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ABSTRACT

EVAN A. COUZO: Air quality models and unusually large ozone increases:
Identifying model failures, understanding environmental causes, and improving

modeled chemistry
(Under the direction of William Vizuete)

Several factors combine to make ozone (O3) pollution in Houston, Texas, unique

when compared to other metropolitan areas. These include complex meteorology,

intense clustering of industrial activity, and significant precursor emissions from the

heavily urbanized eight-county area. Decades of air pollution research have borne out

two different causes, or conceptual models, of O3 formation. One conceptual model

describes a gradual region-wide increase in O3 concentrations ‘‘typical’’ of many large

U.S. cities. The other conceptual model links episodic emissions of volatile organic

compounds to spatially limited plumes of high O3, which lead to large hourly increases

that have exceeded 100 parts per billion (ppb) per hour. These large hourly increases

are known to lead to violations of the federal O3 standard and impact Houston’s status

as a non-attainment area. There is a need to further understand and characterize the

causes of peak O3 levels in Houston and simulate them correctly so that environmental

regulators can find the most cost-effective pollution controls.

This work provides a detailed understanding of unusually large O3 increases in

the natural and modeled environments. First, we probe regulatory model simulations

and assess their ability to reproduce the observed phenomenon. As configured for the

purpose of demonstrating future attainment of the O3 standard, the model fails to

predict the spatially limited O3 plumes observed in Houston. Second, we combine

ambient meteorological and pollutant measurement data to identify the most likely

geographic origins and preconditions of the concentrated O3 plumes. We find evidence
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that the O3 plumes are the result of photochemical activity accelerated by industrial

emissions. And, third, we implement changes to the modeled chemistry to add

missing formation mechanisms of nitrous acid, which is an important radical precursor.

Radicals control the chemical reactivity of atmospheric systems, and perturbations to

radical budgets can shift chemical pathways. The mechanism additions increase the

concentrations of nitrous acid, especially right after sunrise. The overall effect on O3 is

small (up to three ppb), but we demonstrate the successful implementation of a surface

sub-model that chemically processes adsorbed compounds. To our knowledge, this is

the first time that chemical processing on surfaces has been used in a three-dimensional

regulatory air quality model.
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CHAPTER 1

INTRODUCTION

Several factors combine to make Houston’s O3 problem unique when compared to

other metropolitan areas in the U.S. These include the complex interactions between

land-sea breeze circulations, intense clustering of industrial emission sources in the

Houston ship channel and coastal areas, significant precursor emissions from the

heavily urbanized eight-county area, and potential pollution transport from domestic

and international source regions. The culmination of these factors has resulted in a

complex and difficult environment to understand. This difficulty has garnered the

attention of researchers and regulators with the common goal of understanding how

O3 is formed.

The resulting science and policies describe two unique causes, or conceptual models,

for how high O3 is formed in Houston. Figure 1.1 shows examples of each type of O3

formation. One conceptual model - the blue line - describes a gradual region-wide

increase in O3 concentrations ‘‘typical’’ of many large U.S. cities. This conceptual

model is well represented in the gradual evolution of O3 seen in observations and

predicted in photochemical models. The second conceptual model - the red line in

Figure 1.1 - was first discovered in Houston and has been linked to episodic emission

events of volatile organic compounds (VOCs). On days with unique wind conditions

(Banta et al., 2005; Cowling et al., 2007; Ngan and Byun, 2011), these emissions

produce narrow plumes of high O3 concentrations that appear in only a few surface

measurements as large changes in hourly pollutant measurements. On the basis of

this dual conceptual model for high O3, the Texas Commission on Environmental

Quality (TCEQ) proposed, and the U.S. Environmental Protection Agency (EPA)
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Figure 1.1: Observed 1-hr O3 concentrations at the HALC monitor. ‘‘Typical’’ O3 evolution -
gradual hourly increases - is illustrated by the blue line. The red line shows a second kind
of O3 evolution - a non-typical O3 change (NTOC).

accepted, a dual mitigation approach in their 2004 State Implementation Plan (SIP)

(Texas Commission on Environmental Quality, 2004).

The 2004 SIP established for the first time a dual-O3 management paradigm in

Houston, Texas. In this SIP, the TCEQ recognized that relatively small amounts of

short-term emissions from particular industrial sources of highly reactive alkenes could

lead to a large, short-duration O3 peak that skewed the observational attainment

metrics used to calculate attainment of the federal O3 standard. Most of these highest

observations occurred at only a single monitor over the course of a day. Using

observational and modeling evidence, the TCEQ proposed an innovative method
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for targeting four VOCs termed highly reactive VOCs (HRVOCs), which include

ethene, propene, 1,3-butadiene, and all butene isomers. Management strategies

were developed to reduce the short-term and highly variable industrial releases of

HRVOCs. A maximum hourly rate of 1200 lbs/hr was proposed by the TCEQ and

was subsequently written into Texas state law. As defined in the TCEQ’s 2004 SIP,

this short-term cap applied to both unauthorized emissions and permitted emissions

that may fluctuate on an hourly basis. Compliance with these new HRVOC controls

necessitated significant abatement investments by certain industrial sources. Indeed,

polymer production facilities in the region were reported to have spent up to $2.4

million in equipment to monitor and reduce HRVOCs emissions (Yarwood et al., 2008).

The state of Texas is now grappling with how it will show attainment of the 1997

8-hr O3 standard of 0.08 parts per million (ppm) and, later, the 2008 8-hr O3 standard

of 0.075 ppm. The 8-hr O3 metric and an updated EPA attainment methodology have

been applied for the first time in Houston by the TCEQ for their 2010 SIP (Texas

Commission on Environmental Quality, 2010). In Vizuete et al. (2011), we quantified

the effect of large hourly O3 changes, called non-typical O3 changes (NTOCs), on the

attainment metrics calculated in the 2010 SIP. We found that NTOCs occur on many

of the days that determine whether an air quality monitor has attained the federal O3

standard and, in fact, prevented some monitors from attaining the standard.

There is a need to further understand all of the causes of peak 8-hr O3 levels in

Houston, simulate them correctly, and find the most cost-effective controls. Houston’s

designation as a non-attainment region is in large part due to the NTOC phenomenon.

Thus, identifying their environmental causes and accurately representing them in

regulatory models is of paramount importance to the development of effective control

strategies. High O3 and rapid rates of O3 production are the result of fast chemistry

in industrial regions. This body of work identifies and quantifies modeled NTOC

3



performance, characterizes environmental conditions and geographic origins of observed

NTOCs, and implements a new modeling framework that better represents free radical

sources.
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CHAPTER 2
ASSESSMENT OF A REGULATORY MODEL’S PERFORMANCE

RELATIVE TO LARGE SPATIAL HETEROGENEITY IN
OBSERVED OZONE IN HOUSTON, TEXAS1

2.1 Introduction

In 2010, the state of Texas proposed policies aimed at reducing ozone (O3) con-

centrations in Houston. These policies are described and justified with modeling and

observational data in a document called the State Implementation Plan (SIP) (Texas

Commission on Environmental Quality, 2010c), which follows the U.S. Environmental

Protection Agency (EPA) attainment methodology (U.S. Environmental Protection

Agency, 2007). The EPA attainment methodology describes the use of observational

and modeling data to show attainment, and the assumptions underlying it have been

the focus of several studies (Jones et al., 2005; Sistla et al., 2004; Vizuete et al., 2010,

2011). Specifically for Houston, researchers have found that the metrics used in the

attainment methodology were influenced by large hourly changes in observed O3

concentrations. In the observational data used by the 2010 SIP, it has been shown

that some of the highest 8-hr O3 levels included hourly changes in O3 concentrations

of at least 40 ppb in 1 hr, or 60 ppb in 2 hr (Vizuete et al., 2011). These large

hourly changes usually appear at only a few monitors spanning a narrow geographic

1E. Couzo, A. Olatosi, H.E. Jeffries, W. Vizuete, Assessment of a regulatory model’s performance
relative to large spatial heterogeneity in observed ozone in Houston, Texas. J. Air Waste Manag.
Assoc. 2012, 62, 696-706, doi: 10.1080/10962247.2012.667050.

This is an Author’s Original Manuscript of an article whose final and definitive form, the Version
of Record, has been published in the Journal of the Air & Waste Management Association, 2012,
copyright Taylor & Francis, available online at: http://www.tandfonline.com/doi/abs/10.1080/
10962247.2012.667050. The article has been reformatted to meet the dissertation standards of the
UNC graduate school.

http://www.tandfonline.com/doi/abs/10.1080/10962247.2012.667050
http://www.tandfonline.com/doi/abs/10.1080/10962247.2012.667050


area. The observed large hourly changes are the result of a plume of higher O3 being

advected to the monitor site. These observations suggest high spatial heterogeneity

in O3 concentrations across Houston.

Using observational data collected by regulatory monitors from 2000 to 2009,

days were identified on which there was an hourly change in O3 concentrations of

at least 40 ppb, or 60 ppb in 2 hr. These larger-than-typical hourly changes are

called non-typical O3 changes, or NTOCs. In Figure 2.1, all regulatory measurements

made during 2000-2009 are separated into two categories, days on which a NTOC was

measured and days on which only typical O3 changes were observed. Shown are the

distributions of measured 1-hr and 8-hr O3 daily maximum concentrations. It is clear

from Figure 2.1 that NTOC days have higher peak 1-hr and 8-hr O3 concentrations

than typical days. The greatest 1-hr peak measured on NTOC days is 229 ppb; 1-hr

peaks on typical days never reached 170 ppb. The 25th, 50th, and 75th percentile

values are also substantially different. The median peak 1-hr O3 value for NTOC

days is 107 ppb, 66 ppb greater than for typical days. Data from daily maximum

8-hr O3 concentrations show the same trend. The median peak 8-hr concentration

for NTOC days is 79 ppb, more than 45 ppb greater than for typical days, and at

145 ppb the greatest peak 8-hr value is about 15 ppb greater for NTOC days than

typical days. In fact, the six greatest peak 8-hr O3 values recorded between 2000 and

2009 occurred when a monitor was impacted by a NTOC. Overall, nearly 60% of all

NTOC days exceeded the 8-hr O3 National Ambient Air Quality Standard (NAAQS;

0.08 ppm), but just 1% of typical days exceeded the federal limit. Probability density

functions for all daily maximum 8-hr O3 from 2000 to 2009 are shown in Figure 2.2.

Only measurement data from May through October are shown. The figure also shows

which 8-hr O3 concentrations were measured on days including an hourly change that

would be considered a NTOC. The typical O3 change days dominate all 8-hr maxima
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Figure 2.1: Distributions of observed daily maximum 1-hr (left) and 8-hr (right) O3 concen-
trations at all regulatory monitors from 2000 to 2009. The data are separated into typical
and non-typical days. A typical O3 change day has observed 1-hr changes in O3 concentration
of less than 40 ppb, or 2-hr changes less than 60 ppb. A non-typical O3 change day has a
1-hr change of at least 40 ppb, or a 2-hr change of at least 60 ppb. The 25th, 50th, and
75th percentile concentrations are represented by the box bottom, middle, and top.

below 20 ppb, but do extend well above the 85 ppb O3 standard. All observed 8-hr

O3 values above 131 ppb, though, were from NTOC days.

The exact cause of all observed NTOCs is still an open question and a challenge to

answer given the available data. There is considerable evidence, however, that has

linked some observed NTOCs to short-term releases of ethene, propene, butene isomers,

and 1,3-butadiene (collectively called highly reactive volatile organic compounds

[HRVOCs]). Observed NTOCs at monitor sites show coincidental concentrations of

HRVOCs, and back trajectories point toward industrial sources in the Houston ship

8
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Figure 2.2: Distributions of observed daily maximum 8-hr O3 concentrations at all regulatory
monitors from 2000 to 2009. Only measurement data from May to October are shown
(n=46,000 monitor-days). The black columns are daily maximum 8-hr O3 concentrations
that were measured on days that had a non-typical O3 change (NTOC), i.e., an observed O3

change of at least 40 ppb/hr, or 60 ppb/2 hr (n=916 monitor-days). The gray columns are
8-hr O3 concentrations that did not include an observed NTOC (n=45,084 monitor-days).
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Figure 2.3: The location of the 25 regulatory air quality monitors used in this study. Plot
(a) shows ten years of measurements spanning 2000-2009. For those monitors that came
online after 2000, data collection began on the deployment date and continued through
2009. For this time period, the inner shaded circle shows the monitors at which 60% of all
non-typical O3 changes (NTOCs) were observed. The outer shaded circle covers the monitors
at which 90% of all NTOCs were observed. Both circles are centered on the ship channel.
Plot (b) shows the grid cell location and frequency of simulated NTOCs by the base case
simulation in the 2-km modeling domain for the entire 120-day modeling episode.

channel (Gan and Hopke, 2003; Vizuete et al., 2008). Using the NTOC criteria and

observational monitoring data from 2000 to 2009, it is clear that most NTOCs are

observed near the ship channel region in Houston. Figure 2.3a shows all the regulatory

monitors in the Houston region and indicates which monitors most frequently measure

NTOCs. The circles in the figure are centered on the ship channel. The inner circle

shows that less than half of the monitoring stations account for 60% of observed

NTOCs. The larger circle includes seven additional monitors and accounts for 90% of

NTOC measurements.

Short-term HRVOC emissions from industrial sources occur often and with notable
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temporal variability in Houston (Cowling et al., 2007; McCoy et al., 2010; Murphy

and Allen, 2005; Webster et al., 2007; Wert et al., 2003). These emissions are random,

and, although rare at any one facility, due to Houston’s massive industrial network,

there were more than 1000 releases reported in 2003 (Murphy and Allen, 2005).

Immediately after a release, modeling and observational evidence suggest an initial

period of rapid O3 formation that results in a spatially limited downwind plume of

high O3 (Henderson et al., 2010; Kleinman et al., 2002; Ryerson et al., 2003; Xiao

et al., 2010). One study found that targeted episodic HRVOC emissions from the ship

channel can correct for low reactivity in models (Byun et al., 2007). Sensitivity to

nitrogen oxide (NOx) emissions, though, was found to be small because NOx is fairly

constant over time and well represented in emission inventories. By design, the largest

NOx point sources (electric generating units and petrochemical facilities) operate

continuously so variability in emissions tends to be small. Since NOx is a byproduct

of combustion, it is unlikely that leaks or accidental releases of NOx occur. Mobile

NOx sources are important to O3 formation, but evidence to support a relationship

between NTOC formation and the predictable changes in NOx emissions (i.e., daily,

weekly, or seasonal variability) has not been found. Furthermore, NTOCs are still

observed and impacting attainment metrics despite improvements in Houston’s air

quality vis-à-vis NOx emissions.

To be sure, Houston’s unique meteorology is a major determinant of high O3, and

an emission event must meet several conditions to affect O3 concentrations. For an

HRVOC release event to create a heterogeneous O3 plume, the release must have suffi-

cient magnitude, occur in the morning, and coincide with O3 conducive meteorological

conditions (Czader et al., 2008; Henderson et al., 2010; Vizuete et al., 2008). These

meteorological conditions have been described in detail and are characterized at surface

monitors by low wind speeds and a rotational wind field (Banta et al., 2005; Cowling
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et al., 2007; Ngan and Byun, 2011). An analysis of winds and NAAQS exceedances

in Houston, however, determined that O3 conducive meteorological conditions are

necessary but insufficient to produce high O3 (Vizuete et al., 2009).

