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ABSTRACT 

 

Sarah Cathlin Nicolson:  Understanding mechanisms of Adeno-associated virus vector 

transduction through pharmacological and biological approaches 

(Under the direction of R. Jude Samulski) 

 

 Gene therapy using Adeno-associated virus vectors (rAAV) has garnered much promise 

recently due to impressive clinical performance for several indications.  Indeed, the lack of 

pathogenicity, broad tissue tropism among several serotypes, and ability to replace greater than 

90 percent of the viral genome with a therapeutic transgene makes rAAV an attractive tool to 

achieve therapeutic benefit.  However, recent gene therapy trials have highlighted a particular 

challenge that has hindered widespread applicability.  While administration to local, 

immunopriviledged sites results in robust, long term expression of therapeutic transgenes; 

systemic delivery is seemingly restricted to a certain dose, as administration of vectors above this 

threshold seems to trigger an immune response resulting in decreased transgene expression over 

time.  Thus, a major goal in the field is to identify ways to enhance transduction efficiency of 

vectors.  In this dissertation, two approaches are explored that may provide insight into the future 

development of more effective vectors.  First, a high throughput, small molecule screen was 

designed and executed to identify and characterize compounds resulting in enhanced 

transduction.  These compounds were validated in vitro and clinically relevant compounds were 

explored in vivo.  Secondly, a mechanism for rAAV2 nuclear entry, a step in subcellular 

trafficking thought to be a barrier to efficient transduction, was characterized.  Efforts in capsid 

design or pharmacological approaches to overcome cellular barriers to transduction could result 

in enhanced transduction in a mechanism distinct from those already being targeted.  These 
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results provide a foundation for further advancements in pharmacological screens and rational 

vector design in order to achieve widespread clinical utility of rAAV. 
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CHAPTER 1 

 

Introduction 

 

Gene therapy and the emergence of rAAV 

 Gene therapy has been a long sought after strategy to combat genetic disorders or 

acquired diseases.  Since the 1970s, the idea of introducing a copy of a functional gene to 

someone with a defective counterpart has been pursued in myriad fields using an array of 

delivery strategies.  More recently, gene therapy has been pursued as a way to introduce a 

therapeutic protein for acquired disease.  Monogenetic disorders, the primary target for 

congenital gene therapy, affect approximately one percent of births worldwide.  Acquired 

diseases, such as Alzheimer’s disease, Parkinson’s disease, and cancer, could benefit from gene 

therapy through the addition of a therapeutic protein or RNAi.  The perceived clinical utility is 

growing, as can be evidenced by the approximately 1800 gene therapy clinical trials initiated to 

date  (wiley.co.uk/genetherapy/clinical).  While most are phase I trials, a growing number are 

reporting phase II and phase III statuses.  In fact, the first ever approved gene therapy has 

emerged:  Glybera® is a treatment for lipoprotein lipase deficiency (LPLD) currently approved 

in the European Union.  This endpoint represents a longtime goal held by so many and will 

hopefully mark the beginning of exciting new developments in the future. 

 Indeed, the promising pre-clinical and clinical data seen especially in the past decade has 

resulted from the persistence of a field that suffered many setbacks in the decades before.  

Stemming from a gene therapy trial utilizing retroviral vectors for hematopoietic stem cells, the 
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importance of controlling for integration of the transgene into human chromosomes was 

highlighted when 2 out of 10 children treated for Severe Combined Immunodeficiency Disorder 

developed leukemia shortly thereafter.  The death of Jesse Gelsinger in 1999 due to hyper-

immune complications from an Adenoviral-based gene therapy resulted in serious scrutiny from 

the regulatory community and stalled gene therapy progress at the time.  However, these events 

inspired the field to investigate alternative viral vector approaches; namely, viral vectors that did 

not invoke a strong immune response and did not function exclusively by integrating their 

genome into host cell chromosomes. 

 Concomitant with the aforementioned adverse events came the emergence of promising 

studies with Adeno-associated virus (AAV), a small parvovirus which had been shown to 

facilitate long term gene expression in a multitude of tissue types and myriad animal models.  

AAV vectors (rAAV) are nonpathogenic and delivered transgenes persist in host cells as 

episomes rather than integrating into host chromosomes.  To date, there have been over 10 

serotypes and 100 variants identified, which infect a wide range of human tissues with varying 

levels of efficacy.  For these reasons, AAV has become a very promising vector for gene therapy 

applications. 

 The first demonstration of rAAV-mediated gene transfer into murine and human cells 

occurred in 1984 (1).  To date, there have been over 100 clinical trials initiated utilizing rAAV 

(http://www.abedia.com/wiley).  The results of completed and ongoing trials have consistently 

demonstrated that rAAV vector administraton and persistence is safe and well tolerated by 

humans (2) (Figure 1.1A).  The first AAV-mediated gene therapy that clearly demonstrated 

long-term efficacy was reported in two clinical trials for Leber congenital amaurosis (LCA), an 

autosomal recessive disease that results in blindness.  In these particular trials, patients with a 
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deficiency in the human retinal pigment epithelium-specific 65 (RPE65) gene were treated with 

an rAAV2 vector carrying the correct copy.  One trial was performed in London, while the other 

was completed in Philadelphia (3-5).  Differences in the trials included the promoter selected for 

each construct (constitutive in the US trial, endogenous RPE65 promoter in the UK) as well as 

the selected patient population (adolescents in the UK, pediatrics with less progressive disease as 

well as adults in the US).  While visual function improved in only one of the three patients tested 

in the UK, all patients the US trial reported objective and subjective improvement in vision, with 

the greatest improvement seen in the pediatric patients.  It remains to be determined if the 

rAAV2_RPE65-mediated therapy will prevent further degeneration in the UK patients who did 

not report improvements in vision. 

 Efficacy using rAAV-mediated gene therapy has also been reported for Parkinson’s 

disease and congestive heart failure.  In the Parkinson’s disease trial, patients were given a 1:1 

infusion of glutamate decarboxylase (GAD) 65 and GAD67 encapsidated by AAV2 delivered to 

the center of the subthalamic nucleus (6).  At 6 months post-infusion, the unified Parkinson’s 

disease rating scale (UPDRS) had decreased by 8.1 points in the AAV2_GAD cohort as 

compared to a decrease of 4.7 points in the sham operation group.  Clinical improvement was 

also noted in the 6 month follow-up study in the AAV2_GAD-treated cohort.  In the Calcium 

Upregulation by Percutaneous Administration of Gene Therapy in Cardiac Disease (CUPID) 

trial, patients received either placebo or low-dose, medium-dose, or high-dose sarcoplasmic 

reticulum Ca2+-ATPase (SERCA2a) gene encapsidated by AAV1 (7).  Administration was 

performed via a percutaneous intracoronary infusion and primary endpoints were evaluated 6 

months post-administration.  Improvements or stabilization in several clinical parameters, 

including 6-minute walk test, peak maximum oxygen consumption, left ventricular end-systolic 
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volume, time to clinical events, and cardiovascular events, was observed for the high-dose 

cohort.   

 Long-term improvements in clinical outcomes has been demonstrated for a congenital 

neurological disease, Canavan disease (8).  In this trial, patients were treated with rAAV2 

carrying the aspartoacylase gene (ASPA) administered via intraparenchymal delivery at six sites 

in the brain.  Safety profiles and clinical outcomes were recorded for at least 5 years post-

treatment.  In the AAV2_ASPA-treated cohort, clinical outcomes such as decreased N-

acetylaspartate (NAA), slowed progression of brain atrophy, improvement in seizure frequency, 

and general clinical stabilization were reported.  

 The emergence of such promising results in rAAV-mediated gene therapy has been 

substantiated by the first ever approved gene therapy therapeutic: Glybera® (alipogene 

tiparvovec).  Glybera® is  an rAAV1-based vector carrying a lipoprotein lipase variant 

(LPLS447X) for the treatment of lipoprotein lipase deficiency (LPLD).  It was approved by the 

European Commission in November 2012.  Familial LPLD affects between one in 500,000 to 

one in 1,000,000 people (9) and is caused by the lack of a functional LPL gene.  LPL is produced 

in and secreted from skeletal muscle and adipose tissue and is transported to the limunal surface 

of blood vessels.  The primary role of LPL is in the metabolism of triglycerides, chylomicrons, 

and very low-density lipoproteins.  Clinical manifestations of LPLD include severe 

hypertriglyceridemia and hyperchylomicronemia which can lead to several complications, 

including acute pancreatitis.  Prior to the approval of Glybera®, the only treatment available was 

dietary restriction to a low fat diet, as enzyme replacement therapy was not an option due to the 

short half life of LPL. 
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 Three clinical trials were performed to assess the safety and efficacy of Glybera® for 

LPLD.  In the first clinical trial, eight patients were administered either a low-dose or high-dose 

of AAV1_LPLS447X via 40-60 intramuscular injections (10).  Decrease in plasma triglyceride 

levels were noted, but this decrease was transient and thought to be mediated by an immune 

response.  The second clinical trial was conducted in 14 patients who received an 

immunosuppression regimen in addition to AAV1_LPLS447X (11).  Decreases in plasma 

triglyceride levels were reported, but were still transient, suggesting that an immune response 

was not responsible for the fleeting measurements.  Despite the disappointing measured 

outcome, signs of clinical improvement were notable out to two years post-administration.  

These included increased patient tolerance for certain foods, changes in overall blood lipid 

profile, and decreased incidences of pancreatitis, in addition to persistent expression of the 

LPLS447X transgene.  Since a discrepancy in clinical outcome and plasma triglyceride levels 

was found, a third clinical trial was initiated with predetermined outcomes including incidences 

of abdominal pain, pancreatitis, and chylomicron plasma clearance.  Five patients were treated 

with rAAV1_LPLS447X and reported decreased abdominal pain, decreased incidences of 

pancreatitis, and improved overall lifestyle in addition to improvements in chylomicron 

metabolism out to two years post-administration (12).  These studies, in combination with a 

retrospective analysis of 22 of the 27 treated patients overall that showed a decrease in the 

incidence and severity of pancreatitis (9),  provided the evidence that resulted in approval of 

Glybera® by the European Commission. 
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Clinical limitations of rAAV-mediated gene therapy 

 The influx of promising results from clinical trials and the emergence of a clinically 

approved rAAV-based gene therapy has reinvigorated the field and provided excellent proof-of-

concept studies that warrant broader investigations into rAAV-mediated gene therapy.  However, 

systemic application of rAAV-based gene therapy has been met with challenges of low levels of 

transgene expression or loss of transgene expression over time, thought to be mediated by a 

cytotoxic T cell response to the AAV capsid.  These complications are highlighted by the earlier 

Hemophilia B trials, where patients were treated with three doses of rAAV2 carrying Factor IX 

(FIX) and assessed for circulating FIX, bleeding episodes, and general clinical condition.  In a 

phase I/II, dose escalation trial with seven patients, therapeutic levels of FIX were achieved with 

the highest vector dose (13).  However, these levels returned to baseline by eight weeks post-

administration and correlated with a transient rise in liver aspartate aminotransferase (AST) and 

alanine aminotransfease (ALT).   It was later determined that the rise in liver enzymes and 

corresponding decrease in FIX expression was due to capsid-mediated CD8+ T-cell cytotoxiciy 

(14).  No rise in liver enzymes was observed with the patients receiving a lower dose of vector; 

however, therapeutic levels of FIX were not achieved either.   

 In the most recent dose-escalation Hemphilia B clinical trial, patients received peripheral 

vein-administered rAAV8 encoding a self-complementary, codon-optimized FIX gene (15).  

Generally FIX expression and clinical outcome correlated with vector dose.  Four of the six 

patients were able to discontinue FIX infusions, although 2 of these patients required bolus 

injections of FIX after severe injury and one patient required FIX prophylaxis prior to surgery.  

The remaining two patients (one from the low dose cohort and one from the medium dose 

cohort) that still received infusions were able to increase the interval at which the infusions were 
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administered, which indicated clinical improvement.  While therapeutic FIX levels were 

achieved in this trial, a similar observation to that of the 2006 trial was made regarding the two 

participants receiving the high-dose of rAAV8_FIX (Figure 1.1B).   Specifically, the higher 

levels of vector administration corresponded to a rise in liver AST and ALT at seven and nine 

weeks, respectively.  Liver AST and ALT levels decreased upon administration of 

immunosuppressants, and circulating FIX levels stabilized once again.  Again, the rise in liver 

enzymes corresponded with an increase in a capsid-specific CD8+ T cell response.  A significant 

increase in capsid-specific T cell response was also recorded for the intermediate-dose cohort, 

but not the low dose cohort.  While demonstrating promising therapeutic value, systemic 

administration of rAAV at levels required to achieve therapeutic efficacy is limited by host 

immune responses, which were not predicted by animal studies (16). 

 With the exception of Glybera®, the paradox of sub-therapeutic protein expression but no 

detectable host immune response on one end, and transient therapeutic protein expression 

corresponding with a host immune response on the other, has become the inflection point in the 

field of gene therapy today.  In order to improve efficacy, the efficiency of viral transduction 

must be enhanced.  This would allow lower levels of vector while still achieving therapeutic 

levels of protein.  Transduction involves all of the viral steps needed in order to achieve gene 

expression, which include cell surface binding, subcellular trafficking, nuclear entry, and 

uncoating, among others.  In order to improve transduction efficiency, it has become paramount 

to understand AAV vector biology, including the physical properties of the viral vector as well as 

the cellular barriers that limit efficient transduction. 
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Origins and biology of AAV and rAAV 

AAV was first discovered in the 1960s as a contaminant in Adenovirus preparations (17, 

18).  At the time, AAV was referred to as a “defective virus” since it could not carry out a lytic 

infectious life cycle on its own.  Rather, AAV requires a helper virus, such as Adenovirus, in 

order to complete a productive life cycle (17, 19). The helper virus functions to increase the 

efficiency of several steps in the AAV life cycle, including nuclear transport of AAV (20), 

double stranded DNA formation (21, 22), and the conversion to circular DNA (23, 24).  The 

DNA-binding protein and E1A protein of Adenovirus serve to increase AAV transcription by 

releasing the p5 promoter from Rep mediated repression (25-27).  Furthermore, Adenoviral 

proteins can increase the maturation and translation of AAV mRNAs (28-30). Finally, the helper 

virus facilitates AAV genome replication [86-88] and egress from the host cell (31).  While most 

helper functions have been delineated with Adenovirus, other viruses, as well as several agents 

of cellular stress, have been shown to provide helper function for the AAV life cycle. Such 

examples include Herpes Simplex Virus (32), Vaccinia virus (33), Human Papillomavirus (34, 

35), hydroxyurea (36) and UV light in the presence of SV40 T antigen (37).  Because AAV 

relies on the helper functions of other viruses or certain forms of cellular stress, it has been 

classified as a dependovirus, a genus of the parvovirus family. 

The AAV genome consists of a linear 4.7 kb single-stranded DNA molecule that can be 

either positive or negative sense (Figure 1.2B).  Two genes, termed rep and cap, flanked by two 

145 base pair inverted terminal repeats (ITRs) comprise this small genome.  The ITRs, found at 

both ends of the genome, provide many functions during the AAV life cycle.  Specific sequences 

within the ITRs are bound and nicked by the large Rep proteins, which facilitates replication of 

the genome (38).  The ITRs form hairpins on either end of the genome, which serve to prime 
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leading strand synthesis for the rest of the genome through a strand displacement mechanism 

(Figure 1.2C).   The small Rep proteins also recognize sequences on the ITRs in order to 

facilitate packaging into the capsid (39).  Due to their structure and high G-C content, the ITRs 

are highly recombinogenic and are paramount to the concatamerization, circularization, and 

chromosomal integration of the AAV genome in host cell nuclei.  In fact, due to this property, 

ITRs are being explored in gene editing applications (40). 

Like many other viruses, the AAV genome makes use of alternative promoters, multiple 

start codons and alternative splicing in order to transcribe and translate its eight known proteins.  

The rep gene encodes four non-structural proteins—Rep78, Rep68, Rep52, and Rep40—through 

alternative promoters (p5 and p19) and splicing variants.  The two larger proteins, Rep78 and 

Rep68, have been shown to be important for genome replication and transcriptional control (41).  

Due to the homology of the Rep binding element on the ITRS and a specific location on human 

chromosome 19 termed AAVS1, the larger Rep proteins can facilitate site-specific integration of 

the AAV genome into this location (42, 43).  The small Rep proteins, Rep52 and Rep40, have 

been shown to have ATP-dependent helicase activity and are important for packaging the AAV 

genome into preformed capsids during viral assembly within the nucleus (39).   

The cap gene encodes the three structural proteins, termed VP1, VP2, and VP3, that 

comprise the viral capsid.  Additionally, cap encodes a non-structural protein, Adeno-associated 

virus assembly-activating protein (AAP).  Similarly to Rep, these proteins are produced through 

alternative start codons and splice variants.  VP1, VP2, and VP3 are driven by a third promoter, 

p40, and share the same C-terminal region and stop codon, but differ in their start codons.  Thus, 

VP2 and VP1 have different N-terminal regions that provide extra functionality over VP3 alone.  

The VP1- and VP2- unique regions contain stretches of basic amino acids that are thought to 
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serve as nuclear localization sequences (NLSs).  The VP1-unique region (VP1up) contains a 

third basic region as well as a phospholipase 2 (PLA2) domain.  The capsid proteins combine in 

an approximately 1:1:10 ratio to form the 60 monomer icosahedral (T=1) viral capsid (44, 45).  

The outer surface of the capsid is comprised mainly of VP3 and the corresponding shared C-

terminus of VP1 and VP2.  The VP1- and VP2- unique regions are thought to lie underneath the 

capsid surface and exist as less rigid structures, as they are not identifiable in any crystal 

structures to date. The capsid assembly process requires AAP, which serves to target translated 

capsid proteins to the nucleolus and facilitate proper assembly (46). 

One of the many features that makes AAV a compelling gene therapy vector is the fact 

that virtually the entire viral genome can be replaced with a therapeutic transgene.  Due to their 

importance in Rep recruitment and DNA priming, the ITRs  are the only cis-elements of the 

AAV genome required for replication and encapsidation of the genome.  In vector production, 

rep and cap can be provided in trans.  Production is carried out through a triple transfection 

method, whereby rep and cap, devoid of ITRs, are provided by one plasmid; a transgene, flanked 

by AAV ITRs, is provided in another plasmid, and helper virus proteins that facilitate efficient 

replication and encapsidation are provided in a third plasmid.  On the molecular level, Rep and 

helper proteins facilitate the replication of the ITR-flanked transgene and package it into 

preformed capsids.  The resulting product is termed recombinant AAV (rAAV).  Since the 

encapsidated transgenes of rAAV no longer encode Rep, site-specific integration into 

chromosome 19 does not occur in gene therapy applications, and sustained gene expression is 

primarily due to circularized rAAV episomes within host nuclei.   As the process for 

synthesizing the opposite strand of ssDNA is rate-limiting in gene therapy applications, research 

into making this step more efficient has yielded self-complementary rAAV vectors (scAAV).  
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scAAV transgenes are approximately half the size of single-stranded rAAV transgenes and 

contain a mutation in the Rep nicking site on one ITR.  This results in a transgene that can self-

anneal, thus bypassing the need for second-strand synthesis, which allows for faster and more 

efficient gene expression (47-49).  Thus, the triple transfection method is advantageous because 

it allows for modular construction of AAV vectors; i.e., different transgene cassettes (ssAAV or 

scAAV) can be incorporated into the capsids of various AAV serotypes. 

The initial discovery of AAV, identified as AAV2, followed by its development as a gene 

therapy vector, has prompted much interest in the discovery of alternative serotypes.  Indeed, to 

date 12 serotypes have been discovered in humans and non-human primates, along with 

hundreds of variant species sequenced from human tissue samples (50) with capsid homology 

ranging from 49-99% (51).  These serotypes display diverse tissue tropisms, which has been 

advantageous in the design of gene therapy vectors for tissue-specific diseases (i.e. heart disease, 

neurological disorders, etc.) (Figure 1.3).  For example, AAV8 infects liver cells between 10- 

and 100-fold more efficiently than AAV2 (52), while in muscle, AAV1 is between 5-12 fold 

more efficient than AAV2 (53).  A more recently discovered serotype, AAV9, has been shown to 

have more efficient heart and neuronal transduction compared to other serotypes (54).  

Development of serotypes other than AAV2 as gene therapy vectors provides an immune 

advantage as well.  AAV2 is the most prevalent serotype in the human population, with the first 

infection occurring in 30-80% of the population in early childhood.  Less seroprevalent serotypes 

include AAV6, which is estimated to exist in approximately 30% of the population, followed by 

AAV5 (10-20%), and AAV7 and AAV8 (6%) (52, 55-57).  While more recently identified 

serotypes display great promise in mouse models and in the clinic, research into their biological 
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properties is limited by their poor performance in cell culture compared to AAV2.  Because of 

this, caution must be and has been taken in translating in vitro findings to in vivo applications. 

The differences in tissue tropism and neutralizing antibody response stem from the capsid 

architecture mainly comprised by capsid protein VP3.  Indeed, while the core of the VP3 

monomer consists of a fairly conserved β-barrel motif, looped regions that extend beyond the 

core of the capsid and interface with other monomers are highly varied among the serotypes.    

To date, capsid structures have been solved for eight serotypes of AAV (45, 58-64).  Distinct 

protrusions at the three-fold axis of symmetry vary in structure between serotypes and have 

important roles in both receptor binding and recognition by neutralizing antibodies.  The 

prototypical AAV serotype, AAV2, has been shown to require heparan sulfate proteoglycan 

(HSPG) as a primary receptor for transduction (65) and amino acid residues on the three-fold 

protrusions required for this interaction have been elucidated (66-68).  AAV9, a serotype that is 

emerging as the lead vector candidate for cardiac and CNS applications, has recently been shown 

to utilize galactose as its primary receptor (69, 70).  Shortly thereafter, a binding pocket, located 

on within the three-fold axis of symmetry and consisting of five amino acids, was determined to 

be the capsid region important for galactose interactions (71, 72).  While AAV1 and AAV6 have 

been shown to utilize N-linked sialic acid as primary receptors (73), the structural determinants 

for receptor binding have yet to be elucidated.   

 

AAV subcellular trafficking and cellular barriers to transduction 

While serotype-specific tissue tropism has emerged as an effective strategy to boost 

transduction efficiency in certain cell types, mounting evidence suggests that viral trafficking 

once inside the cell serves as a major barrier to efficient transduction. It has thus become 
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paramount to understand the parameters within host cells that govern permissible viral transit to 

the nucleus, where subsequent uncoating and gene expression occur.  The majority of the 

interactions between AAV and host cells has been elucidated with AAV2 and common tissue-

culture cells such as HeLa cells.  In assessing these studies, it appears that wild type AAV2 

infection and rAAV transduction share very similar subcellular trafficking patterns, and differ in 

genome persistence (integration and episome formation vs. episomal alone) and possibly capsid 

conformational changes and uncoating that might be more efficient depending on the content of 

the genome within the capsid.  A schematic of the general trafficking pattern of AAV is 

displayed in Figure 1.4.  AAV first binds to its primary receptor and then forms an interaction 

with a co-receptor.  In the case of AAV2, several co-receptors have been identified, including 

αvβ5 integrin (74), fibroblast growth factor receptor type 1 (FGFR1) (75), hepatocyte growth 

factor receptor (HGFR) (76), α5β1 integrin (77), and the laminin receptor (78).  Some of the co-

receptors for other serotypes have been identified, including the platelet derived growth factor 

receptor (PDGFR) for AAV5 (79) epidermal growth factor receptor (EGFR) for AAV6 (80), and 

the laminin receptor for AAV8 and AAV9 (78).  Tissue tropism is thought to be due to, in part, 

the combination of primary and co-receptor preferences among different serotypes.  In fact, a 

“click-to-fit” model has been proposed that describes the requirement of viral co-interaction 

between select primary and co-receptors that facilitates internalization (77). 

