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ABSTRACT 

Jeanette M. Reyes: Geostatistical Data Fusion Estimation Methods of Ambient PM2.5 and Polycyclic 
Aromatic Hydrocarbons  

(Under the direction of Marc L. Serre) 

Fine Particulate Matter (PM2.5) is a complex air pollutant associated with a host of adverse 

health effects. In epidemiologic studies there is a need to accurately predict exposures to reduce 

misclassification. Recently there has been a surge in data fusion methods which combine observed data 

with gridded modeled data like the regulatory Community Multiscale Air Quality (CMAQ) model. 

Substantial resources are allocated to the evaluation of CMAQ. However, this model has inherent error 

and uncertainty. Currently, CMAQ can only be operationally evaluated at locations where observed data 

exist, leaving potentially large spatial and temporal gaps in a given modeling domain. This study develops 

a framework for evaluating gridded air quality modeled data that can then be corrected for systematic 

error and combined with observed data in a geostatistical framework. First, this dissertation develops the 

novel Regionalized Air quality Model Performance (RAMP) method that performs a non-homogenous, 

non-linear, non-homoscedastic model evaluation at each CMAQ grid for a well-documented 2001 

regulatory episode across the continental United States. The RAMP method comparatively outperforms 

other model evaluation methods with a 22.1% reduction in Mean Square Error (MSE). Secondly, the 

RAMP corrected CMAQ modeled data are combined with observed data in the modern Bayesian 

Maximum Entropy (BME) geostatistical framework which combines the accuracy of observed data with 

the spatial and temporal coverage of gridded modeled data. RAMP BME resulted in a 6-7 times increase 

in spatial refinement compared to using kriging alone. Lastly, the data rich PM2.5 environment is 

contrasted with the data poor environment of Polycyclic Aromatic Hydrocarbons (PAHs). The Mass 

Fraction (MF) BME method is developed through a relatively small number of paired PM2.5 and PAH 

values and is applied to PM2.5 observed locations where PAH have not been observed to create the first 

detailed spatial maps of PAH across North Carolina in 2005. The MF BME method reduces MSE by over 

39% compared with using kriging alone. Accurate assessment of ambient air pollutants is essential in 

iii 



 

 

 

public health to explore and elucidate true underlying relationships between pollutants and health 

endpoints.
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CHAPTER 1: INTRODUCTION 
 

Epidemiologic studies investigating long term health effects of ambient air pollution exposures 

require accurate assessments to properly investigate underlying associations and health measures. 

Substantial efforts from sophisticated models have been used in past works to reduce misclassification 

that can otherwise obfuscate associations. The work presented here improves upon existing methods of 

exposure assessment. This work performs a model performance evaluation of gridded modeled 

Particulate Matter ≤ 2.5 micrometers (PM2.5) data across the continental United States (US) in 2001 

which is then corrected of systematic error. The corrected modeled data is combined with observed 

PM2.5 data in the Bayesian Maximum Entropy (BME) geostatistical framework. Lastly, this work ends 

with the estimation of Polycyclic Aromatic Hydrocarbons (PAHs) across North Carolina in 2005. This is 

the first known work to create a flexible data fusion method combining observed and gridded modeled 

data for PM2.5 using the BME framework. This is also the first known work to create a full prediction map 

of PAH across North Carolina for 2005. We hypothesize that combining environmental air pollution data 

sets defined over different supports (i.e. over a point location versus over a grid) in a geostatistical 

framework will improve estimation accuracy compared to using a single data source for a given 

environmental parameter.  

Model performance evaluation is needed to understand resulting model error and in an 

epidemiologic context when the resulting gridded estimations are being used to estimate exposure. There 

is a wealth of studies that explore performance evaluation of gridded Chemical Transport Models (CTMs), 

specifically the Community Multiscale Air Quality (CMAQ) model. CMAQ is the US Environmental 

Protection Agency’s (EPAs) regulatory air quality model (Appel et al., 2013a, 2008; Carlton et al., 2010; 

Foley et al., 2015a, 2015b, 2010). It is used to assess attainment of regulated air pollution to ensure they 

are under the regulatory standard. Substantial resources go towards ensuring that CMAQ modeled 

values match as closely as possible with corresponding paired observed values, through operational, 

diagnostic and dynamic assessments (Dennis et al., 1996). The metrics used to evaluate operational 



 

 

 

performance are numerous and multifaceted. These metrics becomes increasingly difficult to properly 

calculate when the region over which they are being calculated becomes increasingly smaller in size 

(Simon et al., 2012). Currently, an operational performance cannot be assessed in-between monitors 

and, in the limiting case, cannot be assessed for individual CMAQ grids. This information is needed to 

assess performance in-between monitors and to perform an error correction on individual CMAQ grids.  

Most epidemiologic studies utilize data fusion methods. In recent years, these methods have 

increased in popularity. Data fusion methods typically combine two different data sources of a given air 

pollutant, where the data sources have different levels of support into a geostatistical framework. Different 

supports typically include observed monitoring data defined at a point location with modeling data defined 

over a grid. Data fusion methods allow for the accuracy typically associated with observed data with the 

spatial refinement and coverage associated with gridded modeling data. Popular approaches include 

Bayesian Melding and the Downscaler method (Berrocal et al., 2010a; Fuentes and Raftery, 2005). As 

sophisticated as these models can be, they still assume the relationship between modeled and observed 

data to be linear and homoscedastic. This can be limiting when there is a known difference between 

uncertainties of errors for difference ranges of PM2.5 concentrations. There are a variety of geostatistical 

methods that can implement a data fusion framework, including the BME framework. 

BME is a mathematically rigorous geostatistical space/time framework originally developed by 

Christakos (Christakos and Serre, 2000; Christakos et al., 2001). BME is an extension of linear kriging in 

which information about a Space/Time Random Field (S/TRF) is divided into two knowledge bases: 1) a 

site-specific knowledge base characterizing the Space/Time Random Field (S/TRF) representing a 

process at a specific space/time, 2) a general knowledge base that comes in the form of a prior 

Probability Distribution Function (PDF) describing the random field. These knowledge bases are 

combined and the BME posterior PDF can be used to predict environmental parameters at unmonitored 

locations. Unlike kriging, BME is able to incorporate information that is non-Gaussian. In an 

environmental setting this can be essential when the distribution of the parameter is known to be highly 

skewed, when a sizable portion of a PDF is below zero, or when parameters are below a given detection 

limit (Messier et al., 2015). BME has been successfully implemented in water (Akita et al., 2007), air 

(Reyes and Serre, 2014) and disease parameters (Allshouse et al., 2011). BME data fusion has been 
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performed with ozone in previous work (de Nazelle et al., 2010; Xu et al., 2016). BME can also be used to 

inform mapping scenarios in data poor environments. 

PM2.5 is a complex mixture of many different constituents. A component of PM2.5 is PAH. PAHs 

are created from incomplete fuel combustion with some species being carcinogenic (Bocskay et al., 2005; 

Menzie et al., 1992; Wolff et al., 2005). They can come from a variety of sources including wildfires. 

However, ambient PAHs are currently not regulated by the EPA and therefore, a nationwide monitoring 

network does not currently exist for them. PAH measurements can also be costly (Pleil et al., 2004). 

There is a need to investigate PAH concentrations over a large region in a cost effective way. Previous 

work has investigated the relationship between PAH and PM2.5 concentration around the World Trade 

Center after September, 11th (Allshouse et al., 2009). In particular, PM2.5 samples were analyzed for 

several different species of PAH. The relationship between the fractions of PAH to PM2.5 was 

investigated and applied to other areas in the sampling region. However, this was only applied to a 

relatively small region over a short period of time. Maps of PAH concentrations across North Carolina are 

currently lacking in the literature. 

The theme tying all Chapter 2, 3 and 4 together are the benefits of combining multiple data 

sources together with the goal of these merged/combined data sources being more beneficial that any 

one data source individually. This dissertation explores two different types of data environments: a data 

rich environment and a data poor environment. Chapter 2 and 3 explore a data rich environment. A data 

rich environment lends itself to allowing flexible relationships between the two different data sources. The 

paired observed and modeled PM2.5 data are plentiful enough to develop a relationship that is non-

homogenous, non-linear and non-homoscedastic. This relationship is flexible enough to be non-

parametric. Guided with the goal of improved exposure assessment, Chapter 2 and Chapter 3 look at 

model performance evaluation and error correction of daily PM2.5 mass across the continental United 

States for 2001. This application explores the themes of performance evaluation and error correction in a 

data rich environment. Chapter 2 develops the Regionalized Air quality Model Performance (RAMP) 

method (Xu et al., 2016). Chapter 3 combines the RAMP-corrected CMAQ modeled data with daily 

observed PM2.5 mass into the BME geostatistical framework. This is compared to more typically used 

geostatistical methods like kriging and more popular data fusion methods like the Downscaler method. 
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By contrast, Chapter 4 explores data merging in a data poor environment. Paired observed PAH 

and PM2.5 are sparse across North Carolina. Therefore, the relationship between them needs to be 

parsimonious and as specific to the air shed of interest as possible. Chapter 2, 3 and 4 look at developing 

a relationship between different air pollution data sets that is regionalized and specific to the location of 

interest. Two relationships are explored between the paired PAH and PM2.5 data: a standard simple 

linear regression model and a model that explores the mass fraction between the two. These two 

methods are then compared with other typically used geostatistical methods like kriging and cokriging. 
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CHAPTER 2: REGIONALIZED PM2.5 COMMUNITY MULTISCALE AIR QUALITY MODEL 
PERFORMANCE EVALUATION ACROSS A CONTINUOUS SPATIOTEMPORAL DOMAIN1 

 
2.1 Introduction 

Particulate Matter ≤ 2.5 micrometers in diameter (PM2.5) is one of the six “criteria air pollutants” 

regulated in the United States (Boldo et al., 2006; Pope et al., 2009) due to its association with adverse 

health effects, including cardiovascular and respiratory disease and mortality (Beelen et al., 2007; 

Krewski et al., 2009; Pope et al., 2004). The Community Multiscale Air Quality (CMAQ) model is used for 

regulatory purposes to estimate PM2.5 and assess attainment. Substantial  efforts are made to assess 

and understand the model performance of CMAQ ensuring that modeled values match with observed 

data (Appel et al., 2013b, 2008; Carlton et al., 2010; Foley et al., 2015a, 2015b, 2010). Past work 

evaluating model performance typically gives modeling performance statistics over an aggregated level 

(e.g. monitoring locations, regions of the country, monitoring networks, etc.) (Simon et al., 2012). For the 

modeling domain of the continental United States, metrics are typically calculated for the Eastern versus 

Western US, urban stations versus rural stations, summer versus winter monitoring, etc. (Appel et al., 

2013a). Displaying model performance metrics at each monitoring site location across the US reveals that 

CMAQ performance changes in a non-homogenous manner (Appel et al., 2012). However, model 

performance at a specific unmonitored space/time location is typically not explored or known. Therefore 

current methods fail to assess geographical or temporal changes of model performance across the 

spatiotemporal continuum, particularly in-between monitors.  

The goal of this work is to address this significant knowledge gap by introducing a method that 

assesses model performance at any space/time region of interest across the spatiotemporal continuum. 

                                                           
1 This chapter was submitted as an article to the journal Atmospheric Environment. Reyes, Jeanette M., 

Xu,Yadong, Vizuete, William, Serre, L. Marc. Regionalized PM2.5 Community Multiscale Air Quality 
model performance evaluation across a continuous spatiotemporal domain. 



 

 

 

Advantages for assessing model performance at any region across a continuum include being able to 1) 

exactly delineate geographical patterns of modeling errors and 2) correct systematic errors across the 

modeling domain for individual CMAQ grid concentrations.  

Systematic errors are consistent deviations of modeled data from observed data. Systematic 

errors, once assessed, can be used to correct the modeled value. The remaining error, i.e. the random 

noise of the modeled value around the observed data, is the random error.  While current CMAQ model 

performance evaluation methods are multifaceted (Dennis et al., 2010) and use a wide array of metrics to 

quantify performance (Kang et al., 2007; Thunis et al., 2012; USEPA, 2005; Venkatram, 2008), this work 

specifically focuses on set of metrics that investigate systematic and random errors. Hence, to achieve 

our goal, we introduce modeling error statistics that parse total errors into systematic and random errors. 

Few studies have apportioned error in this manner (Solazzo and Galmarini, 2016).  

The method we introduce in this work to assess model performance across the spatiotemporal 

continuum is the Regionalized Air quality Model Performance (RAMP) method, which we use to study 

daily PM2.5 across the continental US. Our framework is a regionalized space/time extension of the 

Constant Air quality Model Performance (CAMP) method (de Nazelle et al., 2010) and parallels the work 

of Xu et al. (Xu et al., 2016). The CAMP method was originally used to account for the non-linear and 

non-homoscedastic relationship between modeled and observed ozone data in North Carolina for a 

particular ozone episode. The CAMP method assumes that model performance is homogenous across 

the state and does not change as a function of the space/time CMAQ grid locations. This assumption of 

homogeneity of model performance begins to break down as the modeling domain increases in size, 

particularly when this increase is substantial. The novel RAMP method introduced here for PM2.5 

extends the CAMP method by accounting for the non-homogeneity of model performance in a 

regionalized fashion across the entirety of a modeling domain and fully characterizes the non-linear and 

non-homoscedastic relationship at any space/time region for any modeled value of interest.  

This work demonstrates the use of the RAMP method by implementing a regionalized 

performance evaluation of daily PM2.5 mass predicted by CMAQ across the entirety of the continental 

United States. As an evaluation of the RAMP method, we have chosen a regulatory episode developed 

for the years 2001 and 2002. The model performance for this episode has been well documented and 

6 



 
 

7 

 

thus provides an ideal case study of the RAMP method. The results of the RAMP analysis include maps 

showing the geographical variations of systematic and random errors at a fine spatial resolution displayed 

at the resolution of an individual CMAQ grid cell. These results provide new insights regarding model 

performance that complement existing performance evaluation methods. The RAMP results are helpful in 

making decision on resource allocation for further improvement in the air quality model. Furthermore, 

calculating systematic errors for individual CMAQ grids facilitate systematic error correction leading to 

maps of PM2.5 concentrations with improved mapping accuracy. 

2.2 Materials and Methods 

2.2.1 Observed and Modeled Data 

Daily observed PM2.5 for each space/time location during 2000-2002 were constructed based on 

raw monitoring data from monitoring stations measuring either hourly or daily PM2.5 obtained from the 

EPA’s Air Quality Systems (AQS) data base (US EPA, n.d.). Daily PM2.5 data were also constructed from 

CMAQ modeled data for years 2001 and 2002 using CMAQv4.5 across the contiguous United States on 

a 36 km grid. For more detailed information regarding the aggregation and pairing process of observed 

and modeled data see Appendix A.  

2.2.2 Variable Definition 

Random variables 𝑋 are in upper case and known values are in lower case. Let �̂�(𝒑) be the 

random variable representing the observed concentration at a single space/time location 𝒑 = (𝒔, 𝑡), �̂�(𝒑) 

be its known value (i.e. realization) at space/time location 𝒑 and �̃�(𝒑) be the CMAQ modeled value at 

space/time location 𝒑. Because �̃�(𝒑) covers the entirety of the domain, it is known everywhere. We define 

error as  

𝐸(𝒑) = �̃�(𝒑) − �̂�(𝒑)                   (Equ. 2-1) 

Error is defined as 𝑒(𝒑) = �̃�(𝒑) − �̂�(𝒑) at locations where the observed data are known. The definition of 

error in this work is a deviation from what is typically used in the model performance literature. The 

differences in the nomenclature are explicitly stated in Appendix A (Table A.1 and Table A.2). 

2.2.3 Systematic and Random Error Statistics 

In this work metrics are geared towards dividing error in a dichotomous manner. Namely, metrics 

are divided into systematic and random errors. Systematic errors are consistent errors between observed 
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and modeled CMAQ data and can be removed through calculating the mean systematic error. Random 

errors are the residual errors remaining once the systematic error is removed. Random errors can be 

conceptualized as the random noise between CMAQ and observed data. Total error is the sum of 

systematic and random error. In the naming convention of a statistic the first letter(s) is used to identify 

the statistical operator as follows: M=mean, V=variance, S=Standard deviation, RMS=square Root of the 

Mean of Squared values. The last letter(s) is used to identify the value of interest as follows: E=Error 

(Equ. 2-1), SE=Squared Error=𝐸2, S=Standardized error=𝐸/𝜎𝐸, NE=Normalized Error=E/�̂� and R=square 

Root of error variance=√𝜎𝐸. Statistics that are calculated over an entire domain 𝒟 are 𝑀𝐸(𝒟) =
1

𝑛(𝒟)
∑ 𝑒𝑖 

and 𝑉𝐸(𝒟) =
1

𝑛(𝒟)−1
∑(𝑒𝑖 − 𝑀𝐸(𝒟))2. 𝑀𝐸2(𝒟) quantifies the systematic error, 𝑉𝐸(𝒟) quantifies the 

random error and  𝑀𝑆𝐸(𝒟) = 𝑀𝐸2(𝒟) + 𝑉𝐸(𝒟) quantifies the total error. The equations of systematic, 

random and total error can be represented pictorially through use of a target analogy, probability 

distribution function of error and plotting observed data as a function of modeled data (Fig. 2-1a-i). Other 

statistics used in model performance evaluation include the square Root of the Mean of Squared 

Standardized errors (RMSS) and Mean of the square Root of variance (MR).  

2.2.4 Constant Air quality Model Performance (CAMP) 

The CAMP method (de Nazelle et al., 2010) performs a model performance analysis that 

accounts for the non-linearity and non-homoscedastic behavior of model performance with respect to the 

modeled value �̃�𝑘. The CAMP method does this by modeling the mean 𝜆1(�̃�𝑘; 𝒟) = 𝑀[�̂�|�̃�𝑘; 𝒟] and 

variance 𝜆2(�̃�𝑘; 𝒟) = 𝑉[�̂�|�̃�𝑘; 𝒟] of the observed value �̂� as function of a given model value �̃�𝑘 across the 

domain 𝒟 using the equations       

𝜆1(�̃�𝑘; 𝒟) ≈
1

𝑛(𝑥𝑘;𝒟)
∑ �̂�𝑖 (Equ. 2-2) 

𝜆2(�̃�𝑘; 𝒟) ≈
1

𝑛(𝑥𝑘;𝒟)−1
∑(�̂�𝑖 − 𝜆1(�̃�𝑘; 𝒟))

2
 (Equ. 2-3) 

where 𝑛(�̃�𝑘; 𝒟) is the number of paired modeled �̃�𝑖 and observed �̂�𝑖 values across the space time domain 

𝒟 such that �̃�𝑘 − ∆�̃� ≤ �̃�𝑖 ≤ �̃�𝑘 + ∆�̃� where ∆�̃� is a small tolerance corresponding to half of a decile of 

modeled values.  

Previous work (de Nazelle et al., 2010) found that the relationship of 𝜆1(�̃�𝑘; 𝒟) and 𝜆2(�̃�𝑘; 𝒟) with 

respect to �̃�𝑘 can be expressed through domain wide “S-curves” that are non-linear, indicating that model 
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performance is non-linear and non-homoscedastic. However the CAMP method does not investigate how 

𝜆1(�̃�𝑘; 𝒟) and 𝜆2(�̃�𝑘; 𝒟) S-curves change across space and time. 

2.2.5 Regionalized Air quality Model Performance (RAMP) 

The Regionalized Air quality Model Performance (RAMP) method introduced here consists of 

extending the CAMP method (de Nazelle et al., 2010) by regionalizing the model performance to a 

space/time region ℛ(𝒑) associated with the space/time coordinate 𝒑. In this work the region ℛ(𝒑) was 

selected such that it contains all paired modeled and observed data from the 3 closest stations within 180 

days of 𝒑, resulting in a regionalized S-curve (Fig. 2-1j). The 3 closest stations within 180 days were 

chosen for being as spatially specific as possible while still maintaining a stable pattern with the 

associated regionalized 𝜆1(�̃�𝑘; ℛ(𝒑)) = 𝑀[�̂�|�̃�𝑘; ℛ(𝒑)] and 𝜆2(�̃�𝑘 , ℛ(𝒑)) = 𝑉[�̂�|�̃�𝑘; ℛ(𝒑)] parameters (see 

Appendix A for S-curve parameter optimization). The parameters are calculated as  

𝜆1(�̃�𝑘; ℛ(𝒑)) ≈
1

𝑛(𝑥𝑘;ℛ(𝒑))
∑ �̂�𝑖 (Equ. 2-4) 

𝜆2(�̃�𝑘; ℛ(𝒑)) ≈
1

𝑛(𝑥𝑘;ℛ(𝒑))−1
∑(�̂�𝑖 − 𝜆1(�̃�𝑘; ℛ(𝒑)))

2
 (Equ. 2-5) 

where 𝑛(�̃�𝑘; ℛ(𝒑)) is the number of paired modeled and observed points within ℛ(𝒑) and around �̃�𝑘.  

An efficient numerical implementation of the calculation of 𝜆1(�̃�𝑘; ℛ(𝒑)) and 𝜆2(�̃�𝑘; ℛ(𝒑)) is 

performed as follows. All modeled/observed (�̃�𝑖 , �̂�𝑖) pairs within ℛ(𝒑) are divided into deciles based off all 

the collected �̃�𝑖 (Fig. 2-1j). The mean and variance of observed values in each decile �̃�𝑙 are calculated to 

obtain 𝜆1,𝑙(�̃�𝑙; ℛ(𝒑)) and 𝜆2,𝑙(�̃�𝑙; ℛ(𝒑)), respectively. A linear interpolation between deciles is performed to 

obtain 𝜆1(�̃�𝑘; ℛ(𝒑)) and 𝜆2(�̃�𝑘; ℛ(𝒑)). If the S-curve contains less than 150 pairs, points from the nearest 

stations are pulled in until at least 150 pairs are obtained. When calculating the variance of the error 

correction of the modeled data (Equ. 2-5), it is assumed that nearby observed values used in the 

calculation are independent and identically distributed (i.e. �̂�𝑖~𝑖𝑖𝑑). Thus, 𝜆1(�̃�𝑘; ℛ(𝒑)) and 𝜆2(�̃�𝑘; ℛ(𝒑)) 

describe the mean and variance of observed concentration as a function of both �̃�𝑘 and the space/time 

region ℛ(𝒑). For example, in Fig. 2-1j for the given ℛ(𝒑) and �̃�𝑘 = 5.6 𝜇𝑔/𝑚3, 𝜆1(�̃�𝑘; ℛ(𝒑)) = 7.9 𝜇𝑔/𝑚3 

and √𝜆2(�̃�𝑘; ℛ(𝒑)) = 2.5 𝜇𝑔/𝑚3. 
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There is a correspondence between the parameters 𝜆1(�̃�𝑘; ℛ(𝒑)) and 𝜆2(�̃�𝑘; ℛ(𝒑)) and 

systematic and random errors. From Equ. 2-1 we have �̂� = �̃� − 𝐸, which, once substituted into 

𝜆1(�̃�𝑘; ℛ(𝒑)) and 𝜆2(�̃�𝑘 , ℛ(𝒑)) yields 

𝜆1(�̃�𝑘; ℛ(𝒑)) = 𝑀[�̃� − 𝐸 |�̃�𝑘; ℛ(𝒑)] = �̃�𝑘 − 𝑀[𝐸 |�̃�𝑘; ℛ(𝒑)] = �̃�𝑘 − 𝑀𝐸(�̃�𝑘; ℛ(𝒑)) (Equ. 2-6) 

𝜆2(�̃�𝑘; ℛ(𝒑)) = 𝑉[�̃� − 𝐸|�̃�𝑘; ℛ(𝒑)] = 𝑉[𝐸(𝒑)|�̃�𝑘; ℛ(𝒑)] = 𝑉𝐸(�̃�𝑘; ℛ(𝒑)) (Equ. 2-7) 

where 𝑀𝐸(�̃�𝑘; ℛ(𝒑)) and 𝑉𝐸(�̃�𝑘; ℛ(𝒑)) are the mean and variance, respectively, of the error associated 

with an arbitrary value �̃�𝑘 predicted within region ℛ associated with 𝒑.  

We also define 𝜆1
𝑅𝐴𝑀𝑃(𝒑) = 𝜆1(�̃�(𝒑); ℛ(𝒑)) and 𝜆2

𝑅𝐴𝑀𝑃(𝒑) = 𝜆2(�̃�(𝒑); ℛ(𝒑)) as the mean and 

variance of observed concentration when �̃�𝑘 = �̃�(𝒑), where �̃�(𝒑) is the CMAQ modeled value at 𝒑. By 

replacing �̃�𝑘 with �̃�(𝒑) in Equ. 2-6 and Equ. 2-7, we obtain 

𝜆1
𝑅𝐴𝑀𝑃(𝒑) = �̃�(𝒑) − 𝑀𝐸(�̃�(𝒑); ℛ(𝒑)) (Equ. 2-8) 

𝜆2
𝑅𝐴𝑀𝑃(𝒑) = 𝑉𝐸(�̃�(𝒑); ℛ(𝒑)) (Equ. 2-9) 

Equ.2-8 and Equ. 2-9 provide a physical interpretation of systematic and random errors. The systematic 

error 𝑀𝐸(�̃�(𝒑); ℛ(𝒑)) is the error correction that can be applied to the modeled value �̃�(𝒑) in region ℛ(𝒑) 

to produce a corrected modeled estimate 𝜆1
𝑅𝐴𝑀𝑃(𝒑), and the random error quantified by 𝑉𝐸(�̃�(𝒑); ℛ(𝒑)) 

characterizes the residual uncertainty associated with the systematic error-corrected modeled estimate. In 

this work 𝑀𝐸(�̃�(𝒑); ℛ(𝒑)) and 𝑉𝐸(�̃�(𝒑); ℛ(𝒑)) can be approximated by 𝑀𝐸(�̃�(𝒑); ℛ(𝒑)) ≈
1

𝑛(𝒑)
∑ 𝑒𝑖 and 

𝑉𝐸(�̃�(𝒑); ℛ(𝒑)) ≈
1

𝑛(𝒑)−1
∑(𝑒𝑖 − 𝑀𝐸(�̃�(𝒑); ℛ(𝒑)))2, respectively, where for a given 𝒑, 𝑛(𝒑) is equal to the 

number of paired modeled and observed points in ℛ(𝒑). 

