^\alpha(x_i, t) = \rho^\alpha(x_i, t) \sum_{q=1}^{Q-1} G^{wn} \rho^\beta(x_i - \xi_q, t) \xi_q, \quad \alpha, \beta \in \{w, n\}, \alpha \neq \beta. \quad (2.20)$$

The parameter G^{wn} determines miscibility and surface tension between the wetting and non-wetting components w and n. An analogous force is introduced to account for interactions between the solid and fluid phases. In practice, this may be achieved with appropriate assignment of the density values within the solid phase:

$$\rho^w(x_i) = \frac{G^s}{G^{wn}} \quad \text{for} \ x_i \in \Omega_s, \quad (2.21)$$

$$\rho^n(x_i) = -\frac{G^s}{G^{wn}} \quad \text{for} \ x_i \in \Omega_s. \quad (2.22)$$

The fluid-solid interaction parameter $G^s > 0$ can be tuned to determine the contact angle [81].

Interfacial forces are incorporated by considering their effect on the fluid momentum. Due to this choice, momentum is no longer conserved locally and a relaxation process must be introduced for the associated moments. The common velocity u' is defined as:

$$u' = \frac{\sum_{\alpha=w,n} j^\alpha}{\sum_{\alpha=w,n} \rho^\alpha}. \quad (2.23)$$

The post-collision momentum is then defined as:

$$j'^\alpha = \rho^\alpha u' + F^\alpha. \quad (2.24)$$

The equilibrium moments are computed in terms of the post-collision momentum j'^α to
define the collision process for the Shan-Chen model. Since Eq. (2.20) is non-local in terms of the fluid densities, both the streaming step and density computation must be performed prior to collision in order to ensure that the collision step is implicit in terms of the component densities. Unlike the single-component MRT scheme, momentum is not conserved locally in the Shan-Chen LBM. This means that the momentum modes undergo relaxation, and the full set of relaxation parameters used in this work are:

\[
\begin{align*}
\lambda^\alpha_3 &= \lambda^\alpha_5 = \lambda^\alpha_7 &= 1, \\
\lambda^\alpha_1 &= \lambda^\alpha_2 = \lambda^\alpha_9 = \lambda^\alpha_{10} = \lambda^\alpha_{11} = \lambda^\alpha_{12} = \lambda^\alpha_{13} = \lambda^\alpha_{14} = \lambda^\alpha_{15} &= \frac{1}{\tau^\alpha}, \\
\lambda^\alpha_4 &= \lambda^\alpha_6 = \lambda^\alpha_8 = \lambda^\alpha_{16} = \lambda^\alpha_{17} = \lambda^\alpha_{18} &= \frac{8(2 - \lambda^\alpha_1)}{8 - \lambda^\alpha_1}.
\end{align*}
\]

(2.25)
(2.26)
(2.27)

2.3 Implementation and Optimization Approaches

Computational performance for the LBM is determined primarily from two factors: (1) the number of arithmetic operations that must be performed, and (2) the amount of data to be moved between processors and memory. The former is determined by the processor clock speed and instruction set, whereas the latter is limited by memory bandwidth. Performance of the LBM relies heavily on memory bandwidth due to the large number of variables that must be accessed from arrays to perform each lattice update [7, 6]. LBM’s exhibit poor temporal locality of data — each distribution \(f^\alpha_q \) computed in the collision step at each lattice site is used just once in the streaming step. For single component schemes, performance is strongly linked to the streaming step implementation, which can be accomplished by implementing one of several existing algorithms [117]. Performance of the LBM is also sensitive to the lattice structure and access patterns, an effect which can be traced to spatial locality of the distributions needed in the collision step [193, 183, 198]. Domain decomposition and communication overlap is essential to generate efficient parallel implementations [140, 182, 181, 179]. Careful consideration of all these aspects are needed to produce an efficient simulator.

Two measures of efficiency are especially important: (1) the number of lattice updates per second that can be computed, and (2) how the lattice update rate scales with the number of processors allocated for the computation. Achieving high efficiency is critical because many multiphase LBM simulations of porous medium problems of concern are at, or beyond, current computational limits for even the most advanced computers.
We focus our discussion on the most critical aspects of the hardware, and summarize algorithms that have been shown to yield excellent performance. We also provide implementation guidance to enable others to more readily develop efficient LBM simulators. Specifically we address hardware considerations, serial CPU optimization, parallel CPU optimization, and GPU optimization.

2.3.1 Hardware Overview

Scalable parallel computers combine multiple CPU’s sharing memory into a node, and interconnect multiple nodes through a high speed switching network into a cluster. Fig. (2.2) illustrates the structure of a single node in a parallel computing cluster circa 2010. An Intel node based on four Nehalem-EX processors is illustrated; similar designs are available from other manufacturers (e.g. based on AMD opteron or IBM Power components). Each Nehalem-EX processor contains 8 parallel processing cores, and can reference directly attached high-speed memory at about 40 GB/s. It also connects directly to the other three processors through a high speed interconnect (100GB/s) to access non-local memory. In aggregate, this configuration provides 32 processing cores with up to 160 GB/s of shared main memory bandwidth. Computational accelerators, in the form of graphics processing units can also be incorporated in the node. Data is transferred to and from the GPUs at about 4–8 GB/s. Data is transferred to and from other nodes in the cluster at about the same rate (4–8 GB/s).

Multiple levels of cache are provided to reduce the latency associated with memory accesses. Depending on the specific processor, a particular data cache may be associated with each individual core or may be shared between multiple cores. For the setup shown in Fig. (2.2), each of the eight cores in a Nehalem-EX is equipped with 32 KB dedicated L1 data cache and 256 KB L2 cache. A 24 MB L3 cache is shared among the eight cores. Each cache stores a subset of the data contained within main memory based on which data is required by the processor cores to perform computations. The time to access data from the caches is considerably lower than the time to access data from main memory. Once data has been loaded into the cache, it remains there until subsequent data accesses require it to be replaced. Temporal and spatial locality of cache references can be improved by manipulating data access patterns, which can impact performance significantly. Relatively little temporal locality is presented by LBM methods.

While the processor cores on a multi-core CPU are capable of performing computations in parallel, serial codes use only one core at a time and therefore do not take full
Figure 2.2: Schematic showing a GPU-accelerated processing node populated with four Intel Nehalem Xeon CPU’s, each with 8 processing cores.
advantage of the processor capabilities. Multi-core shared-memory implementations can be constructed for shared memory using language extensions and libraries such as openMP or MPI. Scalability of memory intensive computations to multiple cores is limited by a maximum memory bandwidth to be shared by all cores. Increased cache sizes and memory bandwidth that better scales with the number of cores is a primary objective of modern processor architectures such as Nehalem architecture. While these designs do improve aggregate bandwidth, the maximum memory bandwidth remains a critical limit for LBM methods.

In order to simulate large domain sizes and accelerate the solution time for a given LBM simulator, parallel implementation is a necessity for most porous medium applications. A typical approach is to use the message passing interface (MPI) to develop code to run in parallel on multiple processor nodes [177, 169, 113, 165, 161, 19, 56]. Scaling the LBM to run on a large number of processors requires a domain decomposition strategy that evenly distributes the computational load between processors while minimizing the amount of communication that must be performed [140, 182, 181, 179]. The computational load scales with the volume of lattice sites not in the solid phase within a subdomain, while the communication scales with the surface area of the subdomain.

MPI implementations are primarily targeted for large distributed memory computers constructed from a large number of processors, and typically utilize each processor core when using a large number of multi-core CPU’s. For many of these systems, the amount of memory bandwidth increases with the number of processors rather than the number of processor cores. Inter-processor communication is needed and relies upon a network connecting the various processors. The bandwidth of this network determines the data transfer rate between processors, which impacts efficiency and scaling. As long as communication times are shorter than the computational time (and can be overlapped with computations), scaling is determined by load balancing of the computational work among the processors on the systems. Once communication times exceed the computational time, communications can no longer be masked effectively and parallel efficiency deteriorates.

GPU’s represent a different approach to multiprocessing. The GPU achieves high performance through multiple processing units, each of which contain multiple arithmetic units executing identical instructions on different pieces of data, known as single-instruction multiple-data (SIMD) operation. A modern GPU can have thousands of arithmetic operations in process concurrently. GPUs also have very high performance memory systems, provided memory is referenced appropriately. In order to streamline
Figure 2.3: Typical GPU setup in which the CPU and GPU are utilized in tandem.
the development process, NVidia introduced CUDA, an extension to the C programming language targeted for GPU applications [134]. The CUDA programming model is based on the GPU setup shown in Fig. (2.3) in which a CPU is used to perform basic tasks such as allocating memory and performing input and output, while the GPU is used to perform intensive calculations. Main memory is divided between the CPU and GPU, and data must be copied explicitly from one location to another. In order to maximize performance, memory operations involving data transfer between the CPU’s and GPU’s must be minimized. Data transfer rates between the GPU and its associated memory significantly outperform other memory operations, especially when data accesses follow advantageous patterns. This derives from the fact that memory transactions can be coalesced into a single operation for 16 or 32 SIMD threads provided that alignment and contiguity conditions are met. While these conditions become substantially less restrictive with each new generation of GPU, data alignment remains a critical consideration for optimization of GPU-based code.

2.3.2 Serial CPU Implementations (C++)

CPU-based optimization of the BGK LBM has received extensive treatment in the literature [193, 7, 6, 183, 117, 198]. Data structures, addressing schemes and streaming step implementation all impact the performance of the LBM. A comprehensive study of optimization strategies for the D3Q19 BGK model is available from Mattila et. al. [116]. Our serial implementation combines and extends optimal methods for simulation of single and multi-component flows while anticipating parallel implementation. While indirect storage procedures can reduce memory requirements for porous medium simulations, regular storage arrays typically yield a higher lattice update rate due to less indirection in address calculations. Therefore, we use semi-direct addressing schemes in which lattice sites are accessed as described in Fig. (2.4). Memory is allocated for all distributions at all lattice sites, including those within the solid phase and the halo of ghost sites surrounding the domain exterior to ensure that lattice access is prescribed according to a regular pattern. Storage for the distributions is generalized to store multiple fluid components into a single merged array Dist based on the collide layout:

$$f_\alpha^q(x_i) = \text{Dist}[iQN_c + qN_c + \alpha], \quad (2.28)$$

where N_c is the number of fluid components and Q is the number of discrete velocities. This convention ensures that all distributions needed to perform the collision step at
Figure 2.4: Domain structure for serial CPU implementation of the LBM. Regular storage and access patterns are preserved by storing ghost nodes for a halo of lattice sites on the domain exterior and for sites within the solid phase (denoted by shaded gray circles). Interior and exterior lattice sites are identified from index lists, which are used to direct computations.

Figure 2.5: Swap algorithm illustrated for the D2Q9 model: Non-stationary distributions at a lattice site are swapped based on the symmetry of the discrete velocity set. Note that the D3Q19 velocity structure is identical to the D2Q9 structure in each coordinate plane.
a particular lattice site will be stored in a contiguous block of memory. Alternative
data layouts can be constructed such that values needed to perform the streaming
step are stored sequentially, as well as hybrid layouts, which can demonstrate superior
performance for single component flows [116]. However, the collide layout is considered
here due to advantages for the Shan-Chen model, in which the distributions must be
accessed twice per iteration.

Due to memory bandwidth-limited performance of the LBM for most porous medium
applications, efficient implementation of the streaming step is critical to development of
fast LBM code since this step involves a large number of memory references. The swap
algorithm has been shown to achieve high lattice update rates while reducing storage
requirements relative to other approaches [117]. A schematic of the swap algorithm is
shown in Fig. (2.5). This approach makes use of the symmetry of the discrete velocity
set by noting that each discrete velocity ξ_q is associated with an opposing velocity
$\xi_{\tilde{q}} = -\xi_q$. At a particular lattice site x_i, distribution f_{α}^q will translate to site $x_i + \xi_q$, and $f_{\tilde{q}}^\alpha(x_i + \xi_q)$ will translate to site x_i.

Memory bandwidth demands are significantly reduced by fusing the streaming step
with computations to the greatest extent possible. For the BGK and MRT methods,
the entire collision step can be carried out immediately after swapping the distributions
at a site provided that swapping has already been performed for all lattice sites $x_j : j < i$. For the multiphase Shan-Chen LBM, the non-local interaction force (Eq. (2.20))
must be fully implicit in terms of the fluid densities to ensure numerical stability. As a
consequence, the streaming and collision steps cannot be fused in any straightforward
way. Instead, density computations are fused with the streaming step, and all lattice
sites must be accessed subsequently in order to perform the collision step. This imposes
additional memory bandwidth demands for the multiphase Shan-Chen LBM relative
to single component methods, an important attribute that extends to other multiphase
schemes as well.

\subsection{Parallel Implementation of the LBM (C++/MPI)}

For parallel simulations using MPI, domain decomposition is necessary to distribute
computations between the processors. The method of orthogonal recursive bisection
(ORB), which was used in this work, has been shown to achieve excellent load balancing
for flow in porous medium systems while maintaining a small surface-to-volume ratio
to minimize communication expenses [140]. This approach recursively subdivides the
Figure 2.6: Schematic summarizing communication between processors p and r in a parallel LB simulation using MPI. Distributions needed by processor r are packed into a send buffer on processor p. Using MPI, these values are provided to a receive buffer on processor r, from which they are unpacked to the proper location.

Domain Ω to obtain subdomains $\Omega^{(p)}$ for each processor $p = 0, 1, \ldots, N_p - 1$, where N_p is the total number of processors. Each subdomain is constructed in the same manner as for the serial case, shown in Fig. (2.4). The index lists that store the interior and exterior lattice sites for each processor p are denoted by $X^{(p)}_{\text{int}}$ and $X^{(p)}_{\text{ext}}$.

In parallel LBM’s implemented using MPI, computations are performed simultaneously for each subdomain. At the pre-processing stage, communication patterns are determined based on the domain decomposition. Parallel implementation of the streaming step requires communication to provide a subset of the distributions within the domain exterior. To complete the streaming step at lattice site $x_i \in X^{(p)}_{\text{ext}}$, processor r must provide to processor p all distributions $f^\alpha_q(x_i)$ that satisfy $x_i - \xi_q \in \Omega^{(r)}$, $x_i - \xi_q \not\in \Omega_s$. The symmetry of the discrete velocity set ensures that each value received by processor p from processor r will mirror a value sent by p to r. This eliminates the need to store separate sets of indices for the distributions that each processor must send and receive. Separate buffers are required to store the values sent and received as shown in Fig. (2.6). Each processor maintains one buffer for distributions to send and one buffer for distributions to receive. The total number of distributions sent to processor r by processor p is $N_f^{(p\rightarrow r)}$, which are offset from the beginning of the buffer by $X_f^{(p\rightarrow r)}$. Due to symmetry of the discrete velocity set, the number of values received by r from p is $N_f^{(p\rightarrow r)} = N_f^{(r\rightarrow p)}$.

For single-phase implementations, streaming is the only task that requires commu-
Algorithm 1 Parallel Swap Algorithm for BGK / MRT Schemes

\begin{algorithm}
\begin{algorithmic}
\For {all processors p}
\State \textbf{1.} Initiate distribution communication
\State \textbf{2.} Set boundary conditions for $\Omega^{(p)}$
\State \textbf{3.} Swap distributions for $x_i \in X^{(p)}_{\text{ext}}$
\State \textbf{4.} Swap distributions and perform collision step for $x_i \in X^{(p)}_{\text{int}}$
\State \textbf{5.} Wait for distribution communication to complete
\State \textbf{6.} Perform collision step for $x_i \in X^{(p)}_{\text{ext}}$
\EndFor
\end{algorithmic}
\end{algorithm}

communication between processors. Parallel communications performed by MPI are limited by the bandwidth of the inter-processor connections on a particular system. In order to achieve optimal performance for the LBM with MPI, computations must be performed while communications are ongoing. The domain structure shown in Fig. (2.4) may be exploited for this purpose due to the fact that values provided from communication are only required by exterior lattice sites. A parallel algorithm for the MRT and BGK schemes is provided in Alg. 1. The streaming step is carried out for the entire domain along with the collision step for interior nodes while communication is ongoing. Collision calculations cannot be performed at exterior nodes until communication providing these values is completed by streaming from other processors.

