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ABSTRACT

Yang Zhan: Efficient, Locality-Maintaining Namespace Operations in a Write-Optimized File
System

(Under the direction of Donald E. Porter)

There is a long-standing trade-off between good locality (fast directory traversals) and ef-

ficient namespace operations (efficient file or directory renames) in file systems. Traditional

inode-based file systems have good rename performance but can fail to maintain locality, espe-

cially in the face of file system aging. On the other hand, full-path-indexed file systems ensure

locality, however, renaming a directory needs to update all related full-paths, which is usually im-

plemented as an expensive operation. No existing file system has both good locality and efficient

namespace operations.

This dissertation describes a new file system design that has both good locality and efficient

namespace operations. In particular, we describe a novel synthesis of write-optimization, full-

path indexing, and operations on data structures. By directly manipulating the data structure,

a full-path-indexed file system can efficiently update related full-paths in a rename. Moreover,

with the technique, a full-path-indexed file system can clone a directory without traversing the

directory.

We implement this technique in BetrFS, a full-path-indexed, write-optimized, local file sys-

tem for Linux. Compared to ext4, the widely used inode-based file system in Linux, the new ver-

sion of BetrFS traverses the Linux source directory 9.47x faster and renames the same directory

1.09x faster. Meanwhile, the new version of BetrFS clones a directory faster than state-of-the-art

file systems that support clones, such as Btrfs and XFS.
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CHAPTER 1: INTRODUCTION

Today’s general purpose file systems fail to utilize the full bandwidth of the underlying hard-

ware. Widely used inode-based file systems, such as ext4, XFS, and Btrfs, can write large files at

near disk bandwidth, but typically create small files at less than 3% of the disk bandwidth [50].

Similarly, these file systems can read large files at near disk bandwidth, but traversing directories

with many small files is slow, and the performance degrades when the file system ages [10].

At the heart of this issue is how file systems organize metadata and data on disk. The most

common design pattern for modern file systems is to use multiple layers of indirection. The inode

number of a file or directory connects the name of an entry in the parent directory to its metadata

location on disk. The metadata of an inode contains extents that describe the physical location

of data at different offsets. Indirection simplifies the implementation of file systems. However,

indirection doesn’t impose any constraints on how metadata and data are placed on disk. In the

worst case, the metadata of entries under a directory and the data of a file can end up scattered

over the disk. Because random I/Os are much slower than sequential I/Os on disks, directory

traversals and file creations can be extremely slow. Heuristics, such as cylinder groups [26],

are designed to mitigate this problem. However, after disk space is allocated and freed over file

system aging, the free space on disk becomes scattered, making such heuristics ineffective in the

worst case.

One attempt to solve the problem of file creations is the log-structured file system [37]. The

log-structured file system treats the whole disk as a log, and all write operations, including file

creations, become log appends, which are written to the underlying disk sequentially. Therefore,

file creations are much faster on the log-structured file system. However, the log cleaner in a

log-structured file system has severe impact on performance [39], especially when the log is full.
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Alternatively, a file system can put metadata and data in write-optimized dictionaries (WODs).

WODs, such as the LSM-tree [29], consist of multiple levels whose sizes grow exponentially.

Writes are treated as log appends to the lowest level, and gradually merged to higher levels in

batches. Because all data are written in batches, the amortized cost of each write is much smaller

in WODs, despite the fact that each write is written multiple times. Thus, file creations are much

faster on WOD-based file systems, such as TableFS [34].

However, previous WOD-based file systems are still inode-based. In other words, these file

systems use inode numbers as indexes for metadata and data. Because the inode number of a

file or directory doesn’t change once allocated, after file deletions and creations over file sys-

tem aging, files in the same directory can be assigned with inode numbers that are irrelevant to

each other in the worst case. In such a scenario, the file system is unable to group the inodes in

the same directory close to each other in the WOD. Therefore, a directory scan in inode-based,

WOD-based file system can still result in many random I/Os in the worst case.

An alternative design is to use full-path indexing upon WODs in a file system, known to have

good performance on nearly all operations. A full-path-indexed file system uses the full-path

name of a file or directory as the key for associated metadata and data, and sorted the full-path

names in depth-first-search order, that is, lexicographic order by the full-path names of files and

directories. With full-path indexing, metadata and data under one directory are close to each

other in the key space, which, combined with the sorted order maintained by WODs, leads to

good locality and fast directory traversals. Prior work [10, 20, 21, 50, 51] of this design realizes

efficient implementation of many file-system operations, such as random writes, file creations and

directory traversals, but a few operations have prohibitively high overheads.

The Achilles’ heel of full-path indexing is the performance of namespace operations, in par-

ticular, renaming large files and directories. In inode-based file systems, renaming a file or di-

rectory is just a pointer swing, moving an entry from one directory to another directory, without

touching the file or directory being renamed. However, with full-path indexing, renaming a direc-

tory involves changing the full-path names of all files and directories under it, updating keys of

2
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Figure 1.1: Throughput of renaming a file of different sizes (higher is better). The performance
of full-path-indexed BetrFS 0.3 degrades when the file being renamed becomes larger.

the metadata and data. Competitive performance for namespace operations in full-path-indexed

file systems should complete in an I/O-efficient manner.

However, prior work mainly focuses on the schema level of the file system, i.e., how metadata

and data are keyed and indexed in WODs. Renames on those full-path-indexed file systems are

implemented by fetching all related key/value pairs of metadata and data, inserting them back

with updated keys, and deleting old key/value pairs. In such a design, a file system rename needs

to call several operations for each affected full-path name, leading to bad performance, espe-

cially when the file or directory being renamed is large. Figure 1.1 compares the throughput of

file renames in different file systems. The benchmark renames a file of different sizes 100 times,

each followed by an fsync of the parent directory. Except full-path-indexed BetrFS 0.3 1, all

file systems are inode-based. As the file size changes, these inode-based file systems have rela-

1 BetrFS 0.3 [10] is the latest version of BetrFS and can be configured to use full-path-indexing (default BetrFS 0.3 is
not full-path-indexed).
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tively stable rename throughput. In contrast, file renames in full-path-indexed BetrFS 0.3 become

slower and slower when the file size grows, because the file system needs to update more key/-

value pairs (full-path-indexed BetrFS 0.3 stores each 4KiB block of a file as a key/value pair,

which uses the full-path name and the block number and the key).

This dissertation presents I/O-efficient implementations of namespace operations in a full-

path-indexed, write-optimized file system. Specifically, though full-path indexing limits possible

changes on the schema level, we observe that it can make all full-path names under a directory

contiguous in the key space. And the underlying WODs, Bε-trees, have a tree structure 2, which

makes it possible to move a contiguous key range in a subtree efficiently. Therefore, we dig

into the underlying Bε-trees, and implement a new operation, range-rename, that completes file

system renames with a bounded number of I/Os. Moreover, because of the contiguity in the key

space, namespace operations that are difficult in inode-based file systems are easier in full-path-

indexed file systems. In particular, we expand the range-rename operation into the range-clone

operation, which can complete file or directory clones efficiently.

The primary contribution of this dissertation is to show that there is no trade-off between

efficient namespace operations and locality. One can implement efficient renames in a full-path-

indexed, write-optimized file system while keeping the locality ensured by full-path indexing.

In fact, with full-path indexing, one can implement namespace operations that are difficult in

inode-based file systems, such as directory clones.

Chapter 2 discusses previously published work related to this work. This chapter organizes

related work by topic, and talks in detail about work that is closely related to this work.

Chapter 3 describes the necessary background of this dissertation. This chapter starts with

a presentation of the write-optimized Bε-trees, showing the idea of write-optimization. Then,

the chapter describes full-path-indexed BetrFS and relative-path-indexed BetrFS. The full-path-

indexed BetrFS shows the benefit of full-path indexing and write-optimization, but suffers from

2 We choose Bε-trees in our implementation, but the technique can be used on other WODs, such as LSM-trees, as
long as the data structure organizes data in a tree structure.

4



slow renames. The relative-path-indexed BetrFS has good rename performance, but breaks the

full-path indexing and taxes other operations for efficient renames.

Chapter 4 presents the range-rename operation on Bε-trees. All key/value pairs in the Bε-tree

whose keys have a certain prefix are updated to have keys with another prefix after the range-

rename operation. And the range-rename operation is implemented efficiently through two tech-

niques, key lifting and tree surgery. And with efficient range-rename, full-path-indexed BetrFS

can implement file system renames efficiently.

Chapter 5 expands the range-rename operation into the range-clone operation. This chap-

ter first shows how to implement the range-clone operation with range-rename techniques by

transforming Bε-trees into Bε-DAGs. Then, the chapter introduces a new type of messages to Bε-

DAGs, GOTO messages. The GOTO message works like other messages in Bε-DAGs, fitting the

range-clone operation into write-optimization. Full-path-indexed BetrFS can use the range-clone

operation to implement both file or directory renames and clones.

Chapter 6 evaluates the implementation. This chapter compares full-path-indexed BetrFS

with range-rename or range-clone to widely used file systems on micro and application bench-

marks. The chapter also puts a particular focus on benchmarking namespace operations.

Chapter 7 summarizes and concludes the dissertation.
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CHAPTER 2: RELATED WORK

This chapter discusses related work to differentiate the contribution of this dissertation over

previous research on write-optimization, full-path indexing in file systems, tree surgery and

clones in file systems.

2.1 Write-optimization

Write-optimized dictionaries (WODs). The most commonly used WOD is the log-structured

merge tree (LSM-tree) [29]. The LSM-tree partitioned key/value pairs into levels whose sizes

grew exponentially. Each level in the LSM-tree was an B-tree. The LSM-tree put new key/value

pairs into the first level. When a level was full, the LSM-tree merged all key/value pairs in the

level into the next level.

Nowadays, most LSM-tree implementations use the design of LevelDB [18]. Instead of using

a tree to store key/value pairs in one level, LevelDB divides a level into multiple 4MiB SSTables

and keeps the key range of each SSTable in the metadata file. When a level is full, LevelDB picks

an SSTable in the level and merges the SSTable with SSTables in the next level.

There were also cache-oblivious WODs. The cache-oblivious lookahead array (COLA) [2]

stored each level in an array and used fractional cascading [8] to improve query performance.

The xDict [5] was a cache-oblivious write-optimized dictionary with asymptotic behavior similar

to a Bε-tree. However, only prototypes exist for cache-oblivious WODs.

We use write-optimized Bε-trees [6] in our implementation. Compared to LSM-trees, Bε-trees

put all key/value pairs in one tree and have better asymptotic query performance [3].
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Key/value stores. Many key/value stores use WODs as the underlying data structures. For ex-

ample, BigTable [7], Cassandra [23], HBase [1], LevelDB [18] and RocksDB [14] implement

LSM-trees, while ft-index [43] and Tucana [30] implement Bε-trees.

Recently, many papers focused on optimizing different aspects of the LSM-tree. LOCS [46]

optimized LSM-trees for multi-channel SSDs. WiscKey [25] reduced the size of the LSM-tree so

that the LSM-tree fitted into the in-memory cache. PebblesDB [33] optimized the implementation

of LSM-trees in LevelDB to reduce write-amplification.

In this dissertation, we provide the upper level file system with key/value store operations.

Specifically, for a namespace operation, the file system calls a key/value store operation that

finishes most of the work efficiently.

File systems. The log-structured file system [37] treated the whole disk as a log. Thus, it per-

formed writes much faster than other file systems. However, garbage collection could be expen-

sive in the file system [39].

TokuFS [13] was an in-application library file system, built on top of ft-index. TokuFS showed

that a write-optimized file system could support efficient write-intensive and scan-intensive work-

loads.

KVFS [40] was based on a transactional variation of the LSM-tree, called the VT-tree. Im-

pressively, the performance of their transactional file system was comparable to the performance

of the ext4 file system, which does not support transactions. One performance highlight was

on random-writes, where they outperformed ext4 by a factor of 2. They also used stitching to

perform well on sequential I/O in the presence of LSM-tree compaction.

TableFS [34] used LevelDB to store file-system metadata. They showed substantial perfor-

mance improvements on metadata-intensive workloads, sometimes up to an order of magnitude.

They used ext4 as an object store for large files, so sequential IO performance was com-parable

to ext4.

All the WOD-based file systems above were built on FUSE [16], in which the authors can

write file systems in userspace. However, FUSE imposes expensive context-switch costs on the
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file system. The TableFS paper analyzed the FUSE overhead relative to a library implementation

of their file system and found that FUSE could cause a 1000 increase in disk-read traffic.

BetrFS [10, 20, 21, 50, 51] was the first WOD-based file system in kernel. Because of the

underlying WOD, BetrFS performed well on benchmarks with small, random writes.

The implementation in this dissertation is a newer version of BetrFS, which inherits the good

random write performance from older versions and has a new design for namespace operations.

2.2 Full-path indexing in file systems

A number of systems store metadata in a hash table, keyed by full-paths, to look up metadata

in one IO. The Direct Lookup File System(DLFS) mapped file metadata to on-disk buckets by

hashing full-paths [24]. Hashing full-paths created two challenges, files in the same directory

might be scattered across disk, harming locality and DLFS directory renames required deep

recursive copies of both data and metadata.

A number of distributed file systems have stored file metadata in a hash table, keyed by full-

paths [17, 31, 42]. In a distributed system, using a hash table for metadata has the advantage of

easy load balancing across nodes, as well as fast lookups The concerns of indexing metadata in

a distributed file system are quite different from keeping logically contiguous data physically

contiguous on disk. Some systems, such as the Google File System, also do not support common

POSIX operations, such as listing a directory.

The dcache optimization proposed by Tsai et al. demonstrated that indexing the in-memory

kernel cache by full-path names can improve several lookup operations, such as open [44]. In

their system, a rename needed to invalidate all related caches.

The first version of BetrFS [20, 21] used full-path indexing and renames in the first version

of BetrFS could be very slow. Therefore, later versions of BetrFS [10, 50, 51] used relative-path

indexing. Relative-path indexing divided the directory tree into zones and used full-path indexing

within a zone. Relative-path indexing showed good rename performance but penalized other

operations.
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This dissertation brings full-path indexing back to BetrFS and implements efficient file sys-

tem renames by doing tree surgery on Bε-trees.

2.3 Tree surgery

Most trees used in storage systems only modify or rebalance node as the result of insertions

and deletions. Operations, such as slicing out or relocating a subtree in tree surgery, are uncom-

mon.

Finis et al. [15] introduced ordered index for handling hierarchical data, such as XML, in

relational database systems. Similar to a file system rename that moves a subtree in the direc-

tory hierarchy, one of their task was moving a subtree in the hierarchical data. However, in their

use cases, hierarchy indexes were generally secondary indexes, while in BetrFS, full-path keys

encode the directory hierarchy.

Ceph [47] used dynamic subtree partitioning [48] to load balancing metadata servers. In

Ceph, a busy metadata server would delegate subtrees of its workload to other metadata servers.

Compared to namespace operations of this dissertation, the dynamic subtree partitioning in Ceph

didn’t change the overall directory hierarchy of the file system.

2.4 Clones in file systems

We also investigate file or directory clones in this dissertation. Table 2.1 summarizes the

support of clones in file systems.

File systems with snapshots. Many modern file systems provide snapshot mechanism, making

read-only copies of the whole file system.

The WAFL file system [19] organized all blocks in a tree structure. By copying the “vol info”

block, which was the root of the tree structure, WAFL created a snapshot. Later, WAFL intro-

duced a level of indirection between the file system and the underlying disks [12]. Therefore,

multiple active instances of the file system could exist at the same time and WAFL could create
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File System Whole File System Clone File Clone Directory Clone
WAFL [12, 19] Writable No No
FFS [26, 27] Read-only No No
NILFS2 [22] Read-only No No
ZFS [4] Read-only No No
GCTree [11] Read-only No No
NOVA-Fortis [49] Read-only No No
The Episode file system [9] No No Writable∗

Ext3cow [32] No Writable No
Btrfs [35, 36] Writable Writable Writable∗

EFS [38] No Read-only Read-only
CVFS [41] No Read-only Read-only
Versionfs [28] No Read-only Read-only
BetrFS Writable Writable Writable

Table 2.1: Clones in file systems (∗ to enable directory clones, users need to mark the direc-
tory as a subvolume (Btrfs) or a fileset (the Episode file system) before putting anything to the
directory).

writable snapshots of the whole file system by creating a new instance and copying the vol info

block.