The RAMP method provides the statistical distribution of observed air pollution as 

�̂�(𝒑)|�̃�(𝒑)~𝑁(𝜆1
𝑅𝐴𝑀𝑃(𝒑), 𝜆2

𝑅𝐴𝑀𝑃(𝒑)) (Equ. 2-10) 

where 𝜆1
𝑅𝐴𝑀𝑃(𝒑) and 𝜆2

𝑅𝐴𝑀𝑃(𝒑) are the mean and variance of observed values given the modeled value 

�̃�(𝒑).  
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(g) (h) (i) 

   

 (j) 

 
Figure 2.1. Visual representations of systematic and random error. Panels (a)-(i) show different scenarios 
of high and low systematic and random errors. The left column (plots (a), (d), (g)) displays three different 
visual representations of estimates with large systematic error (i.e. high ME2) and low random error (i.e. 
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low VE). The middle column (plots (b), (e), (h)) displays representations of estimates with low systematic 
error and large random error. The right column (plots (c), (f), (i)) displays representations of estimates 
with large systematic error and large random error. The top row displays error using a target analogy, 
where estimates should ideally land on the target. The middle row displays the distribution of error via a 
PDF. The bottom row displays a group of paired modeled and observed concentrations around a given 
location. The modeled values are displayed on the independent axis as �̃� and the observed values are 

displayed on the dependent axis as �̂�. The solid line is the one-to-one line. Plot (j) shows the RAMP 
analysis of an arbitrary CMAQ grid location on 07/01/2001 for daily PM2.5. The black dots are all the 
paired modeled and observed daily PM2.5 concentrations within a space/time region ℛ(𝒑) consisting of 

the 3 closest stations to the CMAQ grid location of interest within 180 days of 07/01/2001, with modeled 
data on the independent axis and observed data on the dependent axis. The vertical black lines identify 
the 10 bins used to stratify all the paired data in which each bin contains one decile of all the paired 
points. The dotted black line is the one-to-one line between the modeled and observed data. The red + 

marker in each bin denotes 𝜆1,𝑙(�̃�𝑙 , ℛ(𝒑)), the average of paired observed values within the 𝑙-th decile bin. 

The blue x marker in each bin denotes the square root of 𝜆2,𝑙(�̃�𝑙; ℛ(𝒑)), the standard deviation of paired 

observed values within that bin. As shown in the figure, the + and x markers are linearly interpolated to 

obtain the 𝜆1(𝒑) and √𝜆2(𝒑) values, respectively, corresponding to the CMAQ modeled data �̃�(𝒑) within 

ℛ(𝒑).  
 
2.6 Validation and Stochastic Simulation 

Validation is performed by comparing the accuracy of the model correction performed by three 

approaches: the Constant, CAMP, and RAMP correction methods. The Constant correction method is 

defined through 

𝜆1
𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡(𝒑) = �̃�(𝒑) − 𝑀𝐸(𝒟),  (Equ. 2-11) 

with associated error variance 

𝜆2
𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡(𝒑) = 𝑉𝐸(𝒟),  (Equ. 2-12) 

i.e. the correction 𝑀𝐸(𝒟) and its associated error variance 𝑉𝐸(𝒟) are constant across the entirety of the 

domain with respect to both modeled value �̃�𝑘 and location 𝒑. The CAMP method assumes that the 

model performance of CMAQ is represented by domain wide S-curves 𝜆1(�̃�𝑘; 𝒟) and 𝜆2(�̃�𝑘; 𝒟) (Equ. 2-

2,2-3) that are a function of the modeled value �̃�𝑘, but not a function of space/time location 𝒑. In the 

CAMP method the correction for �̃�(𝒑) is performed by substituting �̃�𝑘 with �̃�(𝒑) in the domain-wide S-

curves, i.e. using the correction  

𝜆1
𝐶𝐴𝑀𝑃(𝒑) = 𝜆1(�̃�(𝒑); 𝒟) = �̃�(𝒑) − 𝑀𝐸(�̃�(𝒑); 𝒟) (Equ. 2-13) 

with associated error variance 

𝜆2
𝐶𝐴𝑀𝑃(𝒑) = 𝜆2(�̃�(𝒑); 𝒟) = 𝑉𝐸(�̃�(𝒑); 𝒟).  (Equ. 2-14) 

The RAMP correction on the other hand is done using Equ. 2-8 and 2-9. The corrected 𝜆1(𝒑) values for 

the Constant (Equ. 2-11), CAMP (Equ. 2-13) and RAMP (Equ. 2-8) methods are compared by calculating 



 
 

13 

 

performance statistics between paired 𝜆1(𝒑) and �̂�(𝒑) values for 2001. The performance of 𝜆2(𝒑) is 

assessed through standardized errors as shown in Table A.2 (i.e. 
𝜆1(𝒑)−𝑥(𝒑)

√𝜆2(𝒑)
).  

We also conduct a stochastic simulation to test how well each method reproduces the simulated 

truth. The maps of 𝜆1(𝒑) and 𝜆2(𝒑) obtained in this work are defined as being the true mean and variance 

of observed values. We also select �̃�(𝒑) from this work as being the true modeled values. We randomly 

generate �̂�∗(𝒑)~𝑁(𝜆1(𝒑), 𝜆2(𝒑)) and then we re-calculate 𝜆1
∗(𝒑) and 𝜆2

∗(𝒑) using the Constant, CAMP 

and RAMP methods based only on paired �̃�(𝒑) and �̂�∗(𝒑). Lastly, 𝜆1
∗(𝒑) and 𝜆2

∗(𝒑) are compared with 

𝜆1(𝒑) and 𝜆2(𝒑) visually through maps and through statistical metrics to evaluate how well 𝜆1
∗(𝒑) and 

𝜆2
∗(𝒑) are able to capture the spatial variability in the true mean, 𝜆1(𝒑), and variance, 𝜆2(𝒑), of observed 

values.  

2.3 Results and Discussion 

2.3.1 Model Performance Evaluation Results Demonstrating the RAMP Analysis  

A demonstration of the RAMP method was performed using daily PM2.5 concentrations predicted 

by CMAQ at the 36 km grid level for 2001 across the continental United States. The version of CMAQ 

used to calculate the PM2.5 was v4.5, which is the most recent version of CMAQ available for 2001 

across the continental US. Although newer versions of CMAQ exist for later years, it was critical to 

analyze model performance in 2001 due to an ongoing epidemiological study focused on novel 

neurodegenerative PM2.5 health end points and its association with loss of brain mass in older women 

(Chen et al., 2015). This study is based on a cohort from the Women’s Health Initiative-Memory Study 

(WHI-MS) and exposure data was reconstructed from 1999 to 2006. From an epidemiologic perspective, 

a model performance evaluation that can distinguish systematic from random error is especially important 

for a model version with known deficiencies (Foley et al., 2010). This new information can inform 

subsequent error correction of systematic errors and data fusion with data from other sources.  

Results of the RAMP analysis can be visualized for 07/01/2001 (Fig. 2.2). The RAMP results 

indicate that there are very clear geographical patterns in 𝑀𝐸2(𝒑) = 𝑀𝐸2(�̃�(𝒑); ℛ(𝒑)) (Fig. 2.2a) and 

𝑉𝐸(𝒑) = 𝑉𝐸(�̃�(𝒑); ℛ(𝒑)) (Fig. 2.2b). This indicates that both systematic errors and random errors are 

non-homogenous as demonstrated by the > 10 fold variation in 𝑀𝐸2(𝒑) and 𝑉𝐸(𝒑) across the continental 
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United States on that day. The maps shown in Fig. 2a-b allow for the identification of regions with high 

systematic and random errors. This is critical information needed to better understand the spatial 

uncertainty of model performance of the CMAQ predicted values �̃�(𝒑) across a given day (Fig. 2.2c). The 

RAMP analysis also produces 𝜆1
𝑅𝐴𝑀𝑃(𝒑) (Fig. 2.2d), which can directly be used in place of CMAQ values. 

In addition to the results shown in Fig. 2.2, the RAMP analysis produces a rich set of more detailed model 

performance metrics (see Appendix A).  

The domain wide model performance of CMAQ is assessed by the performance statistics 𝑀𝐸(𝒟), 

√𝑉𝐸(𝒟), 𝑀𝑆𝐸(𝒟) and 𝑟(𝒟) calculated over a domain 𝒟 corresponding to the continental United States in 

2001. These statistics are shown in the first column of Table 2.1.  Due to the influential nature of highly 

skewed standardized errors, all data were removed whose standardized errors were either less than the 

0.1 percentile or greater than the 99.9 percentile, constituting 348 data points. As shown in Table 2.1, the 

mean error for CMAQ is 𝑀𝐸(𝒟) = −1.05(𝜇𝑔/𝑚3), indicating that CMAQv4.5 has systematic errors that on 

average underestimates PM2.5 by 1.05 𝜇𝑔/𝑚3 across the continental United States in 2001. Interestingly, 

√𝑉𝐸(𝒟) = 7.77(𝜇𝑔/𝑚3), indicating that random errors are much larger than systematic errors. These 

systematic and random errors result in a total error of 𝑀𝑆𝐸(𝒟) = 61.5(𝜇𝑔/𝑚3)2 and with precision 

quantified by a correlation 𝑟(𝒟) = 0.589 between observed and modeled values.  
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(a) (b) 

  

(c) (d) 

  

Figure 2.2. Maps of RAMP error and RAMP error correction of CMAQ. Daily PM2.5 across the continental 

United States on 07/01/2001 displaying (a) RAMP 𝑀𝐸2(𝒑), (b) RAMP 𝑉𝐸(𝒑), (c) CMAQ concentration 

�̃�(𝒑) and (d) 𝜆1
𝑅𝐴𝑀𝑃(𝒑). Plots (c) and (d) are in 𝜇𝑔/𝑚3 and (a) and (b) are in (𝜇𝑔/𝑚3)2. Plot (b) shows 6 

regions of large random error delineated in the dashed green line with the same regions delineated and 
labeled in (a). Delineated regions include (1) the Great Lakes, (2) the Appalachian Mountains, (3) the 
South East, (4) Southern California, (5) Northern California and (6) the Rocky Mountains.  
 
2.3.2 Validation Results 

The validation statistics of three model performance evaluation methods (Constant, CAMP and 

RAMP) are shown in Table 2.1. These methods have increasing sophistication. The Constant method 

assumes that model performance is constant across 𝒟, the CAMP method accounts for non-linear and 

non-homoscedastic model performance and the RAMP method accounts for non-linear, non-

homoscedastic and non-homogeneous model performance shown in Table 2.1. The validation statistics 

are calculated using a corrected CMAQ value 𝜆1(𝒑) and associated error variance 𝜆2(𝒑) given by (Equ. 2-

11, 2-12), (Equ. 2-13, 2-14), and (Equ. 2-8, 2-9) for the Constant, CAMP and RAMP methods, 

respectively. 

Validation of 𝜆1(𝒑) is performed by comparing the 𝑀𝐸(𝒟), √𝑉𝐸(𝒟), 𝑀𝑆𝐸(𝒟) and 𝑟(𝒟) 

performance statistics of the raw CMAQ estimate (the first column of Table 2.1) with 𝜆1(𝒑) for each of the 
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three performance evaluation methods (the last three columns of Table 2.1). The magnitude of 𝑀𝐸(𝒟) 

drops from −1.05 (𝜇𝑔/𝑚3) for CMAQ to 0.03 (𝜇𝑔/𝑚3) , 0.03 (𝜇𝑔/𝑚3) and −0.02 (𝜇𝑔/𝑚3)  for the 

Constant, CAMP and RAMP methods, respectively. This was expected by design due to each method 

eliminating systematic errors across 𝒟. The model performance evaluation methods differ in their abilities 

to reduce random errors, as demonstrated by the √𝑉𝐸(𝒟) statistic. The √𝑉𝐸(𝒟) statistic progressively 

reduces from 7.77 (𝜇𝑔/𝑚3) for CMAQ to 7.18 (𝜇𝑔/𝑚3), 6.58 (𝜇𝑔/𝑚3) and 6.34 (𝜇𝑔/𝑚3) for the Constant, 

CAMP and RAMP methods, respectively. This translates in a total error that is lower for RAMP (𝑀𝑆𝐸 =

40.1 (𝜇𝑔/𝑚3)2) than for CAMP (𝑀𝑆𝐸 = 43.3 (𝜇𝑔/𝑚3)2) and the Constant method (𝑀𝑆𝐸 = 51.5(𝜇𝑔/𝑚3)2). 

This corresponds to a 22.1% reduction in MSE from the Constant to the RAMP method. This finding is 

further confirmed by the correlation between observed and 𝜆1(𝒑) values, which progressively increases 

from 𝑟 = 0.589 for CMAQ to 𝑟 = 0.698 for RAMP. These results demonstrate that 𝜆1(𝒑) calculated by the 

RAMP method is more accurate than the raw CMAQ output or the CMAQ corrected values obtained from 

the other model performance evaluation methods. 

Validation of 𝜆2(𝒑) is performed by comparing the 𝑉𝑆(𝒟), 𝑅𝑀𝑆𝑆(𝒟) and 𝑀𝑅(𝒟) performance 

statistics across the different model performance evaluation methods. The VS and RMSS are the 

variance and root mean squared error, respectively, of the Standardized error 𝑆, where 𝑆 = (�̃�(𝒑) −

𝑀𝐸(𝒟) − �̂�(𝒑))/√𝑉𝐸(𝒟) for the Constant method and 𝑆 = (𝜆1(𝒑) − �̂�(𝒑))/√𝜆2(𝒑) for the CAMP and 

RAMP methods. The standardized errors should ideally have a standard normal distribution, hence VS 

and RMSS should be close to 1. VS is 0.766 for the Constant method, 0.823 for the CAMP method and 

1.05 for the RAMP method. Because VS is closest to 1 for the RAMP method, the RAMP 𝜆2(𝒑) is more 

accurate than the Constant or CAMP 𝜆2(𝒑). The VS for the Constant method and CAMP are less than 

one, meaning the Constant method and CAMP methods overestimate the CMAQ prediction error 

variance. This result is confirmed by the RMSS and is further quantified by the MR. The MR is the mean 

of the CMAQ prediction error standard deviations. The 𝑀𝑅(𝒟) for RAMP indicates that the random error 

of CMAQ prediction has a standard deviation that is equal to 5.45 𝜇𝑔/𝑚3 on average across  𝒟. The 

𝑀𝑅(𝒟) for the Constant method is 8.20 𝜇𝑔/𝑚3, indicating that the Constant method leads to a substantial 

overestimation of random errors by about 50% over RAMP estimates. The overestimation of random error 
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is attenuated with the CAMP method, which has an 𝑀𝑅(𝒟) equal to 70.4 𝜇𝑔/𝑚3 corresponding to a 29% 

overestimation compared to the RAMP estimates. 

Overall these validation results demonstrate that the RAMP method provides a 𝜆1(𝒑) value that 

better corrects systematic errors than other performance evaluation methods and provides a 𝜆2(𝒑) value 

that better estimates random errors compared to other model performance evaluation methods. We 

hypothesize that this is due to the RAMP method being better able to assess the spatial and temporal 

uncertainty of systematic and random errors compared with other model performance evaluation 

methods. 

Statistic CMAQ 

CMAQ Corrected 

Constant 
Correction 

Non-linear/Non 
homoscedastic 

(CAMP) Correction 

Non-linear/Non 
homoscedastic and 
Non-homogenous 
(RAMP) Correction 

𝑀𝐸(𝒟) (𝜇𝑔/𝑚3) -1.05 0.03 0.03 -0.02 

√𝑉𝐸(𝒟) (𝜇𝑔/𝑚3) 7.77 7.18 6.58 6.34 

𝑀𝑆𝐸(𝒟) (𝜇𝑔/𝑚3)2 61.5 51.5 43.3 40.1 

𝑟(𝒟) (unitless) 0.589 0.625 0.631 0.698 

𝑉𝑆(𝒟) (unitless) NA 0.766 0.823 1.05 

𝑅𝑀𝑆𝑆(𝒟) (unitless) NA 0.875 0.907 1.03 

𝑀𝑅(𝒟) (𝜇𝑔/𝑚3) NA 8.20 7.04 5.45 
Table 2.1. Validation statistics. Statistics of the validation results of daily paired observed PM2.5 and 
𝜆1(𝒑) and 𝜆2(𝒑) estimated from each of the three methods: the Constant method, CAMP and RAMP for 
2001 across the continental United States. The CMAQ column are the statistics between the paired 
observed and CMAQ concentrations. VS is variance of the standardized errors, RMSS is square root of 
the mean squared standardized errors and MR is the mean of the square root of 𝜆2(𝒑). 
 
2.3.3 Stochastic Simulation Results 

The RAMP estimates of 𝜆1(𝒑) and 𝜆2(𝒑) obtained for 2001 were selected as the true mean and 

variance, respectively, of the observed values. The CMAQ modeled output was selected as the modeled 

value �̃�(𝒑). We obtained a stochastic realization of �̂�∗(𝒑)~𝑁(𝜆1(𝒑), 𝜆2(𝒑)) for each observed space/time 

location. Paired �̃�(𝒑) and �̂�∗(𝒑) values extracted for each observed space/time location. The Constant, 

CAMP and RAMP model performance evaluation methods are used to re-calculate 𝜆1
∗(𝒑) and 𝜆2

∗(𝒑) 

based only on �̃�(𝒑) and �̂�∗(𝒑) for 2001. The re-calculated  𝜆1
∗(𝒑) and 𝜆2

∗(𝒑) are compared to the 

selected 𝜆1(𝒑) and 𝜆2(𝒑) for July 1, 2001. Detailed outputs of the results of this stochastic simulation are 

given in Appendix A and are summarized here.  
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The map of the true systematic error �̂�(𝒑) − 𝜆1(𝒑) for July 1, 2001 displays by design clear 

geographical trends identifying well defined regions where systematic error is large. The map of re-

calculated systematic error �̂�(𝒑) − 𝜆1
∗(𝒑) obtained using the Constant method is constant and is therefore 

unable to capture the spatial variability in systematic errors. The corresponding map obtained with the 

CAMP method is able to capture spatial variability occurring across the entire modeling domain, but 

unable to capture the regional and fine scale variability in systematic errors. However, the corresponding 

RAMP map captures spatial variability of systematic errors at a fine spatial scale. A correlation coefficient 

𝑟 was calculated between �̂�(𝒑) − 𝜆1(𝒑) and �̂�(𝒑) − 𝜆1
∗(𝒑) for July 1, 2001. This correlation coefficient 

was 0%, 24.0% and 76.1% for the Constant, CAMP and RAMP methods, respectively. These results 

demonstrate that the RAMP method is better able to capture fine scale spatial variability of systematic 

errors. 

Similar results were found when comparing the true 𝜆2(𝒑) with 𝜆2
∗(𝒑) obtained for each model 

performance evaluation method, again for July 1, 2001. Qualitatively, the 𝜆2
∗(𝒑) map obtained with the 

Constant method misrepresents the true 𝜆2(𝒑) map by failing to capture any of the spatial variability in 

random errors and overestimating the average random error. The 𝜆2
∗(𝒑) map obtained with the CAMP 

method is a considerable improvement by reproducing variability at a long scale distance. However, 

visually, the CAMP method is unable to capture fine scale variability. The 𝜆2
∗(𝒑) map obtained with the 

RAMP method provides a good visual reproduction of the true systematic error. These results are 

quantitatively supported by the correlation coefficient between 𝜆2(𝒑) and 𝜆2
∗(𝒑) of 0%, 5.18% and 54.5% 

for the Constant, CAMP and RAMP methods, respectively. 

These results demonstrate that in situations where there is regional variability in model 

performance, the RAMP method is better able to estimate the spatial variability of systematic errors 

compared to the Constant and CAMP methods. This implies the RAMP method should be considered for 

performance evaluation in future studies wherever it is plausible for model performance to vary spatially.   

2.3.4 Evidence and Implications of Non-Linear and Non-Homoscedastic Model Performance  

 This work contributes novel evidence that the performance of air quality models is non-linear and 

non-homoscedastic. That is, 𝜆1 and 𝜆2 are a non-linear function of the modeled value �̃�𝑘. This is seen 

through 1) the comparison of the Constant method and the CAMP method and 2) the stochastic 
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simulation results. The Constant method assumes that 𝜆1 − �̃�𝑘 and 𝜆2 do not vary as a function of �̃�𝑘. The 

CAMP method assumes that 𝜆1 and 𝜆2 are non-linear functions of �̃�𝑘. The first evidence of non-linear and 

non-homoscedastic behavior comes from the validation results. The MSE reduces from 51.5 (𝜇𝑔/𝑚3)2 for 

the Constant method to 43.3 (𝜇𝑔/𝑚3)2 for the CAMP method, corresponding to a 16% reduction in MSE 

that demonstrates that model performance improves for a non-linear and non-homoscedastic model. In 

the stochastic simulation results, the Constant method is unable to capture the spatial variability in 

systematic and random errors whereas the CAMP method is able to capture domain-wide variability of 

these errors. Furthermore, both the validation and stochastic simulation results indicate that the Constant 

method significantly over predicts random errors compared to the CAMP method. Finally, the non-

homoscedastic behavior in model performance is evidenced by maps of 𝜆2(�̃�𝑘; ℛ(𝒑)) for different values 

fixed �̃�𝑘 values (see Appendix A), showing that at a given region ℛ(𝒑), the error variance changes 

substantially from one value of �̃�𝑘 to another.  

 From these results, one should be cautious when using linear and homoscedastic model 

performance evaluation methods to explore the spatial variability of model performance. This is the usual 

practice of current approaches in which models can be expressed as either �̃�(𝒔) = 𝛽0(𝒔) + 𝛽1(𝒔)�̂�(𝒔) +

휀(𝒔) (Fuentes and Raftery, 2005) or �̂�(𝒔, 𝑡) = 𝛽0(𝒔, 𝑡) + 𝛽1(𝒔, 𝑡)�̃�(𝒔, 𝑡) + 휀(𝒔, 𝑡) (Berrocal et al., 2010b). In 

both cases the relationship is linear and homoscedastic when assuming a constant error variance of the 

noise term, i.e. 휀(𝒔, 𝑡)~𝑁(0, 𝜎𝜖
2). The linearity of these models has advantages in terms of implementation, 

but they fail to account for the non-linear and non-homoscedastic nature of model performance. This may 

undermine their capacity to fully capture spatial variability in model performance. Furthermore, these 

methods may overestimate the error variance. By contrast the RAMP method provides a novel alternative 

that fully captures the space/time variability of non-linear non-homoscedastic model performance and, as 

a result, provides a novel description of the spatial patterns in systematic and random errors across the 

spatiotemporal continuum. 

2.3.5 Spatial Patterns of Systematic and Random Errors  

To better understand the magnitude of the systematic errors  𝑀𝐸2(𝒑) (Fig. 2.2a), we also show a 

map of 𝑀𝐸(𝒑) (Fig. 2.3), which differentiates areas where daily PM2.5 concentrations are over predicted 

(𝑀𝐸 > 0) versus under predicted (𝑀𝐸 < 0). The picture depicted by Fig. 2.2 and Fig. 2.3 is in line with 
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what we know about CMAQ. That is, CMAQ generally struggles with estimating high values of PM2.5 (Yu 

et al., 2012, 2008). Areas shown with negative 𝑀𝐸(𝒑) values in Fig. 2.3 (i.e. where PM2.5 is under 

predicted) coincide with areas shown to have high 𝜆1(𝒑) values in Fig. 2.2d (i.e. where PM2.5 levels are 

high).  

The RAMP analysis provides a map of 𝑀𝐸2(𝒑) across the continuous space/time domain (as 

opposed to being restricted to only monitoring stations). This makes it possible to clearly delineate and 

identify specific regions with high 𝑀𝐸2(𝒑) values and quantify their geographical extent. To illustrate this 

capability, we identified in Fig. 2.2a six regions (labeled 1-6) defined as having relatively high systematic 

error (i.e. 𝑀𝐸2(𝒑) ≥ 17.4 (𝜇𝑔/𝑚3)2). The areas of high systematic error are quantified as follows: (1) the 

Great Lakes (15,552 𝑘𝑚2), (2) the Appalachian Mountains (116,640 𝑘𝑚2), (3) the South East 

(38,880 𝑘𝑚2), (4) Southern California (73,872 𝑘𝑚2), (5) Northern California (75,168 𝑘𝑚2) and (6) the 

Rocky Mountains (290,304 𝑘𝑚2).  

Some of the regions identified for their high systematic errors are corroborated in the literature. 

The over prediction in region 1 (the Great Lakes) is in line with an overestimation of residential wood 

burning in the region reported in the National Emissions Inventory (NEI) (Appel et al., 2008). Region 3 

(South East) includes Atlanta where PM2.5 is over estimated and an area to its South where PM2.5 is 

under estimated. CMAQ is known to under predict PM in the South East. Some of this under prediction 

may be associated with highly uncertain SOA chemistry, particularly including chemistry from biogenic 

emissions (Chan et al., 2010; Morris et al., 2006). Likewise high systematic error in the mountain regions 

2 and 6 (Appalachia Mountains and the Rockies) can be associated with the known difficulties in 

modeling air quality accurately on and near mountain ranges (Steyn et al., 2013). The causes of high 

systematic error identified by RAMP in other regions may not yet be documented well. For example, the 

identification of Northern California (region 4) and Southern California (region 5) may serve as a trigger 

for further investigation into the constituents and chemical pathways of PM2.5 in these regions (Motallebi 

et al., 2003; USEPA, 2001) so as to investigate causes that may lead to systematic errors in these areas. 

To our knowledge this is the first work in the model performance literature to delineate these regions and 

quantify their geographic extent.    
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The map of 𝑉𝐸(𝒑) in Fig. 2.2b delineates areas with high random errors. It is interesting to note 

that areas of high systematic errors are always fully contained within areas of high random error as seen 

by comparing Fig. 2.2a and Fig. 2.2b. To our knowledge these are the first maps delineating regions of 

high random errors and finding general collocation with (and of about twice the magnitude of) systematic 

errors. If both systematic and random errors are caused by similar processes, then presumably reducing 

systematic errors could have the added benefit of also addressing collocated random errors.   

 
Figure 2.3. Map of RAMP mean error. Daily PM2.5 across the continental United States on 07/01/2001 
displaying 𝑀𝐸(𝒑) in 𝜇𝑔/𝑚3. The 6 regions of high random error delineated in Figure 2.2b are delineated 
in the dashed orange line. 
 
