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Abstract We present a new method for editing smoke
animations by directly deforming the grid used for
simulation. We present a modification to the widely
used semi-Lagrangian advection operator and use it to
transfer the deformation from the grid to the smoke
body. Our modified operator bends the smoke particle
streamlines according to the deformation gradient.
We demonstrate that the controlled smoke animation
preserves the fine-grained vortical velocity components
and incompressibility constraints, while conforming to
the deformed grid. Moreover, our approach enables
interactive 3D smoke animation editing by using a
reduced-dimensional subspace. Overall, our method
makes it possible to use current mesh editing tools to
control the smoke body.

Keywords smoke animation; animation editing; mesh
editing

1 Introduction

Realistic smoke effects can greatly enhance visual
quality in games and movies. Extensive research
into physics-based simulation has resulted in
techniques that can efficiently generate realistic
smoke animations on current desktop systems.
Furthermore, some approaches can perform realtime
animations at low or moderate resolutions. However,
it is still challenging for animation designers to edit
or modify these animations in an intuitive manner
to generate plausible results. One such example is
illustrated in Fig. 1, where we wish to change the
smoke jets so that they rise faster from a chimney, or
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Fig. 1 Our method allows intuitive editing of smoke animations
by deforming the simulation grid to bend or stretch 2D smoke jets
(top). More complex behavior can be produced by two-pass editing
(bottom). The grid resolution is 256×256(×64); we can perform these
computations at interactive rates on a PC with an i7-4790 CPU.

to bend them to the right. In this paper, we address
the problem of smoke animation editing for artistic
design.

Fluid bodies can be discretely represented and
numerically modeled either using a set of particles [1]
or using a general mesh or grid [2, 3]. In particular,
grid-based methods are widely used in software such
as Maya, 3DS Max, and Houdini. Using grid
representations, several methods have been proposed
for modifying and directing smoke animations [4–
6]. These methods control smoke bodies using ghost
forces. In practice, these ghost forces are difficult
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to formulate because the smoke animations can be
very sensitive to the ghost force templates. As
illustrated in Fig. 2, we show that it is difficult to
fulfill simple smoke editing requirements using ghost
force templates like those in Refs. [4, 7]. Moreover,
these methods assume that a target shape exists
that the smoke should resemble. However, such a
target shape is not readily available in many editing
scenarios (see Fig. 1), especially when users want
to change the coarse-grained flow patterns while
preserving the fine-grained details.

Main results: We present a new method to
modify the fluid’s velocity field by deforming the
underlying grid, as shown in Fig. 3. This underlying
grid is not visible in the final animation, but is
merely a tool for animation editing. Specifically,
we present a modification to the Navier–Stokes
equation, so that the deformation is mapped
intuitively to the smoke body. This modification
is done to the semi-Lagrangian advection operator
that bends the streamline using the deformation
gradient at that point. This modification can be
implemented by simply changing the backtracing
direction of the semi-Lagrangian advection operator.
In order to preserve the fine-grained vortical velocity

Fig. 2 Difficulty of bending smoke to the right using ghost force
templates. Top left: If the template has small support (red circle),
smoke suffers from a sharp local push that is visually implausible.
Top right: If the template has large support, smoke will bend to the
left due to solenoidal constraints (see streamlines in orange). Bottom
left: To successfully bend the smoke jet, we need a small array of
force templates. Bottom right: If too few ghost force templates are
used, the smoke jet can bend in the wrong direction.

Ω Ω′

φ

Fig. 3 In our technique, the user edits the smoke animation by
deforming the grid from Ω (black) to Ω′ (orange) with a single input
(red). The effect of the deformation function φ is transferred back to
the underlying black grid by modifying the fluid advection operator
so that the smoke jets rise smoothly to the right (blue).

components around highly deformed regions, we
instead implement this modification as an implicit
force term. Finally, incompressibility is preserved
using an additional divergence-free projection. We
highlight the effectiveness of this transfer operator
using a set of editing examples. We can guide smoke
flow across boundaries, change flow patterns, and
explore variants of smoke animations. The generated
animations are plausible, and the fine-grained details
are similar to those of uncontrolled animations.
Our system can edit 2D animations at interactive
framerates on a PC with an i7-4790 CPU. We also
present an interactive approach to edit 3D smoke
animations by restricting the configuration space of
the smoke body to a reduced-dimensional linear-
subspace.

