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Abstract

JESSICA WEHNER: Software Tools and Guide for Viscoelastic Creep Experiments.
(Under the direction of M. Gregory Forest.)

Models predicting strain as a function of time are fit to data obtained from creep recovery

experiments on viscoelastic materials. Here we discuss standard non-inertial and instrument-

induced inertial creep experiments. We first summarize and illustrate key signatures, which

differentiate the models and highlight properties of creep data. The basic signatures distin-

guishing a solid versus fluid response, respectively, are: a sudden versus gradual rise when

a stress impulse is applied; a sudden versus gradual decline when a constant stress is sud-

denly removed; and recovery to zero strain versus a finite steady state after the applied stress

is removed. For completeness, we discuss development of the models, solution methods, and

parameter influence on behavior. Finally, software created by Dr. Ke Xu to estimate the model

parameters that best fit the experimental data is adapted to illustrate the influence of experi-

mental noise in parameter recovery.

ii



Table of Contents

List of Figures v

1 Experimental Rheology 1

1.1 Overview of Creep Experiments . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Mechanical Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Illustration of Experimental Data . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Non-Inertial Models 12

2.1 Overview of Non-Inertial Models . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Example: Derivation of Analytical Solution to Three Parameter Maxwell Model 15

2.3 Linear Viscoelastic Liquid Models . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 Linear Viscoelastic Solid Models . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.5 Summary of Model Signatures of Non-Inertial Creep Experiments . . . . . . . 25

3 Inertial Models 27

3.1 Overview of Inertial Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Example: Coupling of Instrumental Inertia to Maxwell Model and Derivation

of Analytical Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3 List of Inertial Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.4 Summary of Model Signatures of Inertial Creep Experiments . . . . . . . . . . 36

iii



4 Software Tools 38

4.1 Parameter Inference and Analysis of Parameters Using Mathematica . . . . . . 39

4.2 Generating Experimental Error: Make Data Tool . . . . . . . . . . . . . . . . 45

4.3 Experimental Parameter Fittings after Identification of Key Signatures . . . . . 53

Bibliography 65

iv



List of Figures

1.1 Schematic of cone and plate rheometer . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Response of a pure solid and liquid . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 The viscous element represented as a dashpot . . . . . . . . . . . . . . . . . . 5

1.4 The elastic element represented as a spring . . . . . . . . . . . . . . . . . . . . 5

1.5 Two Parameter Maxwell element . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.6 Three Parameter Maxwell element . . . . . . . . . . . . . . . . . . . . . . . . 7

1.7 Agarose under high stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.8 Highly oscillatory agarose data appears noisy . . . . . . . . . . . . . . . . . . 10

2.1 Top hat stress function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Two Parameter Maxwell model . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Maxwell-Jeffrey model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4 Three Parameter Maxwell model . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.5 Two Parameter Kelvin-Voigt model . . . . . . . . . . . . . . . . . . . . . . . 23

2.6 Three Parameter Kelvin-Voigt model . . . . . . . . . . . . . . . . . . . . . . . 24

3.1 Inertial Maxwell model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 Inertial Voigt model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3 Inertial Maxwell-Jeffrey model . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.1 Screen shot of Mathematica ‘manipulate’ tool . . . . . . . . . . . . . . . . . . 40

4.2 Comparing changes in small G for small η in 3 Par. Voigt . . . . . . . . . . . . 42

4.3 Comparing changes in large G for small η in 3 Par. Voigt . . . . . . . . . . . . 42

4.4 Observing the effects of η2 on slope in Maxwell-Jeffrey . . . . . . . . . . . . . 44

4.5 Parameter values for Maxwell-Jeffrey across range of error . . . . . . . . . . . 45

v



4.6 Effects of η2 on fitting region (0,5) . . . . . . . . . . . . . . . . . . . . . . . 46

4.7 Good alignment on fitting interval . . . . . . . . . . . . . . . . . . . . . . . . 46

4.8 Comparing original data to graph generated by poorly fit parameters . . . . . . 47

4.9 Make Data environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.10 Close up of ‘Parameter Values’ box in make data.fig . . . . . . . . . . . . . . 48

4.11 Close up of ‘Set Details of Applied Stress Function’ box in make data.fig . . . 49

4.12 Close up of ‘Options’ box in make data.fig . . . . . . . . . . . . . . . . . . . 49

4.13 Demonstration of fitting algorithm on data with 5% error . . . . . . . . . . . . 51

4.14 Summary of controls tested to examine influences of experimental error . . . . 51

4.15 Error in predictions of G and η for different levels of experimental error . . . . 52

4.16 Experimental data resembling Three Parameter Maxwell or Voigt models . . . 53

4.17 A poor versus good fit in experimental data . . . . . . . . . . . . . . . . . . . 55

4.18 Agarose data at 0.05 Pascals . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.19 Agarose at 0.05 Pascals fit to Linear Solid and Maxwell-Jeffrey . . . . . . . . . 57

4.20 Agarose data at 0.2 Pascals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.21 Agarose at 0.2 Pascals fit to Linear Solid and Maxwell-Jeffrey . . . . . . . . . 59

4.22 Agarose data at 0.5 Pascals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.23 Agarose at 0.5 Pascals fit to Linear Solid and Maxwell-Jeffrey . . . . . . . . . 61

4.24 Excellent fit to exact inertial data . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.25 Poor fit of experimental inertial data on interval (0,5) . . . . . . . . . . . . . . 63

4.26 Poor fit of experimental inertial data on interval (2,3) . . . . . . . . . . . . . . 64

vi



Chapter 1

Experimental Rheology

1.1 Overview of Creep Experiments

One tool for exploring the properties of viscoelastic materials is the creep experiment. Typ-

ically, a shear stress (force per unit area, given here as τ) is imposed on the material in a

prescribed manner (with a known magnitude usually measured in pascals and with dictated on

and off times) by a rheometer. The sample is trapped between two small plates in the rheome-

ter, and shear stress is applied to the fluid through the controlled torque rotation of the top plate

relative to the bottom. The top and bottom plate can both be flat and parallel, as in a parallel

plate rheometer; or the top plate can be an inverted cone with a very shallow angle, as in the

cone and plate rheometer. A controlled torque is imparted to the top plate, and its angular

deflection is measured with high accuracy as it rotates with influence from the thin layer of

material beneath it. From this we can take measurements of how the sample deforms under the

applied stress and how it recovers once the imposed stress is removed.

The geometry of a cone and plate rheometer is depicted below in Figure 1.1. The values

R and β are known, where R is the length from the center of the plate to the edge, and β is

the angle the cone makes with the bottom plate, usually about 1◦. The angular deflection φ is

recorded during the experiment. With these values, shear strain (denoted here as γ and unitless)

can be calculated by γ = φ
β , or the ratio of the displacement to the thickness of the sample. See



(Macosko94) for further details.

Figure 1.1: Geometry of a cone and plate rheometer with diameter R, cone angle β and angular
deflection φ.

Under constant stress as in these experiments, the linear response of a viscoelastic material

is proportional to the imposed stress. (This will be evident below when we give the model

equations and their closed-form solutions.) Thus, it is natural to normalize strain by the im-

posed stress. This defines the compliance, J = γ/τ. In this manner, the material response J is

independent of the value of the input stress. A good experimental test of linear response is to

run the experiment at several stress levels. All the data should collapse onto a single curve,

the compliance curve. The mathematical models used here, which predict strain values, are

converted to compliance before use with compliance data.

By plotting the compliance as a function of time, we can obtain graphs with standard fea-

tures which are unique for different types of materials. An overarching goal is to find math-

ematical models which best reflect these features, to which end there are many standard me-

chanical models used in practice which will be discussed in this document. Additionally, two

types of creep experiments can be performed and each may collect unique information. These

are the inertial and non-inertial experiments.