FFS [26, 27] created snapshots by suspending all operations and creating a snapshot file

whose inode was stored in the superblock. The size of the snapshot file was the same as the disk.

Upon creation, most block pointers in the snapshot inode were marked “not copied” or “not used”

while some metadata blocks were copied to new addresses. Reading a “not copied” address in the

snapshot file resulted in reading the address on the disk. When a “not copied” block was modified

in the file system, FFS copied the block to a new address and updated the block pointer in the

snapshot inode.

NILFS [22] was a log-structured file system that organizes all blocks in a B-tree. In NILFS,

each logical segment contained modified blocks and a checkpoint block, which was used as the

root of the B-tree. NILFS got the current view of the file system from the checkpoint block of the

last logical segment. NILFS could create a snapshot by making a checkpoint block permanent.

ZFS [4] also stored the file system in a tree structure and created snapshots by copying the

root of the tree (uberblock). To avoid maintaining one block bitmap for each snapshot, ZFS
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kept birth time in each pointer. A block should not be freed if its birth time was earlier than any

snapshot. In that case, the block was added to the dead list of the most recent snapshot. When a

snapshot was deleted, all blocks in its dead list were checked again before being freed.

GCTree [11] implemented snapshots on top of ext4 by chaining different versions of a meta-

data block with GCTree metadata. Also, each pointer in the metadata block had a “borrowed bit”

indicating whether the target block was inherited from the previous version. Therefore, GCTree

could check whether to free a block by inspecting GCTree metadata and didn’t need to maintain

reference counts.

NOVA-Fortis [49] was designed for non-volatile main memory (NVMM). In NOVA-Fortis,

each inode had a private log with log entries pointing to data blocks. To enable snapshots, NOVA-

Fortis kept a global snapshot ID and added the creating snapshot ID to log entries in inodes.

NOVA-Fortis decided whether to free a block based on the snapshot ID in the log entry and active

snapshots. NOVA-Fortis also dealt with DAX-style mmap by stalling page faults when marking

all pages read-only.

Snapshots in file systems provide the basic functionality of cloning files and directories in a

coarse granularity. However, users may want to clone only a certain file or directory, in which

cloning the whole file system can waste time and space.

File systems with file or directory clones. Some file systems go further to support cloning one

single file or directory.

The Episode file system [9] grouped everything under a directory into a fileset. Episode could

create an immutable fileset clone by copying all the anodes (inodes) and marking all block point-

ers in the anodes copy-on-write. When modifying a block with a copy-on-write pointer, Episode

allocated a new block and updated the block pointer in the active fileset.

Ext3cow [32] created immutable file clones by maintaining a system-wide epoch and inode

epochs. When an inode was modified, ext3cow allocated a new inode if the epoch in the inode

was older than the last snapshot epoch. Also, each directory stored birth and death epochs for
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each entry. Ext3cow could render the view of the file system in a certain epoch by fetching en-

tries alive at that epoch.

Btrfs [36] supported creating writable snapshot of the whole file system by copying the root

of the sub-volume tree in its COW friendly B-trees [35]. Btrfs cloned a file by sharing all extents

of the file. The extent allocation tree recorded extents with back pointers to the inodes. Therefore,

Btrfs was able to move an extent at a later time.

All existing file systems either don’t support directory clones or require pre-configuration

for directory clones. Or, a file system with file clones can clone a directory by traversing the

directory and cloning each file, which can be costly if the directory is huge.

Versioning file systems There are also versioning file systems that versions files and directories.

EFS [38] automatically versioned files and directories. By allocating a new inode, EFS cre-

ated and finalized a new file version when the file was opened and closed. Each versioned file had

an inode log that keeps all versions of the file. All entries in directories had creation and deletion

time.

CVFS [41] tried to store metadata versions more compactly. CVFS suggested two ways

to save space in versioning file systems: 1. journal-based metadata that kept a current version

and an undo log to recover previous versions; 2. multiversion B-trees that kept all versions of

metadata in a B-tree.

Versionfs [28] built a stackable versioning file system. Instead of building a new file system,

Versionfs added the functionality of versioning on an existing file system by transferring certain

operations to other operations. In this way, all versions of a file were maintained as different files

in the underlying file system.

Versioning file systems study how to automatically provide file or directory clones for users,

while this dissertation focuses on how to implement file or directory clones in a full-path-indexed

file system.
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CHAPTER 3: BACKGROUND

This chapter gives the background of BetrFS [10, 20, 21, 50, 51]. BetrFS is a file system

based on write-optimized Bε-trees. Section 3.1 introduces the underlying data structure in BetrFS,

the Bε-tree. The Bε-tree is a write-optimized dictionary (WOD) that treats writes as messages and

cascades messages in batches. Then, Section 3.2 describes full-path-indexed BetrFS. Full-path

indexing keeps metadata and data under one directory close to each other in the key space, but

makes the simple implementation of file system renames expensive. Next, Section 3.3 discusses

relative-path indexing, the previous approach that penalizes other operations to mitigate the

rename issue in BetrFS. Finally, Section 3.4 explains implementation details in BetrFS.

3.1 Bε-trees

Bε-trees [3, 6] are B-trees, augmented with buffers in non-leaf nodes. New writes are injected

as messages into the buffer of the root node of a Bε-tree. When a node’s buffer becomes full,

messages are flushed from that node’s buffer to one of its children. If the child is a non-leaf node,

messages are injected into the child’s buffer. Otherwise, messages take effect on the leaf node.

An insert message becomes a key/value pair in the leaf node. If there is an old key/value pair

with the same key in the leaf node, the insert message overwrites the old/key value pair. A delete

message removes the old key/value pair with the same key in the leaf node. Therefore, in a Bε-

tree, leaf nodes only store key/value pairs, as in a B-tree. Because writes can be messages in

non-leaf nodes, point and range queries on a Bε-tree must check the buffers along the root-to-leaf

path, as well as key/value pairs in leaf nodes.

Figure 3.1 shows a Bε-tree example. Node D, E, F , G and H are leaf nodes that store key/-

value pairs. Each leaf node shows key/value pairs in rows, and each row represents a key/value
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Node F

/R/a
/O/c

Node G

/R/o
/R/n

Node H

/Y/x
/R/t

Node E

/O/a
/G/c

Node D

/G/a
/B/a

Node B

/G/b

DEL (/G/c)
Node C

/R/m /R/s

PUT (/R/z)

Node A

/O/b
DEL (/R/o)
PUT (/B/b)

Figure 3.1: In a Bε-tree, a leaf nodes stores key/value pairs, while a non-leaf node has pivots,
parent-to-child pointers and a message buffer. We use different colors to indicate keys with
different prefixes throughout the dissertation.

pair, with the left part as the key and the right part as the value. We use different colors to in-

dicate keys with different prefixes and omit the content of the value as dots throughout the dis-

sertation. Node A, B and C are non-leaf nodes that contain pivots, parent-to-child pointers and

messages in buffers. Parent-to-child pointers connect all nodes into a tree, and the left and right

pivots of a parent-to-child pointer bound the key range of the child node. Messages in the buffers

of non-leaf nodes are write operations that have been applied to the Bε-tree but have not taken

effect on leaf nodes. For example, the message DEL (“/G/c”) in Node B indicates that the key

“/G/c” has been deleted. Therefore, though a query for “/G/c” can find the key/value pair with the

key in Node E, that key/value pair is invalidated by the message in Node B and the query returns

NOT FOUND. Likewise, a query for “/R/z” returns the value in the message PUT (“/R/z”) in node

C.

There can be multiple messages with the same key in a Bε-tree. For example, in Figure 3.2,

the user first inserts a key/value pair with key “/R/z” and then deletes the key “/R/z”. This opera-

tion generates two messages, DEL (“/R/z”) in Node A and PUT (“/R/z”) in Node C. Because DEL

(“/R/z”) comes after PUT (“/R/z”), the node that contains DEL (“/R/z”) is closer to the root of the

Bε-tree than the node that contains PUT (“/R/z”). Therefore, PUT (“/R/z”) will be applied to the

leaf node before DEL (“/R/z”) and queries will apply DEL (“/R/z”) after applying PUT (“/R/z”)

(so queries will not observe any key/value pair with key “/R/z”).
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Node F

/R/a
/O/c

Node G

/R/o
/R/n

Node H

/Y/x
/R/t

Node E

/O/a
/G/c

Node D

/G/a
/B/a

Node B

/G/b

DEL (/G/c)
Node C

/R/m /R/s

PUT (/R/z)

Node A

/O/b
DEL (/R/z)
PUT (/B/b)

Figure 3.2: There can be multiple messages with the same key in a Bε-tree. Messages that are
closer to the root of the Bε-tree are newer, and thus override older messages.

Data Structure Insert Point Query Range Query
B-tree O(logBN) O(logBN) O(logBN + k/B)
Bε-tree O(logBN/εB1−ε) O(logBN/ε) O(logBN/ε + k/B)

Bε-tree (ε = 1) O(logBN) O(logBN) O(logBN + k/B)

Bε-tree (ε = 0.5) O(logBN/
√
B) O(logBN) O(logBN + k/B)

Table 3.1: The asymptotic I/O costs of B-trees and Bε-trees.

Bε-trees are asymptotically faster than B-trees, as summarized in Table 3.1. Consider a B-

tree with N key/value pairs and in which each node can hold B keys (for simplicity, assume

keys have constant size and that the value associated with each key has negligible size). The tree

has fanout B, so its height is O(logBN). Inserts and point queries need to fetch all nodes along

the root-to-leaf path, resulting in O(logBN) I/Os. A range query for k key/value pairs requires

O(logBN + k/B) I/Os.

For comparison, a Bε-tree with node size B has fanout Bε, where 0 < ε ≤ 1. Therefore,

pivot keys in a non-leaf node consume Bε space and the remaining (B −Bε) space is used for the

message buffer. As a result, the Bε-tree has height O(logBN/ε). A point query fetches all nodes

along the root-to-leaf path, inspecting messages in the buffers of non-leaf nodes and key/value

pairs in the leaf node. Therefore, the total I/O cost is O(logBN/ε). Likewise, a range query for k

key/value pairs requires O(logBN/ε + k/B) I/Os. On the other hand, the cost of an insert consists

of injecting the message into the root node with O(1) I/Os and flushing the message down at each

level. In each flush, Bε-trees has O(B − Bε) messages and Bε children. Thus, at least one child
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can receive no less than O((B − Bε)/Bε) = O(B1−ε) messages. Therefore, the amortized cost

of an insert in one flush is O(1/B1−ε). As the insert must be flushed O(logBN/ε) (tree height)

times, the amortized cost of the insert is O(logBN/εB1−ε). A Bε-tree with ε = 1 is equivalent to

a B-tree. And if we set ε = 1/2, the point and range query costs of the Bε-tree become O(logBN)

and O(logBN + k/B), which is the same as a B-tree, but the insert cost becomes O(logBN/
√
B),

which is faster by a factor of
√
B.

One important change in Bε-trees from B-trees is the asymmetric I/O costs for point queries

and inserts. If an application wants to update the old value associated with a key, a B-tree will

perform a point query to get the old value and then issue an insert with the updated value. Be-

cause both operations take O(logBN) I/Os, the total cost remains O(logBN). However, in Bε-

trees, the query cost is O(logBN/ε) I/Os while the insert cost is O(logBN/εB1−ε). A query for

the old value degrades the update cost to O(logBN/ε) I/Os.

To avoid this read-before-write problem, Bε-trees introduce “upsert” operations. An up-

sert operation injects an UPSERT message with the key and a delta into the buffer of the root

node. When the UPSERT message is flushed to the leaf, it updates the old value associated with

the key with a user-specified function and the delta in the message. With the introduction of

UPSERT messages, queries need to compute the new value on the fly if UPSERT messages have

not reached the leaf node, however, this doesn’t change the I/O costs of queries. On the other

hand, updating an old value becomes as fast as an insert operation, because it doesn’t need to

fetch the old value.

Figure 3.3 shows an example of an UPSERT message in the Bε-tree. In the example, the

application wants to update the value associated with the key “/B/a”. Instead of querying the Bε-

tree for the old value and then inserting the new value, the application calls the upsert operation

that injects an UPSERT message into the root node, Node A. Assume the old value associated

with the key “/B/a” in Node D is v, the delta in the UPSERT message is ∆, and the user-specified

function is f . The UPSERT message essentially updates the value associated with the key “/B/a”

to f(v,∆). Queries for the key “/B/a” need to calculate f(v,∆) on the fly. And the UPSERT
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Node F

/R/a
/O/c

Node G

/R/o
/R/n

Node H

/Y/x
/R/t

Node E

/O/a
/G/c

Node D

/G/a
/B/a

Node B

/G/b

Node C

/R/m /R/s

Node A

/O/b

UPSERT (/B/a)

Figure 3.3: An upsert message stores the description of modification on the old value associated
with the key.

message will update the value associated with the key “/B/a” to f(v,∆) when the Bε-tree flushes

the message to Node D.

3.2 Full-path-indexed BetrFS

BetrFS [20, 21] is a Linux in-kernel, full-path-indexed, write-optimized file system built upon

ft-index [43], a key/value store that implements Bε-trees and exposes a key/value interface similar

to Berkeley DB.

Figure 3.4 shows the BetrFS architecture. In Linux, applications interact with file systems

through system calls, which invoke the corresponding VFS (Virtual File System) functions. The

VFS function then calls the particular function implemented by the underlying file system. Be-

trFS implements file systems operations by translating them into key/value store operations in

ft-index. BetrFS interacts with ft-index through point operations, such as put, get and del, as

well as range queries with cursors (c get with DB SET RANGE and DB NEXT). BetrFS also

uses the transaction interface of ft-index to execute multiple operations atomically in one transac-

tion. A redo log and periodic checkpoints (every 60 seconds) in ft-index ensure that changes are

made persistent on the disk.

Ft-index cannot be integrated into a Linux kernel module easily because it is a userspace

library that assumes libc functions and system calls. To address this issue, we built a shim layer
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Figure 3.4: The BetrFS architecture.

called klibc in BetrFS. Klibc implements all functions ft-index requires. For example, ft-index

requires a underlying file system to perform file operations. To this end, klibc privately mounts

an ext4 file system and calls the corresponding VFS functions when ft-index invokes file system

operations. Through a shim layer, BetrFS can incorporate ft-index into the kernel module without

modifying code in ft-index.

BetrFS uses two key/value indexes to store metadata and data in the file system. One index,

meta db, stores metadata, mapping full-paths to struct stat structures. The other index,

data db, stores data, mapping (full-path and block number) to 4KiB blocks. When the file sys-

tem function needs metadata, BetrFS queries the meta db with the full-path key and constructs

the corresponding inode from the struct stat. Likewise, when a dirty inode needs to be

written, the struct stat is assembled from the inode and written to the meta db with the
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full-path key. Blocks of a file are fetched and written by the full-path and the indexes of blocks.

Although other block granularity is possible (we tried 512B for the preliminary implementation

of BetrFS), 4KiB is the natural block size because it is the same as the page size in the Linux

page cache.

BetrFS can write to a block without fetching the old block into memory, avoiding expensive

read-before-write described in Section 3.1. Conventional file systems must read the old block

from the disk to the page cache before writing to that block (a complete overwrite can be done

without fetching the old block, but it is not implemented in any file system). However, Bε-trees

have asymmetric read and write costs, so read-before-write should be avoided. In BetrFS, if the

corresponding block is not in memory, an upsert message, which describes the offset, length and

content of this write, is injected into the root node of the Bε-tree. When this upsert message is

flushed to the leaf node, the change is applied to the old block.