Our approach has many advantages. Mesh editing
is widely studied and good tools are available.
We can use those tools directly for smoke editing.
Moreover, many mesh editing tools, such as Refs. [8,
9], provide effective ways to regularize the deformed
mesh so that sparse and incomplete mesh control
inputs may lead to smooth and plausible results. For
example, users can drag the mesh at a single vertex
and the deformed positions of all other vertices are
determined automatically, e.g., by use of as-rigid-as-
possible shape manipulation [8] that penalizes any
non-rigid deformations.

The rest of the paper is organized as follows.
We review previous work in Section 2 and give
an overview of fluid dynamics and mesh editing in
Section 3. We present the deformation transfer
operator in Section 4. In Section 5, we present
techniques to accelerate the editing procedure to
provide interactive performance. Finally in Section
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6, we highlight the performance on complex
benchmarks.

2 Related work

Our work builds on a combination of work in mesh
editing and smoke animation. We briefly survey
prior work in these areas.

Techniques for physics-based animation of fluid,
especially smoke and fire, are well-studied. These
techniques either discretize fluid-related physical
variables on a set of particles [1] or on a mesh [3,
10, 11]. In particular, grid-based methods such as
Ref. [3] have been used in content creation software
packages. In addition to generating physically
plausible animations, we also need techniques to
control the smoke. There is considerable work on
controlling fluid animations [4–6, 12–18]. These
works control the fluid body using a set of spatially-
complete keyframe shapes. Sometimes, animators
also specify a sparse or incomplete set of control
inputs. One example is highlighted in Ref. [7],
where the user can drag the liquid surface using
a few handles or sketches. However, all of these
methods impose controls as ghost force terms, and
the generated animations can be sensitive to the
formulations of these terms. Instead, we control
the fluid body by deforming the simulation grid.
Although a deforming grid has been used to handle
boundary conditions [19], it has not been used as a
fluid control or editing method. Other methods for
automatic fluid content creation include Refs. [20, 21]
which generate new fluid animations by blending
existing animation data, Refs. [22, 23] which guide
high-resolution fluid simulations using low-resoultion
ones, and Ref. [24] which stylizes fluid animations by
adjusting the magnitudes of different modes in the
flow field.

Mesh editing is a well-studied problem in computer
graphics. Various methods have been developed for
mesh editing using different control inputs [9], mesh
representations [25], and regularizations [8, 26, 27];
see Ref. [28] for a survey. With these techniques,
users can control the mesh using a sparse set of
handles and can deform the mesh; uncontrolled
degrees-of-freedom are smoothly interpolated in a
detail preserving manner. Although our method
can be used with any mesh editing tool, we choose

the one proposed by Ref. [29] as it can accelerate
mesh editing by restricting the configuration space to
a reduced-dimensional subspace, and thereby allow
interactive editing.

3 Overview

In this section, we first review some fluid simulation
methods and then formulate our smoke animation
editing problem. Throughout this paper, we consider
single-phase fluid bodies such as smoke and fire.
3.1 Single-phase fluid simulation

Our single-phase fluid body is governed by the
following incompressible Navier–Stokes equation:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂u
∂t

+ (u ⋅ ∇)u = −∇p + f, ∇ ⋅ u = 0

∂ρ

∂t
+ (u ⋅ ∇)ρ = 0

(1)

where u,p, f, ρ are the velocity field, pressure field,
external force field, and passive advected density
field, respectively. We assume that the smoke has a
homogeneous unit density, which is omitted from the
equation. For numerical simulation, the variables in
Eq. (1) can be discretized in a Lagrangian manner
as a set of particles [1], or in an Eulerian manner
as a mesh or grid [3, 10, 11]. Our method assumes
that smoke is discretized in an Eulerian manner
and we use an approach based on a simple uniform
grid [3]. It is possible to use any other grid-based
representation instead.

Following Ref. [3], we discretize this equation on
a uniform staggered-grid, illustrated by the black
grid in Fig. 3. This black grid is our reference
domain Ω, on which we store discrete values p(xi,j)
at each cell center and u(xi−1/2,j), f(xi−1/2,j) at each
face center, as shown in Fig. 4. Values at other
points in Ω are computed by linear interpolation.
Using this discretization, Eq. (1) is time-integrated
using the fractional step method [2]. Specifically,
we accumulate the contributions of the advection
term (u ⋅ ∇)u, the pressure term ∇p, and finally the
external force term f in separate substeps.