Multiphase schemes require additional communication due to non-local dependencies of the collision term. In the case of Shan-Chen method, communication is required to provide the correct density values to the layer of ghost lattice sites surrounding each sub-domain. The values required can be identified based on the definition of the interaction force given in Eq. (2.20). Density values must be sent from process p to process r at all sites $x_i \in \Omega^{(p)}$ which satisfy $x_i - \xi_q \in \Omega^{(r)}$ for one or more values q. Note that no symmetry is implied for the density values to be sent and received by a given processor. In order to maintain an implicit collision term, streaming and density computation must be performed before communication is initiated for the density values. Communication for the distributions must complete before the density can be calculated at exterior lattice sites. Maximizing the overlap between communication and computation thereby leads to Alg. 2 to implement the Shan-Chen LBM in parallel.
Algorithm 2 Parallel Swap Algorithm for Shan-Chen Scheme

for All processors p do
 1. Initiate distribution communication
 2. Set boundary conditions for $\Omega^{(p)}$
 3. Swap distributions for $x_i \in X^{(p)}_{ext}$
 4. Swap distributions and compute density for $x_i \in X^{(p)}_{int}$
 5. Wait for distribution communication to complete
 6. Compute density for $x_i \in X^{(p)}_{ext}$
 7. Initiate density communication
 8. Perform collision step for $x_i \in X^{(p)}_{int}$
 9. Wait for density communication to complete
10. Perform collision step for $x_i \in X^{(p)}_{ext}$
end for

2.3.4 Node-level Implementation of the LBM

Within a node, there is the possibility to take advantage of shared memory. However, for LBM implementations this provides little advantage because the domain decomposition has a relatively limited amount of data to be transferred between processors. Instead, running an MPI process on each core of a node pins the domain to the directly attached memory, and permits the communication of the halo nodes to proceed asynchronously with the computation. It also greatly simplifies the software design to be able to use MPI processes within nodes as well as across nodes. As a result of the aggregate memory bandwidth limitations within a node, an LBM implementation may lose efficiency when all cores are utilized. Thus maximum performance may be reached using less than the total set of cores available at a node.

2.3.5 GPU Implementation of the LBM (CUDA)

Implementation of the LBM on a GPU represents a considerably different task from a standard CPU implementation. Each GPU contains a large number of relatively simplistic cores that are capable of carrying out tasks in parallel. Memory is allocated to store data separately on both the CPU and GPU. Using syntax provided within CUDA,
Figure 2.7: Domain decomposition for GPU implementation of the LBM. In this 2-D analog, the 11×11 spatial domain is divided into grid blocks ($n\text{Blocks} = 4$) with a fixed number of threads per threadblock ($n\text{Threads} = 8$). With $n\text{Blocks}$ and $n\text{Threads}$ fixed, each thread performs computations for $S = 4$ lattice sites so that the entire spatial domain is accounted for.

Initialized variables are copied to the GPU where the main computations are performed. When the simulation completes, data is copied back to the CPU so that it can be output. CUDA kernels are based on a SIMD model in which many threads execute identical instructions simultaneously. Domain decomposition on a GPU is structured so as to take advantage of the multi-threaded framework, as shown in Fig. (2.7). The number of threads $n\text{Threads}$ and the number of threadblocks $n\text{Blocks}$ can be varied to maximize performance. Kernels provide instructions to the GPU that account for all computations required to complete each iteration of the LBM. A set of registers $f_0, f_1, f_2, \ldots, f_{18}$ store the nineteen distributions required to perform computations at each lattice site. These values reside in fast register memory once they have been accessed from the main arrays. Computations are expressed in terms of these registers in order to maximize performance.

The memory system of the GPU functions most efficiently when the values read by each threadblock are aligned within contiguous blocks of memory. When data is properly aligned, the GPU is able to coalesce memory accesses within each threadblock into a smaller number of memory transactions. In order to use memory bandwidth most efficiently, each half-warp of sixteen threads should access contiguous memory blocks.
Figure 2.8: Overview of data flow in GPU implementation of the LBM. The example shows memory access are for \(n_{\text{threads}} = 8 \) with \(\text{blockIdx.x} = 2, \ s = 2 \).
of size 32, 64, or 128 bytes. In order to accomplish this, storage of the distributions is
ddictated by the stream layout:

\[
f_\alpha^q(x_i) = \text{Dist}^\alpha[qN + i],
\]

for \(\alpha \in \mathcal{E} \). For multi-component methods, separate distribution arrays are allocated
for each fluid component in order to reduce the number of registers needed to carry
out the computations. Note that this is in contrast to the storage scheme used for our
CPU implementation.

Since threadblocks do not execute in a predictable order, order-dependent streaming
algorithms such as the swap algorithm lose their advantage in GPU implementation.
In order to fuse the streaming step with computations on a GPU, it is necessary to use
a streaming algorithm that does not depend on the order the lattice sites are updated.
This means that the streaming and collision operations can not be fused for the swap
algorithm on a GPU, which therefore requires that GPU implementations have more
memory references than a corresponding CPU implementation.

Implementation of the streaming step using the two-lattice algorithm (TLA) is
schematically illustrated in Fig. (2.8). An additional copy of the distribution array,
labeled as Copy, is necessary to perform streaming with the TLA. The distributions
are read based on the streaming offset and stored in register memory for each thread.
Reading based on the streaming offset within a threadblock will access contiguous
blocks of memory for each distribution unless periodic boundary conditions shift one or
more distributions. High performance is contingent on a high number of computations
per memory operation. For the single component BGK and MRT schemes, the entire
collision process can be performed before writing the updated distributions back to
main memory. At even iterations, data is read and written as seen in Fig. (2.8). At
odd iterations, the position of Dist and Copy are interchanged.

For the multiphase Shan-Chen scheme, computation of density and velocity are
fused into the streaming step, and the distributions must be read into memory a second
time to perform the collision step. The distributions are therefore read one time based
on the streaming offset and once from the local indices, and written twice based on
the local indices. Good coalescence is ensured within a threadblock when reading
and writing is based on the local indices. In order to compute the interaction force,
18 additional density values must be accessed from memory for each component. As
a consequence, the Shan-Chen LBM must access approximately five times as many
variables for each iteration compared with single-component BGK and MRT LBM.

2.4 Results

We analyzed the performance of the BGK, MRT, and Shan-Chen LBM algorithms for serial, parallel CPU, and GPU implementations. We also performed simulations for realistic porous medium problems, a routine single-phase permeability calculation and a more demanding Shan-Chen multiphase simulation of the drainage of a non-wetting phase. These results are presented in turn in the sections that follow.

2.4.1 Serial CPU Implementation

![Serial Performance of the LBM (Intel Xeon X5355)](image)

Figure 2.9: Serial performance for various implementations of the LBM as a function of domain size. Once the lattice arrays exceed the L2 cache size, performance is limited by available memory bandwidth.

Serial performance was analyzed for the BGK, MRT and Shan-Chen implementations of the LBM based on simulations performed using a single core of a 3 GHz Intel Xeon X5355 processor. Lattice update rates are reported in million-lattice-updates-per-second (MLUPS) as a function of lattice size in Fig. (2.9). In each case, cubic lattices were considered. Results demonstrate that performance is roughly proportional to the computational intensity of the model for domains that fit within the L2 cache (2 × 4 MB). This corresponds to a maximum lattice size of approximately 25^3 for the
<table>
<thead>
<tr>
<th>Authors</th>
<th>Year</th>
<th>Processor</th>
<th>GHz</th>
<th>GB/s</th>
<th>MLUPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wellein, Zeiser, Hager, Donath</td>
<td>2006</td>
<td>Intel Xeon DP</td>
<td>3.4</td>
<td>5.3</td>
<td>4.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AMD Opteron</td>
<td>1.8</td>
<td>5.3</td>
<td>2.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Intel Itanium 2</td>
<td>1.4</td>
<td>6.4</td>
<td>7.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IBM Power4</td>
<td>1.7</td>
<td>9.1</td>
<td>5.9</td>
</tr>
<tr>
<td>Mattila, Hyvälouma, Rossi, Aspnäs, Westerholm</td>
<td>2007</td>
<td>AMD Opteron 246</td>
<td>2.0</td>
<td>-</td>
<td>2.47</td>
</tr>
<tr>
<td>Mattila, Hyvälouma, Timonen, Rossi</td>
<td>2008</td>
<td>AMD Opteron</td>
<td>2.0</td>
<td>-</td>
<td>4.02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Intel Xeon</td>
<td>3.2</td>
<td>-</td>
<td>4.67</td>
</tr>
<tr>
<td>Heuveline, Krause, Latt</td>
<td>2009</td>
<td>AMD Opteron</td>
<td>2.6</td>
<td>6.4</td>
<td>1.9</td>
</tr>
<tr>
<td>McClure, Prins, Miller</td>
<td>-</td>
<td>Intel Xeon</td>
<td>3.0</td>
<td>3.0</td>
<td>4.43</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>Intel Nehalem</td>
<td>2.93</td>
<td>12.5</td>
<td>11.92</td>
</tr>
</tbody>
</table>

Table 2.1: Reported peak performance based on serial execution of the D3Q19 BGK LBM for a variety of processors [183, 117, 116, 77].

<table>
<thead>
<tr>
<th>Model</th>
<th>FLOPs</th>
<th>Memory References</th>
</tr>
</thead>
<tbody>
<tr>
<td>BGK</td>
<td>295</td>
<td>19 read + 19 write = 38</td>
</tr>
<tr>
<td>MRT</td>
<td>975</td>
<td>19 read + 19 write = 38</td>
</tr>
<tr>
<td>Shan-Chen</td>
<td>2050</td>
<td>114 read + 78 write = 192</td>
</tr>
</tbody>
</table>

Table 2.2: Basic computational and memory reference parameters per lattice site for the LBM models considered in this work.
BGK and MRT schemes, whereas the increased storage requirements of the Shan-Chen scheme lead to a maximum of about 20^3. For flow in porous medium systems that are representative of a macroscale representative elementary volume (REV) [17], the more relevant performance estimates are those obtained for larger domain sizes. In these cases, execution speed is primarily memory bandwidth limited with maximum execution speeds of 4.43 MLUPS for the BGK scheme, 3.55 MLUPS for the MRT scheme and 1.25 MLUPS for the two-component Shan-Chen scheme. This memory bandwidth limitation is key for the applications of greatest concern in porous medium science.

Performance of the BGK LBM is consistent with results reported by other authors for the D3Q19 model, tabulated in Table 2.1 with hardware specifications noted when available. Full periodic boundary conditions for the distributions and separate execution of interior and exterior lattice sites impose a slight performance penalty for our implementation, both of which are necessary to carry out porous medium simulations in parallel. Due to similar memory bandwidth demands, the MRT scheme achieves similar performance to BGK model when the problem size exceeds the L2 cache limit. The performance deficit for the MRT scheme indicates that computational intensity does have limited impact on performance, meaning that memory bandwidth is not the sole limiting factor. The performance of the Shan-Chen scheme is consistent with the higher memory bandwidth demand associated with this model.

Total memory requirements are roughly equivalent for the BGK and MRT schemes due to the fact that the distributions represent the only major variable that must be allocated and stored. A total of $19 \times 8 = 152$ bytes are required to store the distributions for a single component at a lattice site. An equivalent number of bytes must be accessed from either data caches or main memory to perform each lattice update in the BGK and MRT schemes. The demand for memory bandwidth is proportional to the number of values which must be accessed from main memory. Due to the fusion of the streaming and collision operations, the total number of memory references per lattice update is given by $Q(R+W)$, where R denotes a memory read and W denotes a write. Memory references for the single component D3Q19 BGK and MRT schemes are shown in Table 2.2, along with those for the two-component Shan-Chen scheme. In the Shan-Chen LBM, arrays must be allocated to store both distribution and density values at each lattice site for each of the two components, requiring $2 \times (19 + 1) \times 8 = 320$ bytes per lattice site. Compared with the BGK and MRT schemes, significantly more memory references are required for implementation of the Shan-Chen scheme. In addition to the streaming requirement for two fluid components, additional memory references are
Table 2.3: Overview of hardware specifications and LBM performance for the parallel systems used in this work.

Required to write the post-streaming density values and separately execute the collision step. The total number of memory references for the Shan-Chen scheme are given by:

\[
\text{MRPLU}_{\text{S-C}} = (R + W)(Q \times N_c) + W(N_c) + (2R + W)(Q \times N_c). \tag{2.30}
\]

Note that it is possible to implement each scheme with a greater number of memory references but it is not possible to do so with less. For the two-component Shan-Chen scheme, approximately five times as many values must be accessed from memory to perform a lattice update compared with the basic MRT approach. Fig. (2.9) indicates a roughly three-fold performance differential between these two methods, suggesting that use of merged storage arrays combined with various compiler optimizations decreases the relative cost of the Shan-Chen scheme.

2.4.2 MPI Implementation

Parallel performance tests were run on three different machines. Topsail is a Linux-based supercomputing system with each compute node consisting of two quad-core 2.3 GHz Intel EMT processors with 2×4MB L2 Cache (ES5345) and 12 GB of memory. Franklin is a Cray supercomputer with each compute node consisting of a 2.3 GHz quad-core AMD Opteron (Budapest) processor with 8 GB of memory. MMQ is a four-socket shared memory machine with a total of 32 Intel Nehalem cores, as illustrated in Fig. (2.2). Additional specifications for these machines are provided in Table 2.3. All scaling results are reported based on simulations performed for a porous medium system generated from homogeneous sphere packings that approach the close-packing density.
Figure 2.10: Parallel efficiency based on a fixed problem size (200^3) for various implementations of the LBM on three supercomputing systems.

Figure 2.11: Parallel efficiency based on constant sub-domain size per core for various implementations of the LBM on (a) Topsail (2 cores/node) and (b) Franklin.
Scaling behavior for a fixed lattice size (200^3) is considered in Fig. (2.10). The plots highlight the fact that memory bandwidth limited implementations tend to scale poorly when adding additional cores on Xeon and Opteron CPU’s. This is a well known consequence of the fact that memory bandwidth does not increase when adding additional cores for these processors. The loss of efficiency is particularly severe on topsail due to the larger number of cores per node and higher single-core performance with lower aggregate memory bandwidth shared between the processor cores. Due to the improved memory architecture of the Nehalem processor, implementations of the LBM scale well across shared memory cores on MMQ. Scaling across nodes ($N_p > 8$ on Topsail, $N_p > 4$ on Franklin) yields much better results than scaling across additional cores on a node due to the fact that the available memory bandwidth increases with the number of nodes. As the number of processor cores increases, communication costs overwhelm computational costs and efficiency declines rapidly. This transition will occur differently for different parallel systems based on the memory bandwidth for communications.

While the efficiency exhibits a similar pattern for the BGK and MRT schemes, communications drive down efficiency much sooner for the Shan-Chen scheme. This is easily understood based on Algs. 1 and 2. For the single-component methods, communication for the distributions overlaps with interior streaming and collision computations, which make up the majority of the computational expenditure. For the Shan-Chen LBM, communication for the distributions overlap with less demanding computations since collision cannot be performed. Communication required to provide density values represents an additional bottleneck.

The plots provided by Fig. (2.10) can be used to determine the minimum subdomain size per core before communication becomes the dominant performance bottleneck. Since the communication-to-computation ratio can be approximated by a surface area-to-volume ratio, maintaining sufficiently large sub-domains $\Omega^{(p)}$ ensures that communication will not limit efficiency. The LBM can be scaled to run on a very large number number of cores by increasing the total domain size with the number of cores. The minimum sub-domain sizes are approximately 50^3 for the BGK/MRT schemes and 64^3 for the Shan-Chen scheme. Maximum sub-domain sizes are determined by the amount of memory available on each node. Efficiency (scaled by MLUPS/core) is shown in Fig. (2.11). These results demonstrate that even for massively parallel simulations, each core is capable of sustaining a relatively constant number of MLUPS on par with the performance obtained for the serial case provided that subdomains are sufficiently
Maximum performance for a domain of size 635^3 using 512 cores on Franklin was 2177.5 MLUPS for BGK, 1715.2 MLUPS for MRT, and 435.2 MLUPS for Shan-Chen. On Topsail, for a domain of size 800^3 simulation using 128 cores produced a maximum performance of 862.7 MLUPS and 485.1 MLUPS for the BGK and MRT schemes, respectively. For Shan-Chen LBM, peak performance was 157.44 MLUPS based on a lattice size of 635^3 distributed across 128 cores. On MMQ, the peak performance on sixteen cores was 170.4 MLUPS for the BGK model, 87.3 MLUPS for the MRT model and 32.8 MLUPS for Shan-Chen. The advantages of the modern setup shown in Fig. (2.2) include a nearly two-fold performance increase in per-core performance with excellent scaling achieved in shared memory. This level of performance is expected to scale equally well in a distributed memory setting.

2.4.3 GPU implementation

![LBM Performance on GPU](image)

Figure 2.12: Performance on NVidia QuadroPlex Model IV Quadro FX 5600 for a range of problem sizes using implementations of the BGK, MRT and Shan-Chen LBM.

Simulations were carried out using a NVidia QuadroPlex Model IV Quadro FX5600 graphics card with 1.5 GB RAM. Limitations of this hardware restrict calculations to single-precision floating point. By varying the number of threads and threadblocks, optimal performance was obtained by choosing $n_{\text{Blocks}} = 32$ and $n_{\text{Threads}} = 128$. While the FX5600 is theoretically capable of accommodating up to 512 threads, there is insufficient register memory to perform calculations for the D3Q19 LBM with $n_{\text{Threads}} > 128$. Domain sizes were varied from 16^3–208^3 for the BGK and MRT schemes, and
for the Shan-Chen scheme, with the maximum size limited by memory requirements. Performance results are shown in Fig. (2.12). Due to higher memory bandwidth and the fact that the FX5600 is only capable of supporting floating point operations, the GPU is capable of achieving roughly an order of magnitude increase in the number of MLUPS relative to a single core CPU. Maximum performance was 171 MLUPS for BGK, 151 MLUPS for MRT and 21 MLUPS for the Shan-Chen LBM.