Write-optimized Bε-trees make random writes much faster in BetrFS than conventional file

systems. Unlike traditional file systems, which perform each random write at a random location

on the disk, BetrFS usually resolves a random write by injecting a message into the root node of

the Bε-tree and flushes messages in batches. Because random I/Os are much slower than sequen-

tial I/Os on disks, BetrFS has much better random write performance.

Also, full-path indexing in BetrFS ensures locality over time [10]. After BetrFS fetches one

block of a file from the disk, all nodes along the root-to-leaf path are present in memory. And

with full-path indexing, all keys under one directory are contiguous in the key space, which

means a subsequent fetch of some other block in the same file or another file under than same

directory is likely to be resolved in memory, which significantly increases performance and I/O

efficiency.

The first implementation of BetrFS (BetrFS 0.1) shows great random write performance.

Recursive greps run 3.77x faster than in the best standard file system. File creation runs 12.54x

faster. Small, random writes to a file run 68.24x faster [21].
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Figure 3.5: The same directory tree under full-path indexing and relative-path indexing.

However, namespace operations have predictably miserable performance in BetrFS 0.1. Delet-

ing and renaming a Linux source directory take 46.14 and 21.17 seconds, respectively, because

the file system has to call one or more key/value store operations for each key.

Later, we fixed the delete problem with range-delete messages [50, 51]. A range-delete mes-

sage invalidates all key/value pairs within its key range. When flushing a range-delete message,

the Bε-tree injects the message into all children whose key ranges overlap with the range-delete

message. Upon reaching a leaf node, the range-delete message deletes all key/value pairs within

its key range.

However, the rename problem remains difficult in full-path-indexed BetrFS because a rename

needs to update all affected keys in the Bε-trees, an operation that is slow in key/value stores.

3.3 Relative-path-indexed BetrFS

Relative-path-indexed BetrFS [50, 51] backed away from full-path indexing and introduced

relative-path indexing, which is also called zoning. Relative-path indexing partitions the direc-

tory hierarchy into zones. Each zone has a zone ID (the root zone always has zone ID 0), which
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is analogous to an inode number, and a single root file or directory. All files and directories in

a zone are indexed relative to the zone root. If the file or directory is the root of another zone,

the entry contains the zone ID to redirect queries. With the introduction of zoning, each key in

BetrFS contains two parts, a zone ID and the relative path to the zone root.

Figure 3.5 shows an example of the same directory tree under full-path indexing and relative-

path indexing. In Figure 3.5b, relative-path indexing partitions the directory into three zones.

Zone 0 is the root zone, Zone 1 is rooted at a directory “/foo/bar” and Zone 2 is rooted at a file

“/foo/file”. When querying the key/value store for file “/foo/file” with key (0, “/foo/file”), the

file system gets a special value that indicates the entry is the root of Zone 2. Subsequently, the

file system queries the key/value store with key (2, “/”) and gets the correct value. Similarly, the

file system notices the key for directory “/foo/bar” is (1, “/”). Therefore, when querying for file

“/foo/bar/file”, it uses key (1, “/file”).

Relative-path indexing tries to balance locality and rename performance through a target zone

size. On one hand, full-path indexing is still maintained within a zone, so larger zone size gives

better locality. On the other hand, smaller zone size imposes a lower bound on rename cost, be-

cause no rename needs to mutate more key/value pairs than the zone size. Relative-path-indexing

with an infinite zone size is equivalent to full-path-indexing, while relative-path-indexing with a

zero zone size is the same as indexing with inode numbers.

Relative-path indexing keeps zones within the target zone size by zone splits and merges. In

particular, for each file or directory, BetrFS keeps a counter in its inode to indicate how many

key/value pairs will be affected if the file or directory is renamed. When the counter of a direc-

tory or file becomes too big, relative-path indexing moves it to its own zone with a zone split,

updating all affected keys with the new zone ID and relative-paths. When the counter of a zone

root becomes too small (1/4 of the maximum size), relative-path indexing merges it to the parent

zone.

The implementation of relative-path-indexed BetrFS, BetrFS 0.2, adopts a 512KiB default

zone size. This default zone size is small enough that renames on BetrFS 0.2 are almost as fast as
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Figure 3.6: Throughput of renaming a file of different sizes (higher is better). The performance
of relative-path-indexed BetrFS 0.3 doesn’t degrade when the file being renamed becomes larger.

on inode-based file systems. At the same time, the default zone size is large enough that directory

traversals are almost as fast as BetrFS 0.1.

Figure 3.6 shows the results of running the file rename benchmark on BetrFS 0.3 (BetrFS 0.3

is BetrFS 0.2 with some bug fixes). The benchmark renames a file of different sizes 100 times,

each followed by an fsync of the parent directory. We run the benchmark on BetrFS 0.3 twice,

one on BetrFS 0.3 (with the default zone size), the other on full-path-indexed BetrFS 0.3, that

is, BetrFS 0.3 with an infinite zone size. As shown in the graph, before reaching the target zone

size, 512KiB, the performance of relative-path-indexed BetrFS 0.3 is similar to full-path-indexed

BetrFS 0.3. However, when the file size reaches the target zone size, the file forms its own zone

and file renames become pointer swings. Therefore, after the target zone size, the performance

of file renames in relative-path-indexed BetrFS 0.3 doesn’t degrade when the file size becomes

larger.
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File system grep (sec)
ext4 37.795± 1.145
Btrfs 9.265± 0.139
XFS 48.130± 0.206
ZFS 463.184± 33.878
NILFS2 8.318± 0.107
BetrFS 0.3 5.070± 0.078
full-path-indexed BetrFS 0.3 4.022± 0.055

Table 3.2: Time to perform recursive grep of the Linux source directory (lower is better). The
performance of relative-path-indexed BetrFS 0.3 is still better than conventional file systems.

Table 3.2 shows the performance of directory traversals on different file systems. The bench-

mark measures the time to grep the Linux 3.11.10 source directory. Relative-path-indexed

BetrFS 0.3 is slightly slower than full-path-indexed BetrFS 0.3, but still faster than other file

systems.

However, relative-path indexing imposes zone maintenance costs on other file system op-

erations. When a file system operation happens to trigger a zone split or merge, in addition to

the costs of the operation itself, relative-path indexing charges the zone split or merge to that

operation. For instance, Figure 3.7 shows the results of running Tokubench, which creates 3 mil-

lion small files in a balanced tree structure, on BetrFS 0.3. On the graph, two-thirds of the way

through the TokuBench benchmark, BetrFS 0.3 with the default zone size shows a sudden, pre-

cipitous drop in cumulative throughput for small file creation, because the file system performs a

huge amount of zone splits. At that moment, all benchmarking directories are one file less than

the target zone size. Therefore, creating one file in a directory results in a zone split, updating all

key/value pairs under the directory. On the contrary, BetrFS 0.3 with an infinite zone size has a

smooth curve throughout the benchmark because no zone split happens with a infinite zone size.

Furthermore, relative-path indexing has bad worst-case performance. It is possible to con-

struct arrangements of nested directories that will each reside in their own zone. Reading a file

in the deepest directory will require reading one zone per directory (each with its own I/O), es-

sentially making the file system inode-based. Such a pathological worst case is not possible with
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Figure 3.7: Cumulative file creation throughput during the Tokubench benchmark (higher is
better). Compared to full-path-indexed BetrFS 0.3, relative-path-indexed BetrFS 0.3 has a sudden
performance drop because of zone splits.

full-path indexing in a Bε-tree, and an important design goal for BetrFS is keeping a reasonable

bound on the worst cases.

Finally, relative-path indexing breaks the clean mapping of directory subtrees onto contiguous

ranges of the key space, preventing us from using range-messages to implement bulk operations

on entire directory. For example, with full-path indexing, we can use range-delete messages not

only to delete files, but an entire directory. We could also use range messages to perform a variety

of other operations on the whole directory, such as recursive chmod, chown and timestamp

updates. And, as we will eventually see with the range-clone operations, we can clone the whole

directory with one operation.

3.4 Implementation

This section discusses implementation details of ft-index.
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3.4.1 Synchronization

Ft-index keeps in-memory copies of nodes in the cache table to reduce the number of I/Os

each operation requires. If an in-memory node is mutated by Bε-tree operations, ft-index marks

the node dirty. A dirty node should be written to the disk so that the on-disk version of the node

is up to date.

To synchronize operations on the Bε-tree, ft-index maintains a readers-writer lock for each Bε-

tree node. In ft-index, a query grabs the read locks of all nodes along the root-to-leaf path, while a

write operation grabs the write lock of the root node. A node split or merge grabs the write locks

of the parents and children involved in the rebalancing process. Similarly, the flushing process

write-locks the parent and the child.

3.4.2 The message buffer

Ft-index stores messages in a non-leaf node in multiple buffers, called partitions, rather than

keeping them in a single large buffer. A non-leaf node in ft-index with n children has n partitions,

each corresponds to a child of the node, and each partition stores messages in a list, sorted by the

logical timestamps. When a message is injected or flushed to a non-leaf node, it is placed at the

tail of the list in the partition that corresponds to the child the message will be flushed to later.

Such a design makes implementation simple. Ft-index keeps bookkeeping information for

each partition and can quickly figure out which child can receive the most messages in the flush-

ing process. Also, because messages are sorted in the timestamp order, the flushing process can

simply iterate the list in the parent partition. Moreover, a query doesn’t need to fetch the whole

non-leaf node, because only one partition can contain messages with the query key. Therefore,

the amount of I/Os a query needs to perform is reduced.

A node split also needs to split the parent partition into two new partitions, each for one child

generated by the node split. However, splitting a partition with messages is difficult because mes-

sages are sorted by the timestamp order, instead of the key order. Therefore, before splitting the

child, the node split flushes all messages in the parent partition to the child, emptying the parent
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partition. Because a node split holds the write locks of the parent and the child, no message can

be injected into the parent partition before the node split completes. And flushing messages in

a node split doesn’t incur additional I/Os since the node split fetches and dirties the parent and

the child anyway. Similarly, a node merge also flushes the parent partitions to the children being

merged.

3.4.3 Transactions

Ft-index performs multiple operations atomically in transactions. To prevent transactions

from touching the same key, ft-index maintains locks for key ranges in an interval tree. Before

querying a key, the operation should read-lock the specific key range so that no other transaction

can modify keys in the key range. Likewise, before modifying a key, the operation should write-

lock the specific key range. The key locks are released only when the transaction commits or

aborts. When a transaction fails to lock a key range for its operation, it should abort.

Transaction commits or aborts are implemented with transaction-commit or transaction-abort

messages. When a transaction commits or aborts, it injects one transaction-commit or transaction-

abort message for each operation it performs. For example, consider an insert for key k in a trans-

action. During the transaction, the insert injects an PUT message with key k to the Bε-tree. When

the transaction commits, the transaction injects a transaction-commit message with key k for the

insert, finalizing the insert. If the transaction aborts, the transaction injects a transaction-abort

message with key k for the insert, invalidating the insert. Queries need to ignore uncommitted or

aborted messages.

3.4.4 Queries

The textbook way of implementing queries on Bε-trees is to traverse the root-to-leaf path,

collecting related messages in non-leaf nodes and related key/value pairs in the leaf node, and

figure out the results. However, when we have transactions, upsert messages and range messages,

writing query code to distinguish different scenarios is difficult, especially for range queries.
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Therefore, ft-index implements queries in a different way. Specifically, a query traverses the

root-to-leaf path, lock all nodes along the path. Then, the query applies messages in non-leaf

nodes to the leaf node in the reverse order, i.e., from the parent of the leaf node to the root node.

With pending messages applied to the leaf node, the query can figure out its result by searching

the leaf node. Note this doesn’t dirty the leaf node, therefore, the asymptotic I/O costs of Bε-trees

are maintained.

3.4.5 Recovery

Ft-index ensures crash consistency by keeping a redo log of pending messages and applying

messages to BetrFS nodes with copy-on-write. At periodic intervals (60 seconds in BetrFS),

ft-index checkpoints its lifted Bε-trees by writing all dirty nodes to the disk. Then, ft-index can

garbage collection the space used by the redo log, which stores operations after the previous

checkpoint. Application can ensure all changes are persistent on the disk by force a log flush.

When a machine fails, after rebooting, ft-index simply replays the redo log on the lifted Bε-trees

at the last checkpoint.

3.5 Conclusion

BetrFS is a general file system designed for all operations, with a particular focus on random

writes and locality. The underlying data structure, Bε-trees, performs random writes much faster

than B-trees by cascading writes in batches. The full-path indexing schema of BetrFS 0.1 ensures

good locality. However, the preliminary implementation of namespace operations in BetrFS 0.1 is

slow because they need to iterate all affected keys. The relative-path indexing schema of BetrFS

0.2 enables fast renames by bounding the maximum number of affected in a rename. However,

it imposes zone maintenance costs on other file system operations. Also, it breaks the full-path

indexing, preventing us from implementing other efficient namespace operations that are difficult

on other file systems.
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CHAPTER 4: RANGE-RENAME

This chapter describes the range-rename operation [52, 53] on Bε-trees. Full-path-indexed

BetrFS can implement a file system rename by invoking the range-rename operation on the Bε-

tree that updates all related key in the rename. For example, renaming “/foo” to “/bar” invokes a

range-rename operation that updates all keys with prefix “/foo” to have prefix “/bar”. The goal of

this design is to get good locality from full-path indexing while having good rename performance

through an efficient range-rename implementation.

Section 4.1 describes the range-rename interface and shows how BetrFS can implement file

system renames by calling range-rename operations. Then, Section 4.2 discusses how to imple-

ment the range-rename operation in an I/O-efficient way on Bε-trees. In particular, the range-

rename operation introduces two key techniques, tree surgery (Section 4.2.1) and key lifting

(Section 4.2.2). Finally, Section 4.3 explains implementation details of the range-rename opera-

tion in ft-index and BetrFS.

4.1 The range-rename interface

Range-rename is a new key/value store operation defined as range-rename(src prefix, dst prefix).

The range-rename operation takes two prefixes, src prefix and dst prefix, as arguments and up-

dates source and destination key/value pairs (a source/destination key/value pair has the prefix

src prefix/dst prefix in its key). Range-rename(src prefix, dst prefix) does three things atomically:

• the range-rename operation deletes all destination key/value pairs from the key/value store

• then, for each source key/value pair (k, v) in the key/value store, the range-rename opera-

tion creates a key/value pair (k′, v) in the key/value store, where k is the concatenation of

src prefix and some suffix s and k′ is the concatenation of dst prefix and the same suffix s;
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• at last, the range-rename operation deletes all source key/value pairs from the key/value

store.

In other words, the range-rename deletes all destination key/value pairs and updates all source

key/value pairs, changing the key prefix from src prefix to dst prefix.

To see how range-rename accomplishes file system renames in full-path-indexed BetrFS,

consider renaming file “/foo” to “/bar”. In meta db, BetrFS needs to insert the destination key

“/bar” (this insert overwrites the old value of “/bar”, if it exists) and delete the source key “/foo”,

resulting in two operations on the Bε-tree. On the other hand, in data db, BetrFS needs to

delete all data keys of “/bar” (POSIX allows file renames to overwrite the destination file) and

update all data keys of “/foo” to be data keys of “/bar”. The whole work in data db can be done

by calling range-rename(“/foo”,“/bar”) (a data key is the concatenation of the full-path and an

8-byte block number).

Similarly, consider renaming directory “/baz” to “/qux”. In meta db, BetrFS also needs to

insert the destination key “/qux” and delete the source key “/baz” with two operations on the

Bε-tree. Additionally, BetrFS needs to update all keys with prefix “/baz/” to have prefix “/qux/”

(POSIX only allows directory renames to overwrite an empty directory, which means there can-

not be any key with prefix “/qux/”), which is handled in range-rename(“/baz/”, “/qux/”). Like-

wise, in data db, BetrFS needs to update all keys with prefix “/baz/” to have prefix “/qux/”,

which is done by range-rename(“/baz/”, “/qux/”) (directory doesn’t have any data key).

Also, BetrFS puts all operations in a file system rename in a transaction so that all changes

are committed atomically.