Internalization is thought to occur through several pathways, including receptor-mediated 

endocytosis (81, 82), entry through the clathrin-independent carriers and GPI-enriched endocytic 

compartment (CLIC-GEEK) pathway (83), and possibly macropinocytosis (84).  Internalization 

might be dependent on the pathway that is prototypical to the co-receptor/native ligand 

interaction and not necessarily induced by virus binding or activation of signaling cascades.  
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Depending on the route of internalization, this process may be clathrin- and dynamin-dependent 

(81, 82, 85), or independent (83) but ultimately results in vesicular trafficking, facilitated by the 

microtubule network (86).  In order to proceed to the nucleus, AAV must escape from the 

endosome, either entering the cytosol or perhaps by traversing the ER-Golgi network through 

retrograde transport (85).  AAV then enters the nucleus as an intact particle (87) and is targeted 

to the nucleolus.  It is thought that in situations that favor viral reproduction (or gene expression 

in the case of rAAV), AAV mobilizes from the nucleolus and uncoats.  Finally, the single-

stranded genome is converted to the double stranded form by host cell factors or anneals with a 

complementary genome, whereby gene expression ensues (21, 88, 89).  While the general 

pathway of AAV trafficking might be conserved for some serotypes, there is evidence that 

supports that some serotypes might traffic to the nucleus using either different pathways or can 

more efficiently navigate the prototypical endo-lysosomal pathway.  For example, recent studies 

have shown that rAAV1 and rAAV5 converge on and enter the nucleus at a much more rapid 

rate than AAV2 (90).  This study suggests that cellular tropism is determined by intracellular 

fates of different serotypes in addition to receptor binding capabilities. 

While the general pathway of subcellular trafficking is known, specific details are still 

being resolved.  A more thorough understanding of how AAV navigates to the nucleus, releases 

its genome, and achieves persistent gene expression is critical in order to design more efficient 

gene therapy vectors.  Currently, there are several known major barriers to transduction, 

including  cell surface binding and internalization, endosomal escape, nuclear entry, and second-

strand genome synthesis/persistent gene expression.  AAV is limited in its ability to bind cell 

surfaces based on receptor availability and abundance.  Strategies are currently underway to 
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rationally design capsids that have higher receptor binding affinity or incorporate targeting 

peptides.  These strategies will be discussed in detail later.   

Perhaps the largest barrier to efficient transduction is endosomal escape and subsequent 

transit to the nucleus.  It has been shown that AAV enters host cell nuclei as an intact particle; 

however, both direct and indirect fluorescence microscopy studies have consistently showed that 

the majority of viral particles remain distal to the nucleus, converging in the region of the Golgi 

apparatus and the microtubule organizing center (MTOC).  As AAV navigates the subcellular 

space through the endo-lysosomal route, endosomes become acidified as they mature into late 

endosomes and eventually lysosomes.  It is thought that this acidification serves as a trigger, 

inducing a conformational change in the AAV capsid that allows the release of VP1up from the 

inside of the capsid (91, 92) (Figure 1.5).  In order for this process to occur efficiently, AAV 

particles must be carrying a genome, as VP1up is significantly less exposed when empty 

particles converge in the perinuclear region(87).  VP1up contains a PLA2 domain that is thought 

to mediate release from the endosome by hydrolyzing phospholipid substrates that comprise the 

endosomal membrane or Golgi lipids (93, 94).   Indeed, empty particles or viral particles that do 

not contain VP1up cannot escape endosomal compartments and do not transit to the nucleus (87, 

95).  VP1up, as well as the unique region of VP2, also contain stretches of basic regions that 

resemble well-known NLSs (92, 96).  When these regions are not present, as in the case of 

particles made with only VP3 subunits, or cannot be exposed, as in the case of empty particles, 

nuclear entry of viral particles is significantly limited.  Furthermore, mutations to these basic 

regions, rendering them functionally inert, also ablate nuclear entry (95, 96).  It is therefore 

postulated that efficient endosomal and subsequent nuclear entry require conditions that allow 

for efficient exposure of VP1up, effective phospholipid cleavage to allow for egress from the 
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endosome, and likely NLS-mediated targeting to the nucleus.  An alternative pathway for nuclear 

entry has been proposed, whereby viral particles traffic to the nucleus via retrograde transport 

through the Golgi apparatus and the endoplasmic reticulum (ER).  The phospholipase domain on 

VP1up could then facilitate nuclear entry through lysis of the nuclear lamina.  Regardless of the 

route of entry, the sheer volume of perinuclear, and not intranuclear, particles that are seen 

during the course of infection strongly suggest that the process of endosomal escape and/or 

nuclear entry is extremely inefficient.  It is therefore possible that enhancing the efficiency of 

one or both of these processes could enhance transduction. 

 

Second strand synthesis and genome persistence 

The preponderance of evidence suggests that AAV translocates to the nucleus as an intact 

particle; therefore, it must undergo uncoating in order to allow for gene expression.  A recent 

study has suggested that AAV trafficks to the nucleolus prior to uncoating (87).  While the exact 

reasons for this are unknown, it is speculated that the vectors are sequestered in this sub-nuclear 

space until favorable conditions in the cell allow for vector mobilization and completion of 

transduction.  Once uncoated, the single-stranded genome must convert to a double stranded 

genome in order for replication (for wt AAV) and gene expression (wtAAV and rAAV) to occur.  

This is achieved through cellular replication machinery, including DNA polymerase δ, 

proliferating cell nuclear antigen (PCNA), replication factor C (RFC), and replication protein A 

(RPA), and the Adenovirus DNA binding protein (Ad-DBP) if Adenovirus is present (97, 98).  In 

the wtAAV setting, Rep will cleave the double stranded molecule at the ITR nicking stem, which 

will eventually allow for completion of the ITR synthesis and eventual strand separation.  This 

double-stranded monomer is the major replicative form of AAV.  If DNA replication machinery 
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begins to synthesize another DNA strand before Rep cleaves the nicking stem, a longer, double-

stranded dimer forms, which represents the minor replicative form of AAV DNA.  Due to the 

highly recombinogenic nature of the ITRs, these dimers concatamerize and form stable episomes 

within the nuclei (24, 99, 100).  Second strand synthesis was first discovered to be rate-limiting 

upon the observation that Adenovirus could significantly enhance rAAV transduction in addition 

to wtAAV infection (21).  These observations were substantiated by in vivo experiments 

revealing that co-infection of mouse hepatocytes with Adenovirus could facilitate transgene 

expression, whereas transduction with rAAV alone resulted in rAAV DNA-containing 

hepatocyes, but no gene expression (101).   Second-strand synthesis, as well as persistence of 

gene expression, are thought to be regulated in part by host DNA repair proteins.  This is largely 

due to the fact that the secondary hairpin structure of the AAV ITR resembles a damaged DNA 

product. Currently, the relationship between AAV DNA and DNA repair machinery appears 

two-sided:  on one hand, double-stranded AAV DNA relies on DNA repair machinery to 

facilitate concatamerization and circularization; thus ensuring genome stability and persistence.  

On the other hand, several lines of evidence have demonstrated that this repair machinery 

inhibits gene expression.  For example, Mre11 and NBS1 of the Mre11-Rad50-Nbs1 (MRN) 

complex, as well as ATM, have been shown to be important for efficient scAAV genome 

circularization in vitro (102).  However, the MRN complex and ATM have also been shown to 

limit rAAV transduction, likely through direct binding in the case of MRN (103, 104).  

Understanding the speficic roles that these DNA damage proteins play in AAV genome stability 

is paramount to overcoming this barrier to efficient and sustained gene expression. 
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Approaches to enhance transduction 

 Clearly, there are distinct cellular barriers inhibiting the full transduction potential of 

rAAV vectors.  These impediments can be extracellular, as in the case of receptor binding and 

internalization; and intracellular, as in the case of subcellular trafficking, endosomal escape, 

nuclear entry, uncoating, second strand synthesis, and longevity of gene expression.  From a 

gene therapy perspective, the overarching issue with inefficient transduction is the onset of the 

host immune response at what seems to be a certain threshold of introduced vector particles.  As 

a higher dose of vector is introduced to override the shortfalls of inefficient transduction, the 

immune response counters through the formation of neutralizing antibodies to the capsid or T 

cell-mediated response against capsid proteins.  This immune response is likely mounted more 

easily if more capsids are available for the proteasomal degradation and antigen presentation that 

are innate to any antigen presenting cell.  These postulations are supported by the Hemophilia B 

clinical trials previously discussed.  The growing number of pre-clinical and clinical studies have 

converged to a point that has prompted many investigators to discover approaches to enhance 

transduction efficiency.  These strategies include enhancing receptor binding and host cell 

internalization through rational and library-based approaches to enhance receptor binding and 

host cell internalization, pharmacological approaches to alter the subcellular space into a more 

favorable environment for transduction, and rational design of capsids and genomes to overcome 

well-characterized cellular barriers. 

Rational and random mutagenesis to enhance receptor binding 

 Cell surface receptor binding and subsequent internalization can be enhanced through 

enhancing the interactions between rAAV vectors and receptors.  Two approaches, directed 

evolution and rational mutagenesis, have been devised that involve mutating key residues on 
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viral capsids in order to enhance these interactions.  Directed evolution is a library-based 

approach that employs chimeric capsids generated by DNA shuffling, capsids derived from 

natural serotypes with the exception of an insertional peptide library at a specific location, or a 

combination of both (105-110).  Error-prone PCR has also been utilized to add an additional 

level of variation to these libraries.  Vectors that are efficient at transduction are “panned” out of 

the host cells or host cell nuclei through Adenovirus-mediated replication or PCR amplification 

of viral genomes.  The amplified clones are then reconstructed into a new batch of vectors for the 

next round of selection.  One example of successful directed evolution initially focused on 

primary human astrocytes, a target for gene therapy that is limited by inefficient transduction 

(108).  In this study, three libraries were combined, including an AAV2-based library with 

random capsid mutations, a chimeric library produced from DNA shuffling, and a second 

AAV2-based library with a random peptide library inserted onto the capsid surface.  The 

resulting clones isolated from the screen demonstrated between three- and five- fold improved 

astrocyte transduction in vivo compared to rAAV2.  Next generation directed evolution 

approaches have involved cycling libraries in vivo, which allows for selection of clones that are 

both targeted to specific tissue types as well as detargeted from undesirable tissues.  This 

approach is highlighted in a study that aimed to isolate chimeric rAAV clones that could cross a 

seizure-compromised blood brain barrier (BBB) upon systemic administration (107).  Two 

clones were isolated that demonstrated enhanced transduction in the regions of the brain that had 

been damaged by seizures while also exhibiting decreased transduction of off-target tissues. 

 Directed evolution studies have demonstrated success in isolating clones that have 

increased specificity as well as transduction efficiency in target tissue types.  These approaches 

have several limitations, however.  First, isolated clones have been shown to vary from 
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experiment to experiment.  In the case of the astrocyte study, an attempt to replicate the isolation 

of the variants recouped from the first cycling series failed to generate these clones a second 

time, highlighting the variation in results between different trials.  Second, depending on the 

model used and the selective pressure employed, resulting clones might be specific for select cell 

types, disease models, or organisms.  Third, utilizing PCR to amplify clones that have 

successfully entered host cells, the only approach currently available for in vivo biopanning, also 

results in the amplification of variants that may have entered the cell but are unable to traffick to 

the nucleus and uncoat.  Thus, while a powerful method for finding relevant and efficient novel 

variants, in vivo biopannning requires secondary screening of multiple clones.  Finally, attempts 

to define capsid determininants for cell speficic transduction have proven to be unfruitful.  This 

has been disappointing, given the potential power that could be gleaned from understanding how 

specific regions of the capsid, or specific amino acid conformations, facilitate efficient 

transduction.  Therefore, while directed evolution can be a powerful approach to producing novel 

vectors under specialized circumstances, its widespread utility in enhancing rAAV transduction 

is yet to be realized. 

Pharmacological approaches to overcome intracellular barriers 

 Another approach to enhancing transduction is through the use of small molecules that 

alter the cellular environment to be more permissive to rAAV transduction.  The first 

demonstration of the utility of small molecules was a study that characterized the effect of DNA 

damaging agents on transduction (111).  In this study, the authors tested the effects of cis-

platinum, along with UV and gamma irradiation on rAAV transduction efficiency.  Treatment 

with cis-platinum resulted in an approximately 20-fold enhancement in transduction 48 hours 

after the addition of rAAV, while UV irradiation and gamma irradiation enhanced rAAV 
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transduction between 50- and 80-fold.  The effects were especially pronounced in non-dividing 

cells, suggesting that perhaps these agents promote DNA synthesis or alter the dynamics of 

repair proteins.  In a similar study, the effects of other DNA synthesis inhibitors, as well as 

Topoisomerase inhibitors, on rAAV transduction was studied (112).  Cells were pre-treated with 

Hydroxyurea (HU), which inhibits ribonucleotide reductase and depletes deoxynucleotide pools, 

camptothecin, which inhibits topoisomerase I, and etoposide, which inhibits topoisomerase II, 

prior to infection with rAAV.  For all treatments, the frequency of transduction of stationary 

human fibroblast cultures was increased by over 50-fold (over 100-fold for HU treatment).  The 

positive effects on transduction persisted for over 10 days, suggesting a long term effect.  HU 

and etoposide were also shown to increase the number of stably transduced cells as well, 

suggesting that application of these small molecules may increase non-specific integration of 

rAAV genomes into host chromosomal DNA.  Taken together, these results also suggest that 

recruitment of DNA synthesis and/or change in repair factors function  serves to enhance rAAV 

transduction.  

 The most thoroughly characterized enhancing pharmacologicals to date are small 

molecules that inhibit the cellular proteasome.  The initial study demonstrating the utility of 

proteasome inhibitors utilized a model that represents human airway epithelia, a target for 

rAAV-mediated gene therapy for cystic fibrosis (113).  Normally, these cells are permissive to 

rAAV transduction from the basolateral side, but are refractory to transduction from the apical 

side.  Treatment of these cells with DNA synthesis and topoisomerase inhibitors did not enhance 

apical-side transduction.  However, accumulation of single-stranded genomes within these cells 

was observed, suggesting that rAAV could enter these cells but was likely getting trapped in an 

unknown cellular compartment.  Application of the tri-peptide proteasome inhibitor N-acetyl-L-
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leucyl-L-leucyl-L-norleucinal (LLnL) could enhance rAAV transduction by greater than 200 

fold.  These results were especially encouraging because efficient transduction of airway 

epithelia has impeded progress for rAAV-mediated therapy of cystic fibrosis.  In a second study, 

the same group utilized the proteasome inhibitor MG132 in addition to doxorubicin (which has 

both topoisomerase II inhibiting as well as proteasome inhibiting properties) to augment 

transduction of primary cystic firbosis epithelia with rAAV2 and rAAV5 carrying the CFTR 

gene (114).  Since these studies, proteasome inhibitors have been used to enhance transduction 

several serotypes in a variety of cell types, including synoviocytes (115), keratinocytes (116), 

intestinal epithelial cells (117), and liver cells (118).  Velcade (bortezomib), the first proteasome 

inhibitor approved for use by the FDA, was shown to enhance rAAV8-delivered Factor VIII 

levels by 3-to 6-fold in a hemophilia A mouse model and significantly reduced the number of 

bleeding episodes in hemophilia A dogs (119).  

 The mechanism driving enhanced rAAV transduction is thought to involve increased 

bulk flow of particles into the nucleus, where more single-stranded genomes can be converted to 

the transcriptionally active double-stranded molecule (113, 120).  Indeed, microscopic analysis 

of the infectious pathway of rAAV2 in HeLa cells in the presence of the proteasome inhibitor 

MG132 revealed a significant increase in nucleolar accumulation of particles which 

corresponded to an enhancement in transduction by almost two log orders of magnitude (87).  

This effect may be dependent on the ability of rAAV to effectively navigate earlier trafficking 

steps in specific cell types, since proteasome inhibitors are not universally effective.  In fact, a 

study investigating the effects of MG132 on endothelial cells demonstrated that proteasome 

inhibition could enhance transduction of the endothelial cell line EAhy-926 by approximately 

12-fold; however it failed to enhance the transduction of endothelial cells in vivo (121).  
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Similarly, Bortezomib failed to provide any enhancement in transduction of cardiac cells by 

rAAV9-SERCA2a nor improvement in cardiac function in a rodent model of heart failure (122).  

Furthermore, the effect of proteasome inhibitors may be multidimensional and include post-

trafficking mechanisms, as application of MG132 13, 21, and 28 days post-infection of rAAV2-

IL-10 induced gene expression when measured a few days following each administration (115). 

 Clearly, the impressive effects on transduction seen with various pharmacological agents 

is promising for gene therapy applications, especially when considering the low permissivity to 

transduction of some cell types that are critical for specific gene therapy applications.  

Widespread use of these agents has thus far been limited, however.  As topoisomerase inhibitors 

pose the risk of increasing non-specific integration into the host chromosome, this possibility 

would need to be fully explored and characterized in vivo.  While bortezomib seems to be the 

most promising target for pharmaco-gene therapy, its side effects in humans are grave and 

include gastrointestinal issues, neuropathy, thrombocytopenia, liver failure and even death (123-

125).  Therefore, further exploration in new targets for drug enhanced rAAV transduction is 

necessary in order to move forward with widespread clinical application.  

Rational design to overcome intracellular barriers 

 While capsid mutation and small molecules have driven much of the understanding of 

AAV and rAAV biology, applying the inverse strategy- i.e. understanding rAAV biology to 

drive vector modification or the discovery of small molecules- can also be an effective way to 

improve upon the current limits of transduction.  The two best examples of this strategy include 

the development of self-complementary vectors and surface tyrosine-mutated capsids, which are 

discussed below. 
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 The pursuit of a more efficient rAAV genome emerged from the initial observation that 

Adenovirus, specifically the E4Orf6 protein, facilitated increased double-stranded rAAV 

genomes in cells compared to cells that were transduced with rAAV alone (21).  Interestingly, 

total uncoated rAAV genomes were equivalent between the two conditions, suggesting that 

Adenovirus enhanced rAAV second-strand synthesis.  The increase in second-strand synthesis 

correlated with significantly enhanced β-galactosidase activity, suggesting that conversion of the 

single-stranded genome to the transcriptionally active double-stranded form was a rate-limiting 

step in transduction.  This observation was corroborated in an in vivo setting, when it was 

demonstrated that murine hepatocytes harbor sufficient rAAV genomes to support transduction, 

however transgene expression is minimal but can be augmented through co-infection with 

Adenovirus (101).  It was thus hypothesized that delivery of an already double-stranded rAAV 

genome might bypass the rate-limiting step of second strand synthesis and lead to enhanced 

transduction.  Indeed, production of rAAV vectors using ITR-flanked transgenes of 

approximately half the size of the wild type genome resulted in rAAV vectors that could deliver 

duplexed molecules that demonstrated significantly improved gene expression both in vitro and 

in vivo (48).  Further development of the self-complementary vector ensued, resulting in a duplex 

transgene flanked by two ITRs on one end and a mutated ITR on the other (49).  The single ITR 

had a mutation in the D element to eliminate the Rep nicking stem, which allowed for a much 

higher percentage of self-complementary genomes to be packaged.  Analysis of transduction in 

vivo revealed faster gene expression kinetics and increased transduction efficiency.  Since their 

inception, self-complementary vectors have been encapsidated in multiple serotypes and 

developed for a variety of gene therapy applications, including vectors being investigated in the 

clinic (15). 
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 The development of rAAV vectors that demonstrated superior subcellular trafficking 

emerged concomitantly with the discovery of proteasome inhibitors as enhancers of rAAV 

transduction.  An initial study investigating the role of EGFR protein tyrosine kinase (EGFR) 

signaling on rAAV2 transduction revealed that rAAV2 capsids are phosphorylated by EGFR, 

which leads to subsequent ubiquitination and proteasomal degradation (126).  Particles that could 

evade proteasomal degradation were hypothesized to be able to traffick more efficiently to the 

nucleus.  Rational design coupled with molecular modeling identified seven surface exposed 

tyrosine residues that could be targets of EGFR.  Mutation of these residues to phenylalanine on 

the rAAV2 capsid resulted in an approximately 10-fold increase in transduction of Hela cells as 

well as an almost 30-fold increase in transduction of mouse hepatocytes at a log order lower 

vector dose in vivo (127).  The improved transduction efficiency at lower doses was confirmed to 

be due to increased particle trafficking to the nucleus.  To date, several studies have 

demonstrated significantly enhanced transduction efficiency in vitro, including hematopoietic 

stem cells (128), fibroblasts and mesenchymal stem cells (129), as well as in vivo in the mouse 

retina (130) and for the correction of murine hemophilia B (131).  The tyrosine mutation strategy 

has also been expanded to several serotypes, but has demonstrated variable success.  

Improvements were seen in rAAV6-mediated gene transfer to murine skeletal muscle (132), 

rAAV9-mediated delivery to neonatal mice (133), and rAAV2-, rAAV8-, and rAAV9-mediated 

delivery to the murine retina (134, 135).  However, the positive effects of tyrosine mutants on 

transduction is not universal, as studies investigating rAAV8 and rAAV9 tyrosine mutants for 

gene transfer to skeletal muscle and cardiac tissue demonstrated no significant improvement 

compared to the wild type counterparts (136). 
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Objectives of dissertation 

 While great strides have been made in the development of rAAV gene therapy in the past 

two decades, there is a demonstrated need for a new generation of rAAV vectors or delivery 

strategies that provide significantly enhanced transduction.  One has to look no further than the 

latest hemophilia gene therapy trial to understand the barriers imposed by the immune system 

when attempting to enhance gene transfer merely through increased viral dose.  The objectives 

for this dissertation were to investigate ways to improve transduction efficiency of rAAV 

through pharmacological and biological approaches.  In Chapter 2, we describe an approach to 

discover novel compounds that enhance transduction through a small molecule screen.  In 

Chapter 3, we identify cellular factors that are involved in the nuclear entry of rAAV2 and 

provide a foundation to drive the development of vectors that are more efficient at nuclear entry.  

Improvements in vector design as well as advancements in pharmaco-gene therapy will 

ultimately allow for widespread application of rAAV-mediated gene transfer for a variety of 

diseases. 
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Figure 1.1.  Brief overview of selected clinical trials with rAAV.  A.  rAAV clinical trials listed 

on clinicaltrials.gov as of June 2014, broken down by serotype and indication.  B.  Most recent 

Hemophilia B trial, highlighting the dose-immune response paradox.  Figure adapted from 

Nathwani et al.  “Adenovirus-Associated Virus Vector-Mediated Gene Transfer in Hemophilia 

B.”  The New England Journal of Medicine 365:  2357-2365 (2011).  
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Figure 1.2.  Biological characteristics of AAV.  A.  The 25 nm capsid is comprised of 60 protein 

monomers that form the outer shell. (i)  Axes of symmetry can be found at the 5-fold pore (ii), 

the 3-fold peaks (iii), and the 2-fold interface (iv).  B.   AAV genome and gene expression.  Rep 

and Cap give rise to structural and non-structural proteins required for replication, capsid 

assembly, and genome packaging through multiple start codons and alternative splicing.  C.  

