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Abstract

We explore Mixed Data Sampling (henceforth MIDAS) regression models. The regressions

involve time series data sampled at different frequencies. Volatility and related processes are

our prime focus, though the regression method has wider applications in macroeconomics and

finance, among other areas. The regressions combine recent developments regarding estimation

of volatility and a not so recent literature on distributed lag models. We study various lag

structures to parameterize parsimoniously the regressions and relate them to existing models.

We also propose several new extensions of the MIDAS framework. The paper concludes with an

empirical section where we provide further evidence and new results on the risk-return tradeoff.

We also report empirical evidence on microstructure noise and volatility forecasting.
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1 Introduction

The availability of data sampled at different frequency always presents a dilemma for a

researcher working with time series data. On the one hand, the variables that are available

at high frequency contain potentially valuable information. On the other hand, the researcher

cannot use this high frequency information directly if some of the variables are available at

a lower frequency, because most time series regressions involve data sampled at the same

interval. The common solution in such cases is to “pre-filter” the data so that the left-hand

and right-hand side variables are available at the same frequency. In the process, a lot of

potentially useful information might be discarded, thus rendering the relation between the

variables difficult to detect.1 As an alternative, Ghysels, Santa-Clara, and Valkanov (2002),

(2004) and (2005) have recently proposed regressions that directly accommodate variables

sampled at different frequencies. Their MIxed Data Sampling – or MIDAS – regressions

represent a simple, parsimonious, and flexible class of time series models that allow the

left-hand and right-hand side variables of time series regressions to be sampled at different

frequencies.

Since MIDAS regressions have only recently been introduced, there are a lot of unexplored

questions. The goal of this paper is to explore some of the most pressing issues, to lay

out some new ideas about mixed-frequency regressions, and to present some new empirical

results. Before we start, it is useful to introduce a simple MIDAS regression. Suppose that

a variable yt is available once between t − 1 and t (say, monthly), another variable x
(m)
t is

observed m times in the same period (say, daily or m = 22), and that we are interested in

the dynamic relation between yt and x
(m)
t . In other words, we want to project the left-hand

side variable yt onto a history of lagged observations of x
(m)
t−j/m. The superscript on x

(m)
t−j/m

denotes the higher sampling frequency and its exact timing lag is expressed as a fraction of

the unit interval between t − 1 and t. A simple MIDAS model is

yt = β0 + β1B(L1/m; θ)x
(m)
t + ε

(m)
t (1)

for t = 1, . . . , T and where B(L1/m; θ) =
∑K

k=0 B(k; θ)Lk/m and L1/m is a lag operator such

that L1/mx
(m)
t = x

(m)
t−1/m, and the lag coefficients in B(k; θ) of the corresponding lag operator

Lk/m are parameterized as a function of a small-dimensional vector of parameters θ.

1This situation is becoming more frequent now as dramatic improvements in information gathering have
produced new, high-frequency datasets, particularly in the area of financial econometrics.
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In the mixed-frequency framework (1), the number of lags of x
(m)
t is likely to be significant.

For instance, if monthly observations of yt is affected by six months’ worth of lagged daily

x
(m)
t ’s, we would need 132 lags (K = 132) of high-frequency lagged variables. If the

parameters of the lagged polynomial are left unrestricted (or B(k) does not depend on

θ), then there would be a lot of parameters to estimate. As a way of addressing parameter

proliferation, in a MIDAS regression the coefficients of the polynomial in L1/m are captured

by a known function B(L1/m; θ) of a few parameters summarized in a vector θ. We will

discuss several alternative specifications of B(L1/m; θ) in the paper. Finally, the parameter

β1 captures the overall impact of lagged x
(m)
t ’s on yt. We identify β1 by normalizing the

function B(L1/m; θ) to sum up to unity. While the normalization and the identification of β1

are not strictly necessary in a MIDAS regression, they will be very useful for our applications

later in the paper.

In some specific cases, the results from the MIDAS regressions can be obtained using high-

frequency regressions alone. We work out one such example in the context of volatility

forecasting. While we are able to derive an explicit relation between the MIDAS parameters

and the purely high-frequency model, the relation is already quite complicated in this simple

case. For more interesting applications, such as these we conduct later in the paper, such

a relation is difficult to derive. This finding illustrates another advantage of our approach:

the MIDAS specification captures a very rich dynamic of the high-frequency process in a

very simple and parsimonious fashion. The MIDAS models benefit from several strands

of econometric models. The parameterization of the polynomial is similar in spirit to the

distributed lag models (see e.g. Griliches (1967), Dhrymes (1971) and Sims (1974) for surveys

on distributed lag models). Mixed data sampling regression models share some features

with distributed lag models but also have unique features. For instance, while we use a

parameterization of B(k; θ) that is common in distributed lag models, we also introduce a

new one called beta polynomial and that appears well suited in the applications that we

consider. We also discuss MIDAS regressions with stepfunctions introduced in Forsberg and

Ghysels (2004). Their appeal is the use of OLS estimation methods, but this comes at a

cost, namely that parsimony may not be preserved.

A convenient parametric function of B(L1/m; θ) also allows us to directly deal with lag

selection. In an unrestricted case, we have to design a lag selection procedure which can be

particularly difficult in this setup, where we will have to make the choice whether to include,

say, 66 or 67 daily lags in forecasting of a monthly observation yt. The parameterizations
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of B(L1/m; θ) that we propose are quite flexible. For different value of θ, they can take

various shapes. In particular, the parameterized weights can decrease at different rates

as the number of lags increases. Therefore, by estimating θ, we effectively allow the data

to select the number of lags that are needed in the mixed-data relation between yt and xt.

Hence, once we choose the appropriate functional form of B(L1/m; θ), the lag length selection

in MIDAS is purely data-driven.

Variations of the MIDAS regression (1) have been used by Ghysels, Santa-Clara, and

Valkanov (2002), Ghysels, Santa-Clara, and Valkanov (2003). More complex specifications

are certainly possible and, in this paper, we propose several natural extensions of the basic

MIDAS regressions. First, on the right-hand side we can include variables sampled at various

frequencies. Second, non-linearities are easy to introduce as demonstrated by Ghysels, Santa-

Clara, and Valkanov (2005) who use one such model. In this paper, we discuss more general

non-linear MIDAS regressions. Third, MIDAS can accommodate tick-by-tick data that are

observed at unequally spaced intervals. Finally, multivariate MIDAS regressions are also

possible. All of these models are new and still unexplored. Some of them present unique

challenges, others are straightforward to estimate.

We revisit two empirical applications that related to prior studies, (1) the risk-return trade-

off and (2) volatility prediction. Regarding the risk-return trade-off, we present a variation

of the results in Ghysels, Santa-Clara, and Valkanov (2005) and Ghysels, Santa-Clara, and

Valkanov (2003). The first paper uses a MIDAS regression to show that there is a positive

relation between market volatility and return. Expected returns are proxied using monthly

averages while the variance is estimated using daily squared returns over the last year. The

second paper shows that while squared daily returns are good forecasts of future monthly

variances, there are predictors that clearly dominate. Here, we combine the insights from

both papers. First, we look at the risk-return relation at different frequencies, one, two,

three, and four weeks. Second, we use a different polynomial specification from the one

used in Ghysels, Santa-Clara, and Valkanov (2005).2 Third, we use several predictors that

Ghysels, Santa-Clara, and Valkanov (2003) show are good at forecasting future volatility

in a MIDAS context. Finally, we use a different dataset from Ghysels, Santa-Clara, and

Valkanov (2005).

2For further evidence on the risk-return trade-off using MIDAS, see e.g. Ángel, Nave, and Rubio (2004),
Wang (2004) and Charoenrook and Conrad (2005). Models of idiosyncratic volatility using MIDAS appear
in e.g. Jiang and Lee (2004) and Brown and Ferreira (2004).
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We find that there is a robustly positive and statistically significant risk-return tradeoff

across horizons and across predictors. Remarkably, the tradeoff is significant even for weekly

returns, even though they are noisy proxies of expected returns. However, the relation is

clearer at the two to four week horizon. Surprisingly, we find that variables that are better

at predicting the variance do not necessarily produce better forecasts of expected returns or

better estimates of the risk-return tradeoff. Hence, they must be capturing a component of

the variance that is not priced by the market and consequently that is unrelated to expected

returns.

We also include empirical evidence on the impact of microstructure noise on volatility

prediction. While using high frequency data has some clear advantages, there are some

costs. High frequency sampling may be plagued by microstructure noise. Several papers

have tried to shed light on this: Äıt-Sahalia, Mykland, and Zhang (2005), Bandi and Russell

(2005b), Bandi and Russell (2005a), Hansen and Lunde (2004), Zhang, Mykland, and Äıt-

Sahalia (2005a), among others have suggested corrections for microstructure noise. We assess

how much these corrections improve forecasting.

The paper is structured as follows. Section two discusses various polynomial specifications.

Section three shows that the MIDAS framework is very flexible and captures a rich set

of dynamics that would be difficult to obtain using standard same-frequency regressions.

Section four presents various extensions of MIDAS models, such as a generalized MIDAS

regression, non-linear MIDAS regressions, tick-by-tick MIDAS regressions, and multivariate

MIDAS. In section five, we apply some of the generalizations to estimate the relation between

conditional expected return and risk using ten years of daily Dow Jones index return data.

Some of our results confirm previous findings, others are quite surprising and offer new

directions for research. In section six, we offer concluding remarks.

2 Polynomial Specifications

The parameterization of the lagged coefficients of B(k; θ) in a parsimonious fashion is one

of the key MIDAS features. In this section, we discuss various specifications of MIDAS

regression polynomials. A first subsection is devoted to finite polynomials and we discuss

in particular two parameterizations that were used in previous papers and that we will use

in the empirical section of this paper. A second subsection deals with infinite polynomials
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and introduces autoregressive augmentations and rational polynomials. A third subsection

deals with MIDAS regressions using stepfunctions. The final subsection covers identification

issues.

