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ABSTRACT
PATRICK B. RYAN: Enhancing Drug Safety Through Active Surveillance lo$&vational
Healthcare Data
(Under the direction of Dr. Richard A. Hansen)

Drug safety continues to be a major public health concern in the United States, wit
adverse drug reactions ranking as the 4th to 6th leading cause of death, amd) iesulti
health care costs of $3.6 billion annually. Recent media attention and public scrutiny of
high-profile drug safety issues have increased visibility and skeptafisne effectiveness of
the current post-approval safety surveillance processes. Current proposest sugg
establishing a national active drug safety surveillance system veaades observational
data, including administrative claims and electronic health records, to mardtevaluate
potential safety issues of medicines. However, the development and evaluation of
appropriate strategies for systematic analysis of observatioaahaat not yet been studied.

This study introduces a novel exploratory analysis approach (Comparatotefidjus
Safety Surveillance or COMPASS) to identify drug-related advemsetgin automated
healthcare data. The aims of the study were: 1) to characterize thenzerfe of
COMPASS in identifying known safety issues associated with ACE inhibitor esgpos
within an administrative claims database; 2) to evaluate consistencyMIPESS estimates
across a network of disparate databases; and 3) to explore differertts affross

ingredients within ACE inhibitor class.



COMPASS was observed to have improved accuracy to three other methods under
consideration for an active surveillance system: observational screesipigpairtionality
analysis, and self-controlled case series. COMPASS performance wissectlysstrong
within 5 different databases, though important differences in outcome estimcatss the
sources highlighted the substantial heterogeneity which makes poolimgtestichallenging.
The comparative safety analysis of products within the ACE inhibitor class pdovide
evidence of similar risk profiles across an array of different outcomesawed iquestions
about the product labeling differences and how observational studies should complement
existing evidence as part of a broader safety assessment strategy.

The results of this study should inform decisions about the appropriateness andfutility
analyzing observational data as part of an active drug safety surnefiesoess. An
improved surveillance system would enable a more comprehensive and timelier
understanding of the safety of medicines. Such information supports patients and providers

in therapeutic decision-making to minimize risks and improve the quality of care.
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CHAPTER ONE: INTRODUCTION

1.1 Overview

Drug safety continues to be a major public health concern in the United Stateder
for patients and health care providers to make appropriate therapeutic dedigpmedd to
be informed of the potential benefits and harms of alternative treatment optiong. thehil
efficacy of prescription medicines is generally well-characterimad the series of
randomized clinical trials conducted during drug development, the safety profile of
medicines is often less certain and poorer understaRdsearch suggests that drug safety
information is the highest information priority for patients, and that the peynegtside
effects is influential in many patients’ decisions about taking a medidihes patient focus
is well-justified. Lazarou et al estimated that, in 1994, between 76,000 and 137,000 hospital
patients died from an adverse drug reaction (ADR), ranking adverse drtigneas the
fourth to sixth leading cause of delthnd resulting in health care costs of $3.6 billion
annually.

The frequency of new safety information being brought to light following remyla
approval is quite striking. A study by the US General Accounting Office (G&@cluded
that 51% of all approved drugs had at least one serious adverse drug reactias thait w
recognized during the approval procesa revised estimate from 1994-1997 showed that

30% of products required significant label changes following introdictiiearly 20



million patients in the United States took at least one of the five drugs withdiramy
the market between September 1997 and September 1998. Seven drugs approved since 1993
and subsequently withdrawn from the market have been reported as possibly cogtiautin
1002 death's It could be speculated that at least some of these negative outcomes could
have been averted had the full safety profile been understood at the time of therapeuti
decision-making.

Traditional methods of drug safety surveillance involve literature segremd case-by-
case analysis of spontaneous adverse event reports, as well as crude freoueisaand
calculation of reporting rat@s Statistical data mining algorithms are becoming increasingly
popular supplementary tools for safety reviefe@urrently, the FDA conducts spontaneous
data mining by applying the Multi-item Gamma Poisson Shrinker (MGPS) methbd t
Adverse Event Reporting System (AERS) databd$eMany groups have recognized the
significant limitations in the current system. As part of the FDA Amemdiet of 2007,
Congress mandated the use of observational data (including administraths artal
electronic health records) as part of an active drug safety surceikgstem that would
supplement the current practite

It is expected that a national active surveillance system will conssstvefal interlocked
processes, including signal detection, signal strengthening, signatiealjdad hypothesis
testing in a formal pharmacoepidemiologic stifdyWhile these observational data sources
have been actively studied for pharmacoepidemiologic evaluation stutfiesppropriate
statistical methods for screening observational data to generate and tpatieebgs about
potential drug effects are nascent and have not yet been rigorously explossiaanetwork

of disparate data sources. An outstanding research need is to characterizsl tioases



tools identify true drug-event associations and minimize the number of fals@gositi
findings.

We have developed a novel exploratory analysis approach to observational datador acti
surveillance. The method, called COMParator-Adjusted Safety Sanal COMPASS), is
a statistical algorithm that estimates adjusted rate diffesearoe relative risks for all
outcomes of interest for a given medical product through propensity scorécstratif
across exposed and unexposed cohorts. COMPASS applies an automated heuristic for
defining a comparator group based the indication of the medical product, and provides
multivariate adjustment based on key influents of risk, including person demographics,
comorbidity, and health service utilization. COMPASS is not intended to be a finbsol
for active surveillance, but instead a first-pass screening tool to seavpadential guide for
identifying and prioritizing potential drug effects that may watrfarther evaluation. A goal
of this research is to empirically evaluate the behavior of COMPASS toninifer

appropriate use within an active surveillance network.

1.1 Specific Aims

To study the performance of the novel method, drugs within the Angiotensin Converting
Enzyme (ACE) Inhibitor class were explored. ACE Inhibitors provide a solid foas
methodological research because the class represents a large det®pnoaucts that are
actively used in the broad population. The safety profile of ACE inhibitors is thought to be
well-characterized, including a broad set of known safety issues that span thawonti
from common, nuisance effects, such as cough, to rare and more serious events, like

angioedema and renal dysfunction. An analysis of the product labels witiiCEe



inhibitor class identified 50 distinct adverse events listed on the majority of pspd@aof
which were highlighted in Boxed Warnings or in Warnings and Precautions sections.

The specific aims of the study were:

Aim 1: Characterize the performance of COMPASS in identifying known afety
issues associated with ACE inhibitor exposure within an administratie claims database
This aim studied how COMPASS performs in the Thomson Reuters MarketScan

Commercial Claims and Encounters (CCAE), a large administrative ofisitabase
containing 59 million privately insured lives. CCAE provides patient-level de-fiihdata
from inpatient and outpatient visits and pharmacy claims of multiple insurance glasE
contains 3 million persons with at least one prescription dispensing record for an ACE
inhibitor.

COMPASS was applied to the ACE Inhibitor drug class to generate estimatesooheutc
relationships for a defined set of potential adverse events. These outcomes included both the
known associations previously characterized in the product label as well as @ shmpl
‘negative control’ conditions for which there is no evidence of drug-relatedteff
Descriptive statistics summarized the distribution of the estimates #athgaacross
attributes of the conditions, such as background prevalence rate, confidence iti@associa
and expected degree of confounding.

The objective of a hypothesis-generating tool is to accurately distinguisbdretie
and false relationships. The performance of COMPASS was charactermaghtinmultiple
measures of accuracy, including area under receiver operatot’cUifhese measures were
compared to those from three alternative methods for active surveillanclegggasation:

disproportionality analysis, as adapted from spontaneous data Hiningbservational



screening, an unadjusted cohort-based d&signd, univariate self-controlled case séfies

20

Aim 2: Evaluate consistency of COMPASS estimates across a network of dasate
databases

An active surveillance network is likely to comprise multiple data soursesisa
recognized that there is currently no single US-based source that cgrebtedxo satisfy
all requirements of allowing investigation of all medical products for allnpiadeadverse
events and across all populations of interest. However, there is little regearform the
expected behavior of active surveillance analysis methods when applied totdispara
databases, or the potential benefits of integrating estimates acrossgounsprove method
performance.

This aim conducted the COMPASS analysis for ACE inhibitors across fisbat®s. In
addition to CCAE, the method was applied to the MarketScan Lab Database (MSLR)
MarketScan Medicaid Multi-State Database (MDCD), MarketScan Medigapplemental
and Coordination of Benefits Database (MDCR), and the GE Centricityaglechrealth
record (GE). MSLR contains 1.5 million persons representing a largelyglynasured
population, with administrative claims from inpatient, outpatient, and pharmacyeservic
supplemented by laboratory results. MDCD provides administrative claia$oddtl
million Medicaid enrollees from multiple states. MDCR captures admatiigtrclaims for 5
million retirees with Medicare supplemental insurance paid for by emglapetuding
services provided under the Medicare-covered payment, employer-paid portion, and any out-

of-pocket expenses. GE contains patient-level data for 11 million persons captilmed



point of care from a consortium of providers using the GE Centricity electrortb heeord
system in their outpatient and specialty practices.

