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ABSTRACT

MARCELINUS PRASTAWA: An MRI Segmentation Framework for Brains with

Anatomical Deviations

(Under the direction of Guido Gerig, Ph.D.)

The segmentation of brain Magnetic Resonance (MR) images, where the brain is

partitioned into anatomical regions of interest, is a notoriously difficult problem when

the underlying brain structures are influenced by pathology or are undergoing rapid

development. This dissertation proposes a new automatic segmentation method for brain

MRI that makes use of a model of a homogeneous population to detect anatomical

deviations. The chosen population model is a brain atlas created by averaging a set of MR

images and the corresponding segmentations. The segmentation method is an integration

of robust parameter estimation techniques and the Expectation-Maximization algorithm.

In clinical applications, the segmentation of brains with anatomical deviations from

those commonly observed within a homogeneous population is of particular interest.

One example is provided by brain tumors, since delineation of the tumor and of any

surrounding edema is often critical for treatment planning. A second example is provided

by the dynamic brain changes that occur in newborns, since study of these changes may

generate insights into regional growth trajectories and maturation patterns. Brain tumor

and edema can be considered as anatomical deviations from a healthy adult population,

whereas the rapid growth of newborn brains can be considered as an anatomical deviation

from a population of fully developed infant brains.

A fundamental task associated with image segmentation is the validation of segmen-

tation accuracy. In cases in which the brain deviates from standard anatomy, validation

is often an ill-defined task since there is no knowledge of the ground truth (information
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about the actual structures observed through MRI). This dissertation presents a new

method of simulating ground truth with pathology that facilitates objective validation

of brain tumor segmentations. The simulation method generates realistic-appearing tu-

mors within the MRI of a healthy subject. Since the location, shape, and volume of the

synthetic tumors are known with certainty, the simulated MRI can be used to objectively

evaluate the accuracy of any brain tumor segmentation method.
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CHAPTER 1

Introduction

1.1. Motivation

Medical image segmentation is the task of classifying image components (pixels or

voxels) into relevant anatomical components or describing the structural and intensity

changes in terms of the underlying functional process. The knowledge of the location,

size, and shape of different anatomical structures is a fundamental step in understanding

and analyzing medical images. Explicit knowledge of the segmented structures in med-

ical images allows us to do more than qualitative visual assessment, as in the following

examples:

• The location of a pathology relative to healthy anatomical structures is useful

in planning radiological treatments and surgeries.

• Growth patterns can be determined by analyzing changes of segmented struc-

tures of a population group over time.

• Analysis of the shape of the segmented brain structures can be used to find

characteristics or markers of neurological disorders.

Magnetic Resonance Imaging (MRI) [102] is currently one of the most powerful imag-

ing techniques available to obtain in-vivo anatomical and functional brain data. The most

widely used and trusted method of obtaining segmentation of MR images is the manual

labeling of image pixels by human experts. In an ideal setting, manual segmentation

by trained experts provides the good results with low to moderate probability of errors.

However, the task of segmenting or annotating 3D Magnetic Resonance (MR) images is



Figure 1.1. Gadolinium contrast enhanced T1-weighted MR image
(sagittal view) and the manual segmentation result. Note the ragged out-
line in the segmentation that can be attributed to the slice-by-slice 2D
painting in the axial direction (Tumor031 dataset).

generally time consuming and challenging. Furthermore, manual segmentations are dif-

ficult to reproduce in a reliable and objective manner, even by the same human expert.

The task is mostly performed by drawing image regions slice-by-slice, limiting the human

rater’s view and generating suboptimal outlines with limited consistency across slices. An

example of a manual segmentation of brain tumor from MRI is shown in Figure 1.1.

Due to the limitations of manual segmentation methods, an automatic segmentation

framework is crucial for the study of medical phenomena, especially when it involves a

large set of images. An automatic segmentation method is desirable because it reduces the

work load of human experts and generates fully reproducible segmentations. A computer

program also has the advantage of being able to process large amounts of information

as typically presented within 3D multi-modal MR images in a more consistent manner

compared to human raters.

1.2. Automatic MRI Segmentation

The task of automatically segmenting medical images, as opposed to natural scenes,

has the significant advantage that structural and intensity characteristics are well-known

up to a natural biological variability and presence of other factors such as pathology.

The typical adult brain tissue can be divided into three main categories: white matter
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Figure 1.2. The ICBM (International Consortium of Brain Mapping)
brain atlas that functions as a spatial probabilistic model for a healthy
adult population. From left to right: T1 weighted template image and
probability values of white matter, gray matter, and csf.

(information transmitters), gray matter (information processors), and cerebrospinal fluid.

The central gray matter region can be divided further into other structures such as the

caudate, hippocampus, etc. [37]. A widely used model for the general adult brain

population is the probabilistic brain atlas [20], which is created by averaging MR images

and the corresponding sets of segmentations. The ICBM (International Consortium of

Brain Mapping) brain atlas (Figure 1.2) provides the spatial probabilities of a brain

location being white matter, gray matter, or cerebrospinal fluid (csf). The atlas was

created by registering subject images using affine transformation. Due to the limited

degrees of freedom for affine transformation, most of the subject variability is retained

and the atlas appears blurry. A sharper atlas can be created by using a deformable

registration with more degrees of freedom, such as the fluid image warping [55]. A mesh-

based atlas generation scheme that automatically determines the degree of warping and

blurring was proposed by van Leemput [94].

Existing automatic MRI segmentation methods make use of the brain atlas as spatial

priors [93] or as sampling constraints [17]. These methods provide good results for

healthy brain MR images that have similar structure to the one described by the brain

atlas. In clinical applications however, there is strong interest in analysis of MR images

that show deviations from the typical population, which implies deviations from the

reference population model (brain atlas). These deviations can be caused by pathology or

natural growth patterns, as shown in Figure 1.3. The standard atlas-based segmentation

methods fail in detecting anatomical deviations because they typically do not take into

3



Figure 1.3. Example MR images that exhibit deviations from a reference
population. Top: MRI of an adult with tumor and edema (T1w and T2w)
which show deformation due to tumor mass effect and infiltration of brain
tissue by edema. Bottom: MRI of a newborn infant (T1w and T2w) which
shows the presence of two different types of white matter due to myelina-
tion.

account strucutural and intensity changes not modelled by the atlas. Figure 1.4 shows an

example result of applying the method proposed by van Leemput et al. [93] to a brain

tumor MRI. The method uses the normal brain atlas as spatial priors and computes the

anatomical label assignment using the Expectation-Maximization (EM) algorithm [25].

The tumor region is incorrectly labeled as a fluid region since tumor appearance is similar

to appearance of fluid in the standard T1w and T2w MRI scans.

Atlas-based segmentation approaches, such as the one proposed by van Leemput et

al. , have been shown to perform well on MRI of healthy subjects. However, they do

not take into account the deviations in intensity and structure caused by pathology and
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Figure 1.4. Failure of atlas-based segmentation of brain tumor MRI when
tumor structure is not taken into account. From left to right: contrast
enhanced T1w, T1w, and T2w images; followed by the segmented label
image. The tumor and edema regions (circled) are mostly considered to be
part of the cerebrospinal fluid structure.

thus fail to estimate the proper anatomical assignments. I propose to extend the atlas-

based segmentation approach using combinatorial robust parameter estimation methods

that can handle significant proportions of outlier data due to noise, pathology, growth

changes, or other deviations from the normal population model. The new robust approach

is shown to be suitable for two interesting clinical problems: automatic segmentation of

adult brain MRI with tumor and of newborn brain MRI with rapid myelination changes.

In adult brains with tumor, tumor causes significant deformation due to mass effect while

surrounding healthy tissue can be infiltrated by tumor cells and edema. These changes

result in significant deviations from the atlas with regard to structure and appearance.

Healthy infant brains undergo rapid growth during the first year, where the white matter

fibers are being covered in myelin sheaths. The myelin sheath is a crucial component for

the transmission of neural signals. Since white matter is not fully developed at birth, the

structure does not appear homogeneous in newborn brain MRI [81]. The myelination

process results in changes in appearance when compared to the standard atlas where

white matter is modeled as a single tissue category.

1.3. Thesis and Contributions

Thesis: Reference population models and priors on the possible deviations

can be effectively combined in a robust maximum likelihood segmentation
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Figure 1.5. A conceptual overview of the proposed dissertation topic. It
involves a segmentation framework which treats healthy adults as the refer-
ence population and tumor as a change process, and a validation framework
for the segmentation results. The segmentation framework makes use of
reference population models and priors on the change processes. The vali-
dation framework simulates the change processes to obtain known ground
truth.

framework for brain MR images, extending applications to image data pre-

senting pathology or neurodevelopmental and neurodegenerative changes.

Considering the lack of a reliable ground truth, the reference population

model and deterministic models of the anatomical deviations can also be

combined to create synthetic ground truth. This facilitates objective evalu-

ation of the performance of different segmentation methods.

A graphical overview of the topics covered in this dissertation is shown in Figure 1.5.

The practical aim of the work described in this dissertation is the creation of a system

that performs automatic segmentation of images with clinically interesting anatomical

deviations, along with objective validation of segmentation results using well defined

ground truth. Such a system has significant potential value for clinical studies involving

large populations since it provides fully reproducible segmentations with reliable measures

of segmentation performance for quality control.
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Segmentation of MR images with pathological deviations, such as brain tumor, has

been approached in different ways [13, 31, 47, 33]. The previously available tumor seg-

mentation methods are not fully automatic and do not provide segmentations of healthy

tissue and edema. Detailed review of other segmentation approaches for brain tumor

MRI is covered in Section 3.1. Review of other segmentation approaches for newborn

brain MRI is presented in Section 4.1. The segmentation framework proposed in this dis-

sertation is fully automatic and provides a complete description of the 3D brain anatomy.

With regard to the simulation of MR images with pathological deviations, there is a

lack of models that make use of relevant biological models. For example, the brain tumor

MRI simulator proposed by Rexilius et al. [79] determines edema regions by using the

white matter mask and distances to tumor boundary, and restricts contrast enhancement

to the brain tumor regions. The brain tumor MRI simulation framework proposed in this

dissertation uses a model of local diffusion properties for edema and computes contrast

enhancement in both tumor and blood vessel regions.

My work as presented in this dissertation expands the previous work done by others

in the field of Bayesian image segmentation and simulation of brain pathologies. The

contributions of this dissertation are as follows:

(1) Image segmentation using a modified Expectation-Maximization (EM) algo-

rithm: the novelties of this approach are its use of robust parameter estima-

tion techniques and its automatic detection of the feature space clusters for the

mixture model.

(2) Generation of an augmented feature space for image segmentation through the

use of spatial constraints such as location, curvature, and adjacency.

(3) Application of the proposed segmentation framework for healthy brains as well

as images that exhibit deviations due to pathology (brain tumor) and growth

(newborn brains).
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(4) A method for generating pathological ground truth (tumor and edema) from im-

age data with known healthy ground truth by combining a linear elastic biome-

chanical model with random surface tractions and a reaction-diffusion process

guided by diffusion tensor imaging (DTI). The simulation of a new pathological

ground truth is guided by the underlying biological processes.

(5) Simulation of the accumulation of contrast agent for a brain tumor subject to

generate contrast enhanced T1w MRI, which is the standard diagnostic imag-

ing modality. The accumulation model is guided by the underlying biological

processes.

(6) Simulation of MR images with brain tumor and edema using textures synthe-

sized from real tumor MRI samples. The synthetic MR images and the associated

ground truth provides the means for objective evaluation of different segmenta-

tion schemes.

1.4. Overview of Chapters

The remainder of this dissertation is organized as follows:

Chapter 2 presents the background material for Bayesian image segmentation with

the maximum likelihood approach. This chapter also proposes a modification of the

standard EM algorithm for computing the maximum likelihood estimate using robust

parameter estimation techniques to detect deviations or noise.

Chapter 3 presents the application of the robust maximum likelihood image segmen-

tation framework described in Chapter 2 for segmenting MRI of adult brains with tumor.

The anatomical deviations from the adult brain atlas involve the deformation of healthy

tissue due to tumor mass effect and the infiltration of the regions surrounding tumor by

edema.

Chapter 4 presents the application of the robust maximum likelihood image segmen-

tation framework described in Chapter 2 for segmenting MRI of newborn brains. The
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early growth pattern is treated as an anatomical deviation compared to the child brain

atlas, where white matter appears as two distinct regions.

Chapter 5 describes the challenges and goals of validating segmentation results where

the ground truth is difficult to obtain. In this chapter, I will develop a framework for

generating synthetic brain tumor MR images with the associated ground truth based on

the simulation of tumor and edema growth processes.

Chapter 6 concludes with a summary of the contributions and discussion of possible

future work.
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CHAPTER 2

Maximum Likelihood Image Segmentation

This chapter describes the image segmentation framework that forms the main con-

tribution of this dissertation. Section 2.1 discusses the basic concepts for Bayesian image

segmentation. Section 2.2 describes the segmentation process by maximizing the image

likelihood using the Expectation-Maximization (EM) algorithm. Methods for estimating

model parameters from noisy data with outliers are discussed in Section 2.3. Finally,

extensions to the EM algorithm for segmenting images with deviations from an expected

model is presented in Section 2.4.

2.1. Background

An image I = (Ik) is a collection of values arranged in a regular lattice Λ. In this

dissertation, Λ refers to the 3D image lattice, where the gaps in the lattice configuration

can be different for each dimension. For every k ∈ Λ, Ik represents the feature values

associated with the voxel location k. In the case of multi-modal images, such as color

images, Ik is a vector containing a fixed number of scalar component values. Image

segmentation is the task of assigning labels to each image location based on the feature

values. This results in what is typically called the segmented image or the label image

S = (Sk). The value Sk is an assignment label drawn from a finite set of classes or labels

C or Sk ∈ C.

The complexities of the real world configuration and the image acquisition process

generally makes it impossible to have accurate deterministic models for image content.

This leads to the development of probabilistic models, where an image I is considered

as an observation drawn from a probability distribution. Bayesian image segmentation



provides a framework for estimating a map from an image I into a label image S, while

balancing the prior knowledge information and the observed data.

There are three essential probability distributions functions involved in the Bayesian

framework. The prior distribution embodies the knowledge of likely configurations before

an actual image is observed. In contrast, the probability distribution that is derived after

an observation has been made is called the posterior distribution. The likelihood is defined

as the probability of obtaining a particular observation given a set of model parameters

(a conditional probability).

The theorem proposed by Bayes [7] describes the relation between the posterior prob-

ability p(B|A), prior probability Pr(B), and likelihood p(A|B).

Theorem 2.1. Bayes’ theorem states that the posterior probability p(B|A) is propor-

tional to the likelihood p(A|B) multiplied by the prior Pr(B).

p(B|A) =
p(A|B)Pr(B)

p(A)
(2.1.1)

Within a Bayesian framework, segmentation of a given image is performed by estimat-

ing the label assignments and the parameters describing the image appearance and/or

geometry. The label image S and the model parameters θ form a tuple that describes

the world state that generates the image I,

W = (S, θ).

Bayes estimators that map the image I into the segmentation S can be constructed using

the joint probability p(I,W ). When the joint probability function is known, a simple

estimator is to choose the most likely estimate Ŵ that maximizes p(I,W ). In practice

however, the full joint probability is typically very complex thus most estimators use the

associated conditional probabilities instead.
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2.2. Image Segmentation using Expectation-Maximization

One can consider segmentation as a problem of finding the hidden label assignments

from the observed image data. The Maximum Likelihood (ML) segmentation estimate

is the one that maximizes the likelihood of observing the complete data J = (I, S)

given the model parameters θ: p(J |θ), which is an associated conditional probability

of p(I,W ). When the parameters θ are known the estimate of the segmentation S is

straightforward. On the other hand, when the hidden segmentation S is known we

can infer the model parameters θ. This leads to the development of the well known

Expectation-Maximization (EM) algorithm [25] for ML estimation.

The Expectation-Maximization algorithm can be considered as an optimization tech-

nique where we maximize the lower bound for the image likelihood function [67]. The

lower bound is derived from Jensen’s inequality:

∑
j

g(j)aj ≥
∏

j

g(j)aj (2.2.1)

given
∑

j aj = 1. In image segmentation, the EM algorithm finds the parameter which

maximizes the probability of a configuration over all the possible values for the hidden

label assignment. The function that is maximized is:

f(θ) = p(I|θ) =
∑

S

p(I, S|θ). (2.2.2)

We can create a lower bound for f(θ) by using a probability function q(S) and applying

Jensen’s inequality (Equation 2.2.1)

f(θ) =
∑

S

p(I, S|θ)
q(S)

q(S) ≥ g(θ, q) =
∏
S

(
p(I, S|θ)
q(S)

)q(S)

. (2.2.3)

The function q(S) needs to be chosen so that we obtain a good bound on the image

likelihood function. The bound can be maximized using the log of the bound, which
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yields

log g(θ, q) =
∑

S

log

(
p(I, S|θ)
q(S)

)q(S)

=
∑

S

q(S)log
p(I, S|θ)
q(S)

=
∑

S

q(S)log p(I, S|θ)− q(S)log q(S). (2.2.4)

The probability ratio within the log term can be rewritten as follows:

p(I, S|θ)
q(S)

=
p(S|I, θ)
p(S|I, θ)

p(I, S|θ)
q(S)

=
p(S|I, θ)
q(S)

p(I, θ)

p(θ)
=
p(S|I, θ)
q(S)

p(I|θ).

Thus, obtaining the following interpretation for the log of the bound that defines the

optimal q(S) [11]:

log g(θ, q) =
∑

S

q(S)log
p(I, S|θ)
q(S)

= Eq(S){log
p(S|I, θ)
q(S)

}+ log p(I|θ)

= −Eq(S){log
q(S)

p(S|I, θ)
}+ log p(I|θ)

= −DKL(q(S) || p(S|I, θ)) + log p(I|θ) (2.2.5)

where E is the expectation function and DKL is the (non-negative) relative entropy or

Kullback-Leibler divergence [49]. To obtain the optimal q(S) for the bound, we need to

minimize the relative entropy between q(S) and the label posterior probability. This can

be achieved when this divergence is made zero by using the same probability function,

q(S) = p(S|I, θ). Computing q to obtain a good bound on the expected likelihood is

called the E-step, while maximizing the bound over θ is called the M-step. With regard

to image segmentation, the estimation of the hidden segmentation labels is called the

E-step and the estimation of the best parameters θ from the complete labeled image

data is called the M-step.
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The Kullback-Leibler divergence has also been demonstrated to be a useful metric for

defining average anatomies, as proposed by Lorenzen et al. [56, 55]. In this case, the

divergence is minimized in order to maximize a lower bound on the Bayes probability

of error between the average anatomy and the set of subject anatomies. This is similar

to the maximization of a lower bound on complete data likelihood in the EM algorithm.

Maximizing the Bayes probability of error ensure that the average anatomy resembles

the actual observed anatomies.

The EM algorithm computes the ML estimate through an iterative process. In one

iteration it performs the estimation of the q(S) function given the current model param-

eters and the calculation of the model parameters θ that maximizes the complete data

likelihood p(J |θ). During the nth iteration the algorithm proceeds as follows:

• E-step: Given the observation I and the current model parameter θ(n), compute

the conditional expectation of the complete data likelihood defined as Q(θ|θ(n)),

Q(θ|θ(n)) = Ep(S|I,θ(n)){log p(J |θ)} = Ep(S|I,θ(n)){log p(I, S|θ)}. (2.2.6)

The goodness-of-fit function Q is derived by extracting the relevant term from

Equation 2.2.4 and substituting q(S) with the optimal probability function

p(S|I, θ).

• M-step: Update the model parameters for the next iteration so that the expected

complete data likelihood is maximized,

θ(n+1) = arg max
θ

Q(θ|θ(n)). (2.2.7)

When the true maximization of the expected data likelihood is difficult to do, an alter-

native is to simply choose the model parameters that generate a higher value of data

likelihood. The selection of higher likelihood values as opposed to a maximum gives rise

to the Generalized EM (GEM) algorithm, which may be particularly attractive when the

likelihood is modeled using a parametric distribution and the gradient of the expected

data likelihood is available in closed form. Each iteration of the EM or GEM algorithm
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guarantees that the log-likelihood log p(J |θ) is increased [103]. The GEM algorithm in

practice converges to a local maxima given a particular initialization, which makes it

particularly sensitive with regard to its initial values.

Here, I will develop an EM image segmentation algorithm using a Gaussian mixture

model for multi-modal images with voxel data in Rd. This is a standard approach that

has been used for medical image segmentation by Wells et al. [100], van Leemput et al.