2.1 Finite Polynomials: Exponential Almon and Beta

In this section, we focus on the specification (1) appearing. More specifically, we deal with

finite one-sided polynomials applied to a single regressor. This is one of the simplest MIDAS

specifications and it allows us focus on the parameterization of B(k; θ).

We focus on two parameterizations of B(k; θ). The first one is:

B(k; θ) =
eθ1k+...+θQkQ

∑K
k=1 eθ1k+...+θQkQ

(2)

which we call the ”Exponential Almon Lag,” since it is related to “Almon Lags” that are

popular in the distributed lag literature (see Almon (1965) or Judge, Griffith, Hill, Lütkepohl,

and Lee (1985)). The function B(k; θ) is known to be quite flexible and can take various

shapes with only a few parameters (e.g., Judge, Griffith, Hill, Lütkepohl, and Lee (1985) for

further discussion). Ghysels, Santa-Clara, and Valkanov (2005) use the functional form (2)

with two parameters, or θ = [θ1; θ2]. Figure 1 illustrates the flexibility of the Exponential

Almon Lag even in this simple two-parameter case. First, it is easy to see that for θ1 = θ2 = 0,

we have equal weights (this case is not plotted). Second, the weights can decline slowly (top

panel) or fast (middle panel) with the lag. Finally, the exponential function (2) can produce

hump shapes as shown in the bottom panel of Figure 1. A declining weight is guaranteed as

long as θ2 ≤ 0. It is important to point out that the rate of decline determines how many

lags are included in regression (1). Since the parameters are estimated from the data, once

the functional form of B(k; θ) is specified, the lag length selection is purely data driven.

The second parameterization has also only two parameters, or: θ = [θ1; θ2]:

B(k; θ1, θ2) =
f( k

K
, θ1; θ2)∑K

k=1 f( k
K

, θ1; θ2)
(3)
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where:

f(x, a, b) =
xa−1(1 − x)b−1Γ(a + b)

Γ(a)Γ(b)

Γ(a) =

∫
∞

0

e−xxa−1dx

(4)

Specification (3) has, to the best of our knowledge, not been used in the literature. It is

based on the Beta function and we refer to it as the “Beta Lag.” Figure 6 displays various

shapes of (3) for several values of θ1 and θ2. The function can also take many shapes not

displayed in the figure. For instance, it is easy to show that for θ1 = θ2 = 1 we have equal

weights (this case is not shown). As in Figure 1, we only display parameter settings that

are relevant for the types of applications we have in mind. The top panel in Figure 6 shows

the case of slowly declining weight which corresponds to θ1 = 1 and θ2 > 1. As θ2 increases,

we obtain faster declining weights, as shown in the middle panel of the figure. Finally, the

bottom panel illustrates a hump-shaped pattern which emerges for θ1 = 1.6 and θ2 = 7.5.3

The flexibility of the Beta function is well-known. It is often used in Bayesian econometrics

to impose flexible, yet parsimonious prior distributions. As pointed out in the Exponential

Almon Lag case, the rate of weight decline determines how many lags are included in the

MIDAS regression.

The Exponential Almon and the Beta Lag specifications have two important characteristics,

namely, (i) they provide positive coefficients, which is necessary for a.s. positive definiteness

of estimated volatility, and (ii) they sum up to unity. We impose positive weights because

volatility modelling is the main application in this paper. The latter property allows us

to identify a scale parameter β1, that is, we run MIDAS regression models as specified

in (1). While MIDAS regression models are not limited to the two aforementioned

distributed lag schemes, for our purpose we focus our attention exclusively on these two

parameterizations. The specification in (2) is theoretically more flexible, since it depends

on Q parameters. However, for the stability of the solution additional restrictions should be

imposed: θi ≤ 0, ∀ i = 1, .., Q (see Judge, Griffith, Hill, Lütkepohl, and Lee (1985)). On the

other hand, the weight specification in (3) if flexible enough to generate various shapes with

only two parameters.

3Convex shapes appear when θ1 > θ2. While those shapes are not of immediate interest in our volatility
applications, they might be very useful in other applications.
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There is the obvious concern how to choose K in (1). Several papers have been written on

the effects of misspecifying the lag length in Almon lag models, see the discussion in Judge,

Griffith, Hill, Lütkepohl, and Lee (1985) (section 9.3.2), as well as on the subject of lag

selection, see Judge, Griffith, Hill, Lütkepohl, and Lee (1985) (section 9.3.4). The existing

literature can be readily applied in the context of MIDAS regressions with m fixed. There is,

however, a topic that requires special attention. Many papers were also written about finite

polynomial approximations to infinite lags (see the discussions in Griliches (1967), Dhrymes

(1971), Sims (1974), among others). Most revolve around rational fraction approximations.

In MIDAS regressions this raises issues that are not straightforward and to which we return

next.

2.2 Infinite Polynomials and Autoregressive Augmentations

The class of ARMA and GARCH models exploit the fact that a ratio of two finite polynomials

B(L)/A(L) implies an infinite lag polynomial. The same idea has been advanced in

distributed lag models, see e.g. Jorgenson (1966). A geometric lag model (Koyck (1954),

Nerlove (1956), Cagan (1956)) refers to the specific case where A(L) is a polynomial

of degree one. In such a case, in a usual time series regression where yt and xt are

observed at the same frequency, we have yt+1 = β0 + λyt + B(L)xt + εt+1 and hence,

yt+1 = β̃0 + (B(L)/(1 − λL))xt + ε̃t+1 so that a simple autoregressive augmentation of a

distributed lag model yields a parsimonious way of producing an infinite lag polynomial.

Autoregressive augmentation can be introduced in MIDAS regressions in two alternative

ways. Indeed, we can write

yt+1 = β0 + λyt + β1B(L1/m; θ)x
(m)
t + εt+1 (5)

yt+1 = β0 + λyt+1−1/m + β1B(L1/m; θ)x
(m)
t + εt+1 (6)

It is immediately clear that these two specifications are not equivalent. They can be written

respectively as:

yt+1 = β̃0 + β1B(L1/m; θ)/(1 − λL)x
(m)
t + ε̃t+1 (7)

yt+1 = β̃0 + β1B(L1/m; θ)/(1 − λL1/m)x
(m)
t + ε̃t+1 (8)
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Both specification should be used with the following caveats. In the case of (5), we do not

obtain a geometric polynomial in L1/m but rather a polynomial B(L1/m; θ)
∑

j λjLj which is

a mixture with geometrically declining spikes at distance m. Hence, we obtain a “seasonal”

polynomial and this augmentation can be used only if there are seasonal patterns in x
(m)
t .

The second polynomial is geometric in L1/m and indeed yields B(L1/m; θ)
∑

j λjLj/m.

However, it assumes that lagged yt+1−1/m are available. This amounts to considering a

special case of a distributed lag model. Moreover, specification (6) has some econometric

complications, since the appearance of y
(m)
t+1−1/m implies that one has to deal with endogenous

regressors and with instrumental variable estimation in a MIDAS context. Ghysels, Santa-

Clara, and Valkanov (2002) discuss the econometric implications, in particular efficiency

losses that occur due to the fact that the introduction of lagged dependent variables is most

often not possible in MIDAS regressions.

Despite these difficulties, the use of finite polynomial ratios to accommodate infinite lag

MIDAS specifications is still promising. For instance, consider the following MIDAS

regression:

yt = β0 + β1[B1K(L1/m)/B2Q(L1/m)]x(m) + εt ≡ β0 + β1

∑K
k=1 B1(k, θ)Lk/m

∑Q
k=1 B2(k, θ)Lk/m

x
(m)
t + εt (9)

where K and Q are the respective orders of the polynomials in the numerator and

denominator. The specification in (9) is a MIDAS version of the rational distributed lag

model discussed in Jorgenson (1966). It should also be noted that Bollerslev and Wright

(2001) suggest to use smoothed periodogram estimators to deal with parameter proliferation

in the context of high-frequency financial data. Periodogram estimators are in essence infinite

parameters settings and typically imprecise in applications that do not involve very large

data sets.

2.3 Stepfunctions

The advantage of the MIDAS framework is that we maintain a relatively simple parametric

format and are also able to extend it easily to non-linear and multivariate settings as

discussed later. The drawback is that we have to use non-linear estimation methods since

all the polynomial lag structures are constrained via non-linear functional specifications. We

conclude the section with some observations about MIDAS with stepfunctions, introduced
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in Forsberg and Ghysels (2004). These MIDAS regressions are inspired by the HAR model

of Corsi (2003) which was also used in Andersen, Bollerslev, and Diebold (2003). To define

a MIDAS regression with stepfunctions, consider regressors Xt(K, m) ≡
∑K

j=1 x
(m)
t−j/m, which

are partial sums of high frequency x(m). Then the MIDAS regression with M steps is:

yt = β0 +
M∑
i=1

βiXt(Ki, m) + εt (10)

where K1 < . . . < KM . The impact of x
(m)
t is measured by

∑M
i=1 βi, since it appears in all

the partial sums (or steps). The impact of x
(m)
t−j for K1 < j K2 is measured by

∑M
i=2 βi.

Hence, the distributed lag patterns is approximated by a number of discrete steps. The

more steps appear in the regressions the less parsimonious, which defies the purpose of the

MIDAS regression approach. Yet, stepfunction approximations can be very useful and their

ease to estimate can be very appealing. Besides Forsberg and Ghysels (2004), MIDAS with

stepfunctions is also used in Ghysels, Sinko, and Valkanov (2004) to study the impact of

economic news on the cross-section of returns.