2.4 Conclusions 

This work introduces a spatiotemporal approach that can estimate and distinguish systematic 

from random error of predictions made by regulatory air quality models at any location of interest. The 

estimation of systematic and random error is created in a manner that does not assume that the 

relationship between observed and modeled values is linear or homoscedastic, and estimation of errors is 

performed in a manner that is regionalized. By estimating errors across a continuous geographical 

domain for a given day of interest, this approach permits the production of maps delineating areas of high 

errors. These maps are useful to 1) assess model performance by quantifying systematic and random 

error at a fine spatial resolution across the entire space/time domain where monitoring does not exist and 

2) do a model correction of systematic errors of the CMAQv4.5 estimates of PM2.5 for 2001 for individual 

grids. Future works include doing a data fusion of RAMP model corrected values and observations using 

the Bayesian Maximum Entropy (BME) method (Akita et al., 2012; Allshouse et al., 2009; de Nazelle et 

al., 2010; Reyes and Serre, 2014), and updating the RAMP analysis for other years. This future work will 

be critical for ongoing epidemiologic studies analyzing the effect of air pollution on brain aging for women 
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in the Women’s Health Initiative-Memory Study who were exposed to air pollution between 1999 and 

2006. The application of RAMP on CMAQv4.5 demonstrated that the RAMP analysis was able to 

successfully identify known regions of errors of this version of CMAQ. This work provides a model 

correction for 2001 based on the most recent of CMAQ for this year and provides a useful baseline 

against which future versions can be compared to explore changes in systematic and random errors. 
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CHAPTER 3: INCORPORATING REGIONALIZED AIR QUALITY MODEL PERFORMANCE 
EVALUATION IN A NATIONWDIE GEOSTATISTICAL DATA INTEGRATION OF DAILY PM2.52 

 
3.1 Introduction 

The Clean Air Act of 1990 established regulatory standards for air pollutants in the United States 

(Boldo et al., 2006; Pope et al., 2009). Currently there are six “criteria air pollutants” regulated by the US 

Environmental Protection Agency (EPA) due to their detriment to human health and the environment, 

including Particulate Matter ≤ 2.5 micrometers (PM2.5). PM2.5 is associated with a host of adverse 

health outcomes including increased risk of cardiovascular and respiratory disease and mortality (Beelen 

et al., 2007; Krewski et al., 2009; Pope et al., 2004). To ensure PM2.5 does not exceed the regulatory 

standard, a nationwide monitoring network has been established that measures PM2.5 concentrations on 

a regular basis. However, despite the significant number of regulatory stations, there are large monitoring 

gaps that exist in many parts of the country. These can become problematic in both epidemiologic studies 

when attempting to predict exposures and in regulatory settings when establishing attainment. From an 

epidemiologic standpoint, modeled data such as Chemical Transport Models (CTMs) and satellite data 

can be a means to fill in the gaps left from observed data (Brauer et al., 2015; Tang et al., 2016; van 

Donkelaar et al., 2015). CTMs (e.g. Community Multiscale Air Quality (CMAQ) model) are deterministic 

and combine emissions, meteorology and chemistry to predict ambient pollution concentration across the 

entirety of a gridded modeling domain (Appel et al., 2013b; Foley et al., 2015a, 2015b).   

In air quality modeling there has been a recent surge in data fusion methods. These methods 

combine different air quality sources together, in particular, observed data with gridded modeled data 

(Berrocal et al., 2010a; Crooks and Isakov, 2013; Fuentes and Raftery, 2005). Many studies that combine 

data sources focus on epidemiologic studies with the goal of having accurate exposure prediction that 

reduce misclassification (Beckerman et al., 2013). Observed data are considered highly accurate and 

                                                           
2 This chapter was submitted as an article to the journal Environmental Science and Technology. Reyes, 

Jeanette M., Xu,Yadong, Vizuete, William, Serre, L. Marc. Incorporating Regionalized Air Quality Model 
Performance evaluation in a nationwide geostatistical data integration of daily PM2.5. 



 

 

 

produce low prediction errors but are potentially sparsely measured. Corresponding prediction methods 

which may only use observed data (e.g. kriging) have lower spatial refinement. CMAQ data are 

considered less accurate than observed data but have excellent spatial and temporal coverage along with 

a higher level of spatial refinement. 

 Previous popular data fusion methods include the Downscaler method and Bayesian Melding 

(Berrocal et al., 2012, 2010a, 2010b). The Downscaler method takes output of a CTM model and uses it 

as an independent variable in the Downscaler regression model. The Bayesian Melding approach 

characterizes the full uncertainty in observed, modeled and the true underlying process of the air pollutant 

of interest. However, this method is computationally intensive and has only been applied in a spatial 

setting. Inherent in both of these methods are assumptions of linearity and homoscedastic behavior in the 

model. 

 This work proposes the Regionalized Air quality Model Performance (RAMP) incorporation into 

the Bayesian Maximum Entropy (BME) geostatistical framework (Reyes et al., 2016; Xu et al., 2016). 

BME is an extension of linear kriging and has the flexibility of incorporating multiple data sources 

together. The RAMP BME data fusion method is an extension of the Constant Air quality Model 

Performance (CAMP) method introduced by de Nazelle et al. (de Nazelle et al., 2010). The novel RAMP 

approach to model performance evaluation is able to quantify model performance metrics across the 

entirety of a domain and fully characterizes model performance at each space/time grid location over the 

fully spectrum of given modeled values. This proposed data fusion method can capture the accuracy of 

observed data with the spatial refinement of CMAQ data without assumptions of linearity and 

homoscedastic behavior. 

 A demonstration of the BME data fusion method developed in this work combines CMAQ 

modeled data with observed data to predict daily PM2.5 mass across the continental US for 2001. The 

BME method takes advantage of low prediction error associated with observed data along with the high 

spatial refinement associated with CMAQ modeled data. Results are then compared to a frequentist 

version of the Downscaler method. These results improve the spatial refinement of PM2.5 predictions and 

offer a more realistic exposure profile which can be used in epidemiologic analysis to reduce 
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misclassification and more clearly uncover the true association between participants’ air pollution 

exposures and health outcomes. 

3.2 Materials and Methods 

3.2.1 Observed and modeled data 

The daily observed PM2.5 concentration for each monitoring site/day during 2000-2002 were 

constructed based on raw monitoring data from monitoring stations measuring either hourly or daily 

PM2.5 concentrations obtained from the EPA’s Air Quality Systems data base (US EPA, n.d.). Daily 

concentrations for PM2.5 were also constructed from hourly modeled data averaged to daily for years 

2001 and 2002 using CMAQv4.5 across the contiguous United States on a 36 km grid. For more detailed 

information regarding the aggregation and pairing process of observed and modeled data see Appendix 

A.  

3.2.2 BME estimation methodology 

BME is a mathematically rigorous geostatistical space/time framework originally developed in a 

geostatistical setting by Christakos (Christakos, 2000; Christakos et al., 2001). BME can incorporate 

information from multiple data sources and is implemented using the BMElib suite of functions in 

MATLABTM. The buttress of BME has been detailed in other works and can be summarized as performing 

the following steps: 1) gathering the general knowledge base (G-KB) and site-specific knowledge base 

(S-KB) characterizing the Space/Time Random Field (S/TRF) 𝑋(𝒑) representing a process at space/time 

coordinate 𝒑 = (𝒔, 𝑡)  where 𝒔 is the spatial coordinate and 𝑡 is time, 2) using the Maximum Entropy 

principle of information theory to process the G-KB in the form of a prior Probability Distribution Function 

(PDF) 𝑓𝐺, 3) integrating S-KB in the form of a PDF 𝑓𝑆 with and without measurement error using an 

epistemic Bayesian conditionalization rule on data to create a posterior PDF 𝑓𝐾 and 4) creating 

space/time estimates based on the analysis. Typically the G-KB consists of the expected value and 

covariance of 𝑋(𝒑) denoted as  𝐺 = {𝑚𝑋(𝒑), 𝑐𝑋(𝒑, 𝒑′)} and the S-KB consists of hard data (data measured 

without error) and soft data (data measured with error) denoted as 𝑆 = {𝒙ℎ , 𝑓𝑠(𝒙𝑠)}. The BME posterior 

PDF 𝑓𝐾 describing the process 𝑥𝑘 at an estimation point of interest 𝒑𝑘  is given by the BME equation   

𝑓𝐾(𝑥𝑘) =  𝐴−1 ∫ 𝑑𝒙 𝑓𝑆(𝒙𝒔)𝑓𝐺(𝒙),                                (Equ. 3-1) 

where 𝒙 = (𝑥𝑘 , 𝒙ℎ , 𝒙𝑠) is a realization of 𝑿 at points 𝒑 = (𝒑𝑘, 𝒑ℎ, 𝒑𝑠) and 𝐴 is a normalization constant.  
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In this study we use an S/TRF to describe the variability of daily PM2.5 mass across the US in 

2001. Our notation for an S/TRF will consist of denoting a single random variable 𝑍 in capital letters, its 

realization, 𝑧, in lower case and vectors and matrices in bold faces (e.g. 𝒁 = [𝑍1, … , 𝑍𝑛]𝑇 and 𝒛 =

[𝑧1, … , 𝑧𝑛]𝑇). Let 𝑍(𝒑) = 𝑍(𝒔, 𝑡) be a Space/Time Random Field (S/TRF) representing daily PM2.5. The 

BME data fusion method incorporates both modeled and observed data. Let �̂�(𝒑) be the random variable 

representing the observed concentration, �̂�(𝒑) be its known (i.e. observed) value and �̃�(𝒑) be the CMAQ 

modeled value at location 𝒑.  

We define the transformation of observed PM2.5 data 𝒛ℎ observed at locations 𝒑ℎ as 

𝒙ℎ = 𝒛ℎ– 𝑜𝑍(𝒑ℎ)                 (Equ. 3-2) 

where 𝑜𝑍(𝒑) may be any deterministic offset that can be mathematically calculated without error as a 

function of the space/time coordinate 𝒑.  We then define 𝑋(𝒑) as a homogeneous/stationary S/TRF 

representing the variability and uncertainty associated with the transformed data 𝒙ℎ, and we let  𝑍(𝒑) =

𝑋(𝒑) + 𝑜𝑍(𝒑) be the S/TRF representing PM2.5. We can then calculate �̈�𝑘, the predicted daily PM2.5 at 

unmonitored location 𝒑𝑘, by obtaining the BME estimate �̈�𝑘 for the transformed S/TRF 𝑋(𝒑) at the 

estimation point 𝒑𝑘 and adding 𝑜𝑧(𝒑𝑘), the offset calculated at 𝒑𝑘. In this work we calculate the offset 

using a space/time composite kernel smoothing of the data (Lee et al., 2012). The covariance model for 

the homogeneous/stationary S/TRF 𝑋(𝒑) is developed from the experimental covariance of the 

transformed data 𝒙ℎ = 𝒛ℎ– 𝑜𝑍(𝒑ℎ). The offset and the corresponding covariance in this work are chosen 

as having the best combination of low variance and the high autocorrelation. For detailed information 

regarding the calculation of the offset function and covariance model, see Appendix B. 

3.2.3 Regionalized Air quality Model Performance (RAMP) soft data construction 

Like stated in the BME estimation methodology section above, part of the site specific knowledge 

of BME comes from soft data. Soft data are constructed with paired modeled and observed data through 

the Regionalized Air quality Model Performance (RAMP) methodology and has been documented in 

previous works and is detailed in Chapter 2 (Reyes et al., 2016; Xu et al., 2016). The resulting soft data 

are error corrected and can be thought of as a measure of model performance. Soft data at an estimation 

location can be represented as 𝑓𝑆(𝒙𝒔). Soft data are created for every daily PM2.5 modeled value. At a 
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given estimation location, several hard and soft data go into the corresponding prediction. Thus, we can 

further expand 𝑓𝑆(𝒙𝒔) to the following expression: 

𝑓𝑆(𝒙𝒔) = ∏ 𝑓(𝑥𝑖|�̃�𝑖 , 𝒑𝑖)
𝑛𝑚
𝑖 ,                       (Equ. 3-3) 

where 𝑛𝑚 is the number of CMAQ grids used in the calculation of the soft data, 𝑓(𝑥𝑖|�̃�𝑖 , 𝒑𝑖) is the soft data 

PDF of PM2.5 concentration at the modeled data location 𝒑𝑖 and �̃�𝑖 is the modeled value of PM2.5 

concentration after removing the offset. 

For the sake of clarity of the soft data development, consider the non-transformed random 

variable 𝑍. The soft PDF 𝑓(𝑧𝑖|�̃�𝑖, 𝒑𝑖) is Gaussian distributed with mean 𝜆1 and variance 𝜆2, denoted: 

𝑓(𝑧𝑖|�̃�𝑖 , 𝒑𝑖) = Φ(𝑧𝑖; 𝜆1(𝒑), 𝜆2(𝒑))                     (Equ. 3-4) 

The parameters 𝜆1 and 𝜆2 are dependent on the modeled value concentration around 𝒑. The parameters 

𝜆1 and 𝜆2 are estimated using the equations given below:(de Nazelle et al., 2010) 

𝜆1(�̃�𝑘; ℛ(𝒑)) = 𝑀[�̂�|�̃�𝑘; ℛ(𝒑)] ≈
1

𝑛(𝑧𝑘;ℛ(𝒑))
∑ �̂�𝑖                                                               (Equ. 3-5) 

𝜆2(�̃�𝑘, ℛ(𝒑)) = 𝑉[�̂�|�̃�𝑘; ℛ(𝒑)] ≈
1

𝑛(𝑧𝑘;ℛ(𝒑))−1
∑(�̂�𝑖 − 𝜆1(�̃�𝑘; ℛ(𝒑)))

2
              (Equ. 3-6) 

where 𝑛(�̃�𝑘; ℛ(𝒑)) is the number of paired modeled and observed points within region ℛ(𝒑) associated 

with space/time location 𝒑 which are from the 3 closest monitoring stations within 180 days around �̃�𝑘. 

Stated simply, 𝜆1 is estimated through pooling all paired modeled and observed data together in region 

ℛ(𝒑) associated with space/time location 𝒑 and close to the modeled value �̃�𝑘. The mean of all the near-

by observed data are taken to calculate 𝜆1(�̃�𝑘; ℛ(𝒑)). Similarly, the variance of all the near-by observed 

data are taken to calculate 𝜆2(�̃�𝑘, ℛ(𝒑)). Modeled and observed data are paired if an observed datum lies 

within a given grid.    

Although 𝜆1(�̃�𝑘; ℛ(𝒑)) and 𝜆2(�̃�𝑘, ℛ(𝒑)) can be calculated for any arbitrary �̃�𝑘, in this work we set 

�̃�𝑘 = �̃�(𝒑), where �̃�(𝒑) is the CMAQ modeled value at 𝒑. By replacing �̃�𝑘 with �̃�(𝒑) in Equ. 3-5 and Equ. 3-

6, we define 𝜆1(�̃�(𝒑), ℛ(𝒑)) = 𝜆1(𝒑) and 𝜆2(�̃�(𝒑), ℛ(𝒑)) = 𝜆2(𝒑). For the sake of shorthand in this work, 

we further define 𝜆1 = 𝜆1(𝒑) and 𝜆2 = 𝜆2(𝒑). 

3.2.4 Leave One Out Cross Validation (LOOCV) accuracy analysis 

To assess the prediction accuracy of the BME data fusion method, a LOOCV accuracy analysis is 

performed. For each monitoring station, all data are removed one at a time and predicted through RAMP 
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BME for each removed datum (without recalculating the offset or the covariance model) using all the data 

from the remaining monitoring stations and soft data. This is repeated again for each monitoring station. 

However, instead of only removing data from a single monitoring station, all observed data within a given 

radius from the monitoring station (100 km, 200 km, 300 km, … , 900 km) are removed. 

The difference between each prediction value �̈�𝑖 and observed value �̂�𝑖 is the prediction error, 

𝑒𝑖 = �̈�𝑖 − �̂�𝑖. The prediction accuracy is quantified based on statistics of prediction errors, which consist of 

the Mean Squared Error (MSE, (𝜇𝑔/𝑚3)2), Mean Error (ME, 𝜇𝑔/𝑚3) and the Pearson’s correlation 

coefficient (𝑟, unitless) between observed and predicted values. BME data fusion predictions are then 

compared to kriging (i.e. predictions created only using observed data).   

Because 𝜆1 and 𝜆2 are written in terms of an expected value and variance, respectively, 

performance metrics can be written in terms of these quantities. Namely, mean error and variance of error 

for an arbitrary 𝒑 (see Chapter 2). 

𝜆1(𝒑) = �̃�(𝒑) − 𝑀𝐸(𝒑)                  (Equ. 3-7) 

𝜆2(𝒑) = 𝑉𝐸(𝒑)                                           (Equ. 3-8) 

Using the relation equating mean squared error to mean error and variance of error (i.e. 𝑀𝑆𝐸 = 𝑀𝐸2 +

𝑉𝐸), LOOCV results can be stratified by the scaled mean error statistic, 

𝑆𝑀𝐸(𝒑) = 𝑀𝐸2(𝒑)/𝑀𝑆𝐸(𝒑).                                                                                                           (Equ. 3-9) 

3.2.5 Comparison to the frequentist Downscaler method 

This work is compared to a frequentist implementation of the space/time Downscaler method 

(Berrocal et al., 2010a). A full description of this method can be found in Appendix B. In short, 

𝑍(𝒑)~𝑁(𝜇𝑍, 𝑐𝑍)  where 𝑍(𝒑) is the pollutant of interest. �̂�(𝒑) is defined as: 

�̂�(𝒑) = 𝛽0𝑡 + 𝛽0(𝒑) + 𝛽1𝑡�̃�(𝒑) + 𝛽1(𝒑)�̃�(𝒑) + 𝜖(𝒑),                      (Equ. 3-10) 

where 𝛽0𝑡 is the constant additive bias, 𝛽0(𝒑) is the additive bias that changes as a function of 𝒑, 𝛽1𝑡 is 

the constant multiplicative bias, 𝛽1(𝒑) is the multiplicative bias that changes as a function of 𝒑, �̃�(𝒑) is the 

modeled value concentration of 𝒑 and 𝜖(𝒑) is random noise. In the space/time application of the 

Downscaler, the additive and multiplicative biases can be treated independently across time or they can 

be treated in a more recursive manner. The results given in this work use the space/time Downscaler in 
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which both the additive and multiplicative bias are treated independently across time. The results given 

below are a frequentist implementation of this method (i.e. all parameters are estimated empirically).  

3.3 Results and Discussion 

3.3.1 PM2.5 data fusion demonstration of RAMP BME 

 A demonstration of the BME data fusion method was completed by combining daily observed 

PM2.5 with daily systematic error corrected CMAQ predictions were generated using CMAQv4.5 on a 36 

km grid across the continental United States for 2001. BME predictions were created at the centroid of 

each CMAQ grid. Results of the BME data fusion method and kriging are displayed across the continental 

US on 07/01/2001 (Fig. 3.1). There is a clear spatial pattern for BME across the day as shown through 

the posterior mean (Fig. 3.1b). There is an area of high daily PM2.5 predictions (over 20 𝜇𝑔/𝑚3) in 

Southern California, which is an area known to have high PM2.5 concentrations (Fann et al., 2012). 

There is a distinctive band of high concentrations, also around 20 𝜇𝑔/𝑚3, in the Eastern US extending 

from the New England area to West Virginia ending around Illinois. Areas of low concentrations (between 

0 − 4 𝜇𝑔/𝑚3) can mostly be found in the US states bordering Canada including Montana, North Dakota 

and Minnesota, which are states known to have relatively low concentrations of daily PM2.5 (Fann et al., 

2012). For comparison to the BME data fusion method, kriging predictions are created for the same 

locations across the US on 07/01/2001 using only observed daily PM2.5 data (Fig. 3.1a,c). Generally 

speaking, the overarching spatial patterns of the kriging map are similar to those of BME (Fig. 3.1a). 

Kriging mean predictions show a PM2.5 plume encompassing a larger area over Southern California 

compared to BME. Likewise, the kriging map depicts the entirety of New England as having large PM2.5 

concentrations. The pattern of relatively high PM2.5 concentration continues across West Virginia and 

Illinois, albeit at lower concentrations than are predicted for BME. For kriging, areas of the country 

showing the lowest concentration are the same border states. However, the lowest concentrations of 

PM2.5 for kriging are between 4 − 8 𝜇𝑔/𝑚3, while low concentrations for BME are between 1 − 5 𝜇𝑔/𝑚3.    

 The uncertainty with both the BME and kriging mean estimates is quantified by their 

corresponding standard deviation of estimation errors (Fig. 3.1c,d). As expected, the kriging standard 

deviations drop close to zero when predictions are made near observed data (Cao et al., 2014), but they 

reach approximately 5.5 𝜇𝑔/𝑚3 across large proportions of the Western US from Kansas to Montana, 
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around areas that are far from observed data. This is in stark contrast with the BME standard deviation 

map, which displays substantially lower standard deviations in the same areas. By design the BME 

framework benefits from information provided by observations as well as CMAQ data, where the latter 

covers the entirety of the mapping domain. It is the addition of these CMAQ data that are responsible for 

the sizable decrease in the standard deviation in areas suffering from sparse air quality monitoring. As a 

result, the average estimation error standard deviation across the US drops substantially from kriging to 

BME. The average standard deviation on 07/01/2001 is 5.6 𝜇𝑔/𝑚3 for kriging while that value drops to 

2.0 𝜇𝑔/𝑚3 for BME, indicating a more than two fold decrease in mapping uncertainty across the US.  

 We are also able to visualize the differences between the BME mean and the kriging mean 

estimates across the US (Fig. 3.1e). The difference calculated as the BME mean minus the kriging mean 

is mostly positive in the Eastern US with exceptions seen from New York to Maine. In the Western US the 

difference is mostly negative with exceptions seen in parts of Northern California and Utah. Lastly, we are 

able to visualize the parameters 𝜆1 and 𝜆2 that go into the BME data fusion method (Fig. 3.1f). Areas 

shown in Fig. 3.1f (i.e. (𝜆1 − 𝐸𝐾𝑟𝑖𝑔[𝒁])/√𝜆2) are mostly negative.    
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(a) (b) 

  

(c) (d) 

  

(e) (f) 

  
Figure 3.1. Map of kriging and BME mean and variance. Daily PM2.5 across the continental United States 
on 07/01/2001 displaying the (a) kriging mean estimate (𝐸𝐾𝑟𝑖𝑔[𝒁]), (b) BME mean estimate (𝐸𝐵𝑀𝐸[𝒁]), (c) 

kriging standard deviation, (d) BME standard deviation, (e) 𝐸𝐵𝑀𝐸 [𝒁] − 𝐸𝐾𝑟𝑖𝑔[𝒁] and (f) (𝜆1 − 𝐸𝐾𝑟𝑖𝑔[𝒁])/

√𝜆2. Plots. (a)-(e) are in 𝜇𝑔/𝑚3 and (f) is unitless.  

 
3.3.2 Validation results 

 An LOOCV is performed for the BME data fusion method and the kriging method on daily 

observed PM2.5 for 2001 for 10 different cross validation radii from 0 km to 900 km in increments of 100 

km.  The Percent Change in Mean Square Error (PCMSE) from kriging to BME is calculated for various 

cross validation radii (Fig. 3.2a,b). Negative PCMSE values indicate that BME has a lower MSE than, and 

therefore outperforms, kriging. The PCMSE ranges from −2.0% to −33% across cross validation radii as 

seen in the baseline in Fig. 3.2a, demonstrating that BME outperforms kriging across all cross validation 
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radii, and that this outperformance enhances significantly with increasing cross validation radii. As 

increasing distance between the prediction location and the nearest observed data increases, the kriging 

method suffers a significant increase in MSE, which is tampered for BME due to the information 

contributed by the CTM data.  

  Because all observations can be paired with a corresponding CMAQ value, all observed data 

can be paired with the corresponding error corrected CMAQ value 𝜆1 characterizing the expected PM2.5 

concentration at that location. Hence the PCMSE can further be explored as a function of different 

selection criteria for 𝜆1. The criteria used in Fig. 3.2a correspond to the baseline case (all observations 

are included), 𝜆1 ≥ 12.4 𝜇𝑔/𝑚3 and 𝜆1 ≥ 16.8 𝜇𝑔/𝑚3. The PCMSE becomes more negative as 𝜆1 

increases, and this becomes even more pronounced for larger cross validation radii.  

Likewise the CMAQ value collocated with each observation can be characterized by the model 

performance parameter 𝑆𝑀𝐸(𝒑) at the CMAQ grid coordinate 𝒑, which quantifies the proportion of 

systematic to total error for the CMAQ prediction.(Reyes et al., 2016) When the PCMSE is calculated 

using only observations for which the collocated CMAQ values are such that 𝑆𝑀𝐸(𝒑) ≥ 22%, the 

reduction in MSE from kriging to BME is even more pronounced (Fig. 3.2b). The PCMSE ranges from 

−3.1% to −32% depending on 𝜆1 and cross validation radii. The PCMSE falls more quickly for increasing 

radii as the 𝑆𝑀𝐸(𝒑) ≥ 22% criteria is added, especially for radii 200-400 km. For the baseline case, 

previous to the application of the proportional systematic error criteria, the PCMSE is −2.1% for 200 km, 

−4.2% for 300 km and −9.6% for 400 km. After the proportional systematic error criterion is applied the 

PCMSE is −10% for 200 km, −12% for 300 km and −16% for 400 km. 

 Within each cross validation radii, the increasing exclusion criteria makes the PCMSE more 

pronounced (Table 3.1). Within in a 0 km cross validation radius, the PCMSE ranges from −2.9% to 

−3.7%. At 400 km, the PCMSE ranges from −9.6% to −26.1%. At 800 km, the PCMSE ranges from 

−19.1% to −31.6%.  
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(a) 

 

(b) 

 

(c) 

 

Figure 3.2. Cross validation comparing kriging with BME and the frequentist Downscaler. (a) Percent 
change in MSE from Kriging to BME calculated for 𝑆𝑀𝐸(𝒑) ≥ 0% with increasing LOOCV radii and 

increasing 𝜆1. A negative percent change indicates that BME has lower error. (b) Percent change in MSE 
from Kriging to BME calculated for 𝑆𝑀𝐸(𝒑) ≥ 22% with increasing LOOCV radii and increasing 𝜆1. (c) 
Percent change in MSE from the frequentist Downscaler to both BME and CMAQ calculated for 
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increasing percentiles of 𝑆𝑀𝐸(𝒑) for the 200 km LOOCV radius. In (a) Baseline comprises 174,531 

(100%) points, 𝜆1 ≥ 12.4 comprises 69,814 (40%) points, 𝜆1 ≥ 16.8 comprises 34,906 (20%) points. In (b) 
Baseline comprises 52,360 (30%) points, 𝜆1 ≥ 12.4 comprises 21,636 (12%) of points, 𝜆1 ≥ 16.8 

comprises 11,386 (6.5%) points. 
 
3.3.3 Non-homogenous behavior of BME data fusion  

The model performance of CMAQ has been shown to be non-linear and non-homoscedastic with 

respect to modeled value, and non-homogenous across space/time (Reyes et al., 2016). The RAMP 

method fully captures the non-linear, non-homoscedastic and non-homogenous behavior of model 

performance through its 𝜆1(𝒑) and 𝜆2(𝒑) parameters. The 𝜆1(𝒑) parameter is calculated through paired 

observed and modeled data, while 𝐸𝐾𝑟𝑖𝑔[𝒁] is the kriging prediction based on observations alone. 