12 statistics were computed to assess the heterogeneity in COMPABS&tesacross
data sources. Accuracy measures from each source were also comparesktthass
reliability in performance. In addition, we explored the use of fixed and randeotsef
meta-analysfs to produce composite estimates. We then evaluated the relative performance
of the pooled estimate in predicting drug safety issues as compared to paaifie-s
performance to assess the potential advantages of a network-based approaah to act

surveillance.

Aim 3: Explore differential effects across ingredients within ACEinhibitor class

The general consensus within the clinical community is that all ACE inhibitors have
similar safety profile€. However, examination of the product labels suggests differences in
which adverse events have been reported. Further, there is little informatioas® thss
relative effect size of adverse events across products. This aim appPMBASS to seven
medical products within the class (lisinopril, moexipril, quinapril, ramipril, bepialz
captopril, and enalapril), to determine whether meaningful differences aeetsvithin
observational databases.

Among the true relationships, six events (asthma, back pain, bronchospasm, flushing,
epistaxis, and tinnitus) are differentially listed on the product labels, indjdae potential
to observe different rates among the conditions between products. In addition, 17 events
(including abdominal pain, cough, constipation, leucopenia, renal impairment, pruritis, and

thrombocytopenia) are consistently recorded across the ingredient labetsduantitative



evidence is provided to compare the strength of the association. COMPASSesstirare
summarized to evaluate the relative consistency in risks across individualtpr@shat
explore whether differences in product labeling reflect true observedatiiifferences

between these medicines.

1.3 Importance of Proposed Research Plan

An improved drug surveillance system would enable a more comprehensive and timelie
understanding of the safety of medicines. Such information will support patients and
providers in therapeutic decision-making to minimize risks and improve théyopfatare.

The results of this study will inform decisions about the appropriateness atydbditil
analyzing observational data as part of a future drug safety surveillauesgr

The proposed project was designed to add to the literature in several important way
with potential methodological, policy, and clinical implications. First, from a
methodological perspective, the study detailed and provided empirical evident@m the
potential use of a novel method for identifying drug safety issues in automattt el
databases as part of an active surveillance system. This method |leaehzyases in
pharmacoepidemiology, biomedical informatics, and pharmaceutical sciermewvide an
analytical framework that could support continued drug outcome research beyond the scope
of this study's ACE inhibitor analyses.

Second, from a policy perspective, the evaluation of how to interpret findings acros
network of data sources may have broader implications for initiating the natciive
surveillance system. There is little research to inform how decision-mpfargsses will

accommodate information when generating, strengthening and confirgpothkses about



potential drug-related effeéts The role of exploratory analyses in an active surveillance
system and the relative confidence in information that can be gained from sudesimsly
undetermined. Studying heterogeneity across sources and the potentizh nsetaf
analytic framework to integrate estimates provided insights to inform therrgance of the
future national active surveillance system about what level of evidence ssagcwo take
appropriate action about emerging safety issues.

Finally, from the clinical perspective, the exploratory analyses d& A@ibitors have the
potential to generate hypotheses that could shape future understanding abtiatthef
these medicines. Products that showed comparable safety profiles magtstimterest in
exploring the current inconsistencies in product labeling across the classatsy,
products observed to have differential effects, in which case further stualydsemvarranted

to confirm and communicate these differences to inform clinical practice.



CHAPTER TWO: BACKGROUND AND SIGNIFICANCE

2.1 The Increasing Importance of Drug Safety in the Quality of Healthcare

Drug safety continues to be a major public health concern in the United States. In
order for patients and health care providers to make effective therapeugionedhey need
to be informed of the potential benefits and harms of alternative treatment optibiie.th&
efficacy of prescription medicines is generally well-characterimad the series of
randomized clinical trials conducted during drug development, the safety profile of
medicines is often less certain and poorer understood. Research suggests thigtgrug sa
information is the highest information priority for patients, and that the pevoepttiside
effects is influential in many patients’ decisions about taking a medidihés patient focus
is well-justified. Lazarou et al estimated that, in 1994, between 76,000 and 137,000 hospital
patients died from an adverse drug reaction (ADR), ranking adverse drtigneas the
fourth to sixth leading cause of deftand resulting in health care costs estimated between
$3.6 billiorfand $8 billios* annually. The Institute of Medicine rep@ Error Is Human
which claimed 44,000 to 98,000 Americans die each year due to medicdl, ¢hmugh not
all drug adverse reactions are medical errors, nor do all medical eswoltsmeadverse drug
reactions.

In order to understand fully understand the magnitude of the effect of drug satety, it

important to provide the proper context around the potential quality issues assodiated w



this domain. The FDA Task Force on Risk Management provided a framework to classify

the sources of risk from medicinal products, shown in Figlire 1

Sources of Risk From Medical Products

Medication and Product
Known Side Effects Device Error Defects
Unavoidable Avoidable l
Preventable

‘ o Adverse -—
Events

l

Remaining
Uncertainties:
- Unexpected
side effects
Ill_j nry or <+— _ Unstudied uses
i - Unstudied
Death populations

Figure 1: Sources of risk for medical products

Most injuries and deaths associated with drug use result from their known sits.eff

The ‘known unavoidable side effects’ are typically not regarded as mediwiad, drat are
simply the unfortunate potential consequence of choosing a pharmaceuticahiiterire
hopes of achieving the benefits of that treatment. While some side efeeatsaaoidable,
more than half of the side effects from pharmaceuticals can be preventedmoized by
careful product choice and dséTwo other sources of preventable adverse events include
medication/device errors and product defects. Medication or device errorsvolrg the
incorrect administration of the prescribed product or incorrect operation or platoeinae

medical devic® Product defects may be the result of inadequate product quality control and

10



quality assurance during manufacturing. Failure to prevent avoidable advecte @uld
certainly be characterized as a medical error. The final categpoteftial risk
characterized in Figure 1 is ‘Remaining Uncertainties’. These incineepected side
effects, unstudied uses, and unstudied populations.

Unexpected adverse events are those drug associations not identified prior to
regulatory approval, either due to the rare occurrence of the event or the uhsteds# the
drug within specific populations. Physicians and patients expect that whecatieedi are
prescribed correctly for labeled indications and are used as directed, #uisations
generally will have beneficial effects and will not cause significanthh This confidence in
pharmaceutical products reflects trust in the effectiveness and intefgitity drug approval
and monitoring proce$s Yet, a 2004 Harris poll showed a sharp decline in public
confidence in the FDA, with negative ratings of 58% compared with 37% two years pri
The information around known benefits and risks form the basis of therapeutic decision-
making, but unexpected adverse events cannot easily enter into the benefjt-aisére
patients and physicians don’t know what they don’t know, but they expect the regulatory
authorities and manufacturers to tell them what they should know. Differeniodescisi
potentially resulting in improved outcomes, may be made if new information were to be
introduced.

The frequency of new information being brought to light is quite striking. A stydy b
the US General Accounting Office (GAO) concluded that 51% of all approved drdigé ha
least 1 serious adverse drug reaction that was not recognized during the apprms ph
revised estimate from 1994-1997 showed 30% of products required significant lab&schang

following introductiorf. Once the information about a potential safety concern is known and
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understood, patients and providers can make informed therapeutic decisions. However, the
interlude between drug introduction and new safety information being availatdaisras
potential quality concern, as patients may make decisions that incur unngbessa that

they would otherwise not had they been provided with better quality information. The
degree of exposure to drugs during this time of imperfect information maydresmet

Nearly 20 million patients in the United States took at least 1 of the 5 drugs withfilce

the market between September 1997 and September 1998. Seven drugs approved since 1993
and subsequently withdrawn from the market have been reported as possibly contigbuting
1002 death's It could be speculated that at least some of these negative outcomes could
have been averted had the full safety profile been understood at the time of therapeuti
decision-making.

While “the contribution of serious adverse events resulting from unexpected side
effects to the overall rate of serious adverse events is relativelf) $rta level of media
attention and public scrutiny of unexpected adverse events is quite significaett Re
notable product withdrawals, such as rofectf tegaserotf, and pemolin&, and other
emerging potential safety concerns, such as rosiglitdzdheave increased visibility and
skepticism of the effectiveness of the current post-approval safety sureeipjeocesses.