Replication of the genome.  Self-primed, leading strand synthesis occurs with the help of cellular 

replication machinery.  i.  The ITR is then cleaved by Rep at the nicking stem and copied from 

the other end.  Replication repeats through a strand displacement mechanism.   ii.  The dimeric  

replicative form occurs for a minor portion of replicated genomes.  In this case, synthesis of a 

new strand occurs before Rep cleaves the nicking stem.  This molecule is eventually resolved by 

Rep nicking.  
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Figure 1.3.  AAV serotypes display a wide range of receptor binding and tissue tropism.  

Displayed are the AAV serotypes that are currently being explored as platforms for gene therapy 

vectors.  Largely due to capsid topology, different serotypes bind to different primary receptors 

and co-receptors.  It is believed that this combination of receptor binding, among other factors, 

contributes to the wide variety of tissue tropism seen with these serotypes.  
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Figure 1.4.  Helper-free AAV and rAAV entry and subcellular trafficking (here, both referred to 

as AAV).  i.  AAV binds its primary receptor and co-receptor.  ii.  Internalization occurs through 

receptor-mediated endocytosis, entry via the CLIC/GEEC pathway, or another mechanism.  iii.  

AAV trafficks along the endolysosomal pathway.  As  endosomes mature and become more 

acidic, a conformational change within the capsid exposes VP1up.  Endosomal escape ensues.  

From here, AAV either iv) converges at the perinuclear region or v) is diverted to a less 

favorable subcellular space, such as the proteasome.  In the preferred pathway, AAV enters the 

nucleus, where subsequent uncoating, second-strand synthesis, and gene expression occur (vi).  
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Figure 1.5.  Domains of VP1 and VP2 that are essential for infectivity and transduction.  VP1up 

conains a phospholipase A2 domain that is thought to mediate escape from the endosomal 

compartment.  Additionally, three basic regions, especially BR2 and BR3, are necessary for viral 

entry into the nucleus and transduction.  VP2 also contains BR2 and BR3.  
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CHAPTER 2 

 

Identification and validation of small molecules that enhance recombinant Adeno-

associated virus transduction following high throughput screen  

 

Summary 

Gene therapy applications using recombinant Adeno-associated virus vectors (rAAV) 

have recently seen success for indications such as Leber congenital amaurosis, hemophilia B, 

and lipoprotein lipase deficiency.  While the success of these clinical trials is promising, 

preclinical and clinical data have indicated that there are still challenges facing the widespread 

applicability of rAAV.  Specifically, in systemic applications, the amount of vector that can be 

administered appears to be limited by a host immune response to the viral capsid.  Thus, efforts 

are underway to enhance the transduction efficiency of the viral vectors in order to achieve 

therapeutic levels of gene expression at a vector dose that is below the immunological response 

threshold.  Strategies to combat this challenge have included random and rational capsid design, 

transgene optimization, and co-administration with pharmaceuticals that have been shown to 

have potentiating effects on transduction.  However, these strategies are often limited to specific 

serotypes or tissue types.  In an attempt to identify novel compounds that enhance a wide variety 

of rAAV vectors, we performed a high-throughput small molecule screen.  In doing so, we 

discovered both novel and previously identified compounds that are capable of enhancing 

transduction.  We compared the identified compounds’ abilities to impact transduction in several 

human cell lines and with single-stranded, self-complementary, and oversized, fragment vectors. 

Finally, we compared all of the clinically-relevant compounds identified in the screen for their 
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ability to enhance rAAV transduction in vivo.  This study provides a foundation upon which 

more diverse libraries of compounds can be tested in order to find more small molecules that can 

potentiate rAAV transduction through a variety of pathways.  

 

Introduction 

 Adeno-associated viral vectors have emerged to be one of the most promising types of 

vectors for gene therapy.  Indeed, recent and ongoing clinical trials have reported improvements 

in patients with hemophilia B (15) Parkinson’s disease (6, 137), Leber congenital amaurosis (3, 

4, 138, 139), and Canavan disease (8).  Such clinical successes have led to the approval of 

rAAV-mediated gene therapy in the European Union for the treatment of lipoprotein lipase 

deficiency (LPLD) (140).  Enthusiasm for using rAAV vectors stems from the unique properties 

of the virus itself.  As naturally occurring AAV requires a helper virus such as Adenovirus or 

Herpes Simplex Virus in order to carry out a productive infection, AAV on its own is not known 

to cause disease in man.  AAV vectors can carry transgenes that are devoid of greater than 90% 

of viral genetic material, thus limiting viral gene transfer in clinical applications. Furthermore, 

naturally occurring serotypes and engineered capsids have been shown to display diverse tissue 

tropism, as well as the ability to infect both dividing and non-dividing cells (for a review, see 

(141)).  From a vector perspective, the use of AAV for gene therapy applications is only limited 

by the size of the viral capsid, which accommodates a transgene of approximately 4.7 kb (142).  

However, even the size limitations of rAAV vectors are being challenged with the development 

of trans-splicing and fragment vector technology; that is, transgene cassettes that rely on cellular 

recombination pathways to restore a full length, large genome upon delivery by multiple rAAV 

vectors (143-149). 
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 Despite its remarkable safety profile, gene therapy using AAV vectors has had limited 

success in applications requiring systemic delivery, namely to non-immunoprivileged sites (as 

opposed to direct injection of various tissues or to immunoprivileged regions).  Results from 

clinical trials utilizing either rAAV2 or rAAV8 to deliver human Factor IX to hemophilia B 

patients have suggested that capsid-specific cytotoxic T lymphocytes (CTLs) might have 

eliminated the majority of transduced cells, thus impeding successful gene expression (13, 15).  

In these dose-escalation trials, therapeutic protein levels were achieved at the highest vector 

doses administered; however, these levels were transient and their decline corresponded with a 

rise in liver transaminases, suggestive of transduced cell death.  There was no rise in liver 

enzymes detected at the lower doses tested, suggesting that gene transfer to achieve protein 

levels that would be deemed therapeutic is limited by the amount of capsid that can be delivered 

to the host (14).  It has thus been postulated that if transduction efficiency could be improved 

(including both gene transfer and expression), fewer vectors would be required to achieve a 

given level of gene expression, and thus a clinically relevant therapeutic protein level could be 

obtained without eliciting a host immune response (150). 

 Several strategies have been employed in order to enhance transduction efficiency.  Both 

rational mutagenesis and library-based approaches have been designed to create capsids that 

have increased transduction efficiency for particular tissue types as well as decreased tropism for 

non-target organs such as the liver (105, 107, 151-154).  Barriers within the intracellular 

trafficking pathway have also been circumvented based on rationally engineered capsids (127, 

155).  Improvements to transgene design, including self-complementary rAAV and tissue-

specific promoters, ensure faster and more robust onset of gene expression in target tissues (48, 

156-158).  Finally, enhancing transduction efficiency through the use of pharmacological agents 
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has been explored.  Previous work has shown that topoisomerase inhibitors and anthracyclines 

can enhance transduction in both in vitro and in vivo (112, 114, 159-164).  Proteasome inhibitors, 

particularly the FDA-approved Velcade (bortezomib), has been shown to enhance transduction 

both in vitro and in both small and large animal models (114, 119, 162).  Collectively, these 

strategies have been important in reaching the level of transduction required for therapeutic 

benefit without eliciting a host immune response; however, efficient transduction in a wide 

variety of clinical applications is still a major goal that is actively being pursued. 

 In this study, we performed a high-throughput, small molecule screen with the purpose of 

discovering compounds that enhance rAAV2 transduction.  We confirmed the transduction 

augmentation of the previously identified topoisomerase II inhibitors, anthracyclines, and 

proteasome inhibitors, in addition to identifying several novel compounds.  The ability of these 

compounds to enhance transduction was confirmed in vitro using several human cell lines and 

several AAV serotypes.  These compounds were shown to be effective in enhancing self-

complementary (scAAV) as well as oversized, fragment (fAAV) vector transduction in addition 

to single-stranded vectors.  We further examined the activity of compounds identified in our 

screen that are currently approved for clinical use in vivo.  Our results demonstrate a simple, 

effective method of discovering compounds that enhance rAAV2 transduction.  We anticipate 

that this approach can be applied to vectors derived from other serotypes and in other cell lines.  

Furthermore, our design provides a foundation to investigate the plethora of commercially 

available compound libraries that span the small molecule and FDA-approved drug milieu.   
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Materials and Methods 

Cell culture.   HeLa cells, U87 cells, normal human fibroblasts (NHF1s) and HEK-293 cells 

were grown in Dulbecco’s modified Eagles medium that was supplemented with 10% heat-

inactivated fetal calf serum, 100 U/ml penicillin, and 100 g/ml streptomycin (complete DMEM).  

HepG2 cells were grown in RPMI-1640 medium, supplemented as described above.  All cell 

lines were maintained at 37°C and 5% CO2. 

 

Virus production. Virus was produced in HEK-293 cells as previously described (68). Briefly, 

using Polyethylenimine (PEI) Max (Polysciences), cells were triple transfected with a Rep and 

Cap plasmid (pXR2, pXR8, or pXR2.5), an inverted terminal repeat-flanked transgene plamid 

(single-stranded pTR-CBA-Luciferase, self-complementary pTR-CMV-gaussia-Luciferase, or 

oversized pTR-CBA-Luciferase) and the pXX6-80 helper plasmid. Between 48-72 h 

posttransfection, cells were harvested and virus was purified by cesium chloride gradient density 

centrifugation overnight at 55,000 rpm. Fractions that contained peak virus titers were dialyzed 

in dialysis buffer (1X phosphate-buffered saline (PBS), 0.5% Sorbitol, calcium chloride (0.5 

mM) and magnesium chloride (1 mM). Titers were calculated by quantitative PCR (qPCR) 

according to established procedures (33) by using a LightCycler 480 instrument with Sybr green 

PCR master mix.  Conditions used for the reaction were as follows: 1 cycle at 95°C for 10 min; 

45 cycles at 95°C for 10 s, 62°C for 10 s, and 72°C for 10 s; and 1 cycle at 95°C for 30 s, 65°C 

for 1 min, and 99°C for acquisition. 

 

Compound screen, 384-well format.  HeLa cells were plated at least 18 h prior to compound 

treatment and infection at a density of 8 X 10
3
 cells/well.  Compounds were prepared in 
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complete DMEM so that delivery would yield a final concentration of 1 uM.  Compounds were 

added directly to wells.  Two hours post-treatment, rAAV2-CBA-Luciferase was administered at 

a dose of 1000 vg/cell.  Cells were harvested 24 h post transduction by media removal followed 

by incubation with Passive Lysis Buffer (Promega) for 15 min.  Luciferase activity was 

measured in accordance with the manufacturer’s instructions (Promega). Luciferase activity was 

measured either a Perkin Elmer 1450 MicroBeta TriLux LSC and luminescence counter or a 

Perkin Elmer 2450 MicroBeta
2
 microplate counter.  Compounds that enhanced transduction 

greater than 2 fold over DMSO treatment were considered hits for further study.  Cell viability 

was measured using the CellTiterGlo luminescent cell viability assay (Promega). 

 

Secondary screen, 96-well format.  HeLa cells were plated at least 18 h prior to compound 

treatment and infection at a density of 2 X 10
4
 cells/well.  Compounds were prepared in 

complete DMEM at a concentration of 10 uM.  Medium was replaced with medium containing 

each compound.  Two hours post-treatment, rAAV2-CBA-Luciferase was administered at a dose 

of 500 vg/cell.  Cells were harvested 24 h post infection via incubation with Passive Lysis Buffer 

(Promega) for 15 min.  Luciferase activity was measured in accordance with the manufacturer’s 

instructions (Promega). Luciferase activity was measured with a Wallac 1420 Victor3 plate 

reader.  Compounds that enhanced transduction greater than 5 fold over DMSO treatment were 

considered hits for further study. 

 

Transduction assays.  Cells were plated at least 18 h prior to infection in 96 well plates at a 

density of 2 X 10
4
 cells/well.  Compound treatment was performed 2h prior to infection.  

Compounds were either provided by the Drug Testing Program or were commercially available 
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(Teniposide, Sigma; Nanaomycin, Apex Bio; Daunorubicin, Vorinostat, LC Laboratories).  Cells 

were infected with purified rAAV2-CBA_Luc at 500 vector genomes/cell.  Cells were harvested 

24 h post infection and luciferase activity was determined as described above. For scAAV, cells 

were treated as described above.  At 24h post infection, 20 µL of media was transferred to a 

black 96-well plate.  The luciferase assay was performed using coelenterazine (Nanolight) as the 

reagent.  Briefly, the coelenterazine was resuspended to 10 mg/mL in methanol.  To make the 

working solution, the concentrated stock was dissolved in TE buffer containing NaCl (0.6 M) at 

a 1:200 dilution.  The working solution was added to wells at a 1:1 ratio of media:coelenterazine 

and luciferase activity was recorded as described. 

 

Transfection Assays.  2 X 10
6
 HeLa cells were plated at least 18 h prior to transfection in a 10 

cm plate.   Cells were transfected with 1 ug pTR-CBA-Luc using PEI Max.  24 h post-

transfection, cells were plated in a 96 well plate at a density of 2 X 10
4
 cells/well.  48 h post-

transfection, cells were treated with the indicated drugs.  At 72 h post-transfection, cells were 

harvested and luciferase activity was measured as described above. 

 

Animal Studies.  Housing and handling of BALB/c mice used in the current study were carried 

out in compliance with National Institutes of Health guidelines and approved by the IACUC at 

the University of North Carolina Chapel Hill. All drugs and rAAV-Luc were co-administered 

through the intravenous route (tail vein) in a total volume of 200 µL (normalized with lX PBS).  

24 hours post administration, blood was collected and serum was assessed for blood urea 

nitrogen (BUN), aspartate aminotransferase (AST), alanine aminotransferase (ALT), and creatine 

kinase (CK).  Bioluminescence of Luc expression was visualized by using a Xenogen IVIS 



 

 

 

 

 

 40 

Lumina imaging system (PerkinElmer) following intraperitoneal injection of luciferin substrate 

(120 uL, Nanolight). Image acquisition and analysis were carried out by using Living Image 

software. 

 

Results 

Primary and Secondary Screen 

 The overall goal of our study was to identify and characterize small molecules that 

enhanced rAAV transduction in vitro and in vivo if the hit was currently FDA approved.  Two 

screens were performed to identify such compounds.  The first was more stringent screen using a 

1 uM final compound concentration to identify hits capable of potentiating rAAV2 transduction 

at low concentrations.  A schematic of the set-up, which utilized a 384-well format, is outlined in 

Figure 1A, where we utilized a 384-well format.  Column 1 (i) contained no virus and no 

compounds, column 2 (ii) contained rAAV2 but no compounds.  Column 24 (iv) contained 1 uM 

MG132 as a positive control.  Column 23 (iii) contained rAAV2 with only DMSO (vehicle 

control).  The compounds were administered in duplicate.  Finally, each plate contained two sets 

of the given controls and compounds, whereby rows 1-8 (top, gray) assayed for transduction 

activity and rows 9-16 (bottom, white) were assayed for viability using the CellTiterGlo system.  

As the vast majority of AAV biology has been discovered using AAV2 or rAAV2 in HeLa cells, 

our primary and secondary screens were performed using these parameters.  Owing to its wide 

range in output and linear relationship to vector dose, the CBA-luciferase transgene, and thus 

luciferase activity, was chosen as the reporter for transduction efficiency.  As a substantial 

number of hits were not identified from the 384-well screen, a less stringent screen using a 96-

well format was employed (Figure 2.1B).  This secondary screen utilized a 10 uM final 
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compound concentration in tandem with employing rAAV2 to HeLa cells at 500 vg/cell.  The 

format of this screen utilized DMSO added to all wells in column 1 (i) as a vehicle control, while 

two wells in column 12 (ii) contained MG132 as a positive control.  Cell viability was not 

assessed at this stage.  A combined list of the compounds that were pursued further is provided in 

Table 2.1. 

 In the primary screen, an initial “hit” was defined as a compound that enhanced 

transduction by at least 2-fold (Supplemental Table S2.1).  From this selection, we chose to 

move forward with compounds that had known functions based on existing literature.  These 

compounds included bortezomib, pyrromycin, daunorubicin, nanaomycin, bleomycin, and 

tetrocarcin A.  Bortezomib, an FDA-approved proteasome-inhibiting agent, has been explored 

for rAAV applications in a variety of cell lines, animal models, and using different 

serotypes(118, 119, 165-167).  Thus, the identification of bortezomib within the screen 

inadvertently served as an internal control in validating our experimental set-up.  Pyrromycin and 

daunorubucin, both from the anthracycline class, are capable of both proteasome- and 

topoisomerase-inhibition, and could therefore potentiate rAAV transduction through a 

combination of these mechanisms.  In fact, a related anthracycline, doxorubicin, has also been 

characterized for its enhancement of rAAV transduction (114, 162).  A similarly structured 

molecule, nanaomycin A, has been shown to generate oxygen free radicals and cause DNA 

damage (168, 169).  Additionally, nanaomycin A has been recently identified as an inhibitor of 

DNA methyltransferase 3B (DNMT3B) (170), thereby inhibiting epigenetic repression of gene 

expression. The glycopeptide antibiotic bleomycin, which is known to cause DNA double-strand 

breaks (171), was also identified to augment transduction.  Finally, tetrocarcin A, which has been 

shown to inhibit the anti-apoptotic function of Bcl-2 (172) and induce ER stress (173), was also 



 

 

 

 

 

 42 

identified.  Our screen yielded several compounds that are known to interefere with microtubule 

dynamics, including colchisine, vincristine, and vinblastine, among others; however, these were 

excluded from further study as it has already been demonstrated that these microtubule inhibitors 

inhibit the cell cycle at low concentrations (174), which is likely the mechanism behind their 

transduction enhancement.  In fact, at higher concentrations, these drugs have been shown to 

inhibit viral trafficking to the nucleus as well as transduction (84, 86).   

 In the secondary screen, an initial “hit” was defined as a compound that enhanced 

transduction by at least 4-fold (Supplemental Table S2.2).  Identified compounds with already 

known mechanisms of action were further pursued.  However, it is noteworthy to mention that 

several compounds with no known function were identified as hits, enhancing transduction by 

between 5-10 fold.  These compounds could warrant validation in further studies.  Several of the 

compounds that augmented transduction were in agreement with previously published results.  

Of the hits, the compounds were divided amongst several categories.  Topoisomerase II 

inhibitors from both the epipodophyllotoxin and anthracycline groups were a large subset of the 

hits identified.  These included teniposide, etoposide, menogaril, and pyrromycin.  Etoposide has 

been previously identified as having transduction-potentiating activity, likely through 

mechanisms related to DNA damage repair proteins induced by etoposide-mediated inhibition of 

topoisomerase II (112).  Another anthracycline, menogaril, was under developmental testing as a 

chemotherapeutic, but its development was halted.  Vorinostat (suberanilohydroxamic acid, 

SAHA) belongs to the class of histone deacetylase inhibitors, which function in cells to cause an 

accumulation of acetylated histones and transcription factors, which in general increases gene 

expression (175, 176).  In addition to bortezomib, two compounds with known proteasome-

inhibiting activity were idenfied: physalin B (177) and siomycin (178).  In addition, Physalin B 
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has also been shown to have anti-inflammatory and other immunomodulatory activity (179).  

The proteasome inhibiting activity of siomycin has been correlated with its role as an inhibitor of 

the transcription factor forkhead box M1 (FOXM1) (178, 180, 181).  Finally, other compounds 

with DNA-damaging properties were identified, including  the sesquiterpene lactone parthenin, 

which has been shown to induce chromatid breaks (182), as well as the diaziridinylbenzoquinone 

RH1, a DNA crosslinker (183).   

Dose optimization of compounds in HeLa cells 

In order to further characterize the hits from our screen, we wanted to determine an 

optimal concentration that would result in the greatest enhancement of transduction without 

causing overt toxicity (Supplemental Figure S2.1).  Although not identified in our screen, we 

included the anthracycline analogue doxorubicin into our studies, as it had been previously been 

identified to enhance transduction in airway epithelia (114, 162), intestinal epithelia (117),  and 

neuronal cells (163) and is approved by the FDA.  To avoid potential side effects caused by 

DMSO, the final concentration of compounds was limited to 100 uM for high-dose applications. 

It is therefore possible that compounds that were both well-tolerated by cells and that 

substantially enhanced transduction at higher concentrations (such as etoposide and bleomycin), 

may be capable of enhancing transduction even more than what is shown.  For some compounds, 

the therapeutic window was quite small in that there was a very sharp decrease in cell viability as 

the concentration of the compound was increased.  A notable example was Menogaril, which at 5 

uM showed an over 10-fold enhancement and approximately 100% viability, but at 10 uM 

resulted in an approximately 50% reduction in viability, which corresponded to a reduction in 

transduction enhancement as well.  The epipodophyllins teniposide and etoposide, as well as the 

DNA damaging agent bleomycin, were the strongest augmenters in this assay, each increasing 
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transduction by over 20-fold.  The proteasome inhibitors bortezomib and physalin B also showed 

enhancement by over 10-fold.  This approach was used to optimize dosing for several other cell 

lines (discussed below) but it was found that the effective doses used in vitro remained relatively 

consistent for each compound. 

Effects of compounds on vector transduction versus general gene expression 

 Given the identified compounds’ impressive utility across multiple cell lines, it was 

important to verify that the observed increase in gene expression was due to a mechanism related 

specifically to rAAV vectors and not simply to a global increase in transcriptional activity.  To 

this end, HeLa cells were transfected with pTR_CBA_Luc, the transgene plasmid used to 

generate the above studied single-stranded vector constructs, and assayed for enhancement of 

luciferase activity following compound administration (Figure 2.2).  Most compounds elicited a 

negligible change in luciferase activity.  For example,  physalin B induced an approximately 2-

fold increase in plasmid luciferase expression, compared to a greater than 10-fold increase in 

transduction, Some of the compounds even induced a decrease in gene expression.    The only 

exception was the HDAC inhibitor Vorinostat, which increased luciferase expression of the 

transfected plasmid to a similar extent as incoming vectors.  While the potential to enhance gene 

expression through this mechanism could have potential utility in gene therapy applications, 

Vorinostat was excluded from further analysis within this work to avoid incorrect interpretation 

of mechanistic action. 

Characterization of compound activity in human cell lines. 

 Given the ability of the identified compounds to enhance the transduction of rAAV2 in 

HeLa cells (Figure 2.3A), we wanted to explore the utility of these compounds in different cell 

types.  The first such cell line examined was U87, a human glioblastoma cell line that is 
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amenable to rAAV2 transduction (Figure 2.3B).  Overall, the fold enhancement of each of the 

compounds was very similar to what was observed in HeLa cells, with a few exceptions.  While 

teniposide enhanced transduction by approximately 40 fold in HeLa cells, enhancement was seen 

at 20-fold in U87 cells.  Interestingly, while bortezomib enhanced transduction by approximately 

15-fold in HeLa cells, enhancement was only approximately 3-fold in U87 cells.  However, the 

level of enhancement obtained with by another compound with proteasome-inhibiting activity, 

physalin B, remained the same in both cell lines (approximately 10-fold).  We next evaluated 

these compounds in HepG2 cells, a hepatocellular carcinoma cell line, as the liver is the site of 

transduction for systemically delivered rAAV2 (Figure 2.3C).  For treatment with pyrromycin, 

nanaomycin A, physalin B, bortezomib, and tetrocarcin A, transduction enhancement was 

observed at approximately the same magnitude of that seen with HeLa cells.  Treatment with the 

epipodophyllotoxins, anthracyclines, siomycin, and RH-1 resulted in enhancements 4-12 fold 

greater than that observed in HeLa cells.  Notably, Menogaril, which enhanced rAAV2 

transduction in HeLa cells by approximately 12-fold, enhanced transduction in HepG2 cells by 

138-fold.  Finally, our compound collection was applied to NHF1 cells (a kind gift from Dr. 

