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ABSTRACT 

Guo Hu: Effects of liver-specific ACSL4 (long-chain acyl-Coenzyme A synthetase 4) 

deletion in liver lipid metabolism 

(Under the direction of Dr. Rosalind Coleman) 

 

Long-chain Acyl-CoA synthetases (ACSLs) are a family of enzymes that catalyze the 

thioesterification of free fatty acid to fatty acyl-CoA.  One member of this family, ACSL4 

has been found to be overexpressed 3-fold in patients with non-alcoholic fatty liver disease 

(NAFLD) though the role of ACSL4 in the pathogenesis of NAFLD is unknown.  We 

hypothesized that the absence of ACSL4 would prevent NAFLD development.  In order to 

test our hypothesis we developed a murine liver-specific Acsl4 knockout, fed them a high fat 

diet (HFD), and determined if they were protected from the development of fatty liver.  

Despite 20 weeks of a 45% HFD, no difference was observed in weight gain, insulin 

sensitivity, ACSL activity, liver triacylglycerol content, liver histology, or serum lipid 

metabolites between control and Acsl4 liver specific knockout animals.  These results 

indicated that Acsl4 liver-specific KO mice were not protected from developing a fatty liver. 
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Chapter I. Introduction 

 

1.1 Hepatic lipid metabolism 

The liver is one of the most metabolically active organs in the body and acts as the 

core lipid metabolic factory via fatty acid (FA) synthesis, complex lipid formation, very low-

density lipoprotein (VLDL) production and secretion, and fatty acid oxidation.  Each of these 

metabolic pathways involves numerous enzymes that interact with one another and are 

regulated through different genetic, hormonal, and nutritional conditions.  Acyl-CoA 

synthetase 4 (ACSL4) is – one of five ACSL isoforms – that catalyzes the initial step of free 

fatty acid activation.  Each isoform appears to have slightly different functions and it has not 

been established as to how and where those activated FAs might be used.  My goal was to 

investigate the function of ACSL4 in liver and determine its role in hepatic lipid metabolism. 

Lipid metabolism first begins with the digestion and absorption of fat from the 

diet.  Triglyceride digestion is initiated by lingual lipases which are secreted by the tongue 

and is further processed in the stomach [1].  The stomach is the primary site for 

emulsification of fat-soluble vitamins and dietary fat [1].  The emulsification process 

continues as the micelle moves towards the duodenum.  The pancreas secretes multiple 

enzymes, such as lipases, which hydrolyze dietary complex lipids with the help of bile and 

bile salts in the intestine.  FFA and 2-monoacylglycerol, which are disassembled from dietary 

triacylglycerol (TAG), are taken up by intestinal cells through protein-mediated, as well as 

protein- independent, processes [1].  Cholesterol esters (CE), phospholipids (PL), and
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re-synthesized TAG are exported through chylomicrons from intestinal cells into the 

circulation.  Lipoprotein lipase (LPL) hydrolyzes the TAG from chylomicrons for the use of 

peripheral tissues.  The remnant chylomicrons, along with VLDL remnants, are taken up by 

liver through LDL-receptors.  Within hepatocytes, lipid components, released from remnants, 

enter different metabolic pathways. Long-chain fatty acids are covalently bound and 

activated by ACSL and are partitioned into different metabolic pathways [2].   

Activated FAs that enter synthetic pathways can be stored in cytoplasmic lipid 

droplets (CLD) or incorporated into complex lipids.  The lipid formation pathway depends on 

whole body energy status and nutrient requirements.  Synthetic lipid mechanisms in liver 

include de novo lipogenesis, TAG, and phospholipid synthesis.  Acetyl-CoA carboxylase 

(ACC) catalyzes the conversion of acetyl-CoA to malonyl-CoA and is one of the rate-

limiting enzymes of de novo lipogenesis.  ACC activity is inhibited under energy-insufficient 

state.  Elongation of malonyl-CoA is catalyzed by fatty acid synthetase (FAS), which is 

expressed in both liver and adipose tissues, by adding acetyl-CoA in each round until the 

formation of palmitic acid.   The rate of de novo lipogenesis is highly regulated by hormones 

such as insulin and glucagon.  Insulin and glucagon are raised during fed and fasting states, 

respectively.  Furthermore, carbohydrate and specific fatty acid content such as n-3 

polyunsaturated fatty acid in different diets can alter the expression of lipogenic genes by 

activating transcription factors such as SREBP-1c, ChREBP, and PPAR-γ. 

TAG synthesis is initiated by FA activation catalyzed by ACSLs.  The following 

esterification steps are catalyzed by glycerophosphate acyltransferase (GPAT), 

lysophosphatidate acyltransferase and diacylglycerol acyltransferase (DGAT) which lead to 

the formation of lysophosphatidic acid (lyso-PA), diacylglycerol (DAG) and triacylglycerol 
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(TAG), respectively.  Phospholipid formation is processed by using intermediates from TAG 

synthesis pathway.  Phosphatidic acid (PA) derived from lyso-PA can be used as a backbone 

for phospholipid formation through two different mechanisms.  One pathway involves 

hydrolyzing the phosphate group from PA to form DAG, with DAG serving as a precursor 

for phosphatidylethanolamine (PE) and phosphatidylcholine (PC).  The other pathway 

accounts for the major phosphatidylinositol (PI) and phosphatidylglycerol (PG) production 

by catalyzing CDP-DAG formation from PA.  The fate of newly formed TAG and 

phospholipids in liver is controlled by whole body energy states, either to be accumulated 

into CLD or output by VLDL.   

Unlike adipose tissue, the major site for lipid storage, the liver serves as a distribution 

center for the exports of TAG, phospholipids, and CE by secreting these lipids into VLDL 

particles for delivery into the circulation for utilization in the peripheral tissues.  Hepatic 

levels of lipid and ApoB100 are the two main components which directly affect VLDL 

assembly.  Increased plasma non-esterified fatty acid (NEFA) induces VLDL production and 

hepatic esterification [3] which are exacerbated in an insulin-resistant state [4, 5].  Insulin 

decreases VLDL production by increasing ApoB100 protein degradation [6] and inhibiting 

microsomal triglyceride transfer protein (MTP) expression, a protein is required for 

lipoprotein assembly [7].  

The degradative pathway of activated fatty acids metabolism is β-oxidation. This 

pathway takes place in the mitochondria, resulting in formation of acetyl-CoA from acyl-

CoA.  These acetyl-CoAs can be used as energy production through tricarboxylic acid cycle 

(TCA) and electron transport chain.  Increased NADH and FADH, generated by the oxidation 

pathway and TCA cycle, donate electrons to the electron transport chain to drive ATP 
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synthesis for energy production.  The energy that is yielded from fatty acid oxidation is 

approximately 9 Kcal of energy per gram of fatty acid – more than twice the amount of what 

is produced from a gram of carbohydrates during glycolysis of glucose.  Under prolonged 

fasting or aerobic exercise, both of which require an increased energy supply, the main 

energy utilization shifts from glucose to FA.  

 

1.2 Role of ACS isoforms in lipid metabolism 

Long-chaine Acyl-Coenzyme A (acyl-CoA) synthetases (ACSLs) are a group of 

enzymes that play an essential role in lipid metabolism including de novo lipid synthesis, 

fatty acid degradation, and membrane remodeling.  Though all ACSL isoforms share the 

same capacity for thioesterification of free fatty acid to fatty acyl-CoA, the substrate 

specificity, subcellular location, and potential impact on downstream metabolic pathways 

differ amongst each of the ACSLs isoforms.   Although structurally similar to one another, 

the five ACSL members can be grouped based upon their difference of sequence homology 

and gene structure into two sub-groups: ACSL1/ACSL5/ACSL6 and ACSL3/ACSL4 [8].  