2.4 Identification issues

The stepfunctions discussed in the previous subsection have another advantage compared

to the generic MIDAS regression appearing in equation (1). Suppose we want to test the

hypothesis that βi = 0 ∀ i ≥ 1 in equation (10). In equation (1) the same hypothesis,

namely that none of the regressors are significant, comes with further complications since

the slope parameter β1 and the parameters in θ, governing the polynomial B(L1/m; θ), are

not separately identified under the null. Therefore testing such hypothesis involves testing

problems where nuisance parameters vanish under the null hypothesis and this in turn affects

the asymptotic distribution of the resulting test statistic.

There is a considerable literature on how to deal with hypothesis testing in the presence of

parameters that are not identified under the null. If θ were known, then the testing problem

could be formulated easily, namely β1 can be estimated via OLS, given θ, and hence yield an

estimate β̂1(θ). Testing the null hypothesis that β1 = 0 would not be complicated, namely

under conventional regularity conditions a heteroskedasticity-robust t-test takes the form:

WT (θ) = T β̂1(θ)
′R(RV̂ ∗

T R−1R′β̂1(θ)
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where R is the selection matrix [01]′, and V̂ ∗

T is a HAC covariance estimator of the parameters

associated with the OLS regression. Under standard regularity conditions this statistic has

point-optimal interpretation and χ2
1 limiting distribution as T → ∞. Davies (1977a) and

(1977b) suggested testing the null by supθ∈Θ WT (θ), where Θ is the parameter space assumed

to be a bounded subset of the reals. Hansen (1996) derive a distributional theory based on a

local-to-null reparameterization: β1 = c/
√

T , with the null hypothesis now being c = 0 and

the alternative c 6= 0. To compute p-values, Hansen (1996) a simulation approach (see page

419). The solution of Davies (1977a) and (1977b) gives a straightforward, if conservative,

method for adjusting the testing statistic, whereas the Hansen (1996) simulation approach

should be less conservative.

3 Reverse Engineering the MIDAS Regression

One may still wonder whether it is necessary to use polynomials like the ones presented

in the previous section. In some cases, one can indeed formulate a time-series model for

the data sampled at frequency 1/m and compute the implied MIDAS regression which is

an exercise we shall call reverse engineering. The purpose of this section is to go through

such an exercise and to show that it is feasible only in some very special cases. However,

in general this approach appears to be an impractical alternative to MIDAS regressions.

The complexity of the reverse engineering will clarify the appeal of the route we advocate:

simplicity, flexibility, and parsimony.

We consider an example drawn from the volatility literature. To set the stage, let us

reconsider equation (1) where the right-hand side variable is y
(m)
t . In other words, yt is

observed at two frequencies. In addition, assume that both yt and y
(m)
t are generated by

a weak GARCH(1,1) process.4 More specifically, consider the so-called GARCH diffusion

which yields exact weak GARCH(1,1) discretization that are represented by the following

equations:

ln Pt − ln Pt−1/m = r
(m)
t = σ(m),tz

(m)
t

σ2
(m),t = φ(m) + α(m)[r

(m)
t−1/m]2 + β(m)σ

2
(m),t−1/m

(11)

4The terminology of weak GARCH originated with the work of Drost and Nijman (1993) and refers
to volatility predictions involving only linear functionals of past returns and squared returns. Obviously,
many ARCH-type models involve nonlinear functions of past (daily) returns. It would be possible to study
nonlinear functions involving distributed lags of high frequency returns. This possibility is explored later in
the paper.
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where z
(m)
t is Normal i.i.d. (0, 1) and r

(m)
t is the returns process sampled at frequency 1/m.5

Suppose we run regression (1) between the (monthly) sum of squared returns and (daily)

squared returns, i.e., we estimate

m∑
j=1

[r
(m)
t+j/m]2 = β0 + β1B(L1/m)[r

(m)
t ]2 + εt (12)

then the resulting MIDAS regression would be:

β0 = (m + ρ(m))φ(m)

β1 = [mφ(m) + δ(m)]ρ(m)

B(L1/m) = [mφ(m) + δ(m)]
∑

∞

k=0(β(m)/β1)
kLk

(13)

where ρ(m) = 1/(1−β(m)) and δ(m) = (1− (α(m) +β(m))
m)α(m)/(1−α(m)−β(m))(α(m) +β(m)).

Clearly, in this simple case, the MIDAS regression can be reverse engineered and would yield

estimates of the underlying weak GARCH(1,1) model or the GARCH diffusion.

The simplicity of this example may lead one to think that this path is promising. However,

as the following example shows, things become quite complicated when more realistic models

are used. In particular, many recent papers on volatility suggest that the process should be

modelled as a two-factor model. Ding and Granger (1996) and Engle and Lee (1999) suggest

a two-factor GARCH model. Two-factor stochastic volatility models have been proposed

by Alizadeh, Brandt, and Diebold (2002), Chacko and Viceira (1999), Gallant, Hsu, and

Tauchen (1999) and Chernov, Gallant, Ghysels, and Tauchen (2002). The latter study

provides a comprehensive comparison of various one- and two-factor continuous time models

and finds the log-linear two-factor model to be the most promising. Maheu (2002) shows

that the two-factor GARCH models can also take into account the long-range dependence

found in financial market volatility. In light of this, let us consider a two-factor GARCH

model where each factor follows a GARCH(1,1) process as specified in equations (1) through

(4) appearing in Appendix 6). This model yields a restricted GARCH(2,2) representation

5The GARCH parameters of (11) are related to the GARCH diffusion via formulas appearing in
Corollary 3.2 of Drost and Werker (1996). Likewise, Drost and Nijman (1993) derive the mappings between

GARCH parameters corresponding to processes with r
(m)
t sampled with different values of m.
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for (the observable process) h
(m)
t , namely:

h
(m)
t = (1 − ρ2(m))ω(m) + (α1(m) + α2(m))[ε

(m)
t−1/m]2

−(ρ1(m)α2(m) + ρ2(m)α1(m))[ε
(m)
t−2/m]2

+(ρ1(m) + ρ2(m) − α1(m) − α2(m))h
(m)
t−1/m

−(ρ1(m)ρ2(m) − ρ1(m)α2(m) − ρ2(m)α1(m))h
(m)
t−2/m

where ρi(m), ω(m), αi(m) determine the volatility components, for i = 1,2, and are explicitly

defined in Appendix 6.

Using the computations in equations (5) through (8), which appears in Appendix 6, we can

derive the implied MIDAS regression, for a case where m = 4, applicable to a monthly/weekly

MIDAS regression setting. The intercept of the MIDAS regression is:

β0 = (1 − ρ2(m))ω(m)(4 − (ρ1(m) + ρ2(m)) − ρ1(m)ρ2(m) − (ρ1(m) + ρ2(m))
2

−ρ1(m)ρ2(m) − (ρ1(m) + ρ2(m))ρ1(m)ρ2(m) − (ρ1(m) + ρ2(m))
3 − 2(ρ1(m) + ρ2(m))×

ρ1(m)ρ2(m) − (ρ1(m) + ρ2(m))
2ρ1(m)ρ2(m) − (ρ1(m)ρ2(m))

2 − (ρ1(m) + ρ2(m))
4

−3(ρ1(m) + ρ2(m))
2ρ1(m)ρ2(m) − (ρ1(m)ρ2(m))

2 − (ρ1(m) + ρ2(m))
3ρ1(m)ρ2(m)

−2(ρ1(m) + ρ2(m))(ρ1(m)ρ2(m))
2)

(14)

Despite the simplicity of the model and the low value of m we find that the implied MIDAS

polynomial is extremely complex and impractical. It appears in the Appendix as formula (9).

It is also worth noting that for stochastic volatility models the problem is even more difficult

since the volatility factors are latent and therefore need to be extracted from observed past

returns. This is an extremely difficult task to perform for which there are no analytical

closed-form solutions.6

The two examples in this section show that reverse engineering is not a practical solution,

except in some very limited circumstances. It should also be noted that this analysis is

confined to MIDAS regressions involving a pure autoregressive time-series setting without

additional regressors. If additional regressors are introduced, then reverse engineering

becomes simply impractical.

6See for instance Chernov, Gallant, Ghysels, and Tauchen (2002) for further discussion. Meddahi (2002)
derives a weak GARCH(2,2) representation of a two-factor SV model which could be used in this particular
case, but not in a more general setting.
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4 Variations on the MIDAS Regression Theme

In this section we cover a number of issues that come to the forefront when volatility dynamics

and its stylized facts are considered. In a first subsection we discuss some alternative

choices of volatility measures in the context of MIDAS regressions. The subject of nonlinear

equations and multivariate MIDAS regression models is vast and the purpose of the second

subsection is not to be comprehensive. The same observation applies to the final subsection

dealing with tick-by-tick applications.

4.1 More General Univariate MIDAS Linear Regression Models

A general univariate MIDAS linear regression model can be written as

yt+k = β0 +
K∑

i=1

L∑
j=1

Bij(L
1/mi)x

(mi)
t + εt+1 (15)

where Bij(L
1/mi) are polynomials parameterized by the vector θ which we suppress for

simplicity. We will also suppress the double index to Bij when its presence is redundant. For

the purpose of exposition we will most often consider yt+k with k = 1. Equation (15) is a

conventional distributed lag model when K = 1, L = 1 and m1 = 1 and a single polynomial

MIDAS model when K = 1, L = 1 and m1 > 1. Moreover, the MIDAS regression involves

a single time series process when x
(m1)
t = y

(m1)
t . We run a MIDAS regression where at least

two different sampling frequencies are combined when K > 1 and L = 1. A commonly

encountered case would be m1 = 1 and either one or more mi < 1. Such a MIDAS regression

would combine for instance monthly (daily) with daily (intra-daily) data to predict future

monthly (daily) series.

