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ABSTRACT

SPENCER ERIC HAYS: A Functional Dynamic Factor Model.
(Under the direction of Haipeng Shen.)

Functional data analysis is a burgeoning area in statistics. However, much of the literature

to date deals primarily with methods for collections of independent functional observations,

which are not well suited to application with time series of curves. In this paper, a functional

time series model is proposed for the purpose of curve forecasting. The model is a synthesis

of ideas stemming from traditional functional data analysis and from dynamic factor analy-

sis. The primary contribution of the model is that it accounts for both smooth functional

behavior and dynamic correlation in time series of curves. Specifically, it is hypothesized that

observed data represents a discrete sampling of an underlying smooth time series of curves.

These curves themselves are functions of unobserved dynamic factors with corresponding factor

loadings that take the form of a functional curve; the model is thusly named the functional

dynamic factor model (FDFM). Based on distributional assumptions regarding the observed

data and unobserved factors, maximum likelihood estimation is proposed. To ensure that the

estimated factor loading curves do represent smooth curves, roughness penalties are added to

the likelihood, resulting in a penalized likelihood. The unobserved time series factors are con-

sidered as a problem of missing data for which the Expectation Maximization algorithm (EM)

is well suited as the tool of estimation. As part of the EM, generalized cross validation (GCV)

is used to select the optimal smoothing parameter corresponding to each smooth factor loading

curve. As an iterative estimation procedure, the EM in this context can be computationally

intensive. To this end, several computational efficiencies are derived to expedite estimation.

Model performance is illustrated through simulation and through rather varied applications,

including industrial, climatological and financial settings. Based on the simulation studies, the

FDFM results in accurate parameter estimation as compared to those of benchmark models.

For both simulated and applied data, forecast results for the FDFM are comparable to results

from other models used in their respective applied area. Finally, several extensions of the func-

iii



tional dynamic factor model and areas of future research are described.

Keywords: Functional data analysis, dynamic factor models, EM algorithm, functional time

series, call center forecasting, yield curve forecasting.
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Chapter 1

Introduction

Consider the problem of properly staffing a call center for, say, a major East coast credit card

company. Call volumes fluctuate week to week, day to day, and even hour to hour. The danger

of over-staffing is obvious: an overstaffed call center loses as much money as the idle employees

are paid in hourly wages to (not) answer phones. The costs of an understaffed call center are

more subtle but perhaps even more expensive in terms of customer affinity and attrition. By

under-staffing, wait times for customers in queue are increased. In fact, call times are increased

as representatives must take additional time to explain and apologize for the wait. As a result,

customers can become dissatisfied with their product and cancel. Further increased demand

on the fewer representatives leads to poor quality control. It is clear then, that non-optimal

staffing is rather costly in either case. The solution is a forecast model that meets the specific

needs of the call center environment.

An optimal staffing forecast model must take into account not only weekly call volume fluc-

tuations, but also how volumes vary throughout the course of any given business day. The most

mechanical way to develop a forecast model is to use the standard univariate auto-regressive,

moving-average framework (ARMA). Supposing the data consist of quarter hourly volume mea-

surements over dozens of weeks, an ARMA model could then forecast future call volumes by

the hour, week, month, etc.

However, using the ARMA framework, the developer would no doubt encounter multiple

periodic effects within the data that would need to be accounted for. It has already been

alluded to that volumes fluctuate in a regular pattern throughout the day, but data like this



also exhibit a day of the week effect. Exceptionally long time series like this might also display

the multiple seasonal components. In fact this is typical with this type of data (Taylor, 2008).

Further, with the smallest data unit being a quarter hourly call volume, an ARMA model may

be expected to forecast tomorrow’s volumes reasonably well. But for ”longer“ forecast horizons

like even a few days ahead, the ARMA forecast would exhibit the usual mean-reversion seen in

these models. Resulting in either over or under-staffing and the aforementioned costs associated

with each of these. A better method to account for multiple periodicity would be to consider

periodic auto-regressive models (PAR) (Hurd and Miamee, 2007). A connection to those types

of models will be made in Chapter 6, however here, the method proposed is of a functional

nature. It is a method capable of forecasting both within day (intra-day) call volumes and

inter-day call volumes. A method that, similar to a PAR model, accounts for the multiple

periodic components evident in the data. Consider the following proposed model, beginning

with the actual data that motivated it.

Call volumes are recorded every fifteen minutes throughout the business day, resulting in

68 intra-day intervals. This data is collected over the course of 210 days. Because of the high

frequency of the intra day call volumes, it is of interest to model these as a discrete sampling of

a continuous process. That is, to picture a functional relationship for intra day call volumes on

a given day as some smooth underlying curve plus a noise or error component (to account for

departures from smoothness). Figure 1.1, panel (a) displays a portion of the actual call volume

data to illustrate the idea of modeling the data as a time series of curves. Panel (b) illustrates

an example of the functional view of the data. However, for a given time interval on each day

it is also rather plausible that the volumes from that interval are related from one day to the

next, as depicted in panel (c) of 1.1.

From a statistical standpoint, this is straightforward to formulate; the goal then is estimate

and forecast a time series of curves. Ramsay and Silverman (2002, 2005) provide a thorough

treatment of functional data analysis (FDA) in both theory and through application. However,

FDA in general is an area still nascent in development, and these applications deal primar-

ily with collections of independent curves, with a few exceptions as described in Shen (2009).

Therefore, pursuing the traditional FDA approach of independent curves ignores the rich cor-
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Figure 1.1: Example of Dynamic Functional Data. Three views of a functional time series.
Panel (a) illustrates the surface created by plotting intraday call volumes by day. Panel (b)
depicts cross sections of the data at five time points (days), resulting in a view of five intraday
call volume profiles. These are hypothesized to consist of a smooth underlying curve and an
error component that accounts for departures from smoothness. Panel (c) shows the daily time
series of call volumes within a sample of five different 15 minute intervals.
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relational structure inherent in data that occurs over time. An alternative is to simply treat

the data as multivariate time series.

FDA provides a framework to work with the functional observations of curves. However,

for each intraday interval there is also a daily time series of call volumes for that interval. This

is essentially a multivariate time series, and a very large one: the motivating data set contains

210 days of data with 68 intervals each day. Modeling all 68 intervals jointly is intractable;

even an order one unrestricted vector auto regression (VAR(1)) for 68 series would require a

68×68 coefficient matrix. In terms of a restricted VAR model, developing meaningful linear

restrictions on 68 series may make a restricted VAR just as unwieldy. Aggregating the data into

coarser intraday intervals would allow a method like vector auto-regressions directly, though

at the expense of a loss of granularity in the intra day call volume profile. Further, the finer

fifteen minute intervals are industry practice.

Therefore, consider an alternative approach. In the interest of dimension reduction, it

would be helpful if the behavior of the 68 related time series could be explained via a smaller

set of variables. Then that smaller set of variables could be modeled as a more manageable

multivariate time series. This aspect of the problem lends itself to the realm of dynamic factor

analysis (DFA) where the observed multivariate time series data can be explained via a smaller

multivariate set of unobserved or latent factors, also following a time series process and related

to the observed data through coefficients known as factor loadings (Basilevsky, 1994). So-called

dynamic factor models (DFMs) first appeared in the literature independently by Geweke and

Singleton (1981), Engle and Watson (1981) and Molenaar (1985), and have enjoyed some success

in problems involving either economics or psychology.

Keeping in mind the desire to model the intra day profile as functional, the problem here

is that there is nothing in the formulation of the typical dynamic factor model that constrains

any part of it to represent a smooth function. Diebold and Li (2006) proposed a factor model

with smooth parametric curves as loading coefficients for the purpose of yield curve forecasting.

However, those curves were pre-specified and not part of the estimation process, so therefore the

method is unlikely to be of use in other applied settings. Using the same yield data, Bowsher

and Meeks (2008) formulated the curve forecasting as a cointegrated vector auto regression
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approach with natural cubic splines (NCS) to capture the functional behavior of the yield

curve. The method was computationally intensive in that selection of the appropriate knot

locations for the NCS’s used a goodness-of-fit measure on every possible combination of 3 to 4

internal knots out of 34 possible choices to determine the best model. In the latter case of four

knots this requires fitting of 46,376 candidate models.

Ideally, a model to estimate and forecast functional time series like the call data should be

both elegant in specification and estimation, and should further capture both the functional

behavior and the time series behavior of the data. Therefore, what is proposed here is a synthesis

of ideas stemming from both FDA and DFA to create a new model for the purpose of forecasting

time series of curves. Presented in this dissertation is the specification of a Functional Dynamic

Factor Model (FDFM). The FDFM retains the idea of dimension reduction of the observed data

into a more manageable set of unobserved time series factors, but further specifies that the factor

loadings for each factor form a smooth curve. The hypothesis is that the observed data on a

given day is the sum of a smooth underlying curve plus noise. The former component is then

the sum of unobserved factors and their corresponding smooth factor loading curves.

Outside of the call volume setting, another application of the FDFM model is in reference to

yield curve forecasting from Diebold and Li (2006) and Bowsher and Meeks (2008). Specifically,

given a time series of zero coupon bond yields of multiple maturities (3, 6, 12 months etc.), it

is of interest to forecast yields not only for bonds of the observed maturities but also for the

entire curve or spectrum of maturities. This type of data lends itself exactly to the FDFM

formulation. It further illustrates the importance of viewing the data unit as a curve and not

just a collection of discrete data points. In an applied sense, though a particular maturity is

not observed or even exists, it is essential to investors to have a yield measure for effectively

any maturity in order to evaluate rates of return on portfolios of bonds with varying maturities.

The functional perspective is advantageous from a statistical point of view as well. For example,

modeling high frequency data as smooth curves results in a method robust to outliers (not that

extreme events are unimportant, rather just in this context there is not a particular interest in

them).

Although the motivation for the development of the model was based upon the call data,
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it can just as easily be applied to other time series. Consider for example, strongly seasonal

climatological data such as sea surface temperature (SST) in the South Pacific. The El Nino

phenomenon is a well documented cycle that strongly influences sea surface temperatures.

Given a time series of monthly average SSTs, a natural method for estimating and forecasting

the data is to model it simply as a univariate seasonal ARIMA model with period twelve. A

better method may be to consider a PAR formulation given the strong seasonal nature of the

data. However in the present context, another method is to consider the seasonal pattern as

a sampling of an underlying smooth curve. That is, to reconstruct the long series of monthly

single observations as an annual series of multivariate data with twelve observations per year.

Then for each multivariate observation treat those twelve observations as a realization of a

smooth underlying seasonal cycle plus noise. Put another way, the twelve months represent

the discrete sampling from the underlying curve and then the data can be viewed as an annual

time series of curves that represent the cycle. Besse et al. (2000) used versions of functional

autoregressive models (FARs) to forecast the data, but the data can just as easily be modeled

within the FDFM framework.

Specification of the FDFM begins within the typical dynamic factor model framework.

Errors are assumed to be normally distributed, and in the cases presented below, independent.

The factors themselves are represented by low dimensional time series. In this dissertation, the

cases presented are independent auto-regressive time series with no moving average components.

This permits a straight forward derivation of a likelihood function. To ensure that the estimated

factor loading curves are indeed curves, roughness penalties with smoothness parameters are

added to the log-likelihood corresponding to each loading curve. By doing so, maximization

of the penalized log-likelihood is a balance between goodness-of-fit and the smoothness of the

loading curves. The smoothing parameters themselves are assumed as fixed but unknown, so a

generalized cross validation approach is used to select those.

It is worth re-emphasizing that the factors are latent. Therefore, to estimate the model

requires not only estimation of the factor loadings, but also of the unobserved factors themselves.

This poses a difficult problem. One method is to approach this as a problem of missing data;

that the latent factors are missing. A useful algorithm for working with missing data is the
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Expectation Maximization algorithm (EM) first introduced by Dempster et al. (1977). Meng

and Rubin (1993) further derived the theoretical and convergence properties of the EM. The

EM is an iterative procedure that begins with the specification of initial values for the factors

and factor loadings, then each iteration of the EM involves an E-step and an M-step. In the

E-step, conditional expectations of the factors given the observed data are used in place of the

latent factors. In the M-step these conditional expectations are used in the maximum likelihood

solutions (MLEs) to solve for the factor loading curves and other model parameters.

The remainder of this dissertation is organized thusly: Chapter 2 presents and develops

the specific model, and the method by which it is estimated. Chapter 3 details at length the

mathematical and computational aspects of the concepts introduced in Chapter 2. Chapter 4

provides derivation of the explicit form for the cross-validation expression, and demonstrates

that the factor loading curves form natural cubic splines. Chapter 5 illustrates model perfor-

mance on simulated data including comparisons with competing methods. Chapter 6 introduces

an innovative simulation design, and uses simulated data to illustrate methods for time series

identification for the dynamic factors, determination of the number of factors, and bootstrap-

based inference for forecasts and parameters. These methods are described therein. Chapter 7

presents a comprehensive analysis of true yield curve data. In Chapter 8, real data from two

other applied areas are used to estimate the FDFM. Forecasts are calculated and compared with

out of sample data to assess goodness-of-fit. Comparisons with corresponding models from their

respective application are analyzed as well. Finally, Chapter 9 highlights the key components of

the model and its performance and discusses possible extensions and future analyses regarding

the FDFM.
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Chapter 2

Functional Dynamic Factor Model

This chapter develops the model by beginning from a functional perspective of the process gen-

erating the data. Observed data is treated as a sampling of the underlying smooth functions

and forms a data matrix. From this point the dynamic factor model framework is implemented

hypothesizing the larger data matrix is composed of a smaller set of unobserved dynamic fac-

tors following independent time series processes, and corresponding factor loadings. Imposing

structure on the factor loadings so that they form smooth curves is the defining feature of the

FDFM and relates the typical DFM model back to the functional domain.

To estimate the model a likelihood function can be derived based on the error assumptions.

Then conditions on the proper amount of smoothness in the factor loadings facilitate a penal-

ized likelihood expression. A detailed description of the use of the Expectation Maximization

algorithm to estimate the model follows, including specific solutions for the maximum likeli-

hood estimates (MLEs). Next, certain computational efficiencies are highlighted in regards to

implementation. Finally, some alternative models are discussed.

2.1 The Model

Development of the model begins with a description of the data and its associated notation.

Consider a time series of curves {xi(t) : t ∈ T; i = 1, . . . , n}, where T is some continuous

interval and i indexes discrete time. It is hypothesized that each curve is composed of a smooth



underlying curve, yi(t); plus an error component, εi(t):

xi(t) = yi(t) + εi(t). (2.1)

The purpose of this dissertation is to develop a viable model capable of forecasting the entire

smooth curve for some future date: yn+h(t) with h > 0, of course.

A good example of this type of process is the yield data introduced in the first chapter. Here

xi(t) would represent the yield to maturity as of date i for a (zero coupon) bond of maturity

t. In financial terms, it is useful to investors to have information about the entire continuous

yield curve. But of course in practice, yields are only observed for a discrete class of maturity

horizons; 3 months, 6 months and so forth. This is also the case of the general problem in this

dissertation: that only distinct data points are observed, yet the intent is to work with and

forecast the entire curve over time.

Specifically, for t ∈ T, consider a sample of discrete points {t1, t2, . . . , tm} with tj ∈ T for

j ∈ {1, . . . ,m}. Then denote:

xij ≡ xi(tj).

In other words, from an FDA perspective, the observed data xij is a point sample from the

process xi(t) at the specific value t = tj . With the discrete values of the data, they can be

collected into a data matrix which is the starting point for the Factor Analysis component of

the model specification.

Specifically, for the observed data {xij : i = 1, . . . , n; j = 1, . . . ,m}, let i index the row, and

j index the column of a data matrix Xn×m so that the i, jth element of X is xij . In reference

to the yield example, the rows of X correspond to yield curves for at a fixed date; the columns

are the time series of yield for a specific maturity. Figure 2.1 is a visual representation of a

data matrix X.

2.1.1 The Classical Dynamic Factor Model

To develop a forecasting model for the data, the (column) rank of X is too large to apply

multivariate techniques, and the functional aspect of the data still must be accounted for. The
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Figure 2.1: Example of Dynamic Functional Data. Data for yields xij on all observed maturities
tj at all dates i is plotted.

first step then is to reduce the dimensionality of the problem via the use of dynamic factor

modeling. The idea is that the behavior of a set of m observed variables can be explained

through the behavior of a much smaller, though unobserved, set of K variables or factors

and their corresponding coefficients called factor loadings. To capture the dynamic nature of

the data it is postulated that the latent factors themselves follow a stochastic process. Later

constraints will be placed on the model so that the factor loadings form smooth curves.

Following the notation of Pena and Box (1987), denote the rows of X as m × 1 column

vectors xi, the general dynamic factor model can be represented in the following form:

xi = F′m×Kβi + εi, (2.2)

εi ∼ Nm(0,Σε),

where xi is the vector of observed data at time i, i = 1, . . . , n; F is a fixed but unknown K×m

(rank K) matrix of factor loadings for the unobserved K dynamic factors βi = [βi,1, . . . , βi,K ]′;
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and εi = [εi,1, . . . , εi,m]′ is a Gaussian error vector with a full rank covariance matrix Σε.

The factors are hypothesized to follow a K-dimensional vector auto-regressive moving av-

erage (VARMA(P,Q)) process. Using the lag or back-shift operator Lpβi = βi−p (Hamilton,

1994), the multivariate factor time series can be modeled as

Φ(L)βi = Θ(L)vi, (2.3)

vi ∼ NK(0,Σv),

with

Φ(L) = IK − Φ1L− . . .− ΦPL
P ,

Θ(L) = IK −Θ1L− . . .−ΘQL
Q.

The K×K Φ and Θ coefficient matrices are assumed to be such that βi is a covariance stationary

vector time series. Finally, identification of the model requires further assumptions typically

on either the structure of the covariance matrix Σv or on the properties of the factor loadings;

the particular restriction employed here is discussed in the next section.

2.1.2 The Functional Dynamic Factor Model

Two types of additional assumptions are added to (6.1) and (2.3) to form the Functional

Dynamic Factor Model; those that make this a functional model and those that are intended

to simplify the development of the FDFM. The latter of these are discussed first.

These additional assumptions may be relaxed at a later time in order to provide a more gen-

eral model framework. They are imposed here if only to provide a more parsimonious endeavor

into this new, exciting class of models (see Chapter 9 for possible extensions). Specifically:

1. The K dynamic factors βi have no moving average components (Θ(L) = IK).

2. The factors are independent so that the coefficient matrices in Φ(L) are diagonal, reduc-

ing the VARMA(P,Q) process to K independent univariate covariance stationary AR(p)

processes.
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3. Σε = σ2Im.

4. The innovations εi and vi+h are uncorrelated at all leads and lags (h = 0,±1,±2, . . .) for

all k ∈ {1, . . . ,K}; all j ∈ {1, . . . ,m}.

5. For the purposes of the proposed model it will be assumed that the loading vectors in F

are orthonormal: FF′ = Ik.

6. (Optional) Due to the simplified univariate AR structure and for additional flexibility, in

place of a constant, non-stochastic regressors can be considered in the factor time series.

With these simplifying assumptions the FDFM can be expressed in the following scalar

manner. Denote fkj as the kjth element of F. Then implementing these assumptions, together

with (6.1) and (2.3), yields the model:



xij =
∑K

k=1 βikfkj + εij , εij
i.i.d.∼ N(0, σ2)

βik −Aikµk =
∑pk

r=1 ϕrk(βi−r,k −Ai−r,kµk) + vik, vik
i.i.d.∼ N(0, σ2

k)

Evtkεsj = 0 for t, s = 1, . . . , n; k = 1, . . . ,K; j = 1, . . . ,m,

(2.4)

where for date i, the 1 × dk regressor vector for the kth factor is Aik, with dk × 1 coefficient

vector µk. Going forward, this will be denoted as an FDFM(K,p) model, which refers to the K

factors and the order p = max{p1, . . . , pK} of the auto-regressive factors.

The next class of assumptions are the ones critical to converting the traditional dynamic

factor model to a functional dynamic factor model; those regarding the smoothness of the

factor loadings. In the classical model, outside of the normalizing condition the loadings are

otherwise unconstrained and represent distinct coefficients for the dynamic factors. However in

the present setting, the loadings are further hypothesized to be a sampling or “discretization”

of a deterministic, continuous, yet unobserved smooth function/curve. That is, the functional

dynamic factor framework provides another means by which to model time series of curves.
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Specifically, let

F =


f1

...

fK

 (2.5)

with fk = [fk1 . . . fkm] so that fk is the sequence of factor coefficients corresponding to the kth

factor. Then based on the fifth assumption above, this implies

fkf
′
l =

 1 if k = l,

0 otherwise.
(2.6)

Recall the original formulation of the observed data as a sample of a continuous process;

that the observed data xij is a point sample from the process xi(t) at the specific value t = tj .

Since xij =
∑K

k=1 βikfkj + εij , it is proposed that the factor loadings are themselves discrete

samples from continuous, unobserved factor loading curves. That is, that fkj ≡ fk(tj) and that

each fk represents the sampled curve corresponding to the kth factor. Thus, while the dynamic

factors represent a time series at discrete time points i ∈ {1, . . . , n} the factor loadings are a

realization of a continuous function evaluated at m distinct points. It is precisely here where

the synthesis of functional data analysis and dynamic factor models occurs.

xi(tj) =

K∑
k=1

βikfk(tj) + εi(tj). (2.7)

This closely resembles the formulation of a classical dynamic factor model if not for the func-

tional assumption on the factor loadings.

2.2 The Joint Distribution

To use the Expectation Maximization algorithm to estimate the model requires first the specifi-

cation of the joint distribution in order to derive a likelihood expression to maximize. A modified

likelihood is derived to include conditions for smoothness of the factor loading curves fk which
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is discussed in the next section, followed by a rigorous development of the EM implementation.

The remainder of the dissertation includes many mathematical derivations and thus the

introduction of some matrix notation will be useful hereafter. The model xij =
∑K

k=1 βikfkj+εij

is represented in matrix form as

Xn×m = Bn×KFK×m + εn×m, (2.8)

where B = {mβik} = [β1 . . .βK ] and βk = [β1k . . . βnk]
′.

For the moment, suppose the values of the factor time series are known. If this is the case

then finding the joint distribution of the observed data and the factors is a fairly straightforward

exercise and consists of the distribution for the factor time series and the distribution for

the observed data. That is, the distribution of X and B is found by finding the conditional

distribution of X given B, and the unconditional distribution of B. The latter is determined

using the familiar properties of univariate autoregressive time series which aids in the derivation

of the former.

2.2.1 Distribution for the factor time series

With the independence assumption for the factor time series from Section 2.1.2, the joint

distribution for the factor time series is just the product of the univariate time series. Each

univariate distribution is then the product of an unconditional distribution for the first p values

of the factor and the distribution conditioned on those p values.

For notational convenience and without loss of generality, for the following derivation it is

assumed that:

1. no regressors are included in the time series other than an intercept for each of the K

factors.

2. It is further assumed that the order of the AR(pk) processes are the same for all factors.

That is, pk ≡ p ∀k.

Either assumption does not detract from the derivation. For the latter, admittedly it may be

unrealistic to hypothesize p should be the same for all k. However, if the order of the processes
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is defined as p = max{p1, . . . , pk} then it is easy to imagine that corresponding coefficients ϕrk

are simply set to 0 for r ≤ pk < p. For the former assumption, the model equation for βk

in (2.3) simplifies to

βik = ck +

p∑
r=1

ϕrkβi−r,k + vik ; for k = 1, . . . ,K.

Since the K factor time series are assumed to be independent, their joint distribution factors

to the product of the univariate distributions for the time series:

f(B) = f(β1, . . . ,βK) =
K∏
k=1

f(βk). (2.9)

Each univariate distribution in the expression above can be further decomposed via conditioning

on the first p observations (Hamilton, 1994). Consider the likelihood for the factor time series

βk as

f(βk) = f(β1k, . . . , βnk)

= f(β1k, . . . , βpk)f(βp+1,k, . . . , βnk|β1k, . . . , βpk)

= f(β1k, . . . , βpk)


n∏

i=p+1

1√
2πσ2

k

exp

[
−

(βik − ck −
∑p

r=1 ϕrkβi−r,k)
2

2σ2
k

] ,

which can be substituted into (2.9) to obtain the likelihood for the factor time series.

2.2.2 The Joint distribution and Likelihood of X and B

The joint distribution of X and B can similarly be simplified via successive conditioning. Using

the property that εij
iid∼ N(0, σ2) and the prior result on the joint distribution of the factor time

series yields the following:
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Proposition 2.2.1. Joint Distribution of X and B

f(X,B) =
K∏
k=1

f(βk)×
n∏
i=1

m∏
j=1

f(xij |βi1, . . . , βiK)

=

K∏
k=1

f(β1k, . . . , βpk) (2.10)

×
K∏
k=1


n∏

i=p+1

1√
2πσ2

k

exp

[
−

(βik − ck −
∑p

r=1 ϕrkβi−r,k)
2

2σ2
k

]
×

n∏
i=1

m∏
j=1

1√
2πσ2

exp

[
−

(xij −
∑K

k=1 βikfjk)
2

2σ2

]
.

Finally, the log-likelihood expression is achieved by applying the natural logarithm to the

above joint distribution, then multiplying by −2,

(−2×) lnL = −2
K∑
k=1

ln[f(β1k, . . . , βpk)] + (n− p)
K∑
k=1

ln(2πσ2
k) + nm ln(2πσ2) (2.11)

+
1

σ2

n∑
i=1

m∑
j=1

(xij −
K∑
k=1

βikfkj)
2

+
n∑

i=p+1

K∑
k=1

1

σ2
k

(βik − ck −
p∑
r=1

ϕrkβi−r,k)
2.

For the auto regressive parameters, the independence assumption on the time series factors

allows K distinct optimization problems for each of the K factors. However, note the appearance

of the term
K∑
k=1

ln[f(β1k, . . . , βpk)].

This is the log sum of the joint distributions for the first p time points for each factor. Op-

timization including this term would require numerical methods, so for ease of computation a

conditional likelihood approach is employed where [β1,k, . . . , βp,k] are assumed as known/given

for all k.

Notwithstanding some miracle, optimization of the likelihood (2.11) would generally not

result with estimates of the {fk} resembling smooth curves. Therefore, some additional work

must be performed to assure that this will be the case for the estimated factor loading curves;
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this is addressed in the next section.

2.3 The Penalized Likelihood Expression

Simply finding the optimal solutions to the likelihood expression (2.11) falls short of fully

estimating the functional DFM on two counts. First, the factor time series are unobserved.

Second, there is no reason to expect that by finding the values of the factor loadings and other

parameters that maximizing the expression above will in any way satisfy the prior assumption

that the factor loadings represent smooth curves. The latter is discussed presently; the former

in the section on estimation.

From the likelihood (2.11), a maximum likelihood solution for the factor loading curves is

equivalent to a minimization of the sum of squares

n∑
i=1

m∑
j=1

[
xij −

K∑
k=1

βikfkj

]2

=

n∑
i=1

m∑
j=1

[
xi(tj)−

K∑
k=1

βikfk(tj)

]2

,

with respect to the functions {fk(·)}.

It is proposed to follow the roughness penalty approach of Green and Silverman (1994),

where a roughness penalty with a smoothing parameter is added to the sum of squares. In

the functional dynamic factor model, for each of the K factor loading curves, K roughness

penalty/smoothing parameter terms are added to the sum of squares. Consider the following

penalty criteria for each of the factor loading curves: λk
∫

[f ′′k (t)]2 dt. Then the penalized sum

of squares becomes:

n∑
i=1

m∑
j=1

(xij −
K∑
k=1

βikfkj)
2 +

K∑
k=1

λk

∫ [
f ′′k (t)

]2
dt.

These terms place a condition on the second derivative of each function fk. In this context

this is equivalent to a condition on the curvature of the function, which specifies that on the

domain of the function, it is not too “rough.” The coefficient λk controls how strictly this

condition is enforced. Put another way, each penalty term imposes smoothness, or a roughness

penalty on the resulting estimate so that the discrete estimated points fkj reasonably resemble
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those that would lie along the smooth underlying curve.

In practice, first and second differences are used to approximate the first and second deriva-

tives of fk(·). Green and Silverman (1994) showed these are actually equivalent in the setting

of the natural cubic spline (NCS). This result is yet to be shown here, but is addressed in

Chapter 9. In the meantime, just as a matter of practical implementation, first differences

can reasonably approximate first derivatives and second differences can likewise approximate

second derivatives. With ∆ representing the difference operator ∆fkj = fkj − fk,j−1:

λk

∫ [
f ′′k (t)

]2
dt ≈ λk

m−1∑
j=2

[
∆2fkj
∆2tj

]2

.

So, for example, if the points tj are evenly spaced, then ∆tj = 1, and

λk

∫ [
f ′′k (t)

]2
dt ≈ λk

m−1∑
j=2

[fk,j−1 − 2fk,j + fk,j+1]2 .

Coefficients from this sum can be collected in the banded matrix

ω′k ≡



0 . . . 0

1 −2 1 0 . . . 0

0 1 −2 1 0 . . . 0

...
. . .

...

0 . . . 0 1 −2 1

0 . . . 0


.

Let Ωk ≡ ωkω′k; then

λk

m−1∑
j=2

[fk,j−1 − 2fk,j + fk,j+1]2 = λkfkΩkf
′
k.
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Next, using the vec(·) operator, which stacks the columns of a matrix, yields

K∑
k=1

λk

∫ [
f ′′k (t)

]2
dt ≈

K∑
k=1

λkfkΩkf
′
k

= vec(F′)′ · S · vec(F′),

where SmK×mK is the block diagonal matrix with m×m blocks λkΩk. Adding this term to the

portion of the log-likelihood creates a roughness penalty for each of the factor loading curves so

that optimal solutions for the curves will reflect the dual objectives of both finding estimates

that fit the data and ensuring those estimates exhibit an appropriate level of smoothness.

Combining the log-likelihood (2.11) with the K additional penalty terms results in the

Penalized Log Likelihood expression

PL = −2

K∑
k=1

ln[f(β1k, . . . , βpk)] + (n− p)
K∑
k=1

ln(2πσ2
k) + nm ln(2πσ2) (2.12)

+
1

σ2

n∑
i=1

m∑
j=1

(xij −
K∑
k=1

βikfkj)
2

+

n∑
i=p+1

K∑
k=1

1

σ2
k

(βik − ck −
p∑
r=1

ϕrkβi−r,k)
2

+
K∑
k=1

λkfkΩkf
′
k.

2.4 Maximum Likelihood Estimation with EM

The next step in the development of the FDFM is the method by which to estimate the model.

There are two main points in this section. The first is that with Expression (2.12) maximum

likelihood (ML) can be used to estimate model parameters. The second point is that the

factor time series are unobserved; thus the Expectation Maximization algorithm (EM) is used

in conjunction with maximum likelihood. The following subsections first present an executive

summary of the EM, next develop the the use of the EM with ML solutions and finally detail

smoothing parameter selection and othe computational aspects. ML parameter solutions will

be indicated by a hat ( θ̂ ) over the symbol for the parameter.
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2.4.1 A Brief Overview of Maximum Likelihood with the EM

Expression (2.12) facilitates the use of ML to estimate the model parameters. These are the

time series slopes, intercepts, and variances for each factor, the factor loading curves, and the

overall model variance; collectively these will be referred to in the set Θ:

Θ ≡

{
σ2, {

K⋃
k=1

fk, σ
2
k, ck, ϕ1,k, . . . , ϕp,k}

}
. (2.13)

Obviously, direct maximum likelihood estimation is only of use if there is data available

with which to compute the estimates. In the present context of the functional dynamic factor

model this is only partially the case as it is hypothesized the observed data X is a function of

unobserved explanatory factors B. Thus despite having a theoretical solution for the parameter

and factor loading estimates, the problem is as yet intractable due to the latent data. Therefore,

the method is to treat this as a problem of missing data; enter the EM algorithm.

First introduced by Dempster et al. (1977), the EM is a method by which to impute missing

data with values based on a conditional expectation using the observed, non-missing data.

Further work by Meng and Rubin (1993) showed the theoretical properties of EM estimates,

including the desirable properties regarding convergence. The current setting differs due to the

inclusion of the penalty terms in the likelihood and so it is as yet undetermined if those results

hold here. Further discussion on this point is reserved for future work in Chapter 9.