With this sensitivity comes the concern that regulatory decision makers c@ay®¢00
conservative in their assessment of the benefit-risk balance of medicities) fmo much
emphasis on rare but serious adverse events without sufficient perspectdequidhe
efficacy profile of the medicine for the indicated population. In this regard,quatke
understanding of the safety of medicines can result in misuse, overuse, and underuse of

pharmaceuticals as therapeutic alternatives.
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2.2 History of FDA’s response to drug safety

While unexpected drug adverse events has gained significant attention ovest the pa
five years, the issue has been at the forefront of FDA'’s activities &rl®0 years. When
the US Federal Food and Drugs Act of 1906 was passed, the primary focus wagensurin
drugs were pure and free from contamination, with no requirement of efficacy
Nonetheless, there were 107 deaths in 1937 from the use of diethylene glycol astd@olve
sulfanilamide. Although the toxicity of diethylene glycol was known at the,titwas not
known to the manufacturer, and an amendment to the original act was passed in 1938 to
outlaw misbranding of ingredients or false advertising ci&inishe most significant drug
safety event occurred in 1961 when published reports identified an associatiombetwee
thalidomide and a 20% increase in fetal malformation and phocdfneline number of
children born with serious congenital malformations as a result of maternafl use
thalidomide was estimated between 6,000 and 12,000, with the majority being born in
Germany’. In 1962, Congress responded by passing the Kefauver-Harris amendment to the
US Federal Food and Drugs Act, requiring pre-marketing submission of both eHiwac
safety data to the FDA The FDA also started a systematic collection of reports on all types
of adverse drug reactions, originally chiefly through the Hospital Repontouydht’. The
spontaneous adverse event reporting system is a tradition that continues to thisudgy thr
the FDA’'s MEDWatch program, with all case reports archived within the Ae\Erent
Reporting System (AER%) Originally, a spontaneous reporting system for suspected
adverse effects of drugs was the only conceivable early warning systeossible drug

adverse reaction$ Since that time, other potential models for adverse event reporting, such
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as prescription event monitoring, have been proposed and implemented in other éduntries
40.

Various stakeholders have recognized the need to improve current pharmacavigilanc
practice and the opportunities that exist to expand the use of observationaltdata
pursuit: > 2% 442 The Institute of Medicine study of the drug safety system was largely
prompted from the market withdrawals of troglitazone, cerivastatin, ancxitiét In
2007, Congress passed the FDA Amendment Act, which in part, mandated the
“establishment of a postmarket risk identification and analysis systetrétlemages
observational healthcare data, including administrative claims and eledteaith records,
to monitor approved medicines on a periodic Basik response, FDA established the
Sentinel Initiative, an effort to create and implement a national, integedetionic system
for monitoring medical product saféfy In their initial work, FDA has called for additional
research to inform the “science of safety” and establish best prdctidbs appropriate use

of observational data and analysis within an active surveillance system.

2.3 Approaches for evaluating drug safety issues

Prior to regulatory approval while a drug is in development, one of the primary
sources of safety information about medical products is clinical trialsddRaized
experiments are designed and conducted to test the efficacy of the druglytypical
comparison to placebo or standard of care. During the course of these effidacadriarse
events are captured at each study visit, and final study reports typicafttyesizm these
events as frequency tables. Typically, observation of serious adverse eveg€lthical

development is cause for study termination unless the benefits can be shown tglothtevei
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potential risks. Other adverse events captured during development commonty reflec
nuisance side effects, such as headache and nausea, for which a causal relatynséip m
undetermined but general consensus suggests any purported relationship would not alter
therapeutic decision-making. Randomized experiments are genegaliged as the highest
level of evidence, as studies lead to an unbiased estimate of the averagentrefect’.
Unfortunately, most trials suffer from insufficient sample size and lacktefreal
validity to reliably estimate the risk of other potential safety concemthéaarget
populatiort **. Rare side effects and long-term outcomes (both positive and negative) may
not be known when a product is approved because of the relatively small size and short
duration of clinical trials. For products intended to treat chronic, non-lifetgmang
conditions that occur in large populations, the International Conference for Haatmmiz
(ICH) recommends a baseline safety database that typically involessaf, 500 patients
with at least 6 month exposure time to reliably (95 percent of the time)iidewtints
happening at the 1-percent Iteln other words, events that occur less frequently than 1 in
100 patients are not expected to be detected under this recommendation. Adverse events that
occur in specific populations (like children, pregnant women, elderly, and patients hath ot
comorbid conditions) may not be detected in clinical trials because these sulagups
studied as comprehensively in drug developfierfor a clinical trial to provide the
appropriate insights for a particular safety question, the choice of outcomedardtien of
treatment, length of follow-up, target population, and statistical power, thbst@rrectly
specified. Due to these limitations, it is generally accepted thay sai® only be regarded
as provisionally established at the time of approval and knowledge about the s#fly pr

will continue to be developed in clinical pracfite
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Meta-analysis of clinical trial data has gained favor as one agpfoaovercoming
the limitation of insufficient sample in any one study. Adverse event @tésth the
treated and untreated study arms can be derived from samples, and compositesesfi
relative effects can be produced by weighting studies by the inverse of idneceasf each
study-specific measut® Numerous methods exist for meta-analysis to pool study-level
effectd’, and are commonly applied in systematic reviews that assess medical product
efficacy and effectiveness. Meta-analyses have the advantage of irgcpEaser and
improving precision, and offer the ability to answer questions not posed by individdialsst
or explore conflicting claims generating by different experim&nt#eta-analyses have
been applied in drug safety contexts to generate estimates for spamifis ence concerns
came to light. Pooled analysis of rofecoxib data has been shown retrospectdetyd a
significant safety signal with acute myocardial infarction threesypaor to the product
withdrawaf®. Nissen and Wolski conducted a meta-analysis of rosiglitazone clinitsittria
identify potential increase in cardiovascular evént®ne challenge impeding its broader
use as an exploratory tool is that proper meta-analysis requires carefdecatien of
specific study designs, within-study biases, variation across studies, artthtepiaises that
may be present when interpreting analysis results. It has been notddhgttuet
interpretation of the results of systematic reviews with meta-amlgsludes a subjective
component that can lead to discordant conclusions that are independent of the methodology
used to obtain or analyze the d4fa”

While large-scale clinical trials and pooled meta-analysis restdteften desirable to
produce the most reliable measure of an effect, they are often infeasibliedtly or

ethically. Observational studies provide an alternative approach to evaldatg safety
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guestions that can provide the necessary information about the drug effects to duppairt
decision making. Depending on the questions posed, a primary analysis of an appropriate
observational study may provide better information than the analysis of angkglstical

trial data set’ Observational studies provide empiric investigations of exposures and the
effects they cause, but differ from experiments in that the there is no cordssighment of
treatment to subjects Observational studies can take many forms of epidemiologic
investigation, using different methods for data collection, applying alterrsttidg designs,

and leveraging different analysis stratetfiéd These studies can range from population-
based cohort studies with prospective data collection to targeted diseasesegistr
retrospective case-control studies.

One type of resource that has provided fertile ground for epidemiologic iratestig
has been observational healthcare databases. Administrative claimsctnadiel@ealth
record databases have been actively used in pharmacoepidemiology for oves3pear
have seen increased use in the past decade due to increased avail&bniy ebsts and
technological advances that made computational processing on large-scatergata
feasible. Observational healthcare databases offer researchers therypor secondary
use of data captured as part of the healthcare delivery system to $éatty @hongst any
observed medical products. Many such databases contain large numbers of patients t
make it possible to examine rare events and specific subpopulations that previowushotoul
be studied with sufficient pow& The large population size make it possible to estimate
absolute incidence rates across a wide array of potential outcomes anduocena@aount of
exposure in a large population to produce more accurate measures of potential plthlic he

impact®. Because the data reflects healthcare activity within a real-worldaiimylit
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offers the potential to complement clinical trial results which suffer teak of
generalizability. Long-term longitudinal capture of data in these socaresnable studies
to monitor the performance of risk management programs oveftime

Administrative claims databases have been the most actively used obseaitvati
healthcare data source. Administrative claims databases typigailyeaata elements used
within the reimbursement process. Providers of health care services sugkiagips,
pharmacies, hospitals, and laboratories submit encounter information so that kieypaid
for these servic8S This commonly includes pharmacy claims for prescription drug fills
(providing what drug was dispensed, the dispensing date, and the days supply), and medical
(inpatient and outpatient) claims that detail the date and type of serviceacndézdical
claims typically contain diagnosis codes used to justify reimbursemeihefpracedures.
Age and gender can also commonly be inferred from the available data. In tabssest
data are recorded only when a patient has a reimbursable encounter with thedrealt
system that has been properly filed, coded and adjudicated by thé‘h@sea result, many
key data elements may not be available. Information on over-the-counter drungl uise a
hospital medication is usually unavailable and the patient's compliance witletioeption
is generally unknowli. Retail pharmacy claims data can be used to study drug utilization
pattern, but the completeness of these data can vary by pati&hbragger unobservable
characteristics. Claims can be aggregated by payers, healthcaressyst data aggregators,
though each may have a different perspective on how to define observation periodsr(wheth
it be the time insured, the time in the system, or simply the span of time that data wa
observed). While the databases over longitudinal coverage, the amount of times thigt patie

persist within a given database can vary significantly. This problem capédaady
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pronounced in payer databases; for example, it is estimated that health maintenance
organizations (HMO) have an annual turnover rate of 20% t§80¥herefore, a database
capturing healthcare encounters may contain records spanning a decade, tuirtbie
average person may only exist in the database for 18 to 24 months.

