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1 Three Component Mixture Regression Framework

1.1 Model Introduction

Let us assume that Y = (Y1, . . . , Yi, . . . Yn) is a vector of n consecutive window read counts from a particular

chromosome. We assume Yi follows a three component mixture distribution consisting of a point mass at zero

(corresponding to zero-in�ated regions of signal), a negative binomially distributed component (corresponding

to background windows), and another negative binomially distributed component (corresponding to enrichment

windows). This is an extension of the zero-in�ated negative binomial distribution, where we add an additional

component to account for stronger signal in enriched windows relative to background windows. Speci�cally,

p(Yi = yi | µi, θ, πi) =



πi0 + (1− πi0)π1

(
θ1

µi1+θ1

)θ1
+ (1− πi0)π2

(
θ2

µi2+θ2

)θ2
yi = 0

(1− πi0)π1
Γ(yi+θ1)
yi!Γ(θ1)

(
θ1

µi1+θ1

)θ1 (
µi1

µi1+θ1

)yi
+(1− πi0)π2

Γ(yi+θ2)
yi!Γ(θ2)

(
θ2

µi2+θ2

)θ2 (
µi2

µ2+θ2

)yi
yi > 0

where µi = (µi1, µi2) correspond to the means of the negative binomially distributed background and enrichment

components respectively for window i, and θ = (θ1, θ2) are the corresponding dispersion parameters for each
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component. Also, πi = (πi0, π1, π2) are the corresponding mixture proportions for the zero-in�ated, background

and enrichment components, respectively. πi0 corresponds to the prior probability that window i is zero-in�ated,

where π0 = (π10, . . . , πi0, . . . , πn0) is the n×1 vector of zero in�ated prior probabilities for the set of n windows. We

set π1 and π2 as scalars where π1+π2 = 1. In the next section, we set up an EM algorithm to estimate the maximum

likelihood estimates of the model parameters and obtain posterior probabilities of component membership for each

window given these model parameter estimates.

1.2 Derivation of the Complete Likelihood

Given this setup, let us write out the complete log-likelihood for the mixture model. The observed data for a

chromosome is given as (Y,X0, X1, X2) where

• Y = n× 1 vector of observed window read counts counts

• X1 = n× (p+ 1) covariate matrix pertaining to the background component

• X2 = n× (q + 1) covariate matrix pertaining to the enrichment component

• X0 = n× (r + 1) covariate matrix pertaining to the zero-in�ation component

where p, q, and r are the number of covariates for the background, enrichment, and zero-in�ation components,

respectively, and n is the number of windows in that chromosome. For each component we assume an intercept,

represented by a column of ones in the �rst column of each covariate matrix. In the ZINBA data preprocessing step

we obtain Yi and corresponding values of several factors, including window GC content, proportion of mappable

bases, read counts from a matching input control (if included) and a local background estimate. We use these

factors to construct each of the covariate matrices above, including main e�ects of each factor and interaction terms

between them if desired (pair-wise and three-way).

The missing data in this framework is the true component membership of each window. Let zi1 be the indicator

function for when window i truly belongs to background, zi2 the indicator function for when window i truly belongs

to enrichment, and zi0 = 1 − zi1 − zi2 be the indicator function for when window i truly belongs to the zero-

in�ated component. We consider zi = (zi0, zi1, zi2) to be a draw from the Multinomial distribution such that zi ∼

Multinomial(1, (πi0, (1− πi0)π1, (1− πi0)π2)).
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The mean values of the negative binomially distributed background and enrichment components are modelled as

a function of a set of covariates through the log link, such that log(µ1) = X1β1 and log(µ2) = X2β2, where µ1 and µ2

are n×1 vectors andX0,X1, andX2 are the covariate matrices pertaining to each parameter. β1 = (β01, β11, . . . , βp1)

and β2 = (β02, β12, . . . , βq2) are vector of regression parameters corresponding to the background and enrichment

components, respectively. The parameter β01 and β02 represent the intercept parameter for each component,

interpreted as the average level of signal in each component when all component-speci�c covariates are equal to

zero. We also model the vector of prior probabilities for zero-in�ation π0 as a function of a set of covariates through

the logit link π0 = eX0γ

1+eX0γ
, where γ = (γ0, γ1, . . . , γr) is the vector of regression parameters corresponding to the

zero-in�ated component. Note that we do not directly model the probabilities of enrichment and background for

the sake of robustness of the algorithm, although technically it is straight forward to do so.

