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Abstract 

Jasper McChesney: Realizing the Niche’s Breadth: 

Inferring Ecological Process with Species Generalism 

(Under the direction of Robert K. Peet) 

Various ecological processes affect generalist and specialist species differently. By 

measuring niche breadth in communities, we can infer those processes. Simulation 

models provided proofs of concept for three analyses that were applied to Carolina 

Vegetation Survey data. (1) A refined method for estimating niche breadth using co-

occurrence data is presented. (2) It is shown that sampling grain can affect the 

quality of such estimates and also illuminate the scale of the processes limiting 

species’ distributions. Tress showed surprising sensitivity to spatial variation at a 

small scale (10 cm2) while herbs responded more strongly at a larger one (1000 m2). 

(3) The relationship between assemblage richness and the generalism of its members 

is explored. There is evidence that in some community types, important factors 

affecting richness include an evolutionary generalism-competition trade-off and the 

availability of specialist competitors in the local pool. 
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Preface  
 

The niche concept has been with ecology for a long time (Grinnell, 1924), but its 

meaning has varied between fields and individual researchers; shifted over time; 

and has been debated, perhaps, ad nauseum. Some have abandoned the term as too 

amorphous and laden with baggage to be useful, while others have tried to 

reformulate it (e.g., Leibold, 1995). But not all ecological terms must be precise to be 

useful: “competition,” for instance, has had no less tangled a history, yet still refers 

to an idea that ecologists understand, at least in broad outline. 

“Niche” may mean a species’ response to the environment: that is, it’s requirements. 

It may include the affect the species has on the environment; so that when all niches 

of a community are taken together, there is an endless dynamic feedback–which the 

first definition leaves to other concepts. It may be meant more broadly still, as a 

species’ total role within a community, encompassing all its interactions with all 

other species and the environment (see Vandermeer, 1972). And it may be focused 

as much on the ecosystem or surrounding community as on individual species: 

where a “niche” is an opening in some n-dimensional volume that is waiting to be 

filled by a species (Hutchinson, 1957). 

All of these concepts are valid. We need not settle on any one of them, because 

“niche” need not be a piece of highly technical jargon; it may be merely a heuristic; a 
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symbol calling to an ecologist’s mind such issues as where a species lives, and the 

interplay between the its traits, its environment, and other organisms. Such 

questions would seem to encompass much of ecology; but the focus, when we 

invoke the word “niche,” is often something Hutchinsonian: a visual metaphor in 

which space is filled with shapes representing species—perhaps normal-shaped 

curves on a single line. And it is this metaphor which, however imperfect, guides 

much niche-based thinking. It engages our spatial processing: we intuit easily that 

shapes may not easily overlap because they have substance, there are differing 

arrangements and packing that may be more or less efficient. Without metaphors, 

scientists must merely stare at data or catalog first-hand experiences. 

W H A T  T O  E X C L U D E  F R O M  T H E  N I C H E ?  

As just described, “niche” deals with a species and its community on the scale of 

abiotic and inter-specific interactions (but obviously has repercussions at much 

larger scales, say in distributions). But some categories of events are usually omitted, 

namely history. Ecologists like to focus on species-community interactions that are 

reproducible and a common factor wherever the species occurs. But identifying 

commonalities is always a matter of generalizing by omitting messy details, because 

all locations are unique, and all instances of a species occurrence different, 

dependent on innumerable factors. It is arbitrary what we consider worthy of 

categorizing and generalizing about and what we don’t. 

The difficulties of making such decisions can be illustrated by the rescue effect. 

Consider a site on the edge of a species’ range. Asking whether the species can 
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survive there, we might consider major abiotic factors: climate, disturbance regime, 

etc. If these are only barely sufficient for survival, a single propagule may not be 

able to establish a self-sustaining population. It then becomes a requirement that a 

source population be nearby. The location of such a source may be seen merely as 

contingency. But what if the species inherently exists in meta-populations, rapidly 

colonizing disturbed sites? What if it is a generalist, and exists all over the globe? 

Different life history strategies make the existence of a source more or less likely. 

There is, then, a continuum of factors affecting species’ existence: some stable and 

easy to generalize about, like climate; others dynamic and harder to measure at a 

single point in time, like colonization history. One is not inherently more important 

than the other, and there is no reason for science to concern itself with one and not 

the other. But this is, in some ways, what we do by enclosing stable factors in the 

niche concept while excluding others as “merely” history. Of course, there are 

practical, rather than epistemological reasons to do things this way. (It may also be a 

human or Western bias to favor seemingly Platonic traits.) 

An infinitely expansive niche concept would exclude nothing: the n-dimensional 

hyperspace would have axes for “distance to nearest source population,” and “time 

since last disturbance,” among many others. This is essentially “realized niche” in 

common parlance. It is all we can measure with observational data. We assume 

there is a correlation between the realized niche and any other we care to define, but 

experimental research on particular species and ecosystems must be used to confirm 

that. 
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If the expansive, realized niche concept is all we have though, we cannot single out 

factors controlling a species’ distribution; it allows no such distinctions to be made. 

Thus, even an arbitrary definition of niche, which excludes some variables, has 

utility. A common one eliminates recent history, stochastic events, and geography; 

and it seems as good as any. 

N I C H E  B R E A D T H  

No matter the niche concept we use, it will undoubtedly be complex. For it to be 

useful as an ecological tool, it must be characterized simply, in a way that is 

universal. Perhaps the coarsest possible summary is niche size. A large niche 

features a greater variety of interactions—with the environment, predators, 

mutualists, and so on. But the precise meaning depends on what variables we have 

permitted in the niche concept. If we use the common definition of niche given 

above, and focus on the requirements of existence, niche size is the variety of 

circumstances a species can tolerate. And we call this generalism.  

The following work attempts to show the utility of generalism as a multi-purpose 

tool for ecologists. First, it demonstrates a method for estimating niche width with 

large-scale abundance data. Second, it expands the idea of niche to describe species 

tolerance across scales. Third, it considers the use of species generalism to describe 

whole communities, and to infer the processes that maintain them. 
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1. Variations in Theta 

Designing a refined niche width metric based on co-occurrence 

I N T R O D U C T I O N  

Ecologists have long sought to characterize species traits, including those that broadly 

describe ecological roles, such as generalism or niche breadth (defined formally by 

Hutchinson, 1959). Although some traits may only be ascertained through labor-

intensive, per-species experiments (e.g. tree dispersal distances), the availability of 

large-scale datasets may allow others to be detected statistically for many species 

simultaneously. Estimation of niche breadth (habitat tolerance) has usually required 

extensive sampling of environmental variables throughout a species’ range (e.g., Vetaas, 

2002). However, Fridley et al. (2007; henceforth JF07) demonstrated that co-occurrence 

data alone might be suited to this purpose. 

JF07’s authors reasoned that a generalist species, which by definition can tolerate many 

conditions, should appear in more communities and thus co-occur with more species 

than would a specialist, assuming regular turnover across a heterogenous landscape. 

Their “theta” metric counted the number of co-occurrers for each focal species in a 

dataset (with corrections for site richness and non-random sampling). 

Variations on richness correction techniques have been debated already, but I 

wondered whether several other small changes might improve the metric’s ability to 
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estimate niche breadth. I framed these as options within five discrete data-processing 

steps, where all permutations create valid niche widths metrics. These were assessed 

using a spatially implicit simulation model, where true species widths could be known 

and compared to each metric’s estimates. With this approach, I essentially asked three 

questions: 

1. How is metric performance (in co-occurrence-based metrics generally) affected 

by different kinds of niche distribution, particularly as this controls saturation? 

2. How do different metric variations compare? Is it helpful (2a) to consider 

abundance or combinations of species, (2b) to correct for richness by co-occurrer 

richness, (2c) omit some occurrences, or (2d) normalize species abundances? 

Finally, (2e) does the sampling regime matter, and when is subsampling helpful? 

3. Under what real-world circumstances–that are knowable–should we use one 

metric over another? Does any single metric stand out as broadly useful in many 

systems? 
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M E T R I C S  

Design Choices 

A. Further Use of Data 

The JF07 theta utilizes co-occurrence data, but other information is commonly available 

from large datasets. I tested three algorithms for counting co-occurrers. 

1. Binary Count 

As in JF07, the total number of species that ever co-occur with the focal species is found. 

2. Maximum Abundance 

In the binary method above co-occurrers essentially act as milestones along a gradient 

which focal species can encounter. Their density controls the resolution of the measure: 

many species allow for fine discriminations of width. If there are few co-occurrers, the 

binary metric becomes very course. We can ameliorate this problem by utilizing co-

occurrer abundances. 

If a focal species’s niche extends only so far as to partially intersect that of a co-occurrer, 

that co-occurrer’s maximum abundance (within the focal range) will be low. If the focal 

species intersects its optimum though, the maximum abundance will be high. 

Therefore, we find the maximum abundance of each co-occurrer and sum them. This 

assumes that co-occurrer niches have about the same heights–or a correction can be 

made, which is discussed later. 
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3. Combinations 

A generalist will tend not only to encounter more species, but more combinations of 

species. The difference between these statistics could emerge in two scenarios. First, 

niche might theoretically be discontinuous in niche space, i.e. possessing holes where 

some combinations of resource create intolerable conditions. Such a scenario is not 

straightforward to model, and may be rare in the real world. 

Second, if niche overlap in a dataset is extremely high, all species will have the same 

number of co-occurrers. This may easily occur if only a small portion of a key resource 

gradient is sampled. But there are still differences between generalists and specialists, 

even if all species co-occure: the generalists can occur with all other species, while some 

specialists may out-compete one another. To see this difference, we merely count the 

number of unique assemblages a focal species is part of. 

Examples 

Fig. 1-1 shows a possible set of niches and three different focal species widths that 

should be discriminated between by any metric. Each co-occurrer counting method (A, 

above) responds slightly differently. 
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Fig. 1-1. Example niche curves and three possible focal species widths (a-c). 

• Binary Count: Straightforwardly finds 2 spp. at (a), also 2 at (b) and 3 at (c). 
• Combinatoric: Differentiates (a) from (b) because the middle co-occurrer is 

unlikely to appear by itself at (a). (c) adds 2 more combinations. 
• Max-Abundance: (a) sees high abundance for the first spp. but only a low part of 

the second’s curve, while at (b) the optima for both spp. are captured, raising the 
total. (c) Adds a further point for high abundance. 

B. Richness Correction 

One complication is that some species tend to occur at rich sites and pick up more co-

occurrers. To calibrate counts to a standard scale and render them comparable, JF07 

subtracted the mean richness of a focal species’ sites from its total count. Zeleny (2008) 

pointed out that this makes sense only if sites are saturated, so that local richness is 

divorced from the size of the species pool; if this is not the case, dividing by mean 

richness is more effective. Either action turns the metric into a kind of beta-diversity, 

and many measures of beta diversity could be utilized (Manthey and Fridley, 2008). 

Division of the co-occurrer count by mean richness corrects for local richness as long as 

sites are not saturated. A further assumption of this technique is that site richness does 

not vary considerably across the focal species’ range. But generalist species may have 

large ranges, and occur in sparse and dense regional species pools. 
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To account for this possibility, one can instead find the mean richness for each co-

occurrer (only where it occurs with the focal species), and take the inverse to weight 

each co-occurrer by its richness. With the binary count method above (A1), the count is 

multiplied by an average of these weights. The combinatoric and maximum-abundance 

methods (A2, A3) produce values for each co-occurrer, so those are directly multiplied 

by the weights before the quantity is averaged. 

I tested this method as well as simple division and subtraction of mean richness 

(“additive” and Whittaker’s Beta, respectively). 

C. Data Subsetting 

Species often fail to occur where they could based solely on abiotic conditions (which 

co-occurrers are a proxy for). Such “omissions” are more likely in sites that are marginal 

for a species–where its abundance will tend to be low. But problematically, these are 

exactly the sites that define the extremes of a species’ range and hence its generalism. 

However, if niche curves are symmetrical then measuring only the upper portions of 

the curve, where the species is abundant, will not change estimates of its niche width, 

relative to those of other species. 

I tested subsetting of the data to exclude occurrences below a certain abundance; 

specifically below a selected quantile at that location, rather than a fixed threshold, as 

this would transfer poorly between datasets with different richnesses. 
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D. Normalization of Abundances 

Subsetting data may have the side-effect of excluding inherently rare species that are 

never very abundant. The “maximum abundance” method for step A also tends to 

under-represent rare species. To compensate for this, we could normalize abundance 

data for each species, comparing its abundance at any site to its typical abundance 

across the dataset. 

Depending on the method used in A, rare species may be more important than common 

species, so such a correction could be important. While a linear transformation could 

work, it neglects the central tendency of a species’ abundances, so I used cumulative 

density functions instead. 

E. Sampling Regime 

JF07 called for subsampling of the dataset, for instance 100 groups of 50 plots for CVS 

data, to reduce the effects of bias in the original site selection process. However, 

increasing sample number at the expense of size is not necessarily of benefit to all 

metrics; and some may be less susceptible to bias in the first place. Further, biased 

selection may have different effects depending on the species involved (e.g., whether 

niches are evenly distributed or clustered in niche space). 

Performance Under Different Scenarios 

Any metric should be demonstrated to function in a variety of scenarios. Zeleny (2008) 

showed that site saturation was critical for metric performance. Local conditions and 



8 

the density of niches in resource space will control saturation. Niche density will 

depend on the number of species captured in a study, the size and distribution of niche 

widths, and their arrangement. These properties also may have other effects on co-

occurrence that have little to do with saturation. I tested all metrics in a variety of 

scenarios, with different niches. 

If mean niche width is small, relative to the scale of the study, there will be little overlap 

between them and thus little co-occurrence to base niche-width estimates on. 

Conversely, a single study will rarely encompass the totality of variation present on the 

planet for any key environmental gradient. Niche widths may thus be larger than the 

section of niche-space in the sample, and thus be unmeasurable; and if most of the focal 

species have large niches, relative differences will be slight. The distribution of widths 

around a mean may also matter: generally most species are fairly rare while a few are 

common, and thus could be due to niche size. But if widths were drawn from a more 

uniform distribution–or appeared to be so at the scale of the study—they might have a 

very different pattern of co-occurrence, relevant to our purpose. 

The positioning of niches through space should also affect co-occurrence patterns. 

Theoretically, if niche optima are equally spaced (because of niche differentiation or 

character displacement) it should make-co-occurrence rates dependent on width and 

sampling alone, and thus make width easier to estimate. If the niches are instead 

randomly distributed, or clustered at the favorable portion of a gradient, detection 

should be harder. 
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M E T H O D S  

The metric-construction options described can be performed in any combination, 

resulting in a large (technically infinite) number of metrics. To evaluate them, I created 

a framework in R to compute the options of each choice in parallel and return width 

estimates for all species in a dataset. Abundance normalization was computed first, 

followed by subsetting, co-occurrer counting methods, and finally richness correction. 

When random subsampling of the data was performed to defeat bias in site selection, 

the results from all samples were averaged. Initial trials suggested that subsetting 

values above 0.6 were extremely harmful to metric performance so values of 0, 0.2, 0.4 

and 0.6 were tested. In total 192 (2 × 4 × 3 × 4 × 2) metric variants were compared. 

Evaluation by Simulation 

The performance of these metrics was established by a simulation model implemented 

from scratch in R 2.8.3 and executed on UNC’s Emerald Academic Computing Cluster. 

This model largely followed that used in JF07 but different in some details. Various 

parameters were varied to created 72 different scenarios, each of which was replicated 

100 times. (For code, see Appendix C.) 

50 species niche curves were first generated on a resource axis. Early trials showed that 

using multiple axes did not affect relative metric performance. JF07 demonstrated that 

niche shape was also largely irrelevant, so a normal shape was always used. In JF07 

niche widths were drawn from a uniform distribution, ranging from 0.002 to 1 of the 

total gradient length. I tested both this and a gamma function in order to generate the 

familiar “hockey-stick” curve of species commonness; various mean values were used 
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(Table 1-1). Niche optima were variously spaced equally along the gradient, positioned 

randomly, or positioned randomly with a bias toward one end.  

Plots were assigned resource levels chosen randomly with bias toward one end of the 

gradient, representing site selection bias (this was the same end that species optima 

could be biased toward). Each plot was then populated by drawing species from the 

pool. The probability of selection was equal to the height of a species’ niche curve at the 

given resource level. 100 draws were performed at each plot. A species could be drawn 

multiple times, and this provided relative abundances. 

Table 1-1. Simulation parameters were varied to create 72 distinct scenarios. 

parameter values 
mean niche width 0.05, 0.2, 0.5, 1.0, 2.0 
width distribution gamma, uniform 
niche position method random uniform, equal spacing, biased 
site bias no, yes 

Linear models were used to compare the generated niche widths to the estimates made 

by each metric; r2 providing a simple performance score. (It was preferred to r, 

correlation, for being stricter and more readily interpretable.)  

In JF07, species niches were not allowed to fall outside the measured gradient but were 

instead truncated. This is perhaps reasonable but assumes that the sampled gradient 

captures the entire range of variation. However, no real-world dataset is likely to be so 
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complete. I allowed niches to extend beyond the measured range, thus penalizing 

metrics for underestimating those widths. 

R E S U L T S  

The implementation here appears to adequately reproduce the simulation algorithms of 

JF07. In the scenario they employed (not part of results below) the estimated widths 

were correlated with true, generated, widths to a similar degree: at r2 = 93.1 here, while 

they reported 92.5. 

Performance and Niche Properties 

To consider the effects of the simulation parameters, the mean performance of all 192 

metrics was found in each of the 72 scenarios. First consider width generation. Peak 

performance was seen with mean widths around 0.2 of the sampled gradient (Fig. 1-2); 

this gradually declined as widths increased and sharply declined as they approached 0. 

For any mean, widths generated via a gamma function were easier to estimate, 

especially for widths smaller than 1.0. 
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Fig. 1-2 Effect of niche width means and distribution on estimates (r2). 

Biased site selection led to estimates around 0.05 r2 lower (Fig. 1-3). Niches that were 

evenly spaced produced the best estimates while biased gave the worst, though the 

differences were small. 
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Fig. 1-3. Positioning of sites (abscissa) and niche optima (panels) on a gradient. 

Metric Choices 

ANOVA showed that the choice made for each metric-constructing option, as well as 

each varied parameter, had significant effects on r2, as did all 2- and 3-way interactions 

(see Appendix A).Not all interactions had large estimated effects, though. 
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Plot sub-sampling tends to harm performance. It is designed to ameliorate the effects of 

site selection bias, but with such bias, sub-sampling merely harms performance less; 

particularly if normalization is not employed, in which case it almost achieves parity 

(Fig. 1-4). 
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Fig. 1-4. Increase in ranked metric performance by sub-sampling (taking 10% of available plots 100 times 
and averaging the results); zero line shows no difference. Panels compare uniform and biased site 
sampling on the gradient. Light bars show the effect of abundance normalization. 

In general, however, normalization tends to improve estimate quality. Consider its 

effects on the three co-occurrer counting methods, and subsetting. Ordinarily, 

subsetting severely decreases mean rank (Fig. 1-5). But when abundances are 
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normalized subsetting can be beneficial at a low level. Normalization also helps the 

combinatoric and maximum-value methods more generally; benefitting the latter 

enough to broadly win out over a simple count. 

 

Fig. 1-5. Rank performance of three co-occurrer counting methods with and without normalization and 
under different levels of subsetting. 
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The method of counting co-occurrers also depends heavily on the distribution of niche 

widths in the simulation. Combinatoric methods do poorly overall but better under 

extreme circumstances: when niche widths are very small or very large (Fig. 1-6). 

Counting maximum values is usually superior to simple counting, but not when widths 

are uniformly distributed and typically larger than the sampled portion of the gradient. 
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Fig. 1-6. Interaction of niche sizes with co-occurrer counting methods. Niche width means were varied 
and drawn from a uniform (right panel) or gamma distribution (left). 

Niche width and arrangement contribute to mean plot saturation in a simulation, where 

saturation is defined as the number of species that could exist in a site divided by the 

actual richness. Generally, higher saturation decreases estimate quality (Fig. 1-7) but 

this depends greatly on the type of richness correction used. As others have noted 
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(Zeleny, 2008), subtraction of mean richness is less effective than division at low 

saturation but at higher levels (around 3.5 here) is more effective. This relationship 

holds for co-division, although it does poorly at extremely low saturations; it is 

generally better than basic division. A lack of richness correction is a large disadvantage 

at low to moderate saturation but preferable when saturation is high. On average, 

subtraction is never the best option. 
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Fig. 1-7. Effect of plots saturation on metric rank for four richness correction methods. 

Metric Selection 

No single metric was consistently the top-performer in all scenarios. The one with the 

highest mean r2 was, in my numbering scheme, #55n, using normalization, 0.2-level 

subsetting, maximum-value counting and division by mean richness, with no sub-
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sampling. While mean r2 is surely important, it does bias the selection toward the 

particular parameters used even though these may not represent what is common in the 

real world. Of equal importance may be reliability across scenarios: the metric with the 

highest minimum r2 was #67n, identical to #55n except using 0.4 level subsetting. But 

by Tukey’s Honest Significant Difference test, differences between the two metrics may 

be due to chance alone. 

We may contrast the above metrics with three alternatives (Table 1-2). Niche width may 

naively be equated with species commonness. The quality of such estimates is often 

decent but depends greatly on the scenario and was observed dropping to 0. A 

straightfoward count of co-occurrers with no manipulations or sub-sampling (#1n) 

similarly had very low minimum performance, though beat JF07 when mean niche 

width was high (Fig. 1-8). Both were consistently beaten by #55n in most scenarios; the 

exception being that JF07 had better minimum performance when niches were 

extremely small. JF07 and the alternative proposed by Zeleny (2008), using division-

based richness correction (#3y), performed indistinguishably according to Tukey’s HSD 

test. 
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Table 1-2. Performance selected metrics, as well as the pseudo-metric of species commonness, in all 
scenarios and replicates. The last column indicates statistically different groups. 

metric norm. subset co-occ. rich sub mean min sig 
commonness – – – – no 0.52 0.00 a 
1n no 0 count none no 0.55 0.01 b 
2y (JF07) no 0 count subtract yes 0.58 0.02 c 
3y no 0 count divide yes 0.57 0.03 c 
55n yes 0.2 max-v divide no 0.66 0.11 d 
67n yes 0.4 max-v divide no 0.65 0.12 d 
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Fig. 1-8. Performance of selected metrics with various mean widths, with in-replicate rank used for 
clarity. Left and right panels show mean and minimum rank. Metric #2y was that proposed in JF07. 

Metrics #1n, #2y and #55n were applied to woody plants in the Carolina Vegetation 

Survey database (603 species in 2804 plots). The estimates for each, as well as 

commonness, were scaled from 0 to 1 to allow comparison. Commonness was strongly 
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correlated with estimates (r2 < 2.2×10-16, p < 0.001) but many species were less common 

than their niches would suggest (Fig. 1-9). 

 

Fig. 1-9. Scaled commonness and niche width estimates from metric #55n of CVS woody plants. 

Many species were awarded similar generalism scores by the selected metrics, but some 

showed large differences (Table 1-3). Acer rubrum (red maple) was the most common 
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species, occurring in 67% of plots; #2y ranked it the most general species but #55n did 

not, giving it a score of 0.84 instead. The most general species according to #55n was 

Smilax rotundifolia (common greenbriar), occurring in 47% of plots; but rated only 0.77 

by #2y. Consider also two less common species. Farkleberry (Vaccinium arboreum) 

occurs throughout the Southeastern US and in 7% of CVS plots: its width was estimated 

to be 0.19 by metric #2y, 0.45 by #55n. Fraxinus profunda (pumpkin ash) occurs in near 

1% of plots and is rated 0.00 and 0.09 by #2y and #55n. 

Table. 1-3. Woody plants occurring in at least 0.5% of plots in the CVS database (N=287) with 
commonness, federal native status and growth habit (USDA) and generalism estimates by three metrics. 

name common #1n #2y #55n growth habit 
native 
status 

Abies fraseri 2.7% 0.12 0.02 0.14 Tree N 
Acer floridanum 3.1% 0.29 0.06 0.18 Tree N 
Acer leucoderme 0.7% 0.15 0.01 0.09 Tree, Shrub N 
Acer negundo 6.0% 0.34 0.11 0.24 Tree N 
Acer pensylvanicum 27.4% 0.41 0.36 0.35 Tree, Shrub N 
Acer rubrum 67.2% 1.00 1.00 0.84 Tree N 
Acer saccharinum 0.9% 0.09 0.01 0.08 Tree N 
Acer saccharum 16.4% 0.33 0.27 0.27 Tree, Shrub N 
Acer spicatum 4.7% 0.21 0.07 0.20 Tree, Shrub N 
Aesculus flava 15.7% 0.35 0.27 0.29 Tree, Shrub N 
Aesculus pavia 1.1% 0.21 0.03 0.10 Tree, Shrub I 
Aesculus sylvatica 2.2% 0.25 0.04 0.14 Tree, Shrub N 
Ailanthus altissima 0.6% 0.22 0.01 0.12 Tree I 
Albizia julibrissin 0.6% 0.27 0.02 0.13 Tree, Shrub I 
Alnus serrulata 1.7% 0.38 0.05 0.24 Tree, Shrub N 
Amelanchier arborea 2.1% 0.25 0.04 0.22 Tree, Shrub N 
Amelanchier 
canadensis 1.5% 0.27 0.03 0.25 Tree, Shrub N 
Amelanchier laevis 14.9% 0.44 0.27 0.46 Tree, Shrub N 
Amelanchier obovalis 0.7% 0.18 0.01 0.11 Shrub N 
Amorpha herbacea 0.9% 0.14 0.01 0.13 Shrub N 
Ampelopsis arborea 4.5% 0.35 0.09 0.33 Vine, Shrub N 
Amphicarpaea 
bracteata 11.4% 0.58 0.31 0.43 Vine, Forb/herb N 
Apios americana 0.6% 0.34 0.03 0.17 Vine, Forb/herb N 
Aralia nudicaulis 2.5% 0.19 0.05 0.19 Subshrub, Forb/herb N 
Aralia racemosa 1.9% 0.20 0.04 0.13 Subshrub, Forb/herb N 
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Aralia spinosa 2.0% 0.30 0.05 0.23 Tree, Shrub N 
Aronia arbutifolia 7.6% 0.47 0.17 0.36 Shrub N 
Aronia melanocarpa 0.9% 0.13 0.01 0.13 Shrub N 
Asimina angustifolia 0.7% 0.12 0.02 0.09 Shrub N 
Asimina parviflora 0.8% 0.14 0.01 0.11 Tree, Shrub N 
Asimina triloba 6.3% 0.39 0.14 0.29 Tree, Shrub N 
Baccharis halimifolia 1.5% 0.32 0.05 0.24 Tree, Shrub N 
Berchemia scandens 6.6% 0.43 0.13 0.41 Vine N 
Betula alleghaniensis 16.7% 0.30 0.24 0.33 Tree N 
Betula lenta 20.8% 0.42 0.32 0.35 Tree N 
Betula nigra 1.5% 0.24 0.03 0.13 Tree N 
Bigelowia nudata 3.7% 0.28 0.09 0.18 Subshrub, Forb/herb N 
Bignonia capreolata 11.8% 0.57 0.27 0.54 Vine N 
Callicarpa americana 3.9% 0.41 0.09 0.31 Shrub N 
Calycanthus floridus 8.5% 0.34 0.15 0.30 Shrub N 
Campsis radicans 11.2% 0.61 0.25 0.60 Vine N 
Carpinus caroliniana 13.2% 0.64 0.32 0.46 Tree, Shrub N 
Carya alba 18.7% 0.69 0.44 0.53 Tree N 
Carya aquatica 1.9% 0.17 0.03 0.15 Tree N 
Carya carolinae-
septentrionalis 0.6% 0.14 0.01 0.07 Tree N 
Carya cordiformis 13.7% 0.56 0.33 0.44 Tree N 
Carya glabra 28.2% 0.70 0.52 0.55 Tree N 
Carya myristiciformis 0.5% 0.14 0.00 0.06 Tree N 
Carya ovalis 1.6% 0.24 0.05 0.16 Tree N 
Carya ovata 4.2% 0.46 0.11 0.26 Tree N 
Carya pallida 3.8% 0.38 0.10 0.28 Tree N 
Castanea dentata 25.0% 0.37 0.34 0.37 Tree N 
Castanea pumila 4.5% 0.35 0.07 0.28 Tree, Shrub N 
Ceanothus 
americanus 1.9% 0.36 0.05 0.21 Subshrub, Shrub N 
Celtis laevigata 6.6% 0.34 0.13 0.27 Tree, Shrub N 
Centrosema 
virginianum 1.4% 0.30 0.03 0.18 Vine, Forb/herb I 
Cephalanthus 
occidentalis 1.5% 0.22 0.03 0.25 Tree, Shrub N 
Cercis canadensis 4.1% 0.46 0.10 0.31 Tree, Shrub N 
Chamaecrista 
nictitans 2.5% 0.40 0.06 0.20 Subshrub, Forb/herb I 
Chamaedaphne 
calyculata 0.5% 0.04 0.00 0.05 Shrub N 
Chimaphila maculata 25.0% 0.55 0.38 0.59 Subshrub N 
Chionanthus 
virginicus 3.1% 0.46 0.10 0.30 Tree, Shrub N 
Cladrastis kentukea 0.5% 0.08 0.00 0.05 Tree I 
Clematis crispa 0.6% 0.19 0.02 0.09 Vine N 
Clematis viorna 1.5% 0.37 0.06 0.21 Vine I 
Clematis virginiana 3.2% 0.38 0.08 0.24 Vine N 
Clethra acuminata 4.5% 0.23 0.06 0.27 Tree, Shrub N 
Clethra alnifolia 7.5% 0.43 0.20 0.32 Shrub N 
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Clitoria mariana 5.0% 0.54 0.14 0.34 Vine, Forb/herb N 
Cocculus carolinus 1.2% 0.31 0.05 0.17 Vine N 
Cornus amomum 0.6% 0.28 0.21 0.29 Shrub N 
Cornus asperifolia 1.3% 0.21 0.02 0.10 Shrub N 
Cornus florida 32.1% 0.74 0.04 0.11 Tree, Shrub N 
Cornus foemina 0.3% 0.10 0.59 0.57 Tree, Shrub N 
Cornus stricta 0.9% 0.19 0.01 0.13 Tree, Shrub N 
Corylus americana 1.0% 0.27 0.03 0.13 Shrub N 
Corylus cornuta 2.0% 0.25 0.06 0.18 Tree, Shrub N 
Crataegus 
macrosperma 3.2% 0.38 0.09 0.24 Tree, Shrub N 
Crataegus marshallii 1.4% 0.23 0.04 0.17 Tree, Shrub N 
Crataegus 
phaenopyrum 0.5% 0.08 0.00 0.08 Tree, Shrub I 
Crataegus spathulata 0.7% 0.16 0.02 0.12 Tree, Shrub N 
Crataegus uniflora 1.7% 0.38 0.06 0.23 Tree, Shrub N 
Crataegus viridis 0.8% 0.16 0.01 0.13 Tree, Shrub N 
Cuscuta rostrata 0.7% 0.10 0.01 0.13 Vine, Forb/herb N 
Cyrilla racemiflora 3.3% 0.31 0.07 0.29 Tree, Shrub N 
Decumaria barbara 2.6% 0.30 0.04 0.23 Vine N 
Desmodium nuttallii 1.7% 0.31 0.04 0.18 Subshrub, Forb/herb N 
Desmodium 
viridiflorum 0.8% 0.28 0.01 0.15 Subshrub, Forb/herb N 
Diervilla sessilifolia 0.7% 0.10 0.01 0.11 Shrub N 
Diodia virginiana 1.1% 0.26 0.04 0.15 Subshrub, Forb/herb N 
Dioscorea villosa 1.3% 0.28 0.03 0.20 Vine, Forb/herb N 
Diospyros virginiana 23.5% 0.83 0.59 0.76 Tree N 
Elaeagnus umbellata 0.9% 0.22 0.02 0.11 Shrub I 
Epigaea repens 9.4% 0.32 0.14 0.37 Subshrub, Shrub N 
Erythrina herbacea 0.6% 0.16 0.02 0.11 Tree, Subshrub, Shrub N 
Eubotrys racemosa 2.9% 0.36 0.07 0.28 Shrub N 
Eubotrys recurva 3.6% 0.18 0.05 0.18 Shrub N 
Euonymus 
americanus 15.0% 0.61 0.35 0.51 Forb/herb, Subshrub N 
Euonymus obovatus 2.2% 0.15 0.03 0.12 Shrub, Subshrub, Vine N 
Euphorbia curtisii 2.9% 0.26 0.06 0.21 Shrub N 
Fagus grandifolia 22.6% 0.55 0.42 0.48 Tree N 
Fraxinus americana 23.8% 0.65 0.49 0.53 Tree I 
Fraxinus caroliniana 3.6% 0.24 0.05 0.26 Tree, Shrub N 
Fraxinus 
pennsylvanica 8.5% 0.46 0.16 0.39 Tree N 
Fraxinus profunda 0.6% 0.08 0.00 0.09 Tree N 
Galactia erecta 2.7% 0.26 0.06 0.18 Forb/herb, Vine N 