Electronic health records (EHR) generally contain data captured at thepoane,
with the intention of supporting the clinical process. A patient chart may include
demographics (birth date, gender, and race), height and weight, and familydiodl me
history. Many EHR systems support provider entry of diagnoses, signs, and symptbms, a
also capture of other clinical observations, such as vital signs, laboraloeg vand imaging
reports. Beyond this, electronic medical records may often contain findingssa¢adhy
examinations and the results of diagnostic téstSHR systems usually also have the
capability to record other important health status indications, such as alcohol use and
smoking stat, but the data may be missing in many patient cHartsnless integrated
across an entire health system, electronic health record systenenarally maintained
independently by physician practices. The provider and office staff enter itfmmrebcited
from the patient or generated by the physician, but are also respons#aciong relevant
clinical information from services rendered outside the practice, includingticorsdi
diagnosed by outpatient specialist physicians or during hospital admi$sibmsg exposure
may be inferred from various sources; providers may use the EHR systenute papient-
reported medication history and/or to write prescriptions, but there may be nonatiafir
that prescription was filled at a pharmacy. As a result of discontinuous chne tvé US

health care system, a patient may have multiple electronic health recattéses!
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throughout the providers they've seen, but rarely are those records integratieeriege
each reflect a different and incomplete perspective of that person’sdagalexperience.

For both administrative claims and electronic health records, drug saédygemare
considered a secondary use of the data. Therefore, the onus is on the researgher to ful
understand and assess the relative strengths and limitations of each patertelior to
conducting an evaluation. Data recorded in either system reflects dafaruseg@rimary
intent and therefore may not necessarily represent the informationddesistudy. For
example, diagnoses recorded on medical claims are used to support justificatien for
payment of a given procedure; this diagnosis could represent the condition that therprocedu
was used to ‘rule out’ or can be an administrative artifact of being the cedéys medical
assistant to maximize the reimbursement amount. Similarly, patightsuva diagnosis
recorded do not necessarily reflect the absence of a condition, as the code beayseut
due to lack of seriousness or convenience to facilitate payment procedures. A simila
limitation exists in EHR systems, where in addition to concerns about indencplgure,
data may be artificially manipulated to serve clinical care. Fanpba physicians may
neglect to remove conditions that have subsided, or may remove many recardsedl to
make viewing the problem list in the electronic system more convenient. Somesisag
codes have been studied through source record verification and have demonstoatai ade
performance characteristt€€® with other conditions and systems are less céftiin Most
systems have insufficient processes to evaluate data quality a pganimg intensive work
on behalf the researcher to prepare the data prior to dhalBisth types of sources require
inferences to estimate potential drug exposure. Inferences can b&raddanistrative

claims sources based on pharmacy dispensing records, while inferences feydtéiRs
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rely on patient self-report and physician prescribing ofdeiseither reflect the timing,
dose, or duration of drug ingested, so assumptions are required in interpretatictuoiyal
results.

The principle concern for all observational studies, which is of particulaaree in
observational database evaluation, is the potential for bias. Schneeweidsistateit
some of the potential sources of bias that are introduced throughout the data capésse proc

for both administrative claims and electronic health records, as shown in Zigure
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Figure 2: Generation of health care utilization databases and potential soces of errors

and bias*

An observational study is biased if the treated and control groups differ priorttoergan

ways that can influence the outcome under $tudgeveral forms of bias can arise through a

study. In the context of drug safety analyses, one of the most challersyiag «f

confounding by indication: a medical product is differently used as treatmengifgera
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disease, but factors associated with the underlying disease independenthcenthesrisk of
outcomé&. Therefore, a medical product can appear associated with the outcome without
appropriate control for the underlying condition, and confounding may persist even despite
advanced methods for adjustnf&ntConfounding can also exist due to predisposition for
healthcare utilization, either due to functional status, or access due to progicoitpmic
and institutional factof8. An additional concern is immortal time bias, whereby outcomes
are not observable within the defined time-atigk

Several strategies exist for minimizing the effects of bias within easenal
database studies. These include design-level considerations and anplysstegs. One
design strategy is to impose restrictions on the sample selected tcencadidity,
potentially at the expense of precision. These restrictions are quite andlmgbuoisal
trials, and include ensuring incident drug use, similar comparison groups, pattaotg w
contraindication, and comparable adherence, as shown in Fiffuir&8hneeweiss et al
showed in an example of statin and 1-year mortality how bias was minimized atage of
restriction. The restriction to incident users deserves special attentierof Blsiew user
design can minimize prevalent user bias and eliminate selection of intetenetiable®*,
Within a new user design framework, measures of effect focus on eventsnacattar the
first initiation of treatment, which allows a more direct comparison tovgaoator group
using an alternative treatment. The design can be logically extended to stgayvitching

and add-on therapies, as long as incident use of the target drug is préserved
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0} Incident and prevalent drug users vs. non-users (matched by exact date)

[1a) Incident drug users vs. non=users {matched by exact date)

1b) Incident drug users vs. non-users (matched by date and system use)
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3} Incident drug users vs. incident comparison
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Figure 3: Population restrictions to approximate clinical trials in ob®rvational studie$®

Comparator selection is also an important design consideration to reduce confounding
by indication. The comparator definition should yield patients in the samé healt
circumstance as those eligible to be new users of target medication. Ineg@mus, when
assessing a drug safety issue, the comparator is desired to represeanttaedsof care’ that
would be provided to that patient had they not been prescribed the target drug, such that
relative effect estimates represent risk above and beyond that that patiehdtherwise
expect. A challenge in comparator selection comes when there is no truly ablapar
standard of care to evaluate against, or when there is significant charmasimgfluencing

treatment decision to a particular drug class. In this regard, evaluatibesscan be highly
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sensitive to the comparator selected, and a criticism of these studienithefsubjective
nature by which the comparator was selected.

Once a design is established, bias can be further minimized throughsanalysi
strategies, such as matching, stratification, and statistical adjustvamables commonly
considered for adjustment are those which are observed to have differemebaseli
characteristics, or are known to have the potential to influence treatmembrakecis
outcome occurrence. These may include patient demographics, such as ageagdnder
race. It may also include patient comorbidities, either expressed asfdsetry classifiers
of specific diseases or as a composite index of comorbidity. One commonly wERdarns
the Charlson indé% % which was originally developed to predict mortality, but has also
been shown to be related to healthcare expenditdreddjustment for comorbidity index
has shown to be useful for exploratory data andf/sisut are not sufficient to address all
potential sources of confounding due to background conditions. Additional variables often
cited include prior use of medications, and markers for health service wilizstich as
number of outpatient visits and inpatient stays. The specific definition and #pplich
these covariates is highly variable across drug safety evaluation stlidias.been shown
that covariate selection can influence effect measures, regardlessraidbing approach
undertaken, particularly if effect modification exiSts

Once variables are identified, they can be controlled for through direct matching
stratification, whereby the target and comparator groups are logitaltied by the
attributes of the covariates. However, in a multivariate context, the dathentag sparse to
provide adequate sample to match on all covariates or provide subpopulations within each

strata. A popular tool to overcome this limitation is propensity score arffaly&is
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Propensity scores are most commonly used in cohort studies. Within the context bf cohor
studies, the propensity score is estimated as the conditional probabilitgtofens
assignment, given the observed characteristics prior to exposure. The pycgnsit
provides a scalar value that summarizes all covariates, commonly esititmatugh logistic
regression, which can then be used for matching or stratifié&tioRropensity scores can be
been shown to balance the distribution of covariates between two cohorts, although patient
level covariate values may differ within paired grdlipsVariables introduced in the
propensity score model which are confounders (related to both exposure and outcome) or
related to outcome alone have shown to minimize bias in outcome effect mE4sésle
propensity score adjustment has increased in popularity, the practicgliaffetation to
typical multivariate modeling approach, can be modest in many circumsfandgéowever,
its use has several desirable characteristics that make its chogrequtéd conventional
approaches, including the focus on pre-exposure characteristics, improved,aidroetter
control of confounding that could influence rare outcomes or small relativésEffec

As with other approaches, the propensity score model is only as good as the
covariates selected to provide the adjustment. Propensity score may bédlseced
confounders, but does not balance in factors not incorporated into the model. This is a
particular problem for analysis of electronic healthcare database®s mheay important
covariates, such as smoking status, alcohol consumption, body mass index, anddifestyle
cultural attitudes to health, are not captured. Sturmer et al demonstrated tieat furt
adjustment could be achieved by conducting supplemental validation studies to collect
additional information on previously unmeasured confouritferSchneeweiss showed how

unmeasured confounders biased estimates of COX-2 inhibitors and myocardiabimfrct
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Seeger et al highlighted how a model without the appropriate variables includegietiibl
biased estimate in a case study exploring association of statin theachpyacardial
infarction****> Strategies for automated selection of large sets of covariates have bee
proposed as potential solutions to minimize risk of missing an empiric confotider
Sensitivity analysis has been proposed as an additional approach to assesstibe pote
consequences of unobserved confoundingut is unfortunately rarely reported in published
studies.