2.4.4 Model Problems for Porous Media

Permeability Estimation

Simulations were performed using an MRT implementation of the LBM to determine permeability for close-packings of 250, 2,000, 16,000 and 128,000 spheres. The respective lattice sizes for these simulations were 100^3, 200^3, 400^3 and 800^3, thereby ensuring a constant resolution of $D = 16.89$. Pan et. al. determined that a resolution of $D \geq 12$, produces a grid-invariant solution for the velocity field [137]. In this work, a constant external force g_z was used to drive the flow, as described by Pan et. al. [139]. Full periodic boundary conditions ensured that the pressure gradient across the domain was zero. Steady state was determined by monitoring the relative change in the microscopic velocity field at 100-iteration intervals:

$$\Delta u_w^{(100)} = \sqrt{\sum_i [(u_w^i(x_i,t) - u_w^i(x_i,t-100))^2 / \sum_i [u_w^i(x_i,t)]^2].}$$

Relaxation parameter sets optimized for permeability estimation were obtained for the
MRT LBM based on the work of d’Humières et. al. [44]. Permeability estimates were not obtained for the BGK LBM due to the well-known deficiencies of this approach [139].

Two aspects of the approach to steady state are shown in Fig. (2.13). In Fig. (2.13) (a), the magnitude of changes to the microscopic velocity field as measured by Eq. (2.31) are plotted as a function of simulation time. The initial response of the system is largely independent of the domain size due to the acceleration of the velocity field from a uniform zero state. At longer simulation times, the number iterations required to reduce the error is a function of domain size. Permeability estimates computed from the microscopic velocity field every 100 iterations were compared to the permeability obtained from the final velocity field in order to estimate the error, which is plotted in Fig. (2.13) (b). The macroscale permeability was observed to converge more rapidly than the microscale velocity field, which is not surprising given the averaged nature of the macroscale variable. Such calculations are considered routine and representative values for media of the nature used in this work can be obtained for domains on the scale of 200³. Given the lattice update rates previously computed, it is straightforward to show that such computations can easily be done at the REV scale on a single processor in a manageable time.

Drainage Simulation

![Resolution Dependence of the Shan-Chen LBM](image)

Figure 2.14: Resolution dependence for wetting-phase drainage curve based on simulations performed in a packing of 250 equally sized spheres.

Resolution dependence for drainage simulations performed in a packing of 250 equally sized spheres is shown in Fig. (2.14). Lattice sizes were 80³, 100³ and 120³ for
resolutions of $D = 13.51, 16.89$ and 20.27, respectively. Pressure boundary conditions were implemented in order to match a typical experimental setup [200]. The domain was initially saturated with wetting-phase and drained by incrementally increasing the pressure difference p_c. For each point the inlet densities were chosen according to $\rho^n = 1.0 + \frac{3}{2}p_c$, $\rho^w = 0.0$ and the outlet densities are $\rho^n = 0.0$, $\rho^w = 1.0 - \frac{3}{2}p_c$. The sequence of pressure differences was chosen such that the sequence of values $p_c D$ remain constant at all resolutions.

In order to obtain valid equilibrium relationships, fluids must be permitted to equilibrate fully. Various criteria have been used to monitor equilibration of the Shan-Chen LBM. Pan et. al. computed the capillary number, which is problematic due to spurious velocities near interfaces [138]. A saturation-based termination criteria has also been applied [148]. In this work, we evaluated equilibration based on the density fluctuation, defined by:

$$\Delta_{\rho}^{(1k)} = \sqrt{\sum_i \sum_\alpha \left[\rho^\alpha(\mathbf{x}_i, t) - \rho^\alpha(\mathbf{x}_i, t-1000) \right]^2 / \sum_i \sum_\alpha \left[\rho^\alpha(\mathbf{x}_i, t) \right]^2 .}$$

(2.32)

The density fluctuation accounts for both local changes in density values due to the equilibration of the pressure and interface shape in addition to macroscopic fluid flow.

Various factors influence the resolution-dependence of Shan-Chen based equilibria. Since the equilibration of multiphase porous medium systems is typically dominated by interfacial physics, local equilibria are extremely sensitive to small changes in solid boundary locations, which is manifested in the sensitivity of $p_c - s_w$ curves to changes in resolution. Establishing grid independence for the Shan-Chen method is complicated by the fact that maintaining immiscibility and numerical stability limit the parameters G_{wn} and G^s to within a relatively narrow range. As a result, surface tension cannot be maintained as a constant between simulations performed over a wide range of resolutions. For our simulations, the interaction parameters were $G_{wn} = 0.09$ and $G^s = 0.01$. Due to proportionality between pressure and density, the density ratio of the two fluids changes for each point on the capillary pressure-saturation curve. Coarser resolutions require larger density differences, suggesting that the shifting density ratio may bias curves obtained for coarsely resolved systems. Although reasonable qualitative agreement in curve shape is observed at $D = 16.89$, it is clear that higher resolutions are needed to obtain a grid-independent value for each point on the curve.

The approach to the equilibrium state is shown for $D = 16.89$ in Fig. (2.15) (a) and (b). Of principle concern is the length of time required for the saturation to stabi-
Equilibration of the Shan-Chen LBM

(a) Equilibration of the saturation
(b) Equilibration of the density fluctuation.

Figure 2.15: Equilibration of the Shan-Chen LBM for drainage performed in a packing of 250 identical spheres: (a) equilibration of the saturation (b) equilibration of the density fluctuation.

The equilibration for each point follows a similar pattern: initially the saturation changes steadily due to fluid migration; as fluid interfaces reach stable configurations, the saturation plateaus at the equilibrium value. In Fig. (2.15) (b), the approach to equilibrium is considered in terms of the density fluctuation for each point. Oscillations in the density fluctuation are observed as fluid is displaced. Quasi-static displacements are associated with small fluid velocities, and consequently the number of iterations required before the interfaces reach stable configurations is large. Once interfaces stabilize, the density fluctuation decreases monotonically. Spurious currents do not influence the magnitude of the density fluctuation. If permitted, the density fluctuation can be reduced at least as low as 1×10^{-10} for the medium considered.

In addition to the computational challenges presented by long simulation times, the Shan-Chen scheme is also associated with non-physical dissolution phenomena. This behavior is a consequence of the compressible equation-of-state which holds within the bulk phases, and renders the method unsuitable for the simulation of systems that include multiple disconnected features trapped at different capillary pressures. This process is illustrated by Fig. (2.16), in which two features are trapped at different capillary pressures as determined by the solid morphology. The proportionality between the fluid density and pressure causes the equilibrium dissolved concentration of phase n within the w phase to depend on the capillary pressure, implying that two disconnected n fluid regions trapped at different capillary pressures cannot simultaneously reach equilibrium. The n fluid region trapped in the narrower (left) throat will have
Figure 2.16: Non-physical dissolution phenomena observed for two non-wetting fluid blobs trapped at different capillary pressures. Due to the dependence of dissolution equilibrium criteria on the density, the blob trapped at higher capillary pressure (left) dissolves and its mass is subsequently transferred to the blob at lower capillary (right) pressure. Simulation density profiles for non-wetting phase are shown for (a) 1×10^5 iterations (b) 5×10^5 iterations (c) 1×10^6 iterations (d) 1.5×10^6 iterations.
a higher capillary pressure, higher density, and higher solubility compared with the blob trapped at lower capillary pressure. This leads to non-physical mass transfer from blobs trapped at higher capillary pressure to those trapped at lower capillary pressure. Ultimately, this dissolution process will continue until only one blob remains. For simulations carried out with pressure boundary conditions, the existence of disconnected phases is precluded at equilibrium, and only \(n \)-phase connected to the reservoir can remain at equilibrium. This phenomena explains the apparent absence of disconnected phases from the simulations reported by Porter et. al. [148]. The existence of disconnected phases observed by Pan et. al. is due to termination prior to equilibrium as a consequence of the termination criteria used [138]. Several alternative multiphase formulations exist which may provide a more appropriate description of disconnected features, but these methods have not yet been applied in a porous medium setting [85, 101, 122, 97].

2.5 Discussion

Typical simulation scenarios for the LBM in porous medium systems are limited either by total simulation time or by the amount of memory required to store the lattices. The latter case is exemplified by permeability calculation, in which very large lattices sizes may be considered due to the relatively small number of iterations needed to obtain a steady state solution for the velocity field. The maximum domain size considered in this work contained 128,000 equally-sized spheres, leading to a simulation domain consisting of \(800^3 \) lattice nodes. For this case, 80,000 iterations of the MRT LBM produce a permeability estimates accurate to seven significant figures. These results can be achieved without any loss of efficiency due to the fact that excellent scaling can be achieved for MPI implementations as long as sufficiently large sub-domains (> \(50^3 \)) are maintained for each processor core. For the MRT LBM, the lattice update rate can be maintained at 3.0–3.5 MLUPS per processor core even in massively parallel simulation. The primary performance drop-off is due to adding additional cores of a multi-core CPU, a well known limitation that can be alleviated by using improved hardware such as the intel Nehalem processor, which demonstrates excellent scaling across shared memory cores.

Multiphase drainage simulations performed using the Shan-Chen method highlight challenging computational realities for simulating multiphase flows in porous media. High resolution is necessary for grid-independent results, and the number of iterations
required to allow the system to equilibrate are several orders of magnitude higher than for the single-phase case. The primary reason for this difference is that the convergence to steady state is limited by the mach number in single-phase simulations, whereas multiphase simulations achieve steady state only after rearrangements of fluid interfaces, a process which is limited by the typically small flow velocity. While the Shan-Chen LBM is demonstrated to scale to 1.0 MLUPS per processor core as long as subdomain sizes are larger than 64^3, total simulation time severely restricts the maximum domain size that can be considered. These results highlight the potential importance of algorithm optimizations that reduce the number of lattice updates required per-iteration for multiphase LBM. Sophisticated algorithms that utilize local grid refinement in the vicinity of interfaces and/or permit larger time steps have the potential to address this issue directly and significantly reduce the computational burden associated with multiphase simulation. It is also pointed out that non-physical behavior makes the Shan-Chen LBM ill-suited for simulation of porous medium systems. It is likely that more computationally intensive methods would be necessary to properly describe fluid physics, thereby increasing the computational burden associated with solution of this problem.

The capability for GPU’s to accelerate the LBM is most evident for the case of single-phase flow, for which the memory accesses can be effectively hidden by computations. Relative speedup is less dramatic for the two-component Shan-Chen scheme, an effect which is attributed to the fact that fusion of the streaming and collision cannot be achieved and twice as many memory references must be performed during the collision step in order to incorporate the interaction forces. While the GPU speedup relative to serial CPU implementation is significant for all schemes considered, higher lattice update rates can still be achieved via MPI implementation utilizing many CPU cores. Since distributed memory parallelization is necessary to achieve large domain sizes, MPI implementations utilizing many GPU’s across multiple nodes would be necessary to perform most porous medium simulations.

While the use of GPU’s to accelerate the LBM is attractive, memory system improvements to CPU’s such as those implemented in the Nehalem processor lead to similar performance for typical configurations. For more complex problems such as multiphase simulation, sophisticated flow control and pre-fetching allow CPU’s to out-perform GPU’s when scaling across nodes. Using 8 cores of the Nehalem processor produced a lattice update rate of 17.44 for double precision floating point calculations, whereas the GPU achieved only a slightly higher lattice update rate for a less inten-
sive single precision calculation. The implications for more sophisticated multiphase schemes, which require significantly more memory references in the interfacial force computation, may further disadvantage GPU implementations in this respect.

2.6 Conclusions

1. Performance of the LBM is dominated by the number of memory references required by the scheme.

2. Performance of the LBM on a CPU core is sensitive to the choice of data structures and access patterns. Optimization strategies addressing these considerations are mature and extensible to a wide range of schemes. While streaming step optimization is the primary focus for single component schemes, multi-component schemes introduce significantly more memory references and impose additional algorithmic constraints.

3. Implementation of the LBM on a GPU can be associated with a significant speedup relative to serial CPU approaches due to the higher memory bandwidth of the GPU. The speedup associated with the multiphase Shan-Chen LBM is less dramatic than for the single component approaches, an effect that is attributed to advantages gained from sophisticated compiler optimizations that bolster the CPU performance for this scheme. The multi-core performance of the Nehalem processor is competitive with that of the GPU and considerably better than for the previous generation of CPU’s.

4. Permeability estimates can be reliably obtained for very large porous medium systems due to rapid convergence to steady state and excellent scaling for large domain sizes on distributed memory supercomputers.

5. Simulation of multiphase porous medium flows are constrained by significant challenges that cannot be overcome based on existing hardware, algorithms, and optimization strategies. While good scaling can be achieved for the multi-component Shan-Chen LBM, long equilibration times severely limit simulation sizes. This result underscores the importance associated with development of schemes that utilize adaptive grid refinement and allow larger time steps, thereby reducing the number of lattice updates required to reach steady state solutions.
6. New multiphase porous medium LBM algorithms will be needed to resolve the important problem of two-fluid-phase flow and quasi-static distributions for systems that contain disconnected non-wetting phases.
Chapter 3

Morphological Tools

3.1 Approximation of Interfacial Properties in Multiphase Porous Medium Systems

3.1.1 Introduction

The standard continuum approach for modeling multiphase flow in porous medium systems avoids explicit description of complex microscopic phenomena by making use of closure relations that do not rigorously incorporate microscale physics. For example, commonly used closure relations state a functional dependence between capillary pressure and fluid saturation [176, 27] that depend upon the system history due to non-wetting phase entrapment and other pore-scale effects. It has been posited that the specification of additional variables, including specific interfacial areas, common curve lengths and interfacial curvatures, may reduce or eliminate the hysteresis observed in traditional closure relations [57]. Pore-scale, or microscale, investigations of this hypothesis have been undertaken using network models [32, 75] and experimental approaches using two-dimensional micro-models [35].

In addition to evidence that specification of interfacial areas is necessary to determine the thermodynamic state of a multiphase system, interfaces also play an important role in other processes. In porous medium systems, interfaces must be taken into account in order to rigorously develop equations for conservation of mass, momentum, and energy [57]. Furthermore, because interphase mass exchange takes place at interfaces, interfacial areas are also important to the modeling of processes such as dissolution and sorption [125, 90]. For these reasons, resolving the role of interfacial areas is an essential step in the development of multiphase porous medium models that rigorously connect
microscale characteristics to macroscale models. Interfacial curvatures and common curve lengths are also of interest in evolving theories [57], and these quantities have received little attention in the porous medium literature.

The nature of porous media typically makes simulation as well as direct measurement of microscale quantities difficult. As a consequence, many of the methods that have been used to estimate interfacial areas rely upon assumptions that are not ideal; and it is often difficult to assess the magnitude of errors that result. These methods include theoretical approaches to compute interfacial areas based upon capillary pressure-fluid saturation relations using thermodynamic principles in conjunction with assumptions about the geometry of the entrapped fluid [25, 136]. Interfacial areas have also been estimated with pore-network models, in which fluid flow is simulated through porous media constructed using idealized pore geometries, such as spherical pore bodies connected by cylindrical throats, and certain other simplifying assumptions. Because of the simplified geometry, interfacial areas and common curve lengths can be computed easily in network models [46, 20, 55]. Although such models do provide a window into pore-scale phenomena, simplifications employed can contribute to deviations in the behavior of ideal systems compared to the real system of concern.

In cases where interfacial areas have been measured experimentally, techniques utilizing interfacial tracers, such as surfactants, have been the predominant approach [158, 160, 5, 157, 94]. Recently, Cheng et. al. [35] synthesized two-dimensional porous medium networks, which allowed them to examine the interfaces for a two-fluid-phase system. Magnetic resonance imaging has been used to resolve interfaces in three-dimensional multiphase systems [90]. X-ray computed micro-tomography has also been used to obtain high resolution images of porous media and interfacial areas [38]. In each of these instances, it was implied that the marching cubes (MC) algorithm was used to compute the interfacial area, but no discussion of numerical error was presented. Other authors have experienced difficulty achieving accurate area estimates when using the MC algorithm for porous medium work [40]. In order to develop constitutive relations that can be used in predictive models, it is necessary to extract accurate estimates of interfacial areas and related quantities.

Numerical simulation of fluid flows through realistic porous media presents an attractive opportunity to study details of multiphase flow at the microscale. Sophisticated methods such as the lattice Boltzmann (LB) method are capable of recovering hysteretic behavior observed in experimental systems [141]. Because LB methods do not typically track the interface between fluids, these interfaces must be extracted afterwards. Meth-
ods to estimate interfacial properties have not yet been advanced specifically to deal with the nuances of such microscale simulations, which in principle offer challenges and opportunities beyond those of simplified network models.

