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Abstract

This paper proposes a semiparametric estimation procedure of the first-price auc-

tion model with risk averse bidders within the independent private value paradigm.

We show that the model is nonidentified in general from observed bids. We then

exploit heterogeneity across auctioned objects to establish semiparametric identi-

fication under a conditional quantile restriction and parameterization of the bid-

ders’ von Neuman Morgenstern utility function. Next we propose a semiparametric

method for estimating the corresponding auction model. This method involves sev-

eral steps and allows to recover the parameters of the utility function as well as

the bidders’ private values and their density. We show that our semiparametric

estimator of the utility function parameters converges at the optimal rate, which

is slower than the parametric one. An illustration of the method on U.S. Forest

Service timber sales is presented and a test of bidders’ risk neutrality is performed.

Key words: Risk Aversion, Independent Private Value, Nonparametric Identifica-

tion, Semiparametric Estimation, Optimal Rate, Timber Auctions.

JEL classification: C14, D44, L70



Semiparametric Estimation of First-Price Auctions

with Risk Averse Bidders

S. Campo, E. Guerre, I. Perrigne, and Q. Vuong

1 Introduction

Since the seminal unpublished work by Kenneth Arrow and its formalization by Pratt

(1964), risk aversion has become a fundamental concept in economics whenever agents

face situations under uncertainty. This is the case in auctions where bidders must deal with

various types of uncertainties related to the value of the auctioned object, the strategies

used by the other bidders and the private information of their opponents. In particular,

a pervasive economic argument for justifying bidder’s risk aversion is that the value of

the auctioned object is high relative to his assets. Another argument is that a bidder

does not have many alternatives for buying the object other than in the auction. On

the other hand, many important results in the theory of auctions crucially depend on

the assumption of risk neutrality. For instance, within the independent private value

(IPV) paradigm, the revenue equivalence theorem established by Vickrey (1961) states

that English, descending, first-price sealed-bid and second-price auctions lead to the same

expected revenue for the seller provided bidders are risk neutral. Such an important result

no longer holds when bidders are risk averse. See Harris and Raviv (1981) and Riley and

Samuelson (1981).1

Despite the importance of risk aversion in auction modeling, very few empirical studies

have attempted to assess the extent of bidders’ risk aversion on field data. See Baldwin

1Likewise, the optimal auction mechanism is quite involved under bidders’ risk aversion as it requires

complex transfers among bidders. See Maskin and Riley (1984) and Matthews (1987). For a recent survey

of auction theory, see Klemperer (1999).
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(1995) and Athey and Levin (2001) using US Forest Service timber auctions. A reason

is that economic theory provides few reduced-form implications of risk aversion, which

are moreover difficult to test on field data.2 An alternative approach is to consider that

the observed bids are precisely the outcomes of the Bayesian Nash equilibrium of the

underlying auction game. This is known as the structural approach, which has been

developed by Paarsch (1992) and Laffont, Ossard and Vuong (1995). For a recent survey,

see Perrigne and Vuong (1999). Our paper adopts such an approach and focuses on the

identification and estimation under nonparametric assumptions in the spirit of Laffont

and Vuong (1996) and Guerre, Perrigne and Vuong (2000).

Throughout, we consider first-price sealed-bid auctions with risk averse bidders within

the IPV paradigm. From Maskin and Riley (1984) it is known that a first-price auction

generates a larger revenue than an ascending auction when bidders are risk averse. Thus,

bidders’ risk aversion can provide a rationale for the use of first-price auctions.3 A first

part of our paper briefly presents the model and reviews the existence, uniqueness and

smoothness of the Bayesian Nash equilibrium strategy. Existence and uniqueness of such

a strategy follow from Maskin and Riley (1996, 2000) among others. In particular, these

properties are difficult to establish when the reserve price is nonbinding because of a well-

known singularity of the differential equation characterizing the equilibrium strategy. In

addition to providing an alternative proof of such properties, we derive the smoothness

of the equilibrium strategy with respect to the bidder’s private value as well as potential

exogenous variables characterizing the auctioned object.

A second part is devoted to the identification of the auction model, i.e. whether its

structural elements can be uniquely recovered from observed bids. The structural elements

are the bidders’ utility function and the bidders’ private value distribution. Unlike Donald

and Paarsch (1996) who consider a constant relative risk aversion (CRRA), we consider a

2In contrast, the experimental literature has paid much attention to bidders’ risk aversion as it can

frequently explain observed overbidding (above the risk neutral Bayesian Nash equilibrium). See Cox,

Smith and Walker (1988) and Goere, Holt and Palfrey (2002) among others.
3Hence, the development of econometric methods assessing the extent of risk aversion is especially

important in first-price auctions. In many situations, empirical researchers have observed the exclusive

use of a particular mechanism for a large variety of goods. For instance, ascending auctions are used for

art and memorabilia, while first-price auctions are used for procurements and natural resources except

for timber, which is sold through both mechanisms.
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general von Neuman Morgenstern (vNM) utility function exhibiting possibly risk aversion.

First, we show that this general model is nonidentified from observed bids even when

the utility function is restricted to belong to well known families of risk aversion. In

particular, restricting bidders to have a constant relative risk aversion is not sufficient

to achieve identification. Second, we show that any bid distribution can be rationalized

by a CRRA model, a constant absolute risk aversion (CARA) model, and a fortiori a

model with general risk aversion. Such a striking result implies that a CRRA model and

a CARA model cannot be discriminated against each other. It also implies that the game

theoretical model does not impose testable restrictions on bids. Furthermore, one can

consider either CRRA or CARA utility functions without loss of power for explaining

observed bids, despite either model not being identified.

In view of the preceding results, a third part of our paper seeks weak and palatable

restrictions that can be used to achieve identification of the auction model with risk

averse bidders. Specifically, we exploit heterogeneity across auctioned objects under the

assumption that the private value distribution conditional upon the characteristics of the

auctioned objects satisfies a parametric quantile restriction. Unlike previous work such

as Guerre, Perrigne and Vuong (2000), Li, Perrigne and Vuong (2000, 2002), Campo,

Perrigne and Vuong (2002), such an additional restriction was not necessary to identify

the auction models considered there. Of course, there are other possible restrictions such

as requiring that some quantile be known, but the latter assumption is unattractive as the

postulated value of some quantile directly affects the estimated degree of risk aversion. We

then restrict the bidders’ vNM utility function to be parametric. Under these conditions,

we show that the utility function parameters and the conditional private value distribution

of the model with risk adverse bidders are semiparametrically identified as no parametric

assumption on the latent private value distribution is made. As a matter of fact, we show

that these two identifying conditions are necessary as dropping either one of them looses

identification. In this sense, our semiparametric modeling is natural, while constituting a

new direction for the literature on structural analysis of auction data.

A fourth part of the paper provides an upper bound for the convergence rate which

can be attained by estimators of the parameters of the utility function. Given the semi-

parametric nature of our model, it is important to study the best (optimal) rate that an

estimator of the risk aversion parameters can achieve. To do so, we rely on the minimax
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theory developed by e.g. Ibragimov and Has’minskii (1981). As is well-known, estimation

of the upper boundary of a distribution can be achieved at a faster rate than any other

quantile. For this reason, we focus on a parametric restriction on the upper boundary of

the private value distribution to achieve a faster convergence rate and a greater precision

for the estimator. Specifically, when auctioned objects’ heterogeneity is characterized by d

continuous variables and the underlying density is R continuously differentiable, we show

that the optimal rate for estimating the risk aversion parameters is N (R+1)/(2R+3). Such

a rate is independent of the dimension d of heterogeneity and is slower than
√
N , which

is unattainable given the assumed smoothness R.

A fifth part of the paper addresses the estimation of the structural elements, i.e. the

parameters of the vNM utility function and the underlying conditional density of bidders’

private values. We then develop a multistep semiparametric estimation procedure. A first

step consists in estimating the conditional density of bids at its upper boundary. This

involves nonparametric estimation of the upper boundary using Korostelev and Tsybakov

(1993) theory of image reconstruction as well as the corresponding conditional densities

at these upper bounds. A second step focuses on the estimation of the utility function

parameters exploiting the fundamental equation of the auction model. This leads to

(possibly weighted) nonlinear least squares (NLLS) using the nonparametric estimates

obtained in the first step. A third step allows us to recover the bidders’ private values

and their underlying conditional density following Guerre, Perrigne and Vuong (2000)

once the utility function parameters are estimated.

We establish the asymptotic properties of this estimator. In particular, we show that

our estimator of the utility function parameters attains the optimal rate N (R+1)/(2R+3).

This contrasts with most
√
N -consistent semiparametric estimators developed in the

econometric literature, see Powell (1994) for a recent survey.4 As a matter of fact, stan-

dard results on
√
N -consistent semiparametric estimators as given in Newey and McFad-

den (1994) do not apply. Another notable feature of our estimation problem is that it

involves a nonlinear regression model with a bias and a variance that decreases and in-

creases with the smoothing parameter, respectively. This diverging variance of the error

term in the equation defining the utility function parameters is the main reason why our

4Notable exceptions of semiparametric estimators converging at a slower rate than
√
N are Manski

(1985), Horowitz (1992), Kyriazidou (1997) and Honoré and Kyriazidou (2000).
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semiparametric estimator does not achieve the standard parametric rate.

Lastly, in addition to providing an estimator converging at the optimal rate as well

as not requiring a parametric specification of the bidders’ private value distribution, our

method is computationally simple as it circumvents both the numerical determination and

inversion of the equilibrium bidding strategy. This is especially convenient when there

is no closed form solution to the differential equation defining the equilibrium strategy.

This is the case when risk aversion is not of the simple CRRA form. We then illustrate

our procedure on the US Forest Service timber auctions. In particular, a test of bidders’

risk neutrality is performed and bidders are found to be fairly risk averse.

The paper is organized as follows. Section 2 briefly presents the model and discusses

the properties of the Bayesian Nash equilibrium strategy of the corresponding auction

game. Section 3 investigates the identification of the first-price auction model with risk

averse bidders and provides general nonidentification results. Understanding of such re-

sults leads to additional restrictions used to achieve semiparametric identification of the

model, which is the purpose of section 4. Section 5 provides an upper bound for the

optimal convergence rate, which can be attained by a semiparametric estimator of the

utility function parameters. Section 6 presents our semiparametric estimation procedure

with its various steps and statistical properties. Section 7 is devoted to an illustration

of our method to timber auction data. Section 8 concludes. Five appendices collect the

proofs of our theoretical results.

2 Model and Equilibrium Strategy

This section presents the first-price sealed-bid auction model with risk averse bidders

within the IPV paradigm. It also establishes the existence, uniqueness and smoothness

of the equilibrium bidding strategy.

The Model

A single and indivisible object is sold through a first-price sealed-bid auction. All

sealed bids are collected simultaneously. The object is sold to the highest bidder who

pays his bid to the seller. Within the IPV paradigm, each bidder is assumed to know his

own private value vi for the auctioned object but not other bidders’ private values. The
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bidders’ private values are drawn independently from a common distribution F (·), which

is absolutely continuous with density f(·) on a support [v, v] ⊂ IR+. The distribution

F (·) and the number of potential bidders I ≥ 2 are assumed to be common knowledge.

Moreover, each bidder is potentially risk averse.

Let UvNM(·) be a von Neuman Morgensten utility function common to all bidders with

U ′
vNM(·) > 0. Because of potential risk aversion, the utility function is assumed to be

weakly concave, i.e. U ′′
vNM(·) ≤ 0. All bidders have the same initial wealth w ≥ 0. This

gives a utility function of the form UvNM(w+·), where the argument refers to the monetary

gain from the auction. All bidders are thus identical ex ante and the game is said to be

symmetric.5 Bidder i then maximizes his expected utility EΠi = UvNM(w+vi−bi)Pr(bi ≥
bj, j 6= i) + UvNM(w)[1− Pr(bi ≥ bj, j 6= i)] with respect to his bid bi, where bj is the jth

player’s bid.

Bidder i’s problem is equivalent to maximizing [UvNM(w+ vi− bi)−UvNM(w)]Pr(bi ≥
bj, j 6= i). Let U(·) = UvNM(w + ·) − UvNM(w). Note that U(·) is strictly increasing,

weakly concave and satisfies U(0) = 0. Hereafter, we consider the maximization of

EΠi = U(vi − bi)Pr(bi ≥ bj, j 6= i), (1)

where U(·) satisfies the preceding properties. This corresponds to the most studied case in

the auction literature where the quality of the auctioned item is known and has equivalent

monetary value. See Case 1 in Maskin and Riley (1984).6 In addition, because the scale

is irrelevant, we impose the normalization U(1) = 1. The risk neutral case is obtained

when U(·) is the identity function.

It is useful to recall some basic properties of utility functions with risk aversion. Let α

and β be arbitrary constants with α > 0. A common measure of absolute risk aversion is

the ratio −U ′′
vNM(·)/U ′

vNM(·), which can be constant or nonincreasing. This gives the set

5Relaxing the assumption of bidders’ common wealth, i.e. letting wi be bidder i’s wealth, will lead to

an asymmetric game if the wis are common knowledge and to a multisignal game if the wis are private

information. Both cases are beyond the scope of this paper. For asymmetric extensions, see Campo

(2002). For multisignals, see Che and Gale (1998) for a model with budget constraints.
6Maskin and Riley (1984) consider a more general model where the utility of winning is of the form

u(−bi, vi) and the utility of loosing is equal to w(·). Because we use a vNM utility function, u(−bi, vi) =

UvNM (w + vi − bi) and w(0) = UvNM (w). Hence, the utility of loosing with no payment is equal to the

utility of winning with payment equal to the bidder’s value.
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UCARA of constant absolute risk aversion utility functions and the set UDARA of decreasing

absolute risk aversion utility functions. A well-known form for the former is given by

UvNM(x) = α(1−exp(−ax))+β, with an absolute measure of risk aversion a > 0. Another

common measure is the relative risk aversion, which is defined as −xU ′′
vNM(x)/U ′

vNM(x).

This quantity can be either constant or nonincreasing, which gives the set UCRRA of

constant relative risk aversion utility functions and the set UDRRA of decreasing relative

risk aversion utility functions. A well-known characterization for the former is given by

UvNM(x) = αx1−c/(1− c) + β for c ≥ 0 and c 6= 1 and UvNM(x) = α log x + β for c = 1.

Relative risk aversion is then measured by c. Note that if initial wealth w = 0, then

0 ≤ c < 1 because the utility of loosing the auction would be unbounded otherwise.

There exist other families of vNM utility functions exhibiting risk aversion, which have

been considered in the literature. See e.g. Gollier (2001). Below we consider mostly the

above four families, though our results can apply to other families.

Existence, Uniqueness and Smoothness of the Equilibrium Strategy

¿From Maskin and Riley (1984), if a symmetric Bayesian Nash equilibrium strategy

s(·, U, F, I) exists, then it is strictly increasing, continuous and differentiable.7 Thus (1)

becomes EΠi = U(vi − bi)F
I−1(s−1(bi)), where s−1(·) denotes the inverse of s(·). Hence,

imposing bidder i’s optimal bid bi to be s(vi) gives the following differential equation

s′(vi) = (I − 1)
f(vi)

F (vi)
λ(vi − bi) (2)

for all vi ∈ [v, v], where λ(·) = U(·)/U ′(·). As shown by Maskin and Riley (1984), the

boundary condition is U(v − s(v)) = 0, i.e. s(v) = v because U(0) = 0. Moreover, the

second-order conditions are satisfied.

Maskin and Riley (1984, Theorem 2) prove the existence and uniqueness of s(·) by

noting that the differential equation (2) with boundary condition has a unique solution

when there is a binding reserve price, i.e. p0 > v. In our case, the reserve price is not

binding. Consequently, there is a well-known singularity of (2) at the boundary v, which

prevents the use of such an argument for establishing existence and uniqueness of s(·).
This is the purpose of the next result, which provides in addition the regularity properties

of s(·) used in the following section.
7Moreover, as noted by Maskin and Riley (1984, Remark 2.3), the only equilibria are symmetric when

F (·) has bounded support, which is assumed below.
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We assume that U(·) and F (·) belong to UR and FR defined as follows, respectively.

Definition 1: For R ≥ 1, let UR be the set of utility functions U(·) satisfying

(i) U : [0,+∞) → [0,+∞), U(0) = 0 and U(1) = 1,

(ii) U(·) is continuous on [0,+∞), and admits R + 2 continuous derivatives on (0,+∞)

with U ′(·) > 0 and U ′′(·) ≤ 0 on (0,+∞),

(iii) limx↓0 λ
(r)(x) is finite for 1 ≤ r ≤ R + 1, where λ(r)(·) denotes the rth derivative.

Conditions (i) and (ii) have been discussed previously. Note that limx↓0 λ(x) = 0 since

U(0) = 0 and U ′(·) is nonincreasing. Thus, from (ii) and (iii) it follows that λ(·) admits

R + 1 continuous derivatives on [0,+∞). These regularity assumptions are weak. For

instance, if U(x) = UvNM(w + x)− UvNM(w) with UvNM(·) a suitably normalized CRRA

utility function, these conditions are satisfied for c ≥ 1 when w > 0 and for 0 ≤ c < 1

when w ≥ 0. In either case, R = ∞. Similarly, with UvNM(·) a suitable normalized

CARA utility function, these conditions are satisfied with R = ∞.

Definition 2: For R ≥ 1, let FR be the set of distributions F (·) satisfying

(i) F (·) is a c.d.f. with support of the form [v, v], where 0 ≤ v < v < +∞,

(ii) F (·) admits R + 1 continuous derivatives on [v, v],

(iii) f(·) > 0 on [v, v].

These restrictions are weak with the exception of the finite upper bound v in (i). Relax-

ing (i) is possible but would involve more technical aspects in addition to allowing the

possibility of asymmetric equilibria. Altogether (i)–(iii) imply that f(·) is bounded away

from zero on [v, v].

Theorem 1: Let I ≥ 2 and R ≥ 1. Suppose that [U, F ] ∈ UR × FR, then there exists a

unique (symmetric) equilibrium and its equilibrium strategy s(·) satisfies:

(i) ∀v ∈ (v, v], s(v) < v, while s(v) = v,

(ii) ∀v ∈ [v, v], s′(v) > 0 with s′(v) = (I − 1)λ′(0)/[(I − 1)λ′(0) + 1] < 1,

(iii) s(·) admits R + 1 continuous derivatives on [v, v].

When the reserve price is nonbinding, existence of a pure equilibrium strategy follows

from Maskin and Riley (2000) and Athey (2001), while its uniqueness has been estab-

lished by Maskin and Riley (1996) using an argument similar to Lebrun (1999). The

main contribution of Theorem 1 is to derive the smoothness of the equilibrium strategy.
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Theorem 1 is an immediate consequence of the more general Theorem A1 in Appendix A,

which allows for exogenous variables. Moreover, the proof of Theorem A1 differs signifi-

cantly from previous work (e.g. Lebrun (1999), Lizzeri and Persico (2000)) and is based

on a functional approach viewing s(·) as a zero of a nonlinear operator. A Functional

Implicit Function Theorem and a continuation argument then allow us to establish exis-

tence, uniqueness and smoothness of s(·), especially with respect to exogenous variables

as needed in estimation.

Except for some particular choices for U(·) and F (·), the equilibrium strategy does

not have an explicit form. In practice, the integral form of the differential equation (2)

can be useful. It is

s(v)F I−1(v) =

∫ v

v

{s(x) + λ(x− s(x))} dF I−1(x).

This form can be also written as s(v) = sN(v) +
∫ v

v
{λ(x − s(x)) − x + s(x)} dF I−1(x),

where sN(·) is the well-known equilibrium strategy in the risk neutral case derived by e.g.

Riley and Samuelson (1981). Because λ(u) ≥ u for u ≥ 0 (see below), it follows that the

equilibrium bid under risk aversion is strictly larger than under risk neutrality for v > v

as noted by Milgrom and Weber (1982).

3 General Nonidentification Results

In this section we address the problem of identification of the structure [U, F ] from ob-

servables. Specifically, we assume that the number I of bidders is observed, as is typically

the case in a first-price sealed-bid auction with a nonbinding reserve price. We also as-

sume that the distribution G(·) of an equilibrium bid is known. Knowledge of G(·) from

observed bids is an estimation problem, which is addressed in Section 6. Thus the identi-

fication problem reduces to whether the structure [U, F ] can be recovered uniquely from

the knowledge of (I,G). A related issue is whether any distribution G(·) for an observed

bid can be rationalized by a structure [U, F ] given I. Such a question is important in

itself as it is connected to the validity of the auction model under consideration.

Following Guerre, Perrigne and Vuong (2000) for the risk neutral case, we can express

the differential equation (2) using the distribution G(·) of an equilibrium bid. For every
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b ∈ [b, b] = [v, s(v)], we have G(b) = F (s−1(b)) = F (v) with density g(b) = f(v)/s′(v),

where v = s−1(b). Thus the differential equation (2) can be written equivalently as

1 = (I − 1)
g(bi)

G(bi)
λ(vi − bi). (3)

Since U(·) ≥ 0 and U ′′(·) ≤ 0, we have λ′(·) = 1 − U(·)U ′′(·)/U ′2(·) ≥ 1. Thus λ(·) is

strictly increasing. Solving (3) for vi gives

vi = bi + λ−1

(
1

I − 1

G(bi)

g(bi)

)
≡ ξ(bi, U,G, I), (4)

where λ−1(·) denotes the inverse of λ(·). This equation expresses each bidder’s private

value as a function of its corresponding bid, the bid distribution, the number of bidders

and the utility function. Note that ξ(·) is the inverse of the bidding strategy s(·).
The equilibrium bid distribution G(·) satisfies some regularity properties, which are

implied by the smoothness of s(·) stated in Theorem 1 and the regularity assumptions on

[U, F ]. It is convenient to introduce the following definition.

Definition 3: For R ≥ 1, let GR be the set of distributions G(·) satisfying

(i) G(·) is a c.d.f. with support of the form [b, b], where 0 ≤ b < b < +∞,

(ii) G(·) admits R + 1 continuous derivatives on [b, b],

(iii) g(·) > 0 on [b, b],

(iv) g(·) admits R + 1 continuous derivatives on (b, b],

(v) limb↓b d
r[G(b)/g(b)]/dbr exists and is finite for r = 1, . . . , R + 1.

The regularity properties (i)–(iii) are similar to those of Definition 2 for F (·). They

imply that g(·) is bounded away from zero on [b, b] and limb↓bG(b)/g(b) = 0 so that

limb↓b ξ(b, U,G, I) = b. Properties (iv) and (v) are specific to the auction model. In

particular, (iv) says that g(·) is smoother than f(·), extending a similar property noted

by Guerre, Perrigne and Vuong (2000) for the risk neutral model. Combined with (iii)

and (iv), (v) implies that G(·)/g(·) is R + 1 continuously differentiable on [b, b].

The following lemma provides a necessary and sufficient condition for rationalizing

a distribution of observed bids by an IPV auction model with risk aversion. Hereafter,

we say that a distribution is rationalized by a risk averse auction model if there exists a

structure [U, F ] whose equilibrium bid distribution is identical to the given distribution.
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Lemma 1: Let I ≥ 2, R ≥ 1, and G(·) be the joint distribution of (b1, . . . , bI). There

exists an IPV auction model with risk aversion [U, F ] ∈ UR ×FR that rationalizes G(·) if

and only if

(i) G(b1, . . . , bI) =
∏I

i=1G(bi),

(ii) G(·) ∈ GR,

(iii) ∃λ : IR+ → IR+ with R+1 continuous derivatives on [0,+∞), λ(0) = 0 and λ′(·) ≥ 1

such that ξ′(·) > 0 on [b, b], where

ξ(b, U,G, I) = b+ λ−1

(
1

I − 1

G(b)

g(b)

)
.

Lemma 1 provides a necessary and sufficient condition for rationalizing an observed bid

distribution. The first condition is related to the use of the IPV paradigm and requires

that bids be independently and identically distributed in agreement with private values.

The second condition requires that the marginal observed bid distribution G(·) satisfies

the regularity assumptions embodied in the set GR of Definition 3. The third condition

arises from the fact that ξ(·, U,G, I) is the inverse of the equilibrium strategy, which is

strictly increasing. As shown in the proof of Lemma 1, if such a condition is satisfied,

then G(·) is rationalized by the structure [U, F ], where U(x) = exp
∫ x

1
(1/λ(t))dt and F (·)

is the distribution of ξ(b, U,G, I) with b ∼ G(·).8

The next proposition shows that any distribution G(·) ∈ GR can be rationalized by an

IPV auction model with a utility function displaying risk aversion.

Proposition 1: Let I ≥ 2 and R ≥ 1. Any distribution G(·) ∈ GR can be rationalized by

a CRRA structure with c ∈ [0, 1) as well as a CARA structure with both zero wealth and

a private value distribution in FR.

Proposition 1 is striking. First, it implies that the restriction (iii) in Lemma 1 for ratio-

nalizing a bid distribution by an IPV auction model with risk averse bidders is redundant

unlike Condition C2 in Guerre, Perrigne and Vuong (2000, Theorem 1) for the risk neutral

case. Specifically, our proof indicates that we can always find a function λ(·) corresponding

to either a CRRA or CARA utility function so that (iii) is satisfied whenever G(·) ∈ GR.

8Because λ(x) ∼ λ′(0)x in the neighborhood of 0,
∫ 0

1
(1/λ(t))dt = −∞ so that U(0) = 0, as required

by Definition 1-(i).
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Alternatively, the IPV auction model with general risk aversion does not impose any re-

strictions on observed bids beyond their independence and the weak regularity conditions

embodied in GR.

Second, because a general risk aversion structure [U, F ] ∈ UR × FR leads to a bid

distribution G(·) ∈ GR by Lemma 1, Proposition 1 implies that there always exist a CARA

structure and a CRRA structure with zero wealth that are observationally equivalent to

[U, F ]. In other words, irrespective of initial wealth, the game theoretic auction model

with arbitrary risk aversion does not provide enough restrictions on observed bids to

discriminate it from a CRRA or a CARA model with zero wealth. Hence, without loss

of power for explaining bids, an analyst could consider either a CRRA or a CARA model

with zero wealth, provided these models are identified and can be estimated.

Because a risk neutral model is a special case of a risk averse model, it follows from

Proposition 1 that any risk neutral model is observationally equivalent to a risk averse

model such as a CRRA or a CARA model. An interesting question is whether the reverse

holds, i.e. whether any risk averse model is observationally equivalent to a risk neutral

model. This is not true.9 Thus, by allowing for risk aversion, one does enlarge the

set of rationalizable bid distributions relative to risk neutrality. As a matter of fact,

Proposition 1 says that allowing for very simple forms of risk aversion such as CRRA or

CARA rationalizes any bid distribution in GR.