Instrumental variable (1) analysis presents a potential solution to adjusting f
uncontrolled confounding through control of a factor that is related to exposure but dnrelate
to outcomé'®*? Several studies have shown how instrumental variable analysis can reduce
bias?*#* A challenge in IV analysis is identifying a covariate that satisfiesritezia of an
instrumental variable, particularly with regard to having no effect on themetc For active
surveillance, where multiple outcomes may be explored for a given outcomdetii®sef
a common instrumental variable becomes even harder.

One consideration for all statistical adjustment techniques in drug sefdiaton
studies is the danger of introducing bias. Statistical control for variables witfieh e
increase bias or decrease precision without affecting bias can producdids effect
estimate¥”. For example, bias can also be induced if an analysis improperly stratifies on a
collider variablé?®. As a result, care has to be taken in any evaluation study to develop a
parsimonious model which maximizes the bias control while minimizing the risk of
introducing bias or inflating variance.

In pharmacoepidemiology circles, the strategies for overcoming thatlons in

studying a given observational healthcare database have been well understoost, and be
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practices are gaining widespread agreement. One emerging apgaodlnity for drug

safety evaluation involves applying these same practices across netivobokgiwational
databases. The potential value of a network-based approach is appealitegor\&hi
database can be large in size, study restrictions can result in irguféample of the
population of interest to provide reliable estimates of drug-related £ff€@dnducting
analyses across multiple sources can alleviate concerns of insuffengplessize, and also
provide higher quality evidence by allowing effects to be evaluated concymetitin
disparate source populations. Several efforts have shown promise in constructinganetwo
of databases and conducting evaluation studies across the network. The HMO Research
Network is the most notable example. The network was established in 1994 and is
comprised of 16 HMO organizations covering over 15 million persons, with each
organization maintaining administrative claims data that can be pooled acrossvibr feat
specific evaluation studies. Researchers within the network have conducbed sandies

to support public health, including drug safety evaluatfdi€> Meningococcal Vaccine
Study used a network of administrative claims databases to conduct a cohoadf stud
Guillian Barre syndrome following meningococcal vaccindidnSome preliminary work
has shown how analyses can be successfully executed across such ateftvot
particular, Rassen et al demonstrated how propensity score techniques cpbtdzein a
distributed setting to provide adjusted effects while minimizing concernsiehpat

privacy**®. These prior successes have led to active discussions about how to establish a
distributed network that could focus on drug safety evaluations as part of a natibrel

surveillance systeti” 43
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2.4 Approaches for identifying potential drug safety issues

FDA Guidance for Industry: Good Pharmacovigilance Practices and
Pharmacoepidemiologic Assessment defines pharmacovigilance ssiéalific and data
gathering activities relating to the detection, assessment, and undegainativerse
events. These activities are undertaken with the goal of identifying advergs and
understanding, to the extent possible, their nature, frequency, and potentialtdsk'fac
The principle concern of pharmacovigilance is the timely discovery of addrrgeeactions
that are novel in terms of their clinical nature, severity and/or frequerearigsas possible
after marketing, with minimum patient exposidfe The ultimate goal of pharmacovigilance
is the rational and safe use of medicines; the findings are intended to influesiéapisy
pharmacists, and patients in their choice of medicines (including self-medjcaid the
precautions to be tak&h

Methods and processes for evaluating specific drug safety issues onceetl&atie
been well established and expanded use of observational studies continues todyeasefine
described in the previous section. Once a signal is detected, a thorough and manually
intensive evaluation is conducted, requiring use of many information sources,ngqhuel
clinical studies, clinical trials, spontaneous adverse reaction reports, epgatgoal studies,
and data collected for other purpd4&sThe course of events leading to the identification
and evaluation of adverse events “frequently follows an S-shaped curve, with 3 mags: pha
a latent period during which a suspicion arises at some point, followed by the often sudden
accumulation of data (signal strengthening) and, finally, a usually kepbtise of
evaluation during which the adverse effect is confirmed (signal testixigpined and

quantified™®. Following signal evaluation, if it is deemed that there is reasonable evidence
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to suggest an association between a drug and an adverse event, a decision afieci time
overall safety must be made and the appropriate actions taken, including 1) toahange
product label, 2) to conduct patient or physician education, 3) to limit advertisintieitpa
or physicians, 4) to modify approved indications, 5) to restrict use to selectedgd)do
conduct additional post-marketing studies or trials, and 7) to suspend marketing or
immediately withdraw a drd§/. The FDA recognizes the importance of timely
communication of emerging safety information, stating that “informing heakhmroviders
of changes and updates in information about pharmaceuticals during the postrgarketi
period is essential to assuring continued safe use of these drugs. Itas @&réi physicians
understand and act on the latest information available regarding the apprnageiafea
medication®®” Because signal detection is the first step on the cascade of stepadHat le
communications aimed at improving patient-provider decision-making, it could beexpec
that enhancing the ability to identify potential safety concerns of medicamesesult in
downstream improvements in patient quality of care. However, one of the Igagssh our
current system is how to identify the issues that warrant the evaluation.

Once a drug has been approved and is introduced on the market, the FDA's
“postmarketing surveillance programs focus primarily on (1) identifgvents that were not
observed or recognized before approval, and (2) identifying adverse dantsght be
happening because a product is not being used as anticthafgintaneous adverse event
reporting remains the cornerstone of pharmacovigilance activities. Theddaies about
400,000 reports annually, primarily from drug manufacturers who are required to report
serious, unexpected safety events within 15 days, and a minor proportion coming directly

from health care providers and patiénthe chief use of spontaneous adverse event reports
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is to facilitate clinical review of case series. A case serieslated events is often the first
initial warning that a potential association may exist, and a single retiaséereport may be
sufficient to provide definitive evidence about a rare, serious idiosyncratic-Evamhile

case series are generally regarded as low on the hierarchy ofaibehind observational
cohort studies and randomized trtalsthe use of case series analysis has a prominent role
when other information cannot be made avaif@hleAt the same time, clinical review
constitutes the primary bottleneck: with hundreds of thousands of reports sdlimFeA,
WHO and other organizations each year, every one of which cannot possiblyewestelsy
the available expert¥.

Although the careful review of pharmacovigilance experts remains centraldouthe
safety process, statistical data mining algorithms are becomingsimglepopular
supplementary tools for safety reviewér& Various disproportionality analysis methods
exist, but each approach attempts to answer the same question: which drug-event
combinations are reported more frequently than we would have expected if the drug and
event were truly independért? The proportional reporting ratio (PRR) was first proposed
by Evans et al as a simple tool to help prioritize amongst the potential rebgticdentified
within a spontaneous adverse event reporting databdséhe Reporting Odds Ratio
(ROR) was also establishigg and is used in some countries in Europe, including the
Netherland®® **7 Multi-item Gamma Poisson Shrinker (MGPS) was conceived as a
Bayesian approach to the disproportionality problem and also incorporatedcstratifby
age, gender, and year-of-report in an attempt to both shrink small estimateiniamden
potential sources of bias when calculating an expected value to compa#GPS has

become the preferred method of choice at FDA, and actively used throughout the
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pharmaceutical industi}?*®° Bayesian confidence propagation neural network approach,
and its Information Component (IC) metric, was developed as another Bagppgraach
and is currently used at WHB™®" While most agree the potential for bias is significant,
preliminary work using IC shows stratification by age and gender mayasecperformance
of spontaneous data minifi§ Additional work has looked to expand into using these
methods for drug-drug interactidfi *°

Data mining has shown that it does not detect safety issues sooner than a simple
heuristic of 3 reported events, but the proportion of true relationships isfifghsiter the
methods had widespread use and different approaches were gaining favorentdibeners
of the world, a body of research was conducted to compare the performanceafgurtbech.
Preliminary work showed the methods had comparable perforiartée Some studies
observed that performance differences between the PRR and MGPS methelidextea
stratification effects, tradeoffs in sensitivity and specificity, aredjuities in the thresholds
that have been adapted for each method. PRR was shown to be more sensitive and less
specific than MGPS>. With all approaches however, false positives present the most
significant challenge. Hochberg et al showed “there is a substaatabfr of SDRs for
which no external supporting evidence can be found, even when a highly inclusive search for
such evidence is conductéd” It is generally understood that the weaknesses of
spontaneous adverse event reporting cannot be overcome by data mining methodologies
aloné, 145, 146, 153, 175—1il32

Experience gained internationally shows that spontaneous reporting ts/effiec
providing information about a wide range of different adverse effects and otheethtegir

problems. It has been mainly helpful in detecting adverse events that areallgftgic or
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idiosyncratic reactions, characteristically occurring in only a mipofipatients and usually
unrelated to dosage and that are serious, unexpected and unpredictable, and unusual effects
that are related to the pharmacological effects of the drug and are ddsseg®fe On the

other hand, spontaneous reporting is of less use for the study of adverse dfezts w

relatively high background frequency and occurring without a suggestive temporal
relationship®.