The overall goal of this work is to develop computational tools needed to approximate accurately interfaces, common curves, and interfacial curvatures for two-fluid-phase porous medium systems. The specific objectives of this work are: (1) to develop methods that improve the estimation of interfacial quantities in multiphase porous medium systems compared to MC methods currently in use; (2) to develop algorithms showing the implementation of these methods; (3) to advance an approach to approximate interfacial quantities resulting from LB simulation of multiphase porous medium systems; (4) to assess the accuracy of the methods developed compared to extant approaches; and (5) to consider ways in which interfacial property estimations can be further improved.

3.2 Methods

The MC algorithm was originally designed as a tool to construct surfaces of constant density from three-dimensional medical datasets [108]. Subsequently, a number of authors proposed improvements to the original algorithm to overcome shortcomings and improve efficiency [156, 43, 199]. Although the MC algorithm has been used to compute interfacial areas in porous medium systems, the resulting estimates have not been particularly accurate [40]. We seek to improve and extend these results for a range of multiphase porous medium systems.

We consider a regularly shaped domain $\Omega \subset \mathbb{R}^3$, such as a cube or rectangular prism, with a boundary Γ. The external closure of the domain is given as $\Omega = \Omega \cup \Gamma$. The domain is comprised of up to three phases such that $\Omega = \Omega_w \cup \Omega_n \cup \Omega_s$, where the subscripts $w, n,$ and s specify a wetting fluid phase, a non-wetting fluid phase, and a solid phase. Consider a general set of phase qualifiers, which we denote using the subscripts $\alpha, \beta, \text{ and } \gamma$, where it is assumed that $\alpha \neq \beta \neq \gamma$. For a given phase α, the closure of the domain is $\bar{\Omega}_\alpha = \Omega_\alpha \cup \Gamma_\alpha$, where $\Gamma_\alpha = \Gamma_{ai} \cup \Gamma_{ae}$, the subscript i denotes an internal boundary, and the subscript e denotes an external boundary, such that $\Gamma_{ae} \subset \Gamma$ and $\Gamma_{ai} = \bigcup_{\beta \neq \alpha}(\bar{\Omega}_\alpha \cap \bar{\Omega}_\beta) \not\subset \Gamma$.

The goal of this work is to identify and measure two types of entities, interfacial areas, which we define as $\Omega_{\alpha\beta} = \bar{\Omega}_\alpha \cap \bar{\Omega}_\beta \subset \mathbb{R}^2$; and common curves, which we define as $\Omega_{\alpha\beta\gamma} = \bar{\Omega}_\alpha \cap \bar{\Omega}_\beta \cap \bar{\Omega}_\gamma \subset \mathbb{R}^1$. The extent of Ω has a measure of volume V, Ω_α,
has a measure of volume V^α, $\Omega_{\alpha\beta}$ has a measure of area $A^{\alpha\beta}$, and $\Omega_{\alpha\beta\gamma}$ has a measure of length $L^{\alpha\beta\gamma}$. Specific measures are often of interest for macroscale porous medium systems and are described as the volume fraction $\epsilon^\alpha = V^\alpha / V$, the specific interfacial area $e^{\alpha\beta} = A^{\alpha\beta} / V$, and the specific common curve length $e^{\alpha\beta\gamma} = L^{\alpha\beta\gamma} / V$. Quantities such as the mean microscale curvature $J_{\alpha\beta}$ of $\Omega_{\alpha\beta}$ and the macroscale counterpart $J^{\alpha\beta}$ are also of interest. More complete definitions of systems, entities, and scales relevant to the multiphase systems of concern in this work are available in the literature [127].

The methods developed in this work provide approximations for these macroscale geometric quantities and a basis upon which graphical reconstruction may be based. In the sections that follow, we summarize the MC approach, a porous media marching cubes (PMMC) approach, a higher order porous media marching cubes (HOPMMC) approach, approximation of curvatures, and data source issues.

3.2.1 Marching cubes algorithm

The MC algorithm is a procedure that may be used to construct an approximation of $\Omega_{\alpha\beta}$, which we will refer to as $\tilde{\Omega}_{\alpha\beta}$. This reconstructed surface may be used for some combination of graphical visualization and estimation of the extent, say $A^{\alpha\beta}$ or $e^{\alpha\beta}$, and other properties. This construction requires two components: a discretization of Ω, and a general function containing information related to the distribution of phases $G(x)$ defined, at least approximately as $\tilde{G}(x)$, $\forall x \in \Omega$. These two components will be summarized in turn.

Consider a domain aligned with a Cartesian coordinate system $\Omega = [0, \ell] \times [0, \ell] \times [0, \ell] \subset \mathbb{R}^3$ of length ℓ on each side discretized with a mesh \mathcal{M}^h consisting of n evenly spaced nodes along each side of the domain for a total of n^3 nodes. The node spacing is $h = \ell / (n - 1) = \Delta x = \Delta y = \Delta z$. \mathcal{M}^h can be used to describe a set of cubes $\mathcal{C} = \{\Omega_l | l = 1, \ldots, n^3\}$, where $\Omega_l = [(i-1)\Delta x, i\Delta x] \times [(j-1)\Delta y, j\Delta y] \times [(k-1)\Delta z, k\Delta z]$, $n_c = n - 1$, and $l = i + (j-1)n_c + (k-1)n_c^2$ and i, j, k refer to integer indexes to a cube location defined by eight bounding nodes in \mathcal{M}^h in the x, y, and z Cartesian coordinate direction, respectively. Each cube Ω_l has boundary Γ_l, which contains a set of 12 edges $\mathcal{E}_{c,l} = \{e_{li}, i = 1, \ldots, 12\}$ that are each parallel with one of the coordinate directions and connect a pair of the eight nodes from \mathcal{M}^h that together bound cube Ω_l. The set of nodes comprising the end points of the i edge in Ω_l are denoted $N_{li} = \{n_{li1}, n_{li2}\}$, the set of nodes bounding Ω_l are denoted $N_{c,l} = \bigcup_{i=1,\ldots,12} N_{li}$, and the set of spatial locations corresponding to these bounding nodes are $X_l = \{x_i, i = 1, \ldots, 8\}$. 54
The set of all nodes in \mathcal{M}^h are defined as $N = \{ n_i, i = 1, ..., n^3 \}$.

$G(x)$ represents a general function containing information related to the distribution of phases. Because many different approaches exist to measure and represent phase distributions in a multiphase system, the specific nature of this function will depend upon details of the application. For the time being, we will assume $G(x)$ is a continuous, smooth, real-valued function that may be evaluated at all nodes in \mathcal{M}^h. We will furthermore assume that a value ν is known such that $G(x) = \nu$ for $x \in \Omega_{\alpha\beta}$. Thus the approximation of $\Omega_{\alpha\beta}$ reduces to approximating the surface where $G(x) = \nu$, which is accomplished using linear interpolation along the set of edges $E_{c,l}$ within each Ω_l using values of $G(x)$ at the eight nodes from \mathcal{M}^h that bound Ω_l and form the members of the end-point nodal sets N_{li}.

Consider the location of two end points of any edge to be x^- and x^+ and the corresponding general distribution function values corresponding to these end points to be $G(x^-)$ and $G(x^+)$. A vertex where $G(x) = \nu$ will exist along the edge if and only if

\[
[G(x^+) - \nu][G(x^-) - \nu] \leq 0 \quad (3.1)
\]

If a vertex exists along the edge, the location of the vertex may be approximated using linear interpolation as

\[
x_v = x^+ + \frac{G(x^+) - \nu}{G(x^+) - G(x^-)}(x^- - x^+) \quad (3.2)
\]

Evaluating Eqs. (3.1) and (3.2) for each edge in a cube, and eliminating duplicates that fall at nodes, will lead to a set of vertices $\mathcal{V}_{\alpha\beta,l}$ such that the number of members in the set is bounded by $0 \leq \text{Card}(\mathcal{V}_{\alpha\beta,l}) \leq 12$. A non-unique set of triangles $\mathcal{T}_{\alpha\beta,l}$ can be constructed from the set of $\mathcal{V}_{\alpha\beta,l}$ where $\text{Card}(\mathcal{T}_{\alpha\beta,l}) = \max[0, \text{Card}(\mathcal{V}_{\alpha\beta,l}) - 2]$. To preserve continuity, if multiple vertices exist for a face of a cube, they should be connected identically for both cubes bounded by the face. Global sets of vertices $\mathcal{V}_{\alpha\beta}$ and triangles $\mathcal{T}_{\alpha\beta}$ can be constructed by concatenating all unique entries in all local cube sets $\mathcal{V}_{\alpha\beta,l}$ and $\mathcal{T}_{\alpha\beta,l}$, respectively. The global sets can be used for graphical purposes, and estimation of various measures of the system.

To aid clarity, we illustrate the MC algorithm for a two-dimensional system in Fig. 3.1. In this figure, the shading indicates the value of $G(x)$ and the surface of interest is located at $G(x) = 0.5$. The white square indicates an example local cell and two vertices exist in this cell, which follows from examination of the values at the nodes.
Figure 3.1: Analog of the MC algorithm for a two-dimensional system illustrating computation of the contour defined by $G(x) = 0.5$.

that bound the cell in light of Eqs. (3.1) and (3.2). In this case, the boundary between the phases results in a series of line segments and the example cell includes one such line segment. The extension to three-dimensional systems leads to a larger number of potential vertices per cube, which can be grouped to form a set of triangular planes that approximate $\Omega_{\alpha\beta}$.

3.2.2 Porous media marching cubes approach

The MC approach can be used to construct a surface from a single function $G(x)$. For the multiphase systems of concern in this work, the situation is complicated because the domain may consist of three phases, three interfaces, and a common curve. To construct these entities, two functions, $F(x)$ and $S(x)$, will be used. The quantities of interest for a three-phase system are described in Table 3.1. These are logical extensions of the sets described in detail in §3.2.1 and for which these global sets have corresponding local counterparts for each cube. Once computed, these sets form the basis for calculating
interfacial areas, common curve lengths, and other quantities of interest. Computing the members of these sets depends upon the nature of the data available, the smoothness of this data, the fraction of the domain over which each source of data is well-defined, and modifications made to the basic MC algorithm.

Table 3.1: Sets needed for the PMMC algorithm.

<table>
<thead>
<tr>
<th>Set</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mathcal{N}{cl, li, E{cl, l}, X_l}$</td>
<td>nodes bounding cube, nodes forming all edges i, edges in cube l, and locations of nodes bounding cube</td>
</tr>
<tr>
<td>$V_{wn}, V_{ns}, V_{ws}, V_s$</td>
<td>vertices on the respective surface</td>
</tr>
<tr>
<td>$T_{wn}, T_{ns}, T_{ws}, T_s$</td>
<td>triangles comprised of vertices on the respective surface</td>
</tr>
<tr>
<td>\mathcal{L}_{wns}</td>
<td>line segments consisting of pairs of vertices from V_{wns}</td>
</tr>
</tbody>
</table>

Consider the common case of a three-phase system in which a smooth, continuous, differentiable function related to the location of the solid phase $S(x)$ is defined $\forall x \in \Omega$. Also, a second smooth, continuous, differentiable function related to fluid properties $F(x)$ is defined $\forall x \in \Omega$. Such functions can result from either experimental measurements or computational approaches applied to three-phase porous medium systems. The surface of the solid phase corresponds to $S(x) = \nu_s$, and Ω_{wn} corresponds to $F(x) = \nu_{wn}$. In some cases, it may be true that $F(x)$ is only defined $\forall x \in \Omega_w \cup \Omega_n$. An example of this would be if $F(x)$ corresponds to the fluid density. Our PMMC algorithm is designed to construct the objects of interest for either of these cases.

The sets listed in Table 3.1 are constructed locally in each cube using Algorithm 3. For each cube, local sets corresponding to nodes, edges, and the corresponding spatial locations are formed. One of five conditions must hold for each cube given the values of $S(x)$ and $F(x)$ at the nodes in the cube: (1) all nodes have values that correspond to a single phase Ω_α, thus no interfaces or common curve segments exist; (2) all of the nodes are in a fluid phase with some values of $F(x) \leq \nu_{wn}$ and some value of $F(x) > \nu_{wn}$, thus only the Ω_{wn} interface exists; (3) some of the nodes have $S(x) \leq \nu_s$ and are in Ω_s, and the rest of the nodes have $F(x) \leq \nu_{wn}$ and are in Ω_w, thus only the Ω_{ws} interface exists; (4) some of the nodes have $S(x) \leq \nu_s$ and are in Ω_s, and the rest of the nodes have $F(x) > \nu_{wn}$ and are in Ω_n, thus only the Ω_{ns} interface exist; and (5) some of the nodes have $S(x) \leq \nu_s$ and are in Ω_s, some of the remaining nodes have $F(x) \leq \nu_{wn}$ and are in Ω_w, and the rest of the nodes have $F(x) > \nu_{wn}$ and are in Ω_n, thus interfaces $\Omega_{ws}, \Omega_{ns}, \Omega_{wn}$, and common curve Ω_{wns} all exist within the cube. For Cases 2–4 the standard MC algorithm is applied using the $F(x) = \nu_{wn}$ or $S(x) = \nu_s$ condition to
Algorithm 3 PMMC Algorithm

for $l = 1, ..., n^3$ do
 Form $N_{c,l}, N_{l}, E_{c,l}$ and X_l
 if $x_i \in \Omega_\alpha \forall x_i \in X_l, \alpha \in \{w, n, s\}$ then
 no surfaces or common curve segments exist in cube l
 else if $x_i \in \{\Omega_w, \Omega_n\} \forall x_i \in X_l$ then
 apply the MC algorithm using $F(x) = \nu_{wn}$ to find $V_{wn,l}$ and $T_{wn,l}$
 else if $x_i \in \{\Omega_w, \Omega_s\} \forall x_i \in X_l$ then
 apply the MC algorithm using $S(x) = \nu_{ws}$ to find $V_{ws,l}$ and $T_{ws,l}$
 else if $x_i \in \{\Omega_n, \Omega_s\} \forall x_i \in X_l$ then
 apply the MC algorithm using $S(x) = \nu_{ns}$ to find $V_{ns,l}$ and $T_{ns,l}$
 else
 apply the MC algorithm using $S(x) = \nu_s$ to find V_s and T_s
 find $F(x) \forall x \in V_s$
 if $F(x)$ is defined $\forall x_i \in X_l$ then
 use linear interpolation to form $V_{wns,l}$ and $L_{wns,l}$
 else
 use extrapolation to form $V_{wns,l}$ and $L_{wns,l}$
 end if
 use V_s and $V_{wns,l}$ to form V_{ws} and V_{ns}
 form $T_{ws,l}$ and $T_{ns,l}$
 form $V_{wn,l}$ from $E_{c,l}$
 form $T_{wn,l}$ from $V_{wns,l}$ and $V_{wn,l}$
 end if
update global sets $V_{wn}, V_{ws}, V_{ns}, V_{wns}, T_{wn}, T_{ws}, T_{ns}$, and L_{wns} as needed
end for
approximate vertices on the interface as indicated in Algorithm 3.

Case 5 is the most complicated case and requires several steps, since three interfaces and one or more common curve segments exist in the cube. The MC algorithm is first applied for $S(\mathbf{x}) = \nu_s$ resulting in \mathcal{V}_s and \mathcal{I}_s. This information is sufficient to compute the area of the solid phase but not to subdivide this area into Ω_{ws} and Ω_{ns}. The subdivision requires an approximation of $F(\mathbf{x})$ on the solid surface.

If $F(\mathbf{x})$ is defined within Ω_s, linear interpolation is applied along the edges of the cube to approximate $F(\mathbf{x})$ for all solid-phase vertices in \mathcal{V}_s. If $F(\mathbf{x})$ is undefined in Ω_s, an extrapolation procedure is applied in order to determine these values. The extrapolation used in our algorithm is the polynomial obtained as a result of Algorithm 4. Suppose a solid phase vertex is found on edge e_i. The end points of this edge are denoted by \mathbf{x}^+ and $\mathbf{x}^−$ such that $S(\mathbf{x}^+) > \nu_s$ and $S(\mathbf{x}^−) < \nu_s$. Since $\mathbf{x}^− \in \Omega_s$, $F(\mathbf{x}^−)$ is undefined and we look for fluid nodes in the direction of $\mathbf{x}^+ − \mathbf{x}^−$ to construct an extrapolation polynomial \hat{f}. The value at the solid phase vertex may then be found by evaluating this polynomial.