MIDAS regressions with L > 1 deserve some attention and to facilitate the discussion let us

assume that K = 1 with m1 > 1. This case corresponds to having two or more polynomials

with parameters θi = (θi
1, θ

i
2), i = 1, . . . , L that involve the same operator L1/m1 . To further

simplify the discussion, suppose that L = 2 and that θ1
1 = 1, θ1

2 > 1, θ2
1 > 1 and θ2

2 > θ2
1. We

plot one such example in Figure 3 using a mixture of two Beta lag polynomials. The first

polynomial, plotted in the top panel, is declining, whereas the second one, plotted in the

middle panel, is “hump shaped.” Mixing the two polynomials produces a third polynomial,

plotted in the bottom panel. From this example, it becomes clear that mixing polynomials

13



with the same high frequency lag operator would allow us to capture seasonal patterns or

rich non-monotone decay structures. However, the price for this flexibility will be a less

parsimonious specification as L increases.

4.2 Non-Linear MIDAS Regression Models

So far we carried out the analysis with the basic univariate MIDAS regression model. We

can further generalize the regression appearing in (15) to:

yt+k = β0 + f(
K∑

i=1

L∑
j=1

Bij(L
1/mi)g(x

(mi)
t )) + εt+1 (16)

where the functions f and g can either be known functions or else parameter dependent.

For example, in many volatility applications one takes the log transformation, i.e. one tries

to predict future log volatility (yt+k) and therefore takes f equal to log, with g(x) = x. One

parametric choice for g of interest in the context of volatility is the following:

yt+k = β0 +

K∑
i=1

L∑
j=1

Bij(L
1/mi)(r

(m)
t + θL|r(m)

t |)2 + εt+1 (17)

The above specification is very much inspired by the EGARCH model of Nelson (1991). We

reserve a particular parameter θL to test for leverage effects, when zero we obtain the linear

MIDAS regression model. A non-zero θL entails a response for positive returns that differs

from that of negative returns. The parameter θL is estimated jointly with the polynomial

parameters θ and any other parameters appearing in the MIDAS regression model.

Equation (17) could be viewed as a nonlinear MIDAS regression model that allows us to

investigate a particular issue, namely leverage. There are other models of this kind that

can be tailored to a specific question and we leave this topic for further research. It should

parenthetically be noted that the specification in (17) also applies to the risk-return trade-

off equation and possibly other settings as well. Ghysels, Santa-Clara, and Valkanov (2005)

indeed find that θL is significant with monthly/daily MIDAS regression regressions.

Another choice of a parameter dependent function g in (16) is the Box-Cox transformation,

which in the context of ARCH type models has been considered by Higgins and Bera

(1992), Ding, Granger, and Engle (1993), Hentschel (1995), and Duan (1997). In general,
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non-linearities in MIDAS regressions can be handled without complications using standard

econometric approaches.

4.3 Tick-by-Tick Applications

Unequally spaced data is a topic of interest in finance and other areas (see e.g. Äıt-Sahalia

and Mykland (2003), Duffie and Glynn (2001), Dufour and Engle (2000), Engle (2000),

Ghysels and Jasiak (1998), Renault and Werker (2002) for some recent examples and further

references). The idea of a MIDAS regression where polynomial weights are governed by

hyperparameters is not necessarily limited to equal divisions of the reference interval. Hence,

instead of using the lag operator L1/m one can use an operator Lτ where τ is real-valued

instead of a rational number. When the MIDAS polynomial is for example of the Almon-type

then the weight for the τ th lag becomes:

b(k; θ) =
eθ1k+...+θQkQ

∑K
k=1 eθ1k+...+θQkQ

where typically k is measured in time elapsed like a lag operator. Consequently, if we have

a data set of transactions data and are interested in predicting tomorrow’s volatility (t + 1)

using all the transactions data of the previous day or part of the previous day we can use,

say, [r(t,τi)]
2, where the index (t, τi) refers to the time between to the close on day t and

transaction i on day t.

The unequally spaced applications have the virtue that one does not estimate the MIDAS

polynomial on a fixed, equally-spaced grid, but rather using past random events. Obviously,

it is not clear that microstructure noise may prevent us from putting this idea to work in

the context of volatility applications. There are, however, other areas of interest pertaining

to the microstructure of the market, such as measuring the price impact of trades, where

following a MIDAS approach applied to unequally spaced data may be useful.
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4.4 Multivariate MIDAS Regression Models

We turn now to multivariate specifications. If we consider a linear MIDAS, we can further

generalize the regression appearing in (15) to:

Yt+1 = B0 +

K∑
i=1

L∑
j=1

Bij(L
1/mi)X

(mi)
t + εt+1 (18)

where Y, ε, and X are n-dimensional vector processes, B0 a n-dimensional vector and Bij

are n × n matrices of polynomials. The main issue of course is how to handle parameter

proliferation in multivariate settings. One approach would be to take all the off-diagonal

elements as controlled by one polynomial whereas the diagonal elements have a common

second polynomial. Such restrictions may not always be appropriate. Ultimately, the

restrictions that are needed to reduce the number of parameters will be dictated by the

application at hand.

Multivariate applications in the context of volatility would typically involve trading volume.

In principle, one can consider a MIDAS regression model explaining jointly future trading

volume and future volatility by past intra-daily trading volume and squared returns. This

application is very much in the spirit of univariate MIDAS regression volatility models.

Considering multivariate MIDAS regressions (18) allows us to address Granger causality

issues. It is of particular interest, because the notion of Granger causality, as put forth

in Granger (1969), is subject to temporal aggregation error that can disguise causality or

actually create spurious causality when a relevant process is omitted.7

While the MIDAS regression framework does not necessarily resolve all aggregation issues,

it might provide a convenient and powerful way of testing for Granger causality. Indeed, in

typical VAR models based on same-frequency regressions, Granger causality may be difficult

to detect due to temporal aggregation on the right-hand side variables. The restrictions on

the polynomials to test for causality are very much the same as those in the regular Granger

causality tests. It is also worth noting that MIDAS regression polynomials, univariate or

multivariate, can be two-sided, i.e., they can involve future realizations of x(m). This allows

us to conduct Granger causality tests as suggested by Sims (1972).

The multivariate specifications include systems of equations that can address ARCH-in-mean

7There is a considerable literature on the subject. See, e.g. Breitung and Swanson (2000) for a recent
discussion.
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effects. In particular, consider the system

rt+1 = b10 + b1B1(L
1/m)[r

(m)
t ]2 + ε1,t+1 (19)

Qt,t+1 = b20 + b2B2(L
1/m)[r

(m)
t ]2 + ε2,t+1

where the first equation in (19) refers to the return-volatility tradeoff and the second is

a volatility predictor, i.e. Qt,t+1 is next period’s realized volatility. If we restrict the

polynomials in the two equations to be equal and estimate the system simultaneously then

we have a model like the ARCH-in-mean specification. However, the flexibility of MIDAS

regression models also allows us to estimate the first and second equation in (19) separately,

and hence one can test the imposed polynomial restriction.

We can conclude this section with the observation that the MIDAS regressions are very

flexible. While we have attempted to be comprehensive in the variations of MIDAS

specifications, there are certainly interesting models that we have omitted. As with same-

frequency regressions, the specification of the model, be it multivariate or non-linear, will be

guided by the researchers’ agenda and ingenuity.

5 Two Empirical Examples

In this section we report on two empirical applications involving MIDAS regression models.

We revisit (1) the risk-return trade-off and (2) volatility prediction. Regarding the risk-

return trade-off, we present a variation of the results in Ghysels, Santa-Clara, and Valkanov

(2005) and Ghysels, Santa-Clara, and Valkanov (2003). Regarding volatility, we study the

impact of microstructure noise on volatility prediction. A subsection is devoted to each topic.

5.1 Revisiting the Risk-Return Tradeoff

In this subsection we revisit Merton’s (1973) ICAPM model, which suggests that the

conditional expected excess returns on the stock market should vary positively with the

market’s conditional variance:

Et[Rt+1] = µ + γV art[Rt+1], (20)
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where γ is the coefficient of relative risk aversion of the representative agent. This relation

has received a lot of attention in empirical finance. The main difficulty in testing the ICAPM

resides in the fact that the conditional mean and variance of the market are not observable

and must be filtered from past returns. To quickly review the literature, Baillie and

DeGennaro (1990), French, Schwert, and Stambaugh (1987), Chou (1992), and Campbell and

Hentschel (1992) find a positive but insignificant relation between the conditional variance

and the conditional expected return. Using different methods, Campbell (1987) and Nelson

(1991) find a significantly negative relation, whereas Glosten, Jagannathan, and Runkle

(1993), Harvey (2001), and Turner, Startz, and Nelson (1989) find both a positive and a

negative relation depending on the method used. Other related papers are Chan, Karolyi,

and Stulz (1992), Lettau and Ludvigson (2002), Merton (1980), and Pindyck (1984).

In a recent paper, Ghysels, Santa-Clara, and Valkanov (2005) estimate equation (20) using

monthly returns as proxies for expected returns and daily squared returns in the estimation

of the conditional variance. In the specification of the MIDAS weights, they use the

Exponential Almon Lag (2) of second degree. Using CRSP value weighted returns from

January 1928 to December 2000, they find a positive and statistically significant risk-return

tradeoff. The authors argue that their significant and positive results obtain because their

MIDAS specification allows them to use monthly returns in specification of the mean and

daily squared returns in the estimation of the variance.