Let us derive the log of the complete likelihood for the model given the observed window read counts vector Y

and selected covariates. This is derived from the the mixture regression setup in Section 1.2:

Lc(γ, β1, β2, z) = log

(
n∏
i=1

p(Yi = yi | µi, θ, πi, zi)

)

=

n∑
i=1

log (p(Yi = yi | µi, θ, πi, zi))

=

n∑
i=1

zi0 log(πi0) + zi1 log(1− πi0) + zi2 log(1− πi0)

+ zi1

[
log(π1) + log

(
Γ(y + θ1)

yi!Γ(θ1)

(
θ1

µi1 + θ1

)θ1 ( µi1
µi1 + θ1

)yi)]

+ zi2

[
log(π2) + log

(
Γ(y + θ2)

yi!Γ(θ2)

(
θ2

µi2 + θ2

)θ2 ( µi2
µi2 + θ2

)yi)]

=

n∑
i=1

zi0 log(πi0) + (1− zi0) log(1− πi0)

+ zi1

[
log(π1) + log

(
Γ(y + θ1)

yi!Γ(θ1)

(
θ1

µi1 + θ1

)θ1 ( µi1
µi1 + θ1

)yi)]

+ zi2

[
log(π2) + log

(
Γ(y + θ2)

yi!Γ(θ2)

(
θ2

µi2 + θ2

)θ2 ( µi2
µi2 + θ2

)yi)]
= Lc(γ; y, z) + Lc(β1, θ1; y, z) + Lc(β2, θ2; y, z))

where

Lc(γ; y, z) =

n∑
i=1

zi0 log

(
πi0

1− πi0

)
+ log (1− πi0) ,

Lc(β1, θ1; y, z) =

n∑
i=1

zi1

[
log(π1) + log

(
Γ(y + θ1)

yi!Γ(θ1)

(
θ1

µi1 + θ1

)θ1 ( µi1
µi1 + θ1

)yi)]
,

3



and

Lc(β2, θ2; y, z)) =

n∑
i=1

zi2

[
log(π2) + log

(
Γ(y + θ2)

yi!Γ(θ2)

(
θ2

µi2 + θ2

)θ2 ( µi2
µi2 + θ2

)yi)]
.

Substituting in the link functions for µi1, µi2 and πi0, we have

Lc(γ; y,X0, z) =

n∑
i=1

zi0Xi0γ − log
(
1 + eXi0γ

)
,

Lc(β1, θ1; y, z,X1) =

n∑
i=1

zi1

[
log(π1) + log

(
Γ(y + θ1)

yi!Γ(θ1)

(
θ1

eXi1β1 + θ1

)θ1 ( eXi1β1

eXi1β1 + θ1

)yi)]
,

and

Lc(β2, θ2; y,X2, z)) =

n∑
i=1

zi2

[
log(π2) + log

(
Γ(y + θ2)

yi!Γ(θ2)

(
θ2

eXi2β2 + θ2

)θ2 ( eXi2β2

eXi2β2 + θ2

)yi)]
.

It is easy to see that we can separate out the complete log likelihood with respect to each component and their

set of regression parameters. Thus, we can seek maximize each likelihood separately in the M-step (Lambert 1992,

McLachan 1997).

1.3 E-Step

The Q-function for the E-step at iteration k is given as the expectation of the complete likelihood with respect to

zi, given the estimates of the model parameters from the M-step. This expectation is τkij , the posterior probability

of component membership for component j, j = 0, 1, 2, at iteration k.

Q(Ψ; Ψ(k)) =

n∑
i=1

τ
(k)
i0 (yi,Ψ

(k)) log(πi0) + log(1− πi0)

+ τ
(k)
i1 (yi,Ψ

(k)) [log(π1) + log(f1(yi, µi1 (Ψ) , θ1)]

+ τ
(k)
i2 (yi,Ψ

(k)) [log(π2) + log(f2(yi, µi2 (Ψ) , θ2)]

E[zi0|yi,Ψ(k)] = τ
(k)
i0 (yi,Ψ

(k)) =
π

(k)
i0 fi (yi)

Ti
,

E[zi1|yi,Ψ(k)] = τ
(k)
i1 (yi,Ψ

(k)) =
(1− π(k)

i0 )π
(k)
1 f1

(
yi, µi1

(
Ψ(k)

)
, θ

(k)
1

)
Ti

,

E[zi2|yi,Ψ(k)] = τ
(k)
i2 (yi,Ψ

(k)) =
(1− π(k)

i0 )π
(k)
2 f2

(
yi, µi2

(
Ψ(k)

)
, θ

(k)
2

)
Ti

,
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where

Ti = πi0f0(yi) + (1− πi0)
[
π

(k)
1 f1

(
yi, µi1

(
Ψ(k)

)
, θ

(k)
1

)
+ π

(k)
2 f2

(
yi, µi2

(
Ψ(k)

)
, θ

(k)
2

)]
.