Algorithm 4 Construction of extrapolation polynomial

\[
\begin{align*}
 h & \leftarrow \mathbf{x}^+ − \mathbf{x}^− \\
 \text{if } \{\mathbf{x}^+ + h, \mathbf{x}^+ + 2h\} & \in \Omega_w \cup \Omega_n \text{ then} \\
 a & \leftarrow F(\mathbf{x}^+) \\
 b & \leftarrow \tfrac{1}{2} \left(3F(\mathbf{x}^+) − 4F(\mathbf{x}^+ + h) + F(\mathbf{x}^+ + 2h)\right) \\
 c & \leftarrow \tfrac{1}{2} \left(F(\mathbf{x}^+) − 2F(\mathbf{x}^+ + h) + F(\mathbf{x}^+ + 2h)\right) \\
 \hat{f}(\mathbf{x}^+ + \rho h) & = a + b\rho + c\rho^2 \\
 \text{else if } \{\mathbf{x}^+ + h\} & \in \Omega_w \cup \Omega_n \text{ then} \\
 a & \leftarrow F(\mathbf{x}^+) \\
 b & \leftarrow F(\mathbf{x}^+ + h) − F(\mathbf{x}^+) \\
 \hat{f}(\mathbf{x}^+ + \rho h) & = a + b\rho \\
 \text{else} \\
 \hat{f}(\mathbf{x}^+ + \rho h) & = F(\mathbf{x}^+) \\
 \end{align*}
\]

Based upon these interpolated or extrapolated values, the set of three vertices in each member of \mathcal{I}_s can be determined to be in either Ω_w or Ω_n. If all vertices in a triangle are in a single phase, that member of \mathcal{I}_s is added to either \mathcal{I}_{ws} or \mathcal{I}_{ns} as appropriate. For cases in which the vertices in a solid-phase triangle are in a mixture of both of the fluid phases, it is necessary to locate points on the common curve and subdivide the triangle. This is accomplished using linear interpolation of $F(\mathbf{x})$ along edges of the
triangle to find points on the solid surface where the approximation $\tilde{F}(x) = \nu_{wn}$, which is by definition a common curve vertex and a member of the \mathcal{V}_{wns}. This procedure is shown in Fig. 3.2.

Next, linear interpolation is performed along edges in $\mathcal{E}_{c,l}$ that are bounded by fluids of a different type at each endpoint, yielding vertices \mathcal{V}_{wn}. \mathcal{V}_{wns} and \mathcal{V}_{wn} are combined to approximate Ω_{wn} and populate \mathcal{T}_{wn}. To aid clarity, the PMMC procedure for a cube consisting of Ω_s, Ω_w, and Ω_n is depicted in Fig. 3.3, where discrete values of $F(x)$ at vertices are shown and $\nu_{wn} = 75$.

Figure 3.2: Solid-phase triangles containing a common curve segment are subdivided along this segment, creating three triangles, which are then incorporated into the appropriate surface. In this example, two of the vertices, and resultant triangles, are located in a region where $\tilde{F}(x) > \nu_{wn}$ and are assigned to Ω_{ns}, and the other triangle becomes part of the Ω_{ws}.

3.2.3 Higher order porous media marching cubes approach

The MC and PMMC cubes outlined above are based upon linear interpolation within a cube bounded by eight nodes. In some situations, higher order approximations may be justified and yield more accurate approximations of the surfaces and common curve. One of the simplest extensions to the linear approximation scheme used thus far is a trilinear approximation, which can be written as

$$\tilde{F}(x) = a_0 + a_1 x + a_2 y + a_3 z + a_4 xy + a_5 xz + a_6 yz + a_7 xyz$$

(3.3)

where a_i are constants determined by matching values of \tilde{F} to F at all nodes in the cube, and $x, y, \text{ and } z$ are the spatial coordinates. Because this approximation is linear along
Figure 3.3: The construction of the component surfaces and common curve for a grid cell in which all three phases are present: (a) solid surface (grey) is constructed using the MC algorithm and extrapolated values of $F(x)$ are estimated at solid phase vertices; (b) $V_{wns,t}$ (orange) are found using by using linear interpolation between pairs of solid-phase vertices; (c) the solid surface is subdivided along the common curve to form members of T_{ns} (blue) and T_{ws} (brown); and (d) Ω_{wn} is approximated using V_{wns} and V_{wn} yielding \mathcal{T}_{wn} (green).
edges, it is consistent with the approximations used in the MC and PMMC algorithms to locate vertices along edges. However, approximation Eq. (3.3) between pairs of such vertices is not linear and thus its use requires a nonlinear extension of the method presented previously.

A nonlinear extension, which we refer to as the higher order porous media marching cubes (HOPMMC) approach, was implemented using the locations represented by V_{wns} as initial guesses for a Newton iteration scheme intended to locate more accurately a set of common curve vertices. Since these points lie in \mathbb{R}^3, the following three equations must be satisfied simultaneously at any such point

$$\tilde{F}(x) - \nu_{wn} = 0 \quad (3.4)$$
$$\tilde{S}(x) - \nu_{s} = 0 \quad (3.5)$$
$$n \cdot (x - x_0) = 0 \quad (3.6)$$

where \tilde{S} is a trilinear approximation of S, $n = [\nabla \tilde{F}(x_0) \times \nabla \tilde{S}(x_0)]/|\nabla \tilde{F}(x_0) \times \nabla \tilde{S}(x_0)|$ is a unit normal vector specifying the plane in which the final approximation will lie, and x_0 is the initial estimate of the common curve point based upon repeated linear interpolation described in the PMMC algorithm. The solution to Eqs. (3.4)–(3.6) were used to update $V_{wns,l}$ and $L_{wns,l}$.

The estimated length of the common curve was refined using linear interpolation between pairs of connected vertices from V_{wns} as initial guesses to determine additional vertices on Ω_{wns} again using eqns (3.4)–(3.6). The improved and new vertices in V_{wns} were in turn used to refine \mathcal{I}_{ws}, \mathcal{I}_{ns}, and \mathcal{T}_{wn}.

The HOPMMC approach is illustrated in Fig. 3.4. In this example, the common curve segments shown in Fig. 3.3 (d) were each subdivided one time and the locations of all vertices were refined by solving Eqs. (3.4)–(3.6). We examined various levels of refinement.

3.2.4 Approximation of mean curvatures

In addition to the surfaces and common curve computed using the PMMC and HOPMCC algorithms, we also estimated the mean curvature of $\Omega_{\alpha\beta}$, which we refer to as $J_{\alpha\beta}$ at the microscale and $J^{\alpha\beta}$ when this quantity is integrated over the entire microscale surface area to yield a single macroscale average.

The curvature of the Ω_{wn} surface was computed after first noting that because the surface is defined by an isovalue of the function F, the gradient of F is orthogonal to
Figure 3.4: Refinement of the common curve resulting from a single subdivision of the common curve line segments shown in Fig. 3.3 (d) and refinement of all locations using the HOPMMMC approach.

\[\Omega_{wn}. \] Thus the unit normal was computed as:

\[n_{wn} = \frac{\nabla F}{|\nabla F|} \] (3.7)

From Eq. (3.7), the mean curvature \(J_{wn} = \nabla \cdot n_{wn} \) at points on \(\Omega_{wn} \) may be calculated as

\[J_{wn} = \nabla \cdot \frac{\nabla F}{|\nabla F|} = \left(F_{xx}(F^2_y + F^2_z) + F_{yy}(F^2_x + F^2_z) + F_{zz}(F^2_x + F^2_y) - 2F_{xy}F_xF_y \right) /
\left((F^2_x + F^2_y + F^2_z)^{3/2} \right) \] (3.8)

where the subscripts denote differentiation of \(F \).

Eq. (3.8) was approximated using centered difference approximations to compute all needed derivatives of \(F \) at all nodes in a cube. The values of these derivatives were then used to linearly interpolate values at the vertices \(\eta_{wn,l} \) and used to evaluate \(J_{wn} \) at these vertices. \(J_{wn} \) was computed as an area-weighted average over the entire domain

\[J_{wn} = \frac{\int_{\Omega_{wn}} J_{wn}dS}{\int_{\Omega_{wn}} dS}. \] (3.9)

Using the surfaces constructed with the PMMC approach, these integrals can be evaluated numerically. Curvatures \(J_{ws} \) and \(J_{ns} \) were computed using a similar approach.
3.2.5 Data source

In many cases, raw data will not be in the format required by the PMMC algorithm. In this section, we discuss schemes that allow us to obtain input data in the proper format from various sources. Generally, two primary challenges must be addressed in order to apply this approach correctly: (1) functions F and S must be identified and measured to determine their values at nodes in \mathcal{M}^h, and (2) appropriate isovalues that correspond to the surfaces of interest must be identified. In practice, the functions F and S will correspond to different physical quantities depending on the origin of the data. It is not feasible to develop well-defined guidelines regarding the data formatting issues for all possible situations. Instead, we provide a selection of example cases corresponding to likely scenarios that give insight into considerations that also apply to more general circumstances.

![Figure 3.5: Slice of a porous medium data set generated using the LB method: (a) F is comprised of the fluid density distribution and shown by color shading, and (b) the known location of a spherical solid-phase is used to create a signed-distance function and Ω_s is represented in black after being constructed using the PMMC algorithm.](image)

Fig. 3.5 (a) shows a slice of a porous medium data set in which $F(\mathbf{x})$ is the fluid density determined from a LB simulation. A value of zero is assigned to all nodes that are in Ω_s to denote that the fluid density is undefined in this region. In this case, the position of the solid phase is known a priori, and the solid surface may be reconstructed by using this knowledge to determine $S(\mathbf{x})$. The solid phase is composed of n_s spheres with centers c_s and radii r_s, where $s = 1, \ldots, n_s$, and we choose $S(\mathbf{x})$ to be the signed distance from a point \mathbf{x} in \mathcal{M}^h to the nearest surface of the solid, which we compute
\[S(\mathbf{x}) = \min \{ ||\mathbf{x} - \mathbf{c}_s||_2 - r_s \}, \text{ for } s = 1, \ldots, n_S \]

(3.10)

By definition, \(S(\mathbf{x}) = 0 \) corresponds to the surface of the solid phase. Consequently, if we evaluate \(S \) at every grid point, we can use the PMMC algorithm to construct an approximate representation of the solid surface. Performing this reconstruction yields the representation of the solid surface shown in Fig. 3.5 (b). For cases in which the functional form of \(S(\mathbf{x}) \) is not known explicitly but values are known at grid nodes, the same approach may be applied.

A case of interest arises in model systems where exact knowledge of the solid phase exists and is used as a basis for microscale simulations using for example the LB method. In this case, \(F \) is a density function measure indicative of composition and it is only known at nodes within the pore space, but the solid phase information is exact and can be used directly. An algorithm representing this important class of application is shown in Fig. 3.6.

![Figure 3.6: Flow chart depicting the formatting procedure used to obtain input data for the PMMC approach using information available from a porous medium LB simulation.](image)

For cases in which \(F(\mathbf{x}) \) is undefined in \(\Omega_s \), even though we are able to determine an isovalue such that \(F(\mathbf{x}) = \nu_{wn} \) corresponds to \(\Omega_{wn} \), some grid cubes will not possess physically meaningful values for \(F \) at each corner. For these cases, the PMMC algorithm we have described uses an extrapolation procedure based on values of \(F \) at nearby grid nodes within the pore space so that approximate values of \(F \) may be obtained at the solid surface. For cases in which both \(F(\mathbf{x}) \) and \(S(\mathbf{x}) \) are continuous and known at each node in \(M^h \), this information may be provided to the PMMC or HOPMMC code directly.
It is a relatively common practice in the literature to use integers to represent the distribution of phases in multiphase systems. Because the data arising from this representation is discontinuous, approaches based on the PMMC algorithm are not very accurate. As a consequence, we recommend using the formatting procedure outlined in Fig. 3.7 to obtain F and S for this case. In this approach, the three-phase integer data is used to construct two data sets, the first providing an integer description of the location of the solid phase and the second an integer description for the position of the fluid phases. Once these two data sets have been constructed, they are each subjected to a smoothing operation. Smoothing operations are typically some form of discrete convolution, and are used in image analysis to remove noise. Information regarding the mean filter, which has been used in this work, as well as other filters, is available in Davies [42]. Although such operations do not provide additional information, improved estimates of the surfaces may be obtained when the surfaces are smooth in nature. It is also possible to use the pre-smoothed data as input to the PMMC algorithm, but in most cases smoothed data will yield more accurate estimates of interfacial areas for multiphase porous medium systems.

![Diagram](image)

Figure 3.7: Formatting procedure used to obtain input data for the PMMC approach when integers are used to represent the phases in a three-phase system.

3.3 Results

To evaluate the methods outlined in the previous section, we applied the PMMC algorithm to the test case of a wetting phase bridge, which was also used in Dalla et. al. [40]. The geometry consists of a wetting phase bridge connecting two spherical solid phase bodies as shown in Fig. 3.8. The sphere centers are located at $c_1 = (0,0,-1)$
and \(\mathbf{c}_2 = (0, 0, 1) \) and have radii \(r_1 = r_2 = R_s \). The signed distance function given by Eq. (3.10) was used to obtain \(S(\mathbf{x}) \). \(F(\mathbf{x}) \) is given by:

\[
F(\mathbf{x}) = \begin{cases}
\nu_{wn} + \sqrt{x^2 + y^2} + \sqrt{R^2 - z^2} - (R + r_c) & \text{if } |z| \leq L/2 \\
\nu_{wn} - a + \left(x^2 + y^2 + (|z| - L/2)^2 \right)^{1/2} & \text{if } |z| > L/2
\end{cases}
\] (3.11)

where \(R \) is the radius of curvature in any plane intersecting with the \(z \) axis and \(r_c \) is the minimum throat radius. The specification of these two parameters with \(R_s \) completely defines the bridge geometry. It follows that the length of the bridge \(L \) and radial distance of the contact curve from the \(z \)-axis \(a \) can be expressed in terms of \(R_s, R, \) and \(r_c \) using basic trigonometry.

![Figure 3.8: Slice of the bridge geometry shown with values of \(F \) computed using \(\nu_{wn} = 0.5, R_s = 0.5, r_c = 0.2, \) and \(R = 1.4 \).](image)

From this geometry, values for \(\epsilon^{wn}, \epsilon^{ns}, \epsilon^{ws}, \) and \(\epsilon^{wns} \) can be calculated analytically as

\[
\epsilon^{ns} = \frac{4\pi R_s}{V} \left(R_s - \frac{L}{2} + 1 \right)
\] (3.12)

\[
\epsilon^{ws} = \frac{4\pi R_s}{V} \left(R_s + \frac{L}{2} - 1 \right)
\] (3.13)
\[
e^{\omega_{ns}} = \frac{4\pi a}{V} \tag{3.14}
\]

where \(V\) is the volume of the region analyzed. Note that Eqs. (3.12) and (3.13) involve expressions for the area of a sphere and spherical cap, and Eq. (3.14) is the length of the perimeter of two circles of radius \(a\). The surface area of the bridge is computed by evaluating the surface integral:

\[
e^{\omega_{n}} = \frac{1}{V} \left(\int_S |\tau_u \times \tau_v| \mathrm{d}Y \right)
\]

\[
= \frac{4\pi R}{V} \left[(R + r_c) \arcsin \left(\frac{L}{2R} \right) - \frac{L}{2} \right] \tag{3.15}
\]

where \(\tau_u\) and \(\tau_v\) are tangent vectors for the surface parameterized by \(u\) and \(v\).

The approach of [40] uses the MC algorithm to approximate the total wetting, non-wetting, and solid surfaces from integer valued data sets. The interfacial area \(e^{\omega_{n}}\) is then computed by using the surface areas of these objects. Fig. 3.9 shows the relative errors for this approach in comparison with errors for the PMMC method on the same geometry.

It is a relatively common practice in the literature to represent a multiphase system by using integers to mark the positions of the phases. For this reason, we tested the PMMC approach described in §3.2.2 using input data in this form, as well as data from the continuous functions described in Eqs. (3.10) and (3.11). For the integer data, we used

\[
S(x) = \begin{cases}
-1 & \text{if } S(x) < 0 \\
1 & \text{otherwise}
\end{cases} \tag{3.16}
\]

\[
F(x) = \begin{cases}
1 & \text{if } F(x) < \nu_{\omega_{n}} \\
2 & \text{otherwise}
\end{cases} \tag{3.17}
\]

Data generated in this manner was used as input to the PMMC algorithm along with the isovalue for \(\Omega_{\omega_{s}}\). We also subjected \(S(x)\) and \(F(x)\) to smoothing algorithms as described in §3.2.5. In both cases, the isovalues for the fluid phases were determined to be midway between the integer values. Relative errors for this test case are plotted in Fig. 3.10 (a), (b) and (c). The ratio of the minimum radius of curvature to the grid spacing for each object of interest is plotted on the abscissa. Filtering the integer data as depicted in Fig. 3.7 lead to smooth surfaces and estimates of their measure converged
uniformly when the grid was refined. Likewise, at high resolutions estimates of ϵ^wns were worse when integer valued input data was used. At lower resolutions the fact that the common curve approximations resulting from integer data were less smooth resulted in more accurate estimates of the common curve length in spite of the fact that the points on the common curve were not found as accurately. However, at higher resolutions this lead to an increasingly poorer representation of the common curve based on integer data, as shown in Fig. 3.10 (c). Similarly, area estimates obtained using an integer representation for the phases do not converge when the resolution increases because the local approximation of the surface is not smooth, leading to the error behavior observed in Figs. 3.10 (a) and (b).

![Error Comparison for Dalla et. al. and PMMC](image)

Figure 3.9: Relative error for ϵ^wn as computed using the approach of Dalla et. al. compared to PMMC.