Therefore, the difference 𝜆1(𝒑) − 𝐸𝐾𝑟𝑖𝑔[𝒁] is the expected correction when comparing the kriging estimate 

based only on observations, to an estimate based on data fusion incorporating both observations and 

CMAQ data. The parameter 𝜆2(𝒑) characterizes the uncertainty associated with the CMAQ data. Looking 

at the standardized metric 
𝜆1−𝐸𝐾𝑟𝑖𝑔[𝒁]

√𝜆2
 is a means to see apriori regions of the country in which the data 

fusion method will be most influential (Fig. 3.1f). The locations in which that quantity is largest in 

magnitude correspond to where the data fusion predictions differ the most compared to kriging 

predictions. We found that this is indeed the case by comparing Fig. 3.1e with Fig. 3.1f. This 

demonstrates that the BME data fusion properly incorporated the soft data generated by the RAMP 

analysis. The RAMP BME data fusion method is in contrast with current data fusion approaches that 

assume linearity and a homoscedastic relationship between observed and gridded modeled data. These 

approaches have been expressed through Bayesian Melding as �̃�(𝒔) = 𝛽0(𝒔) + 𝛽1(𝒔)�̂�(𝒔) + 휀(𝒔)(Fuentes 

and Raftery, 2005) and through the Downscaler as �̂�(𝒔, 𝑡) = 𝛽0(𝒔, 𝑡) + 𝛽1(𝒔, 𝑡)�̃�(𝒔, 𝑡) + 휀(𝒔, 𝑡) (Berrocal et 

al., 2010b). The linear nature and homoscedastic assumption of these models has advantages in terms of 

implementation, but they fail to account for the non-linear and non-homoscedastic nature of model 

performance (Reyes et al., 2016; Xu et al., 2016). The RAMP BME framework presented here provides 

an attractive alternative for data fusion because it explicitly accounts for the non-linear, non-

homoscedastic and non-homogenous nature of model performance.   

To investigate this, we compare the data fusion BME method with a frequentist implementation of 

the Downscaler equation (Berrocal et al., 2010b) that assumes model performance is linear and 
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homoscedastic. The statistical underpinnings of the steps taken to implement the frequentist Downscaler 

can be found in Appendix B. Through a LOOCV analysis, the PCMSE was calculated between the 

frequentist Downscaler and the raw CMAQ data as well as the BME data fusion method for the 200 km 

cross validation radius (Fig. 3.2c). Results are stratified by percentile of the proportion of systematic error 

to total error 𝑆𝑀𝐸(𝒑). An increase in proportional systematic error implies a decrease in the proportion of 

random error. Decreased proportion of random error in the model performance metric translates into less 

uncertainty in the CMAQ data. As a result, the PCMSE between the frequentist Downscaler and the 

CMAQ data increases from 40% to 55% (Fig. 3.2c), indicating a clear trend of improved performance as a 

function of increasing proportional systematic error. This shows that the frequentist Downscaler is a 

successful data fusion method. However the PCMSE between RAMP BME and the frequentist 

Downscaler ranges from −11% to −32% (Fig. 3.2c), meaning the MSE is 11 to 32% lower for BME 

compared to the frequentist Downscaler approach. This substantial improvement demonstrates that BME 

has higher estimation accuracy. 

 



 

 

 

Table 3.1. Cross validation statistics across radii. Cross validation results for daily PM2.5 across the contiguous US for 2001 from three LOOCV 

radii: 1) 0 km, 2) 400 km, and 800 km displaying results of the statistics of Mean Squared Error, MSE ((𝜇𝑔/𝑚3)2), correlation coefficient, 𝑟 
(unitless) and Percent Change in MSE, PCMSE (%). Statistics are displayed comparing observed values with estimates calculated through kriging 

and BME. Within each LOOCV radius there are three exclusion criteria implemented: 1) a “Baseline” including all data, 2) 𝑆𝑀𝐸(𝒑) ≥ 22%, 
including only observed space/time locations associated with proportional systematic error model performance greater than or equal to 22% and 

3) adding an additional exclusion criteria 𝜆1 ≥ 16.8, including only observed space/time locations associated with the 𝜆1 parameter greater than or 

equal to 16.8.  

 
  0 km Radius 400 km Radius 800 km Radius 

Statistic Method Baseline 
𝑆𝑀𝐸
≥ 22% 

𝑆𝑀𝐸 ≥ 22%, 
𝜆1 ≥ 16.8 

Baseline 
𝑆𝑀𝐸
≥ 22% 

𝑆𝑀𝐸 ≥ 22%, 
𝜆1 ≥ 16.8 

Baseline 
𝑆𝑀𝐸
≥ 22% 

𝑆𝑀𝐸 ≥ 22%, 
𝜆1 ≥ 16.8 

MSE  
Kriging 20.5 23.7 40.6 47.9 60.1 159.3 56.8 66.4 173.8 

BME 19.9 22.4 39.1 43.3 50.5 117.7 45.9 51.9 118.8 

𝑟 
Kriging 0.863 0.859 0.841 0.629 0.579 0.382 0.539 0.517 0.378 

BME 0.866 0.865 0.846 0.673 0.660 0.459 0.649 0.647 0.457 

PCMSE  --- -2.9 -5.2 -3.7 -9.6 -16.0 -26.1 -19.1 -21.8 -31.6 
 3
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3.3.4 Stratification of BME data fusion performance  

 As discussed above with the cross-validation results, percent change in MSE comparing kriging 

to BME improves with increasing cross-validation radii, increasing 𝜆1 and increasing systematic error. In 

the RAMP methodology 𝜆1 is a CMAQ prediction that has been corrected for systematic errors, hence 

large 𝜆1 values are associated with high PM2.5 concentrations.  

 The cross validation MSE increases for both kriging and the BME data fusion method as the 

exclusion criteria becomes increasingly more stringent (Table 3.1). Increasing MSE is expected with 

increasing 𝜆1 due to the higher errors being associated with high observed concentrations. Performance 

of BME over kriging accentuates with increasing 𝜆1 values (Fig. 3.2a). This differentiation leads to an 

improvement in MSE when comparing BME with kriging. For BME we hypothesize incorporation of 𝜆1s 

improve prediction due to high 𝜆1s being surrogates for high PM2.5 concentration. When looking at the 

data fusion method stratifying by increasing 𝜆1 will, by definition, include larger 𝜆1 values into the 

prediction. This will increases the magnitude of the prediction and create an improved ME when 

compared with kriging.  

Data fusion performance is differentiated even further when data are subset to high levels of 

proportional systematic error. As proportional systematic error increases, random error decreases. As has 

been shown in previous work (Reyes et al., 2016), there is a correspondence between random error and 

𝜆2. By stratifying performance by both high PM2.5 concentrations and low random error, predictions have 

a low uncertainty and soft data contribute more to predictions at unmonitored locations.  

Investigating model performance metrics provide insight into locations where the BME data fusion 

method would be most beneficial and show the largest improvement in prediction compared with using an 

observational based method, like kriging. Increased performance in the data fusion method with 

increasing cross validation radii demonstrates that the data fusion method can increase performance far 

from monitors. This has implications in epidemiologic studies when assigning exposure to participants 

who live in rural areas or areas located far from regulatory monitoring stations. 

3.3.5 Data fusion corrects the bias of observation based predictions  

Looking at the difference between the BME and kriging mean predicted across all CMAQ grid 

locations for a given day (Fig. 3.1e), the difference between BME mean and kriging mean is mostly 
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negative. Of the 16,576 prediction grids shown for 07/01/2001, 12,310 (74.26%) are negative and 4,266 

(25.74%) are positive. For this given day there is nearly a 2.9:1 odds that the kriging prediction is larger 

than the BME prediction. This is due to the coarseness of the inputs in kriging. Kriging predictions are 

created only using observed data from regulatory monitors. That is, kriging is limited to prediction at the 

scale in which observed data exist. In between monitors, particularly where there is sparse monitoring, 

there is a failure to see fine scale variation. Most regulatory monitors are located in urban areas with 

denser monitoring. With kriging, urban spatial gradients are then incorrectly applied to rural areas. Rural 

areas with lower daily PM2.5 concentrations typically have sparse monitoring. To provide a prediction in 

rural areas, kriging must utilize observed data large distances from the prediction locations, leading 

kriging predictions to over predict low concentrations. Along with low concentrations seen largely in rural 

areas, kriging has difficulty estimating the highest PM2.5 concentrations. Typically, the highest daily 

PM2.5 concentrations typically are observed in isolation, with the surrounding stations observing relatively 

lower concentrations. In an LOOCV, an interpolation of surrounding stations is unable to predict at the 

highest concentrations.   

The soft data incorporated into BME have been removed of systematic error. Therefore, on 

average, the mean error between observed and the soft data is zero. Not only does the soft data match 

closely with the observed data where the observed data exist, but the soft data are then able to pick up 

on small scale variation in between monitors. It is this small scale variation that is incorporated into BME.  

This work implies that modelers should be cautious when using observation only prediction 

methods far from observed data or when PM2.5 studies include the highest PM2.5 concentrations. There 

may be a tendency to pick up on trends seen in areas with denser monitoring. These same trends may 

not apply in more rural areas. From an epidemiologic perspective, an observation only geostatistical 

approach can be problematic for rural areas.  

3.3.6 Data fusion captures fine scale variability of PM2.5 

The BME data fusion method is able to capture fine scale variability of daily PM2.5 better than 

observation based only prediction methods. Three areas of the country were explored to quantify the 

magnitude of refinement. The covariance ranges of the BME and kriging posterior means on 07/01/2001 

were calculated from three distinct areas of the country: 1) Southern California, 2) the Mid-East and 3) 
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Missouri (Fig. B.6). To quantify the spatial refinement, covariance models were calculated on the posterior 

means in each of these three areas (Fig. B.7). The kriging covariances fit a one-structured model while 

the BME covariances fit a two-structured model. The shortest ranges for kriging are 422 km, 296 km and 

386 km for Southern California, the Mid-East and Missouri, respectively. The shortest ranges for BME are 

66 km, 39 km and 58 km for Southern California, the Mid-East and Missouri, respectively. The ratios 

between the shortest kriging ranges to the shortest BME range are 6.4, 7.6 and 6.7 for Southern 

California, the Mid-East and Missouri, respectively. That is, BME allows for over 6 times the amount of 

spatial refinement compared with kriging. This can we seen visually through maps (Fig. 3.1a,b). In 

Southern California the BME mean map is able to refine spatial variability by only having high PM2.5 

levels concentrated in and around Los Angeles, California, while the kriging map encompasses a much 

larger proportion of California. The Mid-East area is much further refined by having a more pronounced 

gradient between high and low concentrations. By contrast, the kriging mean has the high concentrations 

in the Mid-East as one contiguous front.  

This finding has major implications in epidemiologic studies. When exploring long-term exposure 

of ambient concentrations to air pollutants at a coarse scale, misclassification can be highly problematic. 

Exposure predictions benefit both from the accuracy of observed data and the coverage and spatial 

refinement of modeled data. The BME data fusion method has both of these characteristics. With high 

levels of potential misclassification, links between disease and exposure can be understated or missed.     

Exposure predictions from the BME data fusion method have been used to investigate 

associations between long term exposure to PM2.5 and brain mass in elder women in a cohort from the 

Women’s Health Initiative (WHI) focusing on memory studies (Chen et al., 2015). Exposure prediction 

profiles for individual participants are considered more realistic when variation within a given participant is 

high (Chen et al., 2015). Variation for the BME data fusion method remains higher than kriging when 

investigating posterior means across the US even when the spatial domain is subset (Fig. B.8). The 

average variance within increasingly smaller spatial subdomains for BME is up to 15 times that of kriging. 

With larger spatial variation, exposure profiles in an epidemiologic setting because increasingly more 

realistic.  
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3.3.7 Overall contributions and future works  

This work incorporated the RAMP error corrected CMAQ data with observed data into the BME 

data fusion method. The soft data added in this work takes into account the non-linear, non-

homoscedastic and non-homogeneous model performance seen in CMAQ. This is the first work to 

incorporate observed and CMAQ modeled data together in the BME framework to predict daily PM2.5. 

The BME data fusion method improves spatial refinement of predictions and captures fine scale 

variability. Limitations in this work include using an older version of CMAQ. CMAQv4.5 is the most current 

version of CMAQ predicting across the US for the year 2001, which was needed for the Women’s Health 

Initiative-Memory Study (WHI-MS) associated with this work (Chen et al., 2015). However, any 

epidemiologic study investigating 2001 can benefit from this work. Using a CMAQ model version with 

known deficiencies (Foley et al., 2010) provides an ideal case study for exploring a data fusion method. 

From an epidemiologic perspective, having fine scale predictions from this time period can be helpful 

when assessing long term exposure to an air pollutant (Chen et al., 2015). Future work includes 

reevaluating the BME data fusion method with an updated version of CMAQ and reanalyzing the resulting 

improvement in predictions. 
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CHAPTER 4: INCORPORATING MASS FRACTION OF POLYCYCLIC AROMATIC HYDROCARBONS 
INTO THE BAYESIAN MAXIMUM ENTROPY FRAMEWORK ACROSS NORTH CAROLINA3  

 
4.1 Introduction 

Polycyclic Aromatic Hydrocarbons (PAHs) are a class of organic compounds containing 2 or 

more fused aromatic rings created by incomplete fuel combustion from a variety of sources including 

biofuel burning, wildfires, coal production, etc. (Di-Toro et al., 2000; Zhang and Tao, 2009). Several 

species of PAHs have been designated by the US Environmental Protection Agency (EPA) as being 

probably human carcinogens (Bocskay et al., 2005; Menzie et al., 1992; Wolff et al., 2005). Currently the 

EPA only has PAH regulatory standards for drinking water and National Institute for Occupational Safety 

and Health (NIOSH) has established occupational exposure limits to coal tar pitch volatiles (Kim et al., 

2013). International organizations and other countries have established ambient concentration guidelines 

for one of the more toxic PAHs, benz(a)pyrene (Ravindra et al., 2008). However, currently in the US there 

are no regulatory standards for ambient concentrations of PAHs. PAHs can be costly to measure (Pleil et 

al., 2004). Compared to regulated ambient air pollutants, there are few epidemiologic studies that have 

utilized observed data or explored ambient exposures to different PAHs (Abdel-Shafy and Mansour, 

2015). From a geostatistical perspective, limited ambient observed data have resulted in few studies 

creating maps of PAHs concentrations across space/time (Allshouse et al., 2009; Augusto et al., 2009; 

Lee et al., 2016; Ribeiro et al., 2015). Others have used Chemical Transport Models (CTMs) to predict 

PAH concentrations (Guerreiro et al., 2016; Ravindra et al., 2008). However, these studies are limited in 

number. As a result, there is a gap in the literature exploring ambient PAH exposures and their 

associations with various health endpoints.

                                                           
3 This chapter is planned to be submitted as an article to the Journal of Exposure Science and 

Environmental Epidemiology. Reyes, Jeanette M., Hubbard, Heidi, Stiegel, Matthew A., Pleil, Joachim D., 
Serre, L. Marc. Incorporating Mass Fraction of Polycyclic Aromatic Hydrocarbons into the Bayesian 
Maximum Entropy Framework across North Carolina. 

 



 

 

 

 

There is a lack of consistent PAH monitoring outside of monitoring campaigns conducted for 

specific studies. In contrast to the data poor environment of PAH monitoring, Particulate Matter ≤ 2.5 

micrometers (PM2.5) exists in a data rich environment with a vast, consistent, historical monitoring 

network across the US.(US EPA, n.d.) Currently there are 16 EPA designated priority PAHs, 9 of which 

are particle-bound (Allshouse et al., 2009). Thus, a portion of PM2.5 is particle-bound PAH. The US state 

of North Carolina currently has no maps displaying PAH concentration. For this work 84 PM2.5 filters 

were collected from North Carolina in 2005 and analyzed for 9 particle-bound species of PAH. The 

relationship between collocated PAH and PM2.5 data is developed and applied elsewhere where PM2.5 

is known. The goals of this work is the provide maps and present a novel method of modeling sparse 

data, supported through a data rich environment, which can be applied elsewhere through the modern 

geostatistical Bayesian Maximum Entropy (BME) framework (Christakos, 2000; Christakos et al., 2001).  

This study explores the relationship between PM2.5 and PAH and is an extension of previous 

work done by Allshouse et al. (Allshouse et al., 2009) that investigated PAH near the World Trade Center 

after September 11th. An empirical approach is taken to find the optimal neighborhood size for each of the 

9 PAHs, after which, two different methods are used to relate PAH to PM2.5: 1) a simple Linear 

Regression (LR) approach and 2) a Mass Fraction (MF) approach. The MF method assumes that the ratio 

of PAH/PM2.5 is constant within an estimation neighborhood. PAH is then estimated across North 

Carolina at PM2.5 monitoring locations using both approaches. These estimated PAHs assume a 

Gaussian distribution and are incorporated into to BME framework to estimate PAH at unmonitored 

space/time locations across North Carolina. The MF BME method was developed by Allshouse et al. 

However, this is the first work to compare MF BME with LR BME. 

This work implements the LR BME and MF BME method to predict PAH concentration at 

unmonitored locations creating the first maps of PAH across the US state of North Carolina for 2005. The 

MF BME prediction method is compared to more traditional geostatistical methods and is evaluated 

through cross validation. Predictive maps also allow to visualize probability of exceeding PAH cutoff 

concentrations. Lastly, a comparison is performed between the MF BME and other methods showing how 

the relationship between PAH concentrations near fires change across prediction methods. These results 
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provide a method for which a data poor environment can be exploited in an efficient manner in 

conjunction with a data rich environment, where the relationship between the two can be applied 

elsewhere in a given study area. This cost-effective method can be applied to other air pollution 

parameters that have not been previously mapped. This methodology opens to doors for greater 

epidemiologic studies exploring the association between ambient concentrations of PAHs and various 

health endpoints. 

4.2. Materials and Methods 

4.2.1 Observed PM2.5 and PAH data 

Daily PM2.5 filters for each space/time location during 2004-2005 in North Carolina were 

collected from the EPA’s Air Quality Systems (AQS) data base (US EPA, n.d.). Of the PM2.5 filters 

collected during this time period, 84 filters from 2005 were analyzed by the US EPA for the following 9 

species of PAHs: benz(a)anthracene, chrysene, benzo(b)fluoranthrene, benzo(k)fluoranthrene, 

benzo(e)pyrene, benzo(a)pyrene, indeno(1,2,3-cd)pyrene, benzo(g,h,i)perylene, dibenzo(a,h)anthracene, 

and the summation of the 9 PAH species called Total PAH. PM2.5 has units of 𝜇𝑔/𝑚3 and PAH has units 

of 𝑛𝑔/𝑚3. 

4.2.2 The Mass Fraction (MF) and Linear Regression (LR) method 

There are approximately 8,000 space/time locations where PM2.5 is observed and PAH is 

estimated. PAH is estimated using surrounding PAH and PM2.5 information. There are two different PAH 

estimation methods: 1) a Linear Regression (LR) method where a regression is created from paired 

PM2.5 and PAH in an estimation neighborhood, and PAH is then predicted at locations where PM2.5 is 

known and 2) a Mass Fraction (MF) method where it is assumed that the ratio of PAH/PM2.5 is constant 

within an estimation neighborhood, and PAH is then predicted by applying the ratio at locations where 

PM2.5 is known.  

The MF method introduced here builds on previous work and is used to estimate PAH at 

unmonitored locations (Allshouse et al., 2009). The log-mas fraction (log-MF), is calculated at locations 

for paired PAH and PM2.5 data and is defined as  

𝑀𝐹ℎ𝑎𝑟𝑑,𝑖 = 𝑙𝑛 (
𝑃𝐴𝐻ℎ𝑎𝑟𝑑,𝑖

𝑃𝑀2.5ℎ𝑎𝑟𝑑,𝑖
)                                                                                                        (Equ. 4-1) 
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The MF is then estimated at PM2.5 space/time locations without PAH observed data with mean 𝜇𝑀𝐹,𝑗 and 

variance 𝜎𝑀𝐹,𝑗
2  defined below         

𝜇𝑀𝐹,𝑗 = ∑ 𝑀𝐹ℎ𝑎𝑟𝑑,𝑖 𝑁𝑀𝐹(𝒑𝑗)⁄
𝑁𝑀𝐹(𝑝𝑗)

𝑖=1
                        (Equ. 4-2) 

 𝜎𝑀𝐹,𝑗
2 = ∑ (𝑀𝐹ℎ𝑎𝑟𝑑,𝑖 − 𝐸[𝑀𝐹𝑠𝑜𝑓𝑡,𝑗]

2
) (𝑁𝑀𝐹(𝒑𝑗) − 1)⁄

𝑁𝑀𝐹(𝑝𝑗)

𝑖=1
.              (Equ. 4-3)  

𝑁𝑀𝐹(𝒑𝑗) is the number of 𝑀𝐹ℎ𝑎𝑟𝑑,𝑖 closest to the space/time location 𝒑𝑗 = (𝒔𝑗, 𝑡𝑗) used in the calculation. 

This number is optimized and is described in section 2.3. The terms in Equ. 4-1 can be rearranged to 

calculate 𝑃𝐴𝐻ℎ𝑎𝑟𝑑,𝑖 as follows 

𝑙𝑛 (𝑃𝐴𝐻ℎ𝑎𝑟𝑑,𝑖) = 𝑀𝐹ℎ𝑎𝑟𝑑,𝑖 + 𝑙𝑛 (𝑃𝑀2.5ℎ𝑎𝑟𝑑,𝑖)                   (Equ. 4-4) 

The relationship in Equ. 4-4 can then be used to estimate PAH at PM2.5 locations with the following 

distribution 

𝑙𝑛(𝑃𝐴𝐻𝑠𝑜𝑓𝑡,𝑗) ~𝑁(𝜇𝑀𝐹,𝑗 + 𝑙𝑛(𝑃𝑀2.5ℎ𝑎𝑟𝑑,𝑗) , 𝜎𝑀𝐹,𝑗
2 )                  (Equ. 4-5) 

Equ. 4-5 becomes the soft data in the BME estimation methodology described in section 2.4. 

 The LR method is also used to estimate PAH at PM2.5 space/time locations where PAH was not 

directly measured. The LR method is a simple linear regression equation, like the MF, calculated at 

paired PAH and PM2.5 locations given in the equation below. 

𝑙𝑛(𝑃𝐴𝐻ℎ𝑎𝑟𝑑,𝑖) = 𝛽0 + 𝛽1 𝑙𝑛(𝑃𝑀2.5ℎ𝑎𝑟𝑑,𝑖)                    (Equ. 4-6) 

The number of points used to estimate the parameters 𝛽0 and 𝛽1, 𝑁𝐿𝑅(𝒑𝑗) is described in section 2.3. The 

relationship in Equ. 4-6 can then be used to estimate PAH at PM2.5 locations with the following 

distribution 

𝑙𝑛(𝑃𝐴𝐻𝑠𝑜𝑓𝑡,𝑗) ~𝑁(�̂�0 + �̂�1 𝑙𝑛(𝑃𝑀2.5ℎ𝑎𝑟𝑑,𝑗) , 𝜎𝐿𝑅,𝑗
2 )                             (Equ. 4-7) 

where 𝜎𝐿𝑅,𝑗
2  is the linear regression prediction variance. In the limiting case, the MF and LR method are 

equivalent when 𝛽0 = 𝑀𝐹ℎ𝑎𝑟𝑑,𝑗 and 𝛽1 = 1. 

4.2.3 Soft data neighborhood validation optimization 

As discussed in the section above, parameters 𝑁𝑀𝐹(𝒑𝑗) and 𝑁𝐿𝑅(𝒑𝑗) are optimized. An 

exhaustive validation approach was used for each of the 9 PAHs (and Total PAH) at the 84 observed 

PAH space/time locations. The neighborhood is created in such a way that points included are 

informative but can also characterize a non-trivial area. For each of the 84 locations, an exhaustive 
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combination of the 𝑛 closest pairs, as determined by a space/time metric, is collected and PAH is 

estimated using either the MF method (Equ. 4-4) or the LR method (Equ. 4-6), excluding the space/time 

location of interest. From this, a Mean Squared Error (MSE) is calculated from the 84 errors. A MSE is 

calculated for 75,600 different combinations of 𝑛 and the space/time metric for each PAH and method. 

For each PAH, the parameters 𝑁𝑀𝐹(𝒑𝑗) and 𝑁𝐿𝑅(𝒑𝑗) are selected from the 𝑛 and space/time metric that 

resulted in the lowest MSE. Due to the parsimony of the MF and LR methods, 𝑁𝑀𝐹(𝒑𝑗) ≥ 1 while 

𝑁𝐿𝑅(𝒑𝑗) ≥ 2. 

 The values found for 𝑁𝑀𝐹(𝒑𝑗) and 𝑁𝐿𝑅(𝒑𝑗) for each PAH are then applied to locations where 

observed PM2.5 exists to estimate PAH using Equ. 4-5 and Equ. 4-7. These PAH estimates become the 

soft data in the BME estimation framework described next. 

4.2.4 Bayesian Maximum Entropy (BME) estimation methodology 

BME is a mathematically rigorous geostatistical space/time framework originally developed by 

Christakos (Christakos, 2000; Christakos et al., 2001). BME can incorporate information from multiple 

data sources and is implemented using the BMElib suite of functions in MATLABTM. The buttress of BME 

has been detailed in other works, and can be summarized as performing the following steps: 1) gathering 

the general knowledge base (G-KB) and site-specific knowledge base (S-KB) characterizing the 

Space/Time Random Field (S/TRF) 𝑋(𝒑) representing a process at space/time coordinate 𝒑 = (𝒔, 𝑡)  

where 𝒔 is the spatial coordinate and 𝑡 is time, 2) using the Maximum Entropy principle of information 

theory to process the G-KB in the form of a prior Probability Distribution Function (PDF) 𝑓𝐺, 3) integrating 

S-KB in the form of a PDF 𝑓𝑆 with and without measurement error using an epistemic Bayesian 

conditionalization rule on data to create a posterior PDF 𝑓𝐾 and 4) creating space/time estimates based 

on the analysis. Typically, the G-KB consists of a mean trend and covariance of 𝑋(𝒑) denoted as  𝐺 =

{𝑚𝑋(𝒑), 𝑐𝑋(𝒑, 𝒑′)} and the S-KB consists of hard data (data measured without error) and soft data (data 

measured with error) denoted as 𝑆 = {𝒙ℎ , 𝑓𝑠(𝒙𝑠)}. The BME posterior PDF 𝑓𝐾 describing the process 𝑥𝑘 at 

an estimation point of interest 𝒑𝑘 is given by the BME equation   

𝑓𝐾(𝑥𝑘) =  𝐴−1 ∫ 𝑑𝒙 𝑓𝑆(𝒙𝑠)𝑓𝐺(𝒙)                     (Equ. 4-8) 

where 𝒙 = (𝑥𝑘 , 𝒙ℎ , 𝒙𝑠) is a realization of 𝑿 at points 𝒑 = (𝒑𝑘, 𝒑ℎ, 𝒑𝑠) and 𝐴 is a normalization constant.  
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In this study we use an S/TRF to describe the variability of PAH across North Carolina in 2005. In 

this work 𝒙ℎ are the observed PAH data and  𝑓𝑆(𝒙𝑠) is estimated through either the LR or MF method. Our 

notation for an S/TRF will consist of denoting a single random variable 𝑋 in capital letters, its realization, 

𝑥, in lower case and vectors and matrices in bold faces (e.g. 𝑿 = [𝑋1, … , 𝑋𝑛]𝑇 and 𝒙 = [𝑥1, … , 𝑥𝑛]𝑇). Let 

𝑋(𝒑) = 𝑋(𝒔, 𝑡) be a Space/Time Random Field (S/TRF) representing daily PAH. We can then calculate 

𝑥𝑘, the predicted daily PAH at the unmonitored location 𝒑𝑘. In this work, 𝑚𝑋(𝒑) is assumed to be 

constant. The covariance model for the homogeneous/stationary S/TRF 𝑋(𝒑) is developed from the 

experimental covariance of the data fit through least squares empirical fitting. For each PAH, the 84 

observed data were used to fit a single-structured space/time exponential covariance model given by the 

equation 

𝑐𝑋(𝑟, 𝜏) = 𝐶0 exp (
−3𝑟

𝑎𝑟
) exp (

−3𝜏

𝑎𝑡
)                    (Equ. 4-9) 

where 𝑟 is the spatial distance (km), 𝜏 is the temporal distance (days), 𝐶0 is the variance, 𝑎𝑟 is the spatial 

range (km) and 𝑎𝑡 is the temporal range (days).  