Performing an inertial experiment means that the inertia of the rotating parts of the rheome-

ter is allowed to enhance the elasticity of the material resulting in oscillatory behavior in the

response, sometimes referred to as ‘ringing’. Initially, only non-inertial experiments were

performed, in which the inertia within the machine was damped to a high degree to avoid in-
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terference with the data. However, a very small amount of oscillatory behavior present at the

beginning of these experiments could be noted. These first few moments would be removed

from the data to prevent it from interfering with further analysis. It was then discovered, as

noted in (Barav98), that the inertia of the instrument could be coupled to the material’s elastic-

ity to aid in the study of thixotropy. Thixotropy can be described as the time dependent change

in viscosity that a material might undergo during a stress experiment. Although we are not

concerned with how to model thixotropy in this thesis, we will provide evidence while fitting

to experimental data that thixotropy occurs in certain materials. It is important to consider

the coupling of instrumental inertia for other reasons than to study thixotropy; these include a

much shorter timescale on which useful information may be collected and the ability to infer

more information from a single experiment.

Material behavior

For a simple elastic response, the governing equation is Hooke’s law: stress (τ) is proportional

to strain (γ) with the shear modulus (G) as the constant of proportionality, τ = Gγ. The simplest

equation to describe a purely viscous response is Stokes relation: stress (τ) is proportional to

rate of strain (γ̇) with constant of proportionality the viscosity (η), τ = ηγ̇. Both of these

models have been around since the 1660s. Let’s observe how these simple equations respond

to an imposed constant stress that is turned on at t0 and turned off at t1 (this is equivalent to a

top hat function which can be written as τ = H(t− t0)−H(t− t1)).

Hooke’s law can be solved directly for γ, γ = τ
G . Thus, the strain of a pure solid will mimic

the top hat function but with a changed magnitude dependent on G. At the onset of stress,

the solid will suddenly reach some constant strain, maintain that strain for the duration of the

applied stress, and then suddenly recover to its resting configuration (recover fully to 0 strain).

This is a result of a solid’s ability to store stress as it is applied and release it once stress is

removed. As another example, if the stress is sinusoidal instead of top hat, the response of an
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elastic material will remain in phase with the stress. Just consider τ = sin(t) and observe that

γ = 1
G sin(t) has a new amplitude but remains in phase.

Solving Stoke’s Law for γ requires an integration of the applied stress; in this case, the

integration of two step functions results in two linear functions. The result is γ = 1
η [(t−t0)H(t−

t)− (t− t1)H(t− t1)]. This and the elastic response above are depicted in Figure 1.2. At the

onset of stress, the pure liquid will strain linearly. Once the stress is removed, the liquid will

maintain the acquired configuration and will not recover any strain. This is because a purely

viscous material cannot store stress and hence deforms continuously as shear stress is applied.

The strain of a fluid will be π/2 radians out of phase with a stress that is applied sinusoidally.

For example, if τ = sin(t), then γ will be given by a cosine function, which is π/2 radians out

of phase with sine.
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Figure 1.2: The response of a pure solid (red) and a pure liquid (blue) to an applied top hat
stress.

Viscoelastic materials exhibit both viscous and elastic properties, yet can be more solid-

like or liquid-like in their response to constant or phasic shear stress. Thus, an initial focus

of creep experiments is to identify whether a viscoelastic material is more fluid-like or solid-
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like at the applied stress level. A further complicating observation is that many viscoelastic

materials are solid-like at sufficiently low stress levels, yet liquid-like above a stress threshold.

This thesis will only give an example of such materials, but the tools presented here can detect

such behavior simply by varying stress levels in a series of creep experiments across the critical

threshold.

It should be noted that the most general distinction of ‘liquid-like’ or ‘solid-like’ used

to categorize the models in Chapter 2 is chosen here based on end behavior - if the model

recovers to 0 strain after stress is turned off, it is denoted as a linear viscoelastic solid; if the

model recovers to some positive steady state strain when stress is turned off, it is denoted as a

linear viscoelastic liquid. The other features considered here, such as an initial jump in strain

at the onset of an applied stress or a sudden drop in strain once stress is removed, can also be

considered liquid-like or solid like. However, because of our choice to use end behavior as the

broadest category, the other features will be intermixed between solid- and liquid-like models.

1.2 Mechanical Models

The basic viscous and elastic elements can be represented as mechanical forms having a gov-

erning constitutive law. The basic viscous element is represented as a dashpot. As its purpose

is to represent a purely viscous response, it is governed by Stokes relation described above:

τ = ηγ̇. The basic elastic element, meant to represent a purely elastic response, is represented

as a spring and is governed by Hooke’s law: τ = Gγ. See Figures 1.3 and 1.4.

Figure 1.3: The viscous element repre-
sented as a dashpot, with viscosity η.

Figure 1.4: The elastic element repre-
sented as a spring with shear modulus G.
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To build a viscoelastic material, the spring and dashpot elements can be combined in series

and parallel configurations, achieving new behavior with at least two parameters - G and η.

Certain rules define how the governing equations are combined. These configurations and their

equations have given rise to the several standard linear viscoelastic models used today and are

presented in detail in further sections of this document. However, to give a thorough example

of how one such model might be developed, we shall now go through the steps which lead

to the standard Three Parameter Maxwell model. All other models are developed in the same

manner; an excellent reference for all of these models is (Tschoegl89).

Deriving the Three Parameter Maxwell model

The Three Parameter Maxwell mechanical model is created by combining a Maxwell element

in parallel with a spring. Thus, first we must know how to create the Maxwell element. The

Maxwell element is the series combination of one spring and one dashpot, as shown below.

The rule for series configurations is that the strains add and the stresses are distributed equally.

Figure 1.5: Two Parameter Maxwell element

For the dashpot (viscous element) we have τv = ηγ̇v. For the spring (elastic element) we have

τe = Gγe. Adding strains means that the overall strain of the two parameter model is the sum

of the strains of each element, γ = γe + γv. Thus,

γ̇ = γ̇e + γ̇v

=
τ̇e

G
+

τv

η
(1.1)
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Since equating stresses means that τ = τe = τv, we can substitute τ, the overall stress of the

two parameter model, for τe and τv, the stresses of the individual elastic and viscous elements,

respectively. Thus, we have γ̇ = τ̇
G + τ

η . We can divide through by η to get as the constitutive

law of the two parameter Maxwell element the equation ηγ̇ = η
G τ̇+ τ, which we note is trivial

to solve for γ/τ0 by one integration.

To create the Three Parameter Maxwell model we combine the Maxwell element in parallel

with a spring, as shown below. Now, the law which governs the maxwell element was found

Figure 1.6: Three Parameter Maxwell element

to be η1γ̇1 = η1
G1

τ̇1 + τ1, and the law which governs the spring is given by τ2 = G2γ2 (using

subscripts to differentiate between parameters). We wish to combine these two elements (the

spring and the maxwell) in parallel, for which the rule is to add stresses and distribute strains

equally. Thus, noting that τ̇1 = τ̇− τ̇2 = τ̇−G2γ̇, we have

τ = τ1 + τ2

=
(

η1γ̇1− η1

G1
τ̇1

)
+G2γ2

= η1γ̇− η1

G1
τ̇1 +G2γ

= η1γ̇− η1

G1
(τ̇−G2γ̇)+G2γ

(1.2)

From here we can simplify, obtaining

τ̇+
G1

η1
τ = (G1 +G2)γ̇+

G1

η1
G2γ (1.3)
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as the constitutive law for the Three Parameter Maxwell model.

1.3 Illustration of Experimental Data

The data used here are the same as in (Xu2009), for which she describes the preparation as

follows:

... low melting point agarose (Sigma product number A9414) is mixed to 0.3%
in the same buffer (0.2M NaCl, 0.01EDTA, and 0.01% Sodium Azide). The sam-
ples’ rheological properties are determined by a Bohlin Gemini Rheometer in both
cone and plate ( 60mm diameter, 1 degree, 7.9103mm3 in volume) and parallel
plate (20mm diameter, 50um gap, 63mm3 in volume) geometries under the stress
amplitude sweep mode.

In order to illustrate the models, exact data generated directly from each model will be used.

However, in reality experimental data is not always ‘clean’ and therefore cannot be expected

to match perfectly any one model. For example, creep experiments are best done at low stress

levels. With too high stress (above the stress threshold), the results are compromised and

informative features cannot be extracted. Consider Figure 1.7 showing agarose data at a stress

of 2 pascals. The compliance has no curvature - it essentially ramps up continuously until the

stress is removed at 10 seconds, at which point it relaxes to a high value and remains there,

similar to a pure liquid. The stress was high enough to ‘overpower’ the elasticity in the sample,

and any stress at this level or higher will be unable to capture the viscoelastic properties of the

material.