In another MIDAS paper, Ghysels, Santa-Clara, and Valkanov (2003) find that volatility can

be forecasted using daily regressors other than squared returns. They use MIDAS regressions

to predict realized volatility at weekly, two-weeks, three-weeks, and monthly horizons. The

authors show that better in- and out-of-sample estimates of the volatility are obtained when

the predictors on the right-hand side are daily absolute returns, daily realized volatilities,

daily ranges, and daily realized powers. The exact definitions of these predictors are provided

below. The daily realized volatility, daily ranges, and daily realized powers are obtained from

intra-daily (5 − minute) data of the Dow Jones index returns over the period from April

1993 to October 2003. Ghysels, Santa-Clara, and Valkanov (2003) show that the best overall

predictor of conditional volatility is the realized power and that, not surprisingly, better

forecasts are obtained at shorter (weekly) horizons.

In this subsection, we address several outstanding questions that arise from the previously

cited papers. First, is it possible to uncover a positive risk-return relation at frequencies from

one week to one month, given that volatility is well forecasted at high frequencies, but also
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that our measure of expected returns grows increasingly noisier as the horizon decreases?

Second, can we improve on the estimation of the tradeoff by using predictors other than

squared daily returns? Third, would the results change if the parameters are specified as a

Beta Lag (3) function instead of an Exponential Almon Lag? Finally, there is also a question

of whether the Ghysels, Santa-Clara, and Valkanov (2005) results can be replicated using a

different dataset and a shorter sample period.

5.1.1 Methodology using MIDAS Regressions

We answer these questions by revisiting the risk-return equation (20) using the Dow Jones

index returns from April 1993 to October 2003. To estimate risk-return tradeoff parameter

γ using data at frequencies higher than a month, we obtain weekly, two-weeks, three-weeks,

and monthly returns from the 5 − minute price series. We denote the Dow Jones index

return over a horizon H as rt+H,t, similarly, we denote by rt day t return and rit the ith

5 − minute intra-daily return. We study horizons H of 5, 10, 15, and 22 days, respectively.

It is important to point out that returns are observed only once during a unit of time as

indicated by their subscript.

We consider the following regressions:

rt+H,t = µG
H + γG

K∑
k=0

B(k; θG
m)r2

t−k + εG
mt (21)

Expression (21) is a projection of rt+H,t onto lagged daily squared returns which corresponds

to the ARCH/GARCH-in-mean class of models (under some parameter restrictions). The

second equation determines the conditional volatility prediction, defining the MIDAS

polynomial
∑K

k=0 B(k; θG
m)r2

t−k as the prediction of volatility. Next we study two similar

models:

rt+H,t = µa
H + γa

K∑
k=0

B(k; θa
m)|rt−k| + εa

mt (22)

rt+H,t = µr
H + γr

K∑
k=0

B(k; θr
m)[hi − lo]t−k + εr

mt (23)

Equations (22) and (23) involve projecting rt+H,t onto past daily absolute returns and daily
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ranges, respectively, which are two alternative measures of volatility. Therefore they are

natural candidate regressors in the MIDAS specification (see e.g. Davidian and Carroll

(1987), Ding, Granger, and Engle (1993), Alizadeh, Brandt, and Diebold (2002) and Gallant,

Hsu, and Tauchen (1999)).

In the next equation (24), past RVt are used to predict rt+H,t as well as future realized

volatility. Examples of such models of volatility have been advocated by Andersen,

Bollerslev, and Diebold (2003) (and references cited therein).

rt+H,t = µQ
H + γQ

K∑
k=0

B(k; θQ
m)RVt−k + εQ

mt (24)

The last regression (25) involves “realized power” defined as
∑m

j=1 r2
j,t, which has been

suggested by Barndorff-Nielsen and Shephard (2003) and Barndorff-Nielsen, Graversen, and

Shephard (2004). More specifically, Barndorff-Nielsen and Shephard suggest to consider the

sum of high-frequency absolute returns, or the realized power variation Pt, which is defined

as
∑m

j=1 |rj,t|. Regression (25) projects future returns on past daily realized power.

rt+H,t = µp
H + γp

K∑
k=0

B(k; θP
m)P̃

(m)
t−k,t−k−1 + εp

mt (25)

We will estimate all five specifications under the alternative assumptions that the lag

coefficients B(k; θ) follow the Beta (3) or the Exponential Almon (2) parameterization.8

The latter specification has been used by Ghysels, Santa-Clara, and Valkanov (2005).

By comparing the Beta and Exponential Almon results, we investigate whether the

parameterizations are flexible enough to capture the dynamics of the underlying processes. If

the estimated coefficients of risk aversion γ are similar across the two specifications, then this

a strong indication that they are both successful at capturing the shape of the polynomial

weights.

It is also important to point out that, while the parametric form of the lag coefficients might

be the same across regressions, their shape will not be the same from predictor to predictor

and across horizons because the parameters θ will be different. As discussed at length above,

the flexible parametric specification of the lag weights is one of the defining characteristics

8Due to space limitations we will only report the Exponential Almon lag parameterization, the Beta one
is available on the web at http://www.unc.edu/~eghysels/papers/MIDAS_ER4.pdf.
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of MIDAS regressions. For the estimates of γ to be directly comparable, all measures of

volatility are re-scaled to be in the same units for all horizons and across predictors.

Equations (21) - (25) are estimated at various frequencies using NLS. To correct for

heteroscedasticity we are using Newey-West corrected standard errors. The correction

window is chosen using the covariance matrix of the parameter estimates as A−1
T BT A−1

T /T ,

where A−1
T is an estimate of the Hessian matrix of the likelihood function and BT is an

estimate of the outer product of the gradient vector with itself applying the Bartlett kernel

window m = floor((4T/100)2/9).

5.1.2 Empirical results

The empirical results for equations (21) - (25) at one-, two-, three-, and four-week frequencies

appear in Table 1 (for Exponential Almon Lag weights (3)). The first two columns of the

table reports the intercept coefficient in expression (20) as well as the main parameter of

interest, γ. Newey-West t-statistics of γ under the null of no risk-return tradeoff are

shown in the third column. We report the mean absolute deviation (MAD) as a measure

of goodness of fit (fourth column), because it provides more robust results in the presence

of heteroskedasticity. The R2s are reported in the fifth column. The estimates of θ are not

reported since they do not have an economic interpretation. However, they determine the

shape of the polynomial lags B(k; θ) which are of clear economic interest. Hence, given the

estimates of θ, we report what fraction of the polynomial lags is placed on the first five

daily lag (column six), daily lags 6 to 20 (column seven), and lags beyond the first twenty

days (column eight). The weights are immediately available as fractions, because they have

previously been normalized to sum up to one.

The results in the table provide interesting answers to the questions that we raise in the

previous sub-section. First, at monthly frequency, there is a positive and statistically

significant risk-return tradeoff in the Dow Jones data for squared returns and absolute

returns only. The estimates of γ for the Exponential Almon and Beta polynomials (that

latter not reported in Table 1) are between 2.504 and 3.444 which is well within the bounds

of economically reasonable levels of risk aversion (see Hall (1988) and references therein).

This result also confirms the findings of Ghysels, Santa-Clara, and Valkanov (2005) who

find a γ estimate of 2.6 using a different dataset, shorter sample, and Exponential Almon

MIDAS weights. In addition, the γ estimated by the Exponential Polynomial is statistically
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more significant than the Beta Polynomial gamma. Surprisingly, the estimates of monthly γ

computed using other measures of volatility are not significant but positive and within the

reasonable levels of risk aversion. This finding contradicts the evidence from Ghysels, Santa-

Clara, and Valkanov (2003) according to which the power variation and the realized volatility

predict future volatility better than the daily squared and absolute returns. For the Beta

Polynomial (not reported) the relation between conditional mean and conditional variance

is positive and statistically significant for most of the volatility measures for one-, two-, and

three-week horizons except for the realized volatility measure for three-week horizon and for

the range measure for two-week horizon. The findings are better than for the Almon lag

polynomial as far as statistical significance is concerned. It appears therefore that we recover

the results of Ghysels, Santa-Clara, and Valkanov (2005) with Dow-Jones data, yet ironically,

they are only obtained with the Beta Polynomial, whereas the Almon lag polynomial only

seems to work for the original setting of squared returns. In a sense, this is not so surprising

since Ghysels, Santa-Clara, and Valkanov (2003) advocate the use of the Beta Polynomial

when predicting volatility with high-frequency based volatility measures. It shows that there

are sometimes differences in the use of polynomials. We find that the power variation predicts

worse the risk-return trade-off than other volatility measures. This also finding contradicts

the results in Ghysels, Santa-Clara, and Valkanov (2003) showing that daily realized power

is a significantly better in- and out-of-sample predictor of future volatility. They also find

that daily range and daily quadratic variation significantly outperform squared daily returns

as predictors of future variance. There are at least two interpretations for this result. It

may appear that for the risk-return tradeoff the superiority of volatility forecasts seems not

to matter that much for this sample. Or, it may also be true that these variables forecast

a component of the variance that does not command compensation in terms of expected

returns. The results in the tables are not a direct test of any particular hypotheses, but they

are sufficiently robust across predictors and across horizons to lead us to believe that this

finding merits more careful analysis.

Overall, the direct comparison between the results Exponential Almon Beta polynomials

conveys a mixed message. On the one hand, the MAD goodness of fit measure demonstrates

that there is no difference between volatility measures and polynomial specifications. On

the other hand, comparison between short-time horizons γ coefficients demonstrates better

performance of the Beta polynomial specification. We interpret this results as an indication

that the Beta polynomial could be a better choice for the higher frequency models, whereas

the Exponential lag polynomial could be a better choice for the lower frequency. Overall the
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differences are not so spectacular and one may wonder whether there are benefits using only

the relatively short samples of data for which intradaily data are available, as opposed to

the long span of daily data in the Ghysels, Santa-Clara, and Valkanov (2005) paper.