William Kaufman), a diploid cell line derived from neonatal foreskin and immortalized by the 

expression of telomerase reverse transcriptase (hTERT) that displays contact inhibition and 

stationary growth once confluent (184) (Figure 2.3D).  Again, treatment with the 

epipodophyllotoxins and anthracyclines (especially menogaril) significantly enhanced 

transduction at magnitudes much greater than what was observed in HeLa cells.  Treatment with 

bleomycin also enhanced transduction to a similar level.  These results suggest that general 

topoisomerase inhibition, either through application of epipodophyllotoxins or anthracyclines, 

consistently yields the greatest enhancement in transduction, while proteasome inhibition by 
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bortezomib is more variable and depends on cell type.  It is possible that the enhancing ability  of 

these compounds depends on the abundance of their actionable targets within cells.  Thus, these 

results highlight the differences in response to pharmacological modulation in different cell 

types, which may influence the type of agent chosen to complement rAAV-mediated gene 

therapy in a given the target tissue. 

Characterization of transduction-specific compound activity with vectors comprised of 

differentially formed transgenes. 

 Recent and emerging gene therapy applications have utilized transgenes that differ in 

form from the prototypical single-stranded AAV genome.  For example, self-complementary 

vectors contain a transgene whereby a third inverted terminal repeat (ITR) in the middle of the 

transgene is mutated to eliminate the Rep nicking stem (48).  This yields a double-stranded gene 

product, thus eliminating the rate-limiting step of second-strand synthesis and providing faster, 

more robust onset of expression (21, 48).  Other emerging vectors designed to deliver large 

transgenes are derived from the forced packaging of oversized genomes into the viral 

capsid(145-147, 149, 185, 186).  It is thought that the packaged DNA becomes truncated at the 

5’ end once AAV has reached its packaging limit, but delivery of these transgene “fragments” 

still results in expression of the intact transgene through a reannealing process modulated by the 

homologous recombination protein Rad51C (186).  However, the transduction efficiency of 

fAAV is impaired compared to rAAV or scAAV. 

We therefore wanted to test the capabilities of the screen-identified compounds in 

enhancing the transduction of scAAV and fragment rAAV in HeLa cells.  For scAAV, a vector 

carrying a cytomegalovirus promoter-driven gaussia luciferase transgene (CMV-gLuc) was 

utilized.  For fAAV, a previously described vector carrying the same promoter and transgene as 
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the single-stranded vector (CBA-Luc), but with an additional 2.3-kb “stuffer sequence” inserted 

into an intronic region upstream of the luciferase (186) was utilized.  A schematic of each of 

these vector transgenes is provided in Figure 2.4A. We applied the same optimized 

concentration of each compound and tested their ability to enhance scAAV and fAAV 

transduction at the same vector dose.  With the exception of daunorubicin and tetrocarcin A, the 

compounds still enhanced scAAV transduction, but the magnitude of the effect was significantly 

reduced (Figure 2.4B).  This suggests that these compounds may also be acting at the step of 

second-strand synthesis.  Since we still observed enhancement of scAAV, albeit at a reduced 

capacity compared to ssAAV, it is likely that these compounds augment steps in transduction 

either before second-strand synthesis (such as subcellular trafficking, nuclear entry, or 

uncoating) or in establishing the persistence of gene expression following second-strand 

synthesis.  In contrast, application of the compounds in conjunction with fAAV2 enhanced 

transduction to a greater extent as compared to rAAV2 (Figure 2.4C).  Notably, treatment with 

teniposide, bortezomib, or bleomycin enhanced transduction by over 250-fold, which was an 8-

10 fold increase over the enhancement seen in rAAV2.  This result is particularly interesting as 

each of these drugs produces a different reported effect within cells.  In untreated cells, fAAV2 

transduction was approximately 21-28 fold lower than intact rAAV2, which is in agreement with 

previously reported results comparing fAAV2 and intact rAAV2 at 5000 vg/cell (186).  

Treatment with any of the compounds restored transduction of fAAV2 to levels i) above 

untreated intact rAAV2 levels and ii) within 2-10 fold of drug-treated intact rAAV2 levels, 

depending on which compound is used.  Taken together, these results suggest that the identified 

compounds can enhance the transduction efficiency of vectors with different forms of 

transgenes, and disproportionately benefits fAAV2 transduction in HeLa cells. 
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In vivo analysis of FDA-approved hits 

 Owing to the appeal of repurposing FDA approved drugs to augment rAAV-mediated 

gene transfer, we performed an in vivo comparison of rAAV2 transduction potentiation 

capabilities of the hits identified in our screen that are already FDA approved.  Because of their 

impressive performance in several cell lines and with different transgene types, teniposide, 

etoposide, and bleomycin were utilized in this study.  Though doxorubicin has been previously 

investigated as a transduction-enhancing pharmaceutical, our in vitro studies suggested that 

another anthracycline, daunorubicin, consistently out-performed doxorubicin; therefore, 

Daunotubicin was included for in vivo analysis.  Finally, bortezomib- which has been extensively 

characterized in relation to enhancing transduction of a variety of rAAV serotypes in vitro and in 

vivo and was also identified in our screen- was included.  The doses selected for in vivo study 

were chosen based on conversions from the FDA-approved dosing in humans to the murine 

equivalent based on body surface area and established Km factors (187) (Table 2.2).  As 

teniposide and etoposide are recommended for use over a wide range of doses, they were 

administered in this study at a conservative dose of 20 mg/kg (60 mg/m
2
 human equivalent 

dose).  Each pharmaceutical was co-administered with 1x10
11

 vg rAAV2-CBA-Luc through tail 

vain injection in age-matched female Balb/c mice.  Two vehicle cohorts were included in the 

study.  We evaluated toxicity by measuring levels of Blood Urea Nitrogen (BUN), aspartate 

transaminase (AST), alanine transaminase (ALT), and creatine kinase (CK).  These levels 

appeared within normal ranges and were comparable to the vehicle-treated mice.  Average levels 

were similar between drug-treated and vehicle-treated cohorts.  In general, variability among 

treatment groups was noticed, and could be due to either an immune response against the 
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luciferase transgene in some mcie, as has been observed before, or perhaps an effect of the 

vehicle (DMSO) on in vivo transduction.   

 Due to the impressive enhancement we observed in vitro at  24 hours post transduction, 

an early time point of gene expression was measured to determine whether the pharmaceuticals 

could also provide rapid, high-level gene expression in vivo.  At 48h post-administration, all of 

the selected drugs enhanced transduction in vivo, but to varying degrees (Figure 2.6a).  

Consistent with what was seen in vitro, the epipodophyllotoxin and anthracycline topoisomerase 

II inhibitors enhanced transduction to the greatest extent.  Notably, co-treatment with teniposide 

enhanced transduction by an average of approximately 100-fold (Figure 2.6b).  While teniposide 

and etoposide have the same mechanism of action in cells (i.e. inhibition of the relegation of 

DNA ends through intereference of the DNA-topoisomerase complex), teniposide was a more 

potent augmenter of transduction at this time point.  Upon assessment of transduction 8 days 

post-administration, enhanced transduction was noted among all of the drug-treated cohorts 

(Figure 2.6a).  Teniposide co-administration yielded the greatest enhancement in transduction at 

this time point, followed by bortezomib. Daunorubicin co-treatment also yielded impressive 

transduction enhancement at the 8 day timepoint. Bleomycin and etoposide co-treatment 

produced only modest enhancement of transduction efficiency.  This result could be reflective of 

the in vivo dose limitations in order to reflect clinical levels of each drug.   

 Because co-administration of rAAV2 with teniposide showed the most robust 

transduction enhancement, we tested this compound for its ability to enhance transduction of 

other rAAV vectors (Figure 2.7).  We chose to evaluate rAAV9 and rAAV8 due to current 

interest in using these vectors for clinical applications.  Because of the robust enhancement 

observed for fAAV2, we chose to test the ability of teniposide to enhance fAAV8 in vivo as well.  
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Due to the difficulty in producing high- titer fAAV8, mice were administered only 5 X 10
10

 vg.  

Interestingly, while enhancement of rAAV2 transduction was the most effective with teniposide, 

this level of enhancement was not observed with rAAV9 or rAAV8, suggesting either serotype-

dependent effects or saturation of luciferase activity with these vectors.  At 48 h post-

transduction, we observed modest enhancements in both rAAV9 and rAAV8 with co-

administration of teniposide.  At 8 days post-transduction, transduction levels were similar 

between teniposide-treated and vehicle-treated rAAV9 and rAAV8 cohors, with only a small 

enhancement in transduction observed.  Further work exploring lower doses of these vectors in 

vivo may reveal if teniposide co-administration can show higher levels of enhancement.  The 

greatest enhancement observed with teniposide co-administration was in mice treated with 

fAAV8, thus reflecting observations in vitro with fAAV2.  At 48 h post-transduction, the 

teniposide-treated cohort exhibited 34-fold higher levels of luciferase activity than the vehicle-

treated cohort.  This enhancement was even greater at 8 days post transduction, with the 

teniposide-treated cohort exhibiting 86-fold higher luciferase activity than the vehicle-treated 

cohort.  

 Taken together, these results confirmed our observations in vitro and corroborated that 

the greatest transduction augmentation arises from co-treatment with topoisomerase or 

proteasome inhibitors.  Furthermore, teniposide was shown to have the greatest effect on fAAV8 

transduction. 

 

Discussion 

 Recent gene therapy applications using rAAV have been met with both success and 

challenges that depend on indication, route of administration, serotype, and vector dose utilized.  
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Indeed, clinical efficacy for one indication, lipoprotein lipase deficiency, has been achieved to 

the extent that the first ever gene therapy product, an rAAV1 vector carrying a lipoprotein lipase 

transgene, is now approved for use in the European Union (140).  Results from clinical trials 

have exposed the current limitations of rAAV-mediated gene therapy, one of which is the ability 

to achieve robust, long-term therapeutic gene expression without eliciting an immune response 

induced by high vector doses.  Several strategies have been employed to combat this challenge, 

including capsid and transgene modification as well as pharmaceutical intervention; however 

they have been met with varied success and may be limited to a particular serotype or tissue 

target.  For example, the elimination of certain tyrosines on the capsids of AAV2 and AAV6 has 

allowed for enhanced transduction efficiency and lower rates of proteasomal degradation (127, 

132, 155); however, it has been shown that this strategy cannot be applied to rAAV9 and 

attempts with rAAV8 have produced mixed results (134, 136).  Similarly, the proteasome 

inhibitor bortezomib has been shown to enhance transduction of both rAAV2 and rAAV8 

vectors, resulting in increased transgene expression in both small and large animal models (118, 

119, 167); however, a recent report has shown that this strategy cannot be applied for rAAV9-

mediated therapy for cardiac failure (122).  Thus, the need for a robust, widely applicable 

strategy to enhance transduction would be highly beneficial in the translation of rAAV-mediated 

gene therapy to a broad range of applications. 

 In this study, we employed a high-throughput small molecule screen to identify 

compounds capable of enhancing rAAV2 transduction.  Several hits were identified, including 

some of novel origin and some that have been previously defined.  These compounds were 

shown to have varying activity on vectors comprised of different forms of transgenes, as well as 

some differential effects in a variety of cell lines.  Finally, selected hits that are currently being 



 

 

 

 

 

 52 

used in clinical applications were validated in vivo.  Overall, the greatest enhancers of 

transduction were drugs that inhibit topoisomerase II, in particular the epipodophyllotoxin class 

and the anthracyclines.  Generalizing from the entire collection of our identified hits, it seems 

that rAAV can be enhanced by two mechanisms:  i) inhibition of the proteasome, and ii) 

induction of DNA damage, which corroborates previously published results (104, 111, 112, 162). 

 The epipodophyllotoxin and anthracycline topoisomerase II inhibitors form complexes 

with DNA and topoisomerase II, an enzyme required for the prevention of DNA supercoiling in 

eukaryotes.  The topoisomerase II cycle includes i) binding and cleavage of duplexed DNA, ii) 

passage of a second strand of DNA through the complex, and iii) re-ligation of the broken DNA 

ends (188).  Both classes of topoisomerase II inhibitors prevent the re-ligation step of this cycle, 

thus causing both single-stranded and double-stranded DNA damage.  While the direct role of 

topoisomerase II in the mechanism of rAAV transduction enhancement cannot be ruled out, 

previous research suggests that the DNA damage response, an indirect result of topoisomerase II 

inhibition, is likely the main contributor to the increase in transduction observed following use of 

these compounds (103, 112, 189).  Indeed, this screen identified several topoisomerase II-

independent DNA-damaging agents, such as bleomycin, parthenin, and RH1, as potentiators of 

rAAV2 transduction.  In fact, Bleomycin enhanced transduction to similar levels as Teniposide 

and Etoposide treatment in U87 cells (Figure 2A).  Several groups have shown that proteins 

involved in the DNA damage response, including both homologous recombination and 

nonhomologous end-joining, interact with incoming viral and vector genomes and have 

important roles in genome processing.  These processes are thought to include the conversion of 

the single-stranded genome into double-stranded DNA (21, 190), opening of ITR hairpins (191), 

concatamerization and circularization (102, 104, 192, 193), and transgene expression (194).  
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Notably, the Mre11/Rad50/Nbs1 (MRN) complex, important for double-strand break repair, 

recombination, and telomere maintenance, has been shown to bind to AAV ITRs, negatively 

affecting rAAV transduction, wtAAV replication, and double-stranded rAAV DNA 

accumulation (103, 189).  It is currently thought that cellular DNA damage, induced by radiation, 

small molecules, or other means, may serve as a “decoy,” recruiting the MRN complex to the 

sites of damage and away from single-stranded AAV DNA, thus allowing for double strand 

conversion.  Interestingly, Choi et al observed that ATM, Mre11, and NBS1 are required for 

scAAV DNA circularization in vitro and ATM and DNA-PK(CS) are required for scAAV DNA 

circularization in vivo (102).  Taken together, these results suggest that DNA damage response 

proteins may have a dual function in rAAV DNA processing and the positive or negative effects 

may depend on the state of the DNA within the cell. 

 Proteasome inhibition is thought to be beneficial to rAAV transduction through a 

mechanism that differs from a DNA damage response.  It is believed that inhibition of the 

proteasome facilitates bulk flow of particles away from degradation pathways, thereby 

redirecting them to routes that favor transduction (i.e. nuclear translocation) (87, 113, 167).  

Bortezomib, the only currently FDA-approved proteasome inhibitor, has been used in 

conjunction with rAAV to enhance transduction in hemophilia A and hemophilia B models 

(119).  Its effects seem to be thus far limited to these applications, as a recent study using rAAV9 

to deliver SERCA2a to preserve cardiac function in a rat model demonstrated no additional 

benefit when bortezomib was co-administered (122).  Indeed, our results suggest that the effects 

of proteasome inhibiton by bortezomib are cell-type dependent, as bortezomib-mediated 

enhancement was not observed in U87 and NHF cell lines, and not as robust in HepG2 cells as 

compared to HeLa cells.  Interestingly, two compounds were identified which have been 
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previously implicated in proteasome inhibition- physalin B and siomycin- which out-performed 

bortezomib in U87, HepG2, and NHF cell lines.  These compounds may either inhibit 

proteasome function through a mechanism that is different than that of bortezomib or may 

perform additional functions in cells that are beneficial to rAAV2 transduction. 

 The level of involvement of DNA damage response proteins and proteasome inhibition 

seems to differ between ssAAV2, scAAV2, and fAAV2.  While the ssAAV2 and fAAV2 used in 

this study share identical promoters and luciferase genes, the scAAV2 cassette differed in 

promoter (CMV vs. CBA) as well as transgene (gaussia vs. firefly luciferase).  Therefore, a 

direct comparison can be made between ssAAV2 vectors and fAAV2 vectors, but considerations 

must be made when evaluating the performance of the scAAV2 vector.  Initial conclusions seem 

to indicate that, for all of the compounds identified in our screen, transduction enhancement 

seemed to be less pronounced for scAAV2.  This finding is in agreement with the current theory 

of how DNA damage proteins may be inhibitory for ssAAV DNA, since scAAV DNA does not 

require second-strand synthesis and would therefore be unaffected by any proteins limiting this 

type of processing.  Since it has been shown that Mre11 and ATM are required for scAAV 

genome circularization, it will be interesting to evaluate the long-term effects of these 

compounds on scAAV gene expression in the future.  Interestingly, some enhancement of 

scAAV2 transduction was observed with the co-treatment with the epipodophyllotoxins and 

anthracyclines, suggesting that these compounds might enhance transduction by mechanisms in 

addition to facilitating second-strand synthesis. 

 Perhaps the most striking observation was the dramatic increase in transduction seen for 

fAAV2 treated with the compounds identified in this screen.  Notably, each compound boosted 

fAAV2 transduction to levels greater than ssAAV2 treated with vehicle alone.  Previous studies 
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have shown that fAAV2 transduction relies on the annealing of sections of vector DNA that 

comprise the entire oversized transgene cassette (186).  This process is heavily dependent upon 

Rad51C, a single-stranded DNA binding protein involved in supporting Rad51-mediated 

homologous recombination during DNA double strand break repair.  Therefore, it is possible that 

in the case of fAAV2, cellular DNA damage serves two purposes:  i) de-repression of the single-

stranded cassette by inhibitory proteins such as the MRN complex, and ii) recruitment of 

homologous recombination proteins such as Rad51C to facilitate the annealing of fragment 

DNA.  Interestingly, treatment with bortezomib also resulted in high levels of fAAV2 

enhancement.  Treatment with proteasome inhibitors has been shown to increase the sheer 

volume of vector particles that reach the nucleus.  It is possible that the deficit observed in 

unassisted fAAV2 transduction is simply a numbers game; i.e. as more particles, and therefore 

assuming more uncoated genomes, transit to the nucleus, there is an increased chance for 

fragment strand reannealing.  Alternatively, inhibition of the proteasome may also inhibit the 

degradation of proteins that might be essential for fAAV2 reannealing.  Indeed, work by Bennett 

and Knight has shown that proteasome-mediated degradation of Rad51 occurs during DNA 

repair, and this process is regulated in part by Rad51C (195).  Additionally, the proteasome has 

been shown to be associated with double strand breaks and has been suggested to play a role in 

degrading proteins upon completion of DNA repair in yeast (196).  Regardless of mechanism, 

our results suggest that the deficit in fAAV2 transduction can be restored to ssAAV2 levels 

through pharmacological intervention; thus paving the way for future studies in pharmaco-gene 

therapy for large gene applications.   

 Overall, this work validates a method of screening compounds to identify novel 

enhancers of rAAV transduction.  Through this process, several compounds were identified that 
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have been previously characterized for such purposes, and several novel compounds were 

discovered as well.  Identified hits were validated in several cell lines and with several rAAV 

transgene cassette configurations.  It was further demonstrated that the currently approved 

therapeutics identified in our screen could also enhance rAAV2 transduction in vivo.  With the 

exception of tetrocarcin A (a weak enhancer), all of the identified hits have known mechanisms 

of action relating either to DNA damage or proteasome inhibition, two cellular functions well 

known for their implications in rAAV transduction.  As the library of compounds studied here 

originates from a repository dedicated to the discovery of novel cancer chemotherapeutics, it is 

not surprising that the majority of identified hits relate to two pathways that are common targets 

for cancer treatment.  Other compound libraries not targeted for cancer therapeutics may contain 

compounds that affect other critical stages of rAAV transduction, including endocytosis, 

endosomal trafficking and escape, or nuclear entry, and thus may warrant further investigation 

using the methodology developed herein.  Therefore, future studies should include expanding 

this approach to identify compounds that benefit rAAV trafficking steps, with a potential 

ultimate goal of using a combination of drugs that act synergistically to enhance transduction to 

clinically beneficial levels. 

 While the compounds that induced DNA damage seemed to enhance rAAV transduction 

to the greatest extent, caution is necessary before potentially moving forward with any of these 

drugs.  Though the primary mechanism of DNA persistence is through concatamerization and 

circularization, random integration has been demonstrated for rAAV (197-202).  Indeed, a 

previous study has shown that integration of rAAV DNA in vitro increased upon treatment with 

etoposide (112, 203).  While the epipodophyllotoxins have been shown to produce breaks in 

DNA “hot spots,” (204-206) a thorough assessment of in vivo integration events would need to 
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be carried out in order to gauge the risks of this kind of pharmaco-gene therapy.  Alternatively, 

the discovery or development of molecules that could exert the same function for enhanced 

transduction as the topoisomerase inhibitors, without causing genotoxicity, would be expected to 

be highly beneficial.  Finally, effects of these agents on long term transduction will need to be 

evaluated.  It is tempting to envision a scenario where inducing DNA damage through one of 

these agents could reactivate persistent-but-silenced rAAV episomes, thus eliminating the need 

for additional administration of vector if transgene expression falls below therapeutic levels.   

 With the success of recent clinical trials, the widespread utility of rAAV-mediated gene 

therapy is becoming an exciting possibility.  One of the remaining hurdles towards this end is 

achieving a level of transgene expression that provides clinical benefit without inducing an 

immune response that will ultimately result in baseline levels of gene expression.  Developments 

in pharmaco-gene therapy, in addition to capsid and transgene modification, may provide a 

foundation toward achieving this goal and thus may broaden the clinical utility of rAAV vectors. 
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Figure  2.1.  Diagrammatic set-up of both screens used in this study.  A.  384-well screen 

format.  Cells were treated with compound in duplicate, and each plate was configured as a dual 

set-up:  the top half was assessed for transduction activity, and the bottom half was assessed for 

cell viability.  i, no rAAV2, no treatment; ii, rAAV2 only; iii, rAAV2 with DMSO; iv, rAAV2 

with MG132; vi, example of a compound that induced toxicity and therefore transduction; vii, 

example of a “hit.”  B.  96-well screen format.  Cells were treated with compound in single 

wells, and viability was not assessed at this stage.  i.  rAAV2 with DMSO; ii, rAAV2 with 

MG132; iii, example of a “hit.”  
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Table  2.1.  Compounds that were characterized in this study.  Compounds that emerged as hits 

were selected based on known function in cells or clinical utility.   

 

 

 

 

 

 

Compound 
Name

NSC ID Clinical Use
Used with 

AAV?
Group

Known mechanism
of action

Teniposide 122819 Chemotherapy

Podophyllotoxin
Topoisomerase II 

inhibition
Etoposide 141540 Chemotherapy

Russell et al, 
PNAS, 1995

Bleomycin 125066
Chemotherapy, 

plantar warts
Glycopeptide

antibiotic

DNA damageParthenin 85239
Sesquiterpene

lactone

RH-1 697726
Phase I, solid 
malignancies

diaziridinylbenzoquin
one

Vorinostat 701852 Chemotherapy HDAC Inhibitor HDAC inhibition

Nanaomycin A 267461 DNMT3B inhibitor DNMT3B inhibition

Menogaril 269148

Anthracycline

DNA intercalation, 
topoisomerase II 

inhibition, polymerase 
inhibition, free radical 

damage to DNA

Pyrromycin 267229

Doxorubicin* Chemotherapy Yan et al, JVI, 2004

Danorubicin 82151 Chemotherapy

Bortezomib 681239 Chemotherapy
Nathwani, Gene 
Ther, 2009 etc.

dipeptide

Proteasome inhibitionPhysalin B 287088 Physalin

Siomycin 285116 Thiazole Antibiotic

Tetrocarcin A 333856 Microbial metabolite BCL-2 inhibitor
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Figure 2.2.  Effect of compounds on plasmid gene expression.  HeLa cells were transfected 

with pCBA-Luc and treated with the compounds identified in our screen.  Transduction was 

assessed 24h after compound treatment.  Of the hits, Vorinostat appears to be the only compound 

that enhances plasmid gene expression. 
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Figure 2.3.  Effect of compounds on human cell lines.  Cells were treated with the identified 

compounds or dose-appropriate DMSO and later rAAV2_CBA-Luc.  Transduction was assessed 

24 hours after drug treatment.  A.  HeLa cells.  B.  U87 cells.  C.  HepG2 cells.  D.  NHF1 cells.  
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Figure 2.4. Effect of identified compounds on vectors with different forms of transgenes.  A.  