Experimental error is also always present in the data. Generally it is easy to see what

the features of the graph are despite the error. Because it is random error we are capable of

ignoring unusually extreme values and inferring what the curve ‘should’ look like. The data in

Figure 1.8 looks like it could be very noisy data. In actuality, most of the ‘noise’ is rather high

frequency oscillations that are not apparent under this scaling. However, in the later parts of the

graph the oscillations do not appear to be dying off as expected, and this could be a result of a

8
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Figure 1.7: When experiments are performed on agarose under too high of a stress, the stress
threshold is passed and the material resembles a pure liquid rather than a viscoelastic fluid.

small amount of noise present while viewing a small range. (i.e., if the data were plotted with a

larger range, the experimental error would be relatively smaller and the data would appear less

noisy.) One should also keep in mind that experimental data is discrete. In the data considered

here, time steps of .02 seconds are used. If the frequency of inertial data is higher than the

sampling frequency, then we will be unable to detect oscillations and the data could instead

just appear noisy.

A note on parameter values

The properties of purely viscous and elastic materials are consistent regardless of the type of

stress imposed on them. On the contrary, viscoelastic materials would be expected to behave

much differently depending on the way they are being stressed, say for a sinusoidal stress of

low versus high frequency. It is for this reason that different types of experiments are important

and necessary for probing many different realms of linear viscoelastic responses. It is also
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Figure 1.8: Highly oscillatory agarose data appears noisy.

because of this that it is impossible to identify single parameter values which best describe any

given viscoelastic material. At best, a range of values must be given to describe a range of

driving forces. These ranges can be quite large. Experimentally, the added difficulty is that the

prepared samples cannot be perfectly the same, resulting in a range of recorded experimental

parameters.

Regardless of the fact that the true state of the material varies greatly, our methods for ex-

tracting parameter guesses can also fluctuate. In the context discussed here, statistical regres-

sion is performed on sample data to determine the best fit parameters. Should this regression be

performed on the entire data set, or on smaller pieces of the data? If so, how small, and which

pieces? It is important to decide ahead of time, because parameters inferred from different

sections of the same data can report largely different numbers (evidence of nonlinear behavior,

examined further in Chapter 4). As an example, consider this summary of results obtained by

making multiple fits on two data sets. One data set is from an inertial creep experiment on

0.3% agarose at a 0.5 Pascal stress level. The second is from an inertial creep experiment on

10



0.2% agarose at a 0.5 Pascal stress level. The Inertial Maxwell-Jeffrey and Inertial Kelvin-

Voigt models were fit to these data sets at time intervals [0,1], [0,4] and [0,10]. From the table

below we can see that η1 seems to have the largest range, in one case ranging from 59 to 464,

while the parameter G remains very consistent across each model on the same data set. More

will be discussed on the sensitivity of parameters in Chapter 4.

0.3% Agarose

Fit for Inertial Maxwell-Jeffrey

η1 G η2 α

[0,1] 59.43 17.978 0.163 0.044

[0,4] 230.11 15.795 0.176 0.038

[0,10] 463.16 14.731 0.183 0.036

Fit for Inertial Kelvin-Voigt

η G α

[0,1] 0.194 15.616 0.038

[0,4] 0.191 13.879 0.033

[0,10] 0.206 12.703 0.030

0.2% Agarose

Fit for Inertial Maxwell-Jeffrey

η1 G η2 α

[0,1] 7.297 2.526 0.074 0.048

[0,4] 37.290 2.152 0.095 0.041

[0,10] 103.779 2.001 0.100 0.038

Fit for Inertial Kelvin-Voigt

η G α

[0,1] 0.124 2.135 0.042

[0,4] 0.104 1.923 0.036

[0,10] 0.109 1.823 0.034
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Chapter 2

Non-Inertial Models

2.1 Overview of Non-Inertial Models

In a creep experiment without inertia, stress is applied to the material by a rheometer. A

constant applied stress can be turned on and left on (step stress), turned off after an interval of

time (top hat stress), or applied as a train of pulses. Only step and top hat stress experiments are

considered in this thesis. The material responds to the stress by deforming, and the resulting

displacement is measured and converted to strain (or compliance), which is plotted against time

to produce a strain response curve. The inertia of the instrument is able to be damped to a high

degree to keep from interfering with the strain measurements.

Different characteristics in the responses can then potentially be captured by one of sev-

eral standard models: the Two Parameter Maxwell, Three Parameter Maxwell, Two Parameter

Kelvin-Voigt, Three Parameter Kelvin-Voigt or the Maxwell-Jeffrey. Each is a mechanical

model corresponding to a linear differential constitutive law. The continued usage of these

models has historical precedence coming from the convenience of their ability to be solved in

closed form and their ability to capture key creep features of simple viscoelastic liquids and

solids (whose distinction we emphasize below). In Section 2.3, each model is categorized as a

linear viscoelastic liquid or solid model and is given along with its constitutive law. Solutions

in a creep experiment are given under a top hat stress, where the stress is turned on at time t0



and turned off at time t1. The imposed form of stress used for obtaining the given solutions is

τ(t) = τ0 (H(t− t0)−H(t− t1)), where

H(t− x) =





0 if t < x;

1 if t ≥ x;

is the step function. (Solutions for step stress are found by ignoring the terms containing t− t1,

or equivalently, taking t1 to infinity.) For t0 = 0, t1 = 10 and τ0 = 1, the τ top hat function will

look like the graph in Figure 2.1. These are the same on and off times for the applied stress

used in all the experiments considered in this thesis.
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Figure 2.1: Graph of an applied top hat stress.

As noted in Section 1.3, the properties of viscoelastic materials depend on the way they

are being stressed. This top hat form of applied stress is equivalent to a sinusoidal stress

function with zero frequency. Thus, the material properties that are inferred are only useful for

describing the material at a very low frequency.

Graphical illustrations of each model’s solution are presented showing typical behavior

of the model. Recall that the most general distinction of ‘liquid-like’ or ‘solid-like’ used to
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categorize the models here is made based on end behavior rather than some other type of

feature. Before presenting all of the models and their solutions, the next section illustrates

the Laplace Transform method for solving the Three Parameter Maxwell constitutive law (a

differential equation) under a step stress.

2.2 Example: Derivation of Analytical Solution to Three Pa-

rameter Maxwell Model

We have seen in Section 1.2 how the constitutive law for the Three Parameter Maxwell me-

chanical model is derived. It is given by

τ̇+
G1

η1
τ = (G1 +G2)γ̇+

G1

η1
G2γ (2.1)

In creep experimentation, we impose a known stress. As a simple example, let us use the stress

function τ(t) = H(t− t0), the step function which is zero for t < t0 and is one elsewhere. This

is equivalent to a constant stress of one Pascal suddenly turning on at time t0. A top hat stress

function (in which the stress is suddenly turned off at time t1), would essentially be solved

twice - once for H(t− t0) and once for H(t− t1) - but the method is exactly the same.

Knowing τ(t), Equation (2.1) is a first order differential equation for γ(t). Using the Laplace

Transform is a simple way to solve this equation for γ(t): we first take the transform of the

equation (inputting the transform of the stress function), then we solve the resulting equation

for Γ(s) in transform space, and finally we invert the equation back to real space.

To simplify the constitutive law, we first let λ1 = η1
G1

. This gives us

τ̇+
1
λ1

τ = (G1 +G2)γ̇+
G2

λ1
γ (2.2)
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Taking the Laplace Transform of each side of (2.2) we obtain

(
s+

1
λ1

)
T (s) =

(
(G1 +G2)s+

G2

λ1

)
Γ(s) (2.3)

We wish to impose τ(t) = H(t− t0), which in transform space is equivalent to T (s) = 1
s e−t0s.

