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ABSTRACT 
 

Christopher D. Fleming: Structural Insights into Xenobiotic and Organophosphate Binding 
by Human Carboxylesterase 1 and Efforts Made Towards the Characterization of the 

Androgen Receptor MAGE-11 
(Under the direction of Matthew R. Redinbo) 

 
 The processing and elimination of harmful exogenous compounds is important for the 

successful survival of an organism in its environment. Several proteins classified as drug 

metabolism enzymes have evolved to provide this protection by catalyzing reactions that 

increase the polarity of lipophilic molecules, facilitating excretion. The drug metabolism 

enzyme human carboxylesterase hCE1 works to cleave ester, thioester, and amide linkages in 

many structurally distinct compounds. The crystal structures of hCE1 bound to tamoxifen, 

mevastatin, ethyl acetate, and benzil are presented here. These complexes show that hCE1 

binds and metabolizes these ligands differently, highlighting its substrate promiscuity. We 

have additionally sought out to utilize this promiscuity in developing hCE1 as a protein based 

therapeutic for exposure to chemical warfare agents. Organophosphate nerve agents work by 

permanently inhibiting human acetylcholinesterase, an enzyme responsible for processing the 

neurotransmitter acetylcholine and thus terminating cholinergic nerve impulses. Current 

treatments for nerve agent exposure are limited, and must be administered quickly to be 

effective. Therefore, developing an enzyme towards the prophylactic treatment of nerve 

agent exposure is essential. Crystal structures of hCE1 covalently bound to the chemical 

weapons soman and tabun are presented here. These structures show that hCE1 is 
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stereoselective towards these nerve agents, and its active site architecture may provide it 

resistance to permanent inhibition by these compounds.  

 

 The Androgen Receptor (AR) is an intracellular transcription factor responsible for 

the regulation of androgen-responsive genes. AR activity is modulated by co-activators that 

bind to the activation function (AF-2) region of its ligand binding domain through an LxxLL 

motif. AR, however, exhibits a novel N/C-terminal self-association between the AF-2 and an 

FxxLF N-terminal motif that precludes the recruitment of these co-activators. The melanoma 

antigen protein MAGE-11 disrupts this interaction, facilitating AR mediated transactivation. 

The efforts made towards the purification and biophysical characterization of MAGE-11 are 

presented here. MAGE-11 was found to bind the FxxLF motif of AR an order of magnitude 

stronger than the AR LBD, providing an explanation for its role in AR mediated gene 

expression. 
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Chapter 1:  

Mammalian Carboxylesterases and their role in Xenobiotic Metabolism 

 

Introduction 

 

 The processing and elimination of potentially harmful exogenous compounds by an 

organism is important for successful survival in its environment. By developing systems to 

remove these compounds, cells are allowed to function normally in response to such 

environmental stresses. The enzyme class known as esterases plays an important role in this 

process by catalyzing reactions to increase the polarity of otherwise lipophilic molecules, 

facilitating excretion. Carboxylesterases (CEs), a subset of the esterase super-family, cleave 

ester, thioester, and amide linkages in a number of structurally-distinct substrates. 

Understanding the role CEs play in drug and xenobiotic metabolism is important for tuning 

the bioavailability of many clinical drugs. This chapter provides a background into 

carboxylesterases and the role of these promiscuous enzymes in xenobiotic metabolism. 

 

The Phases of Xenobiotic Metabolism 

 

 Upon ingestion of many clinical drugs, narcotics, and potentially dangerous 

xenobiotics, the body responds by signaling the transcription of genes responsible for 

processing these compounds for elimination. The primary mechanism for detection of 



 

exogenous compounds is through xenobiotic nuclear receptors [1-5]. These receptors, such as 

PXR (pregnane X receptor) and CAR (constitutively activated receptor), can detect numerous 

ligands with their large, flexible active site pockets. Upon drug binding, these nuclear 

receptors localize to response elements on the cellular DNA and up-regulate genes involved 

in xenobiotic elimination. The subsequent proteins produced include the major drug 

metabolism enzymes classified as either phase I or phase II, and phase III conjugate-specific 

drug transporters (Figure 1.1) [4, 6]. Phase I enzymes modify lipophilic drugs by either 

oxidation-reduction or hydrolytic reactions, increasing the water solubility of the small 

molecule. Phase I enzymes include the cytochrome P450s (CYPs), which work by catalyzing 

the addition of oxygen into non-activated C-H bonds, effectively adding a polar side group 

where none existed [7]. The CYP isoform 3A4 alone is responsible for the metabolism of 

greater than 50% of all prescription drugs on the market [8]. Hydrolysis reactions are 

primarily carried out by esterases, which catalyze transformation of an ester linkage into 

alcohol and carboxylic acid products. Once these functional groups are exposed, further 

processing can occur by way of the phase II enzymes. These enzymes are generally 

transferases that conjugate hydrophilic moieties such as glucuronic acid, sulfate, or acetyl 

groups to the xenobiotics [9]. Enzymes from both phases work in concert to increase the 

polarity of the compound for eventual excretion by transmembrane proteins that are specific 

for the conjugate molecule, termed Phase III transporters [10]. Many multidrug resistance-

associated proteins are phase III transporters, such as the ABC transporter system and P-

glycoprotein [11]. Whereas all three processes are important for xenobiotic clearance, this 

work focuses on the phase I enzyme carboxylesterase. 
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General Characteristics of Carboxylesterases 

 

 Carboxylesterases (CEs, EC 3.1.1.1) are proteins involved in the processing and 

elimination of many compounds. CEs are adept catalysts of ester-, amide-, and thioester- 

containing xenobiotics, including many clinical drugs and environmental toxins. CEs also 

catalyze the biotransformation of endogenous compounds such as cholesterol esters and fatty 

acyl coenzymeA molecules [12]. CEs are a member of the α/β-hydrolase-fold family of 

enzymes that contains cholinesterases, such as acetyl- and butyrylcholinesterase, and lipases 

such as cutinase and lipase B [13, 14]. While found in many different species (e.g. bacteria, 

plants, and higher vertebrates), the principal endogenous function of CEs is not clear. 

Concordantly, the naming and categorization of CEs have predominately been based on their 

substrate specificity, tissue localization, and molecular characteristics, which vary widely. 

Recently, a new method of nomenclature has been proposed by Satoh & Hosokawa, which 

groups CEs by their sequence identity [15]. This method groups mammalian CEs into 5 

subfamilies, with the CES1 members representing the primary CE of each organism (60% 

identity or higher to the primary human carboxylesterase, hCE1). Enzymes are further 

delineated by subgroups A-H that allow additional information about organism, importance, 

and identity to be conveyed. This classification method should allow for more clear 

definitions about the function of each carboxylesterase in the family. 

 

The expression of mammalian CEs has been confirmed in a broad range of tissues, 

including the heart, plasma, lung, intestines, testes, and kidney, with the highest level of 

esterase activity found in the microsomal and lysosomal fractions of liver [12, 15]. The 
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localization of carboxylesterases, however, can differ between species and isoforms of the 

enzymes. The human carboxylesterases are an example of this diversity. The primary human 

carboxylesterase, hCE1, can be found primarily in the liver, macrophages, and lung epithelia, 

whereas human intestinal CE (hiCE) is found in the small intestine, kidney, heart, skeletal 

muscle, and liver [16-18]. A third human CE, hCE3, is found primarily in the brain [19]. 

When expressed in the liver, carboxylesterases exhibit a C-terminal ER retention sequence 

(e.g. HXEL-COOH) that directs its cellular localization to the membrane KDEL receptors 

[12]. If this tetrapeptide sequence is proteolytically removed by the protein processing 

machinery, or is simply absent from the primary sequence, the resultant enzyme is excreted 

from the cell by the Golgi apparatus [12, 20]. This likely allows for CE activity to be found 

in circulating plasma of rats, mice, horses, and cats; humans however, do not exhibit such 

activity [21]. 

 

CEs work by catalyzing the breakdown of ester, amide, or thioester linkages using a 

two-step hydrolysis mechanism that results in the corresponding alcohol and carboxylic acid 

products (Figure 1.2). In more detail, a charge relay system is present between three catalytic 

residues (Glu-His-Ser) that works to increase the nucleophilicity of the γ-oxygen on the 

serine residue. This oxygen then attacks the carbonyl carbon of the linkage, forming a 

charged tetrahedral intermediate. The charge, stabilized in the “oxyanion hole” by the main-

chain nitrogens of two neighboring glycine residues, reverts back and forces the release of 

the alcohol product. This first hydrolysis step results in a covalent, acyl-enzyme complex. 

Once the alcohol product diffuses out of the active site, a water molecule acts as the second 

nucleophile, attacking the carbonyl carbon of the acyl-enzyme complex. A similar charged 

 4



 

tetrahedral intermediate is formed, but results in the release of free enzyme and the 

carboxylic acid product. The reaction is considered identical for ester, amide, or thioester 

linkages, which is reflected in the products released. CEs are also capable of 

transesterification reactions, where the second nucleophile water is replaced with an alcohol 

molecule. This type of reaction can lead to side products that are more dangerous then the 

initial compounds, which will be explained further in context of the human carboxylesterases 

below. 

 

The structural characteristics of carboxylesterases are similar across species, as 

designated by their conserved α/β-hydrolase fold. The ESTHER database 

(http://bioweb.ensam.inra.fr/ESTHER/general?what=index) compiles information about 

proteins exhibiting this type of fold, and shows several crystal structures of carboxylesterases 

that have been solved to date. The first structure of a mammalian carboxylesterase from 

rabbit liver (rCE) was reported in 2002 [22]. This structure revealed that rCE consisted of 3 

domains: a catalytic domain, a αβ domain, and a regulatory domain (Figure 1.3). The 

catalytic domain consists of a central anti-parallel beta sheet surrounded by several alpha-

helices, and contains the catalytic triad. The αβ domain is a small domain adjacent to both 

the catalytic and regulatory domains. The regulatory domain is primarily alpha helical, and 

contains two disordered loops that are thought to close partially over the active site entrance. 

The position of two residues in the catalytic triad (Glu353 and His467) appears to be affected 

by these loops being disordered, which might alter the enzymes catalytic function. The active 

site is a deep cavity at the interface of the three domains, and exhibits some structural 

flexibility that may allow for larger substrates to enter and undergo catalysis. The protein 
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also has high mannose type glycosylation sites at residues Asn79 and Asn389. All of these 

structural features are likely conserved across other mammalian carboxylesterases, the only 

other structure solved to date being hCE1, which is examined more closely below. 

 

Human Carboxylesterases and hCE1 

 

 There are several human isoforms of carboxylesterase identified to date by primary 

sequence, however, only 3 are considered to be true carboxylesterases. hCE1, or human liver 

carboxylesterase, is the primary isoform and was the first identified [23]. hiCE, or human 

intestinal carboxylesterase, shares 49% sequence identity with hCE1. A related liver isoform, 

hCE2, shares 99% sequence identity with hiCE, and are generally considered to be 

interchangeable. The third carboxylesterase, hCE3 or human brain carboxylesterase, shares 

77% and 49.5% sequence identity to hCE1 and hiCE, respectively. Less is known about 

hCE3 in terms of localization and its substrate preferences than the other major isoforms. 

Other human carboxylesterases include the human AcylCoA enzyme and the lesser known 

human AADAC, with 37% and 31% sequence identity to hCE1, respectively [15]. 

 

 Human carboxylesterase 1 (a.k.a. Egasyn, CES1A1, hCE1) is a 62 kDa glycoprotein 

that plays an important role in the biotransformation of numerous medically relevant drugs. 

Generally, any compound that contains an ester linkage is a potential target of hCE1 activity, 

including the analgesics lidocaine and meperidine, the illicit drugs cocaine and heroin, and 

the angiotensin-converting enzyme inhibitors temocapril and delapril [24-27]. Most of these 

compounds are inactivated by hCE1 by removal of the ester moiety, effectively altering the 
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bioavailability of these drugs. Alternatively, introducing hCE1-cleavable ester linkages can 

be an effective method at creating pro-drugs with increased solubility. For example, the 

cancer therapeutic capecitabine was developed with an ester linkage which upon removal 

renders it effective against metastatic colorectal cancer [16, 28]. A second example of this is 

CPT-11 (Irinotecan), where hiCE removes an ester-linked dipiperidino moiety resulting in 

SN-38, a potent human topoisomerase inhibitor [20]. hCE1, however, does not hydrolyze the 

conversion of CPT-11 into SN-38. When comparing the general substrate specificity of hCE1 

and hiCE, hCE1 is found to prefer smaller ester groups, with hiCE selecting for larger ester 

groups. 

 

While hCE1 hydrolytic activity is generally advantageous to humans, the enzyme is 

also capable of transesterification reactions that can lead to deleterious products, with 

cocaine being a prime example. The transesterification of cocaine with ethanol can generate 

cocaethylene, which is more a more potent stimulator of the central nervous system, and 

exhibits a longer serum half life than cocaine, increasing the potential for overdose [29]. 

hCE1 also is responsible for the production of endogenous compounds that exhibit toxic side 

effects. The production of fatty acyl ethyl esters (FAEEs) from the transesterification of 

ethanol with fatty acyl-CoA molecules by hCE1 can result from chronic alcohol abuse and 

lead to necrotic liver decay. FAEEs work to disrupt cellular function by uncoupling oxidative 

phosphorylation in the inner membrane of mitochondria [30]. Transesterification activity is 

not limited to small molecules, with hCE1 additionally capable of acyl-CoA:acyl transferase 

activity, where fatty acyl-CoA is transesterified with cholesterol, forming cholesterol esters 

[31].   
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Additionally, hCE1 plays an important role in retention and trafficking of other 

proteins within the cell. One example of this is the interaction between hCE1 and the protein 

known as C-reactive protein (CRP) [32]. CRP is released into the serum upon tissue 

inflammation as part of the systemic acute phase response to injury. It is therefore a sensitive 

marker of heart muscle damage from myocardial infarction and other inflammatory events. 

CRP is retained within the ER of hepatocytes by hCE1 (and hCE2, both of which are 

subsequently bound to the membrane by way of the KDEL receptors) by interacting with a 

loop near the active site known as the “side door” [32]. The release of CRP by hCE1 could 

be the initial dose of CRP in the acute phase response. hCE1 (a.k.a. egasyn) has also been 

shown to interact with another protein, β-glucuronidase (β-gluc). β-gluc enzymatically 

removes conjugated glucuronic acid groups from xenobiotics that have been targeted for 

excretion by way of phase II and III drug metabolism proteins. This interaction between 

hCE1 and β-gluc involves the active site of hCE1 and a domain on β-gluc known as the 

serine protease inhibitor domain [33]. The interaction appears to enhance the activation of 

compounds that are targets of both enzymes, and may alter the half life of some drugs by 

“reactivating” molecules already bound for elimination. 

 

hCE1 has also been proposed to be a target for development into a potent nerve agent 

hydrolase [16, 34, 35]. Nerve agents are classified as organophosphates (OPs), some of the 

deadliest synthetic chemicals developed by man [36]. The nerve agents sarin, soman, VX, 

and tabun, work by permanently inhibiting acetylcholinesterase (AcChE), the enzyme 

responsible for the processing and elimination of the neurotransmitter acetylcholine at 
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neuromuscular junctions [37]. This inhibition is potentially permanent through a process 

known as aging, where AcChE is covalently modified at the active site, killing activity 

(Figure 1.4) [37]. Currently, treatment options for nerve agent exposure are limited to a few 

small molecule drugs. Atropine, a competitive inhibitor of the muscarinic acetylcholine 

receptors, works to block parasympathetic neurons in an effort to maintain respiration [38]. 

Oximes, such as pradlidoxime chloride, work to reactivate inhibited AcChE before aging 

occurs [39]. However, both compounds must be administered quickly after exposure for 

proper protection. These limited treatment options have led researchers to look into using 

enzymes as prophylactics to clear nerve agents from the body. Extensive work has been done 

in the development of butyrylcholinesterase (BuChE, 55% sequence identity to AcChE), 

where a mutant variant (G117H) has been shown to have some catalytic activity towards 

nerve agents [40]. However, BuChE remains subject to aging reactions (like AcChE), and is 

therefore effective only as a bioscavenger of nerve agents [41]. For that reason, other related 

enzymes are being examined for development as well, with the newest focus on CEs. Rat 

serum CE  has been shown to contain natural OP hydrolase activity on the order of that seen 

with the G117H mutant of BuChE [34, 35]. Because of hCE1’s high sequence identity to rat 

serum CE (68%), hCE1 seems to be a logical human candidate for development as nerve 

agent hydrolase. 

 

Extensive structural work has been done on hCE1 to date, with the first reported 

structures determined in 2003 [29]. hCE1 was found to exist as either a trimer or hexamer, 

with each monomer comprised of three domains; the catalytic, αβ, and regulatory domains 

(Figure 1.5). The catalytic domain consists of the canonical α/β serine hydrolase fold, with a 
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long 15 strand beta sheet surrounded by numerous helices. This domain, as its name 

suggests, also contains the catalytic triad of residues (Ser221, His468, and Glu354) that work 

in concert to hydrolyze ester, amide, and thioester bonds. The small αβ domain, typical of 

hydrolases, makes numerous contacts between monomers of the trimer, and the regulatory 

domain consists of 4 helices present in rCE, and two loops (Ω1 and Ω2) that were disordered 

in the rCE structure. hCE1, unlike rCE, contains only one N-linked, high-mannose type 

glycosylation site at residue Asn79, removal of which abrogates activity by destabilization of 

the protein [42]. hCE1 has two ligand binding sites, the active site and a surface ligand 

binding site called the Z-site. The active site is a primarily hydrophobic pocket with the 

catalytic triad found ~15 Å from the entrance. It consists of two major cavities, a large and 

structurally flexible promiscuous pocket, and a smaller, rigid pocket. These different areas 

appear to select for small (rigid) or large (promiscuous) moieties of ligands, as was seen in 

the homatropine-hCE1 co-crystal structure [29]. The Z-site, bordered by the Ω1 and Ω2 

loops, is a low affinity ligand binding site that self-associates when hCE1 forms a hexamer. 