Distinct meteorological conditions, the stochastic nature of the emissions, and

the short atmospheric lifetime of the released VOCs have provided a challenge to

understand the role these emissions play in contributing to high O3 in Houston.

Although data exist that link some observed NTOCs with reported or measured

HRVOC emissions, a vast majority of NTOCs lack any data that can provide a

causal explanation. Thus, alternative causes for observed NTOCs are still permissible.

Further, observational attainment metrics used in the 2010 SIP are influenced by

unexplained NTOCs. Observational metrics are only part of the EPA attainment test.

The methodology also requires the use of modeling data to predict future O3 values for

all regulatory air quality monitors. Since NTOCs are found in the observational record,

this logically calls into question whether the phenomenon is adequately represented in

the regulatory AQM.

Due to the magnitude and narrow spatial extent of the hourly O3 change, this

phenomenon is markedly different from the ‘‘typical,’’ i.e., gradual, concentration

changes commonly seen in other cities. Therefore, understanding the cause of these

‘‘non-typical’’ hourly changes becomes critical to developing an effective and defensible

regulatory air quality policy in Houston. The regulatory modeling created by the Texas

Commission on Environmental Quality (TCEQ) in support of the 2010 SIP provides

an opportunity to assess the ability of existing AQMs to simulate the heterogeneity of

O3 concentrations observed in Houston. Here, the regulatory modeling created for the

TCEQ’s 2010 SIP is used to evaluate the ability of the AQM to simulate the spatial

extent and magnitude of observed NTOC behavior and to identify any possible links

to large HRVOC emissions.

12



2.2 Methods

This study combines observational data measured at ground station air quality

monitors and regulatory AQM predictions used by the TCEQ to support their 2010

8-hr O3 SIP. In developing the model simulations, the TCEQ followed the EPA

guidance document on attaining the 8-hr O3 NAAQS (U.S. Environmental Protection

Agency, 2007). All measured and simulated data are maintained by the TCEQ and

available publicly (Texas Commission on Environmental Quality, 2010a,b).

2.2.1 Observational data

Observed data were obtained from the TCEQ website, which provides hourly

averaged measurement data. Twenty-five monitoring stations were used in this study,

and they are listed in Table 2.1 with their official names, four-letter abbreviation,

Continuous Ambient Monitoring Station (CAMS) number, and Aerometric Information

Retrieval System (AIRS) number; these are the same monitors used in the TCEQ’s

2010 SIP. Monitor locations are shown in Figure 2.3.

It should be noted that the observational data set spans a period (2000-2009) of

substantial changes in precursor emissions. As detailed in the TCEQ’s 2010 SIP,

measured NOx, HRVOC, and O3 concentrations have decreased following emissions

control programs. The observational data presented here may not reflect the current

state of the Houston airshed, but they are significant nevertheless because they were

used to formulate the latest SIP.

2.2.2 Air quality model data

The TCEQ used the Comprehensive Air Quality Model with Extensions (CAMx)

version 4.53 (ENVIRON International Corporation, 2008) with the Carbon Bond

V chemical mechanism and the fifth generation Penn State/National Center for
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Monitor Name Abbreviation CAMS No. AIRS No.

Bayland Park BAYP 53 48-201-0055
Clinton CLIN 403 48-201-1035
Conroe Relocated CNR2 78 48-339-0078
Danciger DNCG 618 48-039-0618
Deer Park DRPK 35 48-201-1039
Galveston GALC 34 48-167-0014
HRM-3 Haden Road H03H 603 48-201-0803
Aldine HALC 8 48-201-0024
Channelview HCHV 15 48-201-0026
Croquet HCQA 409 48-201-0051
Lang HLAA 408 48-201-0047
Northwest Harris County HNWA 26 48-201-0029
Houston East HOEA 1 48-201-1034
Houston Regional Office HROC 81 48-201-0070
Monroe HSMA 406 48-201-0062
Texas Avenue HTCA 411 48-201-0075
North Wayside HWAA 405 48-201-0046
Lake Jackson LKJK 1016 48-039-1016
Lynchburg Ferry LYNF 1015 48-201-1015
Manvel Croix Park MACP 84 48-039-1004
Mustang Bayou MSTG 619 48-039-0619
Seabrook Friendship Park SBFP 45 48-201-1050
Westhollow SHWH 410 48-201-0066
Texas City TXCT 620 48-167-0056
Wallisville WALV 617 48-201-0617

Table 2.1: The 25 air quality monitors used in this study. The full name and four-letter
abbreviation for each monitor are given. Also included are the Continuous Ambient
Monitoring Station (CAMS) number and the Aerometric Information Retrieval System
(AIRS) number.
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Atmospheric Research Mesoscale Model (MM5) version 3.7.3 to generate simulation

data. Detailed documentation concerning the development of AQM inputs can be

found on the TCEQ website (Texas Commission on Environmental Quality, 2010a).

In total, there are 120 modeling days in the 2005 and 2006 episodes. A regional 36-km

domain and a 12-km eastern Texas subdomain provide boundary conditions for a 4-km

Houston Galveston Brazoria/Beaumont Port Arthur subdomain. A finely resolved

2-km Houston Galveston subdomain was also developed, and all analysis in this study

was focused there unless explicitly stated otherwise.

The TCEQ developed, in accordance with EPA guidance, two distinct emission

inventories (EIs), named base case and baseline. Using each EI, CAMx generated

model predictions of O3 using identical meteorology. Model predictions made using

the base case EI were used to evaluate model performance, whereas model predictions

with the baseline EI were used to demonstrate attainment of the O3 NAAQS. The base

case EI includes day-specific emissions, which can be highly variable in the industrial

areas of Houston. The baseline EI, however, has day specificity removed and instead

relies on spatially and temporally averaged emissions. According to the TCEQ’s 2010

SIP documentation, the major difference between the two EIs is the representation

of point source emissions. The base case uses hour- and day-specific emission rates

for each emissions source, whereas baseline point source emissions are, for each hour,

averaged across all simulated days. In other words, baseline point emissions for a

given source have some average diurnal variation, but are identical from one day to

the next. This is true for both HRVOC and NOx point sources.

Figure 2.4 provides a detailed comparison of base case and baseline hourly point

source HRVOC emissions. The main plot shows hourly emission rates for the subset of

point sources that are included in both inventories (not all point sources are included

in both inventories). Each data point directly compares the rate in the base case to
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Figure 2.4: Comparison of base case and baseline hourly point source HRVOC emissions. The
main plot shows hourly emission rates for the subset of point sources that are included in
both inventories (not all point sources are included in both inventories). Each data point
directly compares the rate in the base case to that in the baseline at a particular time and
location. The solid black line shows where the emission rates in the two emission inventories
are equivalent. The inset plot shows distributions of hourly HRVOC emission rates at all point
sources in either inventory. Though the inset is more inclusive than the main plot, it does
not provide a direct hour-by-hour, source-by-source comparison of the two inventories.
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that in the baseline at a particular time and location. Points above the solid black

line indicate that the emission rate was greater in the base case; points below the

line indicate that the emission rate was greater in the baseline inventory. For most

point sources at most times, the base case emission inventory has greater HRVOC

emission rates. In a few instances, the differences are extreme. For 3 hr, one point

source emitted 15,210 mol/hr HRVOC in the base case, but in the baseline inventory

the emission rate is well under 500 mol/hr HRVOC. The inset plot shows distributions

of hourly HRVOC emission rates at all point sources in either inventory. Though the

inset is more inclusive than the main plot, it does not provide a direct hour-by-hour,

source-by-source comparison of the two inventories. In the inset, the major HRVOC

emission rate differences are found in the upper extrema. A number of base case

emission rates are greater than the maximum found in the baseline inventory, where

the maximum rate is 2,803 mol/hr. The maximum base case HRVOC emission rate is

82,660 mol/hr. Analysis of NOx point sources also showed greater variability in the

base case inventory, but the magnitudes of the differences between the base case and

the baseline were much smaller. The maximum base case NOx emission rate is 21,903

mol/hr, and the maximum rate in the baseline is 10,472 mol/hr.

The base case EI is the most accurate representation of a historical episode

with hourly variability including reported industrial releases of HRVOCs. Further,

considerable resources were used by the TCEQ to increase accuracy of industrial point

source emissions. This included the development of an hourly special inventory that

was based on reports from 141 facilities in Houston during the period of August 15

to September 15, 2006. The baseline EI does not include the data from the special

inventory. Thus, this analysis focuses primarily on predictions made using the base

case EI and whether it can replicate observed NTOC behavior.

Specifically for this study, a 1-km subdomain was nested within the 2-km subdo-
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main, and the model was rerun for the special inventory period in 2006. Meteorological

inputs for the 1-km subdomain were not created, but rather interpolated by CAMx

from the 4-km subdomain. Gridded emission inputs were interpolated from the 2-km

subdomain, whereas point source emissions retained their specific geographic location.

It has been found previously that horizontal grid resolution can affect peak O3 for-

mation immediately following an imputed HRVOC emission event (Henderson et al.,

2010). Considering that many of the O3 plumes resulting from NTOCs are spatially

heterogeneous and believed to be related to HRVOC emissions, it is important to

consider the effect of horizontal grid resolution on hourly O3 increases. The results

from the 1-km resolution sensitivity analysis can be found in the last subsection of

Results.

HRVOCs are not explicitly represented in the chemical mechanism. To obtain an

estimate, the sum of the Carbon Bond V species ETH (ethene), OLE (olefins), and

IOLE (internal olefins) was used.

2.3 Results

Investigation of the regulatory model begins by characterizing the frequency,

magnitude, and spatial distribution of predicted NTOCs. In this study, the NTOC is

a metric that only indicates a gradient in O3 concentrations. An O3 change in a grid

cell is described as a NTOC if (1) the change in O3 from hour to hour is equal to or

greater than 40 ppb, or (2) the change in O3 over 2 hr is equal to or greater than 60

ppb.

The following analysis first quantifies the frequency and magnitude of NTOCs in

the 120-day modeling episode from both the regulatory model and surface monitors.

The days with a predicted NTOC are then classified as either having an upwind

industrial emission or not. Representative days from each classification are then
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studied in closer detail and evaluated against observational data from the regulatory

monitors. All analysis was restricted to the 2-km modeling domain and all predictions

are from the base case emission inventory unless otherwise noted.

2.3.1 Predicted and observed non-typical ozone changes

During the 2005 and 2006 modeling episode, a NTOC was predicted at 672 grid

cells on 22 days using the base case EI. In the simulation with the baseline EI, there

were 460 grid cells over 17 days that predicted a NTOC. Table 2.2 lists the 22 days in

the base case simulation that had a NTOC, and the daily maximum 1-hr and 2-hr O3

changes for that day. Also listed are the daily maximum 1-hr and 2-hr O3 changes

in the baseline simulation for the same day. The base case simulation predicted

a maximum hourly O3 change of 54 ppb on September 12, 2006, and the baseline

simulation predicted a maximum of 50 ppb on October 9 and August 20 of 2006. The

maximum predicted change over 2 hr was 76 ppb with the base case simulation and

74 ppb with the baseline. The only difference in these two simulations is the emission

inventory, meaning that the differences in frequency and magnitude of NTOCs are the

result of the removal of variable emissions. For the remainder of the evaluation, focus

shifts to the base case simulations and the 22 days when a NTOC was predicted.

The base case simulation predicted NTOCs for 22 days, and, during the same

episode time frame, there were 87 observed NTOCs over 36 days. In these two sets of

data, only 9 days had both a predicted and observed NTOC, and they are in boldface

in Table 2.2. Thus, the AQM was unable to reproduce the observed phenomenon on

27 of the 36 days. The maximum observed hourly O3 change was 62 ppb at the TXCT

monitor at 10:00 a.m. on June 9, 2006. On this day the base case simulation under

predicted the hourly O3 change at TXCT by 46 ppb and the 1-hr concentration by

over 40 ppb. The maximum observed 2-hr change was 95 ppb at the HROC monitor at
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Maximum Predicted O3 Change (ppb)

1-hr 2-hr

Date Base Case Baseline Base Case Baseline

September 12, 2006 54 49 66 65
August 1, 2005 51 47 76 69
August 17, 2006 49 48 72 74
October 9, 2006 49 50 66 65
August 21, 2006 48 44 71 67
October 4, 2006 47 46 64 65
August 5, 2005 46 28 64 54
May 26, 2005 45 41 71 70
August 3, 2005 45 42 59 57
August 8, 2005 44 37 59 57
June 4, 2006 44 42 66 64
June 12, 2006 44 36 65 53
May 22, 2005 43 37 64 57
June 3, 2006 43 44 54 55
May 28, 2005 42 41 42 43
August 2, 2005 42 40 61 57
August 7, 2005 42 41 62 60
August 18, 2006 42 43 64 65
August 20, 2006 42 50 56 61
June 25, 2005 41 39 61 59
August 16, 2006 40 38 73 67
August 29, 2006 40 40 60 60

Table 2.2: Simulated maximum 1-hr and 2-hr O3 changes that met non-typical O3 change
(NTOC) criteria at any grid cell in the 2-km domain using the models base case and baseline
emission inventories. NTOC criteria are changes in O3 concentrations of at least 40 ppb/hr, or
60 ppb/2 hr, in any model grid cell within the 2-km domain. Bold rows indicate that there
was also an observed change meeting NTOC criteria at any regulatory monitor on that date.
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11:00 a.m. on August 1, 2005. On this day the base case simulation under predicted

the 2-hr O3 change at HROC by 48 ppb, but correctly predicts the 1-hr concentration.

Recent analysis from the 2009 Study of Houston Atmospheric Radical Precursors

showed that a photochemical box model did not simulate O3 production rates greater

than 35 ppb/hr during high O3 episodes, though measured rates were often between

40 and 80 ppb/hr (Cazorla et al., 2011), which suggests the under predictions in the

regulatory AQM are at least partly due to chemistry.

Distributions of observed daily maximum 8-hr O3 concentrations at all monitors

during the modeling episode time frame are shown in Figure 2.5a. Figure 2.5b shows

base case simulated daily maximum 8-hr O3 concentrations from all grid cells where

the monitors are located. The black columns are 8-hr O3 concentrations from days

that had a NTOC, and gray columns show data from days without a NTOC. Similar to

the distribution using ten years of data shown in Figure 2.2, the highest frequency of

8-hr values with a NTOC occurred at 88 ppb in the observations. The model predicted

8-hr averages in excess of 140 ppb, though the peak observed 8-hr max was 127 ppb.

During the modeling episode, the DRPK, WALV, and LYNF monitors - all located

in the ship channel region - observed the greatest number of NTOCs. August 17,

2006, had the greatest number of monitors (seven) that measured a NTOC, though

most days had far fewer NTOC measurements. Approximately 75% of the days had

observed NTOCs at three or fewer monitors, and 89% of the days had observed NTOCs

at four or fewer monitors. When NTOCs were measured at multiple locations, the

monitors were often in close proximity to each other, indicating that NTOCs occur

over a small spatial scale.