Galax urceolata 18.8% 0.32 0.20 0.37 
Subshrub, Shrub, 
Forb/herb N 

Galium aparine 1.9% 0.28 0.03 0.20 Vine, Forb/herb I 
Galium circaezans 8.8% 0.55 0.24 0.38 Subshrub, Forb/herb N 
Galium triflorum 10.8% 0.53 0.29 0.40 Forb/herb, Vine I 
Gaultheria 
procumbens 2.8% 0.18 0.03 0.19 Subshrub, Shrub N 
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Gaylussacia baccata 3.9% 0.22 0.05 0.20 Shrub N 
Gaylussacia dumosa 14.1% 0.42 0.30 0.35 Subshrub, Shrub N 
Gaylussacia frondosa 10.7% 0.48 0.26 0.37 Shrub N 
Gaylussacia ursina 16.0% 0.25 0.17 0.24 Shrub N 
Gelsemium 
sempervirens 9.2% 0.57 0.23 0.50 Vine, Shrub N 
Gillenia trifoliata 6.1% 0.28 0.12 0.25 Forb/herb, Subshrub N 
Gleditsia triacanthos 0.5% 0.20 0.01 0.10 Tree, Shrub N 
Gonolobus suberosus 1.2% 0.18 0.03 0.15 Vine, Forb/herb N 
Gordonia lasianthus 1.4% 0.12 0.01 0.13 Tree, Shrub N 
Halesia tetraptera 20.9% 0.42 0.32 0.36 Tree N 
Hamamelis virginiana 18.4% 0.53 0.31 0.46 Tree, Shrub N 
Huperzia lucidula 5.9% 0.27 0.10 0.27 Subshrub, Forb/herb N 
Hydrangea 
arborescens 3.3% 0.26 0.07 0.20 Shrub I 
Hydrangea radiata 1.3% 0.18 0.02 0.12 Shrub N 

Hypericum cistifolium 0.9% 0.19 0.00 0.13 
Subshrub, Shrub, 
Forb/herb N 

Hypericum crux-
andreae 6.2% 0.38 0.17 0.25 Subshrub, Shrub N 
Hypericum 
fasciculatum 0.7% 0.15 0.00 0.13 Shrub N 
Hypericum 
hypericoides 10.3% 0.65 0.29 0.47 Subshrub, Shrub N 
Hypericum nudiflorum 0.7% 0.07 0.00 0.07 Shrub, Subshrub N 
Hypericum prolificum 0.6% 0.23 0.01 0.11 Shrub, Subshrub N 
Hypericum 
suffruticosum 0.9% 0.17 0.02 0.11 Shrub, Subshrub N 
Ilex ambigua 1.1% 0.24 0.03 0.20 Tree, Shrub N 
Ilex coriacea 3.4% 0.24 0.05 0.25 Tree, Shrub N 
Ilex decidua 8.0% 0.39 0.16 0.34 Tree, Shrub N 
Ilex glabra 12.1% 0.46 0.30 0.32 Shrub N 
Ilex montana 16.0% 0.34 0.24 0.37 Tree, Shrub N 
Ilex myrtifolia 1.4% 0.19 0.03 0.17 Tree, Shrub N 
Ilex opaca 24.6% 0.76 0.49 0.71 Tree, Shrub N 
Ilex verticillata 1.3% 0.26 0.02 0.20 Tree, Shrub N 
Ilex vomitoria 3.0% 0.30 0.05 0.20 Tree, Shrub N 
Ipomoea pandurata 0.9% 0.27 0.02 0.17 Vine, Forb/herb N 
Itea virginica 3.0% 0.27 0.04 0.26 Shrub N 
Juglans cinerea 1.1% 0.27 0.03 0.15 Tree N 
Juglans nigra 3.9% 0.46 0.13 0.25 Tree N 
Juniperus virginiana 7.1% 0.54 0.18 0.39 Tree N 
Kalmia carolina 0.8% 0.11 0.01 0.09 Shrub N 
Kalmia cuneata 0.2% 0.02 0.01 0.11 Shrub N 
Lespedeza bicolor 0.5% 0.13 0.03 0.07 Subshrub, Forb/herb I 
Lespedeza cuneata 0.5% 0.28 0.03 0.14 Subshrub, Forb/herb I 
Leucothoe 
fontanesiana 4.6% 0.27 0.07 0.23 Shrub N 
Licania michauxii 0.7% 0.12 0.01 0.10 Subshrub, Shrub N 
Ligustrum sinense 4.6% 0.42 0.11 0.32 Tree, Shrub I 
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Lindera benzoin 8.0% 0.50 0.22 0.36 Tree, Shrub N 
Liquidambar 
styraciflua 23.7% 0.82 0.60 0.69 Tree N 
Liriodendron tulipifera 33.9% 0.73 0.55 0.55 Tree N 
Lonicera japonica 7.6% 0.62 0.20 0.45 Vine I 
Lonicera 
sempervirens 3.5% 0.42 0.08 0.26 Vine I 
Lycopodiella 
alopecuroides 2.0% 0.26 0.05 0.16 Subshrub, Forb/herb N 
Lycopodiella appressa 0.7% 0.16 0.02 0.08 Subshrub, Forb/herb N 
Lyonia ligustrina 9.2% 0.51 0.25 0.49 Shrub N 
Lyonia lucida 4.6% 0.37 0.10 0.31 Shrub N 
Lyonia mariana 7.4% 0.34 0.17 0.28 Shrub N 
Magnolia acuminata 14.5% 0.39 0.26 0.33 Tree N 
Magnolia fraseri 23.4% 0.35 0.28 0.36 Tree N 
Magnolia grandiflora 1.1% 0.17 0.02 0.12 Tree I 
Magnolia tripetala 0.7% 0.13 0.01 0.09 Tree N 
Magnolia virginiana 10.1% 0.47 0.23 0.43 Tree, Shrub N 
Malus angustifolia 0.5% 0.21 0.01 0.09 Tree, Shrub N 
Menispermum 
canadense 1.7% 0.27 0.03 0.20 Vine N 
Menziesia pilosa 1.5% 0.14 0.02 0.16 Shrub N 
Mikania scandens 2.8% 0.32 0.06 0.30 Vine, Forb/herb I 
Mimosa microphylla 2.6% 0.36 0.05 0.20 Vine, Forb/herb N 
Mitchella repens 21.8% 0.68 0.43 0.70 Subshrub, Forb/herb N 
Morella caroliniensis 3.5% 0.34 0.10 0.23 Tree, Shrub N 
Morella cerifera 5.9% 0.49 0.14 0.43 Tree, Subshrub, Shrub I 
Morus rubra 6.2% 0.50 0.15 0.37 Tree N 
Nyssa biflora 6.1% 0.40 0.03 0.21 Tree N 
Nyssa sylvatica 40.2% 0.82 0.72 0.74 Tree N 
Oenothera humifusa 0.6% 0.06 0.00 0.16 Subshrub, Forb/herb N 
Opuntia humifusa 2.0% 0.28 0.03 0.23 Shrub N 
Osmanthus 
americanus 1.9% 0.18 0.02 0.19 Tree, Shrub N 
Ostrya virginiana 6.0% 0.42 0.18 0.28 Tree, Shrub N 
Oxydendrum 
arboreum 32.3% 0.57 0.40 0.46 Tree, Shrub N 
Parthenocissus 
quinquefolia 31.7% 0.86 0.68 0.76 Vine N 
Passiflora lutea 4.4% 0.52 0.13 0.36 Vine, Forb/herb N 
Pedicularis canadensis 3.2% 0.29 0.08 0.21 Subshrub, Forb/herb N 
Persea borbonia 2.3% 0.19 0.03 0.15 Tree, Shrub N 
Persea palustris 10.2% 0.53 0.24 0.53 Tree, Shrub N 
Persicaria sagittata 0.5% 0.19 0.01 0.12 Vine, Forb/herb N 
Phemeranthus 
teretifolius 0.7% 0.19 0.02 0.11 Forb/herb, Subshrub N 

Phlox nivalis 1.1% 0.22 0.05 0.14 
Subshrub, Shrub, 
Forb/herb N 

Picea rubens 5.0% 0.19 0.06 0.21 Tree N 
Pinus echinata 3.6% 0.39 0.07 0.25 Tree N 
Pinus elliottii 1.4% 0.24 0.04 0.18 Tree N 
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Pinus glabra 0.6% 0.14 0.02 0.09 Tree N 
Pinus palustris 17.1% 0.46 0.36 0.36 Tree N 
Pinus pungens 2.9% 0.18 0.03 0.13 Tree N 
Pinus rigida 8.2% 0.33 0.10 0.27 Tree N 
Pinus serotina 7.7% 0.42 0.18 0.32 Tree N 
Pinus strobus 20.0% 0.42 0.25 0.34 Tree N 
Pinus taeda 12.9% 0.63 0.33 0.54 Tree N 
Pinus virginiana 7.0% 0.41 0.13 0.35 Tree I 
Planera aquatica 1.1% 0.08 0.01 0.13 Tree N 
Platanus occidentalis 4.5% 0.36 0.09 0.28 Tree N 
Polygonella polygama 1.0% 0.11 0.01 0.14 Subshrub N 
Populus deltoides 0.7% 0.12 0.01 0.09 Tree N 
Populus heterophylla 2.1% 0.14 0.02 0.16 Tree N 
Prunus caroliniana 1.7% 0.21 0.02 0.17 Tree, Shrub N 
Prunus pensylvanica 4.8% 0.25 0.08 0.26 Tree, Shrub N 
Prunus serotina 29.9% 0.84 0.66 0.74 Tree, Shrub N 
Prunus virginiana 0.5% 0.12 0.00 0.06 Tree, Shrub N 
Pterocaulon 
pycnostachyum 4.6% 0.30 0.11 0.21 Forb/herb, Subshrub N 
Pyrularia pubera 12.2% 0.34 0.21 0.33 Shrub N 
Pyxidanthera 
barbulata 1.1% 0.10 0.01 0.10 Subshrub, Forb/herb N 
Quercus alba 26.6% 0.67 0.47 0.55 Tree N 
Quercus coccinea 15.7% 0.37 0.18 0.33 Tree N 
Quercus falcata 6.5% 0.52 0.18 0.35 Tree N 
Quercus geminata 2.3% 0.21 0.04 0.19 Tree, Shrub N 
Quercus 
hemisphaerica 7.0% 0.43 0.18 0.39 Tree N 
Quercus incana 6.6% 0.31 0.11 0.26 Tree, Shrub N 
Quercus laevis 8.0% 0.30 0.12 0.29 Tree N 
Quercus laurifolia 8.0% 0.45 0.15 0.32 Tree N 
Quercus lyrata 4.0% 0.24 0.05 0.24 Tree N 
Quercus margaretta 5.5% 0.32 0.11 0.23 Tree, Shrub N 
Quercus marilandica 8.4% 0.42 0.20 0.31 Tree, Shrub N 
Quercus michauxii 5.2% 0.35 0.12 0.24 Tree N 
Quercus minima 0.8% 0.18 0.02 0.06 Shrub N 
Quercus montana 29.0% 0.47 0.38 0.45 Tree N 
Quercus nigra 9.3% 0.62 0.27 0.47 Tree N 
Quercus pagoda 4.1% 0.40 0.11 0.22 Tree N 
Quercus phellos 6.1% 0.53 0.17 0.41 Tree N 
Quercus rubra 43.2% 0.62 0.57 0.54 Tree N 
Quercus shumardii 2.3% 0.29 0.04 0.16 Tree, Shrub N 
Quercus stellata 6.8% 0.56 0.21 0.37 Tree N 
Quercus velutina 19.1% 0.64 0.38 0.50 Tree N 
Quercus virginiana 3.1% 0.33 0.06 0.24 Tree N 
Rhododendron 
atlanticum 1.9% 0.24 0.04 0.15 Shrub N 
Rhododendron 
calendulaceum 13.2% 0.33 0.21 0.30 Shrub N 
Rhododendron 4.1% 0.23 0.06 0.24 Tree, Shrub N 
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catawbiense 
Rhododendron 
maximum 27.3% 0.41 0.33 0.42 Tree, Shrub N 
Rhododendron 
periclymenoides 0.9% 0.16 0.01 0.12 Shrub N 
Rhododendron 
viscosum 1.8% 0.32 0.03 0.22 Shrub N 
Rhus aromatica 0.6% 0.18 0.01 0.12 Shrub N 
Rhus copallinum 11.5% 0.63 0.33 0.43 Tree, Shrub N 
Ribes cynosbati 2.4% 0.21 0.04 0.18 Shrub N 
Ribes rotundifolium 1.7% 0.16 0.03 0.18 Shrub N 
Robinia hispida 0.8% 0.09 0.01 0.12 Tree, Shrub I 
Robinia pseudoacacia 25.8% 0.53 0.41 0.45 Tree I 
Rosa carolina 2.2% 0.38 0.06 0.23 Subshrub N 
Rosa multiflora 1.6% 0.33 0.04 0.18 Vine, Subshrub I 
Rosa palustris 0.9% 0.18 0.00 0.15 Subshrub N 
Rubus allegheniensis 4.6% 0.31 0.11 0.26 Subshrub N 
Rubus argutus 7.7% 0.72 0.26 0.52 Subshrub I 
Rubus canadensis 14.7% 0.37 0.27 0.40 Subshrub N 
Rubus cuneifolius 2.0% 0.31 0.05 0.18 Subshrub N 
Rubus hispidus 1.0% 0.29 0.02 0.21 Subshrub N 
Rubus odoratus 0.7% 0.16 0.02 0.10 Subshrub N 
Rubus trivialis 1.5% 0.38 0.05 0.23 Subshrub, Vine N 
Rudbeckia laciniata 2.1% 0.35 0.07 0.19 Subshrub, Forb/herb N 
Sabal minor 2.4% 0.26 0.06 0.19 Tree, Shrub N 
Sabal palmetto 1.4% 0.13 0.02 0.12 Tree N 
Salix nigra 0.5% 0.19 0.00 0.11 Tree N 
Sambucus racemosa 3.0% 0.16 0.04 0.20 Tree, Shrub N 
Sarracenia flava 2.4% 0.24 0.04 0.17 Subshrub, Forb/herb N 
Sarracenia minor 1.7% 0.22 0.04 0.14 Subshrub, Forb/herb N 
Sarracenia purpurea 1.2% 0.17 0.03 0.11 Subshrub, Forb/herb N 
Sassafras albidum 33.9% 0.74 0.55 0.76 Tree, Shrub N 
Scrophularia 
marilandica 0.5% 0.24 0.00 0.12 Subshrub, Forb/herb N 
Serenoa repens 1.6% 0.20 0.03 0.14 Tree, Shrub N 
Smilax auriculata 1.7% 0.27 0.03 0.26 Shrub, Vine N 
Smilax biltmoreana 3.6% 0.26 0.07 0.25 Vine, Forb/herb N 
Smilax bona-nox 15.6% 0.71 0.38 0.69 Shrub, Vine N 
Smilax glauca 44.7% 0.91 0.83 0.94 Shrub, Vine N 
Smilax hispida 5.0% 0.41 0.10 0.37 Shrub, Vine N 
Smilax laurifolia 8.2% 0.47 0.18 0.48 Shrub, Vine N 
Smilax pulverulenta 0.9% 0.20 0.03 0.11 Vine, Forb/herb N 
Smilax pumila 0.9% 0.20 0.02 0.17 Shrub, Subshrub, Vine N 
Smilax rotundifolia 47.5% 0.91 0.77 1.00 Shrub, Vine N 
Smilax smallii 1.6% 0.22 0.03 0.17 Shrub, Vine N 
Smilax walteri 2.9% 0.29 0.05 0.31 Shrub, Vine N 
Solanum carolinense 0.6% 0.29 0.03 0.16 Subshrub, Forb/herb I 
Sorbus americana 3.2% 0.18 0.05 0.23 Tree, Shrub N 
Staphylea trifolia 0.5% 0.12 0.01 0.08 Tree, Shrub N 
Stewartia ovata 0.7% 0.10 0.01 0.09 Tree, Shrub N 
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Strophostyles 
umbellata 0.7% 0.18 0.02 0.10 Vine, Forb/herb N 
Stylisma humistrata 0.7% 0.17 0.01 0.11 Vine, Forb/herb N 
Stylisma patens 2.3% 0.21 0.05 0.23 Vine, Forb/herb N 
Styrax americanus 0.5% 0.20 0.01 0.14 Tree, Shrub N 
Styrax grandifolius 0.9% 0.21 0.02 0.12 Tree, Shrub N 
Symphoricarpos 
orbiculatus 1.2% 0.26 0.04 0.16 Shrub I 
Symplocos tinctoria 11.6% 0.55 0.26 0.54 Tree, Shrub N 
Taxodium ascendens 2.2% 0.22 0.04 0.19 Tree N 
Taxodium distichum 4.7% 0.23 0.06 0.27 Tree N 
Tephrosia virginiana 6.8% 0.41 0.16 0.29 Subshrub, Forb/herb N 
Tilia americana 15.7% 0.45 0.30 0.32 Tree I 
Tillandsia usneoides 6.7% 0.48 0.14 0.49 Forb/herb, Vine I 
Toxicodendron 
pubescens 5.6% 0.36 0.11 0.27 

Subshrub, Shrub, 
Forb/herb N 

Toxicodendron 
radicans 27.9% 0.93 0.69 0.82 

Shrub, Forb/herb, 
Subshrub, Vine N 

Trachelospermum 
difforme 2.6% 0.36 0.07 0.29 Vine N 
Tragia urticifolia 0.9% 0.24 0.01 0.12 Vine, Forb/herb N 
Triadica sebifera 0.5% 0.16 0.01 0.10 Tree I 
Tsuga canadensis 33.5% 0.43 0.39 0.41 Tree N 
Tsuga caroliniana 2.9% 0.21 0.05 0.21 Tree N 
Ulmus americana 8.1% 0.44 0.02 0.09 Tree N 
Ulmus rubra 5.0% 0.49 0.15 0.38 Tree N 
Vaccinium arboreum 7.1% 0.53 0.19 0.45 Tree, Shrub N 
Vaccinium 
corymbosum 10.3% 0.34 0.16 0.37 Shrub N 
Vaccinium 
crassifolium 5.9% 0.27 0.11 0.20 Shrub, Subshrub N 
Vaccinium elliottii 2.1% 0.34 0.05 0.23 Shrub N 
Vaccinium 
erythrocarpum 5.5% 0.21 0.10 0.29 Shrub N 
Vaccinium formosum 7.4% 0.45 0.18 0.41 Shrub N 
Vaccinium fuscatum 6.3% 0.44 0.14 0.41 Shrub N 
Vaccinium hirsutum 2.7% 0.11 0.03 0.10 Shrub N 
Vaccinium myrsinites 2.0% 0.21 0.04 0.13 Shrub N 
Vaccinium pallidum 19.5% 0.55 0.31 0.54 Subshrub, Shrub N 
Vaccinium simulatum 4.8% 0.27 0.09 0.25 Shrub N 
Vaccinium stamineum 20.2% 0.66 0.42 0.67 Shrub N 
Vaccinium tenellum 12.8% 0.50 0.30 0.32 Subshrub, Shrub N 
Vaccinium virgatum 0.7% 0.22 0.03 0.14 Shrub N 
Viburnum dentatum 0.2% 0.10 0.07 0.28 Tree, Shrub N 
Viburnum lantanoides 5.2% 0.18 0.04 0.23 Shrub N 
Viburnum nudum 1.6% 0.28 0.07 0.20 Tree, Shrub N 
Viburnum obovatum 0.2% 0.11 0.02 0.21 Tree, Shrub N 
Viburnum rufidulum 1.6% 0.29 0.03 0.11 Tree, Shrub N 
Vicia caroliniana 0.8% 0.23 0.03 0.13 Vine, Forb/herb N 
Vitis aestivalis 13.1% 0.65 0.32 0.53 Vine N 
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Vitis cinerea 3.2% 0.43 0.09 0.28 Vine N 
Vitis labrusca 1.3% 0.31 0.03 0.20 Vine I 
Vitis rotundifolia 26.0% 0.83 0.55 0.77 Vine N 
Vitis vulpina 1.7% 0.27 0.04 0.21 Vine N 
Xanthorhiza 
simplicissima 0.7% 0.22 0.02 0.11 Subshrub, Forb/herb N 

Yucca filamentosa 0.7% 0.22 0.02 0.16 
Subshrub, Shrub, 
Forb/herb N 

Zenobia pulverulenta 1.0% 0.11 0.02 0.07 Shrub N 

D I S C U S S I O N  

Performance across scenarios 

The performance of all co-occurrence based metrics depends greatly on the nature of 

data being evaluated, including the size and distribution of species niches in niche 

space, and the sampling method used. Substantially biased site selection decreased 

performance by about 0.05, and this was not ameliorated by random sub-sampling of 

the data. In fact, by reducing the number of co-occurrers considered at a time, sub-

sampling decreased performance, especially if normalization of abundances is used. 

While sub-sampling may, therefore, be useful in some extreme situations and with 

some metrics, it cannot be recommended generally. 

It is not surprising that the best estimates were achieved when species niche optima 

were equally distributed along an environmental gradient. This is because all metrics 

use the appearance of non-focal species as milestones representing niche space. If niches 

are clustered, the niche-space distance represented by those milestones varies along the 

gradient, making estimates worse by about 0.10; while a uniformly random distribution 

is somewhat less problematic, as long as the number of species is not very small. These 

losses in performance are not so large that they remove all utility from the metrics–even 
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when a researcher has little knowledge of how the niches of his study taxa are 

distributed. 

The distribution of niche widths in a pool of species is even more important. It makes 

sense that scenarios with narrow, but not extremely narrow, niches created better 

estimates: if niches are too small, richness is low and any focal species will have few co-

occurrers; conversely, if they approach the length of the sampled gradient, much of 

each niche will be unmeasurable and all species will appear similar. Co-occurrence-

based metrics should not be applied either to monocultures or areas where turnover is 

nonexistent. As long as niches are wide enough to commonly overlap, it may be that 

narrow ones are preferable because the average distance from any point in the niche is 

closer to the optima, meaning that co-occurrence with that species is more likely to 

mean occurrence at its optima; and it is optima that are more reliably spaced along the 

gradient, and so serve as better milestones. (If niches were perfectly spaced and their 

widths were identical, there would be no meaningful difference.) 

Similar reasoning explains the apparent benefit of niche widths being drawn from a 

gamma distribution (producing a “hockey-stick” curve) instead of a uniform one. Given 

the same mean, most niches are narrow, allowing reliable measurement of optima; yet 

the narrow peak of the distribution produces a few generalists, so that few species are 

without co-occurrers. One consequence of this may lie in the selection of taxa a 

researcher considers. For instance, if trying to assess the niche widths of a single genus 

of plants, he might include species outside that genera, to ensure some generalists are 

counted and site richness is never extremely low. 
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Metric Choices 

Additional Uses of the Data 

The first question (A) regarding alternative metric construction methods was the utility 

of including data beyond species presence. 

The combinatoric methods, considering the number of unique assemblages each focal 

species and co-occurrer inhabit together, failed this test; in no set of scenarios did 

performance improve. This may be because absences are thus counted equally with 

presence: an assemblage, minus one species, is counted as a separate assemblage–even 

when such an absence is not due to an inability of the missing species to exist, but is 

stochastic. Thus, the combinatoric methods are susceptible to both type I and type II 

errors, with the latter becoming worse with higher saturation. There is evidence for this 

explanation in the fact that subsetting (with normalization) is highly useful with 

combinatoric methods: logically, since it removes the harder-to-sample tails of species 

niches. 

The inclusion of abundance, in contrast, was widely useful, yielding better performance 

than a simple count except when niche widths were uniformly distributed and wide. 

This makes sense as in such a case saturation will be quite high and local abundance 

(even more than presence) will be highly stochastic. When this is not the case, though, 

considering the maximum abundance seen for each co-occurrer makes the counting 

process more focused on optima. This focus is enhanced with a normalization of 

abundances, as typical niche height inherent in any species becomes irrelevant, so that 
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the maximum abundance only reveals amount over overlap. When normalization is 

used, maximum-abundance counting is generally the best method. 

Subsetting and Normalization 

In highly saturated sites both presence and abundance become less a result of abiotic 

suitedness and more stochastic forces. Ignoring low-abundance occurrences could 

restrict an analysis to more reliable data. Such subsetting harmed performance unless 

normalization was performed beforehand, so that inherently non-abundance rare 

species were not generally excluded. With normalization, light subsetting could mildly 

improve estimates.  Obviously, this can only be undertaken when abundances are 

available in a dataset. It will also likely only be useful when a large portion of most 

species’ ranges is included, so that normalization is accurately scaling abundances 

relative to what is possible. If the sample is small, subsetting could have a highly 

negative impact. The exact level of ideal subsetting is difficult to guess. Here, 0.2 was 

optimal, but this will depend on the level of saturation. Perhaps measures of turn-over 

could be informative. 

Richness Correction 

Some portions of a gradient may be particularly speciose, effectively changing units of 

niche measurement along its length. This can be countered by factoring out this 

richness, but the method depends on how saturated the sites tend to be; that is, whether 

local richness is representative of the local species pool size, or is independent. When 

sites were highly saturated, all richness correction schemes were counter-productive. 

This may be because when the pool is so large, variance in niche distributions does not 
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actually manifest as differences in richness. When saturations were lower, division was 

the best performer, as has been suggested before. Division performed by co-occurrer 

richness did slightly better than division by mean focal species richness when saturation 

was high, as did subtraction; but neither was an improvement on no action at all. Co-

division was hypothesized to be more effective when richness changed drastically 

within a focal species’ range, but it seems that other factors made this small difference 

moot. 

Metric Selection 

While some of the metrics tested are almost universally undesirable, it is clear that 

many would be useful in the right situation; that is, applied to the right taxon at the 

right point in time and space. However, most of the relevant community properties are 

difficult for researchers to assess accurately. The most readily identifiable “parameter” 

is likely the distribution of widths (“hockey-stick” or uniform) but the best-performing 

metric is the same in either case. Some estimate of saturation might also allow the 

subsetting threshold to be set (higher in the case of greater saturation). 

The relatively small differences in metric performance likely do not warrant a very 

exhaustive effort to choose the right one, making a single metric that performs 

adequately across many scenarios preferable. #55n was identified as having the highest 

mean r2 value and the highest minimum in any simulation run. It is not perfect having 

beat the JF07 metric (#2y) only 72% of the time, yet on average it did so by 0.08 r2. (It 

beat #1n, the simple co-occurrer count, 90% of the time by an average of 0.11). In terms 
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of its ready use, #55n is slightly harder to implement than #2y, but runs significantly 

faster since it does not include data sub-sampling. #55 thus seems the safest choice. 

Conclusions 

We should be cautious in using co-occurrence data to estimate species generalism as 

many properties of the community and the sampling regime affect performance. Even 

the best-performing metric showed a very large range of r2 values in the 7,200 

simulations it was tested in: at worst 0.11 and at best 0.98. Even when parameters were 

ideal performance went as low as 0.72, and in a real dataset we may have scant idea 

whether conditions are good for making estimates or not. If possible, though, we should 

ensure that our sample is large, to encompass as much environmental variation as 

possible, and unbiased, because sub-sampling does not uniformly offer an adequate 

corrective. 

An inescapable limitation of these metrics is that they can only measure realized niche: 

chance, history and biotic interactions are all implicitly included in a species’ score, 

which will thus vary in time and space. This is not entirely a disadvantage though, for it 

allows the measurement of niche changes in response to various ecological processes 

such as disturbance regime, invasions or climate change.  

Of the 192 metric variants tested, #55n emerged as a good, safe choice; each species’ 

local abundances should be normalized with a cumulative density function and values 

below 0.2 should be omitted. For every focal species, the maximum value of every co-

occurrer should be found, and the total divided by mean richness where the focal 
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species appears. If the estimates thereby produced are analyzed conservatively, they 

should be of value to ecologists and biogeographers. 
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2. The Multi-Grain Niche 

Species generalism and sampling area 

Introduction 

Ecological patterns emerge at a variety of spatial scales, making scale of crucial interest 

to ecologists (Weins, 1989; Levins, 1992). For a given question, data are useful only if 

collected at a relevant scale (Reed et al. 1993), which must first be identified (e.g., 

Hurlbert, 2007). Species’ distributions are limited partly by various environmental 

requirements (i.e., their niches in n-dimensional space). Different variables may tend to 

vary over different spatial scales, as do the processes behind them, leading to 

distributions that do the same. By identifying the scale at which a species is most 

limited (i.e., the scale at which its apparent niche is narrowest) we should be able to 

identify the scale of process most relevant to that species, and perhaps then the specific 

processes. 

Such an investigation might seem wholly impractical if not tautological; to measure 

niche breadth at a given scale we must sample environmental variables at that scale. 

However, we do not know which variables are relevant enough to measure because this 

is exactly the question we are asking! Only by measuring all variables at all scales could 

we escape this bind. However, Fridley et al. (2007) showed that niche width could be 

estimated without measuring the environment—because species with many co-

occurrers tend to be more general, species occurrence data are sufficient. 
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My first goal was to identify the scale of processes that plants are most sensitive to, and 

the amount of variation present between species. Differences may be a product of life 

history strategies. For example, ruderal species which can be outcompeted within 

patches but which easily spread between them, should logically be less constrained at 

large scales. Common non-native species should also show high generalism at large 

scales, since without it they would not have become broadly established. 

To assess generalism across scales, I applied a modified metric (McChesney, in draft) to 

data from the Carolina Vegetation Survey (Peet et al. 2004). This has been done 

previously but only with data at the full-plot scale of 1000 m2. The CVS protocol was 

designed with multi-scale analysis in mind though, with each plot containing nested 

sub-modules at five levels from 0.01 m2 to 1000 m2 (Peet and Wentworth, 1998). County-

level occurrence data from the USDA provided relative niche estimates at a larger scale. 