A model is a set of structures [U, F ]. For instance, the CARA model (with regularityR)

is the set of structures [U, F ] where U(·) ∈ UCARA
R ≡ {U(·) = UvNM(w+·)−UvNM(w);w ∈

9The following is an example with I = 2 of a CRRA structure that is not observationally equiv-

alent to any risk neutral structure. Consider the distribution G(b) = kb for b ∈ [0, 1/2] and

G(b) =
[

x2−1
1−x1

b−x1
x2−b

]3/[8(x2−x1)]

for b ∈ [1/2, 1], where x1 < x2 are roots of the equation −8x2 +11x−2 = 0

and k such that G(·) is continuous at b = 1/2. The corresponding density g(·) is flat on [0, 1/2] and sharply

increasing on [1/2, 1]. This distribution satisfies the regularity conditions of Definition 3 with R = 1.

Letting U(x) = x1−c gives λ(x) = x/(1 − c). The bid distribution G(·) can be rationalized by a CRRA

structure where the inverse bidding strategy is ξ(b, c,G) = b + (1 − c)G(b)/g(b) as soon as 2/5 < c < 1

by Lemma 1-(iii). On the other hand, from Guerre, Perrigne and Vuong (2000) the distribution G(·) is

rationalized by a risk neutral structure if and only if ξ(b,G) = b+G(b)/g(b) is strictly increasing. This

function is ξ(b,G) = 2b for 0 ≤ b ≤ 1/2 and ξ(b,G) = − 8
3 (b − 1

2 )(b − 5
4 ) + 1 for 1/2 ≤ b ≤ 1. It can

be easily checked that this function is not strictly increasing. Hence there does not exist a risk neutral

structure that is observationally equivalent to the preceding CRRA structure.
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IR+, UvNM(·) ∈ UCARA} ∩ UR and F (·) ∈ FR. The sets UDARA
R , UCRRA

R and UDRRA
R are

similarly defined. As suggested by Proposition 1, auction models with risk averse bidders

are nonidentified, in general. Hereafter, we say that a structure [U, F ] is nonidentified if

there exists another structure [Ũ , F̃ ] within the model under consideration that leads to

the same equilibrium bid distribution. If no such [Ũ , F̃ ] exists for any [U, F ], we say that

the model is (globally) identified.

Proposition 2: Let I ≥ 2 and R ≥ 1. Any structure [U, F ] ∈ UR ×FR is not identified.

Similarly, any structure [U, F ] in UDARA
R ×FR, UDRRA

R ×FR, UCARA
R ×FR or UCRRA

R ×FR

is not identified.

As shown by Guerre, Perrigne and Vuong (2000), the IPV auction model with risk neutral

bidders is identified from observed bids. Thus the nonidentification of the general risk

aversion model UR×FR arises from the unknown utility function U(·), which is restricted

to the identity function under risk neutrality. The second part of Proposition 2 indicates

that restricting U(·) to be derived from the four well known families of utility functions is

still insufficient for achieving identification even if U(·) is restricted to a simple parametric

specification such as the CRRA model.

It is useful to understand the source of nonidentification by considering the CRRA

model with zero wealth.10 Hence, U(x) = x1−c with 0 ≤ c < 1 and F (·) ∈ FR. Let

G(·) be the corresponding equilibrium bid distribution. Consider the alternative CRRA

structure [Ũ , F̃ ], where c̃ satisfies c < c̃ < 1, while F̃ (·) is the distribution of

ṽ = b+
1− c̃

I − 1

G(b)

g(b)
=
c̃− c

1− c
b+

1− c̃

1− c

(
b+

1− c

I − 1

G(b)

g(b)

)
,

10For the general risk aversion model, where [U,F ] ∈ UR×FR with arbitrary wealth, let [Ũ , F̃ ] be such

that Ũ(·) = [U(·/α)/U(1/α)]α, with α ∈ (0, 1) and F̃ (·) be the distribution of

ξ̃(b, Ũ , G, I) = b+ λ̃−1

(
1

I − 1
G(b)
g(b)

)
= b+ αλ−1

(
1

I − 1
G(b)
g(b)

)
,

with b ∼ G(·), the equilibrium bid distribution under [U,F ]. The second equality follows from λ̃(·) ≡
Ũ(·)/Ũ ′(·) = U(·/α)/U ′(·/α) = λ(·/α). It is easy to check that [Ũ , F̃ ] ∈ UR × FR. Note that ξ̃(·) can

be decomposed as the sum of (1− α)b and αξ(b) = α[b+ λ−1(G(b)/(I − 1)g(b))], which are two strictly

increasing functions in b. Hence, ξ̃(·) is strictly increasing. Thus, from Lemma 1 the structures [U,F ]

and [Ũ , F̃ ] are observationally equivalent, i.e. lead to the same bid distribution G(·).

13



where b ∼ G(·). Because the above function is strictly increasing in b when c < c̃ < 1,

then G(·) can also be rationalized by [Ũ , F̃ ]. Hence [Ũ , F̃ ] is observationally equivalent

to [U, F ]. This result contrasts with Donald and Paarsch (1996, Theorem 1), who state

that the CRRA model is identified. In fact, because of their assumption 1, these authors

restrict the distribution F̃ (·) to have the same support as F (·). In contrast, our result

shows that the CRRA model is not identified as F (·) and F̃ (·) may have different supports.

In particular, at b = b the above equation indicates that the support of F̃ (·) must shrink,

i.e. ṽ < v, to compensate for the increase in the constant relative risk aversion parameter

c̃ > c. More generally, all the quantiles of F̃ (·) are smaller than the corresponding ones

for F (·) by the same argument.

To summarize, considering risk aversion even under its simplest form such as CRRA

much increases the explanatory power of the model relative to the risk neutral case since

all bid distributions in GR can now be rationalized. On the other hand, the validity of such

a model can no longer be tested as the theory does not provide restrictions beyond the

independence of bids and the regularity conditions of GR. Moreover, risk averse models as

simple as CRRA and CARA models are nonidentified from observed bids. In particular,

parameterizing the utility function is not sufficient for achieving identification. Additional

identifying restrictions are thus needed.

4 Semiparametric Identification

The purpose of this section is to exploit heterogeneity across auctioned objects com-

bined with palatable identifying restrictions to achieve semiparametric identification of

first-price auction models with risk averse bidders.11 Heterogeneity across objects is char-

acterized by a vector of observed variables Z, which can be discrete or continuous with

values z in Z ⊂ IRd. For instance, Z can include a dummy variable for the quality of

the auctioned object or a continuous variable indicating the object’s appraisal value. As

before, we assume that the number of bidders I ∈ I is observed, which can be either

constant or varying across auctions. Hereafter, we thus consider that private values are

11For instance, if v was known, Donald and Paarsch (1996) result would apply and the CRRA model

would be identified. Assuming that v is known is, however, very strong as v directly affects the risk

aversion parameter c because v = b+ (1− c)/[(I − 1)g(b)].
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drawn from the conditional distribution F (·|Z, I).12 Our preceding nonidentification re-

sults of risk averse models then hold when the whole structure depends on (Z, I) namely

[U, F ] = {[U(·|z, I), F (·|z, I)], z ∈ Z, I ∈ I}.
A first natural restriction is to require that the utility function U(·) be independent of

(Z, I). Hence risk aversion is independent of the characteristics of the auctioned objects

and the number of bidders. This is justified in the case studied here as bidders do not

face uncertainty about the quality and equivalent monetary value of the auctioned object.

Restricting U(·) to be independent of (Z, I) is, however, insufficient for identifying the

model as noted later. Thus we need to consider additional restrictions on both U(·) and

F (·|·, ·) to achieve identification. We impose the following ones.

Assumption A1: For I a subset of {2, 3, . . .} and R ≥ 1,

(i) U(·) = U(·; θ) ∈ UR for every θ ∈ Θ ⊂ IRp,

(ii) F (·|·, ·) ∈ FR(Z × I) ≡ {F (·|·, ·) : F (·|z, I) ∈ FR,∀(z, I) ∈ Z × I}. The support of

F (·|z, I) is denoted [v(z, I), v(z, I)],

(iii) For some α ∈ (0, 1], the α-quantile vα(z, I) of F (·|z, I) satisfies vα(z, I) = vα(z, I; γ)

for all (z, I) ∈ Z × I and some γ ∈ Γ ⊂ IRq,

(iv) The function ψα(z, I; θ, γ) ≡ λ(vα(z, I; γ)− bα(z, I); θ) for (z, I) ∈ Z × I determines

uniquely (θ, γ) ∈ Θ×Γ, where bα(z, I) is the α-quantile of the equilibrium bid distribution

G(·|z, I) generated by the structure [U, F ].

Condition (i) requires that U(·) belongs to a parametric family of utility functions that

are smooth. Utility functions derived from CRRA and CARA vNM utility functions

satisfy such a condition with R = ∞. It is also satisfied by many parametric families

that allow for flexible patterns of risk aversion. Note that if initial wealth w is unknown,

then w must be included in the parameter vector θ. Condition (ii) requires that the

conditional distribution F (·|z, I) satisfies the regularity conditions of Definition 2 for

every (z, I) ∈ Z × I.

12Such a specification allows for unobserved heterogeneity across objects provided I is a sufficient

statistic for such unobserved heterogeneity conditional upon Z. See Campo, Perrigne and Vuong (2002).

Note that unobserved heterogeneity across bidders is allowed through differences in bidders’ private values.

On the other hand, observed heterogeneity across bidders is ruled out as it leads to an asymmetric auction

model. See Campo, Perrigne, and Vuong (2002) where bidders are ex ante different under risk neutrality.
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Condition (iii) is a parametric conditional quantile restriction on F (·|z, I), as fre-

quently used in the semiparametric literature. See Powell (1994). For instance, vα(·, ·; γ)
can be chosen to be a constant or more generally a polynomial, where γ is the vector of

unknown coefficients. Note that α = 1 is allowed, in which case a parametric specification

of the upper bound v(z, I) is considered. On the other hand, no assumption is made on

the lower bound v(z, I) corresponding to α = 0 as v(z, I) is nonparametrically identified

from the boundary condition v(z, I) = b(z, I). An alternative identifying assumption to

(iii) would be to require that the difference vα(z, I) − v(z, I) is a parametric function of

(z, I). This is equivalent to imposing a restriction on the α-quantile as the lower bound-

ary v(z, I) can be recovered from b(z, I). In particular when α = 1, vα(z, I) = v(z, I),

in which case this alternative identifying assumption would correspond to a parametric

specification of the length v(z, I)− v(z, I) of the support of F (·|z, I).
Condition (iv) is a standard identifying condition of the parameter vector (θ, γ) from

the knowledge of the function ψα(·, ·; θ, γ) on Z × I. It implies the “order” condition

Card Z × I ≥ p + q. Condition (iv) bears on [U,G], where G implicitly depends on the

structure [U, F ]. In particular, it can be easily verified. For instance, consider a CRRA

model with zero wealth and a constant (unknown) α-quantile of F (·|·, ·), i.e. vα(z, I) = γ,

in which case p = 1 and q = 1. Condition (iv) is then satisfied as soon as there are two

α-quantiles bα(z1, I1) and bα(z2, I2) that differ as shown in Proposition 3.

The next proposition establishes the semiparametric identification of the first-price

auction model with risk averse bidders. It relies upon the key equation (4) giving

the inverse of the equilibrium strategy, taking into account the conditioning variables

(Z, I), the parameterization of the utility function U(·; θ) and the α-quantile vα(z, I) of

F (·|z, I). Specifically, because the equilibrium strategy s(·, U, F, I) is strictly increasing,

then bα(z, I) = s(vα(z, I), U, F, I). Hence, (4) evaluated at the α-quantile bα(z, I) gives

g(bα(z, I)|z, I) =
1

I − 1

α

λ(vα(z, I; γ)− bα(z, I); θ)
, (5)

for any (z, I) ∈ Z × I, where λ(·; θ) = U(·; θ)/U ′(·; θ). This equation combined with

(iv) suggests how the parameter vector (θ, γ) can be identified given the knowledge of

g(bα(z, I)|z, I), and the specified parametric forms for λ(·; θ) and vα(·; γ).

Proposition 3: The semiparametric model defined as the set of structures [U, F ] satis-

fying Assumption A1 is identified. In particular, if there exists (zj, Ij) ∈ Z × I, j = 1, 2,
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such that bα(z1, I1) 6= bα(z2, I2), then the CRRA model and the CARA model with zero

wealth, a constant conditional quantile restriction vα = γ and F (·|·, ·) ∈ FR(Z × I) are

semiparametrically identified.

Proposition 3 provides a semiparametric identification result since U(·) is parametrically

identified through θ while F (·|·) is nonparametrically identified subject to its paramet-

ric conditional quantile restriction. Moreover, the proof shows that the parameter γ is

identified. Note that in the CRRA and CARA models with zero wealth and a constant

quantile restriction, the additional requirement that the α-quantile bα(z, I) varies with

(z, I) is readily verifiable. For instance, suppose that I does not vary, while Z is re-

duced to one dichotomous variable indicating e.g. the quality of the auctioned object.

The CRRA model is then identified if the α-quantiles of the conditional bid distributions

corresponding to the two values of Z differ.

It is worthnoting that parameterizing the utility function and the α-quantile of the

distribution of private values arises naturally. In particular, dropping either one of these

parameterizations would lead to a nonidentified model as the following examples indi-

cate. For instance, assume that the conditional quantile vα(z, I) is left unspecified, but

a parametric specification for the utility function is retained. Specifically, consider the

semiparametric model composed of the structures [U, F ] satisfying A1-(i,ii). Such a model

would not be necessarily identified. An example is the CRRA model with U(x) = x1−c

for c ∈ [0, 1) and F (·|·, ·) belonging to FR(Z × I). The argument is similar to that

given after Proposition 2, where G(·) and g(·) are replaced by G(·|·, ·) and g(·|·, ·), respec-

tively. Hence, restricting the utility function to be parametric does not achieve by itself

identification of the semiparametric model, despite that U(·) does not vary with (Z, I).

Likewise, suppose that the restriction to a parametric specification of the utility func-

tion is relaxed while the parametric conditional quantile restriction is retained. That

is, consider the semiparametric model composed of structures [U, F ] satisfying A1-(ii,iii)

with U(·) ∈ UR. This model is not necessarily identified. Specifically, let [U, F ] be such a

structure and consider the structure [Ũ , F̃ ], where

Ũ(x) =

{
c1[U(x/δ)]δ for 0 ≤ x < δ2,

c2U(x+ δ(1− δ)) for x ≥ δ2,
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where 0 < δ < 1, c1 = c2[U(δ)]1−δ, and c2 = 1/U(1 + δ(1 − δ)).13 Let F̃ (·|z, I) be the

distribution of

ξ̃(b|z, I) = b+ λ̃−1

(
1

I − 1

G(b|z, I)
g(b|z, I)

)
,

where b ∼ G(·|z, I). It can be shown that [Ũ , F̃ ] rationalizes G(·|·, ·) and that F̃ (·|·, ·)
satisfies A1-(ii,iii).14 Hence, the parameterization of the conditional quantile of F (·|z, I)
is not sufficient by itself for identification.

5 Optimal Convergence Rate

The previous section has shown that the auction model with risk averse bidders is semi-

parametrically identified through a parameterization of the utility function and a para-

metric quantile restriction on the distribution of private values. This naturally leads to

the search for estimators of [U, F ], and in particular for semiparametric estimators of θ

as θ parameterizes U(·). ¿From the semiparametric literature, it is known that many

semiparametric estimators can attain the parametric rate of convergence, while others

converge at a slower rate. For the former, see Robinson (1988) and Newey and McFadden

(1994) and Powell (1994) for surveys. For the latter, see Manski (1985), Horowitz (1992),

13Note that Ũ(0) = 0, and Ũ(·) has R+ 2 continuous derivatives on (0, δ)∪ (δ,+∞). Thus Ũ(·) would

belong to UR if Ũ(·) has R + 2 continuous derivatives at x = δ2. In fact, Ũ(·) has only one continuous

derivative at x = δ2. Hence Ũ(·) should be smoothed out in the neighborhood of x = δ2 to be R + 2

continuously differentiable on (0,+∞). We omit this smoothing requirement and use Ũ(·) directly.
14From Lemma 1, we need to show that ξ̃′(·|z, I) > 0 for any (z, I) ∈ Z × I. We have

ξ̃(b|z, I) =

{
(1− δ)b+ δξ(b|z, I) if G(b|z, I)/[(I − 1)g(b|z, I)] ≤ λ(δ),

ξ(b|z, I)− δ(1− δ) if G(b|z, I)/[(I − 1)g(b|z, I)] ≥ λ(δ).

Because ξ′(·|z, I) is strictly positive, ξ̃′(·|z, I) is strictly positive as required. Hence [Ũ , F̃ ] rationalizes

the bid distribution G(·|·, ·). It remains to show that F̃ (·|·, ·) satisfies A1-(iii). The α-quantile ṽα(z, I) of

F̃ (·|z, I) satisfies ṽα(z, I) = ξ̃(bα(z, I)|z, I). Consider G(bα(z, I)|z, I)/[(I − 1)g(bα(z, I)|z, I)] = α/[(I −
1)g(bα(z, I)|z, I)]. Because λ(·) is strictly increasing with λ(0) = 0, there exists δ sufficiently small so

that 0 < λ(δ) < α/ sup(z,I)∈Z×I [(I − 1)g(bα(z, I)|z, I)], where the latter is assumed to be finite. Thus

ṽα(z, I) = ξ(bα(z, I)|z, I) − δ(1 − δ) = vα(z, I) − δ(1 − δ) > 0 for δ sufficiently small. Hence ṽα(z, I)

satisfies A1-(iii) whenever vα(z, I; γ) contains a constant term.
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Kyriazidou (1997) and Honoré and Kyriazidou (2000). Given the nonstandard nature of

our model, it is especially useful to derive the optimal (best) convergence rate that can be

attained by semiparametric estimators of θ. This is the primary purpose of this section.

The optimal convergence rate for estimating the conditional density f(·|·, ·) will follow

from Guerre, Perrigne and Vuong (2000).

We first need to strengthen our regularity assumptions on F (·|·, ·) and U(·; ·) with

respect to (z, I) and θ. Regarding F (·|·, ·), we introduce the following definition, which

parallels Definition 2 taking into account the conditioning variables (Z, I).

Definition 4: For R ≥ 1 and some unknown v and v, 0 ≤ v < v < +∞, let F∗
R ≡

F∗
R(Z × I) be the set of conditional distributions F (·|·, ·) satisfying

(i) ∀(z, I) ∈ Z × I, v(z, I) = v and v(z, I) = v,

(ii) ∀I ∈ I, F (·|·, I) admits R + 1 continuous derivatives on [v, v]×Z,

(iii) ∀I ∈ I, inf(v,z)∈[v,v]×Z f(v|z, I) > 0.

While conditions (ii) and (iii) are straightforward extensions of their counterparts in Def-

inition 2, condition (i) needs further discussion. Because of the singularity of the differ-

ential equation (2) at the lower boundary of the support of the private value distribution,

assuming a constant lower boundary v(z, I) = v simplifies the proof of Theorem A1 es-

tablishing the smoothness of the equilibrium strategy s(·) with respect to (v, z), which

is needed to obtain the smoothness of the equilibrium bid distribution. On the other

hand, such a restriction is not used in estimation as v(z, I) can be recovered from b(z, I).

Regarding the upper boundary restriction, Section 4 indicates that a parameterization of

a quantile of F (·|·, ·) is necessary for achieving identification. The upper boundary is a

particular quantile corresponding to α = 1. Our estimation procedure will rely on (5),

which requires an estimate for bα(z, I). There is then an important difference between

estimating a quantile corresponding to α ∈ (0, 1) and estimating the upper boundary. In

particular, the convergence rate for estimating the latter is much faster than for estimat-

ing the former. This suggests that the optimal convergence rate for estimating θ cannot

be faster when considering an α-quantile restriction with α ∈ (0, 1) than when considering

the upper boundary. Hereafter, we thus focus on α = 1, and for sake of simplicity, we

consider a constant upper boundary so that q = 1. In other words, we assume a common
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but unknown support for the distributions F (·|z, I), where (z, I) ∈ Z × I.15

It will be useful to derive the smoothness properties of the equilibrium bid distribution

G(·|·, ·) corresponding to a structure [U, F ] in UR × F∗
R. Such properties are important

as they relate to the implied statistical model for the observables, which are the bids,

the number of bidders and the exogenous variables. They follow from Theorem A1,

which establish the existence, uniqueness and smoothness of the equilibrium strategy

with respect to (v, z) in [v, v]×Z for every i ∈ I.16

Lemma 2: Let I ⊂ {2, 3, . . .}, R ≥ 1 and Z be a rectangular compact of IRd with

nonempty interior. For every I ∈ I, the conditional distribution G(·|·, I) corresponding

to a structure [U, F ] ∈ UR ×F∗
R satisfies

(i) The upper boundary b(z, I) admits R+ 1 continuous derivatives with respect to z ∈ Z
and infz∈Z(b(z, I)− b(z, I) > 0, where b(z, I) = v,

(ii) G(·|·, I) admits R + 1 continuous partial derivatives on SI(G) ≡ {(b, z); z ∈ Z, b ∈
[b(z, I), b(z, I)]},
(iii) g(b|z, I) > cg > 0 for all (b, z) ∈ SI(G),

(iv) g(·|·, I) admits R + 1 continuous partial derivatives on Su
I (G) ≡ {(b, z); z ∈ Z, b ∈

(b(z, I), b(z, I)]},
(v) limb↓b(z,I) ∂

r[G(b|z, I)/g(b|z, I)]/∂br exists and is finite for r = 1, . . . , R+1 and z ∈ Z.

Lemma 2 extends Lemma 1-(ii) to the case with exogenous variables (Z, I). It parallels

Proposition 1 in Guerre, Perrigne and Vuong (2000) for the risk neutral case.

In view of the above, we then consider the semiparametric model composed of struc-

tures [U, F ] satisfying the following assumption.

Assumption A2: Let I ⊂ {2, 3, . . .}, R ≥ 1 and Z be a rectangular compact of IRd with

nonempty interior.

(i) In addition to A1-(i), U(·; ·) is R + 2 continuously differentiable on (0,+∞)×Θ,

(ii) F (·|·, ·) ∈ F∗
R,

(iii) The function ψ1(z, I; θ, v) ≡ λ(v − b(z, I); θ) for (z, I) ∈ Z × I determines uniquely

15When there are no exogenous variables Z, assuming that F (·|I)s have a common support agrees with

the theoretical assumption that the private value distribution is independent of the number of bidders.
16To simplify the presentation, we exclude discrete exogenous variables by requiring Z to have a

nonempty interior. Our next results continue to hold with suitable modifications.
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(θ, v) ∈ Θ×(0,+∞), where b(z, I) is the upper boundary of the equilibrium bid distribution

G(·|z, I) generated by the structure [U, F ] with I bidders.

Conditions (i) and (ii) strengthen A1-(i,ii,iii) of A1. Condition (iii) simply expresses

A1-(iv) at the upper boundary under a constant restriction. Then (5) becomes

g(b(z, I)|z, I) =
1

I − 1

1

λ(v − b(z, I); θ)
, (6)

for all (z, I) ∈ Z × I. Let β = (θ, v).

It remains to specify the data generating process. For the `th auction, one observes

all the bids Bi`, i = 1, . . . , I`, the number of bidders I` ≥ 2 as well as the d-dimensional

vector Z` characterizing the heterogeneity of the auctioned objects. This gives a total

number N =
∑L

`=1 I` of bids, where L is the number of auctions. Thus f(·|Z`, I`) is

the density of private values conditional upon (Z`, I`) in auction `. Following the game

theoretical model of Section 2, we make the following assumption on the data generating

process and the specification of the semiparametric model composed of structures [U, F ]

satisfying A2.

Assumption A3:

(i) The variables (Z`, I`), ` = 1, 2 . . . are independently and identically distributed with

support Z × I, where I is finite and 0 < inf(z,I)∈Z×I g(z, I) ≤ sup(z,I)∈Z×I g(z, I) < +∞,

(ii) For every `, the private values Vi`, i = 1, . . . , I` are independently and identically

distributed conditionally upon (Z`, I`) as F0(·|Z`, I`),

(iii) The semiparametric model is correctly specified, i.e. the true utility function U0(·)
and conditional distribution F0(·|·, ·) satisfy Assumption A2 for some θ0 ∈ Θ and 0 ≤
v0 < v0 < +∞.

In particular, private values and hence bids are independent across auctions.17

We are now in a position to establish the optimal rate at which β = (θ, v) can be esti-

mated. As in Horowitz (1993), we invoke the minimax theory developed by e.g. Ibragimov

and Has’minskii (1981). We consider the following norms

||β||∞ = max( max
1≤k≤p

|θk|, |v|), ||f(·|·, ·)||∞ = sup
(z,I)∈Z×I

sup
v∈[v,v]

|f(v|z, I)|

17Not all of A3 is used to prove Theorem 2. In particular, (Z`, I`) need not be independently and

identically distributed. Furthermore, A3-(i) can be weakened allowing Z`s not to be independently and

identically distributed as Theorem 3 is derived conditionally upon (Z1, I1, . . . , Z`, I`).
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and define the set of conditional densities

F∗
R(M) =

{
f(·|·, ·) ∈ F∗

R;

∥∥∥∥∂Rf(·|·, ·)
∂vR

∥∥∥∥
∞
< M

}
,

for M > 0. As usual in studies of convergence rates, one considers a neighborhood of the

true parameters (β0, f0) in order to exclude superefficiency, i.e.

Vε(β0, f0) = {(β, f) ∈ Θ× (0,+∞)×F∗
R(M); ‖β − β0‖∞ < ε,

‖(f(·|·, ·)− f0(·|·, ·))1I(f(·|·, ·)f0(·|·, ·) > 0)‖∞ < ε},

where the indicator function restricts comparison of conditional densities on the intersec-

tion of their supports. Let Prβ,f be the joint distribution of the Vi`s and the (Z`, I`)s under

(θ, f, fZ,I), where fZ,I is the joint density of the (Z`, I`)s. The next theorem establishes

an upper bound for the optimal rate when estimating β0. It crucially relies on Lemmas 1

and 2 and Proposition 3. Let Θo denote the interior of Θ.

Theorem 2: Under Assumptions A2-A3, for any β0 ∈ Θo × (0,+∞), any f0 ∈ F∗
R(M)

and any deterministic sequence ρN such that ρNN
−(R+1)/(2R+3) → +∞, there exists a

diverging deterministic sequence tN → +∞ such that

lim
ε→0

lim
N→+∞

inf
β̃N

sup
(β,f)∈Vε(β0,f0)

Prβ,f

(
‖ρN(β̃N − β)‖∞ ≥ tN

)
≥ 1/2,

for any t ≥ 0, where the infimum is taken over all possible estimators β̃N of β based upon

(Bi`, Z`, I`), i = 1, . . . , I`, ` = 1, . . . , L.

Theorem 2 reveals the nonparametric nature of the parameter β, which cannot be esti-

mated at a faster rate than N (R+1)/(2R+3). More precisely, for any estimator β̃N , Theorem

2 shows that ρN(β̃N − β) diverges with probability at least 1/2. Thus ρN diverges too

fast and β cannot be estimated at a rate faster than N (R+1)/(2R+3), and hence at the

parametric rate ρN =
√
N . On the other hand, Theorem 3 in the next section will show

that there exists an estimator β̂N that converges at the rate N (R+1)/(2R+3). Therefore, the

optimal rate of convergence for estimating β0 in the minimax sense is N (R+1)/(2R+3), i.e.