Here,

f0(yi) =


1 yi = 0

0 yi > 0

pertains to whether the observed window read count yi is zero,

f1(yi, µi1

(
Ψ(k)

)
, θ

(k)
1 ) =

Γ(y + θ
(k)
1 )

yi!Γ(θ
(k)
1 )

(
θ

(k)
1

µi1
(
Ψ(k)

)
+ θ

(k)
1

)θ(k)1
(

µi1
(
Ψ(k)

)
µi1
(
Ψ(k)

)
+ θ

(k)
1

)yi

=
Γ(y + θ

(k)
1 )

yi!Γ(θ
(k)
1 )

(
θ

(k)
1

eX1β
(k)
1 + θ

(k)
1

)θ(k)1
(

eX1β
(k)
1

eX1β
(k)
1 + θ

(k)
1

)yi
,

pertains to the negative binomially distributed background component and

f2(yi, µi2

(
Ψ(k)

)
, θ

(k)
2 ) =

Γ(y + θ
(k)
2 )

yi!Γ(θ
(k)
2 )

(
θ

(k)
2

µi2
(
Ψ(k)

)
+ θ

(k)
2

)θ(k)2
(

µi2
(
Ψ(k)

)
µi2
(
Ψ(k)

)
+ θ

(k)
2

)yi

=
Γ(y + θ

(k)
2 )

yi!Γ(θ
(k)
2 )

(
θ

(k)
2

eX2β
(k)
2 + θ

(k)
2

)θ(k)2
(

eX2β
(k)
2

eX2β
(k)
2 + θ

(k)
2

)yi
,

pertaining to the negative binomially distributed enrichment component. We can see that the posterior probabilities

of component membership are adjusted for each window's set of covariates, their estimated e�ects in each component,

and the estimated baseline e�ect of each component (intercept).

1.4 M-Step

Because the Q function with respect to each set of regression parameters is distinct, we can maximize each separately

using weighted Generalized Linear Models. The weights for each component's regression model correspond to the

calculated posterior probability of belonging to that component from the E-step. In this sense, a window's count

is partitioned in relation to its component memebership vector (τi0, τi1, τi2) and modeled by each component's

regression model. This allows us to obtain component speci�c estimates of covariates from the same set of windows.

We obtain the parameter model estimates in the manner as follows:

For γ(k+1): maximize

Lc(γ; y, z) =

n∑
i=1

τ
(k)
i0 Xi0γ −

n∑
i=1

log
(
1 + eXi0γ

)
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Now, suppose n0 of the yi's are 0 such that yi1, ..., yin0 are zero and yi(n0+1), ..., yin are greater than zero. Then,

specify a matrix W (k) with diagonal w(k) = (w
(k)
n0 , w

(k)
n ) = (τ

(k)
i0 , ..., τ

(k)
n00, 1− τ

(k)
(n0+1)0, ..., 1− τ

(k)
n0 ), where τ

(k)
i0 is the

posterior probability of the ith observation belonging to the zero in�ated component at iteration k. Then γ(k+1)

can be calculated by weighted logistic regression for the response y for y = 0 vs. y > 0, where weight matrix W (k)

reduces the maximization of the zero-in�ated likelihood to weighted logistic regression (Lambert 1992).

For β
(k+1)
1 : maximize

Lc(β1, θ1; y, z) =

n∑
i=1

τ
(k)
i1

[
log(π1) + log

(
Γ(y + θ1)

y!Γ(θ1)

(
θ1

eXi1β1 + θ1

)θ1 ( eXi1β1

eXi1β1 + θ1

)y)]
.

Then, β
(k+1)
1 can be calculated by running a weighted negative binomial regression for the response y with prior

weights τ
(k)
1 (Lambert 1992, McLachlan 2007). Weighted negative binomial regression maximizes the above likeli-

hood also for θ
(k+1)
1 similar to the iterative method described in Hilbe, 2007. Also, β

(k+1)
2 and θ

(k+1)
2 are maximized

in a similar fashion. Lastly,

π
(k+1)
i0 =

eXi0γ
(k)

1 + eXi0γ(k)
,

π
(k+1)∗
1 =

∑n
i=1 τi1

(
∑n
i=1 τi1 + τi2)

,

and

π
(k+1)
2 =

∑n
i=1 τi2∑n

i=1(τi1 + τi2)

For identi�ability reasons, we place a constraint on π1 such that

π
(k+1)
1 = max

(
π1,min, π

(k+1)∗
1

)
where π1,min is chosen to be 0.5.