3.2 Smoke animation editing

The goal of our approach is to modify a smoke
animation by deforming the domain Ω using a
deformation function φ(x) ∶ Ω → Ω′ that maps a
point x ∈ Ω to a deformed point φ(x) ∈ Ω′, as
illustrated by the orange grid in Fig. 3. As shown
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Fig. 4 2D discrete variable arrangements for smoke simulation
and mesh editing. We define pressure p(xi,j) at each cell
center, velocity ux(xi−1/2,j),uy(xi,j−1/2) and external forces
f x(xi−1/2,j), f y(xi,j−1/2) at each face center, and the deformed
positions φ(xi−1/2,j−1/2) at cell corners. Superscripts are coordinate
indices.

in Fig. 1, the smoke animation should be modified
intuitively and consistently with the deformation.
This problem is quite different from one considered
in previous works such as Refs. [4, 12], where the
current smoke density field, ρ, is pulled towards a
target density field, ρ∗. Instead, the goal of our
approach is to directly change the coarse-grained
components of the velocity field u, rather than to
perfrom density field matching.

The deformation function φ(x) is designed using
mesh editing tools applied to the black grid
shown in Fig. 3. We rely on an efficient mesh
editing algorithm [29] to help the user formulate
a deformation function φ(x); any other tools
for mesh editing could also be used. We store
discrete deformed positions at cell corners φi,j ≜
φ(xi−1/2,j−1/2); the values in each cell are computed
using linear interpolation (see also Fig. 4). Ref. [29]
computes these φi,j as the minimum of the following
energy function:

argmin
φi,j

O(φi,j) +∑
i,j

C(φi,j)

O(φi,j) ≜ ∫
Ω
µ∥E(x)∥2F +

λ

2
tr(E(x))2dx

(2)

where E(x) ≜ (F(x)TF(x)−I)/2 is the Green’s strain
and F(x) ≜ ∂φ(x)/∂x is the deformation gradient at
x ∈ Ω. Two parameters µ and λ are available allowing
the user to change the stiffness of the mesh. The
elastic energy O(φi,j) is discretized using a standard
method, such as a finite element method (FEM)
with a linear shape function. Finally, C(φi,j) is the
control objective. In this paper, we only consider the

point drag control defined as

C(φi,j) =
Ii,j

2
∥φi,j − Ti,j∥2

where Ti,j is the target position of the control handle
on node (i, j) and Ii,j indicates whether there is a
handle on the given node. After the deformation
φ(x) is computed by solving Eq. (2), the key idea of
our method is to transfer this deformation back to
the smoke animation.

4 Deformation transfer operator

The goal of our deformation transfer operator is
to deform the smoke body so that it mimics the
deformation embodied in the function φ(x) ∶ Ω →
Ω′. A naive way to implement such an operator is
by deforming the density field ρ according to φ(x)
during rendering. However, this transfer operator
can be inconvenient for animators because it modifies
the simulation domain, including the boundary
conditions and obstacles in the physical world, whose
shapes are fixed. Therefore, we want a transfer
operator that modifies the velocity field u of the
smoke body while fixing the simulation domain shape
Ω.

Unlike previous methods [12] that change u by
modifying the external force f, we modify the
advection operator (u ⋅ ∇). Compared to modifying
the external force, modifying the advection operator
is a more intuitive way of editing the smoke body,
because such a modification changes the shapes of
the streamlines of smoke particles. Our definition
of the modified advection operator is based on
the observation that if a particle located at x ∈ Ω
moves with speed v(x), then it should move with
speed F(x)v(x) in Ω′. Therefore, we subsitute this
new velocity directly into the advection operator
to get (Fu ⋅ ∇). This modification is similar to
the gradient-domain shape deformation [30] where
the reconstructed shape is smooth even if the
deformation function φ(x) itself is not. This is
illustrated in Fig. 5.

One issue with this formulation of advection
operator (Fu ⋅ ∇) is that it erroneously takes rigid
rotation into account. As illustrated in Fig. 6, since
our streamline modification happens at every grid
point, an originally straight streamline will be bent
into a circular arc under a global rigid rotation
of background grid, leading to undesired excessive
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Fig. 5 We randomly perturb the grid (right) to give noisy
deformation gradients; this noise is turned into plausible vortical fluid
motions.