Reliability 

It is not immediately clear that niche estimates from different scales can reasonably be 

compared owing to two potential problems. First, the metric’s efficacy has been tested 

through simulation modeling, but the parameters used may not obtain at some or all 

real-world grain sizes. Small grains in CVS cover less space and therefore provide a 

smaller sample of data which is less likely to be representative. Large grains effectively 

loosen the definition of co-occurrence, which will inflate all estimates, especially in 

heterogeneous landscapes. Second, even if estimates are equally good at all scales, they 

are technically calculated in different units, so may not be comparable without some 

mathematical correction.  Therefore, preceding the analysis of real species, I sought to 
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characterize metric operation across scales via simulation modeling. I looked for 

differences in metric performance and for biases in the estimates—as well as ways to 

compensate for these. 

Methods 

Simulation Model 

To investigate the utility of Fridley et al.’s (2007) theta metric across scales, I applied it 

to fully known species niches and environments. These were created with a simulation 

model adapted from that used in McChesney (in draft). Normal-shaped species 

response curves were randomly created on a single resource axis. A two-dimensional 

grid modeled the values of that resource in space: the variation was generated with 

Gaussian-smoothed noise (Schlather, 2009) where heterogeneity could be controlled: 

Fig. 2-1A–C shows a 150x150 grid such as was used, with smoothing at scales of 1, 10 

and 100. 
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Fig. 2-1. Randomly generated landscapes with different amounts of Gaussian 

smoothing. 

Each cell was assigned one individual drawn from the species pool: the probability of a 

species being selected was equal to the height of its response curve at the given resource 

value. 



47 

Variability in grain size was implemented by clustering grid cells into blocks, which 

tiled the landscape without overlap. The presence or absence of each species was tallied 

per block; no abundance data were generated. A number of blocks were then chosen 

randomly to constitute the sample, with data from these fed to the metric. 

Niches were estimated at multiple grains in each simulation run. Multiple simulations 

were run with varying resource heterogeneity, with 100 replicates for each. Resource 

heterogeneity and grain values were increased exponentially rather than linearly 

because trial runs suggested that output is more sensitive to variation at the low end of 

these parameters. 

Table 2-1. Simulation parameters. 

parameter Values 
n species 50 
mean niche width 0.2 
n total plots 100 
resource scales 1, 3, 10, 30, 100 
grains 4, 9, 25, 49, 100, 196 
spp. per cell 1 

Carolina Vegetation Survey data 

I obtained the all plots in the CVS database as of May, 2009 that were 1000 m2 and 

included at least four 100 m2 modules and all “nest” levels, down to 0.01 m2 (n = 357). 

Within this subset were 1,157 higher plants from 138 families. Sub-species and variety 

records were aggregated to the species level. Records unknown to the species were 
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omitted. The data from each sampling level were converted to a presence-absence 

matrix; with cover estimates omitted, as they are not available below the module level. 

Because each plot contains multiple modules, matrices for sub-plot grains contained 

more location entries than those at the plot grain. This introduces the issue of pseudo-

replication, as modules from the same plot are spatially auto-correlated. However, 

although the contain more entires, these matrices actually contain less data in one sense, 

as they sample less physical space. I counted this latter problem the greater one, and 

therefore included all data from each sampling grain, treating each modules as its own 

location. 

To extend the range of sampling grains considered, county-level occurrences were 

obtained from the USDA PLANTS database (2009). Although county boundaries are not 

uniform or square, the data were considered to be taken at a 1.394×109 m2 grain, the 

average county size. 

Width estimation 

A modified version of the theta metric from Fridley et al. (2007) was used to estimate 

species niche widths at each grain. The variant, "#55n," was put forth in McChesney (in 

draft) and selected because of good performance across a range of scenarios. The 

relationship between sampling area and theta was then summarized with a linear 

model for each species, and comparisons were made across categories of interest, i.e., 

family, native status and growth form, as in PLANTS (USDA, 2009). 
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R E S U L T S  

Grain and metric performance 

Metric performance varied with grain and resource heterogeneity. In general, the best 

estimates were obtained in homogenous landscapes (Fig. 2-2). In the most 

heterogeneous ones (smoothing = 1) performance was best with small sampling grain, 

whereas middling and large grains did better in homogenous ones. 
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Fig. 2-2. Performance with different sampling grains. Lines show scale of spatial heterogeneity (inverse 
auto-correlation). Panels show niche overlap. 

Landscape heterogeneity and small sample grain both contributed to in-plot resource 

variation, which was defined as the range of resource values present (Fig. 2-3). Looking 

across all simulations, this in-plot variation was strongly correlated with metric 

performance (Fig. 2-4; ANOVA showed r2 of 0.459, p < 2.2×10-16). 
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Fig. 2-3. Causes of plot heterogeneity, measured as the range in resource levels contained in the average 
plot at the given grain. Each point shows one replicate while lines show averages at different scales of 
resource variation (i.e. degree of smoothing). 
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Fig. 2-4. Effect of plot heterogeneity on metric performance. 

The grain producing the best niche estimates was identified for each type of landscape. 

This varied substantially between replicates; that is, the best grain depended on the 

particular configuration of species utilization curves in niche space, as well as the 

selection of plots from the entire landscape (which here were random). Nonetheless, 
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homogenous landscapes, which vary at a large scale, were best assessed with large-

grained sampling, and vice-versa (Fig. 2-5; ANOVA showed r2 of 0.508, p < 2.2×10-16). 

 

Fig. 2-5. Most suited grain (ordinate) for measuring niche widths at the given level of spatial 
heterogeneity (abscissa). Shaded area shows the range of selected grains in 100 replicates; solid line 
shows the mean. 
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However, in the real world it may be difficult to assess the scale of environmental turn-

over, especially because multiple limiting resources may be involved that vary at 

different scales. The best performing grains were often those that generated the greatest 

range in niche widths—which is useful knowledge because while performance can 

never be known in the real world, variation in estimates can be (Fig. 2-6). 
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Fig. 2-6. Density plot showing the difference, in area, between the best performing grain in each scenario 
and the grain having the greatest variation in its species' niche width estimates. Because the difference is 
often small, those two grains are, in fact, the same. Vertical ticks represent data points (i.e. simulations). 

Grain and estimate bias 

Ideally, niche estimates should vary little with grain, because only one resource is 

modeled and in each simulation run it varies across the landscape at one scale; i.e. the 
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realistic complexity of a fractally patchy landscape is absent. However, niche estimates 

did vary with sample grain, and showed peak values near the relatively small grain of 9 

(Fig. 2-7). This pattern was maintained in all landscapes, but sharpest in heterogenous 

ones (with smoothing of 1, 3 or 10). 

 

Fig. 2-7. Change in mean generalism score as sampling grain varies. Lines show different smoothing 
levels applied to resource distribution in space (i.e., scale of heterogeneity). 
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To correct for this lack of constancy between grains, several normalization techniques 

were tested. Their effectiveness was quantified with per-species variation in niche 

estimate, within in each replicate, which ideally would be 0 but in the unmodified data 

averaged 0.30 and was particularly high in heterogeneous scenarios (Fig. 2-8). Each 

technique was applied to all estimates for a particular replicate and grain. Dividing 

estimates by the mean estimate value reduced average variation from 0.30 to 0.08. 

Linear scaling of values (in which the maximum becomes 1 and the minimum 0) 

reduced variation to 0.03, though it was much higher in the heterogenous landscapes. 

Lastly, an empirical cumulative density function transformed each value into a quantile; 

this reduced variation to 0.02. The ECDF was therefore used in the analysis of real-

world data. 
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Fig. 2-8. Grain correction techniques. Mean variation in per-species width estimates is shown on the 
ordinate, at different levels of landscape homogeneity. 

Analysis of Carolina Vegetation Survey data 

The unmodified niche width estimates for plants in CVS tended to show a strong 

unimodal relationship with sampling grain, with maximum values at the 3.14 m2 scale 
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(Fig. 2-9a). This suggests that Beta diversity is high at this scale, perhaps from abiotic 

heterogeneity or because at lower scales there is an element of pseudo-replication 

(modules from the same plot are close to one another). Even if not artifactual, this trend 

obscures differences between species. When values were normalized using a 

cumulative density function, a unimodal pattern persisted, though it was less severe 

(Fig. 2-9b). The narrowest of niches are observed at the smallest scale, but many species 

were most restricted at larger scales (Fig. 2-10); a plurality (33%) had their narrowest 

niche estimates emerge at the county scale. Generally, species showed a wide variety of 

responses to grain change (for example, consider those shown in Fig. 2-11). 
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Fig. 2-9. Generalism scores for all sampled species in the Carolina Vegetation Survey data. Above: raw 
scores; below: scores normalized by cumulative density functions. 
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Fig. 2-10. Distribution of species’ most limiting scale. 
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Fig. 2-11. Selected species illustrating different relationships between sampling grain and estimated niche 
width. 

Growth habit and native status both affected the niche-grain relationship, with three 

noteworthy trends. Those plants that grow exclusively as trees were very general at 

small scales (below 1000 m2). The scores of generally smaller species (herbs and grasses) 

were much like those of trees at 1000 m2 and remained high at the county-scale, 



64 

whereas trees and shrubs showed a decrease there. Non-native species exhibited higher 

generalism overall, but most especially at small scales (Fig. 12). 

 

Fig. 2-12 Differences in generalism across grains by growth habit and native-status. Only the four most 
common growth habits are shown. Species were classified as non-native if invasive in any state, 
according to USDA PLANTS. 
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Discussion 

Metric function 

Metric performance is affected most drastically by in-plot resource heterogeneity. As 

this increases, increasingly dissimilar species will be counted as co-occurrers; and the 

difference between specialists and generalists will fade. In-plot heterogeneity is the 

product of heterogeneity in critical resources inherent in the landscape, and sampling 

grain. Metric performance in simulations was best when plots typically contained less 

than 10% of possible resource variation. 

Good niche estimates cannot be achieved simply by minimizing grain: if it becomes too 

small, plots will capture no turn-over in the landscape and consist of monocultures, 

thereby eliminating all co-occurrence. Other problems are encountered above this 

extreme because a small grain likely implies sampling less overall space: as the sampled 

space decreases, co-occurrences are missed. This occurs with respect to the scale of turn-

over in the landscape; when resources vary over a large scale, grain should also be 

large. (Sites could be chosen non-randomly to capture important co-occurrences, but 

this is also problematic.) 

Thus, there is a balance between a tight definition of co-occurrence and thorough 

sampling. Unfortunately, it is difficult to know where this point lies in the real world, 

especially as multiple resources interact. Before a major study is initiated, a pilot study 

can examine many potential grains; those that maximize the variation in niche estimates 

should be preferred. As shown here, no single grain can adequately describe species 

niches except in extremely simple systems. Thus, the ideal remains multi-scale 
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sampling, as in the Carolina Vegetation Survey protocol (Peet et al., 1998), where the 

effect of grain can be analyzed, both in niche estimates and other ecological patterns 

such as species-area relationships. 

Comparability 

Niche estimates at different scales are not immediately comparable. This is because the 

beta-diversity of the landscape is likely to also vary with scale, and thus affect all 

species’ estimates (as one interpretation of the metric is a modified, per-species, additive 

beta diversity measure). However, they may be compared when the scores at each grain 

are normalized by a cumulative density function. 

Plant niches across scales 

Plants recorded in the Carolina Vegetation Survey showed the greatest variation in raw 

generalism scores at level 2 sampling, i.e. 10 m2. We may theorize that this scale, where 

mean richness is 6.3, gives the most accurate niche estimates overall (i.e. for all species, 

in all locations); which is useful to quickly summarize species’ niches. 

If we do consider species generalism across scales, though, there is a great deal of 

variety, as predicted. Many species were most limited at the large scale ( i.e., by patterns 

and processes creating heterogeneity at the county (1.394×109 m2) level), presumably 

reflecting broad ranges of soil type and climate (elevation and latitude).  
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Growth habit 

Different growth habits and native status were associated with different responses. The 

niches of grasses and herbs were narrower than trees’ at scales below 1000 m2, but 

similar to or broader than trees’ above that scale. Fine-grain limitation can be attributed 

to susceptibility to competition or the effects of micro-topography. Such factors will be 

important to species with smaller growth forms, like herbs and many grasses, that can 

be out-competed by shading, but unimportant to most trees, whose investment in 

physical size allows them to ignore micro-habitat except as seedlings. 

The greater generalism of grasses and herbs at large grains may also owe to life 

histories strategies that allocate more energy to reproduction than those of trees or 

shrubs. A pioneer grass, for instance, can colonize and become established in suitable 

habitat even if the patch is disjoint from existing populations or very small; in either 

case, bringing the pioneer into close proximity with a wide variety of other species. 

Dispersal ability, which may be important to this explanation, can be seen separately 

from niche breadth, but a trade-off between the two is often theorized. Although the 

CVS database is biased towards mature communities, small-scale disturbance and 

heterogeneity within them may nonetheless show these characteristics of r-selected 

plants. 

For specific examples, we can return to those illustrated in Fig. 11, chosen for their very 

different responses to grain. Gratiola neglecta (clammy hedgehyssop) is a small annual 

found throughout the US and Canada around muddy pond edges. Appropriate habitat 

such as that can be found commonly, but occurs only in narrow bands, limiting the 
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other species that can be close by. As might be expected, the species shows a positive 

relationship between grain and generalism. 

Compare this to Mikania scandens (climbing hempvine), a weedy vine found in moist 

areas in the eastern US and Canada, with wind- and animal-born seeds. Sufficiently 

moist habitat is likely available in much larger patches than pond edges, so M. scandens 

is logically limited at a larger grain (10–100 m2) than G. neglecta, presumably the scale of 

turn-over for such patches. 

Rhynchospora careyana (broadfruit horned beaksedge), in contrast, showed a strongly 

unimodal response to grain, with high generalism at the 1000 m2 scale. It is found 

around limesink ponds in the southeast US and is strongly clonal. It may then be 

limited by competition or heterogeneity at very small scales, and the patchy availability 

of limesinks at large ones. 

Finally, Quercus geminata (sand live oak) shows the pattern common to most trees: a 

negative generalism-grain relationship. Q. geminata is a shrubby tree that grows on xeric 

sites in the Southeast. Large propagules and strong clonal tendency likely allow 

establishment in many habitats at the small scale, while it is limited by climate (through 

light availability) at larger ones.  

Native status 

It is not surprising that non-native species generally have broader niches at all scales; if 

they had very specific requirements, they likely would not have become established. 
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This pattern is broken at the large scale for herbs and grasses though, where non-

natives have narrower niches than natives. The implication is that counties vary widely 

in their suitability for non-natives; but differences within them are comparatively 

minor. This could be an artifact of recent colonization history: chance or perhaps human 

disturbance have introduced invasives in some areas but not others; within them, 

propagule pressure swamps all patches of suitable habitat. It may also suggest that non-

natives are affected more by regional climate than natives. 

Implications for ecological research 

What does it mean to discuss a species’s generalism changing with scale? The approach 

here has been to treat generalism as a shorthand for niche width, where “niche” 

subsumes the abiotic and biotic requirements of a species; i.e. it’s tolerance of various 

conditions. In this framework, a species has but one true niche but many realized 

niches. Ecologists have long known that any measurement of niche is of the latter kind, 

showing but a piece of the whole, determined by limited methods. If we allow “niche” 

to include a species’ responses to local disturbance and micro-habitat, in addition to 

broad climatic variables, grain must matter as much in sampling as does extent, for just 

as we would ideally sample across the temperature regime of a species’ distribution, so 

should we sample across grains to detect the variety of processes limiting the species’ 

appearance. 

Most distributions are patchy, and patchy at multiple scales, which suggests that 

studying apparent niche across grains may be important for understanding those 

distributions. Such an approach may also be relevant for studying different aspects of a 
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large process, including those relevant for management. For instance, in exotic 

invasions, we might need the right grain to detect signals of dangerous niche expansion 

in a potential invader, or any unoccupied niche “holes” in communities – suggesting 

invasability. The use of generalism estimates based on co-occurrence, when employed 

across scales, should thus be a useful tool in the ecologist’s belt. 
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3. A Wealth of Niches 

Detecting community processes with species generalism 

I N T R O D U C T I O N  

Ecologists are interested in the processes forming communities, and the variation 

within them, such as the relative importance of the regional species pool and local 

filters such as competition and disturbance. But these are difficult to observe 

directly. Experiments showing how a community responds are expensive and 

cannot be performed everywhere, much less on rare communities. Thus, we would 

like methods to infer process from data. 

Pattern begets process and process begets pattern. If a process is important, it 

necessarily leaves a signature, and this should be identifiable. We should look for 

signatures in community composition that are easily measured, universally present 

across systems, and variable. Richness obviously fits these criteria but is not 

sufficient because too many events can lead to it. Diversity exists in many forms 

though: richness not just in species but trophic positions, traits and strategies (Diaz, 

2001). 

A simple definition of strategy is generalism, or niche width, whereby some species 

have many requirements and others few (Colwell & Futayma, 1971). This idea is 

broad enough that it applies to all species, and values are easily estimated (Fridley et 
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al., 2007, McChesney ms). Generalists and specialists should respond very 

differently to some important processes, so that some communities might have all 

specialists, all generalists, or some other distribution. 

In this chapter I ask whether the importance of several broad types of process can be 

seen in the patterns of generalism and richness within sites. I first assess this with 

simulation modeling, where known processes are used to generate patterns. I then 

consider real data, looking for equivalent patterns and comparing them to what is 

known about those communities. 

F O U R  S I G N A T U R E S  

Based on the strength of several processes, we can expect distinct relationships 

between in-plot richness and generalism—or its estimate based on co-occurrence 

data, theta (Fridley et al., 2007). Distributions of theta can be described by its mean, 

standard deviation, maximum and minimum per plot. For simplicity, I consider four 

signatures, generated by a single process each—and named for generalism’s role in 

that process—but intermediate types are possible. 
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Fig. 3-1. Hypothesized richness-generalism patterns in four pure models. The generalism scores of all 
species in a plot are summarized by mean, standard deviation, minimum and maximum. Dark gray 
shows the over-riding trend while light gray shows the range of possible values.  (A) is the null 
model, where generalism and richness are decoupled except for statistical constraints at very high 
richnesses. In (B) richness depends on species availability; generalists are always available so 
dominate poor sites. In (C) we assume a competition-generalism trade-off, so that where specialists 
happen to occur, generalists do not. In (D) richness is generated only when generalists and specialists 
co-exist, while poor sites favor one strategy. 
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A. Irrelevance 

Our null model is that generalism is unrelated to site richness. Some sites are 

inherently rich, and some poor, due to unrelated factors like heterogeneity or 

resource abundance (Tilman, 1994). The lack of correlation may result from realized 

niches that are very different from intrinsic ones; meaning that estimates are poor. 

This could result from poor data or the importance of historical contingency in the 

study community. 

Even under this model, some patterns should be expected when graphing summary 

statistics of generalism against richness. Sites with moderate richness can have any 

composition of generalists or specialists. But highly rich sites must necessarily 

contain a large proportion of the local pool, and thus its mean generalism is 

constrained to match that of the available species. Deviation in generalism is 

unaffected by richness, while minima are uniformly low and maxima high (Fig. 3-

1A). 

B. Random pool 

Even if generalism is not directly involved in community formation, as in (A), 

pattern might emerge because of differential availability of specialists and 

generalists. In other words, local filters may be much less important than stochastic, 

regional processes (Ricklefs, 1987). 

A species is available to colonize a site only if its niche intersects the qualities of the 

site in n-dimensional niche space; i.e., if its requirements are satisfied. Let us assume 
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species do not interact (as they will in later models), that colonization is entirely 

random, and species are distributed evenly through niche space. Almost all sites can 

be colonized by some generalists, which by definition cover wide swathes of niche 

space. But not all sites will happen to suit specialists–some will suit a few, others 

none. 

Therefore, the difference between rich and poor sites will hinge on the presence of 

specialists. The richest sites will necessarily have both (with intermediate mean theta 

and high deviation), while the poorest sites will have only generalists (low mean 

and low deviation). See Fig. 3-1B. 

C. Competitive exclusion 

Evolutionary trade-offs may be important in community assembly (Bonsall, 2004) 

and one possible trade-off pairs generalism with competitive ability. This has been 

predicted by allocation theory (Levins, 1968; Gilchrist, 1995) and had some empirical 

support (e.g., Dykhuizen, 1983). If true, a niche cannot be both wide and high–where 

height represents resource acquisition rate (Tilman, 1982). 

In this model, we posit such a trade-off and allow interactions between species. 

Where resources are scarce, specialists competitively exclude rivals. Where 

resources are abundant, competition is less important and generalists win through 

rapid colonization (MacArthur and Wilson, 1967). We can easily imagine such sites 

in a system driven by disturbance, or where only a few specialists are present. 
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In this model, specialists will tend to occur alone, and only sites that lack specialists 

(due to evolutionary or ecological chance, or disturbance) can attain high richness. 

Thus, all aspects of generalism should be correlated with richness, especially 

maxima: poor sites should not contain many generalists at all (Fig. 3-1C). 

D. Middling qualities 

Several theories posit increased richness at sites with middling attributes, e.g., 

intermediate disturbance or intermediate resource quality (Connel, 1978; Peet and 

Christensen, 1988). One common idea is that sites may favor different classes of 

species (e.g., high disturbance favors generalists whereas low disturbance favors 

specialists). Non-favored classes are excluded, lowering richness; only the sites that 

are intermediate, and so exclude nothing, can attain high richness. 

Here we expect rich sites to contain both specialists and generalists, and so have 

intermediate mean theta, and high deviation. Poor sites can show a wide variety of 

mean values but always low deviation. A narrowing mean is also expected from 

simple statistical effects, as described for (A). Thus, here we actually expect an 

exaggeration of that trend as the two causes should be multiplicative; poor sites 

should vary greatly, but even moderately rich sites have highly constrained mean 

thetas. 
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M E T H O D S  

Simulation Models 

Using a previously built simulation model (McChesney, in draft) I generated plot 

data for several exemplary scenarios. In each simulation species niche curves were 

placed on three independent resources axes. Values for each resource were 

randomly assigned to each plot, limiting the potential colonizers to species tolerant 

of those conditions. From this local pool, species were randomly drawn. 

Most simulation parameters were fixed (Table 3-1) while three were modified to 

generate the four pure scenarios (Table 3-2). Plot richness could be controlled 

directly with the number of species draws. In scenario A, this was randomly varied 

between plots and all species were available for drawing, irrespective of niche. A 

parameter for inter-specific interaction strength determined the importance of niche 

curve height in the draw process. A trade-off flag indicated whether niche height 

was inversely correlated with width. 

Plots were summarized by richness and the generalism of all species present. Each 

scenario was replicated 10 times. In order to compare results, both richness and 

generalism were scaled per replicate, to vary between 0 and 1. 



80 

Table 3-1. Fixed simulation parameters. In the scenarios testing trade-offs, niche optima heights 
(competitive ability) where not generated but taken as the inverse of breadth (generalism). 

parameter function value 
n species constant 50 
niche breadth gamma mean=1.0 
optimum position uniform range=0-1 
optimum height lognormal mean=2, SD=1 
plots constant 500 
spp. draws per plot constant 100 

Table 3-2. Parameters varying by scenario. Species draws controls site-specific, abiotic richness. 
Interaction strength controls the force of competition or other exclusionary forces, where low optima 
lose to high optima when the value is positive; in scenario D sites were randomly assigned values 
which could be negative, thus favoring low optima. The trade-off flag controls whether optima height 
are randomly generated or based on niche breadth. 

scenario A B C D 
species draws 10–100 100 100 100 
interaction strength 0 0 3 -3–3 
trade-off no no yes yes 

 

Carolina Vegetation Survey Data 

Data from the Carolina Vegetation Survey were then analyzed (Peet and 

Christensen). All species in 1000 m2 plots, entered by May 2009, were considered: 

this came to 3880 species in 2804 plots. 

Relative abundance was computed from estimated cover values (the minimum and 

maximum values defining each cover class were converted to a single value by 

finding their geometric mean). The resulting abundance matrix was used to estimate 
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species niches with the generalism metric put forward previously (McChensey, in 

draft), based on the Fridley et al. (2007) theta metric. Richness and summaries of 

generalism were then computed per plot. 

Other Complex Systems 

Anthropologists have occasionally attempted to use niche theory in human-

ecological systems (Hardesty 1975), and other work has shown that patterns seen in 

ecological systems, like species-area curves, can appear in a wide variety of non-

biological complex systems where discrete items appear in groups (Nekola, 2007). 

Using the methods described above, brief analyses were performed on data from 

two human systems: one agro-ecological, one wholly symbolic. 

In 1066 the Normans conquered England and rapidly undertook an assessment of its 

wealth in the Domesday Book (Palmer et al. 2007). This includes counts of seven 

major livestock types at each manor. Presumably, human interests constrain the 

species pool and minimize competition and other constraints; but perhaps more 

general concepts, like the exclusion of similar species, also serve those interests, 

creating similar patterns. These data were analyzed, with manors counted as 

locations. 

Any written text shares properties with an ecological system: words can be seen as 

species that appear in various combinations in sentences of various length 

(richness). One might be inclined to abandon the search for particularly ecological 

processes if very similar patterns were obtained from the text of Charles Darwin’s 
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“Variation of Plants and Animals under Domestication” (1868), which were also 

analyzed. 

Matching 

Generalism-richness relationships were summarized by the slopes of linear models, 

with normalized richness. Each model or system was described by four slopes 

representing the four parameters shown in Figure 3-1: mean, standard deviation, 

maximum and minimum. The expected patterns are qualitative though, so 

comparisons between systems were made using the signs of the slopes: positive, 

negative or zero. Very small slopes (<3%) were treated as zero. A pattern was 

considered to match another when the signs of all four relationships were the same. 

Where multiple matches were possible, the null model (A) and near-null model (B) 

were preferred. 

R E S U L T S  

Simulation models 

When the four pure models were simulated, the patterns of generalism and richness 

(Fig. 3-2) qualitatively matched what was theorized (Fig. 3-1). The main differences 

were more diffuse relationships, and only a mild response from standard deviation 

to richness. 
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Fig. 3-2. Simulation model results for four pure scenarios, A–D, where each shows 10 replicates 
overlaid. Some relationships are obscured because replicates had different levels of richness. 
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Table 3-3. Relationships between four per-plot generalism statistics and plot richness under the four 
models. Slopes were calculated by linear model for each of 10 replicates, and the values averaged, 
with non-significant slopes counted as 0. 

model A B C D 
mean 0.00 -0.04 0.57 0.23 
S.D. 0.00 0.02 0.09 0.05 
min. -0.09 -0.13 0.21 -0.10 
max. 0.09 0.03 0.95 0.56 

Carolina Vegetation Survey data 

Considering all plots in CVS together, generalism patterns resembled those of 

models B and D. Plots showed wide variation in the generalism of their species 

when richness was low, but when it increased, the mean, standard deviation and 

minimum became constrained (Fig. 3-1). Linear models showed that for each of the 

four summary statistics, 1% to 8% of variation could be explained by richness (Table 

3-4; all p values < 0.001). Mean generalism decreased while minimum and 

maximum became more extreme and standard deviation declined slightly. 
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Fig. 3-3. Generalism and richness patterns in plants of the Carolina Vegetation Survey. 
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Table 3-4. Dependence of plot generalism on richness in all of CVS. Linear models relating each plot-
level generalism statistic to richness. 

statistic r2 slope p 
mean 0.08 -0.18 2.2e-16 
S.D. 0.01 -0.03 5.3e-6 
maximum 0.04 0.29 2.2e-16 
minimum 0.15 -0.15 2.2e-16 

Taken as a whole, plots in CVS do not strongly match any of the four models: no 

model has a negative slope for the mean or standard deviation of generalism. 

Variation between community types 

The patterns seen across CVS were not replicated in every community type. Linear 

models showed that within most community types, there was no significant 

relationship between generalism and richness (Fig. 3-4); though when there was, it 

was almost always negative, for example in the six most common communities (Fig. 

3-5). 
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Fig. 3-4. Generalism-richness relationships in CVS communites. Each datum is the slope of a linear 
model that compares plot generalism to richness in one community type. Communities appearing 
less than three times were excluded. The histograms show different statistical summaries of plot 
generalism. 
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Fig. 3-5. Loess-smoothed relationship between plot richness and mean plot generalism in the six most 
common community types in CVS. 

The qualitative generalism-richness relationships in each CVS community type were 

compared with those of the four models. Of 232 recorded community types, 127 

were not represented sufficiently for slope estimation, leaving 105 that were 
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matched (see Appendix B). Communities were most often matched to model A, 

while many matched no model (Table 3-5). 

Consider the “Southern Appalachian Cove Forest (Rich Montane Type)” community 

(CEGL007695) which is dominated by Aesculus flava and Acer saccharum. Plots in 

CVS had richnesses between 33 and 146, with a mean near 72. The richer sites had 

more extreme generalists and specialists, which is expected for all models except C; 

they also showed greater mean generalism and greater variation in generalism, 

which is expected only under model D. 

Table 3-5. Communities in CVS matching each of the proposed models in richness-generalism 
relationships. A match was defined as four slopes (between richness and mean, minimum, maximum 
or standard deviation of generalism) with the correct sign: positive, zero, or negative. Slopes of low 
magnitude (<5%) were treated as zero. Where multiple matches existed, the null model (A), and then 
the simpler (B) were preferred. 

model n matches example (common name) 
A 62 High-Elevation Red Oak Forest (Deciduous Shrub Type) 
B 19 Appalachian Montane Oak Hickory Forest (Typic Acidic Type) 
C 1 Calcareous hammocks & shell barrens 
D 1 Southern Appalachian Cove Forest (Rich Montane Type) 
none 22 Southern Appalachian Acid Cove Forest (Typic Type) 

Other Complex Systems 

The Domesday Book records seven major types of livestock on England’s manors in 

1066. Cobs (Welsh warhorses) showed the highest generalism while goats showed 

the lowest; cobs appeared with many other animals and presumably on a wide 

variety of manors, while goats did not. The relationship between the richness and 

generalism of a manor’s stock approximated the patterns seen in model B (Fig. 3-
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6A). The same pattern was seen even more strongly in the sentence-word 

relationship in the Darwin text, being very linear with little dispersion (Fig. 3-6B). 
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Figure 3-6. Richness and generalism relationship in two human systems; one agricultural, one 
symbolic. In (A) livestock presence on English manors in 1066, as recorded in the Domesday Book. In 
(B) words in Darwin’s “The Variation of Animals and Plants under Domestication,” where words are 
treated as species and sentences as sites. 
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D I S C U S S I O N  

Pure models 

Patterns seen in the simulation models generally matched those expected from 

abstract ecological reasoning. Standard deviations showed less dependence on 

richness than expected, but nonetheless, the four models showed qualitative 

differences that can be sought elsewhere. C is readily identified with a positive 

minimum and mean. B has a negative mean (with a magnitude about as great as its 

minimum). A and D, in contrast, have little slope in mean or deviation. They can be 

told apart by the steep slopes of D’s minimum and maximum; far greater than that 

of its mean. 

Of course, these four signatures blend in to one another, as each suggests the power 

of certain processes that are not exclusive. The more a system’s generalism pattern 

looks like C or D, the more we suspect that specialists are being favored when they 

appear; and, if like D, sometimes disfavored. The more like A it appears, the more 

we think that generalism has no importance (perhaps because it has been mis-

measured). 