4.2.5 Leave One Out Cross Validation (LOOCV) accuracy analysis 

To assess the prediction accuracy of the MF and LR methods, a LOOCV accuracy analysis is 

performed. For each monitoring station where observed PAH data exist, all observed data from a given 

station are removed one at a time and a BME prediction was conducted (without recalculating the mean 

trend or the covariance model) to obtain the BME predictions at that station using all the remaining 

observed data and soft data as estimated by the MF and LR method.  

The difference between each prediction value �̃�𝑖 and observed value �̂�𝑖 is the prediction error, 

𝑒𝑖 = �̃�𝑖 − �̂�𝑖. The prediction accuracy is quantified based on prediction error statistics, which consist of the 

Mean Error (ME, 𝑛𝑔/𝑚3), Variance of Errors (VE, (𝑛𝑔/𝑚3)2), Root Mean Squared Error (RMSE, 𝑛𝑔/𝑚3), 

Mean Squared Error (MSE, (𝑛𝑔/𝑚3)2), and the squared of the Pearson’s correlation coefficient (𝑟2, 

unitless) calculated between observed and predicted values. MF BME and LR BME predictions are then 

compared to kriging (i.e. predictions created only using observed data) and cokriging (i.e. predictions 

created using paired PAH and PM2.5 observed data).    
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4.2.6 Fire comparisons 

 The difference in PAH concentrations near known fire locations were estimated. PAH is estimated 

on a fine grid across North Carolina on days with observed PAH data. PAH is estimated using 4 different 

prediction methods: 1) kriging, 2) cokriging, 3) LR BME and 4) MF BME. Fire data are obtained from the 

Federal Wildfire Fire Occurrence Website (United States Geological Survey, 2016). All fires greater than 

or equal to one acre in North Carolina, Virginia, Tennessee and South Carolina were collected in 2005 on 

days for which PAH observed data were measured where the start and control date of the fires are 

known. A two-tailed two-sampled t-test (assuming unequal variances) is calculated on the PAH 

predictions on a fine grid at a 5% significance level. The significance test is performed on all fine grid 

predictions within 100 km of known fire locations and all fine grid predictions outside of 100 km. We 

explored the statistically significant difference in the PAH predictions near versus far from the known fire 

locations across all 4 prediction methods.  

Table 4.1. Soft data neighborhood optimization. Optimized 𝑛 closest observed data locations (as 
determined by the space/time metric) corresponding to the minimized mean squared error validation 
statistic calculated through the linear regression and mass fractions methods across the 9 PAHs, with 
Total PAH being the summation. Bolded numbers indicate the lowest MSE across PAHs. 

  Linear Regression Mass Fraction 

PAH 𝑛 

S/T Metric 
(km/days) 

MSE 
(𝑛𝑔/𝑚3)2 𝑛 

S/T Metric 
(km/days) 

MSE 
(𝑛𝑔/𝑚3)2 

benz(a)anthracene 14 0.891 1.128 5 0.839 0.908 

chrysene 7 0.600 0.979 5 0.839 0.799 

benzo(b)fluoranthrene 7 0.863 1.358 5 0.899 1.180 

benzo(k)fluoranthrene 14 0.895 1.375 5 0.842 1.046 

benzo(e)pyrene 14 0.895 1.006 2 0.868 0.726 

benzo(a)pyrene 14 0.895 1.332 5 0.899 1.417 

indeno(1,2,3-c,d)pyrene 14 0.891 0.892 2 0.868 0.702 

benzo(g,h,i)perylene 14 0.895 0.757 2 0.777 0.742 

dibenzo(a,h)anthracene 14 0.772 1.532 3 0.820 1.115 

Total PAH 14 0.895 0.890 3 0.820 0.675 
 
4.3. Results and Discussion 

4.3.1 Neighborhood optimization 

Due to the skewed nature of PM2.5 and PAH, a log-transformation of both the data sets were 

taken. Due to the limited number of observed data, initial soft data neighborhood optimization was 

important. The soft data for each PAH needed to be optimized in such a manner that the few observed 
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data were being utilized in the most efficacious manner possible through an exhaustive search of the 𝑛 

closest observed data. A validation of an exhaustive combination of 𝑛 closest stations using several 

different space/time metrics of the 84 collocated PAH/PM2.5 space/time locations were taken to optimize 

the soft data neighborhood needed to construct estimated PAH and the remaining PM2.5 space/time 

locations. For each PAH and soft data estimation method (i.e. LR and MF), the optimized 𝑛 and 

space/time metric was selected such that it minimized the MSE. The neighborhood optimization was done 

to ensure that the neighborhood selected for each PAH and soft data estimation method would be as 

representative as possible considering the limited collocated values. Across each PAH the 𝑛 closest 

stations that optimized the soft data neighborhood was always smaller for the MF method compared to 

the LR method (Table 4.1). Across most of the PAHs, the space/time metrics were similar indicating that 

the differences in the minimized MSEs were being driven by the number of collocated values and the 

estimation method and less so by the choice of the space/time metric. By definition the MF method 

requires less collocated PAH and PM2.5 to calculate a PAH estimate, due to the MF method being more 

parsimonious (i.e. having less parameters to estimate). The parameter 𝑛 ranges from 2-5 for the MF 

method and 𝑛 ranges from 7-14 for the LR method. Benzo(g,h,i)perylene, indeno(1,2,3-c,d)pyrene and 

benzo(e)pyrene require 𝑛 = 2 from the MF method, requiring the least amount of points across all PAHs. 

Seven out of 9 PAHs in the LR method require 𝑛 = 14. Across each PAH, the minimized MSE is 

consistently lower for the MF method than the LR method. The only exceptions are benzo(a)pyrene. The 

MSE for the MF method is smaller than the LR method for Total PAH. With these optimized 

neighborhoods, soft data are created by each method and predicted across North Carolina using BME. 

The PAH estimation neighborhood for the MF BME method is smaller than the LR BME method. 

Out of the previously mentioned studies, very little use observed PAH data and of those studies that do, 

most observed data come from short-lived monitoring campaigns. The results presented in this work 

utilize long-term, established regulatory monitoring sites (i.e. PM2.5 sites). PM2.5 data is comparatively 

plentiful. By developing a relationship between a few PAH observations and PM2.5, the door opens to 

applying this relationship to a network with a large amount of publically available data. Data poor 

environments (e.g. PAH) can benefit from data rich environments (e.g. PM2.5). However, for this 

relationship to be fully exploited, it must be constructed in a way that best utilizes the limited data set. 
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That is, the relationship between PAH and PM2.5 must be parsimonious. The MF method only has one 

parameter to be estimated, namely, 𝑀𝐹ℎ𝑎𝑟𝑑,𝑖 (Equ. 4-4). The minimum number of observed data needed 

to construct a PAH estimation is low with 𝑁𝑀𝐹(𝒑𝑖) ≥ 1. The soft data created from the MF method 

required less observed data than the LR method. This resulted in a superior cross validation model 

performance (Table 4.2). The smaller neighborhood also has a physical interpretation. We hypothesize 

that the smaller number of observed data made the estimation more localized and more relevant to the air 

shed being predicted. 

(a) (b) 

  

(c) (d) 

  

Figure 4.1. Map of benzo(g,h,i)perylene. Maps of mean benzo(g,h,i)perylene concentration for North 
Carolina on March 11, 2005 across the 4 prediction methods: (a) kriging, (b) cokriging, (c) BME linear 
regression, (d) BME mass fraction. Square markers indicate observed data, circle markers indicate soft 

data, X’s mark known fires for that day with a 100 𝑘𝑚 buffer. Units are in 𝑛𝑔/𝑚3. 
 
4.3.2 PAH prediction maps 

 This work created the first maps of predicted PAH in space/time across the US state of North 

Carolina for 2005. With only a handful of observed PAH data taken throughout the year, the LR BME and 

MF BME method were able to create soft data with a corresponding uncertainty that was incorporated 
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into the BME framework. Incorporating soft data allowed for increased spatial variation. Both BME 

methods outperformed kriging and cokriging. Of the BME methods, MF BME was superior in terms of 

visually distinguishing spatial variations of PAH.  

Each PAH was predicted on a fine grid across the US state of North Carolina every day observed 

PAH data were collected (41 days) across 2005 for the four prediction methods: kriging, cokriging, LR 

BME and MF BME. Covariance parameters can be found in Appendix C (Table C.1 and Table C.2). 

These four mean prediction maps are displayed across North Carolina on March 11, 2005 for the PAH 

benzo(g,h,i)perylene with observed and soft data pictured (Figure 4.1). The kriging map consistently 

predicts the highest PAH concentrations at unmonitored locations with the least realistic gradient. Kriging 

has difficulty distinguishing between multiple PAH fronts and plumes. The minimal gradation is influenced 

by the sparse data set of only 84 observed PAH values. The cokriging map is visually similar to the 

kriging map. There is a slight reduction of PAH concentration notably in Western North Carolina along 

with a reduction in concentration near the South Carolina border. Taking into account the relationship 

between PAH and PM2.5 contributed little to the cokriging predictions. The prediction map becomes 

visibly different for the LR BME method. The area of highest concentration increases along the 

Appalachian Mountains. The gradient for the LR BME method falls more in line with a geographical 

pattern across the state. There is more of a gradual decrease in concentration across the state. Overall 

the LR method has a larger region of the state with relatively lower concentrations. Overall the MF BME 

method has the lowest concentrations across the state. Across methods, the relatively highest 

concentrations were found in Western North Carolina and concentrations become increasingly more 

refined across methods. The MF map is the only map to show two different fronts: one in the western part 

of the state and another separate front in the central part of the state. The lowest concentrations occur 

between the two fronts. 

Very few other studies have created maps of ambient PAH concentrations across a given area 

using a geostatistical method. These limited studies are due in part to the lack of observed data, much 

like the mapping scenario presented in this work and previous works (Allshouse et al., 2009). One 

previous study fit a temporal trend comparing a few long-running PAH stations from the Great Lakes 

region and a few stations across Europe. However, only a temporal trend was fit through a regression 
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and a spatial interpolation was not conducted (Liu et al., 2013). One of the few studies that create maps 

over a large area, displayed benz(a)pyrene across Europe for 1990, 2001 and 2005 using a transport 

model (Ravindra et al., 2008). Another study creating maps of PAH across Europe utilized kriging to 

estimated benz(a)pyrene for 2012 using two different chemical transport models as data (Guerreiro et al., 

2016). A study in Portugal used observed PAH data extracted from lichen and interpolated to create 

maps using kriging (Augusto et al., 2009; Ribeiro et al., 2015). Land use regression models have also 

been used to estimate PAH (Jedynska et al., 2014; Noth et al., 2011). The closest study to the LR BME 

method presented in this work used a monitoring campaign along with personal monitors to analyze PAH 

from PM2.5 in which predictions were made at unmonitored locations using kriging in Kaohsiung city, 

Taiwan (Lee et al., 2016). A regression model with a variety of explanatory variables was then applied to 

PM2.5 data to predict PAH. However, the explanatory variables used in their work (i.e. PM10, NOx, CO 

and temperature) are less relevant than the explanatory variable used in the LR BME method (i.e. using 

PM2.5 directly). 

Table 4.2. Cross validation statistics. Leave-One-Out-Cross-Validation statistics for Total PAH 
(summation of the 9 PAHs) comparing observed and predicted concentrations across the 4 prediction 
methods for North Carolina in 2005. ME is Mean Error, VE is Variance of Error, RMSE is Root Mean 

Squared Error, MSE is Mean Squared Error and 𝑟2 is the Pearson’s correlation coefficient squared. 

Statistic Kriging Cokriging 
Linear 

Regression 
Mass 

Fraction 

ME (𝑛𝑔/𝑚3) -0.145 -0.137 -0.102 -0.042 

VE (𝑛𝑔/𝑚3)2 0.806 0.782 0.764 0.591 

RMSE (𝑛𝑔/𝑚3) 0.904 0.890 0.875 0.765 

MSE (𝑛𝑔/𝑚3)2 0.818 0.792 0.766 0.586 

𝑟2 (unitless) 0.747 0.752 0.744 0.821 
 
4.3.3 Cross-validation 

A Leave-One-Out Cross Validation (LOOCV) method (where one monitoring station at a time is 

left out) was calculated across 2005. The “left out” observed space/time locations are then re-estimated 

using the four prediction methods. Statistics were calculated showing performance for Total PAH (Table 

4.2). Cross validations statistics for all 9 PAHs can be found in Appendix C (Table C.3). ME decreases as 

the method become increasingly more complex. ME is negative across each prediction method meaning 

that overall, the methods under-predict observed Total PAH concentrations. ME magnitude is highest for 

kriging and closest to zero for MF BME. There is an over 58% reduction in ME from LR BME to MF BME. 
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There is less variation in error across methods. There is an over 36% reduction in VE from kriging to MF 

BME. There is a consistent reduction in MSE across methods. There is an over 39% reduction in MSE 

from kriging to MF BME. The correlation coefficient increases across methods. There is an over 10% 

increase in 𝑟2 from LR BME to MF BME. The performance statistics from kriging are similar to cokriging. 

This echoes the results of the prediction maps. Traditional incorporation of co-pollutants through cokriging 

adds little to the predictive captivity of PAH. Incorporating the soft data showed improvement in statistics, 

while incorporating of soft data through the MF method showed the best performance across statistics. 

The MF BME method consistently outperformed all other comparison methods as seen visually 

through maps and through the LOOCV statistics. Of the four prediction methods, kriging performed the 

worst. Kriging predictions were driven exclusively by the observed data. Predictions made far from 

observed data therefore had a large associated variance. The sparse data was only able to pick up the 

coarsest of PAH gradients. Cokriging performed similarly to kriging. Cokriging is an intuitive choice for 

collocated, ambient, environmental parameters in a geostatistical setting. In the literature, to the best of 

our knowledge, cokriging has not been used to prediction ambient PAH concentrations, making it an ideal 

candidate method to explore. In this work the cokriging cross-covariance is able to develop the 

relationship between PAH and PM2.5. However, as seen through predictive maps and through cross 

validation, the cokriging incorporation of PM2.5 contributes little in terms of predictive capacity. Linear 

regression is another intuitive choice with collocated data. The LR BME method shows a marked 

improvement visually and through estimation accuracy. The LR method is able to estimate PAH at PM2.5 

space/time locations using an optimized neighborhood customized for each PAH. However, LR 

performed consistently worse than the MF method. The LR method requires the estimation of 2 

parameters (i.e. 𝛽0 and 𝛽1). We hypothesize that this increase in the number of parameters makes the LR 

model less parsimonious, requiring more paired PAH and PM2.5 to optimize the estimation 

neighborhood. The PAH paired data is then outside of the relevant air shed of estimation. The LR method 

also assumes that PM2.5 and PAH follows a simple linear regression relationship. However, the more 

direct MF approach may be closer to the true relationship between paired PAH and PM2.5 data. 

 

 



 
 

53 

 

(a) (b) 

  

(c) (d) 

  

Figure 4.2. Probability of exceedance. Probability of annual benz(a)pyrene exceeding 0.25 𝑛𝑔/𝑚3 across 
North Carolina in 2005 as predicted by (a) kriging, (b) cokriging, (c) BME linear regression and (d) BME 
mass fraction. 
 
4.3.4 Probability of exceedance 

 In a geostatistical framework, predictions come in the form of a Probability Distribution Function 

(PDF) with a corresponding mean and variance. With this PDF, the probability of exceeding a given value 

can be calculated. An annual benz(a)pyrene concentration of 0.25 𝑛𝑔/𝑚3 has been suggested in the 

United Kingdom (Ravindra et al., 2008). With this standard in mind, the probability of exceeding this cutoff 

was calculated on annual benz(a)pyrene concentrations in North Carolina in 2005 for each prediction 

method (Fig. 4.2). As seen from Fig. 4.1, overall PAH concentration decrease across methods, thus the 

probability of exceeding the 0.25 𝑛𝑔/𝑚3 cutoff in turn decreases across methods. Across methods, the 

region of the state with the relatively highest probability of exceedance is maintained as Western North 

Carolina as well as the border with South Carolina. Interestingly, these same regions correspond to high 

levels of benzo(g,h,i)perylene on March 11, 2005 (Fig. 4.1). Across all prediction methods, the probability 

of exceedance remains low with the maximum probability remaining below 0.50. The distribution of the 
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probability of exceedance becomes increasingly skewed across methods. The prediction locations for 

kriging have the largest median probability of exceedance (0.074) across the methods. The cokriging 

method has the lowest maximum probability of exceedance (0.16) across the annual prediction locations 

and has the lowest proportions of probabilities under 0.1 (61%). While the median exceedance probability 

drops for the LR BME method (0.067) and MF BME method (0.059), their maximum probabilities increase 

(0.33 and 0.44, for LR and MF, respectively). The BME methods also contain the highest proportional of 

probabilities above 0.2 (10% and 8% for LR and MF, respectively). Thus, we see the BME methods are 

better able to differentiate areas of high and low probabilities of exceedance. The MF BME was best able 

to distinguish the maximum probability of exceedance. Through having more realistic ambient predictive 

gradients, the MF BME method becomes an effective tool to identify areas of exceedance of different 

PAH concentrations. The border between North and South Carolina showed the highest probability of 

exceedance of benz(a)pyrene. This calls for more monitoring in that area as well as a further investigation 

of associated health effects (e.g. lung cancer) in the region.



 

 

 

Table 4.3. Mean difference in PAH near versus far from fires. 95% confidence intervals comparing the mean difference in predicted PAH near 

(within 100 𝑘𝑚) versus far (> 100 𝑘𝑚) from fires for each of the 9 PAH and Total PAH across the 4 prediction methods. Units are in 𝑛𝑔/𝑚3. *mean 
difference is statistically significant (p-value≤ 0.05), #mean difference > 0.  

PAH Kriging Cokriging Linear Regression Mass Fraction 

benz(a)anthracene (-0.004944,-0.002174)* (-0.002610,-0.000011)* (-0.001264,0.001066) (0.001575,0.004379)*,# 

chrysene (-0.006666,-0.003529)* (-0.003737,-0.000828)* (-0.000940,0.001671) (0.002070,0.005392)*,# 

benzo(b)fluoranthrene (0.003979,0.011092)*,# (0.003779,0.011006)*,# (0.010934,0.022334)*,# (0.023594,0.030234)*,# 

benzo(k)fluoranthrene (0.003136,0.006467)*,# (0.002319,0.005008)*,# (0.005271,0.007937)*,# (0.007804,0.010768)*,# 

benzo(e)pyrene (-0.002922,0.002229) (-0.003171,0.001705) (0.005219,0.009804)*,# (0.018337,0.024890)*,# 

benzo(a)pyrene (-0.003827,0.001843) (-0.006237,-0.000842)* (0.002226,0.013734)*,# (0.005135,0.010157)*,# 

indeno(1,2,3-c,d)pyrene (0.018667,0.030507)*,# (0.017301,0.028689)*,# (0.020396,0.032370)*,# (0.047856,0.061099)*,# 

benzo(g,h,i)perylene (0.030368,0.042666)*,# (0.025449,0.036588)*,# (0.027206,0.040613)*,# (0.031329,0.040613)*,# 

dibenzo(a,h)anthracene (-0.020700,-0.013553)* (-0.017140,-0.010665)* (-0.004795,0.002157) (0.001898,0.008765)*,# 

Total PAH (0.022819,0.067469)*,# (0.021261,0.065714)*,# (0.062870,0.103406)*,# (0.171993,0.230460)*,# 
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4.3.5 Association with fires 

 The mean difference in PAH predictions (for the 9 PAHs and Total PAH) as calculated through 

the 4 prediction methods was found through a two-sampled t-test comparing areas near (≤ 100 𝑘𝑚) and 

far (> 100 𝑘𝑚) from known fire locations (Table 4.3). For the MF method, all 9 PAHs and Total PAH 

showed a statistically significantly difference between prediction near versus far from fires, for the MF 

method 6 PAHs and Total PAH showed a significant difference and for both kriging and cokriging 4 PAHs 

and Total PAH showed a significant difference greater than zero. Of those PAHs that showed a significant 

difference and whose differences were positive, the MF method had the largest differences across 8 

PAHs (benzo(g,h,i)perylene being the exception) and Total PAH. Known fire locations for March 11, 2005 

are marked along with a 100 𝑘𝑚 radial buffer surrounding each location (Fig. 4.1). Across prediction 

methods, PAH concentrations are higher within/near these buffers. Indeed, benzo(g,h,i)perylene 

(depicted in Fig. 4.1) was one of the 4 PAHs (along with Total PAH) that showed both a significant, 

positive difference across all prediction methods.        

 This work investigates ambient concentrations of a particular set of particle-bound PAHs. 

Concentrations alone cannot distinguish sources. However, there are PAH ratios associated with certain 

sources. The diagnostic ratio of indeno(1,2,3-c,d)pyrene /( indeno(1,2,3-c,d)pyrene + 

benzo(g,h,i)perylene)=0.62 is associated with wood burning.(Ravindra et al., 2008) This ratio was 

calculated across March 11, 2005 across all 4 prediction methods (Fig. 4.3). The ratio for kriging and 

cokriging remained under 0.62 across all prediction locations of the day. There is little variation of this 

ratio across the day for kriging and cokriging. This ratio increases and approaches 0.62 for the BME 

methods. There is more variation of this ratio for the LR BME method, possibly implying better 

differentiation between PAH sources. MF BME has the largest variation of the PAH diagnostic ratio, with 

the largest number of predictions near the 0.62 value. Both kriging and cokriging have ≤ 1% of prediction 

ratios for the day around 0.62 (0.62 ± 0.05), LR BME has 3% of prediction ratios around 0.62 and MF 

BME has 10% of prediction ratios around 0.62. 

The MF BME method was better able to distinguish higher significant differences in PAH 

concentrations near known fire locations compared with other prediction methods. Of the four prediction 

methods the MF was the only method that showed statistically significant differences that were positive 
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around areas with fires across all 9 PAHs and Total PAH. Although the same buffer size was used for all 

the fires, the significance implies an association. Depending on the acreage burned from a fire, the type 

of vegetation burned and the duration of the fire, the smoke produced may be long lasting and may have 

long range transport. With this in mind, it is also important to take into consideration nearby fires in days 

previous to observed PAH concentrations. A diagnostic ratio can be used in conjunction with known 

sources. Diagnostic ratios should not be used in isolation. However, when used along known fire 

locations, it can strengthen the association between PAH concentration and its known sources. Gathering 

information about wildfire smoke has become increasingly more important as the number of large wildfires 

have increased in recent years (Dennison et al., 2014). 

(a) (b) 

  

(c) (d) 

  

Figure 4.3. PAH ratios. Ratio of indeno(1,2,3-c,d)pyrene/(indeno(1,2,3-c,d)pyrene+benzo(g,h,i)perylene) 
on March 11, 2005 in North Carolina across the 4 prediction methods: (a) kriging, (b) cokriging, (c) BME 

linear regression, (d) BME mass fraction. X’s mark known fires for that day with a 100 𝑘𝑚 buffer. 
 
4.3.6 Overall contributes and concluding statements 

The MF BME method allows for straightforward predictions of PAHs to be used for exposure 

assessments. There are a plethora of studies exploring the association between ambient PM2.5 and 
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various health endpoints (Beelen et al., 2007; Krewski et al., 2009; Pope et al., 2004). However, there are 

far less studies that explore ambient PAH exposures and associated health effects. Occupational 

inhalation exposures have been more thoroughly investigated with health outcomes including lung cancer 

(Kim et al., 2013). Few studies have investigated chronic ambient concentrations of PAHs. Many of the 

epidemiologic studies that have been explored investigate respiratory illnesses such as lung cancer and 

pulmonary function (Guerreiro et al., 2016; Kim et al., 2013; Padula et al., 2015). However, these studies 

are small in number. The current state of the literature is lacking in epidemiologic studies. The lack of 

long-term ambient concentrations to PAHs may be due to inadequate exposure data. Analyzing PM filters 

for specific PAHs can be very costly, making it difficult of obtain larger amounts of observed data needed 

for exposure assessment (Pleil et al., 2004). The MF BME method allows for an efficient and cost efficient 

way to utilized minimal PAHs observed data. The MF BME method can be easily utilized to fill in this clear 

gap in the literature. Tied with corresponding health data, ambient predictions calculated through the MF 

BME method could be used to assign exposure. Health metrics can then be calculated from the 

exposures. This opens to door to investigate possible health endpoints as well as assigning risk. 

In conclusion, this work creates the first maps of ambient PAH concentration across the US state 

of North Carolina through the creation of the MF BME geostatistical method. This method developed a 

relationship between paired PAH and PM2.5 data in a manner that is a parsimonious and cost-effective 

that can be utilized in a data poor environment. The MF BME method outperforms more traditionally used 

geostatistical methods and has the ability to elucidate a significant association between PAH predictions 

and known fire locations. The MF BME method has the potential to be used to assign exposure in 

epidemiologic analyses to fill in the significant knowledge gap currently existing in the literature between 

PAH exposures and potential health outcomes. 
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CHAPTER 5: CONCLUDING REMARKS 
 

 The goal of this work was to develop a data fusion methodology combining error-corrected 

gridded modeled with observed ambient air pollution data to be used in a geostatistical context. 