EM estimation is an iterative procedure; inaugurated with initial values, the algorithm then

oscillates between the so-called E-step and M-step. It proceeds thusly:

Step 0: Initial Values: To initialize the EM algorithm, some form of starting values are

required. Many possibilities exist, but here it is proposed that the right and left singular

vectors extracted via the singular value decomposition (SVD) of the data matrix X will

provide adequate initial estimates for the factors and loadings. Details will follow, but for

now from these primordial time series and curves, parameter estimates may be calculated

with which to inaugurate the E-step. Section 2.4.2 briefly covers this.

The E-step: In the E-step, new values for the factor time series are calculated as conditional
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expectations given the observed data using the parameter estimates from either Step 0 or

the previous M-step. The conditional expectations then take the place of the factor time

series in the calculation of the factor loading curves and the next iteration of parameter

estimates. See Section 2.4.3 for a thorough derivation.

The M-step: Based on the factor scores from the conditional expectation in the E-step, MLEs

are calculated for the factor loading curves and other parameters using the ML solutions

in the subsequent sections. The optimal solution for the set of {fk} is dependent on the

smoothing parameters {λk}, so as part of the M-Step the optimal solutions for the fk are

calculated based on several different values of λk. A Generalized Cross Validation (GCV)

procedure is then used to select the optimal λk/fk pair. See Sections 2.4.4 and 2.4.5 for

details.

After the initial step, the E-step and the M-step are repeated until differences in the esti-

mates from one iteration to the next are sufficiently small. See Chapter 9 for a discussion of

convergence properties.

2.4.2 Step 0: Preliminary Estimates via SVD

Initial values for the factors and factor loadings are required to begin the EM. From those

initial values, the variance and autoregressive parameters are calculated to inaugurate the E-

step. Choices can be fairly arbitrary, but because of the connection of the functional dynamic

factor model with other functional data analysis models (Shen and Huang (2005); Shen and

Huang (2008); and Shen (2009)), singular value decomposition (SVD) is utilized on the original

X data matrix for preliminary estimates of the factor time series and factor loadings.

First, X is decomposed by SVD into three matrices. Two of which are the orthogonal

matrices U and V which contain the left and right singular vectors respectively; U′U = V′V =

Im. The third matrix D is a diagonal matrix containing the m decreasing singular values on
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the diagonal. Hence, the SVD of X is as follows:

X
SV D
= Un×mDm×mV′m×m

=

[
u1 . . . um

]
d1 0

. . .

0 dm




v′1
...

v′m

 =
m∑
j=1

djujv
′
j .

Next, based on the model formulation that X is represented by K factor time series plus

noise, the first K SVD components {dk,uk,vk}Kk=1 can be used to approximate X as in X ≈∑K
k=1 dkukv

′
k. Let the (0) subscript denote the step 0 EM values. Then the initial values

for the factors and factor loading curves are designated as β(0);k = dkuk and f(0);k = v′k, for

k = 1, . . . ,K. From these, initial parameter estimates are computed for σ2 and the set of factor

parameters {σ2
k, ck, ϕ1,k, . . . , ϕp,k} as described below in Lemma 2.4.1 and Equations (2.14)

and (2.15). Hence with starting values in hand, the true EM iterations can begin.

The next paragraphs briefly detail some of the maximum likelihood solutions to the penalized

log-likelihood (2.12), beginning with the error variance, then the factor time series parameters.

These are required to calculate the conditional mean and variance used in the E-step. For the

moment, the smoothing parameters {λk} are taken as given; Section 2.4.5 details a generalized

cross validation approach for their selection.

The solution for the error variance, σ2, is as follows. The penalized log-likelihood (2.12) is

differentiated with respect to σ2. Setting the resulting expression equal to zero, and solving for

σ2 results in the following MLE for σ2:

σ̂2 =

∑
i,j(xij −

∑K
k=1 βikfkj)

2

nm
. (2.14)

Recall the assumption that the first p values for each of the factor time series are assumed

as given. Then solutions for the AR(p) parameters reduce to an ordinary least squares problem.

Holding the {σ2
k} fixed for the moment, maximization of (2.12) with respect to the {ϕk} and

intercepts {ck}is equivalent to a minimization of a sum of squared errors:
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Lemma 2.4.1. Define SSE =
∑n

i=p+1

∑K
k=1(βik − ck −

∑p
r=1 ϕrkβi−r,k)

2, and let

yk ≡ [βp+1,k, βp+2,k, . . . , βnk]
′,

Wk ≡



1 βp,k βp−1,k . . . β1,k

1 βp+1,k βp,k . . . β2,k

...
...

...
. . .

...

1 βn−1,k βn−2,k . . . βn−p,k


(n−p)×(p+1)

,

and φk ≡ [ck, ϕ1k, ϕ2k, . . . , ϕpk]
′.

Then SSE =
∑K

k=1 ‖yk−Wkφk‖2 and for each k the MLEs for the auto-regressive parameters

are the OLS solutions φ̂k = [W′
kWk]

−1W′
kyk.

Alternatively, because of the independence assumption, all of the AR(p) parameters can be

solved for simultaneously by posing the problem as one of multivariate regression.

Finally, with all of the estimates φ̂, the individual variances can be found by differentiating

the penalized log-likelihood (2.12) with respect to σ2
k, then setting the result equal to zero and

finally solving for σ2
k:

σ̂2
k =

∑n
i=p+1(βik − ck −

∑p
r=1 ϕrkβi−r,k)

2

n− p
. (2.15)

With these initial parameters, the E-step can begin to update the values for the factors.

Then the M-step is employed to update the values for the factor loading curves and other

parameters.

2.4.3 The E-Step

During each E-step, the conditional expectations of the factor time series given the observed

data are used to supplement the missing data of the factors themselves. These conditional

expectations, in turn, are conditional on the current values for the estimated parameters and

the factor loading curves. The first E-step uses the initial factor and factor loading values from

step 0, and the parameter estimates generated from them.
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Obviously, the E-Step of the EM requires the derivation of the conditional distribution of

the factors with regards to the observed data. Restating the model terms of vector notation (as

opposed to the matrix formulation), and due to the assumption of normality, the procedure is

simplified. With the latter point the distribution is equivalent to the derivation of the first two

moments; with the former, said derivation is forthright. To ease in the derivations, however, first

consider the following lemma relating the vec(·) operator to the kronecker, or direct product:

Lemma 2.4.2. (Magnus and Neudecker, 1999). Let Γ and ∆ be two matrices such that the

product Γ∆ is defined. Then

vec(Γn×K∆K×m) =
(
∆′ ⊗ In

)
vec(Γ). (2.16)

Based on the lemma, the model (4.3) can be rewritten in a vector-ized form, which facilitates

the distributional derivations. Let X ≡ vec(X) and β ≡ vec(B). Then the model (4.3)

X = BF + ε can equivalently be written as

X = (F′ ⊗ In)β + vec(ε). (2.17)

Derivation of the conditional moments requires the expressions of some of the unconditional

moments. Namely, these are:

1. The means of X and β, denoted as µX and µβ, respectively.

2. The variances of X and β, denoted as ΣX and Σβ, respectively.

3. The covariance of X and β, denoted as Σβ,X.

These moments in turn are dependent upon the errors associated with the time series factors

and the model error ε.

First consider the variance matrix for each factor time series βk. Recall from Equation (2.9)

that for the purposes of this dissertation it is assumed all the K factors follow an AR(p) process

of the form βik = ck +
∑p

r=1 ϕr,kβi−r,k + vik. Then following Hamilton (1994), the following

result can be shown.
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Lemma 2.4.3. Let β1,k, . . . , βn,k follow a covariance-stationary AR(p) process represented

by βik = ck +
∑p

r=1 ϕr,kβi−r,k + vik; with vik
iid∼ N(0, σ2

k) for i = 1, . . . , n. Define γk,s =

Cov(βik, βi+s,k).

Then

E[βik] =
ck

1− (
∑p

r=1 ϕr,k)
,

and

γk,s =

 ϕk,1γk,s−1 + ϕk,2γk,s−2 + . . . ϕk,pγk,s−p for s = 1, 2, . . .

ϕk,1γk,1 + ϕk,1γk,2 + . . . ϕk,1γk,p + σ2
k for s = 0

.

Define the n×n variance matrix for βk as Σk. Its elements are then [Σk]h,i = γk,|h−i|. These

results give rise to the unconditional moments for X and β which are collected in the following

proposition.

Proposition 2.4.1. Recall from the Equations (2.4) that εij ∼ N(0, σ2). Then

V ar[vec(ε)] = σ2Inm.

Further, let c be the K × 1 vector with elements ck/[1− (
∑p

r=1 ϕr,k)]. Then

µβ = c⊗ 1n

µX = (F′ ⊗ In)µβ

Σβ = diag{Σ1, . . . ,ΣK}

ΣX = (F′ ⊗ In)Σβ(F⊗ In) + σ2Inm

Σβ,X = Σβ(F⊗ In).

Next, using properties of multivariate normal random vectors, the conditional distribution

of β|X can be found:
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Proposition 2.4.2. Let

β

X

 ∼ N


µβ
µX

 ,

 Σβ Σβ,X

ΣX,β ΣX


 .

Then

µβ|X ≡ E[β|X] = µβ + Σβ,XΣ−1
X (X − µX),

and

Σβ|X ≡ V ar[β|X] = Σβ − Σβ,XΣ−1
X ΣX,β.

This then implies that

E[ββ′|X] = Σβ|X + µβ|Xµ
′
β|X.

Note that from a computational standpoint there is concern over the appearance of Σ−1
X in

the expressions for both µβ|X and Σβ|X since this is an inversion of order nm; because the EM

is an iterative procedure, this could be especially problematic (recall the call center data with

n = 210 and m = 68). Thankfully, there is a method by which the inversion can be reduced

to K sequential n × n inversions. This and more computational efficiencies are discussed in

Section 2.4.6.

With these conditional moments, the E-step of the EM posits that the missing data (the

time series factors) are replaced with the known values of the conditional distribution given X.

Thus in the M-step, in solving for MLEs, expressions involving βk will utilize values from µβ|X,

Σβ|X, and E[ββ′|X].

2.4.4 The M-Step

The M-step uses the conditional moments from the E-step as “stand-in” values so that the

penalized likelihood expression (2.12) can be optimized. Specifically, in the M-step, MLEs can
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be determined using the surrogate conditional moments µβ|X, Σβ|X, and E[ββ′|X] in place of

the missing factor time series, βk. In fact, the crux of the E-step/M-step transition is replacing

the unknown factor terms in MLE solutions with the corresponding known terms from the

conditional expectations.

To do this requires some overhead in terms of notation and some minimal derivation; bear

with it, it’s worth it. Recall the set Θ from Equation (2.13); and denote the lth EM itera-

tion parameter estimates as Θ(l). For each iteration l, the M-step optimizes the conditional

penalized log-likelihood (2.12) given the observed data and the lth parameter estimates:

E[PL|X]|Θ(l) ∝
1

σ2

∑
i,j

E

[
(xij −

K∑
k=1

βikfkj)
2
∣∣X]

|Θ(l)

(2.18)

+
n∑

i=p+1

K∑
k=1

1

σ2
k

E

[
(βik − ck −

p∑
r=1

ϕrkβi−r,k)
2|X

]
|Θ(l)

+
K∑
k=1

λkfkΩf ′k.

As a matter of notation, where necessary, parameters or random variables will be suffixed with a

value indicating the relative iteration of the EM; 0 represents the initial values and l = 0, . . . , L

represents the current iteration of the EM.

Based on the above expression, it is clear that in the MLEs, the factor time series appear

either singly or in terms of cross products. Further, the cross products occur either within or

between factors. These three variants, and the corresponding replacements are made thusly:

Individual factors: The conditional mean of the vector-ized factors, µβ|X, consists of the

conditional means of each factor: [E(β1|X)′n×1, . . . , E(βK |X)′]′. Thus for each time point

i and each factor k, βik;(l) is replaced with the ith element of factor k’s conditional

expectation, [E(βk|X)]i.

Within factor cross products: For a given factor k, and time points i, h = 1, . . . , n, then

[βikβhk](l) = E[βikβhk|X]. An exciting result is that Σβ|X is block diagonal with K n× n

blocks. Therefore, E[βikβhk|X] is simply the i, jth element of the kth diagonal block from

the matrix E[ββ′|X]. Section 2.4.6 highlights the computational efficiencies of this result;

for a derivation of this see Chapter 3.
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Between factor cross products: For a given factors k and k′; and some given time points

i, h = 1, . . . , n; the replacement is [βik′βhk](l) = E[βik′βhk|X]. An even more amazing

result is that E[βik′βhk|X] is simply the i, jth element of the matrix formed by [E(βk|X)] ·

[E(β′k|X)]′. Put another way, the conditional expectation of the product is just the product

of the conditional expectations. For a derivation of this see Chapter 3.

The M-step, then, is just a matter of making these substitutions into (2.18), and solving

for the MLEs. For ease of notation, going forward it will be implicit in the expressions and

derivations that items like βik or βikβhk′ are equivalent to E[βik|X ] and E[βikβhk′ |X ], respec-

tively; for i, h = 1, . . . n and k, k′ = 1, . . . ,K. These will occasionally be suffixed with an (l) to

emphasize the iteration of the EM.

The first part of the M-step is solving for the factor loading curves fk. It is also the most

complicated, in that it involves a GCV selection procedure for the smoothing parameters λk.

Recall the MLE solution for σ2 from Equation (2.14). Making the appropriate substitutions

discussed in the preceding paragraphs, the solutions for the fk are found in the following manner.

Components of the penalized likelihood expression involving the factor loadings fk can be

rewritten as expression of the vector F̃ ′ ≡ vec(F′); this is each factor loading curve f ′k stacked

on top of each other. Assume for the moment the {λk} are known. Then differentiating with

respect to the vector F̃ ′ and setting the result equal to zero yields the simultaneous solutions

for all the factor loading curves. Recall from Section 2.3 the block diagonal matrix S with K

m×m blocks λkΩk. Then the following proposition illustrates the solution.

Proposition 2.4.3. Let X̃ ≡ vec(X′), F̃ ≡ vec(F′), and Z ≡ B⊗ Im. Then

1

σ2

n∑
i=1

m∑
j=1

(xij −
K∑
k=1

βikfkj)
2 +

K∑
k=1

λkfkΩkf
′
k,

is equivalent to

1

σ2
X̃ ′X̃ − 2

σ2
F̃ ′Z′X̃ + F̃ ′

(
Z′Z

σ2
+ S

)
F̃ , (2.19)
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which suggests that

ˆ̃F =

(
Z′Z

σ2
+ S

)−1

mK×mK

1

σ2
Z′X̃. (2.20)

Let ‖ · ‖ and 〈·, ·〉 denote the Euclidean norm and Euclidean inner-product, respectively.

Then for each factor loading curve fk, it can be shown that

f̂ ′k =

[
‖βk‖2

σ2
Im + λkΩk

]−1

m×m

1

σ2

 n∑
i=1

βkiXi −
∑
k 6=h
〈βh,βk〉f̂ ′k


m×1

,

for k, h = 1, . . . ,K.

The expression for any one fk depends on all of the others, thus unfortunately a simultaneous

solution is difficult to derive. Therefore it is proposed to solve for the f̂k sequentially. Let

h = 1, . . . ,K. Then to solve for a particular f̂k, the set {f̂h} consisting of the other K − 1

factor loading curves are assumed given; the values used for them are provided by the previous

iteration of the EM. In practice, for iteration l of the EM, the kth factor loading curve is given

by:

f̂ ′(l);k =

[
‖β(l);k‖2

σ2
(l−1)

Im + λkΩk

]−1

× 1

σ2
(l−1)

 n∑
i=1

β(l);ikXi −
∑
h6=k
〈β(l);h,β(l);k〉f̂ ′(∗);h

 .
The values for f̂ ′(∗);h in turn are provided by the following rule:

f̂(∗);h =

 f̂(l);h if h < k

f̂(l−1);h if h > k
.

So for example, suppose it is the seventh EM iteration and the third factor loading curve

is being solved for. Then curves one and two will already have been updated, so that the most

recent estimates may be used. For curves 4 to K, the only estimates available will be those

from the previous sixth iteration of the EM.

The missing component in all of this is the treatment of the set of smoothing parameters

{λk}. They are neither random components of the functional dynamic factor model; nor are
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they “parameters” in the maximum likelihood estimator sense. Nay, they are a unique model

component in and of themselves. Their origin has been discussed in Section 2.3; the values

chosen for them are discussed in the following one.

2.4.5 GCV Selection

When sequentially solving for the K factor loading curves, the optimal smoothing parameter

λk is selected using generalized cross validation, akin to the methods of Green and Silverman

(1994). This requires calculating the solution for fk over multiple candidate values for λk; then

selecting the one minimizing the GCV criterion. The justification is that the solution for fk can

be posed as a ridge regression problem; provided that for h = 1, . . . ,K, the other K − 1 f̂h are

fixed. To see this, recall the expression from Proposition 2.4.3:

1

σ2

n∑
i=1

m∑
j=1

(xij −
K∑
k=1

βikfkj)
2 +

K∑
k=1

λkfkΩf ′k.

The solution for a single fk requires fixing the remaining K − 1 factor loading curves and their

corresponding smoothing parameters. This effectively renders them as constant; therefore the

above expression can be rewritten as:

1

σ2

n∑
i=1

m∑
j=1

xij −∑
h6=k

βihfhj

− βikfkj
2

+
∑
h6=k

λhfhΩf ′h + λkfkΩf ′k.

Defining X−ki ≡ Xi −
∑

h6=k βihf̂
′
h and X̃−k as the stacked columns of X−ki for i = 1, . . . , n,

the criterion that needs to be minimized to obtain f̂k can be rewritten as

∥∥∥∥ 1

σ
X̃−k − 1

σ
(βk ⊗ Im) · f ′k

∥∥∥∥2

+ λkfkΩf ′k.

Based upon this formulation it is evident that this expression exactly matches a ridge regression

problem with:

• The nm× 1 vector 1
σ X̃
−k as the “dependent variable.”

• The nm×m matrix 1
σ (βk ⊗ Im) as the “independent variables.”
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• The m× 1 vector f ′k as the “parameter” vector for which to be solved.

• Finally, the ridge penalty term as λkfkΩf ′k.

Keeping in mind that (β′k ⊗ Im)(βk ⊗ Im) = ‖βk‖2
σ2 Im, then the GCV criterion can be used to

select the optimal λk (Green and Silverman, 1994):

GCV(λk) =
‖(Inm −Hλk)X̃−k‖2/nm

[1− tr(Hλk)/nm]2
, (2.21)

with

Hλk =

{
1

σ2
(βk ⊗ Im)

[
‖βk‖2

σ2
Im + λkΩk

]−1

m×m
(β′k ⊗ Im)

}
nm×nm

. (2.22)

GCV(λk) is calculated over a grid of possible values during the estimation of each factor

loading curve. The smoothing parameter that corresponds to the least value of GCV(·) is

selected as the optimal one. Then the M-step proceeds to estimation of the next factor loading

curve, along with the selection of the penalty parameter for that loading curve.

Before moving on to the final steps of EM estimation in the FDFM, it is worthwhile to note

that the M-step with GCV is computationally intensive. For example, for a K factor model

using, say, W possible values for each of the smoothing parameters requires K ·W steps to

solve for F. Hλk is a large matrix and its calculation includes the inversion of a smaller (though

not unformidable) matrix. However, it will be shown in Section 2.4.6 that only one calculation

need be performed in place of K ·W calculations.

Regardless, after all of the fk/λk pairs are determined, normalization/orthogonal-ization is

required in order to maintain the assumption of orthogonality; that F(l)F
′
(l) = IK . Following

this adjustment, the factor time series must be appropriately adjusted themselves. This is

method is detailed in Section 3.2.4.

With the updated orthogonal factor loadings and the updated factors, the M-step concludes

with the calculation of the overall model variance (σ2), and the auto-regressive factor parame-

ters. The ML solutions are, of course, no different than those presented in Step 0 (Section 2.4.2).

However there are a few points worth noting now that the conditional expectations for the {βk}
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are being used (in place of the left singular vectors from SVD of the data matrix). Specifically,

1. Using the vector-ized model notation (4.12), the error variance estimate is expressed as

σ̂2 = ‖X − (F̂
′ ⊗ In)β‖2/nm. Because the error variance involves cross-products of the

factors, care must be taken in implementation of the EM. Thus, expanding the expression

illustrates the proper distinctions to made:

nm · σ̂2
(l) = ‖X ‖2 − 2〈X , (F′(l) ⊗ In)β(l)〉+

K∑
k=1

‖βk;(l)‖2.

Here, ‖βk‖2 represents the sum of the diagonal elements of E[βkβ
′
k|X]. Whereas β(l) is

simply µβ|X;(l).

2. For illustrative purposes, consider the case of independent AR(1) factors with a constant.

Then ck and ϕk minimize the sum of squares
∑n

i=2(βik − ck − ϕkβi−1,k)
2 yielding the

standard OLS result:

 ĉk

ϕ̂k

 =

 n− 1
∑n−1

i=1 E[βik|X]∑n−1
i=1 E[βik|X]

∑n−1
i=1 E[β2

ik|X]


−1  ∑n

i=2E[βik|X]∑n
i=2E[βi−1,kβik|X]

 .
The E[·|X] notation is temporarily reintroduced in order to emphasize the distinction

between terms like E[βi−1,k|X]E[βik|X] and E[βi−1,kβik|X], which are obtained from the

E[ββ′|X] matrix. The point is that the correct EM estimates for ck and ϕk are not

obtained via merely a regression of E[βk|X] on itself; the distinction presented here will

not be accounted for by a built-in regression function in software packages. For a more

general discussion, Chapter 3 includes a thorough derivation of the case of factors with

multiple intercepts.

3. As with the above cases, similar care must be taken in regards to the factor time series’

error variances. Reverting again to the AR(1) model it can be shown that

(n− 1) · σ̂2
k =

n∑
i=2

(β2
ik + c2

k + ϕ2
kβ

2
i−1,k − 2ckβik − 2ϕkβikβi−1,k + 2ckϕkβi−1,k).

32



The appropriate replacements for the squared and cross product β terms are obtained

from the components on the diagonals and off-diagonals of the E[βkβ
′
k|X] matrix. Some

useful results for sums of these elements are discussed in the next section.

Finally, after these parameter estimates are updated, the EM continues on to the next E-step

where the factor time series are updated and fed into another M-step. The process continues

until the factor loading curves and other parameters from one EM iteration to the next are

sufficiently close. For example, when max |Θ(l) −Θ(l−1)| < δ, for some small number δ.

The EM is an elegant procedure, though not without some limitations. It is iterative, and

both the E-step and M-step do require some rather large matrix manipulations. Fortunately,

presented in the next section are several convenient results that assuage some of the computa-

tional intensity encountered in this iterative process.

2.4.6 Computational Efficiency

This section presents results intended to ease some of the computational aspects of the esti-

mation for the functional dynamic factor model. This is done by exploiting the properties of

some of the matrices involved in key calculations. The impetus for this is not just to provide

the elegant solution. Rather, from a very practical standpoint, even with modern statistical

software and high performance computing platforms, run-time can be an issue. The reason

being that the EM algorithm is an iterative procedure. Both the E-step and M-step contain

some large matrix inversions and manipulations. The M-step is further complicated by the se-

quential solution of the factor loading curves, and the solution for each is computed over a range

of values for the smoothing parameter. All of this amounts to what could be a computationally

intensive estimation.

The crux of computational efficiency is in the details for the conditional moments of the time

series factors; these are revisited below. It is first shown that a considerably faster inversion

exists for the variance matrix of the observed data X. Next, a result regarding the structure

of the conditional variance of the factors, β, facilitates a useful finding in determining factor

cross products; these are terms that are all but omnipresent in the M-step. Finally, an eigen-

decomposition of a particular matrix in the GCV procedure obviates a matrix inversion for each
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candidate value of the smoothing parameter.

Matrix Inversion: Recall the results of Proposition 2.4.2 regarding the conditional mean and

variance of the factor time series:

µβ|X = µβ + Σβ,XΣ−1
X (X− µX),

Σβ|X = Σβ − Σβ,XΣ−1
X ΣX,β.

and

E[ββ′|X] = Σβ|X + µβ|Xµ
′
β|X.

The inverse of the variance matrix for X, (Σ−1
X ), appears in each of these. The inversion

is of order nm. It must be performed for each of the L iterations of the EM. However, the

order inversion can be reduced from order nm to a sequence of K (the number of factors)

order n inversions. The following lemma facilitates this result:

Lemma 2.4.4 (Sherman–Morrison–Woodbury Formula (Press et al., 1992).). Let A be a

T × T matrix, B be a d× d matrix and C be a d× T matrix. If A−1 and B−1 exist, then

(A−1 + C ′B−1C)−1 = A−AC ′(CAC ′ +B)−1CA.

Using this formula, the result of a simplified inversion can be shown. Let A = σ−2Inm,

B = Σ−1
β , and C = (F⊗ In). Then it can be shown that

Σ−1
X = σ−2Inm − σ−4(F′ ⊗ In)

[
σ−2InK + Σ−1

β

]−1
(F⊗ In). (2.23)

The form itself is not so important as what it means. Instead of inverting ΣX directly,

which is an nm× nm matrix, only the middle matrix
[
σ−2InK + Σ−1

β

]
need be inverted.

This matrix is of smaller size nK × nK.

It gets better. Recall from Proposition 2.4.1 that Σβ is block-diagonal, with K, n × n
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blocks. That Σβ is a block-diagonal matrix implies that Σ−1
β is also block-diagonal.

Obviously then, σ−2InK + Σ−1
β is likewise block-diagonal. So in fact, the inversion of[

σ−2InK + Σ−1
β

]
amounts to a sequence of K, n × n inversions. That is, using this

factorization, the inversion of ΣX is reduced from an nm × nm inversion to K, n × n

inversions. For example, consider a five factor model using the call center data where

n = 210 and m = 68. In place of inverting an order nm = 14, 280 matrix for as many

iterations as the EM requires, five order n = 210 matrices are inverted.

Block Diagonality: The ML solutions used in the M-step are rife with expressions involving

the factor time series {βk} in various forms. When some βk appears singly, those values

are imputed with values from µβ|X. However, when products of factors appear, such

as 〈βk,βh〉, then the imputation comes from the E[ββ′|X] matrix. This is a seemingly

ominous matrix from which to draw values:

E[ββ′|X] = Σβ − Σβ,XΣ−1
X ΣX,β + µβ|Xµ

′
β|X.

Fortunately, it is actually not ominous at all. It turns out that Σβ|X is block diagonal,

and that this property facilitates a rather convenient result regarding between-factor cross

products:

Proposition 2.4.4. Σβ|X is block diagonal with K n× n blocks.

Corollary 2.4.1. For h 6= k, E[〈βk,βh〉|X] = 〈µβk|X, µβh|X〉.

For a proof the reader is referred to Chapter 3. Essentially what this means is that the

conditional expectation of a product of two (distinct) factors is simply the product of

their individual expectations. This greatly simplifies the M-step for the factor loading

curves in particular; the GCV step can be time consuming so computational efficiency

here is quite beneficial.

Eigen-decomposition: The final result of this section is in regard to the GCV selection

of the smoothing parameters {λk}. Solving for the loading curves sequentially and for

multiple values of the smoothing parameter can increase computing time. Recall from
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Equation (2.21) that GCV(λk) is dependent on the matrix Hλk . This matrix in turn

depends on the matrix
[
‖βk‖2
σ2 Im + λkΩk

]
m×m

(see Equation (2.22)) which, ordinarily,

must be inverted for each of, say, W candidate values for λk. This occurs for each of

how many ever iterations it takes for the EM to converge. However, two helpful results

greatly increase the efficiency of the GCV selection within the M-Step. Using the eigen-

decomposition of Ωk, a method exists for which the only inversion required is the inversion

of a diagonal matrix. Consider the following proposition:

Proposition 2.4.5. Let S(λk) =
[
‖βk‖2
σ2 Im + λkΩk

]−1
so that f̂ ′k = [S(λk)]

[
1
σ2 (β′k ⊗ Im)X̃−k

]
.

Given the eigen-decomposition of the m × m penalty matrix Ωk = Γ∆Γ′ with ∆m×m =

diag{δj}mj=1, then

S(λk) = Γ · diag

{(
‖βk‖2

σ2
+ λkδj

)−1
}

Γ′,

and

tr{Hλk} =
‖βk‖2

σ2

m∑
j=1

1
‖βk‖2
σ2 + λkδj

.

With this result, looping through W possible values for the smoothing parameter is ac-

complished through a single eigen-decomposition, followed by a diagonal matrix inversion

for each of the factors; clearly this is more desirable than performing an m×m inversion

for each of the K factors and W candidate values for λk.

With these computational aspects covered, this concludes the exciting discussion of EM

estimation for the functional dynamic factor model. This Section 2.4 opened with a brief de-

scription of the EM as applied to the functional dynamic factor model presented here. Detailed

descriptions of the initialization process (Step-0) followed; the results of which inaugurate the

E-step. The E-step specified the imputation for the missing data, otherwise known as the factor

time series. With proxies for the factors, the M-step updates values for all of the parameters

and factor loading curves. Then these updated values in turn are used for the next iteration

of the E-step, and so on. Finally, some results regarding efficient computation have been pre-
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sented to aid in the estimation. The chapter concludes with some alternative specifications of

the aforementioned model to provide greater generality for the sake of some applications used

in later chapters.

2.5 Alternative Models

Presented in this section are two alternative specifications of the functional dynamic factor

model. The first specification is a method by which to estimate the K factor model as if it

were a sequence of single factor models. The second alternative model is merely a more general

specification of the original model where the time series factors contain observed explanatory

variables.

2.5.1 Sequential K Factor Model

Though shown to be an elegant procedure, EM estimation of the FDFM does have some draw-

backs in terms of computational intensity. As has been seen in the M-step earlier in Sec-

tions 2.4.4 and 2.4.5, solutions for the factor loading curves required a sequential approach and

further included an additional loop in order to determine the optimal smoothing parameter for

each k. In the Section 2.4.6 it was shown that some of the larger matrix inversions required in

both the E-step and M-step can be simplified. However, even with these results, the iterative

EM still requires many large matrix manipulations over many iterations.

A simpler approach is the use of a single factor model, which typically reduces the dimension

of some of the larger matrices by a factor of K. For example, consider the variance matrix of

the factor time series Σβ. In the K factor case this is of size nK×nK; in the single factor case,

it is only of size n× n. The cost of the simpler specification is loss in goodness-of-fit, however.

An intermediate approach exists which estimates multiple factors while still using the single

factor method. The idea is to estimate the K factor model as a sequence of K single factor

models. To illustrate this, it is assumed the factor follow an AR(1) process.

The one factor model is expressed as

Xn×m = βn×1f1×m + ε.
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Equivalently, in scalar notation:


xij = βifj + εij ,

βi = c+ ϕβi−1 + vi,

where vi
i.i.d.∼ N(0, σ2

1), εij
i.i.d.∼ N(0, σ2), and Evtεsj = 0 for all t, s = 1, . . . , n; j = 1, . . . ,m.

As in the multi-factor case, the first step is to decompose the data matrix using SVD; for

a K factor specification, K left and right singular vectors are retained. Initial estimates for

the factor and factor loadings result from the singular values and vectors, and initial parameter

estimates are calculated based on the likelihood expressions from the one factor case outlined

in Chapter 3.

The EM algorithm is then implemented K times for each of the K factors, but is based on

a modified data matrix X−k. For h, k in 1, . . . ,K:

X−k = X−
∑
h6=k

βh;(∗)f̂h;(∗),

where

f̂(∗);h,βh;(∗) =

 f̂(0);h,βh;(0) if h > k

f̂(L);h,βh;(L) if h < k
. (2.24)

That is, the modified data matrix for the factor of interest k is the difference between the actual

data matrix and the sum of the estimated loading and factor products for the other factors.

In effect, X−k is a residual matrix of the actual data less components predicted by either the

EM or the Step 0 SVD estimates. So for example, for a three factor model, EM estimation

for factor 2 parameters are based on the data matrix X less the EM estimates for {β1, f1} for

factor one, and less the Step 0 SVD estimates for {β3, f3} for factor three.