Between-community patterns 

Considering all plots in CVS simultaneously, a pattern reminiscent of models B and 

D emerges. This suggests that across a wide range of communities, generalism plays 

several roles in community formation. 
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Rich sites tend to contain more specialists than species-poor ones. This could be due 

simply to an uneven distribution of species in niche-space and thus the local pool: 

some communities happen to have specialists available to them but almost all have 

generalists. The “happenstance” of such availability is dependent on ecological 

processes that alter the regional pool, such as range expansions, and also 

evolutionary ones: if some habitat types are abundant, more species may have 

evolved there and experienced more intense niche partitioning. That generalism 

matters in this simple way is not surprising, but confirms that our estimates of niche 

width are not terrible and the suitedness of species to their habitat is not washed out 

by stochasticity (e.g., in dispersal). 

To some extent, though, CVS plots also resemble model D, where extreme specialists 

or generalists are not seen together except at the very richest sites. This suggests that 

some plots favor specialists while others favor generalists. The mechanism behind 

this may be a trade-off making specialists competitively superior to generalists in 

their preferred habitat. Generalism is also often associated with good dispersal 

ability. So sites with high disturbance frequency should support generalists, while 

stable ones support specialists. Only intermediate sites, favoring neither strategy 

strongly, can support both. 

In dividing sites into specialist-supporting or generalist-supporting, though, we are 

only describing a small effect. CVS mostly resembled model B, not D, and moderate 

generalists are found everywhere. Thus, trade-offs and competition are important 

but a small factor when compared to all the other forces operating across the wide 

range of sites sampled. 
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In-community patterns 

In contrast to the above, when we look within CVS communities, there is generally 

no association between richness and generalism; not even via the effect of generalists 

appearing commonly. The processes creating such a pattern may be active but 

masked by other forces. This could occur if differences in generalism were sorted 

out at the community level, so that little variation appears within them. 

Such low variation could originate in at least three places. (1) Our sample sizes of 

each type may simply be too small. (2) Our communities definitions may be 

sufficiently tight that large variation is ruled out by definition (implying that beta-

diversity in non-dominant or non-indicator species is quite low). (3) Niche overlap 

may not be random but instead highly structured, e.g., niches could be arranged in 

n-dimensional space so that at any point there is one generalist and two specialists, 

even though the identity of these species may vary across a gradient. This could 

arise from various species-sorting processes (both ecological and evolutionary), 

which may help maintain identifiable communities. Such sorting would be expected 

within but not between communities, as that is where species interactions take place. 

A subset of CVS communities did display similarities with model B, suggesting that 

at least the commonness of generalists mattered. These communities were primarily 

high-elevation hardwood forest types. Presumably these types contain more 

variation in generalism than many other southeastern communities; i.e. suffer none 

of the constraints on such variation enumerated above. This may make sense, as 

these community concepts are not highly restrictive or rare. 
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Human systems 

Both systems appeared like model B, in which generalism matters in community 

formation but competition and trade-offs do not. Some parallels to biological 

generalism seem clear: in English manors, domesticated animals that are 

economically viable in a range of environmental and local social situations; and in 

Darwin’s writing, linking words and those expressing general concepts rather than 

specific, technical ones. The less obvious parallel is to competition: some tendency 

for specialized animals or words to exclude others. The lack of such a force is also 

not surprising: farms can raise a large number of animals before overhead costs 

impose any limit, and even technical sentences require conjoining words. Non-

biological systems that do display such “competition” are conceivable though, e.g., 

if the cost of maintaining different animals were much higher in some other agro-

ecosystem, it might be observed. The methodology of considering the generalism of 

discreet items that appear in collections is thus applicable beyond ecology. 

Conclusions 

We can say some tentative things about the forces structuring plant communities in 

the southeastern United States. Species generalism does not seem to be involved in 

the small differences between sites of a basic type, except, to a limited extent, in 

some very common communities. But taking all communities together, we see 

slightly more specialized species in rich sites; and in poor ones, a tendency toward 

specialism or generalism but not both. Possibly, these is because specialists are 

competitively dominant, and exclude generalists, and also because sites with 



96 

intermediate qualities (disturbance, resource levels, etc.) support both specialists 

and generalists. 

The analysis of generalism patterns in ecological communities can suggest the 

relative importance of major types of ecological process. For instance, in CVS, the 

community showing the greatest correspondence with model D was South Atlantic 

Coastal Plain Longleaf Flatwoods. We might hypothesize that competition and 

differences in local disturbance regime are unusually important in structuring this 

community; and we could proceed to test this empirically. It should also be possible 

to perform analyses across time to infer changes in process strength, e.g. after an 

invasion. Community generalism analysis is thus a potentially useful tool that can 

be applied across a wide variety of systems to address various ecological questions.  
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Postscript 
Species generalism is multi-use tool on the ecologist's belt. It is a universal concept 

that can be applied to all species, and is easily related to more specific life history 

traits and strategies. By extension, it is related to a wide variety of ecological 

processes and concepts. 

I have shown how it can be estimated with large-scale abundance data. The 

advantage of this is ease of use, by eliminating the need to identify and measure a 

myriad of relevant variables within a species' range, or alternately show its response 

experimentally. Manipulating abundance data in key ways helps to ensure estimates 

in a variety of systems. 

The cost of generalism's universality is a coarseness. But its utility in summarizing 

species niches is extended greatly by considering generalism across spatial scales. As 

different events inherently have scale, the "multi-grain niche" allows inferences 

about species' sensitivities to those events. 

Generalism can also be used to focus on such events themselves, rather than species; 

that is, on ecological processes. I have shown how generalism of a community's 

species can be taken as a whole, and how different patterns could result from the 

importance of broad types of process, like competition and evolutionary trade-offs. 

Future work might combine the thinking of chapters 2 and 3 to consider species' 
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multi-grain niches in the context of a community or landscape so as to infer the 

strength of different types of process. 

Although the real world is made up of specifics, which in terms of information 

ultimately cannot be compressed, it is science's mission to simplify as the need for 

human comprehension of the world demands it. Species, localities, and community 

types must all be studied individually. But they must also be summarized, and for 

this, generalism shows great promise. 



 

Appendices 

A P P E N D I X  A :  C H A P T E R  1  A N O V A  R E S U L T S  

Df   Sum Sq   Mean Sq    F value    
Pr(>F)     

A                                                           1    21.049    21.049  4181.5487 < 2.2e-16 *** 
C                                                           2    12.969     6.485  1288.2298 < 2.2e-16 *** 
D                                                           2    19.900     9.950  1976.6325 < 2.2e-16 *** 
E                                                           3     2.713     0.904   179.6842 < 2.2e-16 *** 
subsamp                                                     1     3.681     3.681   731.3382 < 2.2e-16 *** 
posMethod                                                   2     8.940     4.470   888.0003 < 2.2e-16 *** 
plotBias                                                    1     6.077     6.077  1207.3113 < 2.2e-16 *** 
widthMethod                                                 1    71.886    71.886 14280.9248 < 2.2e-16 *** 
meanWidth                                                   1   107.587   107.587 21373.2958 < 2.2e-16 *** 
A:C                                                         2    14.904     7.452  1480.4031 < 2.2e-16 *** 
A:D                                                         2     2.234     1.117   221.9174 < 2.2e-16 *** 
C:D                                                         4     0.375     0.094    18.6293 3.045e-15 *** 
A:E                                                         3     2.342     0.781   155.0768 < 2.2e-16 *** 
C:E                                                         6     0.111     0.018     3.6591 0.0012487 **  
D:E                                                         6     3.519     0.586   116.5006 < 2.2e-16 *** 
A:subsamp                                                   1     0.756     0.756   150.2386 < 2.2e-16 *** 
C:subsamp                                                   2     0.004     0.002     0.3939 0.6744163     
D:subsamp                                                   2     3.222     1.611   320.0256 < 2.2e-16 *** 
E:subsamp                                                   3     0.012     0.004     0.7758 0.5073300     
A:posMethod                                                 2     0.353     0.177    35.0750 6.981e-16 *** 
C:posMethod                                                 4     0.015     0.004     0.7261 0.5739748     
D:posMethod                                                 4     0.061     0.015     3.0516 0.0159429 *   
E:posMethod                                                 6     1.385     0.231    45.8571 < 2.2e-16 *** 
subsamp:posMethod                                           2     0.304     0.152    30.1982 8.751e-14 *** 
A:plotBias                                                  1     0.106     0.106    21.0757 4.493e-06 *** 
C:plotBias                                                  2     0.007     0.004     0.7160 0.4887605     
D:plotBias                                                  2     1.000     0.500    99.3686 < 2.2e-16 *** 
E:plotBias                                                  3     0.029     0.010     1.9365 0.1213674     
subsamp:plotBias                                            1     0.701     0.701   139.2467 < 2.2e-16 *** 
posMethod:plotBias                                          2     0.051     0.025     5.0599 0.0063700 **  
A:widthMethod                                               1     0.459     0.459    91.1148 < 2.2e-16 *** 
C:widthMethod                                               2     0.053     0.027     5.3079 0.0049727 **  
D:widthMethod                                               2     2.150     1.075   213.5618 < 2.2e-16 *** 
E:widthMethod                                               3     0.036     0.012     2.3969 0.0661574 .   
subsamp:widthMethod                                         1     0.138     0.138    27.4159 1.689e-07 *** 
posMethod:widthMethod                                       2     0.397     0.198    39.4054 < 2.2e-16 *** 
plotBias:widthMethod                                        1     0.135     0.135    26.8525 2.258e-07 *** 
A:meanWidth                                                 1     0.030     0.030     5.8651 0.0154699 *   
C:meanWidth                                                 2     0.245     0.122    24.2995 3.046e-11 *** 
D:meanWidth                                                 2     0.157     0.078    15.5918 1.753e-07 *** 
E:meanWidth                                                 3     1.587     0.529   105.0901 < 2.2e-16 *** 
subsamp:meanWidth                                           1     0.040     0.040     7.9253 0.0048886 **  
posMethod:meanWidth                                         2     2.942     1.471   292.2431 < 2.2e-16 *** 
plotBias:meanWidth                                          1     0.660     0.660   131.0722 < 2.2e-16 *** 
widthMethod:meanWidth                                       1    21.636    21.636  4298.2506 < 2.2e-16 *** 
A:C:D                                                       4     0.101     0.025     4.9976 0.0005075 *** 
A:C:E                                                       6     0.359     0.060    11.8859 2.585e-13 *** 
A:D:E                                                       6     3.491     0.582   115.5849 < 2.2e-16 *** 
C:D:E                                                      12     0.088     0.007     1.4595 0.1315665     
A:C:subsamp                                                 2     0.146     0.073    14.5045 5.175e-07 *** 
A:D:subsamp                                                 2     0.365     0.182    36.2081 2.274e-16 *** 
C:D:subsamp                                                 4     0.016     0.004     0.7944 0.5286027     
A:E:subsamp                                                 3     0.280     0.093    18.5735 5.368e-12 *** 
C:E:subsamp                                                 6     0.017     0.003     0.5691 0.7552382     
D:E:subsamp                                                 6     0.537     0.090    17.7908 < 2.2e-16 *** 
A:C:posMethod                                               4     0.091     0.023     4.5129 0.0012173 **  
A:D:posMethod                                               4     0.235     0.059    11.6852 1.856e-09 *** 
C:D:posMethod                                               8     0.011     0.001     0.2739 0.9745736     
A:E:posMethod                                               6     0.120     0.020     3.9663 0.0005771 *** 
C:E:posMethod                                              12     0.005 4.435e-04     0.0881 0.9999806     
D:E:posMethod                                              12     0.259     0.022     4.2808 8.528e-07 *** 
A:subsamp:posMethod                                         2     0.008     0.004     0.7756 0.4604508     
C:subsamp:posMethod                                         4     0.002 3.980e-04     0.0791 0.9887373     
D:subsamp:posMethod                                         4     0.085     0.021     4.2441 0.0019696 **  
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E:subsamp:posMethod                                         6     0.037     0.006     1.2243 0.2901906     
A:C:plotBias                                                2     0.102     0.051    10.1181 4.095e-05 *** 
A:D:plotBias                                                2     0.013     0.007     1.3382 0.2623877     
C:D:plotBias                                                4     0.024     0.006     1.2006 0.3082903     
A:E:plotBias                                                3     0.033     0.011     2.2174 0.0839448 .   
C:E:plotBias                                                6     0.001 2.313e-04     0.0459 0.9996059     
D:E:plotBias                                                6     0.075     0.012     2.4741 0.0215965 *   
A:subsamp:plotBias                                          1     0.005     0.005     0.9805 0.3220981     
C:subsamp:plotBias                                          2     0.001 4.213e-04     0.0837 0.9197158     
D:subsamp:plotBias                                          2     0.018     0.009     1.8365 0.1594483     
E:subsamp:plotBias                                          3     0.011     0.004     0.6979 0.5532392     
A:posMethod:plotBias                                        2     0.015     0.008     1.4946 0.2244113     
C:posMethod:plotBias                                        4     0.003     0.001     0.1558 0.9604467     
D:posMethod:plotBias                                        4     0.037     0.009     1.8324 0.1195927     
E:posMethod:plotBias                                        6     0.019     0.003     0.6166 0.7172013     
subsamp:posMethod:plotBias                                  2     0.131     0.065    13.0021 2.311e-06 *** 
A:C:widthMethod                                             2     0.274     0.137    27.2105 1.694e-12 *** 
A:D:widthMethod                                             2     0.117     0.059    11.6524 8.870e-06 *** 
C:D:widthMethod                                             4     0.257     0.064    12.7733 2.328e-10 *** 
A:E:widthMethod                                             3     0.054     0.018     3.5781 0.0132987 *   
C:E:widthMethod                                             6     0.021     0.003     0.6851 0.6616891     
D:E:widthMethod                                             6     0.038     0.006     1.2740 0.2655424     
A:subsamp:widthMethod                                       1     0.001     0.001     0.2508 0.6164961     
C:subsamp:widthMethod                                       2     0.037     0.018     3.6455 0.0261596 *   
D:subsamp:widthMethod                                       2     0.232     0.116    23.0540 1.050e-10 *** 
E:subsamp:widthMethod                                       3     0.018     0.006     1.2032 0.3069139     
A:posMethod:widthMethod                                     2     0.008     0.004     0.8098 0.4449778     
C:posMethod:widthMethod                                     4     0.037     0.009     1.8185 0.1222227     
D:posMethod:widthMethod                                     4     0.068     0.017     3.3622 0.0093234 **  
E:posMethod:widthMethod                                     6     0.028     0.005     0.9370 0.4669151     
subsamp:posMethod:widthMethod                               2     0.049     0.024     4.8520 0.0078390 **  
A:plotBias:widthMethod                                      1     0.018     0.018     3.5489 0.0596279 .   
C:plotBias:widthMethod                                      2     0.001     0.001     0.1064 0.8990674     
D:plotBias:widthMethod                                      2     0.005     0.002     0.4575 0.6328971     
E:plotBias:widthMethod                                      3     0.002     0.001     0.1638 0.9207939     
subsamp:plotBias:widthMethod                                1     0.024     0.024     4.7909 0.0286440 *   
posMethod:plotBias:widthMethod                              2     0.026     0.013     2.5814 0.0757411 .   
A:C:meanWidth                                               2     1.369     0.684   135.9623 < 2.2e-16 *** 
A:D:meanWidth                                               2     0.917     0.458    91.0810 < 2.2e-16 *** 
C:D:meanWidth                                               4     0.752     0.188    37.3552 < 2.2e-16 *** 
A:E:meanWidth                                               3     0.332     0.111    22.0128 3.502e-14 *** 
C:E:meanWidth                                               6     0.068     0.011     2.2534 0.0356028 *   
D:E:meanWidth                                               6     0.717     0.120    23.7516 < 2.2e-16 *** 
A:subsamp:meanWidth                                         1     0.085     0.085    16.8436 4.106e-05 *** 
C:subsamp:meanWidth                                         2     0.045     0.023     4.4702 0.0114784 *   
D:subsamp:meanWidth                                         2     0.341     0.171    33.8998 2.235e-15 *** 
E:subsamp:meanWidth                                         3     0.050     0.017     3.3197 0.0189738 *   
A:posMethod:meanWidth                                       2     0.044     0.022     4.4151 0.0121275 *   
C:posMethod:meanWidth                                       4     0.005     0.001     0.2241 0.9250699     
D:posMethod:meanWidth                                       4     0.082     0.020     4.0709 0.0026813 **  
E:posMethod:meanWidth                                       6     0.441     0.073    14.5982 < 2.2e-16 *** 
subsamp:posMethod:meanWidth                                 2     0.106     0.053    10.5775 2.590e-05 *** 
A:plotBias:meanWidth                                        1     0.006     0.006     1.1007 0.2941387     
C:plotBias:meanWidth                                        2     0.001 3.332e-04     0.0662 0.9359447     
D:plotBias:meanWidth                                        2     0.234     0.117    23.2807 8.380e-11 *** 
E:plotBias:meanWidth                                        3     0.011     0.004     0.7081 0.5470553     
subsamp:plotBias:meanWidth                                  1     0.438     0.438    86.9476 < 2.2e-16 *** 
posMethod:plotBias:meanWidth                                2     0.327     0.163    32.4325 9.560e-15 *** 
A:widthMethod:meanWidth                                     1     0.013     0.013     2.5145 0.1128467     
C:widthMethod:meanWidth                                     2     0.030     0.015     2.9354 0.0531752 .   
D:widthMethod:meanWidth                                     2     0.340     0.170    33.7655 2.553e-15 *** 
E:widthMethod:meanWidth                                     3     0.046     0.015     3.0661 0.0268352 *   
subsamp:widthMethod:meanWidth                               1     0.095     0.095    18.9537 1.359e-05 *** 
posMethod:widthMethod:meanWidth                             2     0.435     0.218    43.2474 < 2.2e-16 *** 
plotBias:widthMethod:meanWidth                              1     0.033     0.033     6.5296 0.0106308 *   
A:C:D:E                                                    12     0.042     0.004     0.6977 0.7553394     
A:C:D:subsamp                                               4     0.031     0.008     1.5525 0.1841474     
A:C:E:subsamp                                               6     0.008     0.001     0.2703 0.9509622     
A:D:E:subsamp                                               6     0.357     0.059    11.8163 3.143e-13 *** 
C:D:E:subsamp                                              12     0.028     0.002     0.4580 0.9392384     
A:C:D:posMethod                                             8     0.007     0.001     0.1744 0.9943099     
A:C:E:posMethod                                            12     0.013     0.001     0.2097 0.9980976     
A:D:E:posMethod                                            12     0.154     0.013     2.5552 0.0022535 **  
C:D:E:posMethod                                            24     0.007 2.930e-04     0.0582 1.0000000     
A:C:subsamp:posMethod                                       4     0.002     0.001     0.1154 0.9771080     
A:D:subsamp:posMethod                                       4     0.002     0.001     0.1176 0.9763293     
C:D:subsamp:posMethod                                       8     0.007     0.001     0.1756 0.9941758     
A:E:subsamp:posMethod                                       6     0.005     0.001     0.1633 0.9863626     
C:E:subsamp:posMethod                                      12     0.002 1.777e-04     0.0353 0.9999999     
D:E:subsamp:posMethod                                      12     0.043     0.004     0.7156 0.7376051     
A:C:D:plotBias                                              4     0.013     0.003     0.6580 0.6212107     
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A:C:E:plotBias                                              6     0.004     0.001     0.1471 0.9896679     
A:D:E:plotBias                                              6     0.030     0.005     0.9972 0.4251583     
C:D:E:plotBias                                             12     0.001 9.557e-05     0.0190 1.0000000     
A:C:subsamp:plotBias                                        2     0.015     0.008     1.5352 0.2154795     
A:D:subsamp:plotBias                                        2     0.005     0.003     0.5425 0.5813334     
C:D:subsamp:plotBias                                        4     0.002     0.001     0.1156 0.9770437     
A:E:subsamp:plotBias                                        3     0.002     0.001     0.1307 0.9418830     
C:E:subsamp:plotBias                                        6     0.001 9.299e-05     0.0185 0.9999728     
D:E:subsamp:plotBias                                        6     0.006     0.001     0.1978 0.9775176     
A:C:posMethod:plotBias                                      4     0.005     0.001     0.2378 0.9171195     
A:D:posMethod:plotBias                                      4     0.063     0.016     3.1448 0.0135811 *   
C:D:posMethod:plotBias                                      8     0.003 3.587e-04     0.0713 0.9997805     
A:E:posMethod:plotBias                                      6     0.008     0.001     0.2701 0.9510532     
C:E:posMethod:plotBias                                     12     0.001 9.452e-05     0.0188 1.0000000     
D:E:posMethod:plotBias                                     12     0.012     0.001     0.2007 0.9984702     
A:subsamp:posMethod:plotBias                                2     0.005     0.002     0.4671 0.6268676     
C:subsamp:posMethod:plotBias                                4     0.002 4.979e-04     0.0989 0.9828271     
D:subsamp:posMethod:plotBias                                4     0.008     0.002     0.4079 0.8030962     
E:subsamp:posMethod:plotBias                                6     0.009     0.002     0.2999 0.9371551     
A:C:D:widthMethod                                           4     0.061     0.015     3.0126 0.0170428 *   
A:C:E:widthMethod                                           6     0.007     0.001     0.2168 0.9715853     
A:D:E:widthMethod                                           6     0.052     0.009     1.7235 0.1111835     
C:D:E:widthMethod                                          12     0.007     0.001     0.1116 0.9999289     
A:C:subsamp:widthMethod                                     2     0.007     0.003     0.6476 0.5233499     
A:D:subsamp:widthMethod                                     2 1.032e-04 5.158e-05     0.0102 0.9898054     
C:D:subsamp:widthMethod                                     4     0.021     0.005     1.0639 0.3726278     
A:E:subsamp:widthMethod                                     3     0.001 2.954e-04     0.0587 0.9813569     
C:E:subsamp:widthMethod                                     6     0.002 2.583e-04     0.0513 0.9994575     
D:E:subsamp:widthMethod                                     6     0.020     0.003     0.6553 0.6859262     
A:C:posMethod:widthMethod                                   4     0.001 1.887e-04     0.0375 0.9973240     
A:D:posMethod:widthMethod                                   4     0.027     0.007     1.3249 0.2580404     
C:D:posMethod:widthMethod                                   8     0.006     0.001     0.1570 0.9960494     
A:E:posMethod:widthMethod                                   6     0.009     0.002     0.3072 0.9335331     
C:E:posMethod:widthMethod                                  12     0.003 2.467e-04     0.0490 0.9999993     
D:E:posMethod:widthMethod                                  12     0.019     0.002     0.3082 0.9882571     
A:subsamp:posMethod:widthMethod                             2     0.015     0.007     1.4762 0.2285784     
C:subsamp:posMethod:widthMethod                             4     0.004     0.001     0.2045 0.9359825     
D:subsamp:posMethod:widthMethod                             4     0.010     0.002     0.4953 0.7392179     
E:subsamp:posMethod:widthMethod                             6     0.006     0.001     0.1866 0.9806598     
A:C:plotBias:widthMethod                                    2     0.026     0.013     2.6128 0.0733989 .   
A:D:plotBias:widthMethod                                    2     0.007     0.004     0.7084 0.4924537     
C:D:plotBias:widthMethod                                    4     0.001 2.796e-04     0.0555 0.9942673     
A:E:plotBias:widthMethod                                    3     0.002     0.001     0.1648 0.9201277     
C:E:plotBias:widthMethod                                    6 8.293e-05 1.382e-05     0.0027 0.9999999     
D:E:plotBias:widthMethod                                    6     0.004     0.001     0.1421 0.9905780     
A:subsamp:plotBias:widthMethod                              1     0.005     0.005     1.0894 0.2966406     
C:subsamp:plotBias:widthMethod                              2     0.001     0.001     0.1151 0.8912475     
D:subsamp:plotBias:widthMethod                              2     0.014     0.007     1.3726 0.2535082     
E:subsamp:plotBias:widthMethod                              3     0.006     0.002     0.3842 0.7643633     
A:posMethod:plotBias:widthMethod                            2     0.008     0.004     0.7491 0.4728071     
C:posMethod:plotBias:widthMethod                            4     0.001 1.306e-04     0.0259 0.9986995     
D:posMethod:plotBias:widthMethod                            4     0.048     0.012     2.3658 0.0506157 .   
E:posMethod:plotBias:widthMethod                            6     0.006     0.001     0.2147 0.9722984     
subsamp:posMethod:plotBias:widthMethod                      2     0.080     0.040     7.9606 0.0003522 *** 
A:C:D:meanWidth                                             4     0.221     0.055    10.9595 7.385e-09 *** 
A:C:E:meanWidth                                             6     0.020     0.003     0.6740 0.6707517     
A:D:E:meanWidth                                             6     0.509     0.085    16.8670 < 2.2e-16 *** 
C:D:E:meanWidth                                            12     0.142     0.012     2.3580 0.0050701 **  
A:C:subsamp:meanWidth                                       2 8.621e-05 4.311e-05     0.0086 0.9914729     
A:D:subsamp:meanWidth                                       2     0.122     0.061    12.1590 5.354e-06 *** 
C:D:subsamp:meanWidth                                       4     0.022     0.006     1.1130 0.3483626     
A:E:subsamp:meanWidth                                       3     0.070     0.023     4.6478 0.0030015 **  
C:E:subsamp:meanWidth                                       6     0.013     0.002     0.4185 0.8671712     
D:E:subsamp:meanWidth                                       6     0.203     0.034     6.7362 3.957e-07 *** 
A:C:posMethod:meanWidth                                     4     0.013     0.003     0.6698 0.6129146     
A:D:posMethod:meanWidth                                     4     0.065     0.016     3.2106 0.0121251 *   
C:D:posMethod:meanWidth                                     8     0.010     0.001     0.2530 0.9802545     
A:E:posMethod:meanWidth                                     6     0.058     0.010     1.9094 0.0754260 .   
C:E:posMethod:meanWidth                                    12     0.003 2.776e-04     0.0552 0.9999986     
D:E:posMethod:meanWidth                                    12     0.079     0.007     1.3129 0.2030315     
A:subsamp:posMethod:meanWidth                               2     0.005     0.003     0.5050 0.6035548     
C:subsamp:posMethod:meanWidth                               4     0.003     0.001     0.1251 0.9734612     
D:subsamp:posMethod:meanWidth                               4     0.058     0.015     2.9012 0.0206156 *   
E:subsamp:posMethod:meanWidth                               6     0.016     0.003     0.5385 0.7793095     
A:C:plotBias:meanWidth                                      2     0.002     0.001     0.1897 0.8272498     
A:D:plotBias:meanWidth                                      2 1.921e-04 9.605e-05     0.0191 0.9811005     
C:D:plotBias:meanWidth                                      4     0.009     0.002     0.4717 0.7565613     
A:E:plotBias:meanWidth                                      3     0.014     0.005     0.9419 0.4193244     
C:E:plotBias:meanWidth                                      6     0.002 2.637e-04     0.0524 0.9994242     
D:E:plotBias:meanWidth                                      6     0.041     0.007     1.3541 0.2292929     
A:subsamp:plotBias:meanWidth                                1     0.001     0.001     0.1689 0.6811366     
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C:subsamp:plotBias:meanWidth                                2 7.588e-05 3.794e-05     0.0075 0.9924911     
D:subsamp:plotBias:meanWidth                                2     0.014     0.007     1.3953 0.2478311     
E:subsamp:plotBias:meanWidth                                3     0.009     0.003     0.6122 0.6070338     
A:posMethod:plotBias:meanWidth                              2     0.007     0.003     0.6657 0.5139442     
C:posMethod:plotBias:meanWidth                              4 8.776e-05 2.194e-05     0.0044 0.9999622     
D:posMethod:plotBias:meanWidth                              4     0.022     0.006     1.1173 0.3462936     
E:posMethod:plotBias:meanWidth                              6     0.010     0.002     0.3374 0.9173939     
subsamp:posMethod:plotBias:meanWidth                        2     0.056     0.028     5.5676 0.0038368 **  
A:C:widthMethod:meanWidth                                   2     0.023     0.011     2.2580 0.1046333     
A:D:widthMethod:meanWidth                                   2     0.004     0.002     0.4302 0.6504060     
C:D:widthMethod:meanWidth                                   4     0.021     0.005     1.0593 0.3749497     
A:E:widthMethod:meanWidth                                   3     0.011     0.004     0.6964 0.5541257     
C:E:widthMethod:meanWidth                                   6     0.001 1.187e-04     0.0236 0.9999440     
D:E:widthMethod:meanWidth                                   6     0.025     0.004     0.8376 0.5405598     
A:subsamp:widthMethod:meanWidth                             1     0.026     0.026     5.0930 0.0240541 *   
C:subsamp:widthMethod:meanWidth                             2     0.008     0.004     0.7528 0.4710978     
D:subsamp:widthMethod:meanWidth                             2     0.044     0.022     4.3731 0.0126470 *   
E:subsamp:widthMethod:meanWidth                             3     0.005     0.002     0.2985 0.8264869     
A:posMethod:widthMethod:meanWidth                           2     0.012     0.006     1.1642 0.3122325     
C:posMethod:widthMethod:meanWidth                           4     0.012     0.003     0.5983 0.6638716     
D:posMethod:widthMethod:meanWidth                           4     0.015     0.004     0.7602 0.5510883     
E:posMethod:widthMethod:meanWidth                           6     0.018     0.003     0.5909 0.7379393     
subsamp:posMethod:widthMethod:meanWidth                     2     0.004     0.002     0.4421 0.6427354     
A:plotBias:widthMethod:meanWidth                            1 4.511e-04 4.511e-04     0.0896 0.7646737     
C:plotBias:widthMethod:meanWidth                            2     0.001     0.001     0.1134 0.8927852     
D:plotBias:widthMethod:meanWidth                            2     0.001     0.001     0.1348 0.8738773     
E:plotBias:widthMethod:meanWidth                            3     0.002     0.001     0.1497 0.9299383     
subsamp:plotBias:widthMethod:meanWidth                      1     0.027     0.027     5.4176 0.0199636 *   
posMethod:plotBias:widthMethod:meanWidth                    2     0.052     0.026     5.1357 0.0059054 **  
A:C:D:E:subsamp                                            12     0.012     0.001     0.2065 0.9982375     
A:C:D:E:posMethod                                          24     0.004 1.556e-04     0.0309 1.0000000     
A:C:D:subsamp:posMethod                                     8     0.001 1.415e-04     0.0281 0.9999939     
A:C:E:subsamp:posMethod                                    12     0.001 1.142e-04     0.0227 1.0000000     
A:D:E:subsamp:posMethod                                    12     0.006 4.909e-04     0.0975 0.9999660     
C:D:E:subsamp:posMethod                                    24     0.001 2.301e-05     0.0046 1.0000000     
A:C:D:E:plotBias                                           12     0.001 6.355e-05     0.0126 1.0000000     
A:C:D:subsamp:plotBias                                      4     0.001 2.636e-04     0.0524 0.9948820     
A:C:E:subsamp:plotBias                                      6     0.001 1.536e-04     0.0305 0.9998806     
A:D:E:subsamp:plotBias                                      6 4.519e-04 7.532e-05     0.0150 0.9999854     
C:D:E:subsamp:plotBias                                     12 2.348e-04 1.956e-05     0.0039 1.0000000     
A:C:D:posMethod:plotBias                                    8     0.003 3.276e-04     0.0651 0.9998442     
A:C:E:posMethod:plotBias                                   12     0.001 1.156e-04     0.0230 1.0000000     
A:D:E:posMethod:plotBias                                   12     0.016     0.001     0.2576 0.9948530     
C:D:E:posMethod:plotBias                                   24     0.001 5.561e-05     0.0110 1.0000000     
A:C:subsamp:posMethod:plotBias                              4     0.010     0.003     0.5082 0.7297417     
A:D:subsamp:posMethod:plotBias                              4     0.003     0.001     0.1503 0.9629332     
C:D:subsamp:posMethod:plotBias                              8 2.799e-04 3.498e-05     0.0069 1.0000000     
A:E:subsamp:posMethod:plotBias                              6     0.001 1.233e-04     0.0245 0.9999373     
C:E:subsamp:posMethod:plotBias                             12 1.454e-04 1.212e-05     0.0024 1.0000000     
D:E:subsamp:posMethod:plotBias                             12     0.003 2.682e-04     0.0533 0.9999989     
A:C:D:E:widthMethod                                        12     0.011     0.001     0.1779 0.9991677     
A:C:D:subsamp:widthMethod                                   4     0.007     0.002     0.3339 0.8553134     
A:C:E:subsamp:widthMethod                                   6     0.002 3.391e-04     0.0674 0.9988157     
A:D:E:subsamp:widthMethod                                   6     0.004     0.001     0.1324 0.9922213     
C:D:E:subsamp:widthMethod                                  12     0.003 2.764e-04     0.0549 0.9999987     
A:C:D:posMethod:widthMethod                                 8     0.004     0.001     0.1038 0.9991069     
A:C:E:posMethod:widthMethod                                12     0.001 6.549e-05     0.0130 1.0000000     
A:D:E:posMethod:widthMethod                                12     0.014     0.001     0.2350 0.9966814     
C:D:E:posMethod:widthMethod                                24     0.001 4.034e-05     0.0080 1.0000000     
A:C:subsamp:posMethod:widthMethod                           4     0.008     0.002     0.4185 0.7953996     
A:D:subsamp:posMethod:widthMethod                           4     0.003     0.001     0.1274 0.9725461     
C:D:subsamp:posMethod:widthMethod                           8     0.002 2.653e-04     0.0527 0.9999303     
A:E:subsamp:posMethod:widthMethod                           6     0.002 2.636e-04     0.0524 0.9994248     
C:E:subsamp:posMethod:widthMethod                          12 4.495e-04 3.746e-05     0.0074 1.0000000     
D:E:subsamp:posMethod:widthMethod                          12     0.008     0.001     0.1362 0.9997930     
A:C:D:plotBias:widthMethod                                  4     0.002 4.703e-04     0.0934 0.9845650     
A:C:E:plotBias:widthMethod                                  6 4.574e-04 7.624e-05     0.0151 0.9999849     
A:D:E:plotBias:widthMethod                                  6     0.001 1.861e-04     0.0370 0.9997905     
C:D:E:plotBias:widthMethod                                 12 4.621e-04 3.851e-05     0.0077 1.0000000     
A:C:subsamp:plotBias:widthMethod                            2     0.006     0.003     0.6190 0.5385206     
A:D:subsamp:plotBias:widthMethod                            2 4.048e-04 2.024e-04     0.0402 0.9605902     
C:D:subsamp:plotBias:widthMethod                            4 4.714e-04 1.178e-04     0.0234 0.9989372     
A:E:subsamp:plotBias:widthMethod                            3     0.002     0.001     0.1494 0.9300842     
C:E:subsamp:plotBias:widthMethod                            6 3.015e-04 5.025e-05     0.0100 0.9999956     
D:E:subsamp:plotBias:widthMethod                            6     0.004     0.001     0.1452 0.9900290     
A:C:posMethod:plotBias:widthMethod                          4     0.001 1.672e-04     0.0332 0.9978883     
A:D:posMethod:plotBias:widthMethod                          4     0.012     0.003     0.5977 0.6642745     
C:D:posMethod:plotBias:widthMethod                          8     0.002 2.066e-04     0.0410 0.9999734     
A:E:posMethod:plotBias:widthMethod                          6 4.294e-04 7.157e-05     0.0142 0.9999875     
C:E:posMethod:plotBias:widthMethod                         12 1.464e-04 1.220e-05     0.0024 1.0000000     
D:E:posMethod:plotBias:widthMethod                         12     0.003 2.521e-04     0.0501 0.9999992     
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A:subsamp:posMethod:plotBias:widthMethod                    2 2.701e-04 1.350e-04     0.0268 0.9735278     
C:subsamp:posMethod:plotBias:widthMethod                    4 1.469e-04 3.673e-05     0.0073 0.9998945     
D:subsamp:posMethod:plotBias:widthMethod                    4     0.007     0.002     0.3682 0.8314565     
E:subsamp:posMethod:plotBias:widthMethod                    6     0.001 1.492e-04     0.0296 0.9998902     
A:C:D:E:meanWidth                                          12     0.081     0.007     1.3458 0.1848091     
A:C:D:subsamp:meanWidth                                     4     0.006     0.002     0.3163 0.8672515     
A:C:E:subsamp:meanWidth                                     6     0.005     0.001     0.1693 0.9849985     
A:D:E:subsamp:meanWidth                                     6     0.106     0.018     3.5018 0.0018459 **  
C:D:E:subsamp:meanWidth                                    12     0.006 4.681e-04     0.0930 0.9999739     
A:C:D:posMethod:meanWidth                                   8     0.004     0.001     0.1029 0.9991352     
A:C:E:posMethod:meanWidth                                  12     0.004 3.020e-04     0.0600 0.9999978     
A:D:E:posMethod:meanWidth                                  12     0.084     0.007     1.3886 0.1630227     
C:D:E:posMethod:meanWidth                                  24     0.003 1.066e-04     0.0212 1.0000000     
A:C:subsamp:posMethod:meanWidth                             4     0.002     0.001     0.1166 0.9766683     
A:D:subsamp:posMethod:meanWidth                             4     0.001 1.600e-04     0.0318 0.9980631     
C:D:subsamp:posMethod:meanWidth                             8     0.003 4.268e-04     0.0848 0.9995783     
A:E:subsamp:posMethod:meanWidth                             6     0.004     0.001     0.1237 0.9935374     
C:E:subsamp:posMethod:meanWidth                            12     0.001 1.100e-04     0.0219 1.0000000     
D:E:subsamp:posMethod:meanWidth                            12     0.017     0.001     0.2814 0.9922377     
A:C:D:plotBias:meanWidth                                    4     0.001 2.789e-04     0.0554 0.9942933     
A:C:E:plotBias:meanWidth                                    6     0.001 1.648e-04     0.0327 0.9998531     
A:D:E:plotBias:meanWidth                                    6     0.014     0.002     0.4629 0.8361613     
C:D:E:plotBias:meanWidth                                   12     0.001 5.799e-05     0.0115 1.0000000     
A:C:subsamp:plotBias:meanWidth                              2     0.004     0.002     0.3958 0.6731775     
A:D:subsamp:plotBias:meanWidth                              2     0.004     0.002     0.4303 0.6503435     
C:D:subsamp:plotBias:meanWidth                              4     0.001 2.835e-04     0.0563 0.9941098     
A:E:subsamp:plotBias:meanWidth                              3     0.001 3.665e-04     0.0728 0.9745611     
C:E:subsamp:plotBias:meanWidth                              6 4.064e-04 6.773e-05     0.0135 0.9999894     
D:E:subsamp:plotBias:meanWidth                              6     0.004     0.001     0.1335 0.9920381     
A:C:posMethod:plotBias:meanWidth                            4     0.004     0.001     0.2192 0.9278490     
A:D:posMethod:plotBias:meanWidth                            4     0.035     0.009     1.7486 0.1363195     
C:D:posMethod:plotBias:meanWidth                            8     0.002 2.022e-04     0.0402 0.9999755     
A:E:posMethod:plotBias:meanWidth                            6     0.004     0.001     0.1168 0.9944675     
C:E:posMethod:plotBias:meanWidth                           12 4.567e-04 3.806e-05     0.0076 1.0000000     
D:E:posMethod:plotBias:meanWidth                           12     0.006 4.814e-04     0.0956 0.9999695     
A:subsamp:posMethod:plotBias:meanWidth                      2     0.003     0.001     0.2630 0.7687609     
C:subsamp:posMethod:plotBias:meanWidth                      4     0.001 2.748e-04     0.0546 0.9944561     
D:subsamp:posMethod:plotBias:meanWidth                      4     0.005     0.001     0.2462 0.9121041     
E:subsamp:posMethod:plotBias:meanWidth                      6     0.003 4.271e-04     0.0848 0.9977245     
A:C:D:widthMethod:meanWidth                                 4     0.016     0.004     0.8081 0.5197411     
A:C:E:widthMethod:meanWidth                                 6     0.005     0.001     0.1550 0.9881293     
A:D:E:widthMethod:meanWidth                                 6     0.021     0.003     0.6951 0.6536426     
C:D:E:widthMethod:meanWidth                                12     0.002 1.838e-04     0.0365 0.9999999     
A:C:subsamp:widthMethod:meanWidth                           2     0.005     0.002     0.4821 0.6174937     
A:D:subsamp:widthMethod:meanWidth                           2     0.025     0.012     2.4355 0.0876308 .   
C:D:subsamp:widthMethod:meanWidth                           4     0.005     0.001     0.2604 0.9034089     
A:E:subsamp:widthMethod:meanWidth                           3     0.002     0.001     0.1349 0.9392405     
C:E:subsamp:widthMethod:meanWidth                           6     0.001 1.865e-04     0.0371 0.9997891     
D:E:subsamp:widthMethod:meanWidth                           6     0.004     0.001     0.1407 0.9908375     
A:C:posMethod:widthMethod:meanWidth                         4     0.001 2.129e-04     0.0423 0.9966168     
A:D:posMethod:widthMethod:meanWidth                         4     0.015     0.004     0.7553 0.5543359     
C:D:posMethod:widthMethod:meanWidth                         8     0.004     0.001     0.1100 0.9988975     
A:E:posMethod:widthMethod:meanWidth                         6     0.003     0.001     0.1097 0.9953495     
C:E:posMethod:widthMethod:meanWidth                        12     0.002 1.275e-04     0.0253 1.0000000     
D:E:posMethod:widthMethod:meanWidth                        12     0.010     0.001     0.1675 0.9993881     
A:subsamp:posMethod:widthMethod:meanWidth                   2 4.785e-04 2.393e-04     0.0475 0.9535817     
C:subsamp:posMethod:widthMethod:meanWidth                   4     0.002 4.353e-04     0.0865 0.9866591     
D:subsamp:posMethod:widthMethod:meanWidth                   4     0.017     0.004     0.8211 0.5114491     
E:subsamp:posMethod:widthMethod:meanWidth                   6     0.002 2.830e-04     0.0562 0.9992943     
A:C:plotBias:widthMethod:meanWidth                          2     0.003     0.001     0.2878 0.7499265     
A:D:plotBias:widthMethod:meanWidth                          2     0.004     0.002     0.4377 0.6455481     
C:D:plotBias:widthMethod:meanWidth                          4     0.002 4.280e-04     0.0850 0.9870775     
A:E:plotBias:widthMethod:meanWidth                          3     0.001 2.300e-04     0.0457 0.9870465     
C:E:plotBias:widthMethod:meanWidth                          6 5.151e-05 8.585e-06     0.0017 1.0000000     
D:E:plotBias:widthMethod:meanWidth                          6     0.002 3.670e-04     0.0729 0.9985170     
A:subsamp:plotBias:widthMethod:meanWidth                    1     0.003     0.003     0.6522 0.4193556     
C:subsamp:plotBias:widthMethod:meanWidth                    2 4.605e-04 2.303e-04     0.0457 0.9552859     
D:subsamp:plotBias:widthMethod:meanWidth                    2     0.008     0.004     0.8038 0.4476815     
E:subsamp:plotBias:widthMethod:meanWidth                    3     0.004     0.001     0.2838 0.8371514     
A:posMethod:plotBias:widthMethod:meanWidth                  2     0.001     0.001     0.1176 0.8890435     
C:posMethod:plotBias:widthMethod:meanWidth                  4     0.001 1.621e-04     0.0322 0.9980133     
D:posMethod:plotBias:widthMethod:meanWidth                  4     0.012     0.003     0.5744 0.6812259     
E:posMethod:plotBias:widthMethod:meanWidth                  6     0.001 2.272e-04     0.0451 0.9996257     
subsamp:posMethod:plotBias:widthMethod:meanWidth            2     0.040     0.020     3.9440 0.0194143 *   
A:C:D:E:subsamp:posMethod                                  24     0.001 3.086e-05     0.0061 1.0000000     
A:C:D:E:subsamp:plotBias                                   12 9.762e-05 8.135e-06     0.0016 1.0000000     
A:C:D:E:posMethod:plotBias                                 24     0.001 2.087e-05     0.0041 1.0000000     
A:C:D:subsamp:posMethod:plotBias                            8 4.295e-04 5.369e-05     0.0107 0.9999999     
A:C:E:subsamp:posMethod:plotBias                           12     0.001 7.476e-05     0.0149 1.0000000     
A:D:E:subsamp:posMethod:plotBias                           12     0.003 2.727e-04     0.0542 0.9999988     
C:D:E:subsamp:posMethod:plotBias                           24 1.694e-04 7.059e-06     0.0014 1.0000000     
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A:C:D:E:subsamp:widthMethod                                12     0.002 2.046e-04     0.0407 0.9999998     
A:C:D:E:posMethod:widthMethod                              24     0.002 9.947e-05     0.0198 1.0000000     
A:C:D:subsamp:posMethod:widthMethod                         8     0.001 7.755e-05     0.0154 0.9999994     
A:C:E:subsamp:posMethod:widthMethod                        12 2.658e-04 2.215e-05     0.0044 1.0000000     
A:D:E:subsamp:posMethod:widthMethod                        12     0.001 1.115e-04     0.0222 1.0000000     
C:D:E:subsamp:posMethod:widthMethod                        24 4.005e-04 1.669e-05     0.0033 1.0000000     
A:C:D:E:plotBias:widthMethod                               12 2.533e-04 2.111e-05     0.0042 1.0000000     
A:C:D:subsamp:plotBias:widthMethod                          4 3.205e-04 8.012e-05     0.0159 0.9995038     
A:C:E:subsamp:plotBias:widthMethod                          6     0.001 1.089e-04     0.0216 0.9999566     
A:D:E:subsamp:plotBias:widthMethod                          6     0.001 1.764e-04     0.0351 0.9998207     
C:D:E:subsamp:plotBias:widthMethod                         12 9.898e-05 8.248e-06     0.0016 1.0000000     
A:C:D:posMethod:plotBias:widthMethod                        8     0.001 7.129e-05     0.0142 0.9999996     
A:C:E:posMethod:plotBias:widthMethod                       12     0.001 7.558e-05     0.0150 1.0000000     
A:D:E:posMethod:plotBias:widthMethod                       12     0.002 2.044e-04     0.0406 0.9999998     
C:D:E:posMethod:plotBias:widthMethod                       24     0.001 2.094e-05     0.0042 1.0000000     
A:C:subsamp:posMethod:plotBias:widthMethod                  4     0.001 3.192e-04     0.0634 0.9926030     
A:D:subsamp:posMethod:plotBias:widthMethod                  4 4.846e-04 1.212e-04     0.0241 0.9988777     
C:D:subsamp:posMethod:plotBias:widthMethod                  8 4.131e-04 5.164e-05     0.0103 0.9999999     
A:E:subsamp:posMethod:plotBias:widthMethod                  6 3.350e-04 5.583e-05     0.0111 0.9999940     
C:E:subsamp:posMethod:plotBias:widthMethod                 12 6.014e-05 5.012e-06     0.0010 1.0000000     
D:E:subsamp:posMethod:plotBias:widthMethod                 12     0.001 5.786e-05     0.0115 1.0000000     
A:C:D:E:subsamp:meanWidth                                  12     0.001 1.112e-04     0.0221 1.0000000     
A:C:D:E:posMethod:meanWidth                                24     0.002 8.000e-05     0.0159 1.0000000     
A:C:D:subsamp:posMethod:meanWidth                           8 3.140e-04 3.925e-05     0.0078 1.0000000     
A:C:E:subsamp:posMethod:meanWidth                          12     0.001 4.979e-05     0.0099 1.0000000     
A:D:E:subsamp:posMethod:meanWidth                          12     0.005 3.816e-04     0.0758 0.9999916     
C:D:E:subsamp:posMethod:meanWidth                          24 4.258e-04 1.774e-05     0.0035 1.0000000     
A:C:D:E:plotBias:meanWidth                                 12 3.282e-04 2.735e-05     0.0054 1.0000000     
A:C:D:subsamp:plotBias:meanWidth                            4 4.340e-04 1.085e-04     0.0216 0.9990967     
A:C:E:subsamp:plotBias:meanWidth                            6 4.721e-04 7.868e-05     0.0156 0.9999834     
A:D:E:subsamp:plotBias:meanWidth                            6 2.395e-04 3.992e-05     0.0079 0.9999978     
C:D:E:subsamp:plotBias:meanWidth                           12 8.629e-05 7.191e-06     0.0014 1.0000000     
A:C:D:posMethod:plotBias:meanWidth                          8     0.001 1.810e-04     0.0360 0.9999841     
A:C:E:posMethod:plotBias:meanWidth                         12     0.001 4.973e-05     0.0099 1.0000000     
A:D:E:posMethod:plotBias:meanWidth                         12     0.006 4.685e-04     0.0931 0.9999737     
C:D:E:posMethod:plotBias:meanWidth                         24     0.001 2.117e-05     0.0042 1.0000000     
A:C:subsamp:posMethod:plotBias:meanWidth                    4     0.004     0.001     0.1979 0.9395682     
A:D:subsamp:posMethod:plotBias:meanWidth                    4 3.077e-04 7.693e-05     0.0153 0.9995421     
C:D:subsamp:posMethod:plotBias:meanWidth                    8 7.007e-05 8.758e-06     0.0017 1.0000000     
A:E:subsamp:posMethod:plotBias:meanWidth                    6 4.906e-04 8.176e-05     0.0162 0.9999814     
C:E:subsamp:posMethod:plotBias:meanWidth                   12 4.695e-05 3.913e-06     0.0008 1.0000000     
D:E:subsamp:posMethod:plotBias:meanWidth                   12     0.002 1.844e-04     0.0366 0.9999999     
A:C:D:E:widthMethod:meanWidth                              12     0.001 1.135e-04     0.0225 1.0000000     
A:C:D:subsamp:widthMethod:meanWidth                         4     0.002     0.001     0.1229 0.9743110     
A:C:E:subsamp:widthMethod:meanWidth                         6     0.001 9.122e-05     0.0181 0.9999743     
A:D:E:subsamp:widthMethod:meanWidth                         6     0.002 2.609e-04     0.0518 0.9994415     
C:D:E:subsamp:widthMethod:meanWidth                        12 4.693e-04 3.911e-05     0.0078 1.0000000     
A:C:D:posMethod:widthMethod:meanWidth                       8 3.807e-04 4.759e-05     0.0095 0.9999999     
A:C:E:posMethod:widthMethod:meanWidth                      12 2.196e-04 1.830e-05     0.0036 1.0000000     
A:D:E:posMethod:widthMethod:meanWidth                      12     0.005 4.556e-04     0.0905 0.9999775     
C:D:E:posMethod:widthMethod:meanWidth                      24     0.001 2.128e-05     0.0042 1.0000000     
A:C:subsamp:posMethod:widthMethod:meanWidth                 4 1.116e-04 2.789e-05     0.0055 0.9999390     
A:D:subsamp:posMethod:widthMethod:meanWidth                 4     0.001 1.986e-04     0.0395 0.9970455     
C:D:subsamp:posMethod:widthMethod:meanWidth                 8     0.004 4.939e-04     0.0981 0.9992751     
A:E:subsamp:posMethod:widthMethod:meanWidth                 6     0.001 1.423e-04     0.0283 0.9999045     
C:E:subsamp:posMethod:widthMethod:meanWidth                12 2.492e-04 2.077e-05     0.0041 1.0000000     
D:E:subsamp:posMethod:widthMethod:meanWidth                12     0.003 2.508e-04     0.0498 0.9999992     
A:C:D:plotBias:widthMethod:meanWidth                        4 4.214e-04 1.053e-04     0.0209 0.9991480     
A:C:E:plotBias:widthMethod:meanWidth                        6 7.333e-05 1.222e-05     0.0024 0.9999999     
A:D:E:plotBias:widthMethod:meanWidth                        6     0.001 1.065e-04     0.0212 0.9999593     
C:D:E:plotBias:widthMethod:meanWidth                       12 2.571e-04 2.142e-05     0.0043 1.0000000     
A:C:subsamp:plotBias:widthMethod:meanWidth                  2     0.003     0.002     0.3179 0.7276799     
A:D:subsamp:plotBias:widthMethod:meanWidth                  2 4.549e-05 2.274e-05     0.0045 0.9954920     
C:D:subsamp:plotBias:widthMethod:meanWidth                  4 5.613e-05 1.403e-05     0.0028 0.9999845     
A:E:subsamp:plotBias:widthMethod:meanWidth                  3     0.001 4.696e-04     0.0933 0.9637604     
C:E:subsamp:plotBias:widthMethod:meanWidth                  6 2.421e-04 4.036e-05     0.0080 0.9999977     
D:E:subsamp:plotBias:widthMethod:meanWidth                  6     0.003 4.876e-04     0.0969 0.9967024     
A:C:posMethod:plotBias:widthMethod:meanWidth                4     0.004     0.001     0.1830 0.9473329     
A:D:posMethod:plotBias:widthMethod:meanWidth                4     0.004     0.001     0.1852 0.9462120     
C:D:posMethod:plotBias:widthMethod:meanWidth                8     0.001 1.655e-04     0.0329 0.9999887     
A:E:posMethod:plotBias:widthMethod:meanWidth                6 3.841e-04 6.402e-05     0.0127 0.9999910     
C:E:posMethod:plotBias:widthMethod:meanWidth               12 5.438e-05 4.532e-06     0.0009 1.0000000     
D:E:posMethod:plotBias:widthMethod:meanWidth               12     0.002 1.723e-04     0.0342 0.9999999     
A:subsamp:posMethod:plotBias:widthMethod:meanWidth          2 1.370e-04 6.849e-05     0.0136 0.9864868     
C:subsamp:posMethod:plotBias:widthMethod:meanWidth          4 1.817e-04 4.543e-05     0.0090 0.9998390     
D:subsamp:posMethod:plotBias:widthMethod:meanWidth          4     0.007     0.002     0.3691 0.8308123     
E:subsamp:posMethod:plotBias:widthMethod:meanWidth          6     0.001 1.299e-04     0.0258 0.9999269     
A:C:D:E:subsamp:posMethod:plotBias                         24 2.750e-04 1.146e-05     0.0023 1.0000000     
A:C:D:E:subsamp:posMethod:widthMethod                      24 1.353e-04 5.638e-06     0.0011 1.0000000     
A:C:D:E:subsamp:plotBias:widthMethod                       12 6.521e-05 5.434e-06     0.0011 1.0000000     
A:C:D:E:posMethod:plotBias:widthMethod                     24 2.631e-04 1.096e-05     0.0022 1.0000000     