N2/5 when R = 1, which is independent of the dimension d of the exogenous variables Z.

The main idea of the proof is to introduce some perturbations of the true parameters

(β0, f0). For instance, when R = 1, we consider the bid density

gN(b|z, I) = g0(b|z, I) + [m(z, I; βN)−m(z, I; β0)]ψ
(
κ
√
ρN(b− b0(z, I))

)
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where ψ : IR− → IR is compactly supported with ψ(0) = 1, and
∫
ψ(x)dx = 0, while

m(z, I; β) =
1

I − 1

1

λ(v − b0(z, I); θ)
, (7)

κ > 0, and ‖βN − β0‖∞ = O(1/ρN). Using Lemmas 1 and 2, we first establish that each

such density can be rationalized by an auction model with (βN , fN(·|·, ·)) ∈ Vε(β0, f0) for

ρN sufficiently large. We then show that the probability distributions of the Bi`s under

gN(·|·, ·) and g0(·|·, ·) cannot be distinguished statistically from each other.

6 Semiparametric Estimation

This section proposes a semiparametric procedure for estimating (i) the parameter θ

characterizing the bidders’ utility function U(·; θ) and hence bidders’ risk aversion, and

(ii) the conditional latent density f(·|·, ·) of bidders’ private values. Because we do not

restrict f(·|·, ·) to belong to a parametric family, the estimation problem is semiparametric.

A first subsection presents our semiparametric procedure and its different steps, while a

second subsection establishes the asymptotic properties of our estimator of θ.

6.1 A Semiparametric Procedure

Our semiparametric procedure follows closely the semiparametric identification result. By

(6) and (7), it relies on the identifying relation

g0(b0(z, I)|z, I) =
1

I − 1

1

λ(v0 − b0(z, I); θ0)
= m(z, I; β0), ∀(z, I) ∈ Z × I, (8)

where the subscript 0 indicates quantities at the truth. If one knew the upper boundary

b0(·, ·) and the density g0(·|·, ·), one could recover the utility function parameters θ0 from

(8) given the chosen parametric form for λ(·; ·). From the knowledge of G0(·|·, ·) and

θ0, one could then recover every bidder’s private value vi from (4) to estimate f0(·|·, ·).
Unfortunately, b0(·, ·), G0(·|·, ·) and g0(·|·, ·) are unknown, but they can be estimated from

observed bids. This suggests the following three steps procedure:

• Step 1: From observed bids, estimate nonparametrically b0(·, ·) and g0(b0(·, ·)|·, ·) at

the observed values (Z`, I`),
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• Step 2: Using (8), where g0(b0(Z`, I`)|Z`, I`) and b0(Z`, I`) are replaced by their

estimates obtained in the first step, estimate β0 ≡ (θ0, v0) using NLLS,

• Step 3: Using (4), where G0(·|·, ·), g0(·|·, ·) and λ(·; θ0) are replaced by their non-

parametric estimators and λ(·; θ̂N), recover the pseudo private values v̂i to estimate

nonparametrically f0(·|·, ·).

The next subsections detail each of these steps.

Nonparametric Boundary Estimation

This step consists in estimating the upper boundary b0(·, ·) of the bid distribution and

the conditional density g0(·|·, ·) at the upper boundary.

We first discuss the estimation of b0(·, ·). Fix I ∈ I. By Lemma 2-(i), the upper

boundary b0(·, I) is R + 1 continuously differentiable on Z. Following Korostelev and

Tsybakov (1993), one introduces a partition of Z into bins increasing with the number

of observations. The boundary estimator of b0(z, I) for z in an arbitrary bin is obtained

by minimizing the volume of the cylinder whose base is the bin and whose upper surface

is defined by a polynomial of degree R in z ∈ IRd subject to the constraint that the

observations are contained in such a cylinder. The optimal polynomial evaluated at z

gives the boundary estimate b̂N(z, I). Under appropriate vanishing size ∆N of the bins,

namely ∆N ∝ (logN/N)1/(R+1+d), the resulting piecewise polynomial estimator converges

to b0(·, I) uniformly on Z at the rate (N/ logN)(R+1)/(R+1+d), which is strictly faster that
√
N whenever R ≥ d.

For instance, for R = 1 and d = 1, partition Z = [z, z] into kN bins {Zk; k = 1, . . . , kN}
of equal length ∆N ∝ (logN/N)1/3. On each Zk = [zk, zk), the estimate of the upper

boundary is the straight line âk + b̂k(z − zk), where (âk, b̂k) is obtained by solving

min
{(ak,bk):Bi`≤ak+bk(Z`−zk),i=1,...,I`,Z`∈Zk}

∫ zk

zk

ak + bk(z − zk)dz = ak∆N + bk∆
2
N/2.

This estimator converges at the uniform rate (N/ logN)2/3, which is strictly faster than
√
N and sufficient for our purpose.

Turning to the estimation of the density g(·|·, ·) at the upper boundary, it is well-known

that standard kernel density estimators suffer from bias at boundary points. To minimize

such boundary effects, we consider a one-sided kernel density estimator. Specifically, let
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Φ(·) be a one-sided kernel with support [−1, 0] satisfying some conditions, which include∫
Φ(x)dx = 1 and

∫
xrΦ(x)dx = 0 for r = 1, . . . , R (see Assumption 4-(iii)). For every

` = 1, . . . , L and i = 1, . . . , I`, define

Yi` ≡
1

hN

Φ

(
Bi` − b0(Z`, I`)

hN

)
, Ŷi` ≡

1

hN

Φ

(
Bi` − b̂N(Z`, I`)

hN

)
, (9)

where hN is some bandwidth. Lemma D1 shows that Yi` is an asymptotically unbiased

estimator of g0(b0(Z`, I`)|Z`, I`) given (Z`, I`) as hN vanishes.18 In practice, one does not

know b0(·, ·). We thus define Ŷi` similarly to Yi`, where b0(·, ·) is replaced by its estimator

b̂N(·, ·) obtained previously.

Semiparametric Estimation of θ0

Let FL be the σ-field generated by Z`, ` = 1, . . . , L. In view of (8)-(9) we consider the

identity

Yi` = m(Z`, I`; β0) + ei` + εi`, (10)

where ei` ≡ E[Yi`|FL]−m(Z`, I`, β0) and εi` = Yi`−E[Yi`|FL]. Lemma D1 shows that the

bias term ei` = O(hR+1
N ), while the variance of the error term εi` is an O(1/hN), namely,

Var[εi`|FL] =
m(Z`, I`; β0) + o(1)

hN

∫
Φ2(x)dx. (11)

Hence, the Yi`s obey a regression model with a vanishing bias and a variance of the error

term diverging to infinity as hN vanishes. These features raise some technical difficulties

when deriving the asymptotic properties of our estimator of θ. In particular, the diverging

variance of the error term is the main reason why our estimator does not achieve the

parametric rate
√
N of convergence. Specifically, its rate N (R+1)/(2R+3) is smaller than

√
N but is optimal in the minimax sense in view of Section 5.

Equation (10) suggests to estimate β0 by possibly weighted NLLS, i.e. by minimizing

QN(β) =
L∑

`=1

I∑̀
i=1

ω(Z`, I`)[Yi` −m(Z`, I`; β)]2 (12)

18Note that Y ` = (1/I`)
∑I`

`=1 Yi` has a kernel type form with a one-sided kernel, though I` remains

bounded and hence does not increase with N in our case.
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with respect to β = (θ, v) ∈ Bδ, where the ω(Z`, I`)s are strictly positive weights. The set

Bδ is defined as Bδ = {(θ, v); θ ∈ Θ, sup(z,I)∈Z×I b0(z, I) + δ ≤ v ≤ vsup} for some δ > 0

and vsup > 0. The set Bδ is introduced to bound m(·, ·; β) away from 0 (see Lemma C1).

Because b0(·, ·) and hence m(·, ·; β) are unknown, the preceding estimator is infeasible.

We thus replace b0(·, ·) by its estimator obtained in Step 1. Thus, our estimator of β is

defined as β̂N = Argminβ∈BN
Q̂N(β), where

Q̂N(β) =
L∑

`=1

I∑̀
i=1

ω(Z`, I`)[Ŷi` − m̂(Z`, I`; β)]2 (13)

and

m̂(z, I; β)=
1

I−1

1

λ(v−b̂N(z, I); θ)
, BN ={(θ, v); θ ∈ Θ, max

1≤`≤L
b̂N(Z`, I`)+δ/2 ≤ v ≤ vsup}.

Nonparametric Estimation of f(·|·)
This step is similar to the second step in Guerre, Perrigne and Vuong (2000) with the

difference that λ(·; θ0) in (4) is now estimated using the estimator θ̂N of θ0 in Step 2, while

λ(·) was known and equal to the identity in that paper.

Specifically, we first need an estimate of the ratio G0(·|·, ·)/g0(·|·, ·) evaluated at

(Bi`, Z`, I`). For an arbitrary (b, z, I), the ratio G0(b|z, I)/g0(b|z, I) is estimated by

ψ̂(b, z, I) =
hd+1

g

hd
G

∑
{`;I`=I}

1
I`

∑I`

i=1 1I(Bi` ≤ b)KG

(
z−Z`

hG

)
∑

{`;I`=I}
1
I`

∑I`

i=1Kg

(
b−Bi`

hg
, z−Z`

hg

) ,

where KG(·) and Kg(·) are kernels of order R + 1 with bounded supports, and hG and

hg are bandwidths vanishing at the rates (N/ logN)1/(2R+d+2) and (N/ logN)1/(2R+d+3),

respectively. The pseudo private values are then

V̂i` = Bi` + λ−1

(
1

I` − 1
ψ̂(Bi`, Z`, I`); θ̂N

)
,

if (Bi`, Z`) + S(2hG) ⊂ Ŝ(GI`
) and (Bi`, Z`) + S(2hg) ⊂ Ŝ(GI`

). Otherwise, we let

V̂i` be infinity, which corresponds to a trimming. The sets S(2hG) and S(2hg) are the

supports of KG(·/(2hG)) and Kg(·/(2hg)), respectively. The set ŜI(G) is the estimated

support of the conditional bid distribution G0(·|·, I). Specifically, ŜI(G) = {(b, z) : b ∈
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[b̂N(z, I), b̂N(z, I)], z ∈ Z}, where b̂N(·, I) is the previous boundary estimator and b̂N(·, I)
is defined similarly.

The N pseudo private values V̂i` hence obtained are used in a standard kernel estima-

tion of f0(·|·).19 Namely, for an arbitrary pair (v, z), f(v|z) is estimated by

f̂(v|z) =
hd

Z

hd+1
f

∑L
`=1

1
I`

∑I`

i=1Kf

(
v−V̂i`

hf
, z−Z`

hf

)
∑L

`=1KZ

(
z−Z`

hZ

) ,

whereKf (·) andKZ(·) are kernels of order R and R+1 with bounded supports, and hf and

hZ are bandwidths vanishing at the rates (N/ logN)1/(2R+d+3) and (L/ logL)1/(2R+d+2).

Because our semiparametric estimator θ̂N converges at a faster rate, as shown in the

next section, it follows from Guerre, Perrigne and Vuong (2000) that f̂(·|·) is uniformly

consistent on compact subsets of its support at the rate (N/ logN)R/(2R+d+3). Moreover,

the latter is the optimal rate for estimating f0(·|·) from observed bids.

6.2 Asymptotic Properties

In this section, we derive the asymptotic properties of our estimator of θ0. In particular,

we show that our semiparametric estimator θ̂N converges at the rate N (R+1)/(2R+3), which

is independent of the dimension of Z. In view of Theorem 2, it follows that the optimal

rate for estimating θ0 is N (R+1)/(2R+3) and that θ̂N converges at this optimal rate.

We make the next assumptions on δ, (θ0, v0), the weights ω(·, ·), the kernel Φ(·), the

bandwidth hN and the rate of uniform convergence a−1
N of the boundary estimator b̂N(·, ·).

Assumption A4:

(i) δ is such that 0 < δ < v0 − sup(z,I)∈Z×I b0(z, I). Moreover, (θ0, v0) belongs to Θo ×
(0, vsup) for some vsup <∞, where Θ is a compact of IRp, and

Span(z,I)∈Z×I

{
∂λ(v0 − b0(z, I); θ0)

∂β

}
= IRp+1,

(ii) The weight functions ω(·, ·) are uniformly bounded away from zero and infinity, i.e.

inf(z,I)∈Z×I ω(z, I) > 0 and sup(z,I)∈Z×I ω(z, I) <∞,

19As in Guerre, Perrigne and Vuong (2000), we focus on the conditional density f0(v|z), though similar

results are obtained for f0(v|z, I).
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(iii) The kernel Φ(·) is continuously differentiable on IR− with support [−1, 0] and satisfies∫
Φ(x)dx = 1,

∫
xjΦ(x)dx = 0 for j = 1, . . . , R,

(iv) hN = o(1) with NhN →∞,

(v) sup(z,I)∈Z×I |b̂N(z, I)− b0(z, I)| = OP (aN) with aN = o
(
min

{
hR+2

N ,
√
hN/N

})
.

Regarding the first part of Assumption A4-(i), recall that sup(z,I)∈Z×I b0(z, I) < v0

by Theorem 1-(i), Lemma 2-(i) and the compactness of Z × I. The second part of

Assumption A4-(i) is standard in parametric estimation. In particular, it strengthens the

identification requirement of β0 from the parametric specification m(·, ·; β). For instance,

it implies that b0(z, I) must have at least p+ 1 different values. As shown in Lemma D5,

combined with Assumption A4-(ii), it also ensures that the usual matrices

A(β) ≡ 1

E[I]
E

[
Iω(z, I)

∂m(z, I; β)

∂β
· ∂m(z, I; β)

∂β′

]
(14)

B(β) ≡ 1

E[I]
E

[
Iω2(z, I)m(z, I; β)

∂m(z, I; β)

∂β
· ∂m(z, I; β)

∂β′

]
(15)

are of full rank in a neighborhood of β0.

Assumptions A4-(iii,iv) are standard in kernel estimation when using higher order

kernels though our kernel is one-sided. Assumption A4-(v) requires that the boundary

estimator b̂N(·, ·) converges faster than the semiparametric estimator θ̂N (see Theorem

3-(i) for the latter) so that estimation of the boundary does not affect the asymptotic

distribution of θ̂N . For instance, when R = 1 and d = 1, we have aN = (logN/N)2/3 from

Korostelev and Tsybakov (1993) (see previous subsection). If hN is exactly of order N−1/5,

which gives the optimal convergence rate of θ̂N by Theorems 2 and 3, then Assumption

A4-(v) is satisfied. More generally, when d ≥ 1 and hN is exactly of the optimal order

N−1/(2R+3), it is easily checked that R ≥ d is sufficient for the convergence rate a−1
N =

(N/ logN)(R+1)/(R+1+d) of the boundary estimator b̂N(·, ·) to satisfy Assumption A4-(v).

Analogously to (14) and (15), we introduce the following (p+ 1)-square matrices

AN(β) =
L∑

`=1

I`ω(Z`, I`)
∂m(Z`, I`; β)

∂β
· ∂m(Z`, I`; β)

∂β′
, (16)

BN(β) =
L∑

`=1

I`ω
2(Z`, I`)m(Z`, I`; β)

∂m(Z`, I`; β)

∂β
· ∂m(Z`, I`; β)

∂β′
, (17)

28



which, when normalized by N , are consistent estimators of A(β) and B(β) as shown in

Lemma D5. Since m(·, ·; β) is unknown, let ÂN(β) and B̂N(β) be defined as AN(β) and

BN(β) with m(·; β) replaced by m̂(·; β). Moreover, let

b(β, g0) =

∫
xR+1Φ(x)dx

(R + 1)!

1

E[I]
E

[
Iω(Z, I)

∂R+1g0(b0(Z, I)|Z, I)
∂bR+1

∂m(Z, I; β)

∂β

]
, (18)

which gives the asymptotic bias of our estimator.

The next result establishes the consistency and asymptotic normality of β̂N . It also

provides its rate of convergence and an estimator of its asymptotic variance.

Theorem 3: Under Assumptions A2–A4,

(i) β̂N is a consistent estimator of β0 with

β̂N − β0 = OP

(
hR+1

N +
1√
NhN

)
,

so the best rate of convergence of β̂N is N (R+1)/(2R+3), which is achieved when the exact

order of the bandwidth hN is N−1/(2R+3).

(ii) If limN→∞
√
NhNh

R+1
N = ∞, then

1

hR+1
N

(
β̂N − β0

)
P→ A(β0)

−1b(β0, g0) .

(iii) If limN→∞
√
NhNh

R+1
N = c ≥ 0, then√

NhN

(
β̂N − β0

)
d→ N

(
cA(β0)

−1b(β0, g0), A(β0)
−1B(β0)A(β0)

−1

∫
Φ2(x)dx

)
.

Moreover, consistent estimators of A(β0) and B(β0) are N−1ÂN(β̂N) and N−1B̂N(β̂N)).

On technical grounds, the proof of Theorem 3-(i) is complicated by the divergence of

the variance (11) of the error term εi` in the nonlinear model (10). In particular, omitting

the estimation of the upper boundary b(·, ·), which has no effect by Assumption A4-(v),

(1/N)QN(β) = OP(1/hN) because of the diverging variance. Hence, (1/N)QN(β) does

not have a finite limit. This would lead to consider the normalization hNQN(β)/N , but

its limit is a constant independent of β. To overcome such a difficulty, we show that

(QN(β)−QN(β0)−QN(β))/N vanishes asymptotically, where

QN(β) =
L∑

`=1

I`ω(Z`, I`)[m(Z`, I`; β)−m(Z`, I`; β0)]
2. (19)
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Consistency of β̂ can then be established by standard arguments using the objective

function QN(β) (see, e.g. White (1994)).

Theorem 3-(ii,iii) gives the asymptotic distribution of β̂N − β0 and its rate of conver-

gence. In particular, our proof shows that β̂N − β0 is approximately distributed as

hR+1
N A−1(β0)b(β0, g0) +

1√
NhN

A−1(β0) N
(

0, B(β0)

∫
Φ2(x)dx

)
.

This expansion corresponds to the usual bias/variance decomposition of nonparametric

estimators (see e.g. Härdle and Linton (1994)). When Nh2R+3
N → 0, the leading term is

the second term, and we obtain√
NhN

(
β̂N − β0

)
d→ N

(
0, A(β0)

−1B(β0)A(β0)
−1

∫
Φ2(x)dx

)
.

When Nh2R+3
N → ∞, it is the first term, i.e. the bias. Thus, the best convergence rate

of β̂N is achieved when the variance and the bias are of the same order, i.e. when hN is

exactly of order N−1/(2R+3), in which case β̂N − β0 = OP (N−(R+1)/(2R+3)).20

The best convergence rate N (R+1)/(2R+3) of β̂N is independent of the dimension d of

Z and corresponds to the optimal rate for estimating an univariate density with R + 1

bounded derivatives. This seems surprising in view of the key relation (8), which suggests

that β0 is as difficult to estimate as the conditional density g0(·|·, ·), while the latter cannot

be estimated faster than N (R+1)/(2R+3+d) from Stone (1982) given the (R + 1) bounded

derivatives of g0(·|·, I). The faster rate N (R+1)/(2R+3) can be explained by noting that

(8) leads to the moment conditions E[{g0(b0(Z, I)|Z, I) − m(Z, I; β0)}W (Z, I)] = 0 for

any vector function W (·). Integrating with respect to Z intuitively improves the rate of

convergence by eliminating the Z dimension. Note that the previous moment conditions

are similar to those considered by Newey and McFadden (1994) though Assumptions (iii)-

(iv) of their Theorem 8.1 is not satisfied in our case. In fact, because the variance (11)

is diverging, our proof shows that the average gradient (1/N)∂Q̂N(β0)/∂β = OP(hR+1 +

20When hN is optimally chosen, the estimator β̂N is asymptotically biased. In a similar problem,

Horowitz (1992) proposes a correction based on the estimation of the bias. See also Bierens (1987).

Another bias correction using a modification of the Yi`s could be based on Hengartner (1997). From

Liu and Brown (1993), however, such a bias correction cannot hold in the minimax sense of Theorem 2.

Because the limit results used in the proof hold uniformly with respect to (β, f) in a neighborhood of

(β0, f0), β̂N is rate efficient in the sense of Theorem 2.
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1/
√
NhN), which is different from the usual OP(1/

√
N). Hence, our estimator converges

at a slower rate than
√
N .

In practice, Theorem 3-(iii) is used to make inference on β0 as it gives an estimate of the

variance of β̂N , namely (
∫

Φ2(x)dx/hN)Â−1
N (β̂N)B̂N(β̂N)Â−1

N (β̂N). Note that β̂N depends

on the weights ω(·, ·), which can be chosen optimally to decrease the asymptotic variance

of β̂N as in weighted NLLS. ¿From (11), the optimal weight function ω∗(·, ·) is inversely

proportional to the variance, i.e. ω∗(·, ·) = 1/m(·, ·; β0). This optimal weighted NLLS

estimator β̂∗N can be implemented by a two-stage procedure, in which the optimal weights

are estimated by 1/m̂(·, ·; β̂N), where β̂N is obtained in the first step by ordinary NLLS.

The estimate of the variance of β̂∗N then reduces to (
∫

Φ2(x)dx/hN)Â−1
N (β̂∗N). This is the

best variance achievable in the regression model (10) with ei` = 0. An interesting question

is then the existence of an estimator based upon the Yi`s with a smaller asymptotic

variance in a local minimax sense.

7 Empirical Application

This section illustrates the previous methodology on timber auction sales from the US

Forest Service. A first subsection briefly presents the data. A second subsection discusses

the implementation of our estimation method for a CRRA utility specification and gives

the estimation results. In particular, risk aversion is found to be significant.

7.1 Data

The US Forest Service (USFS) timber auction data have been widely used in empirical

studies on auctions. Comparing revenues generated from ascending and sealed-bid auc-

tions, Hansen (1985) tests the revenue equivalence theorem. Adopting an independent

private value framework, Baldwin, Marshall and Richard (1997) study collusion, while

Baldwin (1995) attempts to test for the presence of risk aversion. More recently, Athey

and Levin (2001) study the practice of skewed bidding when bidders bid on species and

when payments are based on actual harvested value. Their analysis suggests that bidders

are risk averse. Haile (2001) analyzes the bidding behavior when there are resale oppor-

tunities after the auctions. Each of these papers focuses on a particular economic issue.
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While bidders’ risk aversion is suspected in two of them, the extent of risk aversion has

not been measured. The objective of our application is to shed some light on bidders’ risk

aversion. For this reason, many characteristics of these auctions such as collusion, skewed

bidding and resale markets are left aside to focus on the issue of risk aversion.

The Western half of the United States has a large part of its forestry publicly owned

and is an important provider of timber in the country.21 The Forest Service uses both oral

ascending and first-price sealed-bid auctions for selling its standing timber. We focus here

on the first-price sealed-bid auctions for the year 1979. There is a total of 378 auctions

involving a total of 1,400 sealed bids from sawmills.

The data contain a set of variables characterizing each timber lot on sale varying from

the various species included in the lot, the estimated volume measured in mbf, the logging

cost in dollars, the acreage of the lot, the term of the contract measured in months, the

month during which the auction was held, the location of the lot, the total reserve price

in dollars and the appraisal value in dollars. The latter is an estimated value of the lot

provided by the USFS taking into account the quality and quantity of timber. In addition

to these variables, the data provide the number of bidders who have submitted a sealed bid

as well as their bid in dollars and their identities. Table 1 gives some summary statistics

on the bids per mbf, the winning bid per mbf, the reserve price per mbf, the appraisal

value per mbf, the volume in mbf, the density computed as the ratio of the volume per

acre, the acreage and the number of bidders.

The auctioned lots display important heterogeneity in size and quality. When re-

gressing the logarithm of bids per mbf on a complete set of variables characterizing the

auctioned lot including region dummies and seasonality effects, only two variables are

strongly significant, namely the number of bidders and the appraisal value. As expected,

a larger number of bidders increases competition and therefore the bids, while bids are

increasing in the lot value.22 Thus, the appraisal value seems to be the best candidate

to capture the heteregoneity across auctioned objects. Such a feature has been already

21The data analyzed here come from Regions 1 to 6, covering the states of Idaho, Montana, North and

South Dakota, Nebraska, Kansas, Colorado, Wisconsin, Arizona, New Mexico, Nevada, Utah, California,

Oregon and Washington.
22A quadratic term has been included as well to capture a decrease after some value for the number of

bidders as predicted by the common value model. It is not significant.
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observed in previous empirical studies, see e.g. Haile (2001).

Table 1: Some Summary Statistics

Variable Mean STD Min Max

Bids 97.28 71.51 1.05 665.18

Winning Bid 117.03 88.67 4.37 665.18

Reserve Price 62.95 46.01 1.00 217.36

Appraisal Value 57.07 45.41 1.00 199.58

Volume 1,621.93 3,153,48 11.00 23,500.00

Density 2.05 5.17 0.002 46.43

Acreage 1,348.35 3,590.69 1.00 38,850

Number of Bidders 3.70 1.81 2 12

The auctions are organized with a posted reserve price. It is well known that this

reserve price does not act as a screening device to participating to this auction, see e.g.

Haile (2001). To assess such a statement, we have estimated the probability of a bid

being close to the reserve price. Using a nonparametric estimator, we have estimated the

conditional probability Pr(p0 ≤ b ≤ (1 + δ)p0|Z), where p0 denotes the reserve price, b

the bid variable, δ an arbitrary value larger than 0 and Z the appraisal value. At the

average value Z = 57.07, we find this probability to be equal to 1.4% for δ = 0.05, 4.5%

for δ = 0.10 and 9.5% for δ = 0.20. These results indicate that only a few bids are in

the neighborhood of the reserve price and that the possible screening effect of the reserve

price is negligible. It is also interesting to note that no strong relationship was found

between the number of bidders and the value of each lot using various regression models

including Poisson regression models. As a matter of fact, the number of bidders is very

slightly decreasing in the appraisal value.

7.2 Estimation Results

The first step consists in estimating nonparametrically the upper boundary b0(Z`, I`) and

the bid density at this upper boundary g0(b0(Z`, I`)|Z`, I`) for ` = 1, . . . , L. This step

needs to be conducted for each value I = 2, . . . , 12 separately to take into account the

dependence of the observed bids on the number of bidders. In practice, the data provide
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enough auctions for two and three bidders. Above four bidders, the number of observed

auctions is too small for implementing a nonparametric estimator. As the bids increase in

the number of bidders, it is expected that the upper boundary also increases in the number

of bidders at z given. The boundary estimator of Section 6.1 was applied separately for

the 107 auctions with two bidders and the 109 auctions with three bidders. No significant

increase was found. In view of this, we have pooled the data and estimated a unique

upper boundary for the 378 auctions.

Specifically, we let R = 1 hereafter. First, we choose a partition of the interval

[1, 199.58] for Z into 20 equal bins of approximate length 9.93.23 For each bin, we estimate

the coefficients (ak, bk) of the optimal straight line of Section 6.1, which then provides the

estimated boundary b̂N(·). Next, we need to specify a one-sided kernel Φ(·) defined on

[−1, 0] satisfying
∫ 0

−1
Φ(x)dx = 1 and being of order one, i.e.