Figure 2.3b shows the locations and frequency of predicted NTOCs during the

120-day modeling episode. The maximum number of predicted NTOCs for a given grid

cell was five; most grid cells had no predicted NTOCs. Simulated NTOCs were most
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Figure 2.5: Similar to Figure 2.2, but limited to the days during the 120-day modeling
episode for the base case simulation. Plot (a) shows distributions of observed daily maximum
8-hr O3 concentrations at all monitors for days that coincided with the modeling episode
(n=3000 monitor-days). The black columns are the concentrations that were measured on
days that had a non-typical O3 change (NTOC), i.e., an observed O3 change of at least 40
ppb/hr, or 60 ppb/2 hr (n=916 monitor-days). Plot (b) shows distributions of simulated
daily maximum 8-hr O3 concentrations at all grid cells where the regulatory monitors are
located (n=2400 grid cell-days). Here, the black columns are concentrations that were
predicted on days that had a simulated NTOC. Twenty-four modeling days had incomplete
data and are excluded from this plot.
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frequent in the ship channel region, which is consistent with measurements shown in

Figure 2.3a. At each hour, there may be more than one grid cell with a simulated

NTOC. For hours when a NTOC was simulated, the median number of grid cells

simulating the NTOC is five. The maximum number of grid cells to predict a NTOC

at the same time is 59.

2.3.2 Predicted non-typical ozone changes and industrial emissions

The previous section identified simulation days in the base case when and where

a NTOC was predicted. This section investigates whether simulated large industrial

emission releases also coincided with a predicted NTOC. In the base case EI, there were

six hourly changes of HRVOC emissions in excess of 10,000 mol/hr. Only two of these

large increases in HRVOC emissions resulted in a predicted NTOC. The remaining

large releases of HRVOCs occurred at night and had little impact on predicted O3

concentrations.

Only 2 of the 22 days with predicted NTOCs (Table 2.2) also had an upwind release

of HRVOCs greater than 10,000 mol/hr. The largest increase in O3 concentrations

resulting from a release was on August 20, 2006. On this day there was a predicted

1-hr increase in HRVOC emissions from 5:00 a.m. to 6:00 a.m. of 32,643 moles. A

black ‘‘X’’ in Figure 2.6 marks the location of the emissions increase. The emissions

release occurred early in the morning, providing a sufficient number of daylight hours

to process and contribute to downwind O3 formation. Further, the location of the

emission release is in the Houston ship channel, a common origin of observed O3

plumes. This HRVOC release is not included in the baseline EI, thus providing a

natural sensitivity run for the release on O3 concentrations. Ground layer 1-hr O3

values from the baseline simulation were subtracted from the O3 values predicted

using the base case EI as shown in Figure 2.6. The HRVOC emissions were released
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at 6 a.m. (Figure 2.6a) and then carried south where the predicted increase in O3

concentrations was 25 ppb greater than in the baseline prediction at 8 a.m. (Figure

2.6b) and was spatially limited covering only a few kilometers. This result confirms

the model’s ability, under the right conditions, to predict an O3 plume with a limited

spatial extent.

The DRPK monitor was the closest monitor to the location of the large O3 increase,

and its location is labeled in Figure 2.6. A time series plot of observed and simulated

1-hr O3 concentrations is shown in Figure 2.7. The DRPK observations on this day

showed a rapid increase from 3 ppb at 6:00 a.m. to 46 ppb in just 2 hr. Predicted

values at 8:00 a.m. were 51 ppb with the base case EI and 26 ppb with the baseline

EI. The two model runs have nearly identical O3 predictions except from 6:00 a.m.

to 9:00 a.m., which was immediately after the HRVOC release. During those hours,

the base case O3 concentrations are greater than in the baseline simulation. It is

clear that model performance improved on this day with the inclusion of the HRVOC

release. It is unclear, however, if the measured increase at DRPK was the result of an

emission release. Nevertheless, the model is capable of increasing O3 concentrations

under O3 conducive meteorology if the HRVOC emissions are placed with sufficient

magnitude at the right location and time.

2.3.3 Predicted non-typical ozone changes without industrial emissions

There are 20 simulation days with a predicted NTOC and no simulated upwind

release of HRVOC emissions greater than 10,000 mol/hr. All 20 days exhibited similar

behavior, and two representative days - August 1, 2005, and August 17, 2006 - are

analyzed here. On August 1, 2005, the model predicted a NTOC of 51 ppb/hr at

9:00 a.m. in Texas City (southeast of central Houston), and a second NTOC of 46

ppb/hr at 12:00 p.m. near the BAYP monitor. The maximum observed hourly O3
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Figure 2.6: Spatial plot showing simulated 1-hr O3 differences at (a) 6:00 a.m. and (b)
8:00 a.m. on August 20, 2006. The values were obtained by subtracting the baseline O3

predictions from the base case O3 predictions. The location of the DRPK monitor is marked
by a black diamond. An HRVOC emissions event occurred in the base case EI at 6:00 a.m. in
the grid cell marked with a black ‘‘X.’’
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Figure 2.7: Observed and simulated 1-hr O3 concentrations on August 20, 2006, recorded at
the DRPK monitor. Simulated O3 concentrations are nearly identical for both the base case
and baseline simulations except for the 3 hr immediately following the HRVOC release (6:00
a.m.) in the base case simulation.
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change for this day was 56 ppb/hr located at BAYP. Figure 2.8 shows, for 9:00 a.m.

to 12:00 p.m., the simulated ground layer 1-hr O3 concentrations (grid cells) for the

modeling domain overlaid with measurements from the air quality monitors (diamond

markers). A mismatch between the colors of the diamond marker and surrounding

grid cells indicates an under or over prediction by the AQM. If no measurement data

are available, the marker is a black dot. At 10:00 a.m., a simulated plume of high

O3 greater than 90 ppb covers much of southern Houston, but very few monitors

measured values above 90 ppb. By 11:00 a.m., simulated concentrations reach 136

ppb and begin to move westward. Much of southwestern Houston has reached a

predicted O3 value of at least 120 ppb, but only three monitors (CLIN, HROC, and

HSMA) measured triple-digit concentrations. Model over predictions continued into

the next hour, where predicted concentrations reached 168 ppb. A number of grid

cells to the southeast and west of central Houston predicted a NTOC, and they are

marked with a black ‘‘X’’ in Figure 2.8. The NTOC predictions occurred on the edge

of a plume with the highest O3 values.

On August 1, 2005, at 12:00 p.m., the model predicted 1-hr O3 concentrations in

excess of 120 ppb, but observations show that only the BAYP monitor recorded O3

levels of that magnitude (Figure 2.8). Figure 2.9a compares observed and simulated

O3 concentrations at 12:00 p.m. for all monitors near downtown Houston that were

impacted by the simulated high O3 plume. The over predictions at HCQA and SHWH

are 37 and 56 ppb. The peak observed 1-hr O3 concentration at BAYP - 140 ppb -

came immediately after a 1-hr change of 56 ppb, but the simulated high O3 at BAYP

was not the result of a NTOC; a NTOC was predicted 10 km from the monitor. As

shown in Figure 2.9b, the maximum simulated hourly change at BAYP was only 23

ppb. Simulated concentrations over predict measurements by approximately 50 ppb

at 10:00 a.m. and 11:00 a.m., but that over prediction is only 10 ppb at 12:00 p.m.
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Figure 2.8: Spatial plot showing predictions from the base case simulation of 1-hr O3

concentrations at (a) 9:00 a.m., (b) 10:00 a.m., (c) 11:00 a.m., and (d) 12:00 p.m. on August
1, 2005. The diamond markers show measurement data from air quality monitors; if no data
are available, the marker is a black dot. Color mismatches between the diamond markers
(measurements) and grid cells (simulations) indicate model over or under predictions. Gray
arrows show the simulated wind vectors at select grid cells. Arrows originating at the center
of a diamond marker show measured wind data. Simulated NTOCs are marked with a black
‘‘X’’ (9:00 a.m. and 12:00 p.m. only).
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after the observed 1-hr increase of 56 ppb.

When the regulatory AQM does make a prediction that meets some of the NTOC

criteria at a monitor, it does so over a large spatial area and does not reproduce the

observed limited spatial scale of high O3 seen in monitor measurements. For example,

Figure 2.10 shows for August 17, 2006, the model predicted values from a grid cell 5

km from the DRPK monitor. Figure 2.10 shows that model predictions had similar

changes in hourly concentrations and nearly matched the peak 1-hr O3 measured at

the DRPK monitor. The model does not, however, reproduce the narrow spatial extent

of high O3 as observed by the monitors. As shown in Figure 2.11a, the model predicts

a high O3 plume in the southern part of the Houston urban core at 2:00 p.m., causing

over predictions at the majority of the monitors in that region. Figure 2.11b shows

the amount of over prediction at 2:00 p.m. at five regulatory monitors. Although

the model predictions match peak measurements at the HSMA monitor, the model

over predicts O3 concentrations at all other monitors and by more than 40 ppb at

the SHWH monitor. On this day the model is able to reproduce observed phenomena

at two monitors, but does so over too large a spatial extent. For many of the days

where an observed NTOC is measured at a monitor, the model does not reproduce the

hourly values or the limited spatial extent of the observed high O3.

These data show that the model can make high O3, but the causes in the model

are likely not the same causes for producing high O3 in the observations. The cause of

highest O3 in the observations is spatially and temporally limited, and not like those

predicted by the model.

2.3.4 Effect of horizontal grid resolution on non-typical ozone changes

Maximum 1- and 2-hr O3 changes were 65 ppb/hr and 78 ppb/ 2 hr when the model

was rerun with the nested 1-km subdomain. Compared with the 2-km subdomain
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Figure 2.9: (a) Observed and simulated (base case EI) 1-hr O3 concentrations at 12:00 p.m.
on August 1, 2005. (b) Observed and simulated (base case EI) 1-hr O3 concentrations on
August 1, 2005, recorded at the BAYP monitor. A 1-hr increase of 56 ppb was measured at
12:00 p.m.
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Figure 2.10: Observed and simulated (base case EI) 1-hr O3 concentrations on August 17,
2006. Observations were recorded at the DRPK monitor. Simulated values were extracted
from a grid cell 5 km away from DRPK. A NTOC was measured and simulated at 11:00 a.m.
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Figure 2.11: Plot (a) is a spatial plot showing simulated (base case EI) 1-hr O3 concentrations
at 2:00 p.m. on August 17, 2006. The diamond markers show measurement data from air
quality monitors. Color mismatches between the diamond markers (measurements) and
grid cells (simulations) indicate model over or under predictions. Gray arrows show the
simulated wind vectors at select grid cells. Arrows originating at the center of a diamond
marker show measured wind data. Plot (b) shows observed and simulated (base case EI)
1-hr O3 concentrations for select monitors.
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simulation, the maximum 1-hr change increased by 20% (11 ppb) and the maximum 2-

hr change increased by 3% (2 ppb). Grid resolution, therefore, impacts the magnitude

of hourly O3 increases. Although the 2-km subdomain is generally considered to be

finely resolved, it may be too coarse to simulate the magnitude of the observed NTOC

phenomenon.

It was shown in the previous section that the model failed to predict the spatially

limited O3 plume on August 17, 2006, with the 2-km subdomain. Model simulations

using the 1-km subdomain similarly show a large O3 plume over southern Houston.

The persistence of such over predictions suggests that horizontal grid resolution is

likely not causing problems with spatial heterogeneity.

2.4 Conclusion

Analysis of Houston O3 monitoring data from 2000 to 2009 shows that on days

when a monitor observed a NTOC, that monitor was also more likely to exceed the

8-hr O3 NAAQS. Thus, identifying the conditions and sources that produce a NTOC

is critical to controlling O3 violations. The regulatory AQM used to support the

2010 SIP did not reproduce observed behavior on most NTOC days and often under

predicted the hourly O3 change. Simulations also failed to capture the limited spatial

extent of high O3 found on NTOC days. On these days, the AQM often predicted

high O3 concentrations over large regions of Houston, resulting in over predictions

at many of the monitors. Thus, a more accurate reproduction of extreme measured

behavior at a handful of monitors came at the cost of misrepresenting observations

elsewhere. It is important to note that this result is not considered detrimental in the

current EPA attainment guidance.

Prior to 2007, the EPA required the use of observations and model predictions

under the assumption that simulations were capable of reproducing the specific
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observed phenomena. After 2007, the attainment guidance now assumes that models

only need to be capable of reproducing a change in ozone concentrations due to

changes in precursor emissions, without necessarily reproducing the measurements

accurately. In the current approach, the model’s predicted change is applied to the

baseline simulations to predict a future case. It is still the assumption, however, that

the model with its inputs is able to simulate the critical processes driving poor air

quality. If random emissions processes are indeed driving these large hourly changes

in concentrations, then it is unrealistic to expect a deterministic modeling episode

of just 120 days to represent this process accurately. This is especially true if the

observational metrics used by the attainment process are averages of observations

taken over a 5-year time period.

A necessary next step is to perform a meteorological analysis similar to the studies

described above (Byun et al., 2007; Vizuete et al., 2009). It is important to understand

the regional meteorology that was present on NTOC days, because high O3 in Houston

is known to be dependent upon wind fields. Understanding whether winds on NTOC

days are dissimilar from winds on typical days, and whether modeled winds closely

match measurements, will provide key pieces of evidence for determining the cause(s)

of NTOCs and model deficiencies. There is also a need for back-trajectory analysis on

NTOC days to determine if air parcels that impacted ground monitors passed over

industrial facilities.

The modeling presented here was performed by the TCEQ as a requirement of the

O3 attainment process. This model was used to develop and defend future pollution

controls and thus represents a real-world application of regulatory modeling. The

goal of this study was not to ‘‘fix’’ the model’s deficiency, but rather to evaluate

model performance in an actual regulatory application. It is clear that there is an

observed phenomenon in Houston whose cause may not be addressed by current EPA
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guidance. Once the cause is better understood, a dual approach could be proposed

that would address NTOC phenomena separately from the EPA guidance. Such a dual

approach has already been used in Houston and served as the technical foundation

of the successful 2004 Houston 1-hr O3 SIP (Texas Commission on Environmental

Quality, 2004). In this SIP, random industrial emission events were addressed with

targeted controls, and the regulatory model was used to formulate policy (e.g., NOx

and HRVOC cap and trade programs, reductions of industrial NOx, mobile source

reductions) for the remaining causes of violations. More recently, it has been suggested

that peak O3 may be responsive initially to targeted ship channel VOC emissions, but

further O3 reductions may require NOx limits (Xiao et al., 2010). This dual approach

proved to be effective in reducing ozone before and could be applied in current SIP

efforts.
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CHAPTER 3
HOUSTON’S RAPID OZONE INCREASES: PRECONDITIONS AND

GEOGRAPHIC ORIGINS1

3.1 Introduction

In 2004, the Texas Commission on Environmental Quality (TCEQ) proposed a

novel emissions control strategy to address ozone (O3) pollution in Houston (Texas

Commission on Environmental Quality, 2004). This strategy placed limits on emissions

of ethene, propene, 1,3-butadiene and butene isomers, collectively called highly reactive

volatile organic compounds (HRVOCs), which are released from petrochemical facilities

in the industrial ship channel region. The TCEQ’s analysis of Houston’s O3 problem -

detailed in their 2004 State Implementation Plan (SIP) - showed that many of the

highest O3 peaks were measured following brief periods of concentration increases

greater than 40 ppb/hr and sometimes greater than 100 ppb/hr (Texas Commission

on Environmental Quality, 2004). These large increases were associated with reactive

plumes of HRVOC emissions measured by aircraft in several studies during the Texas

Air Quality Study field campaign in 2000 (Kleinman et al., 2002; Daum et al., 2003;

Ryerson et al., 2003). The TCEQ’s proposed HRVOC emissions controls limited both

routine emissions and short-term, or ‘‘upset,’’ releases at facilities with the potential

to emit more than 10 tons (∼ 9.07 Mg) of HRVOCs per year. Exempting all but the

largest industrial facilities assumed that smaller HRVOC sources do not have a large

1E. Couzo, H.E. Jeffries, W. Vizuete, Houston’s rapid ozone increases: preconditions and
geographic origins. Environ. Chem. 2013, 10, 260-268, doi: 10.1071/EN13040.