Again, the reason for this sequential factor approach is in the interest of computational

expediency, so that estimation may be hastened.
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2.5.2 Factor Time Series Parameters With Regressors

Situations may arise where additional explanatory power may be desired by way of explanatory

variables in the time series factors of the functional dynamic factor model; these are represented

by the vectors Aik in the model Equations (2.4). As the factors are latent, situations where

known explanatory variables are hypothesized to influence unknown, unobserved variables are

likely rare. However, such cases do exist. In the context of the call center data, for example, a

day of the week variable can serve as a known explanatory variable for the latent factors.

Solving for the maximum likelihood estimates when the time series have explanatory vari-

ables is slightly more complicated than the case of a single intercept presented in the EM

Section 2.4 above. Again calling upon the call center data example, a particularly neat result

exists when the data consist of full weeks; this result is presented in Section 3.3.2. The more

general result for any type of non-stochastic regressor is presented here.

Consider regressors Aik = [a
(1)
ik , . . . , a

(d)
ik ] with corresponding coefficients µk = [µ

(1)
k , . . . , µ

(d)
k ].

Without loss of generality, it can be assumed d is the same for all k = 1, . . . ,K. Recall the

original model specification (2.4):

βik −Aikµk =
∑p

r=1 ϕrk(βi−r,k −Ai−r,kµk) + vik, k = 1, . . . ,K

with vik
i.i.d.∼ N(0, σ2

k); again maintaining the assumption that theK time series are independent.

The portion of the penalized log-likelihood expression (2.12) involving the factor time series

is then a sum of squared errors similar to that presented in Lemma 2.4.1:

SSE =
n∑

i=p+1

K∑
k=1

[
(βik −Aikµk)−

p∑
r=1

ϕrk(βi−r,k −Ai−r,kµk)

]2

(2.25)

At first glance of the above expression, it appears all that is required is the usual OLS solution.

But note that expanding the expression results in cross product terms involving both µk and the

{ϕrk}Pr=1. If the {ϕrk} were known, then indeed OLS could be used to solve for µk. Conversely,

were µk known, OLS could be used to solve for the {ϕrk}. To resolve this dependency, two

different iterative methods are proposed. The µk parameters are estimated first, given initial
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values for the {ϕrk}. Then the µk estimates are used to solve for the {ϕrk}. The process

continues until estimates from one iteration are sufficiently close to those from the next.

The Iterated Cochrane-Orcutt Method: One easily implemented method, especially in

the case of AR(1) processes, is the Iterated Cochrane-Orcutt Method (Hamilton, 1994)

which can iteratively solve for the optimal values of µk and the ϕrk.

Step 1 : An initial value is selected for the ϕrk. Unless a more intuitive choice exists,

typically the initial values are set to 0. Solve for µ̂k as the OLS solution to βik −∑p
r=1 ϕrkβi−r,k = (Aik −

∑p
r=1 ϕrkAi−r,k)µk + ηik.

Step 2 : Using the µk estimated in the previous step, compute the OLS solution for the

ϕrk in (βik −Aikµk) =
∑p

r=1 ϕrk(βi−r,k −Ai−r,kµk) + ηik.

Then the ϕrk estimates from step 2 are used to find a new estimate for µk in step 1. The

steps are then repeated until estimates for µk and the ϕrk converge to a local maximum.

The Yule Walker/GLS Method: A more general iterative method is the the Yule Walker/GLS

Method (Judge, 1985) which is based on using the sample autocorrelation estimates to

construct an estimated covariance matrix with which GLS can be performed. The ben-

efit of this approach is that more of the data can be used for the estimates whereas the

Iterated Cochrane-Orcutt method is restricted to using only n− p+ 1 of the observations

for each estimate. However this comes at the expense of added complexity.

The first step is define the regressor matrix. Consider the following linear model with

AR(p) errors:

βik = Aikµk + ηik

ηik =

p∑
r=1

ϕrkηi−r,k + vik,

where Aik is a 1× d vector containing the regressor variables for observation i, and µk is
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a d× 1 vector of coefficients. Collecting the regressors into the matrix Ak:

Ak ≡



A1,k

A2,k

...

An,k


. (2.26)

The auto-covariances are denoted as γk,s ≡ Eηikηi−s,k for i, s = 1, . . . , n. Recall the

auto-covariances of an AR(p) process from Lemma 2.4.3:

γk,s =

 ϕk,1γk,s−1 + ϕk,2γk,s−2 + . . . ϕk,pγk,s−p for s = 1, 2, . . .

ϕk,1γk,1 + ϕk,1γk,2 + . . . ϕk,1γk,p + σ2
k for s = 0.

Defining γk,0 ≡ σ2
k and the auto-correlation as ρk,s ≡ γk,s/γk,0, then dividing the above

expression by γk,0 gives what are known as the Yule Walker Equations:

ρk,s = ϕk,1ρk,s−1 + ϕk,2ρk,s−2 + . . . ϕk,pρk,s−p for s = 1, 2, . . .

Let ηik denote the vector [η1,k, . . . , ηnk]
′. Then OLS estimation of the model βk = Akµk+

ηk produces the OLS estimates µ̂k, and σ̂2
k as

µ̂k = [A′kAk]
−1A′kβk,

and

σ̂k
2 =

1

n− d
‖βk −Akµ̂k‖2.

Then the residuals are calculated as η̂ik = βik − Aikµ̂k. With these, the sample auto-

correlations can be calculated:

ρ̂k,s =
1
n

∑n
i=s+1 η̂ikη̂i−s,k
1
n

∑n
i=1 η̂

2
ik

=

∑n
i=s+1 η̂ikη̂i−s,k∑n

i=1 η̂
2
ik

,
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for s = 0, 1, 2, . . . , n − 1. These estimated {ρ̂k,s} are used in the Yule Walker Equations

which in turn yields estimates for the AR parameters {ϕk,s}. Next these are used with the

OLS estimate σ̂2
k to obtain an estimate of the covariance matrix, Σ̂k (recall the expression

from Lemma 2.4.3. Finally, with an estimate of Σk, GLS can be used on the regression

Σ̂
−1/2
k βk = [Σ̂

−1/2
k Ak]µk + Σ̂

−1/2
k ηk to get estimates for µk that account for the auto-

correlation in the error:

µ̂k = [A′kΣ̂
−1
k Ak]

−1A′kΣ̂
−1
k βk.

Following either estimation method for the AR parameters, the EM estimation for the entire

FDFM proceeds as before.

This concludes Chapter 2. The chapter began with the formulation of an exciting new class

of models named functional dynamic factor models. Based on the model assumptions, the joint

distribution of the observed data was derived, which facilitated the expression for the likelihood

function. Using a smoothness penalty approach a penalized log-likelihood was developed from

which maximum likelihood could provide parameter estimates. Finally an EM estimation for

the model was proposed. This included detailed descriptions of starting values, the E-step and

the M-step which included smoothing parameter selection. The chapter then closed with some

useful computational results and some alternative model specifications.

The next chapter focuses on the derivations of many of the mathematical results, lemmas

and propositions used in this chapter, and is organized in a similar manner.
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Chapter 3

Implementation and Derivations

The present chapter derives aforementioned results from Chapter 2 in greater detail. The

reader is of course invited to proceed, but the content herein need not be perused in order

to continue on to the following chapters covering simulation results, applied data results and

future work. Chapter 2 discussed the framework of the functional dynamic factor model from

the specification to the likelihood to the implementation. In this chapter, several results of that

chapter are revisited with more technical detail, discussed further and expanded upon. Various

M-step results are then revisited in greater detail, followed by an equally detailed discussion

of the GCV component of the EM estimation. The latter of these also include description of

another of the computational efficiencies presented in Section 2.4.6, complete with a cautionary

tale regarding computing packages. Finally, a special case of the FDFM is presented for use in

the sequential specification outlined in Section 2.5.1.

3.1 The E-Step and Matrix Results

In this section are several derivations of significant results presented in Section 2.4; roughly in

the same order as displayed in that chapter. First derived are the unconditional moments of

the observed data and factor time series, with the help of some vector notation. Next some of

the useful matrix structures alleged in the computational efficiency section are proven.



3.1.1 Vector-ized Model Expression

All of the matrix results presented in this section depend upon the vector-ized specification of

the model. Recall Lemma 2.4.2 from Magnus and Neudecker (1999) where a product of matrices

has an equivalent vector representation using the vec operator and the kronecker product. Then

given the original matrix representation of the model X = BF + ε,

vec(X) = vec(BF) + vec(ε)

= (F′ ⊗ In)vec(B) + vec(ε). (3.1)

Then recalling the notational convention that X ≡ vec(X) and β ≡ vec(B), the vector-ized

model expression from section 2.4.3 immediately follows:

X = (F′ ⊗ In)β + vec(ε).

3.1.2 Proof of Proposition 2.4.1

This section derives the five results presented in Proposition 2.4.1 regarding the unconditional

means and variances of X and β.

The mean and variance of the factor time series are as follow:

Factor time series’ mean, µβ:

Recall that µβ = E[β] = E[vec(B)]. From Lemma 2.4.3, µk ≡ E[βik] = ck/
[
1−

(∑P
r=1 ϕr,k

)]
.

µβ =


E[β1]n×1

...

E[βK ]n×1


nK×1

=


µ1 · 1n

...

µK · 1n

 =


µ1

...

µK


K×1

⊗ 1n.

Let c be the K× 1 vector with elements [µ1, . . . , µK ]′; then the result µβ = c⊗1n immediately

follows.

Factor time series’ covariance, Σβ:

Recall V ar(βk) ≡ Σk for each k = 1, . . . , k. With the assumption of independent factor time
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series,

cov(βk,βk′) =

 Σk for k = k′

0n×n otherwise
.

It follows then that the nK × nK covariance matrix for all factors, Σβ is a block diagonal

matrix with K order n matrices Σ1, . . .ΣK .

Next, the mean and variance of the observed data are as follow. These results depend on

the vector version of the model:

X = (F′ ⊗ In)β + vec(ε).

Observed data mean, µX:

µX = E[X] = E[(F′ ⊗ In)β + vec(ε)]

= (F′ ⊗ In)E[β] + 0nm×1

= (F′ ⊗ In)µβ.

Observed data covariance, ΣX:

Because the factor time series β is assumed to be independent from the error term ε, the

variance matrix for X is as follows:

Fact. ΣX = (F′ ⊗ In)Σβ(F⊗ In) + σ2Inm.

Proof.

ΣX = V ar(X ) = V ar[(F′ ⊗ In)β + vec(ε)]

= V ar[(F′ ⊗ In)β] + V ar[vec(ε)]

= (F′ ⊗ In)V ar[β](F′ ⊗ In)′ + V ar[vec(ε)]

= (F′ ⊗ In)Σβ(F⊗ In) + σ2Inm

Factor and observed data covariance, Σβ,X:

45



Fact. ΣX,β = (F′ ⊗ In)Σβ.

Proof.

Σβ,X = Cov[β,X ] = Cov[β, (F′ ⊗ In)β + vec(ε)]

= Cov[β, (F′ ⊗ In)β]

= Cov[β,β](F′ ⊗ In)′

= Σβ(F⊗ In).

This, of course, also implies that ΣX,β = (F′ ⊗ In)Σβ.

3.1.3 Inversion of ΣX

In Section 2.4.6 it was proclaimed that the inversion of the rather large ΣX could be expedited

with the help of a particular factorization and some convenient matrix structure. That result

is shown here; it is accomplished with the help of the Sherman–Morrison–Woodbury formula

presented in Lemma 2.4.4:

(A−1 + C ′B−1C)−1 = A−AC ′(CAC ′ +B)−1CA.

Let

A = σ−2Inm,

B = Σ−1
β ,

and C = (F⊗ In).

Then

Σ−1
X = (A−1 + C ′B−1C)−1 = A−AC ′(CAC ′ +B)−1CA.

Recall the orthogonal-ization of the factor loading curves so that FF′ = IK . This yields the

following convenient result:
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(F⊗ In)(F′ ⊗ In) = (FF′ ⊗ In) = (IK ⊗ In) = InK .

Therefore,

CAC ′ +B = (F⊗ In)[σ−2Inm](F′ ⊗ In) + Σ−1
β

= σ−2(F⊗ In)(F′ ⊗ In) + Σ−1
β

= σ−2(FF′ ⊗ In) + Σ−1
β

= σ−2(IK ⊗ In) + Σ−1
β

= σ−2InK + Σ−1
β .

Because Σβ is a block-diagonal matrix, Σ−1
β is also block-diagonal, obtained by inverting the

K individual n×n blocks on the diagonal. Adding σ−2InK to Σ−1
β simply adds a scalar to each

of the blocks on the diagonal; this maintains block-diagonality in the composite σ−2InK + Σ−1
β .

Therefore, its inverse,
[
σ−2InK + Σ−1

β

]−1
, is also block-diagonal. The inverse is found in the

same manner, which is inversion of the K individual n× n blocks.

This completes the result that the inversion of ΣX is achieved by K sequential order n inver-

sions. For completeness, the entire expression for Σ−1
X using the Sherman–Morrison–Woodbury

formula is continues below.

Next

AC ′ = (σ−2Inm)(F′ ⊗ In) = σ−2(F′ ⊗ In),

and

CA = (F⊗ In)(σ−2Inm) = σ−2(F⊗ In).
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Therefore

AC ′(CAC ′ +B)−1CA = σ−2(F′ ⊗ In)
[
σ−2InK + Σ−1

β

]−1
σ−2(F⊗ In).

Finally, combining all of these components yields the expression for Σ−1
X :

Σ−1
X = (A−1 + C ′B−1C)−1 = A−AC ′(CAC ′ +B)−1CA

= σ−2Inm − σ−4(F′ ⊗ In)
[
σ−2InK + Σ−1

β

]−1
(F⊗ In).

3.1.4 Σβ|X is Block Diagonal

In Section 2.4.6 it was alleged that Σβ|X is block-diagonal. The derivation of that result is

shown here, followed by the result that the conditional expectation of the product of two

different factors is the product of those conditional expectations.

For Σβ|X = Σβ − Σβ,XΣ−1
X ΣX,β, consider the second term in this expression. Using the

results about Σ−1
X from the previous section and Σβ,X from earlier in the chapter,

Σβ,XΣ−1
X ΣX,β = Σβ(F⊗ In)

{
1

σ2
Inm −

1

σ4
(F′ ⊗ In)

[
1

σ2
InK + Σ−1

β

]−1

(F⊗ In)

}
(F′ ⊗ In)Σβ.

Distributing the terms simplifies the expression:

Σβ,XΣ−1
X ΣX,β = Σβ(F⊗ In)

[
1

σ2
Inm

]
(F′ ⊗ In)Σβ

− 1

σ4
Σβ(F⊗ In)(F′ ⊗ In)

×
[

1

σ2
InK + Σ−1

β

]−1

× (F⊗ In)(F′ ⊗ In)Σβ

=
1

σ2
ΣβΣβ −

1

σ4
Σβ

[
1

σ2
InK + Σ−1

β

]−1

Σβ.

Subtracting this expression from Σβ yields the alternative from for Σβ|X:

Σβ|X = Σβ −
1

σ2
ΣβΣβ +

1

σ4
Σβ

[
1

σ2
InK + Σ−1

β

]−1

Σβ.
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Each of these three terms are block diagonal with K blocks of size n × n. Therefore Σβ|X is

block diagonal.

As an aside, it would be even more useful if E[ββ′|X ] = Σβ|X + µβ|Xµ
′
β|X were block

diagonal. Unfortunately this is not the case.

To show this in a swift manner, assume for the moment that all of the K factor time series

have mean zero (rather than an intercept or any regressors). Then

µX = (F′ ⊗ In)E[β] + E[ε] = (F′ ⊗ In)µβ = 0nm×1.

Therefore

µβ|X = µβ + Σβ,XΣ−1
X (X− µX) = Σβ,XΣ−1

X X.

This implies

µβ|Xµ
′
β|X = Σβ,XΣ−1

X XX′Σ−1
X ΣX,β

Which, unfortunately, due to the XX′ in the center will not generally have a block diagonal

form. Thus, Σβ|X is not block diagonal.

Moving on, in the maximum likelihood solutions for several of the model parameters and

factor loading curves, expressions involving between-factor cross products often arise. It was

asserted in Section 2.4.6 that for two distinct factors h and k that

E[(βkβ
′
h)|X] = E[βk|X]E[β′h|X].

This follows from the block diagonal structure of Σβ|X. Specifically, from

E[ββ′|X ] = Σβ|X + µβ|Xµ
′
β|X,

E[(βkβ
′
h)|X] is an off-diagonal block of E[ββ′|X ]. Off diagonal blocks of Σβ|X are 0n×n. µβ|X
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consists of the following components:

µβ|X =


E[β1|X]n×1

...

E[βK |X]n×1


nK×1

.

Thus

E[(βkβ
′
h)|X] = 0n×n + E[βk|X]E[β′h|X].

3.2 M-step I: Factor Loading Curves

This section contains more detail about the maximum likelihood solutions for the factor loading

curves covered in Section 2.4. The discussion begins with a thorough derivation of the factor

loading curve solutions. Then, the GCV procedure used to select the smoothing parameters is

derived. The section concludes with justification for the eigen-decomposition method proposed

in Section 2.4.6, including a brief statement concerning the practical application using various

software packages. Other M-step results are deferred until the next section.

3.2.1 Proof of Proposition 2.4.3

Recall the section of the penalized log-likelihood (2.12) involving the factor loading curves {fk}:

1

σ2

n∑
i=1

m∑
j=1

(xij −
K∑
k=1

βikfkj)
2 +

K∑
k=1

λkfkΩkf
′
k.

Recall the block diagonal mK × mK matrix S with K blocks λkΩk, k = 1, . . . ,K (that is,

S = diag{λkΩk}. Then

1

σ2

n∑
i=1

m∑
j=1

(xij −
K∑
k=1

βikfkj)
2 + λ

K∑
k=1

fkΩf ′k =
1

σ2
‖vec(X−BF)‖2 + [vec(F′)′]Svec(F′).
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Using the result of Lemma 2.4.2 (Magnus and Neudecker, 1999) yields

1

σ2
‖vec(X−BF)‖2 + [vec(F′)′]Svec(F′) =

1

σ2
‖vec(X′)− (B⊗ Im)vec(F′)‖2 + [vec(F′)′]Svec(F′).

Let X̃ ≡ vec(X′), F̃ ≡ vec(F′), and Z ≡ B⊗ Im. Then

1

σ2
‖vec(X′)− (B⊗ Im)vec(F′)‖2 + [vec(F′)′]Svec(F′) =

1

σ2
(X̃ − ZF̃ )′(X̃ − ZF̃ ) + F̃ ′SF̃

=
1

σ2
X̃ ′X̃ − 2

σ2
F̃ ′Z′X̃ + F̃ ′

(
Z′Z

σ2
+ S

)
F̃ .

Differentiating with respect to the vector F̃ ′ and setting the result equal to zero yields the

simultaneous solutions for all the factor loading curves.

d

dF̃ ′

[
1

σ2
X̃ ′X̃ − 2

σ2
F̃ ′Z′X̃ + F̃ ′

(
Z′Z

σ2
+ S

)
F̃

]
= 0

ˆ̃F =

(
Z′Z

σ2
+ S

)−1

mK×mK

1

σ2
Z′X̃.

In the special case where λk = λ ∀k, S becomes λ(IK⊗Ω), but otherwise the result is the same.

3.2.2 Individual Loading Curves

In Section 2.4.4 it was suggested to solve for the factor loading curves in a sequential manner.

To do this requires an expression for a distinct fk; this is given below.

As shown in the previous section, vec(F′B′) = B ⊗ Im · vec(F′) and the vector-ized model

is expressed as vec(X′) = B ⊗ Im · vec(F′) + vec(ε). The solution for all of the factor loading

curves is given by

ˆ̃F =

(
Z′Z

σ2
+ S

)−1 1

σ2
Z′X̃ =

[
1

σ2
(B′B⊗ Im) + diag {λkΩk}

]−1 1

σ2
(B′ ⊗ Im)X̃.

Equivalently,

[
1

σ2
(B′B⊗ Im) + diag {λkΩk}

]
ˆ̃F =

1

σ2
(B′ ⊗ Im)X̃.
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Expanding both sides of the equation,


1

σ2


‖β1‖2Im 〈βk,βk′〉Im

. . .

〈βk′ ,βk〉Im ‖βK‖2Im

+


λ1Ω1 0

. . .

0 λKΩK





f̂ ′1
...

f̂ ′K

 =
1

σ2


∑n

i=1 β1iXi

...∑n
i=1 βKiXi

 .

Finally, by simplifying the left side of the equation,


‖β1‖2
σ2 Im + λ1Ω1

1
σ2 〈βk,βk′〉Im

. . .

1
σ2 〈βk′ ,βk〉Im

‖βK‖2
σ2 Im + λKΩK




f̂ ′1
...

f̂ ′K

 =
1

σ2


∑n

i=1 β1iXi

...∑n
i=1 βKiXi

 .

Let k index a specific factor loading curve and h 6= k index all other factor loading curves,

h, k = 1, . . . ,K. Then using the expression above,

(
‖βk‖2

σ2
Im + λkΩk

)
f̂ ′k +

1

σ2

∑
h6=k
〈βk,βh〉f̂ ′h =

1

σ2

n∑
i=1

βkiXi.

Solving for fk:

f̂ ′k =
1

σ2

[
‖βk‖2

σ2
Im + λkΩk

]−1
 n∑
i=1

βkiXi −
∑
h6=k
〈βk,βh〉f̂ ′h

 . (3.2)

3.2.3 GCV Selection

In Section 2.4.5 it was shown that solving for an optimal λk/fk pair is equivalent to a ridge

regression formulation, for which generalized cross validation is a natural choice. Here, the

connection is made explicit.

To see this, let h, k = 1, . . . ,K and define

X−ki ≡ Xi −
∑
h6=k

βihf̂
′
h, (3.3)

where Xi is an m × 1 column vector corresponding to the ith row of X. Let X̃−k denote the

nm × 1 vector consisting of the stacked vectors X−ki for i = 1, . . . , n. Then multiplying both
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sides of (3.3) by βik yields

βikX
−k
i = βikXi − βik

∑
h6=k

βihf̂
′
h.

Next, sum over i = 1, . . . n:

n∑
i=1

βikX
−k
i =

n∑
i=1

βikXi −
n∑
i=1

βik
∑
h6=k

βihf̂
′
h

=
n∑
i=1

βikXi −
∑
h6=k
〈βk,βh〉f̂ ′h.

Because (β′k ⊗ Im)X̃−k =
∑n

i=1 βkiX
−k
i , this implies

(β′k ⊗ Im)X̃−k =
n∑
i=1

βkiXi −
∑
h6=k
〈βk,βh〉f̂ ′h. (3.4)

Finally, using (3.4), the original expression (3.2):

f̂ ′k =
1

σ2

[
‖βk‖2

σ2
Im + λkΩk

]−1
 n∑
i=1

βkiXi −
∑
h6=k
〈βk,βh〉f̂ ′h

 ,
simplifies to the alternative expression for fk:

f̂ ′k =

[
‖βk‖2

σ2
Im + λkΩk

]−1
1

σ2
(β′k ⊗ Im)X̃−k. (3.5)

Since ‖βk‖2Im = (β′kβk ⊗ Im) = (βk ⊗ Im)′(βk ⊗ Im), equation (3.5) is equivalently expressed

as

f̂ ′k =

[
(
1

σ
βk ⊗ Im)′(

1

σ
βk ⊗ Im) + λkΩk

]−1

(
1

σ
βk ⊗ Im)′(

1

σ
X̃−k).

This is exactly the solution to the ridge regression problem presented in Section 2.4.5:

∥∥∥∥ 1

σ
X̃−k − 1

σ
(βk ⊗ Im) · f ′k

∥∥∥∥2

+ λkfkΩf ′k.
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To see this, consider a generic formulation of a ridge regression for some dependent variable

vector zT×1, regressors WT×q and coefficients γq×1 with error vector vT×1: z = Wγ + v.

Suppose the ridge penalty is αγ′Ψγ. Then the the optimal coefficient vector solves the problem:

γ̂ = arg min ‖z−Wγ‖2 + αγ′Ψγ = [W′W + αΨ]−1W′z,

and ẑ = Wγ̂. According to Green and Silverman (1994), selection of the ridge penalty α is

achieved via generalized cross validation for which the optimal α minimizes the criterion

GCV(α) =
‖z− ẑ‖2/T

[1− tr(Hα)/T ]2
=
‖(IT −Hα)z‖2/T
[1− tr(Hα)/T ]2

,

where Hα is the modified “hat” matrix

Hα = W[W′W + αΨ]−1W′.

Expanding upon the assertions made in Section 2.4.5, the similarities of this generic problem

with the specific one are evident:

Dimensions: T = nm; q = m.

Dependent variable: z = 1
σ X̃
−k.

Independent variables: W = 1
σ (βk ⊗ Im).

Parameters: γ = f ′k.

Ridge penalty term: αγ′Ψγ = λkfkΩf ′k.

Therefore, in the current setting the modified hat matrix is

Hλk =

{
1

σ2
(βk ⊗ Im)

[
1

σ2
(β′kβk ⊗ Im) + λkΩk

]−1

m×m
(β′k ⊗ Im)

}
nm×nm

,

=

{
1

σ2
(βk ⊗ Im)

[
‖βk‖2

σ2
Im + λkΩk

]−1

(β′k ⊗ Im)

}
.
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Then the GCV criterion becomes

GCV(λk) =
‖(Inm −Hλk)X̃−k‖2/nm

[1− tr(Hλk)/nm]2
.

As mentioned previously, the calculation of GCV(λk), including Hλk , can be computationally

burdensome for multiple candidate values of λk. The details of the efficient computation of

these introduced in Section 2.4.6 are expanded upon below.

3.2.4 Orthogonalization

After all of the fk/λk pairs are determined, normalization is required in order to maintain

the assumption of orthogonality; that F′F = IK . For each iteration l of the EM, the E-step

(Section 2.4.3) provides values for the factor time series. Similarly, an application of the M-step

provides the lth iteration’s factor loading curves. Before moving onto the next EM iteration,

though, the factor loading curves must be orthogonalized, and a commensurate adjustment must

be made to the factor time series: the pre-orthogonalized factor loading curves and factors are

denoted as F̃(l) and β̃(l), respectively, for

β̃(l) = vec([µβ1|X, . . . , µβK |X]n×n)

β̃β
′
(l) = E[β̃β

′
|X]. (3.6)

Various methods exist to do this, but the method used here is to orthogonalize the initial F̃ by

a QR decomposition via a Gram–Schmidt orthogonalization (see Lay, 2003, e.g.). For ease of

notation, the (l) subscript is dropped.

1. First, decompose the initial factor loading estimate matrix,

F̃
QR
= Qm×KRK×K ,

where Q forms an orthonormal basis and R is upper triangular with positive diagonal

entries.
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2. Next, set the new F = Q.

The factor time series must be appropriately adjusted so that updated factors B and factor

loading curves F maintain the relationship

B · F′ = B̃F̃
′
. (3.7)

Substituting in F̃
′
= R′Q′ and F = Q into (3.7) yields

BF′ = B̃R′Q′ = B̃R′F′. (3.8)

Therefore, the commensurate adjustment to B̃ is made by setting B = B̃R′.

Unfortunately, adjusting β̃β′ = E[β̃β′|X] is not as straightforward as simply as setting

ββ′ = vec(B̃)[vec(B̃)]′. See Section 2.4.4 for the discussion on within and between factor cross-

products. Instead, to make the proper adjustment, recall Lemma 2.4.2 regarding the vec(·)

operator. Then the relation

B = B̃R′,

can be written in vector-ized format

β = (R⊗ In)β̃.

This then implies that the updated cross product matrix is given by

ββ′ = (R⊗ In)β̃β
′
(R′ ⊗ In).

Finally, with the updated factor loadings and factors F, β, and ββ′, the final calculations in

the M-step can be computed, leading into the next E-step.
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3.2.5 Proof of Proposition 4.1.2

Recall the definition of the matrix S(λk) which is an inner component of the expression for the

hat matrix Hλk defined in (2.22):

S(λk) =

[
‖βk‖2

σ2
Im + λkΩk

]−1

.

It was proposed in Section 2.4.6 that

S(λk) = Γ · diag

{(
‖βk‖2

σ2
+ λkδj

)−1
}

Γ′,

and

tr{Hλk} =
‖βk‖2

σ2

m∑
j=1

1
‖βk‖2
σ2 + λkδj

.

For the moment, drop the k subscript on the penalty matrix Ωk; it is possible that for each

of the K factors, a different penalty matrix could be employed, but in any case it will always

be true that Ωk is a symmetric, positive semi-definite matrix in the context of the FDFM. The

following derivations follows the results of Huang et al. (2008): eigen-decomposition of such a

symmetric, positive semi-definite matrix yields

Ωm×m
eigen
= Γm×m∆m×mΓ′m×m,

where Γ contains the eigen-vectors, with ΓΓ′ = Im; and ∆ is a diagonal matrix with entries

δj ; j = 1, . . . ,m along the diagonal as the eigen-values of Ω:

∆ =


δ1 0

. . .

0 δm

 .
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Using expression (3.5) for the solution of some factor loading curve fk:

f̂ ′k = [S(λk)]

[
1

σ2
(β′k ⊗ Im)X̃−k

]
,

let αk = ‖βk‖2/σ2. Then

S(λk) = [αkIm + λkΩ]−1

=
[
αkΓIΓ′ + λkΓ∆Γ′

]−1
=
[
Γ (αkI + λk∆) Γ′

]−1
= Γ [αkI + λk∆]−1 Γ′

= Γ


(αk + λkδ1)−1 0

. . .

0 (αk + λkδm)−1

Γ′.

The benefit is that despite the drawback of calculating f̂k for:

• Some W possible values of λk,

• Each of k = 1, . . . ,K factors,

• Each of some L possible EM iterations,

a faster computation exists. Instead of performing an m×m general matrix inversion W×K×L

times, eigen-decomposition on Ω need only be performed once in order to facilitate a much faster

inversion of the diagonal matrix diag{(αk + λkδm)} for each possible value of λk.

An additional computational efficiency is gained by this result to simplify tr(Hλk) in the
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denominator of GCV(λk):

tr{Hλk} = tr

{
1

σ2
(βk ⊗ Im)

[
‖βk‖2

σ2
Im + λkΩk

]−1

(β′k ⊗ Im)

}

= tr

{
1

σ2
[αkIm + λkΩk]

−1 (β′k ⊗ Im)(βk ⊗ Im)

}
= tr

{
‖βk‖2

σ2
[αkIm + λkΩk]

−1

}
=
‖βk‖2

σ2
tr
{

[αkIm + λkΩk]
−1
}

=
‖βk‖2

σ2
tr
{

Γ [αkI + λk∆]−1 Γ′
}

=
‖βk‖2

σ2
tr
{

[αkI + λk∆]−1 ΓΓ′
}

=
‖βk‖2

σ2
tr
{

[αkI + λk∆]−1
}

tr{Hλk} =
‖βk‖2

σ2

m∑
j=1

1

αk + λkδj
.

This completes the proposed results from Section 2.4.6.

3.2.6 A Final Note on Numerical Precision

Consider the specific form of the penalty matrix Ωk alluded to in Section 2.3, where Ωk is based

on the discrete second differences:

λk

∫ [
f ′′k (t)

]2
dt ≈ λk

m−1∑
j=2

[fk,j−1 − 2fk,j + fk,j+1]2 .

Coefficients from this sum can be collected in the banded matrix

ω′k ≡



0 . . . 0

1 −2 1 0 . . . 0

0 1 −2 1 0 . . . 0

...
. . .

...

0 . . . 0 1 −2 1

0 . . . 0


.
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Let Ωk ≡ ωkω′k; then

λk

m−1∑
j=2

[fk,j−1 − 2fk,j + fk,j+1]2 = λkfkΩf ′k.

In this case, Ωk is clearly rank deficient: the first and last columns of ωk are equal to

zero resulting in rank(Ωk) = m − 2. As such, eigen-decomposition results in two zero-valued

eigenvalues. Again for the moment drop the k subscript, and let {γj}; j = 1, . . . ,m denote the

m× 1 eigen-vectors of Ω. Then based on the eigen-decomposition from Section 3.2.5:

Ω = Γ∆Γ′

= [γ1 . . . γm]


δ1 0

. . .

0 δm



γ′1
...

γ′m



= [γ1 . . . γm]

 ∆∗m−2×m−2 0

0 02×2



γ′1
...