[93], and Zhang et al. [106]. Image segmentation using EM is an iterative process where

we begin with a model parameters θ(0). Each segmentation iteration involves estimating

the segmentation labels and updating the model parameters. The complete image data

at different locations are assumed to be statistically independent, Ju ⊥⊥ Jv ∀u 6= v. For

each location k, the appearance model or the individual image likelihood for a specific

label or class c is

p(Ik|Sk = c, θ) = Nµc,Σc(Ik) (2.2.8)

where Nµc,Σc is the multivariate normal distribution associated with class c with mean

µc and covariance matrix Σc. The model parameters θ are composed of parameter values

for the class-specific multivariate normals, θ = {(µi,Σi) ∀i ∈ C}. With the voxelwise

independence assumption the image likelihood becomes

p(I|W ) = p(I|S, θ) =
∏

k

p(Ik|Sk, θ). (2.2.9)

In the case of natural images, the prior probabilities at specific locations Pr(Sk) are not

known. A common approach is to choose a global value ρc for a class label c based on

experiments or prior knowledge, Pr(Sk = c) = ρc ∀k. In the case of anatomical images,

the prior probabilities for specific structures are known to some degree. For example, the

likely spatial configuration for the brain can be described reliably using the spatial priors

Pr(Sk = c) which describes the probability of observing an anatomical component of the

brain (labeled by c) at location k. In Chapters 3 and 4, the spatial priors from the brain

atlas will be used to segment real brain MRI. The use of an explicit, predefined spatial

priors is relevant for medical images since we have known structures or anatomy.
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The probabilistic models of p(Ik|Sk = c, θ) and Pr(Sk) are the main components

for ML estimation. Combining the image likelihood function (Equation 2.2.8) with the

voxelwise-independence assumption leads to the following complete data likelihood func-

tion:

Q(θ|θ(n)) =
∑

c

∑
k

log [p(Ik, Sk = c|θ)] p(Sk = c|Ik, θ(n))

=
∑

k

∑
c

log [p(Ik|Sk = c, θ)Pr(Sk = c)] p(Sk = c|Ik, θ(n))

=
∑

k

∑
c

log [Nµc,Σc(Ik)Pr(Sk = c)] p(Sk = c|Ik, θ(n)). (2.2.10)

The best estimate for the model parameters θ can be found through explicit maximiza-

tion, i.e. determining the µc and Σc values that satisfy the conditions ∂Q(θ|θ(n))
∂µc

= 0 and

∂Q(θ|θ(n))
∂Σc

= 0. This leads to the following update equations for the M-step:

w
(n+1)
k,c =

p(Ik|Sk = c, θ(n))Pr(Sk)∑
c′ p(Ik|Sk = c′, θ(n))Pr(Sk)

(2.2.11)

µ(n+1)
c =

∑
k w

(n+1)
k,c Ik∑

k w
(n+1)
k,c

(2.2.12)

Σ(n+1)
c =

∑
k w

(n+1)
k,c (Ik − µ(n+1)

c )t(Ik − µ(n+1)
c )∑

k w
(n+1)
k,c

(2.2.13)

Equation 2.2.11 describes the weight values for the expected likelihood in the E-step,

w
(n)
k,c = p(Sk = c|I, θ(n)). The update equations for the image model with voxelwise-

independent normal distributions show that model parameters for the next iteration are

the the mean and covariance values of the image intensities, weighted by the normalized

class posterior probabilities. In this example, image segmentation can be reduced to the

following iterative steps:

(1) Estimating the initial model parameters θ(0). This can be achieved through

unsupervised clustering [100, 106] or using a spatial prior such as the brain

atlas [93, 17].

(2) Computing the EM weights wk,c for each location k and class label c.
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(3) Updating the mean and covariance parameter values using the observed image

intensity values.

(4) Repeat the second and third step until convergence to a local maxima.

(5) Obtaining final segmentation labels from the class posterior probability. For

discrete labels, the classification label Lk for location k is obtained as follows:

Lk = arg max
c

p(Sk = c|Ik, θ(nfinal)). (2.2.14)

The ML image segmentation framework does not yield a true Bayes estimator for the

world state W . Although the ML framework makes use of the class prior probabilities

Pr(Sk), it does not include the modeling of Pr(W ) = Pr(S, θ) or even Pr(θ). For the

example framework described above, this is not a major issue since the model parameters

θ are simply the means and covariances for the image likelihood described using normal

distributions. However, when the model parameters θ become more sophisticated the

use of prior knowledge of θ can improve the segmentation performance. Appendix B

discusses a framework using a true Bayes estimator, where one can make use of the prior

Pr(W ).

2.3. Robust Parameter Estimation

Estimating the model parameters θ in the M-step is a critical part of the EM algo-

rithm. The original EM formulation computes the means and covariances of the Gaussian

mixture model without taking account of possible outliers in the image data. I propose to

improve the EM algorithm by using robust parameter estimation in the M-step in place

of the standard approach. There has been some limited previous work for this type of ap-

proach, where robust estimation is combined with the EM algorithm. Malyutov and Lu

[59] used the robust least median of squares and the M-estimator for estimating object

trajectories from frame sequences that are corrupted with noise and clutter (correlated

noise). With regard to medical image segmentation, van Leemput et al. applied the

M-estimator for detecting brain lesions from MRI [95]. Their approach uses a multiplier
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for the E-step weights, effectively deweighting based on intensity thresholding through

the following equation:

q′(Sk) =
p

p+ I{Ik > threshold}κ
q(Sk) (2.3.1)

where p is the Gaussian likelihood for healthy brain tissue, I is the indicator function,

and κ is the class-specific deweighting parameter based on the covariance determinant.

The intensity thresholding is done relative to the class intensity means. The means are

computed as the weighted averages of the relevant image data values, which may be

skewed by outliers. Equation 2.3.1 assigns lower probablity of healthy tissue in regions

that fit the criteria of being abnormal (in this case lesions).

Estimators using weight functions such as the M-estimator typically cannot handle

large proportion of outliers in data since they have a low breakdown point [12]. The

breakdown point is defined as the fraction of data that must be moved to infinity (i.e.,

become outliers) for the method to generate inaccurate results. In fact, the classic un-

bounded M-estimators has a breakdown point of 0 [86] since a single outlier with feature

values that are significantly different from most of the data can lead to a local minima.

In practice, the M-estimator typically have an approximate breakdown point of 0.15 to

0.2. The method proposed by van Leemput et al., while performing well on brain lesion

data, can fail when used to segment images with significant proportion of outliers due to

malignant pathology or growth changes. In this dissertation, I propose the use of meth-

ods with a high breakdown point such as a combinatorial robust parameter estimator

(Section 2.3.1) and a graph-based parameter estimator (Section 2.3.2). These methods

isolate the clusters within data while taking account of outliers. They can be used in

place of the standard M-step to generate parameters that are not unduely influenced by

data outliers.

2.3.1. Minimum Covariance Determinant Estimator. The Minimum Covariance

Determinant (MCD) estimator is an algorithm that computes the mean and covariance

of a Gaussian model that represents an ellipsoid covering at least half of the data with

18



the lowest determinant of covariance. The generated estimate is highly robust with a

high breakdown point. The MCD estimator has a breakdown point of 0.5, more than

half of the data needs to be contaminated to make the results be unreasonable.

Rousseeuw and van Driesen [80] proposed a fast algorithm that computes an approx-

imation of the MCD estimate. The algorithm first creates several initial subsets, where

the elements are chosen randomly. From each subset, the algorithm determines different

initial estimates of the robust mean and covariance. The estimates are then refined by

performing a number of C-step operations on each initial selections. A single C-step

operation consists of the following steps:

(1) Given a subset of the data, compute the mean and covariance of the elements

in the subset.

(2) Compute Mahalanobis distances of the data elements in the whole set.

(3) Sort points based on distances, smallest to largest.

(4) Select a new subset where the distances are minimized (i.e. the first half of the

whole set of the sorted data points).

An illustration of a single C-step iteration is shown in Figure 2.1. A C-step operation

will result in a subset selection that yields a determinant of covariance less or equal to

the one obtained from the previous subset. The iterative applications of C-steps yield

final estimates with the smallest determinant of covariance. From all the final estimates

computed with different initial selections, the mean and covariance estimate with the

smallest determinant of covariance is chosen as the robust estimate.

2.3.2. Minimum Spanning Tree Clustering. The Minimum Spanning Tree (MST)

clustering algorithm is a graph based techniques that yields a predefined number of data

clusters while ignoring outliers. Unlike the MCD estimator that only provides a single

data cluster, MST clustering can yield two or more data clusters.

Given a graph G = (V,E) with vertices V and edges E, the Minimum Spanning Tree

[21] is a graph GMST = (V ′, E ′) where all the vertices are connected such that the total
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Figure 2.1. An illustration of a single C-step iteration, a key component
of the MCD robust estimation algorithm. Left: original 2-D data with M
points. Center: random selection of a subset of the data (marked with
circles). Right: the selection after a C-step iteration, where the first M/2
closest points to the previous mean and covariance estimates are selected.
The ellipsoidal curves in the center and right plots show the locations one
standard deviation away from the mean and covariance estimates, which
are computed from the selected points.

edge lengths are minimized. The MST graph is a subset of the original graph G, V ′ ⊆ V

and E ′ ⊆ E, where E ′ does not contain any closed loops (cycles).

The MST-based clustering technique proceeds by first creating the MST graph from

the sampled data (image intensities) and then iteratively breaking the long edges to form

connected clusters. At each iteration, it breaks an undirected edge e(v, w) that connects

vertices v and w if its length is larger than A(v) × T or A(w) × T . A(v) is the average

length of edges incident on vertex v. Given N(v) as the set of neighboring vertices for

a vertex v, A(v) = 1
|N(v)|

∑
q |e(v, q)|, where q ∈ N(v). T is a scalar distance multiplier

that determines which edges are considered to have significant deviation from the edges

in the neighborhood.

Figure 2.2 shows the results of applying an iteration of the edge breaking step to an

example dataset. As seen in the figure, the main clusters generated by the method do

not contain the isolated data points that are located far away from the clusters. The edge

breaking results in subtrees where each subtree forms an intensity cluster. The clustering

algorithm terminates when it detects a predefined number of large clusters that satisfy

certain intensity characteristics. For example, in the segmentation of an image into

foreground and background regions, the algorithm should only terminate when it detects
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Figure 2.2. Clustering by breaking the long edges of a Minimum Span-
ning Tree. Left: the MST created from the input data, with the long edges
broken. Right: the generated clusters, note that the isolated far away
points are treated as outliers and are not included.

at least two large data clusters where one of them is very dark and another is relatively

bright.

The MST clustering algorithm uses the local property A(v) for a vertex v to determine

the clusters, as opposed to the combinatorial MCD scheme which involves large subsets

of data. This can cause problems when the global configuration of the data in feature

space is not optimal. The breakdown point can be as low as zero when the actual data

samples and the outlier samples are connected by a series of short, equal-length edges.

Figure 2.3 shows an example of a configuration that leads to a low breakdown point.

This configuration will cause the algorithm to fail in detecting the separation between

data and outliers. However, this type of configuration is not generic and rarely occurs

with real data. Some heuristics can also be applied to avoid having a sequence of short

edges, such as the one presented in Chapter 4. Assuming typical sample configurations

for the input and picking the largest data cluster as inliers, the MST clustering algorithm

can have a breakdown point as high as 0.5.

Details on the properties of the MST graph structure can be found in the book by

Cormen et al. [21]. Applications of graph-based clustering for pattern recogniction is

described in the book by Duda et al. [27]. Of relevance to this dissertation, a description
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Figure 2.3. An example configuration where the Minimum Spanning
Tree clustering cannot properly separate outliers from data. The outlier
points on the lower right are connected by relatively short and equal-length
edges. These edges will only be broken when some of the edges connecting
the inlier samples are also broken, which leads to a skewed estimate of the
inlier distribution.

of the robust MST clustering method applied to the segmentation of medical images can

be found in the paper by Cocosco et al. [17].

2.4. Robust EM Segmentation Framework

The generative model or the image likelihood p(I|W ) is an important component for

the EM based approach. However, in practice it can be difficult to obtain the generative

model from the data, particularly in cases where there are unknown deviations from

prior knowledge. This problem is compounded by the high level of variability in image

acquisitions and the amount of noise in the image data. Therefore, it is crucial to have

the ability to draw a reasonable estimate of the generative model from noisy data that

may have outliers. The computation of the parameter θ that forms the image likelihood

in the standard M-step does not take outliers into account. When outliers are present,

this presents a serious problem since they may skew the parameter estimation results

and generate improper segmentations.

22



I propose the modification of the EM algorithm into a new robust EM algorithm,

where the parameter update in the M-step is replaced with a robust parameter estima-

tor described in the previous section. This makes it suitable for detecting anatomical

deviations in medical images, as they can alter significant proportions of the image data.

Since real images can have specific and complex appearance properties, the Gaussian mix-

ture model in the EM image segmentation may not always be appropriate. To improve

segmentation results in the general case, I propose the use of non-parametric density

functions for the image likelihood. Instead of computing the Gaussian distributions for

p(I|W ), the algorithm computes non-parametric kernel density estimates.

In the M-step, the robust data driven parameter estimation methods (the Minimum

Covariance Determinant estimator and the Minimum Spanning Tree clustering) are used

to generate data clusters together with the knowledge of data outliers. The knowledge

of the relevant clusters allows the method to robustly determine the proper intensity

ranges for the major structures. The generative model p(I|W ) is estimated by fitting a

probability distribution to the data clusters, performed by using the data within each

cluster as training data for the nonparametric kernel densities.

The new robust EM algorithm is an iterative process that replaces the parameter

update equations (Equations 2.2.12 and 2.2.13) with the combination of robust data

clustering and non-parametric density estimation. The modified algorithm proceeds as

follows in the nth iteration:

• E-step: This part of the EM algorithm is unchanged. The goodness-of-fit

function Q is computed according to Equation 2.2.6 using the class posteriors

p(S|I, θ(n)) to form the expectation.

• M-step: Computation the updated parameters θ(n+1) is done through clustering

of image data samples. The samples are obtained using the parameters from the

current iteration n, which determines the class posteriors p(S|I, θ(n)). The class

posteriors describe the likely regions for obtaining data samples. Good regions
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for sample selection are determined by thresholding the current class posteriors

or using a Monte Carlo approach (e.g., the Metropolis-Hastings algorithm).

Once the clusters are identified, the individual mixture components p(I|S =

c, θ) are computed by fitting a kernel density function to the intensity data

within the clusters. The samples form the training data for classification using

non-parametric density mixtures. For a class c and voxel location k the updated

voxel image likelihood becomes

p(Ik|Sk = c, θ(n+1)) =
1

M

M∑
i=1

Kλ(Ik − Y (n)
i ) (2.4.1)

where Kλ is the multivariate Gaussian kernel with standard deviation λ and zero

mean, and Y (n) is the set of M training samples obtained by applying robust

clustering to samples from p(S|I, θ(n)). The choice of the standard deviation or

kernel width λ is crucial in determining the classification decision boundaries.

The kernel width can be estimated through heuristics, for example by choosing

a fraction of the expected image intensity range. The kernel width can also be

estimated using a bootstrap technique.

Initialization of the robust EM algorithm is performed by using the spatial priors provided

by the atlas, p(Sk = c|Ik, θ(0)) = Pr(Sk = c). Each iteration of the robust algorithm

refines the class posterior probability p(Sk = c|Ik, θ(n)) and tends to result in sharper

spatial posterior probabilities.

The modification of the M-step is mainly done by excluding or deweighting samples

that do not follow the expected data distribution in the image intensity feature space.

In addition to explicitly identifying outliers in the feature space, another approach is to

identify samples that violate prior knowledge on the spatial or geometric features. This

approach is used in brain tumor segmentation to isolate tumor samples by removing

small spurious regions and to isolate edema samples by constraining it to regions adja-

cent to tumor (Section 3.2). In newborn brain segmentation, the method avoids white

matter samples near the decision boundary by restricting sampling to regions with low
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image gradient magnitude values (Section 4.2). This approach samples smooth image

regions, which results in coherent data clusters that are easier to detect and to separate.

Using knowledge on the geometric configuration within the images avoid contaminating

the samples with ambiguous data or data which induces a certain bias in parameter

estimation.

The classic EM algorithm with mixture models restricts the number of mixture com-

ponents to a predetermined value. This model is inappropriate for many real images, as

objects may enter and leave the scene or pathological structures can be formed or can

disappear, for example. I propose a modification of the classic EM algorithm where new

mixture components are detected through explicit detection of multiple clusters within

the data. The detection of multiple clusters can be achieved in a robust manner that

discards outliers by using the robust MST clustering proposed in the previous section.

The existence of new mixture components can be tested by evaluating the amount of

overlap between the detected clusters from the MST graph. This detection of new mix-

ture components is applied to the determination of possible edema surrounding tumor in

Section 3.2.

The robust image segmentation framework includes modifications that make it no

longer a true EM algorithm. The log likelihood Q is no longer guaranteed to increase at

every iteration. Therefore, the iterative process is terminated when the change is smaller

than a threshold:

|Q(θ(n+1)|θn)−Q(θn|θ(n−1))

Q(θn|θ(n−1))
| < εQ (2.4.2)

The robust EM image segmentation framework performs classification mainly based

on the image intensity feature space data. If available, the spatial information from the

brain atlas prior Pr(S) is combined with the class likelihood using the Bayes rule. The

spatial priors Pr(S) may be suboptimal since there may exist some deviations between

the data and the prior model. In cases with small to moderate deviations, classification

using the intensity feature space can still be reliable due to the use of the robust parameter

estimation techniques. However, in cases with large deviations, the use of the spatial prior
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Pr(S) may result in samples that have a significant proportion of outliers. When the

proportion of outliers exceed the breakdown point of the robust parameter estimator,

the algorithm would fail to estimate the proper image likelihood and the segmentation

would fail. To deal with this issue, it will be necessary to explicitly account for possible

changes to Pr(S) to form an appropriate model for the observed images. As an example,

spatial priors coded in the healthy adult atlas need to account for brain tumors that can

deform surrounding structures.

Another limitation of the algorithm is related to the voxel-based approach, where it

is assumed that each voxel is independent to other voxels. This approach can lead to

spurious segmentations where small collections of voxels within some regions are incor-

rectly labeled as distinct from the surrounding labels. Noisy results can be avoided by

extending the framework via the application of a Markov Random Field (MRF) model

to Pr(Sk), similar to the approach proposed by van Leemput et al. [93] and Zhang et

al. [106]. However, the MRF model tends to smoothen the segmented structures and

thus may not be appropriate for some applications where we require segmentations with

fine details. An alternative to the MRF approach would be the use of an extended image

model with a modeling of image region coherence and the more complete prior Pr(S, θ)

rather than only Pr(S). Such an extended model is proposed in a Maximum a Posteriori

(MAP) image segmentation framework discussed in Appendix B.

Applications of the new robust EM image segmentation framework are described in

Chapter 3 for brain tumors and Chapter 4 for newborn brains. Possible extensions to

this framework are discussed in the future work section of Chapter 6.
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CHAPTER 3

Brain Tumor MRI Segmentation

In this chapter, I will describe the application of the robust EM framework described

in Chapter 2 to automatic brain tumor segmentation from MRI. Section 3.1 provides

a discussion of the motivation and challenges in segmenting brain tumor MR images.

The adaption of the robust EM image segmentation framework to accomodate pathol-

ogy is described in Section 3.2. Deviations in intensity and appearance due to tumor

and edema are detected as outliers from the expected image model of healthy tissue.

Existence of edema is determined automatically by testing for a bimodal distribution of

the outlier samples. In Section 3.3, I present the results of the automatic segmentation

framework applied to three different types of tumor, along with the validation of those

results compared to manual segmentations.

3.1. Background

The segmentation of brain tumor and edema from MR images is of particular interest

to clinicians. The knowledge of tumor and edema extent combined with the location of

healthy structures can be used to provide a reference for surgical and radiological treat-

ment planning, for monitoring tumor growth, and for evaluating efficacy of treatment.

However, the presence of brain tumor and edema in a brain MRI gives rise to many

issues and challenges related to quantitative analysis of such images. Brain tumors may

be of any size, may have a variety of shapes, may appear at any location, and may ap-

pear in different image intensities. Some tumors also deform other structures and appear

together with edema that changes intensity properties of the nearby region.



For many human experts, manual segmentation of brain tumor from MRI is a difficult

and time consuming task. Therefore, an automated brain tumor segmentation method

is desirable. There are many potential applications of automated segmentation. The

changes of healthy tissue due to tumor and edema need to be identified for determining

surgical and radiological treatment planning. The knowledge of affected regions is also

vital for studying possible diagnostic markers for brain tumors. For example, the shape

of blood vessels within tumor regions is observed to have significant correlation with

tumor classification into benign and malignant types [10].

The multiple challenges associated with automatic brain tumor segmentation have

given rise to many different approaches. Automated segmentation methods that combine

fuzzy clustering and knowledge-based classification were proposed in [13, 31]. The two

methods do not rely on intensity enhancements provided by the use of contrast agents.

A particular limitation of the two methods is the use of specific classification rules which

restricts the image modalities to the T1, T2, and PD weighted MR image channels.

Additionally, the methods require a manually guided training phase prior to segmenting

a set of images. Other methods are based on statistical pattern recognition techniques,

for example the method proposed by Kaus et al. [48]. This method combines the

information from a registered atlas template and user input to supervise training of a

the classifier, demonstrating the strength of combining voxel-intensity with geometric

brain atlas information. This method was validated against meningiomas and low-grade

gliomas. Gering et al. [33] proposed a method that detects deviations from normal brains

using a multi-layer Markov random field framework. The information layers include

voxel intensities, structural coherence, spatial locations, and user input. Cuadra et al.

presented high-dimensional warping to study deformation of brain tissue due to tumor

growth [22]. Their technique relies on a prior definition of the tumor boundary whereas

the method proposed in this chapter focuses on automatically finding tumor regions.

Previous work on automatic brain tumor segmentation generally uses the enhance-

ment provided by the gadolinium contrast agent in the T1 channel or constrained to
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blobby shaped tumors with uniform intensity. Even though the intensity enhancement

can aid the segmentation process, it is not always necessary to obtain good results. In

fact, requiring the use of contrast enhancement to segment tumors can be problematic.

Typically, tumors are only partially enhanced and some tumors are not enhanced at

all. Blood vessels also generally appear enhanced by the contrast agent. These inconsis-

tencies create an ambiguity in the image interpretation, which makes the T1-enhanced

image channel a less than ideal feature for tumor segmentation in general. Methods

that primarily use the contrast enhancement to drive the tumor segmentation will have

difficulties in isolating tumors.