This is the pre-publication version of an article that appears in Environmental Chemistry, 2013,
copyright CSIRO, available online at: http://www.publish.csiro.au/?paper=EN13040. The arti-
cle has been reformatted to meet the dissertation standards of the UNC graduate school.
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effect on rapid O3 production. The Environmental Protection Agency approved the

TCEQ’s SIP, and the emissions controls became Texas state law in 2005.

The 2004 SIP highlighted the significance of rapid O3 increases to violations of

the 1-hr federal standard, but these increases also contribute greatly to violations of

the 8-hr O3 standard. Many of Houston’s highest 8-hr O3 peaks are characterized

by sudden increases in concentrations of at least 40 ppb in 1 hr, or 60 ppb in 2 hr

(Vizuete et al., 2011). Measurements from 2000 to 2009 show that these increases,

called non-typical O3 changes (NTOCs), increase the likelihood of a monitor violating

the 1997 0.08-ppm 8-hr O3 standard (Couzo et al., 2012). Nearly 60% of days with

NTOC measurements violated the 8-hr O3 standard, but just 1% of typical O3 days

exceeded the federal limit.

The cause(s) of every NTOC is an open question, but evidence linking them to

HRVOC emissions has accumulated since the TCEQ’s 2004 SIP (Daum et al., 2004;

Berkowtiz and Doskey, 2005; Washenfelder et al., 2010). Speciated hydrocarbon

measurements found ethene and propene among the most likely VOCs to contribute

significantly to rapid O3 production (Gan and Hopke, 2003). A recent study found

that some chemical flares operate at combustion and destruction efficiencies lower than

required by regulation, and that these flares are significant sources of alkenes (Wood

et al., 2012). Furthermore, it is known that large-scale, short-term HRVOC emissions

from industrial sources occur often and with notable temporal variability in Houston

(Wert et al., 2003; Murphy and Allen, 2005; Cowling et al., 2007; Webster et al.,

2007; de Gouw et al., 2009; McCoy et al., 2010). It is these emissions, in addition to

routine HRVOC emissions, that the TCEQ primarily targeted in 2004. Unfortunately,

emission upsets are not predictable, and the emissions event database maintained by

the TCEQ (http://www11.tceq.texas.gov/oce/eer/index.cfm, accessed October

23, 2012) contains reports from facilities that are often just best estimates of the VOC
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releases. At any single facility, HRVOC upsets are rare, and it has been difficult to

link specific NTOCs to reported emissions upsets. Although HRVOC emissions and

NTOCs have received increased attention, there has not been a comprehensive effort

to look at all NTOCs over a long time frame. The studies mentioned above have

generally had short windows of data collection corresponding with field campaigns.

The limited spatial and temporal scales of most field campaigns reduce the chance of

measuring a NTOC and tracing it back to a particular emission event.

The number of ground monitors in Houston has increased since the early 2000s

when the NTOC phenomenon was first observed. In 2000, for example, there were 14

monitors and a total of 218 NTOCs measured. By 2011, the number of NTOCs dropped

to 39, although the number of monitors increased to 25. The frequency and magnitude

of NTOCs have declined markedly despite this increase in spatial coverage. The

most dramatic declines occurred just after the TCEQ implemented targeted HRVOC

controls for short-term and routine emissions. NOx and mobile source reductions also

took effect during this period, however, so it is difficult to disentangle the benefits

directly attributable to the HRVOC controls. Notwithstanding the improvements,

NTOCs still occur in Houston at monitors that have yet to achieve the 2008 0.075-ppm

8-hr O3 standard. One possible explanation is that the smaller industrial facilities

that were exempted from the 2004 HRVOC limits do, in fact, contribute to the NTOC

problem. Other potential causes could be meteorological. Air mass recirculation, a

stalled sea breeze and entrainment from a rapidly rising planetary boundary layer are

all possible explanations for NTOCs. A closer examination of the problem and the

factors that lead to NTOC formation is required.

This work considers local meteorological conditions and ambient pollutant concen-

trations in an attempt to determine the necessary preconditions for the large hourly O3

increases found in the observational record. The data used in this study date back to
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2000, which provides a wide time frame during a dynamic period in which aggressive

emission control strategies were implemented. This provides built-in observational

sensitivity experiments to help understand how varying meteorological conditions and

industrial emissions affect NTOCs. Using over ten years of measurement data, we

have identified candidate days with unusually large hourly O3 increases. We combine

wind field measurements with pollutant observations from a dense network of ground

station monitors to determine the necessary conditions and likely geographic origins

of the NTOCs. Our analysis examines the assumption made in the TCEQ’s 2004 SIP -

that HRVOC emissions are responsible for many NTOCs and O3 violations. Ultimately,

a description of the conditions that can lead to NTOCs may help environmental regu-

lators develop effective control strategies that efficiently bring ambient O3 levels in

Houston below the federal standard.

3.2 Experimental

Twenty-five ground station monitors were used in this study, and they are listed

in Table 3.1 with their official names, four-letter abbreviation, Continuous Ambient

Monitoring Station (CAMS) number, Aerometric Information Retrieval System (AIRS)

number and measured parameters. These are the same monitors that were used in the

TCEQ’s 2010 SIP. Monitor locations are shown in Figure 3.1. Each of these monitors

measures a variety of chemical (e.g. O3, SO2) and meteorological parameters (e.g.

wind speed, wind direction) with a time resolution of 1 hr. The red star marks the

Sam Houston Tollway Bridge, which is approximately the center of the ship channel

region. These data are maintained by the TCEQ and are available publicly (http:

//www.tceq.texas.gov/airquality/monops/hourly_data.html, accessed January

13, 2013). The data record spans 2000-2011, although not all monitors have data that

begins in 2000.
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Monitor Name Abbreviation CAMS No. AIRS No.

Bayland Park BAYP 53 48-201-0055 O3, CH2O, ws/wd
Clinton CLIN 403 48-201-1035 O3, SO2, ws/wd
Conroe Relocated CNRt 78 48-339-0078 O3, ws/wd
Danciger DNCG 618 48-039-0618 O3, ws/wd
Deer Park DRPK 35 48-201-1039 O3, CH2O, ws/wd
Galveston GALC 34 48-167-0014 O3, ws/wd
HRM-3 Haden Road H03H 603 48-201-0803 O3, ws/wd
Aldine HALC 8 48-201-0024 O3, ws/wd
Channelview HCHV 15 48-201-0026 O3, CH2O, ws/wd
Croquet HCQA 409 48-201-0051 O3, SO2, ws/wd
Lang HLAA 408 48-201-0047 O3
Northwest Harris County HNWA 26 48-201-0029 O3, ws/wd
Houston East HOEA 1 48-201-1034 O3, ws/wd
Houston Regional Office HROC 81 48-201-0070 O3, SO2, ws/wd
Monroe HSMA 406 48-201-0062 O3, SO2
Texas Avenue HTCA 411 48-201-0075 O3
North Wayside HWAA 405 48-201-0046 O3, SO2
Lake Jackson LKJK 1016 48-039-1016 O3, ws/wd
Lynchburg Ferry LYNF 1015 48-201-1015 O3, ws/wd
Manvel Croix Park MACP 84 48-039-1004 O3, ws/wd
Mustang Bayou MSTG 619 48-039-0619 O3, ws/wd
Seabrook Friendship Park SBFP 45 48-201-1050 O3, SO2, ws/wd
Westhollow SHWH 410 48-201-0066 O3, ws/wd
Texas City TXCT 620 48-167-0056 O3, ws/wd
Wallisville WALV 617 48-201-0617 O3, ws/wd

Table 3.1: Air quality monitors and measured parameters. AIRS, Aerometric Information
Retrieval System; CAMS, Continuous Ambient Monitoring Station. Measurement abbrevia-
tions are O3, ozone; CH2O, formaldehyde; SO2, sulfur dioxide; ws/wd, wind speed and wind
direction
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Figure 3.1: The locations and abbreviations of the 25 ground monitoring stations used in
this study. The ship channel region is marked with a red star. The six monitors shown in
Figure 3.2 are labeled with red text.
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Hourly CH2O concentrations for three monitors are available for select days

from 2003 to 2011. CH2O values were reported from 6 a.m. to 8 a.m. and 1 p.m.

to 3 p.m. These data were obtained from the EPA’s Air Quality System (http:

//www.epa.gov/ttn/airs/airsaqs/, accessed April 1, 2012), which is a repository

for ambient air quality data.

A NTOC is defined as an increase in O3 concentrations of at least 40 ppb in 1

hr, or 60 ppb in 2 hr. This definition is consistent with our earlier work on NTOCs

(Vizuete et al., 2011; Couzo et al., 2012).

3.3 Results

This study analyzed local wind conditions and concentrations of O3, CH2O, and

SO2. The following subsections - meteorology, formaldehyde, and sulfur dioxide -

show our analysis of each parameter and how it relates to O3 and NTOCs.

3.3.1 Meteorological analysis

Couzo et al. (2012) found that most NTOCs are measured at monitors near the ship

channel. In Figure 3.2, we expand on that finding. These plots show the wind speed

and direction that were measured during NTOCs between 2000 and 2011. Each black

marker shows a unique event, so the figure also shows the number of NTOCs that were

observed at each monitor. These six monitors (CLIN, HALC, HCQA, MACP, TXCT

and WALV) were chosen because they represent a full range of geographic diversity in

Houston. CLIN is on the western end of the ship channel and near downtown, WALV

is north-east of the ship channel and far from downtown, HALC is north-west of the

ship channel and north of downtown, HCQA and MACP are southwest of the ship

channel and south of downtown, and TXCT is south of the ship channel and far from

downtown. Although there is some scatter in each plot, the NTOC data generally
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show strong preference for a narrow range of wind directions. The black markers are

clustered in the direction of the ship channel, which indicates NTOCs almost always

occur when winds are blowing from Houston’s industrial center to the monitor. The

red arrow points toward the red star in Figure 3.1 and, thus, shows the direction of

the ship channel relative to each monitor. The grey markers in Figure 3.2 show the

wind speed and direction that were measured at the time of peak 1-hr O3 levels on

all days. Only data from April to October is shown here. These data do not cluster

in the direction of the ship channel meaning that peak O3 comes from a diversity of

directions. In some cases (e.g. HALC and HCQA), peak O3 levels often occur when

the monitor is upwind of the ship channel.

The histograms in Figure 3.2 show the distribution of peak 1-hr O3 levels on

typical days (grey) and NTOC days (black) for all available data during the O3 season

(April - October) from 2000 to 2011. The distributions show that peak 1-hr O3 levels

on NTOC days are shifted towards higher concentrations.

Meteorology is also a critical component of O3 formation in Houston. The mete-

orological conditions necessary for high O3 levels are well known. They have been

described in detail and are characterized at surface monitors by low wind speeds and

a rotational wind field (Cowling et al., 2007; Banta et al., 2005; Ngan and Byun,

2011). Despite the unquestionable importance of meteorology on O3 formation, an

analysis of winds and 8-hr O3 violations in Houston determined that O3-conducive

meteorological conditions are necessary but insufficient to produce high O3 levels and

NTOCs (Vizuete et al., 2009).

NTOCs tend to happen under stagnant or near-stagnant conditions. This is also

true for typical high O3 levels. Distributions of 3-hr average wind speed are shown

in Figure 3.3 for NTOC days (left), days that violated the 1997 0.08-ppm 8-hr O3

standard (middle) and days that did not violate the standard (right). To obtain
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Figure 3.2: Wind speed, wind direction, and peak 1-hr O3 levels on all typical and non-typical
O3 change (NTOC) days for six monitors (see Figure 3.1 for location). The grey markers in
the radar plot give the wind speed and direction at the time the peak 1-hr O3 level was
measured on typical days. The black markers give the wind speed and direction at the time
a NTOC was measured. The red arrow points toward the red star (ship channel marker) in
Figure 3.1. The histogram shows the distribution of peak 1-hr O3 levels on typical days
(grey) and NTOC days (black). All available data during the O3 season (April - October) from
2000 to 2011 is included in this figure.
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Figure 3.3: Box and whisker plots of 3-hr average wind speed measurements on non-typical
O3 change (NTOC) days (left), days that violate the 85-ppb federal standard (middle) and
days below the federal standard (right). Box tops, middles and bottoms give the 75th, 50th
and 25th percentile values. Whiskers extend to the most extreme data point within 1.5
times the inner quartile range. The 3-hr average wind speed was obtained by averaging
the 1-hr wind speed measurement during the hour of peak O3 level with the wind speed
measurements from the 2 hr before the peak O3 level. Available data from all monitors and
years are included in this figure.
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this average, we used the wind speed from the hour during which peak O3 levels (or

NTOCs) were observed and measurements from the previous 2 hr. A 3-hr average

was used because it has the effect of smoothing out the hour-to-hour variability and

longer averages are a poor indicator of local effects. It is clear that NTOCs occur on

days with low wind speeds, lower even than typical high O3 level days. The 25th,

50th, and 75th percentile 3-hr average wind speeds preceding NTOCs are 3.4, 4.6, and

6.3 km/hr. For typical days that violate the 1997 O3 standard, those values are 5.9,

8.3, and 12.7 km/hr. Days that did not reach the 0.08-ppm standard generally had

wind speeds that were slightly lower than violation days. The 25th, 50th, and 75th

percentile values for non-violation days were 5.4, 7.1, and 10.8 km/hr.

Figure 3.4 shows, on a fractional basis, the time of day when all NTOCs and

peak 1-hr O3 levels are measured for all monitors. NTOCs generally occur in the late

morning and into the early afternoon. NTOCs peak at 9 a.m. and 10 a.m. with 78%

occurring before 1 p.m. Peak 1-hr O3 levels occur later in the day; 2 p.m. is the most

frequent time for peak 1-hr O3 levels. More than half (56%) of all peak 1-hr O3 levels

occur at 12:00 p.m. or later.

3.3.2 Formaldehyde analysis

CH2O is a known marker for photochemical oxidation reactions that lead to

O3 formation; it is also, itself, a precursor to O3. Oxidation of HRVOCs produces

substantial yields of CH2O. For example, each ethene molecule that is attacked by

the hydroxyl radical (·OH) produces 1.44 molecules of CH2O (Seinfeld and Pandis,

2006). Two monitors had 1-hr CH2O measurements on NTOC days - CLIN and DRPK.

For each monitor, CH2O measurements were separated into two groups according

to whether they occurred before or after the measured NTOC. CH2O concentrations

were greater following a NTOC. The Mann-Whitney non-parametric statistical test
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Figure 3.4: Distributions of the time of day during which non-typical O3 changes (NTOCs)
and peak 1-hr O3 levels occur. Available data from all 25 monitors and twelve years are
included in this figure.
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was used to determine whether the differences between CH2O values before and

after a NTOC are statistically significant. For both monitors, these differences were

statistically significant (CLIN: U=2, P � 0.01; DRPK: U=36, P � 0.01). This is not

a surprising finding because most NTOCs occur in the late morning. It is expected

that CH2O concentrations will rise throughout the photochemical day because it is a

product of VOC oxidation. Elevated CH2O concentrations in the morning, though,

could be indicative of primary emissions.