γ′m

 ,

where ∆∗ is the upper m− 2×m− 2 block of ∆.

The j, lth element of Ω is represented by:

[Ω]j,l = [Γ∆Γ′]j,l =

m∑
q=1

δqγqjγlq =

m−2∑
q=1

δqγqjγlq.

Theoretically, these zero-valued eigenvalues are, of course, exactly zero. However in a com-

putational sense the eigenvalues returned by a software package will be represented by a very

small number, and can differ significantly from package to package depending on the underlying

algorithm and precision utilized (though will still be essentially 0).

This affects the corresponding eigenvectors, γm and γm−1, that are returned. Although the

eigenvalues are trivially small, the elements of the corresponding vectors need not be; these

vectors can differ significantly. This is of little consequence in terms of the reconstruction of

Ω based on the decomposition: regardless of the elements of the vectors, multiplication by the
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close-to-zero eigenvalues nullifies whatever the elements are in the corresponding eigenvectors.

However, consider the context of S(λk):

S(λk) = Γ


(αk + λkδ1)−1 0

. . .

0 (αk + λkδm)−1

Γ′.

For j, l, q = 1, . . . ,m

[S(λk)]j,l =
m∑
q=1

(αk + λkδq)
−1γqjγlq

=
m−2∑
q=1

(αk + λkδq)
−1γqjγlq + α−1

k (γm−1,jγl,m−1 + γm,jγl,m).

In this case, even though a computing package will return very small values for δm, and δm−1,

they will not nullify the values {γm−1,jγl,m−1, γm,jγl,m} because of the additive term αk. Fur-

ther, the values returned for {γm−1,jγl,m−1, γm,jγl,m} in one calling routine will differ from

those returned from another. Carrying this difference through to the calculation of fk, and all

subsequent calculations, it is possible to get two different sets of results from different software

packages, although both would be technically ”correct.”

To a lesser extent a related problem exists with the trace of S(λk):

tr[S(λk)] =
m∑
j=1

1

αk + λkδj

=

m−2∑
j=1

1

αk + λkδj
+

(
1

αk + λkδm−1
+

1

αk + λkδm

)
.

In the theoretical sense, the last term is exactly 2α−1
k , but again, in the computational sense, δm

and δm−1 will not be exactly zero. Different routines will return different very small numbers

that represent these. Therefore the trace of S(λk) can differ as well, and can be carried through

to subsequent calculations resulting in differing results from two seemingly identical programs.

Thus, two software packages that return different representations of the zero eigenvalues,

will return correspondingly different and nontrivial eigenvectors which can result in differing
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solutions to S(λk) that are both technically correct. Thankfully, as m increases, this effect and

the differences between packages diminish.

3.3 M-step II: Some Specific ML Solutions

Next, solutions for the other model parameters are discussed, including model variance and

the auto-regressive parameters for the factor time series. A special case of the auto-regressive

factors is also considered, which will be useful for forecasting the call center data in Chapter 8.

3.3.1 Error Variances

Because the error variance involves cross-products of the factors, care must be taken in im-

plementation of the EM. Differentiating the penalized log-likelihood (2.12) with respect to σ2

yields nm · σ̂2 =
∑

i,j(xij−
∑K

k=1 βikfkj)
2. Re-expressing this in vector notation, and expanding

the terms results in

nm · σ̂2 = ‖X − (F′ ⊗ In)β‖2 = ‖X ‖2 − 2〈X , (F′ ⊗ In)β〉+ ‖(F′ ⊗ In)β‖2.

In the second term, β is replaced with µβ|X; for the third term:

‖(F′ ⊗ In)β‖2 = β′(F⊗ In)(F′ ⊗ In)β

= β′β

=
K∑
k=1

‖βk‖2,

for which ‖βk‖2 is replaced with the sum of the diagonal elements of E[βkβ
′
k|X].

A similar method is needed for the solution of the time series factor variances. Although the

mathematical derivation of the coefficients for a squared order P polynomial is a straightforward

one, in the present setting it is notationally cumbersome and does not add to the understanding

of the issue at hand. Therefore for illustrative purposes it is sufficient to show the case for an

AR(1) factor. Again, differentiating the penalized log-likelihood (2.12) with respect to σ2
k results

62



in

(n− p) · σ̂2
k =

n∑
i=p+1

(βik − ck −
p∑
r=1

ϕrkβi−r,k)
2.

For the specific AR(1) case this simplifies to

(n− 1) · σ̂2
k =

n∑
i=2

(βik − ck − ϕkβi−1,k)
2.

Expanding the quadratic expression within the sum:

(βik − ck − ϕkβi−1,k)
2 = β2

ik + c2
k + ϕ2

kβ
2
i−1,k − 2cβik − 2ϕkβikβi−1,k + 2cϕkβi−1,k.

Therefore σ2
k is equivalently expressed as

(n− 1) · σ̂2
k =

n∑
i=2

(β2
ik + c2

k + ϕ2
kβ

2
i−1,k − 2cβik − 2ϕkβikβi−1,k + 2cϕkβi−1,k).

To this, E[·|X] is applied. Again, the appropriate replacements for the squared and cross prod-

uct β terms are obtained from sums of diagonals and off-diagonals of a partitioned E[βkβ
′
k|X]

matrix. For example,
∑n

i=2 βikβi−1,k is obtained by summing the diagonal elements of the

matrix created by rows 2 : n and columns 1 : (n− 1) of E[βkβ
′
k|X].

3.3.2 Multiple Intercepts for the Auto-regressive Processes

In some cases, it may be helpful to have additional flexibility in the FDFM specification. One

method by which this is achieved is to add explanatory variables to the factor time series. As

seen in Section 2.5.2, the use of general regressors can add some complexity to the estimation

process. This section presents an intermediate approach that is less complicated than using

the GLS estimation from Section 2.5.2 but still provides greater flexibility than no additional

regressors in the factor time series. This is to use multiple intercepts as regressors. The

method is illustrated through example, and will be revisited in Chapters 5 and 8. Due to the

independence assumption it is adequate to show the derivation for a single factor βk. As such,
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the k subscript will temporarily be dropped for the purposes of illustration.

In the case of the call center data, the factors are assumed to follow an AR(1) process

with intercept; however the constant assumes a different value for each of the five days in the

business week. That is Aik ≡ Ai = [ai1, ai2, ai3, ai4, ai5] with aid = 1 when date i corresponds

to day d (d=1,. . . ,5) and 0 otherwise. Therefore, the auto-regressive factor from the original

model specification in Chapter refch:model simplifies to

βi −Aiµ = ϕ(βi−1 −Ai−1µ) + vi

βi = (Ai − ϕAi−1)µ+ ϕβi−1 + vi

= cdi−1
+ ϕβi−1 + vi.

Without loss of generality it can be assumed the data consist of complete business weeks so

that the sequence of days follows the usual deterministic pattern; when missing data exists,

those values can always be imputed to obtain full weeks. That is di = 1 + (i − 1) mod 5 so

that there is a one to one relationship between c1, . . . , c5 and µ1, . . . , µ5 given by:

G(ϕ)µ = c

−ϕ 1 0 0 0

0 −ϕ 1 0 0

0 0 −ϕ 1 0

0 0 0 −ϕ 1

1 0 0 0 −ϕ





µ1

µ2

µ3

µ4

µ5


=



c1

c2

c3

c4

c5


With this formulation, instead of having to invoke the more complicated Yule-Walker approach

to solve for the µ and ϕ parameters, OLS can be used to solve for c and ϕ and then µ is found

via the above relation. To do this, define an (n− 1)× d = 5 matrix A with elements Aid = 1

when d = 1 + (i − 1) mod 5 and 0 otherwise and denote vectors like [β2, . . . , βn]′ as {β}n2 .

Because cross products of the βik must be distinguished from scalars, the M-Step solution is

best represented by the partitioned regression solution below. Reverting to the k subscript
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again to emphasize the solution/method is for each of the K factors:

 ĉk

ϕ̂k


(d+1)×1

=

 A′Ad×d A′{βk}n−1
1

(A′{βk}n−1
1 )′

∑n−1
i=1 β

2
ik


−1

(d+1)×(d+1)

 [A′{βk}n2 ]d×1∑n
i=2 βi−1,kβik

 (3.9)

Then as usual per the E-step:

1. βik is replaced by E[βik|X],

2. β2
ik is replaced by E[β2

ik|X], and

3. βikβi−1,k is replaced by E[βikβi−1,k|X].

Again, terms from the latter two of these come from the E[ββ|X] matrix.

3.4 The One Factor AR(1) Model

In Section 2.5.1, a sequential EM approach for the FDFM was introduced where a K factor

model could be estimated by sequentially estimating K single factor models. Because of this

and because the one factor model arises frequently enough, an abridged treatment of the one

factor model is provided below. The format is similar to that of Chapter 2. First the model

is specified, followed by the joint distribution and likelihood. Then the steps of the EM are

discussed, concluding with a description of the GCV selection for the smoothing parameter.

Referring to the original model Equation (2.4), the one factor model is just a special case

of that: 

xij = βifj + εij , εij
i.i.d.∼ N(0, σ2)

βi −Aiµ = ϕ(βi−1 −Ai−1µ) + vi, vi
i.i.d.∼ N(0, σ2

1)

Evtεsj = 0 for t, s = 1, . . . , n; j = 1, . . . ,m,

(3.10)

where for date i, the 1×d regressor vector for the factor is Ai, with d×1 coefficient vector µ. As

in the multi-factor case, an identification condition is required for the model. Since it is a single

factor model, all that is necessary is that the factor loading curve is of unit length: ff ′ = 1.
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Using the prior notation introduced in Section 2.1, this model is denoted as an FDFM(1,1)

model.

3.4.1 The Joint Distribution and Likelihood of X and β

The one factor model is represented in matrix form by

Xn×m = βn×1f1×m + εn×m, (3.11)

where β = [β1, . . . , βn]′ and f = [f1, . . . , fm]′. As in Section 2.2, it is assumed for the moment

that the factor time series β has no regressors for the sake of notational parsimony.

Then the joint distribution of X and β is given in the following proposition:

Proposition 3.4.1. Joint Distribution of X and β

f(X,β) = f(β)×
n∏
i=1

m∏
j=1

f(xij |βi)

= f(β1) (3.12)

×

{
n∏
i=2

1√
2πσ2

1

exp

[
−(βi − c− ϕβi−1)2

2σ2
1

]}

×
n∏
i=1

m∏
j=1

1√
2πσ2

exp

[
−(xij − βifj)2

2σ2

]
.

The penalized log-likelihood expression is then derived by taking the natural log of the joint

distribution, multiplying by −2, and adding a single penalty term for the one factor loading

curve:

PL = −2 ln[f(β1)] + (n− 1) ln(2πσ2
1) + nm ln(2πσ2) (3.13)

+
1

σ2

n∑
i=1

m∑
j=1

(xij − βifj)2 +

n∑
i=2

1

σ2
1

(βi − c− ϕβi−1)2

+ λfΩf ′.

As in the multiple factor case, β1 is assumed as given.
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3.4.2 Maximum Likelihood Estimation with the EM

Maximum likelihood estimation using the EM proceeds as before with the specification of some

initial values. From these, initial ML estimates are calculated which facilitate the E-step. In

the M-step, updated parameter and factor loading curve estimates are computed. the process

continues until estimates from one iteration to the next are sufficiently close.

Step 0: Preliminary Estimates via SVD

As in the multi-factor case, singular value decomposition provides initial values for the factors

and factor loadings to begin the EM. Recall from Section 2.4.2 the SVD of X:

X
SV D
= Un×mDm×mV′m×m.

In this single factor case, X is simply approximated by:

X ≈ d1u1v
′
1.

The initial values for the factors and factor loading curves are designated as β(0) = d1u1 and

f(0) = v′1. From these, initial parameter estimates are computed for σ2 and the set of factor

parameters {σ2
1, c, ϕ}.

The solution for the error variance, σ2, is as follows. The penalized log-likelihood (3.13) is

differentiated with respect to σ2. Setting the resulting expression equal to zero, and solving for

σ2 results in the following MLE for σ2:

σ̂2 =

∑
i,j(xij − βifj)2

nm
.

Recall the assumption that the first value of the factor time series is assumed as given. Then

solutions for the AR(1) parameters reduce to an ordinary least squares problem. Holding the

{σ2
1} fixed for the moment, maximization of (3.13) with respect to ϕ and c is equivalent to a

minimization of a sum of squared errors. This result is summarized in a specialized version of

Lemma 2.4.1 from Section 2.4.2:
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Lemma 3.4.1. Define SSE =
∑n

i=2(βi − c− ϕβi−1)2, and let

y ≡ [β2, . . . , βn]′,

W ≡



1 β1

1 β2

...
...

1 βn−1


(n−1)×2

,

and φ ≡ [c, ϕ]′.

Then SSE = ‖y−Wφ‖2 and the MLEs for the auto-regressive parameters are the OLS solutions

φ̂ = [W′W]−1W′y.

With the estimates φ̂, the individual variances can be found by differentiating the penalized

log-likelihood (3.13) with respect to σ2
1, then setting the result equal to zero and finally solving

for σ2
1:

σ̂2
1 =

∑n
i=2(βi − c− ϕβi−1)2

n− 1
. (3.14)

The E-Step

The model (3.10) can be rewritten in a vector-ized form similar to the form in Section 2.4.3:

X = (f ′ ⊗ In)β + vec(ε).

With X ≡ vec(X). Derivation of the conditional moments requires the expressions of the

unconditional moments, {µX, µβ,ΣX,Σβ,Σβ,X}.

First consider the mean and the variance matrix for the single factor time series β. From

Hamilton (1994):

E[βi] =
c

1− ϕ
,
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and the i, lth entry of the covariance matrix Σβ is

[Σβ]i,l = σ2
1

(
ϕ|i−l|

1− ϕ2

)
.

Both of these follow immediately from Lemma 2.4.3.

This yields the special cases for the single factor model based on Proposition 2.4.1 for the

unconditional moments of X and β:

µβ =
c

1− ϕ
⊗ 1n

µX = (f ′ ⊗ In)µβ

ΣX = (f ′f ⊗ Σβ + σ2Inm

Σβ,X = (f ⊗ Σβ).

Using properties of multivariate normal random vectors, the conditional distribution of β|X

is the same, notationally at least, as in Proposition 2.4.2:

µβ|X ≡ E[β|X ] = µβ + Σβ,XΣ−1
X (X− µX),

Σβ|X ≡ V ar[β|X ] = Σβ − Σβ,XΣ−1
X ΣX,β.

and

E[ββ′|X] = Σβ|X + µβ|Xµ
′
β|X.

The M-Step

Differentiating the penalized log-likelihood (3.13) with respect to f, setting the resulting expres-

sion equal to zero and solving for f yields:

f̂ ′ =
[
‖β‖2Im + λσ2Ω

]−1

[
n∑
i=1

βiXi

]
. (3.15)

Because there is only the single factor loading curve, there is no need for any sort of sequential
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solution as in Section 2.4.4. This further simplifies the GCV selection for the single smoothing

parameter λ.

GCV Selection

GCV selection for the single smoothing parameter λ is based on finding a value of the parameter

that minimizes the GCV criterion. Again, the similarities of the solution for f in (3.15) to the

solution for a ridge regression are apparent. The GCV criterion is

GCV(λ) =
‖(Inm −Hλ)X̃‖2/nm

[1− tr(Hλ)/nm]2
,

with

Hλ =

{
1

σ2
(β ⊗ Im)

[
‖β‖2

σ2
Im + λΩ

]−1

(β′ ⊗ Im)

}
.

GCV(λ) is calculated over a grid of possible values during the estimation of each factor loading

curve. The smoothing parameter that corresponds to the minimum value of GCV(·) is selected

as the optimal one.

After the f/λ pair is determined, orthogonal-ization in this case is equivalent to mere nor-

malization. Recall this is required in order to maintain the assumption of orthogonality; that

f(l)f
′
(l) = 1, for each iteration l of the EM. This is done by:

• Updating the factor by the multiple of its norm-ed factor loading: β × ‖f‖.

• Updating factor cross products by the squared norm of the factor loading: (ββ′)× ‖f‖2.

• Finally, dividing the factor loading curve by its norm: f/‖f‖.

With the updated orthogonal factor and factor loadings, the M-step concludes with the cal-

culation of the overall model variance (σ2), and the auto-regressive factor parameters; see

Section 2.4.5 for details on replacing β with the corresponding conditional expectations for

these.

Finally, after these parameter estimates are updated, the EM continues on to the next

E-step where the factor time series are updated and fed into another M-step. The process
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continues until the factor loading curve and other parameters from one EM iteration to the

next are sufficiently close.

This concludes Chapter 3. The remaining chapters of this dissertation cover some more

theoretical derivations, simulation results, selection methods and the FDFM applied to real

data; finally concluding remarks including possible future research directions.
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Chapter 4

GCV and NCS Derivations

4.1 Review: The Functional Dynamic Factor Model

Abstracting for a moment from the present setting of yield curve forecasting, consider the

more general process of a time series of curves {xi(t) : t ∈ T ; i = 1, . . . , n}, where T is some

continuous interval and i indexes discrete time. Following the classical FDA development as

discussed in Ramsay and Silverman (2005), it is hypothesized that each curve is composed of a

forecastable smooth underlying curve, yi(t), plus an error component, εi(t), that is,

xi(t) = yi(t) + εi(t). (4.1)

There are two primary goals of a functional time series model: provide an accurate description

of the dynamics of the series; accurately forecast the smooth curve yn+h(t) for some forecast

horizon h > 0.

In practice, of course, only a discrete sampling of each curve is observed. Specifically, for

t ∈ T , consider a sample of discrete points {t1, t2, . . . , tm} with tj ∈ T for j ∈ {1, . . . ,m}. Then

denote

xij ≡ xi(tj),

as an observed data at time i evaluated at tj . That is, the observed data xij is a point sampled

from the process xi(t) at the specific value t = tj .

In terms of forecasting, if the cross-sectional dimension m is small enough, the observed



data {xij} can be modeled directly as a multivariate time series using, say, a VAR specification.

Otherwise, DFMs can be used to reduce dimension. Here, coefficients known as factor loadings

with forecasted factor scores will provide discrete forecasts at tj for the functional time series.

Yet there is nothing inherent or implicit in the DFM framework to provide direction in terms

of forecasting an entire function for all t ∈ T . Thus, to forecast yn+h(t), we can synthesize the

DFM framework with methods from functional data analysis (FDA).

4.1.1 The Model

Via this synthesis, we propose a model referred to as the functional dynamic factor model

(FDFM). The formulation is similar to that of a DFM where the observed data {xij} is a

function of a small set of K latent dynamic factors {βik; k = 1, . . . ,K} and their corresponding

factor loadings. But in this setting the factor loadings fkj ≡ fk(tj) are discrete samples from

continuous, unobserved though non-random factor loading curves fk(·). Together, the dynamic

factors with their functional coefficients generate the forecastable part of the time series of

curves {xi(t)}.

In theory, the dynamic factors can follow any type of time series process such as (V)ARIMA,

but for the purpose of this paper we focus on factors with stationary and independent AR(p)

errors. These factors can include explanatory variables1 or just a constant. In the former case,

we have a 1×d regressor vector Aik having the d×1 coefficient vector µk. We need not assume

these nor the number of them are the same for each factor; nor the order of the AR process p,

for that matter. Rather, for notational convenience we simply define p = max {p1, . . . , pK} and

d = max {d1, . . . , dK} and for any case where pk < p or dk < d we use the appropriate placement

of zeros. We retain the option for the regressors themselves to differ; thus we continue to use

the k subscript per factor. Finally, for the model to be identified, we require that the functional

1These could be economic indicators, or seasonal effects, e.g.

73



coefficients are orthonormal2. The model is explicitly stated as



xi(tj) =
∑K

k=1 βikfk(tj) + εi(tj),

βik −Aikµk =
∑p

r=1 ϕrk(βi−r,k −Ai−r,kµk) + vik,

∫
T fk(t)fl(t)dt =


1 if k = l,

0 otherwise,

(4.2)

with εi(tj) ≡ εij
i.i.d.∼ N(0, σ2), vik

i.i.d.∼ N(0, σ2
k) and E[vikεi′j ] = 0 for i, i′ = 1, . . . , n. Should

we require only a constant in place of regressors, then Aikµk is a scalar µk for all i. With the

assumption of stationarity this yields the constant ck = µk(1 −
∑p

r=1 ϕrk). This is a broad

framework that includes the standard versions of both DFMs and FPCA models: when the

coefficients {fk(t)} are non-functional, Model (4.2) reduces to the standard DFM; when the

factors {βk} are non dynamic, the model is similar to FPCA.

4.1.2 Estimation

With the error assumptions for Model (4.2) we propose estimation via maximum likelihood

(ML). To ensure smooth and functional estimates for the factor loading curves, we augment the

likelihood expression with “roughness” penalties (Green and Silverman, 1994) and maximize a

penalized likelihood expression. Because our dynamic factors are unobserved, we consider this

a problem of missing data, and use the expectation maximization (EM) algorithm (Dempster

et al., 1977) to estimate model parameters and smooth curves.

Penalized Likelihood

Let the n×m matrix X denote collectively the observed data where the (i, j)th element of X

is xij for i = 1, . . . , n, j = 1, . . . ,m. The rows of X correspond to yield curves for a fixed date;

the columns are the time series of yield for a specific maturity. Next, we denote fkj = fk(tj),

2Other types of constraints may be employed to ensure identification, such as conditions on the covariance
function of the factor loading curves.
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the row vector fk = [fk1, . . . , fkm], and

F′ =
[
f ′1, . . . , f

′
K

]
.

In a similar manner, we define βk = [β1k . . . βnk]
′ and the matrix Bn×K = [β1 . . .βK ]. Thus

the columns of B are the time series factors β1, . . . ,βK . Then, the Model (4.2) is represented

in matrix form as

Xn×m = Bn×KFK×m + εn×m =

K∑
k=1

βkfk + ε, (4.3)

where ε = [εij ]n×m with εij = εi(tj).

To derive the log-likelihood expression, we rely on successive conditioning of the joint dis-

tribution for X and B:

l(X,B) = l(B) + l(X|B). (4.4)

Because we have assumed that the K factors of AR(p) series are independent, their joint

distribution is the product of the individual distributions. To each of those, we further condition

on the first p values of each factor time series; thus our likelihood (4.4) is a conditional one.

For ease of notation we assume there are no regressors in the factor time series. Then

l(B) = (n− p)
K∑
k=1

ln(2πσ2
k) +

n∑
i=p+1

K∑
k=1

1

σ2
k

(βik − ck −
p∑
r=1

ϕrkβi−r,k)
2, (4.5)

and

l(X|B) = nm ln(2πσ2) +
1

σ2

n∑
i=1

m∑
j=1

(xij −
K∑
k=1

βikfkj)
2. (4.6)

To ensure the underlying factor loading curve fk(·) is smooth, following Green and Silverman

(1994), we include roughness penalties to (4.6) in solving for the K factor loading curves fk.

These terms place a condition on the second derivative of each function fk(·) over its domain T

to ensure that the function is not too “rough.” Combining Equation (4.4) with the roughness
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penalties, we obtain the following penalized log-likelihood:

lp(X,B) = l(B) + lp(X|B), (4.7)

≡ l(B) +

[
l(X|B) +

K∑
k=1

λk

∫ [
f ′′k (t)

]2
dt

]
.

The penalty parameter λk controls how strictly the roughness penalty is enforced, and we allow

it to differ for each loading curve (thus the “k” subscript). The selection process for the penalty

parameters is discussed in Section 4.1.2. We refer to the latter term in Equation (4.7), lp(X|B),

as the penalized sum of squares (PSS). Intuitively, optimization of PSS balances a familiar

goodness-of-fit criterion with a smoothness requirement for the resulting estimates of fk(t).

Thus, to estimate the model, we will optimize the penalized, conditional log-likelihood

lp(X,B) with respect to the set of parameters and factor loading curves: Θ ≡ σ2∪{fk, σ2
k, ck, ϕ1,k, . . . , ϕp,k}Kk=1.

Note that the technical difficulty is that the dynamic factors B are unobserved, which makes

it infeasible to directly optimize the penalized likelihood (4.7). Our proposal is to treat their

absence as a missing value problem and use the expectation maximization algorithm (Dempster

et al., 1977) to optimize Expression (4.7); this will be discussed in Section 4.1.2.

Below we assume the dynamic factors are known and discuss how to estimate the AR model

parameters and the smooth factor loading curves.

When the dynamic factors have no regressors the conditional MLEs for the AR parameters

({σ2
k, ck, ϕ1,k, . . . , ϕp,k}) are the same as the ordinary least squares (OLS) solutions. In the case

where the factors do have regressors, an additional step is required to alternatively solve for

the AR parameters {ϕ1,k, . . . , ϕp,k} and the regressor coefficient vectors {µk}. The resulting

solutions are the (feasible) generalized least squares (GLS) solution; see Judge (1985) for a

detailed discussion. We do consider this general formulation in the simulation studies reported

in 5

Now we discuss how to estimate the loading curves fk(t). In order to allow the curves to

have their own smoothness, through allowing different λk, we proceed in a sequential manner to

estimate fk(t) one at a time, incorporating penalty parameter selection for that loading curve

through cross-validation, as discussed in Section 4.1.2.
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According to Theorem 2.1 of Green and Silverman (1994), for fixed k, the minimizer f̂k(·)

of PSS is a natural cubic spline with knot locations t1, . . . , tm. Further, this NCS interpolates

the discrete row vector f̂k which is the solution to the minimization problem

min
fk

[
l(X|B) + λkfkΩf′k

]
, (4.8)

where Ωm×m is a matrix determined solely by the spline knot locations; the explicit formulation

of Ω is deferred until Section 4.3.1.

Let XT ≡ vec(X′) which stacks the columns of X′ into an nm × 1 vector. Then using the

Kronecker product ⊗, Model (4.3) can be rewritten in vector form as

X T = (B⊗ Im)vec(F′) + vec(ε′) =
K∑
k=1

(βk ⊗ Im)f′k + vec(ε′). (4.9)

Consider the solution f̂k for fixed k ∈ {1, . . . ,K} ≡ K. For the remaining h ∈ K, we define

X ∗T = X T −
∑

h6=k(βh ⊗ Im)f ′h. Then the minimization problem (4.8) is equivalent to

min
fk

∥∥∥∥ 1

σ
X ∗T −

1

σ
(βk ⊗ Im) · f ′k

∥∥∥∥2

+ λkfkΩf ′k, (4.10)

where ‖ · ‖ is the Euclidean norm.

Although not immediately apparent, minimization of (4.10) is equivalent to a ridge regres-

sion problem. Let Y = 1
σX

∗
T , and W = 1

σ (βk⊗ Im). Then minfk

[
‖Y −Wf′k‖2 + λkfkΩf′k

]
has

the solution:

f̂
′
k =

[
W′W + λkΩ

]−1
W′Y. (4.11)

Further, the ridge regression formulation suggests a generalized cross validation (GCV) proce-

dure for the selection of each λk; this is covered with more detail in Section 4.1.2.
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EM Algorithm

First introduced by Dempster et al. (1977), then refined by Meng and Rubin (1993), the EM

is an iterative method by which to impute missing data with values based on conditional

expectations using the observed data. First, the EM is inaugurated with initial values for the

factors and factor loading curves. From these initial values, maximum likelihood estimates for

the remaining parameters from Θ are calculated based on Equations (4.5), (4.6) and (4.7); we

call this Step 0. Then the algorithm alternates between the E-step and the M-step. In the

E-step, values for the factor time series are calculated as conditional expectations given the

observed data and current values for the MLEs. In the M-step, MLEs are calculated for the

factor loading curves and other parameters based on the factor scores from the conditional

expectations in the E-step. After the initial step, the E-step and the M-step are repeated until

differences in the estimates from one iteration to the next are sufficiently small. More details

are given below.

Step 0: Akin to the method used in Shen (2009), initial values for B are composed of

the first K singular values and left singular vectors from the singular value decomposition

(SVD) of the data matrix X. Initial values for F are the corresponding right singular vectors.

From these, initial parameter estimates are computed for σ2 and the set of factor parameters

{σ2
k, ck, ϕ1,k, . . . , ϕp,k}.

The E-Step: Derivation of the conditional moments for the E-Step requires the expressions

of some of the unconditional moments. Let X ≡ vec(X) and β ≡ vec(B). Then Equation (4.3)

can be rewritten as

X = (F′ ⊗ In)β + vec(ε) =
K∑
k=1

(fk ⊗ In)βk + vec(ε). (4.12)

Define the n×n variance matrix for βk as Σk, and let c be the K × 1 vector with elements
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ck/[1− (
∑p

r=1 ϕr,k)]. Then

E[β] ≡ µβ = c⊗ 1n E[X ] ≡ µX = (F′ ⊗ In)µβ (4.13)

V ar[β] ≡ Σβ = diag{Σ1, . . . ,ΣK} Cov[β,X ] ≡ Σβ,X = Σβ(F⊗ In)

V ar[X ] ≡ ΣX = (F′ ⊗ In)Σβ(F⊗ In) + σ2Inm.

Next, using properties of multivariate normal random vectors, the conditional distribution

of β|X can be found. Let

β

X

 ∼ N


µβ

µX

 ,

 Σβ Σβ,X

ΣX,β ΣX


 .

Then 
µβ|X ≡ E[β|X ] = µβ + Σβ,XΣ−1

X (X − µX),

Σβ|X ≡ V ar[β|X ] = Σβ −Σβ,XΣ−1
X ΣX,β,

E[ββ′|X] = Σβ|X + µβ|Xµ′β|X.

(4.14)

From a computational standpoint there is concern over the inversion of ΣX which is of order

nm. Because the EM is an iterative procedure, this could be especially problematic. However,

we can use the following result based on the Sherman–Morrison–Woodbury factorization (Press

et al., 1992, e.g.) to simplify the computation:

Proposition 4.1.1.

Σ−1
X = σ−2Inm − σ−4(F′ ⊗ In)

[
σ−2InK + Σ−1

β

]−1
(F⊗ In). (4.15)

The form itself is not so important as what it means. Instead of inverting ΣX directly,

which is an nm × nm matrix, only the middle matrix
[
σ−2InK + Σ−1

β

]
needs to be inverted.

This matrix is of smaller size nK × nK. Further, as Σβ is block diagonal, then σ−2InK + Σ−1
β

is as well. Thus, using this factorization, the inversion of ΣX is reduced from an nm × nm
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inversion to K, n× n inversions.

With the conditional moments, the E-step of the EM posits that the missing data (the time

series factors) are replaced with the known values of the conditional distribution given X. Thus

in the following M-step, in solving for the MLEs, expressions involving βk will utilize values

from µβ|X, Σβ|X, and E[ββ′|X].

The M-Step: For each EM iteration, the M-step optimizes the conditional penalized log-

likelihood in Equation (4.7) given the observed data and the current parameter estimates for

Θ. It is clear from Equations (4.5) and (4.6) that in the MLEs, the factor time series appear

either singly or in terms of cross products both within and between factors. Values for terms

like βik come directly from the vector µβ|X. But because a term like βik′βhk, k, k
′ = 1, . . . ,K,

i, h = 1, . . . , n, is a conditional expectation of a product, its replacement values are obtained

from the E[ββ′|X ] matrix. We will show in Section 4.1.2 some rather fortunate results to

simplify computation of the conditional expectation of the factor products.

The M-step, then, is just a matter of making these substitutions into the likelihood, and

solving for the MLEs. After the M-Step, we return to the E-Step to update the values for the

factor time series. This procedure is repeated until the parameter estimates from one iteration

of the EM are sufficiently close to those of the next.

Computational Efficiency

This section presents results intended to ease some of the computational aspects of the estima-

tion for the functional dynamic factor model. The reason for this being that the EM algorithm

is an iterative procedure; and each iteration is rife with large matrix inversions and manipu-

lations. Further, given the results of Section 4.1.2, we propose to sequentially solve for each

factor loading curve fk; k = 1, . . . ,K. Finally, the smoothing parameter λk needs to be selected

in a data-adaptive manner for each k. Below, we derive a (generalized) cross-validation (GCV)

procedure to achieve this. Efficient implementation allows us to easily evaluate the GCV score

over many candidate values of λk.