∫ 0

−1
xΦ(x)dx = 0. The

linear kernel Φ(x) = (6x + 4)1I(−1 ≤ x ≤ 0) satisfies such requirements. The density at

the upper boundary g0(b0(Z`, I`)|Z`, I`) is estimated by Ŷi` as given by (9), where hN is

proportional to (1, 400)−1/5 following the optimal rate of Theorem 3.

The second step consists in estimating the parameter of risk aversion θ. Follow-

ing previous experimental studies on auctions, we choose a CRRA specification, namely

U(x) = xθ, where θ = 1− c. In particular, this choice allows us to test for risk neutrality

corresponding to c = 0. In this case, m(z, I; β0) takes a simple form with (8) reducing to

Yi` =
1

I` − 1

θ0

v0 − b0(Z`, I`)
+ ei` + εi`, (20)

where ei` is a vanishing bias and εi` is an error term. The optimal weighted NLLS estimator

of (θ0, v0) is obtained as (θ̂∗N , v̂
∗
N) = Argmin(θ,v)∈BN

Q̂N(θ, v), where

Q̂N(θ, v) =
L∑

`=1

I∑̀
i=1

ω∗(Z`, I`)

(
Ŷi` −

θ

(I` − 1)(v − b̂N(Z`, I`))

)2

, (21)

where the optimal weights ω∗(Z`, I`) are equal to (I` − 1)(v0 − b0(Z`, I`)) (see Section

6.2). This estimator can be implemented by a standard two-step procedure in which the

optimal weights are first estimated by ordinary NLLS.

23We have tried larger numbers such as 30 and 40. The estimated upper boundaries are different but

did not much affect the estimation results for θ in the second step.
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Another possibility for implementing this estimator is to solve the first-order conditions

associated with the maximization of Q̂N with respect to (θ, v). The resulting estimator

has the same asymptotic properties as given by Theorem 3. The first-order conditions

show that the estimator is similar to an IV estimator of a linear model whose error term

is η̂i` = b̂N(Z`, I`)(I`− 1)Ŷi`− v0(I`− 1)Ŷi` + θ0 and instruments 1/(I`− 1)[v0− b0(Z`, I`)]

and 1/(I` − 1)[v0 − b0(Z`, I`)]
2. Alternatively, this IV interpretation can be obtained by

writing (20) as

(I` − 1)b0(Z`, I`)Yi` = −θ0 + v0(I` − 1)Yi` + ηi`,

where ηi` = −(I`−1)[v0−b0(Z`, I`)](ei` +εi`). This equation is linear in (θ0, v0). The error

term ηi` is correlated with the regressor requiring the use of an IV estimator. Following

Chamberlain (1987), the optimal instrumental variables are as above.24 This estimator

is implemented through a two-step procedure, where the first step involves a standard

IV estimator with a vector of instruments (1, Z, Z2, . . .) and [Yi`, b0(Z`, I`)] replaced by

[Ŷi`, b̂N(Z`, I`)]. This provides an estimate for v0, which can be used for the optimal

instruments in the second step.

This estimator has one main advantage. It avoids to maximize the objective function

Q̂N(θ, v) while imposing the constraint on the set of parameters embodied in BN . In

particular, constraining v to be larger than b̂N(Z`, I`) + δ/2 for all ` can raise some

problems when the data set contains some outliers. The highest bid in the data, taking

a value at 665, is clearly an outlier as the second and third highest bids are in the upper

300 range. Consequently, this constrains v to be too large. The above IV estimator

circumvents the need for constraining β to be in BN and of choosing δ.

Theorem 3 derives the asymptotic distribution of the estimator for θ0 and v0. In prac-

tice, it suffices to compute the matrix ÂN(θ̂N , v̂N) and its inverse to obtain the variance

of the estimator (see Section 6.2). Using [1, Z] as instruments in the first step, in the

second step we find θ̂N = 0.394 with a standard error equal to 0.286, while v̂N = 242.20

with a standard error equal to 2.51. We are interested in testing whether bidders are risk

averse, namely whether θ < 1. If θ = 1 (or c = 0), bidders are risk neutral. The one-sided

24The optimal instruments are defined as E[∂ρ(Yi`, Z`, I`, θ0, v0)/∂β | Z`, I`]/E[η2
i` | Z`, I`], where

ηi` = ρ(Yi`, Z`, I`, θ0, v0) = b0(Z`, I`)(I`−1)Yi` +θ0−v0(I`−1)Yi`. If another specification for the utility

function is chosen such as CARA, it would lead to a nonlinear IV estimator.
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test of θ = 1 leads us to reject the null hypothesis at 5% with a t-value equal to -2.12.

Thus bidders are risk averse with a constant relative risk aversion coefficient of 0.606.

This coefficient is close to the one found in the experimental literature at about 0.5. As

assuming an upper bound v independent of Z can be restrictive, we have tried a linear

parameterization of the upper boundary, namely v(Z`) = γ0 + γ1Z`, ` = 1, . . . , 378. The

same method as described above applies with some adjustments. In particular there are

three parameters to be estimated instead of two. The estimate for γ1 appears to be non

significant and the estimate for θ0 is similar.

Such risk aversion implies that bidders bid more aggressively relative to the risk neutral

case as they shade less their private values. In particular, a CRRA model is equivalent

of having more competition in the auctions. Namely, for an auction with 4 bidders (the

average number of bidders), a risk aversion parameter at 0.606 is roughly equivalent of

having 6 bidders in an auction with risk neutrality.

The third step can be then implemented. Applying the rule of thumb for the constants

with triweight kernels and using the appropriate vanishing rates give hg = 253.53 and

hG = 322.77. The estimated inverse equilibrium strategy is increasing in b satisfying the

restriction imposed by the model on observables as required by Lemma 1. We observe,

however, some boundary effects. As a result, some observations need to be trimmed out

for the estimation of the underlying conditional density of private values. Specifically, 5

auctions are trimmed out of the original 378 auctions. The estimated conditional density

is displayed in Figure 1 and has been obtained with a bandwidth hf equal to 279.48. The

shape roughly follows a log-normal density with some irregularities.

To assess further the impact of risk aversion, we can compute the winners’ gain in

value v̂w − bw and in percentage (v̂w − bw)/vw for the auctions for which a good estimate

of the private value is obtained. The results are given in the following table. As expected,

the presence of risk aversion, which renders bidding more aggressive, tends to reduce the

gain or informational rent for the winners. As a matter of fact, the USFS captures on

average about 80% of the bidders’ willingness to pay.
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Table 2: Winners’ Informational Rents
Mean STD Min Max

Informational Rent in $ per mbf 84.92 84.99 0.56 992.77

Informational Rents in % 19.83 12.18 3.11 75.73

It is interesting to find an economic rationale for such risk aversion. Bidders’ risk

aversion in timber auctions has been suspected by many authors. See Athey and Levin

(2001) and Baldwin (1995). They observe that the bidders face uncertainty about the

exact volume of each species in a lot leading bidders to split their bids across different

species. The split of bids is then an indicator of bidder’s risk aversion. Risk aversion has

also been found in a different data set of timber auctions in which there is no bidding

on species and bidders pay for their bids and not for harvested timber. See Perrigne

(2001). A reason could arise from the uncertainty of the supply of timber and the limited

outside opportunities besides the timber auctions organized by public institutions. In the

western regions of the US, the USFS is a large supplier of timber. It is likely that given

the uncertainty of the supply outside these auctions, it is important for bidders to win

these auctions. Though more empirical studies need to be performed for other sectors, the

experimental literature shows that overbidding is frequent though the financial stakes are

almost inexistent in the experiments. It seems that risk aversion is a natural component

of the agent’s behavior when facing uncertainty. See the recent work by Goere, Holt and

Palfrey (2002), where the deviations from the risk neutral Nash equilibrium are mainly

explained by bidders’ risk aversion.

Measuring risk aversion is important for the seller when implementing the auction

design. Though the optimal mechanism with risk averse bidders is especially difficult

to implement as it involves some complex transfers (see Maskin and Riley (1984) and

Matthews (1987)), an optimal posted reserve price can be set to generate more revenue

for the seller. For c 6= 1/I, the optimal reserve price p∗0 is solution of

p∗0 = v0 +
1−c
1−cI

[F (I−1)c/(1−c)(p∗0 | z)− F (p∗0 | z)]
f(p∗0 | z)

,

where v0 is the auctioned object value for the seller. Assuming that v0 is equal to the

USFS appraisal value, we find p̂∗0 equal to approximatively $93 for a lot with average

characteristics in terms of value ($57) and number of bidders (4). The same estimate

37



conducted for an auction with risk neutral bidders (c = 0) would give an optimal reserve

price at $132, which is significantly larger. The idea is that because the bidders tend to

bid more aggressively with risk aversion, the precommitment effect does not need to be

as important thereby reducing the level of the reserve price that generates the maximum

profit for the seller. These figures show that assessing risk neutrality when implementing

an optimal reserve price policy when risk aversion prevails may have dramatic effects on

seller’s profit and revenue.

8 Conclusion

This paper extends the structural analysis of auction data to the case where bidders

are risk averse. In particular, the methods developed in this paper allow researchers

to estimate and test for bidders’ risk aversion in first-price auctions within the private

value paradigm. This represents an important extension as various experiments have

shown that bidders are risk averse even when the financial stakes are small, suggesting

that risk aversion is a natural component of agents’ behavior. On econometric grounds,

the paper proposes a semiparametric method for estimating the structure of the model,

namely bidders’ risk aversion parameters and the density of their private values. While

previous papers have considered either fully parametric or nonparametric methods, this

paper is the first one proposing a semiparametric estimator that arises naturally from the

identification problem raised by the theoretical auction model.

Specifically, up to some general smoothness conditions, we show that any bid distri-

bution can be rationalized by some auction model with risk averse bidders. On the other

hand, this implies that the auction model with risk averse bidders is not testable in view of

bids only. Moreover, the model is not identified and a model with constant absolute or rel-

ative risk aversion and zero wealth can be considered without loss of explanatory power.

Because of these nonidentification results, we propose minimal restrictions to establish

identification. Parameterization of the utility function and a conditional quantile of the

latent distribution of private values is shown to achieve semiparametric identification of

the model. This naturally leads to a semiparametric estimation method involving non-

parametric boundary estimation, kernel estimators and weighted nonlinear least squares.

We show that our estimator cannot achieve
√
N consistency unlike many other semi-
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parametric estimators, though it attains the best (optimal) rate for estimating the risk

aversion parameters. An illustration of the method is proposed on US Forest Service

auction data. It is found that bidders are risk averse.

Many extensions can be entertained based on our methodology. A first interesting

extension relates to the practice of random reserve prices in auctions such as in timber,

wine, art and web auctions. Within a private value paradigm, Li and Tan (2000) show

that the overbidding effect due to risk aversion accentuated by a secret reserve price may

dominate the precommitment effect of a posted reserve price. Perrigne (2001) extends the

method of the present paper to a model with random reserve prices to assess empirically

the gain for the seller of keeping the reserve price secret instead of posting it. Relying on

the results developed here, Campo (2002) considers an auction model with heterogeneous

bidders, where bidders’ characteristics such as capacity and experience may affect their

attitude towards risk leading to an asymmetric game. Using construction procurement

auction data, she shows that risk aversion is decreasing in bidders’ experience. A third

extension is conducted by Lu (2002) relying on Eso and White (2001) model in which

bidders’ private values are stochastic because of the many ex ante uncertainties about

the value of the auctioned object. Bidders’ risk aversion then affects bidding behavior by

introducing a risk premium. The results obtained by Lu (2002) show that identification

is more involved though some of his restrictions are similar to those in this paper.

Considering risk aversion in auctions represents a great potential for empirical work.

The use of first-price auctions and random reserve prices can be justified by bidders’ risk

aversion. This concerns a large number of applications as these mechanisms are commonly

used. Lastly, from an economic point of view, bidders’ risk aversion is reminiscent of

having financially constrained bidders as financial constraints represent an extreme form

of risk aversion. Che and Gale (1998) study a model in which bidders have two private

signals, one for the value of the auctioned object and the other for their financing ability.

This situation seems realistic for analyzing business-to-business auctions and represents

a promising line of research to explore.
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Appendix A

Appendix A establishes Theorem 1 as an immediate application to the case with no conditioning

variables of the more general Theorem A1 stated below. Proofs of Lemmas used to prove

Theorem A1 are given in Appendix E.

For R ≥ 1, we consider the (nonparametric) model defined by structures [U,F ] ∈ UR × F∗
R,

where UR and F∗
R are as given in Definitions 1 and 4. For any such structure, the next result

establishes the existence, uniqueness, and smoothness of the equilibrium strategy s(·; z, I). In

addition to obtaining the smoothness of s(·; ·, I) with respect to (v, z), which is nontrivial because

s(·; ·, ·) does not have an explicit form in general, its proof is interesting in its own right as it

tackles directly the singularity at v of the differential equation characterizing s(·; ·, ·) in contrast

to previous work (e.g. Maskin and Riley (1996), Lebrun (1999), Lizzeri and Persico (2000)).

Theorem A1: Let I ⊂ {2, 3, . . .}, R ≥ 1 and Z be a rectangular compact of IRd with nonempty

interior. Suppose that [U,F ] ∈ UR×F∗
R, then there exists a unique (symmetric) equilibrium and

its equilibrium strategy s(·; ·, ·) satisfies:

(i) ∀(v, z, I) ∈ (v, v]×Z × I, s(v; z, I) < v, while s(v; z, I) = v,

(ii) ∀(v, z, I) ∈ [v, v]×Z ×I, s′(v; z, I) > 0 with s′(v; z, I) = (I − 1)λ′(0)/[(I − 1)λ′(0) + 1] < 1,

(iii) ∀I ∈ I, s(·; ·, I) admits R+ 1 continuous derivatives on [v, v]×Z.

Proof of Theorem A1: For any [U,F ] ∈ UR × F∗
R, it follows from the proof of Theorem 2 in

Maskin and Riley (1984) that a (symmetric) Bayesian Nash equilibrium strategy s(·; z, I), when

it exists, must be a strictly increasing and continuous function on [v, v], differentiable on (v, v],

and satisfying the differential equation

s′(v; z, I) = (I − 1)
f(v|z, I)
F (v|z, I)

λ (v − s(v; z, I)) , v ∈ (v, v], (A.1)

with initial condition s(v; z, I) = v for every (z, I) ∈ Z × I. Furthermore, they show that such

functions are Bayesian Nash equilibria. As seen from the proof of their Theorem 2, existence

and uniqueness of the equilibrium strategy crucially depends on the existence and uniqueness of

a solution to (A.1). When the reserve price is binding, the latter properties are straightforward

from standard existence and uniqueness results for first-order differential equations. However,

when the reserve price is nonbinding, the explosive behavior of the ratio f(v|z, I)/F (v|z, I)
around v prevents the application of these standard results.

The main idea of the proof is to introduce a suitable transformation of (A.1) that is suffi-

ciently regular to establish the existence and uniqueness of a solution to (A.1). To do so, we
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first show that a Bayesian Nash equilibrium strategy must be continuously differentiable on [v, v]

(including at v) and that it must satisfy properties (i)-(ii) of Theorem A1.

Lemma A1: Let I ⊂ {2, 3, . . .} and R ≥ 1. Suppose that [U,F ] ∈ UR × F∗
R. Then, for every

(z, I) ∈ Z × I, an equilibrium strategy s(·; z, I), if it exists, is continuously differentiable on

[v, v], satisfies properties (i)-(ii) of Theorem A1, and solves (A.1) for v ∈ [v, v].

In view of Lemma A1, it is convenient to introduce the following set of functions

S1(v) =

{
s: [v, v] → IR continuously differentiable with

s(v) = v, 0 < s′(v) < 1, and s(v) < v, s′(v) > 0 for all v ∈ (v, v]

}
, (A.2)

since a function in S1(v) that solves (A.1) is a Bayesian Nash equilibrium. We then introduce

some appropriate changes of variables and operator notations. Assume temporarily that (A.1)

has a solution s(·; z, I) in S1(v) and, for u ∈ [0, 1], define25

σI(u; v, z) =
s (v + u(v − v); z, I)− v

v − v
for v > v, σI(u; v, z) = s′(v; z, I)u, (A.3)

Λ (x; v) =
λ ((v − v)x)

v − v
for v > v, and x ∈ IR+, Λ(x; v) = λ′(0)x for x ∈ IR− or v = v,

ΦI(u; v, z) = (I − 1)
(v − v)uf (v + u(v − v)|z, I)

F (v + u(v − v)|z, I)
for v > v, ΦI(u; v, z) = (I − 1).

Given [U,F ] ∈ UR × F∗
R, the above functions at v = v are obtained by taking their limits as

v ↓ v. Note also that Λ(x; v) is continuously differentiable with respect to x ∈ IR. Moreover,

s(v; z, I) = v + (v − v)σI(1; v, z) = v + (v − v)σI

(
v − v

v − v
; v, z

)
, v ∈ [v, v], (A.4)

which shows with (A.3) that σI(·; ·, z) and s(·; z, I) are in a one-to-one relationship.26 In what fol-

lows σ(k)
I (u; v, z), Φ(k)

I (u; v, z) and Λ(k)(x; v) denote the kth derivatives of σI(u; v, z), ΦI(u; v, z)

and Λ(x; v) with respect to u or x.
25The introduction of the additional variable u is standard when studying the smoothness of the

solutions of a first-order differential equation via the Functional Implicit Function Theorem, see Theorem

4.D in Zeidler (1985). In particular, σI(·; v, z) allows us to study (A.1) in the subinterval [v, v] of [v, v].

Dividing by v − v in the definitions of σI and Λ regularizes (A.1) as seen later. This technique can also

be applied to the more general class of utility functions U(b, v) with U(v, v) = 0 considered in Maskin

and Riley (1984).
26In particular, the function s(·; z, I) on [v, v] is given by the function σI(u; v, z) for u ∈ [0, 1]. Note

also that σI(·; v, z) can be computed from σI(·; v′, z) whenever v′ > v.
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We now derive a differential equation for σI(·; v, z). For v > v, we have

σ
(1)
I (u; v, z) = s′ (v + u(v − v); z, I)

= (I − 1)
f (v + u(v − v)|z, I)
F (v + u(v − v)|z, I)

λ (v + u(v − v)− s (v + u(v − v); z, I))

= (I − 1)
u(v − v)f (v + u(v − v)|z, I)

F (v + u(v − v)|z, I)
λ ((v − v)u− (v − v)σI(u; v, z))

u(v − v)

= ΦI(u; v, z)
Λ (u− σI(u; v, z); v)

u
, (A.5)

since u − σI(u; v, z) ∈ IR+ for all u ∈ [0, 1] by (A.3) when s(·; z, I) ∈ S1(v). That is, σI(·; v, z)
solves the flow of differential equations with “parameters” (v, z, I) ∈ (v, v]×Z × I

EI(v, z) : σ(1)(u) = ΦI(u; v, z)
Λ (u− σ(u); v)

u
, u ∈ [0, 1], (A.6)

and initial condition σI(0; v, z) = 0 by (A.3) and s(v; z, I) = v. Moreover, EI(v, z) can be

defined by taking the limit as v ↓ v, giving

EI(v, z) : σ(1)(u) =
(I − 1)
u

λ′(0) (u− σ(u)) , u ∈ [0, 1].

A comparison of EI(v, z) with (A.1) shows that the first-order differential equation EI(v, z)

corresponds to a CRRA model with constant relative risk aversion parameter c = 1− 1/λ′(0) ∈
[0, 1) since λ′(0) ≥ 1, with uniform distribution on [0, 1] of the private value. Hence, EI(v, z)

has a unique solution satisfying σI(0; v, z) = 0, namely

σI(u; v, z) =
(I − 1)λ′(0)

(I − 1)λ′(0) + 1
u, u ∈ [0, 1]. (A.7)

Now, solving (A.6) is actually solving (A.1) in the neighborhood of v. In particular, for each

(v, z, I) ∈ [v, v] × Z × I, solving (A.6) with initial condition σI(0; v, z) = 0 can be viewed as

finding zero(s) of the operator

EI(·; v, z) : σ ∈ C0
1 → EI(σ; v, z) = σ(1)(u)− ΦI(u; v, z)

Λ (u− σ(u); v)
u

, u ∈ [0, 1], (A.8)

where

C0
1 = {σ : [0, 1] → IR ; σ(0) = 0 and σ continuously differentiable on [0, 1]} ,

and EI(·; v, z) is defined by taking the limit as for EI(v, z) above. Note that EI(σ; v, z) is a

function defined on [0, 1]. Moreover, for any v ∈ [v, v] and σ ∈ C0
1 , the definition of Λ(x; v) implies
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Λ (u− σ(u); v) /u ∼ λ′(0)(u − σ(u))/u → λ′(0)(1 − σ′(0)) when u ↓ 0, since limu↓0 σ(u)/u =

σ(1)(0). Hence, EI(·; v, z) is an operator, parameterized by (v, z, I), from C0
1 to

C0 = {ζ : [0, 1] → IR ; ζ continuous on [0, 1]} .

Define the norms

‖σ‖1,∞ = max
r=0,1

∥∥∥σ(r)
∥∥∥
∞

=
∥∥∥σ(1)

∥∥∥
∞
, ‖ζ‖∞ = sup

u∈[0,1]
|ζ(u)| ,

using |σ(u)| =
∣∣∫ u

0 σ
(1)(y)dy

∣∣ ≤ ‖σ(1)‖∞ for all u ∈ [0, 1] to obtain ‖σ‖1,∞ = ‖σ(1)‖∞. Hence,

C0
1 equipped with ‖·‖1,∞ and C0 equipped with ‖ · ‖∞ are Banach spaces.

The idea of our proof is as follows. In a first step, using that (A.7) is the unique zero

of EI(·; v, z), we show that (A.8) has a unique zero for v in a small interval [v, v0] using a

continuation argument given by Proposition 6.10 in Zeidler (1985). Such an argument requires

so-called a priori conditions on the zeros of (A.8) as summarized by the set of functions

Σ0
1 =

{
σ ∈ C0

1 ; 0 < σ′(0) < 1 and σ′(u) > 0, σ(u) < u for u ∈ (0, 1]
}
,

which is the counterpart of S1(v) by (A.3) and (A.5). Note that (A.7) is in Σ0
1, which is an

open subset of C0
1 since the open ball V (σ; ε) = {ζ ∈ C0

1 ; ‖ζ − σ‖1,∞ < ε} ⊂ Σ0
1 for any σ ∈ Σ0

1,

provided that ε = εσ > 0 is sufficiently small so that such ζ’s satisfy the constraints defining Σ0
1.

Because of the relationship between σI(·; v0, z) and s(·; z, I), this step gives us a unique solution

of (A.1) on [v, v0]. In a second step, we apply the standard Picard-Lindelöf Theorem to extend

the unique solution of (A.1) for v ∈ [v, v0] to v ∈ [v0, v], where the ratio f(v|z, I)/F (v|z, I)
remains bounded, using the value of the local solution at v0 as an initial condition. These two

steps are done in Lemma A4. The smoothness of s(v; z, I) as a function of the “parameters”

(v, z) will be given by a Functional Implicit Function Theorem 4.B in Zeidler (1985). This is

done in Lemmas A5 and A6.

To apply the aforementioned theorems, we need to study the partial derivatives of the

operator EI(σ; v, z) with respect to (σ, v, z). This is the purpose of Lemma A3, which relies

on some smoothness properties of Λ(x; v) and ΦI(u; v, z) summarized in the next lemma.

Lemma A2: Under the conditions of Theorem A1, let [U,F ] ∈ UR ×F∗
R. Then

(i) Λ(x; v) is R continuously differentiable with respect to (x, v) ∈ IR+ × [v, v], Moreover, the

function (1/x)∂r2Λ(x; v)/∂vr2 is continuous on IR+ × [v, v], for r2 = 0, . . . , R,

(ii) For every I ∈ I, ΦI(u; v, z) is R continuously differentiable with respect to (v, z) ∈ [v, v]×Z
and the partial derivative ∂r2+r3ΦI(u; v, z)/∂vr2∂zr3, r2 + r3 = 0, . . . , R, is continuous with

respect to (u, v, z) ∈ [0, 1]× [v, v]×Z.
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For every I ∈ I, we now compute the partial derivatives of the operator EI(σ; v, z) when

(σ, v, z) ∈ Σ0
1 × [v, v]× Z. Because σ is a function, it is necessary to use the notions of Fréchet

and Gâteaux derivatives (see e.g. Zeidler (1985)). In what follows

Er1r2r3
I (σ; v, z) =

∂r1+r2+r3EI(σ; v, z)
∂σr1∂vr2∂zr3

, 0 ≤ r1 + r2 + r3 ≤ R,

denotes the partial derivatives of EI(σ; v, z), which are linear operators from (C0
1 )r1 × IRr2 ×

(IRd)r3 taking values in C0 as EI(σ; v, z) does. Expressions for the operators Er1r2r3
I (σ; v, z),

r1 ≥ 1 are easier found using Gâteaux differentiation, namely

Er1r2r3
I (σ; v, z)(η, . . . , η)(u) =

dr1

dtr1

(
∂r2+r3EI(σ + tη; v, z)

∂vr2∂zr3

)
t=0

(u), η ∈ C0
1 ,

and then changing the term ηr1 appearing in the above partial derivative into η1 × · · · × ηr1 to

obtain a multilinear form of order r1.27 Specifically, using (A.8) and Lemma A2, we obtain

E1
I(σ; v, z)(η1)(u) = E1,0,0

I (σ; v, z)(η1)(u) = η
(1)
1 (u) + ΦI(u; v, z)Λ(1) (u− σ(u); v)

η1(u)
u

. (A.9)

Because η1(y)/y is continuous over [0, 1] by definition of C0
1 , Lemma A2 shows that E1

I(σ; v, z)(η1)

belongs to C0 as required. More generally, for r1 ≥ 1 and (r2, r3) 6= (0, 0), (A.8) gives

Er1r2r3
I (σ; v, z)(η1, . . . , ηr1)(u)

= (−1)r1+1 ∂r2+r3

∂vr2∂zr3

(
ΦI(u; v, z)Λ(r1) (u− σ(u); v)

) η1(u)× · · · × ηr1(u)
u

,

which again is in C0. On the other hand, if r1 = 0, we have by the Liebnitz-Newton formula

E0r2r3
I (σ; v, z)(u) = −

r2∑
j=0

r2!
j!(r2 − j)!

1
u

∂jΛ (u− σ(u); v)
∂vj

∂r2+r3−jΦI(u; v, z)
∂vr2−j∂zr3

=
σ(u)− u

u

r2∑
j=0

r2!
j!(r2 − j)!

1
u− σ(u)

∂jΛ (u− σ(u); v)
∂vj

∂r2+r3−jΦI(u; v, z)
∂vr2−j∂zr3

,

which belongs to C0 because (σ(u)− u)/u ∈ C0, u− σ(u) ≥ 0 since σ ∈ Σ0
1, and Lemma A2.