Ligand binding at the Z-site was found to modulate the trimer-hexamer equilibrium by 

shifting it towards trimer upon introduction of a ligand specific for that site [29]. Additional 

ligand co-crystal structures of hCE1 have been solved, including hCE1 bound to the 

Alzheimer’s drug tacrine, and with numerous endogenous ligands such as Coenzyme A and 

the bile acid taurocholate [31, 43]. Taken together, these structures exemplify the substrate 

promiscuity of hCE1, and highlight hCE1’s role in the metabolism of exogenous and 

endogenous compounds. 
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Despite the extensive information in the literature about carboxylesterases such as 

hCE1, additional questions remain. What more can be learned about the structural basis for 

hCE1’s drug binding and metabolic activity? Is there a structural explanation for how and 

why hCE1 binds diverse ligands such as the breast cancer therapeutic tamoxifen, the 

prototypical cholesterol lowering drug mevastatin, the FAEE analogue ethyl acetate, and the 

hCE1 specific inhibitor benzil? What happens when hCE1 is exposed to organophosphate 

nerve agents? Are there any structural characteristics of hCE1 that might make it a potential 

target for development as an organophosphate hydrolase? The work outlined in the following 

two chapters was done in an effort to answer these questions, and to allow further 

understanding of this promiscuous phase I drug metabolism enzyme. 
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Figure Legends 
 
Figure 1.1: Overview of the three phases of drug metabolism. Endo- and xenobiotics are 
targeted by phase I drug metabolism enzymes that introduce functional groups for phase II 
transferases to attach large, polar molecules to. These phases work together to increase the 
polarity of the metabolite for eventual excretion by phase III transporters. Figure courtesy of 
Dr. Michael Miley. 
 
Figure 1.2: Standard two-step hydrolysis mechanism of carboxylesterases.  

Figure 1.3: Structure of rabbit liver carboxylesterase, rCE (RCSB PDB Accession Code 
1K4Y). The catalytic domain is shown in blue, the regulatory domain in red, and the αβ 
domain in green. Glycosylation sites at residues Asn79 and Asn389 are shown in yellow ball-
and-stick. The catalytic triad of residues (Glu353, His467, and Ser221) are also shown in 
yellow. 
 
Figure 1.4: Mechanism of aging of cholinesterases by nerve agents. Sarin is shown as the 
representative nerve agent. 
 
Figure 1.5: Trimeric structure of human carboxylesterase 1. Two of the three monomers are 
shown in blue and green, with the third monomer split into the three domains, catalytic (red), 
regulatory (purple), and αβ (pink). Glycosylations at residue Asn79 of each monomer are 
shown as yellow sticks, as are the six sulfate molecules that help to stabilize the trimer 
interface.
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Figure 1.1 
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Figure 1.2 
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Figure 1.3 
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Figure 1.4 
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Figure 1.5 
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ABSTRACT 

 

Human carboxylesterase 1 (hCE1) exhibits broad substrate specificity and is involved 

in xenobiotic processing and endobiotic metabolism. We present and analyze crystal 

structures of hCE1 in complexes with the cholesterol-lowering drug mevastatin, the breast 

cancer drug tamoxifen, the fatty acyl ethyl ester (FAEE) analogue ethyl acetate, and the 

novel hCE1 inhibitor benzil. We find that mevastatin does not appear to be a substrate for 

hCE1, and instead acts as a partially non-competitive inhibitor of the enzyme. Similarly, we 

show that tamoxifen is a low micromolar, partially non-competitive inhibitor of hCE1.  

Further, we describe the structural basis for the inhibition of hCE1 by the nanomolar-affinity 

dione benzil, which acts by forming both covalent and non-covalent complexes with the 

enzyme. Our results provide detailed insights into the catalytic and non-catalytic processing 

of small molecules by hCE1, and suggest that the efficacy of clinical drugs may be 

modulated by targeted hCE1 inhibitors.  

 22



INTRODUCTION 

 

 Human carboxylesterase 1 (hCE1) is a broad-spectrum serine hydrolase (E.C. 3.1.1.1) 

that cleaves small ester, thioester, and amide linkages in a variety of structurally-distinct 

compounds [1].  The enzyme is present in numerous tissues, including heart, intestines, 

kidney, lung, testes, monocytes and macrophages, but is most abundantly expressed in the 

liver, where it plays a major role in the detoxification of potentially harmful xenobiotics and 

endobiotics [2, 3]. hCE1 is known to metabolize a variety of drugs including cocaine, 

meperidine, and lidocaine [4-6], and to activate a variety of prodrugs, including heroin, the 

chemotherapeutic capecitabine, and the angiotensin-converting enzyme inhibitors temocapril, 

imidipril, and delapril [6-8]. The enzyme utilizes a two-step serine hydrolase mechanism 

involving the formation of a covalent acyl-intermediate on the active site serine, which is 

subsequently removed by hydrolysis.  In addition, the enzyme is able to perform 

transesterification reactions to generate secondary metabolites of abundant endogenous and 

xenobiotic compounds [9, 10].  

 

Three crystal structures of hCE1 and one structure of a rabbit liver CE (rCE) have 

been reported to date [11-13].  hCE1 exists in a trimer-hexamer equilibrium [12], and the 

overall structure of the hCE1 trimer is shown in Figure 2.1A.  Each monomer is comprised of 

a catalytic domain, an α/β domain typical of hydrolases, and a regulatory domain that 

contains the low affinity surface ligand binding Z-site [11, 12]. The regulatory domain was 

identified in the first crystal structure of a mammalian CE (that of rCE, which shares 81% 

sequence identity and 0.68 Å root-mean-square deviation with hCE1 [12]), and was so-
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termed because it was proposed to regulate access to the catalytic gorge [13].  The enzyme’s 

active site containing the catalytic triad Ser221-His468-Glu354 is a 10-15 Å deep 

hydrophobic pocket at the interface of the three domains. A secondary pore into the active 

site of mammalian CEs, termed the “side door”, has also been proposed based on the 

observed binding of a product of the activation of the anticancer drug CPT-11 to rCE [13].  

Each hCE1 monomer also contains two disulfide linkages and one high mannose, N-linked 

glycosylation site on Asn79, where only the first N-acetylglucosamine (NAG) and terminal 

sialic acid (SIA) could be properly placed in the electron density maps for all complexes.  A 

surface ligand binding site (the above-mentioned “Z-site”) was found to control the trimer-

hexamer equilibrium of hCE1; this site has been observed either to contain bound ligand, or 

to be involved in the formation of the hCE1 hexamer [12]. 

 

The statins, currently some of the most widely prescribed drugs in the U.S., lower 

serum cholesterol levels by inhibiting HMG-CoA (3-hydroxy-3-methylglutaryl-coenzyme A) 

reductase, which catalyzes the rate-limiting step in cholesterol biosynthesis [14].  Mevastatin 

(Compactin), a class 1 statin similar to simvastatin (Zocor®, Merck) and lovastatin 

(Mevacor®, Merck), is believed to be activated by hCE1 in the liver by conversion of the 

lactone form of the drug to the carboxylate form [5, 15]. Newer class 2 statins, such as 

rosuvastatin (Crestor®, AstraZeneca) and atorvastatin (Lipitor®, Pfizer), already exist in the 

carboxylate form, which removes the requirement for activation [16]. Although mevastatin 

was never used clinically, it provided the basis for the development of this family of drugs 

[14], and provides an effective model to examine the potential activation of clinical drugs by 

hCE1. 
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Tamoxifen, a nonsteroidal estrogen receptor antagonist used to treat breast cancer, 

limits the estrogen-dependent proliferation of cancerous cells [17].  It is the most widely used 

cancer drug in the world [18], and the ability of this compound to pass successfully through 

the liver is central to its efficacy [19]. hCE1 was not thought to be involved in tamoxifen’s 

trafficking through the body until it was found that only four proteins in rat liver bound a 

labeled form of tamoxifen, and one of these proteins was the rat homologue of hCE1 [20]. 

Thus, it is possible that the binding of tamoxifen to hCE1 may limit the bioavailability of the 

drug, or may lead to drug-drug interactions and/or side effects associated with tamoxifen use, 

including impact on cholesterol levels [21]. 

 

In addition to its role in xenobiotic metabolism, hCE1 has been shown to catalyze 

reactions involved in cholesterol homeostasis and fatty acid metabolism.  For example, hCE1 

has been reported to possess acyl-coenzyme A: cholesterol acyltransferase (ACAT) activity, 

which generates cholesterol esters from fatty-acyl coenzyme A and free cholesterol [22]. 

hCE1 has also been found to catalyze the reverse reaction under certain conditions and in that 

way to act as a cholesterol ester hydrolase (CEH) [23].  In addition, the enzyme can produce 

fatty acyl ethyl esters (FAEEs) via the transesterification of short- and long-chain fatty acids 

with ethanol [24].  FAEEs are toxic byproducts associated with long-term alcohol abuse, and 

these compounds have been implicated in the necrotic decay of the liver and other tissues 

attendant with such abuse [25]. The FAEEs generated by the FAEE synthases disrupt cellular 

function by uncoupling oxidative phosphorylation in the inner membrane of mitochondria 

[26, 27]. There are four enzymes known to act as FAEE synthases, with hCE1 labeled as 

FAEE-synthase IV [25, 28]. 
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  The novel and potent hCE1-selective inhibitor benzil was identified during screens to 

discover compounds that would inhibit CE activity to aid in anticancer drug efficacy. The 

diphenyl-diketone compound benzil was found to inhibit hCE1-mediated hydrolysis of o-

nitrophenyl acetate with a Ki value of 45 nM [29]. It was not clear, however, whether this 

compound functioned by binding non-covalently or covalently to the active site of hCE1.   

 

We sought to examine at the structural level how hCE1 processes a variety of 

therapeutic and non-therapeutic compounds.  To that end, we determined crystal structures of 

hCE1 in complexes with mevastatin, tamoxifen, ethyl acetate (a fatty acyl ethyl ester 

analogue), and benzil, and we examined the inhibitory action of mevastatin and tamoxifen on 

the enzyme. Our results suggest that certain classes of compounds are capable of inhibiting 

this drug metabolism enzyme, and that selective inhibitors of hCE1 may impact the 

bioavailability of clinical drugs.  
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RESULTS 

 

Structural Features of hCE1 

 The hCE1-ligand complex crystal structures reported here were refined with the 

Crystallography and NMR System (CNS) [30] utilizing torsion angle dynamics throughout 

all steps, and with simulated annealing and non-crystallographic symmetry restraints in the 

early steps of refinement (Table 2.1). Despite relatively high Rsym values for the diffraction 

data employed, likely due to the low overall diffraction intensity, the maps produced after 

refinement were of good quality and allowed the placement of both protein and non-protein 

atoms. The asymmetric unit of the mevastatin, ethyl acetate, and tamoxifen complexes 

contained one hCE1 trimer, while the asymmetric unit of the benzil complex contained four 

hCE1 trimers.  

 

 Because a detailed examination of the trimer interfaces in CEs had not been reported 

previously, an analysis of the role of carbohydrate groups in the formation of the hCE1 trimer 

is presented here. A sialic acid from the glycosylation site on one monomer stacks adjacent to 

α7 and Glu183 in the adjacent monomer within the trimer (Figure 2.1A). In some cases, the 

sialic acid is within 3 Å of the main chain nitrogen at Thr279, which appears to stabilize the 

N-terminal, positively charged dipole of helix α7. Two charge clamps across the trimer 

interface, Arg186 and Glu183 of one monomer to Glu72 and Lys78, respectively, of the next 

monomer. Six bound sulfate molecules near His284 are also observed.  While the monomers 

within the hCE1 trimer are related by non-crystallographic symmetry, the monomers in the 

structure of the related rabbit enzyme rCE (RCSB accession code 1KY4;[13]) form a trimer 
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related by crystallographic symmetry.  In this case, although rCE also contains a similar 

glycosylation site at Asn79, a carbohydrate group does not appear to be involved in the rCE 

trimer interface. This N-linked carbohydrate is important for enzyme function, however, as 

the mutation of Asn79 to alanine in rCE reduces esterase activity by ~50% using o-

nitrophenol acetate as a substrate (Espinosa and Potter, unpublished results). An alignment of 

several mammalian CEs (from mouse, rat, rabbit, human, guinea pig, pig, and monkey) 

revealed that residues involved in the trimer interface observed in hCE1 and rCE are identical 

or conserved across species [31]. In addition, both rat and porcine CE isoforms related in 

sequence to hCE1 have been shown biochemically to form trimers [32-34].  Thus, the known 

mammalian homologues of hCE1 appear to be trimers. 

 

Drug Processing: Mevastatin 

 Since previous reports in the literature implicated hCE1 in the activation of 

mevastatin [5, 14, 35], we sought to determine the structural basis for this hydrolysis event. 

hCE1 is potentially capable of metabolizing mevastatin via two pathways (Figure 2.2A). 

α−cleavage opens the lactone ring, yielding the active, carboxylate form of the drug.  

β−cleavage, the alternative pathway, involves the removal of an isopentoic acid (2-

methylbutyric acid) moiety from the compound, reducing the inhibitory effect of the drug on 

HMG-CoA reductase by 200-fold [36-38]. We crystallized the enzyme in the presence of 

100-fold molar excess mevastatin, and determined and refined the structure to 3.0 Å 

resolution. While the α-cleavage product was expected, the initial 3.0 σ positive difference 

electron density in the active sites was too small to accommodate the α-cleavage product. 

However, simulated annealing omit electron contoured at 3.0 σ appeared appropriate for an 
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isopentoic acid, the small product of mevastatin β-cleavage (Figure 2.2A).  Isopentoic acid 

refined well in this position, produced no negative electron density, and forms a hydrogen 

bond between one of its carboxylate oxygens and a water molecule bound within the 

enzyme’s oxyanion hole.   

 

We also observed 3.0 σ positive difference density within each monomer’s Z-site, the 

non-specific, low affinity cleft that can be occupied by a wide variety of structurally-distinct 

ligands [11, 12]. The Z-site is formed by two loops Ω1 and Ω2, which interdigitate during 

hexamer formation, providing primary stacking interactions between the two trimers [12]. In 

one Z-site within the trimer, the difference density was appropriate for an isopentoic acid 

stabilized via an electrostatic contact between its carboxylate group and the ζ-nitrogen of 

Lys414.  In the remaining two monomers, the electron density was interpreted to be the other 

product of mevastatin β-cleavage (the larger, decalin-lactone alcohol; Figure 2.2C); this 

compound refined well in this position and produced no negative electron density. It docks 

with its lactone ring facing down in Van der Waals contact with Leu368 and Trp357, and 

forms a hydrogen bond with Lys414.  The α-cleavage product of mevastatin, in contrast, did 

not satisfy this electron density at the Z-site. 

 

Because the crystallographic data indicated the presence of β-cleavage products 

bound to hCE1, we sought to validate our results biochemically utilizing an HPLC-based in 

vitro assay.  After a 25 day incubation of purified hCE1 with 10-fold molar excess 

mevastatin at 37°C in 50 mM HEPES pH7.4 (the conditions used for crystallization of this 

complex), we were unable to detect enzyme-mediated production of either the α-cleavage or 
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β-cleavage products (data not shown). Since these results were contrary to what we observed 

structurally, we assessed whether mevastatin could act as an inhibitor towards hCE1. These 

experiments confirmed that the drug was a weak, partially non-competitive inhibitor of o-

nitrophenyl acetate hydrolysis by hCE1 with a Ki value of 20.8 ± 8.8 µM. Previous studies 

have shown that similar statins (lovastatin, simvastatin) are able to inhibit human 

butyrylcholinesterase, a structural homologue of hCE1, with Ki values on the same order as 

that observed for hCE1 inhibition by mevastatin (12 and 4.5 µM for lovastatin and 

simvastatin, respectively) [39].  Thus, mevastatin appears in vitro to act as a weak inhibitior 

of hCE1. 

 

Substrate Conjugation: FAEEs 

 Fatty acyl ethyl esters (FAEEs), toxic byproducts of alcohol abuse, are generated by 

hCE1 via the transesterification of fatty acids with ethanol [24]. To elucidate the structural 

basis of hCE1’s action as an FAEE synthase, we attempted to crystallize the enzyme in the 

presence ethanol and one of a variety of poorly soluble fatty acids and related compounds.  

Crystals were only obtained in the presence of ethanol and Acetyl-CoA, the most soluble of 

the compounds tested. We found that hCE1 had transesterified Acetyl-CoA with ethanol to 

form ethyl acetate (EA), a small FAEE mimic (Figure 2.3A). Strong electron density for EA 

was observed in 3.0 Å simulated annealing omit maps at both the active site and Z-site of the 

enzyme (Figure 2.3B).  The EA bound at the active site forms Van der Waals contacts with 

only two amino acids within the pocket, Ser221 and Leu304, and thus does not appear to 

bind with a high level of specificity (Figure 2.3C).  Non-specific binding is also observed at 

the Z-site, where EA forms only a hydrogen bond with Lys414 (Figure 2.3D).  These data 
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indicate that hCE1 can accommodate Acetyl-CoA within its active site and utilize ethanol to 

transesterify the acetyl product of Acetyl-CoA cleavage to generate EA. 