Next, we turn to Figures 4 and 5. The top two panels show respectively the Beta and

Exponential polynomials for the one week horizon and four week horizon. The top two

plots show the weights obtained with the empirical estimates of equations (21)- (25). In

Figure 4 we note that for realized power and absolute daily returns, the Beta and Almon

polynomials differ slightly across the various other regressors. At the four week horizon we

observe a hump-shaped pattern for realized power and also to a certain degree for daily

squared returns. It is also worth noting that the most regressors, and in particular realized

power, involve polynomials putting hardly any weight on longer lags. The four week horizon

quadratic variation polynomial is also quite different for the Beta and Almon polynomials.

The daily squared return decay pattern is similar to the one reported in Ghysels, Santa-

Clara, and Valkanov (2005), although the latter used a different estimator. Unlike the one

week horizon polynomials, we now observe more weight is put on the longer lags.

Finally, as expected, we also observe int Table 1) that the MAD increases steadily with the

horizon for all predictors. We also computed the MAD for a constant return prediction, see

Table 2. It is widely know that returns are hard to predict, and indeed with the regression

MAD results are compared with those unconditional return prediction MAD we do not see

much of an improvement. This is another way of saying that return predictions at such short

horizons usually lead to low R2s. Volatility predictions, in contrast yield much higher R2s

and this is the topic of the next subsection.

5.2 Volatility forecasting and microstructure noise

In this subsection we study forecasting future volatility using past volatility measures

unadjusted and adjusted for microstructure noise. The literature on the subject of market

microstructures and their impact on asset prices is considerable. The area covers many

aspects, ranging from: (1) price discreteness issues (see e.g., Harris (1990) (1990), Harris

(1991)); (2) asymmetries in information (see e.g., Glosten and Milgrom (1985), Easley and

O’Hara (1987), Easley and O’Hara (1992)); and (3) bid-ask spreads (see e.g., Roll (1984).)

Therefore, for a variety of reasons – including most prominently those mentioned above –
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the efficiency price process is concealed by a veil of microstructure noise.9

The availability of high-frequency data in recent years led to extensive empirical research on

methods for studying the stylized facts and possibly correcting asset returns for the presences

microstructure noise. Since our focus is on predicting future volatility using the type of

regressions discussed in the previous subsection, we focus on corrections for microstructure

noise of RVt. There are many ways to approach the problem of adjusting increments in

quadratic variation for microstructure noise. A kernel-based correction was first introduced

by Zhou (1996) and further developed by Hansen and Lunde (2003), Barndorff-Nelsen,

Hansen, Lunde, and Shephard (2004) among others. Corrections based on sub-sampling

were introduced in Zhou (1996), Zhang, Mykland, and Äıt-Sahalia (2005b) and Zhang

(2005). Bandi and Russell (2005b) and Bandi and Russell (2005a) studied optimal sampling

in the presence of microstructure noise. Filtering, as an approach to microstructure noise

correction, was applied in Ebens (1999), Andersen, Bollerslev, Diebold, and Ebens (2001),

Maheu and McCurdy (2002) and Bollen and Inder (2002). Except for the work of Bollen and

Inder which uses the autoregressive filter, all other studies have used the moving average

filter. We will primarily use the corrections suggested in Hansen and Lunde (2003), who

present a comprehensive study of the recent developments.

5.2.1 Methods and data

To compare the performance of the different volatility measures, we use two adjusted

(RV 5min, RV 30min) and two unadjusted (RV 5min
AC1

, RV 1tick
ACNW30

) volatility measures. The

subscripts 5min and 30min denote the sampling frequency of the returns used in the

construction of realized volatility. By definition, all returns used in these estimators are

equally spaced. Under the assumption that the microstructure noise is iid, RV 5min
AC1

proposed

by Zhou (1996) provides a consistent estimator of the daily variance. Adopting the Hansen

and Lunde (2005) modification of the above estimator, we define (dropping the day t

subscript for notational convenience):

RV y
AC1

= γ̃y
0 + 2γ̃y

1 , γ̃
y
j =

m

m − j

m−j∑
i=1

ri,yri−1,y

where m is the number of 5-minutes returns per day (for DJIA stocks this number is 79).

9For additional references see O’Hara (1995), Hasbrouck (2004).
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Instead of calendar-time (equally spaced time intervals), the RV 1tick
ACNW30

estimator uses

transactions-based data which is also referred to as tick-time. Hence, the 1tick estimator

makes use of all the available high-frequency data. The subscript ACNW, reflects the fact

that it estimator uses Newey-West kernel. Hansen and Lunde define the 1tick estimator as

follows

RV 1tick
ACNWk

= γ̃1tick
0 + 2

k∑
j=1

γ̃1tick
j + 2

k∑
j=1

k − j

k
γ̃1tick

j+k , (26)

γ̃1tick
j =

N

N − j

N−j∑
i=1

ri,1tickri−1,1tick

where N is the number of observations available for the current day; N/(N − j) is a scaling

factor introduced to compensate for the ”missing” autocovariance terms.

To assess the forecasting performance, we follow the recent work of Ghysels, Santa-Clara,

and Valkanov (2003) who use MIDAS regressions to predict realized volatility at weekly,

two-weeks, three-weeks, and monthly horizons. In the context of forecasting the increments

in quadratic variation, denoted RV x
y,(t+H,t) for horizon H with x and y taking the values

above - for example x = 5min and y = AC1 for the Zhou corrected RV estimates. For the

various measures we consider the following regressors:

RV x
y,(t+H,t) = µQ

H + φQ
H

kmax∑
k=0

bQ
H(k, θ)RV x

y,(t−k) + εQ
Ht (27)

Hence, we compare how correcting for microstructure noise improves the forecasts of future

corrected increments and consider H equal to one week. Note that we consider uncorrected

measures of quadratic variation on both sides of equation (27). We use a Beta polynomial

which is particularly suitable for the application at hand.

The AA (Alcoa Inc) and MSFT (Microsoft) stocks are used as empirical examples. Figure

4 displays the daily volatility dynamics using the RV 5min
AC1

volatility measures for the sample

considered by Hansen and Lunde (2005). The summary statistics for these two stocks are

in Table 3. The time series and summary statistics clearly demonstrate that the volatility

dynamics of the first part of the sample is quite different from the dynamics of the second

one. There is evidence of a structural change or regime switch, and this leads us to study

not only the entire sample but also two subsamples, respectively three and two years long.
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For example, the sample mean of the daily series for the first three years of the AC1-corrected

AA stock (trades returns) is 5.98 whereas for the last two years is 2.54. For the MSFT stock

the corresponding numbers are 6.15 and 1.47.

Our analysis covers two sample sizes and two measures of stock returns for every stock. We

start with the entire sample, i.e. from January 3, 2000 – December 31, 2004. The returns are

computed using mid-quotes prices and trading prices. The results covering both definitions

of returns and covering both samples appear in Tables 4 and 5 where each row corresponds

to the same left hand side variable discussed above but with different explanatory variables

and sample sizes.

5.2.2 Results

The empirical results pertaining to equation (27) a one week prediction horizon appear in

Table 4 (for the AA) and in Table 5 (for MSFT).

For the AA stock, the main finding is that the unadjusted RV 5min measure has the best

explanatory power across all models and samples. The difference between the best and the

worst (RV 30min) predictors changes from 8.6% to 15.5% depending on the sample, returns,

construction method, and LHS variable. In addition, the RV 5min
AC1

and the RV 1tick
ACNW30

have

approximately the same explanatory power despite the fact that the former is corrected only

for independent noise, whereas the latter allows for noise dependence.

The results for MSFT stock (Table 5) are similar. The unadjusted RV 5min measure has the

best explanatory power across all models and samples except for the whole sample where the

model with RV 5min
AC1

does marginally better (the difference only being 1.1%). The difference

between the worst and the best forecast varies from .5% to 8% which is much smaller than

the respective difference for the AA stock. For the 2000 – 2002 subsample RV 30min is the

worst estimator. However, this is not true for the whole MSFT sample.

Therefore, for these two stocks, we find that the noise-corrected volatility measures perform,

on average, worse than unadjusted five minutes volatility measures. We can speculate that

the noise for the five minutes data is negligible compared to the signal, and the gains from

the adjustment are lower than the costs (in terms of the MSE). Another explanation is that

the MIDAS regression is more efficient in extracting the signal from the unadjusted daily

realized volatility measures compared to the noise-corrected schemes.
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To conclude, we turn again to Figures 4 and 5. The lower panel show respectively the RV 5min

and RV 1tick
ACNW30

regression polynomial estimates with the various past realized volatility

measures. We note that the estimated polynomial weights do not differ much across the

various regressors. This finding is in line with Ghysels, Santa-Clara, and Valkanov (2003).

The implication is that the differences in prediction performance comes entirely from the

choice of regressors, not the weighting schemes.

6 Conclusions

MIDAS regression models were recently introduced Ghysels, Santa-Clara, and Valkanov

(2002), (2003), (2005). This paper complements the current MIDAS literature by offerings

some new theoretical and empirical results. To explicitly demonstrate the need for mixed-

data sampling regressions, we show that the MIDAS results can be obtained with the

usual same-frequency time series regressions only in very specific cases. For more general

models, the MIDAS regressions clearly dominate. We also introduce several new MIDAS

specifications that include more general mixed-data structures, non-linearities, unequally

spaced observations, and multiple equations. Some of these specifications are straightforward

to estimate, other present particular challenges. One particularly attractive approach is

called MIDAS with stepfunctions. Although it sometimes defies the idea of parsimony, it

has the advantage of only involving linear regression models.

While we discuss a large variety of issues, there are clearly some areas that remain unresolved.