Combining of different data sources was performed in a data rich environment with daily PM2.5 and a 

data poor environment with PAH. This was achieved in a data rich environment through the development 

of the Regionalized Air quality Model Performance (RAMP) method and achieved in a data poor 

environment using the Mass Fraction (MF) method. Both were implemented in the Bayesian Maximum 

Entropy (BME) geostatistical framework. Generally speaking, the data fusion methods were able to 

improve upon more typically used and more well-known methods such as kriging and an implementation 

of the Downscaler method. In a data rich environment, the data fusion method was able to have the 

accuracy of observed data with the spatial refinement of modeled data. In the data poor environment, the 

data enrichment method was able to incorporate information about the joint relationship between PAH 

and PM2.5 data. 

 Chapters 2 developed the RAMP method for the model performance evaluation and subsequent 

error-correction of CMAQ. Validation results demonstrated that the RAMP parameters were better able to 

predict observed PM2.5 concentrations than other methods with up to a 22.1% reduction in MSE. A 

Simulation of the RAMP method shows that the RAMP method is better able to capture the homogeneity 

of simulated model performance compared with other methods. The RAMP method allows to a more 

flexible relationship between modeled and observed data compared to other data fusion method by not 

assuming a linear or homoscedastic relationship. The RAMP method was able to identify six regions of 

the country with high error and was able to delineate and quantify the sizes of these regions. Future 

research includes investigating more recent versions of CMAQ for the BME RAMP method and 

visualizing geographical changes in error. In Chapter 3, the RAMP corrected CMAQ data were 

incorporated with observed data in the BME framework. The BME RAMP method was compared with 

kriging and an implementation of the Downscaler method. In a LOOCV, the BME RAMP method lowered 



 

 

 

the MSE between 2%-33% compared with kriging. Improvements were even more pronounced when 

performing the cross validation far from monitoring stations and when results were stratified by RAMP 

metrics. The RAMP method was able to have 6-7 times the level of spatial refinement compared with 

kriging in a few different areas of the county and reduce the prediction variance compared with kriging. 

 Chapter 4 developed the MF method across North Carolina in 2004 to predict PAH from only a 

handful of paired PAH and PM2.5 values. The MF BME method was compared with kriging, cokriging and 

a LR BME method. A soft data validation was performed to optimize with number of paired PAH and 

PM2.5 used to estimate the soft data. In the MF soft data validation, the number of paired points was 

smaller than the LR, indicating that the MF method is more specific to the estimation location of interest 

and is therefore more geographical relevant to the air shed in question. In a LOOCV, the MF method 

produced in the lowest MSE of 7 out of 9 PAHs investigated. The MF method is also able to show a 

statistically significant difference in PAH concentrations near known fire locations versus far from known 

fire locations. Other methods were not able to distinguish differences in PAH concentration by fire 

information. To the best of our knowledge, this is currently the most comprehensive map of PAH 

concentration for North Carolina during 2004. 

 Overall, this work was able to merge multiple data sets together to estimate PM2.5 in a data rich 

environment and PAH in a data poor environment into the BME geostatistical framework. Both pollutants 

achieved notable increases in spatial refinement and sizable increases in accuracy when comparing 

cross-validation statistics. Both PM2.5 and PAH were able to achieve high quality prediction maps and 

corresponding prediction uncertainties. This work has many implications for several diverse arrays of 

disciplines. Understanding model performance of regulatory models, especially in areas without 

monitoring, is important for regulatory agencies as well as model developers. Improvements in prediction 

accuracy are important to epidemiologists for reducing misclassification and revealing the underlying 

health measures that tie air pollution exposures to health endpoints. Geostatistical estimation of air 

pollution casts a wide net under which resides public health officials, epidemiologist, atmospheric 

chemists and the general public.  
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APPENDIX A: SUPPORTING INFORMATION FOR REGIONALIZED PM2.5 COMMUNITY 
MULTISCALE AIR QUALITY MODEL PERFORMANCE EVALUATION ACROSS A CONTINUOUS 

SPATIOTEMPORAL DOMAIN4 

 
A.1 Model Performance Metrics 

In the model performance literature typical definitions exist regarding nomenclature of certain 

metrics, namely, “bias” and “error”. In the Statistics realm, metrics such as “bias” and “error” are defined 

differently. This work utilizes naming schemes of metrics that is consistent with Statistical language. In 

Table A.1 �̃�𝑖 denotes a modeled value as some space/time point 𝒑𝑖,  �̂�𝑖 is its paired observed value (i.e. 

observed at the same space/time location) and 𝑒𝑖 = �̃�𝑖 −  �̂�𝑖 is the corresponding error. In Table A.2 �̂�𝑖 

denotes an estimate of the error standard deviation, which in our work is obtained using √𝜆2(𝒑).  

Table A.1. Table of commonly used model performance evaluation statistics used in the CMAQ literature. 
The left column displays the typical nomenclature used and the right column displays the nomenclature 
used in this work. The third column states whether the metrics quantifies systematic or random error. The 
second half of the table displays metrics less commonly used in the literature. 

Metric name used 
in the CMAQ 
literature 

Definition Systematic / 
Random 

Metric Name used in this 
Work 

Regulatory Performance Metrics Used in Air Quality Modeling 

# of data pairs 𝑛 NA # of data pairs 

Mean observation 
value 

1

𝑛
∑(𝑥𝑖)

𝑛

𝑖=1

= �̅� 
NA Mean observation value 

Mean simulation 
value 

1

𝑛
∑(�̃�𝑖)

𝑛

𝑖=1

= �̅̃� 
NA Mean modeled value 

Mean bias 1

𝑛
∑(�̃�𝑖 − 𝑥𝑖)

𝑛

𝑖=1

 
Systematic Mean error 

Normalized bias 
100% ×

1

𝑛
∑ (

�̃�𝑖 − 𝑥𝑖

𝑥𝑖
)

𝑛

𝑖=1

 
Systematic Mean normalized Error 

Normalized mean 
bias 100% ×

∑ (�̃�𝑖 − 𝑥𝑖)𝑛
𝑖=1

∑ 𝑥𝑖
𝑛
𝑖=1

 
Systematic Normalized mean Error 

Fractional bias 
100% ×

1

𝑛
∑ (

�̃�𝑖 − 𝑥𝑖

0.5 × (�̃�𝑖 + 𝑥𝑖)
)

𝑛

𝑖=1

 
Systematic Fractional error 

Mean Error 1

𝑛
∑|�̃�𝑖 − 𝑥𝑖|

𝑛

𝑖=1

 
Systematic  / 

Random 
Mean absolute error 

                                                           
4 This appendix was submitted as the supporting information of an article to the journal Atmospheric 

Environment. Reyes, Jeanette M., Xu,Yadong, Vizuete, William, Serre, L. Marc. Regionalized PM2.5 
Community Multiscale Air Quality model performance evaluation across a continuous spatiotemporal 
domain. 
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Normalized Error 
100% ×

1

𝑛
∑ (

|�̃�𝑖 − 𝑥𝑖|

𝑥𝑖
)

𝑛

𝑖=1

 
Systematic  / 

Random 
Mean normalized absolute 

error 

Normalized Mean 
Error 100% ×

∑ |�̃�𝑖 − 𝑥𝑖|𝑛
𝑖=1

∑ 𝑥𝑖
𝑛
𝑖=1

 
Systematic  / 

Random 
Normalized mean absolute 

error 

Fractional error 
100% ×

1

𝑛
∑ (

|�̃�𝑖 − 𝑥𝑖|

0.5 × (�̃�𝑖 + 𝑥𝑖)
)

𝑛

𝑖=1

 
Systematic  / 

Random 
Fractional absolute error 

Correlation ∑ (�̃�𝑖 − �̅̃�)(𝑥𝑖 − �̅�)𝑁
𝑖=1

√∑ (�̃�𝑖 − �̅̃�)2𝑁
𝑖=1

√∑ (𝑥𝑖 − �̅�)
2𝑁

𝑖=1

 
Random Correlation 

Less Commonly Used Regulatory Performance  Metrics 

Correlation 
squared 

𝑟2 Random Correlation squared 

Standard bias √𝑉[�̃�𝑖 − 𝑥𝑖] Random Standard error 

Mean squared bias 1

𝑛
∑(�̃�𝑖 − 𝑥𝑖)2

𝑛

𝑖=1

 
Systematic  / 

Random 
Mean squared error 

Root mean 
squared bias 

√
1

𝑛
∑(�̃�𝑖 − 𝑥𝑖)2

𝑛

𝑖=1

 

Systematic  / 
Random 

Root mean squared error 

Normalized root 
mean squared bias 

√1
𝑛

∑ (�̃�𝑖 − 𝑥𝑖)2𝑛
𝑖=1

1
𝑛

∑ 𝑥𝑖
𝑛
𝑖=1

 

Systematic  / 
Random 

Normalized root mean 
squared error 

Mean 
bias/standard bias 

1

𝑛
∑(�̃�𝑖 − 𝑥𝑖)

𝑛

𝑖=1

/√𝑉[�̃�𝑖 − 𝑥𝑖] 
Systematic Mean error/standard error  

Mean bias 
squared/mean 
squared bias 

(∑ (�̃�𝑖 − 𝑥𝑖)𝑛
𝑖=1 )2

∑ (�̃�𝑖 − 𝑥𝑖)2𝑛
𝑖=1

= 𝑀𝐸2/𝑀𝑆𝐸 
Proportion of 

Systematic 
Mean error squared/mean 

squared error 

Variance of 
bias/mean squared 
bias 

𝑉[�̃�𝑖 − 𝑥𝑖]

1
𝑛

∑ (�̃�𝑖 − 𝑥𝑖)2𝑛
𝑖=1

 
Proportion of 

Random 
Variance of errors/mean 

squared error 

 
Table A.2. Table of model performance evaluation statistics used when the estimate �̃�𝑖 has a 

corresponding variance �̂�𝑖
2
. These metrics are used in the validation statistics. 

BME Metric Definition 

Variance standardized 
error 

𝑉 [
�̃�𝑖 − 𝑥𝑖

�̂�𝑖
] 

Root mean squared 
standardized error 

√
1

𝑛
∑ (

�̃�𝑖 − 𝑥𝑖

�̂�𝑖
)

2𝑛

𝑖=1

 

Mean root variance 
1

𝑛
∑(√�̂�𝑖)

𝑛

𝑖=1
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A.2 Data 

A.2.1 Observed Data 

The daily PM2.5 concentration for each monitoring site/day during 2000-2002 were constructed 

based on raw monitoring data from monitoring stations measuring either hourly or daily PM2.5 

concentrations using the procedure described below.  

PM2.5 monitoring data (raw data) sampled during the study period (2000-2002) were obtained 

from the Air Quality Systems (AQS) database maintained by the EPA, a repository of the monitoring data 

collected across various monitoring networks. PM2.5 data are available in a few data files on AQS 

depending on the source of data. These files are described in AQS as follows: 1) daily PM2.5 local 

conditions, 2) daily PM fine speciation from the Chemical Speciation Network (CSN) monitoring network 

and 3) daily PM fine speciation from the Interagency Monitoring of Protected Visual Environments 

(IMPROVE) monitoring network. Within each data file, the methodologies used to measure PM2.5 are 

defined using a parameter code which takes the following values: 1) 88101 for daily and hourly PM2.5 

concentrations measured using a Federally Referenced Method (FRM) and 2) 88502 for PM2.5 Air 

Quality Index (AQI) values that provide acceptable measurements of PM2.5 concentrations in that they 

are comparable to FRM measurements. Data from the parameter 88502 are also known as Tapered 

Element Oscillating Microbalance (TEOM) data. 

Hourly PM2.5 data were averaged into daily PM2.5 if at least 18 out of 24 hours were measured 

for a given day/monitor. Otherwise, a daily average was not constructed. More than 99.9% of hourly 

records were reported every hour on the hour. However, there were several records not reported on the 

hour. These hourly records were removed before constructing daily concentrations. All observations 

sampled at monitors whose measurement scale was “Microscale” were removed.  

At each monitoring site with multiple monitors, the collocated daily concentrations recorded at any 

given day were combined using the following procedure to produce a constructed daily concentration for 

that site/day. First, priority rank scores were assigned to each collocated daily concentration based on its 

data source and type as follows: 
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Table A.3. Ranking scores used for averaging collocated PM2.5 values for a given site/day  

Rank 1 FRM daily PM2.5 

Rank 2 TEOM daily PM2.5 from CSN 

Rank 3 
TEOM daily PM2.5 from 
IMPROVE 

Rank 4 TEOM hourly PM2.5  

 
If the collocated concentrations for a given site/day had varying priority ranks, then only the 

concentration with the highest rank (i.e. the smallest priority score) was retained. If there were more than 

one collocated daily concentrations with the highest priority rank, then these daily concentrations were 

averaged to produce a single daily concentration at that site/day.   

A.2.2 Modeled Data 

Daily concentrations for PM2.5 were also constructed from modeled CMAQ data. CMAQ inputs 

emissions and meteorological data which are then translated into complex chemical processes to 

estimate ambient air pollution over gridded geographical boundaries for different time steps. The modeled 

data used for this work were available at a 36km resolution every hour for the years 2001 and 2002 

across the continental US. Data are projected using a Lambert Conic Conformal (LCC) projection.  

Table A.4. Description of available CMAQ modeling data 

Year Model Domain Resolution Source Received date 

2001 
CMAQ 
v4.5 

The contiguous 
US 

36km EPA  
08-26-2011 

2002 
CMAQ 
v4.5 

The contiguous 
US 

36km CENRAP 
08-02-2011 

 

The CMAQ data have full spatial and temporal coverage for the continental US (Table A.4). All 

modeled runs were done using hindcasting. Daily modeled values were constructed by averaging the 24 

hourly modeled values for a given grid location/day. To reconcile the spatial misalignment of defining the 

modeled concentration over an area (i.e. the modeled concentration over a grid), the location of modeled 

values are defined by the centroid of each grid. 

A.3 Choice of S-Curve Parameters for the RAMP analysis 

We conducted a visual analysis to select the parameters used to construct the 𝜆1 and 𝜆2 S-curves 

in the RAMP analysis. In the CAMP analysis 𝜆1 and 𝜆2 are calculated across the domain 𝒟. The main 

limitation of the CAMP analysis is that the S-curves do not capture the variability of model performance at 

a fine spatial scale. To address this issue the RAMP analysis regionalizes the calculation to a space/time 
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region ℛ(𝒑) that consists of paired modeled/observed values at the 𝑛 closest stations within 𝑇 days of  𝒑. 

Our aim is to capture fine scale spatial variability in the S-curves. In order to achieve the finest spatial 

resolution possible we choose 𝑛 = 3. Using 3 proximal stations define the smallest region ℛ(𝒑) possible 

near any space/time location 𝒑 of interest, which provides a description of model performance at the 

finest spatial resolution possible for any given location of interest. The time window was thus increased to 

±180 days to allow approximately 150 paired values needed in the creation of the S-curve. To test 

whether  𝑇 = ±180 days and  𝑛 = 3 leads to a stable analysis we performed a validation and stochastic 

simulation analysis that demonstrates that RAMP produces 𝜆1 and 𝜆2 values that outperforms CAMP. We 

conducted a visual sensitivity analysis by increasing 𝑛 and inspecting whether the 𝜆1 and 𝜆2 maps change 

appreciatively as 𝑛 increases (Fig. A.2). As seen in this figure, the 𝜆1 and 𝜆2 maps do not change 

appreciatively as 𝑛 increases from 3 to 6. The same result is obtained using other values of 𝑛 between 3 

and 6 (results not shown). This demonstrates that the parameters chosen (𝑇 = ±180 days and 𝑛 = 3) are 

as spatially specific as possible while still maintaining a stable estimation of 𝜆1 and 𝜆2. 

Another choice for the number of station 𝑛 would be to use a fixed radius 𝑟, and select all stations 

within 𝑟 of the location 𝒑 of interest. We found that in order to achieve a stable estimate of 𝜆1 and 𝜆2, the 

radius has to be set to a long distance 𝑟 such that at least 3 stations are included in the most sparsely 

monitored area of the continental US. When moving to densely monitored areas, the number of station 𝑛 

within the fixed 𝑟 radius becomes so large that essentially the RAMP method becomes equivalent to the 

CAMP method in these areas, and as a result this approach fails to assess model performance at fine 

spatial resolution. 
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(a) (b) 

  

(c) (d) 

  

Figure A.1. Maps of 𝜆1(𝑝) and 𝜆2(𝑝) across the US on July 1, 2001 calculated using the RAMP method 

with two sets of S-curve parameters. 𝜆1(𝑝) is displayed in (a) and (c). 𝜆2(𝑝) is displayed in (b) and (d). (a) 
and (b) are obtained using the 6 closest stations within 180 days of 𝑝, while (c) and (d) are obtained using 

the 3 closest stations within 180 days of 𝑝. No appreciable difference can be seen by comparing (a) and 
(b) against (c) and (d). 
 

A.4 Model Performance Metrics for Different Fixed Modeled Values 

The RAMP method allows for construction of model performance metrics as a function of both 

space/time region and arbitrary modeled values. Through the equation 𝑀𝐸(�̃�𝑘; ℛ(𝒑)) = �̃�𝑘 − 𝜆1(�̃�𝑘; ℛ(𝒑)) 

and an analogous equation for 𝑉𝐸(�̃�𝑘; ℛ(𝒑)), one can visualize how mean error and variance of error 

changes across the United States for a given day for different increasing modeled values. Mean error for 

PM2.5 decreases consistently across the United States from 5 𝜇𝑔/𝑚3 to 10 𝜇𝑔/𝑚3. CMAQ has consistent 

problems estimating PM2.5 at smaller concentrations and high concentrations. CMAQ performs best at 

mid-range values of PM2.5 (Fig. A.3). Standard error increases as a function of modeled value (Fig. A.4). 

Change in the standard deviation of errors demonstrates that model performance is non-homoscedastic. 

The RAMP method allows the flexibility of allowing model performance to be both non-linear and non-

homoscedastic. Non-homoscedastic behavior is most clearly observed in the Great Lakes region of the 

county.  
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(a) (b) 

  

Figure A.2. Systematic error (𝑀𝐸2(�̃�𝑘; ℛ(𝑝))) for fixed modeled values for (a) 5 𝜇𝑔/𝑚3 and (b) 10 𝜇𝑔/𝑚3 
across the US on July 1, 2001 using the RAMP method as interpolated by S-Curves. Areas where 
𝑀𝐸2(�̃�𝑘; ℛ(𝑝)) are not displayed are outside the range of modeled values for the corresponding S-Curve 
and are therefore not interpolated.  
 

(a) (b) 

  

Figure A.3. Random error (𝑉𝐸(�̃�𝑘; ℛ(𝑝))) for fixed modeled values 5 𝜇𝑔/𝑚3 (a) and 10 𝜇𝑔/𝑚3 (b) across 
the US on July 1, 2001 using the RAMP method as interpolated by S-Curves. Areas where 𝑉𝐸(�̃�𝑘; ℛ(𝑝)) 
are not displayed are outside the range of modeled values for the corresponding S-Curve and are 
therefore not interpolated. The boxed area in green corresponds to the Great Lakes region.  
 
A.5 Maps of Other Model Performance Metrics 

All metrics can be visualized for each CMAQ grid cell. When looking at systematic error and 

random error as a proportion of total error, most error coming from CMAQ can be defined as random (Fig. 

A.5a-b). Because such a large proportion of total error is coming from random error, visually, maps of 

random error and total error look similar (Fig. A.5c). MNAE (Fig. A.5e) is lowest in the Eastern part of the 

US where overall performance of CMAQ is known to be better. MNE has a large range illustrating the 

large potential normalized errors when observed values are small (Fig. A.5d). Visually, the maps of MNE 

look similar to 𝑉𝐸(𝒑)/𝑀𝑆𝐸(𝒑). 
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(a) (b) 

  

(c) 

 

(d) (e) 

  

Figure A.4. Maps of various metrics across the continental United States on 07/01/2001 displaying (a) 

𝑀𝐸2(𝑝)/𝑀𝑆𝐸(𝑝), (b) 𝑉𝐸(𝑝)/𝑀𝑆𝐸(𝑝), (c) 𝑀𝑆𝐸(𝑝), (d) 𝑀𝑁𝐸(𝑝) and (e) 𝑀𝑁𝐴𝐸(𝑝). 
 
A.6 𝝀𝟏(𝒙𝒌; 𝓡(𝒑)) and 𝝀𝟐(𝒙𝒌; 𝓡(𝒑)) for Different Fixed Modeled Values  

Patterns of 𝜆1(�̃�𝑘; ℛ(𝒑)) for increasing modeled values follow along similar lines of 𝑀𝐸(�̃�𝑘; ℛ(𝒑)). 

That is, performance is most consistent with mid-levels of PM2.5. Most systematic error is seen with low 

and high concentrations. The corresponding error correction of 𝜆1(�̃�𝑘; ℛ(𝒑)) shows the lowest levels of 

variation for 5 𝜇𝑔/𝑚3, 10 𝜇𝑔/𝑚3 and 15 𝜇𝑔/𝑚3. Areas that show the highest levels of error correction in 

the US start in the Eastern US and move predominately to the Appalachian Mountain region of the 

country. Patterns of 𝜆2(�̃�𝑘; ℛ(𝒑)) for increasing modeled values follow along similar lines of 𝑉𝐸(�̃�𝑘; ℛ(𝒑)). 
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That is, performance is most homogenous for lower levels of PM2.5. Most random error is seen with mid 

to high level concentrations. 

(a) (b) 

  

(c) (d) 

  

(e) (f) 

  

Figure A.5. Maps of 𝜆1(�̃�𝑘; ℛ(𝑝)) PM2.5 concentrations in increments of 5 𝜇𝑔/𝑚3 across the continental 

United States on 07/01/2001 with (a) being 0 𝜇𝑔/𝑚3 and (f) being 25 𝜇𝑔/𝑚3. Units for all figures are 

𝜇𝑔/𝑚3. 
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(a) (b) 

  

(c) (d) 

  

(e) (f) 

  

Figure A.6. Maps of 𝜆2(�̃�𝑘; ℛ(𝑝))  PM2.5 concentrations in increments of 5 𝜇𝑔/𝑚3 across the continental 

United States on 07/01/2001 with (a) being 0 𝜇𝑔/𝑚3 and (f) being 25 𝜇𝑔/𝑚3. Units for all figures are 
(𝜇𝑔/𝑚3)2. 
 
A.7 RAMP Stochastic Simulation 

We do not know the true values of 𝜆1(𝒑) and 𝜆2(𝒑) because they are not directly measured. As a 

result it is not possible to validate the RAMP method based on true or measured 𝜆1(𝒑) and 𝜆2(𝒑) values. 

However we can use stochastic simulation to create a set of simulated values for 𝜆1(𝒑), 𝜆2(𝒑), �̃�(𝒑) and 

�̂�(𝒑) that have the same statistical properties as the true values. These simulated values are taken as the 

simulated truth, which can then be used to validate the RAMP method.  
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To do this, 𝜆1(�̃�𝑘; ℛ(𝒑)) and 𝜆2(�̃�𝑘; ℛ(𝒑)) that were obtained in this work were selected as the 

“true” values.  From the selected 𝜆1(�̃�𝑘; ℛ(𝒑)) and 𝜆2(�̃�𝑘; ℛ(𝒑)) and the CMAQ modeled values �̃�(𝒑) used 

in this work, 𝜆1(𝒑) and 𝜆2(𝒑) were obtained by substituting �̃�𝑘 with �̃�(𝒑)  in 𝜆1(�̃�𝑘; ℛ(𝒑)) and 𝜆2(�̃�𝑘; ℛ(𝒑)), 

respectively. Observed data were statistically simulated by randomly generating a stochastic realization 

�̂�∗(𝒑)~𝑁(𝜆1(𝒑), 𝜆2(𝒑)). The set of 𝜆1(𝒑), 𝜆2(𝒑), �̃�(𝒑) and �̂�∗(𝒑) values represent the simulated truth. The 

validation then consists of using the Constant, CAMP and RAMP methods to obtain 𝜆1
∗(𝒑) and 𝜆2

∗(𝒑) 

based on a re-estimation that uses only the �̃�(𝒑) and �̂�∗(𝒑). The re-estimates 𝜆1
∗(𝒑) and 𝜆2

∗(𝒑) can be 

compared with the selected “true” 𝜆1(𝒑) and 𝜆2(𝒑) to evaluate the estimation accuracy of each method. 

Fig. A.8a-b show 𝜆1(𝒑) and 𝜆2(𝒑), respectively. Fig. A.8c-d show �̃�(𝒑) and �̂�∗(𝒑), respectively, for the day 

of interest. The results of the re-estimation for the RAMP methods are shown in Fig. A.8e-f. As can been 

seen in the figure, the maps of 𝜆1
∗(𝒑) and 𝜆2

∗(𝒑) are very similar to those of 𝜆1(𝒑) and 𝜆2(𝒑), 

respectively, which demonstrates that the RAMP method is able to correctly estimate 𝜆1(𝒑) and 𝜆2(𝒑) 

across the space/time study domain based only on paired �̃�(𝒑) and �̂�∗(𝒑) values.  
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(a) (b) 

  

(c) (d) 

  

(e) (f) 

  

Figure A.7. Maps of stochastic simulation of daily PM2.5 across the continental United States on 
07/01/2001. (a) Selected true 𝜆1(𝑝), (b) selected true 𝜆2(𝑝), (c) CMAQ modeled values �̃�(𝑝) for that day, 
(d) stochastic realization  �̂�∗(𝑝)~𝑁(𝜆1(𝑝), 𝜆2(𝑝)), (e) 𝜆∗

1(𝑝) and (f) 𝜆∗
2(𝑝) re-estimated by the RAMP 

method based only on �̃�(𝑝)  and �̂�∗(𝑝). 
 

In order to assess how well the RAMP method evaluates systematic errors compared to other 

methods, we show in Fig. A.9a 𝑀𝐸(𝒑) = �̂�(𝒑) − 𝜆𝟏(𝒑) that was selected as the “truth” across the 

continental United States on 07/01/2001. We show in Fig. A.9b-d 𝑀𝐸∗(𝒑) = �̂�(𝒑) − 𝜆𝟏
∗(𝒑) values that 

were obtained using the Constant, CAMP and RAMP methods. The Pearson Correlation coefficient 

between 𝑀𝐸(𝒑) and 𝑀𝐸∗(𝒑) is 0.00% for the Constant, 24.0% for the CAMP and 76.1% for the RAMP 
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methods. These correlation values and the corresponding figures demonstrate that the Constant method 

is not able to capture any of the spatial variability in systematic errors and the CAMP method captures 

only some of the spatial variability of systematic errors. By comparison the RAMP method captures the 

spatial variability of systematic errors well.  