  

Drug Binding: Tamoxifen 

 The rat homologue of hCE1 (ES-10) was found to be one of only four liver proteins 

that bound to tamoxifen with high affinity [20].  We sought to elucidate the structural basis 

of hCE1’s ability to interact with this widely-used anticancer drug, and to determine if 

tamoxifen inhibited the enzyme.  Tamoxifen was observed bound at both the active site and 

Z-site in our 3.2 Å structure of the drug-hCE1 complex (Figure 2.4A). Tamoxifen is well 

ordered within the catalytic pocket, making hydrophobic contacts with eight active site 

residues that line the pocket (Figure 2.4B). Indeed, tamoxifen’s triphenyl structure fits 

remarkable well in the binding cavity, with two of the rings filling pockets adjacent to 

Phe101 and Leu388, and the drug’s tail protruding toward the entrance to the cavity. Leu304, 

which sits near the top of the pocket, undergoes a rotamer shift relative to other hCE1 

structures to provide room for drug binding. Helices α1 and α10’ clamp over the top of the 

active site, closing down onto the tamoxifen compound. It has been proposed that α10’ has 

the ability to shift in position to allow bulky molecules to enter the active site (Figure 2.4C) 

[12].  Once the position of α10’ becomes relatively stable, it serves as the “floor” of the Z-

site. Tamoxifen binds with less specificity at the Z-site, making only four Van der Waals 

contacts with amino acid side chains and exhibits higher thermal displacement parameters in 

this position (69-79 Å2) relative to that observed at the active site (30-43 Å2).  
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 We found that tamoxifen was a micromolar-affinity inhibitor of both hCE1 and rCE, 

with Ki values of 15.2 ± 2.8 and 23.3 ± 14.3 µM, respectively (Table 2.2). The Ki values 

agree with previous work showing tamoxifen as a CE inhibitor in rat [20]. We also found that 

both hCE1 and rCE are inhibited by tamoxifen in a partially noncompetitive fashion. In the 

case of hCE1, these results indicate that the Z-site may act as an allosteric site. The Z-site is 

located directly “above” the active site, separated from it by α10’ (Figure 2.4C), and  may 

control ligand access to the active site [12]. The analogous loops are disordered in the rCE 

structure, so it is not known whether this enzyme contains a surface Z-site.  A surface 

binding site proposed to act in a similar manner, as an allosteric or substrate recognition site, 

was recently observed in the structure of the human drug metabolism enzyme cytochrome 

P450-3A4 [40].  

 

Inhibition of hCE1: Benzil 

 Finally, we determined the crystal structure of hCE1 in complex with benzil, a potent 

CE inhibitor with a Ki value of 45 nM for hCE1 [29]. The structure contained four trimers in 

the P1 asymmetric unit, which will be referred to as trimers A-D with each monomer denoted 

1-3 (e.g., monomer A3 or D1).  Positive (2.0-3.0 σ) difference density in the active site in all 

twelve monomers was not satisfied by placement of intact benzil. After further examination 

and refinement, it appeared that hCE1 had cleaved benzil to generate a covalent product and 

either benzaldehyde and/or benzoic acid. Based on our structural results, we propose that the 

following elements may be involved in benzil inhibition of hCE1 (Figure 2.5A). First, a 

cycling reaction may occur in which attack of the catalytic Ser221 residue on one of the 

benzil’s carbonyl groups to form the covalent intermediate reverses to generate benzil and 
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free enzyme (Figure 2.5A). Such a repeating cycle would occupy the active site and 

efficiently inhibit the enzyme. This is consistent with the previously published kinetic 

analyses [29]. 

 

Second, benzil could be hydrolyzed to the two benzyl ring products we have named 

NCP1 (benzaldehyde, or non-covalent product 1) and NCP2 (benzoic acid). Such a cleavage 

reaction would require a retro-aldol condensation followed by a hydrolysis event (Figure 

2.5A). For benzaldehyde formation, a transfer of electrons from the first hydroxyl group to 

the second carbonyl carbon would occur, releasing NCP1. This movement of electrons would 

also result in the covalent acyl product found in 3 of the active sites (COV). A hydrolysis 

event, analogous to the second step of the standard two-step serine hydrolase mechanism, 

would  then be required to remove the benzoyl ester intermediate and release the second 

benzyl ring product benzoic acid (NCP2), as well as the free enzyme (Figure 2.5A). Of the 

twelve monomers in the asymmetric unit, three of the active sites contain the covalent 

modification, (A3, B3, and D1) and the remaining nine contain the NCP products. In one of 

the monomers that contains the covalent modification (A3; Figure 2.5B), the free carboxylic 

oxygen is within hydrogen bonding distance of the oxyanion hole, and replaces a water 

typically observed in that position (see Figure 2.2B).  

 

Analysis of hCE1 by mass spectrometry was attempted to detect covalently bound 

product, but was not successful due to our inability to remove the high mannose 

glycosylation sites using the enzymes PNGase F and/or Endo-F1; these efforts produced 

extensive mass-charge heterogeneity (data not shown). Simulated-annealing omit difference 
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density maps, however, indicate the presence of covalent modification and of non-covalent 

product (NCP) binding (Figure 2.5D). This is the first structure of hCE1 in which the enzyme 

is observed to be covalently modified. Benzoic acid (NCP) binding is similar to other smaller 

ligands, including the isopentoic acid product of mevastatin (Figure 2.5C; see also Figure 

2.2B). It is held in place primarily by a direct hydrogen bond to a water molecule, which 

exhibits clear tetrahedral geometry in the oxyanion hole.  This geometry is similar to that 

seen for the free carboxylic oxygen in the covalent product (see Figure 2.5B). NCP products 

are also found in all 12 Z-sites with binding modalities similar to nonspecific binding seen in 

other hCE1 complexes. The observation of covalent and non-covalent complexes at the hCE1 

active site helps to explain how the dione structure of benzil inhibits hCE1, and may provide 

an avenue to design more effective hCE1 inhibitors for clinical use. 
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DISCUSSION 

 

Mevastatin 

Analysis of hCE1 crystallized in the presence of mevastatin indicated that isopentoic 

acid was present within the active site of the protein. Because we assumed that mevastatin 

would be a substrate for CEs [5, 15], we hypothesized that the observed isopentoic acid 

resulted from hCE1-mediated β-activation of the drug (Figure 2.2A-C; the other product of 

this activation would be a decalin-lactone compound).  At the Z-site, electron density was 

interpreted as the decalin-lactone compound, although it is possible that the product of α-

activation may also be present (Figure 2.2A,C). In vitro biochemical assays using purified 

hCE1 and mevastatin as a substrate failed to detect the presence of isopentoic acid or the 

larger, decalin-lactone alcohol product. Subsequent analyses indicated that mevastatin was a 

partially non-competitive inhibitor of hCE1. The inhibition of hCE1 occurs at moderately 

low mevastatin concentrations (~20 µM), which may have biological consequences.  Thus, it 

is possible that hCE1 does not activate mevastatin in vivo. Human serum paraoxonase 

(PON1) may instead perform this catalytic processing, as it has been previously shown to 

contain lactonase activity toward the statin class of compounds [41].   

 

It is possible that the complexes of hCE1 with portions of mevastatin that we observe 

in our structure arose from a mechanism similar to that seen with benzil, i.e. that under 

prolonged incubation of enzyme with drug, very low levels of hydrolysis may occur resulting 

in the generation of a small molecule (isopentoic acid for mevastatin) that stabilizes protein 
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structure. This would favor formation of the crystal containing this moiety and hence may 

‘select’ this structure due to increased thermodynamic stability. We would expect that 

crystallization trials with isopentoic acid (2-methylbutyric acid) alone would give similar 

results. It is possible, however, that hCE1 does play a role in vivo in mevastatin activation, 

but that our in vitro conditions failed to reproduce the conditions found in human tissues that 

enable catalytic action.  For example, the processing of mevastatin by hCE1 may require the 

presence of other proteins necessary to traffic the substrate into or the products away from 

the active site of the enzyme. 

 

Production of Ethyl Acetate 

The mechanism of transesterification of Acetyl CoA with ethanol to form EA is likely 

a simple modification of the standard two-step serine hydrolase mechanism, with ethanol 

replacing water in second step that releases the bound acyl-enzyme intermediate.  An open 

question, however, is how ethanol gains access to this intermediate, which is formed from the 

cleavage of the thioester bond in Acetyl CoA (Figure 2.3A).  Acetyl CoA fills the active site 

cavity of hCE1 [42].  Thus, we suggest that ethanol accesses the active site gorge via the 

“side door” secondary pore first identified for the mammalian carboxylesterases in the 

structure of a rabbit liver CE (rCE) [13].  This pore, which lies adjacent to Thr252 at the base 

of the active site gorge, appears capable of allowing ethanol or water to enter the active site 

without having to negotiate past the bound CoA molecule. We have also seen that this pore is 

used by the enzyme to allow long fatty acyl regions of endogenous hCE1 substrates to 

extrude from the enzyme’s active site [42]. Thus, the catalytic action of hCE1 on a variety of 

structurally-distinct substrates appears to be enhanced by the presence of an additional 
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channel into and out of the enzyme’s active site, which enables larger and more varied 

substrate molecules access to the buried catalytic residues. 

 

Sequestering of Tamoxifen  

The binding of tamoxifen to hCE1 could affect the efficacy of this chemotherapeutic 

agent. The drug is administered in 20 mg doses once or twice daily and, upon trafficking 

through the liver, a fraction of it likely binds to hCE1. This may delay the passage of the drug 

out of the liver, or enhance its clearance by other hepatic enzymes. The use of selective 

inhibitors of hCE1 could improve tamoxifen efficacy by blocking tamoxifen binding by the 

enzyme. The non-productive binding of tamoxifen to hCE1 could also contribute to the side 

effects of the drug. hCE1 has been reported to contain both cholesterol ester hydrolase (CEH) 

and acyl-CoA cholesterol transferase activities (ACAT) [22, 23], and thus even weak 

inhibition of hCE1 by tamoxifen could impact cholesterol metabolism [43].  

 

Degradation of Benzil 

It was not possible to distinguish between the two NCP products of benzil hydrolysis 

in our 3.2 Å resolution crystal structure.  By electron density considerations alone, two 

orientations of benzaldehyde (NCP1) could appear to be a benzoic acid molecule (NCP2). 

Thus, we conclude that either NCP1 or NCP2 could be present in the nine enzyme active 

sites where no covalent modification is observed (Figure 2.5A). We chose to place benzoic 

acid (NCP2) in the active sites because this single molecule satisfied the electron density; 

however, multiple orientations of small planar molecules are possible and have been seen 

previously in other hCE1-ligand structures[11]. The presence of these NCP products within 
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the active site of hCE1 likely results from the extended time frame required for crystal 

growth (two months). Indeed, similar to the structures derived from the mevastatin 

incubations described above, the crystallization of the hCE1-benzil complex appears to 

require the stabilizing effects of these small ligand products of slow substrate hydrolysis 

events.  

 

Overall, these studies provide insights into the mechanism of hCE1, and into 

inhibition of the enzyme by a variety of molecules. Our results indicate that esters can act 

either as substrates or as inhibitors for hCE1;  thus, predicting whether a compound will be 

hydrolyzed by the enzyme is difficult. In addition, our studies suggest that the use of hCE1 

inhibitors of CEs could modulate drug disposition in vivo, as has been achieved successfully 

in the clinics with inhibitors of other drug metabolism enzymes [44]. 
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EXPERIMENTAL PROCEDURES 

 

Crystallization and Crystal Handling 

 A secreted form of hCE1 was expressed using baculovirus in Spodptera frugiperda 

Sf21 cells and purified as described [45, 46].  All ligands were purchased from Sigma. hCE1 

was concentrated to 8-10 mg ml-1 in 50 mM HEPES pH 7.4, and kept at 4°C prior to 

crystallization. Since the solubility of the ligands varied, different methods were utilized for 

crystallization. Crystals of hCE1 complexes with tamoxifen and benzil were grown using the 

“dry-drop” method. This protocol involved dissolving the ligand in methanol at a set 

concentration (1 mM tamoxifen or 10 mM benzil), placing 1 µl of it in the sitting drop well, 

and allowing the methanol to evaporate, leaving the dried substance. A protein-mother liquor 

crystallization drop was then applied to the top of this dehydrated compound.  For the hCE1-

mevastatin complex, 1 µl of 10 mM mevastatin was added to a drop containing 2 µL of 

protein plus 2 µL of mother liquor.  For the ethyl acetate product complex, 10 mM Acetyl-

CoA in 5% ethanol was added to a drop containing 2 µL of protein plus 2 µL of mother 

liquor. Long, plate like crystals (up to 800x100x50 µM) were grown by sitting drop vapor 

diffusion at 22˚C in 8-10% (w/v) PEG 3350, 0.1 M citrate pH 5.5, 0.3 M Li2SO4, 0.1 M LiCl, 

0.1 M NaCl, and 5% glycerol (v/v) in 1 week (e.g., for the tamoxifen complex) to 2 months 

(e.g., for the benzil complex).  Crystals were cryo-protected in 40% sucrose (v/v) plus mother 

liquor before flash-cooling in liquid nitrogen.  
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Structure Determination and Refinement 

 Diffraction data were collected at the Advanced Photon Source at Argonne National 

Laboratory (Argonne, IL) on beam line 22-ID (SER-CAT), or at the Stanford Synchrotron 

Radiation Laboratory (Palo Alto, CA) on beam lines 9-1 and 9-2. Data were indexed and 

scaled using HKL2000 or using MOSFLM and SCALEPACK. The structures were 

determined by molecular replacement with AMoRe [47] using the hCE1-Tacrine complex 

structure (RCSB accession code 1MX1) as a search model. Refinement was accomplished 

using simulated annealing and torsion angle dynamics in CNS [30] with the maximum 

likelihood function target, and included an overall anisotropic B factor and bulk solvent 

correction.  Prior to any refinement, 7% of the data was removed and set aside for cross 

validation using the Rfree statistic.  Noncrystallographic symmetry restraints were employed 

for the first round of refinement for each complex, but removed for all subsequent rounds to 

allow for each monomer to be refined independently. Model adjustments and manual 

rebuilding were accomplished using O [48] and σa-weighted [49] electron density maps. 

Asparagine-linked glycosylation sites, ligands, sulfates, water, and ions were added in the 

final stages of refinement to achieve R-factors listed in Table 2.1. Final structures exhibit 

good geometry with no Ramachandran outliers using PROCHECK [50]. Figures were 

constructed using Dino (www.dino3d.org), Bobscript [51], Raster3D [52], POV-RAY 

(www.povray.org), and PyMol [53].  

 

Analysis of mevastatin hydrolysis 

The interaction of mevastatin with hCE1 was examined by HPLC followed by LC-MS/MS. 

Briefly, reactions containing 125µM of drug were incubated for up to 25 days in the presence 
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of hCE1 at 37oC in 50mM HEPES pH7.4. The reactions were terminated by adding an equal 

volume of methanol and following centrifugation, the products were analyzed by reverse 

phase HPLC as previously described (ref 41). Peaks obtained from the chromatographic 

analyses were then subjected to LC-MS/MS using a Shimadzu HPLC connected to a PE 

SCIEX API 365 LC/MS/MS with Turbo Ion Spray and a heated nebulizer. Data were 

collected using Analyst version 1.4 software (API). Routinely, results obtained for the 

different drug metabolites were with 0.5AMU of their calculated value. 

 
Inhibition Assays 

Inhibition of hCE1 and rCE-mediated hydrolysis of 3mM o-nitrophenyl acetate was 

performed as described previously [54]. Briefly, a spectrophotometric assay was employed 

and inhibitor concentrations ranged from 128 µM to 1 nM. All assays were performed in 

duplicate and data was analyzed using a multifactorial equation that also assigned the mode 

of enzyme inhibition [55]. The equation shown below is the equation used to determine the 

Ki values.  
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i is the fractional inhibition, [I] is inhibitor concentration, [s] is the substrate concentration, α 

is the change in affinity of substrate for the enzyme, β the change in rate of the enzyme-

substrate (ES) decomposition, Ks is the dissociation constant of the ES complex, and Ki is the 

inhibitor constant. The equation can be subdivided into six smaller equations that account for 

the different types of inhibition. Computer analysis gives the best curve fit (r2) value that 

indicates the mode of inhibition based on previously defined assumptions. Definitive 

 41



assignment of the correct mode of enzyme inhibition was determined using Akaike’s 

Information Criteria [56, 57]. 

 

Coordinates 

 The coordinates and structure factors have been deposited in the Protein Data Bank 

with accession codes 1YA8, 1YAH, 1YA4, 1YAJ, for the mevastatin, ethyl acetate, 

tamoxifen, and benzil complexes, respectively. 
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FIGURE LEGENDS 
 
Figure 2.1: Trimeric structure of hCE1. (A) Overall structure of hCE1 in complex with 
mevastatin. Sulfates are indicated in yellow, carbohydrates are shown in orange, and 
mevastatin products are depicted as yellow and red space-filling models. Monomer three is 
colored separately by domain with the catalytic domain in red, the α/β domain in pink, and 
the regulatory domain in magenta. (B) Expanded view of trimer interface indicated by a box 
in (A). The distances in angstroms are represented by black dotted lines, with the gold dotted 
line representing the high-mannose glycosylation chain between the initial N-
acetylglucosamine and terminal the sialic acid. 
 