These areas pertain to multivariate and tick-by-tick applications, as well as long memory,

seasonality and other common time series themes like (fractional) co-integration.
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Appendix: Reverse Engineering MIDAS Regressions –

A Two-Factor Model Example

We consider a two factor GARCH model, namely:

h
(m)
t = h

(m)
1t + h

(m)
2t (1)

with the components as follows:

h
(m)
1t = ω(m) + ρ1(m)h

(m)
1t−1/m + α1(m)µ

(m)
t−1/m (2)

and

h
(m)
2t = ρ2(m)h

(m)
2t−1/m + α2(m)µ

(m)
t−1/m (3)

where µ
(m)
t = [ε

(m)
t ]2 − h

(m)
t and returns are written as:

r
(m)
t = a(m) + ε

(m)
t (4)

where a(m) is the conditional mean, ε
(m)
t = σ

(m)
t z

(m)
t and z

(m)
t is i.i.d. (0, 1) while h

(m)
t =

[σ
(m)
t ]2. The component GARCH model implies a restricted GARCH(2,2) representation for

(the observable process) h
(m)
t specified in 14. Using this representation we can compute the

following:

EL[h
(m)
t+1/m|Ih(m)

t ] = (1 − ρ2(m))ω(m)(1 − (ρ1(m) + ρ2(m)) − ρ1(m)ρ2(m)) + (ρ1(m) + ρ2(m))h
(m)
t

+ρ1(m)ρ2(m)h
(m)
t−1/m − (ρ1(m) + ρ2(m) − α1(m) − α2(m))µt

+(ρ1(m)ρ2(m) − ρ1(m)α2(m) − ρ2(m)α1(m))µt−1/m

(5)

EL[h
(m)
t+2/m|Ih(m)

t ] = (1 − ρ2(m))ω(m)(1 − (ρ1(m) + ρ2(m))
2 − ρ1(m)ρ2(m) − (ρ1(m) + ρ2(m))×

ρ1(m)ρ2(m)) + ((ρ1(m) + ρ2(m))
2 + ρ1(m)ρ2(m))h

(m)
t + (ρ1(m) + ρ2(m))×

ρ1(m)ρ2(m)h
(m)
t−1/m − ((ρ1(m) + ρ2(m))(ρ1(m) + ρ2(m) − α1(m) − α2(m))

+(ρ1(m)ρ2(m) − ρ1(m)α2(m) − ρ2(m)α1(m)))µt

+ρ1(m)ρ2(m)(ρ1(m)ρ2(m) − ρ1(m)α2(m) − ρ2(m)α1(m))µt−1/m

(6)
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EL[h
(m)
t+3/m|Ih(m)

t ] = (1 − ρ2(m))ω(m)(1 − (ρ1(m) + ρ2(m))
3 − 2(ρ1(m) + ρ2(m))ρ1(m)ρ2(m)

−(ρ1(m) + ρ2(m))
2ρ1(m)ρ2(m) − (ρ1(m)ρ2(m))

2) + ((ρ1(m) + ρ2(m))
3

+2(ρ1(m) + ρ2(m))ρ1(m)ρ2(m))h
(m)
t + ((ρ1(m) + ρ2(m))

2ρ1(m)ρ2(m)

+(ρ1(m)ρ2(m))
2)h

(m)
t−1/m − ((ρ1(m) + ρ2(m))

2(ρ1(m) + ρ2(m) − α1(m) − α2(m))

−ρ1(m)ρ2(m)(ρ1(m) + ρ2(m) − α1(m) − α2(m))

+(ρ1(m) + ρ2(m))(ρ1(m)ρ2(m) − ρ1(m)α2(m)

−ρ2(m)α1(m)))µt + ((ρ1(m) + ρ2(m))
2(ρ1(m)ρ2(m)

−ρ1(m)α2(m) − ρ2(m)α1(m)) + ρ1(m)ρ2(m)×
(ρ1(m)ρ2(m) − ρ1(m)α2(m) − ρ2(m)α1(m)))µt−1/m

(7)

EL[h
(m)
t+4/m|Ih(m)

t ] = (1 − ρ2(m))ω(m)(1 − (ρ1(m) + ρ2(m))
4 − 3(ρ1(m) + ρ2(m))

2ρ1(m)ρ2(m)

−(ρ1(m)ρ2(m))
2 − (ρ1(m) + ρ2(m))

3ρ1(m)ρ2(m) − 2(ρ1(m) + ρ2(m))(ρ1(m)ρ2(m))
2)

+((ρ1(m) + ρ2(m))
4 + 3(ρ1(m) + ρ2(m))

2ρ1(m)ρ2(m) + (ρ1(m)ρ2(m))
2)h

(m)
t

+((ρ1(m) + ρ2(m))
3ρ1(m)ρ2(m) + 2(ρ1(m) + ρ2(m))(ρ1(m)ρ2(m))

2)h
(m)
t−1/m

−((ρ1(m) + ρ2(m))
3(ρ1(m) + ρ2(m) − α1(m) − α2(m))

+(ρ1(m) + ρ2(m))
2(ρ1(m)ρ2(m) − ρ1(m)α2(m) − ρ2(m)α1(m))

−2(ρ1(m) + ρ2(m))ρ1(m)ρ2(m)(ρ1(m) + ρ2(m) − α1(m)

−α2(m)) + ρ1(m)ρ2(m)(ρ1(m)ρ2(m) − ρ1(m)α2(m) − ρ2(m)α1(m)))µt

+((ρ1(m) + ρ2(m))
3 + 2(ρ1(m) + ρ2(m))ρ1(m)ρ2(m)(ρ1(m)ρ2(m)

−ρ1(m)α2(m) − ρ2(m)α1(m)))µt−1/m

(8)

Then the MIDAS projection equation has the following expression:

β1B(L1/m) = ((ρ1(m) + ρ2(m)) + (ρ1(m) + ρ2(m))
2 + ρ1(m)ρ2(m) + (ρ1(m)+

ρ2(m))
3 + 2(ρ1(m) + ρ2(m))ρ1(m)ρ2(m)

+(ρ1(m) + ρ2(m))
4 + 3(ρ1(m) + ρ2(m))

2ρ1(m)ρ2(m) + (ρ1(m)ρ2(m))
2)

+(ρ1(m)ρ2(m) + (ρ1(m) + ρ2(m))ρ1(m)ρ2(m) + (ρ1(m) + ρ2(m))
2ρ1(m)ρ2(m)

+(ρ1(m)ρ2(m))
2 + (ρ1(m) + ρ2(m))

3ρ1(m)ρ2(m)

+2(ρ1(m) + ρ2(m))(ρ1(m)ρ2(m))
2)L1/m

+((ρ1(m)ρ2(m) − ρ1(m)α2(m) − ρ2(m)α1(m)) − (ρ1(m) + ρ2(m))×
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(ρ1(m) + ρ2(m) − α1(m) − α2(m)) − (ρ1(m) + ρ2(m) − α1(m) − α2(m))

−(ρ1(m) + ρ2(m))
2(ρ1(m) + ρ2(m) − α1(m) − α2(m))

−ρ1(m)ρ2(m)(ρ1(m) + ρ2(m) − α1(m) − α2(m))

+(ρ1(m) + ρ2(m))(ρ1(m)ρ2(m) − ρ1(m)α2(m) − ρ2(m)α1(m))

+(ρ1(m) − ρ2(m))
3(ρ1(m) + ρ2(m) − α1(m) − α2(m)) + (ρ1(m)

+ρ2(m))
2(ρ1(m)ρ2(m) − ρ1(m)α2(m) − ρ2(m)α1(m))

−2(ρ1(m) + ρ2(m))ρ1(m)ρ2(m)(ρ1(m) + ρ2(m) − α1(m) − α2(m))

+ρ1(m)ρ2(m)(ρ1(m)ρ2(m) − ρ1(m)α2(m) − ρ2(m)α1(m)))×
(1 − (ρ1(m) + ρ2(m))L

1/m + ρ1(m)ρ2(m)L
2/m)/

(1 − (ρ1(m) + ρ2(m) − α1(m) − α2(m))L
1/m + (ρ1(m)ρ2(m) − ρ1(m)α2(m) − ρ2(m)α1(m))L

2/m)

+((ρ1(m)ρ2(m) − ρ1(m)α2(m) − ρ2(m)α1(m)) + ρ1(m)ρ2(m)×
(ρ1(m)ρ2(m) − ρ1(m)α2(m) − ρ2(m)α1(m))+

(ρ1(m) + ρ2(m))
2(ρ1(m)ρ2(m) − ρ1(m)α2(m) − ρ2(m)α1(m)) + ρ1(m)ρ2(m)(ρ1(m)ρ2(m)

−ρ1(m)α2(m) − ρ2(m)α1(m)) + (ρ1(m) + ρ2(m))
3

+2(ρ1(m) + ρ2(m))ρ1(m)ρ2(m)(ρ1(m)ρ2(m) − ρ1(m)α2(m) − ρ2(m)α1(m)))×
(1 − (ρ1(m) + ρ2(m))L

1/m + ρ1(m)ρ2(m)L
2/m)L1/m/

(1 − (ρ1(m) + ρ2(m) − α1(m) − α2(m))L
1/m + (ρ1(m)ρ2(m) − ρ1(m)α2(m) − ρ2(m)α1(m))L

2/m)

(9)
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Table 1: Results of the Risk-Return Tradeoff using MIDAS Models with Daily

Regressors - Dow Jones Returns with Exponential Almon Polynomial

The table shows results from estimating equations (21-25) at one-, two-, three-, and four-week frequencies.
The MIDAS weights are parameterized to follow the Exponential Almon polynomial (2). The estimation
is performed by quasi-maximum likelihood using Dow Jones index return data from April 1993 to October
2003. The estimates of µ and γ are displayed in the first two columns. In column three, we show the
t-statistic of γ under the null of no risk-return tradeoff and the standard errors are computed using the
heteorskedasticity-robust Bollerslev and Wooldridge (1992) method. We compute in column four the mean
absolute deviation (MAD) as a measure of the goodness of fit of the MIDAS regression, because it is robust
to heteroskedasticity in the data. The fraction of the weights placed on lags 1 to 5 (one week), lags 6 to 20
(one month), and higher, are shown in columns five to seven, respectively. The panels contain the results
for squared daily returns (r2

t ), absolute daily returns (|rt|), daily ranges ([hi − lo]t), daily realized volatility
(Qt), and daily realized power (Pt), as explained in the text.