Fig. 6 With just a global rotation (right), the rising smoke jet
(center) will be abruptly deformed (left).

deformations. To ensure that only deformation
functions φ(x) that result in non-zero elastic energy
O(φi,j) can deform the smoke body, we follow
Ref. [31] and factor out the rigid rotations from
F using polar-factorization. Our final formulation
of the modified Navier–Stokes equation can be
expressed as

∂u
∂t

+ (Su ⋅ ∇)u = −∇p + f (3)

where S(x) = VΣVT with the singular value
decomposition of F(x) being UΣVT.

This modified advection operator can be
implemented by precomputing S at each face-center
and pre-multiplying u by S before backtracing using
a semi-Lagrangian advection operator. However,
it is well known that semi-Lagrangian operators
introduce excessive numerical dissipation. We
can reduce this artifact by implementing the
modification as an additional external force term so
that Eq. (1) becomes:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂u
∂t

+ (u ⋅ ∇)u = −∇p + f + f ′

f ′ ≜ ((I − S)u ⋅ ∇)u
(4)

We time-integrate this additional control force
term f ′ implicitly using fixed-point iteration to
ensure the stability of the above quadratic form,
as outlined in Appendix A. Here we include an
adaptive timestep size control scheme to ensure
convergence of this iteration. As illustrated in Fig. 7,
our experiments show that our approach preserves
more vortical velocity components, compared to

Fig. 7 Modified advection operator implemented as an implicit ghost
force term preserves more fine-grained details (right), compared to
one implemented as a modification to the semi-Lagrangian advection
operator (left). The deformed grid is shown at top right.

using simple modification of the semi-Lagrangian
operator. Another method to reduce numerical
dissipation is to use a high-order advection operator,
following MacCormack. However, our method is
more convenient when working with the subspace
acceleration techniques introduced in Section 5.

The deformations of the fluid body may introduce
compressible velocity components into the system.
Currently we simply use an additional divergent-free
projection to ensure that ∇ ⋅ u = 0 everywhere.

5 Subspace acceleration

Using the deformation transfer operator introduced
in Section 4, we combine the smoke simulator with
a mesh editing tool to provide a smoke animation
editing system. Our system allows the user to
manipulate the simulation grid and visualize the
changed smoke animation at an interactive rate. In
practice, obtaining interactive performance can be
challenging because we have to solve Eq. (2) to get
the deformed grid while time-integrating Eq. (1)
at every frame. These operations have complexity
polynomial in the number of grid cells. In our
experiments, this is possible for editing 2D smoke
animations using a high-resolution discretization (up
to a grid size of 256 × 256) but the complexity can
be too high for editing 3D smoke animation with
a grid size of 256 × 256 × 64. In order to further
accelerate the editing procedure for 3D animations,
we restrict the configuration spaces of the smoke
body and the deformable grid to a subspace where
all the operations have a complexity polynomial only
in the dimension of this subspace.

Specifically, for the grid, we follow Ref. [29]
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and assume that its configuration space has a
decomposition φ = Umφ̄, where φ is the discrete
deformation function consisting of φi,j , U∣φ∣×pm is
a set of solenoidal orthogonal bases spanning a
p-dimensional linear subspace, and φ̄ gives the
corresponding p-dimensional reduced coordinates.
Next, we use Galerkin projection and multiply
Eq. (2) by UT

m on the left to give the reduced
objective function:

UT
mO(Umφ̄) +UT

mC(Umφ̄) (5)
After applying the precomputation step proposed in
Ref. [29], this objective function can be evaluated
with complexity O(p4) which is much more efficient
than evaluating Eq. (2) when p≪ ∣φ∣.

Similarly, we assume that the configuration
of the smoke body, the velocity field u, has
the decomposition u = Uf ū, where u is the
discrete velocity field consisting of all face-centered
components ux(xi−1/2,j),uy(xi,j−1/2), and U∣u∣×qf is
a set of orthogonal bases spanning a q-dimensional
linear subspace. Moreover, we assume that all these
bases are solenoidal, i.e., ∇ ⋅Uf = 0. Finally, ū gives
the q-dimensional reduced coordinates. Similarly,
we have the reduced representation f = Uf f̄ for the
external force as well. By substituting these two
representations into Eq. (4) and multiplying by UT

f

on the left, we get the reduced modified Navier–
Stokes equation:

∂ū
∂t

+Adv(ū) = f̄ (6)
We use the orthogonality of Uf , and also its
solenoidal property to remove ∇p. Finally, we have:

Adv(ū) = ∑
i,j,k

ūiūjφ̄k((FUmk)Ufi ⋅ ∇)Ufj (7)

where Ufi,Umi are the ith columns of bases Uf

and Um, respectively, and FUmk consists of the
deformation gradients when φ = Umk. This operator
is discretized using the midpoint rule introduced
in Ref. [32], which preserves details well. The
coefficients after ūiūjφ̄k are constants that can
be precomputed; the evaluation of Eq. (6) has
complexity O(q2p) and is very efficient when p, q ≪
∣u∣.