Figure 2.2: Mevastatin metabolism by hCE1. (A) Potential mechanisms of mevastatin 
cleavage by hCE1. The locations of the α− and β-cleavage sites are shown in blue and red, 
respectively. (B) Stereo view of the active site of hCE1 showing the isopentoic acid product 
of mevastatin β-cleavage (gold) bound to the catalytic residues. Simulated annealing omit 
maps, at 3.0 Å resolution, are contoured to 3.0 σ (blue) and 2.0 σ (magenta). Ser221 and 
His468 are shown in cyan, with the catalytic water molecule in red. The oxyanion hole is 
represented in stick format (green), and all distances are displayed as blue dotted lines. 
Protein secondary structure is colored by domain according to figure 2.1A, monomer 3, in 
both (B) and (C). (C) The β-cleavage decalin product of mevastatin bound to the non-
specific Z-site of hCE1. Simulated annealing omit maps are shown as in part (B). The 
hydrogen bonding main chain carbonyls are shown in green. Water-mediated hydrogen 
bonding is represented as blue lines. 
 
Figure 2.3: FAEE-type conjugation by hCE1. (A) Mechanism of hCE1-dependant ethyl 
acetate (EA) production by transesterification of acetyl-CoA with ethanol. The transferred 
acetyl group is indicated in red. (B) Stereo view of 3.0 Å simulated annealing omit maps of 
EA bound at both active and Z-sites. Maps are contoured to 4.0 and 2.0 σ (blue and magenta, 
respectively) for the active site with 6.0 and 2.0 σ (blue and magenta, respectively) for the Z-
site. (C) EA bound to active site of hCE1. The molecular surface of the hCE1 active site 
cavity is represented in green, with the catalytic triad labeled in red. (D) EA bound to Z-site, 
located slightly above the EA bound within the active site. The molecular surface of the 
protein is represented in green, with the Ω loops shown in grey, and the helices in dark green. 
 
Figure 2.4: Binding of tamoxifen by hCE1. (A) Stereo view of simulated annealing omit 
map of tamoxifen (gold) bound to the active site of hCE1.Maps are at 3.2 Å resolution and 
contoured to 3.0 σ (blue) and 2.0 σ (magenta). (B) Tamoxifen bound within the active site 
gorge. The molecular surface of tamoxifen (green) and the surface of the hCE1 active site 
(gold) indicate that the drug fits in a complementary manner. Amino acid residues making 
hydrophobic contacts with tamoxifen are boxed in black. (C) Relationship of active site to 
the Z-site in the hCE1-tamoxifen complex. The secondary structure is labeled and tamoxifen 
is shown in gold. 
 
Figure 2.5: hCE1 inhibition by benzil. (A) Proposed mechanism of benzil inhibition and 
processing by hCE1. Non covalent products NCP1 (benzaldehyde, in purple) or NCP2, 
(benzoic acid, in blue) are found in 9 out of 12 active sites, with the covalent product (COV) 
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found in 3 of 12 active sites, depicted in red. (B) Covalent modification of the catalytic serine 
by benzil. The catalytic triad is labeled in grey with the oxyanion hole in blue. (C) NCP2 
bound to the active site of hCE1. The catalytic water molecule is represented as a red sphere 
and amino acids are labeled as in Figure 2.5B. (B) Stereo views of the simulated annealing 
omit maps at 3.2 Å resolution of the active site COV and NCP2 complexed with hCE1, 
contoured to 2.0 σ (magenta) and 4.0 σ (blue). 
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Figure 2.3 
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Figure 2.3 
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Figure 2.4 
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Figure 2.4 
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Figure 2.5 
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Figure 2.5 
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Figure 2.5 
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TABLE 2.1: Crystallographic Statistics  

 

 Mevastatin Ethyl Acetate Tamoxifen Benzil 

Resolution (Å)1 50-3.0 (3.11-3.0) 50-3.0 (3.2-3.0) 50-3.2 (3.31-3.2) 50-3.2 (3.31-3.2) 
Space Group P212121 P212121 P212121 P1 
Asymmetric Unit One Trimer One Trimer One Trimer Four Trimers 
Cell Constants (Å, °) a=55.78 

b=181.59 
c=202.87 

α=β=γ=90 

a=55.50 
b=181.15 
c=203.01 

α=β=γ=90 

a=55.37 
b=179.59 
c=201.58 

α=β=γ=90 

a=54.56 
b=181.49 
c=202.71 
α=90.12 
β=89.93 
γ=89.72 

Total Reflections 462,117 289,419 690,386 681, 289 
Unique Reflections 42,843 41,952 34,502 125, 020 
Mean Redundancy 10.8 6.9 20.0 5.5 
Rsym (%)1,2 12.8 (41.5) 13.5 (46.7) 13.5 (32.6) 15.6 (44.6) 
Wilson B Factor (Å2) 29.7 45.3 37.3 32.2 
Completeness (%)1 98.1 (97.5) 99.7 (98.6) 98.5 (99.6) 97.2 (96.9) 
Mean I/σ1 11.3 (3.7) 10.5 (2.1) 7.0 (2.2) 3.9 (1.8) 
Rcryst (%)1,3 18.7 19.0 20.3 20.7 
Rfree (%)1,4 24.7 22.9 25.2 28.7 
Number of Atoms: 
Protein 12,391 12,390 12,385 50,078 
Solvent 347 420 193 468 
Carbohydrate 105 105 105 420 
Ligand 74 36 168 227 
Ion 30 30 30 120 
1 Number in parentheses is for the highest shell. 
2 Rsym = Σ|I - <I>| / ΣI, where I is the observed intensity and <I> is the average intensity of multiple 
symmetry-related observations of that reflection. 
3 Rcryst = Σ||Fo| - |Fc|| / Σ|Fo|, where Fo and Fc are the observed and calculated structure factors, respectively. 
4 Rfree = Σ||Fo| - |Fc|| / Σ|Fo| for 7% of the data not used at any stage of structural refinement. 
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TABLE 2.2: Kinetic Data for Tamoxifen Inhibition 

 

 r2 for data values using indicated mode of enzyme inhibition  
Enzyme GE C PC NC PNC M UC Ki (µM) 
hCE1 0.987 0.956 0.956 0.956 0.987 0.956 0.956 15.2 
rCE 0.987 0.923 0.923 0.923 0.984 0.923 0.923 23.4 

General equation versus partially non-competitive equation 

 
Akaike’s 

Information 
Criteria 

Favored 
Model ∆AIC 

Probability 
favored model 

is correct 

Probability 
GE is correct 

Ratio 
of 

Prob.
hCE1 -55.59 vs. -61.59 PNC -6.00 95.26 % 4.74 % 20.09

rCE -36.53 vs. -52.21 PNC -15.68 99.06 % 0.04 % 2532 

General equation (GE): 
 

}][{}]]{[[
)}()1](]{[[
KssKiKssI

KssIi
ααα
βαβ

+++
−+−

=  

 
Competitive inhibition (C):   Assume α = ∞  
Partially competitive (PC):   Assume 1 < α < ∞; β = 1 
Non competitive (NC):   Assume α = 1; β = 0 
Partially noncompetitive (PNC):  Assume α = 1; 0 < β < 1 
Mixed (M):     Assume 1 < α < ∞; β = 0 
Uncompetitive (UC):    Assume α < 1; β < 1 
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ABSTRACT 

 

 The organophosphorus nerve agents sarin, soman, tabun, and VX exert their toxic 

effects by inhibiting the action of human acetylcholinesterase, a member of the serine 

hydrolase superfamily of enzymes. The current treatments for nerve agent exposure must be 

administered quickly to be effective and they often do not eliminate long-term toxic side 

effects associated with organophosphate poisoning. Thus, there is significant need for 

effective prophylactic methods to protect at-risk personnel from nerve agent exposure, and 

protein-based approaches have emerged as promising candidates. We present the 2.7 Å 

resolution crystal structures of the serine hydrolase human carboxylesterase 1 (hCE1), a 

broad-spectrum drug metabolism enzyme, in covalent acyl-enzyme intermediate complexes 

with the chemical weapons soman and tabun. The structures reveal that hCE1 binds 

stereoselectively to these nerve agents; for example, hCE1 appears to react preferentially 

with the 104-fold more lethal PS stereoisomer of soman relative to the PR form. In addition, 

structural features of the hCE1 active site indicate that the enzyme may be resistant to dead-

end organophosphate aging reactions that permanently inactivate other serine hydrolases. 

Taken together, these data provide important structural details toward the goal of engineering 

hCE1 into an organophosphate hydrolase and protein-based therapeutic for nerve agent 

exposure.
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INTRODUCTION  

 

The organophosphorus (OP) nerve agents sarin, soman, tabun, and VX are among the 

deadliest man-made chemicals [1]. While the military use of OP nerve agents is widely 

banned, these compounds have been employed in recent decades by rogue states and terrorist 

groups. In 1988, Iraq employed weaponized sarin against its own Kurdish citizens in Halabja, 

a town adjacent to the Iranian border, killing an estimated 5,000 [2]. Coordinated attacks on 

the Tokyo subway system by the Japanese Aum Shinrikyo cult in 1995 also employed sarin, 

killing 12 and injuring nearly a thousand [3]. The level of OP toxicity is striking, with  LD50 

values for percutaneous exposure ranging from 1 gm/person (tabun) to 10 mg/person (VX) 

[1]. For these reasons, there is considerable interest in developing methods to detect OP 

nerve agents, to treat exposed patients, and to detoxify contaminated surfaces.  

 

OP toxicity is thought to be mediated through the inhibition of human 

acetylcholinesterase (AcChE), a serine hydrolase responsible for processing the 

neurotransmitter acetylcholine and thus terminating cholinergic nerve impulses [4]. The 

serine residue in the active site of AcChE is activated by adjacent histidine and glutamic acid 

residues, which together constitute the enzyme’s catalytic triad [5]. Nucleophilic attack on 

OPs by the active site serine displaces a strong leaving group from the chiral phosphate and 

creates a covalent acyl-enzyme intermediate [6]. This reaction step has been reported to be 

SN2, which would result in the stereoinversion of the chiral phosphate upon binding [6]. 

Typically, acyl-enzyme intermediates in serine hydrolases are removed via hydrolysis, 

releasing an alcohol product; however, OPs have been observed to undergo an “aging” 
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reaction that leads to a permanent alkyl-phosphate adduct bound to the catalytic serine. 

Aging, which involves dealkylation or, in the case of tabun, deamidation of the acyl-enzyme 

intermediate, has been hypothesized to proceed either through a hydrolytic (P-O or P-N bond 

scission) or a carbocation (C-O bond scission) pathway [7]. Prior to aging, the activity of the 

OP-inhibited serine hydrolases may be restored through reactivation of the catalytic serine 

with strong nucleophiles such as oximes; once aging occurs, however, reactivation is 

impossible with such methods [1]. Aging of AcChE with nerve agents can occur within 

minutes (e.g., for soman) [8, 9] or can take hours (e.g., for VX) [7].  

 

The existing treatments for nerve agent exposure must be administered quickly to be 

effective, and they often do not eliminate long-term toxic side effects [10]. Atropine, a 

muscarinic receptor antagonist, blocks cholinergic parasympathetic neurons to maintain 

capacity for respiration, and is typically administered as soon as possible after an OP 

exposure [11]. Oxime reactivators like pralidoxime (2-PAM) or the Hagedom oxime HI-6 are 

also typically provided in an attempt to recover AcChE activity [12]. Finally, an 

anticonvulsant like diazepam is commonly administered to treat seizures that can develop, 

albeit via unknown mechanisms [13]. If this series of compounds is not given within minutes, 

however, victims quickly succumb [10]. In addition, even if rapidly treated, many patients 

exposed to OP pesticides experience long-term brain damage, permanent electrocardiogram 

changes, or an “intermediate syndrome” associated with persistent muscle weakness [14].  

 

There has been considerable interest in utilizing enzymes to detoxify OP nerve agents 

in vivo. Human butyrylcholinesterase (BuChE) shares 55% sequence identity and 0.8 Å root 
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mean square deviation (rmsd) in Cα positions with human AcChE. While exhibiting no 

natural hydrolytic activity towards nerve agents (with ki values between 2.2 and 3.0 × 105 M-

1 s-1 for sarin and VX, respectively), BuChE functions well as a bioscavenger, in that it binds 

and sequesters nerve agents as OP-enzyme complexes [15, 16].  Mutagenesis of residues 

adjacent to the BuChE active site led to the identification of variants that retain esterase 

activity and increase rates of reactivation 100-fold over the wild-type enzyme [15, 17]. 

Transgenic mice expressing one such mutant of human BuChE, Gly-117-His, have been 

shown to possess modestly increased resistance to intoxication by OP pesticides [18]. In spite 

of these advances, an efficient prophylactic enzyme-based treatment for nerve agent exposure 

has remained elusive. Most mutant and wild-type forms of BuChE are subject to the same 

irreversible aging reactions as AcChE. Furthermore, relatively large doses of these 

stoichiometric scavenger enzymes must be administered for effective protection [19]. For 

these reasons, additional enzymes have been examined for potential conversion into efficient 

OP hydrolases. 

 

Human carboxylesterase 1 (hCE1) has been proposed as a candidate for development 

into an OP hydrolase [20-22]. Carboxylesterases (CEs; EC 3.1.1.1) are members of the same 

serine hydrolase superfamily that contains AcChE and BuChE, and some CEs exhibit natural 

OP hydrolysis activity. For example, rat serum CE has been shown to metabolize sarin at 

least as efficiently as the Gly-117-His mutant form of human BuChE [20]. hCE1 (78% 

identity to rat serum CE) metabolizes carboxylester, amine ester, and thioester linkages in a 

variety of endogenous and xenobiotic compounds [22-24]. This glycoprotein shares 34% 

identity and 1.2 Å rmsd over Cα positions with AcChE, and utilizes the same two-step serine 
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hydrolase catalytic mechanism. It has been shown that AcChE, BuChE and mammalian CE 

exhibit a similar range of inhibition rate constants (log10 ki) of between 6.7 and 7.9 M-1min-1 

for soman [21].  Several crystal structures of hCE1 have been determined, including 

complexes with heroin and cocaine analogues, the clinical therapeutics tamoxifen, tacrine, 

and mevastatin, and the endobiotics taurocholate, cholate, and coenzyme A [25-28]. These 

structures highlight the promiscuous ability of the enzyme to bind a broad spectrum of 

structurally diverse compounds, a characteristic that would be important for an OP hydrolase 

with specificity for a variety of OP compounds. Here, we present the crystal structures of 

hCE1 in covalent acyl-enzyme intermediate complexes with the nerve agents soman and 

tabun. These structures reveal that hCE1 exhibits key structural differences in relation to the 

AcChE [6, 29] and BuChE [7] complexes with OPs elucidated previously, features that may 

be exploited in the rational design of hCE1 into an efficient, broad-spectrum OP hydrolase. 
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MATERIALS AND METHODS 

 

Nerve Agent Treatment and Crystallization.  

A secreted form of hCE1 was expressed using baculovirus in Spodoptera frugiperda 

Sf21 cells and purified as previously described [30, 31]. Milligram quantities of purified 

enzyme were subsequently incubated with ~10-fold molar excesses of racemic mixtures of 

soman (GD) and tabun (GA) (obtained from the Research Development and Engineering 

Command, Aberdeen Proving Ground, MD) for 1 hour at room temperature.  Excess agent 

was removed using size exclusion chromatography by passing the enzyme over PD-10 

sephadex G-25 columns (Amersham Biosciences, Uppsala, Sweden). The treated enzyme 

was tested to confirm the absence of both carboxylesterase activity (indicating complete 

inhibition of the hCE1) and the capacity to subsequently inhibit BuChE (indicating removal 

of unbound OP).  Samples were then concentrated to 3-5 mg/ml using Amicon Ultra-15 

(Millipore) spin concentrators. Long, plate-like crystals (up to 500 µm × 100 µm × 40 µm) 

were grown by sitting drop vapor-diffusion methods in 9-13% PEG 3350, 0.1-0.4 M Li2SO4, 

0.1 M Citrate (pH 5.5), 0.1 M NaCl, 0.1 M LiCl, and 5% Glycerol over a period of 1-4 

weeks. Crystals were cryoprotected step-wise fashion into 30% (w/v) sucrose plus mother-

liquor before cooling to 100K in a liquid nitrogen cryo-stream. 

 

Structure Determination and Refinement. 

Diffraction data were collected at 100K at the Advanced Photon Source at Argonne 

National Laboratory (Argonne, IL) at beamline 22-ID (SER-CAT) for the hCE1-tabun 

complex, and at 23-IDD (GM/CA-CAT) for the hCE1-soman complex. Data were indexed 
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and scaled using HKL-2000 [32]. Molecular replacement was conducted using the program 

MolRep in the CCP4i suite [33] (v6.0) using one trimer of the hCE1-Tacrine structure 

(RCSB PDB Accession code 1MX1, [26]) as a search model. Refinement was accomplished 

using simulated annealing and torsion angle dynamics in CNS [34], and included an overall 

anisotropic B-factor and bulk solvent corrections as well as initial NCS restraints. A subset 

(7%) of the data for each structure were set aside for cross-validation by Rfree calculation 

prior to any structural refinement. Manual rebuilding was conducted using O [35] and σa-

weighed electron density maps [36]. Data collection and refinement statistics are outlined 

fully below (Table I). Final structures were validated using PROCHECK [37], and all figures 

were generated in PyMol (http://pymol.sourceforge.org, [38]). 
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RESULTS 

 

Crystallographic Analysis. 