While the spontaneous adverse event reporting system has value in generating
hypotheses about potential associations, it has several limitations thatausék c
assessments difficult: voluntary reporting suffers from chronic undetiregp@nd maturation
bias, and the unknown nature of underlying population make true reporting rates difficult to
obtain and use for comparisons. It has been estimated that only about 1% of adl ddwgrs
reactions and about 10% of all serious adverse drug reactions are repBepdrts are
“usually based on suspicion, and may be preliminary, ambiguous, doubtful or #rong”

Recognizing the limitations of spontaneous adverse event reporting, various efforts
have sought to leverage observational healthcare databases for evertrdetdwt CDC has
played a leading role in establishing public health surveillance programsitiminfedical
product safety issues. The National Electronic Injury Surveillancei®ySboperative
Adverse Drug Event Surveillance System has enabled monitoring of adverseeatgy e
leading to emergency department vi$ita®® Another successful project has been the CDC
Vaccine Safety Datalink (VSD), which demonstrated the feasibilitgtafodishing a
distributed network of administrative claims sources and conducting systemalyses to
detect vaccine-related adverse evEtsThe sequential probability ratio test was applied to

detect increases in intussusception following introduction to the rotavirus va@snasll as
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decreases in several events after the changeover from the wholetaskigeraccine to the
acellular pertussis vaccine. In these instances, as with spontaneousgep@tpublic
health surveillance objective is to identify cases of serious events faj@xposure that
wouldn’t otherwise be expected. A primary distinction between spontaneous rgpodin
Vaccine Safety Datalink is that the spontaneous reporting system cafiitpmgsratial events
of any origin, whereas studies designed for VSD focus on a restricted setifif syoerse
events known to be potentially caused by vaccines. In that respect, the VSD apitoach s
fall within an evaluation paradigm, whether the system must first be preseithé a prior
hypothesis of a specific drug-condition relationship and craft an analyssdssahe
purported effect. The method was since enhdfitadd applied to drug safety surveillance
as part of the HMO Research Network, which demonstrated the ability to ydamtifvn
drug-safety issues, including acute myocardial infarction risk followipg®uxre to
rofecoxil®” ¥ However, as the authors note, these studies suffer from several
methodological limitations, notably failure to fully address confounding andiefigt
exposure. Also, as with the applications to public health surveillance, these methods have
not yet been applied in an exploratory framework to generate hypotheses imstead
applied to targeted drug-condition pairs. As such, ‘identification’ of the agiec
myocardial infarction effect comes without regard to how many other falsgevpasses
may be detected when using the same approach.

As we move into active drug safety surveillance, the goal shifts froendedection to
association detection. That is, the interest in the system expands beyond degesting
idiosyncratic events that would not be expected to be seen without exposure, togletectin

elevations in risks of conditions that occur in the background population. Where clinical
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trials may be sufficient for detecting strong associations with higtdyalent outcomes
(such as nuisance side effects like headache and nausea), and spontaneous reporting and
public health surveillance tools may serve the purposes for identifying cases efents
(such as Stevens-Johnson syndrome, toxic epidermal necrolyis, and Guillain Barre
syndrome), the largest opportunity for an active surveillance system restapfementing
those systems in the gap in between. This may include adverse events tet are |
commonly observed in clinical trials, that have weaker associations to exposliege
observed sufficiently often in the general population that case seriesahbg sufficient to
fully characterize the relationship. Several notable adverse eventdlthathia this
category include acute myocardial infarction, fracture, gastroinéstieeding, suicidality,
and renal and hepatic dysfunction.

While there is a lot of excitement for the potential of an active surveillastens for
hypothesis generation, it is widely recognized that significant methadalogsearch is
needed to inform the appropriate use of observational data and analysis meth@&da befor
national system can be reliably used. Several methods have emerged that atssgss
multiple outcomes within an exploratory framework across observational degab&s
recent FDA-commissioned report summarized a selection of alternaned dietection
methods and their potential application to observationat laad the Observational
Medical Outcomes Partnership also produced a review of methodological consnei@ti
active surveillance that was intended to inform the ongoing scientific didfogue

Curtis et al adapted the empirical Bayes Multi-item Gamma Poissork&ein
(MGPS) algorithm to longitudinal administrative claims data, and applied it tde¢déare

Current Beneficiary Survey to study effects of COX-2 inhibitors and Non-d&drannti-
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inflammatory drugs (NSAIDs). The method was used to simultaneously evakt
outcomes and compared to a parallel analysis using traditional epidemioldgads®
assess the concurrent validity of the data mining approach. The authors showed some
consistency in cardiovascular effects but also identified several diaghaségkely
represented indications for the drifj”

Noren et al have similarly adapted the Information Component to be applied to
longitudinal data, with their Temporal Pattern Discovery mettiotl° The method was
applied to the UK IMS Disease Analyzer database, which contains eledisatib records
for 2 million patients through the United Kingdom. Studies successfully demexstrat
detection of nifedipine effects of flushing and localized swelling, while pnogidivisual
mechanism to identify potential confounding by indication in effects such as omlepaad
acute pancreatitf&”.

I3 Drug Safety, a subsidiary of United Health Group, developed a commercjaBtool
Aperio, that is marketed as an active surveillance systemhile little of the specific
implementation details are publicly available, one article describepphneazh as a cohort
study that executed against the i3 research claims dat&basearget drug is compared to a
chosen comparator product. Patients are matched with a greedy algostdroha
propensity score calculated by a logistic regression that includes amtes/age, sex,
geographic regions, costs, diagnoses (defined by 3-digit ICD9 codes), dsitgs, vi
procedures, and labé. Relative risk estimates are provided for 1 year following exposure,
with outcomes defined by 4-digit ICD9 cod®s The study showed no association between
exenatide and acute pancreatitis, though effects of other outcomes were nodl r@ebrte

performance characteristics of the entire system were not provided.
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Observational screening is a method originally developed at GlaxoSmighdtid
now made commercially available as part of the SAEfetyWorks® softveateation by
ProSano® %1% Screening applies a basic cohort design to estimate the relative rate of
condition occurrence among exposed populations compared to the overall population. The
method was studied across 1391 labeled events across 10 drugs, and showed 39% sensitivity
and 85% specificity when using a threshold requiring two databases to both show a
significant effect’. SAEfetyWorks introduces two noteworthy innovations: 1) a
computationally efficient method for estimating unadjusted incidenceatibs for all
potential outcomes across a wide array of medical products, and 2) a framewqyorga
methods across disparate data sources to produce composite measures bbeffdaia
threshold criteria imposed across the network of sources.

A common challenge across all methods is determining how to manage the potential
false alarms when exploring such a large set of potential outcomes, and mietgkhien
evidence is sufficiently compelling to warrant follow?tipTo date, no empirical studies
have demonstrated the performance characteristics of these methods kErgessample of
drug-event pairs, or quantitatively identified the incremental value in esungpiting current
pharmacovigilance practice with these new methods, either in terms ofyoentiew issues
or faster time-to-detection.