Most of the ACSL isoforms are membrane-associated, but ACSL4 variant 1 is found in the 

cytoplasm [9].  Though enzyme activity can be measured in multiple ways, accurate 

assessment of the activity of each isoform is still a major challenge because inhibitors of 

ACSL are the non-specificity.  For example, in the mitochondrial membrane, triacsin C can 

selectively inhibit the activity of ACSL1, ACSL3, and ACSL4 without affecting ACSL5 or 6 

[10, 11].  The activity of ACSL4 is selectively and directly diminished by the use of 

thiazolidinediones in a dose-dependent manner [12]; thiazolidinediones also decreases 

triglyceride production and circulating free fatty acids by activating PPAR-γ [13].  Therefore, 
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how their distinct structure determines specific functions of each isoform and their locations 

and activities is still not clear [14].  Due to the diversity of tissue distribution and subcellular 

localization, we assume that each ACSL isoform plays a unique role in lipid metabolism.  In 

our study, by using the ACSL4 
L-/- 

mouse model, we aimed to investigate the role of ACSL4 

in hepatic lipid metabolism. 

 

1.3 ACSL4 gene structure and expression 

Long-chain acyl-CoA synthetase 4 (ACSL4) is a member of the ACS family that is 

encoded by the ACSL4 gene found on the X-chromosome [15].  The ACSL4 protein contains 

711 amino acids and exists in brain and steroidogenic tissues [15].  Two identified protein 

domains, AMP-dependent synthetase/ligase and a conserved site with AMP-binding, form 

the enzyme structure [16-19].  On the ACSL4, various sites located on ACSL4 promoter are 

available for different regulatory transcription factors such as Egr-3 [20], SRF [21], AP-2 

gamma [22].  These transcriptional regulators participate in the regulation of ACSL4 genes 

expression in different situations such as embryo development [21], circadian rhythm [20], 

and muscle development [22].  Different splice variants of the ACSL4 gene can produce two 

possible ACSL4 isoforms.  Variant 1 is the truncated isoform of 75KDa molecular weight 

and predicted by PSORT to localize within the cytoplasm [23, 24].  On the other hand, the 

longer variant 2 isoform contains an additional 41-amino acids at the N-terminus [15, 23] 

with a total molecular weight of ~79KDa [15].  The additional 41-amino acids in variant 2 

are highly hydrophobic , targeting this variant to the membranes [24] both the outer nuclear 

membrane and endoplasmic reticulum (ER) membrane [24] of the brain [24, 25]. 
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1.4 ACSL4 location and substrate preference 

Each ACS isoform is likely to have specific fatty acid (FA) preference and can have 

differing tissue distributions.   Compared with other isoforms, ACSL4 has a high affinity for 

polyunsaturated fatty acids (PUFA) including arachidonic acid (AA) (20:4) as substrates [26], 

and it showed lower affinity for mono-, di-, and tri-saturated FAs [26] among the C8–C22 

saturated fatty acids and C14–C22 unsaturated fatty acids that were tested [26].  This result 

was supported by kinetic studies with a purified recombinant Acsl4 from Escherichia coli 

that had been engineered to overproduce rat ACSL4 [26], which has 91% similarity by 

comparison of nucleic acids or a 97% identity for amino acids to human ACSL4 [26, 

27].  The localization of ACSL4 is distinct from other isoforms as well. Specific regions in 

the brain, which includes the cerebellum and the hippocampus, have higher ACSL4 

expression compared to other regions of the brain [26].  The mRNA expression of ACSL4 is 

also detected in steroidogenic tissues including adrenal gland, ovary, and testes [26].  The 

ACSL4 is one of the ACSL isoforms present in human arterial smooth muscle cells (SMCs) 

in addition to ACSL1, ACSL3, and ACSL5 [12]. 

With PUFAs, specifically arachidonic acid the preferred substrate of ACSL4, it is 

likely that ACSL4 plays a significant role in eicosanoid metabolism.  Meanwhile, oxygenated 

AA generates inflammatory products which modulate and mediate the inflammatory 

response.  To prevent excessive synthesis of eicosanoids, which can stimulate inflammation 

and immune reaction, free arachidonate is converted to arachidonoyl-CoA and re-esterified 

into phospholipids as the safe and storage form [28-30].  In general, phospholipid is formed 

by an esterified saturated fatty acid at the sn-1 position of the glycerol backbone, an 

unsaturated fatty acid at the sn-2 position, and a head group linked by a phosphate residue at 
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the sn-3 position.  AA is normally added at the sn-2 position.  Data from rat liver showed 

amongst phospholipid species, 36.3% of PI contains AA [31].  AA is also the most abundant 

unsaturated fatty acid in PE and PC (about 23%) [32].  Upon being absorbed from diet or 

released from phospholipids or other esters by phospholipase A2 (PLA2) [33], AA can be 

further metabolized into different eicosanoids via either the cycloxygenase (COX), 

lipoxygenase (LOX) or cytochrome P450 monooxygenase pathways [34, 35].  The major 

product of the COX pathway is prostaglandins including prostaglandin G2 (PGG2), PGH2, 

and PGE2 [34].  Leukotrienes and hydroxyeicosatetraenoic acids (HETEs) are made by 

activated LOXs and produce their biological effects by interacting with correspondent 

cognate G protein-coupled receptors [34].  Hydroperoxyeicosatetraenoic acids (HPETEs), 

epoxyeicosatrienoic acids (EETs) and HETEs are synthesized from AA by p450 pathway and 

have major effects in the regulation of ion transport [35, 36].  Expression of these 

eicosanoids is tightly controlled by the activity and expression of key enzymes in each 

pathway [35].  Cholesterol ester hydrolase, a key enzyme in steroidogenesis, releases AA 

from cholesterol esters, which is the key regulated enzyme in steroidogenesis [37].  As an 

omega-6 FA with multiple double bonds which are easily oxidized, arachidonic acid exerts 

its influence in multiple ways within vascular cells.  This characteristic is considered a 

contributor of atherosclerotic disease in humans due to its effects on reduction of unstable 

atherosclerotic plaques [38].  Knocking down the Acsl4 in INS 832/13 cells, EETs in the 

media was increased after incubation with 17 mM glucose, and EETs in cell membrane was 

reduced [39].  Glucose-stimulated insulin secretion in those cells was reduced by exogenous 

EETs.  The result indicated in pancreatic beta-cells, ACSL4 catalyzed EET-CoAs activation 

by thioesterify the unesterified EETs. Further, this reaction positively modulates glucose-
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stimulated insulin secretion [39]. However, due to lack knowledge of ACSL4 function in 

liver, whether hepatic EETs will be affect by ACSL4 expression and further alter the hepatic 

lipid metabolism is still unknown.  

 

1.5 Abnormality of ACSL4 in human disease 

A large sequence deletion around the area of the ACSL4 results in a constellation of 

diseases including elliptocytosis, Alport syndrome, and mental retardation (MR) 

[15].  Amongst these diseases, only mental retardation is associated with deficiency of 

ACSL4 [15].  Given that ACSL4 expression is the highest in the hippocampus and the 

cerebellum [26] indicates this enzyme might have an essential role in normal brain 

function.  To investigate ACSL4 function during brain development, investigators showed 

that there was higher expression of ACSL4 in the brain of newborn mouse compared to the 

brains of adult mouse [40].  Alport syndrome, caused by the deletion of the entire COL4A5 

gene which contains ACSL4 encoding sequence, leads to a high risk of renal failure among 

males by adult age [15].  This X-linked illness was potentially caused by an ACSL4 

abnormality that alters neural lipid metabolism [15]. 