Next, we compared distributions of hourly CH2O values on typical and NTOC days

at each monitor again using the Mann Whitney non-parametric test. The test results

are shown in Figure 3.5. Distributions of 1-hr CH2O measurements for NTOC days

are shown in black and the distributions for typical O3 days are shown in grey. For

each monitor, CH2O measurements did not differ significantly in the morning. Results

of the Mann-Whitney test show statistical significance in the afternoon, however. At

CLIN (Figure 3.5a), CH2O concentrations on NTOC days are significantly greater at 1

p.m. (U=3, P=0.032) and 2 p.m. (U=39, P=0.012). At DRPK (Figure 3.5b), CH2O

concentrations on NTOC days are significantly greater at 2 p.m. (U=80.5, P=0.003)

and 3 p.m. (U=54, P=0.014).

We also looked at O3 and CH2O levels on specific NTOC days. Figure 3.6a shows

measured time series data at the CLIN monitor on October 23, 2003. The black line

shows 1-hr O3 concentrations, and the black dots show 1-hr CH2O values. The shaded

regions extend up to the 90th (dark grey) and 95th percentile (light grey) CH2O

concentrations for all typical O3 days. In Figure 3.6a, there is a 156-ppb increase in

O3 at 11 a.m. Before this NTOC, the morning CH2O measurements were less than the

90th (6 a.m.) and 95th percentile (7 a.m.) CH2O concentrations. After the NTOC,

though, 1-hr CH2O values are well outside these distributions reaching 27 ppb at 1

p.m. These results are consistent with Figure 3.5a.
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a

b

Figure 3.5: Box and whisker plots of 1-hr CH2O measurements at CLIN (a) and DRPK (b)
for non-typical O3 change (NTOC) days (black) and typical O3 level days (grey). Box tops,
middles and bottoms give the 75th, 50th and 25th percentile values. Whiskers extend to the
most extreme data point within 1.5 times the inner quartile range. The distributions are not
significantly different (n.s.) in the morning before most NTOCs occur. Immediately following
a NTOC, CH2O concentrations often increase substantially. Using the MannWhitney non-
parametric test it was determined that differences between the typical and NTOC distributions
are statistically significant (sig.) for CLIN at 1:00 p.m. (U=3, P=0.032) and 2:00 p.m. (U=39,
P=0.012) and for DRPK at 2:00 p.m. (U=80.5, P=0.003) and 3:00 p.m. (U=54, P=0.014).
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b

Figure 3.6: O3 time series plot on October 23, 2003, at CLIN (a) and June 28, 2006, at
DRPK (b). The black line shows 1-hr O3 concentrations, and the black dots show 1-hr CH2O

measurements for the stated date. The shaded boxes extend up to the 90th (dark grey)
and 95th percentile (light grey) CH2O values on all typical O3 level days for each hour when
measurements were taken at both stations. (Note the different y-axis scales for 1-hr O3.)
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Figure 3.6b shows measured time series data at the DRPK monitor on June 18,

2006. This NTOC (40-ppb increase) occurred at 7 a.m., then 1 hr later, the CH2O

concentration was 24ppb, which is well above the 95th percentile for all DRPK CH2O

measurements at that hour. CH2O values for all other times, however, are within

shaded regions. Taken together, Figures 3.5 and 3.6 indicate that CH2O concentrations

rise substantially for a short period following a NTOC, and that this rise is significantly

greater than the routine diurnal CH2O cycle.

3.3.3 Sulfur dioxide analysis

Many SO2 measurements exhibit behavior that looks similar to NTOCs. That

is, concentrations of SO2 increase dramatically from one hour to the next. These

non-typical SO2 increases often occur just before or during the exact hour a NTOC is

measured. Figure 3.7 shows such an instance at the HROC monitor on July 9, 2005.

The figure shows an O3 (black line) increase of 52 ppb at 11 a.m. During the same

hour, SO2 (red line) values increase from 8.7 to 35.9 ppb. The shaded regions extend

up to the 90th (dark grey) and 95th percentile (light grey) SO2 concentrations on all

typical O3 days. At the time of the sudden increase in pollutant concentrations, the

SO2 value is well above the 95th percentile for all HROC SO2 measurements at that

hour. Also in Figure 3.7, we show the wind measurements that were taken at HROC

on July 9, 2005. The wind barbs along the top of the figure show wind speed and

direction for each hour. Half barbs indicate 5 km/hr and full barbs indicate 10 km/hr

winds; the barbs are additive. Circles indicate stagnant conditions. Leading up to the

NTOC, the winds were blowing from the southeast with low speeds. Just before the

O3 and SO2 increase, the winds shift and blow due west. Interestingly, the industrial

ship channel is east of the HROC monitor. Thus, the NTOC and sudden increase in

SO2 occurred when the monitor was downwind of Houston’s industrial region.
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Figure 3.7: O3 (black) and SO2 (red) time series plot on July 9, 2005, at HROC. The wind
barbs along the top of the figure show the hourly wind speed and direction for this date.
The shaded boxes extend up to the 90th (dark grey) and 95th percentile (light grey) SO2

values on all days for each hour when measurements were taken.
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Figure 3.8: Frequency of non-typical SO2 concentrations preceding non-typical O3 changes
(NTOCs) at six monitors. The black bars show the number of NTOCs measured at each monitor
from 2000 to 2011; the grey bars show the number of NTOCs that had an SO2 concentration
above the 95th percentile up to 5 hr before the NTOC.

Figure 3.7 is not an isolated occurrence; SO2 concentrations above the 95th

percentile preceded 209 NTOCs out of a total of 367 NTOCs at the six monitors that

measure both O3 and SO2. Figure 3.8 shows this analysis for these six monitors. The

height of the black bars shows the number of NTOCs that were measured at each

monitor. The height of the grey bars shows the number of those NTOCs that had

an SO2 concentration above the 95th percentile up to 5 hr before the NTOC. With

the exception of CLIN a majority of NTOCs were preceded by large SO2 values. At

HROC for example, 55 out of 72 NTOCs were preceded by a significant increase in

SO2 concentrations.
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3.4 Discussion

This study benefitted from a long, continuous measurement record from a large

number of monitoring stations across Houston. During this period, 2000 - 2011, there

have been significant changes to emissions in the region, and much progress has been

made in lowering O3 concentrations. Figure 3.9 shows design values (grey markers)

for each monitor from 2002 - 2011. (A monitor’s design value is the 3-year average of

the annual fourth highest daily maximum 8-hr average O3 level as defined by Title 40,

Section 50.15, Appendix P of the Code of Federal Regulations, 73 FR 16511, 27 March

2008.) Beginning in 2007, design values began to decline, and, by 2009, all monitors

were below the 0.08-ppm 8-hr O3 federal standard (dashed line). Emissions reductions

described in the TCEQ’s 2004 SIP, especially the HRVOC restrictions, likely played a

substantial part in the lower O3 design values.

In Vizuete et al. (2011) we described a method for determining the influence of

NTOCs on the attainment process by removing or ‘‘filtering’’ NTOC days from the

design value calculation. The black markers in Figure 3.9 show the filtered design

values for each monitor. Looking ahead to the 2008 0.075-ppm standard (solid line),

removing NTOC days brings ten additional monitors into attainment. The individual

monitors are not labeled in Figure 3.9, but the monitors with design values below

0.075 ppm in 2011 only after filtering are CLIN, CNR2, HCHV, HLAA, HTCA, HWAA,

LYNF, SBFP, SHWH, and TXCT. Thus, NTOCs are still a policy-relevant phenomenon

despite their reduced frequency and magnitude.

With that in mind, this study has characterized some major differences between

typical O3 days and NTOC days. We have described meteorological preconditions and

geographic origins, and found evidence for heightened photochemical O3 production

on NTOC days.

Most NTOCs occur when monitors are directly downwind of the industrial ship
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Figure 3.9: O3 design values for the monitors used in this study from 2002 to 2011. Each grey
marker shows the design value for a different monitor. The black markers show the design
values for each monitor after all NTOCs have been removed (‘‘filtered’’) from the calculation.
The dotted black line marks the 1997 0.08-ppm 8-hr O3 standard; the solid black line marks
the 2008 0.075-ppm 8-hr O3 standard; the grey shaded region marks the range of proposed
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channel. Figure 3.2 shows that air masses originating in the ship channel produce

NTOCs that are measured at the monitors. The NTOCs are usually measured in

the late morning before the meteorological recirculation that is commonly seen on

high O3 level days. In fact, peak O3 levels generally occur later in the day and

are often measured when the winds are not blowing from the ship channel to the

monitor. This indicates that some of the processes that lead to NTOC formation do

not fit perfectly within the accepted paradigm of typical high O3 formation. That

paradigm holds that high O3 levels typically occur in the afternoon following the

recirculation of photochemically aged air masses. NTOC formation in the late morning

is potentially due to the accumulation of O3 precursors overnight, although 1-hr

automated gas chromatograph data (not shown) did not reveal meaningful differences

of HRVOC concentrations on NTOC days compared to typical O3 days. Another

plausible explanation for late morning NTOC formation is entrainment from the free

troposphere as the planetary boundary layer rises. This finding merits further study

and will be a focus of a future 3-D modeling simulation.

We have suggested the importance of industrial HRVOC emissions previously

(Vizuete et al., 2011; Couzo et al., 2012), and the results presented here provide

evidence for that position. Short-term releases of HRVOCs are known to occur in the

ship channel (Wert et al., 2003; Murphy and Allen, 2005; Cowling et al., 2007; Webster

et al., 2007; de Gouw et al., 2009; McCoy et al., 2010), and modeling has shown that

these releases can lead to rapid O3 increases (Vizuete et al., 2008; Henderson et al.,

2010). Given the low wind speeds observed on NTOC days, there is sufficient time for

these HRVOC releases to produce the observed O3 increases. Even routine emissions

could accumulate and oxidize in sufficient quantity as they are slowly advected to the

monitors.

Figure 3.5 shows statistically significant increases of CH2O concentration in the
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hours immediately following NTOCs. This suggests that the increases in O3 levels on

some NTOC days are due at least in part to heightened chemical production above

usual levels. Although there is some debate about the exact ratio of primary to

secondary CH2O production in Houston (Garcia et al., 2006; Olaguer et al., 2009;

Guven and Olaguer, 2011; Parrish et al., 2012; Zhang et al., 2013), the nature of the

CH2O has little bearing on the conclusion that the NTOCs are the result of chemical

production. If the CH2O is primary, this is direct evidence for an emission event as

CH2O could be emitted, for example, from an overactive and inefficient industrial

process flare. If the CH2O is secondary, this is indirect evidence for the importance of

HRVOC emissions because both elevated secondary CH2O and O3 levels have been

found in industrial plumes.

We also found interesting SO2 behavior on most NTOC days, as exhibited in Figure

3.7. High SO2 concentrations have been used as a marker for certain types of industrial

activity (Rappengluck et al., 2010), especially combustion processes and fluidized

catalytic cracking units. In fact, a previous study found that a large industrial source

in Texas City co-emitted large amounts of SO2 and CH2O (Stutz et al., 2011). That

many NTOCs are preceded by high concentrations of SO2 and followed by high CH2O

values points to industrial emissions as an important variable in NTOC formation.

This study provides further evidence that NTOC formation is different from typical

high O3 in Houston. In their 2004 SIP, the TCEQ proposed controlling routine and

short-term HRVOC emissions from industrial facilities with the potential to release

more than 10 tons (∼ 9.07 Mg) of HRVOCs per year. The frequency and magnitude of

NTOCs has decreased dramatically since the emission controls took effect, but NTOCs

still occur at some monitors. In fact, ten monitors have 2011 design values below the

federal 0.075-ppb 8-hr O3 standard only after NTOCs are filtered from the calculation.

The industrial ship channel is consistently upwind of these O3 events, so it is possible
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that smaller emission sources not affected by the HRVOC limits are contributing to

the phenomenon, especially given the large number of petrochemical facilities in the

region. Another round of targeted emission controls may further reduce the frequency

of NTOCs and continue the downward trend in Houston’s O3 design values.
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CHAPTER 4
IMPLEMENTATION AND EVALUATION OF NEW NITROUS ACID

FORMATION MECHANISMS IN A THREE-DIMENSIONAL
CHEMICAL TRANSPORT MODEL

4.1 Introduction

Gas phase radical molecules are critical to the photochemical production of air

pollution. The hydroxyl radical (·OH) initiates volatile organic compound (VOC)

oxidation reactions that lead to the hydroperoxy radical (HO·
2) (Seinfeld and Pandis,

2006). HO·
2 is key to converting nitric oxide (NO) to nitrogen dioxide (NO2), which

can photolyze to produce ozone (O3). Nitrous acid (HONO) is known to affect radical

budgets in urban environments by serving as an ·OH source via the photolysis reaction

HONO + hv
λ<400nm−−−−−→ NO + ·OH (4.1)

Reaction 4.1 provides an early morning ·OH source before more dominant sources

such as formaldehyde (CH2O) and O3 are present in high concentrations (Harris

et al., 1982; Harrison et al., 1996; Platt et al., 2002; Alicke et al., 2003). Despite

its importance to gas-phase oxidant chemistry, HONO formation is not understood

completely.

Two chemical mechanisms commonly used in photochemical modeling - Carbon

Bond and Statewide Air Pollution Research Center (SAPRC) - include only homoge-

nous chemical HONO formation (Yarwood et al., 2005; Carter, 2010). The gas-phase

reactions - Reactions 4.2 and 4.3 - are the most important homogeneous HONO

formation pathways.



NO + ·OH → HONO (4.2)

NO + NO2 + H2O → 2HONO (4.3)

Recent modeling studies used the Community Multiscale Air Quality (CMAQ)

model with the Carbon Bond 5 and SAPRC-99 chemical mechanisms, both of which

include Reactions 4.2 and 4.3 (Sarwar et al., 2008; Czader et al., 2012; Concalves et al.,

2012; Zhang et al., 2012). The models consistently showed HONO under predictions

compared to measurements. Czader et al. (2012), for example, reported biases of up

to 2 ppb. Additional 3-D and 1-D modeling systems using only homogeneous HONO

formation also under predict HONO substantially, oftentimes by a factor of ten (Li

et al., 2010, 2011; Wong et al., 2011). It is clear from these efforts that homogeneous

formation of HONO is not sufficient to match observed concentrations. The authors

in the above modeling studies concluded that key sources of HONO exist in addition

to Reactions 4.2 and 4.3.

Two field campaigns in Houston, Texas, have provided HONO observations that

support the possibility of a source of HONO. Measurements taken during the 2006

Texas Air Quality Study and the 2009 Study of Houston Atmospheric Radical Precur-

sors (SHARP) showed strong vertical HONO concentration gradients during the day

with higher values near the ground - something modeled homogeneous chemistry did

not predict (Czader et al., 2012; Wong et al., 2012). Wong et al. (2012) hypothesized

that the missing HONO formation pathways are photolytic and occur on or near the

ground.

Observations in laboratory and field experiments over the past decade have

uncovered two important heterogeneous HONO formation mechanisms that occur on

surfaces (e.g. ground, aerosols) and involve photolysis. The first is the photolysis of

surface adsorbed nitric acid (HNO3) (Zhou et al., 2002; Beine et al., 2002; Dibb et al.,
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2002; Zhou et al., 2003; Ramazan et al., 2004; He et al., 2006; Zhou et al., 2007, 2011).

Together, Reactions 4.4 and 4.5 produce surface adsorbed HONO which can volatilize

into the gas-phase.

HNO3ads + hv → NO2ads + ·OH (4.4)

2NO2ads + H2Oads → HONOads + HNO3ads (4.5)

The second HONO formation pathway is the photo-enhanced conversion of gas-

phase NO2 on organic films or surfaces commonly found on the ground or aerosols

(George et al., 2005; Stemmler et al., 2006, 2007). Reactions 4.6-4.8 show the HONO

formation described by Stemmler et al. (2006).