Edema surrounding tumors and infiltrating mostly white matter was most often not

considered as important for tumor segmentation. It has been shown previously [71, 77]

that edema can be segmented using a prior for edema intensity and restriction to the

white matter region. The extraction of the edema region is essential for diagnosis, therapy

planning, and surgery. It is also essential for efforts that involve modeling the brain

deformation due to tumor growth. The swelling produced by infiltrating edema usually

has distinctly different tissue property characteristics than space occupying tumor. The

segmentation strategy presented in this chapter is based on the detection of changes

from normal and will thus systematically include segmentation of edema. Differential

identification of the two abnormal regions tumor and edema is clinically highly relevant.

Even though the primary therapeutic focus will be on the tumor region, the edema region

may require secondary analysis and treatment.

The proposed method combines a model of normal tissues and the geometric and

spatial model of tumor and edema. It relies on the information provided in the T2

weighted image channel for identifying edema, and it can make use of additional image

channels to aid the segmentation. Here, I have chosen to use only the T1 and T2 image

channels. Tumor and edema are treated as intensity abnormalities or outliers. After

identifying the abnormalities, an unsupervised clustering technique is applied to the

intensity features before utilizing geometric and spatial constraints. I will show that this
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and Geometric Constraints

Figure 3.1. The three major stages of the brain tumor MRI segmentation method.

method can segment tumors with or without intensity enhancements and automatically

detects the presence of edema. This approach offers a means of approaching lesions of

multiple types and of different image intensities, and, with a single method, lesions that

enhance or do not, and that may or may not be surrounded by edema.

3.2. Method

The automated segmentation method for brain tumor MRI is composed of three major

stages, as shown in Figure 3.1. First, it detects abnormal regions, where the intensity

characteristics deviate from the expectation. In the second stage, it determines whether

these regions are composed of both tumor and edema. Finally, once the estimates for

tumor and edema intensity parameters are obtained, the spatial and geometric properties

are used for determining proper sample locations. The details of each stage are discussed

in the following subsections.

3.2.1. Detection of Abnormality. Before identifying tumor and edema, it is neces-

sary to first detect regions that have properties that deviate from the expected properties

of a normal, healthy brain. This involves finding the intensity parameters for healthy

classes and the abnormal class. The initial parameters for the healthy brain classes are

30



Figure 3.2. The brain atlas that acts as the model of the healthy adult
population, provided by the International Consortium for Brain Mapping
(ICBM). From left to right: the T1 template image and probability values
of white matter, gray matter, and cerebrospinal fluid. The atlas does not
account for brain tumor and edema, thus its use for segmentation of images
presenting pathology requires a new approach.

obtained by sampling specific regions based on the probabilistic brain atlas for healthy

adults shown in Figure 3.2 [28].

The atlas is aligned with the subject image data by registering the atlas template

image with the subject image. The registration is performed using affine transformation

with the mutual information image match measure [58]. After alignment, the samples

for each healthy class (white matter, gray matter, and cerebrospinal fluid) are obtained

by randomly selecting the voxels with high atlas probability values. The set of training

samples is constrained to be the voxels with probabilities higher than a threshold τ = 0.85

[17].

The training data for the healthy classes generally contain unwanted samples due to

contamination with samples from other tissue types, particularly tumor and edema. The

pathological regions are not accounted for in the brain atlas and they therefore occupy

regions that are marked as healthy. The contaminants are considered data outliers,

and they need to be removed so that the training samples for the healthy classes are

representative. The samples are known to be contaminated if their characteristics differ

from prior knowledge. The intensities for healthy classes are known to be well clustered

and can be well approximated using Gaussians (Figure 3.3).

Handling data outliers is a crucial step for atlas based image segmentation. Cocosco

et al. [17] developed a segmentation method for healthy brains that builds the Minimum

Spanning Tree from the training samples and iteratively breaks the edges to remove false
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Figure 3.3. Example healthy adult MRI dataset. Top, from left to right:
T1 image, T2 image, and segmentation labels (red is white matter, green
is gray matter, and blue is cerebrospinal fluid). Bottom: the intensity
histogram for the three classes, the horizontal axis represents T1 intensities
and the vertical axis represents T2 intensities. The intensity features for
each class is tightly clustered and can be approximated with a Gaussian.

positives (pruning). They showed that pruning the training samples results in significant

improvement of the segmentation quality, particularly for image data presenting enlarged

ventricles. In my method, robust estimate of the mean and covariance of the training

data is used to determine the outliers to be removed.

The robust estimator used for detecting abnormality is the Minimum Covariance

Determinant (MCD) estimator [80] discussed in Section 2.3.1. Given the robust mean

and covariance from the MCD estimator, image intensity samples that are further than

three standard deviations are considered as outliers. This outlier removal process is
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Figure 3.4. The white matter training data for a subject with tumor
and edema, the horizontal axis represents the T1 intensities and the ver-
tical axis represents the T2 intensities. Left: original samples obtained
by atlas-guided sampling which is contaminated with samples from other
distributions. Right: remaining samples after trimming using the robust
MCD estimate, representing the feature distribution of healthy white mat-
ter.

shown in Figure 3.4 for white matter samples. The inliers of the healthy brain tissue class

samples are used as training samples for estimating the corresponding density functions.

The specific aim at this stage is to compute the density estimates and posterior

probabilities for the set of class labels C = {white matter, gray matter, csf, abnormal,

non-brain}. A parametric density function is not ideal for the case of tumor segmentation.

Tumors do not always appear with uniform intensities, particularly in the case where

some tissues inside the tumor are necrotic tissues. Therefore, no assumption can be

made regarding the intensity distributions and thus I use a non-parametric model for

the probability density functions. The density functions are approximated using kernel

expansion or Parzen windowing [27]. Given the vector of intensity features Ik at location

k, the probability density function on intensity for class label Sk = c is

p(Ik|Sk = c, θ = (λ, Y )) =
1

N

N∑
i=1

Kλ(Ik − Yi) (3.2.1)

where Kλ is the multivariate Gaussian kernel with standard deviation λ, and Y is the

set of class training samples. The kernel bandwidth λ chosen is 4% of the intensity range

for each channel, determined using empirical tests on multiple images.

33



The posterior probability at location k is computed using the class prior probability

from the atlas Pr(Sk) by applying the Bayes rule

p(Sk|Ik, θ) =
p(Ik|Sk, θ)Pr(Sk)

p(Ik)
. (3.2.2)

The spatial priors for white matter, gray matter, csf, and non-brain classes are the

corresponding atlas probabilities. For the abnormal class, a fraction of the sum of white

matter and gray matter atlas probabilities is used since tumor and edema usually appear

in these regions and not in the csf regions. With the kernel density estimate as the

likelihood, the image appearance parameters θ for tumor segmentation is composed of

the set of training samples for each class and the kernel width.

An issue with MR images is the presence of the image inhomogeneity or the bias field.

This is dealt by interleaving the segmentation process with bias correction, following

the spirit of [100]. The entire process of detecting the abnormal regions is shown in

Figure 3.5, a loop that is composed of the following five stages:

(1) Threshold the class posterior probabilities and sample the high confidence re-

gions. The posterior probabilities are initialized using the prior probabilities

obtained from the brain atlas.

(2) Remove the samples for normal tissues that exceed a distance threshold based

on the MCD estimate.

(3) Estimate the non-parametric density for each class likelihood using kernel ex-

pansions. The initial density for the abnormal class is set to be uniform, which

makes this class act as a rejection class. The brain voxels with intensity features

that are different from those of healthy classes or not located in the expected

spatial coordinates will be assigned to this class.

(4) Update the class posterior probabilities using the new class likelihoods.

(5) Estimate bias field from white matter and gray matter probabilities. Apply

correction using the estimated bias field.
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Figure 3.5. The process of detecting abnormal regions, the first stage of
the brain tumor MRI segmentation method.

Initialization Iteration 1 Iteration 2 Iteration 3

Figure 3.6. Snapshots of the estimated probability density function of
the abnormal class for the Tumor020 data. Each image shows the result of
different iterations of the loop shown in the previous figure. The density
is initialized so that all intensities are equally likely. The horizontal axis
represents the T1 intensities and the vertical axis represents the T2 inten-
sities. The two high density regions visible at the final iteration are the
tumor and edema densities, which have a significant separation along the
dimension of the T2 intensities.

The first major segmentation stage detects the abnormal regions by executing the loop

for several iterations, obtaining the intensity descriptions for each class. The abnormal

class density at different iterations for the Tumor020 data is shown in Figure 3.6.

The bias correction method is based on the one developed by van Leemput et al.

[92]. The method uses the posterior probabilities to estimate the homogeneous image.

It then computes the bias field estimate, as the log-difference between the homogeneous

images and the real subject images. The bias field is modeled as a polynomial, and the
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coefficients of the polynomial is determined through least squares fitting. The method

assumes that the class intensity distributions are approximately Gaussians. Only the

white matter and gray matter probabilities are used for estimating the parameters for

the bias field correction, as they generally can be approximated by Gaussians without

significant errors. Additionally, the combination of white and gray matter probabilities

represents a large connected region covering the major part of the brain.

3.2.2. Tumor and Edema Separation. The densities and posterior probabilities com-

puted for the abnormal class in the previous stage give us a rough estimate of how likely

it is that some voxels are part of tumor or edema. I make the assumption that the

detected abnormal voxels are composed mostly of tumor and possibly edema. Edema is

not always present when tumor is present, therefore it is necessary to specifically test the

presence of edema. This is done by first obtaining the intensity samples for the abnormal

region, which is performed by thresholding the posterior probabilities and selecting a

subset of the high probability regions. The samples are then clustered and a test is done

to determine whether there exist separate clusters for tumor and edema. The density

estimate for tumor (and edema, if present) is obtained by performing kernel expansion

on the samples.

Tumor and edema are generally separable given the information in the T2 weighted

image (Figures 3.6 and 3.7). Edema has high fluid content and therefore appears brighter

than tumor in this image channel. To separate the densities, unsupervised clustering is

applied to the samples obtained by thresholding. The method I have chosen is k-means

clustering with k = 2 [27]. For dealing with outliers, the robust MST clustering described

in Section 2.3 can also be used as an alternative. Once the clusters are obtained, the

tumor cluster can be identified as the cluster with the lower T2 mean value, making use

of prior domain knowledge.

To determine the validity of the clustering, the method tests for the overlap using

the Davies-Bouldin index [24]. This measure is the ratio of the average within cluster

distances and the between cluster distance. Given m candidate tumor samples τi with
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Figure 3.7. The T1 image (left) and the T2 image (right) from the Tu-
mor020 data. The tumor and edema on the right part of the brain can be
clearly differentiated based on the T2 intensities. As observed in the T2
image, the tumor region (rightmost) is darker than the surrounding edema
region, as edema is composed mostly of fluid.

the mean value µtumor, and n candidate edema samples εi with the mean value µedema,

the overlap measure is:

1

2

( 1
m

∑m
i=1 ||τi − µtumor||+ 1

n

∑n
i=1 ||εi − µedema||

||µtumor − µedema||

)
(3.2.3)

The T2 channel contains most of the information needed for differentiating tumor and

edema. Therefore, the overlap is measured only for the T2 data dimension of each cluster.

If the amount of overlap is larger than a specified threshold, then the tumor density is

set to be the density for the abnormal class and the edema density is set to zero.

3.2.3. Application of Spatial and Geometric Constraints. Once this stage is

reached, tumor and edema are already segmented based on atlas priors and intensity

characteristics. However, voxel-based processing does not consider geometric and spatial

properties and this generally leads to noisy segmentation results. Since there is no model

for the intensity distributions of tumor and edema, it is necessary to use geometric and

spatial heuristics to prune the samples that are used for estimating the densities. The

prior knowledge used in this stage is the fact that tumor is mostly blobby. For edema,

the applied constraint is that each edema region needs to be connected to a nearby tumor

region. Some edema voxels can be located far away from tumor regions, but they must

be spatially connected to a tumor region.
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Tumor structures generally appear as blobby lumps, and this shape constraint is

enforced through region competition snakes [84, 88, 89, 108]. The tumor posterior

probabilities are used as the input for the snake, which is represented as the zero level set

of the implicit function φ. The level set evolution is governed by the following equation

[40]:

∂φ

∂t
= α(p(Sk = tumor|Ik, θ)− p(Sk = tumor|Ik, θ)) |∇φ| + β∇ ·

(
∇φ
|∇φ|

)
|∇φ| (3.2.4)

The propagation term is represented by α. It is modulated by the difference of the

posterior probabilities for the tumor class and the non-tumor class (p(Sk = tumor|Ik, θ)

and p(tumor|Ik, θ)), so that the direction of the propagation is determined by the sign

of the difference. The probability that a voxel is part of brain and not part of tumor is

represented by p(tumor|Ik, θ), more explicitly:

p(tumor|Ik, θ) = p({white matter}|Ik, θ) + p({gray matter}|Ik, θ) + p({csf}|Ik, θ)

+ p({edema}|Ik, θ) (3.2.5)

The snake shrinks when the boundary encloses part of the regions not part of tumor and

expands when the boundary is inside the tumor region. Smoothing on the snake contour

is applied using mean curvature flow, and the strength of this smoothing is controlled

by the β term. The initial level set function is obtained by performing a signed distance

transform on the segmented tumor objects.

Edema, if present, is always contiguous with the tumor. With this prior knowledge, it

is therefore assumed that edema is located near tumor structures. Each segmented edema

object must have a voxel that is adjacent and no further than some small distance from

tumor regions. Adjacency can be tested efficiently by dilating the neighboring structures

and by determining if intersections exist. First, the method generates a binary image

representing the segmented edema region. Then, this image is used as an input for the

connected component algorithm to determine the individual edema objects. Each object

is dilated and then compared against the segmented tumor regions. The objects that
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share some voxels with a tumor region are considered valid. Edema samples from these

regions are kept, while other edema samples are discarded.

The final segmentation is obtained by reclassifying the image using the iterative steps

similar to the one described in Section 3.2.1, with some modifications (Figure 3.8). The

outlier removal stage is removed and there are additional steps where these geometric

and spatial constraints are enforced. The entire loop is performed several times, after

going through each loop the tumor and edema probabilities at the voxel locations that

do not pass the tests are set to zero. This way, the segmentation for these locations

are determined based on the next best candidate class. The tumor shape constraint is

disabled at the last fitting stage. This is done to obtain the proper boundary for the

tumor structures, which may not be entirely smooth. For instance, gliomas typically

have a general blobby shape and ragged boundaries.

The application of geometric and spatial constraints modifies the M-step of the stan-

dard EM algorithm so that it ignores the data samples obtained from inappropriate

locations. This is a geometric-based approach to robust parameter estimation, where

we make use of prior knowledge of the application domain with regard to spatial and

geometric properties. This modification makes sure that the method can exclude subtle

outliers (outliers located close to actual data clusters) by using the augmented features

that include location and shape features.
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Figure 3.8. The third stage of the method where the image is reclassified
using tumor geometric properties and edema spatial relation.
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3.3. Results and Validation

Validation on the brain tumor segmentation method described in this chapter has

been performed on three real datasets. The datasets along with the results of the auto-

matic segmentation method are shown in Figure 3.9. Each dataset represents a different

tumor shape, location, size, image intensity or appearance, and enhancement. Tumor020

has a partially enhancing tumor that causes a large deformation of the normal structures.

Tumor025 contains a large, partially enhancing tumor inside the brain stem. Tumor033

contains a low grade tumor which is not highlighted in the contrast enhanced T1w chan-

nel.

For validation purposes, two sets of segmentations are done manually by one human

rater at different times. The volumes of the manually segmented structures are shown in

Table 3.1. The first set of manual segmentations is considered to be the gold standard for

validating the automatic segmentation method. The VALMET segmentation validation

tool [32] is used to generate three validation metrics (described in Appendix A). The

first measure is a volume overlap measure, the Jaccard similarity coefficient. The other

metrics are the symmetric Hausdorff surface distance and the average surface distance.

The intra-rater variability is shown in Table 3.2. The surface distance values indicate

that the manual segmentations considered as reliable (a real test would need statistical

testing). The Jaccard Similarity Coefficient (JSC) values that measure volumetric overlap

are also high, with the exception of the Tumor033 segmentation. This is likely due to

the small size of the tumor. The quantitative validation of the automatic segmentation

method is shown in Table 3.3. The level of agreement based on surface distances is

similar for all tumors. However, the varying overlap values demonstrate that the overlap

metric is sensitive to the size and complexity of the segmented objects (Figure 3.9), a

fact that is not sufficiently discussed in existing literature. The level of agreement with

the manual result for edema is lower than that for tumor. This is mainly due to the

ambiguity in determining the edema boundary, especially the tumor-edema boundary.

The intra-rater reliability (Table 3.2) is higher than inter-method agreement (Table 3.3).
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T1 T2 Tumor Edema 3D View

Figure 3.9. The datasets and the generated segmentation results. The
last column shows the 3D views of the segmented structures: red represents
tumor, yellow represents edema, and blue represents ventricles. From top
to bottom: Tumor020, Tumor025, Tumor033. These results illustrate that
the proposed method provides the differential segmentation for tumor and
edema, which works also in cases where no edema is present.

Dataset Tissue Type
Volume
(mm3)

Tumor020 Tumor 35578.6
Tumor020 Edema 64860.6
Tumor025 Tumor 24742.4
Tumor033 Tumor 3661.5

Table 3.1. Volumes of the segmented tumor and edema structures, from
the results of the first set of manual segmentation results.

However, it would be interesting to compare automatic segmentation to segmentations

of multiple experts, which is often shown to yield significant differences.

42



Dataset Tissue Type
JSC
(%)

Symm
Hausdorff

(mm)

Average
distance
(mm)

Tumor020 Tumor 89.0 3.98 0.54
Tumor020 Edema 75.5 13.1 0.75
Tumor025 Tumor 81.2 4.1 0.73
Tumor033 Tumor 59.4 5.22 1.51

Table 3.2. Validation metrics comparing the two sets of manual segmen-
tation results done by the same human rater, demonstrating the intra-rater
variability of the manual segmentations.

Dataset Tissue Type
JSC
(%)

Symm
Hausdorff

(mm)

Average
distance
(mm)

Tumor020 Tumor 80.0 16.79 1.64
Tumor020 Edema 68.2 12.80 1.75
Tumor025 Tumor 79.2 17.85 1.44
Tumor033 Tumor 70.6 8.60 1.85

Table 3.3. Validation measures of the automatic tumor segmentation
results against the first set of manual segmentation results.
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3.4. Conclusions

This chapter presented a new pproach for automatic segmentation of brain tumors

and adjoining edema from non-enhancing multichannel MRI. Most methods so far have

been applicable only to enhancing tumors with homogeneous appearance. Furthermore,

they require user-guidance in training a supervised classifier or to obtain a rough outline

of the region of interest. The presented technique automatically identifies the presence of

edema. This is a clinically relevant feature as the edema region often requires secondary

treatment and analysis after a primary focus to the treatment region.

The proposed automatic segmentation framework uses a concept that detects differ-

ence from normal and uses non-parametric kernel densities in place of the traditional

Gaussian mixture model. In addition to the explicit detection of intensity outliers, the

method uses geometric constraints such as the shape of the brain tumor and the location

of edema. The segmentation results of three tumor datasets with different appearances

illustrate that using robust parameter estimation in an EM framework might be a promis-

ing new approach for segmenting brains with pathological deviations. To my knowledge,

this is the the first fully automatic segmentation system for whole brain tissue, tumor,

and edema.

The brain atlas is a vital component of the proposed method, where it acts as a

spatial prior and sampling constraint. A potential issue that is not handled by the

proposed method is the large deformation of brain structures. Severe deformations can

increase the number of intensity outliers and can exceed the breakdown point of the

robust MCD parameter estimator. A further discussion on other potential extensions for

the method can be found in Chapter 6.
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CHAPTER 4

Newborn Brain MRI Segmentation

This chapter describes an adaptation of the robust EM framework described in Chap-

ter 2 for automatic segmentation of newborn (neonatal) brains from MRI. The motivation

and challenges for automatic segmentation of newborn (neonatal) brains are presented

in Section 4.1. Section 4.2 provides a detailed description of the modified segmentation

framework for this task. The framework makes use of the graph-based robust parameter

estimation technique (Section 2.3) to determine relevant clusters that form the optimal

Gaussian mixtures. Finally, segmentation results of five different cases are presented in

Section 4.3, including limited validation on selected 2D slices.

4.1. Background

The segmentation of newborn brain structures from magnetic resonance images (MRI)

is crucial for the study of normal development and comparison to neurodevelopmental

disorders at early stages. The development of new segmentation methods for this age

group is driven by the increasing use of MRI to study newborns and infants, for exam-

ple the ongoing studies of early brain development in normal and high risk children at

UNC [105, 34] and the lack of appropriate segmentation methodology. Manual segmen-

tation of newborn brains is tedious, time consuming, lacks reproducibility, and limits

clinical studies to very small number of subjects. Therefore, it is necessary to use au-

tomatic segmentation methods for clinical studies with a large population size, which is

required to obtain statistical significance. Identification of the growth patterns during

the critical natural development phase may yield vital clues about the origin and nature

of neurodevelopmental diseases. This task is considerably more challenging compared



Figure 4.1. MR images of a newborn brain (subject 0096, coronal view).
Left: T1w image, right: T2w image. The arrows show the white matter
structure. The arrow with the solid line indicates myelinated white matter,
the arrow with the dashed line indicates non-myelinated white matter.
Early myelination in white matter is shown as bright regions in the T1w
image and dark regions in the T2w image.

to automatic segmentation of adult brain MRI due to the early development process.