108 

A:C:D:subsamp:posMethod:plotBias:widthMethod                8 8.878e-05 1.110e-05     0.0022 1.0000000     
A:C:E:subsamp:posMethod:plotBias:widthMethod               12 1.707e-04 1.422e-05     0.0028 1.0000000     
A:D:E:subsamp:posMethod:plotBias:widthMethod               12     0.001 6.584e-05     0.0131 1.0000000     
C:D:E:subsamp:posMethod:plotBias:widthMethod               24 7.097e-05 2.957e-06     0.0006 1.0000000     
A:C:D:E:subsamp:posMethod:meanWidth                        24 3.646e-04 1.519e-05     0.0030 1.0000000     
A:C:D:E:subsamp:plotBias:meanWidth                         12 5.786e-05 4.821e-06     0.0010 1.0000000     
A:C:D:E:posMethod:plotBias:meanWidth                       24 1.836e-04 7.649e-06     0.0015 1.0000000     
A:C:D:subsamp:posMethod:plotBias:meanWidth                  8 1.850e-04 2.312e-05     0.0046 1.0000000     
A:C:E:subsamp:posMethod:plotBias:meanWidth                 12 2.379e-04 1.983e-05     0.0039 1.0000000     
A:D:E:subsamp:posMethod:plotBias:meanWidth                 12     0.002 1.483e-04     0.0295 1.0000000     
C:D:E:subsamp:posMethod:plotBias:meanWidth                 24 4.996e-05 2.082e-06     0.0004 1.0000000     
A:C:D:E:subsamp:widthMethod:meanWidth                      12 2.601e-04 2.167e-05     0.0043 1.0000000     
A:C:D:E:posMethod:widthMethod:meanWidth                    24     0.001 2.944e-05     0.0058 1.0000000     
A:C:D:subsamp:posMethod:widthMethod:meanWidth               8 2.414e-04 3.018e-05     0.0060 1.0000000     
A:C:E:subsamp:posMethod:widthMethod:meanWidth              12 1.987e-04 1.656e-05     0.0033 1.0000000     
A:D:E:subsamp:posMethod:widthMethod:meanWidth              12     0.001 5.942e-05     0.0118 1.0000000     
C:D:E:subsamp:posMethod:widthMethod:meanWidth              24 1.707e-04 7.114e-06     0.0014 1.0000000     
A:C:D:E:plotBias:widthMethod:meanWidth                     12 1.120e-04 9.330e-06     0.0019 1.0000000     
A:C:D:subsamp:plotBias:widthMethod:meanWidth                4 1.670e-05 4.175e-06     0.0008 0.9999986     
A:C:E:subsamp:plotBias:widthMethod:meanWidth                6 3.804e-04 6.341e-05     0.0126 0.9999912     
A:D:E:subsamp:plotBias:widthMethod:meanWidth                6     0.001 1.263e-04     0.0251 0.9999328     
C:D:E:subsamp:plotBias:widthMethod:meanWidth               12 7.156e-05 5.964e-06     0.0012 1.0000000     
A:C:D:posMethod:plotBias:widthMethod:meanWidth              8 3.842e-04 4.802e-05     0.0095 0.9999999     
A:C:E:posMethod:plotBias:widthMethod:meanWidth             12 2.718e-04 2.265e-05     0.0045 1.0000000     
A:D:E:posMethod:plotBias:widthMethod:meanWidth             12     0.001 9.499e-05     0.0189 1.0000000     
C:D:E:posMethod:plotBias:widthMethod:meanWidth             24 1.223e-04 5.094e-06     0.0010 1.0000000     
A:C:subsamp:posMethod:plotBias:widthMethod:meanWidth        4 3.232e-04 8.080e-05     0.0161 0.9994954     
A:D:subsamp:posMethod:plotBias:widthMethod:meanWidth        4 3.179e-04 7.947e-05     0.0158 0.9995117     
C:D:subsamp:posMethod:plotBias:widthMethod:meanWidth        8 1.189e-04 1.486e-05     0.0030 1.0000000     
A:E:subsamp:posMethod:plotBias:widthMethod:meanWidth        6 2.381e-04 3.969e-05     0.0079 0.9999978     
C:E:subsamp:posMethod:plotBias:widthMethod:meanWidth       12 7.386e-05 6.155e-06     0.0012 1.0000000     
D:E:subsamp:posMethod:plotBias:widthMethod:meanWidth       12     0.001 4.180e-05     0.0083 1.0000000     
A:C:D:E:subsamp:posMethod:plotBias:widthMethod             24 1.043e-04 4.346e-06     0.0009 1.0000000     
A:C:D:E:subsamp:posMethod:plotBias:meanWidth               24 7.781e-05 3.242e-06     0.0006 1.0000000     
A:C:D:E:subsamp:posMethod:widthMethod:meanWidth            24 1.815e-04 7.563e-06     0.0015 1.0000000     
A:C:D:E:subsamp:plotBias:widthMethod:meanWidth             12 4.297e-05 3.581e-06     0.0007 1.0000000     
A:C:D:E:posMethod:plotBias:widthMethod:meanWidth           24 9.419e-05 3.924e-06     0.0008 1.0000000     
A:C:D:subsamp:posMethod:plotBias:widthMethod:meanWidth      8     0.001 6.318e-05     0.0126 0.9999997     
A:C:E:subsamp:posMethod:plotBias:widthMethod:meanWidth     12 2.472e-05 2.060e-06     0.0004 1.0000000     
A:D:E:subsamp:posMethod:plotBias:widthMethod:meanWidth     12 4.225e-04 3.521e-05     0.0070 1.0000000     
C:D:E:subsamp:posMethod:plotBias:widthMethod:meanWidth     24 6.154e-05 2.564e-06     0.0005 1.0000000     
A:C:D:E:subsamp:posMethod:plotBias:widthMethod:meanWidth   24 8.101e-05 3.375e-06     0.0007 1.0000000     
Residuals                                                6912    34.793     0.005                          
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 



 

A P P E N D I X  B :  C V S  C O M M U N I T Y - M O D E L  M A T C H I N G  

Model A 

comm scientific.name nplots rich 
CEGL003570  9 77.4 
CEGL003573  5 85.8 

CEGL003577 

Pinus palustris - Pinus taeda / Quercus geminata - Quercus 
hemisphaerica - Osmanthus americanus var. americanus / 
Aristida stricta Woodland 5 30.2 

CEGL003578  18 65.6 
CEGL003583  5 43.4 

CEGL003584 
Pinus palustris / Quercus laevis / Aristida stricta / Cladonia 
spp. Woodland 11 21.6 

CEGL003586  20 35.2 

CEGL003589 
Pinus palustris / Quercus laevis - Quercus geminata / 
Vaccinium tenellum / Aristida stricta Woodland 7 23.9 

CEGL003590  29 28.4 
CEGL003593  12 79.7 
CEGL003648  36 42.3 
CEGL003660  7 103.0 

CEGL003664 
Pinus palustris - Pinus taeda - Pinus serotina / Quercus 
marilandica / (Quercus pumila) / Aristida stricta Woodland 7 93.4 

CEGL003768 
Pinus rigida - Quercus alba / Sporobolus heterolepis - 
Andropogon gerardii Woodland 5 62.2 

CEGL003881  3 29.7 
CEGL003895 Alnus serrulata - Xanthorhiza simplicissima Shrubland 5 145.2 

CEGL004039 
Uniola paniculata - Schizachyrium littorale - Panicum 
amarum Herbaceous Vegetation 5 11.4 

CEGL004073  3 49.7 
CEGL004083  20 80.1 
CEGL004084  17 87.4 
CEGL004085  4 101.3 
CEGL004418  3 69.3 
CEGL004485  14 82.8 
CEGL004487  4 101.8 
CEGL004488  8 99.0 
CEGL004489  4 60.5 
CEGL004490  4 55.0 
CEGL004492  3 51.7 
CEGL004495  3 115.0 
CEGL004499  4 93.3 
CEGL004501  15 86.3 

CEGL004678 
Quercus laurifolia - Quercus michauxii - Liquidambar 
styraciflua / Carpinus caroliniana Forest 7 60.7 

CEGL004691 Platanus occidentalis - Liriodendron tulipifera - Betula 7 100.1 
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(alleghaniensis, lenta) / Alnus serrulata - Leucothoe 
fontanesiana Forest 

CEGL004733 
Taxodium distichum - Nyssa biflora / Fraxinus caroliniana / 
Lyonia lucida Forest 4 33.3 

CEGL004735 
Quercus lyrata - Quercus laurifolia - Taxodium distichum / 
Saururus cernuus Forest 5 27.0 

CEGL004737 
Quercus laurifolia - Quercus lyrata / Carpinus caroliniana - 
Persea palustris / Vaccinium elliottii Forest 4 54.5 

CEGL004788 

Quercus hemisphaerica - Magnolia grandiflora - Carya 
(glabra, pallida) / Vaccinium arboreum / Chasmanthium 
sessiliflorum Forest 3 82.3 