HA + hv → Ared + X (4.6)

Ared + X → A′ (4.7)

Ared + NO2 → A′′ + HONO (4.8)

In the above reactions, HA is humic acid, Ared and X are the reduced and oxidized

products of the photolyzed HA, and A′ and A′′ are derivatives of Ared. In urban

environments with abundant nitrogen oxide NOx concentrations, the rate-limiting

step is Reaction 4.7 because both NO2 and the oxidized HA product, X, compete for

the reduced HA product, Ared.

In addition to photo-enhanced heterogeneous chemical formation, HONO is directly

emitted during combustion. The emitted HONO to emitted NOx ratio has been

estimated to be about 0.8% for a variety of vehicle types (Pitts et al., 1984; Kurtenbach

et al., 2001).

Modeling efforts in recent years have attempted to include these new heterogeneous
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reactions and emission-based HONO sources. A number of studies have accomplished

this using 3-D Eulerian grid models such as CMAQ (Sarwar et al., 2008; Czader

et al., 2012; Concalves et al., 2012; Zhang et al., 2012), which is often used by

state environmental agencies to demonstrate future attainment of the federal O3

standard. Li et al. (2010) and Li et al. (2011) used the Weather Research and

Forecasting model coupled with Chemistry (WRF-CHEM). In all cases, adding the

photolytic, heterogeneous, and directly emitted HONO formation pathways increased

simulated HONO concentrations and improved agreement with HONO measurements.

Sarwar et al. (2008) showed a normalized mean bias decrease from -98% to -42%

when direct emissions and photo-enhanced heterogeneous HONO formation were

included; Zhang et al. (2012) reported normalized mean bias improvement from

-95% to -54%; for Li et al. (2011), mean normalized bias decreased from -97% to

-39%; and Czader et al. (2012) found that the additional HONO sources increased

morning HONO concentrations nearly ten-fold and improved correlation between

simulated and measured values. These studies confirm that direct emissions and

photo-enhanced heterogeneous formation are important contributors to atmospheric

HONO concentrations. None of the modeling studies, however, considered separately

direct emissions of HONO and heterogeneous chemistry, thus making it difficult to

assess the individual impacts of emissions and heterogeneous formation.

Czader et al. (2012) employed the process analysis (PA) utility that is useful

in determining which physical processes and chemical reactions are dominant. PA

can explain how the new HONO formation pathways have affected the simulated

environment, not simply that it has been affected. The findings of Czader et al. (2012)

provide insight into the origin and fate of ·OH and how O3 concentrations are impacted

by additional HONO formation. From 6 a.m. to 9 a.m., the fractional contribution

of HONO to ·OH production increased to 81% from 45% when direct emissions and
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photo-enhanced heterogeneous chemistry are included. Concentrations of ·OH in

the morning were, on average, 35% greater when the additional HONO sources are

included. Increases in O3 concentrations of up to 11 ppb were also reported.

Much of the analysis in Czader et al. (2012), however, is limited to the model’s

surface layer from which they found large vertical HONO fluxes. Convection transports

vertically much of the HONO formed near the ground, thus removing it from the

analysis volume. Tracking changes to the oxidative chemical environment of the

entire mixed planetary boundary layer (PBL) can elucidate more completely how

new sources of HONO affect air quality. For example, chemical HONO loss pathways

can be obtained. Restricting analysis to a sub-layer within the PBL can lead to the

conclusion that such losses are due to physical processes like vertical transport. While

that may be true for a particular model layer, it is not true for the entire volume of

air within the PBL.

While each modeling study implemented the new HONO sources differently, the

various approaches taken to represent HONO formation can be generalized as one

that parameterizes heterogeneous rate coefficients as a function of surface area to

volume. The surfaces could include aerosols, buildings, and/or the ground. This type

of parameterization is a useful approximation, but it is not an accurate representation

of the physical and chemical processes. In this study, a more accurate approach

to photo-enhanced heterogeneous HONO formation on surfaces is taken. A surface

model has been developed that uses fluxes of HNO3 and NO2 to accumulate a surface

inventory via dry deposition. The surface model allows the ground to act as a reservoir

for deposited species and simulates chemical deposition to the surface, adsorption and

penetration into soils and vegetation, photochemical degradation and transformation,

and volatilization back into the air (re-emission). For the first time, dry deposition

is not simply a removal process, but rather a dynamic process that makes deposited
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species available for further chemical processing.

The surface model is added to version (v6.1) of the Comprehensive Air quality

Model with extensions (CAMx), which, like CMAQ, is a 3-D air quality model routinely

used for regulatory purposes. This study implements missing HONO formation

pathways into a previously unreleased version of CAMx. This is the first time the

new HONO sources have been added to CAMx, and it is the first time the surface

model approach has been implemented to manage photo-enhanced heterogeneous

HONO formation. With the surface model and PA implemented, HONO re-emission is

quantified, and the chemical effects of the additional HONO are analyzed throughout

the PBL. Model performance is evaluated using the extensive set of measurements

that were taken during the 2009 SHARP campaign in Houston. The SHARP dataset

provides the latest and most complete continuous measurements of radicals and radical

precursors, and this is the first time they have been used to parameterize and evaluate

HONO formation mechanisms in a 3-D air quality model.

The main goals of this study are to (1) assess separately the importance of direct

HONO emissions and photo-enhanced heterogeneous HONO formation, and (2) quantify

the impacts of the new HONO sources on ·OH cycles and O3 production in Houston.

This study builds on our previous work (Couzo et al., 2012, 2013) by addressing a

known problem with regulatory modeling in Houston, namely, low reactivity. The

critical examination of radical budgets, and enriched understanding of the reasons for

predicted differences, will result in the identification of the most influential chemical

processes. This will guide recommendations for their improved representation in

regulatory air quality models.
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4.2 Methods

4.2.1 CAMx setup

For the Houston 8-hr Ozone Coalition, Alpine Geophysics LLC (AG) and Climate

& Atmospheric Research Associates developed multi-model ensembles for 2008-2010

focusing primarily on the Houston O3 non-attainment area. Four ensemble members

were constructed with alternative science configurations of the 5th generation National

Center for Atmospheric Research/Pennsylvania State University Mesoscale Model

(MM5, v3.7), Weather Research and Forecasting model (WRF, v3.2.1), Global Bio-

sphere Emissions and Interactions System (Glo-BEIS, v3.1), Model of Emissions of

Gases and Aerosols from Nature (MEGAN, v2.04), and CAMx (v5.4.1) platforms.

Thorough description of the model algorithms, data base development procedures,

simulation strategy, and performance evaluation methods are given in the modeling

protocol (Tesche et al., 2010). Results of the multi-species, multi-scale evaluations

are publicly available.

Input databases for the best performing 2009 ensemble member were used in this

study. This ensemble used Advanced Research WRF dynamics, the Carbon Bond 6

chemical kinetic mechanism, GlobEIS for biogenic emissions over Texas, MEGAN for

biogenics elsewhere in the domain, Motor Vehicle Emission Simulator (MOVES) for

mobile sources, the Texas Commission on Environmental Quality’s (TCEQ) point

source inventory, and the U.S. Environmental Protection Agency’s (EPA) National

Emission Inventory (NEI 2008). Lateral boundary conditions were developed from a

2009 Model for Ozone and Related Chemical Tracers 4 (MOZART-4) global simulation

performed at the National Center for Atmospheric Research.

Modeling in this study was performed with CAMx version 6.1. Previously unre-

leased, this version of CAMx includes a surface model that allows for heterogeneous

HONO formation. Many of the inputs (meteorology, landuse, albedo/haze/ozone,

72



and photolysis rates) were converted for use in CAMx version 6. ENVIRON devel-

oped the necessary conversion tools, and they are publicly available on the CAMx

website (www.camx.com). See the CAMx v6.0 documentation for details (ENVIRON

International Corporation, 2013).

The modeling episode spans the 2009 SHARP campaign (April 15-May 31) and

has an output time resolution of one hour. Figure 4.1a shows the nested 36/12/4

km domain. Figure 4.1b shows a portion of the 4-km domain centered on Houston.

SHARP measurements were taken at the Moody Tower site, which is shaded black in

Figure 4.1b.

4.2.2 Surface model

The surface model processes are displayed in Figure 4.2, and Table 4.1 defines

parameters that are referred to in Figure 4.2. While core model algorithms are used

to deposit compounds to the surface and re-emit them to the atmosphere, the surface

model tracks the accumulation of mass on terrestrial surface media (soil and vegetation)

for subsequent physical removal (leaching into soil and penetration into plant tissue),

chemical transformation (both heterogeneous and photolysis), and re-emission to the

atmosphere. Deposition to water surfaces is assumed to be irreversible and is not

tracked by the surface model.

After deposition to each surface grid cell at each time step, the newly deposited

mass increment is divided among soil and vegetation according to landuse-dependent

split factors and added to total surface mass accumulated during the model run.

The fractional coverage of 11 landuse categories in each grid cell is an existing

input to CAMx. For each grid cell, the net soil/vegetation split is determined by

the combination of landuse-dependent split factors and the fractional coverage of

each landuse type. The soil/vegetation splits for each of the 11 landuse categories
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a

b

Figure 4.1: Nested 36/12/4 km CAMx modeling domain (a). A subset of the 4 km domain
over downtown Houston (b). The black grid cell shows the location of Moody Tower.
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Figure 4.2: Schematic of the CAMx surface model. See Table 4.1 for explanations of each
parameter.

Variable Definition Units

Ap areic mass of compound on vegetation mol ha−1

As areic mass of compound on soil mol ha−1

Kveg vegetation-air partitioning coefficient unitless
Ksoil soil-air partitioning coefficient unitless
kleach leaching rate coefficient min−1

kpen leaf penetration rate coefficient min−1

j photolysis chemistry rate coefficient min−1

Rleach leaching rate mol ha−1

Rpen penetration rate mol ha−1

Rchem chemistry rate mol ha−1

Table 4.1: Description of CAMx surface model parameters.
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Surface Parameters

Category No. Land Cover Category Soil Fraction Shade Fraction

1 urban 0.7 0.2
2 agricultural 0.4 0.3
3 rangeland 0.7 0.2
4 deciduous forest 0.3 0.4
5 coniferous forest, wetland 0.2 0.5
6 mixed forest 0.3 0.4
7 water n/a n/a
8 barren land 0.9 0.0
9 non-forested wetlands 0.5 0.3
10 mixed agricultural/range 0.5 0.3
11 rocky (with low shrubs) 0.7 0.2

Table 4.2: CAMx landuse categories and associated default annual-averaged soil/vegetation
split factors and shade factors.

are assumed to be seasonally constant, and values were estimated based on simple

conceptual considerations of the amount of annual-averaged vegetation (i.e., leaf area

index) typical of each category (Table 4.2).

The surface model uses partitioning (equilibrium) coefficients to calculate the

amount of accumulated material adsorbed to soil and vegetation. The adsorbed fraction

is subject to chemical reactions and physical removal associated with leaching deep

into the soil and penetration into plant tissue. Chemistry can simply decay deposited

material as a removal process, or it can generate products that may be subsequently

re-emitted. All surface removal processes are assumed to be irreversible and result

in a permanent removal of mass. The fraction not adsorbed to the surface media is

subject to a volatilization flux (i.e., re-emission). Separate chemical-specific soil-air

and vegetation-air partitioning coefficients are set in the CAMx chemistry parameters

file. They represent the equilibrium ratio of chemical on a surface to chemical in air

at the air-surface interface. For example, a compound with a partitioning coefficient

of 10,000 (unitless) has an equilibrium concentration on the surface that is 10,000
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Class t 1
2

k

very fast 0.04 d 17 d−1 = 1.2×10−2 min−1

fast 0.21 d 3.3 d−1 = 2.3×10−3 min−1

moderate 1.0 d 0.69 d−1 = 4.8×10−4 min−1

slow 5.0 d 0.14 d−1 = 0.14×10−5 min−1

very slow 25 d 0.03 d−1 = 0.03×10−5 min−1

Table 4.3: Generalized classes of substance half-lives and process rates used in the CAMx
surface model.

times more than that in air.

Chemistry, soil leaching, and plant penetration are dependent on chemical prop-

erties of the compounds and also on numerous site-specific factors such as soil and

vegetation properties, highly transient meteorological conditions, etc. Often, these

factors are unknown or fall within a range. The rates of these processes are defined as

the process rate coefficient (k) times the mass on the surface area, or areic mass (A):

Rprocess = kprocess × Asurface (4.9)

When the actual rate coefficients (or inversely the half-lives, t 1
2

) are unknown

for the substance, they are generalized by five classes shown in Table 4.3. A sixth

class can be added by setting the k-value to zero or a de minimis value to effectively

remove the process from consideration. In this manner chemicals can be modeled with

an estimated half-life that is unique for each process.

Note that all portioning coefficients and reaction rates other than photolysis are

fixed and ignore dependence on various environmental conditions (e.g., temperature,

pressure, surface type, surface moisture). The user specifies photolysis rates to

represent peak clear-sky values at zero zenith (solar noon) and are internally adjusted

for solar angle, cloud attenuation, and shade fraction as a function of landuse type

(Table 4.2).
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The approach for re-emission of volatilized (un-adsorbed) mass is consistent with

the CAMx dry deposition algorithm. Specifically, the surface model is tied to the

Wesely (1989) option. Since the surface model does not consider water surfaces,

re-emission fluxes from water are ignored in this implementation. In CAMx, dry

deposition of material from the lowest model layer to the surface is treated as an

irreversible first-order flux through the use of a dry deposition velocity. Deposition

velocity is calculated similarly to an electric circuit according to Equation 4.10.

vd =
1

ra + rb + rs
(4.10)

The r values represent transfer ‘‘resistances’’ for various components of the circuit

path: turbulent transfer through the surface layer and into the canopy (ra); diffusive

transfer through the thin laminar layer in contact with the surface (rb); and an effective

adsorption resistance to a particular surface type (rs). The deposition velocity is

thus dependent on atmospheric conditions, species characteristics (e.g., diffusivity,

reactivity, solubility), and surface characteristics (e.g., landuse type). Dry deposition

includes adsorption to the surface, so it is considered a one-way irreversible process in

CAMx.

Re-emission of volatilized mass is also treated as a first-order one-way flux using

an ‘‘effective’’ velocity that is similar in form to vd.

ve =
1

ra + rb
(4.11)

The rs term is missing since only the pre-determined un-adsorbed fraction of surface

mass is considered for surface-to-air transfer. The ra and rb terms are calculated by

the surface model in exactly the same manner as the values used for dry deposition to

ensure consistency.

Table 4.4 shows the species and reactions rate constants that were added to the
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Species Ksoil kleach Kveg kpen

NO2 1.00× 1010 1.00× 10−2 1.00× 1010 1.00× 10−2

HNO3 1.00× 1010 4.80× 10−4 1.00× 1010 4.80× 10−4

HONO 1.00× 100 4.80× 10−4 1.00× 100 4.80× 10−4

Precursor Product Krate Jrate

NO2 HONO 1.00× 10−2 1.00× 10−2

HNO3 HONO 0.0 4.80× 10−5

Table 4.4: Surface model parameters and values that were added to CAMx in this study.
Units are min−1.

surface model in this study. This is a new feature of CAMx, and Table 4.4 summarizes

the modifications to the base chemistry that were made. Three species, NO2, HNO3,

and HONO, can now partition to soil or vegetation. The residence time for these

species is about 1.5 days. Once on the surface, NO2 and HNO3 are converted to

HONO. The photolysis rate for the NO2 reaction, 1.0× 10−2 min−1, is three orders of

magnitude greater than the photolysis rate for the HNO3 reaction. These photolysis

rates scale with total solar radiation. The kinetic reaction rate for HNO3 is zero, which

means surface adsorbed HNO3 only forms HONO via photolysis. In addition to the

permanent removal rates, kleach and kpen, all surface adsorbed species are removed

following precipitation events. The reaction rate constants in Table 4.4 are estimates

based upon extensive measurements from the 2009 SHARP campaign. They can and

should be refined.