GCV Selection: More specifically, using the notation from Section 4.1.2, the ridge re-

gression formulation (4.10) with solution (4.11) suggests a generalized cross validation (GCV)
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criterion for selecting the λk which minimizes

GCV(λk) =
‖(Inm −Hλk)Y‖2/nm

[1− tr(Hλk)/nm]2
for , (4.16)

Hλk = W
[
W′W + λkΩ

]−1
W′.

GCV(λk) is calculated over a grid of possible values during the M-Step of each EM iteration

for each factor loading curve. The smoothing parameter that corresponds to the least value

of GCV(·) is selected as the optimal one. It is worthwhile to note that this can be a compu-

tationally intensive procedure: calculating GCV(λ) for several values for λ during each EM

iteration and for each factor. It can be shown that Hλk depends on the inversion of the matrix[
‖βk‖2
σ2 Im + λkΩ

]
. Using the eigen-decomposition of Ω, a method exists for which the only

inversion required is the inversion of a diagonal matrix. Consider the following proposition:

Proposition 4.1.2. Let S(λk) =
[
‖βk‖2
σ2 Im + λkΩ

]−1
so that

f̂ ′k = [S(λk)]
[

1
σ2 (β′k ⊗ Im)X ∗T

]
. Given the eigen-decomposition of the m × m penalty matrix

Ω = Γ∆Γ′ with ∆m×m = diag{δj}mj=1, then

S(λk) = Γ · diag

{(
‖βk‖2

σ2
+ λkδj

)−1
}

Γ′,

and

tr{Hλk} =
‖βk‖2

σ2

m∑
j=1

1
‖βk‖2
σ2 + λkδj

.

Thus a single eigen-decomposition, followed by a diagonal matrix inversion for each of the

factors, circumvents performing an m ×m inversion for each of the K factors and each of the

candidate values for λk.

Block Diagonality: In the M-step, when products of the factors appear, such as 〈βk,βh〉 =

E[〈βk,βh〉|X ], then the imputation comes from the E[ββ′|X] matrix. It can be shown that

Σβ|X is block diagonal; this property facilitates a rather convenient result regarding between-

factor cross products:
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Proposition 4.1.3. Σβ|X is block diagonal with K n×n blocks. Further, for h 6= k, E[〈βk,βh〉|X ] =

〈µβk|X,µβh|X〉.

Therefore, the conditional expectation of a product of two (distinct) factors is simply the

product of their individual expectations. This greatly simplifies the M-step calculations.

4.2 Cross Validation

In the Review Section 4.1.2 the method and expression for the determination of the optimal

smoothing parameter λk is summarized based on Equations (4.10) and (4.11). There is an

equivalent and more intuitive formulation that better facilitates the derivation. Further, without

loss of generality, because the GCV method is sequential for each k, we can focus the derivation

on a one factor model and drop the k subscript. Finally, we may also assume σ2 = 1 to further

ease the notation.

First this equivalence is shown. Next based on this equivalence, the result is formally

derived. Finally, a serendipitous result of the derivation is a simplifed expression for GCV

criterion (4.16). In any case, Proposition 4.1.2 continues to hold.

4.2.1 Alternate Formulation

Derivation of the CV and GCV criteria is based on calculating the leave-out residual from time

point/column-at-a-time deletion of the observed data matrix X. Although a popular method

for GCV in FDA is row/curve deletion, because the present setting involves a dynamic system

of curves, deletion of a curve removes an entire time point from the data and destroys the time

dependency structure. Presentation of the ridge regression formulation in Equations (4.10)

and (4.11) was originally formulated as such to heuristically justify the GCV criterion based on

ridge regression: a vector of “dependent variables” (X ∗T ), a matrix of “explanatory variables”

(βk ⊗ Im), and a vector of “coefficients” (fk).

But time point-deletion in this setting requires deleting every mth component of X ∗T , rather

then deleting consecutive n × 1 blocks of X ∗. This makes the derivation awkward and less

intuitive than the method presented in Huang et al. (2008). It is thus preferred to follow that
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approach. To do this, in this section we denote f as an m× 1 column vector.

For each k, the GCV method in Section 4.1 is based on holding the remaining k 6= K factor

loading curves fixed: X ∗T = X T −
∑

h6=k(βh⊗ Im)f ′h. Thus here we can focus on the one factor

model in order to drop the k subscript. To further ease notation, we will assume σ2 = 1.

Proposition 4.2.1. The following minimization problems with respective GCV criteria are

equivalent:

min
f
‖X T − (β ⊗ Im) · f‖2 + λf ′Ωf ,

min
f
‖X − (Im ⊗ β) · f‖2 + λf ′Ωf .

Proof:

From Equation (4.11), the solution to the first problem is

f̂ =
[
(β ⊗ Im)′(β ⊗ Im) + λΩ

]−1
(β ⊗ Im)′vec(X′) =

[
‖β‖2 + λΩ

]−1
(β′ ⊗ Im)vec(X′).

The solution to the second problem is

f̂ =
[
(Im ⊗ β)′(Im ⊗ β) + λΩ

]−1
(Im ⊗ β)′vec(X) =

[
‖β‖2 + λΩ

]−1
(Im ⊗ β)′vec(X).

Clearly the inverted matrices in either solution are identical. To show (β′ ⊗ Im)vec(X′) =

(Im ⊗ β)′vec(X), we use an identity involving the vec(·) operator (Magnus and Neudecker,

1999). For matrices A and C with vector d of conformable sizes such that ACd is well defined,

then:

ACd = (d′ ⊗A)C = (A⊗ d′)C′.

Let d = β, A = Im, and C = X′. Then

(β′ ⊗ Im)vec(X′) = ImX′β = (Im ⊗ β)′vec(X). (4.17)

Note that the same result for the K factor case follows based on Equations (4.9) and (4.12) and

the fact that the vec(·) operator is distributive under addition. Denoting S =
[
‖β‖2Im + λΩ

]−1
.
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A result from Equation (4.17) that will prove useful in Section 4.2.2 is that

f̂ = SX′β. (4.18)

To show equivalence of the GCV criteria, expanding the numerator of Equation (4.16) for

H1 = (β ⊗ Im)S(β′ ⊗ Im) yields:

‖(I−H1)vec(X′)‖2 =
n∑
i=1

m∑
j=1

x2
ij − 2vec(X′)′H1vec(X′) + vec(X′)′H′1H1vec(X′).

Clearly the first term is also equal to vec(X)′vec(X). Expanding the second term:

vec(X′)′H1vec(X′) = β′XSX′β = vec(X)′H2vec(X),

from Equation (4.17) for H2 ≡ (Im⊗β)S(Im⊗β′). For the third term, it is worth noting that

both H1 and H2 are symmetric. For H1:

H′1 =
[
(β ⊗ Im)S(β′ ⊗ Im)

]′
= (β′ ⊗ Im)′S′(β ⊗ Im)′ = H1,

because S is symmetric. Therefore

H′1H1 = H2
1 = (β ⊗ Im)S(β′ ⊗ Im)(β ⊗ Im)S(β′ ⊗ Im)

= ‖β‖2(β ⊗ Im)S2(β′ ⊗ Im).

It is easily shown that equivalent results hold for H2. Then

vec(X′)′H′1H1vec(X′) = ‖β‖2vec(X′)′(β ⊗ Im)S2(β′ ⊗ Im)vec(X′)

= ‖β‖2β′XS2X′β = β′XS′(Im ⊗ β)′(Im ⊗ β)SX′β

= vec(X)′H′2H2vec(X),

again due to Equation (4.17).

To show equivalence of the denominator of GCV criterion (4.16), we just need to show that
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tr(H1) = tr(H2):

tr(H1) = tr
[
(β ⊗ Im)S(β′ ⊗ Im)

]
= tr(‖β‖2S) = tr((Im ⊗ β′)(Im ⊗ β)S)

= tr((Im ⊗ β)S(Im ⊗ β′)) = tr(H2).

Therefore, the GCV criteria for either formulation in Proposition 4.2.1 are also equivalent.

Thus, going forward we present the estimated factor loading curves as the solution to the

minimization problem

min
f
‖vec(X)− (Im ⊗ β) · f‖2 + λf ′Ωf , (4.19)

with corresponding GCV criterion as

f̂ = SX′β , H = (Im ⊗ β)S(Im ⊗ β′), (4.20)

GCV(λ) =
‖(Inm −H)vec(X)‖2/nm

[1− tr(H)/nm]2
.

To further ease notation, we resume denoting vec(X) = X . To this end, using Formula-

tion (4.20) it is worth noting the following equivalences among expressions involving X and

X :

X̂ = HX = (Im ⊗ β)SX′β, (4.21)

tr(H) = ‖β‖2tr(S),

‖(Inm −H)X ‖2 = ‖β‖−2‖(Im − ‖β‖2S)X′β‖2 + X ′X − ‖β‖−2β′XX′β.

The last relation is obtained by expanding ‖(Inm−H)X ‖2, adding and subtracting ‖β‖−2β′XX′β,

then using the results of this section to simplify and rearrange terms. Using these relations,

the GCV criterion in Equations (4.20) can just as easily be expressed in terms of Sm×m and

[X′β]m×1 rather than Hnm×nm and X nm×1. Either form is used in Section 4.2.2, but the ben-

efit of the former formulation is evident in terms of dimensions of the matrices as compared to
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the latter. A simplified GCV criterion is therefore presented below. Explicitly, because choice

of divisors m vs. nm only adjust the scale of GCV(λ); and ‖β‖−2β′XX′β is conditional on β

and thus not dependent upon λ GCV criterion (4.20) is equivalent to

GCV(λ) =
‖(Im − ‖β‖2S)X′β)‖2/m

[1− tr(‖β‖2S)/m]2
. (4.22)

4.2.2 (G)CV Derivation

In general, cross-validation is based on sequentially leaving out sections of the observed data,

estimating a model for each “leave-out” and computing some metric for how well the model

predicts the left out sections. Obviously, this procedure can be costly in terms of computation.

Therefore, it is preferable to be able to compute the CV or GCV metric without needing to

re-estimate a model for each leave-out. In this section it is shown that the CV and GCV criteria

for leave-out column deletion of X results in a closed for expression that obviates re-estimation

of the FDFM for each leave-out.

The columns of X are denoted as n × 1 vectors xj for j = 1, . . . ,m. Suppose the n × 1

block xj is deleted from X and Equation (4.19) is minimized. Let f̂ (−j) = [f̂
(−j)
1 , . . . , f̂

(−j)
m ]′

denote the estimate for factor loading curve f based on the deletion of this jth block of X ,

with x̂
(−j)
j = βf̂

(−j)
j as the resulting predicted value for xj . We base our CV criterion on the

sequence of “leave-out residuals,” the (−j)th of which is defined as

‖x̂(−j)
j − xj‖2 = ‖βf̂ (−j)

j − xj‖2, (4.23)

for (−j), j = 1, . . . ,m. A convenient form exists for this residual exists which obviates re-

estimation of the FDFM for each j:

Lemma 4.2.1. The jth leave-out error sum of squares is

‖βf̂ (−j)
j − xj‖2 = x′jxj −

x′jβ

‖β‖2
+

(
‖β‖f̂j − β′xj/‖β‖

)2

(1− ‖β‖2Sjj)2
, (4.24)

where Sjj is the jjth element of the matrix S =
[
‖β‖2Im + λΩ

]−1
.
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The derivation of Lemma 4.2.1 is deferred to the next section. Because the cross validation

criterion is a function of λ, the first two terms in Equation (4.24) do not affect the optimal

choice for λ. Therefore, to obtain a CV criterion, we average the third term in Equation (4.24)

over j = 1, . . . ,m. Note that the jth element of [̂f]j = f̂j can be expressed as the jth element

of SX′β (from Equation (4.18)). Similarly, β′xj = x′jβ is the jth element of X′β. Then

f̂j = [SX′β]j = Sjjx
′
jβ. Thus

(
‖β‖f̂j − β′xj/‖β‖

)2
=

1

‖β‖2
(
x′jβ − ‖β‖2Sjjx′jβ

)2
=

1

‖β‖2
[
(1− ‖β‖2Sjj)x′jβ

]2
=

1

‖β‖2
{

[(Im − ‖β‖2S)X′β]j
}2
.

Therefore, the cross validation criterion (CV) is expressed as

1

m

m∑
j=1

{
[(Im − ‖β‖2S)X′β]j

}2

‖β‖2(1− ‖β‖2Sjj)2
. (4.25)

By replacing the denominator weights ‖β‖2(1−‖β‖2Sjj)2 of Equation (4.25) with the average

value of Sjj which is 1
mtr(S), we get the generalized cross validation criterion

GCV(λ) =
‖(Inm − ‖β‖2S)X′β)‖2/m
‖β‖2[1− tr(‖β‖2S)/m]2

.

Which, irrelevant of the scale factor ‖β‖2, is equivalent to the criterion in Expression (4.22)

4.2.3 Proof of Lemma 4.2.1

From Equations (4.20) and (4.21), we define the prediction error for the jth block of X as

x̂j − xj = βf̂j − xj .

Define f̂
(−j)

as the factor loading curve estimate from the minimization problem (4.19) where

the jth block xj is deleted from X . Suppose we delete xj from X and replace it with βf̂
(−j)
j ,

denote this new vector as X ∗ with estimate x̂∗j . Then f̂
(−j)

= S(Im ⊗ β)X ∗ (see Theorem 3.1
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from Green and Silverman, 1994) and x̂∗j = βf̂ (−j) and we define the leave-out residual as

βf̂
(−j)
j − xj .

Denote the n × n blocks of the H matrix as Hj,l for j, l = 1, . . . ,m, and the jth block of the

vector X̂ ∗ = HX ∗ as [HX ∗]j ; X̂ = HX as [HX ]j . Then

βf̂
(−j)
j = [HX ∗]j =

∑
l 6=j

Hj,lxl + Hj,jβf̂
(−j)
j ,

βf̂j = [HX ]j =
m∑
l=1

Hj,lxl.

Subtracting xj from each side of βf̂
(−j)
j =

∑
l 6=j Hj,lxl + Hj,jβf̂

(−j)
j yields

βf̂
(−j)
j − xj =

∑
l 6=j

Hj,lxl + Hj,jβf̂
(−j)
j − xj ±Hjjxj

= βf̂j − xj + Hjj

[
βf̂

(−j)
j − xj

]
.

Therefore, the leave-out residual is expressed in the form

βf̂
(−j)
j − xj = (In −Hjj)

−1(βf̂j − xj).

It is worth noting that

Hjj = [(Im ⊗ β)H(Im ⊗ β′)]jj = Sjjββ
′,

and that

(In −Hjj)
−1 = In +

Sjj
1− Sjj‖β‖2

ββ′. (4.26)

This result is verified by multiplying the right-hand side of the expression by the inverse if the

left-hand side.
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Let p = βf̂j − xj . Then

‖p‖2 = x′jxj − 2xjβf̂j + ‖β‖2f̂2
j ±

(x′jβ)2

‖β‖2

= x′jxj −
(x′jβ)2

‖β‖2
+

(
‖β‖f̂j −

β′xj
‖β‖

)2

, (4.27)

for Euclidean norm ‖ · ‖2. Also, with β′p = ‖β‖2(f̂j − β′xj/‖β‖2), then

(β′p)2

‖β‖2
= (‖β‖f̂j −

β′xj
‖β‖

)2. (4.28)

With Identity (4.26), the squared norm of the leave-out residual, βf̂
(−j)
j − xj , is expressed as

‖(In −Hjj)
−1(βf̂j − xj)‖2 =

∥∥∥∥(In +
Sjj

1− Sjj‖β‖2
ββ′

)
p

∥∥∥∥2

=

∥∥∥∥p +
Sjj

1− Sjj‖β‖2
ββ′p

∥∥∥∥2

.

Expanding these terms, combined with Equations (4.27) and (4.28), culminates in Equa-

tion (4.24) of Lemma (4.2.1).

4.3 Natural Cubic Splines

Previously, in 2.3, the penalty matrix Ω was introduced as the product of matrices involving

first and second differences of the observed {tj}. The motivation was that a penalty based on

the squared second derivative of the factor loading curve fk(t) is approximated by an expression

involving differences of the discrete fkj .

By introducing a slightly different formulation of Ω that is still based only on the observed

{tj}, it can be shown that the estimated f̂k form natural cubic splines. This fortunate result

readily facilitates a method for interpolation which in turn verifies that the estimated f̂k(·) are

true functions.
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4.3.1 The Penalty Matrix

Specifically, following Green and Silverman (1994), let hj = tj+1 − tj . For j = 1, . . . ,m, we

define the banded matrix Qm×(m−2) with columns numbered in a non-standard way: elements

qjj′ denote the j = 1, . . . ,mth row and j′ = 2, . . . ,m − 1st column of Q. These elements in

particular for |j − j′| < 2 are given by

qj−1,j = h−1
j−1, qjj = −h−1

j−1 − h
−1
j , qj+1,j = h−1

j , (4.29)

and are 0 otherwise. Further, we define the symmetric matrix R(m−2)×(m−2) with elements

rjj′ ; j, j
′ = 2, . . . , (m− 1) such that rjj′ = 0 for |j − j′| ≥ 2 and otherwise


rjj = 1

3(hj−1 − hj) for j = 2, . . . ,m− 1,

rj,j+1 = rj+1,j = 1
6(hj−1 − hj) for j = 2, . . . ,m− 2.

(4.30)

Note that R is diagonal dominant and thus it is positive definite and invertible. Let

Ω = QR−1Q′. (4.31)

The following result is based on Theorem 2.1 of Green and Silverman (1994).

Proposition 4.3.1. For fixed k, the f̂k(·) optimizing PSS in (4.7) is a natural cubic spline

with knot locations at tj, and

∫ [
f ′′k (t)

]2
dt = fkΩf ′k.

4.3.2 Proof of Proposition 4.3.1

For each k = 1, . . . ,K, the solution for the optimal factor loading curve, from Equations (4.6)

and (4.7), f̂k(·) solves the minimization problem

min
fk(·)

 1

σ2

n∑
i=1

m∑
j=1

(xij −
K∑
k=1

βikfkj)
2 +

K∑
k=1

λk

∫ [
f ′′k (t)

]2
dt

 ,
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which is equivalent to

min
fk(·)

 1

σ2

n∑
i=1

m∑
j=1

(x∗ij − βikfkj)2 + λk

∫ [
f ′′k (t)

]2
dt

 ,
for

x∗ij ≡ xij −
∑
h6=k

βihfhj ,

in solving for a specific f̂k(·). We denote f̂kj = f̂k(tj) and fkj = fk(tj). From Theorem 2.3

of Green and Silverman (1994), a natural cubic spline (NCS) that interpolates coordinates

(tj , f̂j) is the unique minimizing function of
∫

[f ′′k (t)]2 dt over all functions which interpolate

(tj , f̂j). Therefore, the minimizing function f̂k(·) of (4.32) is an NCS with knot locations

t1, . . . , tj , . . . , tm. Because an NCS which interpolates (tj , fkj) is unique, f̂k(·) is the unique

NCS minimizer of (4.32). With Ω defined as in Equations (4.29), (4.30) and (4.31), Theorem

2.1 of Green and Silverman (1994) asserts that
∫

[f ′′k (t)]2 dt = fkΩf ′k. with f ′k = [fk1, . . . , fkm].

Therefore, the argument to the minimization problem in Equation (4.32) is equivalently written

as

1

σ2

n∑
i=1

m∑
j=1

(x∗ij − βikfkj)2 + λkfkΩf ′k.

Extending this result to each k = 1, . . . ,K, we can equivalently write the penalized sum of

squares in (4.7) as

lp(X,B) = l(B) + l(X|B) +

K∑
k=1

λkfkΩf ′k.

4.3.3 Forecasting and Curve Synthesis

Recall that the goal of our Functional Dynamic Factor Model (FDFM) is to provide forecasts

of an entire curve from an observed time series of sampled curves. Once the FDFM has been

estimated, it is a straightforward exercise to do just this. Further, due to the functional nature

of the model, we are not restricted to forecasts for only the observed knot locations; the natural

cubic spline (NCS) results of Section 4.3.1 allow us to forecast to any degree of fineness between

knot locations. Indeed, Proposition 4.3.1 even allows within sample imputation of an entire
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time series.

Forecasting is straightforward: for illustrative purposes, suppose we estimate our FDFM

with K factors following an AR(1) process with constants {ck}, k = 1, . . . ,K. Then the h-step

ahead forecasted curve x̂n+h|n(t) is based on the components of the forecast of the factor time

series β̂n+h|n,k and the estimated factor loading curves f̂k(t):


x̂n+h|n(t) =

∑K
k=1 β̂n+h|n,kf̂k(t)

β̂n+h|n,k = ĉk + ϕ̂kβ̂n+h−1,k =
∑h−1

r=0 ϕ̂
r ĉk + ϕ̂hkβnk.

(4.32)

The NCS result of Section 4.3.1 ensures that f̂k(t) is indeed a function rather than a discrete

set of points. Thus, we can interpolate f̂k(t) to any degree of fineness between any two knot

locations tj and tj+1.

Specifically, consider t ∈ [tj , tj+1]; j = 1, . . . ,m. We can compute values for an entire time

series {x̂1(t)}ni=1 because each f̂k(t) is an NCS. Denote γkj ≡ f ′′k (tj). It can be shown (Green

and Silverman, 1994)

f̂k(t) =
(t− tj)fk,j+1 + (tj+1 − t)fkj

hj
+

1

6
(t− tj)(tj+1 − t)× (4.33)[(

1 +
t− tj
hj

)
γk,j+1 +

(
1 +

tj+1 − t
hj

)
γkj

]
,

for each k = 1, . . . ,K. For t < t1, or t > tm, the f̂k(t) is a linear extrapolation; we illustrate this

limitation in Section 7.2.3. Using this method together with Equations (4.32) we can just as

easily impute and forecast at the same time; a result that enables, for example, yield forecasts

for bonds of maturities that have not been observed.
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Chapter 5

Simulation Results

This chapter focuses on model performance based on simulated data. SVD and the smooth

factor model (SFM) from Shen (2009) are used as comparison models for the FDFM. The added

benefit of using simulated data over actual data is that knowing the true value of the underlying

parameters allows inference as to the bias and variability of the estimated parameters. Further,

knowledge of the error component of the simulated data permits forecast inference based on

both the raw simulated data, and also just the deterministic component of the data.

5.1 Introduction

One benefit of simulated data is that we are able to assess parameter accuracy as well as

forecast accuracy. In the simulation study discussed in Section 5.2 below, we show that our

FDFM achieves both of these objectives. By illustrating goodness-of-fit of the FDFM in a

simulated setting, we demonstrate ours is a viable model robust to use for various intents; not

one unduly tailored to a single specific application, be it call volume or yield curve forecasting.

In the latter instance, where there does exist a substantive meaning for parameter values based

on some underlying theory, our positive results regarding parameter accuracy lend credence to

the interpretability of our model estimates.

The set up for this simulation is motivated by call volumes from a call center – an impor-

tant application in workforce management of service systems. In call centers, the majority of

operating expenses are due to capacity (Gans et al., 2003). Thus, optimal staffing is of critical

concern, and this requires accurate call volume forecasting. Our simulation stems in particular



from Shen and Huang (2008) who proposed a method for producing forecasts of call arrival

volumes from a U.S. financial services firm. Call volumes are recorded at multiple intervals

throughout the business day; and volumes corresponding to each of those intervals are recorded

from day to day. The authors consider forecasting both within day call arrivals for the intervals

throughout the day as well as forecasting the entire within day call arrival pattern from day to

day.

5.2 Simulation Studies

Call volume data is essentially a very long time series with multiple periodicities. Volumes are

collected in intervals occurring throughout the day, and collected each business day throughout

the year. Given the length and frequency, this type of data typically exhibit multiple periodic

components (Taylor, 2008). To mimic this behavior, we simulate a very long univariate time

series characterized by: 1. high frequency of measurement and 2. multiple periodicity.

The idea is to “block” the high frequency univariate time series into a multivariate time series

of sparser frequency. An example outside of the call data scenario is to consider a single time

series of monthly data with strong annual seasonality. This can be converted to a multivariate

time series consisting of twelve annual time series; each of the twelve representing a particular

month.

This idea is hardly a new one: Hurd and Miamee (2007), for example, present a compre-

hensive treatment of such periodic time series data in their text. The reason for this type of

data in regard to the FDFM, however, is to model the periodic cycle as functional. Thus, we

decompose a seasonal or periodic time series into a functional time series.

5.2.1 Simulation Design

We design our simulation based on the actual call center data analyzed in Shen and Huang

(2008) where the number of incoming calls Nij is recorded for each of j = 1, . . . ,m = 68

intra-day intervals over i = 1, . . . , n = 210 consecutive business days (Monday to Friday). In

addition to the periodicity of the intra-day call volumes, we further introduce a day-of-the-week
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cycle in the inter-day call values which was exhibited in the real data from Shen and Huang

(2008). To this end we will use indicator variables to capture this effect in our factor time

series. Earlier, in Section 2.5.2, we briefly discussed how our FDFM is perfectly capable of

using explanatory variables in the dynamic factors; our present simulation study illustrates

how easily this addition is implemented.

Data for a two factor design is generated, where each independent factor follows an AR(1)

process with five intercepts to mimic a day-of-the-week effect. Because call volumes – hypo-

thetical or otherwise – are count data, we use the convention that the square root transform

of Poisson data is approximately normal: xij =
√
Nij + 1/4 (see Brown et al., 2010). Then we

generate our data as follows:


xij =

∑2
k=1 βikfkj + εij ,with εij

i.i.d.∼ N(0, σ2)

βik = cdi−1,k + ϕkβi−1,k + vik

(5.1)

with vik
i.i.d.∼ N(0, σ2

k) and E[εijvsk] = 0 for i, s = 1, . . . , n, j = 1, . . . ,m, di = 1, 2, 3, 4, 5

(denoting the day of the week), and k = 1, 2. Selection of the true parameter values for the

simulation will be discussed below.

We compare our model with two others. The first one is the method used by Shen and

Huang (2008). They use singular value decomposition of the observed data matrix X to obtain

values for the time series factors βk and factor loading curves fk; we refer to this method as the

SVD model hereafter. This is the method introduced in Chapter 2 to obtain starting values for

EM estimation. This is also the model used in Shen (2009) as a benchmark for their smooth

factor model (SFM); that model is the second by which we compare ours. The SFM uses the

first K left singular vectors and singular values as the dynamic factors βk. The corresponding

K right singular vectors are smoothed in a sequential matter to form factor loading curves fk.

The first factor loading curve is found with a penalized sum of squares criterion like ours and

akin to Green and Silverman (1994). The second curve is found in a similar manner but based

on the residual values given the first factor and factor loading curve.

Although both methods (SFM and FDFM) give smooth factor loading curve estimates, the
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key difference between them is that SFM is estimated in two steps. The SFM estimates the

parameters of the time series models for the dynamic factors separately from the factor loading

curves. Our FDFM, however, estimates them simultaneously in a single step using the EM

formulation. As a result, our simulation results in Tables 5.1 and 5.2 show that the FDFM

gives estimates with smaller bias and overall mean squared error (MSE). In addition, another

distinction between the two models is that the SFM extracts the loading curves sequentially

using residual matrices.

For a fair comparison between SFM and FDFM, the true parameter values for the simulation

are based on both SFM and FDFM estimates of the actual call center data in Shen and Huang

(2008). The true factor loading curves are provided by SFM estimates from the call data; true

dynamic factor parameter values (c11, ϕ1, etc.) are furnished by FDFM estimates of the same

data. In our design, only σ2, the overall model variance, is varied in the simulations over three

values. All other parameters remain fixed. Those parameter values and factor loading curves

are shown in Figure 6.2.

We generate 100 data sets of size n = 210 by m = 68 per value of σ2 (300 total data sets).

For each set, the three models are estimated on a 205 × 68 rolling window to produce 5 rolling

1-step-ahead forecasts in order to represent each day of the week.

5.2.2 Parameter Accuracy

The top panels of Figure 5.2 show the estimates for the second factor loading curve from the

SVD, SFM and FDFM models for the case where σ = 2. The solid black curve shows the true

loading curve; the solid colored curve shows the mean of the estimates over the 100 simula-

tions and the dashed curves represent the first and third quartiles. The panel directly below

each models’ estimates depicts the average squared bias (red/long and short dash), variance

(black/dashed) and MSE (blue/solid) of the estimated factor loading curves. In these simula-

tions, the first factor is so dominant that there is little difference, between the three models’

estimates for f1(t).

However, a great deal of difference exists among the second factor loading curve f2(t) esti-

mates. The first and third quartile bands are much closer for the FDFM and SFM. The squared
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Figure 5.1: (a)-(b) Factor Loading Curves. Factor loading curves used to simulate the data are
based on SFM estimates from the actual call center data. (c) Simulation Parameters. Parameter
values are based on FDFM estimates of call center data.
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(c) Simulation Parameters

Parameter First Factor Second Factor

Intercept 1 c11 = 58.24 c12 = −2.48
Intercept 2 c21 = 64.04 c22 = 0.92
Intercept 3 c31 = 65.65 c32 = 0.39
Intercept 4 c41 = 68.53 c42 = −6.50
Intercept 5 c51 = 86.36 c52 = 7.48
Slope ϕ1 = 0.72 ϕ2 = 0.52
Factor Std. σ1 = 4.18 σ2 = 1.90

Overall Std. σ ∈ {0.75, 1.5, 2.0}
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bias among the methods, though close in magnitude, is smaller and less variable for the FDFM

and SFM. Further, both the MSE and variance are drastically smaller for the FDFM and SFM

as well. This reduction in variance is due to the smooth regularization inherent in the SFM

and FDFM models; SVD has no requirement for smoothness. Recalling the estimation method

for the SFM from Section 5.2.1, we see that it is quite similar to the method for the FDFM

from Chapter 2; the key difference being the incremental nature of the SFM smoothing. It is

because of this similarity that there is little distinction between the models’ estimates.

Figure 5.2: Factor Loading Curve Estimates for f2(t) from the SVD, SFM, and FDFM models
where σ = 2. The top row shows the estimated factor loading curves with mean and quartile
bands. The second row shows the MSE, squared bias and variance. The FDFM produces much
less variable estimates than SVD, while FDFM and SFM estimates are quite comparable.
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However, harken back to the other distinguishing feature of the FDFM from the SFM:

the simultaneous estimation of the FDFM as opposed to the two step estimation of SFM. In

comparing the other parameter estimates of the models, we do indeed see markedly better

estimates produced by our FDFM over SFM. Specifically, in Table 5.1, we see the bias and
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standard deviation for the factor parameters and overall standard deviation σ for the case

where σ = 2. For Factor 1 parameters, FDFM estimates display uniformly lower bias (in

magnitude) than the SVD and SFM estimates. Standard deviation is also lower for all but

error standard deviation σ1. For Factor 2 estimates, the FDFM again achieves the lowest

bias while the SFM typically shows a lower standard deviation in its estimates. To reconcile

the second factor results, refer to Table 5.2 which displays mean squared error (MSE) of the

parameter estimates which is equal to the sum of the squared bias and variance. FDFM MSE

is lowest for all Factor 1 estimates, the overall standard deviation and four of the seven Factor

2 parameters. Thus, the FDFM displays the greatest accuracy in parameter estimation among

the models.

This is a key result in settings such as in yield curve forecasting where there exist substantive

interpretations for the factors, their loadings and parameters (see Chapter 7). Further, in cases

where observed regressors are included like the macroeconomic indicators in Diebold et al.

(2006), we can be confident the associated coefficients predicted by our FDFM are accurate.

5.2.3 Forecast Performance

Root mean squared forecast error (RMSFE) is computed to assess performance among the

methods on forecasting the 206-210th observed curves in each of the simulated data sets with

the forecasts computed by Equations (4.32). Recall from Chapter 2 that the time series of

curves consist of a smooth underlying curve, yi(t), plus an error component, εi(t):

xi(t) = yi(t) + εi(t). (5.2)

The goal of our FDFM is to forecast the smooth curve.

A benefit of a simulation study is knowledge of the exact data generating process. Therefore,

in our assessment, we focus on the fit of the model predictions x̂ij compared with the non-

random component of xij . Using Equation (5.1), we can further extract the error components

of the dynamic factors. Consider the following decomposition from substituting the second
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Table 5.1: Parameter Bias and (Std. Dev.) for the case where σ = 2. Smallest bias (in
magnitude) and standard deviation are indicated in bold. Despite comparable performance of
SFM and FDFM on factor loading curves, FDFM estimation results in nearly uniform lower bias
and standard deviation for first factor parameters. For second factor estimates, FDFM produces
lowest bias while for the majority of parameters SFM displays lower standard deviation. See
Table 5.2 for reconciliation.