CEGL004985 
Pinus rigida - (Pinus pungens) / Rhododendron catawbiense - 
Kalmia latifolia / Galax urceolata Woodland 3 29.7 

CEGL005033  4 60.3 

CEGL006130 
Fagus grandifolia / Carex pensylvanica - Carex brunnescens 
Forest 5 48.4 

CEGL006603  5 65.8 
CEGL007022  3 32.7 

CEGL007032 
Quercus virginiana - (Pinus elliottii var. elliottii, Sabal 
palmetto) / Persea borbonia - Callicarpa americana Forest 9 31.3 

CEGL007097 
Pinus pungens - Pinus rigida - (Quercus prinus) / Kalmia 
latifolia - Vaccinium pallidum Woodland 19 35.8 

CEGL007119 
Pinus virginiana - Pinus (rigida, echinata) - (Quercus prinus) 
/ Vaccinium pallidum Forest 7 36.4 

CEGL007285 

Betula alleghaniensis - Fagus grandifolia - Aesculus flava / 
Viburnum lantanoides / Eurybia chlorolepis - Dryopteris 
intermedia Forest 21 51.0 

CEGL007291 
Liriodendron tulipifera - Tilia americana var. heterophylla - 
(Aesculus flava) / Actaea racemosa Forest 13 48.0 

CEGL007295 Quercus alba / Kalmia latifolia Forest 7 46.1 

CEGL007298 
Quercus rubra / Carex pensylvanica - Ageratina altissima 
var. roanensis Forest 17 46.2 

CEGL007300 

Quercus rubra / (Vaccinium simulatum, Rhododendron 
calendulaceum) / (Dennstaedtia punctilobula, Thelypteris 
noveboracensis) Forest 49 59.1 

CEGL007316  5 102.8 
CEGL007340  4 60.0 

CEGL007356 
Quercus pagoda - Quercus phellos - Quercus lyrata - Quercus 
michauxii / Chasmanthium latifolium Forest 6 70.2 

CEGL007432 
Taxodium distichum - Nyssa aquatica - Nyssa biflora / 
Fraxinus caroliniana / Itea virginica Forest 4 29.5 

CEGL007540  9 49.8 

CEGL007692 

Quercus alba - Quercus rubra - Quercus prinus / Collinsonia 
canadensis - Podophyllum peltatum - Amphicarpaea 
bracteata Forest 10 69.6 

CEGL007738  12 93.2 
CEGL007844  8 42.4 

CEGL007849 

Quercus pagoda - Quercus michauxii - Quercus alba / 
Arundinaria gigantea ssp. tecta - Sabal minor / 
Chasmanthium laxum Forest 3 70.3 

CEGL007850  4 45.5 
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CEGL007861 
Betula alleghaniensis - (Tsuga canadensis) / Rhododendron 
maximum / Leucothoe fontanesiana Forest 9 30.1 

CEGL008522  5 65.4 

Model B 

comm scientific.name nplots rich 
CEGL003591  10 35.5 
CEGL003599  8 41.4 
CEGL004496  27 91.5 
CEGL004502  6 83.5 

CEGL004740 
Celtis laevigata - Fraxinus pennsylvanica - Acer negundo - 
(Juglans nigra) / Asimina triloba / Carex grayi Forest 9 46.1 

CEGL004973 

Aesculus flava - Betula alleghaniensis - Acer saccharum / Acer 
spicatum / Caulophyllum thalictroides - Laportea canadensis 
Forest 29 41.9 

CEGL006192 
Quercus rubra - Acer rubrum / Calycanthus floridus - Pyrularia 
pubera / Thelypteris noveboracensis Forest 32 62.5 

CEGL006286 
Quercus prinus - Quercus rubra / Rhododendron maximum / 
Galax urceolata Forest 12 33.3 

CEGL007027  11 36.3 
CEGL007102  7 43.4 

CEGL007136 
Tsuga canadensis / Rhododendron maximum - (Clethra 
acuminata, Leucothoe fontanesiana) Forest 11 21.6 

CEGL007230 
Quercus alba - Quercus (rubra, prinus) / Rhododendron 
calendulaceum - Kalmia latifolia - (Gaylussacia ursina) Forest 46 55.1 

CEGL007267 
Quercus prinus - (Quercus rubra) - Carya spp. / Oxydendrum 
arboreum - Cornus florida Forest 32 56.1 

CEGL007299 
Quercus rubra / (Kalmia latifolia, Rhododendron maximum) / 
Galax urceolata Forest 27 35.8 

CEGL007519  19 40.8 

CEGL007693 

Tsuga canadensis - Halesia tetraptera - (Fagus grandifolia, 
Magnolia fraseri) / Rhododendron maximum / Dryopteris 
intermedia Forest 29 43.3 

CEGL007806 
Fraxinus pennsylvanica - Ulmus americana / Carpinus 
caroliniana / Boehmeria cylindrica Forest 46 38.7 

CEGL007842  13 65.9 
CEGL008558  9 38.2 

Model C 

comm scientific.name nplots rich 

CEGL007470 
Quercus falcata - Tilia americana var. caroliniana - Magnolia 
grandiflora / Ilex vomitoria Forest 5 57 
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Model D 

comm scientific.name nplots rich 

CEGL007695 

Aesculus flava - Acer saccharum - (Fraxinus americana, Tilia 
americana var. heterophylla) / Hydrophyllum canadense - 
Solidago flexicaulis Forest 45 72.2 

No Model 

comm scientific.name nplots rich 
CEGL003569  25 68.5 
CEGL003595  11 99.3 
CEGL003649  10 47.7 
CEGL003658  7 63.3 
CEGL003659  4 82.3 
CEGL003661  17 58.2 

CEGL004484 
Nyssa biflora - (Nyssa aquatica, Taxodium distichum) Tidal 
Forest 6 39.3 

CEGL004486  19 52.2 

CEGL006124 
Betula alleghaniensis / Ribes glandulosum / Polypodium 
appalachianum Forest 5 49.6 

CEGL006137  5 46.8 

CEGL006271 
Quercus (prinus, coccinea) / Kalmia latifolia / (Galax 
urceolata, Gaultheria procumbens) Forest 41 36.0 

CEGL007286  8 44.6 

CEGL007431 
Taxodium distichum - Nyssa aquatica / Fraxinus caroliniana 
Forest 22 27.2 

CEGL007511  8 57.5 

CEGL007543 
Liriodendron tulipifera - Betula lenta - Tsuga canadensis / 
Rhododendron maximum Forest 42 49.4 

CEGL007691 
Quercus alba - Quercus coccinea - Quercus falcata / Kalmia 
latifolia - Vaccinium pallidum Forest 3 3 

CEGL007710 

Liriodendron tulipifera - Aesculus flava - (Fraxinus americana, 
Tilia americana) / Actaea racemosa - Laportea canadensis 
Forest 35 66.4 

CEGL007711 

Tilia americana var. heterophylla - Fraxinus americana - 
(Ulmus rubra) / Sanguinaria canadensis - (Aquilegia 
canadensis, Asplenium rhizophyllum) Forest 9 42.3 

CEGL007719 
Taxodium distichum - Fraxinus pennsylvanica - Quercus 
laurifolia / Acer rubrum / Saururus cernuus Forest 8 34.5 

CEGL007730 

Platanus occidentalis - Celtis laevigata - Fraxinus 
pennsylvanica / Lindera benzoin - Ilex decidua / Carex 
retroflexa Forest 10 45.7 

CEGL007813 
Juniperus virginiana var. silicicola - (Quercus virginiana, Sabal 
palmetto) Forest 5 31.8 

CEGL00none  4 46.5 
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A P P E N D I X  C :  U N I V E R S A L  C O D E  

nicheutils.r  

### Common functions useful for research programming 
## Simple data structure manipulation 
 
count <- function(x, use.na=FALSE) { 
    ## counts the unique elements in a vector (levels if a factor)     
    u <- if(is.factor(x)) levels(x) else unique(x) 
    cnt <- sapply(u, function(i) sum(x==i, na.rm=TRUE)) 
    return(if(use.na) c(sum(is.na(x)), cnt) else cnt) 
} 
 
most.common <- function(x) { x[which.max(sapply(unique(x), function(i) sum(x==i)))] } 
 
norm <- function(x) { (x - min(x, na.rm=TRUE)) / max(x - min(x, na.rm=TRUE), na.rm=TRU 
→E) } 
 
unwhich <- function(x, l=max(x)) { 1:l %in% x }    ## turns a vector of element number 
→s into logical index 
 
replacematch <- function(x, patterns, no.match=NULL, ...) { 
    # replaces each (string) element of x with the first pattern it matches 
    # no.match = what to replace non-matched elements with (any string or NA); or not  
→to (NULL) 
    y <- as.character(x) 
    for(i in patterns) y[grep(pattern=i, x=y, ...)] <- i 
    if(!is.null(no.match)) y[is.na(match(y, patterns))] <- no.match 
    return(y) 
} 
 
 
## Graphing 
 
linetypes <- c('solid', '12', '63', '4212', '921212', '3236') 
linewidths <- c(1, 3, 1.5, 1.8, 1.5, 2.3) 
contrast.colors <- function(n=10) { 
    val <- switch(as.character(n), '1' = .65, '3' = c(.45, .85, .65), c(.45, .65)) 
    hsv(h=seq(0, 1, l=n+1 )[1:n], v=val, s=1) 
} 
 
black.theme <- list( 
    box.rectangle=list(col="black"), 
    box.umbrella=list(col="black"), 
    strip.background=list(col="white"), 
    plot.symbol=list(col="black", pch=3, cex=.5) 
) 

simulate.r  

### Code for generating species niches 
 
rand.factorize <- function(x, groups=2) { 
    ## aproximate random facotrization of any number, including primes 
     
    d <- runif(groups) 
    d <- groups * (d / sum(d))  
    (x^(1/groups))^d 
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} 
 
beta.abn <- function(gradientMax=100, alpha=1, gamma=1, peakPos=50, maxAbn=50, width=5 
→0) { 
    ## beta abundance generation using Minchin's additional parameters 
    ## where peakPos is Minchin's m, maxAbn is his A0, and width is r 
 
    gradient <- 1:gradientMax 
    b <- alpha / (alpha + gamma) 
    d <- b^alpha * (1 - b)^gamma 
 
    abundances <- rep(0, length(gradient)) 
    is.present <- (peakPos - width * b) <= gradient & (peakPos + width * (1 - b)) >= g 
→radient 
    x <- gradient[ is.present ] 
    abundances[ is.present ] <- (maxAbn / d) * ( ((x - peakPos) / width) + b)^alpha *  
→(1 - (((x - peakPos) / width) + b))^gamma 
 
    return(abundances) 
}     
 
sim.populate <- function(sites, draws, compet=1) { 
    ## chooses species for a plot based on local pool 
    ## sites is a matrix containing species (row) suitedness to each plot (col) 
 
    if(length(draws)==1) draws <- rep(draws, dim(sites)[2]) 
    competition <- if(length(compet)==2) sample(compet[1]:compet[2], dim(sites)[2], TR 
→UE) 
        else rep(compet, dim(sites)[2]) 
     
    plots <- sapply( 1:dim(sites)[2], function(p) { 
        pl <- sites[,p] 
        if( sum(pl > 0) < 2) { 
            if( sum(pl > 0) < 1) return( rep(0, length(pl)) ) 
            else return( as.numeric(pl > 0)) 
        } 
        drawchance <- if(is.na(compet[1])) rep(1, length(pl))  
            else replace(pl^competition[p], pl == 0, 0) 
        observations <- sample( 1:length(pl), draws[p], replace=TRUE, prob=drawchance) 
        counts <- sapply( 1:length(pl), function(sp) sum(observations == sp)) 
        relative <- counts / draws[p] 
        return(relative) 
    }) 
    dimnames(plots) <- dimnames(sites) 
    return(plots) 
} 
 
make.plots <- function(niches, simPlots=500, plotBias=FALSE, quality=c(100,100), compe 
→t=1) { 
    ## create plots along resource gradients and populate based on niche curves 
    nRes <- length(niches) 
    gradientMax <- dim(niches[[1]])[2] 
    nSpp <- dim(niches[[1]])[1] 
 
    res <- t(matrix( if(!plotBias) {                                # amount of each r 
→esource for the sites 
        round( runif(nRes * simPlots, 1, gradientMax)) 
    } else { 
        sample(1:gradientMax, nRes * simPlots, prob=(1 / exp(seq(2, 0 , l=gradientMax) 
→) ), replace=TRUE ) 
    }, ncol=nRes, dimnames=list(paste("plot", 1:simPlots, sep=""), paste("r", 1:nRes , 
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→ sep="")) )) 
    res <- res[, order(res[1,]), drop=FALSE]    # order according to first resource va 
→lue 
         
    abundances <- sapply(1:simPlots, function(p) sapply(1:nSpp, function(sp) {         
→# theoretical (maximum) abundance for each species at each site 
        prod( sapply(nRes, function(r) niches[[r]][sp, res[r, p]] )) ^(1 / nRes) 
    })) 
    dimnames(abundances) <- list( paste("sp", 1:nSpp, sep="") , paste("plot", 1:simPlo 
→ts, sep="") ) 
 
    qualityGrad <- seq(quality[[1]], quality[[2]], length=dim(niches[[1]])[2])         
→# site quality at each position on the gradient 
    siteQuals <- colMeans( matrix( qualityGrad[ res ], ncol=dim(res)[2]) ) 
     
    plots <- sim.populate(abundances, siteQuals, compet) 
    return(list(resources=res, plots=plots)) 
} 
 
sim.niches <- function(resources=1, shape="normal", widthMethod="gamfun", meanWidth=25 
→00, 
  limWidth=TRUE, posMethod="uniform", numSpp=50, gradientMax=5000, tradeoff=FALSE, ... 
→ ) { 
    ## species curves for n niche-space dimensions. 
    ## ... for make.plots 
     
    gradient <- 1:gradientMax 
    grandWidth <- pmax(round(switch(widthMethod, 
        uniform = runif(numSpp, min=10, max=meanWidth * 2 ), 
        gamfun = gradientMax * rgamma(numSpp, shape=.5, rate=1, scale=(2 * meanWidth / 
→ gradientMax)), 
        constant = meanWidth 
    )), 10) 
     
    widths <- matrix(round(gradientMax * t(sapply( 
        grandWidth / gradientMax, rand.factorize, groups=resources ) )), ncol=resource 
→s) 
     
    spp.values <- lapply(1:resources, function(r) { 
        peakPos <- switch(posMethod, 
            biased = sample(gradient, numSpp, prob=(1 / exp(seq(2, 0, l=gradientMax))  
→), replace=TRUE ), 
            uniform = round(runif(numSpp, 1, gradientMax)), 
            equal = round(seq(1, gradientMax, length.out=numSpp)) 
        ) 
        width <- widths[,r] 
        maxAbn <- if(tradeoff) 1 / width else rlnorm(numSpp, 2, 1) 
 
        alpha <- switch(shape, 
            random = runif(numSpp, .1, 4), 
            normal = rep(1.99, numSpp), 
            longtail = rep(20, numSpp), 
            skewhalf = replace( rep(1.99, numSpp), sample(1:numSpp, numSpp / 2), .25), 
→    # the skew method used in Fridley, where half are skewed left and half right 
            skewrand = sample(c(.25, 1.99), numSpp, replace=TRUE)            # actual  
→random left/right skew 
        ) 
        gamma <- switch(shape, 
            random = runif(numSpp, .1, 4), 
            normal = rep(1.99, numSpp), 
            longtail = rep(20, numSpp), 
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            skewhalf = replace( rep(1.99, numSpp), alpha==1.99, .25),  # mirror alpha 
            skewrand = replace( rep(1.99, numSpp), alpha==1.99, .25) 
        ) 
        return( data.frame(maxAbn, peakPos, width, alpha, gamma) ) 
    }) 
 
    niches <- lapply(spp.values, function(r) { 
        t( sapply( 1:numSpp, function(i) { 
            do.call("beta.abn", c(gradientMax, r[i,])) 
        })) 
    }) 
     
    width <- if(limWidth) { 
        sapply(niches, function(r) rowSums(r > 0) ) / gradientMax 
    } else { sapply(spp.values, function(r) r$width ) / gradientMax } 
    height <- apply( sapply(spp.values, function(r) r$maxAbn ), 1, prod) 
    position <- apply( sapply(spp.values, function(r) r$peakPos ), 1, mean) 
 
    traits <- list(width=width, height=height, position=position) 
    plotdat <- make.plots(niches, ...) 
     
    compiled <- list(spp.traits=traits, niches=niches, plot.res=plotdat$resources, plo 
→ts=plotdat$plots) 
    return(compiled) 
} 

params.r  

### parameters for running tests and simulations 
 
replicates <- 10 
 
choices <- list( 
    A = c( "none",    "portion" ), 
    C = c( 0, .2, .4), 
    D = c( "n", "maxv", "cocombo" ), 
    E = c( "n", "sub", "div", "codiv" ) 
) 
 
## used by test.metrics and test.one.metric for calling sim.niches 
simArgs <- list( 
    resources = 1, 
    gradientMax = 5000, 
    numSpp = 50, 
    shape = "normal", 
    widthMethod = "gamfun", 
    meanWidth = 2500, 
    limWidth = FALSE, 
    tradeoff = FALSE, 
    posMethod = "uniform",            # bias in position of species optima 
    simPlots = 500,                 
    quality = c(20,20),            # site draws bias 
    plotBias = TRUE,            # bias in plot resource 
    compet = 1                    # exponent controlling spp draws by height 
) 
 
## used by test.metrics and test.one.metric for resampling of a simulated dataset 
metricArgs <- list( 
    samples = 1,                # how many times a set of possible sites should be res 
→ampled 
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    plotsPerSample = 500,        # sample size 
    minOccur = 1                # values will not be calculated for species rarer than 
→ this 
) 

A P P E N D I X  D :  C H A P T E R  1  C O D E  

scenes.csv  

scene    replicates    posMethod    plotBias    widthMethod    meanWidth 
1    100    equal    FALSE    uniform    500 
2    100    uniform    FALSE    uniform    500 
3    100    biased    FALSE    uniform    500 
4    100    equal    TRUE    uniform    500 
5    100    uniform    TRUE    uniform    500 
6    100    biased    TRUE    uniform    500 
7    100    equal    FALSE    gamfun    500 
8    100    uniform    FALSE    gamfun    500 
9    100    biased    FALSE    gamfun    500 
10    100    equal    TRUE    gamfun    500 
11    100    uniform    TRUE    gamfun    500 
12    100    biased    TRUE    gamfun    500 
13    100    equal    FALSE    uniform    1000 
14    100    uniform    FALSE    uniform    1000 
15    100    biased    FALSE    uniform    1000 
16    100    equal    TRUE    uniform    1000 
17    100    uniform    TRUE    uniform    1000 
18    100    biased    TRUE    uniform    1000 
19    100    equal    FALSE    gamfun    1000 
20    100    uniform    FALSE    gamfun    1000 
21    100    biased    FALSE    gamfun    1000 
22    100    equal    TRUE    gamfun    1000 
23    100    uniform    TRUE    gamfun    1000 
24    100    biased    TRUE    gamfun    1000 
25    100    equal    FALSE    uniform    2500 
26    100    uniform    FALSE    uniform    2500 
27    100    biased    FALSE    uniform    2500 
28    100    equal    TRUE    uniform    2500 
29    100    uniform    TRUE    uniform    2500 
30    100    biased    TRUE    uniform    2500 
31    100    equal    FALSE    gamfun    2500 
32    100    uniform    FALSE    gamfun    2500 
33    100    biased    FALSE    gamfun    2500 
34    100    equal    TRUE    gamfun    2500 
35    100    uniform    TRUE    gamfun    2500 
36    100    biased    TRUE    gamfun    2500 
37    100    equal    FALSE    uniform    5000 
38    100    uniform    FALSE    uniform    5000 
39    100    biased    FALSE    uniform    5000 
40    100    equal    TRUE    uniform    5000 
41    100    uniform    TRUE    uniform    5000 
42    100    biased    TRUE    uniform    5000 
43    100    equal    FALSE    gamfun    5000 
44    100    uniform    FALSE    gamfun    5000 
45    100    biased    FALSE    gamfun    5000 
46    100    equal    TRUE    gamfun    5000 
47    100    uniform    TRUE    gamfun    5000 
48    100    biased    TRUE    gamfun    5000 
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49    100    equal    FALSE    uniform    250 
50    100    uniform    FALSE    uniform    250 
51    100    biased    FALSE    uniform    250 
52    100    equal    TRUE    uniform    250 
53    100    uniform    TRUE    uniform    250 
54    100    biased    TRUE    uniform    250 
55    100    equal    FALSE    gamfun    250 
56    100    uniform    FALSE    gamfun    250 
57    100    biased    FALSE    gamfun    250 
58    100    equal    TRUE    gamfun    250 
59    100    uniform    TRUE    gamfun    250 
60    100    biased    TRUE    gamfun    250 
61    100    equal    FALSE    uniform    10000 
62    100    uniform    FALSE    uniform    10000 
63    100    biased    FALSE    uniform    10000 
64    100    equal    TRUE    uniform    10000 
65    100    uniform    TRUE    uniform    10000 
66    100    biased    TRUE    uniform    10000 
67    100    equal    FALSE    gamfun    10000 
68    100    uniform    FALSE    gamfun    10000 
69    100    biased    FALSE    gamfun    10000 
70    100    equal    TRUE    gamfun    10000 
71    100    uniform    TRUE    gamfun    10000 
72    100    biased    TRUE    gamfun    10000 
 

metrics.r  

 
### Code for calculating niche width by various methods. 
 
### choice A 
 
normalize <- function(x, method="portion") { 
    ## transform abundance table to make each sp's values relative to its own range or 
→ mean 
     if( method !="range" && method != "portion") stop("Invalid relativization method: 
→ ", method) 
 
    rel <- switch(method, 
        portion = { 
            scaled <- x / rowSums(x) 
            scaled[is.na(scaled)] <- 0 
            apply(scaled, 2, function(p) rowSums(replace(scaled, scaled > p, 0)) ) 
        }, 
        range = t( apply( x, 1, function(i) range = i / max(i) )) 
    ) 
    return(rel) 
} 
 
 
### choice C 
 
subset.plots <- function(x, method="quantile", value=.25) { 
    subx <- switch( method, 
        threshold = x >= value,                                # all occurences equall 
→ing some cut-off 
        quantile = { 
            n.wanted <- ceiling(colSums(x > 0) * (1 - value)) 
            t(1 + t(dim(x)[1] - apply(x, 2, rank)) <= n.wanted) 
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        }, 
        top = apply(x, 2, function(p) { 
            is.top <- (length(p) + 1) - rank(p, ties.method="max") <= value 
            is.top[ p == 0] <- FALSE 
            return(is.top) 
        }) 
    ) 
    newx <- replace(x, !subx, 0) 
    return(newx) 
} 
 
### choice D 
 
calc.co.occur <- function(x, abundMethod="n", richAdj="n") { 
    ## calculate co-occurrences separately for each spp (not combinations) 
    ## takes plots for seeing co-occurrers, plots for focal spp, subcalculation method 
→ (above), E flag 
 
    values <- sapply( 1:dim(x)[1], function(f) { 
        present <- x[f,] > 0         
        if(sum(present) == 0) return(NA) 
        fplots <- x[ , present, drop=FALSE] 
        fplots[f,] <- 0 
        frich <- colSums(fplots > 0) 
 
        fvalues <- switch(abundMethod, 
            "1" = 1,    # test method 
            "maxv" = apply(fplots, 1, max), 
            "cocombo" = rowSums(unique(fplots > 0, MARGIN=2)), 
            "combo" = { 
                # expected <- sum(choose(mean(frich), 1:(mean(frich) - 1))) 
                dim(unique(fplots > 0, MARGIN=2))[2] # / expected 
            }, 
            rowSums(fplots) > 0 
        ) 
        fadj <- sum(switch(richAdj, 
            "sub" = sum(fvalues) - mean(frich), 
            "div" = sum(fvalues) / (mean(frich) + 1), 
            "codiv" = { 
                co.rich <- rowSums( t(frich * t(fplots > 0)) ) / rowSums(fplots > 0) 
                sum(fvalues / co.rich, na.rm=TRUE) 
            }, 
            sum(fvalues) 
        ), na.rm=TRUE) 
 
        return(fadj) 
    }) 
    names(values) <- dimnames(x)[[1]] 
    return(values) 
} 
 
 
 
### Usable calculation methods 
 
calc.multi.niche <- function(plots, choicelist=choices) { 
    ## run all combinations of metric choices on an abundance table 
 
    if( length( dim(plots)) != 2 ) stop( "input must be sp-plot abundance table") 
#    if( min(plots) < 0 | max(plots) > 1 ) stop( "abundances must be relative") 
#    if( dim(plots)[2] < 2) stop("some methods require multiple plots") 
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    results <- lapply( choicelist$A, function(A) { 
        A.result <- if( A=="none" ) plots else normalize(plots, A) 
        lapply( choicelist$C, function(C) { 
            C.result <- if(C == 0) A.result else subset.plots( A.result, "quantile", C 
→ ) 
            lapply( choicelist$D, function(D) { 
                lapply( choicelist$E, function(E) { 
                    DE.result <- calc.co.occur(x=C.result, abundMethod=D, richAdj=E) 
                    metric <- c(A, C, D, E) 
                    collect <- list( metric, DE.result ) 
                    return(collect) 
                }) 
            }) 
        }) 
    }) 
    while( is.list(results[[1]])) results <- unlist(results, recursive=FALSE)        # 
→ unlist, except last level 
    results.metrics <- matrix(unlist( results[ c(TRUE, FALSE) ]), ncol=4, byrow=TRUE) 
    results.values <- matrix(unlist( results[ c(FALSE, TRUE) ]), ncol=dim(plots)[1], b 
→yrow=TRUE) 
 
    results.df <- data.frame(results.metrics, results.values) 
    names(results.df) <- c( "A", "C", "D", "E", dimnames(plots)[[1]] ) 
    return(results.df) 
} 
 
resample.multi.niche <- function(plots, choicelist=choices, samples=100, plotsPerSampl 
→e=50, minOccur=20, allRep=FALSE) { 
    ## wrapper for calc.multi.niche with resampling 
 
    if(plotsPerSample > dim(plots)[2]) stop(paste("Not enough plots (", dim(plots)[2], 
→ ") to meet sample size (", plotsPerSample, ").", sep="")) 
    if(plotsPerSample < 2) stop("Some methods require multiple plots.") 
 
    results <- lapply( 1:samples, function(i) { 
        samp <- plots[, sample(1:dim(plots)[2], plotsPerSample)] 
        r <- calc.multi.niche( plots=samp, choicelist=choicelist ) 
        common <- as.data.frame(append(list(A='com', C='com', D='com', E='com'), rowSu 
→ms(samp > 0) / plotsPerSample))  
        return(rbind(r, common)) 
    }) 
    if(allRep) return(results) 
     
    method.labels <- results[[1]][, 1:4] 
    results.ave <- data.frame( lapply( 5:(4 + dim(plots)[1]), function(sp) { 
        rowMeans( matrix( sapply(results, function(r) r[,sp] ), ncol=samples), na.rm=T 
→RUE ) 
    })) 
    names(results.ave) <- row.names(plots) 
    collected <- cbind(method.labels, results.ave) 
    return(collected) 
} 

testmetrics.r  

merge.df <- function(x) {                     
    ## utility: takes a list of similar data frames and combines them 
    if(! is.list(x)) stop("input is not a list") 
    merged <- data.frame(lapply( names(x[[1]]), function(cl) c( sapply(x, function(l)  
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→l[,cl] )))) 
    names(merged) <- names(x[[1]]) 
    return(merged) 
} 
 
test.metrics <- function(replicates=100, simArgs, metricArgs, choicelist=choices, retu 
→rnSim=FALSE) { 
    ## tests all measures against simulated data  
 
    results <- lapply(1:replicates, function(r) { 
        message( paste("Doing replicate",r)) 
     
        true.widths <- NA 
        while( sum(!is.na(true.widths)) < 3) {        # if sim unusable, redo 
            sim <- do.call(sim.niches, simArgs) 
            plots <- sim$plots 
            too.rare <- rowSums(plots > 0) < metricArgs$minOccur 
            true.widths <- replace( apply(sim$spp.traits$width, 1, prod), too.rare, NA 
→) 
            if(sum(!is.na(true.widths)) < 3) message("(Retrying)") 
        } 
         
        multi.niche.args <- append( list(plots=plots, choicelist=choicelist), metricAr 
→gs) 
        metrics <- cbind(r, do.call(resample.multi.niche, multi.niche.args)) 
 
        act.spp <- sum(rowSums(plots) > 0) 
        richness <- mean(colSums(sim$plots > 0)) 
        overlap <- mean(colSums(sim$niches[[1]] > 0)) 
        saturation <- mean(colSums(sim$niches[[1]][, sim$plot.res] > 0) / colSums(sim$ 
→plots > 0), na.rm=TRUE) 
        sim.prop <- list(richness, overlap, saturation, act.spp) 
        names(sim.prop) <- c("richness","overlap","saturation","act.spp") 
 
        result <- list(widths=true.widths, sim.prop=sim.prop, metrics=metrics, args=li 
→st(simArgs, metricArgs)) 
        if(returnSim) result$sim <- sim 
        return(result) 
    }) 
 
    names(results) <- paste("r", 1:replicates, sep="") 
    return(results)     
} 

runall  

# submit LSF jobs for all metric-testing scenarios 
# base parameters specified in params.r and variations in scenes.csv 
 
MIN_SCENNUM=1 
MAX_SCENNUM=72 
 
for i in $(seq $MIN_SCENNUM $MAX_SCENNUM) 
do 
    bsub -q week R CMD BATCH --no-save --args -scennum=$i -- run.r run.Rout 
done 
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run.r  

### Simulate species, calculate niche breadths with all metrics, and compare to simula 
→ted values. 
### Source from within R or run from command line: "R CMD BATCH run.r". 
 