4.2.3 Process analysis

The CAMx simulations were run with the PA option turned on. When the

PA option is enabled, CAMx creates a set of files during runtime that contains

all simulated chemical and physical processes that influence O3. See ENVIRON

International Corporation (2013) for details regarding PA implementation in CAMx.
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The use of PA outputs for analysis has been limited in its ability to character-

ize the transformations that occur within a changing PBL height, thus restricting

investigations to a fixed height. The Python-based PA (pyPA) post-processing tool

can aggregate multiple model layer heights permitting an hour-by-hour tracking of

the PBL (Vizuete et al., 2008; Henderson et al., 2010, 2011). As the simulated PBL

rises and falls, the analysis volume increases and decreases. It is useful to consider

the entire column of grid cells within the simulated PBL because many of the model

processes couple vertically adjacent cells on time scales shorter than one hour. The

process analysis in this study aggregates all layers below the moving PBL.

4.2.4 SHARP measurements

From April 15 to May 31, 2009, continuous chemical and meteorological measure-

ments were conducted as part of the SHARP campaign. The measurements were

made atop Moody Tower on the downtown University of Houston campus. The

measurement devices are 70 meters above ground level (a.g.l.), and were installed

during the 2006 Texas Air Quality Study Radical Measurement Program (TRAMP).

Lefer et al. (2010) describes in detail the in situ measurements. Remote sensing

measurements were taken using long-path differential optical absorption spectroscopy

(LP-DOAS) University of California, Los Angeles (Stutz et al., 2010). The LP-DOAS

measurements provide vertically resolved HONO concentrations at three different

height intervals: 20-70 meters a.g.l., 70-130 meters a.g.l., and 130-300 meters a.g.l.

These heights are referred to as ‘‘lower,’’ ‘‘middle,’’ and ‘‘upper.’’

4.2.5 Simulation scenarios

Three different model runs were performed to determine the model’s sensitivity to

increased HONO concentrations. These runs are shown in Table 4.5 and described
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Scenario Emission Inventory Surface Model

Run A base no
Run B base + 0.8% HONO:NOx no
Run C base yes

Table 4.5: CAMx simulation scenarios

below. All runs used CAMx version 6.1 and used the same inputs unless otherwise

noted.

• Run A is the basecase simulation. There were no changes to any of the inputs,

and the new surface model was not implemented.

• Run B included direct HONO emissions, but did not use the new surface model.

HONO is emitted directly and was added to the area (i.e. gridded low-level)

emissions files in each of the three grids such that the HONO:NOx ratio is 0.8%

(Pitts et al., 1984; Kurtenbach et al., 2001). The new emissions files were

developed by ENVIRON and used in place of the area emissions files developed

by AG.

• Run C utilized the new surface model described above, but did not include

direct HONO emissions. The area emissions files used were the same as those in

Run A.

4.3 Results and Discussion

This study evaluated the impacts of new sources of HONO in a 3-D air quality model.

Simulated concentrations of NOx, HONO, and O3 were compared to measurements

at Moody Tower. One day was selected to analyze in detail. This day, April

21, 2009, was chosen because it had high measured HONO and O3 concentrations.
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Maximum measured in situ 1-hr HONO was 0.34 ppb, maximum 1-hr O3 was 72 ppb,

and maximum 8-hr O3 was 69 ppb. These HONO and O3 concentrations are the

greatest that were measured during April, and among the highest recorded values

during the entire SHARP campaign. Additionally, this day was recommended as

a good candidate for analysis by researchers who are familiar with the the SHARP

measurement dataset (Drs. Barry Lefer [University of Houston] and Jochen Stutz

[UCLA], personal communication), and it has been studied in detail by Wong et al.

(2012).

Model data was analyzed at the grid cell in which Moody Tower is located (see

Figure 4.1b). The Moody Tower location is well suited for testing model performance

because it is near the ship channel, which is the source region of many high O3 events

and non-typical O3 changes. In situ measurements from the top of Moody Tower

were compared to simulated concentrations in the second vertical layer. LP-DOAS

measurements in the upper, middle and lower paths were compared to the fourth,

third, and second vertical layers in the model. Normalized mean error (NME) was

used as a metric to evaluate model performance and was calculated according to

Equation 4.12.

NME =

N∑
i=1

|Cm,i − Co,i|

N∑
i=1

Co,i

(4.12)

Cm,i are modeled concentrations and Co,i are observed concentrations. Cm,i and

Co,i are space- and time-paired; if one is missing, the other is not considered. N is the

total number of space- and time-paired concentrations.

Due to poor NOx performance at the Moody Tower grid cell, we also analyzed sim-

ulation data from the grid cell directly southwest of Moody Tower. HONO formation
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is strongly coupled to NO2 concentrations, and, as shown in the following subsection,

NO2 performance is significantly better southwest of Moody Tower. Shifting to this

grid cell removes unrealistic model behavior caused by artificially high NOx and allows

for a clearer understanding of the impacts of direct HONO emissions and heterogeneous

formation on surfaces.

4.3.1 Nitrogen dioxide

Time-paired simulated and measured NO2 concentrations are shown in Figure 4.3.

Modeled NO2 concentrations are over predicted at the Moody Tower grid cell as can

be seen in Figures 4.3a, c, and e. Daytime (10 a.m. to 6 p.m.) concentrations are

shown in red, and nighttime (7 p.m. to 9 a.m.) concentrations are shown in black.

Daytime values are lower because of NO2 photolysis. Figure 4.3a shows results from

Run A, Figure 4.3c shows results from Run B, and Figure 4.3e shows results from Run

C. NO2 concentrations from Run B are nearly identical to those in Run A. Daytime

values have a higher bias than do nighttime values. NME for Runs A and B (356%

day, 197% night) were marginally lower than for Run C (363% day, 202% night).

Clearly NO2 performance is bad at Moody Tower. This is a known issue with the

AG 2009 ensemble modeling. The high concentrations are the result of elevated NOx

emissions coming from ship channel activity (shipping, fork lifts, cranes, etc.) 6 km

east of Moody Tower. The emissions are restricted to the row of grid cells in which

the Moody Tower grid cell is located.

The grid cell directly to the southwest of Moody Tower had much better NOx

performance. Figures 4.3b, d, and f compare NO2 concentrations simulated in this

grid cell to in situ measurements taken at Moody Tower. Maximum simulated NO2

concentrations in the grid cell southwest of Moody Tower are 31 ppb, which is 30 ppb

less than maximum NO2 predictions at Moody Tower. NME is significantly lower,
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c

e

b

d

f

Figure 4.3: April 21, 2009, NO2 model performance for Run A (top), Run B (middle), and
Run C (bottom) at Moody Tower (left) and the grid cell to the southwest of Moody Tower
(right). Daytime (10 a.m. to 6 p.m.) values are shown in red; nighttime (7 p.m. to 9 a.m.)
values are shown in black.
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Figure 4.4: April 21, 2009, NO2 time series for LP-DOAS and in situ measurements (black
circles and open circles), Run A (green line), Run B (blue line), and Run C (red line) at the
grid cell southwest of Moody Tower. The upper, middle, and lower LP-DOAS paths are
shown and are paired with the fourth, third, and second vertical model layers.
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too. Daytime and nighttime error in all three scenarios is 40% and 38% .

NO2 time series at the grid cell southwest of Moody Tower are shown in Figure

4.4. The shaded circles show vertically resolved measurements taken with UCLA’s

LP-DOAS, and the open circles are in situ measurements taken at the top of Moody

Tower. Simulation data are taken from model layers two through four. In all layers,

differences between the three model runs are very small; the maximum NO2 difference

is less than 0.4 ppb. NO2 concentrations decrease vertically because it is emitted at

the ground level mainly from automobiles. Model concentrations are biased low in

the morning, but improve during the day and at night.

Modeled NO concentrations exhibit similar behavior (not shown). Over predictions

exist in both grid cells for Runs A, B, and C, but model performance is better in

the grid cell southwest of Moody Tower because of the elevated NOx ship channel

emissions mentioned above.

4.3.2 Nitrous acid

HONO performance for the three model runs varies substantially. Figure 4.5

compares time-paired HONO concentrations to in situ measurements. Plots on the left

hand side of the figure shows simulated concentrations from the Moody Tower grid

cell; the righthand side shows predictions from the grid cell to the southwest of Moody

Tower where NOx performance was better. Run A (Figures 4.5a and b) indicates a

low bias especially at night. This is consistent with previous modeling studies that

found homogeneous HONO formation insufficient to produce measured concentrations.

There is little difference between the two grid cells in Run A, though the grid cell

southwest of Moody Tower has slightly lower HONO values. NOx concentrations are

lower in this grid cell, and HONO formation in Run A is directly dependent upon

NOx (see Reactions 4.2 and 4.3). Daytime NME at Moody Tower and the grid cell
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southwest of Moody Tower is 39% and 66% ; nighttime NME is 87% and 94% .

HONO is over predicted at Moody Tower in Run B (Figure 4.5c). In this scenario,

HONO is directly emitted as a fraction of NOx. Since NOx concentrations are biased

high, it follows that HONO should be as well. NME in the Moody Tower grid cell is

127% during the day and 75% at night. Figure 4.5d shows HONO performance in the

grid cell southwest of Moody Tower. HONO performance is greatly improved in this

grid cell. NME drops to 31% during the day and 64% at night.

Run C HONO nighttime performance at the grid cell southwest of Moody Tower

(Figure 4.5f) is better than at Moody Tower (Figure 4.5d), but daytime performance

is slightly worse. Daytime NME is 37% and 22% southwest of and at Moody Tower,

while nighttime NME is 161% and 277%. Over predictions at night suggest the surface

model is making too much HONO. The only nighttime HONO formation mechanism

is thermal conversion of NO2. Thus, it is likely that the KNO2→HONO in Table 4.4 is

too large.

Figure 4.6 shows hourly simulated and measured HONO concentrations. One set

of measurements was taken with UCLA’s LP-DOAS and is vertically resolved at three

different heights (shaded circles); the other (in situ) was taken atop Moody Tower

(open circles). Only simulation data from the grid cell southwest of Moody Tower is

shown. HONO values decrease with height because most HONO formation occurs near

the ground where NOx concentrations are greatest. In the bottom plot, maximum

daytime (10 a.m. to 6 p.m.) HONO concentrations are 0.06 ppb, 0.10 ppb, and 0.11

ppb for Runs A, B, and C. Each of these is below the maximum observed daytime

value of 0.14 ppb.

Run A (green line) under predicts HONO, especially in the early morning. Accuracy

improves during the middle of the day when ·OH concentrations reach maximum

levels indicating the importance of homogeneous HONO formation (e.g. Reaction 4.2).
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Figure 4.5: April 21, 2009, HONO model performance for Run A (top), Run B (middle), and
Run C (bottom) at Moody Tower (left) and the grid cell to the southwest of Moody Tower
(right). Daytime (10 a.m. to 6 p.m.) values are shown in red; nighttime (7 p.m. to 9 a.m.)
values are shown in black.
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Run B (blue line) under predicts HONO during the morning and at night, though

noticeable increases coincide with rush hour traffic (April 21, 2009, was a Tuesday).

In Run C, HONO values increase in the early morning suggesting the photolytic

conversion of adsorbed HNO3 and NO2 (Reactions 4.4 - 4.8). Similar to Figures 4.5e

and f, nighttime HONO concentrations are over predicted. All three scenarios fail to

match the measurements before sunrise and after sunset. Runs A and B under predict

during these times, which indicates that direct emissions and homogeneous HONO

formation are not sufficient to produce observed concentrations. Run C over predicts

HONO during the early morning and night. As mentioned above, this is likely because

the reaction rate constant for thermal NO2 conversion is too large.

In Figure 4.7, HONO concentrations are plotted agains NO2 concentrations for all

three model runs and in situ measurements. Simulation data is taken from the grid

cell southwest of Moody Tower. HONO:NO2 ratios can be used to evaluate model

performance, but error in both variables - HONO and NO2 - must be considered.

During the day, Figure 4.7 shows the ratio is under predicted in the model. Figures

4.4 and 4.6 (lower plots) show why. The three model runs have similar HONO and

NO2 concentrations from about 10 a.m. to 6 p.m. Daytime NO2 values are over

predicted with respect to the in situ measurements, but HONO is under predicted.

The low HONO:NO2 ratios for Runs A and B in the early morning and night are due

to low HONO concentrations. Run C has opposite behavior. Ratios are over predicted

because too much HONO is created before sunrise and after sunset.

4.3.3 Ozone production and hydroxyl radical cycling

O3 concentrations for both sets of measurements (at Moody Tower) and all model

scenarios (southwest of Moody Tower) are shown in Figure 4.8. The three model runs

have similar O3 concentrations, though Run C is 1-2 ppb higher at every hour in the
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Figure 4.6: April 21, 2009, HONO time series for LP-DOAS and in situ measurements (black
circles and open circles), Run A (green line), Run B (blue line), and Run C (red line) at the
grid cell southwest of Moody Tower. The upper, middle, and lower LP-DOAS paths are
shown and are paired with the fourth, third, and second vertical model layers.
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Figure 4.7: April 21, 2009, HONO:NO2 time series for all three model runs and in situ
measurements at Moody Tower.
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second model layer (bottom plot). At 8 a.m. and 9 a.m., O3 in second-layer Run B is

0.3 ppb greater than in Run A. These are the hours following rush hour traffic during

which HONO is directly emitted in Run B. As the sun rises, this additional HONO

quickly photolyzes creating the ·OH radical. O3 in Run C is 2.5 ppb greater than Run

A at 8 a.m. and 9 a.m. (and, therefore, 2.2 ppb greater than Run B) because of the

immediate photolysis of the heterogeneously formed ground-layer HONO.

All three scenarios under predict O3 from 12 p.m. to 7 p.m., especially in the lower

(second) model layer. Daytime under predictions for Run C range from 7 ppb to 23

ppb when compared to the in situ measurements during this window. A sudden drop

in O3 occurs at 7 p.m. because modeled NO concentrations increase almost threefold

from 9.7 ppb to 26.1 ppb. (NO is readily oxidized by O3.) This is clearly due to

rush hour emissions because the O3 decrease is muted in the middle (third) or upper

(fourth) layers, which are less affected by ground layer emissions. Overall, however,

O3 performance is good. Lower layer NME for all three runs is 12-13% regardless of

which set of measurements is used.

O3 PA time series plots are shown in Figure 4.9 for the grid cell southwest of Moody

Tower. In these plots, all model layers below the PBL have been aggregated using

pyPA, which creates a column of grid cells whose height varies with the rising and

falling PBL. Four net processes are shown: chemistry, horizontal transport (advection

and diffusion), vertical transport (advection and diffusion), and the net effect of

vertical dilution (increased volume due to rising PBL) and entrainment (pollutant

gain/loss due to height of column rising/falling). The black diamonds show modeled

O3 concentrations at the beginning of each hour. The hourly O3 increase or decrease

is the net contribution of all model processes.