Inputting this to (2.3) and solving for Γ(s) we have

Γ(s) =
s+ 1

λ1

(G1 +G2)s+ G2
λ1

1
s

e−t0s

=
1

G1 +G2


 1

s+ G2
(G1+G2)λ1

+
1
λ1

s
(

s+ G2
(G1+G2)λ1

)

e−t0s

(2.4)

In order to invert the transform, we must break up the
1

λ1

s
(

s+ G2
(G1+G2)λ1

) term into simplified terms

that we know how to invert. We can do this using partial fractions. Observe,

1

s
(

s+ G2
(G1+G2)λ1

) =
A
s

+
B

s+ G2
(G1+G2)λ1

=⇒ 1 = A
(

s+
G2

(G1 +G2)λ1

)
+B(s) (2.5)

With appropriate choices for s (try s = 0 and s = −G2
(G1+G2)λ1

), we can solve for the coefficients

A and B to be A = (G1+G2)λ1
G2

and B = −(G1+G2)λ1
G2

. Now Equation (2.4) becomes

Γ(s) =
1

G1 +G2


 1

s+ G2
(G1+G2)λ1

+
G1 +G2

G2s
− G1 +G2

G2

(
s+ G2

(G1+G2)λ1

)

e−t0s

=
1

G1 +G2

[(
G1 +G2

G2

)
1
s

+
(

1− G1 +G2

G2

)(
1

s+ G2
(G1+G2)λ1

)]
e−t0s

=
1

G1 +G2

[(
G1 +G2

G2

)
1
s
− G1

G2

(
1

s+ G2
(G1+G2)λ1

)]
e−t0s

(2.6)
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Next we wish to take the inverse Laplace Transform of (2.6). We will use the following three

properties: L−1(1
s ) = H(t), L−1(F(s+a)) = f (t)e−at , and L−1(F(s)e−as) = f (t−a). Applying

these to (2.6) and letting λ = G2
(G1+G2)λ1

, the solution to the Three Parameter Maxwell model

under a step stress can be written as

L−1(Γ(s)) = γ(t) =
1

G1 +G2

[
H(t− t0)

(
G1 +G2

G2
− G1

G2
e−(t−t0)/λ

)]
(2.7)

2.3 Linear Viscoelastic Liquid Models

Liquid-like materials cannot store stress, rather they dissipate stress - this is reflected in a re-

sponse curve that never recoils to zero strain (that is, never regains its original conformation)

after the imposed stress is removed. Indeed a pure liquid does not recover any stress-induced

strain. The Two Parameter Maxwell Model and the Maxwell-Jeffrey Model are candidates for

modeling fluid-like materials, or viscoelastic liquids. It should be emphasized that while the

Two Parameter Maxwell model satisfies the basic properties of a fluid model, it is overly sim-

plistic when solved in creep and is not appropriate for modeling a linear viscoelastic material.

It is included here for completeness.

The measured strain in each model increases steadily under constant stress and relaxes to

a constant positive value after stress is removed, as seen in Figure 2.2 below. This behav-

ior comes from the free dashpot element present in series in each mechanical model. (Recall

that the dashpot is the viscous element.) Its presence leads to a factor of (t− t0) in the final

step stress solution, which causes the end behavior to go to infinity as t increases. A factor

of (t − t0)− (t − t1) appears in the final top hat stress solution. In this case, the two large

terms cancel as t goes to infinity, and the remaining terms are constant. Distinguishing the two

terms (besides the fact that the Two Parameter Maxwell model is completely linear, while the

Maxwell-Jeffrey model has curvature) is the sudden jump at the onset and offset of stress in

the Two Parameter Maxwell model.
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The Two Parameter Maxwell Model

Mechanical Model

Constitutive Law λτ̇+ τ = ηγ̇, where λ = η/G

Solution in Creep

γ(t) =
λτ0

η
[H(t− t0)−H(t− t1)]+

τ0

η
[(t− t0)H(t− t0)− (t− t1)H(t− t1)]
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Figure 2.2: The Two Parameter Maxwell Model under a top hat (left) and step (right) stress.
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The Maxwell-Jeffrey Model

Mechanical Model

Constitutive Law (η1 +η2)τ̇+Gτ = η2Gγ̇+η1η2γ̈

Solution in Creep

γ(t) =
τ0

G
[H(t− t0)−H(t− t1)]+

τ0

η2
[(t− t0)H(t− t0)− (t− t1)H(t− t1)]

−τ0

G

[
H(t− t0)e

− (t−t0)G
η1 −H(t− t1)e

− (t−t1)G
η1

]
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Figure 2.3: The Maxwell-Jeffrey Model under a top hat (left) and step (right) stress.
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2.4 Linear Viscoelastic Solid Models

Solid-like materials are distinguished by their ability to store stress. This is reflected in a

response curve that recovers to zero strain when stress is removed - the stored stress pulls the

material back to its original shape. This behavior comes from the free spring element present in

parallel in each mechanical model. (Recall that the spring is the storage element.) However, it

is the absence of the free dashpot - which leads to the absence of factors of t - which contributes

to the long time recovery to zero behavior. Only step function and negative exponential terms

appear in the solutions. For large t, the negative exponential terms all approach 0. In step stress,

a single step function is left, causing the end behavior to asymptotically approach a positive

constant value. In top hat stress, the difference of two step functions remain (each having the

same magnitude), and so after long enough time, their difference approaches 0.

The 3 Parameter Maxwell or 3 Parameter Voigt models are good candidates for modeling

solid-like materials and are known as the linear viscoelastic solid models. Each fully recovers

to zero strain under a finite duration top hat stress, and each levels out to a steady state strain

under a constant applied stress. Each also has an initial jump in strain at the onset of an applied

stress and another jump at the offset of stress - another solid-like quality. The 2 Parameter Voigt

model is also categorized here for having similar end behavior. However, this model behaves

more like a fluid in that the initial strain begins at 0 and gradually rises (there is no sudden

jump). This may be good for modeling viscoelastic materials that have borderline viscous and

elastic properties.
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The Three Parameter Maxwell Model

Mechanical Model

Constitutive Law τ̇+ 1
λ1

τ = (G1 +G2)γ̇+ G2
λ1

γ, where λ1 = η/G1

Solution in Creep

γ(t) =
τ0

G1 +G2

[
H(t− t0)

(
G1 +G2

G2
− G1

G2
e−

t−t0
λ1

)
−H(t− t1)

(
G1 +G2

G2
− G1

G2
e−

t−t1
λ1

)]
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Figure 2.4: The Three Parameter Maxwell Model under a top hat (left) and step (right) stress.
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The Two Parameter Kelvin-Voigt Model

Mechanical Model

Constitutive Law τ = Gγ+ηγ̇

Solution in Creep

γ(t) =
τ0

G

[
H(t− t0)

(
1− e−

t−t0
λ

)
−H(t− t1)

(
1− e−

t−t1
λ

)]
, where λ = η/G
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Figure 2.5: The Two Parameter Kelvin-Voigt Model under a top hat (left) and step (right) stress.
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The Three Parameter Kelvin-Voigt Model

Mechanical Model

Constitutive Law η1
G1

γ̇+ γ = η1
G1G2

τ̇+( 1
G1

+ 1
G2

)τ

Solution in Creep

γ(t) =
τ0

G2
H(t− t0)

[
G1 +G2

G1
− G2

G1
e−

t−t0
λ1

]
− τ0

G2
H(t− t1)

[
G1 +G2

G1
− G2

G1
e−

t−t1
λ1

]

where λ1 = η1/G1
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Figure 2.6: The Three Parameter Kelvin-Voigt Model under a top hat (left) and step (right)
stress.
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2.5 Summary of Model Signatures of Non-Inertial Creep Ex-

periments

Follow this guide for creep experiments done under a step or top hat stress to help choose the

best model to fit to your data. Refer to the figures above for examples of each model, and refer

to Section 4.2 for demonstrations of how each is used to fit experimental data.

1. Look at the terminal behavior of the strain response curve for your material. In top hat

stress, does it approach a positive finite steady state rather than recovering to zero? In

step stress, does it maintain positive slope rather than leveling off?

(a) If yes to either, the material exhibits fluid-like tendencies. Although the Two Pa-

rameter Maxwell model falls in this category, we do not recommend it. Refer

instead to the Maxwell-Jeffrey model and see #2.

(b) If the curve recovers to zero in top hat stress, or if it levels off in step stress, this

is a solid-like quality. The Two Parameter Voigt, Three Parameter Voigt, or Three

Parameter Maxwell model will capture this feature. See #3.

2. In either step or top hat stress, is there a sudden jump at time 0?

(a) If so, the Maxwell-Jeffrey model will not capture this jump, which is a solid-like

feature. If it is a significant factor in the data, you may need to refer to a solid-like

model (see #3) or a model not discussed in this thesis (perhaps a 4 parameter or

nonlinear model).