1.5 Convergence

We cycle between calculating posterior probabilities of component membership in the E-step and estimation of

component-speci�c e�ects in the M-step until model convergence. The model terminates until the relative change

in the complete model log-likelihood at iteration k compared to k − 10 is less than 10−5.

1.6 Robustness of Model Initialization

In some cases the EM algorithm may converge to a local optimum due to poor initialization of the model parameters.

We demonstrate the robustness of our initialization procedure by applying various starting partitions to the K562
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Table 1: Final ZINBA Background parameter estimates for several initial partitions

Initialization Prop. Of Enrichment 0.001 0.01 0.05 0.10 0.15

(Intercept) -1.455 -1.455 -1.455 -1.455 -1.436

Mappability 1.356 1.356 1.356 1.355 1.347

Local BG Estimate 0.867 0.867 0.867 0.867 0.867

GC-content -0.797 -0.798 -0.797 -0.797 -0.820

Mappability*Local BG Estimate 0.269 0.268 0.269 0.269 0.268

FAIRE-seq data from chromosome 22, and compare the resulting model estimates after convergence. Each partition

selects a di�erent proportion of the top-ranked windows in terms of read counts and assigns them to the enrichment

component. All other windows with non-zero count are assigned to background, and all zero count windows are

assigned to the zero in�ated component. As described in the main text, this partitioning of the data into each

component is used to initialize the subsequent component-speci�c parameter estimates. The �nal model parameter

estimates are robust to initialization (Table 1) in each component. We show only the �nal parameter estimates from

the background component, as the results are similar for the other components. The BIC-selected model selected

for this dataset in the main text was utilized.

2 Calculation of Local Background Estimates in ZINBA

The goal of the local background estimate is to approximate �uctuations in non-enriched regions from *-seq data,

including changes related to copy number variations (CNV). Here large (100 kb by default) windows are tiled across

each chromosome at a user de�ned step size (2.5 kb, default). For each large window the mappability-adjusted

count of reads is calculated such that nreads
nmappable

, where nreads is the number of reads falling into a large window

and nmappable are the number of bases in the window that are mappable by the users mappability criteria. The

sliding window approach provides a good smoothed approximation of changes in background levels. For each smaller

window used, the local background estimate is simply the average mappability-adjusted count for all overlapping

large window times the length of smaller window.

However, the change in signal at the boundaries of CNVs is abrupt and the resulting smoothed background
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estimate for ZINBA windows in the surrounding regions is arti�cially in�ated outside of the CNV and de�ated

inside the CNV. This is because large windows that overlap this boundary straddle ampli�ed and non-ampli�ed

background regions, providing a less accurate estimate of local background in the region just outside the CNV and

just inside the CNV. To compensate for these boundary e�ects we attempt to identify CNV boundaries based on

the resulting increase in variance of the local background estimates for ZINBA windows typically observed near

CNVs. We compare the chromosome-wide global variance for all overlapping large windows in a local region. For

each comparison of local versus global variance we use a statistic

Fi =
σ2
global/(nglobal − 1)

σ2
local,i/(nlocal,i − 1)

where i is the index of the local region, nglobal is the number of large windows and nlocal,i is the number of overlapping

large windows in given location i. We choose threshold corresponding to a 95 percentile of an F(nglobal,nlocal)

distribution.

The exact CNV boundary is then determined using two contiguous windows slid across the candidate region,

where a binomial test is employed to assess the equality of counts between windows. The position with the lowest

p-value is called as the boundary, as this position would have the largest di�erence in count between the contiguous

windows. This is because one window would reside completely in a normal background region and the other would

reside completely within the CNV region. All overlapping large windows are removed and a re�ned local background

estimate is calculated for the surrounding regions originating away from the boundary.

3 Data Access and Details

All downloaded datasets are freely available and consisted of mapped reads corresponding to human genome build

HG18. The CTCF ChIP-seq data was derived from the GM12878 cell line and consisted of 14 million experimental

reads and 16 million input reads and was generated by the University of Texas-Austin, version 2. The RNA

polymerase II ChIP-seq dataset was derived from the K562 cell line and consisted of 22 million experimental reads

and 16 million input reads and was also generated by the University of Texas-Austin, version 2. Reads mapping

only uniquely to the genome were kept and an average fragment library length of 200 base pairs was assumed for