 The hCE1-soman and hCE1-tabun complex structures were determined by molecular 

replacement, and refined to 2.7 Å resolution in space group P21 (hCE1-soman) or P212121 

(hCE1-tabun). These space groups have been observed in previous hCE1 structures [25-28], 

and correspond either to two (P21, hCE1-soman)  or one (P212121, hCE1-tabun) trimer per 

asymmetric unit. While the cell constants of the hCE1-soman structure appear to be capable 

of adapting P212121 space group symmetry, Rsym values establish P21 as correct for this 

complex. The initial maps were of high quality, and were easily traceable for any deviations 

that occurred between the search model and the new structures. The final R factors were 

17.0% (Rcryst) and 22.5% (Rfree) for the hCE1-soman complex and 16.7% (Rcryst) and 23.0% 

(Rfree) for the hCE1-tabun complex (Table I). 

 

Domain Architecture of hCE1. 

The 62 kDa hCE1 monomer is comprised of three domains and two ligand binding 

sites (Figure 3.1). The catalytic domain exhibits the canonical α/β-hydrolase fold and 

contains a high-mannose glycosylation site at Asn79 that is critical to protein stability and 

function [27]. The αβ and regulatory domains sit adjacent to the active site, with the latter 

flanking the surface ligand-binding site termed the Z-site [27]. The binding of various small 

molecules to the Z-site has been shown to regulate a trimer-hexamer equilibrium of hCE1. In 

both structures presented here, the Z-site contains bound sucrose, the crystallographic 

cryoprotectant utilized in these studies (Figure 3.1). The active site of the enzyme is located 
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at the interface of the three domains and is composed of the catalytic triad Ser221, His468, 

and Glu354.   The hCE1 trimer exhibits C3 symmetry and is formed largely by contacts 

between the αβ domains of each monomer (not shown) [25, 27, 28].  A hexamer has also 

been observed for hCE1 in which two trimers are stacked with their active sites facing in and 

with the Z-site loops interdigitating [26, 27]; neither of the structures described here form a 

hexamer, however. 

 

Structure of the hCE1-Soman Complex. 

Initial difference density (Fo-Fc) maps in the hCE1-soman structure indicated a 7σ 

electron density peak 1.6 Å away from the Oγ of Ser221 in all six active site cavities, 

suggesting the presence of a covalently-attached phosphoryl adduct. At lower sigma levels 

(e.g., 3-5 σ), the maps revealed additional density to suggest the presence of the acyl-enzyme 

intermediate, in which the fluoride ion has been displaced by the attack of the enzyme’s 

catalytic serine (Figure 3.2A).  This intermediate was built into the model using this electron 

density and refined well, yielding a covalent adduct at the active site that exhibits PR 

stereochemistry for the chiral phosphorus atom (Figure 3.2B). The covalent adduct is 

stabilized by two hydrogen bonds (2.8 Å and 2.5 Å) between the phosphoryl oxygen and the 

main-chain nitrogens of Gly141 and Gly143 in the enzyme’s oxyanion hole. The large, 

methylpinacolyl alkoxy group of the soman adduct is directed towards the spacious region of 

the active site cavity adjacent to Met364, while the methyl group occupies the smaller, rigid 

pocket near Phe101. This rigid pocket has been previously shown to select for the small 

acetyl and methyl ester linkages in heroin and cocaine [27].   
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The PR stereochemistry observed for the covalent adduct in this structure suggests 

that hCE1 selectively reacted with the PS stereoisomer of soman, which is 10,000-fold more 

effective than PR at inhibiting AcChE [39], based on an SN2 stereoinversion [40, 41]. A 2.7 Å 

resolution simulated annealing omit map confirmed the stereochemistry of the covalent 

adduct (Figure 3.3A). We also placed the presumably incorrect PS stereoisomer into the 

original model (before refinement or any ligands were added) and performed one round of 

structural refinement.  Distinct positive and negative difference density (|Fobs-Fcalc|, φcalc) 

peaks support the conclusion that the acyl-enzyme intermediate observed in the structure is in 

the R conformation (Figure 3.3B). Structural constraints in the hCE1 active site also indicate 

that PS-soman is unlikely to be processed by the enzyme because this stereoisomer’s alkoxy 

group is too large to be accommodated in the small, rigid pocket of the catalytic gorge. 

Soman also contains a second stereocenter located at the C5 atom in the methylpinacolyl 

alkoxy group.  While it is observed in the CR orientation in this structure, there appear to be 

no structural constraints that would prevent the CS orientation from being accommodated in 

the hCE1 active site. Taken together, these data suggest that hCE1 is selective for the lethal 

PS stereoisomer of soman. 

 

Structure of the hCE1-Tabun Complex.  

Similar to the hCE1-soman structure, initial difference density in the hCE1-tabun 

structure indicated that the active site Ser221 in this structure had been covalently modified.  

Subsequent refinement confirmed the presence in the hCE1 active site of the acyl-enzyme 

intermediate of tabun, which is generated by the replacement of the cyano group with the 

enzyme’s catalytic serine (Figure 3.4A, B). In this covalent complex, the alkoxy group is 
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positioned in the large pocket adjacent to Met364, while the N,N-dimethylamine group is 

located in the smaller, rigid pocket; these are orientations similar to those observed in the 

hCE1-soman complex. The covalent adduct in this structure exhibits PS stereochemistry, 

which indicates that the protein molecules in the crystal reacted with the PR isoform of tabun. 

As with soman, simulated annealing omit map was used to confirm the stereochemistry of 

the adduct (Figure 3.5A). This revealed that the correct adduct stereoisomer was placed in the 

active site cavity. We also placed the presumably incorrect PR stereoisomer into the original 

model (prior to any refinement or the addition of ligands) and conducted one round of 

structural refinement.  While the resultant difference density maps were not as dramatic as 

those obtained for the incorrect PS adduct of soman (due to the similarity in size between the 

two R groups of tabun), they support the conclusion that the stereochemistry of the hCE1-

tabun adduct is PS, and indicate that the hCE1 molecules present in the crystal examined 

reacted with PR-tabun (Figure 3.5B). Finally, the PS adduct satisfies all difference density 

after several rounds of refinement (Figure 3.6). 

 

Comparison to Cholinesterase-Nerve Agent Structures.  

We next compared the hCE1 complexes reported here to two covalent acyl-enzyme 

intermediate complexes of AcChE with nerve agents: the M. musculus (Mu) AcChE with 

tabun [42] and the T. californica (Tc) AcChE with VX [29]. The MuAcChE-tabun complex 

exhibits an acyl-enzyme intermediate in the PR conformation, indicating that the enzyme 

reacted with the PS form of tabun (Figure 3.7A). This observation is in agreement with the 

work of Degenhart, et al. that shows AcChE is inhibited 6-fold more readily by PS-tabun 

relative to the PR isoform [43]. Note, however, that hCE1 and AcChE exhibit acyl-enzyme 
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intermediates with the opposite stereochemistry: PS for hCE1 and PR for AcChE (Figure 

3.7A).  The structure of TcAcChE in covalent complex with VX reveals a PR covalent 

adduct, indicating that the enzyme reacted with the S-isomer of VX (VXS) (Figure 3.7B). 

VXS is known to be 115-fold more potent than VXR towards AcChE [44]. Relative to hCE1, 

the TcAcChE-VX complex also exhibits alternative organization of its active site with 

respect to the acyl-enzyme intermediate.  The TcAcChE-VX complex places its larger 

ethoxy-group adjacent to H400, while hCE1 positions the larger methylpinacolyl alkoxy 

group of its soman complex away from its catalytic H468 (Figure 3.7B).  Although limited 

biochemical work has been conducted with CEs and their stereoselectivity towards nerve 

agents, the guinea pig serum CE is known to be 100-fold more susceptible to PS-soman [45], 

in accordance with the structural data presented above for hCE1. Taken together, these 

observations support the conclusion that the hCE1-acyl-enzyme intermediates observed are 

formed via an SN2-like stereoinversion, and generate distinct covalent complexes relative to 

the cholinesterases. 

 

The two covalent hCE1-complexes presented here also indicate that hCE1 does not 

undergo aging (dealkylation) when inhibited by soman or tabun. While the volumes of the 

catalytic gorges of hCE1, AcChE, and BuChE are similar (924, 993, 982 Å3, respectively) 

[46], their active site architectures are significantly distinct. These differences are largely 

generated by the position of the so-called “acyl” loop, which has been previously suggested 

to be involved in the aging process of AcChE [6]. The acyl loops of the cholinesterases place 

large phenylalanine or leucine residues adjacent to the catalytic serine, producing a small 

pocket that can accommodate the acyl group of an OP but not the larger alkoxy groups of 
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nerve agents like soman (Figure 3.8). As a consequence, the alkoxy moieties in these 

cholinesterases structures are within ~3.5 Å of the catalytic triad His (Figure 3.7), which has 

been proposed to facilitate aging [6, 29, 42]. In contrast, in hCE1 the corresponding loop is 

shifted by ~7 Å away from the adduct and is stabilized by two rigid proline residues, which 

generate the large pocket that accommodates the alkoxy group in the soman- and tabun-

bound structures presented here (Figures 3.2, 3.4, 3.8). These binding modes position the 

alkoxy oxygens outside hydrogen-bonding range (4.7-5.1 Å) with respect to His468 of the 

hCE1 catalytic triad. Note that while this histidine is static in position in the hCE1 structures 

determined to date, it has been observed to shift in other cholinesterase structures [29, 42]. If 

one imposes this shift on the hCE1 histidine, however, it would only come within 4.4 Å of 

the alkoxy oxygen of the hCE1 acyl-enzyme intermediates. Thus, the distinct architecture of 

the hCE1 active site appears unfavorable to the process of aging because the alkoxy group 

moiety is placed relatively distant from the catalytic histidine.  Indeed, the >1 week time-

frame necessary for the hCE1-nerve agent crystals to grow would presumably provide 

sufficient time for aging to occur.  The fact that a secondary dealkylation reaction is not 

observed in the structures presented here supports the conclusion that hCE1 may be resistant 

to this process.  However, it remains possible (though unlikely) that the crystallization 

process may have selected only for non-aged hCE1 complexes.  As discussed below, lack of 

aging could not be confirmed by the standard experimental method of reactivation using an 

oxime. 
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DISCUSSION 

 

 The hCE1-nerve agent complex structures presented here are of covalent acyl-enzyme 

intermediates rather than the fully aged products. This result was unexpected because the 

trapping of the cholinesterases (AcChE, BuChE) in non-aged, acyl-enzyme intermediate 

complexes required the exposure of pre-grown crystals to nerve agents immediately prior to 

x-ray data collection [7, 29, 42]. In contrast, the hCE1-nerve agent complex crystals used to 

produce the structures reported here were generated after the enzyme was exposed to nerve 

agents in solution, and then crystallized over 1-4 weeks. This timeframe would be expected 

to allow for sufficient time for aging to occur [7].  

 

Aging is defined experimentally by the inability of the OP-treated enzyme to be 

reactivated by a strong nucleophile like an oxime, which are able to displace a covalent acyl-

enzyme intermediate but not a covalent aged complex [1, 11]. We examined the ability of the 

oximes diacetylmonoxime and monoisonitrosoacetone, which are effective with both 

cholinesterases and rat serum carboxylesterase [21], to reactivate tabun- and soman-inhibited 

hCE1. However, no enzyme reactivation was detected (data not shown), perhaps because 

hCE1, like other intracellular liver CEs from guinea pig [47] and rat (D. Maxwell, 

unpublished data), is not reactivated by these oximes. Indeed, analysis of the active site of 

MuAcChE bound to the oximes HI-6, Ortho-7, and obidoxime, reveals that a series of 

aromatic residues are required for stabilization and proper alignment of the oxime 

nucleophiles for reactivation [48]; these aromatic residues are not present in the active site of 

hCE1. In the absence of oxime reactivation of the inhibited hCE1, it is impossible to 

 82



experimentally confirm a lack of aging after inhibition by soman or tabun.  Additional work 

to identify an oxime that can reactivate hCE1 might allow this protein to function as a 

“pseudo-catalytic” scavenger [49].  

 

Several structural features of the hCE1-nerve agent complexes presented here indicate 

that hCE1 may be resistant to aging.  Detailed structural studies of nerve agent-cholinesterase 

complexes reported previously have highlighted the importance of the catalytic histidine in 

aging, either via hydrolysis or via carbocation stabilization [6, 29, 42].  As shown above, the 

active site of hCE1 is distinct from the cholinesterases in terms of interactions with nerve 

agents (Figures 3.7-3.8).  In hCE1, the alkoxyl substituent is positioned away from the 

catalytic histidine in the active site gorge, while the chlolinesterases place this group in close 

proximity to their catalytic histidines. Controversy still exists over the mechanism of aging 

for some nerve agents.  For example, mass-spectrometry and x-ray crystallographic studies of 

the AcChE-tabun complex indicate that aging occurs via the loss of the dimethylamine group 

through P-N bond scission rather than by loss of the alkoxy group [42, 50].  The mechanism 

proposed involves the protonation of the dimethylamine nitrogen by the catalytic hisitdine 

[42]. Both aged and non-aged MuAcChE-tabun complex structures appear to contradict this 

mechanism, however, because the dimethylamine group is pointing away from the catalytic 

histidine [42] (Figure 3.7A). In addition, we found no evidence for aging of the hCE1-tabun 

structure (Figure 3.5), even though the dimethylamine group is proximal to His468.  

Regardless however, new methods must be developed to experimentally examine the ability 

of hCE1 to age in the presence of organophosphorus nerve agents.  
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Inspired by the identification of cholinesterase mutants with favorable features in 

relation to organophosphate binding and hydrolysis [15, 17, 51, 52], the structures of hCE1 in 

complexes with nerve agents presented here may be useful in developing this enzyme into a 

protective nerve agent hydrolase. Use of enzymes as a prophylaxis for OP exposure carries 

significant benefits beyond current chemical treatments. A prophylactic treatment for nerve 

agent exposure would be designed to protect at-risk military personnel and civilian first 

responders. As such, the use of a human enzyme for such a purpose would be expected to 

avoid potentially harmful immune responses that may arise from protein-based therapies 

derived from non-human sources. Extensive work has been conducted toward this goal with a 

recombinant form of BuChE purified from the milk of transgenic goats [49, 53]. While this 

enzyme has been shown to confer a level of protection up to 5.5 × LD50 for VX and soman in 

guinea pigs [49], it acts purely as a stoichiometric bioscavenger and binds to, but does not 

catalytically inactivate, nerve agents. Thus, protection levels are limited stoichiometrically to 

the dose given. The most promising catalytic bioscavenger identified to date is the 

organophosphorous hydrolase (also known as phosphotriseterase) from the bacterium 

Pseudomonas diminuta; this enzyme exhibits moderate activity (kcat=56 s-1 for sarin, 77 s-1 

for tabun) for breaking down nerve agents [54, 55]. However, the bacterial origin of this 

organophosphorous hydrolase may limit its effectiveness in humans [49]. The human serum 

enzyme paraoxonase 1 (PON1) has been examined for development, but no structural data 

and low catalytic efficiency for nerve agents have plagued this process [49]. Therefore, a 

human enzyme with catalytic ability to hydrolyze nerve agents efficiently would be a 

welcome addition to this growing field of protein-based potential therapeutics.  
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Several features of hCE1 make it a promising candidate for development into a 

catalytic prophylactic for nerve agent exposure. As a human enzyme, it is unlikely to elicit an 

immune response; indeed, cross-species injections of CEs have established that these 

enzymes can circulate stably within mammalian serum for weeks [20, 21].  hCE1 is also a 

naturally broad-spectrum enzyme that acts on a wide range of structurally-distinct substrates; 

thus, protection against several nerve agents may be possible. Finally, as described above, the 

active site of hCE1 may be uniquely resistant to the secondary dealkylation reaction that can 

result in aging after inhibition by an OP nerve agent.  Taken together, these observations 

suggest that if hCE1 were converted into an efficient OP hydrolase, it may be an effective 

protein-based therapeutic that detoxifies organophosphate chemical weapons.  
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FIGURE LEGENDS 

Figure 3.1: The overall monomeric structure of hCE1 bound to soman. The catalytic domain 
is shown in blue, the regulatory domain in green, and the αβ domain in purple. Active site 
residues are highlighted in yellow, with the catalytic triad and soman adduct in red. The Z-
site is occupied by sucrose, modeled as ball-and-stick in orange. The carbohydrates attached 
to residue Asn79 are shown ball-and-stick in magenta, of which only the initial N-
Acetylglucosamine (NAG) and terminal sialic acid (SIA) are observed. 

 
Figure 3.2: hCE1-Soman Complex. (A) Chemical scheme of soman reacting with hCE1. 
Soman is attacked at the chiral phosphate by the Oγ of Ser221, resulting in a covalent acyl-
enzyme intermediate and a free fluoride ion. (B) Cut-away view of the active site of hCE1 
bound covalently to soman. Surrounding residues are shown in purple, the catalytic triad and 
soman adduct in green, and the oxyanion hole in white. Hydrogen bonds between the 
phosphoryl oxygen and the oxyanion hole are shown in red. 