 

1.6 Hepatic lipid metabolism and NAFLD with ACSL4 

Non-alcoholic fatty liver disease begins with benign fat accumulation and exacerbates 

by excessive fatty infiltration and inflammation to overt cirrhosis.  Chronically increased fat 

accumulation in the liver impairs the normal hepatic response to insulin, which disturbs the 

production of glucose [41] and VLDL secretion [42, 43].  Insulin resistance impairs the 

regulation of gluconeogenesis in the liver, so that insulin resistance increases hepatic glucose 
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output under an unnecessary condition. Along with impaired glucose uptake in peripheral 

tissues, these abnormal conditions may lead to hyperglycemia [44], hypertriglyceridemia, 

hyperinsulinemia, and a low HDL-cholesterol concentration in circulation [43]. Non-

alcoholic fatty liver disease (NAFLD) is strongly associated with metabolic syndrome such 

as obesity and insulin resistance, and it is identified when the hepatic fat content is above 5% 

of its total weight in the absence of other causes of steatosis [45].  NAFLD includes multiple 

aspects of liver dysfunctions such as simple steatohepatitis (nonalcoholic fatty liver disease 

[NAFL]) and cirrhosis, and can be a precursor to type 2 diabetes, cardiovascular disease, and 

liver failure [46].  In hepatic lipid metabolism, acyl- CoA synthetases are essential in the 

initial step of acyl-CoA formation from free long-chain fatty acids.  ACSL4 has been found 

up-regulated ranged from 2.3 to 27.5 folds in hepatocellular carcinoma compared to non-

cancerous tissues [47].  In in vitro studies within breast cancer cell lines, ACSL4 promotes 

MCF-7 cells proliferation about 1.5- to 2-fold [48, 49].  Meanwhile, in colon cancer the 

overexpression of Acsl4 mRNA has been found ranged between 2.4 to 54.5 fold and ranged 

2.4 to 64 fold of increment of ACSL4 protein expression [50]. Studies using CLOCK-

deficient mice suggest that Acsl4 plays a role in the development of hepatosteatosis as these 

mice had reduced Acsl4 and Fabp1 expression leading to reduced steatosis on a HFD [51].  

CLOCK transcription factor, which is encoded by the clock gene, participates in regulation 

of body temperature and metabolic regulations [51].  This result suggests that Acsl4 

expression or protein function may alter lipid metabolism which is involved in circadian 

control [51].  In human studies, ACSL4 also contributes to the development of human 

hepatocellular carcinoma and adenocarcinoma [47, 52, 53].  Among 302 Finnish subjects 

after adjusting for BMI, sex, and age, researchers first saw polymorphisms in ACSL4 that 
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were significantly related to liver fat content [54].  Higher hepatic lipid content of NAFLD 

patients, accompanied by an increased insulin concentration and obesity, was observed 

among subjects with high expression of a rare allele of ACSL4 rs7887981 [54].  Based upon 

these numerous associations between NAFLD and Acsl4 overexpression, we aimed to 

determine whether ACSL4 expression is the cause or consequence of NAFLD and whether 

ACSL4 deletion would prevent hepatic steatosis in diet-induced obesity.  We hypothesize 

that deletion of ACSL4 will prevent diet-induced non-alcoholic fatty liver disease. 
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Chapter II Development of ACSL4 liver specific knockout mice 

 

ACSL4 deficiency was first indicated in 1% of X-linked mental retardation from 

human studies [15].  Overexpression of ACSL4 has been found in different cancer studies. In 

recent years, ACSL4 was also implicated by the fact that ACSL4 mRNA was 2.8-fold higher 

in the liver of NAFLD patients [54].  However, the function of ACSL4 in lipid metabolism 

and how ACSL4 uniquely impact hepatic lipid homeostasis are not fully understood.  To 

investigate the function of ACSL4, we developed a strain of liver-specific ACSL4 knockout 

mice in C57BJ/6 background by using loxP-Cre strategy. 

 

2.1 Generation of ACSL4 liver-specific knockout mice (Acsl4 
L-/-

) 

The Acsl4 gene is located on X-chromosome Xq22.3-q23 with a total 104,054 base 

pairs and contains at least 17 exons [55].  This gene encodes the ACSL4 protein which has a 

molecular weight of 79kDa.  We have developed an Acsl4
floxed/floxed 

mouse with gene-

targeting vector which is designed to produce a floxed Acsl4 gene. LoxP sites were inserted 

outside exons 3 and 4 of the Acsl4 gene.  Insertion of LoxP sites should not alter the 

expression of ACSL4, but only allow Cre to cut at these sites to remove the DNA between 

the sites.   For positive screening of LoxP insertion, neomycin phosphotransferase (neo) was 

included in the construction of the vector.  A map of the engineered allele with the excision 

of exons 3 and 4 shows the gene structure (Figure 1A).  Stem cells with 129S1/SvlmJ 

background which contained positive gene construction were microinjected into blastocysts 
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with C57BL/6 background to produce transmitting chimeras.  Flpo recombinase expressed in 

transgenic mice was used to excise neo sequence from the targeted allele.  To purify the 

genetic background, heterozygous ACSL4 floxed
 
female mice (ACSL4

+/-
) were back-crossed 

10-times to C57BL/6 mice.  The ACSL4
+/-

female mice were mated with albumin promoter-

Cre transgenic male mice from Jackson lab (JAX Mice Database - 003574 B6.Cg-Tg(Alb-

cre)21Mgn/J), in which the Cre recombinase is uniquely expressed in liver [56].  Because 

Acsl4 is X-linked, we used male knockout mice for our experiments (ACSL4 
L-/-

) and 3 

different groups of littermate controls at first (ACSL4
+/+

-Cre+, ACSL4
+/+

- Cre
-
, and ACSL4

-/-

- Cre
-
) (Figure 1B).  Because the founder Alb-Cre transgenic mice were heterozygous, 

ideally the offspring will have 50% chance to inherit Cre gene.  Using Cre-specific primer, 

we determined the existence of Cre.  The genotype was confirmed with A/B primers which 

were designed to detect LoxP insertion (Table 1A) by using DNA extracted from tail 

samples (Table 1A).  Further ensuring deletion of the Acsl4 in the liver, A/C primers are 

used in PCR solution by using DNA extracted from liver.  Sizes of PCR products by using 

A/B or A/C primers differed from each other (Table 1B).  PCR products from liver samples 

showed knockout genotype with a bright band around 283bp (Figure 1B), whereas that band 

is absent when DNA was extracted from littermate controls (Figure 1B). 

 

2.2   Mating strategies of ACSL4 LoxP-Cre mice 

By crossing an ACSL4
 +/-

 female with a heterozygous Alb-Cre male, we obtained 

ACSL4 
L-/-

 male mice with ideal chance of 12.5%.  To increase the number of ACSL4 
L-/- 

mice produced, we set up new mating cages by developing ACSL4 
floxed/floxed 

females which 
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we interbred with heterozygous Alb-Cre male mice.  The new strategy increased the 

predictedrate of production of male knockout mice to 25% (Table 2). 

 

2.3   Liver Acsl4 mRNA level and protein expression in liver specific knockout mice 

To determine whether deletion of exons 3 and 4 eliminated Acsl4 expression in the 

liver of knockout mice, total RNA was extracted from ACSL4 
L-/- 

livers and littermate control 

livers (Qiagen RNeasy Mini kit).  cDNA was made by reverse transcription (Applied 

Biosystems).  The mRNA level of each ACSL isoform was detected with forward primers 

and reverse primers (Figure 2).  Acsl4 mRNA expression was highly reduced in liver-

specific knockout mice compared with wild-type littermates.  Absence of Acsl4 did not alter 

expression of other ACSL isoforms.  

Mouse peptide antibody against mouse ACSL4 (ACSL4 antibody, supplied by Dr. S. 

Prescott – University of Utah) was used to detect ACSL4 protein expression. We detected a 

~75kDa band in liver from littermates control mice, but ACSL4 protein was absent in liver 

from ACSL4 
L-/-

 mice. ACSL4 protein was still expressed in kidney and gonadal adipose 

tissue from both genotypes, which confirms the liver-specific ACSL4 deletion. (Figure 2B) 

 

 

 

  



14 
 

Chapter III Materials and Methods 

 

3.1 Animal model and tissue collection 

All procedures were reviewed and approved by the Institutional Animal Care and Use 

Committee (IACUC) of the University of North Carolina at Chapel Hill (Chapel Hill, NC, 

USA).  Mice from the same generation were housed together in a 12-hour light-dark cycle 

and temperature controlled environment. 