First Factor Second Factor
Parameter SVD SFM FDFM SVD SFM FDFM

Intercept 1 -24.236 -24.235 -5.474 -1.036 -1.04 0.004
(c1k) (14.35) (14.352) (13.507) (0.464) (0.434) (0.583)

Intercept 2 -22.983 -22.983 -5.267 0.037 0.063 0.026
(c2k) (13.596) (13.598) (12.843) (0.426) (0.406) (0.469)

Intercept 3 -22.502 -22.501 -5.115 -0.221 -0.176 0.034
(c3k) (13.359) (13.362) (12.609) (0.443) (0.411) (0.474)

Intercept 4 -22.358 -22.358 -5.104 -0.024 -0.242 -0.045
(c4k) (13.266) (13.268) (12.52) (0.401) (0.394) (0.473)

Intercept 5 -22.675 -22.674 -5.283 1.304 1.442 -0.026
(c5k) (13.348) (13.35) (12.624) (0.587) (0.568) (0.776)
Slope 0.094 0.094 0.021 0.243 0.23 -0.015
(ϕk) (0.056) (0.056) (0.052) (0.075) (0.074) ( 0.111)

Factor Std. -0.541 -0.553 0.092 -1.095 -0.937 0.07
(σk) (0.268) (0.269) (0.299) (0.146) (0.15) (0.221)

Overall Std. 0.043 0.036 0.007
(σ) (0.011) (0.011 ) (0.011)

Table 5.2: MSE for the case where σ = 2. Smallest MSE indicated in bold. FDFM estimates
result in uniformly lower MSE for factor one parameters. Despite lower standard deviation of
SFM factor two estimates (Table 5.1), the majority of FDFM estimates achieve lower MSE.

First Factor Second Factor
Parameter SVD SFM FDFM SVD SFM FDFM

Intercept 1 (c1k) 793.3 793.3 212.4 1.287 1.269 0.34
Intercept 2 (c2k) 713.1 713.1 192.7 0.183 0.169 0.221
Intercept 3 (c3k) 684.8 684.8 185.1 0.245 0.2 0.226
Intercept 4 (c4k) 675.9 675.9 182.8 0.161 0.214 0.225
Intercept 5 (c5k) 692.3 692.3 187.3 2.045 2.401 0.603
Slope (ϕk) 0.012 0.012 0.003 0.064 0.059 0.013
Factor Std. (σk) 0.365 0.378 0.098 1.219 0.901 0.054
Overall Std. (σ) 0.002 0.001 0.000
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equation of (5.1) into the first:

xij = zij + νij + εij , (5.3)

with νij =
∑K

k=1 vikfjk and zij =
∑K

k=1(cdi−1,k + ϕkβi−1,k)fkj .

With this decomposition, the RMSFE is then based on E[xn+1,j ] = zn+1,j and the forecast

x̂n+1,j . Because the motivation for our simulation is based on call center data, when we compare

RMSFE, we convert back to the count data metric for call volumes from Section 5.2.1. Let

N̂n+1,j = x̂2
n+1,j − 1/4 and Nn+1,j = z2

n+1,j − 1/4. Then

RMSFEn+1 =

√√√√ 1

m

m∑
j=1

(Nn+1,j − N̂n+1,j)2,

which we average over the five rolling forecasts.

The results are shown in Figure 5.3 for the simulated data sets for the three values of σ.

As σ increases, the SFM and FDFM outperform SVD by an increasingly larger margin. The

FDFM, however displays slightly lower RMSFE and less variability than SFM.

Thus, despite the performance of the SFM model in producing smooth factor loading curves

and more accurate forecasts than the benchmark SVD model, the FDFM produces smooth

curves, better forecasts, and considerably more accurate parameter estimates than SFM.

5.3 Conclusion

In our simulation study, we have shown that our FDFM produces accurate forecasts as well as

accurate parameter estimates. Further, we have done so in a simulated setting separate from the

various true applications discussed in this thesis. In any of those settings, exceptional forecast

accuracy is of obvious importance. However, we also must underscore the relevance of producing

accurate parameter estimates. In the yield context, this permits reliable interpretation of the

factor loading curves akin to Diebold and Li (2006) and dynamic factor coefficients as in Diebold

et al. (2006). In Section 5.1 we also emphasized the importance of call center forecasting for

workforce management of service systems. Accurate prediction of the day-of-the week effect,
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then, is of great concern for reliable forecasts; through our simulation, we have shown our

FDFM is capable of this.
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Figure 5.3: Forecast Performance. RMSFE based on Nij from Section 5.2.3 for the SVD, SFM
and FDFM models by the three values of σ. As σ increases, the SFM and FDFM outperform
SVD by a greater margin.
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Chapter 6

Selection and Inference

In this chapter we detail criteria for the selection of the number of factors in the FDFM, methods

to select to order of the dynamic factors, and outline a bootstrap procedure to provide confidence

intervals for model estimates. Results for each of these are illustrated based on simulated data.

The design of the simulation employs an innovative approach in creating data that does not have

an overwhelmingly dominant first factor. The method to this end is outlined first, followed by

the actual simulation design. Each section thereafter then provides a description of a selection

or inference procedure with illustrations the application to the simulated data.

6.1 Factor Weighting

Before we proceed with a simulation to test and implement the methods proposed in the fol-

lowing sections, it is worth noting that in application of SVD or even the FDFM to real data,

the percentage of variance explained by the first factor is typically very large. In some cases

99%. If simulated data is based on entirely on model estimates from actual data, then surely

this result translates to the analysis of that simulated data. In this setting, that any of the

proposed methods above will correctly assess that K = 1 is hardly surprising. Therefore, in

the following simulation, we will specify our simulated data to have a more equal weighting

among the factors. For example, in the yield data analyzed in Chapter 7, SVD decomposition

of the observed data reveals the first factor accounts for approximately 99% of the variance in

the data, while the next two factors compose most of the minimally remaining 1%.

Ideally, a more representative weighting may be {0.65, 0.25, 0.10} or {0.75, 0.20, 0.05}. Such



a weighting would provided better opportunity to assess the testing of K > 1. Unfortunately,

simulating this type of data from scratch requires many considerations for how to select the

orthogonal functions F (t) and generating corresponding time series factors that have reasonable

variance and still achieve this weighting. At best the simulated data may be very specific and not

linked to any practical true application of the model. However, an intermediate method exists

based on real data that can approximately achieve a more proportional weighting. Consider the

following approach:

1. Real Data. If we are interested in designing a simulation for a specific number of factors

K, then given some real data of interest Xn×m, either from Step 0 of the EM, or full estimation

of the FDFM, we get predicted values for the factors B̂n×K and factor loading curves F̂m×K .

Then, recalling the original model X = BF′ + ε = Y + ε the predicted underlying smooth

curves are given by

Ŷ = B̂F̂′.

2. Simulate Data. For the simulation, we can use F̂ as the orthonormal factor loading curves,

and generate ε based on values of σ2 that are reasonably consistent with the real data residuals

X− B̂F̂′. From each column of B̂, we can estimate an initial AR (or ARMA) model, and use

the estimated parameters as the true values for simulated data. Specifically, fit

β̂ik = ck +
P∑
r=1

ϕrkβ̂i−r,k + vik,

for k = 1, . . . ,K. Then use the estimates for {ck, ϕ1k, . . . , ϕPk, σ
2
k} to simulate a new set of K

independent time series:

αik = ck +

P∑
r=1

ϕrkαi−r,k + vik,

for vik
iid∼ N(0, σ2

k), i = 1, . . . , n. Finally, we create a single preliminary simulated data set X̃ as

X̃ = Ỹ + ε,
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for Ỹ = AF̂′ where the columns of An×K contain the K simulated AR(P) processes: {αik}ni=1.

3. Re-scale Simulated data. X̃ will resemble the original raw data X, including the possibly

non-optimal quality of possessing a single dominant factor with K − 1 other considerably less

dominant factors. But with our prototype simulated data set, we can re-scale to get a more

equal weighting. Revisiting Step 0 from the EM consider the singular value decomposition of

Ỹ:

Ỹ = Un×KDK×KV′K×m,

where D is a diagonal matrix containing the singular values of Ỹ in descending order d1 >

. . . > dK
1. Because F̂ and V, are both orthonormal, approximately, we can expect A ≈ UD.

The percentage of variance in Ỹ explained by singular vector uk is pk ≡ d2
k × SS, where

SS =
∑K

h=1 d
2
h. If {p1, . . . , pK} is not representative of the weighting of factors we would like

in our simulation we designate a new set of percent explained variance {p∗1, . . . , p∗K} then we

can re-weight to a new set of dynamic factors B by:

B ≡ AD−1∆,

where D−1∆ is a diagonal matrix with elements wk ≡
√
p∗kSS

dk
along the diagonal.

4. Simulate New Data. With the weighting elements {wk} we can simulate new dynamic

factors {βk} that combined with F̂ will approximate our preferred percent of explained variance

per factor {p∗1, . . . , p∗K}:

wk(αik − µα;k) =

P∑
r=1

ϕrk[wk(αi−r,k − µα;k)] + wkvα;ik,

or

(β̂ik − µk) =
P∑
r=1

ϕrk(β̂i−r,k − µk) + vik,

with vik ∼ N(0, w2
k, σ

2
α;k). With these new simulated factors B, existing factor loading curves

F̂ and simulated independent errors ε we construct our new data X. Note that we can adjust

the parameter σ2 to more adequately reflect the scale of the new simulated data. An example

1Given that rank(Ỹ) = K, singular values with left and right singular vectors K + 1, . . . ,m are equal to 0.
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of de-constructing then reconstructing the yield curve data is shown in Figure 6.1 for both the

X and Y data. The blue lines show the original percent of variance of data simulated based on

FDFM estimates of the yield data. The green points display our target re-weighting to obtain

a three factor data set with {0.65, 0.25, 0.10} percent weighting. The red lines then show the

results of the method described in this section. Clearly there is some merit to this approach.

Figure 6.1: Example of Factor Re-scaling. We simulate data based on estimated parameters
from the true yield curve data in Chapter 7 for 3 factors. Using the method described in
Section 6.1, we re-weight the data by scaling the original singular values (blue) to form a new
dataset. Those singular values (red) resemble the desired weighting (green).
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6.2 Simulation Design

To illustrate the re-weighting scheme proposed in Section 6.1 we create some simulated data

inspired by the true yield curve data thoroughly examined in Chapter 7. Factor loading curves

are selected as those estimated for the period May 1985 to April 1994 of that data. This period

is as representative of that data as any other, and was chosen primarily for consistency with

the presentation of those estimates in Chapter 7. However, unlike the model estimated in that

chapter, we simulate the three dynamic factors as AR(2) processes in order to better illustrate

the order selection procedure introduced in Section 6.4.
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Preliminary values for σ are chosen based on those estimated in Chapter 7, and initial

parameters for the dynamic factors are obtained from AR(2) estimation of E[β|X ] from the

E-step of the yield data. Via the method described in Section 6.1, these parameters are then

modified to achieve and approximate 0.65, 0.25, 0.10 weighting among the three factors. These

modified parameters, along with factor loading curves, are presented in Figure 6.2. We use

these true model parameters to simulate 100 data sets for each of three values for σ for size

n = 105 and m = 17. An example data set is illustrated in Figure 6.3.

Figure 6.2: (a)-(c) Factor Loading Curves. Factor loading curves used to simulate the data are
based on FDFM estimate actual yield curve data from Chapter 7. (d) Simulation Parameters.
Parameter values are also based on FDFM estimates of the yield curve data.
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(d) Simulation Parameters

Parameter First Factor Second Factor Third Factor

Mean µ1 = 20.04 µ2 = −7.76 µ3 = −1.54
AR(1) ϕ11 = 1.15 ϕ12 = 1.25 ϕ13 = 1.16
AR(2) ϕ21 = −0.19 ϕ22 = −0.27 ϕ23 = −0.32
Factor Std. σ1 = 0.91 σ2 = 4.54 σ3 = 4.47

Overall Std. σ ∈ {2.55, 3.75, 5.25}
n = 105, m = 17

6.3 Factor Selection

Until this point, the method for selecting the number of factors has not been considered. As

the hypothesis is that the unobserved time series factors drive the observed data, it is not so

much an issue of sel–ecting K as it is a matter of det–ecting K.
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Figure 6.3: Example simulated data set according to the design in Figure 6.2. In grey are xi(tj)
and yi(tj) for each i = 1, . . . , n. The mean over all i is shown in black.
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6.3.1 Discrete DFM Results

Drawing from the DFM literature Pena and Box (1987) and then Pena and Poncela (2006)

prescribe detection methods based on the structure of the observed lagged autocovariance ma-

trices. Namely, that for a non-functional DFM, the rank of such matrices should be K and

not m–the number of observed time series. In particular, recall the formulation of the classical

DFM from Section 2.1.1:

xi = Fm×Kβi + εi,

Φ(L)βi = Θ(L)vi,

Φ(L) = IK − Φ1L− . . .− ΦPL
P ,

Θ(L) = IK −Θ1L− . . .−ΘQL
Q, εi

vi

 ∼ N

 0m×1

0K×1

 ,
 Σε 0

0 Σv


 ,

F′F = IK

(6.1)

In this setting, the autocovariance matrices Cov(xi,xi−l) ≡ Γx(l) for lags l = 0, 1, . . . are

108



functions of the autocovariance matrices for the dynamic factors Cov(βi,βi−l) ≡ Γβ(l):

Γx(l) =

 FΓβ(l)F′ + Σε if l = 0,

FΓβ(l)F′ otherwise.
(6.2)

Therefore, the (short) rank of Γx(l) is equal to the number of latent dynamic factors K.

In the case of independent dynamic factors, Γβ(l) is diagonal. Then the orthonormality

condition in Model (6.1) implies eigen-decomposition of Γx(l) is equivalent to Equation (6.2)

for l > 0: the K non-zero eigenvalues of Γx(l) correspond to the diagonal elements of Γβ(l);

the corresponding eigenvectors are the columns of the F matrix. This representation yields two

important details regarding the number of factors K. First, only the first K eigenvalues of Γx(l)

are non-zero. Second, under the assumption that the dynamic factors are stationary, the first

K eigenvectors do not depend on time i, and are thus identical regardless of lag l (respectively,

k = 1, . . . ,K). Pena and Box (1987) provides an ad hoc methodology for identifying the

dimensionality of the dynamic factors based on this relationship. However, it is unclear how

they form an estimate of Γx(l). Further, it is implied that some foreknowledge of the time

series process is required (knowing Φ(L) and Θ(L) in Equation (6.1)) since the authors propose

an additional assessment for K based on the ranks of the lag polynomial matrices Φ(L) and

Θ(L). Finally, there is some subjectivity in the assessment of K as there are no definitive test

criteria described in these methods.

However, this does provide a starting point for assessing K and even the identification of the

(V)ARMA processes for dynamic factors βi. Eigen-decomposition of the sample autocovariance

matrices of the observed data can be used to infer the number of factors K. The sample

autocovariance matrices are

Gx(l) ≡ 1

n− l

n∑
i=l+1

(xi−l − x)(xi − x)′, (6.3)

for x = 1
n

∑n
i=1 xi and l ≥ 0. Let the eigen-decomposition of Equation (6.3) yield eigenvalues

[e1;l, . . . , em;l] and eigenvectors [e1;l, . . . , em;l]. Then, K is given by the number of nonzero

eigenvalues for lags l = 1, . . .. Those corresponding eigenvectors should be “stable” and nonzero
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across lags.

Going a step beyond the Pena and Box (1987), methodology, the decay pattern of the K

eigenvalues across lags can be determined using traditional time series techniques. Continuing

with the stationary and independent factor specification, examination of the sample autocorre-

lation (ACF) and partial autocorrelation (PACF) functions can reveal the number of AR and

MA terms for each independent time series.

Pursuing dependent dynamic factors is beyond the scope of this thesis, but for illustration,

a similar approach can be used. Again following Pena and Box (1987), it is still the case that

Γx(l) = FΓβ(l)F′ for l > 0, but the eigenvectors of Γx(l) are no longer contained in F alone.

Rather, via eigen-decomposition of Γβ(l) = UlDlU
−1
l , the eigenvectors of Γx(l) are now FUl

and depend on lag l. However, Γx(l) and Γβ(l) continue to have the same eigenvalues: those

contained in the diagonal matrix Dl. Could an estimate for Γβ(l) be formed, identification

techniques for time series such as sample ACFs and PACFs along with Cross-correlation func-

tions (CCFs) could be utilized to assess the VARMA dependence. Unfortunately, due to this

dependence, it is now not immediately clear how to extract this estimate from the sample

autocovariance expression in Equation (6.3).

Regardless, to illustrate this approach for independent AR(2) dynamic factors we create

some simulated data inspired by the true yield curve data thoroughly examined in Chapter 7.

For a detailed description of how the parameters were chosen, see Sections 6.1 and 6.2; for the

model parameters, see Figure 6.2. Then examine the resulting eigenvectors and eigenvalues for

the sample autocovariance matrices Gx(l) for lags l = 1, . . . , 5. Although this is not a rigorous

testing procedure, it is a method that can provide some initial insight as to the number of

factors. Further, it is relatively inexpensive in regard to computation, in that all we require for

Gx(l) is the raw data.

As an example, consider Figure 6.4 which is generated from a simulated data set from the

design outlined in Figure 6.2. For lags l = 1, . . . , 5 we examine the resulting components of

eigen-decomposition of the sample auto-covariance matrices given in Equation (6.3).

For the K = 3 factor model with independent AR(2) factors, the estimated eigenvalues

correspond to the univariate autocovariances of the of the time series factors and we expect to
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Figure 6.4: Eigenvalues and eigenvectors by lag l = 1, . . . , 5 for Gx(l), based on Pena and
Box (1987). For simulated data consisting of 3 factors, the first 3 eigenvalues of the sample
autocovariance matrix are large consistently across lags. For the 5 lags shown, the first 3
eigenvectors noticeably deviate from zero, indicating 3 factors.
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see their decay over increasing lags. Further, as in Equation 6.2, per lag we should only observe

3 “large” eigenvalues and the remaining m−K will be close to zero. Observing the first panel

of Figure, we observe exactly this: of the five sequences of eigenvalues shown, the fourth and

fifth are visibly smaller than the first three.

The next five panels in 6.4 illustrate the first five eigenvectors of Gx(l) by lag l. Here, for

a 3 factor model, in the first three sets we expect some non-zero pattern in the vectors over

{tj}, and a pattern relatively consistent among lags. Greater-than-Kth eigenvectors will appear

“noisy” about 0, and exhibit no pattern among lags. This is what we see. Clearly for the first

and second eigenvectors, there is consistency in pattern among lags, and they are not uniformly

zero. The third eigenvector, though noisy still noticeably differs from 0, and outside of the fifth

lag the pattern is consistent. Note that the eigenvectors are unique up to sign.

The results presented in Pena and Box (1987) are, of course, for the traditional DFM.

However, for the functional case, the concept is the same. For the FDFM(K,p) specification

xi(t) = ~F(t)βi + εi(t), (6.4)

where ~F(t) is the 1 × K vector of functions [f1(t), . . . , fK(t)], the autocovariance functions

Cov(xi(t), xi−l(t)) ≡ Γx(t)(l) are given by:

Γx(t)(l) = F(t)Γβ(l)F(t)T + σ2
I{l=0}. (6.5)

In the same manner that there are K < m non-zero eigen-values for Γx(l); l > 0 in the classical

DFM (6.1), this is also the case for the FDFM. Continuing with the assumption that the

observed data xi(tj) is a sampling of the true curves xi(t), we can use the same methods as

those outlined above to infer an initial guess as to the true number of factors. As illustrated

in the example, even in the case of m = 17 observed series, the underlying number of K = 3

factors is still identifiable. However, as mentioned, here there is no hypothesis or test criteria.
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6.3.2 A Bootstrap Approach

Consider another approach to more succinctly identify the true number of factors. Based on

the simulated data discussed in Section 6.2, we note in Figure 6.5 an example of the true

and resampled 3rd factor with corresponding AR(2) estimates. It is obvious that resampling

Figure 6.5: True and estimated factors. For K=3 simulated data, the 3rd dynamic factor is
plotted with AR(2) estimates (red points/line). The factor is then re-sampled and plotted
(green points) with its AR(2) estimates. The re-sample destroys the dynamic dependence, thus
resulting AR(2) estimates are close to zero.
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destroys the temporal dependence of the factor. Therefore, perhaps a method exists that can

exploit this. Specifically, let

X
SVD
=

m∑
j=1

bjv
′
j ,

for bj ≡ djuj as the jth singular value multiplied by the jth right singular vector. For the

K0 factor model, we would like to reject the hypothesis that the true number of factors is

some K < K0, and fail to reject the hypothesis that the number of factors is K < K0 + 1.

Since we will not know K0 at the outset, we certainly will not know K0 + 1 either. Thus,

consider a sequence of hypotheses tests that the true number of factors K0 is less than K + 1

for K = 1, 2, . . . ,m (or the inaugural K could be chosen based on some initial investigation

such as the one described in Section 6.3.1). Without knowledge of the true dynamic factors

and corresponding factor loading curves, we can use SVD components as proxies for these. For
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the hypothesis test H0 : K0 < K + 1, denote

X̃ =
K+1∑
k=1

bkv
′
k.

If there are indeed only K factors, then there should be no dynamic dependence in the (K+1)st

left singular vector and value bK+1. So some model that predicts dynamic dependence should

be indifferent to the ordering of the n elements of bK+1 if it is just noise. Therefore, we model

the (K + 1)st singular value and left singular vector as bK+1 ∼ ARMA(p, q) with resulting

estimate b̂K+1. Then define

X̂ =
K∑
k=1

bkv
′
k + b̂K+1v

′
K+1,

ε̂ = X− X̂,

intentionally including dynamic component b̂K+1v
′
K+1 as part of the residual. We sample ε̂

with replacement to obtain ε∗ and construct

X̃ =

K∑
k=1

bkv
′
k + ε∗.

From X̃ we extract the (K+1)st left singular value and singular vector b̃K+1. We then estimate

the same order ARMA(p, q) for b̃K+1, then replace it with the fitted model b̂∗K to obtain

X∗ =

K∑
k=1

bkv
′
k + b̂∗K+1v

′
K+1.

We perform a final SVD on X∗. The idea is that if there are only K factors, then the (K+ 1)st

singular value for each of X, X̂, and X∗ should be similar and markedly smaller than the

previous ones, if not close to zero. The reason being that in the case of K factors, the (K+1)st

right singular vector and value should be white noise:

X =
K∑
k=1

βkf
′
k + ε,
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and

X =

m∑
j=1

bjv
′
j ,

so that

X ≈
K∑
k=1

βkf
′
k +

m∑
j=K+1

bjv
′
j ,

ε ≈
m∑

j=K+1

bjv
′
j .

Under this hypothesis, since bK+1 is a component of an i.i.d. N(0, σ2) process, an ARMA

estimate of it versus an ARMA estimate of its re-sampled version should return similar results

that are effectively estimates of the mean. Then singular values of the reconstructed X̂ and X∗

data sets would resemble those from the true data X.

Alternatively, if there are indeed K0 > K factors, then re-sampling does affect the recon-

struction. ARMA prediction of bK+1 will provide meaningful dynamic estimates of the true

underlying βK+1 process. However, a re-sampled ε∗ destroys the dynamic dependence, and we

would expect only the first K singular values of X∗ to be large, as opposed to the K+1 singular

values of X and X̂ being large.

By repeatedly re-sampling ε̂ we can form an empirical distribution based on the resulting

singular values from each X∗ data matrix. Again we do this sequentially to test the hypotheses

of K0 < K + 1 factors for K = 1, 2, 3, . . . ,m − 1 until we are no longer able to reject the

hypothesis. To do this, against the bootstrapped distribution, we compare the (K + 1)st

singular value from X̂ by way of the percent variance:

ι(K+1) ≡
d2
K+1∑m
j=1 d

2
j

.

We perform this method for 100 simulated data sets for three values of σ and 200 bootstraps

per simulated data set; all under the simulation setup in Figure 6.2. For the K0 = 3 model,

Figure 6.6 shows an example scree plot of ι(k) from one of the simulated data sets for testing
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K = 1, 2, 3 and 4 factors. Plotted are the singular values in terms of ι(k) of X (red), X̂ (green),

and the average over 200 bootstraps for X∗ (blue). In the first panel, for testing K0 < 2 factors

there is a clear difference in ι(2) between X̂ and X∗. This motivates a subsequent test for no

more than 2 factors, shown in panel 2. Again there is a clear discrepancy in ι(3) between X̂ and

X∗, which in turn motivates a test for 3 factors, or K0 < 4. This is shown in the third panel.

Here, estimation and resampling of a hypothetical 4th factor does not affect the values of ι(4)

in either X̂ or X∗. For completeness, we test for 4 factors, although the failure to reject the

previous hypothesis of fewer than 4 factors implies this result. To confirm this, ι(5) between X̂

and X∗ is shown in the fourth panel.

Figure 6.6: Example “scree” plots for bootstrap approach. For a single simulated data set
we examine singular values in terms of % of variance explained for the true data (red), the
(K + 1)st left singular vector and value replaced with AR(2) estimate (green), and mean over
200 bootstraps of resampled (K + 1)st left singular vector and value replaced with AR(2)
estimate (blue). For true K = 3 factors, resample of second and third left singular vector and
value affects singular values.

1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Test K < 2 Factors

Singular Value

%
V

ar
ia

nc
e

True (K0 = 3 Fac.)
Xhat
Average Resampled
K+1st SV

1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Test K < 3 Factors

Singular Value

%
V

ar
ia

nc
e

True (K0 = 3 Fac.)
Xhat
Average Resampled
K+1st SV

1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Test K < 4 Factors

Singular Value

%
V

ar
ia

nc
e

True (K0 = 3 Fac.)
Xhat
Average Resampled
K+1st SV

1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Test K < 5 Factors

Singular Value

%
V

ar
ia

nc
e

True (K0 = 3 Fac.)
Xhat
Average Resampled
K+1st SV

116



Figure 6.7 summarizes the results for the 3 × 100 simulated data sets. The top 3 boxplots

depict the empirical p-values from the bootstrap distribution for each value of σ for each test

of K0 less than K + 1 = 2, 3, 4 and 5 factors. For the first two tests, in nearly all cases ι(·) is so

large for X̂ compared with the 200 values for X∗ that the p-value is essentially 0. In the case

of testing K0 < 4 factors, the p-value is distributed across the [0, 1] range indicating similar

ι(4) values for both X̂ and X∗. Finally, for testing the hypothesis of 4 factors, (or K0 < 5), we

have a similar result to confirm the 3 factor model.

This evidence of a useful test is almost too convincing, so for further illustration, presented

directly below each test boxplot are boxplots showing the range of values of ι(·) for X̂ in green,

and the range of the averages over 200 bootstraps for X∗ in blue. The first two plots confirm

the result of zero p-values for tests of fewer than 2 and 3 factors (ι(2) and ι(3),respectively);

the third and fourth illustrate the large overlap in ι(4) and ι(5) for testing fewer than 4 and 5

factors.

Thus, based on these results, we have identified a useful tool in Section 6.3.1 for developing

an initial guess as to the number of factors K, and here we have found an implementable

procedure for more rigorously determining this.

6.3.3 Additional Methods

Canonical Autocorrelation

In addition to the ad hoc methods described in Pena and Box (1987) for determining the

number of factors for a traditional DFM, a more rigorous test procedure for determination of

K is presented in Pena and Poncela (2006). Although their emphasis is on a method that can

be used for unit-root non-stationary factors, the method is just as easily applied to a stationary

DFM. The idea is that the number of of non-zero canonical correlations between xi−l and xi

is equal to the number of factors K. This is based on the relationship between Γx(l) and

Γβ(l) presented in Equation (6.2). Presuming the dynamic factors have mean 0 (for notational
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Figure 6.7: P-values and %Variance for Hypothesis Tests for the simulated data of 3 dynamic
factors. Top: We reject the hypotheses of fewer than 2 and 3 factors, but are unable to reject
fewer than 4 (and thus 5) factors. Bottom: Boxplots of ι(·) corresponding to each test over all
simulations for each choice of σ. In blue, the average over 200 bootstraps for X∗; in green the
values for X̂. The first two plots confirm the result of zero p-values for tests of fewer than 2
and 3 factors (ι(2) and ι(3),respectively); the third and fourth illustrate the large overlap in ι(4)

and ι(5) for testing fewer than 4 and 5 factors.
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simplicity), the squared sample canonical correlations are given by the eigenvalues of the matrix

M̂(l) =

[
n∑

i=l+1

xix
′
i

]−1 n∑
i=l+1

xix
′
i−l

[
n∑

i=l+1

xi−lx
′
i−l

]−1 n∑
i=l+1

xi−lx
′
i, (6.6)

for lags l = 1, 2, . . .. Theorem 3 in Pena and Poncela (2006) cites that m−K of these eigenvalues

converge in probability to zero. For each l, denote the ordered eigenvalues of M̂(l) as e1;l ≤

e2;l ≤ . . . ≤ em;l; then Lemma 1 states that the test statistic

Sm−k = −(n− l)
m−k∑
j=1

ln (1− ej;l) (6.7)

is asymptotically χ2
(m−k)2 .

Based on this statistic, a hypothesis test can be formed for the maximum number of factors.

Since rejecting the hypothesis of H0 : k ≤ K factors implies rejection of the hypothesis H0 :

k − 1 ≤ K for k − 1 ≥ 0 factors, it makes sense to apply the test sequentially for increasing

values of k up to the first failure to reject. This is done for each of a a reasonable number of

lags l = 1, . . . , q (Pena and Poncela, 2006, use 5).

However, based on simulation, here is an instance of where a discrete method does not

translate well to a functional DFM setting. In the traditional DFM framework, the idea is to

model a “large” number of time series that share some relation using a smaller set of latent

factors; for example, using 2 dynamic factors to explain 6 time series. In the case of functional

time series, two observed points xij and xij′ ; j, j
′ = 1, . . . ,m are related through a function.

We have a high dimension m of observed time series that are less a set of disparate time series

than they are sequence of points at each i that are intimately connected to each other as a

specific function evaluated at certain points.

Indeed, in the examples below, we see that as the sampling size m of points along the

domain T of xi(t) grows large (or sampling grows dense), so increase the number of canoni-

cal correlations between some xi and xi−l for lags l = 1, 2, . . .. Further, as the {xi(tj)} are

functionally related, the canonical correlations remain large enough to confound test statistic

Sm−k = −(n− l)
∑m−k

j=1 ln (1− ej;l). Sm−k will increase with m as long as the squared canonical
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correlations are greater than zero. This is to be expected with functionally related data having

a high frequency of measurement. Therefore, when m is large enough, the value for Sm−k will

almost always reject the null hypothesis, regardless of the true number of factors.

Using the design outline in Figure 6.2, for 100 simulated data sets we plot the mean of the

jth squared canonical correlations in Figure 6.8 for 4 choices of m:

m = 3 j = 1, 9, 17

m = 5 j = 1, 5, 9, 13, 17

m = 9 j = 1, 3, 5, 7, 9, 11, 13, 15, 17

m = 17 j = 1, . . . , 17

According to Pena and Poncela (2006), per lag we expect K = 3 large squared canonical

correlations, with remaining j > K being near zero. In the first two cases, where m is small

(3 and 5), we do see a decay in squared correlations (there are only 3 canonical correlations in

the first case). However, for m = 9, or 17, although we do see a noticeable decline in squared

canonical correlation (SCC) from the Kth to the (K + 1)st, the remaining m − K SCCs are

still much larger than zero.

To ensure this result is not endemic to this particular simulation, we replicate this method

of the simulation design of Bathia et al. (2010) (see next section) in Figure 6.9 and observe the

same pattern. Although the reason for the problem in this discrete method when translated

to a functional setting is intuitively plausible, an area of future research is to derive this result

rigorously.

Functional Results

Bathia et al. (2010) present a detailed methodology for determining the “Finite Dimensionality”

of functional time series. Essentially, the hypothesis is that an observed functional time series

consists of the sum of a noise component and “curve component” or underlying smooth curve:

xi(t) = yi(t) + εi(t).