(b) If the initial value is 0, try the Maxwell-Jeffrey model first, which also exhibits a

gradual decline upon the removal of stress.

3. Does the strain response curve have a sudden jump at time 0 in either top hat or step

stress?
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(a) If so, the Three Parameter Maxwell and Three Parameter Voigt models can

both capture this feature, which is also a solid-like feature. These two models are

essentially the same, and in addition they exhibit a sudden drop upon the removal

of stress.

(b) If instead the curve begins close to zero, try the Two Parameter Voigt model. This

model is fluid-like in the way the strain gradually rises from 0, and solid-like in the

way it recovers to 0 upon the removal of stress.
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Chapter 3

Inertial Models

3.1 Overview of Inertial Models

In creep experiments that utilize instrumental inertia, a Rheometer imparts a controlled stress

on the material, and the undamped inertia of the instrument is allowed to enhance the elasticity

of the material, causing ringing behavior to occur. The rheometer measures angular displace-

ment as the material is allowed to relax and converts this to a measurement of compliance, as

seen previously in non-inertial creep. Strain is plotted against time to produce a response curve

with similar overall features as in non-inertial creep, with the addition of oscillatory behavior.

The oscillations mimic a specific frequency, and storage and loss properties are extracted for

how the material would behave at this frequency under a sinusoidal driving force. This fre-

quency is much higher than in the very low frequency non-inertial creep experiments. As a

result, useful information can be extracted more quickly, meaning the experiments take less

time. This is an appeal of inertial creep.

In inertial creep, a parameter α not seen in the non-inertial models is present. This param-

eter represents the inertia of the instrument. Theoretically it is a known parameter, however it

is difficult to determine its value for the instrument and is therefore usually included in the list

of parameters to be fit in the model. Different ringing characteristics in the responses can po-

tentially be captured by one of several standard models which have been coupled to the inertia



of the instrument: Inertial Maxwell, Inertial Voigt and Inertial Maxwell-Jeffrey. Each model

corresponds to a linear differential constitutive law which can be solved in closed form.

The models, the corresponding constitutive laws, and their solutions under a step stress are

given in Section 3.3 below. The stress function is given by τ(t) = τ0H(t− t0). Solutions under

a step stress rather than a top hat stress, as in Sections 2.3 and 2.4, are given here for simplicity

due to the fact that inertial solutions are much longer then non-inertial solutions and top hat

solutions would require twice as many terms. Additionally, one may notice that the inertial

constitutive laws presented here do not contain γ - this is a result of the way in which inertial

problems must be handled, which is discussed in the example derivation in Section 3.2 below.

3.2 Example: Coupling of Instrumental Inertia to Maxwell

Model and Derivation of Analytical Solution

We refer to (Barav98) for a more thorough explanation on coupling viscoelasticity and instru-

mental inertia. Here, we give the mathematical details of how to derive the coupled constitutive

law for the Two Parameter Maxwell model, followed by the steps for solving the model for the

strain, given an applied step stress.

We need an equation to describe the motion of the rotating part of the rheometer. Newton’s

second law, given in rotational terms, is

I
dθ̇
dt

= ΓA−ΓR (3.1)

where I is the moment of inertia of the rotating rod and cone in the machine, θ̇ is the angular

velocity, ΓA is the applied torque, and ΓR is the resistive torque due to the sample. This general

law can be written in terms of stress and strain as

αγ̈R = τA− τR (3.2)
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where α = I Fτ
Fγ̇

is a constant, Fτ is the proportionality factor between shear stress and torque,

and Fγ̇ is the proportionality factor between shear rate and angular velocity. Equation (3.2) is

what we wish to couple to the constitutive law for the Two Parameter Maxwell model, reprinted

here,

λτ̇R + τR = ηγ̇R (3.3)

Equation (3.2) is an equation for γ̈. The logic for solving this inertial problem is to substitute

(3.2) into (3.3) after differentiating (3.3) once. This gives us

λτ̈R + τ̇R = η
(

1
α

τA− 1
α

τR

)
(3.4)

The goal is to eliminate γ from the equation and obtain an expression for τR. Once we find τR,

we can substitute it back into Equation (3.2) to solve for γ. If we let the applied stress be a

shear step stress, τA = τ0H(t), then we have

λτ̈R + τ̇R +
η
α

τR =
η
α

τ0H(t) (3.5)

The solution to the second order differential equation of (3.5) will have oscillating and non-

oscillating regimes (that is, it will have one solution containing sines and cosines, and one con-

taining hyperbolic sines and hyperbolic cosines). Oscillations will exist for 12−4(λ)(η/α)≤
0, or, rearranging, for G≤ 4η2

α (recall λ = η/G). Now, when we coupled the equations we lost

γ(t), and we have remaining an equation that we wish to solve for τ(t).

To begin, we take the Laplace Transform of (3.5) and solve for T (s), obtaining,

T (s) = τ0

(η
α

) 1
s(λs2 + s+ η

α)
(3.6)

29



We use partial fractions to break up the denominator. Observe,

1
s(λs2 + s+ η

α)
=

A
s

+
Bs+C

λs2 + s+ η
α

1 = A
(

λs2 + s+
η
α

)
+(Bs+C)s

We solve for A first by letting s = 0:

1 = A
(

λ02 +0+
η
α

)
+(B∗0+C)∗0

1 = A
η
α

A =
α
η

Next, we solve for B and C by equating coefficients of the s2 and s terms respectively, and using

A = α
η . For s2 we have

0 = Aλ+B

0 =
α
η

η
G

+B

B =
−α
G
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Equating coefficients for s we have

0 = A+C

0 =
α
η

+C

C =
−α
η

Now we can rewrite equation (3.6) as partial fractions:

T (s) = τ0

(η
α

)(
α/η

s
+

−α
G s+ −α

η

λs2 + s+ η
α

)
(3.7)

which simplifies as

T (s) = τ0

(
1
s
− s+G/η

s2 +(G/η)s+G/α

)
(3.8)

To find the inverse Laplace Transform, we must manipulate equation (3.8) into a form for

which we recognize inverses. First we split up the large fraction:

T (s) = τ0

(
1
s
− s

s2 +(G/η)s+(G/α)
− G/η

s2 +(G/η)s+(G/α)

)
(3.9)

Next we perform completing the square on the denominators:

T (s) = τ0

(
1
s
− s

s2 +(G/η)s+(G/2η)2 +(G/α)− (G/2η)2

− G/η
s2 +(G/η)s+(G/2η)2 +(G/α)− (G/2η)2

)

= τ0


1

s
− s

(s+G/2η)2 + G
α − G2

4η2

− G/η
(s+G/2η)2 + G

α − G2

4η2




Lastly, we require that the s in the numerator of the middle term be shifted by G/2η to
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match the s in the denominator. Thus, we add and subtract G/2η to the middle term and

simplify:

T (s) = τ0


1

s
− s+G/2η−G/2η

(s+G/2η)2 + G
α − G2

4η2

− G/η
(s+G/2η)2 + G

α − G2

4η2




= τ0


1

s
− s+G/2η

(s+G/2η)2 + G
α − G2

4η2

− G/2η
(s+G/2η)2 + G

α − G2

4η2




(3.10)

Now we are ready to take the inverse Laplace Transform. The first term will transform back

to 1, the second term is a cos(t) term, and the last term is a sin(t) term. Additionally, the cos

and sin terms are shifted by G/2η, which results in an exponential term e−
G
2η t to appear in the

inverse transform. The final result is

τ(t) = τ0

(
1− e−

G
2η t

[
cos(ωt)+

G
2ηω

sin(ωt)
])

(3.11)

where ω =
√

G
α − G2

4η2 .