Male mice were weaned around 21 days of age with littermates, and were housed 

together and fed a standard chow diet (Prolab RMH 3000 SP76 chow).  At 8 weeks, ACSL4 

L-/-
 mice and their littermates controls were fed a high fat diet (HFD; 45% calories from fat 

majority from lard), 35% calories from carbohydrate (sucrose and corn starch) Research 

Diets D12451) or an iso-caloric matched diet (10% calories from fat using lard and soybean 

oil, 70% from carbohydrate (matched with sucrose but higher in corn starch) Research Diets 

D12451H) for 20-22 weeks. Weight was recorded weekly.  Oral glucose tolerance tests 

(OGTT) and insulin tolerance tests (ITT) were performed at week 18-19 and week 20-21, 

respectively. One week after the insulin challenge, mice were sacrificed after a 4 h fast (from 

9 am to 1 pm).  Plasma was collected from the retro-orbital sinus and mixed with 10 μl 0.5 M 

EDTA.  Liver, unilateral kidney, unilateral gonadal adipose tissue, and unilateral inguinal 

adipose tissue were weighed, snap-frozen in liquid nitrogen, and stored at -80 °C. 
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3.2 Oral glucose tolerant test (OGTT) and insulin tolerant test (ITT) 

Oral glucose tolerance tests were performed after a 4 hour fast (from 9 am to 1 

pm).  Fasting blood glucose level was measured by glucose monitor (Freestyle) before oral 

gavage (10μl/g) of 20% (w/v) glucose solution (2 g/kg body weight). Blood glucose was 

measured at 15, 30, 60, 90, and 120 minutes after gavage. 

Insulin tolerance tests were performed one week after OGTT. Fasting blood glucose 

level was measured after a 4 hour fast before intraperitoneal injection (i.p.) of 

insulin.  Insulin solution (0.8 IU/kg) was prepared by diluting the insulin stock (100 IU/ml) 

with PBS.  Glucose solution (20% w/v) was available for rescuing if mice experienced 

hypoglycemia when blood glucose lower than 20 mg/dL during the experiment.  Blood 

glucose level was measured at 15, 30, 60, and 90 minutes after intraperitoneal injection (10 

μl/g). 

 

3.3 Liver histology 

Fresh livers were collected from mice after they were anesthetized with 2.5% Avertin 

i.p.  Liver sections were separated from the left lobe and washed with PBS, place in the mold, 

and covered in embedding medium (Tissue-Tek O.C.T compound) which solidifies under -

10 °C. Sections were stored at -80 °C.  Each frozen slide contained sections from two livers 

from both genotypes and was prepared by the Histology Research Core Facility. 

Slides were stained with oil red O (ORO) to visualize lipid droplets.  ORO stock 

solution was made by 400 ml 99% isopropyl alcohol and 2.5 g ORO powder and stored at 
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room temperature.  Diluted ORO stock was diluted 3:2 (v/v) with water to make THE 

working solution and filtered before use. Frozen sections first were air-dried for 10 minutes 

and fixed with 10% formalin solution for 30 minutes.  After rinsing with PBS buffer, slides 

were dipped into ORO working solution for 15 minutes, followed by a wash and then were 

washed with 60% isopropyl alcohol.  A counter stain was done with Mayer’s haematoxylin 

for 1 minute to visualize the nuclei.  Slides were washed with running water for 1 minute and 

mounted in aqueous mounting media (90% glycerol in PBS). 

 

3.4 Liver triglyceride content 

     TAG content was extracted from liver by a modified Folch method [57, 58].  Snap 

frozen liver tissues were homogenized in exactly 10x (v/w) ice cold lysis buffer in a plastic 

microcentrifuge tube. The homogenates were rocked at 4 °C for about one hour, then 100 μL 

liver homogenate of each sample was transferred into tube for TAG content analysis.  

 After addition of methanol: chloroform (1:2, v/v) liver homogenates were vortexed 

and incubated at -20 °C overnight.  0.24 mL 0.88% KCl was added to break the phases and 

the mixture was centrifuged at 4 °C, 1000x g for 15 minutes.  The lower chloroform layer 

was transferred to a new 2mL micro-centrifuge tube and dried under N2.  0.8mL chloroform 

was added to the remaining methanol layer, vortexed, and centrifuged again. The second 

chloroform layer was combined with the previous chloroform extract and dried under N2.the 

dried lipid was resuspended by adding 200μl tert-butanol: methanol: Triton X-100 (3:1:1, 

v/v/v) vortex.   

Glycerol that was hydrolyzed from triglyceride in sample reacts with triglyceride 

reagent. The reaction was visualized by a color change which can be detected at 540 nm after 
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15 minutes incubation at room temperature.  Data was compared to standard glycerol to 

quantify amount of triglyceride per mg of liver tissue (Sigma). 

 

3.5 Acyl-CoA synthetase activity 

     Total ACSL activity in liver homogenates was measured with 2, 4, 6 μg liver 

homogenate at room temperature for 10 minutes with 175 mM Tris (pH7.4), 5 mM 

dithiothreitol, 8 mM MgCl2, 250 μM CoA, 10 mM ATP, 10 μM EDTA, and 50 μM [1-
14

C] 

palmitic acid or 50 μM [
14

C] arachidonic acid in 500 μM Triton X-100. The total volume was 

200 μl [59]. The reaction was stopped by Dole’s reagent (isopropanol: heptanes: H2SO4; 

v/v/v =80:20:2) and enzymatic activity was calculated by radioactive counts. 

 

3.6 Serum lipid metabolites 

Mice were anesthetized with 2.5% Avertin.  The blood was centrifuged for serum 

collection.  The serum was stored at -80 °C until use. Colorimetirc kits were used to measure 

serum TAG (Stanbio), total cholesterol (Wako), and NEFA (Wako). 
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Chapter IV Investigation of alteration of hepatic lipid metabolism in vitro 

 

After formation by ACS isoforms, acyl-CoAs are distributed to downstream pathways 

that are disparate due to potentially unique roles of each ACS isoform in lipid 

metabolism.  Deletion of ACSL1 causes a 50% decrease of ACSL activity in liver 

homogenate [60], pointing to its role as the major ACSL isoform in this tissue.  Meanwhile, 

under lipogenic and oxidative conditions, ACSL1 mRNA is upregulated [59], which indicates 

its potential role in both pathways.  ACSL4 mRNA expression in liver of NAFLD human 

subjects is 2.8-fold higher than in healthy subjects [61] but studies have yet to shed light on 

ACSL4 function in hepatic liver metabolism.  Therefore, developing diet-induced obesity 

with 45% HFD in ACSL4 
L-/- 

mice provides an opportunity to determine its function. 

 

4.1   Results - Specific activity of total ACSL was identical between genotypes 

     The absence of ACSL1 in mouse liver resulted in about 50% decrease of ACSL 

specific activity [60]; therefore, other ACS isoforms must contribute to the remaining the 

activity.  ACSL4 is the only ACSL isoform whose gene expression is altered under NAFLD 

conditions.  We assumed that in our mouse model, by knocking out ACSL4, the total ACSL 

activity would differ from the activity in littermate control liver.  Total ACSL activity was 

measured with liver homogenates from KO and littermate controls fed a HFD.  Arachidonic 

acid, (Figure 7A) considered to be the preferred substrate for ACSL4 [20], and palmitic acid 

(Figure 7B) were used as substrates.  With either fatty acid substrate, total ACSL activity 
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was unchanged in KO liver homogenates compared to control.  This result indicates that the 

deletion of ACSL4 did not alter ACSL specific activity in liver. 