The underlying smooth curve yi(t) can further be decomposed via the Karhunen–Loeve expan-
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Figure 6.8: Canonical correlations for increasing number of series considered, by lag. Yield
simulation design: K = 3 factors. As m increases – equivalent to a denser sampling – the decay
in squared canonical correlations is more persistent. This inflates the test statistic of Pena
and Poncela (2006), making rejection rare even when the number of factors being tested well
exceeds the true number K.
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Figure 6.9: Canonical correlations for increasing number of series considered, by lag. Bathia
et al. (2010) simulation design: K = 4 factors. We see the same pattern of slow decay in SCCs
when m, the rate of sampling of a functional time series, grows large.
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sion to an infinite sum of scalar random variables. The idea is that for some K � ∞, the

variance of the (K + 1)st random variable is 0, thus identifying a finite dimensionality of the

functional time series. This is almost entirely consistent with the current setting of our FDFM,

and thus relates well to the determination of the number of dynamic factors and corresponding

factor loading curves.

Because the underlying smooth curves yi(t) are unobserved, Bathia et al. (2010) form an

auto-covariance operator based on the observed curve time series xi(t). The complexity that

arises is that for the lag 0 auto-covariance operator, a Karhunen–Loeve expansion is not directly

applicable due to the presence of the noise term εi(t) (for lags l > 0, the noise term is assumed as

E[εi(t)εi+l(t)] = 0). To get around this complication, Bathia et al. (2010) form another operator

that incorporates the auto-covariance functions for all lags l including zero. Eigenfunction

decomposition then reveals that the first sharp decline or appearance of a zero corresponding

eigenvalue determines the dimensionality K.

To obviate determining eigenfunctions of their operator only to find these eigenvalues, the

authors show that the same eigenvalues can be determined by an eigen-decomposition of discrete

matrix with elements that are inner-products of the observed functional time series at various

lags. The corresponding eigenvectors combined with the observed functional time series then

determine the dynamic factors.

Bathia et al. (2010) propose a bootstrap approach of re-sampling residuals from the esti-

mated model to form an empirical distribution of eigenvalues by which to compare with those

obtained from the estimated model. Despite the obvious appeal of the approach, in both the

simulation design discussed here in Section 6.2 and the design illustrated in Bathia et al. (2010)

itself, we were not able to confirm the practical implementation of the method. The findings

were not unlike the canonical correlation method of Pena and Poncela (2006); we observed a

slow decay of eigenvalues making it difficult to infer the true number of factors.

Error Resampling

Drawing on some of the ideas presented in Bathia et al. (2010) and Pena and Box (1987) another

attempt was to combine concepts from each of these. Consider observed data X which is the
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sum of a random component ε and dynamic factors with factor loading curves evaluated at

{t1, . . . , tm}:

X = Y + ε

Y =

K∑
k=1

βkf
′
k.

To test the number of factors, consider an SVD based approach. To develop this idea, we

continue to use simulated data from the design outlined in Figure 6.2 for K = 3 dynamic

factors following independent AR(2) processes. Although in practice we will not have the Y

data, it stands to reason that if a method does not work for Y, it most likely will not work for

X.

Y Models

Model Y1: Let Ŷy1 be the first K − 1 true factors and factor loading curves:

Ŷy1 =
K−1∑
k=1

βkf
′
k,

ε̂y1 = Y − Ŷy1 = βKf′K .

We sample ε̂y1 with replacement to get ε∗y1 = β∗Kf′K and Y∗y1 =
∑K−1

k=1 βkf
′
k +β∗Kf′K , where β∗K

are the sampled (with replacement) elements of βK . We can compare SVD(Y) with SVD(Y∗y1)

to examine if there is a detectable difference in the Kth singular value which could indicate a

practical method for testing the number of factors.

Model Y2: Suppose that Y is (somehow) observable, but that the component factors and

factor loading curves are not. As a proxy for these, we examine the singular values and singular
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vectors:

Y
SVD
=

m∑
j=1

djujv
′
j ,

Ŷy2 =
K−1∑
k=1

dkukv
′
k,

ε̂y2 = Y − Ŷy2.

We then sample ε̂y2 with replacement to get ε∗y2 and Y∗y2 = Ŷy2 + ε∗y2. In a similar manner, we

compare SVD(Y) with SVD(Y∗y2) and SVD(Y∗y1).

In any of these cases – SVD(Y), SVD(Y∗y2) or SVD(Y∗y1) – we still expect to see exactly 3

factors, but with differing singular values dk from SVD, particularly for the Kth factor. This

is summarized by the percentage of variance:

ι(k) ≡
d2
k∑m

j=1 d
2
j

,

denoted as ι
(k)
y0 , ι

(k)
y1 , and ι

(k)
y2 for the true, Model Y1, and Model Y2 decompositions, respectively.

Because each method still supports a K factor model, it leaves to question what can be inferred

from the differing values of {ι(k)
y0 , ι

(k)
y1 , ι

(k)
y2 } for the first K singular values. In fact, the re-sampling

of ε̂y· is effectively a re-sampling of βK or some estimate thereof. The AR(p) time dependency

is then destroyed, but this has little to no effect on a method (SVD) that is indifferent to the

ordering of the values (i = 1, . . . , n) of the factors. An example of this is shown in in the first

panel of Figure 6.10.

X Models

By exploring similar methodologies for the “noisy” data X = Y+ε, we should expect to see more

pronounced differences in the ι(k) resulting from re-sampled residuals under the assumption of

K − 1 factors. Ideally, a re-sampled data set X∗ will result in a markedly lower ι
(K)
x· than the

true ι
(K)
x0 , and a markedly larger ι

(K+1)
x· than the true ι

(K+1)
x0 , which should be close to zero.
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Figure 6.10: For simulated data of K = 3 factors, we examine the third singular value of the
true data (red) and two reconstructed data sets for both the raw X data and the ε error free
Y In each case, we re-sample either the third factor (green) or left singular vector and value,
then reconstruct the data. Though the dynamic dependence of the third factor is destroyed in
either case, this does not affect the singular values in the reconstructed data sets.
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Consider two different representations of the X data matrix:

X =

K∑
k=1

βkf
′
k + ε,

X
SVD
=

m∑
j=1

djujv
′
j .

Because of error ε we can still expect a sharp decline in ι
(K+1)
x0 from ι

(K)
x0 , but not necessarily

to the point where ι
(K+1)
x0 ≈ 0. Therefore, there should exist a greater effect to re-sampling

residuals from K−1 factor models to an extent that distinguishes them from the true K factor

model.

Model X1: Let

X̂x1 =
K−1∑
k=1

βkf
′
k + ε,

ε̂x1 = X− X̂x1 = βKf′K .

We sample ε̂x1 with replacement to get ε∗x1 = β∗Kf′K and X∗x1 =
∑K−1

k=1 βkf
′
k + β∗Kf′K + ε,

where β∗K are the sampled (with replacement) elements of βK . Next we compare SVD(X) with

126



SVD(X∗x1).

Model X2: Similarly, we can approximate the factors and factor loading curves with singular

values and singular vectors:

X
SVD
=

m∑
j=1

djujv
′
j ,

X̂x2 =
K−1∑
k=1

dkukv
′
k,

ε̂x2 = X− X̂x2 =
K−1∑
k=1

[βkf
′
k − dkukv′k] + βKf′K + ε

≈ βKf′K + ε.

Again, we sample ε̂x2 with replacement to get ε∗x2 and X∗x2 = X̂x2 +ε∗x2, then compare SVD(X)

with SVD(X∗x2) and SVD(X∗x1). An example of this process is depicted in the second panel of

Figure 6.10. Again, we see little difference in singular values. Although resample affects the

dynamic dependence of the 3rd factor, the SVD of the reconstructed X matrices is indifferent

to this in terms of the number of factors and the proportion of variance explained by them.

This is in fact what motivated the proposed approach in Section 6.3.2.

6.4 Order Selection

To select the order r of the auto-regressive processes for the dynamic factors, we employ the

Akaike Information Criterion (AIC) and Schwartz’s Bayesian Information Criterion (BIC). Be-

cause the order selection is only for the determination of the specification for the dynamic

factors, we need not employ the entire penalized conditional log-likelihood lp(X,B) from Equa-

tion 4.7. Rather, we focus solely on the conditional likelihood l(B) for the dynamic factors

given in Equation 4.5:

AICp = l(p)(B(p)) + 2p, (6.8)

BICp = l(p)(B(p)) + 2 ln (n− p),
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where l(p)(B(p)) is the likelihood expression for the dynamic factors from Equation 4.5 evaluated

at the MLEs for dynamic factors given by

βik = ck +

p∑
l=1

ϕi−l,kβi−l,k + vik,

for factors k = 1, . . . ,K and p = 1, 2, . . .. We evaluate the criteria in Equation (6.8) based

on E-step values for E[β|X ] from the final EM iteration of FDFM estimation. The value of p

that results in the lowest of either AIC or BIC is chosen as the order of auto-regressive process

for the dynamic factors. It is possible that the dynamic factors follow differing AR processes

AR(pk) or even ARMA processes ARMA(pk, qk), and it is entirely possible to apply AIC and

BIC for reasonable combinations of pk, qk. However, for the purposes of the current FDFM, we

maintain the convention that all of the dynamic factors follow the same order of AR process.

6.5 Inference

To create confidence intervals for FDFM parameters, factor loading curves, and forecasts, we

rely on a bootstrap method to form empirical distributions for each of these based on resampled

model residuals. The following method and some notation is based on the method described in

Alonso et al. (2011). After FDFM estimation, we have the predicted functional time series

x̂i(tj) =
K∑
k=1

βikf̂k(tj),

where βik is understood to be E[βik|X ] from the E-step of the final EM iteration of estimation.

To formulate the bootstrap procedure, we revert to the traditional DFM notation – used

most recently in Section 6.3.1; Equations (6.1):

xi = Fβi + εi,

Φ(L)βi = c + vi,

with xi = [xi(t1), . . . , xi(t1)]′; βi = [βi1, . . . , βiK ]′ and c = [c1, . . . , cK ]′; and Φ(L) is the lag
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polynomial from Equation (6.1).

We define the model residuals as:

ε̂i = xi − x̂i = xi − F̂βi, (6.9)

v̂i = βi − ĉ−
p∑
r=1

Φ̂rβi−r.

We draw iid resamples from ε̂i = [ε̂i1, . . . , ε̂im]′ to form ε∗ij for each j = 1, . . . ,m. Similarly,

we draw iid resamples from v̂i = [v̂i1, . . . , v̂iK ]′ to form v∗ik for each k = 1, . . . ,K.

The next step is to generate bootstrap data based on the resampled residuals:

β∗i = ĉ +

p∑
r=1

Φ̂rβ
∗
i−r + v∗i ,

x∗i = F̂β∗i + ε∗i ,

with ε∗i = [ε∗i1, . . . , ε
∗
im]′ and v∗i = [v∗i1, . . . , v

∗
iK ]′. We resample and replicate the data B times.

At this point, we now have three sets of model parameters and factor loading curves – the true

values, the FDFM estimates and resampled FDFM estimates:

Θ =

{
σ2 ∪

K⋃
k=1

{fk, σ2
k, c,Φ1, . . . ,Φp}

}
, (6.10)

Θ̂ =

{
σ̂2 ∪

K⋃
k=1

{f̂k, σ̂2
k, ĉ, Φ̂1, . . . , Φ̂p}

}
,

Θ∗ =

{
σ2
∗ ∪

K⋃
k=1

{f∗k , σ2
k;∗, c

∗,Φ∗1, . . . ,Φ
∗
p}

}
.

In the lattermost case we have the number of bootstrap replicates B of Θ∗ by which to form

a set of empirical distributions we denote as FΘ∗ . Based on percentiles of these, we can create

confidence intervals or bands/functions for Θ̂, and – in the case of simulated data – compare

the confidence bands and estimates with the true values Θ.

In a similar manner, we implement a bootstrap procedure for forecast intervals. For forecast
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horizon h, using the notation of this section we generate forecasts from FDFM estimates by:

β̂n+h = ĉ +

p∑
r=1

Φ̂rβ̂n+h−r,

x̂n+h = F̂β̂n+h.

Likewise, from our resampled datasets and resulting estimates Θ∗, we create a distribution of

forecasts based on

β∗n+h = c∗ +

p∑
r=1

Φ∗rβ
∗
n+h−r,

x∗n+h = F∗β∗n+h.

for each of the B bootstraps. Thus in addition to the forecasted curves x̂n+h we can produce

forecast intervals based on the bootstrap distribution. Again, with simulated data, we will be

able to compare the forecasted curve to the true one, and also examine if the true curve is

contained within the forecast interval.
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Chapter 7

Yield Curve Application

The yield curve is an instrument for portfolio management and for pricing synthetic or derivative

securities (Diebold and Li, 2006). Bond prices are hypothesized to be a function of an underlying

continuum of yields as a function of maturity, known as the yield curve. Our contribution to

the yield literature is pragmatic: the FDFM reconciles the theory-based desire to model yield

data as a curve with the applied need of accurately forecasting that curve over time.

The yield curve is a theoretical construct not without its own inherent practical difficulties.

First and foremost, although yield determines prices, only bond prices are observed for a set

of discrete maturity horizons; from these a corresponding discrete set of yields are calculated.

Thus the yields themselves are not directly observed, nor is an entire curve for every possible

maturity. Further, not only is it of interest to know the yield for all maturities at each point in

time (cross-sectional), but also for a single maturity as it evolves over time (dynamic). Finally,

because a bond at time i of maturity t is essentially the same bond as the one at time i + 1

of maturity t − 1, there is also a certain amount of systematic cross-correlation in yield data.

Therefore, bond data have each of cross-sectional, dynamic and cross-correlational behaviors to

consider for predictive modeling.

To this end, yield curve models have traditionally assumed either of two formulations. The

first is theoretical in nature: as in Hull and White (1990) and Heath et al. (1992), for a given

date the emphasis is on fitting a yield curve to existing yields based on no-arbitrage principles

stemming from economic theory. The other approach is the so-called equilibrium or affine-class

models where time series techniques are used to model the dynamics of yield on a short term



or instantaneous maturity. Yields for longer maturities are then derived using an affine model.

This method has been developed in works such as Vasicek (1977), Cox et al. (1985), and Duffie

and Kan (1996).

These contrasting methods illustrate the dichotomy of yield forecast models. As a practical

matter, goodness of fit is paramount in a model for it to be of any use. Still, a yield model should

be consistent with its underlying theory, and maintain a degree of economic interpretation.

Cross sectional/no-arbitrage models ignore the dynamics of yields over time (as noted in Diebold

and Li, 2006; Koopman et al., 2010, e.g.) and thus threaten the former yet satisfy the latter.

Time series/equilibrium models place emphasis on the former at the expense of the latter (as

seen in Duffee, 2002).

7.1 Models for Yield Curve Forecasting

What we propose in this chapter is a synthesis of the cross sectional and dynamic considerations

mentioned above. We approach yield curves as a functional time series; the yields of the

observed maturities are a discrete sampling from a true underlying yield curve. To this end we

conflate concepts from functional data analysis (FDA; Ramsay and Silverman, 2002, 2005) and

from dynamic factor analysis/modeling (DFM; Basilevsky, 1994, e.g.). Recall from Chapter 4

that the FDFM’s factor loading curves are natural cubic splines (NCS): a significant result which

facilitates interpolation of yields both within and out of sample so that forecasts are indeed

true yield curves. While the factor loadings account for the cross-sectional/curve dimension of

yields, the dynamic factors, in turn, determine the evolution of these functions over time. Thus,

they account for the time series and cross-correlational nature of yield data. Our particular

specification of the FDFM enables its estimation via the Expectation Maximization algorithm

(EM) (Dempster et al., 1977).

Why the need for both a functional and a dynamic factor framework? Recall that the

unifying goal is to develop a model consistent with the concept of the yield curve posited by

economic theory and one which is of use for practical forecasting. A naive attempt to merge

the latter need with the former is to model yields for all observed maturities over time as
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a multivariate time series. However, as the number of observed maturities increases to even

moderate size, vector autoregressive models (VARs) – for example – become intractable in

dimension.

Abstracting from the yield setting for a moment, in a more general sense large multivariate

time series have been successfully modeled (Engle and Watson, 1981; Geweke and Singleton,

1981; Molenaar, 1985; Pena and Box, 1987; Pena and Poncela, 2004, to name just a few) using

a dynamic factor approach. In DFMs the multivariate data are assumed to be dependent on

a small set of unobserved dynamic factors. This solves the dimensionality problem, yet DFMs

per se leave to question the interpretability of the unobserved factors. Further, in our present

context, DFMs fall short of producing a functional yield curve.

To incorporate the functional aspect, we propose to combine the DFM framework with ideas

from functional data analysis (FDA) (Ramsay and Silverman (2002, 2005) provide a thorough

treatment of FDA in both theory and through application). However, FDA in general is an

area still nascent in development, and these applications deal primarily with collections of in-

dependent curves. Earlier work by Besse et al. (2000) applied functional autoregressive models

(FAR) to univariate climatological data: the seasonal cycle is hypothesized to be functional.

In a similar hypothesis, Shen (2009) forecasted periodic call volume data using a method akin

to functional principle component analysis (FPCA). In an applied setting more similar to ours,

Hyndman and Shang (2009) developed a weighted FPCA method to forecast time series of

curves and applied it to multivariate time series of fertility or mortality data indexed by dif-

ferent ages. Yet, unlike these models where FPCA and time series modeling are performed in

separate steps, ours is a method that estimates both functional and time series components

simultaneously, and does so in a quite natural manner.

Within the context of yield curve forecasting, other recent developments have begun to rec-

oncile the statistical viability of DFMs and functional data analysis with the underlying theory

in regard to yield dynamics; a constraint which all but requires the usually absent interpretation

for the dynamic factors. Diebold and Li (2006) introduced the Dynamic Nelson–Siegel model

(DNS): a three factor DFM with functional coefficients estimated in two steps. The functional

coefficients are pre-specified as fixed parametric curves and the authors further provide an eco-
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nomic interpretation of each. Koopman et al. (2010) extended the DNS specification to allow

(G)ARCH volatility and a fourth dynamic factor which allows time dependence to the otherwise

fixed parametric factor loading curves. Another DFM-type approach is provided by Bowsher

and Meeks (2008) which present a cointegrated DFM using natural cubic splines (NCS). Spline

knots serve as dynamic factors following an error correction model process; the knot locations

are determined via an initial selection procedure.

It is worth noting our FDFM is in a similar vein as those of the aforementioned yield

models: a dynamic factor model with functional coefficients; one which– quite coincidentally–

even exploits the properties of NCS for the cross-sectional/curve dimension of yields. However,

unlike Diebold and Li (2006), the FDFM functional coefficients are estimated; thus, they are free

to vary with the particular application to explain the functional nature of the data. Further, as

opposed to either class of models, estimation of the FDFM is achieved in a single step. Within

the yield context it will be seen that the FDFM satisfies our two aforementioned criteria:

goodness of it and economic interpretability. That the factor loading curves are estimated

facilitates application of the FDFM to contexts outside of yield curve forecasting as well. We

will show through simulation that our specification even permits the inclusion of observed non-

latent variables in the dynamic factors similar to Diebold et al. (2006).

Presented in this chapter is our functional dynamic factor model (FDFM) which we show to

perform very well in regard to yield curve forecasting. Further, we do so in multiple assessments

which highlight the model’s capability of accurately forecasting the entire function as well as

the potential profit generated from employing these forecasts in trading strategies. In any sense

the FDFM outperforms existing models which require either multiple-step estimation or lack a

functional component.
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7.2 Application to Yield Curve Data

7.2.1 Yield Curve Data

In this section we consider the application of our functional dynamic factor model to actual

yield data. We use the same data as Diebold and Li (2006)1 which is a sample of monthly

yields on zero coupon bonds of eighteen different maturities (in months):

tj = {1.5, 3, 6, 9, 12, 15, 18, 21, 24, 30, 36, 48, 60, 72, 84, 96, 108, 120},

j = 1, . . . ,m = 18. The yields are from the period January 1985 through December 2000

(192 months) originally obtained from forward rates provided by the Center for Research in

Securities Prices (CRSP), then converted to unsmoothed Fama-Bliss yield rates; see Fama and

Bliss (1987) for further details on the method.

7.2.2 Candidate Models

As noted by Koopman et al. (2010), in yield curve forecasting there is often a tradeoff between

a statistically rigorous model which accounts for both the dynamic and cross sectional behavior

of the data, and a theoretical model which is consistent with the tenets of modern Economics

in regard to yield curve formulation.

To this end, Diebold and Li (2006) built on the Nelson-Siegel framework (Nelson and Siegel,

1987) by formulating a dynamic version thereof known as the Dynamic Nelson-Siegel model

(DNS). It is a three factor model that accounts for the short, mid and long term behavior

of the yield curve over time. Extensions of the DNS model such as Diebold et al. (2006) or

Koopman et al. (2010) allow state-space specification, inclusion of additional latent or non-

latent factors and GARCH errors. In any case, the DNS specification has proven successful in

outperforming yield curve forecasts produced from traditional VAR methods. However, it is

also somewhat restricted by the fixed parametric form of the functional coefficients and using

a two-step estimation procedure.

Another recent approach is that considered by Bowsher and Meeks (2008) known as a func-

1See http://www.ssc.upenn.edu/̃fdiebold/papers/paper49/FBFITTED.txt for the actual data.
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tional signal plus noise error correction model (FSN-ECM). Here the cross sectional behavior

of the yield curve is modeled as an NCS with significantly fewer knot locations than the num-

ber of observed maturities. The latent dynamic factors at these knot locations then follow a

cointegrated multivariate time series. Despite the model’s fit, selection of the knot locations is

exhaustive, and is an additional step in the estimation. Further, as noted in Koopman et al.

(2010), cointegrated factors present a difficulty in terms of retaining economic interpretation.

In the following sections we compare the FDFM with the DNS model presented in Diebold

and Li (2006). Their model is composed of three factors with corresponding factor loading

curves. The factor loadings are pre-specified parametric curves (see the dashed curves in Fig-

ure 7.1) based on financial economic theory. Let xi(t) denote the yield at date i on a zero

coupon bond of maturity t, then the DNS model is represented as


xi(t) =

∑3
k=1 βi,kfk(t) + εi(t) , for i = 1, . . . , n,

f1(t) ≡ 1 , f2(t) ≡ 1−exp(−αit)
αit

, f3(t) ≡ f2(2)− exp(−αit),

βi,k = ck + ϕkβi−1,k + ζi,k , for k = 1, 2, 3,

(7.1)

evaluated at maturities tj , j = 1, . . . ,m. The first loading curve f1(t) is constant and intended

to represent the long term component of yields (level); the second f2(t) represents a short term

component, or slope. Finally, the third loading f3(t) represents a mid-term component, or

curvature. The parameter αi determines the point t∗(αi) at which f3(t) achieves its maximum.

While this can be estimated as a fourth factor (see, e.g., Koopman et al., 2010), Diebold and

Li (2006) set αi to a fixed value for all i = 1, . . . , n. This results in entirely predetermined,

parametric curves. The specific value α = 0.0609 is determined by their definition of “mid-term”

as t = 30 months.

Estimation of the DNS model is a two step procedure. First, time series of factor scores of

β̂i,k are estimated by ordinary least squares (OLS) of xi(tj) on [1, f2(tj), f3(tj)] for j = 1, . . . ,m

at each time point i = 1, . . . , n. Second, an AR(1) model is fit on each series β̂i,k for the purpose

of forecasting β̂n+1,k and ultimately x̂n+1(tj) via Equation (4.32) from Section 4.3.3.
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(a) First Factor Loading Curve
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(b) Second Factor Loading Curve
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(c) Third Factor Loading Curve
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Figure 7.1: Example of factor loading curves: FDFM curves (solid, left axis) estimated from the
period May 1985 to April 1994; pre-specified DNS curves (dashed, right axis). FDFM estimates
closely resemble the shape of the DNS curves for the second and third factors, while fFDFM1

resembles a typical yield curve shape. Dual axes have been utilized to account for difference in
scale.
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7.2.3 Assessment

We assess the performance of the FDFM in three distinct exercises. The first two are traditional

error based assessments of forecasts or within-sample predictions of yield curves or sections

thereof. The final application is a combination of both forecasting and curve synthesis. Through

an adaptation of the trading algorithms introduced in Bowsher and Meeks (2008), we develop

trading strategies based on the forecasts of the FDFM and DNS models and assess the resulting

profit generated by each.

For each of these, as a comparison, we use the DNS specification aforementioned above in

Section 7.2.2. For the purpose of making an unbiased comparison, we use a similar formulation

of our FDFM model with 3 factors following independent AR(1) processes. The key distinc-

tion between this FDFM model and the DNS model is that the FDFM estimates the model

simultaneously: the smooth factor loading curves and the AR(1) parameters are estimated in

a single step. In contrast, the estimation for the DNS model requires two steps given the pre-

specified factor loading curves: first the factor time series are estimated; from these the AR(1)

parameters are determined.

The key distinction between the two models raises an interesting question: How do the

factor loading curves between the two models compare? Figure 7.1, Panels (a)-(c), show an

example of the factor loading curves estimated by the FDFM (solid line) for the period May

1985 through April 1994. Pictured alongside, the dashed line plots the DNS model curves.

Recall the DNS motivation for the form of f1, f2, and f3 was an economic argument, while the

formulation of the FDFM described in Chapter 2 is based entirely on statistical considerations.

Despite this, we see that the FDFM model is flexible enough to adapt to a specific application.

Factor loading curves f2(t) and f3(t) from the FDFM assume the behavior of those from the

DNS model without imposing any constraints that would force this. Thus, the FDFM inherits

the economic interpretation of f2(t) and f3(t) set forth in Diebold and Li (2006). In the case of

f1(t), the FDFM version resembles a typical yield curve shape as opposed to a constant value

for DNS; however, inspecting the magnitude suggests that departure of the FDFM version from

a constant value is small. Less typical yield curve shapes are usually characterized by deviations

in the short and mid term yields from the norm. This is exactly what f2(t) and f3(t) capture.
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Thus we consider the first factor as the mean yield, while the second and third account for

short and mid term deviations from this norm.

Forecast Error Assessment

In this section, we compare the FDFM and DNS models using a rolling window of 108 months

to forecast the yield curve 1, 6, or 12 months ahead2. Yields on bonds of maturity less than

three months are omitted in order to match the methodology used in Diebold and Li (2006).

To compare the models we use the mean forecast error (MFE) and root mean squared forecast

error (RMSFE):

MFEj =

r∑
i=1

[xn+h(tj)− x̂n+h(tj)]

r
, RMSFEj =

√√√√ r∑
i=1

[xn+h(tj)− x̂n+h(tj)]
2

r
.

where r = 84, 79, 73 is the number of rolling forecasts for forecast horizon h = 1, 6, 12, respec-

tively.

A summary of the forecasting performance is shown in Table 7.1. For month ahead forecasts,

the MFE is lower (in magnitude) with the FDFM for four out of the five displayed maturities

(highlighted in bold), while RMSFE is lower for all five. For six months ahead, DNS out-

performs FDFM just 2 out of five times in both MFE and RMSFE. For twelve month ahead

forecasts, DNS outperforms FDFM in MFE for 3 of 5 displayed maturities. However FDFM

has lower RMSE for all 5 maturities.

Curve Synthesis

Because each factor loading curve f̂k(·) is an NCS, between any two observed maturities tj and

tj+1, we can calculate the value for f̂k(t): see Equation (4.32) of Section 4.3.3. It follows, then,

that between any two time series of yields {xi(tj)}ni=1 and {xi(tj+1)}ni=1, we are able to replicate

an entire time series for the intermediate maturity t: {x̂i(t)}ni=1.

To illustrate this point, we use the entire data set (see introduction of Section 7.2), that

is, use i = 1, . . . , n = 192 months of yield data for maturities tj , m = 18. For both the

2For example, for the one month ahead forecast we fit the models on the first 108 months of data and forecast
the 109th month. Then fit the models on the 2nd through 109th month and forecast the 110th month, etc.
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Table 7.1: MFE and RMSFE: 1, 6, and 12 month ahead Yield Curve Forecast Results. The
better result between the two models is highlighted in bold. For 1 month ahead forecasts, the
FDFM results in lower (magnitude) MFE for most maturities but results are mixed for 6 and
12 months ahead. RMSFE is typically lower with the FDFM for 1, 6 and 12 months ahead.

MFE
1 Month Ahead 6 Months 12 Months

Maturity DNS FDFM DNS FDFM DNS FDFM

3 Months -0.045 0.026 0.123 0.172 0.203 0.257
1 Year 0.023 0.035 0.177 0.168 0.229 0.215
3 Years -0.056 0.015 0.022 0.060 0.003 0.013
5 Years -0.091 -0.004 -0.079 -0.021 -0.166 -0.133
10 Years -0.062 -0.023 -0.139 -0.121 -0.316 -0.318

RMSFE

3 Months 0.176 0.164 0.526 0.535 0.897 0.867
1 Year 0.236 0.233 0.703 0.727 0.998 0.967
3 Years 0.279 0.274 0.784 0.775 1.041 0.947
5 Years 0.292 0.277 0.799 0.772 1.078 0.953
10 Years 0.260 0.250 0.714 0.697 1.018 0.921
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Figure 7.2: Example of Curve Synthesis: Entire time series of yields are omitted from esti-
mation, then “filled in” using the imputation described in Section 4.3.3. Here, 3 consecutive
maturities have been omitted, resulting in 3 missing time series corresponding to these matu-
rities.
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DNS and FDFM models, we delete a set of adjacent time series from the data, estimate the

model, then assess the prediction error of the predicted series in reference to the actual deleted

series. Specifically, for our data matrix Xn×m with columns x1, . . . ,xm, we omit l = 1, . . . , L

consecutive columns from X, then estimate the model on the remaining Q ≡ m−L maturities.

From this we compute the L time series of missing data: x̂j , . . . , x̂j+L. For each choice of L,

we delete a “horizontally” rolling window of width L maturities and estimate the model on the

remaining Q maturities, R ≡ m− L+ 1 times. As an example, for L = 3, we can estimate the

models on x4, . . . ,xm and predict x̂1, . . . , x̂3; then estimate the models on x1,x5, . . . ,xm and

predict x̂2, . . . , x̂4, etc.

We examine the RMSFE for the lth omitted maturity of the rth sequence; r = 1, . . . , R;

l = 1, . . . , L. Because the models are estimated based on a rolling window of maturities, for

each choice of L a time series xj for yield tj will be estimated multiple times. Therefore, for

each choice of L we take the mean of the RMSFE of the predicted series for each maturity.

We further average over our definitions of short (t ∈ [1.5, 21)), mid (t ∈ [21, 36]), and long

term (t ∈ (36, 120]) horizons. Finally, we average over all maturities as a one-number summary.

These results are presented in Table 7.2 with FDFM as a fraction of DNS. Because prediction

for the FDFM model outside the range of the data is linear extrapolation3, we expect these

to become increasingly inaccurate as L grows large. Thus, results are also presented excluding

extrapolated predictions in order to better illustrate the truly functional predictions of the

FDFM.

In general, as L increases from 1 to 8 we see the expected decline in the performance of

the FDFM model relative to DNS. In Panel (a) of Table 7.2 the average RMSFE on short

term bonds for the FDFM remains surprisingly robust as we delete more and more maturities.

On mid term bonds, DNS results in lower prediction error when the number of deleted series

reaches 5 or more. For long term, DNS more or less outperforms FDFM across the board (this

trend will be echoed in Section 7.2.3). These results are similar whether or not the extrapolated

results are included. Perhaps the best summary is the last column in each of Panel (a) and (b)

of Table 7.2, where beyond 3 or 4 omitted maturities, the parametric based DNS model begins

3This is due to the NCS framework; see Section 4.3.1 for details.
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to outperform the FDFM.