Knowing τ we can now back solve for γ. We substitute equation (3.11) for τR and τ0H(t)

for τA into equation (3.2) to find an expression for γ,

γ̈R =
σ0

α

[
H(t)−1+ e−

G
2η t

(
cos(ωt)− G

2ηω
sin(ωt)

)]
(3.12)

Integrating from 0 to t twice, we obtain the final solution:

γ(t) =
τ0

η

[
t− a

G

(
G
η
− η

a

)[
1− e−

G
2η t

(
cos(ωt)

+
G

2ηω
G/η−3η/a
G/η−η/a

sin(ωt)
)]]
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3.3 List of Inertial Models

The Inertial Maxwell Model

Constitutive Law

ητ̈+Gτ̇+
ηG
a

τ =
ηG
a

τ0H(t− t0)

Solution in Creep

γ(t) =
τ0

η
H(t− t0)

[
(t− t0)− a

G

(
G
η
− η

a

)[
1− e−

G
2η (t−t0)

(
cos(ω(t− t0))

+
G

2ηω
G/η−3η/a
G/η−η/a

sin(ω(t− t0))
)]]

where ω =
√

G
a − G2

4η2 .
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Figure 3.1: The Inertial Maxwell Model under a top hat (left) and step (right) stress.
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The Inertial Kelvin-Voigt Model

Constitutive Law aτ̈+ητ̇+Gτ = Gτ0H(t− t0)+ητ0δ(t− t0)

Solution in Creep

γ(t) =
τ0

G
H(t− t0)

[
1− e−

η
2a (t−t0)

(
cos(ω(t− t0))+

η
2aω

sin(ω(t− t0))
)]

where ω =
√

G
a −

( η
2a

)2
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Figure 3.2: The Inertial Voigt Model under a top hat (left) and step (right) stress.
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The Inertial Maxwell-Jeffrey Model

Constitutive Law

(η1 +η2)τ̈+(G+
η1η2

a
)τ̇+

Gη2

a
τ =

Gη2

a
τ0H(t− t0)+

η1η2

a
τ0δ(t− t0)

Solution in Creep

γ(t) = τ0H(t− t0)
[

t− t0
η2

−B+ e−A(t−t0)
(

Bcos(ω(t− t0))+
A
ω

(B− 1
Aη2

)sin(ω(t− t0))
)]

where ω =
√

η2G
a(η1+η2)

−A2, A = aG+η1η2
2a(η1+η2)

, and B = a(η1+η2)
η2G
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Figure 3.3: The Inertial Maxwell-Jeffrey Model under a top hat (left) and step (right) stress.
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3.4 Summary of Model Signatures of Inertial Creep Experi-

ments

Follow this guide to help choose the best inertial model to fit to your data taken under either

a top hat stress or a step stress. Refer to the figures above for examples of each model, and

see Section 4.2 for demonstrations of how each is used to fit experimental data. Note that

the items to distinguish between the inertial models are essentially the same (after consider-

ing the oscillations) as the non-inertial models. Note also that the Inertial Maxwell and Inertial

Maxwell-Jeffrey models are identical in graphical behavior, whereas in the non-inertial regimes

the models from which these are derived are quite different. Because of this similarity, there

are essentially only two inertial graphs given here to choose from, and thus only one feature

is required to distinguish the two. Two separate features are given here, the first dealing with

end behavior and the second dealing with the transition when stress is turned off. These two

features rely heavily on the distinction between liquid-like and solid-like behavior, as there are

no intermediate options having a mix of characteristics (as in the Two Parameter Voigt model

for the non-inertial options).

1. Look at the terminal behavior of the response curve for your material. In step stress, does

it level off at some finite steady state value? In top hat stress, does it recover to zero?

(a) If yes, try the Inertial Kelvin-Voigt model. The material exhibits solid-like behav-

ior.

(b) If the oscillations have an overall positive slope in step stress, or recover to a pos-

itive steady state in top hat stress, try either the Inertial Maxwell or the Inertial

Maxwell-Jeffrey model. These are liquid-like behaviors.

2. In a top hat stress, does the curve make a sudden jump when the stress is suddenly
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removed?

(a) If the oscillations jump from one baseline value down to zero at the time when the

stress is turned off (a solid-like behavior), try the Inertial Kelvin-Voigt model.

(b) If the oscillations switch from steadily increasing to leveling off around some

non-zero value (no sudden jump is a liquid-like behavior), try either the Inertial

Maxwell or the Inertial Maxwell-Jeffrey model.
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Chapter 4

Software Tools

4.1 Parameter Inference and Analysis of Parameters Using

Mathematica

Each model discussed in this thesis has either two or three fundamental parameters that com-

pletely determine the final shape of the curve. The parameters are chosen from G1, G2, η1,

or η2. For a given model, it is expected that each parameter may have a strong effect on the

shape of the curve (that is, changing the value of this parameter by small amounts causes larger

changes to the shape) or may have only a weak affect on the shape of the curve (the curve will

look similar across a wide range of values for this parameter). Knowing which parameters have

strong and weak affects may help in analyzing the parameter fittings of experimental data. For

example, it may influence the decision of when to hold a known value constant versus when to

let it iterate.

To get an idea of how each parameter affects the shape of a given model, Mathematica

can be used to create dynamic plots of each model. The function ‘Manipulate’ is used in

conjunction with ‘Plot’ to create a graph of the model along with slider bars for each parameter

in the model. The graph changes as the sliders are altered. The code for this is only two lines.

The first defines the equation and the second calls ‘Manipulate’ and defines ranges for each



slider.

Funct ion Name [ param1 , . . . ] := e q u a t i o n

M a n i p u l a t e [ P l o t [ Funct ion Name [ p a r a m e t e r s ] ,{ t , 0 , 2 0} , P lo tRange

−>{0 ,5}] ,{Param1 , min , max } , . . . ]

For example, to generate a dynamic plot of the compliance for the Two Parameter Voigt

model, the following can be used:

CRVoigt2 [ G , n ] := ( 1 /G) ∗ ( U n i t S t e p [ t ]∗ ( 1 − Exp[−( t ∗G) / n ] ) −
U n i t S t e p [ t − t e n d ]∗ ( 1 − Exp [− ( ( t − t e n d ) ∗G) / n ] ) )

M a n i p u l a t e [ P l o t [ CRVoigt2 [G, e t a ] , { t , 0 , 20} , P lo tRange −> {0 ,

1 . 5 } ] , {G, 0 , 5} , { e t a , 0 , 5} ]

After adjusting the parameter values, the output will look similar to Figure 4.1 below.

Figure 4.1: A screen shot of the Manipulate function in Mathematica applied to plotting the
Two Parameter Voigt model with dynamic parameters.
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Parameter sensitivity is affected by values of other parameters

Through observation, it is found that the effects of a parameter on the graph depend on several

factors. First, characterizing the effects of a parameter depends on whether the parameter is in

a high or low regime as well as whether the remaining parameters are at high or low values.

Consider the Three Parameter Voigt model,

γ(t) =
1

G2
H(t− t0)

[
G1 +G2

G1
− G2

G1
e−

(t−t0)G1
η

]
− 1

G2
H(t− t1)

[
G1 +G2

G1
− G2

G1
e−

(t−t1)G1
η

]

We observe that η, which is seen in the denominator of the exponential, affects the sharpness

of the curve - smaller values of η cause a larger exponent and generate a steeper curve. The

parameter G1 is also related to the exponent, as well as the magnitude of the entire curve. Thus,

when η is very small (leading toward a sharp curvature), small values of G1 counteract η and

lead to a more gradual curvature. In this realm, small changes in G1 can cause the curve to

look very different. For η = 2 and G2 = 2, compare the curves in Figure 4.2 when G1 changes

from 0.5 to 1.5, a step of one unit.

On the other hand, when G1 is larger than η, it amplifies the effect that η already has on the

graph and produces a very steep initial rise followed by a sudden flattening out. In this realm

(small η, large G1), the ratio G1
η is already so large that even large changes in G1 have a very

small effect on the overall shape of the curve. For η = 2 and G2 = 2, compare the curves in

Figure 4.3 when G1 changes from 20 to 30, a step of 10 units.

This interaction between parameters can be explained by realizing that, in each model, the

pieces that really affect the shape of the graph are functions of the basic parameters G1, G2, η1

or η2. As a simple example, consider the equation of a line, y = mx + b. Here, m defines the

slope and b defines the y-intercept. However, if you are concerned with two different parame-

ters, say h and g, where y = h
gx + h, then the slope is no longer defined by a single parameter.

The linear viscoelastic models considered here are for the most part more complicated than a
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Figure 4.2: The Three Parameter Voigt model changes noticeably for small changes in G1 when
G1 is small compared to η.

Figure 4.3: The Three Parameter Voigt model changes very little for changes in G1 when G1 is
large compared to η.
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simple line, and thus the interactions between parameters are even more intricate.