Note that the reduced definition Adv(ū) differs
from the original definition of the deformation
transfer operator in Section 4, where we used the
symmetric part S in place of F. It is challenging to
use S with subspaces because the polar-factorization
cannot be precomputed. To alleviate this problem,
we fix a set of vertices on the subspace deformable

grid so that global rigid rotation is not possible. We
then use the original Eq. (3) to generate the final
high-resolution result in the post-processing stage
with the edited φ.

We summarize our subspace smoke animation
editing pipeline in Fig. 8. During the offline stage,
we first precompute Um using modal derivatives as
proposed in Ref. [29] and also precompute Uf using
principal component analysis (PCA). The data for
PCA is collected from simulations under random
external forces. During the online editing stage, we
time-integrate Eq. (7) and if user editing events are
performed, we update φ̄ by minimizing Eq. (5).

6 Results and analysis

In this section, we highlight the editing capability
of our method using several benchmarks. All
experiments were performed on a desktop PC with
an i7-4790 8-core CPU 3.6 GHz and 12 GB of
memory. The computational cost of each stage
in each benchmark is summarized in Table 1.
Without using subspaces, the cost per frame is
dominated by solving the linear system for the
solenoidal constraints on the smoke body and for
solving Eq. (2) using Newton’s method. We use
a multigrid solver for both linear systems whose
cost is O(n) where n is the number of grid
cells. For 2D examples, we can achieve interactive
response rates. For 3D animations, interactivity is
achieved using the subspace techniques introduced

Table 1 Computational cost of each stage of our fluid animation
editing system. Left to right: name of benchmark, grid resolution,
number of grid bases p, number of fluid bases q, precomputation time,
cost of time-integrating Eq. (7) per frame, and cost of solving Eq. (5)
per frame. N/A for p or q means that we use fullspace

Benchmark #Grid p q Precompute
Update
Eq. (7)

Update
Eq. (5)

2D Smoke Jet (Fig. 1) 2562 N/A N/A 0 0.3(s) 0.9(s)
3D Cylinder (Fig. 1) 2562

× 64 20 100 5.2(h) 1.2(s) 0.2(s)
3D Smoke Jet (Fig. 9) 1283 20 100 4.1(h) 1.5(s) 0.2(s)
3D Smoke Jet (Fig. 9) 1283 20 20 3.8(h) 1.2(s) 0.2(s)
2D Smoke Circle (Fig. 10) 2562 N/A N/A 0 0.4(s) 1.3(s)
2D Maze (Fig. 11) 256 × 512 N/A N/A 0 0.9(s) 2.2(s)
3D Maze (Fig. 11) 128 × 256 × 64 20 100 4.7(h) 1.3(s) 0.2(s)
2D Eigenmode (Fig. 12) 2562 N/A N/A 0 0.3(s) 1.7(s)
3D Eigenmode (Fig. 12) 1283 N/A N/A 0 12(s) 71(s)

Precompute subspace 
U  Um f

Precompute reduced
Eqs. (4), (6)

Time-integrate
Eq. (6)

Update Φ using
Eq. (4)

Next 
frame

Fig. 8 Pipeline of our subspace smoke animation editing system.
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Fig. 9 As in Fig. 1, we show 3D examples of editing smoke jets
to bend them (top right), make them rise faster (bottom left), or
make the vortices spread wider (bottom right). For all examples, we
visualize the edited smoke using subspace simulation with 100 bases.
Experiments with a reduced number of bases (e.g., 20, see top sub-
image) show that smoke jets do not bend properly with insufficient
bases.

Fig. 10 We deform the grid to merge two branches of the smoke flow
after it hits the sphere. Left: the original smoke animation without
editing. Middle: the deformed smoke flow after editing. Right: the
deformed grid, with discontinuous deformations.

in Section 5. The cost in this case is dominated
by O(p4 + q2p) where we use p, q ⩽ 100. In all our
examples, we use a rectangular uniform grid where
each cell can be occupied by either the smoke
body or solid boundaries. Cells occupied by solid
boundaries or intentionally marked by users are
excluded from deformation by setting µ = λ = 0 in
Eq. (2). Although this causes collapsed or flipped
cells during deformation, it does not affect the
final fluid animation as we use a conventional semi-
Lagrangian operator there.