(a) (b) 

  

(c) (d) 

  

Figure A.8. (a) Map of the selected true 𝑀𝐸(𝑝) = �̂�(𝑝) − 𝜆1(𝑝) for daily PM2.5 across the continental 

United States on 07/01/2001, and maps of the corresponding re-estimated 𝑀𝐸∗(𝑝) = �̂�(𝑝) − 𝜆1
∗(𝑝) 

obtained using the (b) the Constant method, (c) the CAMP method and (d) the RAMP method. 
 

In order to assess how well the RAMP method is able to assess systematic errors compared to 

other methods, we show in Fig. A.10a 𝑉𝐸(𝒑) = 𝜆𝟐(𝒑) that was selected as the “truth” across the 

continental United States on 07/01/2001, and we show in Fig. A.10b-d 𝑉𝐸∗(𝒑) = 𝜆𝟐
∗(𝒑) values that were 

obtained using the Constant, CAMP and RAMP methods. These maps indicates that the Constant 

method is unable to capture the spatial variability in random errors, the CAMP method captures only 

some of the spatial variability of random errors and, by comparison, the RAMP method is able to capture 

areas high and low random errors well.  

 



 
 

74 

 

 (a) (b) 

  

(c) (d) 

  

Figure A.9. (a) Map of the selected true 𝑉𝐸(𝑝) = 𝜆2(𝑝) for daily PM2.5 across the continental United 

States on 07/01/2001, and maps of the corresponding re-estimated 𝑉𝐸∗(𝑝) = 𝜆2
∗(𝑝) obtained using the 

(b) the Constant method, (c) the CAMP method and (d) the RAMP method. 
 

It should be noted that the 𝑀𝐸∗(𝒑) and 𝑉𝐸∗(𝒑) values were obtained using only the paired modeled 

and randomly generated observed values and yet the RAMP method is able to capture areas of high and 

low systematic and random errors across the continuous mapping domain. This demonstrates that the 

RAMP method is able to assess model performance at unsampled locations, i.e. at locations where 

observations are not available. 
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APPENDIX B: SUPPORTING INFORMATION FOR INCORPORATING REGIONALIZED AIR QUALITY 
MODEL PERFORMANCE EVALUATION IN A NATIONWDIE GEOSTATISTICAL DATA INTEGRATION 

OF DAILY PM2.55 

 
B.1 Offset and Covariance Optimization 

The offset is considered a deterministic function of space and time that can be mathematically 

calculated for any space/time point 𝒑 without error. The offset is used to transform the PM2.5 data into 

residual offset-removed data. The BME analysis is performed on these transformed data. Ideally an offset 

is created to ensure that the transformed data have low variance to ensure accuracy of the estimation 

and high autocorrelation to ensure that neighboring data locations are informative to the estimation 

location. In this study we elect to create several offset functions that capture variability of PM2.5 at 

varying spatial and temporal scales and pick one which meets the above criteria most closely.  

We calculate the offset using a space/time composite kernel smoothing of the data. The equation 

to calculate the offset 𝑜𝑍(𝒑𝑗) at location 𝒑𝑗 = (𝒔𝑗, 𝑡𝑗) is given by.  

𝑜𝑧(𝒔𝑗 , 𝑡𝑗) = ∑ 𝑤𝑖𝑍(𝒔𝑖 , 𝑡𝑖)/𝑁
𝑖=1 ∑ 𝑤𝑖

𝑁
𝑖=1                     (Equ. B-1) 

where 𝑍(𝒔𝑖 , 𝑡𝑖) is the measured value at space/time point 𝒑𝑖 = (𝒔𝑖 , 𝑡𝑖) within the neighborhood, 𝑤𝑖 =

exp (−
‖𝒔𝒊−𝒔𝒋‖

𝑎𝑟
−

|𝑡𝑖−𝑡𝑗|

𝑎𝑡
) and  𝑎𝑟 is the spatial smoothing range and 𝑎𝑡 is the temporal smoothing range.  

Intuitively there is an inverse relationship between the amount of variability in the offset and the remaining 

variability of the transform. If the offset describes short range space/time variability (i.e. 𝑎𝑟 and 𝑎𝑡 are 

short), then the offset has large variability and there is little remaining variability in autocorrelation of the 

transform. Conversely if the offset only describes long range variability (i.e. 𝑎𝑟 and 𝑎𝑡 are large), then the 

resulting transform retains much of the variability of the original data and thus has large variance and 

autocorrelation.  

The covariance model for the homogeneous/stationary S/TRF 𝑋(𝒑) is developed from the 

experimental covariance of the transformed data 𝒙ℎ = 𝒛ℎ– 𝑜𝑍(𝒑ℎ). The experimental covariance value for 

a spatial lag 𝑟 and a temporal lag 𝜏 is calculated as     

                                                           
5 This appendix was submitted as the supporting information of an article to the journal Environmental 

Science and Technology. Reyes, Jeanette M., Xu,Yadong, Vizuete, William, Serre, L. Marc. Incorporating 
Regionalized Air Quality Model Performance evaluation in a nationwide geostatistical data integration of 
daily PM2.5. 
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�̂�𝑋(𝑟, 𝜏) =
1

𝑁(𝑟,𝜏)
∑ 𝑋ℎ𝑒𝑎𝑑,𝑖𝑋𝑡𝑎𝑖𝑙,𝑖

𝑁(𝑟,𝜏)
𝑖=1 − 𝑚𝑋

2                (Equ. B-2) 

where 𝑁(𝑟, 𝜏) is the number of pairs of values (𝑋ℎ𝑒𝑎𝑑,𝑖𝑋𝑡𝑎𝑖𝑙,𝑖) separated by a spatial lag of 𝑟  and time lag 

of 𝜏 and 𝑚𝑋 is the mean of the 𝒙ℎ data. In practice �̂�𝑋(𝑟, 0) and �̂�𝑋(0, 𝜏) are plotted separately to facilitate 

the visualization of the space/time covariance models.  

In order to investigate the effect of the variance and autocorrelation on the transformed data, we 

constructed 4 offsets, describing variability at short, intermediate, long and very long  size scales, 

respectively, with 𝑎𝑟 and 𝑎𝑡 values (Table B.1). 

Table B.1. Offset parameter values and namings used to smooth PM2.5 in space/time 

 Offset name 𝑎𝑟 (km) 𝑎𝑡  (days) 

short 20 10 

intermediate 50 20 

long 300 50 

very long 1,000 200 

 
Each offset can be assessed visually through maps (Fig. B.1) and time series (Fig. B.2). The 

following four maps show the short, intermediate, long and very long offsets, respectively of PM2.5 

concentration on July 30, 2001. As can be seen from these figures, the short offset describes variability at 

a fine scale, while the very long offset smoothed out the data.   

(a) (b) 

  

(c) (d) 

  

Figure B.1. PM2.5 concentration across the continental US on July 30, 2001 after smoothing the data 
using the (a) short, (b) intermediate, (c) long and (d) very long offset smoothing parameters described in 
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Table B.1. Colored circles are the concentration of PM2.5 of monitoring station locations on that day after 

smoothing by the parameters. Units are in 𝜇𝑔/𝑚3. 

 
Figure B.2. Time series of PM2.5 concentration across an arbitrary PM2.5 monitoring station across 2001 
using the short, intermediate, long, and very long offset smoothing parameters described in Table B.1. 
Black dots are observed PM2.5 values across the station for 2001. 
 

The offsets with the shortest parameter values smooth the data the least. As the offset smoothing 

parameters increase, the smoothing increases as well (Fig. B.1, Fig. B.2). 

(a) (b) 

  

Figure B.3. Experimental and modeled covariance of the transform of the short, intermediate, long and 
very long offset in (a) space and (b) time for PM2.5.  
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Several covariance models were evaluated (plots not shows), and a two-structured exponential 

model was selected because it provided the best overall performance with respect to least squared fit, 

model interpretability, and consistency with models used in previous works on PM. The equation of the 

two-structured exponential covariance model is given by 

𝑐𝑋(𝑟, 𝜏) = 𝐶0[𝛼 exp (
−3𝑟

𝑎𝑟1
) exp (

−3𝜏

𝑎𝑡1
) + (1 − 𝛼) exp (

−3𝑟

𝑎𝑟2
) exp (

−3𝜏

𝑎𝑡2
)]              (Equ. B-3) 

where 𝐶0 is the sill (variance), 𝑎𝑟1 and 𝑎𝑡1 are the spatial and temporal ranges of the first covariance 

structure, 𝑎𝑟2 and 𝑎𝑡2 are the spatial and temporal ranges of the second covariance structure, and 𝛼 is the 

proportion of variability explained by the first covariance structure. The parameters 𝛼, 𝑎𝑟1, 𝑎𝑟2, 𝑎𝑡, 𝑎𝑡2 

obtained by joint least square fitting for each offset (Table B.2). 

Table B.2. Covariance model and parameter values for each offset calculated through least squares 
fitting 

Offset 𝛼 𝑎𝑟1 (km) 𝑎𝑟2 (km) 𝑎𝑡1 (days) 𝑎𝑡2 (days) 

short 0.03 872.25 1505.48 2.91 2.91 

intermediate 0.89 1684.71 68.73 4.04 4.04 

long 0.83 1057.08 3868.38 4.08 379.14 

very long 0.25 237.36 2068.51 296.88 4.28 

 
In order to assess which of the 4 offsets should be selected in the BME estimation, dominance 

plots are created (Fig. B.4). Like stated above, the offset selected will have a combination of the lowest 

variance and the highest autocorrelation. 

(a) (b) 

  

Figure B.4. Dominance plots in (a) space and (b) time for the transforms of the short, intermediate, long 
and very long offset displaying covariance ranges as a function of variance.  
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Based on these plots, the long offset was selected and BME analysis was completed on the 

corresponding transform. As can be seen from these figures the variance increases at regular increments 

from the remaining offsets. The temporal covariance range, however, changes drastically from the 

intermediate to the long offset. Therefore the long offset is selected because it produces much larger 

autocorrelation than the intermediate offset, while only sacrificing approximately a quarter of the variance. 

Thus the long offset offers the best tradeoff of lowering variance while maintaining autocorrelation in the 

transformed data. This offset is used in the subsequent BME analysis. 

B.2 Quantification of Spatial Refinement 

(a) (b) 

  

Figure B.5. Posterior mean of PM2.5 across the contiguous US on July 1, 2001 as estimated by (a) 
kriging and (b) the BME data fusion method. In both (a) and (b) the same three regions are boxed in: 

California (a), Missouri (b) and the Mid-East (c). Units are in 𝜇𝑔/𝑚3. 
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(a) (b) 

  

(c) (d) 

  

(e) (f) 

  

(g) (h) 
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Figure B.6. The experimental covariance and covariance models for the posterior mean estimates for 
kriging and BME within the boxed areas displayed in Fig. B.6. The first column (a, c, e, g) are all the 
kriging models and the second column (b, d, f, h) are all the BME models. The first row (a, b) are models 
developed from all posterior mean across the US, the second row (c, d) are models developed from the 
boxed region of California, the third row (e, f) are models developed from the boxed region of Missouri, 
the fourth row (g, h) are models developed from the boxed region of the Mid-East. 
 
Table B.3. Spatial covariance ranges of the posterior means of the boxed regions presented in Fig. B.6 
for kriging and BME. The kriging covariance is a one structured Gaussian model and the BME covariance 
is a two structured Gaussian and exponential model. The last column displays the ratio of the shortest 
kriging range (i.e. the only kriging range) with the shortest BME range. 

Region 
Kriging Range 

(km) 
BME Range (km) 

Short 
Range 
Ratio 

    Long Short   

California 422 362 66 6.4 

Missouri 296 302 39 7.7 

Mid-East 386 358 58 6.6 
 

 
Figure B.7. The average variation of BME and kriging within a subdomain of the US with an increasingly 
smaller area. Posterior mean estimates for daily PM2.5 were taken across the contiguous US as 
estimated by both kriging and BME. The entirety of the domain was then broken up into subdomains of 
equal size as displayed on the independent axis. The average variance of the posterior mean estimates 
of all subdomains were taken and plotted on the left dependent axis. The horizontal red line is the 
shortest covariance spatial range calculated from all posterior kriging mean estimates across the 
contiguous US on July 1, 2001. The horizontal blue line is the shortest covariance spatial range 
calculated from all posterior BME mean estimates across the contiguous US on July 1, 2001. The dotted 
green line is the ratio between the average BME to kriging variation as measured on the right dependent 
axis.  
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B.3 Implementation of the Frequentist Downscaler Method 

B.3.1 Equations 

𝑌(𝑠, 𝑡) = 𝛽0𝑡 + 𝛽0(𝑠, 𝑡) + 𝛽1𝑡𝑥(𝐵, 𝑡) + 𝛽1(𝑠, 𝑡)𝑥(𝐵, 𝑡) + 𝜖(𝑠, 𝑡)              (Equ. B-4) 

There are several options to extend of the downscaler model to include a temporal component. This work 

looks at the additive bias in a dynamic manner and the multiplicative bias in an independent manner. 

𝑌(𝑠, 𝑡) = 𝜌0𝛽0𝑡−1 + 𝜂0𝑡 + 𝜌1𝛽1𝑡−1𝑥(𝐵, 𝑡) + 𝜂1𝑡𝑥(𝐵, 𝑡) + (𝐴11 + 𝐴12𝑥(𝐵, 𝑡))𝑤0𝑡(𝑠, 𝑡) + (𝐴12 +

𝐴22𝑥(𝐵, 𝑡))𝑤1𝑡(𝑠, 𝑡) + 𝜖(𝑠, 𝑡)          

          (Equ. B-5) 

𝑌(𝑠, 𝑡)~𝐺𝑅𝐹(𝑚𝑌 = 𝜌0𝛽0𝑡−1 + 𝜂0𝑡 + 𝜌1𝛽1𝑡−1𝑥(𝐵, 𝑡) + 𝜂1𝑡𝑥(𝐵, 𝑡), 𝑐𝑌 = (𝐴11 + 𝐴21𝑥(𝐵, 𝑡))
2

𝑐𝑤0𝑡
+ (𝐴12 +

𝐴22𝑥(𝐵, 𝑡))
2

𝑐𝑤1𝑡
+ 𝜏2𝑐𝜖                  (Equ. B-6) 

The covariance model is not only a function of the random fields 𝑤0𝑡(𝑠), 𝑤0𝑡(𝑠), and 𝜖(𝑠, 𝑡), but it is a 

function of the variable (known everywhere) 𝑥(𝐵, 𝑡). Thus, 𝑐𝑌 can be more explicitly defined as: 

𝑐𝑌| 𝑥(𝐵) = 𝑐𝑜𝑣(𝑌(𝑠, 𝑡), 𝑌(𝑠′, 𝑡′)) = (𝐴11 + 𝐴12𝑥(𝐵, 𝑡))(𝐴11 + 𝐴12𝑥(𝐵′ , 𝑡′))exp (−𝜙0|𝑠 − 𝑠′|)𝛿(|𝑡 − 𝑡′|) + (𝐴12 +

𝐴22𝑥(𝐵, 𝑡))(𝐴12 + 𝐴22𝑥(𝐵′, 𝑡′))exp (−𝜙1|𝑠 − 𝑠′|)𝛿(|𝑡 − 𝑡′|) + 𝜏2𝛿(|𝑠 − 𝑠′|, |𝑡 − 𝑡′|)           (Equ. B-7) 

B.3.2 Empirical Estimation of Parameters 

To estimate the parameters in a non-Bayesian way, an empirical approach is taken.  

Estimation of 𝜌0, 𝛽0𝑡−1, 𝜂0𝑡, 𝜌1, 𝛽1𝑡−1, and 𝜂1𝑡 

For every day, all paired modeled and observed data are collected. For each day, the parameters are fit 

to the following optimization function.  

𝑚𝑖𝑛 {∑ (�̂�𝑌,𝑡 − 𝑌(𝑠, 𝑡))
2𝑇

𝑡=1 }                 (Equ. B-8) 

where, �̂�𝑌,𝑡 = �̂�0�̂�0𝑡−1 + �̂�0𝑡 + �̂�1�̂�1𝑡−1𝑥(𝐵, 𝑡) + �̂�1𝑡𝑥(𝐵, 𝑡). For across all 𝑡 days the empirical covariance 

model is fit through least squares. 

Estimation of 𝜏2 

The parameter 𝜏2 is the variance of the random white noise of 𝑌(𝑠, 𝑡). To minimized the skewness of the 

residuals of 𝑌(𝑠, 𝑡), variance of the 25% and 75% percentiles were taken. 

�̂�2 = 𝑉[�̂�𝑌 − 𝑌(𝑠, 𝑡)]                  (Equ. B-9) 
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Estimation of 𝐴11, 𝐴12,𝐴22, 𝜙0, and 𝜙1 

These parameters are constant across all days on the mean trend-removed data. For every day, all 

paired modeled and observed data are collected. From this set, modeled data are partitioned into deciles. 

The experimental covariance is calculated between every combination of each decile and for 𝐵 = 𝐵′ (i.e. 

(
10
2

) + 10 = 55 combinations).  

For each combination/day, the parameters are fit to the following optimization function.  

𝑚𝑖𝑛 {∑ ∑ ∑ (�̂�𝑌|𝑥(𝐵𝑖,𝑡),𝑥(𝐵𝑗,𝑡) − 𝐶𝑌|𝑥(𝐵𝑖,𝑡),𝑥(𝐵𝑗,𝑡))
2

10
𝑗=𝑖

10
𝑖=1

𝑇
𝑡=1 }            (Equ. B-10) 

For every (𝑖, 𝑗) combination for all 𝑡 days the empirical covariance model is fit through least squares. 

𝑐𝑌 = (𝐴11 + 𝐴12𝑥(𝐵𝑖 , 𝑡)) (𝐴11 + 𝐴12𝑥(𝐵𝑗 , 𝑡)) exp (−𝜙0|𝑠 − 𝑠′|)𝛿(|𝑡 − 𝑡′|) + (𝐴12 + 𝐴22𝑥(𝐵𝑖 , 𝑡)) (𝐴12 +

𝐴22𝑥(𝐵𝑗 , 𝑡)) exp (−𝜙1|𝑠 − 𝑠′|)𝛿(|𝑡 − 𝑡′|) + 𝜏2𝛿(|𝑠 − 𝑠′|)𝛿(|𝑡 − 𝑡′|)            (Equ. B-11) 

Keep in mind that the variance of each covariance model can only be evaluated when 𝐵𝑖 = 𝐵𝑗 for each 

day. 

B.3.3 Development of the Predictive Distribution 

𝑌𝑘|𝑌𝑑,𝜃 = 𝑚𝑘|𝑌𝑑
+ 𝐶𝑌𝑘,𝑌𝑑,𝜃𝐶−1

𝑌𝑑,𝑌𝑑,𝜃(𝑌𝑑 − 𝑚𝑑,𝜃)             (Equ. B-12) 

𝐶𝑘|𝑌𝑑,𝜃 = 𝐶𝑌𝑘,𝑌𝑘,𝜃 − 2𝐶𝑌𝑘,𝑌𝑑,𝜃𝐶−1
𝑌𝑑,𝑌𝑑,𝜃𝐶𝑌𝑑,𝑌𝑘,𝜃             (Equ. B-13) 

Let 𝑥(𝐵𝑘 , 𝑡𝑘) be the modeled concentration of the grid of the estimation location. 

𝑚𝑘|𝑌𝑑
= 𝜌0𝛽0𝑡−1 + 𝜂0𝑡 + 𝜌1𝛽1𝑡−1𝑥(𝐵𝑘 , 𝑡𝑘)  + 𝜂1𝑡𝑥(𝐵𝑘 , 𝑡𝑘)             (Equ. B-14) 

𝐶𝑌𝑘,𝑌𝑑,𝜃 = ∑ 𝑰𝒙(𝑩𝒊,𝒕𝒊) ((𝐴11 + 𝐴12𝑥(𝐵𝑘 , 𝑡𝑘) )(𝐴11 + 𝐴12𝑥(𝑩𝑖 , 𝒕))exp (−𝜙0|𝑠𝑘 − 𝒔𝑖|)𝛿(|𝑡𝑘 − 𝒕|) + (𝐴12 +10
𝑖=1

𝐴22𝑥(𝐵𝑘 , 𝑡𝑘) )(𝐴12 + 𝐴22𝑥(𝑩𝑖 , 𝒕))exp (−𝜙1|𝑠𝑘 − 𝒔𝑖|)𝛿(|𝑡𝑘 − 𝒕|) + 𝜏2𝛿(|𝑠𝑘 − 𝒔𝑖|)𝛿(|𝑡𝑘 − 𝒕|))        (Equ. B-15) 

𝐶𝑌𝑑,𝑌𝑑,𝜃 = ∑ ∑ 𝑰𝒙(𝑩𝒊,𝒕𝒊),𝒙(𝑩𝒋,𝒕𝒊) ((𝐴11 + 𝐴12𝑥(𝑩𝑖 , 𝒕)) (𝐴11 + 𝐴12𝑥(𝑩𝑗 , 𝒕)) exp (−𝜙0|𝒔𝑖 − 𝒔𝑗|)𝛿(|𝒕𝑖 − 𝒕𝑗|) +10
𝑗=𝑖

10
𝑖=1

(𝐴12 + 𝐴22𝑥(𝑩𝑖 , 𝒕)) (𝐴12 + 𝐴22𝑥(𝑩𝑗 , 𝒕)) exp (−𝜙1|𝒔𝑖 − 𝒔𝑗|)𝛿(|𝒕𝑖 − 𝒕𝑗|) + 𝜏2𝛿(|𝒔𝑖 − 𝒔𝑗|)𝛿(|𝒕𝑖 − 𝒕𝑗|))(Equ. B-16) 

𝑰𝒙(𝑩𝒊,𝒕𝒊) is an indicator function where 𝑰𝒙(𝑩𝒊,𝒕𝒊) = {
1, 𝑤ℎ𝑒𝑛 𝐵𝑖 ∈ 𝑑𝑒𝑐𝑖𝑙𝑒𝑖

0, 𝑤ℎ𝑒𝑛 𝐵𝑖 ∉ 𝑑𝑒𝑐𝑖𝑙𝑒𝑖
  

𝑰𝒙(𝑩𝒊,𝒕𝒊),𝒙(𝑩𝒋,𝒕𝒊) is an indicator function where 𝑰𝒙(𝑩𝒊,𝒕𝒊),𝒙(𝑩𝒋,𝒕𝒊) = {
1, 𝑤ℎ𝑒𝑛 𝐵𝑖 ∈ 𝑑𝑒𝑐𝑖𝑙𝑒𝑖  𝑎𝑛𝑑 𝐵𝑗 ∈ 𝑑𝑒𝑐𝑖𝑙𝑒𝑗  

0, 𝐵𝑖 ∉ 𝑑𝑒𝑐𝑖𝑙𝑒𝑖  𝑎𝑛𝑑/𝑜𝑟 𝐵𝑗 ∉ 𝑑𝑒𝑐𝑖𝑙𝑒𝑗
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The size of 𝐶𝑌𝑘,𝑌𝑑,𝜃 is maintained throughout its summation, meaning 𝐶𝑌𝑘,𝑌𝑑,𝜃 is a 𝑘 × 𝑑 matrix and each 

term in the summation is also a 𝑘 × 𝑑 matrix. The same is true for 𝐶𝑌𝑑,𝑌𝑑,𝜃 and 𝐶𝑌𝑘,𝑌𝑘,𝜃. 

B.3.4 Development of the Distribution of the bias (additive and multiplicative) 

Recall 𝛽0𝑡(𝑠, 𝑡) = 𝜌0𝛽0𝑡−1 + 𝜂0𝑡 + 𝛽0(𝑠, 𝑡) = 𝛽0𝑡 + 𝐴11𝑤0𝑡(𝑠, 𝑡) + 𝐴𝟏𝟐𝑤1𝑡(𝑠, 𝑡)           

𝛽0𝑡(𝑠, 𝑡)~𝐺𝑅𝐹(𝑚�̃�0𝑡
= 𝜌0𝛽0𝑡−1 + 𝜂0𝑡 , 𝑐�̃�0𝑡

= 𝐴11
2𝑐𝑤0𝑡

+ 𝐴12
2𝑐𝑤1𝑡

)            (Equ.B-17) 

Because 𝛽0𝑡(𝑠, 𝑡) is not calculated directly, the predictive distribution is slightly different than 𝑌(𝑠, 𝑡). 

𝑌�̃�0𝑡𝑘|𝑌𝑑,𝜃 = 𝑚�̃�0𝑡𝑘|𝑌𝑑
+ 𝐶�̃�0𝑡𝑘,𝑌𝑑,𝜃𝐶−1

𝑌𝑑,𝑌𝑑,𝜃(𝑌𝑑 − 𝑚𝑑,𝜃)            (Equ. B-18) 

𝐶�̃�0𝑡𝑘|𝑌𝑑,𝜃 = 𝐶�̃�0𝑡𝑘,�̃�0𝑡𝑘,𝜃 − 2𝐶�̃�0𝑡𝑘,𝑌𝑑,𝜃𝐶−1
𝑌𝑑,𝑌𝑑,𝜃𝐶𝑌𝑑,�̃�0𝑡𝑘,𝜃            (Equ. B-20) 

𝐶�̃�0𝑡𝑘,𝑌𝑑,𝜃 = 𝑐𝑜𝑣 (𝛽0𝑡(𝑠, 𝑡), 𝑌(𝑠′, 𝑡′)) = 𝑐𝑜𝑣(𝜌0𝛽0𝑡−1 + 𝜂0𝑡 + 𝐴11𝑤0𝑡(𝑠, 𝑡) + 𝐴𝟏𝟐𝑤1𝑡(𝑠, 𝑡), 𝛽0𝑡 + 𝛽1𝑡𝑥(𝐵′, 𝑡′) +

(𝐴11 + 𝐴12𝑥(𝐵′, 𝑡′))𝑤0𝑡(𝑠′, 𝑡′) + (𝐴12 + 𝐴22𝑥(𝐵′, 𝑡′))𝑤1𝑡(𝑠′, 𝑡′) + 𝜖(𝑠′, 𝑡′)) = 𝐴11(𝐴11 + 𝐴21𝑥(𝐵′, 𝑡′))𝑐𝑤0𝑡 +

𝐴12(𝐴12 + 𝐴22𝑥(𝐵′, 𝑡′))𝑐𝑤1𝑡
               (Equ. B-21) 

𝐶�̃�0𝑡𝑘,�̃�0𝑡𝑘,𝜃 = 𝑐𝑜𝑣 (𝛽0(𝑠, 𝑡), 𝛽0(𝑠′, 𝑡′)) = 𝑐𝑜𝑣(𝜌0𝛽0𝑡−1 + 𝜂0𝑡 + 𝐴11𝑤0𝑡(𝑠, 𝑡) + 𝐴𝟏𝟐𝑤1𝑡(𝑠, 𝑡), 𝜌0𝛽0𝑡−1 + 𝜂0𝑡 +

𝐴11𝑤0𝑡(𝑠′, 𝑡′) + 𝐴𝟏𝟐𝑤1𝑡(𝑠′, 𝑡′)) = 𝐴11
2𝑐𝑤0𝑡

+ 𝐴12
2𝑐𝑤1𝑡

            (Equ. B-22) 

𝛽1(𝑠, 𝑡) follows similarly.  