 
Figure 3.3: Stereochemistry of the hCE1-soman adduct. The catalytic triad of amino acids 
(Ser221, His468 and Glu 354) and the adduct are shown in green, with the oxyanion hole in 
white. (A) Stereo view of a 2.7 Å resolution Fo-Fc simulated annealing omit map (purple, 
contoured to 3σ) calculated for the PR-soman adduct. (B) Stereo view of initial difference 
density maps for the incorrect PS-soman adduct (cyan for positive, shown at 3σ; red for 
negative, shown at -3σ). 

 
Figure 3.4: hCE1-Tabun Complex. (A) Chemical scheme of tabun reacting with hCE1. 
Tabun is attacked at the chiral phosphate by the Oγ of Ser221, resulting in a covalent acyl-
enzyme intermediate and free cyanide ion. (B) Cut away view of the hCE1 active site 
covalently bound to tabun. Surrounding residues are shown in blue, the catalytic triad and 
adduct in yellow, and the oxyanion hole in white. Hydrogen bonds between the adduct and 
the oxyanion hole (dashed lines) are shown in red.  

 
Figure 3.5: Stereochemistry of the hCE1-tabun adduct. The catalytic triad and adduct are 
shown in yellow, with the oxyanion hole in white. (A) Stereo view of a 2.7 Å resolution Fo-
Fc simulated annealing omit map (purple, contoured to 3σ) calculated for the PS-tabun 
adduct. (B) Stereo view of initial difference density maps for the incorrect PR-tabun adduct 
(cyan for positive, shown at 2σ; red for negative, shown at -2σ). 

 
Figure 3.6: Final 2.7 Å resolution difference density (Fo-Fc) at 2.0, 2.5, and 3.0 σ shows that 
the PS-Tabun adduct satisfies all pertinent active site density. 

 
Figure 3.7: Comparison between hCE1-nerve agent complexes and non-aged nerve agent-
cholinesterase complexes (the oxyanion hole in each structure is rendered in white). (A) 
Superposition of hCE1-tabun complex (yellow) with the non-aged complex of murine 
AcChE [42] structure with tabun (purple). (B) The hCE1-Soman complex (green) is on the 
left, with the non-aged TcAcChE-VX complex [29] on the right (blue).   
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Figure 3.8: The acyl-loop regions of the aged AcChE-soman [6] complex (green) and the 
aged BuChE-echothiophate [7] complex (salmon) superimposed on that of the non-aged 
hCE1-soman complex (purple). Chemical representation of pocket locations highlights 
differences between structures. 
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Figure 3.1 
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Figure 3.2 
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Figure 3.3 
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Figure 3.4 
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Figure 3.5 
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Figure 3.6 
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Figure 3.7 
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Figure 3.8 
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Table 3.1: Crystallographic Statistics 
 
 

 

 hCE1-Soman hCE1-Tabun 
Resolution (Å)1 50-2.70 (2.87-2.70) 50-2.70 (2.80-2.70) 
Space Group P21 P212121
Asymmetric Unit Two Trimers One Trimer 
Cell Constants (Å, °) a=55.5 

b=181.2 
c=203.1 
α=γ=90 
β=89.9 

a=55.6 
b=181.1 
c=202.9 
α=β=γ=90 

Total Reflections 108,029 53,127 
Unique Reflections 29,197 8,301 
Mean Redundancy1 3.7 (3.3) 6.4 (6.3) 
Rsym (%)1,2 10.2 (21.6) 11.7 (29.2) 
Wilson B Factor (Å2) 34.6 28.8 
Completeness (%)1 99.9 (99.9) 91.8 (93.8) 
Mean I/σ1 19.7 (7.8) 21.8 (7.7) 
Rcryst (%)1,3 17.0 16.7 
Rfree (%)1,4 22.5 23.2 
RCSB Access Codes 2HRQ 2HRR 
1 Number in parentheses is for the highest shell. 
2 Rsym = Σ|I - <I>| / ΣI, where I is the observed intensity and <I> is the average 
intensity of multiple symmetry-related observations of that reflection. 
3 Rcryst = Σ||Fo| - |Fc|| / Σ|Fo|, where Fo and Fc are the observed and calculated 
structure factors, respectively. 
4 Rfree = Σ||Fo| - |Fc|| / Σ|Fo| for 7% of the data not used at any stage of structural 
refinement. 
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Chapter 4: 

Introduction to the Androgen Receptor Modulator MAGE-11 

 

Introduction 

 

The androgen receptor (AR) is a member of the steroid nuclear receptor family and is 

responsible for regulating gene expression in response to male steroid ligands such as 

testosterone. AR plays an important role in prostate cancer tumorigenesis and progression, 

and is therefore a target for treatment of metastatic forms of the disease. AR activity is 

regulated by associated co-activators and co-repressors, which facilitate or disrupt the 

expression of AR controlled proteins by recruiting transcriptional machinery. Co-activators 

and co-repressors bind to the activation function 2 (AF-2) region of the ligand binding 

domain (LBD), which is properly assembled upon androgen binding. AR, however, exhibits 

a self association between the AF-2 region and an FxxLF peptide of its N-terminal domain 

(NTD) that must be disrupted for co-activator or co-repressor binding. The melanoma 

antigen gene 11 (MAGE-11) protein was recently found to abrogate this interaction by 

competing for the FxxLF region of AR’s NTD, facilitating co-activator/co-repressor binding 

to the AF-2 region.  



General Characteristics of Nuclear Receptors 

 

 Nuclear receptors are proteins that generally respond to chemical stimuli to regulate 

gene expression involved in the growth, differentiation, morphology, and reproduction of 

many different cell types and tissues [1]. These ligand-inducible transcription factors are 

separated into several subfamilies that have been grouped by sequence identity and the 

chemicals to which they respond [2, 3]. Class 1 is a large subfamily that includes the first 

receptors with known cognate ligands, including the vitamin D receptor (VDR), the 

peroxisome proliferator activated receptors (PPAR), and thyroid receptors (TR). This 

subfamily also includes several NRs that are known as adopted orphan receptors. In adopted 

orphans, the endogenous ligands were not initially known but have since been assigned. 

These include xenobiotic detecting NRs such as the pregnane X receptor (PXR), constitutive 

androstane receptor (CAR), and the liver X receptor (LXR). Class II receptors include the 

retinoid X receptor (RXR), which is a common dimeric partner of other NRs in class I, and 

the hepatocyte nuclear factor (HNF) group of receptors. Class III encompasses all steroid 

receptors, including the estrogen receptor (ER), glucocorticoid and mineralcorticoid 

receptors (GR, MR), and finally AR. Further classes include nuclear receptor like proteins 

NGF-induced clone B (IV), the steroidogenic factor 1 or SF-1 (V), germ cell nuclear factor 

(VI), and the small heterodimeric partner SHP (O) [1].  

  

Nuclear receptors typically share four common primary domains: the A/B or N-

terminal domain, a DNA binding domain (DBD), a modular hinge region, and the LBD 

(Figure 4.1) [1, 4]. The modular A/B or NTD is a highly variable domain that can result in 
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multiple isoforms of the same nuclear receptor due to different transcriptional start sites, 

alternative splicing, and different promoters [5]. A prime example of this is the retinoic acid 

receptor (RAR), of which three genes result in eight separate receptors with different NTDs 

[6]. The NTD contains an activation function region (AF-1) which determines in part the 

ligand-independent activity of nuclear receptors. The signal for this basal activity is likely 

due to the interaction of nuclear receptors with cellular kinases that phosphorylate this 

region, enhancing the transcriptional activity of the NTD [7]. Whereas no crystal structure 

exists for an intact NTD, nuclear magnetic resonance (NMR) and circular dichroism studies 

have shown that the region lacks well-ordered structure in GR and both isoforms (α,β) of ER 

[8]. However, this may not be valid when additional domains or binding partners are present. 

The NTD of the progesterone receptor (PR) and GR were shown by limited proteolysis to be 

more structured when expressed with an intact DBD than without [9, 10].  

 

Whereas the NTD exhibits extremely high levels of diversity across the nuclear 

receptor family, the DNA binding domain (DBD) is highly conserved. The small, helical 

DBD is primarily comprised of two zinc finger motifs that encompass approximately 70 

residues and a C-terminal extension (CTE) sequence that adds an additional 25 residues. 

Several of these residues are critical for function, including two cystine clusters that 

coordinate the zinc ions and additional smaller subdomains known as the “P” and “D” boxes 

[1]. The zinc finger containing the “P” box is involved in the identification of hormone 

response elements (HREs) on the regulatory regions of nuclear DNA, while the “D” box on 

the other zinc finger is involved in dimerization. Additional DNA binding recognition and 

stabilization is facilitated by the CTE, which has been shown to recruit the coregulatory 
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proteins HMGB-1/-2 to class I and II NRs [11, 12]. HREs are configured as one or two half 

sites with the sequence AG(G/T)TCA for the majority of NRs, with the class III steroid 

receptors generally responding to an AGAACA sequence [1]. Depending on the receptor, 

NRs bind these DNA sequences as a monomer, homodimer, or heterodimer, with the 

aforementioned “D” box responsible for part of the dimer interaction. Steroid receptors 

nearly always bind DNA as homodimers, whereas those NRs that act as heterodimers (e.g. 

PXR, VDR, and PPARγ) partner with RXRα at response elements [1, 13]. The dimerization 

process may confer additional levels of regulation by allowing distal, inverted, or everted 

response elements to be activated [5]. The hinge region may facilitate this movement by 

allowing the DBD and LBD to move independent of each other [5, 14]. The hinge has also 

been shown to possess nuclear localization signals and binding sites for some co-repressors 

[15].  

 

The ligand binding domain (LBD) is responsible for the majority of nuclear receptor 

functions, including the mediation of ligand-dependant transcriptional activity, dimerization, 

and interaction with heat-shock proteins [1, 5]. The LBD is a highly structured domain, with 

10-13 α helices and a short antiparallel beta sheet (Figure 4.2) [16]. The LBD also contains 

the second activation function region (AF-2), a hydrophobic patch on the surface of the 

domain that is stabilized by agonist binding [8]. The conformational change that occurs to 

form the AF-2 region facilitates the recruitment of co-activators essential for transcriptional 

activity, such as SRC-1, a member of the SRC/p160 class of co-activators [17]. Co-repressors 

such as N-CoR (nuclear receptor co-repressor) and SMRT (silencing mediator for retinoic 
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acid and thyroid hormone receptors), alternatively, can bind the LBD in absence of ligand, 

when the AF-2 helix is in a non-productive conformation [15].  

 

The Androgen Receptor 

 

The androgen receptor (AR) is a member of the steroid nuclear receptor subclass that 

acts as an intracellular transcription factor against endogenous androgens. AR expression is 

primarily limited to androgen-specific tissues, namely the prostate, skeletal muscle, liver, and 

central nervous system, with the highest levels found in the prostate, epididymis, and adrenal 

gland [18]. AR is responsible for mediating male physiological changes throughout a 

lifetime, from sexual differentiation in utero and pubertal changes, to maintaining libido, 

muscle mass, and spermatogenesis in adults [19]. The principal male androgen testosterone, 

which is secreted by both the testes and adrenal gland, is the primary activator of AR in 

males. Testosterone can act by three different mechanisms, depending on whether or not it 

undergoes modification. Within some androgen-specific tissues, testosterone activity is 

naturally increased through its biotransformation into dihydrotestosterone (DHT) by 5α-

reductase (Figure 4.3) [20]. DHT is a more potent activator of AR then testosterone (2-10x), 

and is hence responsible for specific effects in the prostate and hair follicles [19]. 

Unmodified testosterone is responsible for sperm production and muscle growth, while a 

small percentage is converted into estrogen that affects behavior and bone growth. DHT 

binding can also alter the cellular localization of AR. AR is normally localized throughout 

prostate epithelial cells bound to heat-shock proteins that preclude AR from binding DNA 

[21]. Upon DHT binding, however, AR dissociates from the heat-shock proteins, and is 
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subsequently localized to the nucleus for active transcription [22].  This localization is 

mediated by the nuclear localization sequence in the hinge region of AR. AR also 

homodimerizes, undergoes phosphorylation, and is directed to androgen response elements 

(AREs) that are located in the promoter or enhancer regions of androgen specific gene 

targets. Co-regulators are then recruited along with transcriptional machinery, further 

ensuring the transactivation of AR-regulated gene expression [23, 24]. 

 

Several families of co-activators have been shown to interact with AR in the nucleus. 

These co-activators upregulate hormone mediated gene expression through either direct 

modification of chromatin or by recruiting nuclear proteins that contain histone acyl- or 

methyl-transferase activity. Members of the p160 class of co-activators have been found to 

interact with AR, including SRC-1, transcriptional intermediary factor 2 (TIF2), and 

amplified in breast cancer-1 (AIB1) [23, 25, 26]. These co-activators bind to the AF-2 region 

in the LBD of AR through a conserved LxxLL motif, with the leucine residues fitting into a 

hydrophobic groove. While these interactions have been shown to increase steroid receptor 

activity, it has not yet been shown if this interaction is required in vivo. Loss of the SRC-1 

gene in mice only resulted in minor physiologic changes in androgen specific tissues, and 

additional knockout experiments done with other p160 co-activators gave similar findings 

[27]. This led researchers to explore other aspects of AR, most notably its ability to self-

activate transcription. 

 

The androgen receptor is different from many other nuclear receptors in that it can 

activate transcription independent of co-activators. AR exhibits a novel N-terminus/C-
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terminus (N/C) self-association that can be important for robust steroid-dependent 

transactivation. The interaction is mediated by the AF-2 region of the LBD and an FxxLF 

motif found within the NTD, with an additional WxxLF motif contributing to a lesser extent 

[28-30]. The FxxLF peptide is alpha helical, similar in size to the LxxLL box found in the 

p160 class of co-activators [31]. This N/C communication is androgen-dependant (since AF-

2 formation is due to ligand binding) and has been shown to be required for the activation of 

some AR-regulated genes [29]. While the AF-2 region of other steroid receptors (e.g. ERα) 

is important for co-activator binding, the AF-2 of AR is different. AR prefers the internal 

FxxLF motif over the LxxLL motif of the SRC/p160 co-activators by approximately 10-fold, 

and hence competitively inhibits AF-2 dependent recruitment of SRC-1 [28, 32]. Structural 

determinants likely drive this process, since an FxxLF peptide promotes additional hydrogen 

bonding between the peptide and the charge clamp residue E897 of the LBD that are not 

found in the LxxLL/AF-2 interaction  (Figure 4.2) [31].  

 

Despite the preference for FxxLF over the LxxLL by the AF-2 of AR, co-activators 

are still important in AR regulated gene expression. For example, TIF2 has been shown to 

promote receptor stability by facilitating the N/C interaction [33]. While TIF2 expression is 

naturally low in prostate epithelial cells, recurrence of prostate tumors after androgen 

deprivation therapy has been tied to increased levels of co-activators of the SRC/p160 family 

[34, 35]. Furthermore, transient transfection assays have shown increased co-activator levels 

promote AR mediated expression of androgen-regulated gene products [29]. Taken together, 

these findings imply the existence of other co-regulators that modulate the N/C interaction in 

order to facilitate AF-2 binding of co-activator LxxLL motifs. Using a yeast two-hybrid 
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screen with the AR FxxLF peptide as bait, researchers were able to identify the cellular 

protein MAGE-11 as a potential regulator of this interaction [36]. The role of MAGE-11 as a 

novel co-regulator of AR is examined more fully below. 

 

Melanoma Antigen Gene Protein MAGE-11 

 

The melanoma antigen gene proteins (MAGE) consist of a large superfamily with a 

broad range of functional diversity and expression. The first MAGE protein discovered, 

MAGE-A1, was isolated in 1991 from a human melanoma cell line [37]. A proteolytic 

fragment of MAGE-A1 was presented as an cell surface antigen bound by major 

histocompatability class 1 (MHC-1), and in turn recognized by cytolytic T lymphocytes in 

melanomas  [37]. Researchers further discovered eleven additional MAGE family members 

with high levels of sequence identity (64-85%) to MAGE-A1 [38].  The 12 MAGE-A genes 

are localized to the terminal 3.5-Mb q28 region of the X-chromosome, indicating a potential 

role in x-linked diseases [38, 39]. Unless indicated otherwise, all numbered MAGE genes 

discussed from here on are of the A family. Additional sequencing efforts directed towards 

other areas of the human X-chromosome isolated three more families of genes, MAGE-B, 

MAGE-C, and MAGE-D [40-42]. The majority of MAGE genes (-A, -B, -C) contain one 

open reading frame found in the last exon of the gene, which are subsequently classified as 

class I MAGE family genes. The major feature that comprises class I MAGE genes is the 

MAGE homology domain, or MHD, which is found in the A, B, and C families but not the 

MAGE-D family (Figure 4.4) [43].  
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An extensive study of normal, somatic cell lines showed that MAGE genes were  

expressed almost exclusively in the testes [44]. However, numerous cancer cell lines showed 

increased levels of these proteins, including metastatic melanomas, carcinomas of the head 

and neck, bladder tumors, non small cell lung cancer, paciltaxel resistant ovarian cancer, and 

synovial sarcomas [44, 45]. For example, RT-PCR experiments have shown that MAGE-3 is 

expressed in 76% of metastatic melanomas and 82% of testicular germ cell tumors [46]. 