In our first set of examples, we edit the rising
direction and pattern of smoke jets, as illustrated
in Figs. 1 and 9. We also compare the 3D
editing results achieved using different numbers
of bases. We found that 100 bases are sufficient
in our benchmarks. Using more bases is usually
desirable for an animation editing system to allow
more degrees-of-freedom, with a small reduction in

performance.
In our second example, we put a solid sphere

in the way of rising smoke and deform the grid
to guide the smoke flow after hitting the sphere.
As illustrated in Fig. 10, the original smoke flow
without editing diverges to both sides, but we can
merge the two branches by simply deforming the
two symmetric parts of the grid. To perform such a
large deformation, we cut the grid down the middle
to allow discontinuous deformation.

Our third example involves a set of boundaries
that cut the simulation domain into four sub-regions.
We use our method to guide the smoke to rise to the
right and then to the left. In this example, the user
performs two passes of editing, which can be done
very intuitively as illustrated in Fig. 11.

Our method can not only edit smoke by guiding
and bending it, but also automatically generate
a set of smoke animations that are different in
visually salient ways, as illustrated in Fig. 12. We
perform this computation by deforming the grids
along each basis in Um. If we compute Um as
the eigenfunctions of Eq. (2) corresponding to
small eigenvalues (see Ref. [33]), every perturbation
generates plausible but drastically different variants
of the original smoke animation.

7 Conclusions and limitations

We have presented a new method to edit
smoke animations by deforming the grid used for
simulation. This is very convenient for users who
are familiar with mesh editing and is more intuitive

Fig. 11 Smoke jets rise through complex boundaries. Left to right:
original smoke animation; we bend the lower part of the grid using red
handles, so that smoke only rises through the right opening (lower red
block); next we bend the upper part of the grid using blue handles, so
that the smoke finally rises through the left opening (top red block);
the same approach can be used for 3D animation.
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Fig. 12 A set of animations generated by deforming the grid using eigenfunctions of Eq. (2) corresponding to small eigenvalues. Left to right:
2D initial configuration (red) and deformed grids (blue), 2D animation snapshots, 3D initial configuration (red) and deformed grids (blue),
and 3D animation snapshots.

than editing a ghost force. In particular, the effective
regularization methods for mesh editing are very
appealing because such regularizations are not well
developed if the editing is performed using ghost
forces. Therefore, our method of editing smoke
animations using mesh editing tools is more intuitive
and can be used with any grid-based method.

The approach transfers the deformation from the
grid to the smoke body using a modified advection
operator. We have only considered a single-phase
fluid, such as smoke or fire. Although the method
can also be adopted to interfacial flow such as liquids,
we expect that special treatments are needed near
the free surface. Such issues can be pursued in the
future. For editing 3D animations interactively, we
use subspace acceleration techniques.

However, the use of subspace acceleration has
limitations. First of all, the editing results can be
affected by the choice of the subspace. Appropriate
subspace sizes are usually related to specific editing
tasks, making such a choice difficult. Moreover, the
subspace related precomputation is costly, especially
for large and complex scenarios. For example, we
cut the grid in the example in Fig. 10. Such cutting
is not possible for interactive 3D editing because we
need to recompute the subspace bases Uf and Um

after every topological change.
Finally, the editing effects produced by our method

have some limitations as well. In general, our method
is suitable for making large scale modifications to
the flow field, but it cannot be used to edit fine-
grained details. In addition, our method cannot
change the directions of the smoke velocity field u
directly. Instead, we change the velocity fields by
scaling the backtracing velocity u along different
directions specified by the symmetric matrix S. The
symmetry of S will scale both u and −u with the
same ratio; this may be inconvenient when users
want unilateral scaling.

A promising direction of future work is to
consider using other user interfaces for editing fluid
animations. Besides mesh deformation, there are
many other user interfaces in the community, such
as sketch-based interfaces [34]. The main challenge
in using these new interfaces is to convert user inputs
such as sketches into fluid control inputs, e.g., forces
or keyframes, in an intuitive manner.

Appendix A Algorithm

We summarize the algorithm for applying the
implicit ghost force in Algorithm A1.
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