Rutherford et al. [81] provide an excellent description of newborn MRI and the dynamic

changes seen over the early development period, illustrating the significant challenges for

reliable image segmentation.

As described in Chapter 1, the white matter structure in newborn infant brains

undergoes myelination, where the fibers are being covered in myelin sheaths. At birth,

the white matter of the brain stem and the posterior limbs of the internal capsule are

myelinated and have white to gray matter contrast similar to that of adults (white matter

is brighter than gray matter in the T1w image). Most regions of white matter such as the

centrum semi-ovale, corpus callosum, and off-center regions are not myelinated and the

white to gray matter contrast is inverted (white matter is darker than gray matter in the

T1w image). As the child ages from birth to one year, myelination progresses through

the anterior limbs of the internal capsule, the occipital radiations, and then to the frontal

white matter. As this happens, the MR relaxation times of these regions change with

the new myelinated fibers consequently changing the MRI signal. By age 1.5 years, the

MR image contrast is almost adult-like. Figure 4.1 shows an example of a newborn MR

image with the myelinated and non-myelinated white matter regions.

46



Automatic segmentation methods for healthy adult brain MRI typically fail in seg-

menting the different structures apparent in newborn brain MRI, particularly the myeli-

nated white matter regions. Methods that use probabilistic brain atlases [93, 19] or

templates [96] cannot be directly applied to newborn brain MRI since the spatial prior

information for rapidly changing myelination property would be very difficult to define.

Warfield et al. [96] uses a specific template for newborn brains with predefined classi-

fications for myelinated and non-myelinated white matter. Methods that are driven by

image intensities [100, 17] would have difficulties in the initialization phase. The MR

image intensities for newborn brains are significantly affected by both low contrast and

RF inhomogeneity, which can be difficult to overcome without spatial prior information.

Matsuzawa et al. [62] presented a segmentation method for infant brain MRI, as

part of a study of early brain development. Their method does not identify myelinated

white matter and non-myelinated white matter separately. The results show that their

method has difficulties dealing with proper tissue separation. Hüppi et al. [42] and

Inder et al. [43] showed segmentation results of newborn infants, using the method of

Warfield et al. [96]. They study both prematurely born infants and normal infants.

The prematurely born infants tend to have simpler cortical folding compared to normal

newborns. The segmentation method identifies non-myelinated and myelinated white

matter. Boardman et al. [9] used image deformation for detecting regions of major

development.

Automatic segmentation of newborn brain MRI is significantly more challenging than

the segmentation of healthy adult brain MRI. This is mainly due to the biology and the

rapid growth process. The specific challenges are:

(1) The white matter and gray matter contrast to noise ratio (CNR) for newborn

MRI can be as low as half of the one for adult brain MRI. Factors that reduce

CNR are the small size of the infant brains, the short scan time, and the low

contrast for gray and white matter. The small head size requires subjects to

be scanned at higher resolution, which leads to higher noise levels. The infants
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need to be scanned in very short time since they are not sedated or constrained.

The low CNR further causes difficulty in segmenting the partial volume regions.

(2) Typically, newborn brain MRI exhibits subtle motion artifacts even with very

short scan sequences. The infants may not stay motionless during the scan period

even while sleeping. This problem can be difficult to solve since the infants are

not mentally aware, and healthy infants cannot be sedated or restrained due to

ethical reasons. Potential solutions are further reduction of scan time by parallel

imaging and on-scanner motion correction.

(3) The process of myelination separates white matter tissue into two types: myeli-

nated and not myelinated. Myelination is treated as a fractional property be-

cause the MR image intensities reflect the degree of myelination and partial

voluming. The dividing boundaries between regions that are fully myelinated

and non-myelinated are generally ambiguous [81]. The myelinated white matter

regions are mostly distributed near the spine (central posterior) and parts of the

internal capsule. The presence of myelinated white matter around the regions

associated with the sensory and motor cortex is also observed.

(4) Each tissue type in newborn brain MRI exhibits significant levels of intensity

inhomogeneity and variability, which may be due to a combination of RF inho-

mogeneity and biological properties of the developing tissue [46].

(5) The different tissues have large overlaps in their intensity characteristics, as

shown in Figure 4.2. The decision boundaries for intensity-based classification

are typically ambiguous and complex.

I propose adaption of the robust EM segmentation framework (Chapter 2) for seg-

mentation of newborn brain MRI that addresses the challenges listed above. The method

incorporates the robust clustering method proposed by Cocosco et al. [17] and the ro-

bust parameter estimation method presented by Rousseeuw and van Driesen [80] to deal

with noisy data. It also uses the intensity inhomogeneity estimation scheme from spatial

classification proposed by van Leemput et al. [92]. The complex decision boundaries
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Figure 4.2. Intensity characteristics of one coronal slice of a newborn
brain MRI dataset (subject 0096). Top, from left to right: T1w image,
T2w image, and the manually assigned labels. Purple is myelinated white
matter, green is non-myelinated white matter, yellow is gray matter, and
blue is cerebrospinal fluid. Bottom: the scatterplot of the tissue intensities,
the horizontal axis represents T1w intensities and the vertical axis repre-
sents T2w intensities. There is significant overlap between the intensities
of different tissues, and there are ambiguities in the decision boundaries.

are modeled using non-parametric kernel density estimates, using the efficient method of

Girolami et al. [36]. Probabilistic atlas of the newborn brain is used as a spatial prior in

the classification process as proposed by [92]. All these procedures represent components

of the new, robust EM segmentation as described in Chapter 2.

Due to the large overlap in the tissue intensity distributions, it becomes necessary to

use spatial priors for the segmentation. The spatial priors chosen are part of a probabilis-

tic brain atlas of newborn MRI developed for this application, shown in Figure 4.3. The

atlas provides voxel prior probabilities for white matter, gray matter, and cerebrospinal

fluid (csf). Myelinated white matter and non-myelinated white matter are combined as

49



(a) (b) (c) (d) (e)

Figure 4.3. The probabilistic brain atlas of a newborn brain. From left
to right: (a) the T1w average image, (b) the T2w average image, and the
spatial prior probability values for (c) white matter (either myelinated or
non-myelinated), (d) gray matter, and (e) csf. Top: axial view. Bottom:
coronal view.

one white matter class in the atlas. This is necessary because it is difficult to model the

different dynamic growth patterns across subjects given the rapid changes during early

brain development. With the combined white matter prior, the discrimination between

the two different white matter classes is primarily driven by the image intensities. The

atlas was created by averaging three semi-automatic segmentations registered using affine

transformation. Each segmentation was done by a human rater that selects samples for

each tissue types for k-nearest neighbor segmentation. The outputs of the k-nearest

neighbor classification are then edited by manual outlining. The number of subjects is

insufficient to create prior probabilities that reflect the variability in the population. At

this point, I am limited by the size of the datasets and the amount of time for manual

processing, but the development of an improved probabilistic atlas is part of the future

work in UNC Psychiatry. To compensate for the lack of available data, an additional

blurring is applied to the average segmentations. The blurred spatial probabilities simu-

late an atlas with a higher level of population variability. The segmentation performance

is improved by using the blurred version of the limited atlas as it accounts a more flexible

prior. Details of the automatic segmentation method are presented in the next section.
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Figure 4.4. The segmentation framework for newborn brain MRI.

4.2. Method

My newborn brain MRI segmentation framework is composed of three major steps,

as shown in Figure 4.4. First, it obtains rough estimates of the class intensity clusters. It

then iteratively performs inhomogeneity correction and parametric classification. Finally,

it refines the segmentation using non-parametric kernel density estimates.

4.2.1. Estimation of Intensity Distributions. The segmentation of newborn brain

MRI involves classifying each voxel into different categories C, where C is defined to be

{myelinated white matter, non-myelinated white matter, gray matter, and cerebrospinal

fluid}. The first step in the segmentation process is to determine rough estimates of the

class intensity distributions. The method obtains samples for class c ∈ C at location k

with high atlas prior probability values, for example Pr(Sk = c) > 0.9 as presented by

Cocosco et al. [17] and described previously.

The white matter samples are constrained to have low image gradient magnitude

values to avoid choosing samples near the transition regions between myelinated and

non-myelinated white matter and at white/gray matter boundaries. The value used for

the gradient magnitude of the collection of the 3-D images is the 2-norm of the vector of

the individual gradient magnitudes of the different modalities,

Gk =
√
|∇Ik,1|2 + . . .+ |∇Ik,n|2 (4.2.1)
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where Ik,d is the intensity of the dth image at location k. I only retain samples for the

white matter class with multimodal gradient value Gk lower than the average of the Gk

values over the white matter prior,

Gthreshold =

∑
k Pr(Sk = white matter)Gk∑

k Pr(Sk = white matter)
. (4.2.2)

The 2-norm gradient magnitude metric is more sensitive to noise compared to the vector

field gradient magnitude metric described in [51]. This is a desired property since we

want to avoid sampling noisy regions.

The obtained intensity samples is then processed to remove outliers and false positives.

I use the Minimum Covariance Determinant (MCD) estimator [80] (see Section 2.3.1) to

generate the robust mean and covariance estimates of the unimodal distributions (gray

matter and csf). The MCD estimator computes the robust mean and covariance that

have the smallest determinant of covariance and covers at least half of the data. For the

bi-modal white matter distribution, I use a robust graph based clustering method, similar

to the one described in [17]. The clustering method creates the minimum spanning tree

(MST) graph [21] from the sample points and breaks long edges to form the clusters

[27]. The minimum spanning tree is the graph where all the points are connected such

that the total edge lengths are minimized. The MST graph does not have any closed

loops (cycles). The removal of samples with relatively high image gradient helps in the

MST clustering process, as shown in Figure 4.5.

The algorithm searches for myelinated white matter and non-myelinated white matter

intensity clusters by iteratively breaking long edges of the MST. At each iteration, we

break an undirected edge e(v, w) that connects vertices v and w if it is longer than

A(v)× T or A(w)× T . A(v) is the average length of edges incident on vertex v, A(v) =

1
|N(v)|

∑
q |e(v, q)|, q ∈ N(v) where N(v) is the set of vertices that are neighbors of v. T is

a scalar distance multiplier that determines the sensitivity to the differences in intensity

features. The edge breaking results in subtrees where each subtree forms an intensity

cluster. For each detected cluster, an intensity location estimate is computed. The cluster
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Figure 4.5. Illustrations of the Minimum Spanning Trees for white mat-
ter obtained using different sampling strategies. Left: Samples with high
probability values. Right: Samples with high probability values and low
gradient magnitude. Choosing only samples with low gradient magnitude
helps to remove samples from the transition regions between myelinated
white matter and non-myelinated white matter and gray/white boundary
voxels. This is crucial for clustering based on edge breaking. As seen on
the right picture, breaking the longest edge marked by the arrow would
give two well separated clusters.

intensity location estimate provides an approximation of where most points in the cluster

are distributed in the intensity feature space. The iterative algorithm terminates when

two clusters are found with intensity location estimates that are in the proper order.

For example, the order of intensities for the classes in T2w from darkest to brightest

is myelinated white matter, gray matter, non-myelinated white matter, followed by csf.

Here again, domain knowledge is used to help assign proper clusters to tissue types.

The intensity location estimates for the two white matter classes are computed using

the MCD estimator. I use the robust MCD mean values, as opposed to the standard

location estimates such as the mean or median, to make sure that the algorithm obtain

reasonable sample clusters. The standard location estimates such as mean or median

are generally not robust enough for the noisy newborn MRI data. The mean value

could be skewed by a single outlier sample, while the median value only uses one sample

point and ignores contributions of other samples. The initial intensity distributions for

non-myelinated white matter and myelinated white matter are computed as the MCD

mean and covariance estimates of the largest detected clusters. The MCD estimator

therefore serves to estimate the initial intensity distributions. The initial gray matter

and csf distributions are the MCD estimates of the atlas sampled data. The initial white

matter distributions are the MCD estimates of the atlas samples that are clustered and
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pruned using MST. The steps involved in the intensity distribution estimation are listed

in Algorithm 1.

Algorithm 1 Initial intensity distribution estimation

1: Obtain samples by thresholding atlas prior probabilities
2: Remove white matter samples with gradient magnitude higher than Gthreshold

3: Compute robust mean intensity values for gray matter and csf (µgm and µcsf ) using
the MCD estimator

4: Construct Minimum Spanning Tree from white matter samples
5: T ← 2
6: repeat
7: Break edges longer than T×A, where A is the average length of connected neighbor

edges
8: Find largest myelinated white matter cluster, where µmyelinated < µgm in T2w
9: Find largest non-myelinated white matter cluster, where µgm < µnon−myelinated <

µcsf in T2w
10: T ← T − 0.01
11: until both white matter clusters are found or T ≤ 1
12: if T < 1 then
13: Algorithm fails
14: end if
15: Compute white matter Gaussian distribution parameters from detected clusters

4.2.2. Intensity Inhomogeneity Correction. Newborn brain MR images exhibit

higher intensity variability for each tissue and lower intensity contrast compared to adult

brain MRI. These two factors severely hamper the estimation of intensity inhomogeneity.

Histogram based intensity inhomogeneity estimation methods, such as the ones proposed

by Sled et al. [85] and Styner et al. [87], are likely to have difficulties in obtaining the

optimal solution. The histogram of a newborn brain MR image is generally smooth with

weak or non-existent maximas.

In the case of inhomogeneity correction of newborn brain MRI, the spatial information

is useful to deal with the low intensity contrast. I have chosen to use the method devel-

oped by van Leemput et al. [92]. The scheme uses the spatial class posterior probabilities

to estimate the intensity inhomogeneity, which helps to overcome problems with low con-

trast and high variability. The inhomogeneity estimation method is part of the iterative
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generalized Expectation-Maximization algorithm. It interleaves classification with inho-

mogeneity estimation at each iteration. The Gaussian distributions obtained from the

initial segmentation step are used as initial parameters for the iterative inhomogeneity

estimation algorithm.

The segmentation method uses the spatial priors defined by the newborn brain atlas

for the class posteriors, following the Bayes rule

p(Sk|Ik, θ) =
p(Ik|Sk, θ)Pr(Sk)

p(Ik)
. (4.2.3)

The myelinated and non-myelinated white matter shares the same atlas prior Pr(Sk =

{whitematter}) that is divided into the prior values for myelinated and myelinated white

matter using global weights wi, Pr(Sk = {myelinated white matter}) = w1 Pr(Sk =

{whitematter}) and Pr(Sk = {unmyelinatedwhitematter}) = w2Pr(Sk = {whitematter})

The global class prior weights wi can be tuned based on the age of the newborns to be

segmented. For the results presented here, I set the global class priors such that white

matter is more likely to be not myelinated: w1 = 0.2, w2 = 0.8. The use of the atlas

spatial prior probabilities Pr(Sk) helps resolve ambiguities that are caused by the low

image contrast following the formulation used in [93].

4.2.3. Segmentation Refinement. The class intensity likelihoods are modeled as

Gaussian probability density functions in the segmentation and inhomogeneity correction

to obtain an optimal parametric solution. The use of the parametric Gaussian distribu-

tion eases the computation of the maximum likelihood estimate. However, Gaussian

distributions can have significant overlap and therefore result in degenerate decision

boundaries. In order to capture the complex and ambiguous intensity characteristics

of newborn brain MRI, the method switches from the parametric Gaussian distribution

to a non-parametric distribution estimate. I refine the classification by sampling the in-

homogeneity corrected images, pruning the outliers and false positives from the intensity

samples, and then estimating the intensity distribution using kernel density functions

[27, 39].
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The non-parametric intensity probability density function for each class c is estimated

as follows:

p̂(Ik|Sk = c, θ) =

Ni∑
j=1

wc,j Kh(Ik − Yc,j) (4.2.4)

where Kh is the Gaussian kernel with standard deviation h, Ni is the number of training

samples for class c, and Yc,j is the jth training sample for the class c. Each training

sample has an associated weight wc,j, where for each class c,
∑Ni

j=1wc,j = 1. The kernel

density estimates are used to produce the final classification results, which are the class

posterior probabilities:

p̂(Sk|Ik, θ) =

∑
c p̂(Ik|Sk = c, θ)Pr(Sk = c)∑

c′ p̂(Ik|Sk = c′, θ)Pr(Sk = c′)
(4.2.5)

The atlas spatial prior probabilities are also used at this stage. The spatial priors are

combined with the non-parametric kernel densities to provide class posterior probabilities

that are capable of capturing more complex intensity characteristics.

The set of training samples Y for the kernel density estimates are obtained by sam-

pling the MR images using the previously obtained posterior probabilities. Each sample

Yc,j for class c is obtained by selecting features at location k where the following condition

is satisfied:

arg max
Sk

p(Sk|Ik, θ) = c. (4.2.6)

The samples are pruned and clustered using the robust MST-based method proposed by

Cocosco et al. [17]. This step removes the false positives and outliers in the intensity

data resulting from using Gaussian distribution estimates in the previous step.

The method proposed by Girolami et al. [36] is applied to efficiently estimate the

kernel density function. This method speeds up the density estimation process by reduc-

ing the size of the training set. The weights wc,j are chosen to minimize the integrated

squared error between the true density function and the estimated kernel density function.

Redundant training features are assigned lower weight values compared to characteristic

training features. This minimization process for the sample weight assignment is similar
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to the quadratic optimization process for Support Vector Machines, for which an effi-

cient solution exists [82]. The samples with zero weights are removed from the training

set, which effectively eliminates the redundant features in the training set. Compared to

other fast density estimation techniques such as pre-binning [83] and multi-scale selection

using hyperdiscs [68], this method has the advantage of having only one user specified

parameter: the kernel width or the standard deviation of the Gaussian kernels.
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4.3. Results and Validation

Validation of the automatic segmentation results of the newborn brain MR images is

difficult because a gold standard does not exist. The common standard, manual segmen-

tations, are difficult to obtain since highly convoluted structures in low-contrast, noisy

data are very hard to trace. In addition to that, the myelinated white matter and the

non-myelinated white matter have ambiguous boundaries, which would make manual

segmentation results highly variable and difficult to reproduce. A limited validation of

the segmentation results has been performed by restricting the validation only to the 2D

coronal slices of five datasets. Two human raters assign discrete labels to each voxel in the

slice. White matter is divided into two distinct classes (myelinated and non-myelinated)

and the degree of myelination is not specified because it would be extremely difficult for

the raters to consistently assign a continuous weight for myelination.

Figure 4.6 shows the coronal view of the MR images along with two sets of manual

segmentation slices done by different raters. The four cases are drawn from a large

neonatal study at UNC Chapel Hill to assess early brain development in normal and high

risk children [105, 34]. Figure 4.7 shows surface renderings of an example segmentation

result. Figure 4.8 shows the coronal view of the automatic segmentation results for

four subjects. The 3D volumes for the automatically segmented structures are listed

in Table 4.1. Visual inspection of the results show that the myelinated white matter

regions are mostly distributed near the spine (central posterior) and internal capsule.

The presence of small regions of myelinated white matter around the regions associated

with the sensory and motor cortex can also be observed.

The validation measures described in Appendix A are used to compare the 2D seg-

mentations. Since the comparison is performed on images with a finite collection of

segmentation labels, Cohen’s kappa measure is used to measure the segmentation vari-

ability. The kappa values comparing the two manual segmentations and the manual

segmentation against the automatic segmentation is shown in Table 4.2. Dice similarity

coefficient is also used to evaluate the inter-rater variability and the relative performance
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of the automatic segmentation method. The DSC values reflecting inter-rater variabil-

ity is shown in Table 4.3. The overlap comparison between the manual raters and the

automatic segmentation method is shown in Table 4.4 and Table 4.5. Since the vali-

dation is only done on 2D slices, the number of samples is low and together with the

high complexity of the folding structures this consequently leads to relatively low overlap

values.

The kappa values show that there is insufficient level of reliability for the two manual

segmentations. The non-myelinated white matter and gray matter classes have higher

number of observations compared to the other classes and therefore dominate the kappa

measurements. The kappa values are low because the segmentations of the brain tissue

classes tend to be ambiguous. The overlap measures show that the automatic segmenta-

tion method has similar level of variability as the two manual segmentations. The overlap

values of the cerebrosinal fluid regions for the automatic method are generally lower due

to misclassifications in the ambiguous partial volume regions.

The kappa and DSC values related to the proposed automatic segmentation method

show that the method have similar level of variability to the inter-rater variability for the

human raters. This demonstrates that the proposed method has comparable performance

to a manual rater, given the limitations due to the restricted number of validation samples

and the noise and ambiguity in the image data.
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(a) (b) (c) (d)

Figure 4.6. The newborn MR images along with the manually segmented
labels. From left to right: (a) T1w image, (b) T2w image, (c) color im-
age showing the segmentation obtained by the first human rater, and (d)
color image showing the segmentation obtained by the second human rater.
Purple is myelinated white matter, green is non-myelinated white matter,
yellow is gray matter, and blue is csf. From top to bottom: subject 0096,
0117, 0118, and 0123.
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(a) (b) (c) (d)

Figure 4.7. Surface renderings of the segmented structures of newborn
subject 0123. From left to right: (a) intra cranial volume, (b) gray matter,
(c) non-myelinated white matter, and (d) myelinated white matter.