𝛽1(𝑠, 𝑡) = 𝜌0𝛽0𝑡−1 + 𝜂0𝑡 + 𝛽1(𝑠, 𝑡) = 𝜌0𝛽0𝑡−1 + 𝜂0𝑡 + 𝐴12𝑤0𝑡(𝑠, 𝑡) + 𝐴𝟐𝟐𝑤1𝑡(𝑠, 𝑡)         (Equ. B-23) 

𝛽1𝑡(𝑠, 𝑡)~𝐺𝑅𝐹(𝑚�̃�1𝑡
= 𝜌1𝛽1𝑡−1 + 𝜂0𝑡 , 𝑐�̃�1𝑡

= 𝐴12
2𝑐𝑤0𝑡

+ 𝐴22
2𝑐𝑤1𝑡

)            (Equ B-24) 

Because 𝛽1𝑡(𝑠, 𝑡) is not calculated directly, the predictive distribution is slightly different than 𝑌(𝑠, 𝑡). 

𝑌�̃�1𝑡𝑘|𝑌𝑑,𝜃 = 𝑚�̃�1𝑡𝑘|𝑌𝑑
+ 𝐶�̃�1𝑡𝑘,𝑌𝑑,𝜃𝐶−1

𝑌𝑑,𝑌𝑑,𝜃(𝑌𝑑 − 𝑚𝑑,𝜃)            (Equ. B-25) 

𝐶�̃�1𝑡𝑘|𝑌𝑑,𝜃 = 𝐶�̃�1𝑡𝑘,�̃�1𝑡𝑘,𝜃 − 2𝐶�̃�1𝑡𝑘,𝑌𝑑,𝜃𝐶−1
𝑌𝑑,𝑌𝑑,𝜃𝐶𝑌𝑑,�̃�1𝑡𝑘,𝜃            (Equ. B-26) 

𝐶�̃�1𝑡𝑘,𝑌𝑑,𝜃 = 𝑐𝑜𝑣 (𝛽1𝑡(𝑠, 𝑡), 𝑌(𝑠′, 𝑡′)) = 𝑐𝑜𝑣(𝜌1𝛽1𝑡−1 + 𝜂1𝑡 + 𝐴12𝑤0𝑡(𝑠, 𝑡) + 𝐴𝟐𝟐𝑤1𝑡(𝑠, 𝑡), 𝛽0𝑡 + 𝛽1𝑡𝑥(𝐵′, 𝑡′) +

(𝐴11 + 𝐴12𝑥(𝐵′, 𝑡′))𝑤0𝑡(𝑠′, 𝑡′) + (𝐴12 + 𝐴22𝑥(𝐵′, 𝑡′))𝑤1𝑡(𝑠′, 𝑡′) + 𝜖(𝑠′, 𝑡′)) = 𝐴12(𝐴11 + 𝐴12𝑥(𝐵′, 𝑡′))𝑐𝑤0𝑡 +

𝐴22(𝐴12 + 𝐴22𝑥(𝐵′, 𝑡′))𝑐𝑤1𝑡
               (Equ. B-27) 

𝐶�̃�1𝑡𝑘,�̃�1𝑡𝑘,𝜃 = 𝑐𝑜𝑣 (𝛽1𝑡(𝑠, 𝑡), 𝛽1𝑡(𝑠′, 𝑡′)) = 𝑐𝑜𝑣(𝜌1𝛽1𝑡−1 + 𝜂1𝑡 + 𝐴12𝑤0𝑡(𝑠, 𝑡) + 𝐴𝟐𝟐𝑤1𝑡(𝑠, 𝑡), 𝛽1𝑡 +

𝐴12𝑤0𝑡(𝑠′, 𝑡′) + 𝐴𝟐𝟐𝑤1𝑡(𝑠′, 𝑡′)) = 𝐴12
2𝑐𝑤0𝑡

+ 𝐴22
2𝑐𝑤1𝑡

 (Equ. B-28) 
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APPENDIX C: SUPPORTING INFORMATION FOR INCORPORATING MASS FRACTION OF 
POLYCYCLIC AROMATIC HYDROCARBONS INTO THE BAYESIAN MAXIMUM ENTROPY 

FRAMEWORK ACROSS NORTH CAROLINA6 

 
Table C.1. Covariance model parameters for observed PAH data. 

PAH 𝐶0 ((𝑛𝑔/𝑚3)2) 𝑎𝑟 (km) 𝑎𝑡 (days) 

benz(a)anthracene 2.26 518 142 

chrysene 2.09 521 147 

benzo(b)fluoranthrene 2.38 914 109 

benzo(k)fluoranthrene 2.11 362 155 

benzo(e)pyrene 2.20 430 119 

benzo(a)pyrene 2.13 247 146 

indeno(1,2,3-c,d)pyrene 1.84 507 123 

benzo(g,h,i)perylene 1.43 750 129 

dibenzo(a,h)anthracene 3.01 312 123 

Total PAH 1.68 356 123 
 

The covariance model for the homogeneous/stationary S/TRF 𝑋(𝒑) is developed from the PAH 

experimental covariance. The experimental covariance value for a spatial lag 𝑟 and a temporal lag 𝜏 is 

calculated as     

�̂�𝑋(𝑟, 𝜏) =
1

𝑁(𝑟,𝜏)
∑ 𝑋ℎ𝑒𝑎𝑑,𝑖𝑋𝑡𝑎𝑖𝑙,𝑖

𝑁(𝑟,𝜏)
𝑖=1 − 𝑚𝑋

2                (Equ. C-1) 

where 𝑁(𝑟, 𝜏) is the number of pairs of values (𝑋ℎ𝑒𝑎𝑑,𝑖𝑋𝑡𝑎𝑖𝑙,𝑖) separated by a spatial lag of 𝑟 and time lag of 

𝜏 and 𝑚𝑋 is the mean of the 𝒙ℎ data. A one-structured exponential model was selected because it 

provided the best overall performance with respect to least squared fit. The equation of the one-structured 

exponential covariance model is given by 

𝑐𝑋(𝑟, 𝜏) = 𝐶0 exp (
−3𝑟

𝑎𝑟
) exp (

−3𝜏

𝑎𝑡
)                 (Equ. C-2) 

where 𝐶0 is the sill (variance) and 𝑎𝑟 and 𝑎𝑡 are the spatial and temporal ranges, respectively. The 

parameters 𝑎𝑟 and 𝑎𝑡 obtained from observed PAH data are given in Table C.1. 

  

 
 

                                                           
6 This appendix is planned to be submitted as the supporting information of an article to the Journal of 

Exposure Science and Environmental Epidemiology. Reyes, Jeanette M., Hubbard, Heidi, Stiegel, 
Matthew A., Pleil, Joachim D., Serre, L. Marc. Incorporating Mass Fraction of Polycyclic Aromatic 
Hydrocarbons into the Bayesian Maximum Entropy Framework across North Carolina. 

 



 
 

86 

 

Table C.2. Cokriging covariance model parameters for observed PAH and PM2.5 data.  
𝐶𝑃𝐴𝐻 is in in (𝑛𝑔/𝑚3)2, 𝐶𝑃𝑀 is in (𝜇𝑔/𝑚3)2and 𝐶𝑃𝐴𝐻,𝑃𝑀 is in (𝑛𝑔/𝑚3) ∗ (𝜇𝑔/𝑚3). 

PAH 𝐶𝑃𝐴𝐻 𝐶𝑃𝑀 𝐶𝑃𝐴𝐻,𝑃𝑀 𝑎𝑟 (km) 𝑎𝑡 (days) 

benz(a)anthracene 2.257 0.365 0.157 188 118 

chrysene 2.091 0.365 0.135 206 119 

benzo(b)fluoranthrene 2.381 0.365 -0.031 1176 78 

benzo(k)fluoranthrene 2.112 0.365 0.069 223 102 

benzo(e)pyrene 2.202 0.365 0.012 330 96 

benzo(a)pyrene 2.131 0.365 -0.093 206 114 

indeno(1,2,3-c,d)pyrene 1.838 0.365 -0.002 437 103 

benzo(g,h,i)perylene 1.429 0.365 -0.054 650 101 

dibenzo(a,h)anthracene 3.005 0.365 0.081 128 87 

Total PAH 1.683 0.365 0.037 322 96 
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Table C.3. Cross validation statistics for all 9 PAHs and Total PAH.  

PAH statistic kriging cokriging soft LR soft MF 

benz(a)anthracene 

ME -0.210 -0.246 -0.228 -0.049 

VE 1.037 1.017 0.923 0.716 

MSE 1.069 1.065 0.964 0.710 

R2 0.747 0.750 0.773 0.830 

chrysene 

ME -0.202 -0.238 -0.200 -0.020 

VE 1.092 0.999 1.032 0.807 

MSE 1.119 1.044 1.060 0.798 

R2 0.712 0.735 0.717 0.789 

benzo(b)fluoranthrene 

ME 0.015 0.029 0.157 0.018 

VE 1.215 1.329 1.724 1.019 

MSE 1.200 1.314 1.728 1.007 

R2 0.723 0.701 0.637 0.762 

benzo(k)fluoranthrene 

ME -0.219 -0.239 -0.179 -0.130 

VE 1.416 1.369 1.276 1.347 

MSE 1.447 1.410 1.292 1.348 

R2 0.611 0.621 0.636 0.611 

benzo(e)pyrene 

ME -0.137 -0.147 -0.068 0.019 

VE 0.948 0.933 0.871 0.646 

MSE 0.955 0.944 0.865 0.639 

R2 0.776 0.779 0.781 0.848 

benzo(a)pyrene 

ME -0.169 -0.174 0.069 -0.006 

VE 0.998 0.969 0.895 1.159 

MSE 1.015 0.988 0.889 1.145 

R2 0.739 0.748 0.767 0.698 

indeno(1,2,3-c,d)pyrene 

ME -0.078 -0.083 -0.017 0.020 

VE 0.842 0.831 0.896 0.686 

MSE 0.839 0.828 0.885 0.678 

R2 0.758 0.761 0.755 0.804 

benzo(g,h,i)perylene 

ME 0.030 0.023 0.095 0.076 

VE 0.921 0.923 0.940 0.885 

MSE 0.911 0.912 0.938 0.880 

R2 0.650 0.650 0.650 0.646 

dibenzo(a,h)anthracene 

ME -0.205 -0.249 -0.031 -0.019 

VE 1.028 1.205 0.897 0.885 

MSE 1.058 1.253 0.888 0.874 

R2 0.818 0.781 0.848 0.845 

Total PAH 

ME -0.145 -0.137 -0.102 -0.042 

VE 0.806 0.782 0.764 0.591 

MSE 0.818 0.792 0.766 0.586 

R2 0.747 0.752 0.744 0.821 



 
 

88 

 

 
 

(a) (b) 

  

Figure C.1. Exhaustive validation search of optimal soft data neighborhood for the (a) the linear 
regression method and (b) the mass fraction method for Total PAH displaying the MSE. The green “X” 
marks the lowest MSE. 
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APPENDIX D: WHIMS CODE DOCUMENTATION AND QUALITY ASSURANCE FOR THE 
ESTIMATION OF PM2.5 AFTER 1999 USING OBSERVATION AND CTM 

 
D.1 Introduction 

In the context of an epidemiological study there is need to obtain estimates of the PM2.5 ambient 

concentration for which WHIMS study participants are exposed. This report describes how the BME 

estimation method is used to perform an interpolation of observed daily PM2.5 concentrations and obtain 

at each participant location an estimate of the daily PM2.5 concentration for each day from 1999 to 2010. 

The daily concentrations were downloaded from the Air Quality System (AQS) maintained by the U.S. 

Environmental Protection Agency (EPA). The AQS raw data were processed by the BME method as 

follows: The AQS raw data for PM2.5 were used to obtain a database of observed daily concentrations. A 

transformation of these data was used, which consisted of removing from the data an offset obtained 

using an exponential kernel smoothing (Lee et al., 2013). The exponential kernel smoothing was set so 

that the offset captured the spatial variability of the data over long spatial distances and long time scales. 

An exponential space/time covariance model was used to characterize the space/time autocorrelation in 

the offset removed data. The BME method was then used to estimate daily PM2.5 at unsampled locations 

using the offset removed daily observations treated as hard data. Since the observations are treated as 

hard data, the BME method reduces to the space/time Simple Kriging (SK) method of linear geostatistics, 

in which case BME is also referred to as space/time Simple Kriging (SK). 

D.2 Materials 

D.2.1 PM2.5 daily data 

The daily PM2.5 concentration for each monitoring site/day during the study period (1999-2010) 

were constructed based raw monitoring data from monitoring stations measuring either hourly or daily 

PM2.5 concentrations using the procedure described here.  

We obtained PM2.5 monitoring data (raw data) sampled during the study period (1999-2010) 

from the Air Quality Systems (AQS) database maintained by the U.S. Environmental Protection Agency 

(EPA), which is a repository of the monitoring data collected across various monitoring networks. The 

PM2.5 data are available in a few data files on AQS depending on the source of data. These files are 

described in the AQS as follow: 1) daily PM2.5 local conditions, 2) daily PM fine speciation from the 

Chemical Speciation Network (CSN) monitoring network, 3) daily PM fine speciation from the Interagency 
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Monitoring of Protected Visual Environments (IMPROVE) monitoring network, and 4) PM2.5 non-

referenced method hourly. Within each data file, the methodologies used to measure PM2.5 are defined 

using a parameter code which takes the following values: 1) 88101 for daily and hourly PM2.5 

concentrations measured using a federally referenced method (FRM), 2) 88501 for raw PM2.5 

concentrations measured using methods that are not federally acceptable, and 3) 88502 for PM2.5 air 

quality index (AQI) values that provide acceptable measurements of PM2.5 concentrations in that they 

are comparable to FRM measurements. In this work only the 88101 and 88502 data were treated as 

reliable data for the purpose of constructing the database of daily PM2.5 concentrations. Data from the 

parameter 88502 are also known as Tapered element oscillating microbalance (TEOM) data. 

All observations sampled at monitors whose measurement scale is “Microscale” were removed. 

Stations located in Canada were excluded because they did not have a numeric code. 

Hourly PM2.5 data were averaged into daily PM2.5 if at least 18 hours out of 24 were measured for 

a given day/monitor. Otherwise, a daily average was not constructed. More than 99.9% of hourly records 

were reported every hour on the hour. However, there were several records not reported on the hour. 

These hourly records were removed, before constructing the daily concentrations. Since the hourly data 

were sampled using continuous monitors, we assigned the sampling frequency code 1 (daily) to the daily 

concentrations constructed from hourly data. 

At each monitoring site with multiple monitors, the collocated daily concentrations recorded at any 

given day were combined using the following procedure to produce a constructed daily concentration for 

that site/day. First, priority rank scores were assigned to each collocated daily concentrations based on its 

data source and type as follow. 

Rank 1: FRM daily PM2.5 

Rank 2: FRM daily PM2.5 from CSN 
Rank 3: FRM hourly PM2.5 
Rank 4: TEOM daily PM2.5 from CSN 
Rank 5: TEOM daily PM2.5 from IMPROVE 
Rank 6: TEOM hourly PM2.5  

 

If the collocated concentrations for a given site/day had varying priority ranks, then only the 

concentration with the highest rank (i.e. the smallest priority score) was retained. For example, if there 

were concentrations with rank scores 1 and 4 at a given site/day, then only the concentration with priority 

rank 1 was used at that site/day. If there were more than one collocated daily concentrations with the 
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highest priority rank, then these daily concentrations were averaged to produce a single daily 

concentration at that site/day.   

Finally, the constructed daily PM2.5 concentrations were joined with the geographic coordinates 

of the sites. If the longitude and latitude of a site were not defined in the original raw data file, then the 

individual site information file was searched. If the longitude and latitude were found in that file, they were 

added to the data file of constructed daily concentrations. By searching through the individual site 

information file, all locations were accounted for and no location was missing a longitude and latitude after 

searching. 

D.2.2 PM2.5 Modeled Data 

Daily concentrations for PM2.5 were also constructed from modeled data from both the 

Community Multiscale Air Quality (CMAQ) and Comprehensive Air Quality Model with Extensions (CAMx) 

models. CMAQ and CAMx are Chemical Transport Models (CTMs). They use as input emissions 

information as well as meteorological data which is then translated into complex chemical processes to 

estimate ambient air pollution over gridded geographical boundaries for different time steps. Modeled 

data are available at a 36km resolution every hour for the years 2001, 2002, 2005, and 2007. Modeled 

data are available every hour for the western part of the United States for part of the spring and summer 

for 2006 at a 12km resolution. Data are projected using a Lambert Conic Conformal (LCC) projection.  

Daily modeled values were constructed by averaging the 24 hourly modeled values for a given 

grid location/day. To reconcile the spatial misalignment of defining the modeled concentration over an 

area (i.e. the modeled concentration over a grid), the location of modeled values are defined by the 

centroid of each grid. 

Location of the study participants 

In order to protect the confidentiality of the location of WHIMS participants, Dr. Whitsel provided 

to the Serre lab a large set of locations (N=17,461) that included within it the WHIMS participant locations 

(n+7479). The Serre lab was not given knowledge of which of the 17,461 locations were actual WHIMS 

participants locations. This in effect “hides” the participants amongst the large set of locations, which 

provides an added level of data protection. The locations were saved in a file named partdata.mat 

containing three columns: “partid”, “partx”, and “party”. In order to protect the confidentiality of WHIMS 
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participants’ data, the “partid” field contains a randomized id that is generated solely for the purpose of 

this study and does not correspond to the actual WHIMS participant id. The “partx”, and “party” fields 

provide the spatial coordinates of each location record.  

In order to protect the confidentiality of the location data, we present here examples that are 

based on 500 simulated (fake) case locations randomly located across the contiguous US. An example of 

these simulated (fake) case locations is shown below in the figure below. 

partid, partx, party 
1, -1132770.34, -659383.01 
2, -1789928.05, 257671.13 
3, 625256.73, -669169.08 
4, 626906.89, -847002.75 
5, 1603181.17, 127434.18 
6, -503791.48, -724386.12 
7, 15752.19, 582908.44 
8, 1206674.01, -154597.59 
9, -1837605.24, 62486.18 
10, -1765398.46, 527184.83 

 
D.3 Methods 

D.3.1 Estimation of Daily PM2.5 Concentration 

BME estimation 

The BME estimation method is used to perform an interpolation of observed daily PM2.5 

concentrations and obtain at each participant location an estimate of the daily PM2.5 concentration for 

each day from 1999 to 2010. The BME method was then used to estimate daily PM2.5 at unsampled 

locations using the offset removed daily observations treated as hard data. The BME (kriging with 

measurement error) mean estimates are in good agreement with the observed data, and the BME (kriging 

with measurement error) variance show that the estimation is least accurate in areas where monitoring 

stations are sparse.  

Estimation accuracy 

In order to assess the estimation accuracy of the BME estimates, a 10-fold estimation was performed. 

For each fold, a BME estimation was conducted (without recalculating the offest or the covariance model) 

to obtain the BME estimates of the data in that fold using only the data from the remaining 90% of the 

monitoring stations. The 𝑟2 is 0.702 for the long offset with soft data.  
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Quality Assurance 

In order to ensure that the estimation of PM2.5 concentrations were performed correctly, quality 

assurance plots were created showing the concentration at randomly selected estimation locations along 

with the concentration of the closest 5 monitoring stations. The estimation and the randomly selected 

locations matches well with the estimation are the 5 surrounding monitors implying that the estimation 

was performed correctly. 

D.4 Numerical implementation 

D.4.1 Data and analysis folders 

All data and analysis are housed in the folder “C:\AirCTMneuro\PM2p5est_a99”. All steps of this 

analysis, background information, and results have been documented in 

“00_DataDocumentationAndQualityAssurance”. All data files (i.e. observed data, modeled data, and 

paired modeled and observed data are stored in “datafiles”. The collection of functions needed to 

implement the BME analysis is housed in the “BMELIB2.0b” folder. All data sources have to be inputted 

into MATLAB and saved in a file format (i.e. .mat) that allows for easy access to all data. These data 

sources include all observed data, all modeled data, and all paired modeled and observed data. The .m 

files needed are in the “01_mfiles_prepdata” folder. All data sources are converted to the same projection 

using the .m files located in the “09_mfiles_projections” folder. An exploratory analysis was performed on 

the observed data in order to optimize the parameter for the offset. The .m files needed are in the 

“02_mfiles_offset” folder. The offset is calculated in space and time jointly with the .m files located in 

“10_mfiles_newmeantrend”. All figures created are saved in the “plots_meanTrend” folder. An exploratory 

analysis was performed on the observed data in order to find the best covariance model for the offset-

removed data. The .m files needed are in the “03_mfiles_covariance” folder. All figures created are saved 

in the “plots_covModel” folder. An exploratory analysis was performed on the paired observed and 

modeled data to find the optimized soft data parameters. These parameters were used to calculate the 

bias-correct mean and variance for every CTM grid. The .m files needed are in the “04_mfiles_softdata” 

folder. All files created are saved in the .mat format and saved in the “matfiles” folder. In order to compare 

the performance of each method (e.g. using only observed data versus using observed and modeled 

data), cross validation was performed. The .m files needed are in the “05_mfiles_crossvalidation” folder. 
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BME estimates are calculated every day from 1999-2010 at the locations of the WHIMS participants. The 

.m files needed are in the “06_mfiles_estimation” folder. All files created are saved in .mat format in the 

“matfiles_est” folder. Figures created are saved in the “plots_est” folder. In order to visualize the results of 

the estimation, maps of the BME mean and BME variance are created across the US for select days 

during the time period. The .m files needed are in the “07_mfiles_map” directory. Maps are saved in the 

“plots” folder. In order to check to see if the estimation of PM2.5 after 1999 was performed correctly, a 

series of QAQC checks were performed. The .m files needed are in the “08_mfiles_QAQC” folder. All files 

created are saved in .mat format in the “matfiles_QAQC” folder. Figures created are saved in the 

“plots_QAQC” folder.  All subfolder are as follows. 

Table D.1. Folder Directory for WHIMS. 

Folder 

00_DataDocumentationAndQualityAssurance 

01_mfiles_prepdata 

02_mfiles_offset 

03_mfiles_covariance 

04_mfiles_softdata 

05_mfiles_crossvalidation 

06_mfiles_estimation 

07_mfiles_map 

08_mfiles_QAQC 

09_mfiles_projections 

10_mfiles_newmeantrend 

BMELIB2.0b 

datafiles 

matfiles 

matfiles_est 

matfiles_QAQC 

plots 

plots_covModel 

plots_est 

plots_meanTrend 

plots_QAQC 

 
D.4.2 Instructions to estimate PM2.5 concentration after to 1999 

In order to reduce the computational time, several MATLAB codes need to be executed in parallel on the 

Linux cluster. Shell scripts were prepared for submitting multiple jobs at a time. In order to run the shell 

script, use the following command. 

sh (shell script name) 

 
Shell scripts need to be executed in the following sequential order. Note that the next shell script cannot 

be executed until the previous one finishes. 
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Table D.2. Shell scripts to run for each folder. 

Folder Name of Shell script 

01_mfiles_prepdata runall_Cluster_01.sh 

02_mfiles_offset 
runall_Cluster_02a.sh 
runall_Cluster_02b.sh 

03_mfiles_covariance runall_Cluster_03.sh 

04_mfiles_softdata 

runall_Cluster_04a.sh 
runall_Cluster_04b.sh 
runall_Cluster_04c.sh 
runall_Cluster_04d.sh 

05_mfiles_crossvalidation 

runall_Cluster_05a.sh 
runall_Cluster_05b.sh 
runall_Cluster_05c.sh 
runall_Cluster_05d.sh 
runall_Cluster_05e.sh 

06_mfiles_estimation 
runall_Cluster_06a.sh 
runall_Cluster_06b.sh 

07_mfiles_map runall_Cluster_07.sh 

08_mfiles_QAQC 
runall_Cluster_08a.sh 
runall_Cluster_08b.sh 
runall_Cluster_08c.sh 

 
D.5 Results 

Each record in the data file case_PM25d_a99_CTM_YYYY.csv has the data fields described below, 

where YYYY is the 4 digit year ranging from 1999-2010. 

Table D.3. Format of WHIMS prediction file. 

Field Name Description 

id participants’ identification number 

PM2.5m_YYYYMMDD BME mean estimate of daily PM2.5 concentration on YYYY (4 digit year) 
MM (2 digit month) DD (2 digit day). This BME estimate is obtained 
using AQS observations treated as hard data and bias-corrected CTM 
treated as soft data, in which case BME is also referred to as space/time 
kriging with measurement error. The date ranges from YYYY0101 to 
YYYY1231. Each column corresponds to a particular day.  

PM2.5sd_YYYYMMDD corresponding BME standard deviation of daily PM2.5 concentration on 
YYYY (4 digit year) MM (2 digit month) DD (2 digit day). Since BME 
uses observed values treated as hard data and bias-corrected CTM 
values treaded as soft data, then the BME variance is the variance of 
space/time kriging with measurement error. Each column corresponds to 
a particular day. Days range from YYYY0101 to YYYY1231. 

 
D.6 QAQC 

In order to ensure that the estimation of PM2.5 concentrations were performed correctly, quality 

assurance plots were created. Below are plots showing the concentration at randomly selected estimation 

locations along with the concentration of the closest 5 monitoring stations and 2 closest soft data 
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locations. Intuitively, BME estimations should be close to the values of its surrounding stations. In each 

figure, the estimation and the randomly selected locations matches well with the estimation are the 5 

surrounding monitors implying that the estimation was performed correctly. The time series shows how 

the soft data influences the BME estimate. 

(a) (b) 

  

(c) (d) 

  

Figure D.1. Time series of random locations with and with modeled data. 
 
D.7 Date and version number 

We obtained the study participants’ location data from Dr. Eric Whitsel in a file named 

will_marc_10_21_2013.sas7bdat on October 25, 2013. The estimation of daily PM2.5 concentrations for 

these locations was completed by Jeanette Reyes in June 2013. Results of estimation were copied to a 

file named case_PM25d_a99_CTM_YYYY.csv, which was delivered to Eric Whitsel in June 2013 as 

version 1.0. 
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APPENDIX E: GITHUB URL 

All MATLAB scripts used in the creation of this dissertation can be found at 

https://github.com/reyesjmUNC/Dissertation-Scripts.  
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