Most positive tumors in one study found that greater than 50% of the tumor cells were 

immunopositive towards the MAGE antibody, and that higher levels of staining correlated 

with the progression of the disease [44]. MAGE family members have been found in 

hepatocellular carcinomas as well, but with different levels of expression. MAGE genes -1 

and -3 were present at the highest levels, in approximately 68% of tumors, while MAGE-8 

was in 46%, and MAGE-2, 6, 10, 11, and 12 at only 30% [47]. In terms of the intracellular 

localization of the MAGE family of proteins, little conclusive evidence is available. For 

example, MAGE-1 and -3 have been shown to localize primarily to the cytoplasmic fraction 

of tumor cell lines, with small amounts of MAGE-1 found in the nucleus [48, 49]. 

Alternatively, MAGE-10 and MAGE-11 were found to be exclusively in the nucleus [50, 

51]. These results indicate that even though MAGE proteins a share high level of sequence 

identity, individual protein functions may vary significantly. Expression within cells of 

MAGE proteins in normal and tumor cell lines may also be methylation controlled. The 

promoter sequence for MAGE-1 contains a critical CpG bi-nucleotide site which precludes 

binding of the transcription factor Ets when methylated [52]. Accordantly, when cell lines are 

treated with a de-methylating agent, MAGE-1 expression was induced [53]. This may act as 

a trigger for MAGE presentation upon neoplastic growth.  
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While extensive research has been done on some MAGE family proteins, the focus of 

this study, MAGE-11, is relatively uncharacterized. As mentioned before, MAGE-11 was 

first identified in 1994 along with the other eleven members of the MAGE-A family, and was 

found to be a primarily nuclear protein expressed in testes and placenta [38, 50]. MAGE-11 

contains an extended upstream coding region that adds roughly 112 amino acids longer than 

other MAGE-A family proteins [54]. More importantly, MAGE-11 was recently identified as 

an androgen receptor co-modulator [36]. The androgen receptor exhibits an N/C interaction 

that must be disrupted for proper co-activator recruitment to the AF-2 region of its LBD. 

Using a yeast two-hybrid screen of a human testis library, MAGE-11 was identified to bind 

the FxxLF motif in the androgen receptor NTD, working to allow co-activator binding at the 

AF-2. Mutations at the FxxLF site to FxxAA resulted in loss of the interaction, confirming 

that MAGE-11 recruitment was FxxLF dependent. Furthermore, the MAGE-11/AR 

interaction was lessened in the presence of the tight binding synthetic androgen R1881, 

which increases the N/C self-association of AR. An immunoprecipitation assay confirmed 

the intracellular interaction of MAGE-11 with AR in the absence of androgen, but it was 

again lost in presence of DHT. Immunocytochemical staining of several cell lines expressing 

both MAGE-11 and AR showed that they co-localized in the cytoplasm in the absence of 

androgen, but upon DHT addition were transported to the nucleus.  

 

The area of AR that MAGE-11 interacts with is extended beyond just the FxxLF 

motif, and was found to encompass residues 16-36 of AR by mutational analysis. This 

sequence contains numerous residues important to the MAGE-11/AR interaction that were 

not required for AR N/C self-association. MAGE-11 appears specific for AR 16-36, since 
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other FxxLF containing AR co-regulators failed to interact with MAGE-11 by yeast two-

hybrid. Finally, MAGE-11 was also shown to facilitate binding of AR to TIF2, a co-activator 

of the SRC/p160 family. Immunoprecipitation assays showed that MAGE-11 co-expression 

increased levels of TIF2 pulled down by AR. This finding backs up the claim that MAGE-11 

disrupts the N/C self-association of AR, allowing the AF-2 of AR to be bound by the co-

activator LxxLL motif. Taken together, these results propose a model for how MAGE-11 

affects AR-dependant transactivation of androgen specific genes (Figure 4.5).  

 

The identification of MAGE-11 as a novel co-regulator of AR, in combination with 

the lack of structural information for any MAGE family protein, make MAGE-11 an ideal 

candidate for a crystallographic analysis. We hypothesize that MAGE-11 contains a surface 

binding site with similar characteristics to the AF-2 region of AR, with additional structural 

determinants that explain the sequence requirements of MAGE-11 binding to AR. Solving 

the crystal structure of MAGE-11 in complex with the AR 16-36 peptide will be the primary 

experiment, with additional biophysical characterization to fully understand the interaction. 

The efforts made towards this goal are fully explained in the following chapter. 
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Figure Legends 

Figure 4.1: Classical overall domain structure of nuclear receptors. (AF: Activation 
Function; DBD: DNA Binding Domain; LBD: Ligand Binding Domain) 
 
Figure 4.2: Crystal structure of Androgen Receptor LBD (RCSB PDB accession code 
1X0W) with inset of AR 21-30 FxxLF peptide bound at the AF-2 region. The highly helical 
LBD is shown in gray, with the AF-2 region highlighted in green. The FxxLF peptide is 
shown in purple, with charge clamp residues E897 and K720 shown in red and blue, 
respectively. Synthetic androgen R1881 is shown in space-filling models and sticks in 
yellow. Inset shows surface of AF-2 region with FxxLF peptide shown in tube form. 
 
Figure 4.3: Chemical structures of the conversion of testosterone into dihydrotestoserone by 
5α-reductase. 
 
Figure 4.4: Sequence alignment of the MAGE-A family. Alignment was done using 
LALIGN and was diagrammed using BOXSHADE. Green represents complete identity, 
yellow near identity, and blue conserved. MAGE homology domain is highlighted by a red 
box. Notice the additional up-stream coding region of MAGE-11. 
 
Figure 4.5: Model for the influence of MAGE-11 on AR transactivation. MAGE-11 disrupts 
the AR N/C interaction by binding the FxxLF motif of AR. Co-activators of the SRC/p160 
class then bind to the free AF-2 region by way of the LxxLL box peptide, facilitating 
androgen dependent transcription. 
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Figure 4.1 
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Figure 4.2 
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Figure 4.3 
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Figure 4.4 
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Figure 4.5 
 
 

 

 122



 
 
 
 
 

Chapter 5: 

Efforts towards the Purification and Biophysical Characterization of the Androgen 

Receptor Modulator MAGE-11 

 

Introduction 

 The androgen receptor (AR) is a member of the steroid nuclear receptor family that is 

responsible for the regulation of androgen-specific genes [1, 2]. AR activity is modulated by 

co-activators that work to recruit transcriptional machinery to facilitate the expression of 

these gene products [3, 4]. Co-activators of the p160/SRC class bind to the activation 

function 2 (AF-2) region of the ligand binding domain (LBD) of AR through an LxxLL motif 

that forms an amphipathic helix [5]. Upon androgen binding, however, AR exhibits a self-

association between its AF-2 region and an internal FxxLF motif found in its N-terminal 

domain (NTD) [6]. This N/C-terminus interaction prohibits co-activator recruitment by 

blocking the AF-2 site from being bound by the LxxLL motif [7]. The melanoma activated 

gene product MAGE-11 protein was found by yeast two hybrid screening to disrupt the N/C 

interaction by binding the FxxLF motif of the NTD, exposing the AF-2 region and allowing 

co-activators to bind and regulate AR transactivation [8]. The interaction between MAGE-11 

and the FxxLF motif of AR therefore warrants examination and further characterization to 

fully understand the role MAGE-11 plays in AR mediated gene expression. This chapter 

outlines the efforts made towards the purification of MAGE-11, and further examines the 

interaction between MAGE-11 and AR by fluorescence polarization assays.  



Materials and Methods 

 

Construct and Expression Vector Production 

 The open reading frame of the MAGE-11 gene consists of 1287 bp encoding 429 

amino acids and was amplified out of a testis cDNA library by PCR. Initial vectors for 

examination were kindly provided by the laboratory of Dr. Elizabeth Wilson. PCR products 

encoding residues 2-429, 112-429, 218-413, and 222-429 of MAGE-11 were cloned into the 

EcoR1-Xho1 site of pGEX-4T1 vectors to express proteins as fusions to a thrombin 

cleavable glutathione-S-transferase (GST) tag. MAGE-11 constructs were further cloned into 

additional vectors in order to test purifications utilizing nickel affinity. MAGE-11 222-429 

was amplified out of pGEX-4T1-MAGE-11-2-429 using primers with Nde1 and Xho1 ends 

for placement into pET-15b (Novagen). Constructs 222-429, 112-429, and 2-429 were also 

placed into a variant of the pMAL-C2H10 vector using primers containing Sal1 and Pst1 

ends. This vector creates a fusion of MAGE-11 to maltose binding protein (MBP), with a 10x 

His tag and tobacco etch virus (TEV) protease site to cleave the dual tag from MAGE-11. 

The pMAL-C2H10 vector was also used to create fusion protein to a fragment of the 

androgen receptor of residues 4-52. Any site directed mutagenesis was accomplished using 

the QuikChange Mutagenesis kit (Stratagene) with primers encoding individual mutations. 

All constructs and mutations were confirmed using automated DNA sequencing (UNC 

genome analysis center). 
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Bacterial Expression 

 Fusion proteins of MAGE-11 and AR were produced in bacteria using several 

methods, but a general protocol was optimized for overexpression. Vectors encoding MBP-

tagged versions of MAGE-11 were transformed into the E. Coli cell line BL21(DE3) gold 

and plated onto LB agar plates containing 50 µg/ml ampicillin (Amp) for selection of 

transformed colonies. Single colonies were then transferred to 100 ml of fresh LB liquid 

media containing 100 µg/ml Amp and allowed to grow for 16 h at 37 °C. Larger cultures 

were inoculated with 1% of overnight and allowed to grow to mid-log phase at an optical 

density (OD600) of 0.6-0.8. Protein expression was induced by the addition of 1 mM 

isopropyl-b-D-1-thiogalactopyranoside (IPTG) and allowed to grow for 20 h at 15 °C. Cells 

were then pelleted by centrifugation and stored at -80 °C. 

 

General Purification of MBP-MAGE-11 Fusions 

 Cell pellets of E.Coli expressing MBP-MAGE-11 fusions were thawed at 4 °C 

overnight, and suspended in an appropriate volume of nickel buffer A (NiA) (50 mM sodium 

phosphate pH 7.5, 500 mM NaCl, 20 mM imidizole , 5% (w/v) glycerol). Cells were then 

sonicated for 5 minutes on ice in the presence of protease inhibitors (PMSF at 100 µg/mL, 

leupeptin and aprotein at 1 µg/mL each) and DNAse (10 µg/ml) for proper cell lysis. Cell 

debris was removed by centrifugation at 37,000g for 90 minutes. Cell lysate was then loaded 

directly onto a 10 ml Ni-Sepharose-6 (Amersham) gravity column and allowed to bind under 

agitation for 10 minutes. Lysate was then eluted off, followed by ten column volumes (CV) 

of buffer A to wash away unbound protein. Elution of bound MBP-MAGE-11 was 

accomplished with 5 CV of nickel buffer B (NiB) (50 mM sodium phosphate pH 7.5, 500 
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mM NaCl, 300 mM imidizole, 5% (w/v) glycerol) or until no more protein was detected by 

Bradford. Fractions were examined by SDS-PAGE, and those that contained MBP-MAGE-

11 were pooled. DTT was added to 10 mM and 1-2% (w/w) of His-tagged TEV protease was 

added for MBP-10xHis removal and allowed to sit at room temperature for 4 h. Sample was 

subsequently dialyzed into 4 L of NiA overnight at 4 °C, and then loaded again onto a Ni-

Speharose-6 column to trap cleaved MBP and TEV. Untagged MAGE-11 passed through, 

examined by SDS-PAGE, pooled and concentrated to an appropriate volume. Several 

additional column methods were attempted, and are fully explained below in the results. 

 

FLAG-MAGE-11 Purification 

 Spodoptera frugiperda (Sf21) cell pellets expressing full length MAGE-11 (residues 

1-429) tagged with a C-terminal FLAG peptide (DYKDDDDK) were kindly provided by the 

laboratory of Dr. Elizabeth Wilson. Pellets were resuspended in 50 ml buffer A (25 mM Tris-

HCl pH 7.8, 300 mM NaCl, 1 mM EDTA, 50 mM NaF, 0.05% (v/v) IPEGAL, 10% (w/v) 

glycerol, 250 µM AEBSF, 2 µg/mL Aprotein & Leupeptin, 1 µg/mL PepstatinA, 0.8 mM 

DTT) and split into 4-15 mL falcon tubes. Cells were then treated to 3 freeze/thaw cycles for 

proper cell lysis. Cells debris was pelleted at 27,000g for two hours in an ultracentrifuge. Cell 

lysate was removed and incubated with 1.5 mL of pre-equilibrated ANTI-FLAG agarose 

beads (Sigma) for 3 hours at 4 °C with gentle agitation. Beads were pelleted at 3000 rpm for 

3 min and washed in 13 mL buffer B (same components as buffer A, but with 500 mM NaCl) 

for 10 min under gentle agitation three times to allow for complete removal of non-specific 

proteins. After last wash, pelleted beads were then agitated in 5 CV buffer C (buffer A with 

150 mM NaCl) containing 0.15 mg/ml FLAG peptide (UNC Peptide Facility) for 10 min to 

 126



elute FLAG-MAGE-11. Bead slurry was placed into a small gravity column and fractions 

were collected, with two additional 1 CV washes of buffer C plus peptide. Fractions were 

analyzed using SDS-PAGE for purity and pooled. Additional purification steps are outlined 

fully below. 

 

Fluorescence Polarization Assays 

 A fluorescein-labeled peptide (residues 16-36) containing the FxxLF motif of AR 

(SKTYRGAFQNLFQSVREVIQN-[KFlc], SigmaGenosys) was used to determine the 

binding constant of MAGE-11 to AR. Fluoroscein absorbs light at 485 nanometers and emits 

at 520 nanometers. Serial dilutions of FLAG-MAGE-11 (3.7 µM starting concentration, 1-

1000 nM sample concentrations) were incubated at 22 °C for 30 minutes in the presence of 

100 nM peptide, with buffer conditions of protein and peptide corrected for. Bovine serum 

albumin (NEB) was used at the same concentrations as a negative protein control, and a 

fluorescein-labeled peptide of residues 681-696 of SRC-1 containing an LxxLL motif 

(SLTERHKILHRLLQE-[KFlc], SynPep) as the negative peptide control. Fluorescence 

readings were taken in 96-well format using a PHERAstar (BMG Labtech) plate reader with 

readings every 30 seconds for 5 minutes. All readings were done in triplicate, and averaged 

across time and samples. Data analysis was done using Microsoft Excel and SigmaPlot. 

 

Limited Proteolysis Assays 

 Samples of FLAG-MAGE-11 were treated with proteases to determine the stability of 

protein domains. 15 µg of both trypsin (which cleaves C-terminal to basic Lys, Arg residues) 

and chymotrypsin (which cleaves C-terminal to aromatic Phe, Tyr, and Trp residues) were 
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added to 20 µg of full length FLAG-MAGE-11 in the absence and presence of 5 micromoles 

AR 16-36 peptide. Samples were taken at 15, 30, and 60 minutes and quenched with 100 

µg/ml PMSF. Samples were subsequently evaluated by SDS-PAGE.  
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Results and Discussion 

 

Rationale for MAGE-11 Construct & Vector Selection 

 Constructs of MAGE-11 for structural studies were determined by several 

bioinformatic methods. Initial constructs were based off of previous work classifying MAGE 

proteins [9, 10].  Full length MAGE-11 (1-429) encompassed the entire MAGE homology 

domain and the extended upstream coding region (1-111). Several of the MAGE-A family 

proteins are encoded by a single exon that encompasses residues 112-429 of MAGE-11, and 

therefore this construct (which is initiated at the third Met in the MAGE-11 sequence) was 

examined as well. Shorter, truncated versions (218-413, 222-429, 218-429) were based off of 

secondary structure predictors and a PONDR analysis, which indicated this region was a 

tight, compact domain (Figure 5.1). Therefore, this domain was also cloned into several 

vectors for expression.  

 

 Bacterial expression vectors were chosen for purification schemes and ability to 

produce soluble protein. Initial cloning of MAGE-11 constructs (1-429, 112-429, 218-413) 

into pGEX-4T1 vectors should have provided soluble protein since GST has been shown to 

increase solubility of unstable proteins [11]. However, several rounds of test expressions 

examining numerous cell lines and growth conditions of GST-MAGE-11 fusions failed to 

yield significant quantities of usable protein (data not shown). Only the shorter MAGE-11 

construct 218-413 appeared to have the potential for additional testing. Therefore, cloning of 

the shorter MAGE-11 constructs (218-413, 222-429) into pET-15b and pMAL-C2H10 

vectors was done using standard methods. pET-15b also failed to yield significant quantities 
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of soluble protein, but the pMAL system appeared to work the best (data not shown). This is 

likely due to the high level of solubility MBP exhibits, acting as a “life-raft” for MAGE-11. 

MBP fusions of all shorter constructs (222-429, 218-429, 112-429) produced high levels of 

soluble protein, while full length MAGE-11 appears to be permanently insoluble for bacterial 

expression. Therefore, the pMAL system appears to be the best vector for expression and 

purification of MAGE-11 constructs, which is outlined more fully below.  