(a) (b) (c) (d) (e)

Figure 4.8. Coronal view of the 3D automatic newborn brain MRI seg-
mentation results. From left to right: (a) the T2w image and the class
posterior probabilities for (b) myelinated white matter, (c) non-myelinated
white matter, (d) gray matter, and (e) cerebrospinal fluid. From top to
bottom: subject 0096, 0117, 0118, and 0123.
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Subject ICV
Myelinated

WM
Non-myelinated

WM
Gray Matter CSF

0096 504724 15353 157160 289133 43078
0117 527885 12678 234706 250161 30340
0118 514760 11480 193307 255849 54124
0123 499775 28487 170227 252056 49005

Table 4.1. The volumes of the segmented structures for four newborn
subjects. These include the intra cranial volume (ICV) and the volumes of
the individual structures (myelinated white matter, non-myelinated white
matter, gray matter, and cerebrospinal fluid). All volumes are measured
in cubic millimeters.

Subject
Rater 1

vs
Rater 2

Rater 1
vs

Automatic

Rater 2
vs

Automatic

0096 0.658 0.604 0.558
0117 0.627 0.577 0.587
0118 0.603 0.561 0.500
0123 0.625 0.626 0.542

Table 4.2. The kappa coefficients that measure the level of agreement
between manual raters, first manual rater against the automatic method,
and second manual rater against the automatic method.

Subject
Myelinated

White Matter
Non-myelinated

White Matter
Gray Matter CSF

0096 0.715 0.767 0.777 0.738
0117 0.760 0.771 0.741 0.662
0118 0.683 0.738 0.752 0.696
0123 0.787 0.757 0.750 0.639

Table 4.3. The Dice similarity values that measure the overlap between
the two manual segmentations of newborn brain MRI.

Subject
Myelinated

White Matter
Non-myelinated

White Matter
Gray Matter CSF

0096 0.634 0.676 0.809 0.681
0117 0.637 0.725 0.776 0.491
0118 0.681 0.661 0.782 0.598
0123 0.777 0.724 0.790 0.569

Table 4.4. The Dice similarity values that measure the overlap between
the segmentation results of the first human rater and the automatic method
for newborn brains.

62



Subject
Myelinated

White Matter
Non-myelinated

White Matter
Gray Matter CSF

0096 0.774 0.649 0.777 0.598
0117 0.651 0.739 0.760 0.577
0118 0.606 0.630 0.742 0.601
0123 0.719 0.694 0.732 0.478

Table 4.5. The Dice similarity values that measure the overlap between
the segmentation results of the second human rater and the automatic
method for newborn brains.
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4.4. Newborn Brain Population Study

The newborn segmentation framework described in this chapter has been applied

to 74 healthy newborn brain MRI datasets (40 males and 34 females). From the seg-

mentation of the growing newborn brains, Gilmore et al. [35] observed that there are

significant differences in regional growth rates for the cortical gray matter structure (Fig-

ure 4.9) that are consistent with results from previous studies. The regional growth of

the unmyelinated white matter structure, as seen in Figure 4.10, is less pronounced. For

both gray matter and unmyelinated white matter, the posterior regions tend to grow

faster than the anterior regions. This provides an indication that sensory-motor develop-

ment occurs earlier than cognitive development. The regional differences in gray matter

growth is consistent with previous studies in synapse development. This pattern (poste-

rior region growing faster than anterior region) is also observed in unmyelinated white

matter, though less pronounced.

Cerebral asymmetry was present at birth, with the left hemisphere being consistently

larger than the right. This is the opposite asymmetry pattern observed in older children

and adults. When accounting for gender, males are observed to have larger total brain

volumes compared to females at birth. The larger total brain volume is mainly due to

increased amount of white and gray matter in the male subjects.

The study has found that early development is characterized by robust growth of

cortical gray matter compared to white matter and of the posterior regions compare to

the anterior regions. The growth patterns observed in the newborn subjects display some

characteristics that are the opposite of those observed in adults and older children. The

newborn brain volumes are found to be roughly 35% of the adult brain volumes. This

indicates that there is enormous growth occuring between birth and adulthood. Further

studies still need to be done to learn more about early brain development. In particular,

studies comparing healthy subjects and subjects-at-risk for neurological diseases and

psychiatric disorders would be of great value in determining abnormal growth patterns.
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Figure 4.9. Regional growth of cortical gray matter in newborns. The
growth rates (slopes) of the posterior regions tend to be significantly higher
than the anterior regions. Image provided by John Gilmore [35].

Figure 4.10. Regional growth of cortical unmyelinated white matter in
newborns. The growth rates (slopes) of the posterior regions tend to be
slightly higher than the anterior regions. Image provided by John Gilmore
[35].
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4.5. Conclusions

In this chapter, I have presented an atlas-based automatic segmentation framework

for segmenting newborn brains from multimodal MR images. The problem related to the

low signal-to-noise ratio in newborn brain MRI is handled by combining a spatial prior

(brain atlas) with robust parameter estimation techniques. The method uses two robust

parameter estimation methods: graph-based clustering and MCD estimator. They are

used to obtain initial parameter estimates for the EM image segmentation and to refine

the final segmentation results.

Visual inspection of the results shows that the major structures are segmented con-

sistently. Segmentation of partial voluming regions is still insufficient and is an inherent

problem with voxel-based classification. The segmentation results of the four cases pre-

sented in the previous section show that the new method can cope with variable brain

shapes. The locations of the early myelination accross the subjects appear to be similar.

The method has been applied in a study involving more than 74 newborn subjects, with

optimal reproducibility since the method is fully automatic. This study is made possible

using the automatic newborn brain tissue segmentation method described in this chapter.

It is by far the largest neonate sample set analyzed to date and revealed very interesting

results as described in [35].

Due to the lack of a gold standard, I have only performed a limited validation of

the results. Validation is done only on selected 2D slices and not on the whole 3D

brain volume. The κ coefficient values and volume overlap measures show that our

segmentation results have similar level of variability to the inter-rater variability for

manual segmentations. The lack of a complete 3D ground truth data is an issue that

can be solved using simulated datasets. A discussion on possible future work related to

newborn brain segmentation can be found in Chapter 6.

66



CHAPTER 5

Simulation Data for Objective Validation

This chapter presents a novel framework for generating synthetic brain tumor MRI

data with known underlying ground truth. Section 5.1 describes the motivation and chal-

lenges for objective validation of image segmentations. The new method for generation of

pathological ground truth with tumor and edema from a healthy ground truth is covered

in Section 5.2. A method for generating synthetic MR images, which act as test data

for evaluation of different segmentation methods, is presented in Section 5.3. Example

results and validation of the simulation process are described in Section 5.4

5.1. Background

Integral to any image segmentation framework is the validation of the segmentation

results, where the results are compared against a standard (ground truth) using various

measures. A segmentation algorithm must undergo systematic validation to ensure that

it performs reliably in a clinical setting or a medical study. As discussed in Section 1.1,

the usual standard used for validating the segmentation results of the automatic methods

is the manual segmentation results done by human experts. However, different investi-

gators are likely to employ different image acquisition parameters and different manual

segmentation methods. A compounding issue is that any manual segmentation method

suffers from lack of reliability and reproducibility. Even if a rich set of manual segmen-

tations are available, they may not reflect the ground truth, and the true gold standard

may need to be estimated [97]. For the practical problems addressed in this dissertation

(segmentation of brain tumor and newborn brain MRI), validation is particularly difficult



since the tumor boundary definition can be ambiguous and no gold standard exists for

newborn brain MRI.

In this chapter, emphasis will be placed on the validation of segmentations of brain

MRI with tumor and edema. In most cases, priority is given to pathological structures

such as tumor and edema, so comparisons of the segmentation of structures other than

the brain tumor are not done. There is a high degree of variability for the segmentations

of edema done by human raters due to the inherent ambiguity, so if manual segmentations

are available they are generally less than ideal.

Brain MRI exhibiting tumor is difficult to segment due to a combination of the fol-

lowing factors:

• The deformation of brain tissue due to tumor mass effect or volume expansion.

• The infiltration of brain tissue by tumor and edema (swelling). Edema appears

around tumor mainly in the white matter regions.

• The gradual transition between tumor, edema, and surrounding brain tissue.

This results in the ambiguity of the structural boundaries.

• The T1w MRI with contrast enhancement, typically using a gadolinium agent,

is the standard modality for identifying tumors. This modality results in active

tumor tissue appearing with bright intensity. Unfortunately, blood vessels also

appear bright while parts of tumor that are necrotic do not have higher levels of

intensity. Therefore, the information provided by the intensities in this modality

is not always consistent, and it is generally impossible to segment the tumor by

thresholding the intensities in this image modality.

In order to provide objective assessments of segmentation performance, there is a need

for an objective 3D ground truth with associated MR images that exhibit the same

major segmentation challenges as that of common, realistic scans of a tumor patient. For

this purpose, I develop a method that generates realistic looking MR images with the

associated ground truth by simulating brain tumor growth.
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Figure 5.1. Overview of the generation of validation data. A well defined
ground truth for normal brains is modified following a tumor and edema
growth model. The normal brain ground truth contains the probabilities
for white matter, gray matter, and csf drawn from the BrainWeb data.
The healthy tissue probabilities are modified to take into account mass
effect and infiltration and new pathological probabilities are added (tumor
and edema). The modified ground truth is then used to create the syn-
thetic multi-modal MR images. The pathological simulation is described
in Figure 5.2 and the MRI simulation is described in Figure 5.5.

Rexilius et al. [79] proposed a framework for generating digital brain phantoms with

tumor. They used a biomechanical linear elastic finite element model to simulate the

tumor mass effect. In their method, he MRI of a healthy subject is deformed and a

tumor structure from a real subject is inserted into the MRI. Their model for edema is

computed from the distances to the tumor boundary and the white matter mask. This is

insufficient to simulate real infiltration properties since infiltration can occur in regions

away from tumor. Such regions are typically connected through white matter fibers.

Moreover, the framework of Rexilius et al. only considers contrast enhancement inside

tumors, without contrast enhancement of blood vessels.

Models for brain tumor expansion and edema has been proposed by Nagashima et

al. [73], Clatz et al. [14, 15], and Mohamed et al. [69, 70]. More recently, Clatz et

al. developed a realistic tumor growth model that simulates the main effects of tumor

growth (mass effect and infiltration) using simple computational models. Clatz et al. use
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a biomechanical finite element model to simulate mass effect, and they use a reaction-

diffusion process that is modulated by the diffusion tensor field to simulate the infiltration

by tumor cells and edema. In this chapter, I propose a new method for generating

pathological ground truth by applying their mass effect and infiltration model to a well

defined ground truth for healthy brains. Additionally, I propose to extend the Clatz et

al. model by using random pressure directions and by simulating the effect of volume

expansion on the white matter fibers by warping the diffusion tensors and making them

more isotropic depending on the magnitude of local deformations.

I develop a method for generating realistic-appearing contrast enhanced T1 weighted

MR images (a standard modality for diagnosis) by simulating the accumulation of con-

trast agents in the brain. The corresponding multi-modal MR images are generated from

the simulated ground truth and textures synthesized from samples of a real tumor MRI

data. Figure 5.1 shows an overview of the proposed method. The simulation method

is capable of generating 3D whole brain ground truth that exhibits the effects of a real

tumor on normal brains, along with simulated multi-modal MR images that are chal-

lenging to segment. The method for generating synthetic brain tumor ground truth does

not attempt to simulate the complete process of real tumor growth. Instead, I aim to

generate sets of realistic looking images, with the associated ground truth, that are al-

most as challenging to segment as real brain tumor MRI. The simulation data, along

with the probabilistic ground truth, is designed to validate segmentations such as the

ones generated by the tumor segmentation method described in Chapter 3.
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Figure 5.2. Overview of the simplified tumor and edema growth model.
The model is composed of four sequential processes, where it simulates the
deformation due to tumor expansion, the modification of DT-MRI due to
the deformation, the infiltration of brain tissue by tumor cells and edema,
and the displacements of tissue due to the infiltrating cells.

5.2. Generation of Pathological Ground Truth

Tumor and edema growth involves many concurrently occurring processes. As pro-

posed by Wasserman et al. [98], the growth model may involve biomechanics, nutrient

distribution, and metabolic processes. Since my goal is not to model tumor growth per

se, I have chosen to simplify the model and use three separate sequential processes for

efficiency, as shown in Figure 5.2. First, I simulate the deformation that is due to tumor

mass effect using a biomechanical model. It is then followed by the simulation of the in-

filtration process using reaction-diffusion guided by diffusion tensor information. Finally,

I compute the deformation that is due to tumor infiltration of brain tissue and the mass

effect of edema. The BrainWeb dataset [16], which contains multimodal MR images

along with spatial probabilities of normal brain structures, is used as the healthy brain

ground truth that is transformed into a pathological ground truth. Figure 5.3 shows

subject 04 from a collection of 20 normals from the BrainWeb datasets [4], which is used

to generate the results described in this chapter. The dataset of subject 04 includes
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Figure 5.3. Axial views of subject 04 from the BrainWeb dataset of
twenty normals, which provides a standard for validation of normal brain
MRI segmentation. From left to right: the T1w image and the spatial
probabilities for white matter, gray matter, csf, and blood vessels.

spatial probabilities for each voxel being white matter, gray matter, cerebrospinal fluid,

and blood vessel.

5.2.1. Mass Effect. The effect of tumor volume expansion on surrounding tissues is

modeled using continuum mechanics [38]. The initial tumor seed region is defined man-

ually and then undergoes simulated deformation that represents tumor mass effect. This

initialization can also be done automatically given some prior knowledge of the spatial

distribution, configuration, and image intensity characteristics of various brain tumor

types. Meningiomas, for example, tend to be uniformly enhancing, to possess smooth

borders and to originate from meningothelial cells associated with the arachnoid and

dura matter. Glioblastomas, on the other hand, tend to be ring enhancing with irreg-

ular borders and almost always arise within the white matter. Metastatic lesions tend

to have uniform or ring-like contrast enhancement, are often relatively spherical, and

can appear in any location. The work described in this chapter provides examples of

tumors that would likely represent metastatic lesions or glioblastomas, but the approach

is generalizable to any tumor type.

In the initial tumor region, the tumor probabilities are set to one, ptumor(x) = 1, and

tissue or fluid probabilities are set to zero. The set of spatial probabilities for healthy

tissue, along with the new tumor probabilities, are deformed according to a biomechanical

model of brain tissue as described below. Brain deformation is modeled using the classic
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linear elasticity model. The constitutive equation that relates stress and strain is

σ = Eε (5.2.1)

and the corresponding linear strain-displacement equation is

ε =
1

2
(∇+∇T )u (5.2.2)

where σ denotes the stress tensor, E denotes the elasticity tensor, ε denotes strain, and

u denotes the displacement. The elasticity tensor E is a function of the Young modulus

and the Poisson ratio [41]. Following Clatz et al. [15], I use the linearized homogeneous

version of the constitutive equation proposed by Miller [66], where brain tissue (white

and gray matter) is assigned the value of 694 Pa for the Young modulus and 0.4 for the

Poisson ratio. The falx cerebri, the fold of dura matter that divides the left and right

brain hemispheres, is considered to be a stiff material with the value of 200, 000 Pa for

the Young modulus and 0.4 for the Poisson ratio. The skull is considered fixed and brain

tissue slides along contact with it.

The volume expansion due to tumor mass effect is modeled using a homogeneous

pressure that is applied to tissues surrounding tumor [50, 69, 98]. The displacement

field solution satisfies the static equilibrium equation

div(σ) + fext = 0 (5.2.3)

with fext being the external forces applied to the model. The external forces that act on

the tumor surface are formulated as follows

fext = P A VMF(n, κ) (5.2.4)

where P is the constant pressure (in Pa), A is the surface area, and VMF(n, κ) is a

direction drawn randomly from the von Mises-Fisher distribution with mean direction n

and concentration parameter κ [60]. The von Mises-Fisher distribution can be consid-

ered as the directional analogue to the multivariate normal distribution, where we use the
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surface normal n as the mean direction and we use κ as the parameter that is inversely

proportional to the spread or variability of the directions. The use of randomly gener-

ated directions increases the variability of the generated tumor shape and thus presents

more challenge in segmenting the brain tumor. With regard to the displacements u, the

following boundary conditions are applied:

(1) The sliding boundary condition in the regions where brain tissue contacts the

skull, represented by

u · n = 0

where n is the normal direction for the element boundary [65].

(2) The pressure inside the ventricular system is considered negligible relative to

the pressure induced by tumor on the brain tissue, so the ventricular nodes are

allowed to move freely.

The biomechanical problem is discretized using the finite element method, similar to

the approaches used by Ferrant et al. [29] for inter-operative registration and Kyriacou

et al. [50] for tumor mass effect simulation. I use the method proposed by Persson and

Strang [76] to generate the tetrahedral mesh. The method has the advantage of having

a relatively simple implementation and being generalizable to any number of dimensions

(provided a corresponding Delaunay tessellation implementation). The method is com-

posed of three steps: selection of points, tessellation of the points, and adjustment of

the point locations. After the tessellation process, the points are adjusted so that edge

lengths are optimal and so that edge lengths do not cross the external boundary or the

internal structural boundaries. The edge lengths in the 3D tetrahedral mesh are optimal

when they match a given distribution function. For an edge that connects two points x

and y, the ideal edge length is proportional to the distribution function evaluated at the

edge midpoint z = x+y
2

. I have chosen to use the following distribution function,

fedge(z) =


1 if ψ(z) > 1

ψ(z) otherwise

(5.2.5)
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where ψ(z) is the distance from z to the closest structural boundary. Assuming that the

distance functions ψc for each class c is defined to be positive inside the relevant structure

and zero otherwise, ψ(z) = minc ψc(z). Using this function results in smaller tetrahedra

near structural boundaries and larger tetrahedra in the internal regions. This behavior

is desirable since the brain structures typically have complex and detailed shapes at the

boundaries, which can be better interpolated using small-sized tetrahedra.

The displacement solution for the linear elastic model is computed by minimizing the

potential energy,

E =

∫
Ω

1

2
Tr[εTσ] dx+

∫
Ω

fT
extu dx. (5.2.6)

Details are available in [15, 41]. The displacement solutions are computed by taking

into account the boundary conditions [5]. The linearized growth process tends to result

in slow deformations, so the model solution is computed iteratively and integrated until

the volume of the expanded tumor exceeds a particular threshold.

5.2.2. Modification of Diffusion Tensors. Tumor infiltration and edema generally

occur along white matter fibers, where diffusion is more likely. The properties of the

white matter fiber within the brain is reflected in diffusion tensor MR images (DT-MRI).

Since the BrainWeb datasets [16, 4] do not contain average diffusion tensor images, I

generate average tensors from 5 normal subjects. The subjects are drawn at random from

a dataset that contains 100 subjects, designed to study differences across age groups [72]

(age range is approximately 18 - 74 years). I registered the 5 DT-MR images to the T2w

image provided by BrainWeb by matching the associated mean diffusivity (MD) images

to the T2w image using affine transformation and mutual information [58]. The tensors

are mapped and reoriented following the finite strain reorientation strategy proposed by

Alexander et al. [1].

In order to generate a realistic tumor mass effect, I simulate the expansion process.

However, the inverse of the expansive deformation is required to resample the DT images.

A true inverse may not exist since the expansive deformation may not be smooth and

invertible, so I estimate the inverse of the deformation field using an iterative process.
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Given a displacement field u that maps x to y, y = x + u(x), I compute u−1 where

x = y+u−1(y). This is done by estimating the inverse mapping for y, denoted by x̂. The

vector x̂ must minimize the mapping residual

d(x̂, y) = (x̂+ u(x̂))− y (5.2.7)

which expresses the distance between the forward map of the inverse estimate and the

current location. The ideal value of x̂ is computed by doing iterative minimizations

(e.g., by Newton’s method) at each location y in the target image. For an ideal inverse

mapping, d(x̂, y) should be close to zero at any given y. The inverse displacement field

u−1 is obtained directly from the x̂ estimate, u−1(y) = x̂− y.

The average tensors at each voxel are computed using the efficient log-Euclidean

tensor framework proposed by Arsigny et al. [2, 3]. Given image coordinate x, the

average diffusion tensor is

Dµ(x) = Exp

(
N∑

i=1

1

N
Log(Di(x))

)
(5.2.8)

where Exp is the matrix exponential function and Log is the matrix logarithm function.

The Log function linearizes the space, allowing us to use efficient linear operations to

manipulate the tensors. The Exp function maps the result of the linear operations back

to the original space of diffusion tensors.

The fast tensor calculus proposed by Arsigny et al. [2, 3] is an approximation of

the tensor calculus framework based on affine-invariant Riemannian metrics, such as the

one proposed by Fletcher et al. [30]. The approach taken by Fletcher et al. treats

the positive definite matrices representing the diffusion tensors as points on a manifold.

The computation of distances and averages are done through linear approximations of

the manifold (the tangent planes). Arsigny et al. use a single approximation for all

the tangent planes, while Fletcher et al. explicitly compute the tangent planes for the

relevant points. This turns the averaging process proposed by Fletcher et al. into an

optimization process, while reducing the averaging process proposed by Arsigny et al.

76



into a closed form equation. The two approaches yield very similar results with regard to

interpolation. Comparing the two methods, the determinant of the tensors are monoton-

ically interpolated with no swelling in the tensors as commonly observed with trilinear

interpolation. However, the approximation of Arsigny et al. yields tensor averages with

trace that are always larger or equal to the affine-invariant counterpart, and the result is

generally more anisotropic [3].

I have found that registration and reorientation of DT-MRI may not be sufficient

to generate edema that appears realistic. White matter fibers around tumor tend to

be displaced, and as observed by Lu et al. [57] in regions near the tumor, the mean

diffusivity (MD) tends to be decreased while the fractional anisotropy (FA) tends to be

decreased. These observations can be attributed to the destruction of white matter fibers

due to tumor growth, which makes tensors more isotropic. Therefore, it was desirable to

reflect this destruction in the simulator. To the best of my knowledge, the interactions

between tumor growth and diffusion tensors are not fully understood, so I make the

following assumptions:

(1) Local volume expansion reduces tensor coherence and results in more isotropic

tensors. Tumor tends to destroy white matter fibers, so water is no longer

restricted to flow in specific directions.