ZINBA. The FAIRE-seq data was also from the K562 cell line and consisted of 52 million experimental reads and no

input reads were available. Reads mapping up to four locations in the genome were kept and an average fragment

length of 134 base pairs was used. Links for data downloads are provided below:
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• UT-Austin GM12878 CTCF ChIP-seq http://hgdownload.cse.ucsc.edu/goldenPath/hg18/encodeDCC/

wgEncodeChromatinMap/wgEncodeUtaChIPseqAlignmentsRep3K562CtcfV2.tagAlign.gz

• UT-Austin K562 RNA Pol II ChIP-seq http://hgdownload.cse.ucsc.edu/goldenPath/hg18/encodeDCC/

wgEncodeChromatinMap/wgEncodeUtaChIPseqAlignmentsRep2K562Pol2.tagAlign.gz

• UT-Austin GM12878 CTCF ChIP-seq Input Control http://hgdownload.cse.ucsc.edu/goldenPath/hg18/

encodeDCC/wgEncodeChromatinMap/wgEncodeUtaustinChIPseqAlignmentsK562Input.tagAlign.gz

• UNCK562 FAIRE-seq http://hgdownload.cse.ucsc.edu/goldenPath/hg18/encodeDCC/wgEncodeChromatinMap/

wgEncodeUncFAIREseqAlignmentsRep2K562V2.tagAlign.gz

MCF-7 FAIRE-seq data is not yet available on ENCODE but can be downloaded from http://code.google.

com/p/zinba/downloads/list, in addition to the Duke K562 DNase Hypersensitivity sites.. Only MCF-7 FAIRE-

seq data pertaining to chromosome 20 was used in this manuscript, so we make data corresponding to this chromo-

some available.

The histone H3 lysine 36 tri-methylation (H3K36me3) ChIP-seq dataset was obtained from combining two

replicates from the K562 cell line resulting in 30 million experimental reads, version 2. Input controls for replicates

were similarly combined, resulting in 22 million reads. Reads mapping up to 10 places in the genome were kept

and an average fragment library length of 200 base pairs was used for ZINBA. This data was taken from the Broad

Institute ENCODE group, and data downloads are available below:

• Broad Institute K562 H3K36me3 ChIP-seq Replicate 1 http://hgdownload.cse.ucsc.edu/goldenPath/

hg18/encodeDCC/wgEncodeBroadChipSeq/wgEncodeBroadChipSeqAlignmentsRep1K562H3k36me3V2.tagAlign.

gz

• Broad Institute K562 H3K36me3 ChIP-seq Replicate 2 http://hgdownload.cse.ucsc.edu/goldenPath/

hg18/encodeDCC/wgEncodeBroadChipSeq/wgEncodeBroadChipSeqAlignmentsRep2K562H3k36me3V2.tagAlign.

gz

• Broad Institute K562 Input Control Replicate 1 http://hgdownload.cse.ucsc.edu/goldenPath/hg18/encodeDCC/

wgEncodeBroadChipSeq/wgEncodeBroadChipSeqAlignmentsRep1K562ControlV2.tagAlign.gz

• Broad Institute K562 Input Control Replicate 2 http://hgdownload.cse.ucsc.edu/goldenPath/hg18/encodeDCC/

wgEncodeBroadChipSeq/wgEncodeBroadChipSeqAlignmentsRep2K562ControlV2.tagAlign.gz
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http://hgdownload.cse.ucsc.edu/goldenPath/hg18/encodeDCC/wgEncodeBroadChipSeq/wgEncodeBroadChipSeqAlignmentsRep1K562ControlV2.tagAlign.gz
http://hgdownload.cse.ucsc.edu/goldenPath/hg18/encodeDCC/wgEncodeBroadChipSeq/wgEncodeBroadChipSeqAlignmentsRep2K562ControlV2.tagAlign.gz
http://hgdownload.cse.ucsc.edu/goldenPath/hg18/encodeDCC/wgEncodeBroadChipSeq/wgEncodeBroadChipSeqAlignmentsRep2K562ControlV2.tagAlign.gz


RNA-seq data for the K562 cell line was derived by the Caltech ENCODE group, where the 75-nt paired end Raw

RNA-seq isoform levels in reads per kilobase per million reads (RPKM) format was used. Downloads can be found at

http://hgdownload.cse.ucsc.edu/goldenPath/hg18/encodeDCC/wgEncodeCaltechRnaSeq/wgEncodeCaltechRnaSeqRawSignalRep1K562CellLongpolyaBb12x75.

wig.gz.

CNV regions from K562 cells were also obtained from http://hgdownload.cse.ucsc.edu/goldenPath/hg18/

encodeDCC/wgEncodeHudsonalphaCnv/wgEncodeHudsonalphaCnvRegionsK562V2.bed.gz
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