27Note that the operator EI(σ; v, z) depends upon Λ(u−σ(u); v) and that Λ(x; v) has derivatives with

respect to x for x ∈ IR+ by Lemma A2 but not necessarily for x ∈ IR−. However, σ + tη ∈ Σ0
1 for t

sufficiently small because Σ0
1 is open. The definition of Σ0

1 then yields that u − σ(u) − tη(u) ≥ 0 for all

u ∈ [0, 1] and the Gâteaux differentiation above is correct because we restrict σ to belong to Σ0
1, which

is sufficient for our purpose. Derivation over C0
1 can be achieved by defining Λ(x; v) for x < 0 using the

R+ 1 Taylor expansion of λ(·) at 0 instead of its first-order Taylor expansion as done here.
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The next lemma establishes that the above Gâteaux derivatives are the Fréchet derivatives

of EI(σ; v, z) on Σ0
1 × [v, v] × Z. Moreover, it checks the conditions of the Functional Implicit

Function Theorem, which will be a key tool to study the existence, uniqueness and smoothness

with respect to (v, z) of the solution to (A.1).

Lemma A3: Under the conditions of Theorem A1, let [U,F ] ∈ UR×F∗
R. Then, for every I ∈ I,

(i) EI(σ; v, z) takes its values in C0 for every (σ, v, z) ∈ C0
1 × [v, v]×Z,

(ii) EI(σ; v, z) is R continuously differentiable on Σ0
1× [v, v]×Z, with Fréchet partial derivatives

Er1r2r3
I (σ; v, z) as given above that are uniformly continuous over Σ0

1 × [v, v]× Z, provided 0 ≤
r1 + r2 + r3 ≤ R,

(iii) E1
I(σ; v, z) is a one-to-one mapping from C0

1 to C0 for every (σ, v, z) ∈ Σ0
1 × [v, v]×Z.

We are now ready to prove Theorem A1. Lemma A1 combined with the next lemma estab-

lishes that there exists a unique Bayesian Nash equilibrium strategy, which moreover satisfies

properties (i)-(ii) of Theorem A1.28

Lemma A4: Under the conditions of Theorem A1, let [U,F ] ∈ UR × F∗
R. Then, for every

(z, I) ∈ Z×I, the first-order differential equation (A.1) has a unique continuously differentiable

solution on [v, v] with initial condition s(v; z, I) = v. Moreover, this solution satisfies properties

(i)-(ii) of Theorem A1.

It remains to establish property (iii) of Theorem A1, i.e. the smoothness of s(v; z, I) with

respect to (v, z). This is done in the following two lemmas using a Functional Implicit Function

Theorem.

Lemma A5: Under the conditions of Theorem A1, let [U,F ] ∈ UR × F∗
R. For every (z, I) ∈

Z × I, let s(·; z, I) be the unique solution of (A.1) with s(v; z, I) = v. Then, for every I ∈ I,

the functions s(v; z, I) and s′(v; z, I) are R continuously differentiable with respect to (v, z) ∈
[v, v]×Z.

Lemma A5 yields the existence and continuity of all partial derivatives up to order (R+ 1)

of s(·; ·, I), with the exception of ∂R+1s(·; ·, I)/∂zR+1. Thus, it remains to consider the latter to

complete the proof of Theorem A1-(iii). Let SI(G) be as in Lemma 2.

Lemma A6: Under the conditions of Theorem A1, let [U,F ] ∈ UR×F∗
R. Then, for every I ∈ I,

28Lemma A4 can be established under weaker conditions as seen from its proof. First, it is possible to

assume v = +∞. Second, the density f(·|z, I) can vanish at v provided limv↓v(v−v)f(v|z, I)/F (v|z, I) ∈
(0,+∞). These conditions weaken the ones used in Maskin and Riley (1996) and Lebrun (1999).
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(i) The conditional bid distribution G(b|z, I) = F (s−1(b; z, I)|z, I) admits up to R + 1 contin-

uous partial derivatives on SI(G), with inf(b,z)∈SI(G) g(b|z, I) > 0 and a support [b(z, I), b(z, I)]

satisfying infz∈Z
(
b(z, I)− b(z, I)

)
> 0 and b(z, I) = v,

(ii) The function s(·; ·, I) admits up to R+ 1 continuous partial derivatives on [v, v]×Z.

Appendix B

Appendix B gathers proofs of Lemma 1 and Propositions 1–3 stated in Sections 3 and 4.

Proof of Lemma 1: First, we prove that conditions (i), (ii) and (iii) are necessary. Because

bi = s(vi, U, F, I) and the vis are i.i.d., it follows that the bis are i.i.d. so that (i) must hold.

Condition (ii) follows from applying Lemma 2 to the case with no conditioning variables (Z, I).

To prove that condition (iii) is also necessary, consider (4), where the function λ(·) is the

ratio U(·)/U ′(·). Thus λ(·) is defined from IR+ to IR+ because λ(0) = limx↓0 λ(x) = 0, as noted

after Definition 1. Moreover, U(·) admits R+2 continuous derivatives on (0,+∞). As limx↓0 λ
(r)

is finite for r = 1, . . . , R+ 1, these imply that λ(·) has R+ 1 continuous derivatives on [0,+∞).

As λ′(·) = 1 − λ(·)U ′′(·)/U ′(·), we have λ′(·) ≥ 1 because λ(·) ≥ 0, U ′(·) > 0 and U ′′(·) ≤ 0. It

remains to show that the function ξ(·) is increasing. The equilibrium strategy must solve the

differential equation (2). As (3) follows from (2), s(·) must satisfy ξ(s(v), U,G, I) = v for all

v ∈ [v, v]. We then obtain ξ(b, U,G, I) = s−1(b, U, F, I). This implies ξ′(·) = [s−1(·)]′, which is

strictly positive by Theorem 1.

Second, we have to show that conditions (i), (ii) and (iii) are together sufficient. Assume that

bids are independently and identically distributed as G(·) ∈ GR and there exists a function λ(·)
satisfying the properties of Lemma 1. First, we construct a pair [U,F ] belonging to UR × FR.

Let U(·) be such that λ(·) = U(·)/U ′(·) or U ′(·)/U(·) = 1/λ(·). By integrating, we obtain

U(x) = U(a) exp[
∫ x
a 1/λ(t)dt] for an arbitrary a > 0. With the normalization U(1) = 1, this

gives U(x) = exp
∫ x
1 1/λ(t)dt. We verify that such a utility function belongs to UR. Because λ(·)

admits R + 1 continuous derivatives on [0,+∞), then condition (iii) of Definition 1 is clearly

satisfied. Moreover, in the neighborhood of zero, λ(t) ∼ λ′(0)t with 1 ≤ λ′(0) < ∞. Thus the

integral
∫ 1
x 1/λ(t)dt diverges to infinity, which implies that U(x) tends to zero as x ↓ 0. Define

U(0) = 0. The derivative U ′(x) is equal to exp
∫ x
1 1/λ(t)dt/λ(x), where λ(·) > 0 on (0,+∞)

because λ(0) = 0 and λ′(·) ≥ 1. This implies that U ′(·) > 0 on (0,+∞). The second-order

derivative gives U ′′(x) = (−λ′(x) + 1) exp
∫ x
1 1/λ(t)dt/λ2(x). We know that λ′(x) ≥ 1, which

implies that U ′′(·) ≤ 0 on (0,+∞). It remains to show that U(·) admits R + 2 continuous

derivatives. By assumption, λ(·) has R + 1 continuous derivatives on [0,+∞). It follows that
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U(·) admits R + 2 continuous derivatives on (0,+∞). Lastly, U(·) is continuous on (0,+∞) as

limx↓0 U(x) = U(0) = 0.

Let F (·) be the distribution of X = b + λ−1(G(b)/(I − 1)g(b)), where b ∼ G(·). We verify

that such a distribution F (·) belongs to FR. We have F (x) = Pr(X ≤ x) = Pr(ξ(b) ≤ x). The

latter can be written as Pr(b ≤ ξ−1(x)), which is equal to G[ξ−1(x)], because ξ(·) is strictly

increasing by assumption. This implies that F (·) = G(ξ−1(·)) on [v, v], where v ≡ ξ(b) = b

and v ≡ ξ(b) < ∞ by continuity of ξ(·). Because ξ(·) and G(·) are strictly increasing, then

F (·) is strictly increasing on [v, v] and its support is [v, v], which is a finite interval of IR+.

¿From Definition 3, G(·) has R + 1 continuous derivatives on [b, b]. Moreover, ξ(·) is R + 1

continuously differentiable on [b, b]. This follows from the definition of ξ(·), the R+1 continuous

differentiability of λ−1(·) on [0,+∞), and the R + 1 continuous differentiability of G(·)/g(·) on

[b, b], which follows from Definition 3-(iv,v). Thus F (·) = G(ξ−1(·)) admits R + 1 continuous

derivatives on [v, v]. It remains to show that the corresponding density f(·) is strictly positive.

We have f(·) = g(ξ−1(·))/ξ′(ξ−1(·)), where g(·) > 0 from Definition 3 and ξ′(·) is finite on [b, b].

Thus f(·) > 0 on [v, v].

Lastly, we have to show that the pair [U,F ] can rationalize G(·) in a first-price sealed-bid

auction with risk averse bidders, i.e. that G(·) = F (s−1(·, U, F, I)) on [b, b], where s(·, U, F, I)
solves (2) with the boundary condition s(v, U, F, I) = v. By construction of F (·), we have

G(·) = F (ξ(·)). Thus, it suffices to show that ξ−1(·) solves (2) with the boundary condition

ξ−1(v) = v. The boundary condition is straightforward as ξ(b) = b = v. ¿From the construction

of F (·), we have f(·)/F (·) = [ξ−1(·)]′g(ξ−1(·))/G(ξ−1(·)). Thus ξ−1(·) solves the differential

equation (2) if

1 = (I − 1)
g(ξ−1(v))
G(ξ−1(v))

λ(v − ξ−1(v)),

for all v ∈ [v, v]. Making the change of variable v = ξ(b) and noting that ξ(b)−b = λ−1[G(b)/(I−
1)g(b)] from the definition of ξ(·), it follows that ξ−1(·) solves the differential equation (2) with

boundary condition ξ−1(v) = v.

Proof of Proposition 1: (i) Consider a bid distribution G(·) ∈ GR generated by a structure

[U,F ] ∈ UR × FR. We have to show that there exists a structure [Ũ , F̃ ], where Ũ(x) = x1−c,

0 ≤ c < 1 and F̃ ∈ FR, that rationalizes the distribution G(·). In this case, λ̃(x) = x/(1 − c)

so that λ̃(0) = 0 and λ̃′(·) ≥ 1. ¿From Lemma 1, it suffices to show that there exists a value

c ∈ [0, 1) such that the function

ξ(b, c,G) = b+
1− c

I − 1
G(b)
g(b)

,
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has a strictly positive derivative on [b, b]. Differentiating, this is equivalent to [G(b)/g(b)]′ >

−(I − 1)/(1− c) for all b ∈ [b, b]. The latter is true if

inf
b∈[b,b]

[
G(b)
g(b)

]′
> −I − 1

1− c
. (B.1)

Note that the left-hand side is finite because G(·)/g(·) is R + 1 continuously differentiable on

[b, b], as noted after Definition 3. We consider two cases. If infb[G(b)/g(b)]′ ≥ 0, then we can

choose any value c ∈ (0, 1) to satisfy (B.1). Second, if infb[G(b)/g(b)]′ < 0, (B.1) can be written

as c > 1− (I − 1)/(− infb [G(b)/g(b)]′), where the right-hand side is less than one. Thus we can

always find a value for c ∈ (0, 1) such that G(·) can be rationalized by a CRRA model.

(ii) The proof for the CARA case is similar. Consider Ũ ∈ UCARA
R . This gives the utility

function Ũ(x) = (1 − e−ax)/(1 − e−a) with a > 0. Hence λ̃(x) = (eax − 1)/a and λ̃−1(x) =

(1/a) log(1 + ax). This defines the following inverse bidding strategy

ξ(b) = b+
1
a

log
(

1 +
a

I − 1
G(b)
g(b)

)
.

We have to show that there exists a > 0 such that ξ′(b) > 0 on [b, b]. Differentiating gives the

following inequality on a

a
G(b)
g(b)

> −
[
(I − 1) +

(
G(b)
g(b)

)′]
,∀b ∈ [b, b].

Note that limb↓b[G(b)/g(b)]′ = limb↓b 1−G(b)g′(b)/g2(b) = 1 because R ≥ 1 and g(b) > 0. Hence

the preceding inequality holds at b for any a > 0. Thus the preceding inequality becomes

a > sup
b∈(b,b]

− g(b)
G(b)

[
(I − 1) +

(
G(b)
g(b)

)′]
.

This is satisfied for an infinity of values for a > 0 provided the supremum is not +∞. We

know that −(g(b)/G(b))[I − 1+ (G(b)/g(b))′] is R continuously differentiable on (b, b] and hence

continuous on (b, b] because R ≥ 1. Moreover, limb↓b−(g(b)/G(b))[I − 1 + (G(b)/g(b))′] = −∞
because g(b)/G(b) tends to +∞ and [G(b)/g(b)]′ tends to 1. Thus, we can always find a value

for a and hence a CARA model that can rationalize any bid distribution G(·).

Proof of Proposition 2: (i) Nonidentification of the general model. Consider a structure

[U,F ] ∈ UR×FR, which generates a bid distribution G(·) ∈ GR by Lemma 1. Suppose first that

U(·) is not of the form x1−c for any c, 0 ≤ c < 1. ¿From Proposition 1, it follows that there

exists a CRRA structure [Ũ , F̃ ] with zero wealth and F̃ ∈ FR that leads to the same equilibrium

bid distribution G(·). Because a CRRA utility function with zero wealth belongs to UR, the
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original structure [U,F ] is not identified. Suppose next that U(·) is of the form x1−c for some c,

0 ≤ c < 1. From the second part of the proposition, which is proven below, there exists another

CRRA structure with zero wealth, and hence another risk aversion structure [Ũ , F̃ ] with F̃ ∈ FR

that is observationally equivalent to [U,F ]. Hence [U,F ] is again not identified.

(ii) Nonidentification of the CRRA, CARA, DRRA and DARA models. We first show that

the CRRA model is not identified. Consider a structure [U,F ] where U(·) is derived from a

CRRA vNM utility function with some wealth w ≥ 0 and F ∈ FR. This generates a bid

distribution G(·) ∈ GR. Proposition 1 shows that there exist a CRRA utility function Ũ(·) with

zero wealth and 0 ≤ c̃ < 1 and a distribution F̃ (·) ∈ FR leading to the bid distribution G(·). If

U(·) is not of the form x1−c, then [U,F ] is not identified. If U(·) is of the form x1−c, the proof

of Proposition 1 shows that there exists an infinity of values for c̃, c < c̃ < 1, generating the

same distribution G(·). Thus the CRRA model is unidentified. We can use a similar argument

to show that the CARA model is unidentified from the proof of Proposition 1-(ii).

Next, consider a structure [U,F ] ∈ UDRRA
R ×FR defining a DRRA model and generating a bid

distribution G(·) ∈ GR. Note that UCRRA
R ⊂ UDRRA

R . If U(·) is generated from a vNM utility

function with constant relative risk aversion, we know from above that there exists another

CRRA structure that is observationally equivalent to [U,F ]. On the other hand, if U(·) is

generated from a vNM utility function with partly strictly decreasing relative risk aversion, we

know from Proposition 1 that there exists an observationally equivalent CRRA structure with

zero wealth. Thus the DRRA model is unidentified. A similar argument shows that the DARA

model is unidentified.

Proof of Proposition 3: We distinguish two parts. The first part concerns the identification

of the general semiparametric model composed of structures [U,F ] satisfying Assumption A1,

while the second part concerns the identification of the CRRA and CARA models.

Part 1. Let [U,F ] satisfy Assumption A1 with parameters (θ, γ) and G(·|·, ·) be the corre-

sponding equilibrium bid distribution given (Z, I). Suppose that there exists another structure

[Ũ , F̃ ] satisfying A1 with parameters (θ̃, γ̃) and leading to the same conditional bid distribution.

We first show that (θ, γ) is identified, i.e (θ, γ) = (θ̃, γ̃). Writing (5) for each structure gives

1
I − 1

α

g(bα(z, I)|z, I)
= λ(vα(z, I; γ)− bα(z, I); θ) = λ(vα(z, I; γ̃)− bα(z, I); θ̃), (B.2)

for every (z, I) ∈ Z × I. Hence A1-(iv) implies that (θ̃, γ̃) = (θ, γ). ¿From A1-(i), Ũ(·) =

U(·; θ̃) = U(·; θ) = U(·), which establishes the identification of U(·). Moreover, from (4), we
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have

v = b+ λ−1

[
1

I − 1
G(b|z, I)
g(b|z, I)

; θ
]

= ṽ,

for every b ∈ [b(z, I), b(z, I)] and (z, I) ∈ Z × I. This shows that F̃ (·|·, ·) = F (·|·, ·), i.e. that

the latter is identified.

Part 2. We have U(x) = x1−c with 0 ≤ c < 1 for the CRRA model and U(x) = (1 −
exp−ax)/(1 − exp−a) with a > 0 for the CARA model. Conditions (i)–(iii) of Assumption A1

are satisfied, where vα(z, i) = γ. Thus, it suffices to verify condition (iv).

For the CRRA model, we have λ(γ − bα(z, I); θ) = (γ − bα(z, I))/θ, where θ = 1 − c. By

assumption there exist two pairs (z1, I1) and (z2, I2) belonging to Z × I such that bα(z1, I1) 6=
bα(z2, I2). Hence, (γ − bα(z1, I1))/θ 6= (γ − bα(z2, I2))/θ. On the other hand, knowing the

function λ(γ − bα(·, ·); θ) for every (z, I) ∈ Z × I and hence for (z1, I1) and (z2, I2) gives a

system of two linear equations in two unknown parameters (θ, γ). Because the determinant of

such a system is not equal to zero, there is a unique solution.

For the CARA model, we have λ(γ − bα(z, I); θ) = (expθ(γ−bα(z,I))−1)/θ, where θ = a. By

assumption there exist two pairs (z1, I1) and (z2, I2) belonging to Z × I such that bα(z1, I1) 6=
bα(z2, I2). Hence, λ1 6= λ2, where λj = (expθ(γ−bα(zj ,Ij))−1)/θ for j = 1, 2. Rearranging terms,

eliminating γ and taking the logarithm give

log
1 + θλ2

1 + θλ1
= θ[bα(z1, I1)− bα(z2, I2)],

where bα(z1, I1) > bα(z2, I2) without loss of generality and hence λ2 > λ1 > 0. Differentiating

twice with respect to θ the left-hand side shows that the left-hand side is strictly increasing and

concave in θ on [0,+∞). Because one root of the above equation is θ = 0, there is at most one

other strictly positive root. Thus, θ is uniquely determined, which gives a unique γ.

Appendix C

Appendix C gathers proofs of Lemma 2 and Theorem 2 stated in Section 5. Proofs of Lemmas

used to prove Theorem 2 are given in Appendix E. Throughout, let ξ(·; z, I) = s−1(·; z, I).

Proof of Lemma 2: We have b(z, I) = s(v; z, I), which admits R + 1 continuous derivatives

on Z by Theorem A1-(iii). The other assertions in (i)–(iii) follow from Lemma A6-(i).

To prove (iv), we note that ξ(b; z, I) = F−1[G(b|z, I)|z, I]. Hence, ξ(·; ·, I) is R+ 1 continu-

ously differentiable on SI(G). Moreover, we have from (4)

g(b|z, I) =
1

I − 1
G(b|z, I)

λ (ξ(b; z, I)− b)
(C.1)
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with λ (ξ(b; z, I)− b) > 0 because s(v; z, I) < v whenever v > v by Theorem A1. Therefore,

Lemma A6 and the composition rule for differentiation give that g(·|·, I) admits up to R + 1

continuous partial derivatives on Su
I (G), which establishes (iv).

It remains to show (v). Omit the dependence on (z, I) to simplify the notation. From

Theorem 1, it follows that s−1(·) admits R+ 1 continuous derivatives on [b, b] with [s−1(·)]′ > 0

on [b, b]. Now, from (3), we have G(b)/g(b) = (I − 1)λ[s−1(b) − b]. Because λ(·) and s−1(·)
are R+ 1 continuously differentiable on [0,+∞) and [b, b], then G(·)/g(·) is R+ 1 continuously

differentiable on [b, b], and hence admits a finite limit as b ↓ b.

Proof of Theorem 2: We begin by studying the smoothness of m(z, I;β), as summarized in

the next lemma.

Lemma C1: Let (U0, F0) satisfy Assumption A2-(i,ii) for some β0 = (θ0, v0) ∈ Θo× (0,∞) and

I finite. Let b0(z, I) be the upper boundary of the support of the corresponding bid distribution

G0(·|z, I), where (z, I) ∈ Z × I. Then, for every I ∈ I, the function m(z, I;β) defined in (7) is

R + 1 continuously differentiable on Z × B, where B = {(θ, v); θ ∈ Θ, v > sup(z,I)∈Z×I b0(z, I)}
with sup(z,I)∈Z×I b0(z, I) < v0.

Now, let tN ≥ 0 be such that tN/ρN = o(1), and ψ(·) : IR− → IR be an infinitely differentiable

function on IR− with support [−1, 0], such that ψ(0) = 1,
∫
ψ(x)dx = 0. Let 1Ip = (1, . . . , 1)′ ∈

IRp. For a fixed constant κ > 0 to be chosen below, consider the following perturbations of θ0
and g0(b|z, I), I ∈ I,

β1 = (θ1, v0) = (θ0 + 2tN1Ip/ρN , v0),

g1(b|z, I) = g0(b|z, I) + πN (z, I)ψ
[
κρ

1/(R+1)
N

(
b− b0(z, I)

)]
,

πN (z, I) = m (z, I;β1)−m(z, I;β0) =
∂m(z, I;β0)

∂β
(β1 − β0) + o(‖β1 − β0‖) = O(1/ρN ).

Note that {(θ, v), θ = θ0 +2tN1Ip/ρN , N = 1, 2, . . . , v = v0} can be assumed to be in B since θ0 ∈
Θo and v0 > sup(z,I)∈Z×I b0(z, I). Thus, the reminder term is uniform in z because ∂m(·, I; ·)/∂β
is continuous on Z ×B by Lemma C1, and hence uniformly continuous on the product of Z and

any compact subset of B containing {(θ, v), θ = θ0 + 2tN1Ip/ρN , N = 1, 2, . . . , v = v0}.
¿From Lemma 2-(i,iii) it follows that g1(·|z, I) is a conditional density with support [b0, b0(z, I)]

for N large enough. It is important to verify that such a density corresponds to a structure

[U(·; θ1), F1] in our semiparametric model. This is established in the next Lemma. For j = 0, 1,

define

ξj(b; z, I) = b+ λ−1

(
1

I − 1
Gj(b|z, I)
gj(b|z, I)

; θj

)
, (z, I) ∈ Z × I, b ∈ [v0, b0(z, I)].
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Lemma C2: Let (U0, F0) satisfy Assumption A2-(i,ii) for some β0 = (θ0, v0) ∈ Θo × (0,∞),

f0 ∈ F∗
R(M) and I finite. For κ > 0 small enough and N large enough, we have

(i) For every (z, I) ∈ Z × I, G1(·|z, I) is rationalized by the IPV auction structure with risk

aversion [U(·; θ1), F1(·|z, I)], where F1(·|·, I) ∈ F∗
R with support [v0, v0],

(ii) The conditional distribution function F1(·|·, ·) is such that (β1, f1) ∈ Vε(β0, f0).

We now turn to the statistical part of the proof. Because ‖ρN (β1 − β0)‖∞ = 2tN , using the

triangular inequality we have for any β̃

Prβ1,f1

(
‖ρN (β̃ − β1)‖∞ ≥ tN

)
≥ Prβ1,f1

(
‖ρN (β1 − β0)‖∞ − ‖ρN (β̃ − β0‖∞ ≥ tN

)
≥ Prβ1,f1

(
‖ρN (β̃ − β0)‖∞ < tN

)
.

Thus, because (β0, f0) and (β1, f1) are in Vε(f0, β0) for L large enough, we obtain

sup
(β,f)∈Vε(β0,f0)

Prβ,f

(
‖ρN (β̃ − β)‖∞ ≥ tN

)
≥ 1

2

[
Prβ0,f0

(
‖ρN (β̃−β0)‖∞≥ tN

)
+ Prβ1,f1

(
‖ρN (β̃−β1)‖∞≥ tN

)]
≥ 1

2
E
[
Prβ0,f0

(
‖ρN (β̃ − β0)‖∞ ≥ tN | FL

)
+ Prβ1,f1

(
‖ρN (β̃ − β0)‖∞ < tN | FL

)]
≡ 1

2
E[Pre(FL)], (C.2)

where FL is the σ-field generated by {(Z`, I`), 1 ≤ ` ≤ L}.
Let PrjN be the probability of the Bi` given FL under gj(·|·, ·), for j = 0, 1. Standard

relations between the distance in variation, the L1 norm and the Hellinger distance (see e.g.

Bickel, Klaassen, Ritov and Wellner (1993, p.464)) yield

Pre(FL) = 1−
(
Pr0N (‖ρN (β̃ − β0)‖∞ < tN )− Pr1N (‖ρN (β̃ − β0)‖∞ < tN )

)
≥ 1− sup

A
|Pr0N (A)− Pr1N (A)| = 1− 1

2

∫
|dPr0N − dPr1N |

≥ 1−
[∫ (√

dPr0N −
√
dPr1N

)2
]1/2

= 1−
√

2
(

1−
∫ √

dPr0NdPr1N

)1/2

.

Therefore

Pre(FL) ≥ 1−
√

2

(
1−

L∏
`=1

I∏̀
i=1

∫ b0(Z`,I`)

b0

√
g0(bi`|Z`, I`)g1(bi`|Z`, I`)dbi`

)1/2

. (C.3)

But, because gj(·|·, ·), j = 0, 1, are bounded away from zero and sup(z,I)∈Z×I πN (z, I) =

O(1/ρN ), we obtain from the definition of g1(·|·, ·) and a standard Taylor expansion∫ b0(Z`,I`)

b0

√
g0(b|Z`, I`)g1(b|Z`, I`)db
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=
∫ b0(Z`,I`)

b0

g0(b|Z`, I`)

√
1 +

πN (Z`, I`)
g0(b|Z`, I`)

ψ

(
κρ

1
R+1

N

(
b− b0(Z`, I`)

))
db

=
∫ b0(Z`,I`)

b0

g0(b|Z`, I`)

[
1 +

πN (Z`, I`)
2g0(b|Z`, I`)

ψ

(
κρ

1
R+1

N

(
b− b0(Z`, I`)

))

−
π2

N (Z`, I`)
8g2

0(b|Z`, I`)
ψ2

(
κρ

1
R+1

N

(
b− b0(Z`, I`)

))]
db+O

(
1
ρ3

N

)

= 1 +
πN (Z`, I`)

2

∫ b0(Z`,I`)

b0

ψ

(
κρ

1
R+1

N

(
b− b0(Z`, I`)

))
db

−
π2

N (Z`, I`)

8κρ
1

R+1

N

∫ 0

−1

ψ2(x)

g0

(
b0(Z`, I`) + ρ

− 1
R+1

N x/κ

)dx+ O
(
ρ−3

N

)

= 1 + 0 +O

(
ρ
− 1

R+1
−2

N

)
= 1 +O

(
ρ
− 2R+3

R+1

N

)
,

uniformly in `, since
∫
ψ(x)dx = 0. Consequently, since Nρ−(2R+3)/(R+1)

N → 0, we have

L∏
`=1

I∏̀
i=1

∫ b0(Z`,I`)

b0

√
g0(bi`|Z`, I`)g1(bi`|Z`, I`)dbi`

=
[
1 +O

(
ρ
− 2R+3

R+1

N

)]N

= exp
[
N log

(
1 +O

(
ρ
−(2R+3)/(R+1)
N

))]
= exp

[
NO

(
ρ
−(2R+3)/(R+1)
N

)]
= 1 +O

(
Nρ

−(2R+3)/(R+1)
N

)
= 1 + o(1).