 

4.2   Results - Serum lipid content was unaltered after deletion of ACSL4 in liver 

Long-term high fat feeding in mice mimics the Western diet which is considered as 

the culprit of pandemic obesity and type-2 diabetes in human.  Risk of NAFLD is increased 

by obesity and exacerbated by insulin resistance (IR).  Under IR state, restriction of lipolysis 

in adipose tissue is removed, resulting in an increase in free fatty acids release into the 

circulation, exacerbating the burden of fatty acid influx into liver [41, 62].  Increased hepatic 

lipid accumulation may also lead to decreased release of FA from VLDL and reduced fatty 

acid oxidation [6].  These changes have a great impact on whole body lipid homeostasis.  A 

lard-based HFD contains large amount of saturated fat and cholesterol esters.  Increased total 

serum cholesterol and body weight was reported when B6 mice were fed a 40% HFD, but 

total triglyceride and blood glucose were unaltered compared to a 17% LFD [63].  To 

examine if liver-specific ACSL4 deletion in our mouse model would disturb plasma lipid 

homeostasis, we measured common lipid metabolites in plasma.  Total cholesterol, 

triglyceride, and NEFA values were determined in serum samples from ACSL4 
L-/-

 mice and 

littermate controls fed a 45% HFD for 20 weeks (Table 3).  No differences were observed 

for serum concentrations of total cholesterol, triglyceride, and NEFA between the two 

genotypes after 20 weeks of 45% HFD-feeding.  Compared to LFD controls, HFD 

significantly increased serum NEFA and cholesterol, but serum triglyceride was decreased 

after HFD feeding.   
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Chapter V Physiological siginificance of ACSL4 
L-/-

 mice fed a 45% fat diet 

 

Rodents, one of the major mammalian laboratory models, are widely used for human 

disease investigation because of their metabolic similarity to humans.  To mimic human 

obesity in murine models, the development of obesity is usually induced by either a genetic 

mutation or a diet challenge.  Ob/ob mice, a widely used genetic mutation model for human 

obesity, develop dramatic weight gain and metabolic disturbance due to the lack of leptin 

secretion.  However, obesity in humans is, in its majority, due to a chronic progression. Apart 

from a genetic abnormality, consuming high-density caloric food and living a sedentary life 

act as the major contributing factors to the pandemic proportions of obesity.  Therefore, 

aiming to imitate this gradual onset of obesity, we fed C57BL/6 mice with a 45% HFD.   The 

C57BL/6 mouse is the most popular inbred strain for laboratory use and is normally used as 

the background strain modeling various human diseases.  Compared to other strains, 

C57BL/6 mice easily develop diet-induced obesity and type 2 diabetes [64].  This 

susceptibility allows us to investigate the effects of NAFLD derived from diet-induced 

obesity on transgenic mice challenged by 45% HFD for 20 weeks. 

 

5.1   Results - Diet-induced obesity developed after HFD-feeding. 

To explore whether the absence of ACSL4 in liver would disrupt whole body 

metabolic homeostasis, ACSL4 
L-/-

 male mice and littermate controls were fed a 45% HFD or 

a 10% LFD matched with sucrose.  We were aiming to investigate a diet-induced onset of 
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NAFLD by using this mouse model to establish a diet-induced obesity.  It is reported that 

body weight gain is not impacted by age of diet initiation (3, 6, or 9 weeks of age) [65].  In 

another study with 45% HFD feeding, C57BL/6 mice displayed insulin resistance at week 12 

[66]. After 21 weeks, these mice showed significant weight gain compared to LFD, along 

with increased adipose tissue mass and hepatic fat storage [66].   Therefore, in our study mice 

were weaned after 21 days and housed together.  We started the diet for 20 weeks when the 

mice were 8 weeks old.  To minimize error from circadian rhythm, body weights were 

recorded each week on Fridays at 9 am.  By the end of 20 weeks, the weight difference was 

not significant between genotypes fed a LFD (Figure 3A) (p=0.26).  However, under HFD, 

the average weight of ACSL4 
L-/-

 was 3 gram lower than that of their littermate controls.  

Significant weight difference developed after 20 weeks between HFD and LFD regardless of 

their genotypes, which indicated a diet-induced obesity.  The weight difference between diets 

developed at week 5 (p<0.05) for control mice but this diet-induced weight difference was 

delayed until week 19 for their knockout littermates (p<0.05).  Analysis of net weight gain 

during the diet period showed that mice of both genotypes fed the HFD gained more weight 

when compared to mice fed the LFD (p<0.05) (Figure 3B).   Together these data indicate 

that after HFD feeding, mice developed diet-induced obesity regardless of genotypes, and the 

deletion of ACSL4 in liver decreased the total body mass by 3 g compared to littermate 

controls. 
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5.2   Results - Oral glucose tolerance and insulin tolerance tests were similar between 

genotypes 

Obesity induces insulin resistance in both human and animal models. Impaired insulin 

response decreases glucose uptake from peripheral tissues such as adipose tissue and 

muscle.   In liver, insulin resistance also accounts for increased gluconeogenesis which 

further affects lipid metabolism.  In wild-type mice, obesity, altered glucose metabolism, and 

insulin resistance occur after a 45% HFD [63].  To test whether the insulin response differed 

in WT and ACSL4 
L-/- 

mice, an OGTT was performed after mice were fed a HFD for 18 

weeks.  In our study, within the HFD group, the glucose peak at 15 minutes after gavage was 

slightly higher in ACSL4 
L-/-

 mice compared to littermate controls, but the difference was not 

significant (Figure 4A).  Calculation of the area under the curve (AUC) above the baseline 

glucose showed that among HFD-fed mice, the AUC of ACSL4 
L-/-

 mice was higher 

compared to their littermate controls but not statistically different (p=0.28) (Figure 

4B).  Mice fed a 10% LFD showed a similar response to glucose treatment for both 

genotypes; however, by comparing diets, mice fed the HFD were glucose intolerant (p*<0.05) 

compared to mice fed the LFD. 

The ITT was performed one week after the OGTT. No significant differences were 

found between genotypes fed each diet (Figure 5A, B); however, with the same dose of 

insulin, mice fed the LFD experienced a higher rate of hypoglycemia.  More than half of 

mice fed LFD needed to be rescued with a 20% glucose injection, whereas hypoglycemia did 

not occur in HFD-fed mice.  Mice fed the LFD were significantly more sensitive to insulin 

treatment compared to mice fed the HFD. (p*<0.05) To summarize, mice fed 45% HFD 

developed diet-induced insulin resistance (IR) after 20 weeks, but the status of IR was not 

different between genotypes.  
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5.3   Results - Liver histology by oil red O staining showed inconsistent differences of  

lipid content between genotypes 

A liver triglyceride content of more than 10% of total liver weight, which cannot be 

accounted for by excessive alcohol intake or viral infection, is identified as NAFLD [67].  To 

detect NAFLD development in our mouse model, we used ORO staining, a technique 

commonly used for visualizing intracellular neutral lipids including triglycerides and 

cholesterol esters.  Liver frozen sections were prepared without fixation, to avoid 

compromising the staining process.  To solve this problem, we optimized a post-frozen fixing 

protocol by using 10% formalin to fix tissue for 30 minutes, as described in the methods 

section.  By ORO staining, the number of lipid droplets in liver from mice fed a 45% HFD 

was vastly higher compared to mice fed a 10% LFD.  Though different sizes of lipid droplets 

were observed between genotypes in the HFD-fed group, the results were not consistent in 

paired samples and no significant difference was found between genotypes (Figure 6).  