Parameter analysis is affected by which graphical features are important

Parameter sensitivity also depends on what features of the graph are important for analyzing

the data. For instance, in fluid models often the slope of the compliance curve after a long

time step stress or the value to which the fluid recovers after stress is removed are important

indicators of the viscosity of the fluid. If this is all that needs to be observed from the data,

then any parameters not directly affecting the long time slope may be unimportant. It could

be said that these parameters are not sensitive to the prediction of the viscosity. However, any

parameters affecting the end behavior will need to be considered more closely.

The Maxwell-Jeffrey model is a linear viscoelastic fluid model which exhibits a constant

slope in long times while constant stress is applied, and recovers to a positive steady state

after the removal of stress. It can easily be observed using Mathematica that out of the three

parameters creating the Maxwell-Jeffrey model, G, η1 and η2, only η2 changes the long time

end behavior. This is verified by looking at the equation,

γ(t) =
1
G

[H(t− t0)−H(t− t1)]+
1

η2
[(t− t0)H(t− t0)− (t− t1)H(t− t1)]

− 1
G

[
H(t− t0)e

− (t−t0)G
η1 −H(t− t1)e

− (t−t1)G
η1

]

and noticing that η2 is the only parameter affecting the second term, which is the only term that

does not go to zero as t increases. The larger η2 is, the smaller the slope and/or steady state

value of the end behavior. Thus, if you are trying to model this end behavior, you will need to

estimate η2 to high accuracy while the other parameters could be allowed to vary greatly.
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Figure 4.4: For η2 = 14 (left figure), the slope of the end behavior (as well as the steady state
value) are much higher than for η2 = 40 (right figure). G affects the overall magnitude of
the stress-on part of the graph, and η1 affects the curvature, but neither G nor η1 affects end
behavior.

Parameter inference is influenced by the fitting region

During the fitting process, parameter sensitivity is also influenced by the size of the region you

are fitting to, and which particular features are captured in this region. The region must be large

enough to capture some defining features of the data, but must be small enough to prevent the

fitting algorithm from crashing. That is, you cannot always simply fit over the entire domain

of the data. It is important to consider these two things (length and position of fitting interval)

because parameters do not affect all regions of a graph in the same way.

Reconsider the Maxwell-Jeffrey model. In the table below, large error bars were introduced

to the Maxwell-Jeffrey model having the true parameters G = 1, η1 = 2, and η2 = 12 to try to

determine how much random error could be present while still predicting accurate parameter

values. Data was generated for 10%, 30% and 50% random error, and the parameter fitting gui

from (Xu2009) was used to recover the parameters in the interval t = (0,5).

It can be seen that η2 deviates most from its true value of 12. Now, recall the discussion
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Figure 4.5: Even at 50% random error, G and η1 remain close to their true values of 1 and 2,
respectively. However, η2 deviates, likely due to the early fitting window.

in the previous section. We have demonstrated that η2 is responsible for changing the end

behavior. However, the fitting interval (0,5) does not include information on the end behavior.

That is, a good fit can be made in (0,5) for a range of values of η2 because changes in η2 do

not affect this part of the graph. Figure 4.6 demonstrates how values of η2 from 8 to 15 do not

change the fitting region very greatly.

Related to this issue is the usage of fitting intervals which are too small. The same Maxwell-

Jeffrey model with parameters G = 1, η1 = 2, and η2 = 12 was fit in the small interval t = (7,8).

This returned parameter estimates of G∗ = 0.012, η∗1 = −0.678, and η∗2 = 0.558. Figure 4.7

shows how the the two models align very closely on the interval (7,8); however, the model

generated by G∗, η∗1 and η∗2 is vastly different from the original data, as Figure 4.8 shows.

4.2 Generating Experimental Error: Make Data Tool

The data obtained from creep experiments is expected to be nonlinear, which can be supported

by the observation of parameter walk-offs, as demonstrated in (Xu2009). Thus, these linear

models cannot be expected to match the data exactly. In addition, experimental data is noisy,

and this may interfere with the fitting algorithm. To examine whether simple random error

could be added to an exact model to reflect the noise in raw data, we added functionality to

the parameter fitting gui from (Xu2009) which allows a user to choose a model, enter a value
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Figure 4.6: Observe that the three graphs, created by varying η2 between 8 and 15 and holding
the other parameters constant, are slow to spread out. This means that the closer the fitting
interval is to 0, the better any value of η2 between 8 and 15 could generate a reasonable fit.
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Figure 4.7: On the fitting interval (7,8), the predicted parameters give a well aligned graph.
However, they do not do well to portray the rest of the data.
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Figure 4.8: The original data on the left was fit to a Maxwell-Jeffrey model on the small interval
t = (7,8). The resulting poorly fit parameters were used to create the very different model on
the right.

for each parameter, enter the desired percentage of random error, and generate data based off

these selections. Thus, the user can work with data with known parameters to test how well the

parameter fitting gui software is able to recover those values despite the presence of noise.

This make data environment is shown in Figure 4.9. It can be accessed directly through

Matlab by typing ‘guide’ in the command window and opening ‘make data.fig’. It can also be

accessed through the parameter fitting gui by pressing the button labeled ‘Create Exact Data’.

The user selects one of the models discussed in this thesis from the drop down menu at the

top. The related equation is displayed in the dark shaded box below the drop down menu. To

the right of the displayed equation is a box labeled ‘Parameter Values’ (Figure 4.10), in which

only the appropriate parameters for the chosen model will be enabled. The user must enter

numerical values for each parameter.

The bottom left box is labeled ‘Set Details of Applied Stress Function’ (Figure 4.11). Here

the user can enter a value for the percent error and can select between three types of applied

stress (step, top hat or periodic top hat). If ‘Periodic Top Hat’ is selected, then a value for ‘dx’

must be entered, which is the length between applied stress intervals. The user must also enter

the ‘Force On Time’ (time at which the stress is applied), ‘Force Off Time’ (time at which the
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Figure 4.9: This make data environment was added to the parameter fitting gui from (Xu2009)
to allow users to generate data with known parameter values and a chosen amount of random
error.

Figure 4.10: Close up of ‘Parameter Values’ box in make data.fig.
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Figure 4.11: Close up of ‘Set Details of Applied Stress Function’ box in make data.fig.

stress is turned off), and ‘tmin’ and ‘tmax’ (the graphing domain).

In the bottom right box labeled ‘Options’ (Figure 4.12), the user can press ‘Create Data’ to

see a graph of the current selections. Pressing ‘Reset’ will reopen the make data environment

Figure 4.12: Close up of ‘Options’ box in make data.fig.

with all of the selections returned to the preset values. The user should press ‘Save Data’ when

the desired model is obtained. This will create a .mat file containing the time vector stored as

the t variable and the compliance vector stored as the x variable, which is the format required

to be compatible with the parameter fitting gui. The user is allowed to enter a name for the

.mat file. At this point, pressing ‘Close’ will close the make data window and allow the user to

continue analyzing the data in the parameter fitting gui.
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Sample experimental data was examined to estimate the typical percentage of error, which

is assumed here to be experimental error. This value was estimated to be about 1%. This is the

preset value displayed when opening the window, but the user can enter any amount of error

desired. A vector of random numbers from −0.5 to 0.5 is generated and multiplied by the

chosen error percentage. This vector is then added to the exact data to convert it to noisy data.

The example fitting in Figure 4.13 of the Three Parameter Voigt model to data having 5%

error demonstrates how the fitting algorithm is able to overcome the random noise and generate

a curve that seems to fit well with the true data. This observation that the random noise does

not interfere heavily with the fitting algorithm is supported by a small study of fittings across

a range of models. The table in Figure 4.14 summarizes the trials. For the Two Parameter

Voigt model, the input parameters are η and G and the returned fitted parameters are J and

D. The conversion is given by G = 1
J , η = D. For the Maxwell-Jeffrey model, the input

parameters are G, η1 and η2, and these parameters are also returned by the fitting software. In

the parameter fitting gui the Three Parameter Voigt model is listed as the ‘Linear Solid’ model,

and the parameters returned are J1, J2 and τ. These are converted to the parameters G1, G2 and

η by G1 = 1
J2

, G2 = 1
J1−J2

, η = τ
J2

.