Hence, (C.2) and (C.3) yield

inf
β̃

sup
(β,f)∈Vε(β0,f0)

Prβ,f

(
‖ρN (β̃ − β)‖∞ ≥ tN

)
≥ 1

2
[1− o(1)] =

1
2

+ o(1).

Appendix D

Appendix D establishes Theorem 3 stated in Section 6. Proofs of Lemmas used to prove Theorem

3 are given in Appendix E. Throughout, let FL be the σ-field generated by {(Z`, I`), 1 ≤ ` ≤ L},
let a � b mean that a/b→ c with 0 < c <∞, and for u = (ui`) ∈ IRN , set

‖u‖p =

(
L∑

`=1

I∑̀
i=1

|ui`|p
)1/p

, ‖u‖∞ = max
1≤`≤L

max
1≤i≤I`

|ui`|.

We first state a series of lemmas. The first lemma studies the bias and error terms of (10).
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Lemma D1: Let Assumptions A2, A3 and A4-(iii,iv) hold.

(i) The variables Yi` (or εi`), 1 ≤ i ≤ I`, 1 ≤ ` ≤ L are independent given FL,

(ii) Uniformly in (i, `),

E[Yi`|FL] = g0(b0(Z`, I`)|Z`, I`) +
hR+1

N

(R+ 1)!

(
∂R+1g0(b0(Z`, I`)|Z`, I`)

∂bR+1

∫
xR+1Φ(x)dx+ o(1)

)
,

ei` =
hR+1

N

(R+ 1)!

(
∂R+1g0(b0(Z`, I`)|Z`, I`)

∂bR+1

∫
xR+1Φ(x)dx+ o(1)

)
,

(iii) Uniformly in (i, `)

Var[εi`|FL] =
g0(b0(Z`, I`)|Z`, I`) + o(1)

hN

∫
Φ2(x)dx =

m(Z`, I`;β0) + o(1)
hN

∫
Φ2(x)dx,

max
1≤`≤L,1≤i≤I`

|εi`| ≤
2 supx∈IR |Φ(x)|

hN
.

The second lemma is a Central Limit Theorem, which is useful for weighted averages of εi`.

Lemma D2: Let Assumptions A2, A3 and A4-(iii,iv) hold. For any u ∈ IRN \ {0} that is

FL-measurable with ‖u‖∞/(‖u‖2

√
hN ) = oP (1), then∑L

`=1

∑I`
i=1 ui`εi`

Var1/2[
∑L

`=1

∑I`
i=1 ui`εi`|FL]

d→ N (0, 1)

conditionally on FL and thus unconditionally.

The third and fourth lemmas control the error |Ŷi` − Yi`| and |m̂(·, ·;β)−m(·, ·;β)| arising from

estimating the upper boundary b0(·, ·).

Lemma D3: Let Assumptions A2, A3 and A4-(iii–v) hold. For any u ∈ IRN that is FL-

measurable, we have∣∣∣∣∣
L∑

`=1

I∑̀
i=1

ui`

(
Ŷi` − Yi`

)∣∣∣∣∣ ≤
L∑

`=1

I∑̀
i=1

|ui`|
∣∣∣Ŷi` − Yi`

∣∣∣ = OP (1) max
[
aN

hN
‖u‖1, ‖u‖2

√
aN

hN

]
,

L∑
`=1

I∑̀
i=1

|ui`|
(
Ŷi` − Yi`

)2
= ‖u‖1OP

(
aN

h2
N

)
.

Lemma D4: Let Assumptions A2-(i,ii), A3-(i) and A4-(i,v) hold. We have

sup
β∈Bδ

max
1≤`≤L

|m̂(Z`, I`;β)−m(Z`, I`;β)| = OP (aN ),

sup
β∈Bδ

max
1≤`≤L

∥∥∥∥∂m̂(Z`, I`;β)
∂β

− ∂m(Z`, I`;β)
∂β

∥∥∥∥
∞

= OP (aN ).
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The next two lemmas study the properties of the limit and convergence of the approximate

objective function QN (·) defined in (19).

Lemma D5: Let Assumptions A2, A3 and A4-(i,ii) hold. Define

Q(β) = E
[
Iω(Z, I) (m(Z, I;β)−m(Z, I;β0))

2
]
.

Then, for any ε > 0, there exists Cε > 0 such that infβ∈Bδ ;‖β−β0‖∞≥εQ(β) > Cε. Moreover, the

matrix A(β) and B(β) defined in (14) and (15) are of full rank in a neighborhood of β0.

Lemma D6: Let Assumptions A2, A3 and A4-(i,ii) hold. We have

sup
β∈Bδ

∣∣∣∣ 1LQN (β)−Q(β)
∣∣∣∣ = OP

(
1√
L

)
= oP (1).

Moreover, for any β ∈ Bδ

AN (β)
N

=A(β) +OP (1/
√
N),

BN (β)
N

=B(β) +OP (1/
√
N),

bN (β, g0)
N

=b(β, g0)+OP (1/
√
N),

where A(β), B(β), AN (β), BN (β) and b(β, g0) are defined in (14)–(18), and

bN (β, g0) =
∫
xR+1Φ(x)dx
(R+ 1)!

L∑
`=1

I`ω(Z`, I`)
∂R+1g0(b0(Z`, I`)|Z`, I`)

∂bR+1

∂m(Z`, I`;β)
∂β

.

The last lemma deals with the following processes

WN (β) =
√
hN√
N

L∑
`=1

I∑̀
i=1

ω(Z`, I`)εi`m(Z`, I`;β),

W
(1)
N (β) =

√
hN√
N

L∑
`=1

I∑̀
i=1

ω(Z`, I`)εi`

(
∂m(Z`, I`;β)

∂β
− ∂m(Z`, I`;β0)

∂β

)
.

Lemma D7: Let Assumptions A2, A3 and A4-(i–iv) hold. If β̃N = β0 + oP (1), then we have

supβ∈Bδ
|WN (β)| = OP (1) and W (1)

N (β̃N ) = oP (1).

Proof of Theorem 3: The proof is in 2 steps.

Step 1: Consistency. Note that |max1≤`≤L b̂N (Z`, `)− sup(z,I)∈Z×I b0(z, I)| < δ/4 with proba-

bility approaching one by Assumptions A4-(v) and A3-(i), where the latter implies that {Z`, ` =

1, 2, . . .} is a.s. dense in Z by the Glivenko-Cantelli Theorem and the bounds on the g(z, I)s.
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Thus, sup(z,I)∈Z×I b0(z, I) + δ/4 < max1≤`≤L b̂N (Z`, `) +δ/2 < sup(z,I)∈Z×I b0(z, I) + 3δ/4 <

v0 < vsup with high probability, using Assumption A4-(i). That is, v0 ∈ BN ⊂ Bδ/4 with high

probability for N large enough.

Now, (12), (13) and the triangular inequality give

|Q̂1/2
N (β)−Q

1/2
N (β)|

=

∣∣∣∣∣∣
[

L∑
`=1

I∑̀
i=1

ω(Z`, I`)
(
Ŷi` − m̂(Z`, I`;β)

)2
]1/2

−

[
L∑

`=1

I∑̀
i=1

ω(Z`, I`) (Yi` −m(Z`, I`;β))2
]1/2

∣∣∣∣∣∣
≤

[
L∑

`=1

I∑̀
i=1

ω(Z`, I`)
(
Ŷi` − Yi` +m(Z`, I`;β)− m̂(Z`, I`;β)

)2
]1/2

≤

[
L∑

`=1

I∑̀
i=1

ω(Z`, I`)
(
Ŷi` − Yi`

)2
]1/2

+

[
L∑

`=1

I∑̀
i=1

ω(Z`, I`) (m(Z`, I`;β)− m̂(Z`, I`;β))2
]1/2

.

Thus, Lemmas D3 and D4 together with Assumption A4-(ii) yield

sup
β∈Bδ/4

|Q̂1/2
N (β)−Q

1/2
N (β)| =

√
NOP

(√
aN

hN

)
+
√
NOP (aN ) =

√
NOP

(√
aN

hN

)
, (D.1)

since aN = o(
√
aN/hN ) by Assumption A4-(iv). On the other hand, (10), (12) and the inequality

(x1 + x2 + x3)2 ≤ 3(x2
1 + x2

2 + x2
3) yield

QN (β) ≤ 3
L∑

`=1

I∑̀
i=1

ω(Z`, I`)
[
(m(Z`, I`;β)−m(Z`, I`;β0))

2 + e2i` + ε2i`

]
= OP (N) +OP (NhR+1

N ) +OP (N/hN ) = OP (N/hN ), (D.2)

uniformly in β ∈ Bδ/4. The second equality follows from Assumption A4-(ii,iv), Lemma C1

and Lemma D1, the latter implying that
∑

`

∑
i ε

2
i` = OP (N/hN ) by Markov inequality. Thus,

combining (D.1) and (D.2) gives

sup
β∈Bδ/4

|Q̂N (β)−QN (β)| = sup
β∈Bδ/4

∣∣∣(Q̂1/2
N (β)−Q

1/2
N (β)

)(
Q̂

1/2
N (β) +Q

1/2
N (β)

)∣∣∣
≤ 2 sup

β∈Bδ/4

Q
1/2
N (β) sup

β∈Bδ/4

|Q̂1/2
N (β)−Q

1/2
N (β)|+ sup

β∈Bδ/4

|Q̂1/2
N (β)−Q

1/2
N (β)|2

= NOP

(√
aN

h3
N

)
+NOP

(
aN

h2
N

)
= oP (N), (D.3)

since aN = o(h3
N ) by Assumption A4-(v).
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Next, consider QN (β)−QN (β0)−QN (β), where QN (β) is defined by (19). We have

QN (β)−QN (β0) = QN (β)− 2
L∑

`=1

I∑̀
i=1

ω(Z`, I`)(ei` + εi`) (m(Z`, I`;β)−m(Z`, I`;β0))

using (10). Hence, Lemmas D1 and D7 together with Assumption A4-(iv) yield

sup
β∈Bδ/4

|QN (β)−QN (β0)−QN (β)| = OP

(√
N/hN

)
+OP (NhR+1

N ) = oP (N). (D.4)

Thus, using (D.3), (D.4), Lemma D6 and L � N gives

sup
β∈Bδ/4

∣∣∣∣ 1LQ̂N (β)− 1
L
Q̂N (β0)−Q(β)

∣∣∣∣ ≤ sup
β∈Bδ/4

∣∣∣∣ 1LQ̂N (β)− 1
L
QN (β)

∣∣∣∣+∣∣∣∣ 1LQ̂N (β0)−
1
L
QN (β0)

∣∣∣∣
+ sup

β∈Bδ/4

∣∣∣∣ 1LQN (β)− 1
L
QN (β0)−

1
L
QN (β)

∣∣∣∣
+ sup

β∈Bδ/4

∣∣∣∣ 1LQN (β)−Q(β)
∣∣∣∣

= oP (1).

Combining this with Lemma D5 and recalling that v0 ∈ BN ⊂ Bδ/4 with high probability show

that the usual consistency conditions of M-estimators are satisfied (see e.g. White, 1994). Hence

β̂N converges in probability to β0.

Step 2: Asymptotic Normality. Given Assumption A4-(i), we have sup(z,I)∈Z×I b0(z, I) + δ <

v0 < vsup. Thus, β0 is an inner point of BN with high probability. Hence, because it is a

consistent estimator of β0, with probability tending to 1, β̂N solves the first-order condition:

0 =
L∑

`=1

I∑̀
i=1

ω(Z`, I`)
(
Ŷi` − m̂(Z`, I`; β̂N )

) ∂m̂(Z`, I`; β̂N )
∂β

=
L∑

`=1

I∑̀
i=1

ω(Z`, I`)
(
Ŷi` − m̂(Z`, I`;β0)

) ∂m̂(Z`, I`; β̂N )
∂β

−
L∑

`=1

I∑̀
i=1

ω(Z`, I`)
∂m̂(Z`, I`; β̂N )

∂β

∫ 1

0

∂m̂(Z`, I`;β0 + t(β̂N − β0))
∂β′

dt (β̂N − β0).

Therefore,

β̂N − β0 =

[
L∑

`=1

I`ω(Z`, I`)
∂m̂(Z`, I`; β̂N )

∂β

∫ 1

0

∂m̂(Z`, I`;β0 + t(β̂N − β0))
∂β′

dt

]−1

×
L∑

`=1

I∑̀
i=1

ω(Z`, I`)
(
Ŷi` − m̂(Z`, I`;β0)

) ∂m̂(Z`, I`; β̂N )
∂β

. (D.5)
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Let ĴN be the term within brackets. Lemmas C1, D4, D6 and the consistency of β̂N yield

ĴN =
L∑

`=1

I`ω(Z`, I`)
∂m(Z`, I`; β̂N )

∂β

∫ 1

0

∂m(Z`, I`;β0 + t(β̂N − β0))
∂β′

dt+OP (NaN )

= AN (β0) + oP (N) = NA(β0) + oP (N), (D.6)

where A(β0) has an inverse by Lemma D5.

Next, we study the second term in (D.5), i.e. the score ŜN . We have

ŜN =
L∑

`=1

I∑̀
i=1

ω(Z`, I`) (Yi` −m(Z`, I`;β0))
∂m(Z`, I`; β̂N )

∂β

+
L∑

`=1

I∑̀
i=1

ω(Z`, I`)

(
m(Z`, I`;β0)

∂m(Z`, I`; β̂N )
∂β

− m̂(Z`, I`;β0)
∂m̂(Z`, I`; β̂N )

∂β

)

+
L∑

`=1

I∑̀
i=1

ω(Z`, I`)

[(
Ŷi` − Yi`

) ∂m̂(Z`, I`; β̂N )
∂β

+ Yi`

(
∂m̂(Z`, I`; β̂N )

∂β
− ∂m(Z`, I`; β̂N )

∂β

)]
.

¿From (10) we have
∑

`

∑
i |Yi`| = OP (N/

√
hN ) by Lemmas C1 and D1, using Markov and

Cauchy-Schwartz inequalities to get
∑

`

∑
i |εi`| = OP (N/

√
hN ), which is the leading term given

Assumption A4-(iv). Therefore, using Lemmas C1, D3 and D4 together with Assumption A4-

(ii), we obtain

ŜN =
L∑

`=1

I∑̀
i=1

ω(Z`, I`) (Yi` −m(Z`, I`;β0))
∂m(Z`, I`; β̂N )

∂β

+NOP (aN ) +OP

[
max

(
N
aN

hN
,

(
NaN

h2
N

)1/2
)]

+OP

(
NaN√
hN

)

=
L∑

`=1

I∑̀
i=1

ω(Z`, I`) (Yi` −m(Z`, I`;β0))
∂m(Z`, I`;β0)

∂β

−
L∑

`=1

I∑̀
i=1

ω(Z`, I`) (Yi` −m(Z`, I`;β0))

(
∂m(Z`, I`;β0)

∂β
− ∂m(Z`, I`; β̂N )

∂β

)

+ OP

[
max

(
N
aN

hN
,

(
NaN

h2
N

)1/2
)]

.

Using (10), the consistency of β̂N , Lemmas C1, D1 and D7 with Assumption A2-(ii) imply that

the second term is an oP

(
NhR+1

N

)
+ oP

(√
N/hN

)
. Note that NaN/hN = o

(
NhR+1

N

)
and

NaN/h
2
N = o(N/hN ) under Assumption A4-(v). Hence, (10) and Lemmas D1 and D6 imply

ŜN =
L∑

`=1

I∑̀
i=1

ω(Z`, I`) (ei` + εi`)
∂m(Z`, I`;β0)

∂β
+ oP

(
NhR+1

N +
√

N

hN

)
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= hR+1
N bN (β0, g0) +

L∑
`=1

I∑̀
i=1

ω(Z`, I`)εi`
∂m(Z`, I`;β0)

∂β
+ oP

(
NhR+1

N +
√

N

hN

)

= NhR+1
N b(β0, g0) +

L∑
`=1

I∑̀
i=1

ω(Z`, I`)εi`
∂m(Z`, I`;β0)

∂β
+ oP

(
NhR+1

N +
√

N

hN

)
.(D.7)

Let ui` = ω(Z`, I`)∂m(Z`, I`;β0)/∂β. Lemmas C1, D1, D6 and assumption A4-(ii) imply

Var

[
L∑

`=1

I∑̀
i=1

ui`εi` | FL

]
=

L∑
`=1

I∑̀
i=1

ω2(Z`, I`)
m(Z`, I`;β0)

hN

∂m(Z`, I`;β0)
∂β

∂m(Z`, I`;β0)
∂β′

∫
Φ2(x)dx

+ oP (N/hN )

=
1
hN

BN (β0)
∫

Φ2(x)dx+ oP (N/hN )

=
N

hN

[
B(β0)

∫
Φ2(x)dx+ op(1)

]
.

Because ‖u‖∞/(‖u‖2

√
hN ) = OP (1/

√
NhN ) = oP (1) by Assumption A4-(iv), Lemma D2 implies√

hN

N

L∑
`=1

I∑̀
i=1

ω(Z`, I`)εi`
∂m(Z`, I`;β0)

∂β

d→ N
(

0, B(β0)
∫

Φ2(x)dx
)
. (D.8)

Collecting (D6)–(D.8) and using β̂N − β0 = Ĵ−1
N ŜN from (D.5) give

β̂N − β0 = hR+1
N A(β0)−1b(β0, g0)

+
1√
NhN

A(β0)−1

√
hN

N

L∑
`=1

I∑̀
i=1

ω(Z`, I`)εi`
∂m(Z`, I`;β0)

∂β
+ oP

(
hR+1

N +
1√
NhN

)
,

showing that β̂N − β0 = OP (hR+1
N + 1/

√
NhN ). This also gives the limits in probability and in

distribution of Theorem 3-(ii,iii). Moreover, N−1ÂN (β̂N ) = A(β0) + oP (1) and N−1B̂N (β̂N ) =

B(β0) + oP (1) can be established arguing as in (D.6).

Appendix E

Appendix E gathers proofs of Lemmas stated in Appendices A, C, and D.

E.1 Proofs of Lemmas A1–A6

Proof of Lemma A1: Fix (z, I) ∈ Z × I, and omit (z, I) to simplify the notation.

First, we show that property (i) holds. Recall from Maskin and Riley (1984) that s(·) is

continuous and strictly increasing on [v, v] with s(v) = v. Consider the optimization problem
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(1) of an arbitrary bidder with a private value v ∈ (v, v]. If b ≥ v, we have EΠ ≤ 0 since

U(v − b) ≤ 0.29 On the other hand, if b < v, we have U(v − b) > 0 because U(·) > 0

on (0,+∞) by Definition 1. Moreover, if b ∈ (v, v), which implies b > v = s(v), we have

Pr(bidder wins) = 1I[b ≤ s(v)]F I−1[s−1(b)] + 1I[b > s(v)], which is strictly positive because

F [s−1(b)] > F [v] = 0. Hence, EΠ > 0 if b ∈ (v, v). This shows that the optimal bid must satisfy

b < v whenever v ∈ (v, v].

Next, we show that s(·) is continuously differentiable on [v, v] and that s′(·) satisfies property

(ii). Because s(·) solves (A.1) on (v, v], property (i) implies that s′(·) is continuous and strictly

positive on (v, v]. Thus, it remains to prove that s(·) is continuously differentiable at v with

0 < s′(v) < 1. Let

Ψ(v) = (I − 1)
f(v)(v − v)

F (v)
λ(v − s(v))
v − s(v)

if v ∈ (v, v], Ψ(v) = (I − 1)λ′(0) if v = v.

Note that Ψ(·) is continuous on [v, v]. For v0 ∈ [v, v], define

γ(v0) = inf
v∈[v,v0]

Ψ(v) > 0, Γ(v0) = sup
v∈[v,v0]

Ψ(v) <∞,

where the first inequality follows from f(·|z, I) > 0, property (i) and λ′(0) > 0. Moreover, γ(·)
and Γ(·) are continuous on [v, v] with γ(v) = Γ(v) = (I − 1)λ′(0) > 0 and Γ(v)/(1 + γ(v)) < 1.

Hence, there exists a v0 ∈ (v, v] with 0 < Γ0/(1 + γ0) < 1, where 0 < γ0 ≡ γ(v0) ≤ Γ(v0) ≡ Γ0.

Thus, from (A.1) and property (i), we have for any v ∈ (v, v0]

γ0
v − s(v)
v − v

≤ s′(v) = Ψ(v)
v − s(v)
v − v

≤ Γ0
v − s(v)
v − v

.

We use these inequalities to find upper and lower bounds on s′(v). Let κ(v) = (v−v)Γ0 [s(v)−v]
for v ∈ [v, v0]. Differentiating and using the above inequalities, we obtain for v ∈ (v, v0]

γ0(v − v)Γ0 ≤ κ′(v) = (v − v)Γ0−1[Γ0(s(v)− v) + (v − v)s′(v)] ≤ Γ0(v − v)Γ0 ,

since γ0 ≤ Γ0. In particular, this shows that limv↓v κ
′(v) = 0, which implies that κ′(v) exists

and is equal to 0 using the Mean Value Theorem. Hence, γ0(v − v)Γ0 ≤ κ′(v) ≤ Γ0(v − v)Γ0

for any v ∈ [v, v0], which implies that κ′(·) is integrable on [v, v0]. Moreover, because κ(v) = 0,

we obtain κ(v) =
∫ v
v κ

′(x)dx ≤ Γ0(v − v)Γ0+1/(Γ0 + 1) for v ∈ [v, v0]. Similarly, letting κ(v) =
29Though Definition 1 requires U(·) to be defined on IR+ only, we could have defined it on IR, as

U(x) = UvNM (w + x) − UvNM (w) for x ∈ IR. In this case U(x) < 0 whenever x < 0 because UvNM (·)
and hence U(·) are strictly increasing, while U(0) = 0.
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(v − v)γ0 [s(v)− v] for v ∈ [v, v0], we obtain κ(v) ≥ γ0(v − v)γ0+1/(γ0 + 1) for v ∈ [v, v0]. Thus,

using the definitions of κ(·) and κ(·), we obtain

γ0

γ0 + 1
[v − v] ≤ s(v)− v ≤ Γ0

Γ0 + 1
[v − v] for any v ∈ [v, v0].

Therefore, the inequalities on s′(v) yield

0 <
γ0

Γ0 + 1
≤ s′(v) ≤ Γ0

γ0 + 1
< 1 for any v ∈ (v, v0].

In particular, these inequalities hold at v0. Using γ0 ≡ γ(v0) and Γ0 ≡ Γ(v0) converge to γ(v) =

Γ(v) = (I − 1)λ′(0) > 0 as v0 ↓ v, we obtain that limv0↓v s
′(v0) = (I − 1)λ′(0)/[(I − 1)λ′(0) + 1],

which is strictly between 0 and 1. Application of the Mean Value Theorem between v and v

establishes that s′(v) exists and is equal to (I − 1)λ′(0)/[(I − 1)λ′(0) + 1]. Moreover, s′(·) is

continuous at v, which implies that (A.1) also holds at v by taking the limit as v ↓ v because

Ψ(·) is continuous at v.

Proof of Lemma A2: Without loss of generality, assume that v = 0. For (i), let x > 0 and

v > 0. The Liebnitz-Newton formula yields

∂r2Λ(x; v)
∂vr2

=
∂r2

∂vr2

(
λ(vx)
v

)
=

r2∑
j=0

r2!
j!(r2 − j)!

∂jλ(vx)
∂vj

∂r2−j

∂vr2−j

(
1
v

)

=
(−1)r2r2!
vr2+1

r2∑
j=0

λ(j)(vx)
j!

(−vx)j .

On the other hand, a Taylor expansion of λ(0) = λ(vx − vx) = 0 around vx with integral

remainder (see e.g Zeidler (1985, p.77)) shows that

0 =
r2∑

j=0

λ(j)(vx)
j!

(−vx)j +
1
r2!

∫ 1

0
(1− t)r2(−vx)r2+1λ(r2+1) (vx− tvx) dt.

Hence, after a change of variables, we obtain

1
x

∂r2Λ(x; v)
∂vr2

= xr2

∫ 1

0
tr2λ(r2+1) (tvx) dt ,

∂r1+r2Λ(x; v)
∂xr1∂vr2

=
∂r1

∂xr1

(
xr2+1

∫ 1

0
tr2λ(r2+1) (tvx) dt

)
.

The Lebesgue Dominated Convergence Theorem shows that these functions are continuous on

IR+ × [v, v] because r1 + r2 ≤ R and λ(·) is R+ 1 continuously differentiable on IR+.

For (ii), using the definition of ΦI(·; ·, ·), and note that the partial derivatives up to order

R of (v, z) → f(vu|z, I) are continuous with respect to (u, v, z). Note also that vu/F (vu|z, I)
is bounded away from infinity uniformly in (u, v, z) as minv,u,z f(vu|z, I) > 0. The rules of
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differentiation then shows that (ii) is proved if the partial derivatives up to order R with respect

to (v, z) of F (vu|z, I)/(vu) are continuous with respect to (u, v, z). Since ∂r3F (0|z, I)/∂zr3 = 0

and using the same argument as for Λ(·; ·) replaced by (1/v)∂r3F (vu|z, I)/∂zr3 with u playing

the role of x, we have

∂r2+r3

∂vr2∂zr3

(
F (vu|z, I)

vu

)
=

∂r2

∂vr2

(
1
vu

∂r3F (vu|z, I)
∂zr3

)
= ur2

∫ 1

0
tr2
∂r2+r3+1F (tuv|z, I)

∂yr2+1∂zr3
dt,

where ∂y indicates differentiation with respect to the first argument of F (·|z, I). The Lebesgue

Dominated Convergence Theorem shows that (ii) is proved when [U,F ] ∈ UR × F∗
R since r2 +

r3 + 1 ≤ R+ 1.

Proof of Lemma A3: Note that (i) has been shown after (A.8).