 

5.4   Results - Liver triglyceride content 

To quantify hepatic lipid content in the presence or absence of ACSL4 expression, we 

measured TAG mass in homogenized snap-frozen liver samples from 45% HFD fed animals 

after a 4 hour fast.  With 7 mice for each genotype, triglyceride mass (normalized to tissue 

mass) was not significantly different between genotypes.  (Figure 8 and Table 3) These data 

indicate that the deletion of ACSL4 in liver had no impact on triglyceride accumulation 

compared to littermate controls.  This finding was consistent with our liver histology results. 
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Discussion 

 

NAFLD  was first described in 1979 by Adler and Schaffner  that the disease is 

characterized as striking fat accumulation and increased hepatic inflammation within the liver, 

and it potentially leads to cirrhosis [68].  NAFLD mimics the pathogenesis of alcoholic liver 

disease, but it is not due to either alcohol toxicity or virus infection [68]. The term NAFLD 

was widely used after 1980 when Ludwig further confirmed the disease characteristics 

among patients with an abnormal liver function test [69].  In 2013 there were 28.8 million of 

American adults who suffered from NAFLD [70] and it has become a worldwide pandemic.  

Many studies have tried to elucidate the mechanism(s) involved in disease initiation and 

exacerbation.  However, the mechanism(s) remain unclear. 

NAFLD frequently occurs while obesity, type-2 diabetes, and hyperlipidemia are 

developing [71].  In fact, most NAFLD patients were moderately obese and share the many 

characteristics of metabolic syndrome [72].   However, these conditions also occur 

independently.   In non-diabetic patients, the liver fat accumulation is also associated with 

total body mass index which is exacerbated in severe obesity [73].  Even though obesity is a 

major risk factor for NAFLD, non-obese individuals are also at risk of developing NAFLD 

[74-76].  

To investigate complicated disease development, we need to incorporate 

interdisciplinary studies which help to dissect the question from pandemic trend in a
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population to a particular mechanisms in individuals.  Based upon the fact that ACSL4 is the 

only ACSL isoform which is over-expressed in the liver of NAFLD patients [48], we 

hypothesized that ACSL4, as one of the ACSL isoforms that activate—free fatty acids—for 

disparate lipid metabolic pathways, would be required for the development of human 

NAFLD.  However, no research has been reported to illustrate the ACSL4 function in liver 

disease.  Human ACSL4 and rodent ACSL4 are highly similar [15].  This enzyme similarity 

provides the ability to study the function of ACSL4 in a rodent model in order to mimic the 

human response.  Thereupon, we hypothesized that deleting ACSL4 in the liver may prevent 

the transgenic mice from developing diet-induced NAFLD.   

Our previous unpublished study with ACSL4
 L-/- 

mice fed with a 45% HFD showed 

liver lipid content had a 50% decrease compared to wild-type controls; however, the low 

breeding rate of our initial mating strategy resulted in a limited number of mice therefore we 

only compared two ACSL4 
L-/-

 mice with one C57B6 wild-type control.  An improved mating 

strategy increased breeding rate about 2-fold, and KO mice were all matched with floxed 

littermate controls.  The LoxP-Cre strategy was used to generate ACSL4 liver-specific 

knockoutby deleting exons three and four.  Quantitative real time PCR showed that Acsl4 

mRNA expression was more than 94% knocked down in the ACSL4
 L-/- 

liver.  The 

diminished Acsl4 expression did not trigger the compensatory effect on other Acsl isoforms.  

Compared to littermate controls, the protein expression of ACSL4 was completely eliminated 

in liver.  Interestingly, total ACSL activity in liver was unchanged by the absence of ACSL4 

compared to littermate controls using either arachidonic acid or palmitic acid as substrates.  

After a high fat diet challenge, both ACSL4 
L-/-

 and littermate control mice had significant 

weight gain after 20 weeks compared to a sucrose-matched 10% LFD.  Significant weight 
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loss was observed in ACSL4 
L-/-

 compared to littermate controls (Figure 3).  Further 

evaluations on liver lipid content showed large variations (Figure 8) between different 

individual mice but the average lipid content was similar between genotypes.  Fatty liver 

developed in mice fed a HFD but not LFD.  This result conflicted with our preliminary 

observation which may have been due to the limited sample size and incorrect comparisons.  

Serum TAG, cholesterol, and NEFA were unchanged between genotypes.  Serum NEFA and 

total cholesterol level was significantly increased after feeding a HFD due to the large 

amount of saturated fat in the diet.  The decreased fasting serum TAG after HFD feeding 

resulted in the suppression of de novo lipogenesis in liver.  While mice fed the isocaloric 

LFD which contains a high amount of carbohydrates, they had an increase in de novo 

lipogenesis to compensate for the loss of fat.  These data are consistent with a previous study 

which showed the increased carbohydrate content in the LFD induces de novo lipid synthesis 

and VLDL secretion in liver [77]. Overall, the absence of liver ACSL4 did not induce any 

alteration on the ability of reproduction, glucose/insulin responses, total ACSL activity in 

liver, or hepatic lipid metabolism. Only total body weight difference has been observed in the 

liver-specific ACSL4 knockout, but the effect is unrelated to liver lipid metabolism and 

NAFLD development. 

Identical to other ACSL isoforms, ACSL4 also can facilitate FA activation by forming 

acyl-CoAs.  However, chromosomal location, tissue distribution, subcellular location, 

enzyme activity and FA preferences for each ACSL isoform differ from one another.  It is 

further implied that apart from FA activation, each isoform may affect the fate of lipid 

products in different metabolic pathways.  Acsl4, also called Facl4, was first discovered in 

the rat in 1997 [26] and the gene was located on the X-chromosome [15].  The global 
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knockdown of ACSL4 in mice causes embryonic lethality of ACSL4 KO male offspring, 

decreases fertility and causes small litters of heterozygous female offspring when mated with 

C57B6/J male mice [50].  The data indicated ACSL4 is essential for fetal development, 

especially in male offspring due to the X-linked characteristic.  In the ACSL4 liver-specific 

knockout mouse model, we did not observe any phenotype differences of pregnancy in 

female. To exclude sex bias and due to the higher possibility of having ACSL4 
L-/- 

in male, 

we used ACSL4 
L-/-

 male mice to detect liver-specific ACSL4 knockout phenotype 

differences.   Significant decrease in total body weight was found in ACSL4 
L-/-

 male mice 

after 20 weeks HFD challenge, compared to littermate controls (Figure 3).  This result 

indicated merely removing ACSL4 from liver may reduce growth rate and weight gain, but 

the mechanism of how ACSL4 changes total body weight needs to be further investigated.  

ACSL4 has a distinct tissue distribution [26].  In humans, ACSL4 RNA is widely 

distributed in brain, heart muscle, and skeleton muscle, and reproductive organs, but it was 

not detected in liver [15].  A small amount of protein expression is found in human 

hepatocytes, whereas there is a larger amount of expression found in the cerebellum, adrenal, 

or testis (www.proteinatlas.org).  In our mouse model, western blot showed the similar 

existence of abundant ACSL4 in cerebellum and adrenal glands of both KO and control mice 

(Figure 2B); however, ACSL4 in testis of both genotypes was difficult to detect (data not 

shown).  This fact raises the question of whether ACSL4 would be up-regulated in mice after 

NAFLD development.  ACSL4 function in human and rodents may vary after the onset of 

liver disease onset.   

Due to differential splicing, ACSL4 expression produces two variants, a brain-specific 

isoform variant 2 [24, 25] and a ubiquitous variant 1 [9].  Variant 1 has been found to 
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associate with the inner plasma membrane as well as in the cytosol[9].  In our project, total 

ACS activity was measured by using liver homogenates from ACSL4 
L-/-

 and littermate 

controls.  The removal of ACSL4 in liver did not influence enzyme specific activity when 

using either palmitic acid or arachidonic acid, the preferred fatty acid for ACSL4 [26].  It 

might because ACSL4, as a minor amount of ACSL isoform in liver, did not contribute to the 

activation of fatty acids.  In fact, in the ACSL1 liver-specific KO model, the ACSL specific 

activity was 50% lower compared to control which indicated the ACSL1 is an abundant 

hepatic ACSL isoform [60].  Therefore, in ACSL4 
L-/- 

liver, total ACSL activity is unaffected 

by the removal of ACSL4.   