Table 7.2: Average RMSFE; FDFM as a fraction of DNS: (a) with Extrapolation (b) Without
Extrapolation

(a) With Extrapolation (b) Without Extrapolation
Short Mid Long All Short Mid Long All

Omitted

1 0.88 0.97 1.05 0.95 0.84 0.97 1.04 0.94
2 0.95 0.90 1.13 1.00 0.90 0.90 1.01 0.94
3 0.94 0.98 1.06 0.98 1.00 0.98 1.00 0.99
4 0.87 0.93 1.64 1.14 0.99 0.93 1.07 1.01

5 0.99 1.01 0.88 0.95 1.07 1.01 0.99 1.03
6 0.99 1.00 1.67 1.26 1.05 1.00 1.20 1.09
7 1.34 1.11 0.93 1.13 1.24 1.11 1.16 1.19
8 0.92 1.17 1.82 1.39 1.30 1.18 1.48 1.33

Portfolio-Based Assessment

RMSFE-type assessment provides a good diagnostic measure of forecast performance from

a statistical perspective. However, as Bowsher and Meeks (2008) argued in their paper, in

applied economic settings, a pure error-based assessment measure may fail to fully explain the

financial implications of having used a particular model. Therefore, in this section we consider

an adaptation of the profit based assessment introduced therein. By using modified versions of

their three trading strategies, we create portfolios based on the model forecasts, then measure

the cumulative profit of the strategy. This also serves as a good capstone exercise for our

presentation of the FDFM as it simultaneously involves both forecasting and curve synthesis:

the primary uses for our model.

In each strategy we use the same rolling window of 108 months as described in Section 7.2.3

so that the trading algorithm is employed every month over the course of 84 months. Each

period i we create a portfolio consisting of a $1M purchase of one bond or set of bonds and a

corresponding sale of another bond or set of bonds for the same amount. Therefore, the net

investment per period is $0. The decision of which bond to sell and which to buy is made based

on the sign of the predicted spread in their one period returns.

At time i+ 1 we cash out our portfolio and record the cumulative profit over the 84 month
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trading period. Denoting the yield at time i of a zero coupon bond of maturity t months as

xi(t), the price of the bond at time i is

Pi(t) = exp[−txi(t)]. (7.2)

Correspondingly, the price the next period (month) is then Pi+1(t−1) = exp[−(t−1)xi+1(t−1)]

since in the month that has elapsed the maturity is reduced by, not surprisingly, one month.

We denote the one period return as

Ri+1(t) =

[
Pi+1(t− 1)

Pi(t)

]
− 1, (7.3)

and the log one period return as ri+1(t) ≡ ln[1 +Ri+1(t)]. Equations (7.2) and (7.3) imply

ri+1(t) = txi(t)− (t− 1)xi+1(t− 1). (7.4)

Thus for a forecasted yield x̂i+1|i(t) we have r̂i+1|i(t) = txi(t)− (t− 1)x̂i+1|i(t− 1), which is a

combination of both actual and forecasted yields. We use the data presented in Section 7.2.1

and thus are limited to a set of non-consecutive observed maturities. Akin to Bowsher and

Meeks (2008), we rely on linear interpolation of xi(t− 1) to provide the yield for xi(t) and use

the same random walk forecast (RW) as a benchmark by which to compare models:

xi+1(t) = xi(t) + ηi+1(t) , ηi+1(t)
iid∼ WN(0, ν2), (7.5)

with forecast x̂i+1|i(t) = xi(t).

Algorithm 1. For this strategy, we use a method very similar to the second algorithm

presented in Bowsher and Meeks (2008). Let t ∈ T = {4, 5, . . . , 13, 16, . . . , 85}4, t1 = 4 and

t2,j ∈ T\{4}; j = 1, . . . , 33. Every period i we form a portfolio of sub-portfolios with two

bonds {t1, t2,j}. Define weights wj as the proportion of the historical absolute excess return on

4The set T is slightly different from Bowsher and Meeks (2008) because the shortest maturity we use from
the data presented in Section 7.2.1 is 3 months.
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portfolio {t1, t2,j} to the sum over all j of the same:

wj =

∑
i |Ri(t2,j)−Ri(t1)|∑

j

∑
i |Ri(t2,j)−Ri(t1)|

,

where i spans the period January 1985 to December 1993.

To borrow some notation from Bowsher and Meeks (2008), let dij represent the investment

rule for the amount at time i invested in each jth sub-portfolio. To determine the amount

invested in each sub-portfolio, let

dij = $1M × wj × sgn[r̂i+1|i(t2j)− r̂i+1|i(t1)].

We set dij = 0 in the off chance of r̂i+1|i(t2j) = r̂i+1|i(t1). Let πi+1 denote the time i+ 1 profit

resulting from from these rules. Then

πi+1 =
∑
j

dij [Ri+1(t2j)−Ri+1(t1)] ≈
∑
j

dij [ri+1(t2j)− ri+1(t1)].

The results of this trading strategy are summarized in Table 7.3. Use of the FDFM model

results in nearly twice the cumulative profit produced from the DNS model. Also shown is

the capability of each model in successfully predicting the positive (1,520) and negative (1,252)

actual spreads of the sub-portfolios in each period. Surprisingly, the random walk model has

the greatest accuracy in predicting positive spreads (84%), as compared to the FDFM (73%)

and DNS (61%) models. All three models are less accurate in the prediction of a negative

spread, though RW is the worst by far (8%).

Table 7.3: Algorithm 1: Weighted Pairs. Use of the FDFM model results in nearly twice the
cumulative profit produced from the DNS model.

Profit ($000) Directional Accuracy
Percentile of Sub-Portfolios

Model Cumulative Median 10th 90th + -

FDFM 1,089 5.06 -101.92 149.53 1,102/1,520 (72.5%) 392/1,252 (31.3%)
DNS 519 5.07 -110.77 116.02 926/1,520 (60.9%) 538/1,252 (43%)
RW -94 -10.52 -190.5 163.64 1,274/1,520 (83.8%) 97/1,252 (7.7%)

Algorithm 2. The strategy in Algorithm 1 is a fairly basic one: to use every available
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bond at our disposal to predict the spread between its return and a short term bond. Our

second strategy5 is more sophisticated by creating portfolios of an optimal pair of bonds each

period i. Given a fixed value of t1, we choose t2i to optimize the absolute spread in predicted

return:

t2i = arg max
t6=t1
|r̂i+1|i(t)− r̂i+1|i(t1)|. (7.6)

Because we examine multiple portfolios, we use a sparser set of maturities in this exercise

than previous, though of the same range. This set is defined by the observed maturities of

Section 7.2.1:

t1, t2i ∈ T = {4, 7, 10, 13, 16, 19, 22, 25, 31, 37, 49, 61, 73, 85}.

We perform this exercise for all choices of t1 as long as t1 < t2i and compare the results. Our

investment rule di at time i and resulting profit πi+1 the next period is of a similar form to

Algorithm 1:

di = $1M × sgn[r̂i+1|i(t2i)− r̂i+1|i(t1)],

πi+1 = di[Ri+1(t2i)−Ri+1(t1)] ≈ di[ri+1(t2i)− ri+1(t1)].

Again, we set di = 0 whenever r̂i+1|i(t2i) = r̂i+1|i(t1).

Table 7.4: Algorithm 2: Optimal Pairs Portfolio.

Profit ($000) Profit ($000)
t1 FDFM DNS RW t1 FDFM DNS RW

Short 3 1,013 3,574 -228 Mid 21 1,246 202 680
6 1,381 2,828 -133 24 1,592 242 70
9 1,061 1,013 -297 30 2,284 203 -951
12 1,873 -367 -307 36 1,466 919 -173
15 1,519 -582 -432 Long 48 -361 589 236
18 1,081 -481 -263 60 740 339 -284

72 -131 -1 72

The results of the strategy are shown in Table 7.4. When the choice of t1 is six months

or less, the DNS model generates greater cumulative profit than either of the other models.

5The method is an adaption of the third algorithm presented in Bowsher and Meeks (2008).
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However, when the choice of t1 is within 9 and 36 months, the FDFM consistently generates

significantly greater profit than the DNS and RW models. Thus, when we are free to pick

the bond that optimizes the predicted spread each period, the FDFM performs rather well,

provided the maturity of the first bond is within a certain range. Our final strategy expands

upon this idea.

Algorithm 3. Because the choice of the optimal second bond can vary from one period to

the next in Algorithm 2, it is not clear what a consistently good combination is. Thus, for our

third strategy we consider an exploratory and exhaustive approach as a diagnostic assessment

of with which combination of bonds our model excels. As such, we expand our set of bonds to

include those of longer maturity:

t1, t2 ∈ T = {4, 7, 10, 13, 16, 19, 22, 25, 31, 37, 49, 61, 73, 85, 97, 109}.

In this modification of strategy 1 from Bowsher and Meeks (2008), the portfolio is a simple

one consisting of two bonds with maturities t1 and t2. For the duration of the strategy, these

maturities remain fixed over all periods i = 1, . . . , 84. As before, the decision at time i of

which bond to sell and which to buy is made based on the predicted direction of the spread

in log one period returns: di = $1M × sgn[r̂i+1|i(t2) − r̂i+1|i(t1)] (we set di = 0 whenever

r̂i+1|i(t2) = r̂i+1|i(t1)). This yields the time i+ 1 profit

πi+1 = di[Ri+1(t2)−Ri+1(t1)] ≈ di[ri+1(t2)− ri+1(t1)].

We examine the cumulative profit of all combinations of this type or portfolio such that t2 > t1.

Figure 7.3 depicts the results of our final trading strategy. For each combination of t2 > t1,

the name of model with the largest cumulative profit is displayed in that cell by the first initial

of its acronym (“F” for FDFM, e.g.). A “+” or “-” suffix indicates the largest profit was positive

or negative, respectively.

The FDFM model typically has the greatest profit when t2 ∈ {30, . . . , 72}. These results are

consistent with Sections 7.2.3 and 7.2.3: the FDFM was either comparable or better on RMSFE

for forecasting and for imputation on maturities in this range. We also see a certain similarity
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Short Term Mid Term Long Term

Mat. t2=6 9 12 15 18 21 24 30 36 48 60 72 84 96 108

t1=3 D+ D+ D+ D+ D+ R- F- D+ D+ F+ F- F+ D+ D+ D+

6 F+ D+ D+ R+ D- R- R+ D+ F+ R+ F+ D+ D+ D+

9 R+ R+ D+ R+ R- F+ F+ F+ F+ F+ D+ F+ D+

12 R+ D+ D+ R+ R+ F+ F+ F+ F+ R+ F+ D+

15 R+ D+ R+ F+ F+ F+ F- F+ D+ F+ D+

18 R+ F+ F+ F+ F+ F+ F+ D+ D+ D+

21 R+ F+ F+ F+ F+ F+ D+ D+ D+

24 F+ F+ F+ F+ F+ D+ D+ D+

30 F+ F+ F+ F+ D+ D+ D+

36 D+ F+ F+ R+ D+ D+

48 R+ R+ R+ R+ D+

60 F+ F+ D+ D+

72 R+ R+ D+

84 F+ D+

96 F+

Figure 7.3: Algorithm 3: All combinations of portfolios for t2 > t1. The model with the largest
cumulative profit is displayed by the first initial of its acronym with “+” or “-” indicating
positive or negative profit.

in these results to those of Algorithm 2. Namely, that the FDFM typically outperformed the

other two models when t1 was exactly in this range.

For the longest maturities (> 72), the DNS model results in greater profit when t1 < 48.

Results for other regions are mixed. Recall from Section 7.2.1 that in our data short and

mid term yields are typically spaced either 3 or 6 months apart, whereas long term maturities

are spaced 12 months apart. As we saw in Section 7.2.3, as the spacing between maturities

increased, the FDFM model eventually broke down; it is, after all, very much a data driven

model. DNS, on the other hand, maintains the same factor loading curves regardless of the

data, which could explain its greater profits at long maturities.

7.3 Conclusion

In this chapter we reviewed our method for modeling and forecasting functional time series.

This novel approach synthesizes concepts from functional data analysis and dynamic factor

modeling culminating in a functional dynamic factor model. By specifying error assumptions

and smoothness conditions for functional coefficients, estimation by the Expectation Maximiza-

tion algorithm results in non-parametric factor loading curves that are natural cubic splines.
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Thus for a given time series of curves we can forecast entire curves as opposed to a discrete

multivariate time series.
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Chapter 8

Additional Applications

In this chapter, forecast performance for the FDFM is explored two additional applied settings.

In the first application, the FDFM is fit on the call center data first introduced in Chapter 1

and used to forecast out-of-sample call data compared to the SVD method. In the second

application, the FDFM is used on climatological data involving sea surface temperatures and

air pressure from a region in the South Pacific. Similarly, out-of-sample forecasts are produced

and are compared with several competing models including functional auto-regressive models

(FAR).

8.1 Call Center Data

Revisiting the call center example introduced in the initial chapter, the FDFM is used to model

and forecast the data compared with the SVD method. The data consist of daily call volumes

from a call center for an Eastern U.S. bank. The volumes are recorded at fifteen minute intervals

throughout each workday. Due to the high frequency of the intra day call volume measurements,

it is assumed that the volumes are represented by underlying smooth curves. In this context,

the daily time series of smooth curves lends itself exactly to the FDFM framework. This first

section presents a description of the data followed by the models used to estimate it. Forecast

results between FDFM models and an SVD model are then compared.



8.1.1 Data

The call data is collected for each weekday beginning January 6, 2003 through October 24,

2003 (210 days). Call volumes are recorded every fifteen minutes throughout the hours 7:00 am

through 12:00 am the following day (68 intervals). Call volumes vary significantly depending

on the day of the week, as evidenced by the plot of the mean call volumes by day in Figure 8.1.

Therefore, missing values in the data set are imputed using the mean value of the non-missing

values for that interval for the corresponding day. For example, if the volume for the 43rd day

on the 16th interval is missing, and day 43 is a Monday, then the missing value is imputed with

the mean value of all non missing 16th interval values on Mondays only.
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Figure 8.1: Day of Week Effect: intra-day and inter-day mean call volumes. In the top panel,
mean call volume throughout the day shows a clear day-of-week effect. In the lower panel, the
mean daily call volumes show a marked periodic effect.

150



8.1.2 Model

Before the FDFM framework an be applied to the data, it is important to note that even with

the high frequency nature of the data, that it is still discrete count data. Whereas the FDFM

model is based on the assumption of normally distributed data. Therefore, denoting the raw

call center data for day i, interval j as Nij it is assumed that Nij is a Poisson process with

dynamic rate λi(t). See Shen (2009), Brown et al (2005) and Weinberg et al (2007). Then

xij ≡
√
Nij + 1/4 has an approximate mean and variance of

√
λi(tj) and 1/4, respectively.

Further as λi(tj)→∞, xij is approximately normal (Shen 2009).

This convention then permits the use of the FDFM. A five factor model is proposed, with

an independent AR(1) process for each factor. Further, it is assumed that each factor has five

intercepts in order to account for a day of the week effect.

xij =
5∑

k=1

βikfkj + εij , (8.1)

βik = cdi−1,k + ϕkβi−1,k + vik,

with εij
i.i.d.∼ N(0, σ2), vik

i.i.d.∼ N(0, σ2
k) and E[εijvsk] = 0 for i, s = 1, . . . , n; j = 1, . . . ,m; di =

1, 2, 3, 4, 5 and k = 1, . . . , 5.

8.1.3 Forecast Assessment

To assess model performance, the SVD method is compared with both the sequential FDFM

and the simultaneous FDFM. n is set to 160, and rolling one step forecasts are produced for

days 161 through 210. For each forecast, and each model, Root Mean Squared Forecast Error

(RMSE) and Average Percent Error (APE) are calculated based on call volumes Nij = x2
ij−1/4.

Thus, forecasts are calculated as

x̂i,j =

5∑
k=1

β̂i,kf̂kj ,

β̂i,k = ĉdn,k + ϕ̂kβ̂i−1,k,

N̂i,j = x̂2
i,j − 1/4.
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With APE and RMSE given by

RMSEi =

√√√√ 1

m

m∑
j=1

(Ni,j − N̂i,j)2,

and

APEi =
1

m

m∑
j=1

|Ni,j − N̂i,j |
Ni,j

.

Summary statistics for these measures are shown in Table 8.1, based on the 50 rolling

forecasts. The simultaneous method has the lowest mean and median RMSE and APE. In

terms of variability of forecasts, results are mixed and comparable between the three methods.

Table 8.1: RMSE and APE For Call Data From SVD Model, FDFM Sequential (EM-Q), and
FDFM Simultaneous (EM-S). The simulataneous method has the lowest mean and median
RMSE and APE. Variability of forecasts are comparable between the three methods.

RMSE APE (%)
EM-Q EM-S SVD EM-Q EM-S SVD

First Quartile 37.75 38.00 38.08 4.41 4.38 4.37
Median 46.88 45.79 46.38 5.11 5.07 5.08
Mean 56.41 56.37 56.62 5.78 5.75 5.80
Third Quartile 63.12 63.06 63.34 6.47 6.45 6.51
Std. Dev. 30.59 30.75 30.47 2.30 2.29 2.29
IQR 25.37 25.06 25.26 2.06 2.07 2.14

Figure 8.2 illustrates the estimated factor loadings for each of the five factors for each of the

three models. Not surprisingly the SVD method has the least smooth estimates since there is

nothing implicit in that model that should guarantee any amount of smoothness. The first factor

of course dominates as illustrated by the similarity and variability (or lack thereof) of the loading

estimates. Examining the factor loading curves two through five however, considerably less

variability is evidenced for the sequential EM model compared with the SVD method. Estimates

for the sequential FDFM are generally less smooth than with the simultaneous method because

smoothing parameters for the former are typically smaller than those selected for the latter.

It is worth noting the greater variability of the simultaneous FDFM estimates, and to date it

is unclear what the cause for this is. One possibility is that for both this data and for the
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simulated data in the previous chapter, the EM for the simultaneous method fails to converge

before 100 iterations are reached. In general, the EM may be used with a Newton–Raphson

algorithm for faster convergence. Other causes may include a theoretical issue or even one due

to numerical precision; regardless further investigation is warranted and will be performed.
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Figure 8.2: Estimated Factor Loadings. EM methods result in smoother estimates due to the
presence of a smoothing parameter. The first factor dominates. The greatest variability in
estimates for the loading curves is exhibited in the simultaneous method, for which the reason
may be slow convergence.

Finally, Figure 8.3 depicts the mean actual and mean predicted call volumes for each method,
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broken down by day of the week. All methods appear to correctly separate the day of the week

effect. However it is also the case that while the estimates for Mondays are correctly the largest

estimated volumes, all methods on average under predict the effect. A possible solution may be

to include a multiplicative parameter either in addition to or as a replacement for the additive

intercept.
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Figure 8.3: Forecasts by Day of Week. All methods are able to capture the day of the week
effect. However all models also underpredict call volumes on Mondays, on average.
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8.2 Climatological Data

Similar to the the call center application, the FDFM can be used to model univariate periodic

time series by specifying the periodic component as a smooth curve. Then the univariate time

series can also be viewed as a time series of seasonal curves. This particular example compares

the FDFM with several other methods used for time series of curves forecasting on strongly

seasonal data representing the well known El Nino climatological phenomenon.

8.2.1 Data

The following analysis draws heavily from the analysis performed by Besse et al. (2000). Analy-

sis on two data sets is performed. The first is monthly mean sea surface temperature (SST) for

the El Nino 3 domain defined as 5S to 5N, 150W to 90W for the period January 1950 through

December 1996; hereafter referred to as the EN data. The second is the corresponding sea level

air pressure at Tahiti during the same time period which is used as a proxy for the Southern

Oscillation behavior observed in the El Nino phenomenon. In a similar manner, this data shall

be referred to as the SO data.
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Figure 8.4: Temperature and Pressure Data for El Nino Region

155



8.2.2 Models

For the FDFM, a model with five independent AR(1) factors is fit on the 37 year period 1950

through 1986. One year ahead rolling forecasts are produced for the the period 1987 through

1996. Comparisons are made to the mean squared error (MSE) and mean relative absolute

error (MRAE) performance measures for other functional time series models presented in Besse

et al. (2000). It is important to note that for the other models presented, the models are fit

based on the 37 year period, and that the 10 one year ahead forecasts are based on those fixed

parameters. That is, the fitting is not updated each year, only the updated data is fed through

the model.

In order to apply the FDFM, first the univariate time series data must be restated as a

time series of curves. In either of the cases for the SO or EN data, consider the monthly data

as a univariate time series ys, s = 1, . . . , T . In the data there is periodicity m of 12 months

over n years; i = 1, . . . , n and j = 1, . . . ,m so that T = n ×m. Instead of a univariate time

series, the seasonal component can be modeled as a smooth curve, giving rise to an annual time

series of curves. Using the previous notation from the functional dynamic factor model then,

xi(tj) = xij is the observation for the jth month of the ith year.

ys = xij (8.2)

j = (s− 1) mod m+ 1

s = (i− 1)m+ j.

The FDFM fit in this setting is

xij =

5∑
k=1

βikfkj + εij (8.3)

βik = ck + ϕkβi−1,k + vik.
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The one step ahead forecasts are then calculated by

x̂i,j =
5∑

k=1

β̂i,kf̂kj (8.4)

β̂i,k = ĉk + ϕ̂kβ̂i−1,k.

Besse et al. (2000) use seven other models to assess forecast performance for both data sets.

Briefly these are:

Traditional ARMA Models: These are methods based on traditional time series methods.

1. Climatology: The climatology model is the most straightforward in that it is simply

the previous year’s mean monthly temperature or atmospheric pressure.

2. Seasonal ARIMA: These models treat the data as univariate seasonal data. For the

EN data a ARIMA(0, 1, 1)(1, 0, 1)12 model is fit; for the SO data a ARIMA(1, 1, 1)(0, 1, 1)12

is fit.

Non-Parametric Models: A popular approach with functional data.

1. Kernel.

2. Functional Kernel.

Functional Auto-Regressive models (FAR): Besse et al. (2000) use various specifications

of the FAR model.

1. Smooth FAR(1) models.

2. Local FAR(1).

8.2.3 Forecast Assessment

The models can be compared on the basis of their forecasting performance of the ten year

period 1987 through 1996. One step ahead forecasts are equivalent to one year ahead forecasts

for each of the twelve months with the exception of the ARIMA models which are essentially

forecasting 1 through 12 steps ahead. Mean squared forecast error (MSE) and mean relative
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absolute forecast error (MRAE) are calculated for each model. These results are presented in

Table 8.2. One step MRAE at each year i calculated as

MRAEi =
1

m

m∑
j=1

|xi,j − x̂i,j |
|xi,j |

. (8.5)

Where x̂i,j represents the forecasted temperature or pressure given the information available at

year i− 1. Then the average over the 10 years is taken. Similarly for MSE is calculated as

MSEi =
1

m

m∑
j=1

[xi,j − x̂i,j ]2 . (8.6)

and again the average is taken over the 10 years. For the EN data, the FDFM outperforms

Table 8.2: Summary of one year ahead rolling forecasts of the EN and SO data. The FDFM
outperforms the climatology and ARIMA models for the EN data. For the SO data, the FDFM
only outperforms the ARIMA model but is much closer in performance to the other functional
methods.

El Nino Index S. Osc. Index
Model MSE MRAE MSE MRAE

FDFM 0.72 2.5 % 0.93 6.3 %
Climatology 0.73 2.5% 0.91 6.3 %
ARIMA 1.45 3.7% 0.95 6.2 %
Kernel 0.60 2.3% 0.87 6.1%
Functional Kernel 0.58 2.2% 0.82 6.0 %
Smooth FAR(1) 0.55 2.3 % 0.78 5.8 %
Smooth FAR(1) with q = p = 12 0.60 2.4 % 0.91 6.5 %
Local FAR(1) 0.53 2.2 % 0.82 5.8 %

only the climatology and ARIMA models. However in terms of methodology, the FDFM is

more easily implemented than the other functional approaches. The SO data is in general

noisier and so MSE and MRAE measures for the data are higher than with the EN data. Also

the distinction between each model’s performance is less pronounced. Here the FDFM only

outperforms the ARIMA model in terms of MSE but is still close to the MSE for the other

models. On MRAE, the FDFM performs as well as the climatology model, but the ”worst”

model to the ”best” in terms of MRAE is only separated by 0.5%.

Figure 8.5 displays a sample of the forecasts produced by all of the models for the EN and

SO data respectively. In the top panel for the EN data, the FDFM most closely resembles the
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seasonal ARIMA model but is slightly closer to the actual data. The other functional methods

are closer to actual. The lower panel shows the forecasting results on the SO data for the year

1987. In this case, all models have the propensity to overestimate the period April through

October. The FDFM performs at least as well as the other functional models besides February,

and the ARIMA model produces the lowest, and in this case closest forecast.

Finally, Figures 8.6 and 8.7 show the FDFM performance for all ten years of the forecast

period. Panel (a) of Figure 8.6 shows the mean of the actual EN data and mean forecast by

month which appears to fit the data quite well. However, on panel (b), there is little variation

in the forecasts in comparison with the actual data which could explain why MSE and MRAE

is higher with the FDFM than with some of the other models. Panel (a) of Figure 8.7 shows

mean forecast and actual for the SO data. Again, the fit is very good, perhaps better than with

the EN data. Upon examination of panel (b), the FDFM forecasts are again less variable than

the corresponding actual seasonal curves. However they are still closer to the actual data than

in the EN case which is in accordance with the results in Figure 8.5 and Table 8.2.
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Figure 8.5: Forecasts for the years 1986 (EN) and 1987 (SO) . In the top panel, the FDFM on
the EN data closely resembles the ARIMA fit though is slightly closer to the actual data. The
other functional models closely follow the pattern of the true data. In the lower panel are SO
forecasts for the year 1987. All models produce similar forecasts and overestimate atmospheric
pressure for the period April through October. Besides February, the FDFM performs at least
as well as the other functional methods.
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Figure 8.6: FDFM Forecast Performance on EN data. Panel (a) shows mean actual and mean
forecast for the EN data 1987 through 1996. The model appears to fit quite well, however panel
(b) shows the actual data is much more variable over the period than the FDFM forecasts.
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Figure 8.7: FDFM Forecast Performance on SO data. Panel (a) shows mean actual and mean
forecast for the SO data 1987 through 1996. Again the model appears to fit quite well. Panel
(b) shows the actual data is again more variable than what the FDFM forecasts but less
dramatically than with the EN data.
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Chapter 9

Conclusion and Future Work

This dissertation has introduced a novel method by which to forecast time series of curves which

is applicable in numerous settings. The functional dynamic factor model (FDFM) integrates

ideas stemming from functional data analysis and dynamic factor models. The factor approach

facilitates dimension reduction in the sense paring down a large set of observed time series into

a smaller set of unobserved factor time series. By specifying that the factor loadings for each

factor are part of a smooth factor loading curve, this facilitates a functional perspective.

With distributional assumptions, maximum likelihood is a natural choice for estimation.

With the aid of roughness penalties as in Green and Silverman (1994), conditions are placed on

the factor loadings so that they may be interpreted as smooth factor loading curves. Considering

the unobserved factors as a problem of missing data, the Expectation Maximization algorithm

in conjunction with a penalized likelihood expression is used to estimate the model parameters

and factor loading curves; pending some initial estimates from singular value decomposition of

the observed data matrix.

EM estimation is, of course, an iterative process. Each iteration is rife with computational

intensity, from large matrix inversions in the E-step to costly GCV selection of smoothing

parameters in the M-step. However, several efficiencies to this end have been illustrated and

derived, including even some practical commentary as to the computing packages that may be

utilized.

It has been shown that the estimated factor loading curves for the FDFM form natural cubic

splines under a specific roughness penalty. This result facilitates straightforward interpolation



and permits the forecast or imputation of entire curves rather than a sequence of discrete points.

Another fortunate result that has been shown is that cross validation and generalized cross

validation for the optimal choice of the smoothing parameter does not require re-estimation

of the FDFM for each leave-out. We have shown convenient expressions exist for the CV and

GCV criteria based only on FDFM estimation of the full data set.

Finally, actual FDFM performance has been displayed on both simulated and real data;

and in the latter case, among some diverse applications. A compelling application is yield

curve forecasting, where existing approaches typically exhibit a tradeoff of consistency-with-

economic-theory and goodness-of-fit. However, through multiple forecasting exercises we have

shown that the model satisfies both of these criteria. Further applications showcase the model’s

viability to settings well outside of economics and yield curve forecasting and where a prior

theory does not exist. We have shown applicability to call volume forecasting as well as the

capability to model and forecast seasonal time series in a climatological setting.

For the simulated data based on call volumes, the FDFM results in accurate parameter and

factor loading curve estimation, with low MSE, bias, and variance in comparison to a benchmark

models. For the simulated data inspired from true yield curve data, we have illustrated viable

methods for model selection and assessment. This includes identification of the number of

factors for setting where it is unclear what that number should be. Further, AIC and BIC can

be used to select to order of the time series process that the dynamic factors follow. Finally, we

have derived a bootstrap approach to construct confidence intervals for model estimates, and

forecast intervals for the resulting forecasts.

Indeed, this exciting new class of models is fertile for further development and application.

Below is a listing of some possible directions of future research. Among these, a few are further

elaborated upon as probable later model extensions.

Other Correlated Processes In the present model, the factors were assumed to follow in-

dependent, stationary, auto-regressive processes. A possible enhancement to the FDFM

is to consider other types of correlated processes. Those of most interest are:

1. Moving Average and Integrated Processes: Clearly there is more to the acronym
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“ARIMA” than just “AR.” While still maintaining the assumption of independent

factors, integrated or non-stationary univariate processes may be considered for the

factors. Another obvious addition is to include moving average components to the

independent factors. Further investigation is warranted as to why or why not these

might be useful in application.

2. Periodic Auto-regressive Models (PAR): Independent AR(1) factors may be too

strong an assumption to properly account for the time series component of the ob-

served data. A more general alternative may be to consider PAR(1) factors. As was

seen with the call center data, there is a clear day of week effect, and mostly likely

there are other sources of periodicity in the data (Taylor, 2008). A PAR specifica-

tion then may better account for periodic correlation than an AR(1) specification,

without the need to escalate to a more complex model like a VAR.

3. Vector Auto-Regression and Cointegrated Processes: Removing the assumption of

independent factors gives rise to Vector Auto-Regressions or even more general mul-

tivariate time series procedures. The model presented by Bowsher and Meeks (2008)

has already illustrated an application where a cointegrated VAR specification is de-

sirable. Further, Pena and Poncela (2006) expanded the dynamic factor model to

include non-stationary factors, and used the model to forecast interest rates. A

popular method for non-stationary or (co)integrated time series using maximum

likelihood estimation is a state space approach using an algorithm like the Kalman

Filter.

The state space formulation of the FDFM is:

Xi = F′βi + εi, (9.1)

βi = Φβi−1 + vi,

εi ∼ N(0, σ2Im),

vi ∼ N(0, V ).

A future area of research then to explore to possibility of vector tome series in the
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context of the FDFM. The question is as to whether the functional aspect of the

model can be incorporated into a method like the Kalman Filter.

4. Spatial and Spatio-temporal Processes: Discussion of correlated processes would not

be complete without discussion of the spatial domain. An interesting application

of the FDFM might be to have the factors represent one axis of coordinates (lati-

tude), while the loading curves represent the other (longitude). Perhaps even more

compelling would be to consider the evolution of smooth surfaces over time.

Further Opportunities. This dissertation included several mathematical results, primarily

in regard to the computation involved in estimation. Although the aspects of practical

implementation are fairly complete, some of the more inference related properties of the

FDFM have yet to be derived, such as:

1. Asymptotic Properties: The asymptotic properties of any of the estimators in the

model have yet to be shown. Meng and Rubin (1993) were able to derive some

results in the case of a general EM model; most notably that the algorithm always

converges. In the current setting, the likelihood expression is augmented by a series

of roughness penalty terms, and so their results may not necessarily hold. Clearly

then it is desirable to see if these beneficial results hold in the case of this FDFM.

2. Slow EM Convergence: In the Real Applications chapter (Chapter 8) it was noted

that the EM was slow to converge and that this may account for some of the less-

than-stellar forecast performance of the FDFM as compared with other models.

The theoretical question of convergence has already been asked above; here the

question is, can the EM be made to converge faster? Methods exist that can be

used in conjunction with the EM so that it converges in fewer iterations; methods

such as Newton-Raphson, conditional methods as in Zhao et al. (2008) or other

augmented approaches like the so-called Supplemented EM Algorithm of Meng and

Rubin (1991). Faster convergence obviates an arbitrary limit on the number of

iterations until the EM is deemed converged. Therefore, parameter estimates and

the forecasts generated from them can truly be considered final; this permits more
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valid comparisons with other models.

Thus, the FDFM has been shown to be a viable model for working with functional data

and is rife with opportunity for further development and research.
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