(ii) When r1 = 0, the desired property is easy to prove using Lemma A2. For r1 ≥ 1, we

first show that Er1r2r3
I (σ; v, z) is a continuous r1-multilinear operator from (C0

1 )r1 to C0 when

(σ, v, z) ∈ Σ0
1 × [v, v]× Z. As noted above, this operator maps (C0

1 )r1 into a subset of C0. The

norm of r1-multilinear operators A(η1, . . . , ηr1) from (C0
1 )r1 to C0 is

ρr1(A) = sup
‖η1‖1,∞=···=‖ηr1‖1,∞=1

‖A(η1, . . . , ηr1)‖∞ ,

and A is continuous if ρr1(A) < ∞ (see Zeidler (1985, p.773)). Consider E1
I(σ; v, z). By

definition of ‖ · ‖∞ and ‖ · ‖1,∞, we have from (A.9)

∥∥E1
I(σ; v, z)(η1)

∥∥
∞ ≤

∥∥∥η(1)
1

∥∥∥
∞

+ sup
u,v,z

|ΦI(u; v, z)| sup
(x,v)∈[0,1]×[v,v]

∣∣∣Λ(1) (x; v)
∣∣∣ ∥∥∥∥η1(u)

u

∥∥∥∥
∞

≤

[
1 + sup

u,v,z
|ΦI(u; v, z)| sup

(x,v)∈[0,1]×[v,v]

∣∣∣Λ(1) (x; v)
∣∣∣] ‖η1‖1,∞,

since σ ∈ Σ0
1 implies 0 ≤ u − σ(u) ≤ u ≤ 1 for all u ∈ [0, 1], and since η1(0) = 0 implies

‖η1(u)/u‖∞ = ‖u−1
∫ u
0 η

(1)
1 (y)dy‖∞ ≤ ‖η1‖1,∞. Now, the compactness of [0, 1], [v, v], Z and

Lemma A2 give ρ1(E1
I(σ; v, z)) <∞. The other operators Er1r2r3

I (σ; v, z) are treated similarly.

We now show the uniform continuity of (σ, v, z) 7→ Er1r2r3
I (σ; v, z) relative to ρr1(·), r1 ≥ 1.

We consider (r1, r2, r3) = (1, 0, 0), the other partial derivatives being treated similarly using

Lemma A2. For any (σ0, v0, z0), (σ, v, z) in Σ0
1 × [v, v]×Z, we have as above

ρ1

(
E1

I(σ; v, z)−E1
I(σ0; v0, z0)

)
≤ sup

u∈[0,1]

∣∣∣ΦI(u; v, z)Λ(1) (u− σ(u); v)− ΦI(u; v0, z0)Λ(1) (u− σ0(u); v0)
∣∣∣ ,
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which can be made arbitrarily small independently of (σ0, v0, z0) by taking ‖σ − σ0‖∞ ≤ ‖σ −
σ0‖1,∞, |v− v0| and ‖z− z0‖ small by Lemma A2, because σ and σ0 take values in the compact

set [0, 1], and (v, z), (v0, z0) are also in compact sets.

To find the Fréchet derivatives of EI(σ; v, z), we note that the above operators Er1r2r3
I (σ; v, z)

are actually the Gâteaux derivatives of EI(σ; v, z) over Σ0
1 × [v, v]×Z. It then follows from the

continuity of these Gâteaux partial derivatives on Σ0
1 × [v, v] × Z that the Er1r2r3

I (σ; v, z)s are

also the Fréchet partial derivatives of EI(σ; v, z) by Proposition 4.8 in Zeidler (1985).

(iii) Fix (σ, v, z, I) ∈ Σ0
1 × [v, v] × Z × I. To show that E1

I(σ; v, z) is a one-to-one operator

from C0
1 to C0, consider ζ ∈ C0. ¿From (A.9), solving E1

I(σ; v, z)(η) = ζ for η ∈ C0
1 leads to

solving the following first-order linear differential equation

E1
I (v, z) : η(1)(u) +

[
ΦI(u; v, z)

Λ(1) (u− σ(u); v)
u

]
η(u) = ζ(u) with η(0) = 0.

Because the term in brackets diverges as u ↓ 0, standard approaches to solve E1
I (v, z) on [0, 1]

do not apply. In particular, solving this equation with ζ = 0 would lead to consider the integral∫ 1

u
ΦI(y; v, z)

Λ(1) (y − σ(y); v)
y

dy =
∫ 1

u
ΦI(y; v, z)

λ′ ((v − v)(y − σ(y)))
y

dy → +∞ when u ↓ 0,

since ΦI(0; v, z) = i − 1 and λ′(·) ≥ 1. Nevertheless, it can be readily shown that the unique

solution η0 of E1
I (v, z) on (0, 1] with limu→0 η0(u) = 0 is

η0(u) =
∫ u

0
ζ(y)

Rσ(y)
Rσ(u)

dy, where Rσ(u) = exp

[
−
∫ 1

u
ΦI(y; v, z)

Λ(1) (y − σ(y); v)
y

dy

]
(E.1)

is defined on [0, 1] with Rσ(0) = 0. Moreover, 0 ≤ Rσ(y) ≤ Rσ(u) for 0 ≤ y ≤ u implies

|η0(u)| ≤ ‖ζ‖∞u, so that η0(·) is defined on [0, 1] with η0(0) = 0.

The proof of (iii) is complete by showing that η0 ∈ C0
1 and that η0 solves E1

I (v, z) at 0. This

is done via the following two steps: a) η0 is differentiable at 0; b) η(1)
0 is continuous at 0 and

satisfies E1
I (v, z) at u = 0. For the sake of simplification, assume that v = 0 and I = 2.

(iii.a) η0 is differentiable at 0. For 0 ≤ y ≤ u and u→ 0, consider the expansion of

Rσ(y)
Rσ(u)

= exp

(
−
∫ u

y
Φ2(x; v, z)

Λ(1) (x− σ(x); v)
x

dx

)
.

¿From the definition of Φ2(·; ·, ·) and Λ(·; v) combined with infz f(0|z, 2) > 0 under Definition

4, it is easily seen that, when x ↓ 0,

Φ2(x; v, z)
x

=
vf(vx|z, 2)
F (vx|z, 2)

=
1
x

(
1 +

vx

2
f ′(0|z, 2)
f(0|z, 2)

+ o(x)
)
,

Λ(1) (x− σ(x); v) = λ′ (v(x− σ(x))) = λ′(0) + vλ′′(0)
(
1− σ(1)(0)

)
x+ o(x),
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so that

Φ2(x; v, z)
Λ(1) (x− σ(x); v)

x
=
λ′(0)
x

+O(1) when x ↓ 0. (E.2)

Consequently, since 0 ≤ y ≤ u, we have, when u→ 0,

Rσ(y)
Rσ(u)

= exp
[
−
∫ u

y

(
λ′(0)
x

+O(1)
)
dx

]
= exp

(
−λ′(0) ln

u

y
+O(u− y)

)
=
(y
u

)λ′(0)
(1 + o(1)) .

We now expand η0(u) when u is close to 0. The above expansion gives

η0(u) =
∫ u

0
(ζ(0) + o(1))

Rσ(y)
Rσ(v)

dy =
ζ(0) + o(1)
uλ′(0)

∫ u

0
yλ′(0)(1 + o(1))dy =

ζ(0)
λ′(0) + 1

u+ o(u),

(E.3)

where λ′(0)/geq1. Hence η0(·) is differentiable at 0.

(iii.b) η(1)
0 is continuous at 0 and satisfies E1

I (v, z) at u = 0. We show that the value

η
(1)
0 (0) = ζ(0)/(λ′(0) + 1) given by (E.3) is consistent with E1

2(v, z). The differential equation

E1
2(v, z), (E.2) and (E.3) yield, for u ↓ 0,

η
(1)
0 (u) = ζ(u)− Φ2(u; v, z)

u
Λ(1) (u− σ(u); v) η0(u)

= ζ(0) + o(1)−
(
λ′(0)
u

+O(1)
)(

ζ(0)
λ′(0) + 1

u+ o(u)
)

=
ζ(0)

λ′(0) + 1
+ o(1),

as required by (E.3). Hence η0 solves E1
2(v, z) and is C1 on [0, 1].

Proof of Lemma A4: Fix (z, I) ∈ Z × I. The differential equation (A.1) is not defined if

s(v; z, I) > v because λ(·) is defined on IR+. We thus extend (A.1) to

Ẽ(z, I) : s′(v; z, I) = (I − 1)
f(v|z, I)
F (v|z, I)

λ̃ (v − s(v; z, I)) , v ∈ [v, v] , (E.4)

with s(v; z, I) = v, where λ̃(x) = λ(x) if x ≥ 0, and λ̃(x) = λ′(0)x if x ≤ 0. Note that

λ̃(·) is continuously differentiable on IR, and that λ̃(·) is consistent with our previous definition

of Λ(x; v), which can be equivalently defined as Λ(x; v) = λ̃[(v − v)x]/(v − v) if v > v, and

Λ(x; v) = λ̃′(0)x if v = v, for x ∈ IR. Moreover, because λ̃(v − s(v)) = λ(v − s(v)) as soon

as s(v) ≤ v, then s(·; z, I) is a continuously differentiable solution of (A.1) on [v, v] with initial

condition s(v; z, I) = v if and only if it is a solution in S1(v) of (E.4). To prove Lemma A4, it

thus suffices to show that (E.4) has a solution, which is unique in S1(v). This is done in three

steps.

Step 1: The continuously differentiable solutions of (E.4) with initial condition s(v; z, I) = v

are in S1(v). Let s(·; z, I) be such a solution, if it exists.
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We first check that s(·; z, I) verifies the conditions of S1(v) in a neighborhood [v, v0] of v.

For v > v close to v, we have

0 = F (v|z, I) = F (v|z, I) + (f(v|z, I) + o(1)) (v − v),

0 = λ̃ (v − s(v; z, I)) = λ̃ (v − s(v; z, I)) +
[(

1− s′(v; z, I)
)
λ̃′ (v − s(v; z, I)) + o(1)

]
(v − v),

where the remainder terms o(1) = ov(1) are uniform in v since f(v|z, I) and s′(v; z, I) are

continuous on [v, v], while λ̃(·) is continuously differentiable on IR. Substituting in (E.4) and

simplifying give

s′(v; z, I) =
I − 1

1 + o(1)

[(
1− s′(v; z, I)

)
λ̃′ (v − s(v; z, I)) + o(1)

]
,

so that

s′(v; z, I) = lim
v↓v

s′(v; z, I) =
(I − 1)λ′(0)

(I − 1)λ′(0) + 1
∈ (0, 1).

Therefore, there is a v0 ∈ (v, v] such that s(v; z, I) < v and s′(v; z, I) > 0 for all v ∈ (v, v0].

We now check that s(·; z, I) verifies the conditions of S1(v) over [v0, v]. Observe that

s(v; z, I) < v should be true at least on an interval [v0, v∗), v∗ > v0. Let v1 > v be the

largest possible v∗ ≤ v. Note that s(v1; z, I) = v1 and s′(v1; z, I) = 0 by (E.4). Because R ≥ 1,

taking left derivatives of (E.4) at v = v1 gives

s′′(v1; z, I)
I − 1

=
∂

∂v

(
f(v1|z, I)
F (v1|z, I)

)
λ (v1−s(v1; z, I)) +

f(v1|z, I)
F (v1|z, I)

λ′ (v1−s(v1; z, I))
(
1−s′(v1; z, I)

)
=

f(v1|z, I)
F (v1|z, I)

λ′(0) > 0,

since λ′(·) ≥ 1 and f(·|z, I) > 0 on [v, v]. Consequently, a second-order Taylor expansion for

ε > 0 small enough yields s(v1−ε; z, I) = v1 +ε2(s′′(v1; z, I)/2+o(1)), which, since s′′(v1; z, I) >

0, contradicts the condition s(v1 − ε; z, I) < v1 − ε coming from the definition of v1. Thus

s(v; z, I) < v for all v ∈ [v0, v], which also gives s′(v; z, I) > 0 for all v ∈ [v0, v]. This shows that

all continuously differentiable solutions of (E.4) with s(v; z, I) = v are in S1(v). Equivalently,

all the zeros in C0
1 of the operator EI(·; v, z) defined in (A.8) are in Σ0

1 ⊂ C0
1 .

Step 2: (E.4) has a unique continuously differentiable solution on a small interval [v, v0], v0 > v

with initial condition s(v; z, i) = v. Equivalently, we want to show that the operator EI(·; v, z)
given in (A.8) has a unique zero in C0

1 for v = v0. Existence and uniqueness of this solution

follow using a continuation argument given in Proposition 6.10 in Zeidler (1985) as EI(·; v, z)
has a unique zero in C0

1 , namely the solution given by (A.7).
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For v0 ∈ [v, v], define

γ(v0) = inf
v∈[v,v0],u∈[0,1]

ΦI(u; v, z)× inf
v∈[v,v0],x∈[0,1]

Λ(x; v)
x

> 0,

Γ(v0) = sup
v∈[v,v0],u∈[0,1]

ΦI(u; v, z)× sup
v∈[v,v0],x∈[0,1]

Λ(x; v)
x

<∞,

where the inequalities follow from f(·|z, I) > 0 and Λ(0; v)/0 = λ′(0) > 0. Moreover, Lemma

A2 implies that Γ(·) and γ(·) are continuous. Thus, Γ(v) = γ(v) = (I − 1)λ′(0) > 0 and

Γ(v)/(1 + γ(v)) < 1. Hence, there exists a v0 ∈ (v, v] with 0 < Γ0/(1 + γ0) < 1, where

0 < γ0 ≡ γ(v0) ≤ Γ(v0) ≡ Γ0.

Now, if σI(·; v, z) is a zero in C0
1 of EI(·; v, z), then σI(·; v, z) ∈ Σ0

1 by Step 1. Thus, using

(A.8) and the definitions of Γ0, γ0 and Σ0
1, we have for any (u, v) ∈ [0, 1]× [v, v0]

γ0
u− σ(u; v)

u
≤ σ(1)(u; v) = Φ(u; v)

Λ (u− σ(u; v); v)
u− σ(u; v)

u− σ(u; v)
u

≤ Γ0
u− σ(u; v)

u
,

dropping the dependence upon (z, I) to simplify the notation. Thus, the same argument as in

the proof of Lemma A1-(ii) with v = 0 and [v, s(v)] replaced by [u, σ(u, v)] gives

γ0

γ0 + 1
u ≤ σ(u; v) ≤ Γ0

Γ0 + 1
u for any u ∈ [0, 1] and every v ∈ [v, v0],

0 <
γ0

Γ0 + 1
≤ σ(1)(u; v) ≤ Γ0

γ0 + 1
< 1 for any u ∈ [0, 1] and every v ∈ [v, v0].

This implies that there is an ε > 0 such that

{ζ ∈ C0
1 ; ‖ζ(·)− σ(·; v)‖1,∞ < ε} ⊂ Σ0

1 for any σ(·; v) zero in C0
1 of EI(·; v, z), v ∈ [v, v0].

Because Σ0
1 is open, it follows that the a priori condition (ii) of the continuation argument in

Proposition 6.10 of Zeidler (1985) is satisfied.

We now check condition (iv) of Proposition 6.10 in Zeidler (1985), and in particular, that

the norm of the (linear) operator
[
E1

I(σ; v)
]−1 is uniformly bounded for (σ, v) ∈ Σ0

1× [v, v0]. For

any ζ ∈ C0, (E.1) gives η0 =
[
E1

I(σ; v)
]−1 (ζ). Hence

∣∣E1
I(σ; v)

]−1 (ζ)‖1,∞ = ‖η0‖1,∞ = ‖η(1)
0 ‖∞,

where η(1)
0 + Φ(u; v)Λ(1) (u− σ(u); v) η0(u)/u = ζ(u) by (A.9). Hence∥∥∥[E1

I(σ; v)
]−1 (ζ)

∥∥∥
1,∞

≤ ‖ζ‖∞ +
∥∥∥∥Φ(u; v)Λ(1) (u− σ(u); v)

1
u

∫ u

0
ζ(y)

Rσ(y)
Rσ(u)

dy

∥∥∥∥
∞

≤ ‖ζ‖∞ +
∥∥Φ(u; v)λ′ ((v − v)(u− σ(u)))

∥∥
∞ ‖ζ‖∞

≤

[
1 + sup

(u,v)∈[0,1]×[v,v0]
Φ(u; v)× sup

v∈[v,v0]
λ′(v)

]
‖ζ‖∞ ,
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for any (σ, v) ∈ Σ0
1× [v, v0], because Rσ(y) ≤ Rσ(u) and Λ(1)(x; v) = λ′((v− v)x), recalling that

0 ≤ u−σ(u) ≤ 1. Thus, the norm of the operator
[
E1

I(σ; v)
]−1 is uniformly bounded, as desired.

Because the other assumptions of Proposition 6.10 of Zeidler (1985) have been established

in Lemma A3, the continuation argument yields that EI(·; v0, z) has a unique zero σI(·; v0, z)
in C0

1 since EI(·; v, z) has a unique zero (A.7) on C0
1 . Moreover, σI(·; v0, z) ∈ Σ0

1. Thus, (A.4)

implies that

s0(v; z, I) = v + (v0 − v)σI

(
v − v

v0 − v
; v0, z

)
, v ∈ [v, v0]

is the unique continuously differentiable solution of (E.4) on [v, v0] with s0(v; z, I) = v. Moreover,

0 < s′0(v; z, I) < 1, and s0(v; z, I) < v, s′0(v; z, I) > 0 for v ∈ [v, v0].

Step 3: (E.4) has a unique continuously differentiable solution on [v, v] with initial condition

s(v; z, I) = v. We extend s0(·; z, I) on [v, v]. Let λ̃∗(x) = λ̃(x) if x ≤ v, and λ̃∗(x) = λ̃′(v)x if

x ≥ v. Consider the first-order differential equation that coincides with (A.1) for s(·) ∈ S1(v)

Ẽ∗(z, I) : s′(v) = (I − 1)
f(v|z, I)
F (v|z, I)

λ̃∗ (v − s(v)) , s(v0) = s0(v0; z, I), v ∈ [v0, v], (E.5)

where 0 < s0(v0; z, I) < v0 by Step 2. Define

L = (I − 1) sup
v∈[v0,v]

f(v|z, I)
F (v|z, I)

sup
x∈[0,v]

∣∣λ′(x)∣∣ <∞, Q0 = [v0, v]× IR,

so for any (v, b1), (v, b2) in Q0,∣∣∣∣(I − 1)
f(v|z, I)
F (v|z, I)

λ̃∗ (v − b1)− (I − 1)
f(v|z, I)
F (v|z, I)

λ̃∗ (v − b2)
∣∣∣∣ ≤ L|b1 − b2|,

by the Mean Function Theorem. It now follows from the Picard-Lindelöf Theorem (see Corollary

1.10 in Zeidler (1985)) that Ẽ∗(z, I) has exactly one continuously differentiable solution, say

s1(v; z, I) for v ∈ [v0, v].

Define s(v; z, I) = s0(v; z, i) for v ∈ [v, v0], s(v; z, I) = s1(v; z, I) for v ∈ [v0, v]. We check

that s(·; z, I) is the unique continuously differentiable solution of (E.4) on [v, v] with s(v; z, I) =

v. Note first that s(v; z, I) is continuously differentiable at v0 by (E.4) and (E.5), the initial

condition s1(v0; z, I) = s0(v0; z, I), and 0 < v0 − s0(v0; z, I) < v. To establish that s(·; z, I)
solves (E.4) for v ∈ [v, v] with s(v; z, I) = v, it suffices to show that s1(v; z, I) solves (E.4) for

v ∈ [v0, v] with s1(v0; z, I) = s0(v0; z, I), since s0(v; z, I) already solves (E.4) for v ∈ [v, v0] with

s0(v; z, I) = v. In view of (E.5), it suffices to show that v − s1(v; z, I) ≤ v for v ∈ [v0, v]. The

latter holds if s1(·; z, I) > 0, which is implied by s1(v0; z, I) = s0(v0; z, I) > 0 and s′1(·; z, I) > 0

on [v0, v], which follows by repeating the second part of Step 1 to establish that s1(v; z, I) < v
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for v ∈ [v0, v]. Uniqueness of s(·; z, I) on [v, v] follows from the uniqueness of s0(·; z, I) and

s1(·; z, I) on [v, v0] and [v0, v], respectively.

Proof of Lemma A5: Fix I ∈ I. We first show that the mapping (v, z) → σI(·; v, z) from

[v, v] × Z to the Banach space
(
C0

1 , ‖ · ‖1,∞
)

is R continuously differentiable. By (A.8) and

Lemma A4, σI(·; v, z) is a (unique) zero of the operator EI(·; v, z) in Σ0
1 ⊂ C0

1 , i.e.

EI(σI(·; v, z); v, z) = 0 for all (v, z) ∈ [v, v]×Z.

It follows from Lemma A3 that EI(·; v, z) verifies the conditions of the Functional Implicit

Function Theorem 4.B-(d) in Zeidler (1985). Therefore (v, z) → σI(·; v, z) is R continuously

differentiable on the interior of [v, v]×Z. Now note that the partial derivatives of EI(·; v, z) are

continuous over [v, v]×Z. It then follows from the expression of the implicit partial derivatives

(see the proof of Theorem 4.B in Zeidler (1985)) and arguing as in the proof of Lemma C1

in Guerre, Perrigne and Vuong (2000), that the partial derivatives of (v, z) → σI(·; v, z) have

limits at the boundaries, so that this mapping is R continuously differentiable with respect to

(v, z) ∈ [v, v]×Z.

To prove the desired result, note that σ ∈ (C0
1 , ‖·‖1,∞) 7→ σ(1) is a linear continuous mapping,

which is therefore infinitely continuously differentiable. It then follows from the differentiation

rule with respect to composition that σI(1; v, z) is R continuously differentiable with respect

to (v, z) ∈ [v, v] × Z. Hence, by (A.4), s(v; z, I) = v + (v − v)σI(1; v, z) is R continuously

differentiable with respect to (v, z) ∈ [v, v]×Z. Next, for u = 1, (A.5) yields

s′(v; z, I) = σ
(1)
I (1; v, z) = ΦI(1; v, z)Λ (1− σI(1; v, z); v) , (v, z) ∈ [v, v]×Z.

Hence, s′(v; z, I) is R continuously differentiable with respect to (v, z) ∈ [v, v] × Z by Lemma

A2, the derivation rules for composition and product of functions, and 0 ≤ σI(1; v, z) < 1.

Proof of Lemma A6: Fix I ∈ I and let ξ(·; z, I) = s−1(·; z, I).
(i) We have b(z, I) = s(v; z, I) = v and b(z, I) = s(v; z, I) > v. Hence, infz∈Z

(
b(z, I)−b(z, I)

)
> 0 by continuity of s(v; ·, I) and compactness of Z. The conditional distribution G(·|z, I) =

F (ξ(·; z, I)|z, I) has support [b(z, I), b(z, I)] because F (·|z, I) and s(·; z, I) are strictly increasing

and continuous on [v, v]. Its density is g(b|z, I)= f(s−1(b; z, I)|z, I)/ s′(s−1(b; z, I); z, I). Thus

inf(b,z)∈SI(G) g(b|z, I) > 0 using Definition 4-(iii).

We now study the smoothness of G(·|·, I). Note that Lemma A5 shows that G(b|z, I) and

g(b|z, I) admit up to R continuous partial derivatives on SI(G) since inf(v,z)∈[v,v]×Z s
′(v; z, I) > 0

by definition of S1(v) and Lemmas A4–A5. Thus, it remains to prove that ∂GR+1(·|·, I)/∂zR+1
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exists and is continuous on SI(G). Let G(1)(b|z, I) = g(b|z, I). Using the expression of the latter

and the fact that s(·; z, I) solves (A.1) gives

G(1)(b|z, I) =
F
[
s−1(b; z, I)|z, I

]
(I − 1)λ [s−1(b; z, I)− b]

=
G(b|z, I)

(I − 1)λ [F−1 (G(b|z, I)|z, I)− b]
, (E.6)

since G(·|z, I) = F (s−1(·; z, I)|z, I) and F−1(G(b|z, I)|z, I) = s−1(b; z, I) > b on (b(z, I), b(z, I)]

as s(·; z, I) ∈ S1(v). Thus, the distribution G(·|z, I) solves the first-order differential equation

EG
I (z) : G(1)(b) =

G(b)
(I − 1)λ [F−1 (G(b)|z, I)− b]

, G(b(z, I)) = 1, b ∈ (b(z, I), b(z, I)],

excluding b(z, I) in order to avoid the singularity at that point. Consider (b0, z0) in the interior

of SI(G). The function

(b,G, z) → G

(I − 1)λ [F−1 (G|z, I)− b]

admits up to R+1 continuous partial derivatives on a neighborhood of (b0, G(b0|z0, I), z0). Hence

the Implicit Function Theorem 4.D for first-order differential equations in Zeidler (1985, p.165)

yields that the solution G(b|z, I) of EG
I (z) has an R+ 1 continuous z-derivative at (b0, z0), and

thus in the interior of SI(G). Arguing as in the first part of the proof of Lemma A5, the proof

of Theorem 4.D in Zeidler (1985) shows that this extends to the upper boundary b(·, I).
We now extend this result to the lower boundary b(·, I) = b = v, assuming d = 1 for sake of

simplicity. Because Z is rectangular, differentiating (E.6) with respect to z for any b > b yields

(I − 1)
∂

∂b

(
∂G(b|z, I)

∂z

)
=

∂G(b|z, I)/∂z
λ (F−1 (G(b|z, I)|z, I)− b)

− G(b|z, I)
λ2 (F−1 (G(b|z, I)|z, I)− b)

λ′
(
F−1 (G(b|z, I)|z, I)− b

) ∂F−1 (G(b|z, I)|z, I)
∂z

∂G(b|z, I)
∂z

=
[
1−(I−1)g(b|z, I)λ′

(
F−1(G(b|z, I)|z, I)−b

) ∂F−1(G(b|z, I)|z, I)
∂z

]
∂G(b|z, I)/∂z

λ (F−1(G(b|z, I)|z, I)−b)

≡ A(b; z, I)
λ (F−1 (G(b|z, I)|z, I)− b)

∂G(b|z, I)
∂z

.

Note that A(·; ·, I) has up to R continuous partial derivatives on SI(G). Moreover, limb↓b supz∈Z

|A(b; z, I)− 1| = 0 since F−1(0|z, I) = v is independent of z. Thus, there exists a b0 close enough

to b such that A(b; z, I) > 0 on [b, b0]×Z. For 1 ≤ r ≤ R+ 1 and b > v, define the property

Pr : (I − 1)
∂

∂b

(
∂rG(b|z, I)

∂zr

)
= Dr(b; z, I) +

A(b; z, I)
λ (F−1 (G(b|z, I)|z, I)− b)

∂rG(b|z, I)
∂zr

,
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where Dr(·; ·, I) admits up to R+ 1− r partial continuous derivatives on [b, b0]×Z. Note that

P1 is true. We prove by induction that PR+1 is also true.