Table 4.1 summarizes how file system renames can be done with range-rename operations

in full-path-index BetrFS. Briefly speaking, full-path-indexed BetrFS can finish a file rename by

invoking three operations on Bε-trees: an insert, a delete and a range-rename operation. And a

directory rename can be done with an insert, a delete and two range-rename operations.

In fact, previous full-path-indexed BetrFS implemented the range-rename operation with

existing Bε-tree operations, del, get and put. However, this range-rename implementation
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Type of Rename Key/Value Store Operations
File Rename transaction begin();

meta db→put(dst);
meta db→del(src);
data db→range-rename(src, dst);
transaction end();

Directory Rename transaction begin();
meta db→put(dst);
meta db→del(src);
meta db→range-rename(src/, dst/ );
data db→range-rename(src/, dst/ );
transaction end();

Table 4.1: Full-path-indexed BetrFS renames src to dst by invoking range-rename and other
operations on Bε-trees in a transaction.

updates all source and destination key/value pairs. The I/O-cost of this range-rename implemen-

tation increases when the number of source and destination key/value pairs grows. Efficient file

system renames in full-path-indexed BetrFS require an efficient range-rename implementation,

that is, a range-rename implementation that completes in O(tree height) I/Os.

4.2 The range-rename operation

This section describes the range-rename implementation on the Bε-tree that completes in

O(tree height) I/Os. The efficient range-rename operation requires lexicographic key order so

that keys with the same prefix are contiguous in the key space. With contiguous keys, the range-

rename operation can create an isolated subtree, which contains all keys of a certain prefix in

the Bε-tree, through tree surgery. Then, the range-rename operation moves the isolated subtree

to another location in the Bε-tree. The prefixes of keys in the subtree are updated automatically

through key lifting, which transforms Bε-trees into lifted Bε-trees.

Section 4.2.1 describes tree surgery, which splits nodes in the Bε-tree to create an isolated

subtree of a prefix. Tree surgery also flushes messages in the Bε-tree to push all related messages

into the isolated subtree. Then, Section 4.2.2 introduces key lifting, which transforms the Bε-trees

into lifted Bε-trees that update prefixes of keys in a subtree automatically when the subtree is
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moved to another location. At last, Section 4.2.3 combines the two techniques and shows how to

implement the efficient range-rename operation on lifted Bε-trees.

4.2.1 Tree surgery

The goal of tree surgery is to slice out an isolated subtree of a certain prefix p in the Bε-tree.

In the Bε-tree, each node covers a certain key range, bounded by the key range and pivots of its

parent. For a certain key range (pmin, pmax) (pmin and pmax are the minimum and maximum keys

with prefix p, respectively), there are three types of nodes in the Bε-tree: nodes whose key ranges

are completely out of the key range (exterior nodes), nodes whose key ranges are completely in

the key range (interior nodes), and nodes whose key ranges partly overlap with the key range

(fringe nodes).

In the Bε-tree shown in Figure 4.1a, consider prefix “/R/” with key range (“/R/min”, “/R/min”),

Node B, D and E are exterior nodes, Node G is an interior node, and the other nodes are fringe

nodes.

Identifying fringe nodes. The first step of tree surgery is to identify all fringe nodes. Because

the key range of a fringe node partly overlaps with key range (pmin, pmax), a fringe node must

include either pmin or pmax in its key range. Therefore, tree surgery can perform two root-to-leaf

traversals with two keys, pmin and pmax, to identify all fringe nodes. For example, in Figure 4.1a,

we walk down the Bε-tree with “/R/min” and “/R/max” to identify all fringe nodes of prefix “/R/”,

Node A, C, F and H .

An important fringe node for tree surgery is the LCA (Lowest Common Ancestor) of the

two traversing keys, that is, the lowest (the most distant from the root node) Bε-tree node whose

key range includes both keys. For example, in Figure 4.1a, Node C is the LCA of prefix “/R/”.

The subtree rooted at the LCA is the lowest subtree in the Bε-tree that covers the whole range

(pmin, pmax). The goal of tree surgery is to generate an isolated subtree rooted at the LCA that

contains all keys with prefix p. Therefore, before reaching the LCA, the traversals also flush

messages from the parent to the child so that there is no pending message above the LCA.
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(a) The Bε-tree before tree surgery.
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Figure 4.1: Tree surgery slices out an isolated subtree of prefix “/R/”.
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Slicing. The goal of slicing is to separate unrelated keys in the fringe nodes from keys in the key

range (thus with prefix p). With all related messages and key/value pairs in the subtree rooted

at the LCA, tree surgery starts slicing out the isolated subtree by splitting fringe nodes from the

bottom up. Slicing uses the same code as standard Bε-tree node splits, but, rather than picking a

key in the middle of the node, divides the node at one of the slicing keys, pmin or pmax.

Figure 4.1b shows the Bε-tree after the bottom-up slicing splits leaf nodes. Tree surgery splits

Node F with key “/R/min”, generating an interior node, Node F ′, and an exterior node, Node F ′′.

Likewise, tree surgery splits Node H into an interior node, Node H ′, and an exterior node, Node

H ′, with key “/R/max”. Note, the message DEL (“/R/o”) has been flushed from Node A to Node

C before slicing.

At last, in Figure 4.1c, tree surgery splits the LCA, Node C, into Node C ′, C ′′ and C ′′′ with

both keys, “/R/min” and “/R/max”. The subtree rooted at Node C ′ is the isolated subtree that

contains and only contains all keys with the prefix “/R/”.

A special case in tree surgery is when the LCA is the root node of the Bε-tree. In such a sce-

nario, splitting the root node divides the tree into a forest. To avoid such case, we create a new

root node as the parent of the old root node before slicing.

4.2.2 Key lifting

After tree surgery, one can move the isolated subtree to another location in the Bε-tree. How-

ever, the keys in the subtree will not be coherent with the new location in the tree. Thus, as a part

of the range-rename operation, the prefixes of keys in this subtree need to be updated. A naive

approach will traverse the subtree and update all keys. However, this process costs a lot of I/Os,

rewriting every node in the source subtree. The particularly concerning case is when the subtree

is very large.

Key lifting eliminates the need to update prefixes of keys in the subtree by transforming Bε-

trees into lifted Bε-trees. The idea of key lifting comes from the observation that with lexico-

graphic key order, all keys bounded in the key range of two pivots must have the same prefix that
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(a) A Bε-tree without key lifting.
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PUT (/R/m/3)
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(b) The lifted Bε-tree with the same keys. Lifted prefixes are marked as strike-through in keys.
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/B/m/0 /B/m/9
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PUT (/B/m/2)

lift(m/)

lift(/B/)

(c) When the subtree rooted at Node B is bounded by two different pivots, all keys in the subtree change
their prefixes.

Figure 4.2: Key lifting lifts prefixes from the subtree. Keys in the same subtree are viewed with
different prefixes when the pivots in its parent change.
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is the LCP (Longest Common Prefix) of the pivots. Therefore, this LCP is redundant information

in the subtree of the two pivots and can be removed from the subtree. In particular, the subtree

generated by tree surgery is bounded by two pivots, pmin and pmax and with lexicographic key

order, all keys in the subtree must have prefix p.

In lifted Bε-trees, a parent-to-child pointer lifts the LCP of the two pivots from the subtree

rooted at the child. Child nodes only store differing key suffixes. This approach encodes the

complete key in the path taken to reach a given node and one can then modify the prefix for a

lifted subtree by only modifying the parent node, eliminating the need to change key and pivot

prefixes in all nodes of a subtree.

Figure 4.2 shows an example of key lifting. Figure 4.2a and Figure 4.2b show the same Bε-

tree with and without key lifting, respectively. In the interest of clarity, irrelevant nodes are

omitted from the figure. In Figure 4.2b, the subtree rooted at Node B is bounded by two piv-

ots, “/R/min” and “/R/max”, in Node A. Therefore, all keys in the subtree must have prefix “/R/”

and key lifting removes this prefix from the subtree (we show the lifted prefix on the parent-to-

child pointer and mark the lifted prefix as strike-through in the subtree). Because keys in Node

B don’t have prefix “/R/” physically in the node, we show transparent keys (“/R/” keys are red

in previous examples) in the node. Likewise, Node D is bounded by “m/a” and “m/z” in Node

B (note “/R/” is already lifted from the sutbree rooted at Node B), so key lifting removes prefix

“m/” from Node D. In Figure 4.2c, the same subtree, which contains exactly the same key/value

pairs, is moved to a different location, bounded by two new pivots, “/B/min” and “/B/max”, in

Node A′. Because the prefix lifted through the parent-to-child pointer in Node A′ becomes “/B/”,

all keys in the subtree have prefix “/B/” instead. For examples in the rest of the dissertation, we

will not show lifted prefixes in keys.

A query on a lifted Bε-tree needs to track lifted prefixes during the root-to-leaf traversal and

reconstruct the full key by concatenating these prefixes and the suffix in the leaf. For example,

consider a query for key “/R/m/1” in Figure 4.2b. When following the parent-to-child pointer

from Node A to Node B, the query notices the lifted prefix “/R/”. Therefore, the query searches
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for key “m/1” in Node B and follows the parent-to-child pointer to Node D. Again, the query

removes the lifted prefix, “m/”, from the search key. After fetching the key/value pair of key “1”

in Node D, the query prepends prefixes lifted long the root-to-leaf path and recovers the full key

“/R/m/1”. Note the recovering process is not necessary for point queries because they know their

keys beforehand, but range queries must reconstruct the resulting keys.

Also, a lifted Bε-tree must remove the lifted prefix from a message before flushing the mes-

sage from parent to child. For example, in Figure 4.2b, when flushing PUT (“/R/m/2”,...) from

Node A to Node B, the lifted Bε-tree remove the prefix “/R/” from the message and injects a

message PUT (“m/2”,...) into the buffer of Node B.

A node split in a lifted Bε-tree adds a pivot to the parent, which may change the lifted prefix

associated with the parent-to-child pointer, so it may need to update keys in the resulting children.

Similarly, a node merge needs to re-lift keys in the resulting node.

However, the extra work described above for Bε-tree operations can be resolved in memory.

Therefore, key lifting doesn’t incur additional I/Os for other Bε-tree operations.

Compared to zoning, in which the file system removes certain prefixes from keys, key lifting

is completely transparent to BetrFS. BetrFS still stores key/value pairs with full-path keys, just

with a slightly different data structure.

4.2.3 The range-rename operation on lifted Bε-trees

On a lifted Bε-tree, range-rename(src prefix, dst prefix) can be done with two steps:

Tree Surgery. The range-rename operation first slices out two isolated subtrees in the lifted

Bε-tree simultaneously, one of src prefix and the other of dst prefix.

Transplant. Then, the range-rename operation swaps these two subtrees and injects a range-

delete message for source keys. Alternatively, one can garbage collect the destination subtree

and merge nodes at the source. However, garbage collecting the destination subtree requires
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(a) The Bε-tree before the range-rename operation.
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(b) The range-rename operations performs tree surgery to slice out the source and destination subtrees.
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(c) The range-rename operation swaps the subtrees and injects a range-delete message for source keys.

Figure 4.3: An example of range-rename(“/R/”, “/B/”) on the Bε-tree.
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traversing the subtree. Instead, we leverage the existing range-delete message to reclaim the

space of the destination subtree.

Similar to a B-tree, a Bε-tree should keep all leaf nodes at the same distance from the root

node. Otherwise, the Bε-tree becomes unbalanced, breaking the asymptotic I/O cost analysis. In

order to keep all leaf nodes at the same distance after transplanting, the range-rename operation

requires the source and destination subtrees to be at the same height. Therefore, in tree surgery,

for the subtree with a lower LCA, the range-rename operation keeps slicing its ancestors by

adding empty nodes with only one child.

Figure 4.3 shows an example of range-rename(“/R/”, “/B/”) on the Bε-tree. Figure 4.3a shows

the lifted Bε-tree before the range-rename operation. In Figure 4.3b, the range-rename operation

performs tree surgery to slice out the source subtree, rooted at Node C ′, and the destination sub-

tree, rooted at Node B′. Though the destination LCA in Figure 4.3a is Node D, tree surgery still

splits Node B to keep the source and destination subtrees at the same height. Also, prefix “/R/” is

lifted from the source subtree and prefix “/B/” is lifted from the destination subtree. Figure 4.3c

shows the lifted Bε-tree after swapping the source and destination subtrees, with a range-delete

message for “/R/” keys in Node A. At this point, no key with prefix “/R/” exists in the lifted Bε-

tree because of the range-delete message, and all keys with prefix “/R/” in Figure 4.3a now have

prefix “/B/”.

Healing. Tree surgery may create undersized Bε-tree nodes, i.e., non-leaf nodes without enough

children, or leaf nodes without enough key/value pairs. In a normal node split, the Bε-tree evenly

splits a node that is oversized (a non-leaf node with too many children or a leaf node with too

many key/value pairs), so the resulting two nodes will not be undersized. However, tree surgery

splits normal nodes with the minimum and maximum keys of a certain prefix, which can split

the node unevenly. Moreover, to meet the tree height invariant, tree surgery may create “stalks”,

non-leaf nodes with only one child, so that the source and destination subtrees are at the same

height.
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The range-rename operation handles this situation by triggering a rebalancing within the tree.

Specifically, if a node has only one child, the slicing process will merge the node after completing

the work of the range-rename operation. After the transplant completes, there may be a number

of Bε-tree nodes in memory at the fringe around the source and destination that have fewer chil-

dren than desired. The healing process merges these smaller nodes back together, using the same

approach as a typical Bε-tree node merge.

Complexity. During tree surgery, at most 4 root-to-leaf paths (2 for source and 2 for destination)

are traversed, dirtying all nodes along the paths. These nodes will need to be read, if not in cache,

and written back to disk as part of the checkpointing process. Therefore, the number of I/Os

required in tree surgery is at most proportional to the height of the Bε-tree, which is logarithmic

in the size of the tree.

The healing process only merges nodes that are split during the tree surgery process. There-

fore, the number of I/Os required in the healing process is also O(logBN/ε) (tree height).

There is also lifting work along all nodes that are sliced in tree surgery or merged in healing.

However, the number of such nodes is at most proportional to the height of the tree. Thus, the

number of nodes that must be lifted during a range-rename is no more than the nodes that must

be sliced during tree surgery, and proportional to the height of the tree (O(logBN/ε)).

In summary, the I/O cost of a range-rename operation is O(logBN/ε). Therefore, the cost

of a range-rename operation is bounded by the Bε-tree height, which is determined by the total

size of key/value pairs in the Bε-tree. No matter how many key/value pairs are involved in the

range-rename operation, the cost of a range-rename operation doesn’t change logarithmically.

4.3 Implementation

This section discusses implementation details of the range-rename operation.
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4.3.1 Synchronization

The range-rename operation synchronizes with other Bε-tree operations using the readers-

writer locks of Bε-tree nodes (described in Section 3.4.1). Starting from the root node, the range-

rename operation write-locks Bε-tree nodes hand-over-hand until reaching the LCAs. To avoid

newer messages being flushed to the subtrees rooted at the LCAs, the write locks of the LCAs

and the parents of the LCAs are held until the range-rename operation completes. Then, the

range-rename operation write-locks all fringe nodes below the LCAs and releases the write locks

after the bottom-up node splits. After transplanting, the range-rename operation finally releases

the write locks of the LCAs and the parents of the LCAs.

4.3.2 Re-lifting a non-leaf node

Re-lifting a node requires updating prefixes of all keys in the node. Because ft-index has a

large node size (4 MiB), re-lifting a node can cause a large amount of computation.

However, as described in Section 3.4.2, ft-index stores messages in a non-leaf node in parti-

tions, each corresponding to a child. Therefore, we can lift the prefixes of keys in a partition by

the LCP of two pivots bounding it in the non-leaf node. In other words, keys in the partition are

not only lifted by pivots in ancestors but also the two pivots in the node. For example, consider a

non-leaf node that contains keys in (“/R/a/1”, “R/b”), key lifting lifts prefix “/R/” from all keys in

the node. Assume there are two adjacent pivots “a/2” and “a/3” in the node (prefix “/R/” is lifted).