Several sets of parameters were chosen for each model to try to obtain a wide range of

graphical features. Error was increased from 0.1% to 5.0%. The results indicated that the

values being predicted by the fitting algorithm closely matched the true parameter values across

all tested levels of error. There did not seem to even be a strong trend in the decrease in accuracy

as the error was increased. It seems as if the error in the predicted parameter values is random.

Consider Figures 4.15 showing the error in parameters G and η1 for the Maxwell-Jeffrey model

for 1%, 2%, 3%, 4% and 5% error. The error in predicting G seems to increase; however, the

error in predicting η1 jumps and then begins to decrease.
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Figure 4.13: Demonstration of fitting algorithm on data with 5% error.

Figure 4.14: Summary of controls tested to examine influences of experimental error.
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Figure 4.15: Error in predictions for parameters G and η.
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4.3 Experimental Parameter Fittings after Identification of

Key Signatures

Once experimental data has been collected and examined, software created by Dr. Ke Xu

can be used to obtain a best fit of the parameters of a given function to the data. Additional

functionality and minor edits have been made to her software and are described here, but please

see (Xu2009) for further notes on the usage of this program. In this section we shall examine

several sets of experimental data for the features discussed in this thesis to determine which

model has the most potential for fitting the data. We will then demonstrate the results of

applying the chosen model to the data.
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Figure 4.16: This experimental data could be modeled by the Three Parameter Maxwell or
Voigt models.

Consider the agarose data in Figure 4.16 above. Although this data may not fully recover

to 0, it comes close. It could be identified as a Three Parameter Maxwell or Voigt model (recall

both have the same general equation and overall features). In the parameter fitting gui these
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models are combined as the Linear Solid model. Using the Linear Solid model to fit the data

on the interval (0,5) the results seem close, but clearly the predicted model does not fit as well

as it could (see Figure 4.17). Notice that in the first few data points of this experiment there

is odd behavior resembling high frequency oscillations that are only apparent when zooming

in. This behavior seems out of place with the rest of the data. As described earlier, sometimes

a small amount of initial oscillation will be present unintentionally and is usually ignored. By

fitting to the window (1,5) instead, this fitting becomes much nicer. The user must be careful

to fully consider the data at hand before applying the software.

The next three data sets we will examine are made from 0.3% agarose solutions with in-

creasing stress levels. Agarose is known to be a highly entangled and complicated material

that can be difficult to fit. As the stress is increased, we can see the data progress from a more

solid-like material to a more liquid-like material. We have said that in a linear response, the

compliance should remain unchanged as stress is increased. Thus, the rather good fits with

linear models despite the solid to liquid changes apparent in this data are indications of stress

softening, a stress-induced change in the material response. Again we observe high frequency

oscillations within the first half second of data which will be ignored.

At low stress, the data appears to follow a Three Parameter Maxwell or Voigt model (recall

that both behave in the same way). At the highest stress, the data appears to better follow the

Maxwell-Jeffrey model. Each data set will be fit to both the Linear Solid and Maxwell-Jeffrey

models for comparison of R2 values (measuring how well the model fits the data points, also

returned by the software). Each will also be fit on the interval (1,60). For these simple models

it is easy to fit over a large interval, and we want to be able to capture information about the

entire data set. For inertial data it is best to fit in small windows.

The agarose data at the lowest stress level, 0.05 Pascals, is shown in Figure 4.18 below. It

seems to have an initial jump at the onset of stress, a sudden drop when the stress is removed,

and although it may not recover completely to 0, it does come very close. These are all solid-
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Figure 4.17: Only 1 second in the fitting interval made the difference between getting a poor
fit versus a good fit.
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like features captured by the Three Parameter Voigt model. The Linear Solid and Maxwell-

Jeffrey fits are shown in Figure 4.19. For Maxwell-Jeffrey, R2 = .977 and for Linear Solid,

R2 = .99, so Linear Solid has a better fit. The Linear Solid model appears to be better able to

capture the slow decline toward 0 compliance, which the Maxwell-Jeffrey model attempts to

find an average steady state value.
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Figure 4.18: Agarose data at 0.05 Pascals having solid-like features.
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Figure 4.19: Agarose at 0.05 Pascals fit to Linear Solid and Maxwell-Jeffrey.
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The agarose data at 0.2 Pascals is shown in Figure 4.20 below. It now takes on a more

fluid-like quality, having a very linear increase and recovering to a value much higher than

0. These features seem best captured by the Maxwell-Jeffrey model. The Linear Solid and

Maxwell-Jeffrey fits are shown in Figure 4.21. For Maxwell-Jeffrey, R2 = .97 and for Linear

Solid, R2 = .98. Thus, though the difference is small, the Linear Solid model continues to

provide a decent fit. This is surprising since the Linear Solid model must recover to 0 and the

data clearly does not reach zero in this time frame. Looking closely we notice that the Linear

Solid model does continue to decrease, but at such a slow rate that it appears to level out.
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Figure 4.20: Agarose data at 0.2 Pascals having liquid-like features.
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Figure 4.21: Agarose at 0.2 Pascals fit to Linear Solid and Maxwell-Jeffrey.
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The agarose data at the highest stress level, 0.5 Pascals, is shown in Figure 4.22 below. It

is very similar to the data at 0.2 Pascals, but more extreme. The Linear Solid and Maxwell-

Jeffrey fits are shown in Figure 4.23. For Maxwell-Jeffrey and for Linear Solid, R2 = .99. At

this extreme, the end behavior of the data is flat enough that the Maxwell-Jeffrey model fits it

very well.
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Figure 4.22: Agarose data at 0.5 Pascals having liquid-like features.

Lastly, we wish to demonstrate the difficulties in fitting to inertial data. Attempting to fit

over intervals as large as used previously will cause the program to crash. This is because the

regression function will be unable to converge on a best fit. Fitting over smaller windows will

return good fits on the interval, but a poor overall fit to the rest of the data. Further, fitting

on successive intervals will return parameter values which evolve in time. This is evidence

of thixotropy - the time dependent change in the material, reflected by the need of differing

parameters to accurately model different time intervals. These results are also illustrated in

(Xu2009).
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Figure 4.23: Agarose at 0.5 Pascals fit to Linear Solid and Maxwell-Jeffrey.
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To illustrate how well the software can recover the parameters of exact data (data that is

known not to evolve in time), we generated Inertial Maxwell-Jeffrey data with the following pa-

rameters: G = 2, η1 = 0.06, η2 = 14 and α = 0.05. There is 1% error. The parameter fitting gui

does not support inertial models past the force off time, so we used the interval (0,3). On this

interval, the frequency was calculated by fft and used as an initial guess. An initial guess of 0.1

was used for the inertial parameter α, and nothing was fixed. The program was able to recover

the model with R2 = .9998 on the (0,10) force on region. The same results were obtained by

using a large fitting interval of (0,9). See Figure 4.24.

Figure 4.24: The fitting software is able to recover exact inertial data to high accuracy.

Now consider some experimental inertial data. An interval of (0,5) was used to calculate

the frequency and to perform the fitting. The Inertial Maxwell Jeffrey model was used because

of the overall positive slope of the oscillations (not captured by Inertial Voigt). There is decent
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accuracy obtained for the interval, however the remainder of the data does not fit the predicted

model. See Figure 4.25. The parameters returned for the small interval were G = 2.804,

η1 = 21.107, η2 = 0.139 and α = 0.047. To attempt to find better fits to the data, we will try

Figure 4.25: The fitting software produces a decent fit on the fitting interval (0, 5), but fails to
accurately model the rest of the data.

fitting successively to smaller windows. Using 1 second intervals, we find excellent accuracy

over the interval, but the model does not match the rest of the data. The parameter results for

the first three intervals are given:

Interval : G η1 η2 α

[0,1] 3.527 6.864 0.097 0.061

[1,2] 2.808 17.314 0.11 0.047

[2,3] 2.666 22.151 0.103 0.044
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Without taking any more intervals, we can see that the parameters are changing quickly

during the experiment, some more than others. This certainly provides evidence that either the

response of this data is nonlinear, or that thixotropy has occurred during the experiment.

Figure 4.26: The fitting software produces a decent fit on the very small interval (2, 3), but fails
to accurately model the rest of the data.
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