Figure 4.9a shows model O3 processes for Run C. Before 9 a.m. and after 5 p.m.,

chemistry has a net destructive effect on O3. The magnitude of chemical destruction
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Figure 4.8: April 21, 2009, O3 time series for LP-DOAS and in situ measurements (black
circles and open circles) at the Moody Tower grid cell. Run A (green line), Run B (blue line),
and Run C (red line) predictions are shown for the grid cell southwest of Moody Tower.
The upper, middle, and lower LP-DOAS paths are shown and are paired with the fourth,
third, and second vertical model layers.
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is at a maximum during morning and evening rush hour traffic when large amounts

of NO are emitted at the surface. Most of the O3 increase occurs from 7 a.m. (27

ppb) to 10 a.m. (58 ppb). During this three hour period, horizontal transport adds

53 ppb, vertical dilution/entrainment adds 20 ppb, chemistry removes 11 ppb, and

vertical transport removes 30 ppb. The net contribution of these four processes

explains the 31 ppb rise in O3. (There are other model processes that contribute

to changes in O3 concentration, e.g., dry deposition, but their effect is minor and

not shown.) O3 values remain relatively constant from 11 a.m. to 6 p.m. During

this period, horizontal transport and vertical dilution/entrainment serve to remove

O3, but chemical production is positive. Thus, the net effect is little change in O3

concentrations. Vertical transport is negligible during from 11 a.m. to 6 p.m. The

O3 decrease at 7 p.m. is due to chemical destruction, vertical transport, and vertical

dilution/entrainment (as the PBL collapses, O3 is ‘‘left behind’’ in upper model layers).

Some, but not all, of the O3 lost is replaced by horizontal transport.

Model process differences between Runs C and A are shown in Figure 4.9b. Here,

O3 concentrations and model process rates from Run A were subtracted from those

in Run C. The differences show the model’s response to HONO production from the

surface model since heterogeneous HONO formation is the only difference between

the model runs. From midnight to 6 a.m., Run C O3 values are nearly 1 ppb greater.

From 6 a.m. to 9 a.m., this difference increases to almost 3 ppb. During this time

chemical production and horizontal transport in Run C was 2 ppb and 1 ppb greater

than in Run A; vertical transport and vertical dilution/entrainment in Run C were

each about 0.5 ppb less than in Run A. The net effect, then, was to increase O3

concentrations by about 2 ppb in Run C relative to Run A. The hours after sunrise

show large O3 concentration and model process differences. This is expected because

the ‘‘new’’ HONO created by the surface model in Run C photolyzes quickly in the
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morning and immediately impacts radical budgets.

An integrated reaction rate analysis was performed to find out how direct HONO

emissions and heterogeneous formation affect radical budgets and oxidative chemistry.

Figure 4.10 shows the ·OH cycle for the three model scenarios. This diagram shows how

·OH behavior changes as a result of additional HONO. Initiation is the genesis of a new

·OH and often occurs via photolysis as in Reaction 4.1. The new ·OH then enters the

oxidation cycle where it can be terminated or propagated. During propagation, ·OH

is temporarily lost through VOC oxidation, but is recreated within the same reaction

chain. The recreated ·OH reenters the oxidation cycle and, again, can terminate or

propagate. ·OH propagation also involves NO to NO2 conversion. An example of this

process is illustrated in Reactions 4.13 - 4.16.

·OH + H

O
‖
CH→ H

O
‖
C

·

+ H2O (4.13)

H

O
‖
C

·

+ O2 → HO·
2 + CO (4.14)

HO·
2 + NO → NO2 + ·OH (4.15)

·OH + NO2 → HNO3 (4.16)

Reactions 4.13 - 4.15 show how the oxidation of a VOC - in this case CH2O -

consumes ·OH, converts NO to NO2, and recreates ·OH. This process is propagation.

If ·OH reacted with NO2 as in Reaction 4.16, it would be removed from the system

permanently, i.e., terminated.
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a

b

Figure 4.9: (a) April 21, 2009, O3 process analysis plot for Run C at the grid cell southwest
of Moody Tower. (b) Like plot (a), but values from Run A have been subtracted from
Run C. In both plots, data is vertically aggregated up to the PBL. Black diamonds show
modeled O3 concentrations at the beginning of each hour. Contributions from chemistry
(red), horizontal transport (blue), vertical transport (green), and the net effect of vertical
dilution and entrainment (magenta) are shown.
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Initiation
Run A 54.36 ppb
Run B 55.25 ppb
Run C 57.63 ppb

POH                        ∆VOC
Run A 0.05        Run A 23.79 ppb
Run B 0.06        Run B 24.41 ppb
Run C 0.08        Run C 25.68 ppb

Propagation
Run A 2.92 ppb
Run B 3.49 ppb
Run C 4.72 ppb

Chain Length
Run A 1.05
Run B 1.06
Run C 1.08

Propagation & Termination

OH Cycle

NO → NO2
Run A 78.51 ppb
Run B 80.04 ppb
Run C 83.71 ppb

Ox Production
Run A 65.70 ppb
Run B 67.23 ppb
Run C 70.69 ppb

Figure 4.10: ·OH cycle diagram for the process analysis column (i.e., aggregation of all model
layers up to the PBL) in the grid cell southwest of Moody Tower. Initiation represents new
creation of new ·OH; propagation represents recreation of ·OH; chain length represents the
average number of times an ·OH molecule is propagated before it is removed permanently
(terminated); P·OH is the propagation factor, Propagation

Propagation+Initiation ; ∆VOC represents the
amount of VOC that was oxidized by ·OH; NO→ NO2 represents the total oxidation of NO to
NO2; and Ox production represents the net production of Ox. Values are the 24-hour sum of
hourly integrated reaction rates. VOC is the sum of the following Carbon Bond 6 species:
PAR, ETHA, MEOH, ETOH, ETH, OLE, IOLE, ISOP, TERP, FORM, ALD2, ALDX, TOL, XYL, PRPA, ETHY,
BENZ, ACET, KET. Ox is the sum of the following Carbon Bond 6 species: O3, O, O(1D), NO2,
2·NO·3, 3·N2O5, HNO3, 2·PNA, PAN.
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Figure 4.10 indicates that Run C had the most active ·OH cycle. The values in the

figure are 24-hour sums of hourly integrated reaction rates taken from the aggregation

of all model layers below the PBL at the grid cell southwest of Moody Tower. ·OH

initiation was 57.63 ppb. A molecule of ·OH entering the oxidation cycle had an

8% chance of being recreated. A total of 4.72 ppb ·OH was propagated through the

system, which gives a chain length of 1.08. Overall, 25.68 ppb VOC1 were oxidized by

·OH, 83.71 ppb NO was converted to NO2, and 70.69 Ox
2 was produced. NO to NO2

conversion values do not consume Ox, e.g., NO + O3 → NO2 is not included.

The values for Runs A and B in Figure 4.10 are all less than those for Run C. Less

·OH was initiated and propagated, fewer molecules of VOC were oxidized, less NO was

converted to NO2, and Ox production was lower. Values in Run B were greater than

Run A. This means that additional HONO sources had a measurable effect on radical

budgets, and heterogeneous formation on the surface had a greater effect than direct

emissions.

Hourly ·OH initiation and VOC oxidation are shown in Figure 4.11. The values

in the figure are the hourly integrated reaction rates taken from the aggregation of

all model layers below the PBL at the grid cell southwest of Moody Tower. The

largest differences between the model runs occur at the start of the photochemical

day. Beginning at 6 a.m., there is a four hour period during which ·OH initiation

from HONO photolysis is significantly greater in Run C because there is more HONO

available (see Figure 4.6). During this four hour period, 1.89 ppb ·OH is created

from HONO photolysis , which is 67% of the daily total ·OH initiated from this

1
VOC is the sum of the following Carbon Bond 6 species: PAR, ETHA, MEOH, ETOH, ETH, OLE, IOLE, ISOP,

TERP, FORM, ALD2, ALDX, TOL, XYL, PRPA, ETHY, BENZ, ACET, KET.
2Odd oxygen, Ox, is a measure of the oxidative capacity of the atmosphere. It contains species

with an oxygen atom available to serve as an oxidizing agent. Here, Ox is the sum of the following
Carbon Bond 6 species: O3, O, O(1D), NO2, 2·NO·

3, 3·N2O5, HNO3, 2·PNA, PAN. NO·
3, N2O5, and PNA contain more

than one reactive oxygen atoms and are counted multiple times to represent the total number of
reactive oxygen atoms.
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reaction. In Runs A and B that percentage is only 35% and 45%. By 11 a.m., HONO

concentrations are about equal in Runs B and C, and it is during this hour that the

integrated reaction rates for HONO photolysis in the two model runs become similar.

At this point, the excess HONO in Run C has photolyzed and generated new ·OH.

HONO photolysis rates in Run A are always below Runs B and C because Run A only

has gas-phase HONO formation, and, thus, always has lower HONO concentrations.

Figure 4.11 also shows the amount of VOC oxidized by ·OH for the three model

runs. As with HONO photolysis, the differences appear during the first few hours

following sunrise. The extra ·OH created from HONO in Run C quickly begins to

attack VOCs. At around 11 a.m., the reservoir of nighttime Run C HONO is depleted,

·OH initiation approaches values found in Runs A and B, and VOC oxidation levels

also align with those in Runs A and B.

4.4 Conclusion

This study demonstrated the successful implementation of new HONO sources

in a regulatory air quality model. Direct emissions and heterogeneous chemical

formation on surfaces each improved modeled HONO performance. Daytime HONO

concentration increases were seen to propagate vertically. That is, additional HONO

was not confined to the surface model layer where it was created. In the lower vertical

layers (ground and second layers), though, increased HONO concentrations were

especially apparent at night. This was not true in the upper layers (third and fourth),

which could indicate there are still important HONO formation mechanisms that are

missing from the model (e.g. aerosol surfaces).

For the first time, a surface model representing the physical and chemical HONO

formation processes has been developed and implemented in CAMx. This work

provided proof of concept and met two key goals. First, we assessed the impor-
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Figure 4.11: Hourly rates of ·OH initiation from HONO photolysis and VOC oxidized by ·OH.
Data is from April 21, 2009, in the grid cell southwest of Moody Tower and is vertically
aggregated up to the PBL.
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tance of direct HONO emissions and photo-enhanced heterogeneous HONO formation.

And, second, we quantified the impacts of the new HONO sources on the oxidative

environment.

Increased HONO led to increases in the overall reactivity of the system. Changes

in ·OH initiation, propagation, and chain lengths were found, especially in the hours

following sunrise. The additional HONO led to greater overall NO to NO2 conversions

and Ox production. The surface model generated more HONO than direct emissions

and also led to greater increases in Ox. Heterogeneous HONO formation led to 1-hr

O3 increases of nearly 3 ppb, and direct emissions led to 1-hr O3 increases up to 0.3

ppb.

This was only a first step in assimilating heterogeneous HONO chemistry into a

3-D modeling framework, but will guide further efforts to improve air quality models.

Pending further testing and a reevaluation of surface reaction rate constants, this

surface model could be an important feature of future regulatory modeling frameworks.

A next step will evaluate changes to modeled non-typical O3 (NTOC) performance

as a result of the new HONO sources. Given the link between NTOCs and rapid

VOC oxidation, an increase in model reactivity should improve the model’s ability

to simulate that phenomenon. This is an especially interesting question because the

additional HONO affected modeled chemistry most in the morning, which is when

most NTOCs occur.
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CHAPTER 5

FINAL THOUGHTS

The purpose of this work was to improve our understanding of the details sur-

rounding Houston’s extreme O3 events in the real and modeled environments. This is

the first time the NTOC problem has been considered within the 8-hr O3 attainment

framework, and our results confirmed that the dual-O3 paradigm is still valid for

Houston. The 2010 SIP modeling performed by the TCEQ was unable to repro-

duce observed NTOCs (Texas Commission on Environmental Quality, 2010). This

is concerning because we found nearly 60% of NTOC days violated the 1997 0.08

ppm 8-hr O3 standard. One purpose of regulatory models is to test pollution control

strategies and demonstrate future attainment of the O3 standard. In Houston, many

O3 violations have causes that are not represented in regulatory modeling. This makes

the job of environmental regulators, who rely on models to understand the complex

dynamics in the airshed, difficult indeed.

The first study in this work looked closely at the modeling performed in support of

the TCEQ’s 2010 SIP. Our earlier research showed that NTOCs occurred with notable

frequency during the period that was modeled, and we found broad evidence that

the model was missing this feature of O3 pollution in Houston (Vizuete et al., 2011).

With that in mind, we drilled deeper into the simulation data. We discovered that the

model was not predicting the large spatial concentration gradients that appeared in

ambient observations. While the model could simulate high O3, it could not replicate

the narrow plumes affecting individual monitors. We believe much of the model’s

deficiency stems from the choice of emission inventory. Significant evidence exists

that links rapid O3 production to variable HRVOC emissions (for example Kleinman



et al. (2002) and Ryerson et al. (2003)), but variable HRVOC emissions are absent

in the SIP model. A second EI, one not used to demonstrate attainment of the O3

standard, had an early morning HRVOC release from an industrial point source. We

compared O3 values predicted by the model using the two different EIs and found the

HRVOC release led to a spatially limited plume of O3 20-25 ppb greater than in the

simulation without the release.

Our second study looked to a broader range of ambient measurements in an

attempt to better characterize the conditions and origins of observed NTOCs. We

found that nearly all NTOCs occur when monitors are downwind of the industrial

ship channel. The remarkable strength of the relationship between wind direction

and NTOCs is made more interesting when chemical data is analyzed. We used

CH2O concentrations as a marker for photochemical activity and showed that there

are substantial differences between NTOC and typical O3 days. CH2O values were

significantly greater in the early afternoon on NTOC days compared to typical O3

days. This is expected following the rapid oxidation of HRVOCs because CH2O is a

product of VOC photochemistry. We also found evidence for industrial upset emissions

in the hours preceding most NTOCs. We used SO2 concentrations as a marker for

industrial activity. At monitors where SO2 is recorded, more than half of all NTOCs

followed a sudden increase in SO2. Taken together, our findings point to industrial

emissions in the ship channel region as a likely cause of NTOCs.

In our third study, we shifted our focus back to the air quality model. While

industrial emissions are an important factor in high O3 events, they do not produce

O3 per se, but rather serve as a major source of free radicals like ·OH. Radicals are

key constituents in O3 formation because they oxidize NO to NO2. Increased system

reactivity is achieved by augmenting radical budgets through VOC emissions or other

means. We looked closely at missing sources of HONO, an important radical source,
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in this last paper. Field campaigns in 2006 and 2009, as well as over a decade of

laboratory experiments, identified new HONO formation mechanisms absent in 3-D

photochemical models. Our major contribution in this work was to implement and

test a surface sub-model that converts HNO3 and NO2 into HONO on the ground. The

introduction of these heterogeneous reactions increased model reactivity, especially

just following sunrise. Base case modeling without the surface sub-model predicted

near-zero concentrations of HONO at night, though measurements showed this not

to be the case. HONO that was produced by the surface sub-model overnight was

immediately available for photolysis at sunrise. As a result, more than twice as much

·OH was created from HONO than in the base case. There was also an increase in the

total VOC oxidized by ·OH in the first half of the day. Subsequent analysis and tuning

of the surface sub-model is needed, but we demonstrated its conceptual viability. The

result is a more realistic and accurate modeling framework that should become the

standard for regulatory air quality modeling.
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