(2) Local volume compression or shrinking does not modify tensor information. I

have observed that in real tumor DT-MRI some fibers can appear condensed

without being destroyed.

The influence of pure tumor mass effect on DT-MRI is modeled using a combination

of image warping and nonlinear interpolation. The displacement of white matter fibers is

simulated by warping the DT-MRI following the strategy described in [1], where a rigid

rotation is applied to each individual tensor. The rigid rotation is computed based on

the local warping property. Given the displacement field u, I compute the local affine

transform F = I3×3 +∇u. This transform is decomposed into a rigid rotation component

R and a linear deformation component W , F = RW . The reoriented tensor D is obtained
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using the following equation

D = RD0R
T (5.2.9)

where D0 is the resampled original tensor. The destruction of tensor information is

modeled as a nonlinear interpolation between the original tensor and the isotropic version

of the tensor. The isotropic version of a given tensor D is formulated as the identity

matrix multiplied by the scaled determinant value of the original tensor

Diso = (2|D|)
1
3 I3×3. (5.2.10)

A scale factor of 2 is used for the tensor determinant. This value is found by repeated

experiments to find sufficiently realistic looking MD images. The transformed diffusion

tensor is computed as follows (see [2] for details):

D′(x) = Exp (αLog(D(x)) + (1− α)Log(Diso(x))) . (5.2.11)

The interpolation weight α is inversely proportional to the amount of volume expansion

α(x) = exp

(
− [max(1, |J(x)|)− 1]2

2s2
J

)
(5.2.12)

where J is the Jacobian matrix of coordinate mapping function and sJ reflects the amount

of expansion that results in significant destruction of fibers. In regions with a high amount

of volume expansion (low values of α), the tensors become homogenized and no longer

have preferred directions for diffusion. In regions with local volume compression, the

determinant of the Jacobian is less than one and the original tensor is maintained since

α = 1. This behavior is chosen to simulate destruction of white matter fibers due to

expansive mass effect while ignoring compression effects. An example application of this

model to a registered DT-MRI is shown in Figure 5.4.

5.2.3. Tumor Infiltration and Edema. In order to simulate the growth and spread-

ing of tumor cells following the preferred diffusion directions in the brain, the spatial

probability that a particular location is infiltrated by pathological cells or fluid (edema)
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Before Modification

MD FA
After Modification

MD FA

Figure 5.4. Visualization of diffusion tensor MRI by axial views of 3D
Mean Diffusivity (MD) and Fractional Anisotropy (FA) scalar images. The
modified DT-MRI has higher MD and lower FA in the regions surrounding
tumor, which models the destruction of the fibers. The MD image shows
that the ventricle near the tumor is slightly deformed. The FA image shows
that the white matter fibers near the tumor region are pushed away.

is evolved using a reaction-diffusion model guided by the modified DT-MRI [15]. More

precisely, the change for pinfiltrated = φ in time is governed by

∂φ

∂t
= div(cdD

′∇φ) + crφ (5.2.13)

where cd is the diffusion rate, D′ is the diffusion tensor that has been modified using

the method described in section 5.2.2, and cr is the reaction rate. The diffusion rate cd

depends on the local tissue type. White matter is more likely to be infiltrated than gray

matter, while csf is not likely to be infiltrated at all. The reaction rate or the growth term

cr is a constant. The diffusion tensors D′ are normalized so that the trace of each tensor
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is within the range of [0, 1]. The evolution is stopped when the volume of infiltrated

brain regions exceed a predefined fraction of the brain tissue volume.

The infiltrating tumor cells and edema also tend to displace nearby tissue. The effect

of the infiltrating cells is modeled using the following equilibrium equation [15]:

div(σ − λI3×3φ) + fext = 0 (5.2.14)

where λ is the coupling factor that describes the contribution of an infiltrating tumor

to the internal forces. The equilibrium equation can be interpreted as the application of

body forces −λ∇φ to the classic linear elastic model, which models the outward forces

proportional to the concentration of tumor cells.

Brain tissue can be infiltrated by edema (swelling) and/or tumor cells. Since edema

regions can also contain tumor cells, it is difficult to classify or separate the infiltrating

component into distinct tumor and edema regions. The separation is approximated by

assigning the regions formed early in the infiltration process as tumor and assigning the

regions formed later in the infiltration process as edema. This approximation yields the

following spatial probability functions for tumor and edema:

ptumor(x) = pmass−effect(x)

+ [φ(x, tearly)× ptissue(x)] (5.2.15)

pedema(x) = [φ(x, tfinal)− φ(x, tearly)]× ptissue(x) (5.2.16)

where pmass−effect is the deformed initial tumor probability according to the mass effect

model, ptissue is the probability of brain tissue (white matter or gray matter), tfinal is the

time where the infiltration process is stopped, and tearly is a fraction of the total time

that indicates when edema begins to occur. The choice for the value of tearly depends

on the type of tumor being modeled. For example, an appropriate model for gliomas

would typically have a large value for tearly since active tumor cells in gliomas tend to

infiltrate large regions. Alternatively, an appropriate model for meningiomas with large
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surrounding edema would involve a small value for tearly since most of the infiltrating

regions should be attributed as edema.

In summary, the simulation of the pathological effects of brain tumor and edema is

performed through the following steps:

(1) Manual definition of an initial tumor seed region in the space of a healthy ground

truth data (e.g., the BrainWeb data).

(2) Simulation of deformation of brain tissue due to tumor mass effect, given the

anatomical description (the BrainWeb classification), the initial seed region, and

the constant pressure value P at the tumor surface. The deformation is mod-

eled as a linear biomechanical equation and computed iteratively to mimic the

possible non-linear deformations.

(3) Warping the average diffusion tensor MR images using the tumor mass effect

displacements. Destruction of white matter fibers due to tumor is simulated by

making tensors more isotropic depending on the magnitude of deformation.

(4) Simulation of tissue infiltration using the DT-MRI guided reaction-diffusion

equation (Equation 5.2.13) to account for infiltration of tissue by tumor cells

and edema.

(5) Simulation of deformation of brain tissue due to edema mass effect, given the

infiltration probabilities and the value of λ for Equation 5.2.14.
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5.3. Generation of MR Images

For the purpose of validating segmentation methods, there is a need for a set of

synthetic MR images that corresponds to the pathological ground truth. These images

function as test data for the segmentation methods to be validated. The generation of

synthetic tumor MRI involves the simulation of two processes: contrast enhancement in

T1w MRI due to the use of contrast agents (the standard modality for tumor diagnosis),

and generation of intensity patterns similar to those observed in real MRI. These are

detailed in the following two subsections. Contrast enhancement is simulated using a

model of the contrast agent accumulation process, while the generation of MRI intensity

patterns is accomplished using texture synthesis. A conceptual view of the combination

of the two processes for generating a synthetic contrast enhanced T1w image is shown in

Figure 5.5.
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Figure 5.5. Generation of a synthetic contrast enhanced T1w image. The
modified ground truth (the probabilities for white matter, gray matter,
csf, tumor, and edema) is first used to determine where contrast agent is
likely to accumulate. This is then followed by a combination of synthesized
textures modulated by the spatial probabilities. In this figure I only show
the probabilities and textures for white matter, non-highlighted tumor,
and highlighted tumor or csf regions. For generating the T1w and T2w
modalities without contrast enhancement, the contrast agent accumulation
is not simulated and the texture combination is done directly using the
modified ground truth.
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5.3.1. Contrast Agent Accumulation. One of the particular challenges in segment-

ing brain tumor MRI are inconsistencies in the contrast enhanced T1w image, which can

be attributed to biological processes such as tumor formation, blood flow, and cell death.

The contrast agent is generally accumulated in regions other than the active tumor re-

gions. Particularly, the blood vessels within the brain are almost always enhanced. Brain

tissue may also appear enhanced if there is leakage of contrast agent due to the break-

down of the blood-brain barrier. Conversely, the contrast agent does not accumulate in

the necrotic parts of the tumor at all. The necrotic regions are generally found in the

core tumor regions.

I explicitly model the accumulation of the contrast agent in active tumor tissue and

blood vessels in order to generate non-homogeneous contrast enhanced T1w images that

are more challenging to segment. The spatial probability for the accumulation of contrast

agent, paccum = γ, is evolved using a reaction-diffusion equation that models the spread

of contrast agent within blood vessel and tumor regions while excluding necrotic regions:

∂γ

∂t
= div(ad ∇γ) (5.3.1)

+ asource I{x ∈ Xsource} γ

− asink I{x ∈ Xsink} γ.

Here, each I is an indicator function, ad is the diffusion rate for the contrast agent, asource

is the source coefficient, and asink is the sink coefficient. The value of ad depends on the

structure type at location x. I assign high values of ad in blood vessel regions, moderate

values of ad in tumor tissue, and low values of ad in healthy tissue. The selection of the

values of ad for each class models the fact that contrast agent is more likely to spread

in blood vessel regions than in tumor tissue and is not likely spread to healthy tissue at

all. This corresponds to the actual biological process, where contrast agent is injected

intravenously and then transported to the active tumor regions through the brain arteries.

Healthy brain tissue generally does not accumulate contrast agent due to the blood-brain
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barrier. Conversely, there tends to be a higher uptake of the contrast agent within and

around tumor structures due to increased tumor metabolism and possible leakage of the

blood-brain barrier.

Xsource and Xsink in Equation 5.3.1 are sets of points that act as sources or sinks,

respectively. The source points Xsource are chosen at random from a probability function

that indicates likely blood vessel regions or likely tumor regions that are close to the tumor

boundary. These source regions correspond to regions that likely accumulate contrast

agent and thus appear enhanced. The sink points Xsink are chosen at random from a

probability function that indicates likely tumor regions that are close to the tumor core.

The internal tumor regions are typically necrotic and thus do not accumulate contrast

agent. The probability that a location is at the boundary or the core regions is computed

using the distance maps and expressed as half-normal distributions. For example, when

drawing points that are at the tumor border the following probability function is used:

ptumor−border(x) = ptumor(x)×HN (ψtumor(x), ω) (5.3.2)

where ψtumor(x) indicates the distance from a location x to the nearest tumor boundary

point. HN (z, ω) denotes the half-normal distribution with parameter ω, which is defined

as follows:

HN (z, ω) =


0 if z < 0

2ω
π
exp

(
− z2ω2

π

)
if z ≥ 0 .

(5.3.3)

For a parameter value ω, HN (z, ω) is a distribution with mean 1
ω

and variance π−2
2ω2 . The

border extent of the active tumor region or the standard deviation for HN (ψtumor(x), ω)

is a user-specified parameter value that is inversely proportional to ω. Tumors with nearly

uniform enhancement can be simulated by drawing source points from a uniform distri-

bution (within tumor), as opposed to a half-normal distribution, while non-enhancing

tumors can be simulated by replacing the tumor source points with an empty set.

I initialize γ so that tumor and blood vessel regions have random probability of ac-

cumulating contrast agent: γ(x, t = 0) = U(0, 1). The initialization using the random
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Figure 5.6. Axial view of the generated probabilities related to contrast
enhancement for the SimTumor001 dataset. From left to right: proba-
bility for highlighted csf or tumor, probability for non-highlighted tumor,
and probability for non-highlighted csf. Tumor periphery and blood vessel
regions are the regions most likely to appear highlighted in the contrast
enhanced T1w modality.

variables U(0, 1) drawn from the uniform probability in [0, 1] ensures that the reaction-

diffusion process is capable of generating complex patterns of enhancement. The prob-

ability that a location x would appear highlighted in the contrast enhanced T1w image

is the probability that the structure in that location is either tumor or blood vessel and

that it has accumulated contrast agent,

penhanced(x) = paccum(x)× [pvessel(x) + ptumor(x)]. (5.3.4)

Figure 5.6 shows an example of the generated contrast enhancement probabilities, while

Figure 5.7 provides a comparison between real and synthetic contrast enhanced T1w

MRI. The enhancement probabilities are generated using the method discussed in this

subsection, and the synthetic MRI is generated using the method covered in the next

subsection. The proposed contrast agent model accounts for the fact that blood vessel

and active tumor regions are highlighted and that the necrosis regions are not highlighted.

However, the model only accounts for the deformation of healthy blood vessels and does

not account for the fact that new blood vessels can be formed due to the presence of

tumor.

86



Figure 5.7. Sagittal view of the contrast enhanced T1w MRI for a real
tumor (left) and a synthetic tumor (right) generated using the new method
described in this chapter. Both images show contrast enhancement in the
superior sagittal sinus and the anterior cerebral artery.
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Figure 5.8. Tree Structured Vector Quantization using a binary tree data
structure. Each node in the tree represents a cluster, which contains a set
of data samples and is represented by a key (the data mean). The child
nodes of the parent node are formed by splitting the clusters represented
by the parent, typically done using the k-means algorithm.

5.3.2. Texture Synthesis. I generate tumors that contain intensity patterns found in

real tumor MRI using the texture synthesis algorithm proposed by Wei and Levoy [99].

This approach only relies on actual samples from actual tumor MRI scans and does not

make restrictive assumptions on the intensity distributions. The algorithm starts with

an image that contains random noise [61] and then proceeds to modify the image by

finding neighborhood matches in the input texture. The neighborhood search is done

deterministically across scales and is made efficient by clustering the texture neighbor-

hood features. Rather than performing the search by comparing a random neighborhood

with all the data samples, their method uses the Tree Structured Vector Quantization

(TSVQ) technique to limit the search to the relevant clusters. An example application

of TSVQ using the binary tree data structure is shown in Figure 5.8.

The synthetic MR images are generated by linearly combining the texture synthesis

results for each structure. To simulate partial voluming and the ambiguity in the bound-

ary, the textures are weighted by the fuzzy class probabilities. For a modality k, the
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synthetic MR intensity for each location x is

Isynth
k (x) =

NCk∑
c=1

mc,k pc(x) Tc,k(x) +N0,σk
(5.3.5)

where c indexes the NCk
different classes for the modality k. For the T1w and T2w

modality, the set of brain structure classes is composed of white matter, gray matter, csf,

tumor, and edema. For the contrast enhanced T1w modality, the set of brain structure

classes is composed of white matter, gray matter, non-enhancing csf, non-enhancing

tumor, edema, and the class for all contrast enhanced structures. The contrast between

different classes is adjusted via the user-specified coefficients mc,k, which are chosen to

generate realistic-appearing MRIs. As an example, a higher value of m1,k is chosen for

white matter (e.g., 1.2) and a lower value of m2,k is chosen for gray matter (e.g., 0.7)

when generating T1w images with good white-gray matter difference. The probabilities

from the pathological ground truth are represented by pc. The images Tc,k are generated

using texture synthesis from actual tumor MRI samples. Noise in the image data is

simulated using N0,σk
, which is randomly generated from a normal distribution with zero

mean and standard deviation σk that is voxelwise independent.
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5.4. Results and Evaluation

I generated five examples of the synthetic MR images using the simulation method

described in this chapter (labeled SimTumor001 - SimTumor005). Figure 5.9 shows an

example of a peripheral tumor with significant mass effect and surrounding edema, as

seen in real MRI and in the synthetic MRI (SimTumor001). In both the real and synthetic

MRI there are significant deformations of the surrounding healthy tissue due to tumor

and there are ambiguities in the definition of tumor-edema boundaries. The five synthetic

brain tumor MRI datasets are shown in Figures 5.10 and 5.11. In all cases, tumor deforms

other structures and edema infiltrates brain tissue. The contrast enhanced T1w images

also show complex patterns of highlighted intensities, which include active regions at

the tumor periphery and the blood vessel regions. SimTumor001 shows a tumor with

significant mass effect and a large surrounding edema. SimTumor002 shows a tumor that

displaces the right ventricle from below and a moderate extent of edema. SimTumor003

shows a tumor that displaces the falx cerebri. SimTumor004 shows a tumor that displaces

the left ventricle from the internal regions. SimTumor005 shows a small tumor in the

anterior region with nearly uniform enhancement. The associated ground truth for all

cases are shown in Figures 5.12 and 5.13. The ground truth is represented as a set of

spatial probability maps for tissue and pathology. This provides advantage over binary

data or class membership data since this allows a validation scheme to use probabilistic

statistical analysis rather than simple volume comparison.

In order to verify that the synthetic MRI and the ground truth matches human

perception and high level knowledge, I performed a limited comparison of the tumor

volumes. The tumor structures obtained from the ground truth were compared to the

segmentations drawn by a human expert and the results of a user guided semi-automatic

segmentation method using level set evolution [40, 104]. Following standard practice,

the segmentations were primarily driven by the contrast enhanced T1w images. The

measures used for comparison are the Dice similarity coefficient and the average surface

distances, which are discussed in Appendix A. The volumetric values for tumor and
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Figure 5.9. The MR images of the synthetic dataset SimTumor001 com-
pared to real MR images of a subject with malignant tumor and surround-
ing edema. Top: axial view of the synthetic 3D MR images generated using
the simulation method described in this chapter. Bottom: axial view of
real 3D MR images. From left to right: contrast enhanced T1w, T1w, and
T2w images.

edema are shown in Table 5.1. Volumes are measured as the integral of the spatial

probabilities of the relevant structure. Table 5.2 shows the quantitative comparison

results between the synthetic ground truth and the manually drawn segmentations, while

Table 5.3 shows the quantitative comparison results between the synthetic ground truth

and the semi automated segmentations. The surface distances differ less than 1.5 mm

in average, for both the comparison against the manual drawings and against the semi-

automatic method. The difference between the user-guided segmentation results and the

synthetic ground truth is mainly in the definition of the extent of tumor boundaries. The

definition of tumor extent is generally ambiguous due to surrounding edema. Compared

to the manual segmentation results, the semi-automatic segmentation results more closely

resemble the simulated ground truth as the level set evolution generates more detailed

tumor contours.
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Figure 5.10. Axial views of the MR images of the synthetic datasets.
From top to bottom: the SimTumor001, SimTumor002, SimTumor003,
SimTumor004, and SimTumor005 MRI datasets. From left to right: con-
trast enhanced T1w, T1w, and T2w images.
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Figure 5.11. Coronal views of the MR images of the synthetic datasets.
From top to bottom: the SimTumor001, SimTumor002, SimTumor003,
SimTumor004, and SimTumor005 MRI datasets. From left to right: con-
trast enhanced T1w, T1w, and T2w images.
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Figure 5.12. Axial views of the ground truth for the 3D synthetic brain
tumor MRI data sets. From top to bottom: spatial probabilities for the
SimTumor001, SimTumor002, SimTumor003, SimTumor004, and SimTu-
mor005 datasets. From left to right: the class probabilities for white mat-
ter, gray matter, csf, tumor, and edema.
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Figure 5.13. Coronal views of the ground truth for the 3D synthetic
brain tumor MRI data sets. From top to bottom: spatial probabilities
for the SimTumor001, SimTumor002, SimTumor003, SimTumor004, and
SimTumor005 datasets. From left to right: the class probabilities for white
matter, gray matter, csf, tumor, and edema.
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Dataset
Tumor Volume

(mm3)
Edema Volume

(mm3)

SimTumor001 25659.3 36602.6
SimTumor002 21893.9 19208.2
SimTumor003 23379.6 3977.7
SimTumor004 19940.0 5925.7
SimTumor005 3113.1 195.8

Table 5.1. Volumes of the tumor and edema structures in the synthetic datasets.

Dataset
DSC
(%)

Average
surface distance

(mm)

SimTumor001 84.3 1.261
SimTumor002 82.1 1.555
SimTumor003 77.4 1.752
SimTumor004 75.2 2.048
SimTumor005 72.4 1.137

Table 5.2. Comparison of the synthetic ground truth to the segmenta-
tions drawn by a human expert for the simulated brain tumor MRI
datasets.

Dataset
DSC
(%)

Average
surface distance

(mm)

SimTumor001 88.03 1.19
SimTumor002 84.66 1.566
SimTumor003 79.66 2.032
SimTumor004 81.79 1.681
SimTumor005 90.14 0.366

Table 5.3. Comparison of the synthetic ground truth to semi-automatic
segmentation for the simulated brain tumor MRI datasets.
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5.5. Conclusions

In this chapter, I have presented a new method for generating synthetic MR images

with tumor and edema, together with the associated ground truth, from a healthy brain

ground truth. The process for generating a synthetic brain tumor dataset is summarized

in Figure 5.14. I have performed a limited validation by comparing the synthetic ground

truth with the tumor segmentations done by human raters. The results verify that there

is a satisfactory level of agreement between the tumors perceived within the synthetic

MRI and the synthetic ground truth. The synthetic brain tumor MRI along with the

associated ground truth provide the means for performing objective validation of different

brain tumor MRI segmentation frameworks. Given a segmentation framework for brain

tumor MRI, it can be tested using the synthetic multimodal brain tumor MRI as input

images. We can then measure its performance by comparing the segmentation results

and the synthetic ground truth. Compared to validation against manual segmentations,

this approach has the advantage of having consistent, known ground truth for the whole

brain. This capability is novel as most validations done so far were focused on tumor

only and not performed on the infiltrated and deformed healthy tissue.

Brain tumor growth is a very complex process, and it is extremely challenging to

account for all the variables that govern the process. One possible extension to the

method proposed in this chapter is the simulation of the formation of new blood vessels

(angiogenesis). Tumor cells are known to generate biological signals that induce formation

of blood vessels to supply additional energy for the increased metabolism. Bullitt et al.