There is a partition in the node storing all keys in (“/R/a/2”, “/R/a/3”), with prefix “/R/a/” lifted.

To see how it helps, consider a partition bounded by two pivots in the non-leaf node. All keys

in the partition are lifted by the total lifted prefix in ancestors, p, and the LCP of the two pivots,

q. Therefore, the total amount of prefix lifted from keys in the partition is (p + q). Now, assume

re-lifting further lifts some prefix s from the node, making the total lifted prefix by ancestors (p+s)

and the LCP of the two pivots (q − s). The total amount of prefix lifted for keys in the partition

remains (p + q). Similarly, assume re-lifting reduces the lifted prefix from ancestors to (p − s′).

Now the LCP of the two pivots become (q + s′), and the total amount of prefix lifted for keys in
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the partition is still (p + q). In the previous example, assume we split the node with a new pivot

“/R/a/9”. The resulting node that contains keys in (“/R/a/1”, “/R/a/9”) has “/R/a/” lifted. The two

pivots bounding the partition become “2” and “3”. However, for all keys in the partition, the total

lifted prefix is still “/R/a/”.

Therefore, re-lifting a non-leaf node only needs to update pivots. It is not necessary to touch

any messages in partitions. However, re-lifting a leaf node still requires updating all keys.

4.3.3 Splitting fringe nodes

As discussed in Section 3.4.2, because partitions store messages in the timestamp order, a

node split needs to empty the parent partition through flushing before splitting the child. Since

tree surgery splits fringe nodes from bottom up, all partitions involved must be empty. To this

end, in the process that identifies all fringe nodes, after flushing all related messages to the LCA,

tree surgery keeps flushing messages along the two root-to-leaf paths that contain fringe nodes.

Because tree surgery holds the write lock of the parent of the LCA, no message will be injected

into the partitions involved in tree surgery.

4.3.4 Transactions

The range-rename operation fits into the transaction framework described in Section 3.4.3.

When invoked, the range-rename operation first write-locks the source and destination key

range. However, the range-rename operation doesn’t generate messages that can be commit-

ted or aborted with transaction-commit or transaction-abort message. Therefore, we perform

the whole work of the range-rename operation when the transaction commits. If the transaction

aborts, nothing happens to the lifted Bε-tree.

4.3.5 Recovery

After a crash, the range-rename operation can be recovered if the log entry is written to the

redo log of ft-index (Section 3.4.5). A range-rename operation is logically applied as soon as
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the range-rename and its corresponding transaction commit entries are inserted into the redo

log. The range-rename operation is durable as soon as the redo log entry is written to disk. If

the system crashes after a range-rename operation is logged, the recovery will see a prefix of the

message history that includes the range-rename and its transaction commit entries, and performs

the corresponding range-rename operation on the lifted Bε-trees of the last checkpoint.

4.3.6 Latency

The range-rename operation returns to the user once the range-rename and its transaction

commit entry is in the log and the root node of the Bε-tree is write-locked. No read or write op-

eration to the Bε-tree can start before the range-rename operation releases the root lock. The rest

of the range-rename work is handed off to background threads that perform slicing, transplanting

and healing.

4.3.7 BetrFS key order

There are 2 constraints on the key order of full-path-index BetrFS with the range-rename

operation:

• the readdir constraint. Because BetrFS uses range-queries to fetch all child entries for

readdirs, all files and directories immediately under one directory must be contiguous in

key space.

• the lexicographic constraint. Key lifting only works properly with lexicographic key order.

In order to use the range-rename operation, BetrFS must have lexicographic key order.

Simple memcmp key order fails the readdir constraint. Consider entries “/bar/dir”, “/bar/dir/-

file” and “/bar/file” in the that order, a readdir for directory “/bar” needs to skip “/bar/dir/file” in

its range queries. In the worst case, a readdir might need to skip almost all keys in the key/value

store.
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The old BetrFS key order sorts full-path keys first by the number of slashes and then by a

memcmp. This key order satisfies the readdir constraint but fails the lexicographic constraint, so

BetrFS needs a new key order for range-rename.

In order to use the range-rename operation, BetrFS tweaks its full-path keys by adding one ad-

ditional slash alongside the last slash. Now, “/foo” and “/foo/bar” become “//foo” and “/foo//bar”,

respectively (for correct ordering, ‘\x01’ is used as slashes). With the new full-path keys, BetrFS

can use memcmp as the key comparison function while satisfying the readdir constraint.

4.4 Conclusion

This chapter presents the new range-rename operation on Bε-trees. File system renames

in full-path-indexed BetrFS can be done with an insert, a delete and one or two range-rename

operations. And on lifted Bε-trees, a range-rename operation can be done efficiently with tree

surgery.

BetrFS with range-rename demonstrates the possibility of consolidating efficient renames into

full-path-indexed file systems, showing the possibility of building file systems that are good at

locality and namespace operations. Moreover, full-path indexing ensures all metadata or data in a

directory are contiguous in the key space, creating more opportunity for namespace operations.

Key lifting and tree surgery can be applied to other tree-style data structures. For example,

one can build a full-path-indexed file system on B-trees with the same range-rename design.

However, the generality means the design doesn’t fully utilize the write-optimization of Bε-trees.

Also, the technique is not limited to the range-rename operation that updates keys with certain

prefix. For a key/value store operation that updates a lot of keys, one can use a similar technique

as long as the key/value store can group all related keys in a contiguous key range and the bound-

ing keys of the key range can “lift” the parts of related keys being updated.
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CHAPTER 5: RANGE-CLONE

This chapter describes how to implement another type of namespace operations, the file or

directory clone, in a full-path-indexed file system. File or directory clones are useful in many

cases. For example, many people build versioning file systems [28, 38, 41] which constantly

make read-only clones of files and directories. Therefore, a user can get an old version of a file or

directory after committing unwanted changes to the file or directory. Also, container applications

usually clone the image file before booting the container.

Similar to file or directory renames, we implement file or directory clones with the range-

clone operation on Bε-trees. Unlike a range-rename operation, which completes all its work at

once, a range-clone operation injects a new type of message, the GOTO message, into the root

node of the Bε-tree. The Bε-tree then flushes GOTO messages with other messages in batches,

gradually finishing the range-clone work. Therefore, the range-clone operation fits into the write-

optimized framework of Bε-trees, and the I/O cost of a range-clone operation is amortized with

other operations.

Section 5.1 describes the range-clone interface and how to implement file or directory re-

names and clones in full-path-indexed BetrFS by calling the range-clone operation. Section 5.2

discusses how to implement the range-clone operation. In particular, we first describe an imple-

mentation of the range-clone operation with techniques introduced by the range-rename opera-

tion, finishing all work on the critical path. Then, we introduce the GOTO message that delays

most of the range-clone work to the flushing process in the data structure. Finally, Section 5.3

explains some implementation details in the range-clone operation.
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5.1 The range-clone interface

Range-clone is defined as range-clone(src prefix, dst prefix). Range-clone(src prefix, dst prefix)

does the following things atomically:

• the range-clone operation deletes all destination key/value pairs from the key/value store;

• then, for each source key/value pair (k, v) in the key/value store, the range-clone opera-

tion creates a key/value pair (k′, v) to the key/value store, where k is the concatenation of

src prefix and some suffix s and k′ is the concatenation of dst prefix and the same suffix s;

Therefore, range-clone(src prefix, dst prefix) is equivalent to range-rename(src prefix, dst prefix)

without deleting source key/value pairs.

Table 5.1 summarizes how BetrFS implements file or directory renames and clones by invok-

ing the range-clone operation. Because a range-clone operation is the same as a range-rename

operation without deleting the source key/value pairs, BetrFS can complete a range-rename op-

eration with a range-clone operation and a range-delete operation (described in Section 3.2) that

deletes all source key/value pairs. Therefore, BetrFS implements file or directory renames by re-

placing the range-rename operation in Table 4.1 with a range-clone operation and a range-delete

operation. And if BetrFS calls the range-clone operation without the range-delete operation, the

source key/value pairs of metadata and data stay in the key/value store. In such a scenario, the

file system completes file or directory clones if it doesn’t delete the metadata for the source file or

directory (in rename, this delete is not covered in the range-rename operation).

Also, BetrFS puts all operations in a file system rename in a transaction so that all changes

are committed atomically.

5.2 The range-clone operation

This section shows the implementation of the range-clone operation.

Section 5.2.1 shows all the changes needed if we perform all range-clone work on the critical

path. In particular, we show that the range-clone operation can be implemented by modifying the
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Type of File System Operation Key/Value Store Operations
File Rename transaction begin();

meta db→put(dst);
meta db→del(src);
data db→range-clone(src, dst);
data db→range-delete(src)
transaction end();

Directory Rename transaction begin();
meta db→put(dst);
meta db→del(src);
meta db→range-clone(src/, dst/ );
meta db→range-delete(src/ );
data db→range-clone(src/, dst/ );
data db→range-delete(src/ );
transaction end();

File Clone transaction begin();
meta db→put(dst);
data db→range-clone(src, dst);
transaction end();

Directory Clone transaction begin();
meta db→put(dst);
meta db→range-clone(src/, dst/ );
data db→range-clone(src/, dst/ );
transaction end();

Table 5.1: Full-path-indexed BetrFS renames or clones src to dst by invoking range-clone and
other operations on Bε-trees.

range-rename operation. This implementation shows all the work in the range-clone operation

and helps the understanding of the write-optimized implementation described in later sections.

Then, Section 5.2.2 introduces GOTO messages. The range-rename operation can return to the

application immediately after injecting a GOTO message into the root node, without slicing out

the subtrees. Finally, Section 5.2.3 shows how GOTO messages are flushed in the data structure,

gradually finishing the range-clone work.

5.2.1 Range-clone, on the critical path

The range-clone operation can be implemented in the Bε-tree by modifying the range-rename

operation. In particular, the range-rename operation swaps the two isolated subtree after slicing.
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(c) The range-clone operations shares the source subtree at both source and destination and garbage-
collects the destination subtree.

Figure 5.1: An example of range-clone(“/R/”, “/B/”) that completes all work in the critical path.
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Instead, a range-clone implementation can share the source subtree in both source and destina-

tion, and garbage collect the destination subtree.

Figure 5.1 shows an example of performing the work of range-clone(“/R/”, “/B/”) on the

lifted Bε-tree in Figure 5.1a. Figure 5.1b shows the lifted Bε-tree after tree surgery. Tree surgery

slices out the source and destination subtrees, after flushing pending messages to the LCAs. This

tree surgery is completely identical to that in the range-rename operation (Figure 4.3b). In Fig-

ure 5.1c, the lifted Bε-tree garbage collects the destination subtree, rooted at Node B′, and sets

the parent-to-child pointer between “/B/min” and “/B/max” (“/B/min” and “/B/max” are the mini-

mum and maximum keys with prefix “/B/”, respectively) to Node C ′, which is the root node of

the source subtree. In the interest of clarity, irrelevant nodes are omitted from the figure.

The subtree rooted at Node C ′ is now shared by two parent-to-child pointers, and queries

for both “/B/” and “/R/” keys will fetch messages and key/value pairs in that subtree. However,

because queries need to reconstruct the key by prepending lifted prefixes on the root-to-leaf path,

they get different keys following different parent-to-child pointers.

Sharing a subtree among multiple parent-to-child pointers transforms a lifted Bε-tree into a

lifted Bε-DAG (Directed Acyclic Graph) with some constraints. Because the Bε-DAG is gener-

ated by sharing subtrees in a Bε-tree, there is still one root node in the Bε-DAG, which can reach

all nodes in the Bε-DAG through parent-to-child pointers. And since the source and destination

subtrees generated by tree surgery are at the same height, the length of any root-to-leaf path in the

Bε-DAG is still logarithmic in the size of the graph.

The lifted Bε-DAG adds reference counts for Bε-tree nodes to track the sharing status. In

particular, ft-index has a node table that a maps node ID to the actual location of the node. We

store the reference count of each node in the node table alongside the mapping. Before flushing

to a node, the Bε-DAG must check the reference count of the node. A reference count greater

than 1 means the node is shared by multiple parent-to-child pointers. The lifted Bε-DAG must

break the sharing because other paths should not see the messages this flush is going to inject into

the node.
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In a lifted Bε-DAG, the root-to-leaf traversals of different queries may end up reaching the

same leaf node, fetching the same key/value pair. However, because key lifting requires queries

to reconstruct the full key by concatenating lifted prefixes, different queries treat the same key/-

value pairs with different prefixes. For example, in Figure 5.1c, queries for key “/R/n” and “/B/n”

follow the same root-to-leaf path and get the same key/value pair from the leaf node, Node G.

However, when walking down the tree from Node A to Node C, the query for key “/R/n” follows

the parent-to-child pointer that lifts prefix “/R/”. Therefore, it gets key “/R/n” after prepending

lifted prefixes along the root-to-leaf path. Similarly, the query for key “/B/n” gets a result with

key “/B/n”.

The lifted Bε-DAG must break the sharing of a node when flushing messages through one of

its parent-to-child pointer. Because these messages are injected into the tree after the range-clone

operation, they are not shared by all parent-to-child pointers. Thus, the node can no longer be

shared by multiple parents after flushing. However, before accumulating enough messages to

flush to the subtree, the subtree is shared by multiple parent-to-child pointers, which saves a lot of

space compared to the naive approach that clones the source subtree in the range-clone operation.

The lifted Bε-DAG breaks the sharing of a node using Copy-on-Write (CoW). For instance,

after the range-clone operation, one parent of the shared node might choose to flush its messages

to the node. At this moment, the lifted Bε-DAG creates a new node that is identical to the shared

node, sharing the content and all children of the node. The lifted Bε-DAG then sets the parent-to-

child pointer in the parent to the new node and performs the flush.

Figure 5.2 shows an example of the CoW process. In this example, we also show the refer-

ence count of a node alongside the node ID. In Figure 5.2a, Node A has two parent-to-child point-

ers to Node C. Therefore, the reference count of Node C is 2 and Node F , G and H have refer-

ence count 1. When Node A wants to flush messages with through the parent-to-child pointer

between “/B/min” and “/B/max”, the flushing process finds out that Node C is a shared node be-

cause its reference count is greater than 1. Therefore, it clones Node C to break the sharing. As

shown in Figure 5.2b, the Bε-DAG creates a new node, Node I , that is identical to Node C. Now,
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Node F (ref: 1)
a
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Node A (ref: 1)

/B/min /B/max /O/b /R/max /R/min

PUT (/B/b)

lift(/B/) lift(/R/)

(a) Node C is a shared by two parent-to-child pointers in Node A.

Node F (ref: 2)
a

Node G (ref: 2)

o
n

Node H (ref: 2)
t

Node I (ref: 1)
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DEL (o)
Node C (ref: 1)

m s

DEL (o)

Node A (ref: 1)

/B/min /B/max /O/b /R/max /R/min

PUT (/B/b)

lift(/B/) lift(/R/)

(b) Before Node A flushes “/B/” messages, it breaks the sharing by cloning Node C to Node I .

Figure 5.2: When a parent want to flush messages to a shared node, it breaks the sharing by
cloning the shared node.
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both Node C and I have reference count 1, while Node F , G, and H have reference count 2.

With the sharing broken, the Bε-DAG can flush message PUT (“/B/b”,...) from Node A to Node I

without affecting the other root-to-leaf path that includes Node C.

5.2.2 Range-clone with GOTO messages

Instead of completing all work on the critical path, range-clone can use a new type of mes-

sage, the GOTO message, that delays tree surgery in the lifted Bε-DAG.

This subsection describes the GOTO message and how the range-clone operation can return

to the user by injecting a GOTO message into the root node. The next subsection (Section 5.2.3)

shows how the Bε-tree flushes a GOTO message, completing all work in the range-clone opera-

tion.