These results demonstrate that using continuous functions can be preferable to using integers to denote the different phases, even when the continuous functions are constructed superficially using some form of smoothing operator. While relative errors obtained using integer data were lower than those obtained using smoothed integer data at low resolutions, at sufficiently high resolutions the smoothed integer data was uniformly better and the un-smoothed integer data failed to converge. For this reason, it is not surprising that it would be even more advantageous to use the functions S and F, as defined by Eqs. (3.10) and (3.11). As in the previous test case, we used the PMMC algorithm to construct each of the component surfaces and the common curve
Figure 3.10: Relative error for integer data representation for (a) interfacial area ϵ_{wn}, (b) interfacial area ϵ_{ns}, and (c) common curve length ϵ_{wns}.
Figure 3.11: Relative error for real number data representation for (a) interfacial area ϵ_{wn}, (b) interfacial area ϵ_{ns}, and (c) common curve length ϵ_{wns}.
using S and F in conjunction with the formatting procedure outlined in Fig. 3.6. Errors for ϵ^w, ϵ^k, and ϵ^{wns} are plotted in Fig. 3.11 (a), (b) and (c). For the results labeled exact, we used a direct evaluation of F at all mesh points. For the results labeled extrapolation, we extrapolated values of F for all locations within the solid phase using the approach detailed in Algorithm 4. Additionally, we applied the HOPMMC approach discussed in §3.2.3 using Newton’s method to obtain an updated position for each point on the common curve. In addition to the points found using the PMMC approach, each common curve segment was subdivided to provide one additional point per line segment. In these plots, \tilde{F} and \tilde{S} were trilinear polynomials chosen to match the values of F and S exactly at each of the cube corners.

3.4 Discussion

Our analysis of the test case presented in the previous section provides a number of insights as to what may be expected from the PMMC approach. First and foremost, it is clear that this method is capable of providing accurate representations of the component surfaces and common curve for multiphase systems, something that is not possible using the standard MC algorithm alone. Second, it is also clear that the use of continuous functions is superior to the use of integers to represent the positions of the phases, despite the fact that integer representations are used with some regularity [40, 105]. The continuous functions used may be obtained from sources such as fluid density, photon absorption data for experimental systems, distance functions, and even integer data subjected to smoothing operations.

In many cases, particularly pertaining to experimental data, the application of smoothing operations is necessary to remove noise and cannot be avoided. A drawback to applying such procedures when not needed is that they remove information from the system, thereby making it more difficult to resolve features that are small relative to the grid spacing. For this reason, it is wise to apply smoothing operations only when necessary.

The results of the previous section provide a general idea of the level of resolution needed to resolve features of a particular size. It is important to consider the relative size of various features when viewing the error plots in order ascertain what error should be anticipated when analyzing a porous medium data file. There are several different length scales of interest that could be useful in determining how these results should be interpreted. Features that are smaller than individual grid cubes cannot be
resolved using the PMMC approach, or by any other method. In general, the radius of curvature of a feature that is to be resolved represents an appropriate length scale for interpretation of the error. When the radii of curvature for features is large relative to the grid spacing, the PMMC algorithm will yield accurate representations of the local surfaces within grid cubes, since they will be nearly planar. For this reason, this radius of curvature is a natural length scale for error analysis.

In Figs. 3.9, 3.10 and 3.11, the quantity plotted on the abscissa is the number of grid points used to resolve the minimum radius of curvature of the object of interest. For the *wn* surface, this length is *r*_c; for the *ns* surface, the length is *R*_s; and for the common curve the length is *a*. Our results suggest that for porous media, accurate approximations of surfaces can be obtained by using as few as five grid points to resolve the minimum curvature of the objects of interest. This suggests that the methods are sufficient to study the interfaces in simulated systems generated via the LB method, which requires extrapolation to estimate *F* for all nodes in *Ω*_s. Because smoothing operations are typically necessary for experimental data sets, it is wise to obtain data at slightly higher resolution in order to account for the information lost due to the application of smoothing algorithms. Preliminary investigations using the LB method and computed micro-tomography generated data sets indicate that accurate approximation of interfaces in porous media should be achievable using the methods described here [121]. For most data sets, these computations can be carried out in several minutes using a typical desktop machine.

For the PMMC algorithm, we find that our methods are successful for the case where exact data is available at all grid points as well as for the case in which an extrapolation procedure must be used to approximate *F* on the solid surface. Errors for the PMMC utilizing extrapolation of *F* are in some cases lower than the errors observed when *F* is defined at all nodes. This is the case because the extrapolating polynomial is typically quadratic while the interpolation used is linear. When *F* is available at all grid points, the HOPMMC may be applied to obtain a more accurate representation of the surfaces and common curve in particular.

Our results show some promise for the HOPMMC approach, although a number of open questions remain. As expected, although the algorithm has little impact on the interfacial area estimates, the refinement of the common curve approximation improved estimates of *ε*_wns. By subdividing each common curve segment, we were able to increase the resolution of the common curve without needing additional grid points.

To increase the utility of the HOPMMC described in this paper, a number of pos-
sibilities could be explored:

1. Construct higher order polynomial approximations \hat{F} and \hat{S}, such as Hermite and partial Hermite polynomials.

2. Implement algorithms to further subdivide the common curve arbitrarily in order to represent it as accurately as possible.

3. Implement analogous subdivision approaches to obtain improved representations of surfaces that are under-resolved.

Ultimately, the question that must be answered is how to extract the maximum amount of information possible from any given grid resolution and data source. The answer to this question is likely dependent upon the source, format, and quality of the data. It is the belief of the authors that the algorithms presented for PMMC can also be extended to non-uniform grids with appropriate definition of entities M^h, \mathcal{C}, Ω_l, Γ_l, N_{li}, $N_{ci,l}$ and \mathcal{X}_l. Extension of HOPMMC to non-uniform grids is expected to be less straightforward. Precise and general guidance will require additional work.

3.5 Conclusions

The PMMC approach described in this paper is capable of achieving accurate estimates of interfacial areas, and common curve lengths for general three-phase porous medium systems. The methods explored also provide a natural framework in which to investigate other properties, such as interfacial curvatures. Our analysis of these methods lead us to the following conclusions:

1. Continuous data is preferable to an integer representation to denote the position of phases.

2. When continuous data is unavailable, smoothing operations such as the mean filter can be used to obtain input data and improve results.

3. Surfaces obtained using the PMMC approach can be used to obtain accurate estimates of interfacial area when five or more grid points are used to resolve the minimum radius of curvature for objects of interest.

4. The methods described are sufficient to allow use of the LB method to study interfacial properties in multiphase porous medium systems.
The proposed algorithms represent a substantial improvement over the standard MC algorithm, which was studied in [40]. In addition to interfaces, the PMMC approach also allows extraction of common curves so that they can be studied in the context of evolving theories.

3.6 Additional Morphological Properties

3.6.1 Contact Angle

The contact angle θ_{wns} is an important geometric quantity in multiphase porous media as it provides a boundary condition for the interfacial profile. In a multiphase system, the contact angle is related to the various surface energies $\gamma_{wn}, \gamma_{ws},$ and γ_{ns} as given by Young’s equation:

$$\gamma_{wn} \cos \theta_{wns} = \gamma_{ns} - \gamma_{ws}.$$ \hspace{1cm} (3.18)

The contact angle may be computed geometrically by relating its value to the normal vectors to the fluid and solid surfaces, denoted by n_{wn} and n_s:

$$\cos \theta_{wns} = n_{wn} \cdot n_s.$$ \hspace{1cm} (3.19)

The results of § 3.2.4 demonstrate how the geometric surface quantities can be evaluated based on the functions F and S. The solid normal vector be computed based on the analog of Eq. (3.7):

$$n_s = \frac{\nabla S}{|\nabla S|}.$$ \hspace{1cm} (3.20)

With the normal vectors defined in terms of F and S, the contact angle can be numerically evaluated by using a second order finite difference stencil to evaluate the derivatives and applying linear interpolation to obtain the contact angle values along the common curve Ω_{wns}. The maximum relative error is shown in Fig. (3.13) for a sequence of systems in which F and S are assigned from distance functions. In general, contact angle approximations will be less accurate when F and S can not be prescribed from a distance function.
Figure 3.12: Contact angle in a three-phase system.

Figure 3.13: Maximum relative error for estimated contact angle
3.7 Collective Rearrangement Sphere Packing Algorithm

Figure 3.14: (a) Sphere packing of 250 lognormally distributed sphere with $\phi = 0.34722$ (b) Histogram of radii plotted beside the lognormal distribution with $\mu = -2.76, \sigma^2 = 0.2$.

Pore-scale simulations of flow in porous media require precise information about solid boundaries in order to provide boundary conditions to the flow solver. Sphere packings provide a realistic surrogate porous media which are often utilized for pore-scale flow simulation [1].

The sphere packing code utilizes the algorithm used by Williams and Philipse to generate packings of sphereocylinders [194]. The algorithm has been modified to support generation of packings for systems of spheres with lognormally distributed radii, and to provide control over the final porosity of the packing. The major steps are summarized as follows:

1. Instantiate a system of spheres, $i = 1, 2, \ldots, N_s$:
 - $c_x^{(i)} U[0, \ell_x]$
 - $c_y^{(i)} U[0, \ell_y]$
 - $c_z^{(i)} U[0, \ell_z]$
 - $\log(r^{(i)}) \mathbf{n}^{(i)} \mu, \sigma^2$

2. Eliminate overlaps between spheres (see Williams and Philipse)
3. Increase size of radii:

- \(r^{(i)} \leftarrow \alpha^{(f)} r^{(i)} \)
- \(\mu \leftarrow \mu + \log(\alpha^{(f)}) \)

It is easy to verify that rescaling of the radii by a constant factor \(\alpha^{(f)} \) preserves
the lognormal distribution variance \(\sigma^2 \) and that the mean \(\mu \) will increase by \(\log(\alpha) \)
each time the radii are rescaled. This means that while \(\sigma^2 \) is specified as an input
parameter, \(\mu \) is not known until the simulation completes. Note that it is not possible
to independently specify \(\mu, \sigma^2 \) and \(\phi \). Given \(\sigma^2 \), the final value of \(\mu \) can be estimated
based on the target porosity \(\phi^{target} \). The expected volume of the lognormal packing is:

\[
\frac{4\pi N_s}{3} E[r^3] = \frac{4\pi N_s}{3} \exp\left(3\mu + \frac{9}{2}\sigma^2\right)
\] (3.21)

To accelerate convergence, the spheres are divided into a collection of cells which
consist of equally-sized sub-domains. This is a standard optimization for \(N \)-particle
methods. The number of cells in each direction is determined from line 6 of the input
file. Each cell contains a list of the spheres with centroids contained within the physical
boundaries of the cell. For a given sphere, potential overlaps are considered only from
the neighboring cells. The code is accelerated significantly by increasing the number
of cells, thereby decreasing the length of the search path required when computing
overlaps. However, this optimization can lead to oversights in the overlap computation
if the maximum radius exceeds one half of the cell width, as shown in Fig. (??) (a).
The maximum radius is checked after the simulation completes, and a warning message
is issued if the maximum radius is too large based on the cell width:

The well-known limit for a close packing of equal sized spheres is \(\phi \approx 0.36 \). Likewise,
the maximum stable porosity for a homogeneous sphere packing is \(\phi \approx 0.44–0.47 \),
with a coordination number of approximately six [48]. Each of these results has been
reproduced with this packing code.
Chapter 4

Direction-Dependent Flow in Porous Media

4.1 Introduction

Modeling of single-phase flow in porous media is accomplished by an almost universal approach that makes use of Darcy’s law at low flow rates [41] as well as nonlinear extensions that apply at higher flow rates [52]. Recent work has focused on formulating a rigorous theoretical basis for these empirically determined expressions and establishing a firm connection between spatial scales [18, 34, 67, 71, 111, 60]. Development of this theoretical foundation has been complemented by application of highly-resolved numerical solutions to the Navier-Stokes equations that have been used to study macroscopic flow behavior from the pore-scale [4, 51, 78, 107, 112]. These efforts have contributed important insights into the microscopic origins of macroscopic phenomena, leading to a more nuanced understanding of single-phase flow. This work supports classification of single-phase flows into three primary regimes: a Darcy regime that can be linked with microscopic Stokes flow, a transition regime corresponding with moderate Reynolds numbers and the onset of inertial effects, and an inertial regime in which inertial effects contribute strongly to the macroscopic flow behavior.

For Stokes flow, the microscopic velocity structure is independent of the Reynolds number Re. This means that if the velocity structure is known for a single value of Re, it may be obtained for any Re by a linear rescaling of the velocity field. Since the flow field is itself linear, it follows that the macroscopic flow will also be linear, in accordance with Darcy’s law. However as Re increases, the microscopic Stokes’ flow solution does not apply. Numerical solutions to the Navier-Stokes equations demonstrate that this
breakdown corresponds to the formation of eddies within the microscopic flow field, ultimately resulting in nonlinear behavior at the macroscale [53, 142]. These microscopic origins of macroscopic nonlinearity have interesting implications for anisotropic flows. At the pore-scale, details of the pore morphology and topology determine the formation, location and size of eddies within a particular porous medium flow. If the grain shapes are not symmetric with respect to the flow direction, the structure and position of eddies may exhibit directional dependence. In such situations, it is reasonable to expect a flow reversal to have a corresponding effect on macroscopic nonlinearity. Existing forms of non-Darcy flow models fail to anticipate this possibility, creating a scenario in which the coefficients for a particular porous medium will depend on the flow direction.

At the pore-scale, flow processes are strongly dependent on details of the morphology and topology of the pore structure. However, the complexity of real porous media dictates that many details of pore structure are often inaccessible. As a consequence, construction of representative macroscopic forms relies in part upon an ability to approximate the complexity of real porous medium pore structure based upon only a few morphological and topological measures. Unfortunately, identification of such measures is not always obvious. Thermodynamically constrained averaging theory (TCAT), which has been used to derive Darcy’s Law [60], represents a theoretical framework for deriving macroscopic flow models by systematically upscaling a microscale, or pore scale, model [59, 127]. Various geometrical measures arise as a consequence of the averaging, but they do not always appear in the final flow equations. Nevertheless, these ancillary parameters represent potentially important quantitative measures of the morphology and topology of the pore structure. Incorporation of these quantities provides a systematic way to improve the macroscopic description of processes influenced by aspects of the pore morphology and topology that are often ignored.

The overall goal of this manuscript is to examine the microscopic and macroscopic consequences of reversing the flow direction in simple asymmetric porous media. Application of numerical simulations at the pore-scale will serve to demonstrate that reversal of the flow direction can lead to significant differences in the velocity structure at the pore-scale, an effect which has a direct impact on the macroscopic behavior. In order to account for this phenomenon, we suggest ways to incorporate this behavior into macroscopic models. The primary objectives are:

1. to propose an alternative form for the momentum equation (extended Darcy’s law) that accounts for extended anisotropy due to grain asymmetry;
2. to identify prospective morphological and topological measures of a pore structure that may be used to quantify the symmetry of the flow field; and

3. to investigate the influence of asymmetric pore morphologies by performing pore-scale simulations to support macroscopic non-Darcy flow analysis in simple, periodic porous media.

4.2 Background

The commonly used momentum equation for one-dimensional flow in porous media is Darcy’s law in the form

\[- \frac{\partial p^w}{\partial x} + \rho^w \bar{g}_x = \epsilon \hat{R} \bar{v}_x, \]

(4.1)

where ϵ is the porosity, p^w is the macroscale fluid pressure, ρ^w is the macroscale fluid density, g^w_x is the external force per unit mass acting on the fluid phase, in the x direction, v^w_x is the barycentric macroscale velocity of the fluid relative to the solid in the x direction, and \hat{R} is a momentum resistance coefficient that may be a function of the velocity in addition to properties of the porous medium and the fluid. Formulation of a closure relation for the resistance coefficient is necessary to provide a complete description of the momentum transfer. By recasting Eq. (4.1) in terms of dimensionless variables, the functional dependence of \hat{R} can be determined with a minimum number of degrees of freedom. We identify five dimensioned variables of importance with their associated dimensions:

\[- \frac{\partial p^w}{\partial x} + \rho^w \bar{g}_x \quad [\text{m}/(\text{l}^2\text{t}^2)], \]

(4.2)

$\bar{v}_x \quad [\text{l}/\text{t}], \quad (4.3)$

$\rho^w \quad [\text{m}/\text{l}^3], \quad (4.4)$

$\hat{\mu}^w \quad [\text{m}/(\text{lt})], \quad (4.5)$

$d \quad [\text{l}], \quad (4.6)$

where $\hat{\mu}^w$ is the dynamic viscosity and d is a characteristic pore length scale. In addition to the dimensioned variables, we also introduce an additional set of independent, dimensionless variables \mathcal{M} that provide information about the porous medium morphology. Traditionally, the effect of morphology is only included through the porosity
We consider the flow to depend on \mathcal{M}, a set of variables that includes ϵ as well as other variables to be determined. Specification of these additional variables provides a general mechanism to incorporate aspects of the morphology and topology of the pore space that influence macroscopic flow behavior but are neglected in traditional model forms.