Schematic of each of the trasngene cassettes utilized in this study.  Top, single-stranded, intact; 

middle, self-complementary; bottom, fragment.  HeLa cells were treated with each of the 

identified compounds and single-stranded rAAV2 (B), scAAV2 (C), or fAAV2 (D) or dose-

appropriate DMSO.  Luciferase activity was measured 24 h post compound treatment. 
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Table 2.2. Parameters and toxicological analysis of in vivo compound administration.  A.  

Summary of in vivo dosage used in study.  
1
Murine Equivalent Dose (MED) based on conversion 

of dose approved in humans using mouse Km value of 3. 
2
Whole blood concentration was based 

on the molecular weight of each compound, the average weight of a mouse (25 g) and the 

average volume of whole blood (79 mL/kg).   

 

 

 

 

 

 

 

 

Drug Clinical Dose
Dose given in 

vivo1

Whole blood 
concentration2

Teniposide 30-180 mg/m2 20 mg/kg 381 µM

Etoposide 35-100 mg/m2 20 mg/kg 430  µM

Daunorubicin 45 mg/m2 15 mg/kg 332 µM

Bortezomib 1.3 mg/m2 0.433 mg/kg 14.1 µM

Bleomycin 10-20 units/m2 6.67 mg/kg 29 µM
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Figure 2.5. Analysis of transduction enhancement by compounds in vivo.  A.  Live 

bioluminescent imaging of mice that were co-treated with rAAV2_CBA-Luc and each of the 

clinically relevant compounds, imaged 48 h and 8 d post-transduction.   B.  Quantification of 

bioluminescent imaging.  C.  Fold difference in luciferase expression over vehicles. 
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Figure 2.7. Analysis of transduction enhancement by other rAAV vectors with teniposide in 

vivo.  A.  Live bioluminescent imaging of mice that were co-treated with teniposide and rAAV9 

(left), rAAV8 (center), and fAAV8 (right), imaged 48 h and 8 d post-transduction.   To avoid 

pixel saturation, at 8 days post-transduction, image acquisition was 2 min for rAAV9, 1 min for 

rAAV8, and 5 min for fAAV8.  B.  Quantification of bioluminescent imaging.  C.  Fold 

difference in luciferase expression over vehicle. 
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Supplementary Table S2.1. List of hits and known function (if any) for compounds initially 

identified in 384-well screen. 

NSC id Name (if known) Cellular function
Fold enhancement 

in screen

757 Colchisine Microtubule dynamics 2.23

82151 Daunorubicin Topoisomerase II inhibitor 2.01

67574 Vincristine Microtubule dynamics 2.77

153858 Maytansine Microtubule dynamics 2.13

267461 Nanaomycin A DNA methyltransferase IIIB inhibitor 2.18

332598 Rhizoxin Microtubule dynamics 2.66

333856 Tetrocarcin A, sodium salt Inhibition of BCL-2 2.85

338250 3.74

325014 Bactobolin Antibiotic 3.15

400978 Illudin M DNA damage 2.76

63001 2.19

100120 3.42

93427 2.27

13380 2.06

111194 3.41

102742 2.14

126226 2.21

151252 2.65

159398 3.17

187675 2.29

607097 Quinocarmycin analog DNA damage, interacts with radixin 2.37

330770 3.39

652287 2.00

659997 2.12

403148 Anthricin Akt/mTOR signalling inhibitor 2.29

632841 2.02

17946 3-Desmethyl Colchicine Microtubule dynamics 2.38

126127 2.23

687849 2.91

24818 Podophilox Unknown, related to epipodophyllotixins 2.19

49842 Vinblastine Microtubule dynamics 2.25

36354 Trimethylcolchicinic acid Microtubule dynamics 3.76

208734 Aclarubicin Topoisomerase inhibitor 2.52

267229 Pyrromycin Topoisomerase inhbiitor 6.87

125066 Bleomycin DNA damage 2.10
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Supplementary Table S2.2. List of hits and known function (if any) for compounds initially 

identified in 96-well screen. 

 

 

 

 

 

 

NSC id Name (if known) Cellular function
Fold enhancement 

in screen

697923 4.76

5426
7.27

697923 4.77

632839 4.75

376248 Nordracorubin 4.84

642048 4.89

670224 5.30

7525 Scillaren A 6.43

658139 6.06

7530 Strophanthoside-K 5.80

659999 9..6

407286 Ellagic Acid Proteasome inhibition, anti-inflammatory 7.47

59984 7.4

5426 7.00

98937 6.2

311727 5.00

623051 4.7

93427 4.7

243928 4.4

338250 4.35

673622 4

298197 4



 

 

 

 

 

 69 

 

Supplementary Figure S2.1. Example of dose-optimization for HeLa cells.  HeLa cells were 

treated with increasing concentrations of the A) DNA damaging agents, B)anthracyclines, C) 

transcriptional activators, D) proteasome inhibitors, or e) tetrocarcin A.  Cells were assessed for 

viability using the CellTiterGlo system (right Y axis) as well as transduction efficiency (left Y 

axis). 

A.

B.

C.

D.

E.
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CHAPTER 3 

 

Recombinant Adeno-associated virus can utilize host cell nuclear import machinery to 

enter the nucleus
1
 

 

Summary 

 Our previous small molecule screen identified several compounds that enhanced 

transduction; however, as somewhat of a surprise most of these compounds’ known 

mechanismns of action in cells included DNA damage induction or proteasome inhibition.  

These are two pathways that are well-characterized to be impediments to efficient transduction.  

To target other possible cellular barriers to efficient transduction, we decided to investigate the 

mechanism of nuclear entry in order to create a foundation for the design of vectors or 

identification of pharmacological interventions to enhance this step in subcellular trafficking.    

Previous studies suggest that the majority of rAAV accumulates in the perinuclear region of 

cells, presumably unable to traffic into the nucleus.  rAAV nuclear translocation remains ill-

defined; therefore, we performed microscopy, genetic, and biochemical analyses in vitro in order 

to understand this mechanism.  Lectin blockade of the nuclear pore complex (NPC) resulted in 

inhibition of nuclear rAAV2.  Visualization of fluorescently-labeled particles revealed that 

rAAV2 localized to Importin-β-dense regions of cells in late trafficking steps.  Additionally, 

siRNA knockdown of Importin-β partially inhibited rAAV2 nuclear translocation and inhibited 

transduction by 50-70%.  Furthermore, co-immunopreciptation (IP) analysis revealed that capsid 

                                                 
1
 This chapter is adapted from an article which previously appeared in the Journal of Virology.  The original citation 

is as follows:  Nicolson, Sarah C. and R. Jude Samulski.  “Recombinant adeno-associated virus utilizes host cell 

nuclear import machinery to enter the nucleus.”  Journal of Virology 88: 4132-4144 (2014). 
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proteins from rAAV2 could interact with Importin-β and that this interaction was sensitive to the 

small GTPase Ran.  More importantly, mutations to key basic regions in the rAAV2 capsid 

severely inhibited interactions with Importin-β.  We tested several other serotypes and found that 

the extent of Importin-β interaction varied, suggesting that different serotypes may utilize 

alternative import proteins for nuclear translocation.  Co-IP and siRNA analyses were used to 

investigate the role of other karyopherins and suggested that rAAV2 may utilize multiple import 

proteins for nuclear entry.   Taken together, our results suggest that rAAV2 interacts with 

Importin-β alone or in complex with other karyopherins and enters the nucleus via the NPC.  

These results may lend insight into the design of novel AAV vectors that have enhanced nuclear 

entry capability and transduction potential. 

 

Introduction 

 Adeno-associated virus (AAV) is a dependovirus in the family Parvoviridae that cannot 

replicate on its own (17).  For this reason, recombinant adeno-associated viruses (rAAV) have 

recently garnered much attention in the field of gene therapy (reviewed in (2)).  Several 

serotypes have been discovered that transduce various tissue types with high efficiency 

(reviewed in (141)).  Despite its promise, widespread use of AAV vectors has been hindered by 

their relatively low transduction efficiency.  Thus, much interest in the field has been directed 

towards the rational and combinatorial design of enhanced AAV vectors that can overcome 

transduction barriers at the level of receptor binding, subcellular trafficking, and transgene 

expression. 

 It has become apparent that subcellular trafficking presents multiple barriers to successful 

rAAV transduction, which  involves movement of the vector from the host cell surface into the 
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nucleus, where uncoating and subsequent gene expression occur (84, 120, 207, 208).  These 

events are mediated by interactions between host cell proteins and the three capsid proteins, VP1, 

VP2, and VP3 (209, 210).  In the case of rAAV2, the vector binds to primary and co-receptors 

such as heparan sulfate proteoglycan and αvβ5 integrins (65, 74, 75).  The particle is  

internalized through receptor-mediated endocytosis via clathrin-coated pits or through the 

CLIC/GEEC pathway (81, 83).  rAAV2 then trafficks along the endo-lysosomal route, 

accumulating near the golgi compartment and the microtubule organizing center (MTOC, (82, 

85, 86, 121, 211, 212)).  rAAV2 harbors domains buried within the capsid surface that are 

critical for further subcellular trafficking and nuclear entry (91, 92, 213).  At some point prior to 

escape from the endosome, rAAV2 undergoes a conformational change, leading to the exposure 

of the unique N-terminal ends of VP1 and VP2, termed VP1up (91, 92).  VP1up contains a 

phospholipase A2 (PLA2) domain that is thought to mediate escape from the endosomal 

compartment (93) as well as 3 putative nuclear localization sequences (NLSs) (95, 96).  Upon 

endosomal escape, rAAV2 enters the nucleus as an intact particle (87), where subsequent 

uncoating and gene expression occur.  Currently, the mechanism of nuclear entry by rAAV 

vectors is unknown.  Studies into the intracellular trafficking of rAAV2 have revealed a common 

pattern:  while the majority of particles traffic to a perinuclear region associated with the MTOC, 

most of these particles remain distal to the nucleus and never translocate (86, 120, 207).  These 

particles are eventually degraded by host proteasomes and likely presented as antigens on the cell 

surface (214).  If this barrier to nuclear entry could be overcome, two benefits could be achieved.  

First, extra virions in the nucleus could potentially bolster transduction efficiency by contributing 

to greater transgene expression.  Secondly, movement of virions from the cytosol into the 

nucleus could reduce the number of capsids susceptible to antigen presentation and host cell 
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immunity.  Therefore, understanding the mechanism of nuclear entry by AAV would create a 

foundation to design improved capsids that can overcome this barrier. 

 The majority of nuclear-targeted cellular proteins utilize the canonical nuclear import 

pathway (for a review, see (215, 216)).  Proteins with a nuclear localization signal (NLS) are 

bound by karyopherins, most typically a member of the Importin-β family or an Importin-α 

adapter/Importin-β heterodimer.  The importin proteins serve as chaperones to bring the nuclear-

bound “cargo” through the nuclear pore complex (NPC), a multi-protein complex that can 

accommodate import of proteins up to 39 nm (217).  This process is dependent on the small 

GTPase Ran, which provides the energy required for the translocation and mediates the 

dissociation of the Importin-β complex once inside the nucleus (218-221). 

  Many viruses take advantage of all or parts of this pathway (for reviews, see (222, 223).  

For example, the DNA-bound Protein VII of Adenovirus enters the nucleus through the NPC 

through interactions with Importin-β, Importin-α, and Importin 7 (224).  Herpes simplex virus 1 

(HSV-1) mediates nuclear entry of its nucleic acid through directly binding to the cytoplasmic 

filaments of the NPC in an Importin-β-dependent manner (225, 226).  The hepadnavirus 

Hepatitis B (HBV) has been shown to bind to the NPC in a manner mediated by the 

phosphorylation of its capsid and the exposure of two NLSs which bind to Importin-α and 

Importin-β (227-229).  Interestingly, the autonomous parvovirus MVM has been shown to utilize 

an alternative nuclear entry mechanism involving direct disruption of the nuclear lamina in a 

caspase-dependent manner (230, 231). 

 Several studies have yielded insight regarding how AAV translocates into the nucleus; 

however, the mechanism of nuclear entry remains ill-defined and could differ between wild type 

(wt) virions and AAV vectors.  With a capsid diameter of 26 nm, AAV particles are within the 
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size limit to traverse the NPC.  The unique N termini of AAV2 VP1 and VP2 contain three basic 

regions (BRs) that resemble classic NLSs and can support nuclear entry of exogenous proteins 

(92, 232).  Mutations to these basic regions inhibit nuclear entry of rAAV2 and subsequent 

transduction (95, 96).  These results suggest that the mechanism of nuclear entry by rAAV2 

involves components of the canonical nuclear import pathway such as importin proteins and the 

NPC.  In contrast, a report using wtAAV2 has shown that inhibition of the nuclear pore by wheat 

germ agglutinin (WGA) or an antibody against nucleoporin p62 in purified nuclei did not prevent 

nuclear accumulation of intact virions (208).  In a study utilizing wtAAV2 in the presence of 

Adenovirus, inhibition of nuclear entry via the NPC through use of the calcium channel inhibitor 

thapsigargin did not prevent the appearance of viral genomes in the nucleus but did affect the 

level of nuclear accumulation and replication (20).  Recently, a PDZ-binding domain was 

discovered on the N-terminal of VP1 that was shown to be important for nuclear entry of 

wtAAV2 (233).  While the current study was under review, a recent study revealed that AAV2 

that had been acidified and then neutralized could cause nuclear envelope breakdown in 

permeabilized HeLa cells (234).  As in vitro assays become more harmonized with respect to 

physiological infection, these results taken together may suggest that AAV may utilize multiple 

import mechanisms to gain access to the nucleus, or that the mechanism of nuclear entry might 

vary for wtAAV2 and AAV vectors. 

 Therefore, we sought to determine the mechanism of nuclear entry for rAAV in the 

absence of a helper virus as applicable to gene therapy applications.  Here we show that rAAV2 

utilizes the host cell canonical nuclear entry pathway to enter host cell nuclei.  Unlike the 

autonomous parvovirus MVM, rAAV does not appear to disrupt host cell nuclear lamina and is 

not dependent on caspase activity for nuclear entry.  Rather, inhibition of the nuclear pore 
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through microinjection of WGA partially inhibited the nuclear translocation of viral particles.  

Moreover, nuclear import of rAAV2 was dependent on Importin-β and may also be facilitated by 

several Importin-α proteins as well as Importin 7.  Interactions between rAAV2 capsid proteins 

and Importin-β were mediated by VP1 and VP2, specifically the BR domains therein.  

Interestingly, the extent of interaction with Importin-β varied among the rAAV serotypes tested.  

Taken together, our results suggest that entry through the canonical pathway plays a role in 

rAAV2 nuclear translocation. 

 

Materials and Methods 

Cell culture. HeLa and HEK-293 cells were maintained at 37°C and 5% CO2 in Dulbecco’s 

modified Eagle’s medium (DMEM) that was supplemented with 10% heat-inactivated fetal 

bovine serum (FBS), 100 U/ml penicillin, and 100 g/ml streptomycin. For imaging experiments, 

HeLa cells were maintained in phenol red free DMEM for at least 2 passages prior to plating. 

 

Drug Treatment.  HeLa cells (3 x 10
4
 cells/well) were treated with either z-vad-fmk (200 µM, 

Tocris) or DMSO 2h prior to infection with rAAV2.  To confirm the functionality of z-vad-fmk, 

HeLa cells were treated with etoposide (200 µM, Tocris) following a 2h pre-treatment with z-

vad-fmk or DMSO.  Prevention of apoptosis was visually inspected 48h after etoposide treatment 

and quantitatively confirmed through 7AAD (Life Technologies) analysis using flow cytometry. 

 

PCR site-directed mutagenesis. Capsid mutations were generated in the pACG2 backbone as 

previously described (27), with minor modifications. PCR was performed with the QuickChange 
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Lightning site-directed mutagenesis kit (Stratagene). PCR products were digested with DpnI and 

transformed into DH10B bacteria, which were selected on ampicillin-containing agar plates. 

Single colonies were picked and grown in liquid cultures overnight, and plasmids were isolated 

by column purification (Qiagen). Mutations were verified by sequencing of the plasmids 

utilizing the Eton Bioscience Automated DNA Sequencing Facility. 

 

Virus production. Virus was produced in HEK-293 cells as previously described (47). Briefly, 

polyethylenimine max was used for the triple transfection of the pXR2 cap and rep plasmid, the 

pXX6-80 helper plasmid, and a TR-Luciferase reporter plasmid containing the firefly luciferase 

(Luc) transgene flanked by inverted terminal repeats. Cells were harvested between 48 and 72h 

post transfection, and virus was purified by iodixanol gradient centrifugation followed by ion 

exchange chromatography. After identifying peak fractions by dot blot hybridization, virus was 

dialyzed into phosphate-buffered saline (PBS) containing 5% sorbitol, MgCl2 (1 mM), and CaCl2 

(.5 mM). Titers were calculated by quantitative PCR (qPCR) according to established procedures 

(235) using a LightCycler 480 instrument with Sybr green (Roche) and primers designed against 

the Luc transgene, 5_ AAA AGC ACT CTG ATT GAC AAA TAC 3_ (forward) and 5_ CCT 

TCG CTT CAA AAA ATG GAA C 3_ (reverse).  Conditions used for the reaction were as 

follows: 1 cycle at 95°C for 10 min; 45 cycles at 95°C for 10 s, 62°C for 10 s, and 72°C for 10 s 

for acquisition; and 1 cycle at 95°C for 30 s, 65°C for 1 min, and 99°C for melting curve 

analysis. For Cy5-labeled virus, purified rAAV2, VP3-only particles, and BR mutants were 

labeled with Cy5 dye (G.E. Amersham) as previously described (236). 
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Confocal immunofluorescence microscopy. Similar to what we have previously described (26), 

HeLa cells (3 x 10
4
 cells/well) were plated onto poly-L-lysine coated 12-mm glass coverslips 

(thickness, 1.5) 16 h before infection.  30 minutes before infection, HEPES was added to the 

media (10 mM total concentration).  Cy5-labeled recombinant virions were added to cell media 

(100,000 vg/cell) for 1 hour. No virus was added to control wells. Media was then replaced with 

pre-warmed media and cells were placed at 37°.  At the indicated time points, cells were washed 

three times with PBS and then fixed with 2% paraformaldehyde for 15 min at room temperature. 

The cells were permeabilized with 0.1% Triton X-100 in PBS for 5 min at room temperature. 

Following four washes with PBS, the permeabilized cells were blocked with  

immunofluorescence buffer (IFB) (20 mM Tris [pH 7.5], 137 mM NaCl, 3 mM KCl, 1.5 mM 

MgCl2, 5 mg/ml bovine serum albumin, 0.05% Tween) for 30 min at room temperature. Where 

indicated, the cells were incubated with Importin-β primary antibody diluted in IFB overnight at 

4°C. The cells were then incubated in secondary antibody diluted 1:5,000 in IFB (anti-mouse 

Dylight 488 or anti-rabbit Dylight 488; Abcam) for 1 h at 37°C. After six washes in PBS, 

coverslips were mounted cell side down onto glass slides with mounting medium (Prolong 

Antifade gold with DAPI [4_,6_-diamidino-2-phenylindole]; Molecular Probes). Images were 

captured on a Zeiss 710 upright laser scanning confocal microscope.  3D rendering and image 

processing of confocal z stack images were performed using AutoQuant and Imaris software, 

respectively (UNC Microscopy Services Laboratory). 

 

Microinjections with pulse infection.  HeLa cells (7.5 x 10
4
) were plated on fibronectin-coated 

35mm glass bottom microwell dishes, no. 1.5 coverglass (MatTek).  Cells were microinjected 

using the FemptoJet system with Femptotips (Eppendorf).  For virus studies, 30 minutes before 
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infection, cells were cooled to 4°C.  Cy5-labeled AAV2 (100,000 vg/cell) was added to each dish 

for 1h.  Where indicated, microinjection mixes (10 µL) included FITC-dextran (0.8 mg/mL, Life 

Technologies), wheat germ agglutinin (2 mg/mL, Calbiochem), and phosphate-buffered saline.  

For rhodamine B-labeled, NLS-conjugated BSA co-microinjections, mixtures included 

rhodamine B-BSA (1.33 mg/mL, Sigma).  Following microinjection, media was replaced with 

fresh, prewarmed media.  2h post-microinjection, cells were fixed and processed for microscopy 

as described.   

 

Transduction assays. For siRNA studies, HeLa cells were plated in 24-well plates 18h prior to 

transfection at densities to approximate 30% confluence (3 x 10
4
 cells/well) in antibiotic-free 

DMEM. siRNA (total concentration, 25 nM, ON-TARGETplus SMARTpool, Dharmacon ) to 

KPNB1 (Importin-β), KPNA2 (Importin-α1), KPNA4 (Importin-α3), KPNA1 (Importin-α5), and 

IPO7 (Importin 7) was utilized in combination with 1 uL DharmaFECT 1 (Dharmacon) as per 

the manufacturer’s instructions.   24h post-transfection (for Importin-β) or 48h post-transfection 

(for Importin-α1, α3, α5, and Importin 7), cells were infected with purified rAAV2 at the 

designated number of vector genomes per cell and typically harvested after 24 h unless otherwise 

noted. For drug studies, 5X10
4 

HeLa cells were plated in 24-well plates 18h prior to drug 

treatment.   For treatment with z-vad-fmk (Tocris Bioscience,200 nM in DMSO), cells were 

treated 2h prior to infection; for treatment with chloroquine (Sigma, 100 uM in PBS), cells were 

treated at the same time as infection.  Luciferase activity was measured in accordance with the 

manufacturer’s instructions (Promega) using a Perkin Elmer 1420 VICTOR3 automated plate 

reader. Error bars represent standard deviations from samples scored in triplicate. Graphs are 

representative of data sets from at least three independent assays. 
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Co-immunoprecipitation.  Protein G Dynabead:antibody complexes were prepared by washing 

the beads 2 times in PBS and resuspending in PBS with 0.02% Tween 20 and antibody (30 µL 

beads, 3 µg antibody per reaction).  The Dynabeads were rocked at 4° C overnight.  For rAAV2 

and mutant studies, HeLa cells (1x10
7
 per co-immunoprecipitation) were washed 2 times with 

ice cold PBS and harvested in lysis buffer (Tris, pH 7.4, 50 mM; MgCl2, 10 mM; NaCl, 150 

mM; Triton X-100, 0.1%; deoxycholate, 0.1%; protease inhibitor cocktail (Pierce), 1x).  Lysate 

was incubated for 30 minutes at 4°C and clarified by centrifugation.  Lysate was pre-cleared  by 

incubating with beads for 30 minutes at 4°C.  rAAV2 or mutants (2.5 x 10
11

) were boiled in lysis 

buffer for 10 minutes.  Lysate was then added to virus and incubated for 2h at 4°C.  10% of each 

co-IP reaction was collected to serve as input amount.  Dynabeads were washed 2 times with 

lysis buffer and then added to the virus/lysate mix for 2h at 4°C.  Dynabeads were then washed 3 

times with lysis buffer and transferred to a new tube.  Eluates were collected by resuspending the 

Dynabeads in 50 µL 2x NuPage LDS sample buffer (Life Technologies) and boiling samples for 

10 minutes.  Samples were then subjected to SDS-PAGE and immunoblot analysis using the B1 

antibody (a kind gift from Dr. Jürgen A. Kleinschmidt).  For RanQ69L studies, HEK-293 cells 

were used.  Cells were plated 24 hours prior to transfection (2.5 x 10
4
 cells per 10 cm plate, 2 

plates per co-IP).  Polyethylenimine max was used to transfect pmCherry-C1-RanQ69L (a kind 

gift from Dr. Jay Brenman) or pmCherry-C1.  40 hours post-transfection, cells were harvested in 

lysis buffer and processed as described.  1 mg of total lysate was used for each co-IP. 