## setup 
 
#!/usr/bin/Rscript  
 
source("params.r") 
source("metrics.r") 
source("simulate.r") 
source("testmetrics.r") 
 
## set parameters 
 
# get scenario number from command line option 
 
scennum <- as.numeric(sapply(commandArgs(), strsplit, split="=")$"-scennum"[2]) 
if(is.null(scennum)) scennum <- 1 
 
# load scenes file and change listed parameters 
scenes <- read.table("scenes.csv", header=TRUE, sep="\t", stringsAsFactors=FALSE) 
if(! scennum > dim(scenes)[1]) { 
    replicates <- scenes[scennum, 2] 
    for(r in 3:dim(scenes)[2]) { 
        newval <- scenes[scennum, r] 
        # newval <- eval(parse(text=as.character(scenes[scennum, r ]))) 
        eval(substitute(simArgs$a <- newval, list(a = names(scenes)[r]))) 
    } 
} 
 
# set random seed 
set.seed(scennum + as.numeric(substr(format(Sys.time(), "%X"), 7, 8)) / 100) 
 
## execution 
 
results <- test.metrics(replicates, simArgs=simArgs, metricArgs=metricArgs, choicelist 
→=choices) 
 
## output 
 
corename <- paste("t", scennum, sep="") 
i <- 1 
while( file.exists( paste(corename, "_", i, ".Rdat", sep=""))) i <- i + 1 
save( results, file=paste(corename, "_", i, ".Rdat", sep="")) 

import.r  

### Script to import data files and run basic analyses. 
### Set home directory to data dir. 
 
source("analysis.r") 
 
## Read in the files 
 
filenames <- list.files(".", pattern="t*Rdat") 
scennums <- as.numeric(substr(sapply(filenames, function(i) { strsplit(i, "_", )[[1]][ 
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→1] }),2,4)) 
file.n <- rle(scennums)$lengths 
testdat <- lapply(1:length(file.n), function(i) { 
    import.results( paste("t", unique(scennums)[i], sep=""), n=file.n[i] )  
}) 
names(testdat) <- paste("t", unique(scennums), sep="") 
 
## Calculate metric performance 
 
perf <- lapply(testdat, FUN=lapply, calc.perform) 
rm(testdat) 
 
save(perf, file="intermediate.Rdat") 
 
 
## Set parameters in output, clean up, and compress 
 
scenes <- read.table("scenes.csv", header=TRUE, sep="\t", stringsAsFactors=FALSE) 
 
# add scenario labels to rows 
for(i in 1:length(perf)) { for(j in 1:length(perf[[1]])) { 
    perf[[i]][[j]]$scennum <- as.numeric(substr(names(perf)[i], 2, 10)) 
}} 
 
perf <- as.data.frame(merge.df(lapply(perf, merge.df))) 
perf <- cbind(perf, scenes[perf$scennum, -(1:2)])        # add scenario parameters by  
→label 
 
perf$R2[ is.na(perf$R2) ] <- 0 
perf$rank <- get.rank(perf) 
 
perfmetric <- agg.by.metric(perf) 
 
save.image(file="perf.Rwork") 

analysis.r  

library(doBy) 
source("../nicheutils.r") 
 
### Raw data input 
 
import.results <- function(scenName, n=1) { 
    ## reads results (multiple replicates) from files and combines into one df 
 
    allresults <- list() 
    for(i in 1:n) { 
        load(paste(scenName, "_", i, ".Rdat", sep="")) 
        allresults <- append(allresults, results) 
    } 
    for(i in 1:length(allresults)) allresults[[i]]$metrics$r <- i 
    names(allresults) <- paste("r", 1:length(allresults), sep="") 
 
    return(allresults) 
} 
 
calc.saturation <- function(x) { 
    mean(colSums(x$niches[[1]][, x$plot.res] > 0) / colSums(x$plots > 0), na.rm=TRUE) 
} 
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## Calculation of metric performance 
 
calc.perform <- function(x) { 
    n.metrics <- dim(x$metrics)[1] 
    par.spp <- length(x$widths) 
    actual <- na.omit(x$widths) 
    if( length(actual)==0) return( rep(NA, n.metrics) ) 
    values <- x$metrics[, substr(names(x$metrics), 1, 2) == "sp"][, !is.na(x$widths),  
→drop=FALSE] 
 
    R2 <- apply(values, 1, function(m) { 
        if( sum(!is.na(m)) == 0) return(0) 
        summary( lm(actual ~ m))$r.squared  
    }) 
 
    act.width <- round(mean(actual), 2) 
    co.occs <- round(rowMeans(values[1,], na.rm=TRUE), 2) 
     
    collected <- data.frame(x$metrics[, substr(names(x$metrics), 1, 2) != "sp"], m=1:n 
→.metrics, R2, 
        act.width, co.occs, lapply(x$sim.prop, rep, times=n.metrics), 
        row.names=1:n.metrics) 
    return(collected) 
} 
 
agg.by.metric <- function(x) { 
    ## aggregate performance data into metric averages per scenario. 
 
    scenvars <- paste(setdiff(names(x), c( 
        "R2", "act.width", "act.spp", "richness", "overlap", "saturation", "rank", "r" 
→, "co.occs" 
    )), collapse=" + ") 
 
    agg <- summaryBy(formula(paste(". ~ ", scenvars)), data=x, FUN=mean, keep.names=TR 
→UE) 
    agg$R2.sd <- summaryBy(formula(paste("R2 ~ ", scenvars)), data=x, FUN=sd)$R2 
    agg$R2.min <- summaryBy(formula(paste("R2 ~ ", scenvars)), data=x, FUN=min)$R2 
    agg$rankmin <- summaryBy(formula(paste("rank ~ ", scenvars)), data=x, FUN=min)$ran 
→k 
    return(agg[,-match("r", names(agg))]) 
} 
 
## add a column to all results df, containing the mean R2 from scenario/replicate 
# unsplit(scenes$mean.R2, list(all$par.width, all$r)) -> all$scenR2 
 
find.mgroups <- function(x, firsts=FALSE) { 
    # returns list vectors, grouping performance data row numbers into replicate group 
→s. 
    r <- 1:dim(x)[1] 
    g <- split(r, list(x$shape, x$par.spp, x$par.width, x$m)  ) <- 1:(dim(r) / 100) 
     
    if(first) return( sapply(unique(g), function(i) which(g==i)[1] ) ) 
    else return(g) 
} 
 
 
 
### Analysis of performance 
 
get.rank <- function(x) { 
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    ## average rank for each metric within scenarios (and replicates) 
    if(is.null(x$r)) x$r <- 1 
 
    ind <- as.list(x[, match( c(names(scenes)[-(1:2)], "r"), names(x))]) 
    ranks <- unlist(by(x$R2, ind, rank, ties.method="max")) 
    by.ids <- unlist(by(1:dim(x)[1], ind, I)) 
    ranks.ord <- ranks[match(1:dim(x)[1], by.ids)] 
     
    return(ranks.ord) 
} 
 
get.rel <- function(x) { 
    ## average rank for each metric within scenarios (and replicates) 
    if(is.null(x$r)) x$r <- 1 
 
    ind <- as.list(x[, match( c(names(scenes)[-(1:2)], "r"), names(x))]) 
    ranks <- unlist(by(x$R2, ind, function(i) {  
        i - mean(i) 
    })) 
    by.ids <- unlist(by(1:dim(x)[1], ind, I)) 
    ranks.ord <- ranks[match(1:dim(x)[1], by.ids)] 
    return(ranks.ord) 
} 
 
find.Adiff <- function(x) { 
    ## finds the difference between A-none and A-portion for the performance df of one 
→ scenario     
    spl <- split(x$R2, x$A) 
    spl[[2]] - spl[[1]] 
} 
 
 
# Get typical plot richness for some scenario: 
# mean(sapply(1:10, function(i) mean(colSums(sim.niches(numSpp=200)$plots > 0 )) )) 
 
make.fake.rich <- function(draws=90) { 
    spp <- seq(20, 200, 10) 
    rich <- sapply( spp, function(i) { 
        length( unique( sample(1:i, draws, TRUE, prob=runif(i)))) 
    }) 
    xa.frame(suited=spp, rich=rich) 
} 
 
 

graphmetrics.r  

 
### Script to process metric results data and graph it 
### Input is compiled perf and perfmetric dataframes from import.r 
## Processing to include subsamp as a virtual option 
 
library(lattice) 
load("perf.Rdat") 
load("perfmetric.Rdat") 
source("../nicheutils.r") 
 
perf$mm <- paste(perf$m, c("n","y")[(perf$subsamp + 1)], sep="") 
perf <- transformBy(R2 ~ posMethod + widthMethod + meanWidth + plotBias + r, 
    data=perf, rank=rank(R2) ) 
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# Detect best metrics 
 
best.mean <- rev( sort(c(by(perfmetric$rank, perfmetric$mm, mean))) )[1] 
best.min <- rev( sort(c(by(perfmetric$rank, perfmetric$mm, min))) )[1] 
 
## Graphing 
 
ranklines <- c(1,seq(0,144,l=13)[-1]) 
 
plot.niches <- function(curves) { 
    ## shows the surves generated by sim.niches 
 
    colors <- rainbow(dim(curves)[1]) 
    plot(curves[1,], xlim=c(0,dim(curves)[2]), ylim=c(0,max(curves)), type="l") 
    for(i in 2:dim(curves)[1]) { 
        lines(curves[i,], col=colors[i]) 
    } 
} 
 
 
# Parameters and affects on all metrics 
 
pdf("width.pdf") 
xyplot( 
    R2 ~ meanWidth/5000, group=widthMethod, data=perfmetric, 
    panel=function(...) { 
        panel.abline(h=seq(0,1,.1), col.line='#dddddd') 
        panel.xyplot(..., col='black', type='a', lty=1:2, lwd=2) 
    }, 
    auto.key=TRUE, ylim=c(-.05,1.05), 
    main="Metric performance and parameters", xlab="mean niche width", ylab=expression 
→(r^2), 
    key=list( 
        lines=list(lty=1:2), col='black', 
        text=list(c("gamma","uniform")) ) 
) 
dev.off() 
 
pdf("bias_position.pdf") 
bwplot( 
    R2 ~ as.factor(plotBias) | factor(posMethod,labels=c("biased","spaced","random")), 
    data=perf, 
    panel=function(...) { 
        panel.abline(h=seq(0,1,.1), col.line='#dddddd') 
        panel.bwplot(..., notch=TRUE, fill=c('#cccccc','#444444','#888888')) 
    }, layout=c(3,1), par.settings=black.theme, 
    scale=list(x=list(labels=c("random","biased"))), 
    main="Site selection and niche position", xlab="site selection", ylab=expression(r 
→^2) 
) 
dev.off() 
 
# Comparison of metric choices 
 
pdf("C_A_D.pdf") 
xyplot( 
    rank ~ C | factor(A, labels=c("unmodified","normalized")), group=as.factor(D), dat 
→a=perfmetric, 
    panel=function(...) { 
        panel.abline(h=ranklines, col.line='#dddddd') 
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        panel.xyplot(..., type='a') 
    }, 
    ylim=c(-7, 151), layout=c(2, 1), scale=list(y=list(at=c(1,48,96,144))), 
    col='black', lty=linetypes[3:1], lwd=c(1, 1.5, 1), par.settings=black.theme, 
    key=list( 
        lines=list(lty=linetypes[3:1], lwd=c(1, 1.5, 1)), 
        text=list(c("combinatoric", "max-value", "count")) ), 
    main="Normalization, subsetting and counting method", xlab="subsetting level" 
) 
dev.off() 
 
pdf("width_dist_D.pdf") 
xyplot( 
    rank ~ meanWidth/5000 | factor(widthMethod, labels=c("gamma distribution","uniform 
→ distribution")), 
    group=D, data=perfmetric, 
    panel=function(...) { 
        panel.abline(h=ranklines, col.line='#dddddd') 
        panel.xyplot(..., type='a') 
    }, 
    layout=c(2,1), ylim=c(-7, 151), scale=list(y=list(at=c(1,48,96,144))), 
    lwd=c(1, 1.5, 1), lty=linetypes[3:1], col='black', par.settings=black.theme, 
    key=list( 
        lines=list(lty=linetypes[3:1], lwd=c(1,1.5,1)), 
        text=list(c("combinatoric", "max-value","count")) ), 
    main="Niche width and distribution, and counting method", xlab="mean niche width" 
) 
dev.off() 
 
subsampdiff <- subset(perfmetric, subsamp==TRUE)$rank - subset(perfmetric, subsamp==FA 
→LSE)$rank 
pdf("subsamp_bias_A.pdf") 
bwplot( 
    subsampdiff ~ A | factor(plotBias, labels=c("random sampling","biased sampling")), 
    data=subset(perf, subsamp==TRUE), 
    panel=function(...) { 
        panel.abline(h=seq(-72, 72, 12)[-7], col.line='#dddddd') 
        panel.abline(a=0) 
        panel.bwplot(..., fill=c('#888888', '#cccccc'), notch=1) 
    }, 
    scales=list(x=list(labels=c("no","yes")), y=list(at=c(-72, -36, 0, 26, 72) )), 
    layout=c(2,1), auto.key=TRUE, ylim=c(-72, 72), par.settings=black.theme,  
    main="Performance, niche position and plot position", xlab="normalization", ylab=" 
→rank change with subsampling " 
) 
dev.off() 
 
pdf("satur_E.pdf") 
xyplot( 
    rank ~ saturation, group=E, data=perf, 
    panel=function(...) { 
        panel.abline(h=ranklines, col.line='#dddddd') 
        panel.xyplot(..., type='smooth', lty=linetypes[c(2:3,1,4)], col='black', lwd=c 
→(1.5, 1, 1, 1)) 
    }, 
    ylim=c(-7,151), scale=list(y=list(at=c(1,48,96,144))), par.settings=black.theme, 
    key=list( 
        lines=list(lty=linetypes[c(2, 3, 1, 4)], lwd=c(1.5, 1, 1, 1)), 
        text=list(c("co-division","division","none","subtraction")) ), 
    main="Richness correction methods and saturation" 
) 
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dev.off() 
 
 
# Top-performing metrics 
 
pdf("best_width.pdf") 
xyplot( 
    rank + rankmin ~ meanWidth/5000, groups=mm, 
    data=subset(perfmetric, mm %in% c("1n", "2y", "55n")), 
    panel=panel.superpose, 
    panel.groups=function(..., col.line, lwd=1, lty, type, group.number) { 
        panel.abline(h=ranklines, col.line='#dddddd') 
        panel.average(..., col.line='black', type='l', horiz=FALSE, lty=linetypes[grou 
→p.number], 
                      lwd=c(1, 1.5, 1)[group.number], fun=if(panel.number()==1) mean e 
→lse min) 
    }, 
    ylim=c(-7, 151), scale=list(y=list(at=c(1,48,96,144))), par.settings=black.theme, 
    key=list( 
        lines=list(lty=linetypes[1:3], lwd=c(1, 1.5, 1)), 
        text=list(c("1n", "2y", "55n")) ), 
    main="Selected metric comparison", xlab="mean niche width", ylab="rank", 
    strip=strip.custom(factor.levels=c("mean rank","minimum rank"))  
) 
dev.off() 
 
pdf("best.pdf") 
bwplot( 
    R2 ~ mm, data=subset(perf, mm %in% c('1n','2y','55n')), 
    panel=function(...) { 
        panel.abline(h=seq(0,1,.1), col.line="#dddddd") 
        panel.bwplot(..., notch=TRUE, fill='grey') 
    }, 
    par.settings=black.theme, box.ratio=2, 
    main="performance of selected metrics", xlab="metric", ylab=expression(r^2) 
) 
dev.off() 
 
 
# Graphing CVS species widths 
 
pdf("CVScommon.pdf") 
xyplot( 
    t55n ~ common, data=widths.rel, pch=20, cex=.5, col='black', 
    main="commonness and theta of CVS species", xlab="relative commonness", ylab="rela 
→tive theta (55n)"     
) 
dev.off() 

A P P E N D I X  E :  C H A P T E R  2  C O D E  

spatialSim.r  

 
metric <- list(A="portion", C=0.2, D="maxv", E="div") 
 
makeSpace <- function(side=50, scales=c(10,3,1), compress=F) { 
    ## generates grid with smoothed z-values between 0 and 1 



129 

    ## done for each specified scale, which are output as the z-dim in an array, or co 
→mopressed 
    ## reps and wgts can also be vectors, thus varying with each grain size (in all re 
→sources) 
 
    plots <- array(sapply(scales, function(s) { 
        if(s > .8 * side) warning("Scale is almost as large as area; distortion likely 
→") 
        pl <- GaussRF(x=1:side,y=1:side, model="stable", grid=T, param=c(1, 1, 0, max( 
→s, .00000001), 2)) 
        pl <- (pl - min(pl)) * (1 / max(pl - min(pl))) 
    }), dim=c(side, side, length(scales))) 
    if(compress) plots <- array(apply(plots, c(1, 2), mean), dim=c(side, side, 1)) 
    return(plots) 
} 
 
findBlocks <- function(side, grain) { 
    lblocks <- floor( side / grain) 
    edge <- side - (lblocks * grain) 
    blocks <- c(sapply(1:lblocks, function(i) { 
        rep(c(rep(1:lblocks + lblocks * (i - 1), each=grain), rep(0,edge)), grain) 
    }), rep(0, edge * side)) 
    return(blocks) 
} 
 
spatialSim <- function(draws=1, blockGrain=c(1,2,4,8), totSampSize=Inf, 
    ssSize=50, fixArea=FALSE, nss=100, spaceArgs=list(), simArgs=list()) { 
    ## makes spacial plots and runs theta metric on them at multiple grain sizes 
    ## fixArea varies the number of plots in a subsample to maintain a constant area ( 
→= ssSize, which otherwise is n plots) 
 
    space <- do.call(makeSpace, spaceArgs) 
    resources <- if(spaceArgs$compress) mean(spaceArgs$scales) else spaceArgs$scales 
    nres <- length(resources) 
    simArgs$resources <- nres 
 
    spp <- do.call(sim.niches, simArgs) 
    nspp <- dim(spp$spp.traits$width)[1] 
    widths <- apply(spp$spp.traits$width, 1, prod) 
    position <- spp$spp.traits$position 
     
    suited.res <- sapply(1:nres, function(r) { spp$niches[[r]][, space[,,r] * 4999 + 1 
→]    }) 
    suited <- array(apply(suited.res, 1, prod), dim=c(nspp, length(space[,,1])))       
→              # suitedness using all resources 
    dimnames(suited) <- list(paste("sp", 1:dim(suited)[1], sep=""),    paste("site", 1 
→:dim(suited)[2], sep="")) 
    sites <- sim.populate(suited, rep(draws, dim(suited)[2]))                          
→               # populated grid cells for use in blocks/plots 
 
    results <- merge.df(lapply(blockGrain, function(g) { 
        blocks <- findBlocks(side=sqrt(dim(sites)[2]), grain=g)        # what block is 
→ each site in? 
        nPlots <- if(fixArea) round(totSampSize / g^2) else totSampSize        # plots 
→ in total sample 
        sampled.blocks <- if(max(blocks) <= nPlots) 1:max(blocks) else sample(1:max(bl 
→ocks), nPlots, FALSE) 
        block.plots <- sapply(sampled.blocks, function(b) {                    # what  
→spp. are present in each block? 
            rowMeans(sites[, blocks==b, drop=FALSE]  )  
        }) 
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        blocks.per.ss <- if(fixArea) { max(2, round(ssSize / g^2)) } 
        else { min(max(blocks), ssSize) } 
        nss <- if(blocks.per.ss == max(blocks)) 1 else nss 
 
        theta.raw <- sapply(resample.multi.niche(plots=block.plots, choicelist=metric, 
            plotsPerSample=blocks.per.ss, samples=nss, minOccur=1, allRep=TRUE), 
            unlist)[-(1:4), , drop=FALSE] 
        theta <- rowMeans(theta.raw, na.rm=TRUE) 
        theta.var <- apply(theta.raw, 1, var, na.rm=TRUE) 
         
        rich <- mean(colSums(block.plots > 0)) 
        hetero <- sapply(1:nres, function(r) { 
            rang <- sapply(sampled.blocks, function(b) range(space[,,r][blocks==b] )) 
            mean(rang[2,] - rang[1,]) 
        }) 
        g.results <- data.frame( 
            row.names=1:nspp, 
            grain=g, rich, hetero, resource=do.call(paste, append(list(sep="_"), resou 
→rces)),     
            sp=1:nspp, theta, theta.var, width=c(widths), position 
        ) 
        return(g.results) 
    })) 
    return(results) 
} 

graintest.r  

 
### All steps to analyze grain and theta 
 
## Initialization 
 
rm(list=ls()) 
library(lattice) 
library(RandomFields) 
library(doBy) 
library(reshape) 
source("../nicheutils.r") 
source("spatialSim.r") 
source("grain_analysis.r") 
source("../simulate.r") 
source("../metrics/metrics.r") 
 
rainb2 <- hcl( # dark purple to yellow (more continuous lightness) 
    h=seq(350, 70,l=100), 
    l=seq(0,100,l=100), 
    c=c( seq(0,130,l=50), seq(130,95,l=50) ))     
 
spatArgs = list( 
    blockGrain = c(2,3,5,7,10,14), draws=1, totSampSize=5000, ssSize=1000, fixArea=TRU 
→E, nss=1, 
    simArgs = list(numSpp=50, meanWidth=2000, limWidth=FALSE, compet=1), 
    spaceArgs = list(side=150, scales=c(1), compress=F)     
) 
par.space <- c(1,3,10,30,100) 
par.meanWidth <- c(500,1000,5000)    # paired with nspp so mean spp density on niche a 
→xis = 10 
par.nspp <- c(100,50,10) 
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## Produce some images to illustrate space-generation 
 
# space1 <- makeSpace(150, 1, F)[,,1] 
# space10 <- makeSpace(150, 10, F)[,,1] 
# space100 <- makeSpace(150, 100, F)[,,1] 
# space.mix <- space1 + space10 + space100 
# pdf("space1.pdf"); levelplot(space1, col.regions=rainb2, main="Smoothing of 1"); dev 
→.off() 
# pdf("space10.pdf"); levelplot(space10, col.regions=rainb2, main="Smoothing of 10");  
→dev.off() 
# pdf("space100.pdf"); levelplot(space100, col.regions=rainb2, main="Smoothing of 100" 
→); dev.off() 
# pdf("space_mix.pdf"); levelplot(space.mix, col.regions=rainb2, main="Smoothing of 1, 
→ 10 & 100"); dev.off() 
 
 
## Run simulations with difference resource scales and niche overlaps 
 
spatsraw <- lapply(1:(length(par.space) * length(par.meanWidth)), function(i) { 
    print(i) 
 
    spatArgs$spaceArgs$scales <- par.space[ceiling(i / length(par.meanWidth))] 
    spatArgs$simArgs$meanWidth <- par.meanWidth[(i - 1) %% length(par.meanWidth) + 1] 
    spatArgs$simArgs$numSpp <- par.nspp[(i - 1) %% length(par.meanWidth) + 1] 
 
    spat <- repSpatialSim(spatArgs, 100) 
     
    spat$results$par.width <- spatArgs$simArgs$meanWidth 
    spat$perform$par.width <- spatArgs$simArgs$meanWidth 
    return(spat) 
}) 
spats <- list( results = merge.df(lapply(spatsraw, function(i) i$results)) ) 
spats$perform <- merge.df(lapply(spatsraw, function(i) i$perform)) 
rm(spatsraw) 
 
spats$results$resource <- as.integer(as.character(spats$results$resource)) 
spats$perform$resource <- as.integer(as.character(spats$perform$resource)) 
 
spats$results <- transformBy( 
    ~ resource + rep + grain, data=spats$results, 
    rel.mean=I(theta / mean(theta, na.rm=TRUE)), 
    rel.linear=norm(theta), 
    rel.ecdf=ecdf(theta)(theta) 
) 
 
spats$perform$gamma <- summaryBy( 
    theta ~ resource + rep + grain, spats$results, FUN=function(i) sum(!is.na(i)) )[,  
→4] 
 
 
# per-species variability between grains 
 
persp.var <- summaryBy(    data=spats$results, 
    theta + rel.mean + rel.linear + rel.ecdf ~ resource + rep + sp, 
    FUN = function(i) var(i, na.rm=TRUE), keep.names=TRUE 
) 
 
# find the single best grain for a scenario 
 
spats$bestgrain <- summaryBy(r2 ~ resource + rep, spats$perform, FUN=function(i) { 
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    weighted.mean(spatArgs$blockGrain, i) }) 
names(spats$bestgrain)[4] <- "weighted.best" 
 
spats$bestgrain$weighted.best <- summaryBy( 
    r2 ~ resource + rep, data=spats$perform, FUN=function(i) { 
        weighted.mean(unique(spats$perform$grain^2), i) 
    })[,3]  
 
# summary of best grains 
 
bestgrains <- summaryBy(weighted.best^2 ~ resource + par.width, data=spats$bestgrain, 
    FUN=function(i) c(quantile(i, p=.25) ,quantile(i, .5), quantile(i, p=.75) )) 
names(bestgrains)[3:5] <- c("lo", "mean", "hi") 
 
 
save.image(file="spats.Rwork") 
 
 
 
 
## Graph simulation results 
 
pdf("theta.pdf") 
xyplot( 
    theta ~ grain^2, data=subset(spats$results, !is.na(theta)), group=resource, 
    ylim=c(0,3), 
    type='a', lty=linetypes[1:5], lwd=linewidths[1:5],  col=contrast.colors(5), 
    main="Generalism scores and grain", xlab="grain area", ylab="mean spp. generalism" 
→, 
    key=list( 
        title="landscape homogeneity", cex.title=1, 
        text=list(as.character(c(1,3,10,30,100))),  
        lines=list(lty=linetypes[1:5], lwd=linewidths[1:5], col=contrast.colors(5)) ) 
) 
dev.off() 
 
pdf("bias.pdf") 
xyplot( 
    theta + rel.mean + rel.linear + rel.ecdf ~ resource, data=persp.var, 
    panel=panel.superpose, panel.groups=panel.average, fun=function(i) mean(i, na.rm=T 
→RUE), 
    horiz=F, type='l', lty=linetypes[1:4], lwd=linewidths[1:4], col=contrast.colors(4) 
→, 
    main="Grain bias correction", xlab="landscape homogeneity", ylab="niche estimate v 
→ariation", 
    ylim=c(-.05, .55), 
    key=list( 
        text=list(c('none', 'around mean', 'linear', 'ECDF')), 
        lines=list(lty=linetypes[1:4], lwd=linewidths[1:4], col=contrast.colors(4)) 
    )     
) 
dev.off() 
 
pdf("perform.pdf") 
xyplot(r2 ~ grain^2, groups=resource, data=spats$perform, 
    type='a', lty=linetypes[1:5], lwd=linewidths[1:5],  col=contrast.colors(5), 
    main="Metric performance and grain", xlab="grain area", ylab=expression(r^2),     
    key=list( 
        title="landscape homogeneity", cex.title=1,     
        text=list(as.character(c(1,3,10,30,100))), 
        lines=list(lty=linetypes[1:5], lwd=linewidths[1:5], col=contrast.colors(5)) 
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    ) 
) 
dev.off() 
 
pdf("hetero.pdf") 
xyplot(r2 ~ hetero, data=spats$perform, 
    panel=function(...) { 
        panel.xyplot(..., type='p', pch=20, cex=.5, col=contrast.colors(1)) 
        panel.loess(..., lwd=2, col='black') 
    }, 
    ylim=c(-.05, 1.05), 
    main="Metric performance and heterogeneity", xlab="mean plot resource range", ylab 
→=expression(r^2) 
) 
dev.off() 
 
pdf("hetcause.pdf") 
xyplot(hetero ~ grain^2, groups=resource, data=spats$perform, 
    type=c('a','p'), pch='|', cex=1, ylim=c(-.05, 1.05), lty=linetypes[1:5], lwd=linew 
→idths[1:5], col=contrast.colors(5), 
    key=list( 
        title="resource smoothing", cex.title=1, 
        text=list(as.character(c(1,3,10,30,100))), 
        lines=list(lty=linetypes[1:5], lwd=linewidths[1:5], col=contrast.colors(5)) 
    ), 
    main="Causes of heterogeneity", xlab="grain area", ylab="plot heterogeneity" 
) 
dev.off() 
 
pdf("var_best.pdf") 
 
densityplot( 
    spats$bestgrain$max.var.diff, 
    col='black', pch='|', main="Grain selection by maximum variation", xlab="differenc 
→e in area" 
) 
dev.off() 
 
pdf("bestgrain.pdf") 
xyplot( I(weighted.best^2) ~ resource, data=spats$bestgrain, 
    panel=function(x,y) { 
        r <- summaryBy(weighted.best ~ resource, spats$bestgrain, FUN=c(min, max)) 
        grid.polygon( 
            x=c(r$resource, rev(r$resource)), 
            y=c(r$weighted.best.max^2, rev(r$weighted.best.min^2)), 
            gp=gpar(fill='grey', col=NA), default.units='native' 
        ) 
        panel.average(x, y, horiz=F, col='black', fun=mean, lwd=2) 
    }, 
    main="Best grain", ylab="grain area", xlab="landscape homogeneity", 
    ylim=c(-5, 105), 
    key=list(lines=list(lwd=c(5,1), col=c('grey','black')), text=list(c("range","mean" 
→)))     
) 
dev.off() 

grainCVS.r  

### Import CVS and USDA data with nests for multi-scale spatial analysis 
## save 'taxon importance' data into CSV 
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library(reshape) 
library(doBy) 
library(lattice) 
library(grid) 
source("../nicheutils.r") 
 
## import 
 
plants <- read.table("plants.csv", TRUE, sep=",", fill=TRUE, encoding="UTF-8")  
CVS <- read.table("taxa.csv", header=TRUE, sep=",", fill=TRUE, encoding="UTF-8") 
 
names(CVS)[1] <- "name" 
CVS$name <- factor(sub(" var\\. .*", "", CVSmodules$name)) 
corner.cols <- grep("corner", names(CVS)) 
names(CVS)[corner.cols] <- c("corner1", "corner4", "corner5", "corner3", "corner2") 
CVS[, corner.cols] <- replace(CVS[, corner.cols], is.na(CVS[, corner.cols]), 0) 
 
NCcounties <- read.table("NCcounty.csv", header=TRUE, sep=",", fill=TRUE, encoding="UT 
→F-8") 
 
 
# pare down to necesary data 
 
CVSmodules <- subset(CVS, ! Stratum.Index %in% c("--all--","C","E","H","S","U","mod R" 
→)) 
CVSmodules <- summaryBy( 
    corner1 + corner2 + corner3 + corner4 + corner5 ~ name + Stratum.Index + OBSERVATI 
→ON_ID, 
    data=CVSmodules, id=~sppFAMILY + Author.Observation.Code, keep.names=TRUE, FUN=min 
) 
 
 
# collect summaries 
 
spp.names <- unique(CVSmodules$name) 
spp.families <- CVSmodules[match(spp.names, CVSmodules$name), "sppFAMILY"] 
common.families <- unique(spp.families)[which(sapply(unique(spp.families), function(f) 
→ sum(spp.families==f, na.rm=TRUE)) > 50)] 
nspp <- length(spp.names) 
lvls <- data.frame( 
    length = c(37336, 100, 10, 3.16, 1, .32, .1), 
    area = c(1.394e+9,1000,100,10,1,.1,.01), 
    name = c('lvlC', 'lvl5', 'lvl4', 'lvl3', 'lvl2', 'lvl1', 'lvl0') ) 
 
## separate into presence matrices by sampling level 
 
counties <- t(sapply(strsplit(gsub(" ", "", as.character(NCcounties[ ,"County"])), "[( 
→),]"), function(i) NCcounty.names %in% i )) 
rownames(counties) <- NCcounties$Scientific.Name 
colnames(counties) <- NCcounty.names 
 
plots <- sapply(by( 
    CVS[CVS$Stratum.Index=="--all--", ], 
    INDICES=list(CVS[CVS$Stratum.Index=="--all--", "OBSERVATION_ID"]), 
    FUN=function(i) { spp.names %in% i$name } 
    ), unlist) 
 
nests <- by(CVSmodules, 
    INDICES=list(CVSmodules$OBSERVATION_ID, as.character(CVSmodules$Stratum.Index)), 
    FUN=function(i) { 
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        blank <- matrix(0, ncol=5, nrow=nspp) 
        blank[match(i$name, spp.names),] <- as.matrix(i[grep("corner", names(CVSmodule 
→s))]) 
        if(is.null(blank)) warning() 
        rownames(blank) <- spp.names 
        colnames(blank) <- c("corner1", "corner4", "corner5", "corner3", "corner2") 
 
        return(blank) 
    } 
) 
nests[unlist(lapply(nests, function(i) is.null(i[[1]])))] <- NULL    # remove nonexist 
→ent combinations 
 
modules <- sapply(nests, rowSums) > 0 
submodules <- matrix(unlist(nests), nrow=length(spp.names))    # most be subset to des 
→ired level 
 