The liver, serves as the central lipid factory, and governs various lipid species 

production and transportation throughout the body.  This process not only refers to the intake 

of lipoprotein particles from circulation, but also includes lipid assembly and output, and 

energy maintenance for liver itself.  Meanwhile, this whole system is modulated under 

different health conditions and diet challenges.  Dietary lipids and FAs released from adipose 

tissues comprise the lipid influx to liver.  Within liver, de novo lipogenesis is stimulated by 

insulin signaling and is increased by energy surplus.  Furthermore, abundant energy promotes 

triglyceride synthesis which can be either stored or released from liver into blood circulation 

as VLDL. Under energy depletion, fatty acids from either the local lipid pool or the free fatty 

acid derived from adipose tissue lipolysis are degraded through oxidation for energy 

production.   Under insulin resistant state, which was also established in our mouse model 

(Figure 4, 5), enhanced circulating FAs influx and hyperinsulinemia stimulates hepatic lipid 

synthesis and blunts hepaticβ-oxidation.  By assuming that lack of ACSL4 was protective 

against NAFLD, we expected to see a phenotype difference on hepatic lipid accumulation 
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because it is the main feature of NAFLD [45].  However, after 20 weeks 45% HFD, no 

difference in hepatic lipid content was found between ACSL4 
L-/-

 and littermate controls 

(Figure 8, Table 3), and triglyceride levels largely differed from each individuals.  Therefore, 

we conclude that activated FFA by ACSL4 in liver may not be required for lipid 

accumulation.  Alternatively, ACSL4-derived products may be used in signaling molecules 

formation and affect the growth process of other tissues such as skeleton muscle which 

would require further investigation. 
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Conclusion and further investigations 

 

Taken together, in liver-specific ACSL4 knockout mice, the absence of ACSL4 did 

not have major effects on hepatic lipid accumulation.  No phenotypic difference was 

observed when mice were fed a high fat diet which induces impaired insulin response and 

glucose intolerance, and enhanced serum lipid content in both genotypes.  I concluded that 

the ACSL4 deletion does not prevent the onset of NAFLD in mice.   

Compared to hepatic ACSL4 function, neurological development and carcinogenesis 

research reported that ACSL4 is highly related to those diseases pathogenesis.  Drosophila, 

as a model for neurological science, was widely used to investigate ACSL4 neuronal 

functions [78].  Drosophila dAcsl is an ortholog of human ACSL3 and ACSL4 [78].  It was 

also identified to localize on ER [78] which is the same localization as human ACSL4 variant 

2 [23, 24].  During the formation of glia and neurons, lack of ACSL4 resulted in reduction of 

decapentaplegic (Dpp), one of the Drosophila vertebrate bone morphogenetic proteins (BMP) 

homologs [78].  Dpp signaling was reported to initiate neuronal differentiation and 

proliferation [79].  ACSL4 mutation blunts the Dpp signaling pathway and further impedes 

neuron development which may mimic a pathogenic process in human X-link mental 

retardation [78].  Synaptic growth, however, was inhibited by ACSL4 homolog dAcsl by 

attenuating BMP signaling [80].  Therefore, even within brain, ACSL4 has specific function 

in different regions.  Even though ACSL4 function in brain has not been fully understood, 
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mounting research suggests that ACSL4-derived lipid products may have important effects 

on neuron growth and signaling transmission [81].  A potential assumption of neuronal 

ACSL4 function is membrane formation which may involve ACSL4-derived phospholipids 

which contain arachidonic acid [82].  Lack of ACSL4 impairs neuronal differentiation and an 

increased content of prostaglandin accumulate in neurons [82]. 

Other than neuronal development, overexpressed ACSL4 was detected in multiple 

cancer cell lines, including specific type of human breast cancer[48], colon cancer [52], and 

liver cancer [47]. It has been found to positively regulate cancer cell growth.  Intracellular 

free arachidonic acid level is reduced by overexpressing ACSL4 and COX-2 in colon cancer 

and apoptosis is prevented by the excessive enzyme expression [52].  On the contrary, 

increasing the intracellular AA level by using triacin C to inhibit ACSL activity or by adding 

exogenous AA, induced apoptosis [52].  In hepatoma cells, increased ACSL4 expression has 

been found, and the inhibition of ACSL4 expression directly decreased cancer cell growth 

[47].  In this study, by adding one type of cyclic AMP (cAMP) analog – one of the second 

messengers in intracellular signaling pathway – ACSL4 expression is suppressed in the 

hepatoma cells [47].  To investigate downstream pathway of cAMP and ACSL4 interaction, 

the study found that p38 phosphorylation was up-regulated in tumors cells but its activity can 

be restricted by cAMP [47].   p38 can be stimulated by growth factors, cytokines, and it 

transmits intracellular signaling to nuclei by modulating gene expression [83].  By using p38 

inhibitor, the study found the ACSL4 expression was blocked [47].  This result suggested that 

p38 was involved in the interaction of cAMP and ACSL4 expression in hepatoma cells [47].  

There are several limitations of my current project which can be improved in future 

investigation.  First, we need biomarkers to identify the development of NAFLD.  Even 
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though increasing hepatic lipid content is the major marker of fatty liver, in our study not all 

mice fed with a 45% HFD established a dramatic increase of liver triglyceride which 

happened in both KO and littermate controls.  During the progression of NAFLD, liver cells 

rupture and release hepatic ALT and AST into the blood stream.  Hepatic ALT and AST can 

be detected in serum to determine disease onset.  Second, significant weight loss was 

observed in ACSL4 
L-/-

 male mice (n=10) fed a 45% HFD for 20 weeks.  The current research 

indicated ACSL4 liver-deletion did not alter liver lipid metabolism; however, the liver-

specific genetic change may affect nutritional metabolism in other tissues by releasing 

signaling molecules. Furthermore, the weight difference may also relate to food intake, basal 

metabolic rate and physical activity, and different lean/fat mass proportion. Third, different 

proportion of phospholipid FA species may result from the lack of ACSL4.  A recent study 

indicated that increased phosphatidylinositol was observed along with ACSL4 

overexpression which supports my conclusions [9].  I assume that removal of ACSL4 in liver 

will alter phospholipid metabolism even if ACSL1 is supposed to be the predominant ACSL 

isoform in mouse liver, because an overexpressing ACSL4 was observed to alter 

phospholipid formation rather than ACSL1 [9].   Fourth, in my current project, although no 

evidence elucidated a possible causality between hepatic ACSL4 function and NAFLD 

development, ACSL4 itself could be a biomarker for NAFLD onset. 
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Figure1. Acsl4 flox PCR strategies 

A. By flanking LoxP sites at sides of exon 3 and 4, the targeting gene structure yielded exon 

3 and 4 deletion when crossed to albumin-CRE animals. Deletion of exons 3 and 4 caused 

immediate translational stops from exon 2 to downstream exons which stopped ACSL4 

protein expression.  Neo sequence helps to screen the positive transgene.  After back-crossing 

10 times to C57BL/6 mice, Acsl4 flox gene was stable in C57BL/6 background.  

B. PCR amplification of loxP site and Acsl4 deletion in liver. Heterozygous ACSL4 
+/-

 female 

mice were interbred with Alb-cre heterozygous male mice to produce ACSL4 
L-/-

 mice and 

littermates controls. A 243 bp band indicated loxP was inserted into Acsl4 gene and a 141 bp 

band indicated normal Acsl4 gene.  A 283 bp PCR was produced only in the liver of KO mice. 
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A.                                                                                            B.  

 

Figure2.  Livers from ACSL4 
L-/-

 male mice contain little Acsl4 m RNA compared to other 

ACS isoforms and no ACSL4 expressed compared to littermate controls. 

 

A. mRNA expression in liver from ACSL4 
L-/-

 mice compared to liver from littermate 

controls.  Relative gene expression of Acsl in ACSL4 
L-/-

 mice compared to littermate 

controls (n = 4 for each group).  Total mRNA was isolated from 20 μg liver samples by 

Qiagen RNeasy Mini kit, mRNA was synthesized to LFDNA for SYBR Green quantitative 

PCR. The 5 ACS isoforms gene expression were normalized to the endogenous control, beta-

actin. *p<0.05 versus Acsl4 mRNA expression in littermate controls.  