Sample April 1993 - October 2003

µ γ t − stat MAD R2 days 1-5 days 6-20 > 20 days

Daily r2
t

1 wks -0.001 4.533 0.848 0.018 0.013 0.658 0.328 0.014
2 wks -0.000 2.528 3.350 0.023 0.026 0.990 0.010 0.000
3 wks -0.001 2.950 0.529 0.029 0.039 1.000 0.000 0.000
4 wks -0.001 2.490 3.915 0.032 0.034 0.998 0.002 0.000

Daily |rt|
1 wks -0.004 9.618 2.868 0.018 0.020 1.000 0.000 0.000
2 wks -0.006 7.600 2.962 0.023 0.029 1.000 0.000 0.000
3 wks -0.008 7.630 2.387 0.030 0.034 0.002 0.998 0.000
4 wks -0.004 3.444 2.670 0.033 0.029 1.000 0.000 0.000

Daily [hi − lo]t
1 wks -0.004 10.878 2.264 0.018 0.014 1.000 0.000 0.000
2 wks -0.006 8.144 1.432 0.024 0.020 0.130 0.870 0.000
3 wks -0.009 8.395 2.016 0.030 0.028 0.016 0.984 0.000
4 wks -0.005 4.630 1.666 0.033 0.018 1.000 0.000 0.000

Daily Qt

1 wks -0.001 5.036 2.558 0.018 0.013 1.000 0.000 0.000
2 wks -0.003 5.006 2.397 0.024 0.024 0.336 0.664 0.000
3 wks -0.003 4.116 1.460 0.029 0.026 0.335 0.665 0.000
4 wks -0.001 2.524 1.012 0.033 0.014 0.618 0.374 0.007

Daily Pt

1 wks -0.004 9.523 0.000 0.018 0.009 1.000 0.000 0.000
2 wks -0.005 6.899 1.480 0.024 0.011 0.275 0.725 0.000
3 wks -0.006 6.022 1.244 0.030 0.015 0.177 0.823 0.000
4 wks -0.004 4.104 1.137 0.033 0.010 0.990 0.010 0.000
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Table 2: Summary statistics - Dow Jones Returns.

Sample April 1993 - October 2003

mean V ar MAD

1 wks 0.002 0.001 0.018
2 wks 0.004 0.001 0.024
3 wks 0.006 0.001 0.030
4 wks 0.008 0.002 0.033
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Table 3: Summary Statistics for the AA and MFST Stocks
Each entry in the table corresponds to the sample mean for the different daily volatility measure and different subsample. Subsample 2000
- 2002 covers January 3, 2000 - December 31, 2002. Subsample 2003 - 2004 covers January 3, 2003 - December 31, 2004. The name of the
variables are consistent with the notation in Hansen and Lunde (2005) (2005) paper.

2000− 2002 2003− 2004

RV 5min RV 30min RV 5min
AC1

RV 1tick
ACNW30

RV 5min RV 30min RV 5min
AC1

RV 1tick
ACNW30

AA

Mid Quotes 5.627 5.676 5.883 5.979 2.557 2.561 2.565 2.755
Trades 6.121 5.805 5.979 5.962 2.616 2.576 2.549 2.667

MSFT

Mid Quotes 6.005 5.537 6.168 6.125 1.712 1.471 1.472 1.788
Trades 6.182 5.560 6.149 6.039 1.746 1.475 1.465 1.791
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Table 4: R2 Comparison of MIDAS Models for One Week Horizon - AA Stock
Each entry in the table corresponds to the R2 for different models (24) and different estimation samples. The whole sample covers January
3, 2000 - December 31, 2004. Subsample 2000 - 2002 covers January 3, 2000 - December 31, 2002. The regressions are run on a weekly (5
days) data sampling scheme. The name of the variables are consistent with the notation in Hansen and Lunde (2005) (2005) paper. Every
column corresponds to the explanatory power of the different LHS variables for the same RHS variable.

2000− 2004 2000− 2002

Model RV 5min RV 30min RV 5min
AC1

RV 1tick
ACNW30

RV 5min RV 30min RV 5min
AC1

RV 1tick
ACNW30

Mid quotes
RV 5min 0.651 0.536 0.599 0.593 0.514 0.360 0.471 0.483
RV 30min 0.503 0.417 0.482 0.464 0.406 0.298 0.388 0.393
RV 5min

AC1
0.597 0.503 0.568 0.548 0.444 0.335 0.421 0.434

RV 1tick
ACNW30

0.586 0.484 0.547 0.531 0.464 0.330 0.437 0.442
Trades

RV 5min 0.666 0.566 0.624 0.603 0.525 0.396 0.497 0.483
RV 30min 0.510 0.422 0.485 0.467 0.413 0.303 0.395 0.394
RV 5min

AC1
0.601 0.513 0.573 0.553 0.450 0.351 0.435 0.438

RV 1tick
ACNW30

0.558 0.465 0.532 0.505 0.428 0.307 0.411 0.397
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Table 5: R2 Comparison of MIDAS Models for One Week Horizon - MSFT Stock
Each entry in the table corresponds to the R2 for different models (24) and different estimation samples. The whole sample covers January
3, 2000 - December 31, 2004. Subsample 2000 - 2002 covers January 3, 2000 - December 31, 2002. The regressions are run on a weekly (5
days) data sampling scheme. The name of the variables are consistent with the notation in Hansen and Lunde (2005) (2005) paper. Every
column corresponds to the explanatory power of the different LHS variables for the same RHS variable.

2000− 2004 2000− 2002

Model RV 5min RV 30min RV 5min
AC1

RV 1tick
ACNW30

RV 5min RV 30min RV 5min
AC1

RV 1tick
ACNW30

Mid quotes

RV 5min 0.557 0.556 0.547 0.543 0.433 0.365 0.404 0.401
RV 30min 0.603 0.599 0.593 0.595 0.404 0.345 0.378 0.370
RV 5min

AC1
0.552 0.556 0.563 0.535 0.412 0.352 0.410 0.371

RV 1tick
ACNW30

0.590 0.589 0.579 0.576 0.456 0.386 0.422 0.421

Trades

RV 5min 0.570 0.569 0.557 0.554 0.447 0.373 0.408 0.399
RV 30min 0.616 0.609 0.600 0.602 0.421 0.353 0.384 0.373
RV 5min

AC1
0.558 0.558 0.564 0.529 0.423 0.351 0.409 0.357

RV 1tick
ACNW30

0.596 0.592 0.573 0.589 0.452 0.374 0.401 0.418
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Figure 1: Exponential Almon Polynomial MIDAS Weights

The figure shows various shapes of the Exponential Almon specification (2). We plot the weights on the first
252 lags (which corresponds to one year’s worth of daily lags). The shapes are determined by the values of
the parameters θ. In the top panel, we display slowly declining weights (θ1 = 7 ∗ 10−4 and θ2 = −1 ∗ 10−4).
The middle panel shows rapidly declining weights (θ1 = 6 ∗ 10−3 and θ2 = −5 ∗ 10−4), whereas the bottom
panel contains a weights that have a “hump-shape” (θ1 = 3 ∗ 10−2 and θ2 = −7 ∗ 10−4). The values of θ are
chosen only to illustrate flexibility of specification (2).
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Figure 2: Beta Polynomial MIDAS Weights

The figure shows various shapes of the Beta specification (3). We plot the weights on the first 252 lags (which
corresponds to one year’s worth of daily lags). The shapes are determined by the values of the parameters
θ. In the top panel, we display slowly declining weights (θ1 = 1 and θ2 = 4). The middle panel shows
rapidly declining weights (θ1 = 1 and θ2 = 20), whereas the cotton panel contains a weights that have a
“hump-shape” (θ1 = 1.6 and θ2 = 7.5). The values of θ are chosen only to illustrate flexibility of specification
(3).
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Figure 3: Mixture of Beta Polynomial MIDAS Weights

The figure shows a mixture of two Beta specifications (3). We plot the weights on the first 252 lags (which
corresponds to one year’s worth of daily lags). The shapes are determined by the values of the parameters θ.
In the top panel, we display one Beta polynomial with declining weights (θ1

1 = 1 and θ1
2 = 30). The middle

panel shows a second Beta polynomial whose weights are “hump-shaped” (θ2
1 = 4 and θ2

2 = 9). The bottom
panel shows the mixture of the two polynomials.
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Figure 4: Empirical MIDAS Polynomial Weights - One week horizon

The top two plots show the weights obtained with the empirical estimates of equations (21)- (25) reported
in Table 1 (for Exponential Lag weights (2)) and Table ?? (for Beta Lag weights (3)). The third plot refers
to
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Figure 5: Empirical MIDAS Polynomial Weights - Four week horizon

The figure shows
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Figure 6: Daily RV 5min
AC1

Realized Volatility. AA and MSFT Stocks

The figure shows daily realized volatility with AC1 noise-correction scheme. The 753rd observation is 2002
end-of-year observation. The means of the first three years for AA and MSFT are correspondingly 5.98 and
6.15; The means of the last two years are 2.55 and 1.47.
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