 

Statistics.  All statistical analyses were performed using the Student’s t-test.  Asterisks represent 

statistical significance (p<.05). 
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Results 

 Previous studies have shown that the majority of rAAV2 virions traffick to the 

perinuclear region of cells but never enter the nucleus.  These virions likely become degraded by 

proteases or are subject to proteasomal degradation and antigen presentation by host cells (214). 

Current opinion suggests that if the barrier to nuclear entry could be overcome, more viruses 

could translocate to the nucleus for subsequent uncoating and transgene expression.  To date, the 

mechanism of nuclear entry by rAAV is largely unknown.  However, a few reports have 

suggested potential mechanisms by which rAAV might enter the nucleus, including entry via the 

NPC through the classic nuclear entry pathway (95, 96), entry through  NPC-independent 

mechanisms (20, 208), and direct lamina disruption like that of the autonomous parvoviruses 

(231).  Focusing our studies on AAV in the context of gene therapy vectors, we aimed to 

determine the mechanism for nuclear entry by rAAV2 in the absence of a helper virus. 

Analysis of host cell nuclear lamina during rAAV2 infection. 

 Previous studies have described a unique nuclear entry mechanism for the autonomous 

parvovirus Minute Virus of Mice (MVM), whereby MVM enters the nucleus through physical 

disruption of the nuclear lamina in a caspase-dependent mechanism (231).  Since AAV is a 

parvovirus, we sought to determine whether rAAV2 utilized a similar mechanism.  To 

investigate the integrity of the nuclear lamina upon rAAV2 infection, we utilized confocal 

microscopy to visualize Lamin A/C and Lamin B1 during infection with Cy5-labeled rAAV2 

(Figure 3.1A).  Immunofluorescence analysis revealed no detectable changes in the appearance 

of Lamin A/C or Lamin B1 2h post-infection,  a time that has been reported to capture 50% of 

total viral nuclear entry (236).  We next utilized quantitative imaging analysis to measure the 
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percent of nuclear Cy5 fluorescence within HeLa cells treated with caspase inhibitor z-vad-fmk,  

Our lab has established that confocal analysis of Cy5-labeled rAAV2 particles can be used to 

quantify the percentage of nuclear rAAV2 (236) and our quantification of the percentage of Cy5 

fluorescence within nuclei of vehicle-treated cells was consistent with what has been previously 

reported (126, 155).  Treatment with z-vad-fmk, which was shown to inhibit lamina disruption 

and nuclear entry of MVM, resulted in no change in nuclear Cy5 fluorescence compared with 

vehicle-treated cells (Figure 3.1B, C).  In fact, pre-treatment of HeLa cells with z-vad-fmk 

followed by infection with rAAV2-Luc led to a small but non-significant increase in transduction 

as compared to vehicle control (Figure 3.1D).   We confirmed the functionality of the z-vad-fmk 

used in these studies through 7-AAD analysis of apoptosis prevention in etoposide treated cells 

(Supplementary Figure S3.1).  Taken together, these results suggest that unlike the autonomous 

parvovirus MVM, rAAV2does not overtly disrupt host cell nuclear lamina nor rely on caspase 

activation for nuclear entry or transduction. 

rAAV2 can utilize the Nuclear Pore Complex to enter the nucleus. 

 Many viruses utilize the nuclear pore complex to traffic intact particles, viral proteins or 

DNA into the nucleus (222, 223).  The nuclear pore has been shown to accommodate proteins of 

sizes up to 39 nm in diameter (217).  Because the diameter of the AAV capsid is approximately 

26 nm, and it has been shown that rAAV2 can enter the nucleus as an intact particle (87), we 

investigated whether  rAAV2 could enter the nucleus using the NPC.  A common method to 

determine if the NPC is necessary to facilitate nuclear entry is to physically block the outer pore 

with the lectin wheat germ agglutinin (WGA) (237).  WGA binds to O-linked N-

acetylglucosamine residues on NPC proteins, thereby blocking any incoming cargo.  We 

confirmed this observation by microinjecting HeLa cells with rhodamineB-labeled, NLS-
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conjugated BSA with either FITC-labeled dextran or dextran and WGA (Figure 3.2A).  In cells 

that were injected with dextran alone, the NLS-BSA can be visualized inside the nucleus 2h post-

microinjection.  However, in cells that were injected with dextran and WGA, the NLS-BSA was 

mostly exluded from the nucleus.  We then applied this technique to HeLa cells subjected to viral 

infection with Cy5-labeled rAAV2.  We pre-bound HeLa cells with Cy5-labeled rAAV2 and 

performed microinjections with either dextran alone or dextran and and WGA.  2h post-

microinjection, we processed the cells for confocal microscopy to assess nuclear localization 

through visualization of the Cy5-labeled particles.  In cells that were microinjected with dextran, 

viral particles could be seen inside of the nucleus (Figure 3.2B, top).  However, in cells that 

were microinjected with WGA, fewer viral particles could be seen inside the nucleus, suggesting 

that nuclear entry was limited (Figure 3.2B, bottom).  We quantified the percent of nuclear Cy5 

fluorescence in microinjected cells and found an average of 15% nuclear Cy5 fluorescence in 

dextran injected cells, while dextran + WGA injected cells showed an average of 8% nuclear 

Cy5 fluorescence (Figure 3.2C).  Taken together, these results suggest that rAAV2 can utilize 

the NPC to enter the nucleus. 

rAAV2 shares spatial distribution with Importin-β during later trafficking events. 

 Importin-β plays a key role in canonical nuclear entry by either directly binding to NLS-

harboring cargo or interacting with cargo through an adapter Importin-α protein.  Importin-β has 

been shown to be involved in nuclear import for several viral infectious pathways, including 

facilitating the binding of HSV-1 capsids (226), HBV core particles (227), HIV-1 preintegration 

complexes (238), and Influenza A nucleoprotein (239) to host nuclei.  Importantly, Importin-β 

has been shown to interact with a DNA-bound protein of the AAV helper virus Adenovirus 

(224).  Therefore, we aimed to determine if rAAV2 would localize near cellular regions of high 
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Importin-β concentration during the course of infection.  We utilized Cy5-labeled rAAV2 and 

immunofluorescence confocal microscopy to acquire z-stack images of HeLa cells infected with 

rAAV2 at various time points.  These images were rendered in three dimensions using volume 

imaging software.  During the course of infection, rAAV2 trafficks from the cell periphery to the 

MTOC and nearby cellular compartments before translocating to the nucleus (85, 86, 121).  As 

expected, 30 minutes post-infection, when the majority of rAAV2 was detected dispersedly 

throughout the cytoplasm , there appears to be little to no detectable co-distribution  between 

rAAV2 and Importin-β (Figure 3.3A).  However, as early as 1h post infection and through 9h 

post infection, Cy5-rAAV2 was localized in cellular regions of high Importin-β concentration.  

These results suggested that rAAV2 and Importin-β may interact once AAV2 has accumulated 

near the MTOC. 

 Previous reports have suggested that endosomal escape precedes nuclear entry of rAAV2 

(82, 92).  We therefore investigated whether the co-distribution of rAAV2 and Importin-β was 

dependent on later trafficking events that could involve escape from the endosome by acquiring 

2D images of cells in the z plane harboring the center of the nucleus to represent the center of the 

cell.  Endosomal escape has been shown to be inhibited by pharmacological agents that block 

vesicle acidification (82, 214).  We therefore utilized chloroquine, a small molecule that blocks 

the acidification of endosomes, to inhibit later trafficking events and endosomal escape of 

rAAV2.  Treatment of cells with chloroquine resulted in the loss of co-distribution between 

rAAV2 and Importin-β (Figure 3.3b).  These results suggested that rAAV2 and Importin-β 

interact in later trafficking steps, presumably once rAAV2 has exposed the unique N-terminal of 

VP1 and escaped the endosome. 
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rAAV2 interacts with Importin-β in a Ran-sensitive manner. 

 Because we observed a co-distribution pattern between Cy5-rAAV2 and Importin-β in 

later viral trafficking steps, we sought to determine if rAAV2 and Importin-β formed a physical 

interaction.  We hypothesized that because rAAV2 contains putative NLSs on VP1 and VP2, an 

interaction could occur in late trafficking events, perhaps once rAAV2 had undergone 

conformational changes to expose these regions of the capsid.  Previous studies have shown that 

classical Importin-β/cargo complexes are mediated through an NLS on the cargo and can be 

dissociated by the small GTPase Ran in its GTP bound form (220, 221).  Therefore, we 

performed co-immunoprecipitation (IP) experiments using dissociated capsid proteins (to expose 

VP1 and VP2) and HEK 293 lysate transfected with a permanently GTP-bound form of Ran 

(Q69L) or a control plasmid (Figure 3.4).  rAAV2 capsid proteins were able to co-IP with 

Importin-β; however, this interaction was completely inhibited in the presence of RanQ69L.  

This result suggested that, rAAV2 capsid proteins could form a specific interaction with 

Importin-β which could be disrupted by RanGTP. 

Knockdown of Importin-β inhibits nuclear entry and transduction of rAAV2 

 Because we observed similar spatial distribution between rAAV2 and Importin-β,we next 

investigated whether Importin-β played a physiological role in rAAV2 trafficking and 

transduction.  We utilized an siRNA approach to transiently silence Importin-β expression in 

HeLa cells.  Previous studies have shown that long-term inhibition of Importin-β expression can 

disrupt cellular homeostasis, since Importin-β plays a vital role in the nuclear import of essential 

nuclear proteins.  Therefore, we chose to examine the effects of Importin-β knockdown on 

rAAV2 transduction within the first 24 hours post siRNA treatment, resulting in approximately 
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50% knockdown of Importin-β at the time of rAAV2 infection (Figure 3.5A).  While we cannot 

rule out inhibition of rAAV-specific transcription factor import by Importin-β knockdown, we 

verified that global gene transcription was not altered by utilizing qRT-PCR to measure mRNA 

levels of housekeeping gene GAPDH and determined that these levels were similar between 

Importin-β knockdown and treatment with a scrambled siRNA (Supplementary Figure S3.2).  

To assess effects on transduction, we utilized rAAV2 carrying a CBA-luciferase transgene.  

rAAV2 transduction was inhibited when luciferase activity was measured at either early (12h) or 

late (24h) time points, with the greatest inhibition (approximately 70%)  at 24h post infection 

(Figure 3.5B).  We next assessed whether this inhibition was maintained at various viral doses.  

Consistent with our initial results, knockdown of Importin-β inhibited rAAV2 transduction 

between 50-70% at all vector doses higher than 500 vg/cell (Figure 3.5C).  Finally, we knocked 

down Importin-β and investigated changes in the nuclear localization of Cy5-labeled rAAV2.  

Consistent with the changes in transduction, siRNA knockdown of Importin-β inhibited Cy5- 

rAAV2 nuclear localization (Figure 3.5D).  To quantify these observations, we obtained a value 

for the percent of nuclear Cy5 fluorescence in cells treated with siRNA to Importin-β or a 

scramble control.  In control cells, nuclear Cy5 fluorescence increased from 21% at 2h post-

infection to 27% at 8h post-infection.  Nuclear Cy5 fluorescence in Importin-β knock-down cells 

remained lower and increased from 14% to 18% at 8h post-infection.  Complete inhibition of 

nuclear entry and transduction was not observed, either reflecting the activity of the remaining 

Importin-β in knock-down cells or the utilization of alternative, Importin-β-independent nuclear 

entry pathways by rAAV2.   These results do suggest that Importin-β plays a role in rAAV2 

transduction as a mediator of nuclear entry. 
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Determination of Unique Regions of the AAV2 capsid important for interaction with Importin-β. 

 Since we were able to detect a functional role for Importin-β in the rAAV2 infectious 

pathway, we sought to determine which region of the AAV capsid was mediating this 

interaction.  Importin-β binds to nucleus-bound cargo via classical NLSs (cNLS) but has also 

been shown to interact with proteins with non-conventional NLSs.  Becaue the unique N-

terminal regions of VP1 and VP2 contain basic stretches of amino acids resembling cNLSs 

(Figure 3.6A), we hypothesized that one or both of these capsid proteins were mediating the 

interaction with Importin-β.  To determine which capsid proteins were important for binding to 

Importin-β, we performed co-IPs using dissociated capsids from particles consisting of all three 

capsid proteins, particles with only VP2/VP3, and VP3 only particles, produced as previously 

described (240).  Dissociated rAAV2 particles with all three capsid proteins or VP2/VP3-only 

particles  were able to co-IP with Importin-β; however, VP3-only particles resulted in limited to 

non-detectable co-IP (Figure 3.6B).  Co-IP utilizing an isotype control antibody also yielded 

non-detectable product.  Interestingly, while co-IP seemed to only require the presence of VP1 

and/or VP2, we were able to detect capsid protein VP3 in the IP product.  We believe this is due 

to incomplete capsid dissociation or oligomerization between NLS-containing capsid proteins 

and VP3 that may occur after capsid dissociation.   

 AAV2 harbors 4 putative NLSs:  BR1, located exclusively in VP1, BR2 and BR3, 

located in VP1 and VP2, and BR4, located in all 3 capsid proteins (Figure 3.6A).  The 4 BR 

domains have been studied and their implications in AAV infectivity have been characterized in 

detail (92, 95, 96, 232).  Mutations to BR1, BR2, and BR3 have been shown to hinder rAAV2 

transduction, with mutations to BR2 and BR3 having the greatest effect on transduction.  Since 

mutations to BR4 result in defects in capsid assembly (96), we only investigated mutations to 
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BR1, BR2, and BR3.  Therefore, to assess the contributions of each  BR domain in the 

interaction with Importin-β, we produced virions with mutations in  each of these BR domains.  

Consistent with the results presented by Grieger et al and Johnson et al (95, 96), mutations to 

BR1 alone had a modest effect on transduction, while mutations to BR2 or BR3 hindered 

transduction by over 10-fold in both HeLa cells and HEK 293 cells (Figure 3.6C, data not 

shown). 

 We next wanted to determine whether the transduction profile of these mutants would be 

consistent with their capabilities to interact with Importin-β.  Co-IP analysis revealed that while 

the capsid proteins of rAAV2 interacted with Importin-β, mutations toBR2 and BR3 limited this 

interaction, while mutations to BR1 had no effect on co-IP (Figure 3.6D).  The higher density 

band seen in the BR1- co-IP is likely due to higher capsid protein input.  Taken together, our data 

supports that the BR domains, especially BR2 and BR3, are necessary for transduction through 

mediating interactions with Importin-β. 

Interaction with Importin-β is varied among  rAAV serotypes. 

 The majority of information about the infectious pathway of AAV has been determined 

for AAV2, with limited understanding of the subcellular trafficking of other serotypes.  

Comparison of VP1up regions of several common AAV serotypes revealed that most serotypes 

harbor similar, if not identical, BR domains (Figure 3.7A).  The only exception is AAV5, which 

has a bipartite-like NLS in between BR2 and BR3 rather than two monopartite-like NLSs.  

Because these serotypes share similar BR domains, we investigated whether they could interact 

with Importin-β.  Co-IP analysis between Importin-β and dissociated capsid proteins from each 

serotype revealed that all viral particles tested could interact with Importin-β, but to varying 

extents (Figure 3.7B).  We measured our co-IP analysis by quantifying the ratio of capsid 
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protein product in the co-IP over the capsid protein applied to the lysate.  We found that rAAV2 

had the most robust interaction with Importin-β, followed by rAAV1.  rAAV5, rAAV6, and 

rAAV8 were similarly able to interact with Importin-β, although to a lesser extent than rAAV2 

and rAAV1.  Finally, we detected interaction, but to a lesser extent, between rAAV9 and 

Importin-β.  Interestingly, while rAAV8 and rAAV9 vectors do not typically transduce HeLa 

cells, we were still able to detect interactions between these capsid proteins and Importin-β.   

Since our co-IP assay utilizes HeLa cell lysate and denatured capsid proteins, our experimental 

set-up bypasses cellular barriers such as receptor-mediated endocytosis and endosomal escape.  

Thus, it is possible that the use of import proteins such as Importin-β is a shared feature of rAAV 

vectors but occurs downstream of initial cellular entry and subcellular trafficking.  Our results 

suggest that different AAV serotypes may utilize alternative import proteins in addition to 

Importin-β for nuclear entry. 

Analysis of the role of other import proteins in rAAV2 nuclear localization 

 The import protein superfamily consists of the Importin-β proteins, Importin-α adapters, 

transportins, and several other importins such as Importin 7 (241, 242).  Importin-α proteins link 

nuclear-bound cargo to Importin-β through an Importin-β binding domain.  Importin 7 and 

transportins can mediate nuclear import independently of Importin-β (243-245).  It has also been 

shown that Importin 7 can form a cooperative dimer with Importin-β (244).  Studies have shown 

that Importin-α proteins recognize both mono- and bi-partite NLSs and can have redundant 

functions in host cells (246-249).  Because we established an interaction between rAAV2 and 

Importin-β, we investigated if this interaction was mediated by the Importin-α adaptor proteins.  

Additionally, we wanted to identify any potential interactions with the alternative import proteins 

Importin 7, Transportin 1, or Transportin 2.  Co-immunoprecipitation analysis revealed strong 
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interactions between dissociated rAAV2 capsid proteins and Importin-α1, Importin-α3, and 

Importin-α5 (Figure 3.8A).  Under these conditions, we did not detect any co-

immunoprecipitation between rAAV2 capsid proteins and Importin 7, Transportin 1, or 

Transportin 2 (data not shown).  Interestingly, siRNA knockdown of Importin-α1, Importin-α3, 

or Importin-α5 had no effect on rAAV2 transduction 24 hours post-infection (Figure 3.8b).  

Similarly, knockdown of all three Importin proteins, to eliminate any compensatory function 

among these proteins, also resulted in no change in transduction of rAAV2 (data not shown).  

The Importin-α superfamily consists of at least 7 known members; therefore, it is possible that 

other Importin-α proteins that were not identified in this study may also mediate nuclear import 

of rAAV2.  In contrast to our co-immunoprecipitation data, knockdown of Importin 7 reduced 

transduction by approximately 60% (Figure 3.8B).  Taken together, our results suggest that 

multiple Importin-α proteins may play a role in the import of AAV2, and may be able to 

compensate for the depletion of specific Importin-α proteins.  Additionally, Importin 7 appears to 

be important for transduction, but may only weakly interact with rAAV2.  

 

Discussion 

 Mammalian viruses have been shown to utilize components of the classical nuclear 

import pathway, including the NPC, nucleoporins, and various import proteins.  Herpes simplex 

virus 1 (HSV-1) and Adenovirus both directly bind the cytoplasmic side of the NPC via 

nucleoporins (225, 226, 250-253).  The adenoviral core protein Protein VII has been shown to 

bind to several import proteins, including Importin-α, Importin-β, Importin 7, and transportin, 

which are thought to mediate entry of the nucleoprotein through the NPC (224).  Previous studies 

have suggested that some viruses, such as Hepatitis B virus (HBV) and SV40, may enter the 
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nucleus intact.  Two NLSs on the core protein of HBV become exposed and mediate movement 

into the NPC in an Importin-α and Importin-β dependent manner (227-229, 254). Our data 

suggesting that rAAV2 utilizes components of the classical nuclear import machinery to enter 

the nucleus is consistent with the mechanism of how other viruses achieve nuclear entry.  While 

the current study is limited to characterization and mechanistic insights utilizing an established 

cell line, it provides a foundation for further studies in primary cells and in vivo.  A growing 

interest in the AAV vector field has focused on understanding vector trafficking through host 

cells with the notion that understanding the viral trafficking pathway can lead to the design of 

novel vectors that can overcome cellular barriers to transduction.  Our study provides insight into 

a rate-limiting step of AAV vector transduction, nuclear entry, and thus the foundation for novel 

vector design aimed to expedite this step in subcellular trafficking. 

We have shown that blockade of the NPC through microinjection of WGA followed by 

infection with rAAV2 inhibits the nuclear entry of rAAV2, thus supporting a role for the NPC in 

rAAV2 nuclear entry.  We did not observe complete inhibition of nuclear entry at this time point, 

suggesting either reversible inhibition of nuclear import by WGA which has previously been 

reported (255) or an alternative, NPC-independent pathway utilized by rAAV2.  The classical 

import pathway described herein for rAAV2 differs from the mechanism of nuclear entry 

proposed by Cohen et al for a related parvovirus, MVM (230) and recent findings describing 

nuclear envelope breakdown of permeabilized HeLa cells by AAV2 that had been acidified and 

then neutralized (234).  Future work will be required to understand how the acidification and 

neutralization of rAAV2 mediates nuclear entry under physiological subcellular trafficking 

conditions.  It is possible that wtAAV2 and/or rAAV2 can cause nuclear envelope breakdown 

during infection, but the effects on the nuclear lamina might be more subtle than what can be 
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detected by fluorescence microscopy.  Since the infectious pathway of rAAV2 differs from other 

autonomous parvoviruses, it is not surprising that the mechanisms of nuclear entry may include 

both shared and disparate features between autonomous parvoviruses and non-autonomous 

parvoviruses.  For instance, while proteosome inhibitors have been shown to inhibit the 

infectivity of MVM and canine parvovirus (CPV) and have no affect on bovine parvovirus 

(BPV) (256), it is well established that proteasome inhibition greatly enhances the nuclear entry 

and transduction of rAAV2 (87, 113).   Our results also differ from a previous report showing 

that intact AAV2 could enter purified nuclei, despite blocking the pore with WGA or an antibody 

to an NPC protein (208), suggesting the nuclear pore was dispensable for nuclear entry of 

AAV2.  It is important to note, however, that the previous study utilized AAV2 virions that had 

not gone through physiological endosomal processing, allowing for the conformational change 

that exposes the basic regions along with the PLA2 domain required for transduction.  A recent 

study by Salganik et al showed that purified AAV2 virions have external protease activity at 

physiological pH that is ablated at low pH (257).  It is possible that virions that traffick to the 

nucleus using alternative pathways can exert alternative functions, such as  protease-mediated, 

NPC-independent nuclear entry under certain conditions.  Xiao et al showed that treatment with 

thapsigargan, an inhibitor of cellular calcium flux and modulator of nuclear pore structure, had 

no effect on the nuclear entry and subsequent replication of wtAAV2 in the presence of 

Adenovirus, suggesting that the nuclear pore was not necessary for AAV2 nuclear entry in a 

wild-type context (20).  The role of calcium depletion in relation to nuclear entry through the 

NPC remains controversial (258), and could vary depending on the protein (or virus) being 

investigated (259).  Furthermore, in addition to inhibiting calcium flux, thapsigargin has many 

off-target effects, which could have offset any effects on the nuclear entry of AAV2.  Finally, it 
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is possible that the mechanism of nuclear entry could differ between wild-type AAV2 in the 

presence of Adenovirus and rAAV2 independent of any helper viruses. 