The GOTO message. A GOTO message consists of 3 parts: a dst prefix, a src prefix, a node ID

(with its height in the Bε-DAG). Generally speaking, a GOTO message serves as an additional

parent-to-child pointer in the Bε-tree node with an xf (translate-and-filter) function. Rather than

following normal parent-to-child pointers in the node, a query whose search key falls in the key

range (dst prefix min, dst prefix max) must follow the GOTO message, that is, the next node the

query visits should be the node whose node ID is in the GOTO message. Also, the query should

update its search key by replacing prefix dst prefix with prefix src prefix. Later, the query needs

to reconstruct the result by replacing prefix src prefix with prefix dst prefix in the key. Therefore,

the GOTO message should filter out keys that are not in the key range (src prefix min, src prefix

max) in the subsequent search.

For example, in Figure 5.3c, consider a query for key “/B/a”. The query first visits the root

node, Node A, and finds a GOTO message, GOTO (“/B/”, “/R”, C). This query should follow

the GOTO message and visit Node C, instead of the normal parent-to-child pointer to Node B.

Additionally, the GOTO message acts as an xf function that translates the search key from “/B/a”

to “/R/a” and bounds the query result to (“/R/min”, “/R/max”). After fetching the key/value pair

with key “/R/a” in Node F , the query reconstructs the key by replacing prefix “/R/” with prefix
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(a) The Bε-tree before the range-clone operation.
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(b) The range-clone operation reaches the source LCA, Node C, flushing messages along the way.

Node F
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/Y/x
/R/t

Node E

O/a
G/c

Node D

/G/a
/B/a

Node B
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DEL (/G/c)
Node C

/R/m /R/s

PUT (/R/z)
DEL (/R/o)

Node A

/O/b

GOTO (/B/,/R/,C)

lift(/) lift(/) lift(/R/)

(c) The range-clone operation injects a GOTO message for destination (“/B/”) keys into the root node.

Figure 5.3: An example of completing range-clone(“/R/”, “/B/”) with a GOTO message.
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“/B/”. Therefore, the query returns the key/value pair with key “/B/a”. To see why the GOTO

message needs to bound the query result, consider a range query for a key that is greater than

“/B/z”. The GOTO message in Node A translates the search key to “/R/z”. However, searching

for a key greater than “/R/z” in the subtree rooted at Node C returns key “/Y/x”, which the query

cannot reconstruct by replacing prefix “/R/” with prefix “/B/”. In fact, the GOTO message is only

for results whose keys fall in the key range (“/B/min”, “/B/max”), therefore, any key that is not in

the key range (“/R/min”, “/R/max”) is invalid after following the GOTO message.

Because a GOTO message redirects queries whose search keys have a certain prefix, it also

acts as a range-delete message that invalidates all old messages and key/value pairs following

other pointers (normal parent-to-child pointers and older GOTO messages). Thus, if we set the

node ID in a GOTO message to a special value (for example, 0), the GOTO message acts as a

range-delete message. Therefore, we can use GOTO messages to implement range-delete.

Though a GOTO message acts as an additional parent-to-child pointer in the node, the child of

the GOTO message doesn’t need to be at the same height as normal children of the node. There-

fore, the GOTO message let us share a subtree between two parents at different heights.

Also, the xf function associated with the GOTO message means the target subtree can have a

larger key range than specified in the GOTO message. Thus, the range-clone operation can lazily

slice out the subtrees, amortizing the slicing cost with other operations.

Range-clone with GOTO messages. Range-clone(src prefix, dst prefix) is implemented with

GOTO messages through the following steps:

• the range-clone operation does a root-to-leaf traversal with src prefix until reaching the

source LCA, the lowest node that covers the whole key range (src prefix min, src prefix

max). During the traversal, the range-clone operation also flushes messages from parent to

child. At this point, all messages with keys in the cloned key range are in the subtree rooted

at the source LCA.
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• the range-clone message then injects a GOTO message into the root node of the lifted Bε-

DAG with the source LCA as the node ID in the GOTO message, increasing the reference

count of the source LCA by 1.

Briefly speaking, on the critical path, the range-clone operation flushes messages until the source

LCA, increments the reference count of the source LCA, and injects a GOTO message into the

root node. Note, this range-clone operation doesn’t do tree surgery or pointer swings on the

critical path.

Figure 5.3 shows an example of range-clone(“/R/”, “/B/”) that generates a GOTO message.

Figure 5.3a shows the Bε-tree before the range-clone operation. Starting from the root node,

Node A, the range-clone operation traverses to the source LCA, Node C. At the same time, it

flushes the message, DEL (“/R/z”), to Node C. Figure 5.3b shows the Bε-tree after the range-

clone operation reaches the source LCA. Finally, the range-clone operation injects a GOTO mes-

sage into the root node, with “/B/” as its dst prefix, “/R/” as its src prefix and Node C as its node

ID. Figure 5.3c shows the result. Now, consider a query for key “/B/a”. The query starts at the

Node A. Then, instead of following the parent-to-child pointers to Node B, it follows the GOTO

message and visits Node C. The GOTO message also acts as an xf function that translates the

search key to “/R/a” and bounds the result in range (“/R/min”, “/R/max”). At last, the query finds

the correct key/value pair in Node F .

5.2.3 Flushing GOTO messages

A GOTO message prevents the Bε-tree from flushing future messages that fall in the key range

of the GOTO message, because queries will not follow the normal parent-to-child pointer and find

the messages once flushed. Therefore, the lifted Bε-DAG should flush GOTO messages along with

other messages.

However, flushing a GOTO message to a node at the same height as the source LCA breaks

the asymptotic I/O costs of queries in the lifted Bε-DAG, because such a GOTO message redirects

queries to a node at the same height. Therefore, when flushing a GOTO message to a node at the
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same height as the source LCA, the lifted Bε-DAG transfers the GOTO message to pivots and a

parent-to-child pointer.

This subsection explains how the lifted Bε-DAG flushes GOTO messages. We start from the

simple case, where a GOTO message is being flushed to nodes higher than the source LCA. Then,

we describe how a GOTO message becomes pivots and a parent-to-child pointer when the lifted

Bε-DAG flushes the GOTO message to a node at the same height as the source LCA.

The lifted Bε-DAG flushes a GOTO message to a node higher than the source LCA. In the

simple case, the node that tries to flush a GOTO message has a single child that covers the key

range of the GOTO message and the child is higher than the source LCA of the GOTO message.

Flushing the GOTO message simply lifts the dst prefix of the GOTO message and moves the GOTO

message from the node’s buffer to the child’s buffer.

For example, in Figure 5.4b, one child of Node A, Node B′, covers the whole key range

of the GOTO message, (“/B/min”, “/B/max”). Therefore, the lifted Bε-DAG can flush the GOTO

message to Node B′, as shown in Figure 5.4c.

In the more complicated case, a GOTO message can overlap with the key ranges of multiple

children. One solution is to duplicate the GOTO message and flush to all children. However, be-

cause duplicating the GOTO message increases the reference count of the source LCA, the source

LCA ends up being shared by many duplicated GOTO messages, making the sharing complicated.

Our solution is to generate a single child that can accommodate the GOTO message. An easy

way is to merge all children whose key range overlaps with the GOTO message. However, this

may create a node with a huge fanout. In fact, because the GOTO message invalidates all old

keys with dst prefix, we can decrease the reference counts (and potentially garbage collect) of all

children whose key ranges fall completely in the key range of the GOTO message (we call these

children interior children) and merge the two children whose key ranges partly overlap with the

GOTO message (we call these two children fringe children).

Figure 5.4 shows an example of merging children before flushing a GOTO message. In Fig-

ure 5.4a, Node B, C and D all overlap with the range of the GOTO message. Node B AND D
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(b) The lifted Bε-DAG garbage collects Node C and merges Node B and D into Node B′.
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(c) The lifted Bε-DAG flushes the GOTO message to Node B′.

Figure 5.4: When a node tries to flush a GOTO message, there may be more than one child that
overlaps with the key range of the GOTO message. In this case, the Bε-DAG must merge children
to create a single child that can accommodate the GOTO message.
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are fringe children, while Node C is an interior child. Note, though the range-rename operation

that generates the GOTO message has “/R/” as the src prefix, the src prefix in the GOTO message

is “R/” because “/” is lifted from the source LCA, Node K. To flush the GOTO message, in Fig-

ure 5.4b, the lifted Bε-DAG garbage collects Node C and merges Node B and D into Node B′.

Note in the example, the merge creates an empty node, Node M , to cover the key range (“/B/h”,

“/B/q”). After the merge, Node A flushes the GOTO message to Node B′, as shown in Figure 5.4c.

In the exmaple, we create an empty node, Node M , to cover the key range of garbage-collected

nodes. Otherwise, we need to enlarge the key range of either Node G or Node I . However, with

key lifting, changing the key range of a node means re-lifting the node and its descendants, which

means additioanl I/Os during a flush.

In special cases, there can be only one or no fringe child. If there is only one fringe child, the

flush process removes the interior children and adds an empty subtree to cover the key range as

one child of the fringe child. If there is no fringe child, the flush process removes the interior

child and adds an empty subtree to cover the key range as the child of the node.

Converting GOTO messages to pivots and parent-to-child pointers. After the merging process,

there is only one child whose key range overlaps with the key range of the GOTO message. If

the child is higher than the source LCA of the GOTO message, we can simply flush the GOTO

message to the child buffer. However, if the child is at the same height as the source LCA, we

cannot flush the GOTO message. In such scenarios, the GOTO message is converted into pivots

and a parent-to-child pointer in the node.

The lifted Bε-DAG completes this conversion by adding two new pivots, dst prefix min and

dst prefix max and setting the new parent-to-child pointer to the source LCA of the GOTO mes-

sage. Assume dst prefix min and dst prefix max are in the key range of child i of the node, that

is, dst prefixmin, dst prefixmax ∈ (pivoti, pivoti+1). Adding dst prefix min and dst prefix max as

two new pivots creates 3 key ranges, (pivoti, dst prefixmin), (dst prefixmin, dst prefixmax) and

(dst prefixmax, pivoti+1). Key range (dst prefixmin, dst prefixmax) is covered in the source LCA of

the GOTO message, while the other two key range are covered by child i.
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All three parent-to-child pointers now point to children whose key ranges are different than

those specified in the node. In particular, child i has range (pivoti, pivoti+1) but bounded by

(pivoti, dst prefixmin) or (dst prefixmax, pivoti+1). The source LCA has a key range that might be

larger than (src prefixmin, src prefixmax) but bounded by (dst prefixmin, dst prefixmax). A smaller

key range may lift a longer prefix through the parent-to-child pointer.

The problem is solved by augmenting parent-to-child pointers with xf functions, which are

the same as the xf function described in GOTO messages. Each parent-to-child pointer now has

a xf function with a prefix. After key lifting lifts the search keys of queries by the LCP of two

pivots, the xf function prepends its prefix to the search key. Also, xf functions serves as filters,

bounding the results queries may return.

Figure 5.5 shows an example of the transformation. The lifted Bε-DAG cannot flush the

GOTO message from Node A to Node B, because Node B is at the same height as its source

LCA, Node C. Therefore, two pivots, “/B/min” and “/B/max”, are added to Node A. The parent-

to-child pointer between “/B/min” and “/B/max” points to the source LCA, Node C, and has a xf

function of “/R/”, indicating a key range mismatch and the additional prefix “/R/” for keys in the

child. Queries following that parent-to-child pointer should prepend prefix “/R/” after the normal

lifting of “/B/” from its search key. Also, queries remember only keys between “/R/min” and

“/R/max” in the child are valid. Similarly, two xf functions are added to the other two pointers.

Note, for the leftmost parent-to-child pointer of Node A, though the xf function contains no

prefix, it still serves as a filter for queries.

With the help of xf functions in parent-to-child pointers, the Bε-DAG can transfer a GOTO

message into two pivots and a parent-to-child pointer. Now, let’s look at how xf functions are

resolved during flushes, finishing the rest work in the range-clone operation.

Fixing xf functions in parent-to-child pointers. GOTO messages add xf functions to parent-

to-child pointers. The xf function transforms the search keys of queries by prepending its prefix

after normal key lifting through parent-to-child pointers. Also, the xf function indicates that the
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(b) The GOTO message becomes pivots and a parent-to-child pointer, and adds xf functions to the
parent-to-child pointers.

Figure 5.5: When the lifted Bε-DAG cannot flush a GOTO message deeper, it transforms the
GOTO message into pivots and a parent-to-child pointers and adds xf functions to the parent-to-
child pointers.

59



Node E

f
e

Node D

R/a
O/c

Node C

/O/a
/G/c

Node F

R/t
R/s

Node G

/Y/s
/Y/t

Node B

/O/b /R/b /R/h /Y/r

PUT (/R/z)
PUT (/G/b)

Node A

/B/min /B/max

lift(/) lift(/R/) lift(/)

lift(/B/);xf (/R/)

(a) The parent-to-child pointer from Node A to Node B has xf (“/R/”).

Node E

f
e

Node D

R/a
O/c

Node F

R/t
R/s

Node B

/R/b /R/h

PUT (z)

Node A

/B/min /B/max

xf (R/) xf (R/)

lift(/B/)

(b) To remove the xf function, it discards exterior children and adds xf functions to parent-to-child
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Figure 5.6: During node flushes, the lifted Bε-DAG resolves the xf function associated with the
parent-to-child pointer.

child contains keys outside of the key range specified by pivots in the parent and thus, queries

should ignore those keys following the parent-to-child pointers.

The lifted Bε-DAG resolves xf functions through node flushes. Specifically, when flushing

from a parent to a child and the parent-to-child pointer has an xf function, the lifted Bε-DAG

garbage collects exterior children of the child whose key ranges are completely outside of the key

range specified by the pivots in parent. Also, the lifted Bε-DAG removes messages whose keys

are outside of the key range specified in the parent from the child buffer. Then, for fringe children

whose key ranges partly overlap with that specified in the parent, the Bε-DAG propagates the xf

function to their parent-to-child pointers. Finally, if the xf function has a prefix, the Bε-DAG

lifts the prefix from keys in the child.
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Figure 5.6 shows an example of fixing xf functions in node flushes. In Figure 5.6a, the

parent-to-child pointer from Node A to Node B has an xf function, xf (“/R/”). The key range

specified by Node A is (“/B/min”,“/B/max”), and the xf function translates the key range to trans-

lates to (“/R/min”,“/R/max”) in Node B. Also, the xf function tells queries to ignore pivots and

messages that are out of the key range (“/R/min”,“/R/max”). In Figure 5.6b, the lifted Bε-DAG

garbage collects exterior nodes, Node C and G and adds xf functions to pointers to fringe nodes,

Node D and F . Also, it updates keys in Node B by removing the prefix, “/R/”, in the xf func-

tion. Note, the message PUT (/G/a,...) is also removed from Node B because it is out of the key

range specified in Node A.

5.3 Implementation

This section discusses implementation details of the range-clone operation.

5.3.1 Synchronization

The range-clone operation synchronizes with other Bε-tree operations using the readers-writer

locks of Bε-tree nodes (Section 3.4.1). The range-clone operation first grabs the write lock of the

root node. Then, while flushing messages along the root-to-leaf path until the LCA, the range-

clone operation write-locks Bε-tree nodes, hand-over-hand, holding the write lock of the root

node. Finally, the range-clone operation injects the GOTO message into the root node and releases

the write locks of the root node and the LCA.

Compared to the range-rename operation that unlocks the root node after flushing messages

(Section 4.3.1), the range-clone operations locks the root node for a longer time. However, the

range-clone operation returns to the caller earlier, while the range-rename operation needs to lock

the LCAs during bottom-up slicing, preventing concurrent operations to the subtrees.
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5.3.2 Preferential splitting

Most of the work in range-clone and range-rename is about splitting fringe nodes, separating

keys with the prefix and keys without the prefix. If all nodes are either interior nodes or exterior

nodes, much less work is needed. Therefore, it is beneficial to reduce the number of fringe nodes.

To this end, we introduce preferential splitting in node splits. Originally, ft-index splits leaf

nodes evenly. When a leaf node needs to be split, the middle key in the leaf is picked as the new

pivot that separates the two new leaf nodes.