As such, several efforts have begun work to conduct methodological research to
develop and study the potential use of analysis methods across an active surssifitalne
In 2010, FDA awarded a contract to Harvard Pilgrim Health Care to develop a pj&attpr
dubbed ‘mini-Sentinel’, to begin to explore scientific and operational aspectsatingia

national active surveillance syst&th International efforts are also ongoing to evaluate the
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potential use of observational healthcare databases for detecting potentiafeltygssues.
The EU-ADR project “aims to develop an innovative computerized system to ddvecte
drug reactions (ADRS), supplementing spontaneous reporting system [byi} ekpical
data from electronic healthcare records (EHRS) of over 30 million patrentsskveral
European countries (The Netherlands, Denmark, United Kingdom, and Italy). efyairi
text mining, epidemiological and other computational techniques will be used toeatradyz
EHRs in order to detect ‘signals’ (combinations of drugs and suspected adiertsetieat
warrant further investigation)**#°% The IMI PROTECT (Pharmacoepidemiological
Research on Outcomes of Therapeutics by a European Consortium) initeatigd s 2010
as a collaborative European project to address limitations of current methbediaid of
pharmacoepidemiology and pharmacovigil&fite

The Observational Medical Outcomes Partnership (OMOP) was els&blis 2009
as a public-private partnership to conduct methodological research to inform the
establishment of a national active surveillance sySfenOMOP is chaired by FDA,
managed by the Foundation for the National Institutes of Health, and supported by the
pharmaceutical industry, with broad participation from government, academias,payer
healthcare systems, and patient groups, across multiple disciplines, in@paiagiology,
statistics and medical information, and across the applied health sciel&¥? €dnsists of
a two year research program to evaluate the feasibility and util#lyevhative analysis
methods and observational health care databases for identifying and evahfatyngrsd
benefit issues of drugs already on the market. OMOP has established a datanitymof
10 disparate data sources, comprising over 200 million lives in aggregate, and designed a

large-scale methodological experiment where a library of methods véjpeed to each
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database and tested against a defined set of test cases (positive and cagadigefor 10

medical products) to empirically measure performance in identifying ksavaty issues

and discerning from false positive findings. All the methods and tools developed by OMOP
have been placed in the public domain, and researchers have been encouraged to use these

products to advance their own research pursuits.

2.5 An integrated active surveillance system within a causal inferenceafnework

While still in its infancy, there is much debate about the intended designaedcfc
a national active medical product safety surveillance sy&te?®t An active surveillance
system will involve a systematic process for analyzing multiple obsemehtealthcare data
sources, including administrative claims and electronic health recordstdoureterstand
the effects of medical products by estimating temporal relationshipedeiexposure and
outcomes. The active surveillance system can be used to 1) characterize knoWecigje e
2) monitor preventable adverse events, and 3) explore remaining uncertaintiggalltie
the active surveillance system is to contribute supplemental information tcesisigng
sources of safety information (including pre-clinical data, clinicalstraahd spontaneous
adverse event reporting) to support decision-making about appropriate use @il medic

products for regulatory agencies, providers, and patients.

39



Influents of risk: Sources of risk: Measures of risk:

» Demographics: « Clinical trials

Age * Spontaneous adverse
Gender event reportin
Race — porting
Location Known side effects Medication and Product » Epidemiologic studies
o Device Error Defects o
+ Comorbidities - ] * Registries
) o Unavoidable| Avoidable )
+ Concomitant medications * Observational

A4
« Health service utilization Preventable databases:
Adverse

I . * Administrative
« Utilization practice: dose, Events claims
duration, frequency

* Electronic medical
records

» Socioeconomic status

. Injury
» Personal health: smoking "' or Death
status, BMI
* Provider characteristics — T —
Remaining Uncertainties:
» Environmental risks Unexpected side effects

Unstudied uses

Unstudied populations

Figure 4: Conceptual framework for active surveillance

Figure 4 provides a conceptual framework for active surveillance. Thevararas sources
of risk of medical products that can result in injury or death, including known siatseffe
medication and device error, product defects, and other remaining uncertaintiss.rike
are influenced by many factors, including patient characteristick @s demographics,
comorbidities, concomitant medications, and health service utilization), hedkmdggtors
(such as utilization practice and provider behavior), and other environmental sources.
Discovery of how treatment effects vary by baseline risk is one of the mmpadntributions
of post-marketing surveillance of drdds The current measures of risk include clinical
trials, spontaneous adverse event reporting systems, epidemiologic studiesisamesteg
Active surveillance offers the opportunity for the systematic use of obserahealthcare
databases, such as administrative claims and electronic health recordspte iopr
measures of the sources of risks. Analyses against these data can accountdastiable

influents of risk to provide robust, supplemental information that can be used to both identify
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and evaluate potential drug safety issues. While evaluation studies have been common
practice for decades, use of these data in a formal exploratory efi@gtework is new and
requires further research to determine its relative contribution to sucteesys

When considering drug safety in a causal inference framework, one can conside
Hill's considerations of 1) strength, 2) consistency, 3) specificity, 4) terifyo& biologic
gradient, 6) plausibility, 7) coherence, 8) experimental evidence, and 9) afalohy
strength of association should be considered because stronger associatibasmagy
compelling, but weak associations do not rule out causal connéffioBsnsistency refers
to the repeated observation of an association in different populations under different
circumstances. Specificity relates to the number of causes that lead tifia sffect, and
the number of effects produced from a given cause. Temporality refers to ¢ssityethat
the cause precedes the effect. Biologic gradient addresses the dednexh tinare is a
dose-response relationship, where the amount of response increased with increasae.ex
Plausibility reflects the scientific rationale for the existencaroéssociation, typically in
drug safety, related to the mechanism of action and the biologic pathways dat tlea
effect. Coherence is the degree to which the interpretation of the associasomtioe
conflict with the current understanding of the natural history and biology of thasgis
Experimental evidence for drug safety analyses typically refersderss that comes from
human randomized clinical trials, but can also include randomized pre-clinicainegper
in animal models.

An active drug safety surveillance system can apply Hill's considera®part of
its process for generating hypotheses. Specifically, analyses conduciesiaanetwork of

observational databases can be used to identify potential drug safety issdembstisength,
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consistency, specificity, and temporality. Specifically, methods produceaéss of the
strength of temporal associations between exposure and subsequent outcomesg eplyin
methods to multiple sources provides an assessment of consistency, as fosrfal test
heterogeneity can be used to measure differences between source popuiatabuating
multiple outcomes for each drug and multiple exposures for each outcome can provide
insights into the specificity of any specific drug-outcome associatiawekler, these
exploratory analysis results will not be sufficient to address issueslogiai plausibility,
and the use of observational data does not meet the same standards of evidence that com
from a randomized experimental design. Methods for studying dose effectesdqctiner
research, as the degree to which dose and amount of exposure can be accusiedyimea
and used within a hypothesis generating framework is undetermined.

While hypothesis generating analyses are inherently exploratory in radsre
principles of formal evaluation can be applied to raise the collective condiagetize
reliability of the process. Research questions and statistical amalysuld be specified in
advance, with all methodological considerations addressed during study planméandhrab
after study completion. This includes decisions around definitions of exposure and gutcome
inclusion/exclusion criteria imposed on the sample, and strategies faicsthtis
adjustmenit®.  Analysis processes should be fully transparent and reproducible, and should
minimize subjective assessment to improve the generalizability of the appriglany of
these principles are well-defined in guidelines for conducting full evatuatiaies® 2°%2*°
but have not yet been adopted for exploratory analyses. With these principbsein pl
hypothesis generation can play an important role in an active surveillatesn®sy

contribution to causal inference of drug safety issues. These exploratoryesnzdn
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identify and prioritize areas that warrant further examination. Evaluatidrestmay be
used to refine estimates of the strength of the association, but attentiparteularly focus
on biologic plausibility and coherence to put the preliminary results in properatiaantext
with other evidence, including clinical trials, pre-clinical data, spontaneoussadsagnts,

and other epidemiologic studies.
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CHAPTER THREE: METHODS

3.1 Overview

This study is a methodological experiment to evaluate the performance of a novel
analysis technique for active drug safety surveillance. The analgpipabach, called
COMParator-Adjusted Safety Surveillance (COMPASS), is describetibfs&c2). The
evaluation of COMPASS was conducted across five observational data sousceibédan
section 3.3) by exploring the method’s ability to identify known safety issues @esbwiith
ACE inhibitors. The experimental design, including the selection of the samptades of
true adverse reactions and negative controls for the drug class and individuaemgrisdi
highlighted in section 3.4. The performance measures used to assess COMPASS
performance are discussed in section 3.5. The remainder of the chapter prowifies spe
analyses conducted to support the following aims:

Aim 1: Characterize the performance of COMPASS in identifying knownsafety issues

associated with ACE inhibitor exposure within an administrative claimsdatabase

Aim 2: Evaluate consistency of COMPASS estimates across a network ofplarate

databases

Aim 3: Explore differential effects across ingredients within ACEinhibitor class



3.2 COMPASS

COMParator-Adjusted Safety Surveillance (COMPASS) is a stalistigorithm that
estimates adjusted rate differences and relative risks for all outconmésrest for a given
medical product through propensity score stratification across exposed and udexpose
cohorts. COMPASS applies an automated heuristic for defining a comparator gsedp b
on the indication of the medical product, and provides multivariate adjustment based on key
influents of risk, including person demographics, comorbidity, and health servicatiatiliz
COMPASS is not intended to be a final solution for active surveillance, butdresfeat-
pass screening tool to serve as a potential guide for identifying and pingrpotential drug
effects that may warrant further evaluation.