Suppose that Pr is true for some r with 1 ≤ r ≤ R. Then Pr+1 is true since P1 and Pr yield

(I − 1)
∂

∂b

(
∂r+1G(b|z, I)

∂zr+1

)
=

∂Dr(b; z, I)
∂z

+
∂A(b; z, I)

∂z

∂rG(b|z, I)/∂zr

λ (F−1 (G(b|z, I)|z, I)− b)

−A(b; z, I)
∂rG(b|z, I)

∂zr

∂F−1 (G(b|z, I)|z, I)
∂z

∂G(b|z, I)
∂z

λ′
(
F−1 (G(b|z, I)|z, I)− b

)
λ2 (F−1 (G(b|z, I)|z, I)− b)

+
A(b; z, I)

λ (F−1 (G(b|z, I)|z, I)− b)
∂r+1G(b|z, I)

∂zr+1

=
∂Dr(b; z, I)

∂z
+

1
A(b; z, I)

∂A(b; z, I)
∂z

(
(I − 1)

∂rg(b|z, I)
∂zr

−Dr(b; z, I)
)

−(I − 1)
∂rG(b|z, I)

∂zr

∂F−1 (G(b|z, I)|z, I)
∂z

∂g(b|z, I)
∂z

λ′
(
F−1 (G(b|z, I)|z, I)− b

)
λ (F−1 (G(b|z, I)|z, I)− b)

+
A(b; z, I)

λ (F−1 (G(b|z, I)|z, I)− b)
∂r+1G(b|z, I)

∂zr+1

≡ Dr+1(b; z, I) +
A(b; z, I)

λ (F−1 (G(b|z, I)|z, I)− b)
∂r+1G(b|z, I)

∂zr+1
,

where Dr+1(b; z, I) has up to R − r ≤ R − 1 continuous partial derivatives at b and thus on

[b, b0] × Z by proceeding as in Lemma A2 and observing that ∂F−1 (G(b|z, I)|z, I) /∂z = 0 for

all z ∈ Z, and that G(·|·, I), g(·|·, I) and A(·; ·, I) are R-continuously differentiable on SI(G).

Therefore, using ξ(b; z, I) = F−1(G(b|z, I)|z, I), PR+1 yields

(I − 1)
∂

∂b

(
∂R+1G(b|z, I)

∂zR+1

)
= DR+1(b; z, I) +

A(b; z, I)
λ (ξ(b; z, I)− b)

∂R+1G(b|z, I)
∂zR+1

for b > b. Solving this differential equation on (b, b0] gives the unique solution

∂R+1G(b|z, I)
∂zR+1

= exp
(
−
∫ b0

b

A(y; z, I)
(I − 1)λ (ξ(y; z, I)− y)

dy

)
×
[∫ b

b0

DR+1(y; z, I)
I − 1

exp
(∫ b0

y

A(u; z, I)
(I−1)λ (ξ(u; z, I)−u)

du

)
dy +

∂R+1G(b0|z, I)
∂zR+1

]
=
∫ b

b0

DR+1(y; z, I)
I − 1

exp
(
−
∫ y

b

A(u; z, I)
(I−1)λ (ξ(u; z, I)−u)

du

)
dy

+
∂R+1G(b0|z, I)

∂zR+1
exp

(
−
∫ b0

b

A(y; z, I)
(I − 1)λ (ξ(y; z, I)− y)

dy

)
. (E.7)

Without loss of generality, assume b = 0. ¿From Lemma A1, we have ξ′(b; z, I) = [(I−1)λ′(0)+
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1]/[(I − 1)λ′(0)]. Hence, when b ↓ 0,

A(b; z, I) = 1 + o(1),
1

(I − 1)λ (ξ(b; z, I)− b)
=

1
b

+O(1),

exp
(
−
∫ b0

b

A(y; z, I)
(I − 1)λ (ξ(y; z, I)− y)

dy

)
= b exp(O(1)) = O(b),

uniformly in z ∈ Z because λ′(0) ≥ 1. By definition of b0, which is such that A(b; z, I) > 0 for

any (b, z) ∈ (b, b0]×Z, (E.7) yields for every b ∈ (b, b0]

sup
z∈Z

∣∣∣∣∂R+1G(b|z, I)
∂zR+1

∣∣∣∣ ≤ b0 − b

I − 1
sup

(b,z)∈(b,b0]×Z
|DR+1(b; z, I)|+O(b) sup

z∈Z

∣∣∣∣∂R+1G(b0|z, I)
∂zR+1

∣∣∣∣ .
Consider now an arbitrary ε > 0. Note first that b0 can be chosen small enough so that the first

term is smaller than ε/2. Next, observe that there is a 0 < η < b0 such that the second term

is smaller than ε/2 whenever b < η. Consequently, for any ε > 0 there is a η > 0 such that

sup(b,z)∈(0,η]×Z
∣∣∂R+1G(b|z, I)/∂zR+1

∣∣ ≤ ε. Hence, limb↓0 supz∈Z
∣∣∂R+1G(b|z, I)/∂zR+1

∣∣ = 0.

Collecting results, G(·|·, I) admits up to R+ 1 continuous partial derivatives on SI(G).

(ii) We have s(v; z, I) = G−1 (F (v|z, I)|z, I). Thus (i) shows that s(·; ·, I) admits up to R+1

continuous partial derivatives on [v, v]×Z.

E.2 Proofs of Lemmas C1–C2

Proof of Lemma C1: We have

m(z, I;β) =
1

I − 1
1

λ
(
v − b0(z, I); θ

) =
1

I − 1
U ′ (v − b0(z, I); θ

)
U
(
v − b0(z, I); θ

) ,
where (θ, v) ∈ B. By Lemma 2-(i), b0(·, I) has R + 1 continuous derivatives on Z with R ≥ 1.

The desired result follows from the R + 2 continuous differentiability of U(·; ·) on (0,+∞)×Θ

and the definition of B. That sup(z,I)∈Z×I b0(z, I) < v0 follows from the compactness of Z, the

finiteness of I, Lemma 2-(i) and Theorem A1-(i) applied at v = v0.

Proof of Lemma C2: The proof is in four steps.

Step 1: G1(·|·, ·) satisfies the properties of Lemma 2. Let Ψ(b) =
∫ b
−∞ ψ(x)dx. We have

G1(b|z, I) = G0(b|z, I) + πN (z, I)
∫ b

−∞
ψ

(
κρ

1
R+1

N

(
x− b0(z, I)

))
dx

= G0(b|z, I) + πN (z, I)κ−1ρ
− 1

R+1

N Ψ
(
κρ

1
R+1

N

(
b− b0(z, I)

))
.
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In particular, G1(·|z, I) and g1(·|z, I) are equal to G0(·|z, I) and g0(·|z, I) on [v0, b0(z, I) −
ρ
−1/(R+1)
N ], while differing from the latter by an O(1/ρN ) on [b0(z, I)−ρ−1/(R+1)

N , b0(z, I)]. Now,

G0(·|·, ·) satisfies Lemma 2 under Assumption A2. Moreover, Ψ(·) is infinitely differentiable on

IR−, while πN (·, I) is R + 1 continuously differentiable on Z in view of Lemma C1. Therefore,

for N large enough, G1(·|·, ·) satisfies the properties of Lemma 2 with b1(z, I) = b0(z, I) = v0

and b1(z, I) = b0(z, I) for all (z, I) ∈ Z × I. In particular, as for G0(·|·, I)/g0(·|·, I), the ratio

G1(·|·, I)/g1(·|·, I) is R+ 1 continuously differentiable on SI(G0) for every I ∈ I.

Step 2: We study the difference ξ1(·|z, I)− ξ0(·|z, I) and its derivatives. Lemma 2 yields

∂rG1(b|z, I)
∂br

− ∂rG0(b|z, I)
∂br

= πN (z, I)κr−1ρ
r−1
R+1

N Ψ(r)

(
ρ

1
R+1

N

(
b− b0(z, I)

))
, b ∈ [v0, b0(z, I)],

∂rg1(b|z, I)
∂br

− ∂rg0(b|z, I)
∂br

= πN (z, I)κrρ
r

R+1

N ψ(r)

(
ρ

1
R+1

N

(
b− b0(z, I)

))
, b ∈ [v0, b0(z, I)],

∂R+1g1(b|z, I)
∂bR+1

− ∂R+1g0(b|z, I)
∂bR+1

= πN (z, I)κR+1ρNψ
(R+1)

(
ρ

1
R+1

N

(
b− b0(z, I)

))
, b ∈ (v0, b0(z, I)],

where the first and second equalities hold for 0 ≤ r ≤ R + 1 and 0 ≤ r ≤ R, respectively. By

Lemma 2-(i) there is a b∗ with v0 < b∗ < b0(z, I) for all (z, I). Because supz,I |πN (z, I)| =

O(1/ρN ), this gives for r = 0, . . . , R+ 1,

sup
(b,z,I)∈∪Z,I [b∗,b0(z,I)]×{z,I}

∣∣∣∣∂rG1(b|z, I)
∂br

− ∂rG0(b|z, I)
∂br

∣∣∣∣ = κr−1O

(
ρ

r−1−(R+1)
R+1

N

)
, (E.8)

sup
(b,z,I)∈∪Z,I [b∗,b0(z,I)]×{z,I}

∣∣∣∣∂rg1(b|z, I)
∂br

− ∂rg0(b|z, I)
∂br

∣∣∣∣ = κrO

(
ρ

r−(R+1)
R+1

N

)
, (E.9)

where the remainder terms are independent of κ.

Observe now that, for L large enough and (b, z, I) ∈ [v0, b0(z, I)]×Z × I,∣∣∣∣∂rξ1(b; z, I)
∂br

− ∂rξ0(b; z, I)
∂br

∣∣∣∣
≤

∣∣∣∣ ∂r

∂br

[
λ−1

(
G1(b|z, I)

(I − 1)g1(b|z, I)
; θ1

)]
− ∂r

∂br

[
λ−1

(
G0(b|z, I)

(I − 1)g0(b|z, I)
; θ1

)]∣∣∣∣
+
∣∣∣∣ ∂r

∂br

[
λ−1

(
G0(b|z, I)

(I − 1)g0(b|z, I)
; θ1

)]
− ∂r

∂br

[
λ−1

(
G0(b|z, I)

(I − 1)g0(b|z, I)
; θ0

)]∣∣∣∣
≤ sup

θ∈Θ

∣∣∣∣ ∂r

∂br

[
λ−1

(
G1(b|z, I)

(I − 1)g1(b|z, I)
; θ
)]

− ∂r

∂br

[
λ−1

(
G0(b|z, I)

(I − 1)g0(b|z, I)
; θ
)]∣∣∣∣

+
∣∣∣∣ ∂r

∂br

[
λ−1

(
G0(b|z, I)

(I − 1)g0(b|z, I)
; θ1

)]
− ∂r

∂br

[
λ−1

(
G0(b|z, I)

(I − 1)g0(b|z, I)
; θ0

)]∣∣∣∣ . (E.10)

The difference in the sup term is a difference of polynomials in the variables 1/gj(b|z, I),
g
(k)
j (b|z, I), G(k)

j (b|z, I) and ∂kλ−1(·; θj)/∂xk evaluated at Gj(b|z, I)/[(I − 1)gj(b|z, I)], for k =
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0, . . . , r. Therefore, for r = 0, . . . , R+ 1 the first term in (E.10) vanishes when b ∈ [v0, b∗] and is

of order κrO
(
ρ
(r−(R+1))/(R+1)
N

)
uniformly on [b∗, b0(z, I)] by (E.8)-(E.9). Regarding the second

term in (E.10), note that λ−1(x; θ) is R+ 1 continuously differentiable on [0,+∞)×Θ because

λ(x; θ) is R+1 continuously differentiable on [0,+∞)×Θ by Assumption A2-(i) and λ′(·; θ) ≥ 1.

Thus, because G0(·|·, I)/g0(·|·; I) is R + 1 continuously differentiable on SI(G0), the function

∂rλ−1 (G0(b|z, I)/[(I − 1)g0(b|z, I)]; θ) /∂br is continuous on SI(G0)×Θ. Hence, the second term

is of order ‖β1 − β0‖∞ = O(tN/ρN ) = o(1) uniformly on SI(G0), for r = 0, . . . , R + 1, because

tN/ρN = o(1). Collecting results and using the finiteness of I, (E.10) yields

sup
I∈I

sup
(b,z)∈SI(G0)

∣∣∣∣∂rξ1(b; z, I)
∂br

− ∂rξ0(b; z, I)
∂br

∣∣∣∣ = κrO

(
ρ

r−(R+1)
R+1

N

)
+o(1) , r = 0, . . . , R+1. (E.11)

Step 3: Proof of (i). Because R ≥ 1, applying (E.11) for r = 1 yields that ξ′1(·; z, I) > 0 on

[v0, b0(z, I)] for every (z, I) ∈ Z × I. Because G1(·|z, I) satisfies Definition 3, Lemma 1 shows

that G1(·|z, I) is rationalized by [U(·; θ1), F1(·|z, I)] for every (z, I) ∈ Z × I, where F1(·|z, I) is

the distribution of ξ1(b; z, I) with b ∼ G1(·|z, I).
We now check that F1(·|·, ·) ∈ F∗

R, as required by Assumption A2-(ii). The support of

F1(·|z, I) is the same as F0(·|z, I), namely [v0, v0]. Indeed, we have v1(z, I) = ξ1(v0; z, I) = v0.

Moreover, by definitions of λ(·; θ) and g1(·|z, I), and ψ(0) = 1

v1(z, I) = ξ1(b0(z, I); z, I)

= b0(z, I) + λ−1

(
1

I − 1
1

g0(b0(z, I)|z, I) +m(z, I;β1)−m(z, I;β0)
; θ1

)
= b0(z, I) + λ−1

(
1

I − 1
1

m(z, I;β1)
; θ1

)
= b0(z, I) + λ−1

(
λ
(
v̄0 − b0(z, I); θ1

)
; θ1
)

= v0,

because g0(b0(z, I)|z, I) = m(z, I;β0) by (6) and the definition of m(z, I;β). Also, it can be seen

that F (·|·, I) is R+1 continuously differentiable on [v0, v0]×Z with a density satisfying Definition

4-(iii) in view of the properties of ξ1(·; ·, I) and G1(·|·, I) as F1(·|z, I) = G1(ξ−1
1 (·; z, I)|z, I).

Step 4: Proof of (ii). Let sj(v; z, I) = ξ−1
j (v; z, I). Using the same argument as in Step 2 of

the proof of Lemma B1 in Guerre, Perrigne, Vuong (2000), it follows that s1(v; z, I)− s0(v; z, I)
also satisfies (E.11), where ξj(b; z, I) is replaced by sj(v; z, I), for j = 0, 1. Now, f1(v|z, I) =

g1(s1(v; z, I)|z, I)s′1(v; z, I). Thus, following Step 3 of that lemma we obtain

sup
I∈I

sup
(v,z)∈[v0,v0]×Z

∣∣∣∣∂rf1(v|z, I)
∂vr

− ∂rf0(v|z, I)
∂vr

∣∣∣∣ = κr+1O

(
ρ

r−R
R+1

N

)
+ o(1), r = 0, 1, . . . , R.
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In particular, for r = 0 we obtain ‖f1(·|·, ·)− f0(·|·, ·)‖∞ < ε for N sufficiently large. Moreover,

for r = R the triangular inequality gives ‖∂Rf1(·|·, ·)/∂vR‖ < M because ‖∂Rf0(·|·, ·)/∂vR‖ < M

by assumption, provided κ is sufficiently small.

E.3 Proofs of Lemmas D1–D7

Proof of Lemma D1: (i) The variables Yi` are independent given FL because the Vi`s (and

then the Bi`s) are independent given FL. The same property holds for εi` as εi` = Yi`−E[Yi`|FL].

(ii) We have 0 < hN ≤ inf(z,I)∈Z×I(b0(z, I) − b0(z, I)) by Assumption A4-(iv), I finite and

Lemma 2-(i). Thus, by Lemma 2-(iv) a Taylor expansion of order R+ 1 gives

E[Yi`|FL]

=
1
hN

∫ b(Z`,I`)

b0(Z`,I`)
Φ
(
b− b0(Z`, I`)

hN

)
g0(b|Z`, I`)db =

∫ 0

−∞
Φ(x)g0(b0(Z`, I`) + hNx|Z`, I`)dx

=
∫

Φ(x)

[
R+1∑
r=0

g
(r)
0 (b0(Z`, I`)|Z`, I`)

(hNx)r

r!
+ o

(
(hNx)R+1

)]
dx

= g0(b0(Z`, I`)|Z`, I`) +
hR+1

N

(R+ 1)!

(
∂R+1g0(b0(Z`, I`)|Z`, I`)

∂bR+1

∫
xR+1Φ(x)dx+ o(1)

)
using Assumption A4-(iii). Then (ii) follows because g0(b0(·, I)|·, I) = m(·, I;β0).

(iii) Similarly, using (ii) and Lemma 2, we have

Var[Yi`|FL] =
1
h2

N

∫ b0(Z`,I`)

−∞
Φ2

(
b− b0(Z`, I`)

hN

)
g0(b|Z`, I`)db− E2[Yi`|FL]

=
1
hN

∫ 0

−∞
Φ2(x)g0(b0(Z`, I`) + hNx|Z`, I`)dx+ o

(
1
hN

)
= g0(b0(Z`, I`)|Z`, I`)

1 + o(1)
hN

∫
Φ2(x)dx,

max
i,`

|εi`| =
1
hN

max
i,`

∣∣∣∣Φ(Bi` − b0(Z`, I`)
hN

)
− E

[
Φ
(
Bi` − b0(Z`, I`)

hN

)
|FL

]∣∣∣∣ ≤ 2 supx∈IR |Φ(x)|
hN

.

Proof of Lemma D2: It suffices to check the Lyapounov condition of Theorem 7.3 in Billingsley

(1968) given FL. From Lemma D1 we have

|ui`εi`| ≤
2‖u‖∞ supx∈IR |Φ(x)|

hN
, Var1/2

[
L∑

`=1

I∑̀
i=1

ui`εi`|FL

]
� ‖u‖2/

√
hN .
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Thus, E[|ui`εi`|3|FL] ≤ E[|ui`εi`|2|FL]O(‖u‖∞/hN ). Hence, by independence of the εi`s given

FL and E[εi`|FL] = 0, we obtain

1

Var3/2[
∑L

`=1

∑I`
i=1 ui`εi`|FL]

L∑
`=1

I∑̀
i=1

E[|ui`εi`|3|FL] ≤ O(‖u‖∞/hN )

Var1/2[
∑L

`=1

∑I`
i=1 ui`εi`|FL]

= O

(
‖u‖∞√
hN‖u‖2

)
,

which is an oP (1) by assumption.

Proof of Lemma D3: In view of Assumption A4-(v), let aN � aN be such that the event

EN = {maxi,` |b̂(Z`) − b0(Z`)| ≤ aN} has a probability larger than 1 − ε, where ε > 0 can

be chosen arbitrary small. Hereafter, we consider that EN occurs. By Assumption A4-(iii),

Φ(·) is continuously differentiable on IR−, with support [−1, 0]. In particular, Yi` = Ŷi` = 0

if Bi` ≤ b0(Z`, I`) − an − hn. Note also that aN < hN for N sufficiently large by Assumption

A2-(v). In order to bound Ŷi` − Yi` on EN , we use a first-order Taylor expansion of Φ(·) when

b0(Z`, I`)−an−hn ≤ Bi` ≤ b0(Z`, I`)−2an, while we use that Φ(·) is bounded when b0(Z`, I`)−
2an ≤ Bi` ≤ b0(Z`, I`). This gives

|Ŷi` − Yi`|1I(EN ) =
1I(EN )
hN

∣∣∣∣∣Φ
(
Bi` − b̂(Z`, I`)

hN

)
− Φ

(
Bi` − b0(Z`, I`)

hN

)∣∣∣∣∣
≤ aN supx |Φ′(x)|

h2
N

1I[−āN−hN ,−2aN ]

(
Bi` − b0(Z`, I`)

)
+

2 supx |Φ(x)|
hN

1I[−2aN ,0]

(
Bi` − b0(Z`, I`)

)
.

Let ζi` denote the right-hand side. Now, because aN = o(hN ) by Assumption A4-(v), and

maxI∈I sup(b,z)∈SI(G0) g0(b|z, I) <∞, it is easily seen that

E[ζi`|FL] = O

(
aN

hN

)
, Var[ζi`|FL] ≤ E[ζ2

i`|FL] = O

(
a2

N

h3
N

)
+O

(
aN

h2
N

)
= O

(
aN

h2
N

)
.

By independence of the ζi`s given FL, this gives

E

( L∑
`=1

I∑̀
i=1

|ui`|ζi`

)2

| FL

 = E2

[
L∑

`=1

I∑̀
i=1

|ui`|ζi` | FL

]
+

L∑
`=1

I∑̀
i=1

u2
i`Var[ζi` | FL]

= O

[(
‖u‖1

aN

hN

)2

+ ‖u‖2
2

aN

h2
N

]
,

E

[
L∑

`=1

I∑̀
i=1

|ui`|ζ2
i` | FL

]
= ‖u‖1O

(
aN

h2
N

)
.
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Using E[|X|] ≤ E1/2[X2], the Markov inequality conditional on FL and that Pr(EN ) ≥ 1 − ε

establishes the desired results.

Proof of Lemma D4: By definition of Bδ, we have δ ≤ v − b0(Z`, I`) ≤ vsup for all `. By

Assumption A4-(v), we have |b̂(Z`, I`)− b0(Z`, I`)| < δ/2 for all ` with probability tending to 1.

Thus, δ/2 ≤ v − b̂(Z`, I`) ≤ vsup + δ/2 for all ` with probability tending to 1. Now,

m̂(Z`, I`;β)−m(Z`, I`;β) =
1

I` − 1

 1

λ
(
v − b̂(Z`, I`); θ

) − 1
λ
(
v − b0(Z`, I`); θ

)
 .

Hence, the denominators are uniformly bounded away from 0 with probability tending to 1. The

desired result follows from Assumption A2-(i) since λ(x; θ) is R+1 continuously differentiable

on ∈ [0,+∞] × Θ, and hence uniformly continuous on the compact [δ/2, vsup + δ/2] × Θ. The

study of the derivatives is similar.

Proof of Lemma D5: By Assumptions A3-(i) and A4-(ii), there exists some C such that

Q(β) ≥ C
∑
I∈I

∫
Z

(m(z, I;β)−m(z, I;β0))
2 dz.

Thus, Q(β) = 0 is equivalent to m(z, I;β) = m(z, I;β0) for all (z, I) ∈ Z × I by continuity of

m(z, I;β) −m(z, I;β0) with respect to z whenever β ∈ Bδ in view of Lemma C1 and Bδ ⊂ B.

By definition of m(z, I;β0), this gives

λ
(
v − b0(z, I); θ

)
= λ

(
v0 − b0(z, I); θ0

)
, ∀(z, I) ∈ Z × I.

Hence, Assumption A2-(iii) yields β = β0. Therefore, Q(β) = 0 if and only if β = β0. Moreover,

because Bδ is compact, Lemma C1 yields that Q(·) is continuous on Bδ and hence on Bδ ∩{‖β−
β0‖ ≥ ε} by the Lebesgue Dominated Convergence Theorem. This implies the first claim.

Consider the matrix A(β), the case of B(β) being similar. We have

∂m(z, I;β)
∂β

= − 1
I − 1

1
λ2
(
v − b0(z, I); θ

) ∂λ (v − b0(z, I); θ
)

∂β

= −(I − 1)m2(z, I;β)
∂λ
(
v − b0(z, I); θ

)
∂β

,

with m(z, I;β) ≥ m > 0 for all β ∈ Bδ, z ∈ Z, I ∈ I because m(z, I;β) does not vanish and is

continuous on Z×Bδ by Lemma C1. Moreover, the Lebesgue Dominated Convergence Theorem

and Lemma C1 yield that det(A(β)) is a continuous function of β ∈ Bδ. Thus, it is sufficient
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to show that A(β0) is of full rank. Assume that A(β0) is not of full rank. Then, there exists

t ∈ IRp+1 \ {0} with t′A(β0)t = 0. Arguing as for Q(·), we have

0 = t′A(β0)t ≥ C
∑
I∈I

∫
Z

(
t′ ·

∂λ
(
v0 − b0(z, I); θ0

)
∂β

)2

dz,

which implies

t′ ·
∂λ
(
v0 − b0(z, I); θ0

)
∂β

= 0 , for almost all z ∈ Z and all I ∈ I.

This contradicts Assumption A4-(i) by continuity of λ(·; θ0).

Proof of Lemma D6: Observe that the function I`ω(Z`, I`) [m(Z`, I`;β)−m(Z`, I`;β0)]
2 is

a Lipschitz function with respect to β ∈ Bδ with a Lipschitz constant that can be chosen

independently of (β, β0, Z`, I`) by Lemma C1 and the compactness of Bδ and Z. The first

statement of the lemma with the order OP (1/
√
L) follows from the maximal inequality (19.36) in

van der Vaart (1998) upon computing the bracketing number of the class of functions {[m(·, ·;β)−
m(·, ·;β0)]2;β ∈ Bδ} on Z × I. See Example 19.7 in van der Vaart (1998).

The other statements of the lemma are direct consequences of e.g. the Lindeberg-Levy

Central Limit Theorem since L � N and N/L = E[I] + oP (1), writing for instance

AN (β)
N

=
(
N

L

)−1 1
L

L∑
`=1

I`ω(Z`, I`)
∂m(Z`, I`;β)

∂β
· ∂m(Z`, I`;β)

∂β′
.

Proof of Lemma D7: Define w`L(β) =
√
hN
∑I`

i=1 ω(Z`, I`;β)m(Z`, I`;β)εi` so that WN (β) =

(L/N)1/2L−1/2
∑L

`=1w`L(β) with w`L iid within rows. Because L/N is bounded, it suffices to

establish that supβ∈Bδ

∣∣L−1/2
∑L

`=1w`L(β)
∣∣∣ = OP (1). Now, by Lemma C1 and D1, Assumption

A4-(ii) and the compactness of Z, I and Bδ imply that there exists some constant C such that

max
1≤`≤L

sup
β∈Bδ

|w`(β)| ≤ C√
hN

, max
1≤`≤L

sup
β∈Bδ

Var[w`(β)] ≤ C, max
1≤`≤L

E1/2[w`(β)− w`(β′)]2 ≤ C ‖β − β′ ‖

for all L. This is sufficient to apply the maximal inequality of Lemma 19.36 in van der Vaart

(1998) with bracketing number as in Example 19.7. This gives

E

[
sup
β∈Bδ

∣∣∣∣∣L−1/2
L∑

`=1

w`(β)

∣∣∣∣∣
]
≤ C ′

(
1 +

C ′′
√
LhN

)
= O(1),

where C ′ and C ′′ are positive constants independent of L. Applying Markov inequality, this

gives supβ∈Bδ
|WN (β)| = OP (1).
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Regarding W (1)
N (β̃N ), note that β̃N ∈ Bδ with probability tending to 1, because β0 ∈ Bo

δ and

β̃N = β0 + oP (1). Therefore, W (1)
N (β̃N ) = oP (1) holds if we can show that supβ∈Bδ

|W (1)
N (β)| =

OP (1). This can be done as above.
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