Since there are three dimensions involved and five dimensioned variables, we can form two independent, dimensionless groups in addition to the set of inherently non-dimensional quantities in \mathcal{M}. Select these as:

$$
\Pi_1 = \left(-\frac{\partial p_w}{\partial x} + \rho_w g_w \right) d^{\phi_1} \left(\bar{\mu}_w \right)^{c_1} (v_x^w)^{c_2},
$$

(4.7)

$$
\Pi_2 = \rho_w v_x^w d \left(\bar{\mu}_w \right)^{c_2} (v_x^w)^{c_2}.
$$

(4.8)

Solution for the values of the exponents that assure non-dimensionality of the group of parameters gives:

$$
\Pi_1 = \frac{\left(-\frac{\partial p_w}{\partial x} + \rho_w g_w \right)}{v_x^w \bar{\mu}_w} d^2,
$$

(4.9)

and:

$$
\Pi_2 = \frac{\rho_w v_x^w d}{\bar{\mu}_w}.
$$

(4.10)

The grouping of Π_2 is the Reynolds number and will be denoted using:

$$
\text{Re} = \frac{\rho_w v_x^w d}{\bar{\mu}_w}.
$$

(4.11)

It is critical to note that v_x^w may be either positive or negative, depending on whether the flow is in the $+x$ or $-x$ direction. Consequently, the Reynolds number employed here may take on both positive and negative values. Thus, the dimensionless equation that arises is:

$$
0 = \Phi \left(\left(-\frac{\partial p_w}{\partial x} + \rho_w g_x \right) d^2 \left(\frac{v_x^w \bar{\mu}_w}{v_x^w \bar{\mu}_w} \right), \text{Re}, \mathcal{M} \right).
$$

(4.12)
The explicit form of this equation for Π_1 in terms of the other variables is:

$$-\frac{\partial p^w}{\partial x} + \rho^w g^w_x = \frac{\dot{\mu}^w}{d^2} F(\text{Re}, \mathcal{M}) v^w_x,$$

(4.13)

where F is a dimensionless function of Re and \mathcal{M} to be determined. From the analysis of single-fluid-phase flow that includes consideration of the entropy inequality, we know that $F \geq 0$.

By comparison with Eq. (4.1), we see that:

$$\epsilon \hat{R} v^w_x = \frac{\dot{\mu}^w}{d^2} F(\text{Re}, \mathcal{M}) v^w_x,$$

(4.14)

so that:

$$\hat{R} = \frac{\dot{\mu}^w}{\epsilon d^2} F(\text{Re}, \mathcal{M}).$$

(4.15)

From experimental work on porous media, it is known that for small magnitudes of Re, the resistance factor does not depend on Re. Thus we can separate the function F into two parts: one, designated \hat{a}, that depends only on the pore structure morphology and topology measures \mathcal{M} and one, designated B, that depends on Re as well as \mathcal{M} with the stipulation that when $|\text{Re}|$ is small, the contribution of B to the value of \hat{R} is essentially zero. Thus, Eq. (4.15) becomes:

$$\hat{R} = \frac{\dot{\mu}^w}{\epsilon d^2} \left[\hat{a}(\mathcal{M}) + B(\text{Re}, \mathcal{M}) \right].$$

(4.16)

In one sense, the purpose of this paper is to examine cases where the function B is important for accurately describing the macroscale flow. For these cases the resistance coefficient will also increase as the magnitude of Re increases. Since we have discussed the fact that $B(0, \mathcal{M}) = 0$, the simplest assumption for the explicit form of B would be linear in $|\text{Re}|$ such that:

$$B(\text{Re}, \mathcal{M}) = \hat{b}(\mathcal{M}) |\text{Re}|.$$

(4.17)

We note that this expression is linear in the absolute value of Re because the contribution to resistance of higher velocity flow is positive. This expansion is a common approach and results in the Forchheimer expression when $\hat{b}(\mathcal{M})$ is linearly proportional to ϵ. For the case of extended anisotropy to be considered here, we add the condition
that besides being linear in $|\text{Re}|$, B is linear in Re, providing a direction-dependent effect:

$$B(\text{Re}, M) = \hat{b}(M) |\text{Re}| + \hat{c}(M) \text{Re}. \quad (4.18)$$

Thus the resistance coefficient is:

$$\hat{R} = \frac{\hat{h}_w}{\epsilon d^2} \left(\hat{a}(M) + \hat{b}(M) |\text{Re}| + \hat{c}(M) \text{Re} \right). \quad (4.19)$$

Substitution of this expression into Eq. (4.1) gives:

$$-\frac{\partial p^w}{\partial x} + \rho_w g_w x = \frac{\hat{\mu}_w}{d^2} \left(\hat{a}(M) + \hat{b}(M) |\text{Re}| + \hat{c}(M) \text{Re} \right) v_x \quad (4.20)$$

Multiplication by $\rho_w d^3 / (\hat{\mu}_w)^2$ allows this to be expressed as:

$$\text{Fo} = \left[\hat{a}(M) + \hat{b}(M) |\text{Re}| + \hat{c}(M) \text{Re} \right] \text{Re}, \quad (4.21)$$

where:

$$\text{Fo} = \frac{\rho_w d^3}{(\hat{\mu}_w)^2} \left(-\frac{\partial p^w}{\partial x} + \rho_w g_w x \right). \quad (4.22)$$

Eq. (4.21) is similar to the Forchheimer equation in that it is quadratic in the flow velocity. However, it will differ from the Forchheimer equation when the momentum resistance depends on the direction of flow (i.e., the sign of Re), resulting in a non-zero value of \hat{c}. The coefficients \hat{a}, \hat{b} and \hat{c} are medium-specific properties, as indicated by their dependence on the set of dimensionless morphological measures M. The leading coefficient $\hat{a}(M)$ is related to the intrinsic permeability of the medium. The parameter $\hat{b}(M)$ determines the mean correction to Darcy’s law, which will be a positive quantity because an increase in the flow velocity will tend to decrease the overall permeability. The direction-dependent correction given by $\hat{c}(M)$ may be positive or negative with $|\hat{c}(M)| < \hat{b}(M)$.

84
4.3 Methods

4.3.1 Lattice Boltzmann Model

The lattice Boltzmann Method (LBM) is a well-established numerical approach for simulation of fluid flows. For single-fluid-phase flow, the LBM may be considered as an alternative solution procedure for the Navier-Stokes equations rooted in kinetic rather than continuum theory. Instead of solving conservation equations to track the evolution of the fluid density and momentum, a discrete approximation of the microscopic distribution function is used to track fluid behavior. This discrete approximation is obtained by formulating a quadrature scheme for the microscopic velocity space, leading to a set of discrete velocities ξ_q and an associated set of distributions f_q, where $q = 0, 1, \ldots, Q - 1$ [73]. The discrete distributions provide a mechanism to track the fluid density:

$$\rho_w = \sum_{q=0}^{Q-1} f_q,$$

and momentum:

$$\rho_w v_w = \sum_{q=0}^{Q-1} f_q \xi_q,$$

where the subscripts on ρ_w and v_w denote microscale quantities.

According to kinetic theory, changes to f_q result from contributions of intermolecular collisions C_q and external forces F_q. The discrete distributions can therefore be updated by:

$$f_q(x_i + \xi_q\delta t, t + \delta t) = f_q(x_i, t) + C_q(x_i, t) + F_q.$$

The form of the collision operator $C_q(x_i, t)$ is critical to proper description of the fluid physics, and exerts a significant influence on numerical behavior [139]. Our approach utilizes the three-dimensional, nineteen velocity vector (D3Q19) multiple-relaxation-time (MRT) scheme described in detail by [44]. The MRT scheme considers molecular collisions as a relaxation process in which a set of moments, constructed from the distributions, relax toward their equilibrium values. Specification of these moments along with their equilibrium values ensures recovery of the Navier-Stokes equations. Due to
the locality of the left-hand side of Eq. (4.25), parallel implementations of the LBM can achieve near-optimal scaling [137, 138]. Complex solid geometry can be accommodated efficiently by applying the bounce-back rule to achieve a no-slip boundary condition on the solid surface [54]. These qualities are particularly advantageous for porous medium applications, where large domain sizes and complex solid geometry are the rule.

Description of non-Darcy flow is accomplished by simulating a sequence of steady-state velocity fields within a specified pore structure. Each point on the non-Darcy curve is obtained by choosing a fixed value of Fo to drive flow in the x direction. Iterations are then carried out until the pore-scale velocity field reaches a steady-state according to the criteria:

$$\sum_{i} \frac{|v_w(x_i, t) - v_w(x_i, t - 200)|}{|v_w(x_i, t)|} < 1.0 \times 10^{-7}. \quad (4.26)$$

Once a steady-state velocity field has been obtained, the macroscopic flow velocity v^π is obtained as the density-weighted volume average of the pore velocity u integrated over the flow domain Ω_w:

$$v^\pi = \frac{\int_{\Omega_w} \rho_w v_w \, dr}{\int_{\Omega_w} \rho_w \, dr} = \langle v_w \rangle_{\Omega_w \Omega_w \rho_w}. \quad (4.27)$$

Once the macroscopic velocity has been determined, Re can be computed according to Eq. (4.11).

4.3.2 Solid Geometry

To construct flow domains in which the nonlinear behavior is likely to depend upon the flow direction, we define porous media composed of asymmetrical, oriented solid grains. Clearly, many asymmetrical grain shapes are possible. The objective is not to examine a large set of such possibilities, but to investigate the hypothesized behavior by examining some simple examples of such media. Pursuant to this goal, we consider two simple grain shapes that lack reflection symmetry with respect to the plane orthogonal to the flow direction. Porous media constructed using these basic grain shapes oriented in one direction serve as the basis for this study.

The first grain shape is the smoothed triangular grain shown in Fig. (4.1). Smoothed
triangular grains are described by the grain width \(w_g \), the grain height \(h_g \), and the smoothing radius \(r_g \). Note that reflection symmetry is present in the vertical, but not the horizontal direction for this geometry. This grain shape is used to construct a two-dimensional periodic packing, and its surface of revolution is used to construct a three-dimensional packing.

It is also desirable to consider a geometry for which the asymmetry is easily quantified. For this reason, we consider a case in which a single parameter controls the symmetry of the solid grain. One such geometry is a “stretched” ellipsoid, given by:

\[
\frac{x^2}{r_x^2} + \frac{1}{1 + sx} \left(\frac{y^2 + z^2}{r_d^2} \right) = 1. \tag{4.28}
\]

For this particular geometry, the parameter \(s \) determines how much reflection asymmetry the grain shape will exhibit in the \(x \) direction. When \(s = 0 \), the surface obtained from Eq. (4.28) will be an ellipsoid with principle radii \(r_x \) and \(r_d \). The geometry becomes increasingly asymmetrical as \(s \) increases. This increase in asymmetry is illustrated graphically in Fig. (4.2) (a)–(d).

4.3.3 Anti-symmetric Orientation Tensor

Thermodynamically constrained averaging theory provides a rigorous framework for derivation of macroscopic flow equations. For single-fluid-phase flow, macroscopic quantities are defined by averages over the fluid or solid phase volumes \(\Omega_f \) and \(\Omega_s \) or the interfacial surface \(\Omega_{ws} \). Many details of the solid morphology are included implicitly...
Figure 4.2: Morphology of the stretched ellipsoid grain shape with $r_x = 0.4$, $r_y = 0.36$. Asymmetry is controlled via the parameter s, which attains the values: (a) 0.0 (b) 0.5 (c) 1.0 (d) 1.5.
through this integration. However, other quantities appear explicitly in the formulation, and can be used to quantify important aspects of the solid morphology. For example, the tensor:

\[G_{ij} = \frac{1}{2} \langle n_i n_j + n_j n_i \rangle_{\Omega_{ws}, \Omega_{ws}} = \langle n_i n_j \rangle_{\Omega_{ws}, \Omega_{ws}} \]

(4.29)

represents an average surface orientation defined in terms of the components of the unit vector normal to the solid surface, \(n_i \) where \(i = x, y, z \). For anisotropic media, the tensor components \(G_{ij} \) provide a simple way to quantify the anisotropy of the solid surface. Unfortunately, the definition given by Eq. (4.29) does not provide any information about asymmetry of the solid. However, it is possible to incorporate reflection asymmetry by considering the integration over the solid surface in such a way that the direction of the normal vector is identified in addition to its orientation. Since \(|n_i| \) gives the magnitude of the associated normal component, the actual value of \(n_i \) will be one of the pair of values \(\pm |n_i| \), depending upon the sign of \(n_i \). The other value represents the normal component which would be obtained by reflection through a plane orthogonal to axis \(i \).

Integration over the latter set of values corresponds to integration over a hypothetical object generated by assuming reflection symmetry. Without changing the value of \(G_{ij} \), we can incorporate reflections with respect to the cartesian axes by writing Eq. (4.29) as:

\[G_{ij} = \frac{1}{4} \langle (n_i n_j + n_i |n_j|) + (n_i n_j + |n_i| n_j) + (n_i n_j - n_i |n_j|) + (n_i n_j - |n_i| n_j) \rangle_{\Omega_{ws}, \Omega_{ws}}, \]

(4.30)

or more compactly:

\[G_{ij} = \frac{1}{2} (G_{ij}^+ + G_{ij}^-), \]

(4.31)

where:

\[G_{ij}^\pm = \frac{1}{2} \langle (n_i n_j + n_i |n_j|) + (n_i n_j + |n_i| n_j) \rangle_{\Omega_{ws}, \Omega_{ws}} = G_{ij} + \frac{1}{2} \langle n_i |n_j| + |n_i| n_j \rangle_{\Omega_{ws}, \Omega_{ws}}, \]

(4.32)
and
\[G_{ij}^- = \frac{1}{2}\langle (n_in_j - n_in_j) + (n_i|n_j|) + (n_i|n_j|) \Omega_{ws},\Omega_{ws} \rangle = G_{ij} - \frac{1}{2}\langle n_i|n_j| + |n_i|n_j| \Omega_{ws},\Omega_{ws} \rangle. \]

(4.33)

The pair of tensors \(G_{ij}^+ \) and \(G_{ij}^- \) describe an average surface orientation which includes contributions from both the actual object and a hypothetical, reflected object. The orientation of the reflected object will contribute to \(G_{ij}^+ \) wherever the associated solid normal components are negative, and to \(G_{ij}^- \) wherever the normal components are positive. By construction, these contributions cancel exactly in Eq. (4.31). However, if we consider their difference:

\[G_{ij}^a = \frac{1}{2}\left(G_{ij}^+ - G_{ij}^- \right), \]

(4.34)

integration over the surface of the hypothetical object will be compared with integration over the surface of the actual object. Based on Eqs. (4.32)–(4.33), we can see that:

\[G_{ij}^a = \frac{1}{2}\langle n_i|n_j| + |n_i|n_j| \Omega_{ws},\Omega_{ws} \rangle. \]

(4.35)

In the event that the geometry considered is reflection symmetric with respect to both coordinates \(i \) and \(j \), contributions due to integration over the actual and hypothetical objects will be equal in magnitude but opposite in sign, so that \(G_{ij}^a = 0 \) for all possible values of \(i \) and \(j \). Otherwise, \(G_{ij}^a \) is a quantitative measure of the morphological difference between the actual object and the hypothetical object constructed by assuming reflection symmetry across planes orthogonal to each of the axes \(i \) and \(j \). This provides a basis for quantifying reflection symmetry of porous medium in an averaged sense.

The grain shapes described in §?? are defined by surfaces of revolution, which ensures symmetry in the \(y \) and \(z \) directions. If the grain orientation is aligned with the coordinate axes and the grain is asymmetric with respect to the \(x \) direction only, the tensors \(G_{ij} \) and \(G_{ij}^a \) assume the following forms:

\[
\mathbf{G} = \begin{bmatrix}
G_{xx} & 0 & 0 \\
0 & G_{rr} & 0 \\
0 & 0 & G_{rr}
\end{bmatrix}
\]

(4.36)
\[G^a = \begin{bmatrix} G^a_{xx} & G^a_{rr} & G^a_{rr} \\ G^a_{rr} & 0 & 0 \\ G^a_{rr} & 0 & 0 \end{bmatrix}. \] (4.38)

Since the parameters G_{ij} and G^a_{ij} are dimensionless, it is natural to incorporate them into the set \mathcal{M}, so that the flow coefficients may be expressed as a function of anisotropy (for a multidimensional macroscale flow problem) and asymmetry.

4.4 Results

Simulation of non-Darcy flow was performed using the single-fluid-phase lattice Boltzmann model described in §???. This procedure was used to generate a sequence of steady-state pore-scale flow fields for several periodic porous media. The corresponding dimensionless flow curves represent the macroscopic behavior, while the pore-scale velocity fields permit investigation of the influence of solid morphology on microscopic flow behavior.