 
## run width calculations 
 
source("theta55n.r") 
 
lvlC <- theta.55n(counties) 
lvl0 <- theta.55n(plots) 
lvl1 <- theta.55n(modules) 
lvl2 <- theta.55n(submodules >= 2) 
lvl3 <- theta.55n(submodules >= 3) 
lvl4 <- theta.55n(submodules >= 4) 
lvl5 <- theta.55n(submodules >= 5) 
 
thetas <- data.frame(lvlC, lvl0, lvl1, lvl2, lvl3, lvl4, lvl5, name=spp.names, spfam=s 
→pp.families) 
thetas[,1:7] <- replace(thetas[,1:7], is.na(thetas[,1:7]), 0) 
thetas$mean <- rowMeans(thetas[,1:7]) 
 
family.means <- sapply(levels(spp.families), function(i) mean(subset(thetas, spfam==i) 
→$mean)) 
thetas.rel <- cbind( apply(thetas[,1:7], 2, function(i) ecdf(i)(i) ), thetas[, 8:dim(t 
→hetas)[2]] ) 
thetas.rel$min <- lvls$name[apply(thetas.rel[,1:7], 1, which.min)] 
 
 
 
## package for analysis 
 
thrk <- melt(thetas, id.vars=c("name"), measure.vars=c(2:7, 1), variable_name="lvl") 
thrk$rel <- melt(thetas.rel, id.vars=c("name"), measure.vars=c(2:7, 1), variable_name= 
→"lvl")$value 
 
thrk$area <- lvls[match(thrk$lvl, lvls$name), "area"] 
thrk$habit <- plants[match(thrk$name, plants$Scientific.Name, NA), "Growth.Habit"] 
habitfreq <- (count(thrk$habit)/7)[-1] 
thrk$native <- (!unwhich(grep("I", plants$Native.Status), 56673))[match(thrk$name, pla 
→nts$Scientific.Name, NA)] 
thrk$common.plot <- rep(rowSums(plots > 0), 7) 
 
spptrends <- data.frame( 
    name = thetas$name, 
    spfam = thetas$spfam, 
    common = rowSums(plots > 0), 
    maxlvl = apply(thetas.rel[,1:7], 1, function(i) lvls$area[which.max(i)] ), 
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    minlvl = apply(thetas.rel[,1:7], 1, function(i) lvls$area[which.min(i)] ), 
    sd = apply(thetas.rel[,1:7], 1, function(i) sd(i) ) 
) 
 
save.image(file="CVSgrain.Rwork") 
 
 
 
 
### graph it 
 
lvlscale <- list( x=list(at=c(-2, -1, 0, 1, 2, 3, 9))) 
 
pdf("CVS_levels.pdf") 
xyplot( 
    value ~ log(area, 10), data=thrk, 
    panel=function(x,y) { 
        r <- summaryBy(value ~ area, thrk, FUN=c(min, max)) 
        grid.polygon( 
            x=log(c(r$area, rev(r$area)), 10), 
            y=c(r[,3], rev(r[,2])), 
            gp=gpar(fill='grey', col=NA), default.units='native' 
        ) 
        panel.average(x, y, horiz=F, col='black', fun=mean, lwd=2) 
    }, 
    scale=lvlscale, ylim=c(-8, 158), xlim=c( -2.55, 9.55), 
    xlab=expression(log[10]~sampling~area~(m^2)), ylab="species generalism", main="sam 
→pling scale and generalism", 
    key=list(lines=list(lwd=c(5,1), col=c('grey','black')), text=list(c("range","mean" 
→)))     
) 
dev.off() 
 
pdf("CVS_levels_rel.pdf") 
xyplot( 
    rel ~ log(area, 10), data=thrk, 
    panel=function(x,y) { 
        r <- summaryBy(rel ~ area, thrk, FUN=c(min, max)) 
        grid.polygon( 
            x=log(c(r$area, rev(r$area)), 10), 
            y=c(r[,3], rev(r[,2])), 
            gp=gpar(fill='grey', col=NA), default.units='native' 
        ) 
        panel.average(x, y, horiz=F, col='black', fun=mean, lwd=2) 
    }, 
    scale=lvlscale, ylim=c(-.05, 1.05), xlim=c( -2.55, 9.55), 
    xlab=expression(log[10]~sampling~area~(m^2)), ylab="normalized species generalism" 
→, main="sampling scale and generalism", 
    key=list(lines=list(lwd=c(5,1), col=c('grey','black')), text=list(c("range","mean" 
→)))     
) 
dev.off() 
 
pdf("CVS_mg_hist.pdf") 
histogram( 
    log(spptrends$min, 10), breaks=10, col='grey', border=0, 
    xlim=c(-3, 11), scale=list(x=list(at=seq(-2, 10, 2))), 
    xlab="grain where niche estimate is minimized" 
) 
dev.off() 
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pdf("CVS_traits.pdf") 
# Species generalism across scales, by native status and growth habit as defined by US 
→DA; 
# the 4 most common habits are included (n=1450, 73% of total). 252 species (10%) were 
→ non-native. 
xyplot( 
    rel ~ log(area, 10) | as.character(habit), groups= c("native","non-native")[native 
→ + 1], 
    data=thrk[(habitfreq >= 90)[match(thrk$habit, names(habitfreq))], ], 
    panel=panel.superpose, panel.groups=panel.average, FUN=mean, horiz=F, type='l', 
    par.settings=append( 
        simpleTheme(lty=linetypes[1:2], lwd=linewidths[1:2], col=contrast.colors(2)), 
        list(strip.background=list(col="white"))  
    ), 
    layout=c(4,1), 
    auto.key=list(points=FALSE, lines=TRUE, cex.title=1), 
    scale=list( 
        x=list(at=c(-2, -1, 0, 1, 2, 3, 9), labels=c('-2','','','','','3','9')), 
        y=list(at=seq(0, 1, .25)) 
    ), 
    xlab=expression(log[10]~sampling~area~(m^2)), ylab="relative generalism", 
    main="sampling scale, growth habit and native status"     
) 
dev.off() 
 
pdf("CVS_select_spp.pdf") 
xyplot( 
    rel ~ log(area, 10), groups=as.character(name), 
    data=subset(thrk, name %in% c( 
        "Quercus geminata", "Gratiola neglecta", "Mikania scandens", "Rhynchospora car 
→eyana")), 
    type='a',  
    par.settings=simpleTheme(lty=linetypes[1:4], lwd=linewidths[1:4], col=contrast.col 
→ors(4)), 
    auto.key=list(points=FALSE, lines=TRUE), ylim=c(-.05, 1.05), scale=lvlscale, 
    xlab=expression(log[10]~sampling~area~(m^2)), ylab="relative generalism", 
    main="sampling scale and selected plant species"     
) 
dev.off() 

grain_analysis.r  

analyze.spat.width <- function(x) { 
    ## takes output from spatialSim and computes r-squared values for simulated / calc 
→ulated widths 
    ## (i.e. 'width' and 'theta' columns) for each grain and resource 
 
    if(is.null(x$rep)) x$rep <- 1 
    byindex <- list(x$resource, x$grain, x$rep) 
 
    perf <- aggregate(1:dim(x)[1], byindex, function(i) { 
        summary(lm(width ~ theta, data=x[i,]))$r.squared 
    }) 
    names(perf) <- c("resource", "grain", "rep", "r2") 
 
    mean.theta <- aggregate(x$theta, byindex, mean, na.rm=TRUE)$x 
    mean.theta.var <- aggregate(x$theta.var, byindex, mean, na.rm=TRUE)$x 
    props <- x[c(by(1:dim(x)[1], byindex, function(i) i[1] )), c("hetero","rich")] 
    return(cbind(perf, props, mean.theta, mean.theta.var)) 
} 
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repSpatialSim <- function(arglist=spatArgs, reps=10) { 
    z <- replicate(reps, do.call(spatialSim, arglist), FALSE) 
    for(i in 1:reps) z[[i]]$rep <- i 
    spats <- merge.df(z) 
    spats.lm <- analyze.spat.width(spats) 
    return(list(results=spats, perform=spats.lm)) 
} 
 
 
find.theta.mean <- function(x) { 
    stats <- aggregate(x$theta, list(x$grain, x$rep, x$resource), mean, na.rm=TRUE ) 
    names(stats) <- c("grain","rep","resource","theta.mean") 
    stats$theta.var <- aggregate(x$theta, list(x$grain, x$rep, x$resource), var, na.rm 
→=TRUE )$x 
    return(stats) 
} 
 
plot.spat.results <- function(x, dots=FALSE) { 
    xyplot( 
        theta ~ width | grain, groups=resource, data=x, 
        layout=c(length(unique(x$grain)), 1), 
        auto.key=T, cex=.1, pch=1:3, type=c('smooth', if(dots) 'p') 
    ) 
} 
 
plot.spat.perform <- function(x) { 
    xyplot(r2 ~ grain^2, groups=resource, data=x, 
        type=c('p','a'), pch=1:length(unique(x$resource)), cex=.5, 
        ylim=c(0,1), 
        auto.key=T,    xlab="grain area", ylab=expression(r^2), 
        main="Metric performance and grain" 
    ) 
} 

A P P E N D I X  F :  C H A P T E R  3  C O D E  

CVSmanip.r  

 
### Code to import CVS taxa data and covnvert to matrix 
# (make sure csv files are loaded without initial garbage) 
 
source("../theta55n.r") 
source("../nicheutils.r") 
library(doBy) 
 
plots <- subset(read.table("../CVS/AllCVS_plot_data.csv", TRUE, ",", fill=TRUE), Area= 
→=1000) 
names(plots)[1] <- "Author.Observation.Code" 
taxa <- subset(read.table("../CVS/AllCVS_taxa.csv", TRUE, ",", fill=TRUE, encoding="UT 
→F-8"), authorObsCode %in% plots$Author.Observation.Code) 
names(taxa)[1] <- "name" 
 
taxa$name <- sub(" $| var\\. .*", "", taxa$name) 
taxa.simple <- summaryBy(cover ~ name, taxa, id=~sppFamily + OBSERVATION_ID + authorOb 
→sCode, FUN=sum) 
plotids <- unique(taxa.simple$authorObsCode) 



139 

plots <- plots[match(plotids, plots$Author.Observation.Code),] 
 
CVS <- t(sapply(by(taxa.simple, list(taxa.simple$name), FUN=function(i) { 
    replace(rep(NA, length(plotids)), match(i$authorObsCode, plotids, 0), i$cover) 
}), unlist)) 
colnames(CVS) <- plotids 
CVS <- replace(CVS, is.na(CVS), 0) 
 
CVSwidths <- theta.55n(CVS) 
 
save.image(file="CVS.Rwork") 

CVS_pth.r  

 
### Script to analyze CVS data re: spp. niche widths and plot generalism 
 
library(geneplotter) 
library(lattice) 
library(reshape) 
library(doBy) 
source("plot_theta.r") 
source("CVSmanip.r") 
choices <- list(A="portion", C=0.2, D="maxv", E="div") 
 
## plot calculations 
 
comm <- read.table("../CVS/AllCVS_comm.csv", TRUE, ",", fill=TRUE) 
 
CVSpth <- summ.plots.theta(CVS, CVSwidths, TRUE) 
CVSpth$project <- as.numeric(substr(colnames(CVS), 1,3)) 
CVSpth$comm <- comm[match(rownames(CVSpth), comm$Author.Observation.Code),"community.c 
→ode"] 
#CVSspth <- summ.spp.theta(CVS, CVSwidths)  
 
 
## physiognomic type summaries 
 
communities <- aggregate(CVSpth[,-which(names(CVSpth)=="comm")], list(CVSpth$comm), me 
→an) 
names(communities)[1] <- "comm" 
communities$nplots <- sapply(communities$comm, function(i) sum(CVSpth$comm == i, na.rm 
→=TRUE) ) 
 
communities$mean.lm <- c(by(CVSpth, factor(CVSpth$comm), FUN=function(i) { 
    if(dim(i)[1] < 3 | sum(is.na(i$theta.mean))==dim(i)[1]) return(NA) 
    m <- summary(lm(theta.mean ~ norm(rich), i))$coefficients["norm(rich)", ] 
    if(is.na(m["Pr(>|t|)"]) | m["Pr(>|t|)"] >= .1) 0 else m["Estimate"] 
})) 
communities$min.lm <- c(by(CVSpth, factor(CVSpth$comm), FUN=function(i) { 
    if(dim(i)[1] < 3 | sum(is.na(i$theta.min))==dim(i)[1]) return(NA) 
    m <- summary(lm(theta.min ~ norm(rich), i))$coefficients["norm(rich)", ] 
    if(is.na(m["Pr(>|t|)"]) | m["Pr(>|t|)"] >= .1) 0 else m["Estimate"] 
})) 
communities$max.lm <- c(by(CVSpth, factor(CVSpth$comm), FUN=function(i) { 
    if(dim(i)[1] < 3 | sum(is.na(i$theta.max))==dim(i)[1]) return(NA) 
    m <- summary(lm(theta.max ~ norm(rich), i))$coefficients["norm(rich)", ] 
    if(is.na(m["Pr(>|t|)"]) | m["Pr(>|t|)"] >= .1) 0 else m["Estimate"] 
})) 
communities$sd.lm <- c(by(CVSpth, factor(CVSpth$comm), FUN=function(i) { 
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    if(dim(i)[1] < 3 | sum(is.na(i$theta.sd))==dim(i)[1]) return(NA) 
    m <- summary(lm(theta.sd ~ norm(rich), i))$coefficients["norm(rich)", ] 
    if(is.na(m["Pr(>|t|)"]) | m["Pr(>|t|)"] >= .1) 0 else m["Estimate"] 
})) 
 
 
## Matching of models to communities 
 
communities$model <- "none" 
attach(communities) 
communities[which(mean.lm > 0 & sd.lm >= 0 & min.lm > 0 & max.lm > 0), "model"] <- "C" 
communities[which(mean.lm >= 0 & sd.lm > 0 & min.lm < 0 & max.lm > 0), "model"] <- "D" 
communities[which(mean.lm < 0 & abs(sd.lm) < .05 & min.lm < 0 & max.lm >= 0), "model"] 
→ <- "B" 
communities[which(abs(mean.lm) < .05 & abs(sd.lm) < .05 & min.lm >= 0 & max.lm >= 0),  
→"model"] <- "A" 
communities[nplots < 3, "model"] <- "NA" 
detach() 
 
communities$scientific.name <- as.character(comm[match(communities$comm, comm$communit 
→y.code), "scientific.name"]) 
 
 
# find what communities each species is present in / vice-versa 
spp.comm <- sapply(unique(CVSpth$comm), function(pr) { 
    rowSums(CVS[, which(CVSpth$comm==pr), drop=FALSE]) > 0 
}) 
names(spp.comm) <- unique(CVSpth$comm); rownames(spp.comm) <- rownames(CVS) 
 
 
 
## Graph  
 
pdf("CVS_pth.pdf", 4, 8) 
plot.pth(CVSpth, main="CVS plot diversity and generalism") 
dev.off() 
 
pdf("comm_hist.pdf", 4, 8) 
histogram( 
    ~ value | variable, 
    data=melt(communities, "rich", measure.vars=c("mean.lm","sd.lm","min.lm","max.lm") 
→), 
    breaks=do.breaks(c(-1.11, 1.11), 21), 
    layout=c(1,4), index.cond=list(c(3,4,2,1)), 
 
    col= replace(rep("black",21), 11, "grey"),  
    key=list(text=list("n = 232"), x=.75,y=.95 ), 
    xlab="dependence of generalism on richness", 
    main="generalism within CVS projects", 
    strip=FALSE, strip.left=strip.custom( 
        factor.levels=c("mean", "standard deviation", "minimum", "maximum"), 
        bg='white'), 
) 
dev.off() 
 
pdf("comm_lines.pdf") 
xyplot(theta.mean ~ rich, group=comm, 
    data=subset(CVSpth, comm %in% communities$comm[which(communities$nplots > 40)]), 
    type='smooth' 
) 
dev.off() 
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## Output community matches 
 
for(i in c("A", "B", "C", "D", "none", "NA")) { 
    write.table( 
        subset(communities, model==i)[, c("comm","scientific.name","nplots","rich")], 
        file=paste(i, "comm.csv", sep=""),  
        sep=",", row.names=FALSE, col.names=TRUE, quote=TRUE 
    ) 
} 

plot_theta.r  

### Functions for connecting plots with species thetas 
 
library(vegan) 
library(reshape) 
library(geneplotter) 
library(lattice) 
source("../nicheutils.r") 
 
summ.plots.theta <- function(plots, thetas, useRank=TRUE) { 
    ## takes abundance table and spp niche widths, and summarizes plots in a dataframe 
    # useRank normalizes raw thetas to 0-1 
 
    rich <- colSums(plots > 0) 
    theta.plots <- (if(useRank) norm(thetas) else unlist(thetas)) * (plots > 0) 
    theta.mean <- colSums(theta.plots, na.rm=TRUE) / rich 
    theta.sd <- apply(theta.plots, 2, function(p) sd(p[p!=0], na.rm=TRUE)) 
    theta.min <- apply(theta.plots, 2, function(p) { 
        if(sum(p, na.rm=TRUE) == 0) 0 else min(p[p!=0], na.rm=TRUE) 
    }) 
    theta.max <- apply(theta.plots, 2, max, na.rm=TRUE) 
    shannon <- diversity(plots, MARGIN=2) 
    simpson <- diversity(plots, MARGIN=2, index="simpson") 
 
    summ <- data.frame(rich, theta.mean, theta.sd, theta.min, theta.max, shannon, simp 
→son) 
    rownames(summ) <- colnames(plots) 
    return(summ) 
} 
 
summ.spp.theta <- function(x, thetas, useRank=TRUE) { 
    theta.plots <- (if(useRank) { 
        norm(thetas) } 
        else { unlist(thetas) }) * (x > 0) 
    spth <- as.data.frame(t(sapply(1:dim(x)[1], function(sp) { 
        co.theta <- theta.plots[-sp, x[sp, , drop=FALSE] > 0, drop=FALSE] 
        if(dim(co.theta)[2] == 0) return(c(sp, 0, 0, 0, 0, 1, 0)) 
        theta.mean <- mean(co.theta[co.theta > 0], na.rm=TRUE) 
        theta.sd <- sd(co.theta[co.theta > 0], na.rm=TRUE) 
        theta.min <- min(co.theta[co.theta > 0], na.rm=TRUE) 
        theta.max <- max(co.theta[co.theta > 0], na.rm=TRUE) 
        rich.mean <- mean(colSums(co.theta > 0, na.rm=TRUE)) + 1 
        rich.sd <- sd(colSums(co.theta > 0, na.rm=TRUE)) 
        return(c(sp, theta.mean, theta.sd, theta.min, theta.max, rich.mean, rich.sd)) 
    }))) 
    names(spth) <- c("sp", "theta.mean", "theta.sd", "theta.min", "theta.max", "rich.m 
→ean", "rich.sd") 
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    spth$theta <- if(useRank) rank(thetas, na.last='keep') / length(thetas) else theta 
→s 
    return(spth) 
} 
 
summ.spp.plot.theta <- function(x, xpth, xthetas) { 
    ## for each spp finds the mean properties of the plots it occurs in 
    pl <- as.data.frame(t(sapply(1:dim(x)[1], function(sp) { 
        occur <- unlist(x[sp,] > 0) 
        colMeans(xpth[occur, sapply(xpth[1,], is.numeric) ], na.rm=TRUE) 
    }))) 
    pl$width <- xthetas 
    return(pl) 
} 
 
## graphing 
 
plot.pth <- function(x, xvar="rich", xlab="richnes", main="plot richness and generalis 
→m", ...) { 
    if(is.null(x$project)) x$project <- 0 
    xyplot( 
        formula(paste("value ~", xvar, "| variable")), 
        data=melt(x, measure.vars=c("theta.mean","theta.sd","theta.min","theta.max")), 
        panel=function(x,y, ...) { 
            if(sd(y, na.rm=TRUE) > .02 & length(unique(y)) > 5) { 
                panel.smoothScatter(x,y, ..., nrpoints=0, colramp=colorRampPalette(c(' 
→white','#888888')) ) 
            } else {  
                panel.xyplot(x,y, ..., col='#888888', pch=20, cex=.33)     
            } 
            if(length(unique(x)) > 25) { 
                panel.loess(x,y, ..., col='black', lwd=1) 
            } else { 
                panel.average(x,y, ..., col='black', lwd=1, horiz=FALSE) 
            }             
        }, 
        strip=FALSE, strip.left=strip.custom( 
            factor.levels=c("mean", "standard deviation", "minimum", "maximum"), 
            bg='white'), 
        scales=list(y=list(at=c(0,.5,1), alternating=c(0,1,0,1)) ), 
        index.cond=list(c(3,4,2,1)), layout=c(1,4), aspect=1, 
        xlab=xlab, ylab="plot generalism", main=main, ... 
    ) 
} 

null_pth.r  

### Simulate plot data anad analyze re: richness and generalism 
 
## setup 
 
source("plot_theta.r") 
source("../simulate.r") 
source("../theta55n.r") 
source("../params.r") 
library(latticeExtra) 
 
baseArgs <- list( 
    resources=1, tradeoff=FALSE, compet=0, limWidth=FALSE, quality= c(50, 50), simPlot 
→s=100, 
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    meanWidth=2500, widthMethod='uniform', numSpp=50) 
nrep <- 10 
 
 
## generate scenarios 
 
simA <- replicate(nrep, do.call(sim.niches, replace(baseArgs, 
    c("compet", "quality"), list(NA, c(5, 100)) ))) 
# simA.thetas <- sapply(simA["plots",], theta.55n) 
simA.thetas <- sapply(simA["spp.traits",], function(i) i$width ) 
simA.pth <- merge.df(lapply(1:dim(simA)[2], function(i) summ.plots.theta( simA[,i]$plo 
→ts, simA.thetas[,i]) )) 
simA.pth$rep <- rep(1:nrep, each=baseArgs$simPlots) 
simA.pth$rich <- unlist(by(simA.pth$rich, list(simA.pth$rep), norm)) 
 
simB <- replicate(nrep, do.call(sim.niches, baseArgs)) 
simB.thetas <- sapply(simB["spp.traits",], function(i) i$width ) 
simB.pth <- merge.df(lapply(1:dim(simB)[2], function(i) summ.plots.theta( simB[,i]$plo 
→ts, simB.thetas[,i]) )) 
simB.pth$rep <- rep(1:nrep, each=baseArgs$simPlots) 
simB.pth$rich <- unlist(by(simB.pth$rich, list(simB.pth$rep), norm)) 
 
simC <- replicate(nrep, do.call(sim.niches, replace(baseArgs, 
    c("tradeoff", "compet"), list(TRUE, 5) ))) 
simC.thetas <- sapply(simC["spp.traits",], function(i) i$width ) 
simC.pth <- merge.df(lapply(1:dim(simC)[2], function(i) summ.plots.theta( simC[,i]$plo 
→ts, simC.thetas[,i]) )) 
simC.pth$rep <- rep(1:nrep, each=baseArgs$simPlots) 
simC.pth$rich <- unlist(by(simC.pth$rich, list(simC.pth$rep), norm)) 
 
simD <- replicate(nrep, do.call(sim.niches, replace(baseArgs, 
    c("tradeoff", "compet"), list(TRUE, c(-10, 10)) ))) 
simD.thetas <- sapply(simD["spp.traits",], function(i) i$width ) 
simD.pth <- merge.df(lapply(1:dim(simD)[2], function(i) summ.plots.theta( simD[,i]$plo 
→ts, simD.thetas[,i]) )) 
simD.pth$rep <- rep(1:nrep, each=baseArgs$simPlots) 
simD.pth$rich <- unlist(by(simD.pth$rich, list(simD.pth$rep), norm)) 
 
all.pth <- rbind(simA.pth, simB.pth, simC.pth, simD.pth) 
all.pth$model <- rep(c("A","B","C","D"), each=dim(simA.pth)[1]) 
 
 
 
## make graphs 
 
pdf("sims.pdf") 
useOuterStrips( 
    xyplot( 
        value ~ rich | model * variable, 
        data=melt(all.pth, measure.vars=c("theta.mean","theta.sd","theta.min","theta.m 
→ax")), 
        panel=function(x,y, ...) { 
            if(sd(y, na.rm=TRUE) > .02) panel.smoothScatter( 
                x,y, ..., nrpoints=0, colramp=colorRampPalette(c('white','#888888'))) 
            panel.loess(x,y, ..., col='black', lwd=1) 
        }, 
        scales=list( 
            y=list(draw=FALSE), x=list(draw=FALSE) ), 
        index.cond=list(1:4, c(3,4,2,1)), layout=c(4,4), aspect=1, 
        xlab="richness", ylab="plot generalism", main="simulation models" 
    ), 
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    strip=function(..., bg) strip.default(..., bg='white'), 
    strip.left=strip.custom( 
        factor.levels=c("mean", "standard deviation", "minimum", "maximum"), bg='white 
→') 
) 
dev.off() 
 
 
## Analyze for slopes 
 
simA.melt <- melt(simA.pth, c("rich", "rep"), measure.vars=c("theta.mean","theta.sd"," 
→theta.min","theta.max")) 
Alm <- by(simA.melt, list(simA.melt$rep, simA.melt$variable), FUN=function(i) { 
    m <- summary(lm(value ~ rich, i))$coefficients["rich",] 
    if(m["Pr(>|t|)"] >= .1) 0 else m["Estimate"] 
}) 
 
simB.melt <- melt(simB.pth, c("rich", "rep"), measure.vars=c("theta.mean","theta.sd"," 
→theta.min","theta.max")) 
Blm <- by(simB.melt, list(simB.melt$rep, simB.melt$variable), FUN=function(i) { 
    m <- summary(lm(value ~ rich, i))$coefficients["rich",] 
    if(m["Pr(>|t|)"] >= .1) 0 else m["Estimate"] 
}) 
 
simC.melt <- melt(simC.pth, c("rich", "rep"), measure.vars=c("theta.mean","theta.sd"," 
→theta.min","theta.max")) 
Clm <- by(simC.melt, list(simC.melt$rep, simC.melt$variable), FUN=function(i) { 
    m <- summary(lm(value ~ rich, i))$coefficients["rich",] 
    if(m["Pr(>|t|)"] >= .1) 0 else m["Estimate"] 
}) 
 
simD.melt <- melt(simD.pth, c("rich", "rep"), measure.vars=c("theta.mean","theta.sd"," 
→theta.min","theta.max")) 
Dlm <- by(simD.melt, list(simD.melt$rep, simD.melt$variable), FUN=function(i) { 
    m <- summary(lm(value ~ rich, i))$coefficients["rich",] 
    if(m["Pr(>|t|)"] >= .1) 0 else m["Estimate"] 
}) 

text_pth.r  

### Extracting character data from a text and converting to abundance table 
## file is preprocesses to remove non-letter characters and convert to lowercase 
## NB: ensure source file has no trailing blank line 
 
source("../plot_theta.r") 
source("../../metrics/metrics.r") 
source("../../theta55n.r") 
 
scan(file="ch1.txt", what="character", blank.lines.skip=FALSE) -> ch1 
 
blanks <- c(0, which(ch1==""), length(ch1)) 
par.ind <- lapply(2:length(blanks), function(i) (blanks[i-1] +1):(blanks[i]-1)) 
par.words <- lapply(par.ind, function(i) ch1[i] ) 
 
abund <- t(sapply(unique(ch1), function(w) sapply(par.words, function(p) sum(p==w) ))) 
rel.abund <- t(t(abund) / colSums(abund)) 
 
 
## Analysis, as for any abundance table 
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thetas <- theta.55n(rel.abund) 
plot.theta <- summ.plots.theta(rel.abund, thetas) 
 
 
pdf("theta_hist.pdf") 
histogram(thetas, xlab="word generalism") 
dev.off() 
 
pdf("plot_theta.pdf", 4, 8) 
plot.pth(plot.theta, main="Darwin text sentence richness and generalism") 
dev.off() 
 
# pdf("sp_theta.pdf") 
# plot.pth(sp.theta, main="Word location generalism") 
# dev.off() 
 
pdf("theta_common.pdf") 
xyplot(thetas ~ rowSums(rel.abund > 0), panel=function(...) { 
        panel.xyplot(..., type='p', col='black', pch=20, cex=.75) 
        panel.loess(..., span=1, degree=2) 
    }, 
    xlab="n presences", ylab="generalism" 
) 
dev.off() 

domesday_pth.r  

### 
## Import and prep 
 
source("../plot_theta.r") 
source("../../metrics/metrics.r") 
source("../../theta55n.r") 
 
read.table("domesdaystatistics_livestock.tab", header=TRUE, sep="\t",fill=NA) -> lives 
→tock 
stock <- livestock[,c(5,7,9,11,13,15,17,19)] 
stock$horses.1066 <- replace(livestock$other.1066, ! livestock$other.codes.1066 %in% c 
→("horses","horses at the hall","foal","horse","mares"), 0) 
stock$horses.1066 <- replace(livestock$other.1066, ! livestock$other.codes.1066 %in% c 
→("ox","oxen"), 0) 
stock <- replace(stock, is.na(stock), 0) 
rownames(stock) <- livestock$structidx 
 
 
## calculations 
 
stock.rel <- stock / pmax(1, rowSums(stock, na.rm=TRUE)) 
thetas <- theta.55n(stock.rel) 
names(thetas) <- unlist(strsplit(names(thetas), ".1066")) 
stock.pth <- summ.plots.theta(stock.rel, thetas, TRUE) 
 
## graph 
 
pdf("livestock_1066.pdf", 4, 8) 
plot.pth(stock.pth, title="Livestock and manor generalism in England, 1066", subset=ri 
→ch>0) 
dev.off() 
 
## 1086 data 
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stock.1086 <- livestock[,c(4,6,8,10,12,14,16,18)] 
stock.1086$horses.1086 <- replace(livestock$other.1086, ! livestock$other.codes.1086 % 
→in% c("horses","horses at the hall","foal","horse","mares"), 0) 
stock.1086$horses.1086 <- replace(livestock$other.1086, ! livestock$other.codes.1086 % 
→in% c("ox","oxen"), 0) 
stock.1086 <- replace(stock.1086, is.na(stock.1086), 0) 
rownames(stock.1086) <- livestock$structidx 
 
stock.1086.rel <- t(stock.1086 / pmax(1, rowSums(stock.1086, na.rm=TRUE))) 
thetas.1086 <- theta.55n(stock.1086.rel)  
names(thetas.1086) <- unlist(strsplit(names(thetas.1086), ".1086")) 
stock.1086.pth <- summ.plots.theta(stock.1086.rel, thetas.1086, FALSE) 
 
pdf("livestock_1086.pdf", 4, 8) 
plot.pth(stock.1086.pth, title="Livestock and manor generalism in England, 1086") 
dev.off() 
 
## combine 
 
rbind(stock.pth, stock.1086.pth) -> stock.all.pth 
plot.pth(stock.all.pth, 
    title="Livestock and manor generalism in England", group=rep(c(1066,1086), each=32 
→30)) 
 
pdf("theta_change.pdf") 
xyplot(thetas.1086 ~ thetas, ylim=c(.3,2), xlim=c(.3,2), 
    panel=function(...) { 
        panel.xyplot(..., pch=20,col='black',cex=2) 
        panel.abline(0,b=1, lty=2) 
        panel.text(..., names(thetas), pos=1) 
    }, 
    main="Change in species generalism", xlab="Generalism, 1066", ylab="Generalism, 10 
→86" 
) 
dev.off() 
 
xyplot( 
    theta.mean ~ rich, data=stock.all.pth, 
    group=rep(c(1066,1086),each=3230), type=c('p','a'), auto.key=TRUE, pch=c(3,4) 
) 