[10] also observed that vessels in and around the tumor tend to have larger variability

in the curve angles and become more tortuous. Simulating blood vessel formation and

shape changes will allow for the generation of more realistic mass effect and infiltration

models and improve the appearance of the synthetic contrast enhanced T1w image. The

simulation of the deformation due to tumor mass effect could be improved by using

more complex computational model such as the biphasic models proposed by Miga et

al. [64, 65] and Nagashima et al. [74]. Another possible extension is a more detailed
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modeling of the changes in csf volume and flow. If the intracranial pressure is high, there

tends to be a loss of csf volume (which may not be restricted to the ventricles). If brain

tumor blocks ventricular outflow, the csf volume can increase. Other possible extensions

to the simulation framework and potential applications will be discussed in the future

work section of Chapter 6.
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Figure 5.14. Summary of the generation of synthetic brain tumor ground
truth together with the associated brain tumor MRI (here only the contrast
enhanced T1 image is shown).
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CHAPTER 6

Discussion and Future Work

This chapter reviews and discusses the contributions of this dissertation and presents

some possibilities for future work. Section 6.1 reviews and discusses the list of contri-

butions presented in the first chapter. Section 6.2 discusses future research possibilities

and potential application areas. Section 6.3 concludes with a summary.

6.1. Review of Contributions

This section provides a summary of the contributions of this dissertation. Each

contribution is presented along with a discussion on how it was accomplished in this

dissertation.

(1) Image segmentation using a modified Expectation-Maximization (EM) algorithm:

the novelties of this approach are its use of robust parameter estimation tech-

niques and its automatic detection of the feature space clusters for the mixture

model.

The method used for image segmentation is based on the Expectation-Maximization

algorithm with Gaussian finite mixture model. Chapter 2 investigated the limi-

tations of the standard EM algorithm and presented extensions that adapt the

algorithm for cases with significant deviations from the reference brain atlas.

These deviations typically cause the data samples to be contaminated with a

large proportion of outliers. This necessitated and motivated the use of robust

combinatorial parameter estimation methods such as the Minimum Covariance

Determinant (MCD) estimator for determining the proper parameters for the

image likelihood p(I|S, θ).



Chapters 3 and 4 presented the adaptations of the robust EM algorithm for

the segmentation of MRI of adult brains with tumor and of newborn brains. The

highly variable nature of pathology can include the appearance of new structures

such as edema. Edema, which is a swelling of the tissue, often appear around

brain tumor. However, certain types of brain tumor (e.g., gliomas) are not

associated with significant edema growth. To account for the possibility of the

existence of additional structures (hence additional components in the mixture

model), the EM algorithm is modified to perform a search for the existence of

additional clusters in the intensity feature space based on prior knowledge on the

intensity properties. To my knowledge, the brain tumor segmentation method

described in Chapter 3 is the first fully automatic segmentation system that

provides 3D segmentations of the whole brain tissue, tumor, and edema.

(2) Generation of an augmented feature space for image segmentation through the

use of spatial constraints such as location, curvature, and adjacency.

The segmentation method uses samples obtain from the brain atlas. Since

the subject images have significant deviations from the atlas, there is a need

to restrict the sampling regions. Chapters 3 and 4 presented the strategies for

obtaining samples based on known properties related to the structures and image

geometry for specific anatomical regions. For brain tumor segmentation, tumor

samples are restricted to non-spurious regions and edema samples are restricted

to regions that are adjacent to tumor. For newborn brain segmentation, white

matter samples are restricted to regions with low image gradient magnitude so

that the ambiguous transitional white matter regions are excluded.

(3) Application of the proposed segmentation framework for healthy brains as well

as images that exhibit deviations due to pathology (brain tumor) and growth

(newborn brains).

In Chapters 3 and 4, the segmentation method was applied to real brain tu-

mor MRI and newborn brain MRI. Validation of the segmented structures was
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Figure 6.1. Volumes of brain structures for healthy subjects across age
groups (divided by decades from young to old). The gray matter volume
tend to decrease with age, which is in agreement with previously published
results. Image provided by Bénédicte Mortamet [72].

performed by comparing the automatic results against manually obtained re-

sults. The automatic segmentation framework performed with satisfactory level

of agreement to manual raters, with the advantage of being fully reproducible.

The proposed segmentation framework has been used in several clinical studies

[72, 35]. These studies reported facts that agree with the knowledge of the

biological brain trends.

Segmentation tools based on the techniques described in Chapter 2 is cur-

rently in active use at multiple image analysis research laboratories. The seg-

mentation tool developed using the atlas-based robust EM methodology has

been applied to over 2000 adult subjects in UNC and Duke. It has been applied

in a validation study with a traveling phantom on 10 scanners across the United

States, and a separate validation study with 60 controls scanned twice. The tool

is a critical component of a study on structural volumetric changes within the

brain related to aging, and it has been applied succesfully to approximately 100

subjects with ages ranging from 18-74 years. The structural volumes for differ-

ent brain tissue types for the different age groups are shown in Figure 6.1. In

addition to UNC and Duke, the tool is in active use at Helsinki (Finland), Lau-

sanne (Switzerland), and Liége (Belgium). It has also been extended to segment

brains of children at one and two years of age.
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The newborn brain MRI segmentation method (Chapter 4) has been applied

to healthy subjects in UNC Department of Psychiatry and prematurely born

subjects in the University Hospital of Geneva. In Section 4.4, I described a

study that made use of the newborn brain MRI segmentation tool [35]. This

study analyzed 74 newborns and found interesting clinical observations on the

early growth patterns for the brain. The results of that study show that there is

a characteristic pattern of regional brain structures that are distinct from those

of adults and older children. That study presents the analysis of the largest

collection of newborn datasets to date, which was made possible through the

use of the new automated segmentation method.

(4) A method for generating pathological ground truth (tumor and edema) from image

data with known healthy ground truth by combining a linear elastic biomechanical

model with random surface tractions and a reaction-diffusion process guided by

diffusion tensor imaging (DTI). The simulation of a new pathological ground

truth is guided by the underlying biological processes.

Chapter 5 described a method for simulating brain tumor and edema given

a healthy ground truth. Brain tissue is modeled using the classic linear elastic

biomechanical model which are deformed using tumor surface forces. The force

directions are drawn randomly from the von Mises-Fisher [60] distribution so

that the final tumor shapes are more variable and more challenging to segment.

Infiltration due to tumor and edema is simulated through a reaction-diffusion

process which is guided by a diffusion tensor field. The diffusion tensor field

that guides the reaction-diffusion is obtained from an average diffusion tensor of

multiple subjects that is modified to account for tumor effects. The tensors are

warped to simulate displacement due to tumor mass effect and made isotropic

to simulate the destruction of white matter fibers.

(5) Simulation of the accumulation of contrast agent for a brain tumor subject to

generate contrast enhanced T1w MRI, which is the standard diagnostic imaging
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modality. The accumulation model is guided by the underlying biological pro-

cesses.

The contrast enhanced T1w MRI modality is the current standard channel

for tumor diagnosis. The simulation of the contrast enhancement due to the

contrast agent (typically gadolinium) that is injected into the blood stream is

proposed in Chapter 5. The infusion and spread of the contrast agent is simu-

lated using a reaction-diffusion process which has a source and a sink term for

the reaction. The source term indicates the regions where the contrast agent

would be accumulated. This term is distributed in specific regions within the

brain, particularly the blood vessels and the peripheral tumor regions. The

choice of the regions are drawn at random from a spatial probability distribu-

tion that provides high probability values for the targeted regions. The sink

term is similarly drawn at random from a spatial probability distribution that

assigns high probability values in the internal tumor regions (the likely necrotic

regions), where the concentration of contrast agent is likely to be low.

(6) Simulation of MR images with brain tumor and edema using textures synthesized

from real tumor MRI samples. The synthetic MR images and the associated

ground truth provides the means for objective evaluation of different segmentation

schemes.

Chapter 5 discussed the process of generating test data for comparing brain

tumor segmentation methods. Rather than simulating the complex MRI signal

acquisition process, I proposed to use the linear combination of textures synthe-

sized using an approximate Markovian model [99]. The textures are synthesized

from samples that are obtained from real brain tumor MRI, so that the appear-

ance of individual structures has the same relative property as a real scan. Each

texture’s contribution to a voxel is weighted using the class posterior probability,

which mimics the partial voluming within real MR images.
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The generated synthetic MR images along with the ground truth provides

an objective means for evaluating different segmentation methods. As shown in

Chapter 5, the synthetic images appear reasonably realistic and the synthetic

ground truth is comparable to manual segmentations of the simulated images.

Using the simulated images with known underlying anatomy, results from mul-

tiple methods can be compared to the ground truth without a need to declare a

single manual segmentation as a gold standard. The synthetic data can also be

used to evaluate the accuracy of various deformable registration schemes which

are often designed to map tumor data to a healthy template. The mapping

can be tested objectively and accurately since both the healthy and pathological

anatomy are known.

6.2. Future Work

The tasks of segmenting images and evaluating segmentation results are challenging

and involve different factors that might be domain specific. Therefore, this disserta-

tion has only explored some of the issues specific to brain tumor and newborn brain

segmentations. Possible future directions of research are listed in the following two sub-

sections. The first subsection covers possible extensions for the automatic segmentation

framework, while the second subsection covers possible extensions for the brain tumor

simulation framework.

6.2.1. Segmentation of Brain MRI. Brain MR images present significant challenges

for segmentation yet there is a wealth of prior knowledge that could be used for analysis.

There are also many possibilities for using more advanced models of image appearance

and anatomical brain structures. The combination of these factors might lead to various

future directions for research in image segmentation.

(1) Maximum a Posteriori image segmentation. In Chapter 2, the image segmenta-

tion framework was developed from the ML segmentation framework combined

with robust combinatorial methods for finding the maximum likelihood estimate.
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The framework could be further improved by making use of the more flexible

Maximum a Posteriori (MAP) segmentation framework that is summarized in

Appendix B. This will make it possible to use the more sophisticated image

models used in the framework proposed by Tu and Zhu [91]. Their framework

unifies many different standard image segmentation techniques such as level set

evolution, maximum likelihood estimation, and region merging and splitting.

The MAP segmentation framework estimates the segmentation parameters

using the Markov Chain Monte Carlo (MCMC) algorithm, as opposed to the EM

algorithm for ML segmentation. The combinatorial robust parameter estimation

techniques described in Chapter 2 can be adapted to the MCMC technique to

create proposal probabilities from the data that explicitly excludes some outliers.

Combining the robust parameter estimation with the richer set of segmentation

operations is likely to generate an improved method that can be used to segment

a wider variety of brain MRI subjects.

(2) Joint estimation of deformation and label assignments. A potential issue that

was not handled by the proposed method is large deformation of brain structures

[54]. When there is large deformation (e.g., when tumor is present), using the

brain atlas may lead to incorrect sampling. In this case, the atlas-based samples

would be severely contaminated and the model estimation may yield incorrect

results. The improper spatial priors would also limit the segmentation quality,

as the segmentation output cannot differ greatly from the atlas. The proposed

robust EM method can still handle some level of deformation due to the use of

robust estimators that deal with outliers, but having an explicit model of the

image deformation would lead to better segmentations.

In such cases, the atlas priors Pr(Sk = c) need to be deformed to match

the subject MRI adding an extra parameter to the priors. The segmentation

method will need to estimate the best value for the label assignment S, image

parameter θ, and the deformation for Pr(S) = Z. The deformed spatial priors
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Z become a new parameter that needs to be estimated. Estimating the best

estimate for the three values using a joint probability would be computationally

difficult. A possible approach is to follow the approach using partial maximiza-

tions similar to the Iterative Conditional Modes (ICM) algorithm proposed by

Besag [8]. With this approach, we iteratively compute the best estimate of an

individual parameter set while holding the rest fixed. For example, we find the

best label assignments S while holding θ and Z fixed in one iteration, and we

estimate the deformation for Z while holding S and θ fixed in the next iteration.

In different iterations, Pr(S) = Z is treated either as a spatial prior or as a pa-

rameter. In fact, Neal and Hinton[75] proposed that the EM algorithm can be

viewed as iterative partial maximizations of a function F (p, θ). During the nth

iteration, the algorithm computes p(n) that maximizes F (p, θ(n−1)) in the E-step,

and computes θ(n) that maximizes F (p(n), θ) in the M-step. The computation of

the deformation for the priors Z can be seen as an extension where we optimize

F (p, θ, Z).

The theoretical impact of deforming Pr(S) = Z in an EM-based approach

is unclear. Deforming Z would have impact in both the E-step and the M-

step, where Z acts as the spatial prior during the E-step and a parameter to

be optimized during the M-step. In the E-step, the optimized lower bound for

the image likelihood is formed by using a distribution that has the smallest

Kullback-Leibler (KL) divergence to the class posterior p(S|I, θ), which is the

class posterior itself (Section 2.2). Modifying the prior Z will also modify the

class posterior, so the lower bound will be inaccurate if the KL divergence to the

true class posterior becomes too large. In the M-step, the deformation of Z is

treated as a parameter that needs to be optimized so that the priors match the

observed image data. The ideal matching criteria still needs to be investigated.

In particular, the estimation of deformation is not straightforward for images

with pathology. This is due to the fact that we need to map priors that do not
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contain a pathological structure to images that contain a pathological structure.

The creation of new structures is a challenge in designing reliable matching

criteria for the deformation.

(3) Image segmentation using higher level features. The segmentation method pre-

sented in this dissertation detects abnormal regions in the brain based on the

atlas and image intensities. Other properties can also be used for this process;

these can include geometric properties such as curvature or brain asymmetry

[45], or blood vessel information from MR angiography. For example, brain tu-

mor typically generates gross brain asymmetry, and knowledge of blood vessel

information could help to isolate active tumor regions as tumors are typically as-

sociated with the formation of new arterial branches. More sophisticated robust

parameter estimation schemes compared to the ones described in this disserta-

tion may be necessary for such features. The schemes proposed in this disser-

tation assume that the data samples can be approximated with a Gaussian or

that they exist in a Euclidean metric space.

(4) Statistical models for pathological structures. Although a structure like brain

tumor can appear in many different sizes and shapes, an explicit statistical

model could be useful for improving the accuracy of the segmentation. A model

that describes the likely shape and the deviations from it could function as a

mechanism to constrain the search for the optimal solution. An example of such

a statistical shape model is the Principal Geodesic Analysis of the m-rep medial

shape model proposed by Fletcher et al. [30].

Another approach, proposed by Mohamed et al. [70], uses a statistical model

of deformations outside of the tumor regions to isolate the likely biomechanical

model for the tumor and edema. This approach could be combined with the seg-

mentation approach proposed in this dissertation to further isolate likely tumor

and edema regions.
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(5) Diffusion tensor imaging (DTI) for image segmentation. Diffusion tensor imag-

ing is an interesting new modality that provides higher level structural informa-

tion, namely the likely directions of water diffusion. Lenglet et al. [52] proposed

a DTI segmentation framework that has been applied for brain white matter by

evolving a surface based on the tensor data. A similar approach, or one based

on probabilistic pattern recognition techniques, could be applied to obtain ad-

ditional feature information that would help in isolating the relevant structures.

Since DTI allows the derivation of the local white matter fiber structures, it may

be particularly useful in segmenting anatomical deviations. In the case of brain

tumors, white matter fibers tend to be displaced or destroyed around a brain

tumor which indicates that the deformation of white matter fibers might be a

vital cue for the presence of tumor. In the case of newborn brains, the knowl-

edge of white matter fiber locations could help in isolating myelination regions

since the process of myelination occurs along the white matter fibers and alters

diffusion properties.

(6) Image indexing and retrieval. The segmentation framework presented in this

dissertation is fully automatic and thus can be consistently applied to a large set

of MR images. This could be of significant value in the indexing of images based

on some clinical criteria (e.g., pathology, growth). For example, the framework

can be combined with the brain indexing system proposed by Liu et al. [53]

to retrieve images with clinically relevant features such as existence of brain

tumors, location of tumors, tumor volumes, etc.

(7) Extension to other anatomical regions. The segmentation of other structures

than the brain using MRI or other modalities such as CT (Computed Tomogra-

phy) is another possible extension of the robust maximum likelihood segmenta-

tion framework. However, the methods described in this dissertation are focused

on the brain only with its well defined structural properties. Additionally, the

brain structure is encased in the skull, which is generally fixed or immobile. The
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skull provides a strong cue for the registration process between brains. These

two factors make it challenging to adapt the method to other anatomical re-

gions. Extending this method to other anatomical regions with fewer motion

constraints as compared to the brain would likely require the use of a highly

robust and accurate registration scheme.

6.2.2. Brain Tumor MRI Simulator. The aim of the new brain tumor MRI simulator

is to generate sufficiently realistic MR images that are challenging to segment. Since the

brain is a complex structure, it is extremely challenging to account for all the processes

and variables involved. Many possible avenues are available for extending the brain tumor

MRI simulator.

(1) Extended modeling of brain tumor growth. In this dissertation, the proposed

synthetic brain tumor MRI simulator is mainly driven towards the generation

of test images that empirically exhibit the major pathological effects seen in

real images. The simulator can be extended to include the complex interac-

tions between the deformation process, the infiltration process, the nutrient and

chemical interactions, and formation of new blood vessels (angiogenesis). Zheng

et al. [107] proposed a more detailed model for 2D data, however a full 3D

implementation for the brain would be a significant challenge.

In particular, simulating the formation of new blood vessels and the shape

changes of blood vessels within tumor regions would allow for the generation of

more realistic mass effect and infiltration models and improve the appearance

of the synthetic contrast enhanced T1w image. The modeling of the physical

changes in csf volume and structure would improve the degree of realism in the

image as the csf can be heavily influenced by tumor growth. If the intracranial

pressure is increased due to tumor, there tends to be a loss of csf volume (which

may not be restricted to the ventricles). If brain tumor growth blocks ventricular

outflow, the csf volume can get larger and the ventricle shape would change.
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(2) Simulation of other pathologies in brain MRI. The simulator described in this

dissertation can also be extended to other cases that deviate from healthy adult

MRI. A rather direct extension into the simulation of lesions in cases of vascular

strokes or multiple sclerosis, for example. These cases typically present mul-

tiple regions with tissue infiltration and small scale deformation that could be

generated using similar methods.

(3) Simulation of aging in brain MRI. Another possible extension to the simulator

is the development of new growth models for the validation of segmentations in

age-related studies. There is a lack of consensus as to the correct segmentation

in the very young (newborn infants) and the very old age groups (older than 70

years). In both age groups, there is very low differentiation between white matter

and gray matter. In the case of newborn infants, the white matter undergoes a

growth process called myelination, which is mainly an infiltrative process. The

lack of reliable ground truth for this age group makes validation difficult: a

typical solution is to restrict the validation to only a part of the 3D volume [78].

In elderly subjects, the ventricles are typically enlarged. However, the increase

of ventricular volume may be governed by the loss of tissue integrity (i.e., a

change in tissue elasticity) and not by an increased ventricular pressure, so a

biomechanical model with expansion due to ventricular pressure similar to the

one described in this dissertation may not be appropriate.

(4) Public web interface for simulated brain tumor MRI. The methodology for gen-

erating synthesized tumor MRI could be further developed into web-accessible

system where a user could interactively select locality, size, shape, and type of

tumors by setting some variables (similar to the BrainWeb interface [16]). Im-

age datasets generated by such a tool might find widespread use in validation

of segmentation methods, comparison of different segmentation and registra-

tion strategies, and training or teaching. For example, the effect of voxel size

and slice thickness on tumor volume estimates might be studied systematically.
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Moreover, a series of images with embedded tumors of various size and shape

might be used to evaluate well-established standards for tumor size measure-

ments like the one-dimensional RECIST (Response Evaluation Criteria in Solid

Tumours) criterion, which uses the maximum diameter of the structure mea-

sured only in axial cross-sections [90]. Systematic studies and evaluations would

eventually lead to improved methodologies.

6.3. Summary

This dissertation presented a strategy for segmenting brain MR images based on a

reference population model and measures of deviations from the model. I proposed the

use of robust parameter estimation techniques in combination with the standard EM

algorithm to compute the optimal image segmentation. This approach has been shown

to be practically effective in isolating the relevant image parameters for images with

significant deviations from the brain atlas. The combination of population models and

robust methods for estimating the image likelihood functions created a novel segmenta-

tion strategy that has been applied to two particularly challenging cases: brain tumor

MRI and newborn brain MRI.

A novel automatic segmentation scheme for brain tumors with adjoining edema was

presented in Chapter 3. This scheme made use of standard non-contrast enhanced multi-

modal MRI, with an explicit requirement that one of the modalities is the T2-weighted

modality. The method uses the robust MCD estimator described in Section 2.3.1 to

find outliers in the image data sampled using the brain atlas, allowing the detection of

tumor and edema as abnormal regions. Most methods so far have been applicable only to

enhancing, homogeneous tumors. Furthermore, they require user-guidance in training a

supervised classifier or obtaining a rough outline of the region of interest. The proposed

brain tumor MRI segmentation technique also automatically identifies the presence or

absence of nearby edema, which is novel and has not been presented before. This feature
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is highly relevant for clinicians, as the edema region often may require secondary analysis

and treatment after the primary focus to the tumor region.

A similar strategy has also been applied for the segmentation of newborn brain MR

images with low contrast-to-noise ratio (Chapter 4). The newborn brain MRI segmen-

tation method makes use of spatial priors to deal with the low image contrast and the

robust parameter estimation techniques described in Section 2.3 to deal with the noisy,

ambiguous image intensity values. So far, segmentation of newborn brain MR images has

been done using manual or semi-automatic methods [96]. The proposed method provides

an alternative that is fully automatic.