Preferential splitting generates pivots that are potential splitting keys in file system renames

and maximizes the common prefix under the leaf, subject to the constraint that both leaves should

be at least 1/4 full. This strategy reduces the likelihood of having fringe nodes in range-clone and

bounds how unbalanced leaves can be.

A naive approach would compare all keys in the range of [1/4, 3/4] of the leaf node and pick

the pair of two adjacent keys that share the shortest common prefix. But this scan can be costly.

For example, in BetrFS, a full leaf node is 4 MiB in size and each key/value pair in meta db is

less than 200 Bytes, which means more than 10000 key comparisons are required in this naive

preferential splitting.

In fact, we can do preferential splitting that only requires the reading of two keys. Because

the shortest common prefix of adjacent keys is the same as the common prefix of the smallest (at

1/4 of the leaf) candidate key, ks, and the largest (at 3/4 of the leaf) candidate key, kl, a good pivot

can be constructed from these two keys. In particular, preferential splitting generates a pivot that

is the maximum key with prefix ps, where ps is the shortest prefix of ks that contains the LCP of

ks and kl and has a slash or a end-of-string as the last character. For instance, if ks is “/foo/bar”

and kl is “/fuz/bar”, preferential splitting set ps as “/foo/”, which is the shortest prefix of ks that

contains the LCP of ks and kl, “/f”, and has a slash at the end. Therefore, the pivot generated by

preferential splitting is the maximum key with prefix “/foo/” (adding a ‘\xff’).
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Non-leaf-node splits can be viewed as promoting a pivot from the child to the parent. Be-

cause the number of pivots in a non-leaf node is small (at most 16), we can afford one-to-one

comparisons.

As we will see in the evaluation, preferential splitting also helps other operations, such as

sequential writes, because the Bε-tree is more likely to generate a pivot that is the maximum data

key of a file or directory. In the sequential write workload, all pivots generated by node splits are

data keys of the file being written. Generating the maximum data key of the file at the beginning

of the workload reduces node re-lifting costs.

5.3.3 Queries

As described in Section 3.4.4, during a query, ft-index applies messages in non-leaf nodes

along the root-to-leaf path to the leaf nodes.

However, in a Bε-DAG, there can be multiple paths from the root node to a leaf node, which

will accumulate a different set of pending messages. Therefore, in our implementation, we must

cache different versions of the same node that is shared on disk — one per path. In addition to

the original identifier, the node ID, in the cahe table, we add the key range as a sub-identifier.

However, this approach can potentially create more cache pressure, which can lead to more node

evictions and I/Os.

We adopt a hybrid approach in the implementation. If a leaf has only one version, i.e., all

nodes along any path to it have reference count 1, messages are applied to the leaf directly. Other-

wise, the leaf node maintains one additional copy for each version.

5.3.4 Garbage collection

When a leaf node’s reference count drops to zero, it is simply marked as free in the block

table, and the space on disk can be re-allocated after the next checkpoint. If the system crashes

before the next checkpoint, crash recovery will replay the redo log on the previous checkpoint.

Therefore, it is only safe to reuse space in the block table after a checkpoint (which includes a
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snapshot of the block table) and we defer re-allocation of physical space until after a checkpoint

When an interior node’s reference count drops to zero, the complication is that, as part of freeing

the node, the reference count on each of its children must be lowered, and the children recursively

freed.

Our Bε-DAG implementation does this work with background threads, although, in future

work, we could also trigger foreground garbage collection as part of flushing if free space falls be-

low a threshold. We track the pending work with an in-memory work queue and an extra flag in

the block table; the flag in the block table ensures that checkpointing the system is not obstructed

by garbage collection, and ensures that pending garbage collection work and space is not lost

upon a crash.

5.4 Conclusion

This chapter presents the new range-clone operation. We first describe a range-clone imple-

mentation that finishes all works on the critical path and transforms lifted Bε-trees into lifted Bε-

DAGs. Then, we introduce the GOTO message that delays tree surgery, fitting the implementation

into the write-optimized framework of lifted Bε-DAGs. At last, we show how GOTO messages

should be flushed down the lifted Bε-DAGs. A GOTO message will eventually become pivots and

a parent-to-child pointer in the lifted Bε-DAG.

Full-path-indexed BetrFS clones a directory without traversing the directory because full-path

indexing specifies the key range inside the directory. In contrast, to finish a directory clone, an

inode-based file system needs to traverse the directory to collect all inodes inside the directory.

When the number of inodes in the directory is large, cloning the directory is slower in inode-

based file systems than that in full-path-indexed BetrFS. Additionally, the directory clones in

full-path-indexed BetrFS still maintains full-path indexing, which ensures good locality.

Therefore, full-path indexing is not an obstacle to namespace operations. In fact, full-path

indexing creates more opportunities for namespace operations.
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Similar to the range-rename operation, the technique is not limited to the range-clone op-

eration that clones keys with certain prefix. For a key/value store operation that clones a lot of

keys, one can use a similar technique as long as the key/value store can group all related keys in a

contiguous key range and there is an xf function that translates sources keys to destination keys.
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CHAPTER 6: EVALUATION

This chapter evaluates the performance of BetrFS with range-rename (BetrFS 0.4) and BetrFS

with range-clone (BetrFS 0.5), comparing them with widely used file systems and BetrFS 0.3.

BetrFS 0.3 is the relative-path-indexed BetrFS that penalizes other file system operations for

good namespace operations. The evaluation includes both micro and macro benchmarks.

We seek to answer the following questions in the evaluation:

• How do non-namespace operations perform on BetrFS 0.4 and BetrFS 0.5?

• How do namespace operations perform on BetrFS 0.4 and BetrFS 0.5?

• Do applications perform well on BetrFS 0.4 and BetrFS 0.5?

• Do BetrFS 0.4 and BetrFS 0.5 maintain good performance over time?

Experimental Setup. All experimental results were collected on a Dell Optiplex 790 with a

4-core 3.40 GHz Intel Core i7-2600 CPU, 4GB RAM, and a 128 GiB partition (the rest of the

disk is not used) of a 500 GB, 7200 SATA disk with a 4096-byte block size (Seagate Barracuda

ST500DM002). The system runs 64-bit Ubuntu server 14.04.6 on a USB stick to prevent inter-

ference from the root file system. BetrFS 0.3 and BetrFS 0.4 run on a modified Linux 3.11.10

kernel that enlarges the size of the kernel stack, while BetrFS 0.5 and all other file systems run

on unmodified Linux 4.9.142 kernel. The evaluation uses ZFS 0.6.5.11 from zfsonlinx.org

and ext4, Btrfs, XFS and NILFS2 as parts of the Linux kernel. Each experiment runs a minimum

of 5 times and reports the average number. Error bars and error ± terms indicat 95% confidence

intervals over all runs. Unless noted, all benchmarks are cold-cache tests.

We run benchmarks on empty file systems and aged file systems. We age the file system by

emulating user behaviors. First, we fill the file system with files and directories from the root
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file system, roughly taking up 31 GiB out of 128GiB space. Then, we clone the git repository of

the Linux kernel with the release tag “v3.12” (released on 2013/11/03) into the home directory

in the file system. Afterwards, we repeat the process of building the kernel and pulling the next

elease of the repository until we build the Linux kernel with the release tag “v4.20” (released

on 2018/12/13). This process takes several days to complete (about 5 days on ext4), building

the kernel 240 times (though there are only 29 major releases, there are 7 to 9 release candidates

between two consecutive major releases) and pulling 397,481 git commits. The directory of

the git repository takes up about 3.6 GiB space and after building the kernel, it takes up about

15 GiB space. Therefore, after the aging process, the whole file system takes up about 46 GiB

space, about 36% of the partition size. Unless otherwise noted, when benchmarking on aged file

systems, all operations are performed in the aged git repository.

6.1 Microbenchmarks

In this section we run file systems on microbenchmarks, each measures the performance

of one file system operations. We divide file system operations into non-namespace operations

(Section 6.1.1) and namespace operations (Section 6.1.2).

6.1.1 Non-namespace operations

Sequential writes and reads. We measure the throughput of sequentially writing and reading a

file. This benchmark first writes a 10GiB file, 40MiB at a time, with an fsync to flush the file

to the disk. Then, after clearing the kernel page cache, the benchmark reads the file from the disk

using dd with a 10MiB block size.

Figure 6.1 shows the results of running the benchmark on empty file systems. Ext4, Btrfs

and XFS can sequentially write close to disk bandwidth, while BetrFS 0.5, similar to NILFS2,

is about 6.5% slower than the fastest file system. In the blktrace, we find that, while most of

the I/Os generated by ext4 write 2048 sectors (256MiB), BetrFS 0.5 generates small I/Os (4KiB

or 8KiB) in between large I/Os due to log writes. BetrFS 0.4 is slightly slower than BetrFS 0.3
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Figure 6.1: Bandwidth to sequentially read and write a 10 GiB file on empty file systems (higher
is better).

because of the re-lifting cost in node splits. The performance increase of BetrFS 0.5 from BetrFS

0.4 is from preferential splitting (Section 5.3.2), which creates a pivot matching the maximum

file data key at the beginning of the workload, avoiding future node re-lifting in subsequent node

splits as the file grows. For sequential reads, Ext4, Btrfs, and XFS run at disk bandwidth, while

BetrFS 0.5 is 19.1% slower than the fastest file system, which is close to BetrFS 0.4 and NILFS2.

The blktrace shows most of the I/Os issued by both ext4 and BetrFS 0.5 read 256 sectors (32

MiB). However, the I/Os generated by ext4 are contiguous in the address space, while BetrFS

0.5 constantly issues two consecutive I/Os that are far away from each other when BetrFS 0.5

switches to read a different node.

Figure 6.2 shows the results of running the benchmark on aged file systems. The perfor-

mances of ext4 and XFS are similar to those on empty file systems, showing that most of the free

spaces are not fragmented by the aging process. Btrfs, ZFS, BetrFS 0.3, BetrFS 0.4, and BetrFS
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Figure 6.2: Bandwidth to sequentially read and write a 10 GiB file on aged file systems (higher is
better).

0.5 store parts of metadata and data in trees, which are taller for non-empty file systems. Because

operations on taller trees are more expensive, Btrfs, ZFS, BetrFS 0.3, BetrFS 0.4, and BetrFS

0.5 become slightly slower in the aged setting. NILFS2 becomes much slower because the aging

process fills the log multiple times. To generate free spaces, NILFS2 needs to garbage collect

the log, resulting in additional I/Os. Moreover, the free spaces generated by garbage collection

scatter over the disk, therefore, NILFS2 needs to issue more random I/Os during the benchmark.

Random writes. We then measure the performance of random writes on the file generated by the

sequential write benchmark. The benchmark issues 256K (262,144) 4-Byte overwrites (in total 1

MiB data) at random offsets within the 10GiB file, followed by an fsync.

Table 6.1a shows the results of running the benchmark on empty file systems. Because Be-

trFS performs upserts, which doesn’t read the old data, for random writes, performing the 1MiB

random writes only takes about 5 seconds on all versions of BetrFS. However, it takes at least
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File system random write (sec)
ext4 2809.415 ± 6.273
Btrfs 2065.304 ± 7.767
XFS 2888.394 ± 26.987
ZFS 2881.419 ± 44.429
NILFS2 2023.282 ± 1.902
BetrFS 0.3 4.936 ± 0.109
BetrFS 0.4 4.871 ± 0.075
BetrFS 0.5 5.478 ± 0.070

(a) Benchmarking on empty file systems.

File system random write (sec)
ext4 2787.738 ± 6.130
Btrfs 2264.590 ± 13.842
XFS 3141.709 ± 68.312
ZFS 3238.939 ± 72.113
NILFS2 2174.144 ± 139.910
BetrFS 0.3 5.207 ± 0.109
BetrFS 0.4 4.837 ± 0.027
BetrFS 0.5 4.593 ± 0.058

(b) Benchmarking on aged file systems.

Table 6.1: Time to perform 256K (262,144) 4-Byte random writes on a 10GiB file (1 MiB total
IO, lower is better).

2000 seconds on the other file systems, which is more than 350 times slower. After the sequential

write process, different versions of BetrFS have different Bε-trees, resulting in different numbers

of node flushes during the benchmark. Therefore, different versions of BetrFS have different

performances in the benchmark.

Table 6.1b shows the results of running the benchmark on aged file systems, which are similar

to those on empty file systems.

Directory operations. Next, we measure three common directory operations, grep, find, and

delete. The grep benchmark measures the time to grep keyword cpu to be64 on the Linux-

3.11.10 source directory. The find benchmark measures the time to find file wait.c on the same

directory. And the delete benchmark measures the time to recursively delete the directory with

“rm -rf”.

Table 6.2a shows the results of running the benchmark on empty file systems. Because full-

path indexing ensures locality in BetrFS, find and grep on BetrFS 0.4 and BetrFS 0.5 are more

than two times faster than the other file systems. BetrFS 0.3 is slower than BetrFS 0.4 and BetrFS

0.5, but still faster than the other file systems in the find and grep benchmarks because of relative-

path indexing. In BetrFS 0.3 and BetrFS 0.4, file deletes in the recursive delete benchmark are

implemented with range-delete messages, while in BetrFS 0.5, file deletes are implemented with
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File system grep (sec) find (sec) delete (sec)
ext4 37.795± 1.145 2.224± 0.070 2.989± 0.372
Btrfs 9.265± 0.139 1.121± 0.041 3.029± 0.127
XFS 48.130± 0.206 5.259± 0.209 15.423± 0.722
ZFS 463.184± 33.878 9.101± 0.041 9.026± 0.396
NILFS2 8.318± 0.107 6.515± 0.023 9.726± 0.364
BetrFS 0.3 5.070± 0.078 0.217± 0.012 2.713± 0.097
BetrFS 0.4 3.979± 0.160 0.201± 0.008 3.305± 0.299
BetrFS 0.5 3.991± 0.067 0.198± 0.004 2.668± 0.152

(a) Benchmarking on empty file systems.
File system grep (sec) find (sec) delete (sec)
ext4 68.521± 0.199 6.384± 0.048 11.683± 0.858
Btrfs 138.787± 0.683 2.675± 0.127 5.700± 0.397
XFS 141.669± 0.842 14.992± 0.022 27.021± 0.864
ZFS 452.775± 15.318 10.219± 0.718 10.381± 0.645
NILFS2 9.124± 0.091 7.328± 0.054 10.927± 0.926
BetrFS 0.3 7.127± 0.076 0.390± 0.006 14.737± 0.249
BetrFS 0.4 5.031± 0.052 0.315± 0.007 35.660± 0.989
BetrFS 0.5 5.031± 0.112 0.307± 0.010 3.642± 0.297

(b) Benchmarking on aged file systems.

Table 6.2: Time to perform recursive grep, find and delete of the Linux source directory (lower is
better).

GOTO messages. All versions of BetrFS show performances comparable to the other file systems

in the recursive delete benchmark.

Table 6.2b shows the results of running the benchmark on aged file systems. In the aged

setting, ext4, Btrfs, XFS and ZFS show worse performance in all benchmarks, because the file

systems are not able to allocate spaces that are close to each other for files under the same direc-

tory. Btrfs and ZFS show less regression in the find and recursive delete benchmarks, because in

Btrfs and ZFS, metadata are kept in trees. Since the find and grep benchmarks are read-only, and

the recursive delete benchmark doesn’t write new data, these benchmarks don’t trigger garbage

collection in NILFS2. Therefore, NILFS2 doesn’t have much regression in the aged setting. All

versions of BetrFS have slightly worse performance in the find and grep benchmarks because the

Bε-trees are taller in the aged setting. However, BetrFS 0.3 and BetrFS 0.4 have much worse per-
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Figure 6.3: Cumulative file creation throughput during the Tokubench benchmark on empty file
systems (higher is better).

formance in the recursive delete benchmark, because, during the benchmark, more range-delete

messages are flushed to the leaf nodes, resulting in more node merges.

TokuBench. TokuBench [13] is a small-write-intensive benchmark that creates 3 million 200-

Byte files in a balanced tree directory. The benchmark first creates the balanced tree directory

with a fanout of 128, i.e., each directory has at most 128 directories or 128 files. Then, the bench-

mark creates 4 threads. Each thread iterates over the leaf directories, creating one file at a time.