Import proteins, also known as karyopherins, are generally thought of as chaperones 

aiding in the translocation of nuclear-bound cargo.  Karyopherins have been implicated in the 

import of other viruses, including Adenovirus (224), HIV-1 (238, 260-262), Influenza A (239, 

263-265), HBV (227), and HSV-1 (226).  We have shown that knockdown of Importin-β inhibits 

the nuclear translocation and transduction of rAAV2, suggesting that Importin-β facilitates 

nuclear import.  Furthermore, we have shown that rAAV2 can co-distribute with Importin-β 

within cells and form a Ran-sensitive complex, supporting an interaction that may facilitate 

nuclear entry.  Interestingly, while we saw co-IP with Importin-α1, -α3, and –α5, knockdown of 

these proteins did not affect transduction.  Currently, seven human Importin-α proteins have been 

identified(266), and it is known that these karyopherins can have both distinct substrate 

recognitions as well as redundant NLS recognition (267).  It is likely that despite knockdown, 

import of rAAV2 is compensated for through the presence of other Importin-α proteins and 

Importin-β.  Furthermore, while we did not observe co-IP between rAAV2 and Importin 7 in the 

conditions tested, transduction was inhibited in cells that had been subjected to Importin 7 

knockdown.  Finally, while a third class of karyopherins, known as the transportins, have been 

shown to be involved with the import of Adenovirus, we saw no co-immunoprecipitation with 

Transportin-1 or Transportin-2 under the conditions tested. 

 Previous reports have shown that AAV2 contains putative NLS domains within the 

unique N terminal regions of VP1 and VP2, and that mutations to these domains inhibits nuclear 

entry and transduction (95, 96).  Incorporating one of the BR domains (BR3) into rAAV2 

particles lacking VP1up has been shown to partially rescue the infectivity of these mutant virions 
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(268).  Additionally, conjugation of BR domains to exogenous GFP has been shown to be 

sufficient to direct this protein to the nucleus (92, 232).  Taken together, these results provide 

evidence for the role of the BR domains in rAAV2 nuclear entry.  Indeed, we have shown that 

while rAAV2 capsid proteins interact with Importin-β through co-IP, this interaction is ablated 

when VP1 or VP2 is not available or when BR2 or BR3 is mutated.  Intriguingly, even though at 

least one BR domain was still present in the case of the BR2- and BR3- mutant (i.e. BR3 is 

available in the BR2- mutant), we were not able to detect an interaction with Importin-β through 

co-IP analysis.  This observation suggests that the interaction between Importin-β and rAAV2 

capsid proteins may be conformation dependent.  Indeed, while the other rAAV vectors we 

tested share fairly conserved BR domains, their ability to co-IP with Importin-β varied.  Further 

understanding of the contributions of serotype-specific domains will be required to understand 

the differential interactions between Importin-β and other AAV serotypes. 

 Questions still remain about the nuclear translocation efficiency of rAAV2.  Import 

mediated by Importin-β has been historically regarded as highly efficient and rapid (269).  Since 

our results indicated that the interaction between Importin-β and rAAV2 was the most robust 

compared to the other serotypes tested, one would assume that rAAV2 nuclear entry would be 

the most rapid and efficient as well.  However, Keiser et al showed that in HeLa cells, rAAV1 

and rAAV5 nuclear entry was initially more efficient than rAAV2 (90).  This same study 

revealed that rAAV1 and rAAV5 likely utilize different subcellular trafficking pathways in order 

to gain access to the nucleus.  Indeed, recent work has demonstrated that while the microtubule 

network acts to direct rAAV2 particles to the perinuclear region in cells (17), microtubules 

within the MTOC may also act as a net, physically trapping virions in this region.  This assertion 

is supported by the fact that applying microtubule disrupting drugs after rAAV2 has accumulated 
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in the MTOC actually increases transduction (P.J. Xiao and R. J. Samulski, unpublished data).  

Therefore, it is possible that despite efficient interaction with Importin-β, rAAV2 nuclear 

translocation might be physically impeded by other cellular factors such as microtubules in the 

MTOC.  Consistent with this notion, we observed similar cellular distribution between AAV2 

and Importin-β at the nuclear periphery up to 9h post-infection, suggesting that while interactions 

may be occurring between AAV2 and Importin-β, translocation might be inhibited by another 

cellular factor that does not impede translocation of other AAV serotypes.  While our data 

suggests a mechanism for rAAV2 nuclear import through the NPC mediated by Importin-α and 

Importin-β proteins, our findings may only describe one of several translocation pathways 

utilized by rAAV vectors.  In fact, recent work by Popa-Wagner et al identified a PDZ-binding 

motif on VP1 that, when mutated, rendered AAV2 defective in nuclear entry.  They concluded 

this AAV2 PDZ binding domain might initiate signalling pathways within the cell to facilitate 

nuclear entry (233).   Moreover, previous work has shown that AAV2 can interact with the 

nucleolar proteins nucleophosmin and nucleolin (87, 270, 271), suggesting that rAAV2 could 

translocate into the nucleus through interaction with these proteins.  In addition to the 

observations of nuclear envelope break down by parvoviruses including AAV2, Porwal et al has 

shown that AAV2 can directly interact with nucleoporins that comprise the nuclear pore complex 

(234).  Finally, given that the abundance of karyopherins differs among cell types, it is possible 

that rAAV serotypes could utilize different karyopherins for nuclear entry, which would further 

contribute to differences in cellular tropism historically observed among the rAAV serotypes.  

 Based on our results, we have constructed a working model for the mechanism of nuclear 

import by rAAV2 (Figure 3.9).  Upon acidification of the late endosomal compartment and the 

conformational change that facilitates the exposure of VP1up, the BR2 and BR3 domains interact 
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with Importin-β or an Importin-α/β complex.  rAAV2 could also interact with Importin 7 or an 

Importin-β/Importin 7 complex.  Once rAAV2 escapes the endosomal compartment or the 

MTOC, the virus/importin complex translocates to the nucleus via the NPC, where subsequent 

uncoating and gene expression can occur.  Improving the transduction efficiency of AAV vectors 

has become paramount to successful gene therapy applications.  While much work has been 

devoted to discerning the infectious pathway of AAV vectors, further understanding of specific 

trafficking events within host cells is necessary to define cellular barriers to transduction.  

Ultimately, understanding the details of viral trafficking and host cell interactions will facilitate 

the rational design of AAV vectors that can overcome some of the trafficking inefficiencies 

currently observed.  Vectors that are more efficient at navigating the subcellular space in order to 

deliver their genetic payload should improve overall gene therapy applications and clinical 

outcomes. 
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Figure 3.1.  Nuclear lamina integrity and caspase involvement during rAAV2 infection.  A.  

Immunofluorescence of Cy5-labeled rAAV2 and intact nuclear lamina 2h post infection.  

Capsids (red) are shown juxtaposed to the nuclear membrane, composed of Lamin A/C (top, 

green) and Lamin B1 (bottom, green).  Scale bar, 10 µm.  B.  Nuclear entry of Cy5-labeled 

rAAV2 in cells treated with vehicle or z-vad-fmk.  HeLa cells were treated with z-vad-fmk or 

vehicle (DMSO) 1h prior to and throughout infection.  Cells were fixed 2h and 21h post-

infection.  Red, Cy5-labeled rAAV2; green, Lamin A/C.  Scale bar, 10 µm.  C.  Quantification of 

nuclear Cy5 fluorescence in z-vad-fmk or vehicle treated cells.  Confocal z-stack images for 20 

cells per treatment group were acquired.  Images were rendered in 3D and isosurfaces were 

created for nuclei and Cy5 fluorescence within each cell.  Percent Cy5 fluorescence within nuclei 
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compared to total Cy5 fluorescence within the cell was calculated.  D.  Luciferase assay of 

transduction in Hela cells.  Cells were treated with either z-vad fmk or vehicle 1h prior to 

infection and then infected with rAAV2-CBA-Luc (1000 vg/cell).  Luciferase activity was 

measured 24h post infection.  Error bars represent standard deviations from a representative 

experiment performed in triplicate.  
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Figure 3.2.  rAAV2 can enter HeLa cell nuclei through the NPC.  A.  Rhodamine-labeled, 

NLS-conjugated BSA (red) was co-microinjected with dextran alone (top, green) or dextran + 

WGA (bottom, green) into HeLa cells.  Cells were fixed and imaged 2h after microinjection to 

assess NLS-BSA localization.  Scale bar, 10 µm.  B.  Cells were cooled to 4° C and infected with 

Cy5-labeled rAAV2 (red).  1h later, cells were microinjected with dextran (green, top), or 
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dextran + WGA (green, bottom).  Immunofluorescence microscopy was used to assess Cy5-

rAAV2 nuclear entry 2h post-infection.  Shown are maximum intensity projections of 3D 

reconstructed cells, where red depicts Cy5 fluorescence within cytoplasm and white depicts 

nuclear Cy5 fluorescence.  Scale bar, 10 µm.  C.  Quantification of microinjected cells in B.  

Confocal z-stack images of microinjected cells were rendered in 3D and isosurfaces were created 

for nuclei and Cy5 fluorescence within the cell.  Percent Cy5 fluorescence within nuclei 

compared to total Cy5 fluorescence within the cell was calculated (n = 10 for Dextran-injected 

cells; n = 12 for WGA-injected cells).   
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Figure 3.3.  rAAV2 co-distributes with Importin-β in cells in later trafficking steps.  A.  

HeLa cells were pulse-infected with Cy5-labeled rAAV2 for the indicated times.  Confocal z-

stack images were acquired and rendered in three dimensions to assess the localization of rAAV2 

(red) and Importin-β (green) in relation to the nucleus (blue).  Scale bar, 10 µm.  B.  Hela cells 

were treated with Chloroquine (100 uM) or vehicle (PBS) 2 hours prior to and throughout the 

duration of infection.  Cells were pulse-infected with Cy5-rAAV2 for the indicated times.  

Confocal images were acquired in the z plane that harbored the center of the nucleus of the  to 

assess the 2D localization of Cy5-rAAV2 (red) and Importin-β (green).  Arrows indicate regions 

of extremely similar spatial distribution.   Scale bar, 10 µm (field), 2 µm (zoom). 
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Figure 3.4.  rAAV2 capsid proteins form an interaction with Importin-β that can be 

dissociated by RanGTP.  rAAV2 particles were dissociated by heat and incubated with HEK 

293 cell lysate previously transfected with control plasmid or RanQ69L.  Co-IPs were performed 

using Dynabeads and an anti-Importin-β antibody, followed by immunblot with B1.  rAAV2 

capsid protein marker, lanes 1 and 4; control, lanes 2 and 5; RanQ69L, lanes 3 and 6.  Relevant 

bands are highlighted in bold. 
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Figure 3.5.  Importin-β is important for rAAV2 nuclear entry and transduction.  A.  HeLa 

cells were treated with siRNA to Importin-β or a scrambled siRNA control.  Cell lysate was 

collected 24 hours post-transfection and immunoblotted for Importin-β levels.  B.  HeLa cells 

were treated with siRNA to KPNB1 (Importin-β) and infected with rAAV2-CBA-luc (1000 

vg/cell) at the indicated times.  Luciferase activity was measured 12 h and 24 h post infection. C.  

HeLa cells were treated with siRNA to KPNB1 and infected with rAAV2-luc at the indicated 

doses.  Luciferase activity was measured 24 h post infection.  D.  HeLa cells were treated with 

either scrambled siRNA or siRNA to KPNB1 for 24h.  Cells were pulse-infected with Cy5-

labeled rAAV2.  8h post-infection, cells were fixed and confocal images were acquired to assess 

nuclear entry of virions.  Red, Cy5 fluorescence within cytoplasm; white, nuclear Cy5 

fluorescence, DAPI, nucleus; Green,Importin-β.  Scale bar, 10 µm.  E.  HeLa cells were treated 

with siRNA to KPNB1 or a scrambled siRNA and pulse-infected with Cy5-rAAV2 for either 2 

or 8 hours.  Confocal z-stack images for at least 20 cells per treatment group were acquired.  

Images were rendered in 3D and isosurfaces were created for nuclei and Cy5 fluorescence within 

each cell.  Percent Cy5 fluorescence within nuclei compared to total Cy5 fluorescence within the 

cell was calculated.   

 

 

Imp-β

Actin

B

%
 n

u
c
le

a
r 

C
y
5

C

E

Hours post infection

A
Im

p
-β

S
c
ra

m
siRNA:

R
L
U

/µ
g

 p
ro

te
in

Viral dose (VG/cell)

Merge DAPI Cy5-rAAV2

R
L
U

/µ
g

 p
ro

te
in

2h 8h

*
*

D

*

0

5000

10000

15000

20000

25000

12h 24h

Imp-β

Scram

0

200000

400000

600000

800000

1000000

1200000

500 1000 5000 50000

Imp-β

Scram

*

*
*

0

10

20

30

40

50

60

Imp-β

Scram



 

 

 

 

 

 103 

 

 

Figure 3.6.  BR domains on VP1/VP2 mediate interactions with Importin-beta.  A.  

Schematic of basic regions located in rAAV2 VPs and mutations made to ablate NLS function.  

B1 epitope is highlighted.  B.  rAAV2 (lane 2), VP2/VP3 (lane 3), and VP3-only (lane 4) 

particles were dissociated by heat and incubated with HeLa cell lysate.  Co-IPs were performed 

using Dynabeads and an anti-Importin-β antibody, followed by immunoblot with B1.  Lane 1, 

capsid protein marker; lane 5, mouse IgG2a isotype control.  C.  HeLa cells were infected with 

rAAV2-CBA-Luc and mutants (1000 vg/cell). Luciferase activity was measured 24 h post 

infection. Error bars represent standard deviations from three independent samples. D.  Co-IPs 

were performed with rAAV2 (lane 2), BR1- (lane 3), BR2- (lane 4), and BR3- (lane 5) followed 

by immunoblot with B1.  Lane 1, capsid protein marker.  Relevant bands are highlighted in bold. 
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Figure 3.7.  Interaction with Importin-β varies among rAAV serotypes.  A.  Alignment of N-

terminal region of VP1 in AAV serotypes.  BR domains are outlined in dashed lines, and 

putative bipartite NLS of AAV5 is highlighted in solid lines.  B.  rAAV1 (lane 2), 2 (lane 3), 5 

(lane 4), 6 (lane 5), 8 (lane 6), and 9 (lane 7) particles were dissociated by heat and incubated 

with HeLa cell lysate.  Co-IP was performed using Dynabeads and an anti-Importin-β antibody, 

followed by immunblot with B1.   Lane 1, capsid protein marker.  Relevant bands are 

highlighted in bold.  C.  Co-IPs were quantified by densitometric calculation of the co-IP product 

over initial input.  
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Figure 3.8.  Analysis of additional Importin proteins in rAAV2 nuclear entry.  A.  rAAV2 

particles were dissociated by heat and incubated with HeLa cell lysate.  Co-IPs were performed 

using antibodies to Importin-α1, -3, or -5.  Immunoblots were performed using the B1 antibody.  

Lanes 1 and 4, capsid protein marker;  lane2, Importin-α1 co-IP;  lane 3, mouse IgG1 isotype 

control; lane 5, Importin-α3 co-IP, lane 6, Importin-α5 co-IP; lane 7, rabbit pAb isotype control.  

B.  Relevant bands are highlighted in bold.  HeLa cells were treated with scrambled siRNA (blot, 

lanes 1, 3, 5, 7) or to KPNA2 (Importin alpha 1,lane 2), KPNA4 (Importin alpha 3, lane 4), 

KPNA1 (Importin alpha 5, lane 6) or IPO7 (Importin 7, lane 8).  Luciferase activity was 

measured 24 h post infection.  Error bars represent standard deviations from a representative 

experiment performed in triplicate.  
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Figure 3.9.  Model of nuclear import.  rAAV2 trafficks to the MTOC in late endosomal or 

lysosomal compartments.  A.  rAAV2 undergoes a conformational change, exposing VP1up 

(shown in red), which harbors the three NLSs.  B.  rAAV2 interacts with Importin-β or an 

Importin-α/Importin-β heterodimer.  rAAV2 could also interact with Importin 7 or an Importin 

7/Importin-β heterodimer.  C.  rAAV2 translocates to the nucleus through the NPC, assisted by 

cellular karyopherins.  
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Supplementary figure S3.1.  Confirmation of functionality of z-vad-fmk.  A.  Representative 

dot plot from flow cytometry analysis assessing 7-AAD positive cells after treatment with 

etoposide in conjunction with vehicle or z-vad-fmk.  B.  Quantification of flow cytometry, 

performed in triplicate. 
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Supplementary figure S3.2. Quantification of housekeeping mRNA (GAPDH) upon siRNA 

knockdown of Importin-β.  HeLa cells were transfected with siRNA to either GAPDH or a 

scrambled control.  48h post-transfection, cells were harvested for qRT-PCR.  Briefly, RNA was 

extracted from an equivalent number of cells.  cDNA was produced from this RNA, and qRT-

PCR was performed using primers for GAPDH.  
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CHAPTER 4 

Conclusions and Further Explorations 

 

Summary of findings 

 The attractive qualities possessed by AAV for gene therapy have transformed its initial 

perception as a “defective virus” into one of the most promising gene delivery systems for 

clinical applications.  Owing to its modularity and clonability, rAAV systems allow for relatively 

easy development of vectors with continually expanding applications.  The recent successes that 

rAAV-mediated gene therapy has seen in the clinic have potentiated its expansion into a growing 

number of indications.  Likely due to its consistently demonstrated safety profile, explorations 

into rAAV-mediated gene therapy have expanded from conservative uses in orphan diseases to 

proof-of-concept studies designed to poise rAAV-mediated gene therapy as a competitive 

therapeutic for more widespread indications, including dyslipidemia (272, 273) obesity and 

diabetes (157, 274), and even color blindness (275).  Reinvigoration of this field, as well as the 

growing number of results from clinical trials, has provided essential information to define 

current barriers that limit widespread clinical applicability in the rAAV field.  Thus, research to 

overcome these obstacles is now being directed into three areas:  i)  strategies to increase the 

packaging size of rAAV vectors or facilitate efficient transduction of oversized vectors,  ii) 

development of “stealth” rAAV vectors that can bypass pre-existing immunity that would 

otherwise thwart efficient transduction in certain individuals, and iii) approaches to enhance 

transduction efficiency in general in order to avoid triggering an immune response to capsid 
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antigens that has been shown to limit widespread, long term transduction.   The overall goal of 

this work was explore strategies to enhance transduction.  In Chapter 2, we describe a method for 

screening small molecules and assessing their utility in potentiating transduction.   We report the 

identification of several novel compounds, in addition to previously characterized 

pharmaceuticals, that were shown to enhance transduction efficiency both in vitro and in vivo 

and have wide applicability for several vector types.  In relating the mechanism of enhanced 

transduction to the overall transduction pathway of rAAV, we have delineated areas where 

barriers to transduction can be manipulated in order to increase rAAV transduction.  One area 

includes a pathway to the proteasome, that, when inhibited, likely facilitates rerouting of vector 

particles to a more favorable pathway (i.e. nuclear translocation and nucleolar accumulation).  

The other area includes processing of uncoated genomes, likely either through second-strand 

synthesis, de-repression by genome-sequestering repair factors, or utilization of these repair 

factors for circularization and/or duplex formation. Where our screen fell short was in the 

discovery of compounds that enhanced transduction by means other than what we have 

previously identified.  In particular, it has long been speculated that endosomal escape and 

nuclear entry are barriers to enhanced transduction; however, we did not uncover any compounds 

that specifically facilitate this process.  Therefore, we took another approach to explore this event 

in transduction in order to develop ways to overcome this limitation.  In Chapter 3, we define a 

mechanism of nuclear entry for rAAV2, a step in the transduction pathway that has remained 

largely undefined. Using biochemical, fluorescence, and genetic approaches, we described a 

mechanism involving host cell nuclear import machinery, including Importin-β, Importin-α1, -

α3, and –α5, as well as the NPC and RanGTPase.  Our results provide a foundation whereby both 
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pharmacological approaches, as well as rational capsid design, might increase the magnitude and 

rate of nuclear entry that might lead to more efficient transduction. 

 

Synopsis and Future Directions Stemming from Small Molecule Screen. 

 Co-treatment of rAAV vectors with pharmacologicals is not a new concept and has co-

evolved with understanding the biological mechanisms behind rAAV transduction. The earliest 

example of pharmaco-gene therapy (111) resulted from the understanding that DNA repair 

pathways were important for efficient transduction.   While it is clear that host DNA repair 

factors are implicated more in second-strand synthesis and gene expression of the single-stranded 

rAAV DNA, the exact mechanisms seem to be multi-faceted.  We utilized three forms of rAAV 

transgenes- single-stranded, self-complementary, and fragmented- in order to demonstrate the 

utility of novel DNA-damaging agents.  These molecules, in general, enhanced transduction of 

single-stranded vectors better than self-complementary vectors, suggesting their role in 

conversion of the single-stranded genome into the duplex molecule.  Interestingly, fragmented 

vectors were enhanced by a much larger magnitude, emphasizing the perhaps more important 

role of DNA repair, which would be implicated in the production of stable concatemers for any 

rAAV transgene.   

 Even more striking was the effect of bortezomib, a proteasome inhibitor, on the 

transduction improvement of fragment rAAV.  Proteasome inhibitors have typically been 

thought to exert their effects on transduction by eliminating unfavorable vector trafficking to the 

proteasome, where degradation ensues.  As fewer vectors are being degraded in the cytoplasm, 

they become more available to translocate to the nucleus for downstream events leading to 

transduction.  This mechanism, in theory, is capsid-mediated; whereby capsid ubiquitination by 
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the cell is inconsequential since the proteasome no longer functions to degrade proteins.  The fact 

that fragment AAV, which in theory shares the same capsid as the wild type vectors, show such 

remarkable improvement in transduction upon application of bortezomib compared to single-

stranded vectors, suggests that this compound exerts pleiotropic effects in cells, which could 

include certain DNA-related effects.  Alternatively, bortezomib may facilitate nuclear 

accumulation of an abundant level of fragment vectors, thus allowing for efficient re-annealing 

based on a higher likelihood of stochastic interactions within the nucleus. Finally, perhaps 

proteasome inhibition allows for the accumulation of more host DNA damage repair factors, 

which could be favorable for the annealing of fragment genomes.  Indeed, the 

epipodophyllotoxins and anthracyclines are thought to exert their transduction-enhancing effects 

at the DNA level, not on the viral capsid.  The impressive enhancement seen with these 

compounds suggests an equally important role of the DNA damage response proteins in addition 

to any additional enhancement by a sheer increase in levels of fAAV DNA in the nucleus 

facilitated by bortezomib.  Understanding the mechanisms of action behind these drug targets is 

a priority in order to identify and optimize pharmacological targets that will maximize rAAV 

transduction. 