The validation results for newborn brains shown in Section 4.3 demonstrate that

the performance of the segmentation framework is promising. Since the segmentation

scheme is objective and fully reproducible, it has been used effectively in clinical studies

that require analysis of a large population. The growth patterns of early brain develop-

ment discussed in Section 4.4 was observed using segmentation tools that made use of

the concepts and strategies presented in this dissertation. The resulting segmentations

of newborn brain MR images have shown some interesting results on early brain devel-

opment with respect to cerebral asymmetry, gender differences, and anterior-posterior

growth patterns [35].

In Chapter 5, I presented a method for generating new ground truth with tumor and

edema from a normal brain ground truth. I also described a method for generating syn-

thetic multi-modal MR images that exhibit segmentation challenges similar to real tumor

MRI. Objective evaluation of different segmentation methods can be done using a set of

synthetic images with variations of tumor size, location, extent of surrounding edema,

and contrast enhancement properties. The synthetic 3D MRI with the associated ground

truth also allows for the validation of the segmentation of the whole brain, which includes

white matter, gray matter, csf, and edema. The capability to obtain synthetic datasets

is promising as most validations done so far were focused on only the tumor structures,
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and no validations are typically performed on the segmentations of the infiltrated and

deformed tissue.

In closing, this dissertation presented novel work in automatic MRI segmentation and

the validation of such segmentations. The methods proposed in this dissertation involve

almost no user interaction, so they provide objective results that are fully reproducible.

The methods have the potential to be extended and applied to other pathological and

growth processes in the brain or other parts of the body. The ultimate goal of the work

described in this dissertation is the creation of a system that performs the following tasks:

• Automatic segmentation of anatomical structures with clinically interesting de-

viations from an expected model.

• Validation of segmentation results by comparing the automatic segmentation

results to a simulated ground truth from the expected model.

The combination of the segmentation and validation frameworks might have significant

potential value for clinical studies involving large populations. It provides a way to over-

come the challenging routine of manual segmentation and to generate objective quanti-

tative measures of the segmentation performance for quality control. The software tools

developed for this dissertation form the initial steps toward the creation of the com-

bined framework. They have been applied to a large number of real clinical cases with

promising results.
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APPENDIX A

Validation Measures

In this appendix, I review the measures used for comparing different segmentation

results. These validation measures are used in Chapters 3 and 4 to provide a quantitative

evaluation of the performance of the proposed automatic segmentation methods. They

are also used in Chapter 5 to test the synthetic ground truth for the brain tumor MRI

against the ground truth perceived by human raters. Comparisons are performed on the

discretized version of the segmentation results. Section A.1 presents the measures used

for comparing two binary segmentations. Section A.2 discusses the method of comparing

two segmentations that have multiple (non-binary) label assignments.

A.1. Comparison of Binary Labels

In order to provide direct comparisons for structures of interest, the segmentation

results (class posterior probabilities) from the methods proposed in Chapters 3 and 4 are

converted to a set of binary images or masks. Each mask indicate the voxel locations that

belong to a particular anatomy. The VALMET validation tool [32] is used to generate

quantitative validation measures from the binary images associated with the structures

of interest.

For a given binary segmentation volume A and a ground truth volume B, the relevant

measures are:

(1) Dice similarity coefficient [26], which measures the ratio of volume overlap and

the average volume:

DSC(A,B) = 2
|A ∩B|

(|A|+ |B|)
. (A.1.1)



(2) Jaccard similarity coefficient [44], which measures the ratio of volume overlap

and the volume of the union of the segmentations:

JSC(A,B) =
|A ∩B|
|A ∪B|

. (A.1.2)

The Jaccard and Dice similarity coefficients are related through the following

equation:

JSC(A,B) =
2 |A ∩B|

2 (|A|+ |B| − |A ∩B|)

=
2 |A ∩B|
|A|+ |B|

× 1

2− 2 |A∩B|
|A|+|B|

=
DSC(A,B)

2−DSC(A,B)
. (A.1.3)

In general, JSC(A,B) tends to be lower than DSC(A,B).

(3) Average of closest surface distances. At each point within the surface, the closest

distance from the segmentation to the ground truth is averaged. This can be

implemented efficiently using distance transforms of the binary objects [23].

More specifically,

Ave(A,B) =
1

|δA|
∑

x ∈δA

min
y∈δB

distance(x, y) (A.1.4)

where δA is set of the surface points of A and δB is the set of surface points of

B. The distances can be restricted so that only distances to points going inside

or outside the object are considered.

(4) The symmetric Hausdorff distance between the surface points ins δA and δB,

H(δA, δB) = max{distH(δA, δB), distH(δB, δA)} (A.1.5)

where for a pair of collections of points P and Q, distH(P,Q) is the (non-

symmetric) Hausdorff distance. It is defined as the maximum of the closest

pairwise point distances, distH(P,Q) = max
p∈P

min
q∈Q

distance(p, q).
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In ideal conditions, the measures provide a quantitative summary of the performance

of a segmentation scheme. The volume overlap measures are normalized, where 0 indi-

cates complete dissimilarity and 1 indicates complete agreement. A good segmentation

scheme yields large values for the DSC and JSC measures (above 80%) and low distance

values (less than 1 mm). However, the measures involving volume overlap (DSC and

JSC) are strongly influenced by the volumes of the segmented objects. They tend to re-

port low performance for segmentations of small structures. The average surface distance

can also report low performance when there is an outlier in the computed distances.

A.2. Comparison of Non-binary Labels

The measures listed in the previous section only work on binary segmentations, so they

can only be applied to each distinct brain structure separately. For segmentations of the

whole brain with multiple labels, such as the case for newborn brain MRI, there is a need

for a summary measure that indicate the differences between two segmentations. The

summary measure chosen is Cohen’s kappa [18], which measures the level of agreement

of two raters. Suppose that the number of voxels (observations) within the image is N

and that each segmentation maps the image to M = |C| number of classes / labels, then

the level of agreement κ is defined as follows

κ =
p(agreement)− p(agreement by chance)

1− p(agreement by chance)

=

∑M
i=1 agreements(Ci)−

∑M
i=1 ef(Ci)

N −
∑M

i=1 ef(Ci)
(A.2.1)

where agreements(Ci) is the number of agreements between two segmentations for the

class Ci. ef(Ci) is the expected frequency of agreement by chance for class Ci, assuming

that the two segmentations are statistically independent,

ef(Ci) =
1

N
[# of times rater 1 assigns Ci]× [# of times rater 2 assigns Ci] (A.2.2)
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The κ values are normalized, 0 indicates independence and 1 indicates complete agree-

ment. Large inter-rater variability results in small κ values. κ values greater than 0.7

is generally interpreted to reflect a satisfactory level of reliability. Cohen’s kappa places

equal weight on the samples of each class, so classes with larger number of observations

will have more influence on the final result.
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APPENDIX B

Maximum a Posteriori Image Segmentation

This appendix provides a summary of the Maximum a Posteriori (MAP) image seg-

mentation approach, which provides possible extensions to the Maximum Likelihood

approach described in Chapter 2. The following two sections describe the basic ideas for

MAP segmentation and a method for estimating the segmentation parameters.

B.1. Introduction

The maximum a posteriori (MAP) estimator is a widely used Bayes estimator which

gives the mode of the posterior distribution p(W |I). More specifically, a MAP estimator

computes the tuple of label image and model parameters Ŵ , where

Ŵ = arg max
W

p(W |I) = arg max
W

p(I|W )Pr(W ) (B.1.1)

As opposed to the ML estimator, the MAP estimator allows the modeling of the prior

knowledge of the world state W = (S, θ). As indicated in Equation B.1.1, one has a

choice of computing the MAP estimate using p(W |I) or the product p(I|W )p(W ). The

posterior probability p(W |I) is referred to as the discriminative model, which can be used

directly without computing p(I|W ) if an explicit definition is available. The image data

likelihood term p(I|W ) is referred to as the generative model, which describes the image

that will be likely observed given the segmentation labels and the model parameters.

It is generally extremely challenging to use an explicit discriminative model p(W |I)

for segmentation, since it involves training over all possible image observations. In most

cases, the generative model p(I|W ) is easier to describe and can be approximated reli-

ably using predefined statistical models. This motivates the use of a Bayesian segmenta-

tion framework that combines the generative model p(I|W ) and the prior Pr(W ). The



Bayesian viewpoint is particularly useful when there is a limited number of images avail-

able and when there exists some prior knowledge on the image content (Pr(S)) and the

characteristics of the image appearance (Pr(θ)).

B.2. Parameter Estimation using MCMC

In the ML segmentation formulation, the EM algorithm provides a framework for

estimating the segmentation labels and the model parameters separately. In the MAP

formulation the segmentation labels S and the model parameters θ need to be updated

simultaneously since the dependence on θ is not used explicitly. The simultaneous estima-

tion of the segmentation labels and the model parameters complicates the segmentation

problem. Finding the best MAP estimate can be done using the Markov Chain Monte

Carlo (MCMC) method, where we traverse the space of the world state W in a random

fashion yet still guided by the relevant probabilities. MCMC methods can be relatively

slow to converge, but compared to the EM algorithm it is more flexible. It can handle

changes in the size or dimension of the model parameters θ and does not require explicit

maximization of the objective function p(W |I). More details on the MCMC method and

its application to image analysis can be found in the book by Winkler [101].

MCMC combines two concepts: the solution of a numerical problem through the use of

random samples (Monte Carlo) and the stochastic transitions of a changing variable that

depends only on the current state (Markov chain). Consider the problem of computing

the expectation of a random variable X, this can be solved by a Monte Carlo scheme as

follows:

E [X] =

∫
p(x)dx =

1

N

N∑
i=1

xi (B.2.1)

where the set of xi values are N randomly generated samples of the random variable X

from the distribution p(X). Markov Chain Monte Carlo method generates the xi using

Markov chain (i.e. xi+1 is generated based only on xi) where the chain has p(X) as its

stationary distribution. Related to the solution of the MAP segmentation problem is the

problem of finding the mode of the distribution p(X). Within the MCMC framework,
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this can be implemented by isolating the samples that are traversed most often. A

common approach for optimization with MCMC is by using simulated annealing, where

we iteratively draw samples from (p(X))
1
T where T signifies the temperature. Simulated

annealing begins with a high temperature value which makes all solutions equally likely,

and at each iteration the temperature is lowered until it converges to the most likely

samples drawn from p(X).

The fact that we can use Pr(S, θ) combined with the flexibility of the MCMC algo-

rithm makes it possible to use a more sophisticated model (θ). Tu and Zhu [91] described

a Bayesian image segmentation framework for 2D images that unifies the common im-

age segmentation strategies. Their unified image segmentation framework combines the

following operations:

(1) Multi-scale edge detection and partitioning.

(2) Clustering of observed image intensity data to form image likelihood.

(3) Deformable segmentation through region competition.

(4) Region merging and splitting.

The data-driven Markov Chain Monte Carlo (DDMCMC) segmentation framework

[91] divides a 2D image into M disjoint regions. That is, the segmentation label image

S is defined as S = ∪M
i=1Ri, where Ri ∩ Rj = 0 ∀i 6= j. Each region Ri have its own

appearance model θi and is assigned an index li for the type of distributions representing

the intensities within the region. The extended world state W for the segmentation

becomes:

W = (M, {(Ri, li, θi)|i = 1, 2, . . . ,M}). (B.2.2)

As opposed to the world stateW = (S, {(µc,Σc)|c ∈ C}) used within the example ML seg-

mentation framework, this extended model allows the definition of the prior probability

Pr(W ) as a product of the following prior probabilities:

(1) A prior on the number of regions, for example if it is not be preferable to have

too many regions we can use Pr(M) ∝ 1
M

(2) A prior on the smoothness of the region boundaries defined by each Ri.
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(3) A prior on the size of each region Ri, when the size of the underlying structures

are known this can be used to constrain the segmentation to meaningful results.

The index li allows the algorithm to switch between different family of image likeli-

hood models for each region Ri. Tu and Zhu’s method uses four models for the likely

appearance within the region: voxelwise independent Gaussian distribution, nonparamet-

ric intensity histogram or kernel density estimates, texture model, and a Bezier-spline

model for regions that have smooth variations.

The solution space for the extended W is extremely large and likely contains many

local maximas. Due to the combinatorial nature of the possible world state W , explicit

optimization is practically impossible. The DDMCMC segmentation framework uses

Markov Chain Monte Carlo to traverse the solution space. The method moves to a new

state W ′ based on the current W estimate using the following Markov chain dynamics:

(1) Boundary diffusion through region competition [108]. The boundary Γij between

regions Ri and Rj undergoes motion based on the difference of the log likelihood

given the region model parameters:

∂Γij(s)

∂t
=

[
log

p(Ik|θi, li)

p(Ik|θj, lj)
+Brownian motion

]
~n(s) (B.2.3)

where s is the parametrization of the boundary, k is the image location that

corresponds to Γij(s) and ~n(s) is the normal of the boundary curve.

(2) Image appearance model adaptation. This dynamic involves finding the values

θi for each region Ri that maximizes the regional log likelihood log p(IRi
|θi, li).

(3) Region merging and splitting. A region Ri can be split into two regions or

two regions Ri and Rj can be merged depending on how likely the Markov

chain proposes to move to the new state. This can be implemented using the

Metropolis-Hastings algorithm [63]. Barbu et al. [6] described a more efficient

merging and splitting operations, where multiple regions are split and merged

using Swendsen-Wang graph cuts.
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(4) Switching of image appearance models. This dynamic involves changing the

family of distributions for p(IRi
|θi) by choosing a new index li for a given region

Ri.

Each move within the solution space corresponds to a common image segmentation op-

erations.
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Volpe. Abnormal cerebral structure is present at term in premature infants. Pedi-
atrics, 115(2):286–294, 2005.

[44] P. Jaccard. The distribution of flora in the alpine zone. New Phytologist, 11:37–50,
1912.

[45] Sarang. Joshi, Peter. Lorenzen, Guido. Gerig, and Elizabeth. Bullitt. Structural
and radiometric asymmetry in brain images. Medical Image Analysis, 7:155–170,
2003.

[46] E. R. Kandel, J. H. Schwartz, and T. M. Jessel. Principles of Neural Science.
McGraw Hill, 4th edition edition, 2000.

[47] M. Kaus, S.K. Warfield, A. Nabavi, Peter M. Black, Ferenc A. Jolesz, and Ron Kiki-
nis. Automated segmentation of MR images of brain tumors. Radiology, 218(2):586–
591, 2001.

127



[48] M. R. Kaus, S. K. Warfield, A. Nabavi, E. Chatzidakis, P. M. Black, Jolesz F. A.,
and Kikinis R. Segmentation of meningiomas and low grade gliomas in MRI. In
Chris Taylor and Alan Colchester, editors, MICCAI, volume 1679 of LNCS, pages
1–10. Springer, Sept 1999.

[49] Solomon Kullback and Richard A. Leibler. On information and sufficiency. The
Annals of Mathematical Statistics, 22(1):70–86, 1951.

[50] Stelios K. Kyriacou, Christos Davatzikos, S. James Zinreich, and R. Nick Bryan.
Nonlinear elastic registration of brain images with tumor pathology using a biome-
chanical mode. IEEE Trans. Med. Imaging, 18(7):580–592, 1999.

[51] H. C. Lee and D. R. Cok. Detecting boundaries in a vector field. IEEE Trans.
Signal Processing, 39(5):1181–1194, 1991.

[52] C. Lenglet, M. Rousson, and R. Deriche. DTI segmentation by statistical surface
evolution. IEEE Trans. Med Imaging, 25(6):685–700, 2006.

[53] Y. Liu, F. Dellaert, W. E. Rothfus, A. Moore, J. Schneider, and T. Kanade.
Classification-driven pathological neuroimage retrievl using statistical asymmetry
measures. In Proc. MICCAI 2001, 2001.

[54] P. Lorenzen, S. Joshi, G. Gerig, and E. Bullitt. Tumor-induced structural radio-
metric asymmetry in brain images. In Proceedings of Workshop on Mathematical
Methods in Biomedical Image Analysis (MMBIA), 2001.

[55] P. Lorenzen, M. Prastawa, B. Davis, G. Gerig, E. Bullitt, and S. Joshi. Multi-modal
image set registration and atlas formation. Medical Image Analysis, 10:440–451,
2006.

[56] Peter Lorenzen. Multi-modal Image Registration and Atlas Formation. PhD thesis,
University of North Carolina at Chapel Hill, 2006.

[57] Stanley Lu, Daniel Ahn, Glyn Johnson, and Soonmee Cha. Peritumoral diffu-
sion tensor imaging of high-grade gliomas and metastatic brain tumors. AJNR,
24(5):937–941, May 2003.

[58] F. Maes, A. Collignon, D. Vandermeulen, G. Marchal, and P. Suetens. Multimodal-
ity image registration by maximization of mutual information. IEEE Transactions
on Medical Imaging, 16(2):187–198, April 1997.

[59] Mikhail B. Malyutov and M Lu. Robust modification of the EM-algorithm for
parametric multitrajectory estimation in noise and clutter. In NATO Science Series
III: Computers and Systems Sciences, volume 198, pages 575–586, 2005.

[60] K. V. M. Mardia and P. E. Jupp. Directional Statistics. John Wiley and Sons, 2000.

128



[61] M. Matsumoto and T. Nishimura. Mersenne twister: A 623-dimensionally equidis-
tributed uniform pseudorandom number generator. ACM Trans. on Modeling and
Computer Simulation, 8(1):3–30, January 1998.

[62] J. Matsuzawa, M. Matsui, T. Konishi, K. Noguchi, R.C. Gur, W. Bilder, and
T. Miyawaki. Age-related volumetric changes of brain gray and white matter in
healthy infants and children. Cerebral Cortex, 11(4):335–342, April 2001.

[63] N. Metropolis, M.N Rosenbluth, A. W. Rosenbluth, A. H. Teller, and E. Teller.
Equations of state calculations by fast computing machines. Journal of Chemical
Physics, 21:1087–1092, 1953.

[64] M. Miga, K. Paulsen, F. E. Kennedy, A. Hartov, and D. Roberts. Model-updated
image guided neurosurgery using the finite element method: incorporation of the
falx cerebri. In Proc. MICCAI 1999, LNCS 1679. Springer-Verlag, 1999.

[65] M. I. Miga, K. D. Paulsen, J. M. Lemery, S. D. Eisner, A. Hartov, F. E. Kennedy,
and Roberts D. W. Model-updated image guidance: initial clinical experience with
gravity induced brain deformation. IEEE Trans Med Imaging, 18:866–874, 1999.

[66] Karol Miller. Biomechanics of brain for computer integrated surgery. PhD thesis,
Warsaw Univ. Technol., Warsaw, Poland, 2002.

[67] T. Minka. Expectation-maximization as lower bound maximization, 1998.
Tutorial published on the web at http://www-white.media.mit.edu/ tp-
minka/papers/em.html.

[68] P. Mitra, C. A. Murthy, and S. K. Pal. Density based multiscale data condensation.
IEEE Trans. Pattern Analysis and Machine Intelligence, 24(6), 2002.

[69] Ashraf Mohamed and Christos Davatzikos. Finite element modeling of brain tumor
mass-effect from 3D medical images. In Proc. MICCAI 2005, LNCS 3749, pages
400–408, 2005.

[70] Ashraf Mohamed, Evangelia I Zacharaki, Dinggang Shen, and Christos Davatzikos.
Deformable registration of brain tumor images via a statistical model of tumor-
induced deformation. Medical Image Analysis, 10(5):752–763, October 2006.

[71] N. Moon, E. Bullitt, K. Van Leemput, and G. Gerig. Automatic brain and tumor
segmentation. In Takeyoshi Dohi and Ron Kikinis, editors, Medical Image Com-
puting and Computer-Assisted Intervention MICCAI 2002, volume 2489 of LNCS,
pages 372–379. Springer Verlag, September 2002.

[72] Bénédicte Mortamet, Donglin Zeng, Guido Gerig, Marcel Prastawa, and Elizabeth
Bullitt. Effects of healthy aging measured by intracranical compartment volumes

129



using a designed MR brain database. In Proc. MICCAI 2005, LNCS 3749, pages
383–391, 2005.

[73] T. Nagashima, B. Horwitz, and S. I. Rapoport. A mathematical model for vasogenic
brain edema. Adv Neurol, 52:317–326, 1990.

[74] T. Nagashima, Y. Tada, S. Hamano, M. Sakakura, K. Masaoka, N. Tamaki, and
S. Matsumoto. The finite element analysis of brain oedema associated with in-
tracranial meningiomas. Acta Neurochir Suppl, 51:155–157, 1990.

[75] R. Neal and G. Hinton. A view of the EM algorithm that justifies incremental,
sparse, and other variants. In M. I. Jordan, editor, Learning in Graphical Models.
Kluwer, 1998.

[76] P.-O. Persson and G. Strang. A simple mesh generator in MATLAB. SIAM Review,
46(2):329–345, 2004.

[77] Marcel Prastawa, Elizabeth Bullitt, Nathan Moon, Koen Van Leemput, and Guido
Gerig. Automatic brain tumor segmentation by subject specific modification of
atlas priors. Academic Radiology, 10:1341–1348, December 2003.

[78] Marcel Prastawa, John H. Gilmore, Weili Lin, and Guido Gerig. Automatic seg-
mentation of MR images of the developing newborn brain. Medical Image Analysis,
9:457–466, 2005.

[79] Jan Rexilius, Horst K Hahn, Mathias Schlüter, Sven Kohle, Holger Bourquain,
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