For heuristic purposes, simulation of a two-dimensional flow was performed utilizing the smooth triangular grain shape as described in §?? with $w_g = 0.8$, $h_g = 0.44$ and $r_g = 0.2$. A square periodic domain was constructed using this geometry, as shown in Fig. (4.3) (a)–(h), and discretized on a 64^2 lattice. The length scale d for the simulation was taken to be the period length, which was 32 lattice nodes. This period length was constant for all subsequent simulations. The pore-scale velocity structure of the two-dimensional flow is shown for a sequence of $|\text{Fo}|$ in Fig. (4.3) (a)–(h). These figures demonstrate that for small $|\text{Re}|$ the pore-scale flow structure is independent of both $|\text{Re}|$ and the flow direction. Quantitatively, this is evident by the close agreement between the values of $|\text{Re}|$ obtained by applying the same value of $|\text{Fo}|$ for both flow directions. As $|\text{Re}|$ increases, inertial effects distort the flow field, leading to a velocity structure that is dynamic in terms of $|\text{Re}|$ and qualitatively different for each flow direction. This also leads to the formation of eddies for sufficiently high flow rates. In Fig. (4.3), the location of eddies can be identified by areas where the direction of the y component of \mathbf{v}_w is opposite to the macroscopic flow direction, which are plotted in dark blue. In 2-D, streamlines are forced around these recirculation zones, effectively narrowing the flow channels. The position and shape of these eddies is shown to vary with the flow direction, leading to significant differences in the streamlines shown in Fig. (4.3) (e)–(h). The macroscopic consequences of these differences can be inferred from the
Figure 4.3: Morphology of a 2-D flow: Streamlines show the region of “conductive” flow; the vertical component of \mathbf{v}_w is shown in color. Streamlines remain relatively constant with flow direction and Reynolds number for $|\text{Re}| < 1$; as $|\text{Re}|$ increases, inertial effects distort the flow field, which is manifested differently depending upon the flow direction. The associated values of $|\text{Fo}|$ are: (a) 1.179 (b) 209.79 (c) 984.96 (d) 2084.22 (e) 4328.96 (f) 8807.87 (g) 17524.6 (h) 34050.7.
fact that $|\text{Fo}|$ no longer corresponds to a value of $|\text{Re}|$ that is independent of the flow direction.

Figure 4.4: Simulation of non-Darcy flow in 3-D: non-Darcy curves obtained from simulation in a domain containing smoothed triangular grains with $w_g = 0.8$, $h_g = 0.44$ and $r_g = 0.2$. (a) For large values of $|\text{Re}|$, significant deviations are observed in the flow behavior depending on the flow direction. (b) Results show good agreement with the model form proposed in Eq. (4.21).

Simulation of flow in three-dimensional porous media demonstrates that asymmetric solid grain shapes have an analogous effect on macroscopic behavior for these systems. For the results shown in Fig. (4.4), a periodic packing was constructed using a surface of revolution for the smoothed triangular geometry, with a cubic domain discretized to 64^3. In order to demonstrate that this discretization is sufficient to yield grid-independent results, a simulation was performed at a resolution of 128^3 for $\text{Fo} = 27817$, yielding $\text{Re} = 123.236$. Applying the same value of Fo at 64^3 yielded $\text{Re} = 124.474$, indicating close agreement between the two solutions. Simulations were carried out to obtain dimensionless flow curves for each flow direction, as shown in Fig. (4.4) (a). For each flow direction, the results are in close agreement when $|\text{Re}|$ is sufficiently small. However, as $|\text{Re}|$ increases, the flow exhibits different behavior depending on the flow direction. A least-squares fit of the flow model resulting from Eq. (4.18), a Forchheimer model, demonstrates that the best-fit coefficients will depend upon the flow direction. A least-squares fit of Eq. (4.21) to the same data yielded more satisfying results; good agreement was achieved for the entire range of values of Re and Fo examined for fixed values of parameters \hat{a}, \hat{b}, and \hat{c}, as shown in Fig. (4.4) (b).

Intuitively, the magnitude of the macroscopic direction-dependent effect should increase with the amount of asymmetry quantified via Eq. (4.35). Based upon the grain
Table 4.1: Properties for asymmetric porous media constituted of solid grains defined by Eq. (4.28)

<table>
<thead>
<tr>
<th>s</th>
<th>r_x</th>
<th>r_d</th>
<th>ϵ</th>
<th>G^α_{xx}</th>
<th>G^α_{rr}</th>
<th>ˆa</th>
<th>b</th>
<th>ˆc</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>0.5</td>
<td>0.5</td>
<td>0.476349</td>
<td>0</td>
<td>0</td>
<td>219.76</td>
<td>3.01295</td>
<td>2.1 × 10^{-17}</td>
</tr>
<tr>
<td>0.25</td>
<td>0.5</td>
<td>0.499</td>
<td>0.478561</td>
<td>-0.01033</td>
<td>0.00388</td>
<td>217.64</td>
<td>3.4277</td>
<td>-0.06739</td>
</tr>
<tr>
<td>0.5</td>
<td>0.505</td>
<td>0.496</td>
<td>0.48027</td>
<td>-0.02031</td>
<td>0.00765</td>
<td>218.4</td>
<td>3.4041</td>
<td>-0.10654</td>
</tr>
<tr>
<td>0.75</td>
<td>0.51</td>
<td>0.4913</td>
<td>0.484818</td>
<td>-0.02947</td>
<td>0.01118</td>
<td>218.88</td>
<td>3.3987</td>
<td>-0.13288</td>
</tr>
<tr>
<td>1.0</td>
<td>0.52</td>
<td>0.4845</td>
<td>0.489792</td>
<td>-0.03765</td>
<td>0.01434</td>
<td>220.17</td>
<td>3.3462</td>
<td>-0.1667</td>
</tr>
<tr>
<td>1.25</td>
<td>0.54</td>
<td>0.474</td>
<td>0.496414</td>
<td>-0.04474</td>
<td>0.01693</td>
<td>223.26</td>
<td>3.1492</td>
<td>-0.19996</td>
</tr>
<tr>
<td>1.5</td>
<td>0.57</td>
<td>0.4617</td>
<td>0.503387</td>
<td>-0.0499</td>
<td>0.0187</td>
<td>224.85</td>
<td>2.9948</td>
<td>-0.24174</td>
</tr>
</tbody>
</table>

shape described by Eq. (4.28), several periodic media were constructed to illustrate this correlation, as listed in Table 4.1. The medium asymmetry was controlled by increasing the value of s, and values of r_x and r_d were chosen in order to preserve a relatively constant value of the coefficient ˆa, which is proportional to the inverse of the leading order term in the permeability. The best-fit parameters ˆa, ˆb and ˆc listed in Table 4.1 were obtained to match simulated data. By construction, the leading-order parameter ˆa varies only within a narrow range. Of particular interest is the parameter ˆc, which determines the magnitude of the direction-dependent effect. The data demonstrates that as asymmetry increases, the magnitude of ˆc will also increase. Since the asymmetry of the geometry defined by Eq. (4.28) depends on a single parameter, it is sufficient to express it in terms of G^α_{xx} only. Data listed in Table 4.1 are plotted in Fig. (4.5) (a), demonstrating a one-to-one relationship between G^α_{xx} and s. Consequently, the coefficient ˆc can expressed as a function of G^α_{xx}, a quantity which can be computed for general grain shapes, as opposed to s which is specific to Eq. (4.28).

While this data does not provide a basis for the formulation of a precise parameterized closure relation, it does provide strong evidence that extended anisotropic properties of a particular porous medium can be predicted using the tensor G^α. As a consequence, the set of morphological measures M should include this quantity in addition to other quantities likely to influence the macroscopic behavior. The work performed here suggests that porosity, solid surface area, and orientation tensors are all likely to have an impact on the flow coefficients ˆa(M), ˆb(M) and ˆc(M).
Figure 4.5: Effect of asymmetry using data from Table 4.1: (a) asymmetry quantification demonstrates a one-to-one relationship between $G_{\alpha xx}$ and s; (b) asymmetry is shown to determine the magnitude of the extended anisotropic effect, determined by the coefficient \hat{c}.

4.5 Conclusions

In this work, it has been demonstrated that the properties of non-Darcy flow within a particular porous medium can exhibit significant variation when subjected to a reversal in the flow direction, a phenomenon which we refer to as “extended anisotropy.” Pore-scale lattice Boltzmann simulations of flow in periodic porous media constructed from asymmetrical solid grains were performed to investigate the microscopic origins of this behavior and study the impact on macroscopic flow behavior. These simulations demonstrate that this phenomenon can be linked to the onset of inertial effects that alter the microscopic velocity structure as a consequence of asymmetry of the solid morphology. The simulations indicate that reversing the flow direction can have a significant impact on the value of the inertial coefficient, which predicts deviations from Darcy’s law. An alternative momentum equation was proposed that shows good agreement with simulated data. In the proposed form, two terms determine the correction to Darcy’s law. The first is analogous to a Forchheimer extension and accounts for increased importance of inertial terms regardless of flow direction. The second term accounts for directional contributions of the inertial terms to flow resistance.

To quantitatively predict the flow behavior at the macroscale, constitutive laws must be formulated as a function of morphological measures of a porous medium. In traditional approaches, constitutive relationships for the macroscopic flow coefficients account for porosity only. This approach is insufficient to describe the phenomenon described here. Alternatively, flow coefficients may be assumed to depend upon ad-
ditional morphological properties. Thermodynamically constrained averaging theory provides some guidance for the determination of these quantities. To treat the case of extended anisotropy, we construct a tensor that serves as a measure of reflection asymmetry. Preliminary results show a strong correlation between this quantity and the strength of the direction-dependent effect.

Examination of non-Darcy flow within the simple, oriented packings considered in this work provides useful physical insights into the underlying mechanisms that lead to extended anisotropy. Introduction of a tensor to serve as a measure of solid-phase asymmetry provides an opportunity to quantitatively evaluate the impact of this aspect of the solid geometry on macroscopic flow behavior. However, the simple grain shapes considered in this work do not adequately represent the range of asymmetries possible in general porous media. Our research indicates that additional quantities, including porosity, solid surface area, and solid orientation tensors, must be accounted for in order to adequately predict coefficients for certain anisotropic flows. Many open questions remain with respect to approximation of morphological properties of real porous media. Extension of closure relationships to incorporate additional aspects of porous medium morphology presents an opportunity to more accurately predict macroscopic flow parameters.
Chapter 5

Summary and Recommendations

Microscale simulation plays a vital role in the development of macroscopic porous medium models. Flow simulations performed for single- and multi-phase systems provide a clear way to study the macroscopic implications of flow processes, determine the suitability of modeling assumptions and approximations, and develop macroscopic constitutive laws. Various numerical tools are needed to generate microscopic simulation results and perform upscaling in a manner consistent with the theoretical framework. The lattice Boltzmann method is a flexible and widely used for simulating flow processes in porous media. The large domain sizes required to study macroscopic processes necessitate high-performance, parallel implementations of the LBM. In addition to microscopic flow simulators, geometric analysis tools are required to accurately compute averaged quantities from microscopic simulation data. The major contributions from previous chapters of this document are summarized as follows:

- Development of efficient parallel lattice Boltzmann simulators for one- and two-phase flows in porous media;
- Construction of analysis tools for upscaling simulation results to the macroscale;
- Assessment of computational constraints on porous medium simulations for permeability estimation and generation of two-phase equilibrium configurations;
- Analysis of the macroscopic form for the momentum equation for single-phase flow subject to asymmetrical flow geometry.

This chapter addresses remaining challenges and opportunities for microscale porous medium simulation. In particular, the ensuing sections focus on problems of particular interest to the advancement of macroscopic porous media and identifies areas for which existing tools are insufficient to meet the demands imposed by these problems.
5.1 Single Phase Flow

Single phase flow represents the simplest and most well-established porous medium modeling scenario. Microscale simulation techniques such as the MRT LBM are capable of carrying out simulations in realistic porous media based for domain sizes which approach the REV for homogeneous and moderately heterogeneous media. Macroscopic descriptions of single phase flows offer reliable predictions for many systems, and a connection between macroscopic and microscopic physics is well-established [52, 53, 142, 60].

The results of Chapter 5 demonstrate that how microscale simulation can be extended to gain insight into the functional form of the momentum equation for non-Darcy flow in porous media. These results demonstrate that the correction to the Darcy permeability is linear in both the flow velocity and its absolute value, leading to a correction which depends on both the flow velocity and the flow direction. This direction dependence can be identified with asymmetry of the flow field which results from the formation of eddies as determined by the shape of asymmetrical solid grains. The values of the associated macroscopic flow coefficients can be predicted as a function of this asymmetry.

In spite of relatively mature understanding of single phase flows, a variety of open questions remain, particularly with respect to heterogeneous and anisotropic systems. Extending the predictive capabilities of macroscopic constitutive laws for the permeability and inertial coefficients is a straightforward application of the tools and ideas presented herein. In Chapter 4, it was suggested that these coefficients can be expressed generally as functions of a set of dimensionless measures of the solid morphology. Quantitative assessments based on the measures of greatest importance would provide useful extensions to existing correlations which consider these coefficients to be a function of porosity only. Incorporating orientation tensors into these expressions would provide a natural measure by which correlations could be extended to consider anisotropic systems.

5.2 Multiphase Flow

Multiphase flow processes are substantially less well understood in comparison to single phase flows. Open questions remain at all scales, and the development of computationally tractable and physically realistic microscopic simulation approaches is an important
area of ongoing research. Primary objectives of porous medium study are the elucidation of equilibrium and near-equilibrium behavior of multi-fluid systems, including:

- Development of non-hysteretic relationships to describe the equilibrium state for multi-fluid systems;
- Construction of non-hysteretic relative permeability relationships;
- Evaluation of the range of systems for which equilibrium and near-equilibrium approximations may be applied;
- Investigation snap-off phenomena for non-wetting phases and identification of morphology and flow based criteria for snap-off and reconnection on non-wetting phases.

These research objectives impose specific demands on numerical tools, including both simulators and morphological analysis tools. While morphological analysis is unlikely to be a limiting factor in terms of computational time, measurement of certain variables may still present challenges. Computation of interfacial mean curvatures, for example, can be accomplished efficiently and accurately for simple test cases, extension to simulation data is not always straightforward. Most porous medium data sets are discontinuous at fluid-solid interfaces, posing a problem for the curvature estimates presented in Chapter 3. Since accurate computation of the average curvature is essential to the study of capillary pressures, further study of these schemes is necessary to improve the fidelity of these measurements.

Significant physical and computational hurdles restrict microscale studies of multiphase porous medium flows using the LBM. These may be divided into two categories: (1) physical inaccuracies that result from incorrect description of fluid physics; (2) numerical limitations related to the timescale for flow processes in multiphase systems. Addressing these issues and developing efficient simulators which adequately represent multiphase physics is essential for study of porous medium systems. Relatively simple LB schemes such as the Shan-Chen method are most typically used to perform simulations of flow processes in multiphase porous media. While a wide range of schemes exist to simulate multiphase flows, only a small subset have been applied to porous medium systems. More physically accurate description of the fluid interfaces can be accomplished by considering more sophisticated schemes which deal directly with the physical deficiencies inherent in the Shan-Chen LBM [84, 86, 85, 100, 96, 172, 173, 82]. The issues of greatest interest are as follows:
(1) A widely recognized shortcoming of the Shan-Chen LBM is the non-physical definition of the fluid velocity near interfaces, which prevents direct computation of averaged velocities for associated systems. Alternate multiphase schemes have been constructed which correct for these spurious currents by constructing a consistent discretization for the interaction potential [147, 36].

(2) In order to properly treat multiphase thermodynamics, solid boundary conditions must be introduced to generate an associated surface energy for each fluid. A typical approach is to handle solid surface energies with a boundary condition for the contact angle, which only been devised for a subset of multiphase LB schemes [102, 81, 106, 196]. Testing for these schemes has only been performed for the most straightforward solid morphologies and dynamic expressions for the contact angle, where needed, are not well-established. These issues are of critical importance to the development of valid simulation regimes for description of equilibria in multiphase porous media.

(3) Non-physical dissolution phenomena result from the application of an ideal gas equation of state within the bulk phases in the Shan-Chen LBM. Alternative schemes de-couple the pressure and density fields in order to more accurately describe non-ideal fluids [122]. Evidence suggests that such schemes can be subject to mass conservation issues and must therefore be treated with caution [82].

(4) Multiphase drainage simulations require long simulation times before fluids reach equilibrium configurations. These long equilibration times are a consequence of the fact that the fluid interfaces must migrate through a porous medium until they reach a stable configuration, a process which is inherently controlled by the flow velocity. Very small flow velocities push iteration counts into the millions even for relatively small systems. Since the flow velocity is determined by the solution of a physical problem, the only ways to reduce the simulation demands are to take a larger timestep or to perform fewer lattice updates per iteration. The implication is that schemes which utilize grid refinement are likely to provide a significant advantage with respect to accelerated simulation of large systems.
BIBLIOGRAPHY

[168] Michael C. Sukop, Haibo Huang, Chen Luh Lin, Milind D. Deo, Kyeongseok Oh, and Jan D. Miller. Distribution of multiphase fluids in porous media: Comparison