 

Expression and Purification of MAGE-11 Constructs 

E. Coli expression conditions of MAGE-11 constructs were found by several iterative 

rounds of smaller test expressions. Temperature, cell line, IPTG concentration, and length of 

growth were all sampled. The conditions that yielded the highest level of soluble protein 

were under low temperature (15 °C) for an extended period (20 hours) after induction by a 

moderate amount of (1 mM) of IPTG. These conditions consistently gave high amounts 

(>100 mg/3L growth) of fusion for MAGE-11 constructs 218-413, 222-429, 218-429, and 

112-429. This amount of protein allowed for additional purification conditions to be sampled 

throughout each individual protein preparation. 

 

A typical nickel-affinity purification run of MBP-MAGE-11 (222-429, the first 

construct tested) is outlined in Figure 5.2. Cell lysate was loaded onto a Ni-speharose-6 

column, which retained the MBP-MAGE-11 fusion by way of its 10xHis tag that is present 

between the two proteins. Once the protein was eluted from the column, fractions containing 

fusion were treated with DTT and TEV protease to remove the MBP-10xHis from the 

MAGE-11 protein. The sample was dialyzed back into NiA buffer overnight and 
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subsequently re-passed over the nickel column to allow for MAGE-11 to flow through and 

the His-tagged MBP to bind to the column. Optimizing the buffer conditions of the initial 

nickel affinity runs proved daunting, considering the troublesome nature of the protein. 

Buffers were altered from Tris based to sodium phosphate based, since Ni-sepharose-6 resin 

requires a strong charge to mask the extended sepharose chain holding the Ni2+ ions. 

Increasing sodium chloride from 150 mM to 500 mM also gave slightly better results. 

However, these increases in purity were only moderate, and therefore the buffer conditions 

stated in the materials and methods section were held after these optimization runs. 

Additional additives were also tested in an attempt to limit non-specific protein binding to the 

column, such as reducing agents (e.g. DTT), detergents (e.g. CHAPS), and mild denaturants 

(e.g. 1 M urea). These additives did not seem to increase purity, however, and therefore were 

generally left out. At this point, MAGE-11 appears roughly 70% pure by SDS-PAGE and 

ready for additional column chromatography steps to further remove contaminants and 

increase its purity. 

  

Considering how MAGE-11 (222-429) looked to be the only protein at roughly 25 

kDa on an SDS-PAGE gel, size exclusion chromatography (SEC) seemed to be the next 

logical step in the purification. Initial runs of a Superose-12 (GE Healthcare) column in 

minimal buffer conditions (20 mM HEPES, 150 mM NaCl, 5% (w/v) glycerol) showed that 

the protein was primarily running in the void volume (Figure 5.3). This result was surprising, 

considering that the void volume of the Superose-12 column is surpassed by anything over 

200 kDa in size. Additional runs on a Superdex-75 and Superdex-200 (GE Healthcare) 

column also showed MAGE-11 primarily in the void volume. It was hypothesized at this 
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point that MAGE-11 was forming a soluble aggregate that was mediated by disulfide 

linkages between monomers. SDS-PAGE analysis with and without β-mercaptoethanol 

seemed to confirm this result (Figure 5.4). Therefore, the decision was made at this point to 

mutate the three Cys residues in this construct to serine (C270S, C304S, C328S) in an 

attempt to limit this association. Additionally, the construct was changed to 218-429 to 

encompass four residues that secondary structure predictions say are the terminal helix of this 

domain in MAGE-11.  

 

Once the Cys Ser mutant forms of MAGE-11 218-429 were produced, test 

purifications were conducted under standard methods. Single mutant C270S showed to limit 

higher order species previously seen by SDS-PAGE, but was also found in the void volume 

of a Superdex-75 size exclusion column (Figure 5.4). Other single and double mutation 

(C304S, C328S, C270S-C328S) versions gave similar results. This indicated that all cystines 

must be removed to facilitate prevention of soluble aggregate formation. However, once all 

cystines were mutated to serines (C270S-C304S-C328S), size exclusion chromatography still 

indicated that MAGE-11 218-429 continued to be in the soluble aggregate form (Figure 5.4). 

Secondary methods were tested on WT 218-429 to mimic the Cys Ser mutations, such as 

exposing MAGE-11 to iodoacetamide (which blocks free cystines from forming disulfides) 

and running SEC with high levels (up to 50 mM DTT) of reducing agent. Additionally, 

CHAPS was also added to SEC buffers in the attempt to abrogate hydrophobic interactions. 

MAGE-11 persisted in the void volume of all SEC columns despite all efforts to prevent it. 

Consequently, it appeared that MAGE-11 aggregation was not disulfide dependent, and was 

either an unfolded peptide chain or extremely hydrophobic protein that cannot be dissociated 
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into monomeric form. The MAGE-11 218-429 construct was therefore abandoned from all 

further attempts at purification.  

 

The lessons learned from MAGE-11 218-429 were applied to the purification of the 

longer MAGE-11 domain 112-429. It was hypothesized that the longer construct may allow 

for easier purification if the additional residues act to cover the hydrophobic patches found in 

the 218-429 construct. Additionally, adding a fragment of AR may also help in the 

purification of MAGE-11 by acting to control any sort of aggregation. MAGE-11 112-429 

expression and nickel affinity purification conditions were nearly identical to those of the 

shorter construct (Figure 5.5), and yielded similar amounts of protein. Once SEC methods 

were attempted, however, MAGE-11 112-429 was again found primarily in the void volume 

of the Superdex-200 column. A smaller peak at the correct molecular weight of MAGE-11 

112-429 turned out to be MBP that had been trapped in the soluble aggregate. This result was 

confirmed by passing the sample over an amylose column, of which MBP binds with high 

affinity (Figure 5.5). As a last resort, a small fragment of AR (residues 4-52, encompassing 

the FxxLF motif) was made and expressed as an MBP fusion protein, and was purified in 

parallel to MAGE-11 112-429 (Figure 5.6). These two proteins were then combined and 

cleaved by TEV together to see if this would promote a stable complex between AR and 

MAGE-11. Predictably, when passed over the Superdex-200 column, the majority of the 

protein remained in the void volume and other high molecular weight species, again 

indicating soluble aggregate. Therefore, the hopes of a bacterially expressed, soluble MAGE-

11 were abandoned and all efforts were turned towards insect cell expression systems. 
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Insect Cell Expression and Purification of MAGE-11 

 Baculovirus mediated expression of full length MAGE-11 in insect cell lines proved 

to be the best way to achieve soluble protein. Utilizing FLAG chromatography has been 

successful in isolating the protein, albeit at limited amounts (Figure 5.7). Typical recovery 

from 100 mL of cells is between 1-2 mg of FL-MAGE-11. This amount may be limited by 

the type of tag used, and switching to a simple His tag may increase gains. Additional 

purification was accomplished using a Superdex-200 using buffer conditions (20 mM Tris 

pH 7.8, 350 mM NaCl, 10 % (w/v) glycerol, 8 mM CHAPS) that have been previously 

determined to yield monomeric protein. A large amount of protein is still found to be in the 

void volume, and running the column under low salt (150 mM) or without CHAPS from the 

buffer only increases the void volume peak. Despite these issues, the fractions containing 

monomeric MAGE-11 were concentrated to 2.5 mg/ml and run through one round of 

screening for preliminary crystallization conditions. However, no viable crystal hits were 

found, and therefore additional purifications must be done to test more conditions in the 

presence and absence of FxxLF peptide. 

  

In the attempt to further characterize MAGE-11, limited proteolysis assays were done 

to see if any domains appear to be resistant to cleavage, and potentially yield additional 

constructs for future examination (Figure 5.8). The experiments were done with both 

chymotrypsin and trypsin in the presence and absence of FxxLF-containing AR 16-36 

peptide. Cleavage by trypsin appeared to produce one band at roughly 20 kDa in size for both 

with and without peptide samples. The majority of this fragment likely consists of a stretch 

between residues 116-202 (which contains no trypsin cleavage sites) and further C-terminal 
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additional residues that are undetermined. Peptide mass spectroscopy (MS/MS) and N-

terminal sequencing of this fragment needs to be done in order to absolutely confirm the 

sequence of MAGE-11. In terms of chymotrypsin, 90% of the protein has been cleaved after 

only 15 minutes time, with only one faint band running at ~27 kDa. Interestingly, however, 

the presence of AR peptide appears to stabilize this band enough to withstand 30 minutes 

with chymotrypsin. This band is fully removed at 30 minutes without peptide. This would 

indicate that MAGE-11 is partially stabilized by peptide binding, and may even gain 

structure upon association with AR. Predicting the sequence of this peptide is difficult, 

however, since chymotrypsin cleavage sites are spread equally throughout the primary 

sequence of MAGE-11. As with the trypsin results, these peptides need to be subjected to 

MS/MS and N-terminal sequencing analysis to confirm what residues this contains. One 

could assume that this band corresponds to part of the region of MAGE-11 previously 

identified to interact with AR [8]. However, experimental confirmation is required to 

accurately classify the residues involved. 

 

Fluorescence Polarization Assays 

  Considering that MAGE-11 is known to bind the FxxLF motif found in the NTD of 

AR, and that peptide binding appears to confer some structural stability to full length 

MAGE-11, fluorescence polarization (FP) assays were done to determine a binding constant 

of MAGE-11 to the FxxLF motif of AR. As described in the materials and methods section 

of this chapter, assays were done using a synthesized peptide encoding residues 16-36 of AR 

covalently bound to a fluoroscein molecule in 96 well format. The level of binding was 

conferred from the polarization of the light emitted from the fluoroscein upon excitation. The 
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FP experiments showed that full length MAGE-11 bound to the FxxLF region of AR with an 

average KD of 131 nM (Figure 5.9). Several peptide probe concentrations were tested, and all 

gave a KD between 101 and 173 nM (Table 5.1). Multiple negative control runs were done, 

and no binding was seen between BSA and the AR peptide probe. MAGE-11 also did not 

bind a fluorescently labeled SHP Box1 peptide (that contains an LxxLL motif), confirming 

that MAGE-11 is selective for the FxxLF motif. Surprisingly, the data did not fit a standard 

one-site model with good R-square values. The data best fit the hill equation, which is 

usually used in the measure of cooperativity of binding. A strong level of cooperativity was 

evident in all of the binding data, with Hill constants found to be between 2.5 and 5. These 

results indicate that MAGE-11 forms higher order species, and facilitates the binding of the 

AR peptide by other monomers of MAGE-11. The ligand binding domain of AR has been 

previously shown to bind the FxxLF peptide (residues 20-30) with a KD in the low 

micromolar range, depending on the androgen bound (Table 5.1). In the presence of the 

synthetic androgen R1881, AR was found to bind the FxxLF peptide at a KD of 9.2 ± 0.4 µM, 

with testosterone and DHT giving lower KD’s of 5.5 ± 0.3 and 3.0 ± 0.4 µM, respectively 

([12] and unpublished data). Binding to the box III LxxLL peptide of the co-activator TIF2 

by AR exhibited much higher KD values, ranging from 13.1 ± 1.5 µM for DHT to 78 ± 28 

µM for R1881 ([12] and unpublished data). The fact that MAGE-11 binds the FxxLF motif 

an order of magnitude over the AR LBD supports the conclusion that MAGE-11 disrupts the 

AR N/C interaction by out competing the LBD for the FxxLF region. Taken together, these 

results clarify the role MAGE-11 plays as a modulator of AR activity. 
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Conclusions and Future Directions 

 

 The androgen receptor modulator MAGE-11 has been shown to play an important 

role in AR mediated transactivation of androgen-specific genes. Structural studies of MAGE-

11 would provide the best insight into how AR is influenced by MAGE-11, and how it 

disrupts the N/C interaction of AR. Despite the several attempts at the bacterial expression 

and purification of MAGE-11 constructs, soluble, monomeric protein was unable to be 

produced in high quantities. The persistent soluble aggregate produced after cleavage from 

MBP complicated the process, since the protein did not indicate its instability by falling out 

of solution. Additionally, adding in a binding partner upon cleavage failed to confer a higher 

level of stability in solution. These findings indicate that MAGE-11 likely requires post-

translational modifications to induce proper folding of the protein. Several phosphorylation 

sites have been identified by sequence mapping and MS analysis at residues 174 and 208 of 

MAGE-11 (E. Wilson, personal communication). While phosphorylation can be mimicked 

by mutagenesis, it is still unclear as to if any other post-translational modifications 

(glycosylation, acetylation, etc.) are present and required for stability. Regardless, it appears 

that the best way to produce MAGE-11 for any future attempts at crystallization should be 

done using insect cell expression systems. Additionally, MAGE-11 should be transferred into 

an expression system where purification can be done using nickel affinity, rather than FLAG 

chromatography. While FLAG purification is generally more selective, the lifetime of the 

resin (limited to four uses) and the low binding capacity (up to 3 mg protein/mL resin) do not 

make it a viable system for the purification high quantities of protein required for 
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crystallization. Therefore, other avenues of expression and purification should be attempted 

for future studies of this protein. 

  

The most interesting and conclusive result found with MAGE-11 stems from the FP 

experiments. MAGE-11 was found to bind the FxxLF motif of AR an order of magnitude 

over the AF-2 region of AR. This result works to further understand the reasoning behind 

why MAGE-11 is so effective at modulating AR activity. By directly competing for the 

FxxLF motif, MAGE-11 is able to open the AF-2 region for co-activator binding. The tight 

binding of MAGE-11 to the FxxLF appears to be necessary, since the AR LBD only exhibits 

moderate affinity for the LxxLL peptide of co-activators (Table 5.1). This order of magnitude 

molecular “switch” between affinities of MAGE-11 to FxxLF, the AF-2 of AR for FxxLF, 

and the AF-2 of AR for LxxLL, is likely a secondary level of regulation for AR activity. 

Furthermore, the level of cooperativity seen in the binding of MAGE-11 to the AR 16-36 

peptide implies that monomers of MAGE-11 work in concert with each other to completely 

tie up the FxxLF motif, and may provide more levels of regulation to the process.  

 

Finally, while the interaction between MAGE-11 and AR is likely important for 

understand AR-mediated prostate cancer tumorigenesis, MAGE-11 does not appear to be a 

viable structural target. Perhaps other MAGE-A family proteins, with their high level of 

sequence identity to MAGE-11, would provide some insights into the structural 

characteristics of the overall MAGE fold. However, no other members have been implicated 

as interacting with AR, and therefore would not provide all of the information required to 

fully comprehend this important interaction. 
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Figure Legends 

Figure 5.1: Construct design of MAGE-11. Top graph is a PONDR (Predictor of naturally 
disordered regions) plot showing the level of disorder across the MAGE-11 primary 
sequence. Secondary structure prediction (GOR4, www.expasy.org) shows helix (Blue) and 
beta sheet (Red) locations. Bottom shows constructs used in MAGE-11 expression based off 
of the top two plots. 
 
Figure 5.2: SDS-PAGE of initial nickel affinity steps in the purification of MAGE-11 222-
429. MAGE-11 and MBP are highlighted in the second gel. 
 
Figure 5.3: Chromatogram of MAGE-11 222-429 after size exclusion chromatography run 
using a Superose-12 column. SDS-PAGE gel below corresponds to the fractions from the 
chromatography run. MAGE-11 is the major band near 20 kDa on the gel.  
 
Figure 5.4: Cys to Ser mutants of MAGE-11 218-429. Left panel shows WT MAGE-11 218-
429 with and without β-mercaptoethanol (β-ME), indicating some level of intramolecular 
disulfide formation. Middle panel is chromatogram of MAGE-11 218-429 C270S over a 
Superdex-75 column and its accompanying SDS-PAGE gel. Right panel is a chromatogram 
of the triple mutant (C270S-C304S-C328S) of MAGE-11 218-429 over a Superdex-200 
column. Both chromatograms indicate soluble aggregate formation. 
 
Figure 5.5: Purification run of MBP fusion of MAGE-11 112-429. Top left and bottom left 
SDS-PAGE gels are of the nickel affinity runs. Lower right SDS-PAGE gel shows both 
results from amylose column and Superdex-200. Chromatogram is of the Superdex-200 run. 
 
Figure 5.6: Dual purification of MAGE-11 112-429 and AR 4-52, both as MBP fusions. 
SDS-PAGE gels on the left indicated nickel affinity runs both before and after cleavage by 
TEV. Right panels are the following chromatogram and SDS-PAGE analysis of a Superdex-
200 column. The location of the AR 4-52 fragment is indicated. 
 
Figure 5.7: Purification of insect cell expressed full length MAGE-11. Left panel is of SDS-
PAGE analysis of FLAG-antibody column purification step. Right panel is chromatogram 
and SDS-PAGE analysis of Superdex-200 column. Location of MAGE-11 monomer is 
indicated. 
 
Figure 5.8: Limited proteolysis of full length MAGE-11. SDS-PAGE gel shows peptide 
fragments produced from treatment of MAGE-11 with proteases. Samples with AR 16-36 
peptide are indicated. 
 
Figure 5.9: Fluorescence polarization assays of full length MAGE-11 with the AR 16-36 
peptide. Legend corresponds to peptide concentrations tested. Notice no curve is shown for 
the negative control, SHP box1 peptide. Data values are culled in Table 5.1. 
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Figure 5.1 
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Figure 5.2 
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Figure 5.3 
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Figure 5.4 
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Figure 5.5 
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Figure 5.6 
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Figure 5.7 
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Figure 5.8 
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Figure 5.9 
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TABLE 5.1: Binding Constants of MAGE-11 and AR Determined by FP Assays 
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