The benchmark reports the cumulative throughput of the file creation each time when 10,000 files

are created.

Figure 6.3 shows the results of running Tokubench on empty file systems. Because Tokubench

exercises small, random writes, BetrFS 0.4 and BetrFS 0.5 are significantly faster than ext4, Btrfs

and XFS. Also, BetrFS 0.4 and BetrFS 0.5 don’t have the sudden performance drop that occurs in

BetrFS 0.3 (Section 3.3). The performance of BetrFS 0.5 is better than that of BetrFS 0.4 because
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Figure 6.4: Cumulative file creation throughput during the Tokubench benchmark on aged file
systems (higher is better).

preferential splitting avoids further re-lifting in the benchmark. NILFS2 translates all operations

in the benchmark to log appends, therefore, the performance of NILFS2 is high and stable.

Figure 6.4 shows the results of running Tokubench on aged file systems. Because of the cost

introduced by garbage collection, NILFS2 has much worse performance in the aged setting.

Moreover, NILFS2 returns ENOSPC before completing the benchmark, despite that the total

amount of data in the file system is far from filling up the disk. The performances of the other file

systems are similar to those on empty file systems.

6.1.2 Namespace operations

File renames. The file rename benchmark measures the throughput of renaming files with dif-

ferent sizes. The benchmark first creates a file filled with random data. Then, the benchmark

renames the file 100 times, each followed by an fsync of the parent directory, and reports the

throughput, that is, renames per second.
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Figure 6.5: Throughput of renaming a file of different sizes on empty file systems (higher is
better).

Figure 6.5 shows the results of running the benchmark on empty file systems. For all file sys-

tems except BetrFS, the rename throughput is stable regardless of the file being renames because

a rename is just a pointer swing in those file systems. BetrFS uses the simple rename implemen-

tation that updates all related key/value pairs when the file size is small. Therefore, the rename

throughput gradually decreases when the file grows larger. However, BetrFS 0.3 moves the file

into a zone when the file is larger than or equal to 512KiB, making the rename a pointer swing.

To rename a file larger than or equal to 4MiB, BetrFS 0.4 and BetrFS 0.5 use range-rename and

range-clone, respectively. As shown in the figure, the throughputs of all versions of BetrFS are

comparable to the other file systems after reaching the thresholds.

Figure 6.6 shows the results of running the benchmark on aged file systems. The perfor-

mances of ext4, XFS, ZFS and NILFS2 are similar to those on empty file systems. Btrfs becomes
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Figure 6.6: Throughput of renaming a file of different sizes on aged file systems (higher is
better).

much slower. All versions of BetrFS have higher rename throughput for small files, because the

rename doesn’t write key/value pairs directly to leaf nodes, resulting in node splits and merges.

Directory renames. The directory rename benchmark measures the throughput of renaming a

directory. On empty file systems, the benchmark first clones the Linux source repository to the

file system and measures the throughput by renaming the directory that contains the repository

100 times, each followed by an fsync of the parent directory. When measuring the performance

on aged file systems, the benchmark renames the directory is aged by the aging script 100 times,

each followed by an fsync of the parent directory.

Figure 6.7 shows the results of running the benchmark on empty file systems. The through-

puts of different versions of BetrFS are comparable to other file system.

Figure 6.8 shows the results of running the benchmark on aged file systems. The perfor-

mances of ext4, Btrfs, XFS, and BetrFS 0.3 are similar to those on empty file systems. BetrFS
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Figure 6.7: Throughput of renaming a directory on empty file systems (higher is better).

0.5 and BetrFS 0.4 become slower become slicing in taller trees. The performance of NILFS2

degrades and becomes unstable because of garbage collection. The performance of ZFS also

degrades.

Directory clones. To evaluate the performance of cloning and similar copy-on-write optimiza-

tions in the other file systems, we wrote a simple microbenchmark that creates a directory hierar-

chy with 8 directories, each of which has 8 files that are 4 MiB each. At each step, we measure

the copy time (Figure 6.9a), we measure the impact of copy-on-write by writing 16 bytes to each

copied file and syncing the data (Figure 6.9d). We then clear the file system caches and measure

the impact on read time by grepping the copied directory (Figure 6.9c). Finally, we record the

change in space utilization for the file system at each step (Figure 6.9b).

We compare directory-level clone in BetrFS to 3 Linux file systems that either support vol-

ume snapshots or clones (Btrfs and ZFS) or reflink copies of files (Btrfs and XFS). We com-
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Figure 6.8: Throughput of renaming a directory on aged file systems (higher is better).

pare in both modes; the label Btrfs-svol is in volume snapshot mode. Neither model supports

directory-level clone natively, but Btrfs does allow a user to turn a directory into a subvolume,

which can then be snapshotted. We cover this behavior by measuring the volume case. we com-

pare to both methods, either creating a volume with these contents and cloning it, or doing a

reflink copy of each file.

In terms of time to do a clone, both Btrfs and XFS file-level cloning degrade as a function

of the number of prior clones; after 8 iterations, the latency to do the clones is roughly doubled.

In contrast, the time to clone a volume in Btrfs and ZFS is relatively flat. The cloning time in

BetrFS 0.5 varies somewhat, but oscillates around 60 ms, or 33% faster than the closest data

point from another file system (the first clone on XFS), 58% faster than a volume clone on Btrfs,

and an order of magnitude faster than the worst case for the competition.
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(b) Change in space usage.
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Figure 6.9: Latency to clone, read, and write, as well as space usage, as a function of the number
of times a directory tree has been cloned (lower is better for all metrics).
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In terms of write costs, the cost to write a cloned file or volume is flat, although BetrFS 0.5

can ingest writes 8–10× faster. In our experiments, XFS hits an occasional stutter.

Other than cloning time, the other primary degradation comes in read time. XFS and ZFS

degrade severely—after 6 clones the grep time is nearly doubled. For XFS, there appears to be

some work that temporarily improves locality; the degradation trend resumes after more itera-

tions. In comparison, read time for BetrFS 0.5 is roughly constant—40% slower than the initial

speed of Btrfs, and almost 2× as fast as XFS.

Finally, Figure 6.9b shows the change in space usage after each clone. For every file system

except ZFS and BetrFS 0.5, the change is small an consistent. ZFS appears to allocate space for

new clones in larger bursts, every few clones. The benchmark triggers a worst case space usage in

BetrFS 0.5. A clone shares the LCA in the lifted Bε-DAG, then, the next close flushes messages

(small writes between clones) to the LCA, which breaks the sharing by cloning the LCA (a node

can be as large as 4MiB in our implementation).

In total, these results indicate that the state of the art in logical copy optimization keeps write

costs and space usage relatively flat, at the cost of degrading subsequent file copies and subse-

quent reads. We note that degrading subsequent reads is a persistent tax on future applications.

BetrFS 0.5 strikes a new point: flat clone, read, and write times, most of which are much faster

than the state of the art.

6.2 Macrobenchmarks

We then measure the performance of file systems on canonical applications.

Git. The git benchmark first measures the latency of finishing “git clone” that clones a local copy

of the linux source repository, then measures the latency of finishing “git diff” that generates a

patch between two tags in the repository, the “v4.7” and “v4.14” tags. The “git clone” process

first copies files in the “.git” directory, including a large object file (2.52 GiB in our case). Then,

the “git clone” process creates files in the repository by copying the content from the object file.
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Figure 6.10: Latency of “git clone” and “git diff” on empty file systems (lower is better).

The “git diff” process opens all differing files and computes the difference by reading the object

file.

Figure 6.10 shows the results of running the benchmark on empty file systems. For the “git

clone” benchmark, because of the slower sequential writes, BetrFS 0.4 is slower than BetrFS 0.3

and BetrFS 0.5, which are slower than ext4 and Btrfs. The “git diff” benchmark opens differing

files in depth-first-search order, therefore, though not all files are read, all versions of BetrFS are

faster than the other file systems, except Btrfs.

Figure 6.11 shows the results of running the benchmark on aged file systems. All versions of

BetrFS become slightly slower, because the Bε-trees are taller. However, BetrFS 0.5 is faster than

any other file systems, because, in the aged setting, the other file systems cannot allocate spaces

that are close to each for files in the same directory.
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Figure 6.11: Latency of “git clone” and “git diff” on aged file systems (lower is better).

Tar. The tar benchmark measures the latency of untar and tar. The benchmark first copies a

Linux-3.11.10 source tar ball to the file systems. Then, it measures the time to untar the tar ball,

which writes a Linux-3.11.10 source directory. Next, it measures the time to generate a tar ball

from the newly created Linux-3.11.10 source directory.

The untar process creates a child process that reads and uncompresses the tar ball. At the

same time, the parent process creates files with the information sent from the child process. The

tar process traverses the directory and sends the compressed content to a child process, which

dumps the compressed content into a tar ball.

Figure 6.12 shows the results of running the benchmark on empty file systems. Because all

versions of BetrFS have slower sequential reads, which are further decelerated by the messages

injected by file creates, the untar benchmark is slower on versions of BetrFS than ext4 and Btrfs.
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Figure 6.12: Latency to untar and tar the Liinux-3.11.10 source directory on empty file systems
(lower is better).

The tar benchmark runs faster on versions of BetrFS because of the locality from full-path or

relative-path indexing.

Figure 6.13 shows the results of running the benchmark on aged file systems. All versions

of BetrFS have similar performances to those on empty file systems for the untar benchmark,

while the tar benchmark runs slightly slower because of the taller Bε-trees. However, versions of

BetrFS are faster than any other file systems on both benchmarks in the aged setting.

Rsync. The rsync benchmark first copies the Linux-3.11.10 source directory to the file system,

then uses rsync to create a copy of the directory. The benchmark runs twice on each file system,

one with the “in-place” flags and the other without the flag. The rsync process divides the total

amount of data being copies by the time elapsed and reports the throughput. However, the origi-
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Figure 6.13: Latency to untar and tar the Liinux-3.11.10 source directory on aged file systems
(lower is better).

nal rsync process measures time in seconds, resulting in a coarse granularity. In order to get more

accurate results, we modify the rsync process to measure time in microseconds.

The rsync process traverses the source directory and sends the content to a child process that

creates files in the destination directory. If the “in-place” is not set, for each file in a directory, the

child process will first create a temporary file in the directory and then rename the temporary file

to the target file. If the “in-place” is set, the child process will create files in place.

Figure 6.14 shows the results of running the benchmark on empty file systems. Because the

benchmark traverses the source directory, versions of BetrFS are much faster than the other file

systems. BetrFS 0.4 and BetrFS 0.5 are faster than BetrFS 0.3 because full-path indexing has

better locality than relative-path indexing.
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Figure 6.14: Throughput of cloning the Linux-3.11.10 source directory with rsync on empty file
systems (higher is better).

Figure 6.15 shows the results of running the benchmark on aged file systems. In the aged

setting, ext4, Btrfs and NILFS2 cannot make the same allocation, resulting in orse performances.

Versions of BetrFS are only slightly slower because of the taller Bε-trees.

Mailserver. The mailserver benchmarks measures the throughput of the dovecot mailserver on

different file systems. The mailserver is configured with the Maildir option, therefore, each mail

is a file. Initially, the mailserver has 10 mail boxes, each with 1000 mails. Then, the benchmark

creates four threads that interact with the mailserver and measure the throughput. Each threads

performs 50% reads and 50%write. Writes are randomly chosen from creating a new mail, chang-

ing the flag of an existing mail and deleting an existing mail with equal probabilities. For a read

operation, the mailserver reads the index file and the file that stores the content of the mail. To

create a new mail, the mailrserver first creates a file in the “tmp” directory to store the content.
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Figure 6.15: Throughput of cloning the Linux-3.11.10 source directory with rsync on aged file
systems (higher is better).

Subsequently, the file is moved into the “new” directory and then into the “cur” directory. Be-

cause the mailserver stores flags in the file name, to change the flag of a mail, the mailserver

renames the file that represents the mail. To delete a mail, the mailserver first renames the file so

that the file name contains a “deleted” flag. Then, the mailserver deletes the file. In addition to

modifying the file that represents the mail, all write operations create a temporary index file and

renames the temporary file to overwrite the old index file.

Figure 6.16 shows the results of running the benchmark on empty file systems. Versions of

BetrFS are faster than the other file systems except NILFS2, because versions of BetrFS have

faster file creates.

Figure 6.17 shows the results of running the benchmark on aged file systems. NILFS2 be-

comes much slower because of garbage collection. Since the Bε-trees are taller in the aged set-
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Figure 6.16: Throughput of the dovecot mailserver on empty file systems (higher is better).

ting, versions of BetrFS become slower. However, versions of BetrFS are faster than the other

file systems, because the other file systems cannot make the same allocation for files in the aged

setting.

6.3 Conclusion

BetrFS 0.4 and BetrFS 0.5 show good performance on workloads that have intensive directory

scans or small random writes. The namespace operations on BetrFS 0.4 and BetrFS 0.5 have

comparable performance to those on the other file systems. And in the aged setting, versions of

BetrFS show much less regressions than the other file systems.

86



0

50

100

150

200

ex
t4

B
tr

fs

X
FS

Z
FS

N
IL

FS
2

B
et

rF
S

0.
3

B
et

rF
S

0.
4

B
et

rF
S

0.
5

T
hr

ou
gh

pu
t(

op
/s

)

Figure 6.17: Throughput of the dovecot mailserver on aged file systems (higher is better).
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CHAPTER 7: CONCLUSION

File systems faces trade-offs between the performance of namespace operations and spatial

locality. On one hand, traditional inode-based file systems have good performance for namespace

operations because of the indirection between a directory and entries in the directory. However,

this indirection stops these file systems from grouping metadata and data under one directory

close to each other on disk, especially when the file system ages. On the other hand, full-path-

indexed file systems ensure locality by indexing metadata and data by full-paths. However, exist-

ing full-path-indexed file systems either have unbounded I/O costs for namespace operations, or

taxes other operations for efficient namespace operations.

This dissertation first presents a new operation on Bε-trees, range-rename, that updates all

keys with one prefix to have another prefix. The range-rename operation adopts key lifting to

transform Bε-trees into lifted Bε-trees and accomplishes its task in a bounded number of I/Os

through tree surgery. By invoking range-rename operations for file system renames, full-path-

indexed BetrFS has bounded I/O costs for its renames.

The techniques in the range-rename operation can be applied to other full-path-indexed file

systems, as long as the underlying data structures are tree-based. For example, Wang et al. [45]

used a similar approach to build a full-path-indexed file system with B+-trees. Their results

showed the generality of the range-rename techniques. Full-path indexing is no longer infeasible

for general-purpose file systems.

Then, this dissertation introduces another new operation on Bε-trees, range-clone, that clones

all keys with one prefix to have another prefix. By transforming lifted Bε-trees into lifted Bε-

DAGs, range-clone can utilize the techniques introduced by range-rename to complete its work

on the critical path. Moreover, the range-clone operation can delay the tree surgery work with a
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new type of messages, GOTO messages, fitting itself into the write-optimized framework of Bε-

DAGs. Full-path-indexed BetrFS thus has write-optimized file or directory renames and clones

by implementing them with range-clone operations.

Similar to the range-rename operation, the range-clone operation on the critical path can be

applied to other full-path-indexed file system with tree-based data structures. However, to write-

optimize the range-clone operation with GOTO messages, the full-path-index file system must be

built on WODs.

This dissertation shows that with the right optimizations, a full-path-indexed, write-optimized

file system can have both efficient namespace operations and locality. There is no trade-off be-

tween them. Also, full-path indexing opens up new opportunities for namespace operations, such

as directory clones.

More generally, this dissertation introduces techniques that update or clone a contiguous

range of keys. File systems are just one example of hierarchical data. The same techniques can

be applied to other hierarchical data, such as XML. Moving a subtree, which is similar to file

system renames, can be normal in such hierarchical data [15]. Instead of using a secondary index,

as people generally do [15], one can encode the full-paths in the keys and use a similar approach

as ours.
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