B. ACSL4 protein level in the liver, cerebellum, and adrenal of ACSL4 
L-/- 

mice and 

littermate controls mice. Homogenates made from liver, cerebellum, and adrenal tissue snap-

frozen sample were subjected to SDS-PAGE by loading 12.5 μg, 25μg, and 12.5μg protein, 

respectively.   After transfer to a polyvinylidene difluoride membrane, membranes were 

incubated with primary anti-ACSL4 peptide polyclonal antibody or anti-GAPDH antibody 
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  A.                                                                                                 B. 

 

Figure3. Weight difference was observed between ACSL4 
L-/-

 male mice and littermate 

controls at the age of 27-week fed with a 45% HFD. No difference was observed between 

genotypes when mice fed a 10% LFD matched for sucrose. 

 

A. Body weight changes in ACSL4 
L-/-

 male mice and littermate controls during 20 weeks fed 

by 45% HFD compared with 10% LFD.   

* P<0.05 ACSL4 
L-/-

 mice and control mice fed by HFD versus LFD (Student’s t-test) 
# 

P<0.05 ACSL4 
L-/-

 mice versus control mice fed a HFD at the end of the diet 

B. Body weight gain at the end of 20 weeks on the appointed diets. 

Data are shown as mean ±S.E.   * P<0.05 versus control mice fed by LFD (Student’s t-test)  

(HFD control n=10, KO n=12; LFD control n=10, KO n=6) 
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A.                                                                                       B. 

 

Figure4. Glucose response after a glucose oral gavage after 4 hours fast was similar of male 

mice of both genotypes fed a 45% HFD or a 10% LFD for 20 weeks 

 

A. Data are shown as mean ±S.E.  *p<0.05 difference between diets but not genotypes  

B. Area under the curve (AUC).  Data are shown as mean ±S.E.   *p<0.05 difference between 

diets but not genotypes (n=5-7 for each group) 
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A.                                                                                B. 

 

Figure5. Insulin tolerance test (ITT) after 4 hours fast on male mice fed by 45% HFD or 10% 

LFD for 20 weeks had no difference between genotypes. 

 

A. Data are shown as mean ±S.E.  *p<0.05 difference between diets but not genotypes  

At the 60 minute time point, 3 control mice and 3 KO mice required rescue by glucose 

injection. Only 3 control mice and 1 KO mouse finished the whole experiment without 

rescuing.  

B. Area above the curve (AAC) of mice fed by 45% HFD.  

(HFD control n=6, KO n=7; LFD control n=3, KO n=1) 
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                              10% LFD                                 45% HFD 

  

Figure6. No difference showed in liver histology with oil red O staining 

 

Visualization of neutral lipids by ORO analysis in liver from ACSL4 
L-/-

 mice and littermate 

controls fed with a 10% LFD or a 45% HFD for 20 weeks.  Magnification is ×10 each 

sample; n = 3 – 4 per group. 

Left two panels: Representative histology from ACSL4 
L-/-

 mice fed a 10% LFD for 20 weeks. 

Lipid droplets were stained with ORO.  Upper panel is liver from littermate control; lower 

panel is from KO mouse. 

Right two panels: ACSL4 
L-/-

 mice fed a 45% HFD for 20 weeks. Lipid droplets were stained 

by ORO.  Upper panel is liver from littermate control; lower panel is from KO mouse. 

  

Control 
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A.                                                                               B.  

 

Figure7. Total ACS activity in HFD liver was unaltered by ACSL4 deletion compared to 

control liver samples (n=5) 

 

A. ACSL activity in liver with [
14

C]-palmitic acid or [
14

C]-arachidonic acid as substrate 

Liver homogenates obtained from littermate controls and ACSL4 
L-/-

 mice were incubated 

with 50uM labeled fatty acid and reaction reagent for 10 minutes at room temperature.  Data 

are shown as mean ±S.E.  
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Figure8.  HFD-fed mice had higher hepatic TAG content compared to LFD-fed but no 

difference was observed between genotypes 

 

Control HFD n=8; KO HFD n=9; control LFD n=3; KO LFD n=3 
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A.  

Primer Name Sequence  

A ACSL4-F1 CAGTCTTTGGCTGTAAATTGACTATGTGC  

B ACSL4-R1 TGTACCAGTTGCTTGGGAGGAGTACA  

C ACSL4-RSeq4 ACTTGCCAACCAGAAACATGCATAC  

D PGKPR-R1 TGCCTTGGGAAAAGCGCCTC  

 

B. 

PCR product sizes (bp) 

Allele A-B A-D A-C 

+ 141 - - 

neo - 243 - 

c 243 - - 

△3-4 - - 283 

 

Table 1. Primer sequences and product sizes 

 

A. Primers were designed to investigate LoxP insertion sites and Acsl4 deletion.   

B. PCR product sizes.  Liver samples PCR yielded a 283 bp band with A/C primers which 

indicate Acsl4 exon 3 and 4 were excised from liver (knockout mice only).  Tail samples PCR 

produced a 243 bp band with A/B primers which means existed loxP sites and a 141 bp band 

with A/B primers without loxP insertion.  
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A. Original mating strategy  

♂\♀  
X

+

 X
-

 

X
+

 X
+

 X
+

 X
+

 X
-

 

Y 
X

+

Y X
-

Y 

B. Developing homozygous ACSL4 
floxed/floxed

 female 

 ♂\♀ 
X

+

 X
-

 

X
-

 X

+

X

-

 X
-

 X
-

 

Y 
X

+

Y X
-

Y 

C. Current mating strategy 

 ♂\♀ 
X

-

 X
-

 

X
+

 X
-

X X
-

X 

Y 
X

-

Y X
-

Y 

 

Table 2 Breeding strategies of ACSL4 
L-/-

 mice 

 

A. Originally, heterozygous Acsl4 
+/floxed

 female mice were interbred with heterozygous Alb-

Cre male mice to produce ACSL4 
L-/-

 mice with a low rate of 12.5%.  

B. To improve our breeding strategy, homozygous Acsl4 
floxed/floxed

 female mice was 

generated by crossed heterozygous Acsl4 
+/floxed 

female mice with ACSL4 
floxed

 male mice.  

C. With homozygous Acsl4
floxed/floxed 

female mice, new breeding strategy provide 25% 

generation of ACSL4 
L-/-

 male mice when mating with heterozygous Alb-Cre male mice. 
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Table3.  Lipid metabolites in serum and liver 

 10% LFD 45% HFD 

Serum control (n=3) KO (n=3) control (n=9) KO (n=8) 

TAG (mg/dL) 56 ± 7.3  51.5 ± 4.7  37 ± 5.3 * 34 ± 2.1 
#
 

NEFA (mEq/L) 0.26 ± 0.02  0.37 ± 0.05 0.54 ± 0.04 * 0.57 ± 0.02 

Total cholesterol (mg/dL) 90 ± 6.7  104 ± 9.6 144 ± 8.6 * 134 ± 9.1
#
 

Liver     

TAG (μg/mg tissue) 6.2 ± 1.3 11.3 ± 3.7 34 ± 8.1 * 28 ± 5.3 
#
 

 

Table 3 Liver triglyceride and serum lipid metabolites did not altered in ACSL4 
L-/- 

male 

mice and controls after 4 hours fast 

 

Serum collected from mice after 4 hour fast.  Lipid metabolites were measured by enzymatic 

kits.  Data showed the mean ±S.E. 

Liver triglyceride was extracted by a modified Folch method with lysis buffer.  TAG mass in 

quantitative amount of liver tissue was measured enzymatically.  Data are shown as mean 

±S.E.  

* P<0.05 versus control mice fed by LFD (Student’s t-test) 
#
P<0.05 versus KO mice fed by 

LFD 
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