 Improving transduction of these fragmented vectors has huge implications for the 

implementation of widespread applicability of gene therapy.  To date, the clinical use of rAAV is 

limited by the packaging size of the vector; i.e., the incorporated transgene must be no larger 

than 4.7 kb.  To combat this limitation, attempts have been made to create “minigenes” by 

removing defined intronic sequences.  One example of this approach involved the creation of 

minidystrophin for applications in Duchenne muscular dystrophy (DMD).  The dystrophin 

cDNA is approximately 14 kb, almost three times the size of the allowable packaged genome of 
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rAAV.  Based on the observations that large deletions in the dystrophin gene still resulted in 

functional products, a minidystrophin gene that was within the packaging capacity of rAAV was 

developed (276).  This construct was shown to be functional and ablated dystrophic pathology in 

a mouse model of DMD.  Due to the impressive results, this construct was utilized in a clinical 

trial for the same indication (277).  Unfortunately, long-term expression was not achieved due to 

a previously unidentified autoimmune complication involved in the pathology of DMD.  While 

minigenes are conceptually an effective approach to overcome the packaging capacity of rAAV, 

development and optimization are costly and time-consuming.  Additionally, exonic material 

may not be redundant in other genes to a level that would significantly cut down on gene size.   

 Fragment rAAV provides an advantage over minigenes in that it can achieve expression 

of large, intact genomes.  The underlying mechanism is thought to be mediated by 3’ packaging 

of the single-stranded molecule to the point at which the capsid reaches capacity, whereby the 

remaining 5’ end is truncated.  Once uncoated in cell nuclei, annealing of opposite polarity 

genome fragments followed by 3’ extension is thought to complete the construction of the full 

length transgene.  This process is thought to rely on homologous recombination and is dependent 

on the repair protein Rad51C (186).  So far, oversized genomes have shown therapeutic benefit 

in mouse models of Stargart’s Disease (144) and disferlinopathies (149), as well as positive 

results in large animal models of Hemophilia A (119).  However, the transduction efficiency of 

fragment rAAV is even lower than single-stranded vectors, which makes widespread use 

improbable at this point.  Therefore, it is highly encouraging that the transduction efficiency of 

these vectors can be improved by orders of magnitude using small molecules. 

 Another challenge that could possibly be overcome with pharmaco-gene therapy is vector 

silencing over time.  The convergence of evidence from clinical trials has demonstrated that 
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therapeutic transgene expression wanes over time; which indicates that a second dose might be 

needed to achieve benefit.  Due to the production of neutralizing antibodies against the capsid 

after vector administration, any type of repeat dosing would need to occur with a different 

serotype.  This poses many challenges, including sufficient transduction efficiency with the 

secondary vector, as well as gene expression in the desired tissue types.  While it is known that a 

capsid-mediated CTL response contributes to the clearing of transduced cells and therefore a 

reduction in gene expression (14, 278) rAAV genomes have been shown to persist in host nuclei 

regardless of transcriptional status (101).  This data suggests that the rAAV genomes are 

somehow being silenced by an undefined mechanism.  A recent trial for α-1 antitrypsin (AAT) 

deficiency demonstrated that rAAV1 capsids persisted in the perinuclear region in muscle cells 

out to 12 months post vector administration (279), suggesting that a percentage of capsids can 

avoid proteasomal degradation.  Whether or not these capsids contain genomes and could 

represent additional infectious particles remains to be determined.  From our data, we have 

shown that several clinically relevant small molecules enhance transduction of rAAV when co-

administered with the virus.  It is unknown whether application of these small molecules months 

or even years after administration could “reactivate” rAAV expression from these silenced 

genomes or mobilize perinuclear vectors into the nucleus to facilitate uncoating and gene 

expression.  One of these mechanisms appears to be possible, at least to some extent, with the 

proteasome inhibitor MG132 (115).  When MG132 was applied 13, 21, and 28 days after vector 

administration, transgene levels became elevated for a certain amount of time before dropping 

off again.  It would be interesting to determine the fate of vector translocation and gene 

expression upon repeat administration of teniposide or daunorubicin.   
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 The compound library obtained from the Developmental Therapeutics Program provided 

a foundation to create a robust screening assay to find novel transduction-enhancing small 

molecules.  Understandably, this library is limited to donations from other laboratories and a 

limited selection of current FDA-approved chemotherapeutics.  Since repurposing an already 

approved FDA therapeutic would be the fastest way to incorporate pharmaco-gene therapy into a 

treatment protocol, we were particularly interested in the hits that are already in use in the clinic.  

Since the majority of clinically available chemotherapeutics capitalize on the difference in cell 

division rates, they mostly target DNA integrity, microtubule assembly, and proteasomal 

function.  Factors involved in maintaining the functionality of these targets have been shown to 

be important for rAAV transduction.  In order to circumvent other trafficking barriers to 

transduction with clinically relevant therapeutics, alternative compound libraries should be 

employed.  There are several commercially available small molecule libraries that include drugs 

that affect endocytosis, endosomal trafficking, and organelle function.  Evaluating these 

alternative libraries may yield novel compounds that enhance transduction through mechanisms 

differing from proteasomal inhibition or DNA repair factors, resulting in the possibility of 

utilizing combinations of small molecules to achieve an even larger increase in transduction.  

Indeed, previous studies have shown that the use of the anthracycline doxorubicin in conjunction 

with MG132 or a similar compound, LLnL, enhanced transduction 17-fold over doxorubicin 

alone and 758-fold over either proteasome inhibitor alone (162).  Our preliminary studies show 

that combining MG132 with two compounds isolated from our screen, nanaomycin and physalin 

B, results in an additive increase in transduction over any compound alone, without altering the 

change in number of cells transduced (Figure 4.1).  Ideally, combinations of these small 
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molecules would provide a “two-hit” approach to boost rAAV transduction levels up to or 

beyond what is required for beneficial therapy. 

 To provide proof-of-concept evaluation and maintain simplicity, we carried out our 

screen and development of hits with rAAV2.  However, this approach could, and should, be 

applied to other rAAV serotypes in other cell lines, as mechanisms of subcellular trafficking and 

transduction have been shown to vary among serotypes and cell types.  For example, rAAV1 and 

rAAV5 have been shown to exhibit faster entry and nuclear import than rAAV2, in addition to 

differential trafficking patterns demonstrated by fluorescence microscopy (90).   Furthermore, 

vectors comprised of the capsids from other serotypes, such as rAAV1, rAAV8, and rAAV9, are 

being targeted for clinical use because they display greater transduction capabilities and fewer 

neutralizing antibody complications than rAAV2.  To evaluate the use of a compound library to 

identify compounds that enhanced a more clinically relevant vector, we carried out a third screen 

using the DTP library and rAAV8 in a human hepatocyte line, HepG2.  Since we had evaluated 

the hits from our rAAV2 screen in HepG2 cells, these compounds were not included in the new 

screen.  We identified several compounds that differed from those in the rAAV2 screen.  The 

initial results of the screen are shown in Table 4.1.  Novel compounds included the 

topoisomerase II inhibitor mitoxantrone, the topoisomerase I inhibitors topotecan hydrochloride 

and camptothecin, DNA crosslinkers mechlorethamine hydrochloride, mitomycin, and 

cyclophosphamide, DNA-damaging agent streptonigrin, the MTOR inhibitor rapamycin, and 

several molecules affecting microtubule dynamics including ergocristine dihydrochloride, 

vincristine sulfate, vinorelbine tartrate, docetaxel, and baccatin III.  In addition, a few 

compounds with less defined functions appeared, including medicarpin, photobarbatusin, and 

streptoval C.  While the known cellular mechanisms of action for some of these compounds 
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share similarity to what was previously discovered with rAAV2, the identification of additional 

hits suggests that screens utilizing different serotypes for other target cell lines will add to the 

compound repertoire that can be used in conjunction with rAAV. 

 

Synopsis and future perspectives on characterizing and improving the nuclear entry of 

rAAV 

 Through decades of research from multiple investigators, a general description of how 

rAAV2 trafficks through the subcellular space has been defined.  Slowly, studies have expanded 

into other serotypes, including rAAV5 (85) and rAAV8 (280).  In general, rAAVs seems to 

engage in early endosomal trafficking.  From this point, several routes can ensue and can differ 

within the same cell, between cell lines, and between serotypes.  Possible trafficking includes 

movement to the perinuclear recycling endosome or the late endosome, which then leads to 

movement to either the Golgi apparatus or the lysosome.  Endosomal escape could potentially 

occur in any of these locations based on the previous studies and the present understanding of 

vector trafficking.  While these routes have been characterized, what remains undefined is 

whether a subset of these trafficking patterns leads to more or less efficient transduction.  For 

example, trafficking from the late endosome to the lysosome might result in particle degradation 

rather than subsequent nuclear entry.  Similarly, since several groups have described the 

persistent, long term perinuclear accumulation of viral particles, perhaps the trafficking route that 

leads to this localization is inefficient for transduction.  Further work is required to delineate 

which of these pathways is the most effective for overall transduction in order to design vectors 

or utilize pharmacological approaches to take advantage of these “preferred” pathways. 
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 One area of rAAV trafficking that has remained largely undefined has been how rAAV 

moves from the cytoplasm into the nucleus.  Previous studies have shown that rAAV enters the 

nucleus as an intact particle.  Basic regions, located on VP1up and sharing sequence homology 

to classical NLSs, have been shown to be important for nuclear entry and subsequent 

transduction by rAAV2, suggesting that rAAV2 enters the nucleus through an Importin-mediated 

mechanism.  However, other studies have shown that blocking the NPCs of purified nuclei did 

not inhibit nuclear entry of unprocessed vector particles, suggesting an NPC-independent form of 

nuclear entry.  Studies with MVM have identified a novel mechanism for autonomous parvoviral 

nuclear entry involving direct disruption of the nuclear membrane in a caspase-dependent 

manner.  We have attempted to provide further insight into the mechanism of nuclear entry by 

rAAV2 in Chapter 3.  We have shown that rAAV2 does not appear to overtly disrupt the nuclear 

lamina nor depend on caspases for nuclear entry or transduction under physiological conditions.  

Our results demonstrate that rAAV2 appears to utilize the nuclear pore complex, and nuclear 

entry is dependent on nuclear cargo carrier Importin-β.  Other importin proteins, such as 

Importin -α1, -α3, and –α5 may play a role in nuclear entry as well; however, we could not 

demonstrate their individual requirement through genetic knockdown.  This suggests that the 

import proteins that mediate rAAV2 nuclear entry might have some redundant functions. 

 Overall, we have characterized one of what might be several nuclear import pathways for 

rAAV.  Indeed, capsid proteins of other rAAV serotypes were shown to interact with Importin-β; 

and the basic regions among known rAAV serotypes appear to be quite similar.  However, 

differences among serotypes might exist, including differential involvement of other importin 

proteins or efficiency of nuclear translocation.  Not limited to differences among serotypes, there 

could be alternative mechanisms for nuclear entry.  This would not be surprising, as viruses in 
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general tend to hijack several routes of entry and subcellular trafficking in order to propagate 

efficiently.  It has been shown that rAAV2 and rAAV5 can utilize multiple routes of endocytosis 

and subcellular trafficking; therefore, nuclear translocation could occur through multiple 

mechanisms as well.  Indeed, a recent study has shown that rAAV2 that had been acidified and 

then neutralized could disrupt host cell nuclear lamina in permeabilized HeLa cells (234).  While 

this study was not conducted under physiological conditions, it does pose an alternative 

mechanism of nuclear lamina disruption that might be more subtle during a more natural 

infection, as we observed.  Similarly, in defining potential interactions between importin proteins 

and AAV capsid proteins, we utilized an in vitro approach with denatured capsid proteins.  It will 

be important to validate these interactions in a more physiological setting (i.e. a pulldown assay) 

if  i)  interactions between rAAV2 and importin proteins are not transient, and ii) interactions 

within the cell are prevalent at a given time point where an effective pulldown could be 

performed.  Importantly, neither our study nor the studies carried out by Hansen et al and Porwal 

et al were performed in the presence of Adenovirus.  It is well established that Adenovirus 

potentiates AAV infection and rAAV transduction at almost every step in the infectious pathway.  

Therefore, it is possible that the mechanism of nuclear entry is either different or more efficient 

in the presence of Adenovirus.  Future investigations will be required to understand the role of 

Adenovirus in rAAV nuclear entry.   

 All analyses of the nuclear entry mechanism by rAAV to date have occurred in vitro.  

Our results, demonstrating a mechanism utilizing components of the classical nuclear import 

pathway, will need to be validated in vivo.  A possible avenue to explore is the use of Importin α 

knockout mice, as was demonstrated for the influenza virus (281).  In this study, mice lacking 

Importin-α4 (α4
-/-

), Importin-α5 (α5
-/-

), Importin-α7 (α7
-/-

), or retaining a mutated form of 
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Importin-α7 that lacked the Importin-β binding domain (α7
ΔIBB/ΔIBB

) were challenged with 

influenza virus strain SC35M.  Whereas all of the mice died in the wild type, α4
-/-

, and α5
-/-

 

cohorts, one third of the α7
-/-

 and α7
ΔIBB/ΔIBB

 cohorts survived.  Additionally, wild type and α7
-/-

 

and α7
ΔIBB/ΔIBB

 mice were challenged with the H1N1v strain.  While all of the wild type mice 

died at day 9 post challenge, none of the α7
-/-

 or α7
ΔIBB/ΔIBB

 died.  Finally, after challenge with 

the H5N1 strain, mice in all of the cohorts died, however viral titers were significantly lower in 

the α7
-/-

 and α7
ΔIBB/ΔIBB

 animals.  These results suggest that Importin-α7 plays an important role 

in the nuclear entry and infectivity of the influenza virus.  Similar studies could be performed 

with different AAV serotypes to understand in vivo the involvement of specific import proteins 

in AAV nuclear entry. 

 The ultimate goal for studying the biology of rAAV vectors is to utilize the information 

in optimizing vector design or identifying cellular targets for pharmaco-gene therapy.  In Chapter 

3, we established that nuclear import, thought to be a barrier to efficient transduction, can occur 

through the classical nuclear import pathway.  Therefore, the goal moving forward is to try to 

design rAAV vectors that can take better advantage of this pathway.  Nuclear entry through the 

classical pathway involves a protein (in this case, the capsid) with an NLS being directed through 

the NPC via Importin proteins, which recognize the NLS.  Previous research has shown that 

VP1up contains basic regions that resemble NLSs, and mutations to these regions inhibit nuclear 

entry of viral particles and attenuate transduction by log orders of magnitude (95, 96).  Utilizing 

this information, additional positively charged residues were incorporated into VP1up, in 

particular to BR2 and BR3, in an attempt to make these basic regions more effective NLSs (95).  

Unfortunately, these mutations had no enhancing effect, and in fact the addition to BR3 resulted 

in decreased transduction in certain cell lines.  The authors concluded that, at least in the case of 



 

 

 

 

 

 121 

the BR3 mutant, additional positive charges to the VP1up region could result in enhanced and 

perhaps sustained nucleolar localization.  Since it is thought that uncoating and downstream gene 

expression occur in the nucleoplasm, retention in the nucleolus is likely meant to be a transient 

event, whereby incoming particles localize until cellular conditions become favorable for 

uncoating and gene expression.  While the concept of improving nuclear entry via enhancing 

NLS activity seems like a reasonable approach, modifications within the existing signaling 

architecture have yet to gain traction. 

 In an attempt to build upon these results, we have examined the capsid architecture on the 

surface of the capsid in search of locations where we could incorporate an NLS.  The rationale 

behind this approach was three-fold.  First, an NLS on the capsid surface would not interfere 

with the already established basic residues or the PLA2 domain located on VP1up.  Second, the 

additional NLS could have additive effects over the VP1up basic regions; that is, the additional 

NLS would allow for more importin protein interaction and therefore more nuclear entry.  

Finally, adding an NLS to the outside of the capsid could allow for a mechanism whereby 

incoming particles would not rely on the conformational change dependent upon endosomal 

acidification in order to initiate nuclear translocation.  Previous studies have shown that this 

conformational change is required for efficient transduction, as microinjection of intact particles 

results in virtually no transduction (92).  Likewise, virus-like particles devoid of VP1up, or 

empty particles which do not readily undergo the conformational change, will not transit to the 

nucleus (87).  The importance of the NLS-like sequence of BR3, demonstrated through 

mutational analysis, has also been substantiated through its addition to NLS-null virus-like 

particles (268).  In this study, the PLA2 domain, as well as the PLA2 domain with BR3, were 

incorporated into VP2/VP3-only virus-like particles so that these domains would extrude from 
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the capsid surface.  Transduction was negligible for the VP2/VP3-only mutants.  Transduction 

improved when PLA2 was incorporated, but was improved even further when BR3 was available 

as well, confirming an important role for the NLS-like activity of this region.   

 Upon investigation of the capsid surface, we identified regions that would likely tolerate 

the incorporation of an NLS based on 3 criteria:  secondary structure (i.e. flexible loops rather 

than underlying beta sheets or alpha helices), prior history of tolerating substitutions or additions, 

and access to the cellular environment (and therefore importins).  Four regions were targeted for 

substitutions:  the HI loop, located at the base of the 5-fold axis of symmetry; the GH loop, 

topping the 3-fold axis of symmetry peaks; and VR1 and VR7, both located on the sides of the 3-

fold peaks (Figure 4.2A).  We chose to use the classical NLS from the Simian Virus 40 large T 

antigen, PKKRKV, as the substitution in these areas.  Upon production of these vectors, we were 

not able to achieve preparations to levels suitable for transduction analysis (Figure 4.2B).  In 

fact, the viral titers resulting from these constructs were several orders of magnitude below a 

typical viral preparation, suggesting defects in particle assembly.  It is currently unknown 

whether particles were assembled and failed to package genomes, or if viral proteins were indeed 

translated but could not converge into a properly structured capsid.  We hypothesize that the 

latter case is most likely, since such a high concentration of positive charge might have occluded 

the proper convergence required for capsid assembly.  An alternative mechanism to circumvent 

assembly difficulties could be the incorporation of an NLS post-assembly.  This could be 

achieved through chemical crosslinking, as has been demonstrated for the Cowpea mosaic virus 

(282) or through oxidative coupling using unnatural amino acids, as has been demonstrated with 

the bacteriophage MS2 (283).  However, it remains to be determined if this could be achieved on 



 

 

 

 

 

 123 

an AAV capsid, or whether an NLS tethered to the surface would have any influence on overall 

transduction efficiency. 

 A final strategy to enhance nuclear entry would be the use of small molecules that created 

conditions for more permissive nuclear transit.  Currently, there are no known pharmaceuticals 

that achieve this effect; however, the amphipathic molecule trans-cyclohexane-1,2-diol (TCHD) 

has been investigated for its role in facilitating the nuclear uptake of macromolecules and 

plasmid DNA (284, 285).  Application of this chemical takes advantage of the natural properties 

of the NPC, where the inner nuclear pore is innately hydrophobic, which allows for selective 

passage of  importin-bound cargo.  The addition of TCHD disrupts these hydrophobic 

interactions, thus collapsing the gating mechanism and allowing passage of molecules that would 

normally be excluded.  While we have shown that rAAV2 can utilize the NPC to enter host cell 

nuclei, the process might not be efficient given the size of the capsid (~25 nm) and the maximum 

allowable diameter accommodated by the pore (~39 nm).  We speculate that relaxing the inner 

pore to allow for non-selective passage might facilitate more rapid and more abundant nuclear 

entry by vector particles.  While this strategy has been successful in several cell lines and air 

liquid interface cultures, results have not shown efficacy in vivo (286).  Therefore, the utility of 

this strategy may be an interesting approach but distant actuality for gene therapy applications. 

 

Concluding Remarks 

 In this dissertation, we have underscored the utility of using small molecules to overcome 

cellular barriers to efficient transduction.  We have also attempted to characterize an ill-defined 

aspect of rAAV transduction, nuclear entry, with the future goal of utilizing this information to 

rationally design vectors or identify small molecules that can more efficiently navigate this step 
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in transduction.  Previous studies with HU and proteasome inhibitors seem to indicate that 

moving vector cargo into the nucleus can potentiate transduction; therefore, making this process 

more efficient could enhance transduction to levels that would be beneficial in the clinic.  While 

nuclear entry seems to be a barrier to efficient transduction, it remains unclear whether this is 

actually because of inefficient nuclear translocation or if the steps preceding nuclear entry (i.e 

endosomal escape) limit the ability of vectors to transit to the nucleus.  It is tempting to think that 

mobilizing vector particles out of the perinuclear region would facilitate more abundant nuclear 

entry, but this remains to be determined.  Likewise, the subcellular trafficking pathway that leads 

to the most efficient transduction has yet to be defined; future work in this area will likely 

provide the foundation for the next generation of vectors that preferentially utilize this pathway.  

 Keeping all of this in mind, it is important to remember the origins of this simple, yet 

elegant parvovirus.  AAV co-evolved with Adenovirus, and therefore many of the details behind 

its infectious pathway must be considered in the presence of Adenoviral functions, even if this 

helper virus is not present in host cells or gene therapy applications.  AAV has likely retained its 

innate capabilities to avoid causing pathogenicity on its own at a cost to efficiency without 

Adenovirus present.  Thus, the perceived inefficiencies of AAV are likely due to mechanisms 

that have evolved over time. 

 Thus far, viral gene delivery has been the most successful strategy for achieving gene 

transfer in the clinic.  rAAV vectors are garnering promise because of their impressive safety 

profile and amenability for a wide range of applications.  As more and more results emerge from 

the clinic, yielding important information about the shortcomings of vector delivery, more 

attention will be focused on overcoming these obstacles.  As AAV has transformed from a 
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“defective virus” to an effective gene therapy vehicle, decades of development are beginning to 

translate into clinical success. 
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Figure 4.1. Additive effects of the proteasome inhibitor MG132 with Nanaomycin and 

Physalin B.  A.  HeLa cells were treated with either compound alone or in combination with 1 

µM MG132 in addition to rAAV2_CMV_eGFP.  48h post transduction, GFP expression was 

visualized.  Cells were then processed for flow cytometry, where the percent of GFP positive 

cells (B) and the mean fluorescence (C) was assessed.  
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Table 4.1. List of hits and known function (if any) for compounds initially identified in 96-

well screen using rAAV8 on HepG2 cells (credit: Dr. Marc Weinberg). 

 

 

 

 

 

 

 

 

NSC id Name (if known) Cellular function
Fold

enhancement in 
screen

122819 Teniposide topoisomerase inhib 153.00

279836 Mitoxantrone topoisomerase inhib 35.59

762 Mechlorethamine hydrochloride mustard gas (dna crosslinking, no mitosis) 24.23

330753 Baccatin III 17.34

609699 Topotecan hydrochloride topoisomerase inhibitor 14.11

94600 Camptothecin topoisomerase inhibitor 13.33

409663 Ergocristine, dihydro 11.87

26980 Mitomycin DNA crosslinking 9.98

45383 Streptonigrin 9.60

67574 Vincristine sulfate
Inhibits microtubule formation, arrests cells in 

metaphase 7.94

26271 Cyclophosphamide DNA crosslinking 6.92

350085 Medicarpin 6.78

67574 Vincristine sulfate Inhibits microtubule assembly 6.68

608210 Vinorelbine tartrate antimitotic 6.27

226080 Rapamycin mTOR inhibitor, protein synthesis inhib 5.63

270914 Photobarbatusin I 5.44

169627 Streptoval C 5.39

49842 Vinblastine sulfate microtubule inhibitor 5.23

628503 Docetaxel microtubule stabilizer 5.21

369397 Qinghaosu 5.01
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Figure 4.2. Target capsid regions for NLS substitution.  A.  Capsid architecture at 3-fold axis 

of symmetry with locations of regions for NLS insertion highlighted.  The orange line represents 

the center of the axis.  The green loop is the integrin binding domain, for reference.  B.  Mutants 

were produced via transfection with PEI and purified by continuous CsCl centrifugation.  

Resulting titers are shown. 
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