Figure 5 highlights the conceptual model that serves as the basis for COMFPASS
fundamental goal of a drug safety analysis is to assess the tempai@hsbip between
treatment and outcome. However, in the context of an active surveillance gyatem
leverages observational databases in a non-experimental design, sgteaificrais needed
to minimize bias when estimating the drug-outcome association. COMPASSapplie
retrospective cohort design to compare the effects of the target drugrestitean
unexposed population, defined as those exposed to an alternative treatment for the same
indication. The COMPASS model focuses on minimizing bias from four primary sources
personal demographics (such as age and gender), confounding by indicatios péffect

comorbidity, and health serve utilization.

45



Indication Comorbidity

Outcome

Health
service
utilization

Ageand
Gender

Figure 5: COMPASS conceptual model

The COMPASS approach incorporates several notable features into itssatiey
bear particular consideration. First, it leverages large biomedical oet®kngautomate
comparator selection based on the indications and therapeutic classes gethartay of
interest. Second, it imposes automated study design heuristics, including colusibax
criteria based on contraindications and covariate selection based on FDA-approved
indications and off-label uses. Third, the use of a comorbidity index and multipteimesa
of health service utilization as additional aggregate covariates allowsgomiad balancing
of exposed and unexposed cohorts that are universally applicable for all outcomes while
minimizing concerns of inflating bias due to unconfounded relationships with anyispecif
outcome. Fourth, the algorithm simultaneously applies multiple risk windowsemntify
effects with differential time-to-event relationships, such as acute,gebatsidious or
delayed onset. Fifth, COMPASS produces a composite score based on adjusted risk

differences and ratios that enables prioritization across multiple pbtafesy concerns

46



based on both magnitude of effect and public health significance. Finally, in cemtrast
traditional pharmacoepidemiology evaluation designs, which are typicgllgnmmented to
estimate the effect of one drug-condition pair, the COMPASS model is dé$ahe
scalable to allow estimation of multiple drug-outcome pairs concurrently, and has
demonstrated to be computationally feasible to screen thousands of potential edeise
within hours. This efficiency enables key principles of pharmacoepidemiology tolghb
to bear during the initial exploratory phase of hypothesis generation toeroel existing

evaluation studies that test hypotheses once identified.

3.2.1 COMPASS comparator selection

COMPASS leverages the standardized vocabulary made available through the
Observational Medical Outcomes Partnership (OMOP). The Standard Vocatiéains
all of the code sets, terminologies, vocabularies, nomenclatures, lexicons,ithesaur
ontologies, taxonomies, classifications, abstractions, and other such date teguaed for:
1) creating the transformed (i.e., standardized) data from the raw da) sets;ching and
guerying the transformed data, and browsing and navigating the hierarcHesses@nd
abstractions inherent in the transformed data; and 3) interpreting the mearitrgysiafa.
Within OMOP, the primary use of the vocabulary has been to translate source codes
into standard concepts. For example, across the OMOP data community, conditions are
coded using several different coding schemes, such as ICD9, SNOMED, MedDRIA, Rea
and OXMIS, but the vocabulary allows all sources to be standardized into a common
vocabulary (either SNOMED or MedDRA). Similarly for drugs, many sooagure

prescriptions using NDC, GPI, VA Product codes, or Multilex, but these codes have bee
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mapped to RxNorm. The standard vocabulary also contains classificationsgsociated
with its standards. For example, MedDRA provides a hierarchical structuseadfgarent-
child relationships whereby Preferred Terms (PT) are children of Highl Derms (HLT),
which are children of High Level Group Terms (HLGT), which are childrerysfegn Organ
Classes (SOC). The OMOP standard vocabulary offers several claissiidar medical
products. For example, RxNorm concepts are mapped into the National Drug FitenBefe
Terminology (NDF-RT), which provides classifications for mechanism adract
physiological effect, chemical structure, and indication. Notably, RxNorfeasw@apped to
the Anatomical Therapeutic Chemical (ATC) classification maintaiyetido\World Health
Organization (WHO) Collaborating Centre for Drug Statistics Methodolagg the
National Drug Data File Plus (NDDF Plus) maintained by First DateB&IDDF Plus
provides multiple classifications for medical products, including FDA-approvechitioins,
off-label uses, and contraindications. NDDF Plus is actively used in clinsigindsupport
tools for informing clinicians about medical information during prescription ordey.ent
However, we are not aware of its prior use in population-level exploratoryseafydrug
safety issues across observational healthcare databases.

COMPASS uses four attributes- therapeutic class, FDA-approved indicatibns, of
label uses, and contraindications- as part of its automated heuristics, as shayunarb Fi
This graphic shows that ingredients can be mapped to each of these four atthbsites.
worth highlighting that these attributes are actually mapped through RxNiarcalcdrugs
(which are concepts that uniquely identify product name and dose), but since active

surveillance analyses are initially anticipated to be conducted at thecgageedient-level,
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without immediate exploration of dose effects, the attributes have been propagatedieup t

ingredient level.

FDA-approved
ndications

Drug class {ATC) ngredient® —— Off-labeluse

Contraindications

Figure 6: Attributes of medical products used in COMPASS automatedtheuristics
*Ingredient maps to these concept through RxNorm clinical drug, which @ntains
product name and dose

An example of how these attributes are instantiated for a given medical product,
lisinopril, is shown in Figure 7. All attributes have a many-to-many oglsltip with
ingredients, meaning that each medical product can have one or more drug(bksses
lisinopril has only one, ACE inhibitors), one or more FDA-approved indications (lisinopril
has three), one or more off-label uses (lisinopril has seven in total), and one or more

contraindications (lisinopril has 40).
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Hypertension
Chronic heart failure
Myocardial infarction

Diabetic nephropathy
Migraine prevention
Prevention of recurrent atrial fibrillation

ACE inhibitors Lisinopril

Acute hepatic failure
Angioedema
Pregnancy

Figure 7: Example attributes for lisinopril

COMPASS uses these attributes to create automated heuristics for dompara
selection, cohort restriction, and covariate adjustment. The logic for compa&iatdios is
illustrated in Figure 8. The comparator group is initially defined by expdswany medical
products that have at least one of the same indications as the target drugsif lntiedon’t
share a therapeutic class. To continue with lisinopril as a working examgplkagorithm
identifies all drugs that have an FDA-approved indication of either ‘hypeteénshronic
heart failure’ or ‘myocardial infarction’. The drugs identified include @agents from
multiple drug classes, including: Angiotensin Il Receptor Blockers @R&ich as losartan,
valsartan, and candesartan; Beta Blockers, such as atenolol, metoprolol anda@gebutol
Calcium Channel Blockers, such as amlodipine, nifedipine, and isradipine; diureticassuc
furosemide, amiloride, and hydrochlorthiazide; and other ACE inhibitors, such aprdnal
ramipril and captopril. The list is then restricted to those products who do not share a sa
therapeutic class. So, the other ACE inhibitors- enalapril, ramipril, captarpifemoved
from the indication drug list. Special consideration of combination products is taken t

ensure ingredients that could be shared within the target drug are not erronedusdédinc
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the comparator drug list. As such, hydrochlorothiazide is also removed from thareton
drug list for lisinopril because the combination of the two products is marketed (braad nam
Zestoretic). The final list of comparator drugs reflect a set ohaltiee medicines that a
patient could have been prescribed by a provider for at least one of the indicatiding tha
target drug is used for. Because most observational databases do not providepakplitt
level information that ties diagnosis to prescriptions, pharmacoepidemiolaljgsst

attempting to exploit the drug-indication relationship often do so by eidisenang,

inferring, or defining by explicit inclusion criteria. Moreover, pharoggidemiology

studies commonly select a comparator drug for the unexposed cohort based on subjective
assessment and clinical expertise. One reason for this approach is t@emrsknof

immortal time bias that could be introduced if the unexposed population were defined by
persons without any exposure (rather than an active alternative treatfemt{LOMPASS
comparator selection heuristic provides an objective tool to construct axtefeyap to

serve as the ‘unexposed’ population to compare with those exposed to the target drug of
interest, and minimizes the potential bias introduced by subjective selection ohenly
‘similar’ drug or class as an alternative treatment. The compar&totestvaries by the

drug under study as a proxy for ‘standard of care’ but does not reflect the notimmof a

treatment’ comparator group.
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Comparatordrugs:
Drugs with same indications  <——
NOT in same class

&

Drugsin same class:
Benazepril
Captopril

Enalapril

Ramipril

Quinapril

ACEinhibitors

Drugs with saime indfcations:

Losartan
Verapamil
Atenolol
Nifedipine
Chlorothiazide
Enalapril
Ramipril

I

Hypertension
Chronic heartfailure
Myocardial infarction

Lisinopril

Figure 8: COMPASS automated comparator selection heuristic

3.2.2 COMPASS cohort restrictions and adjustments

While appropriate comparator selection is a critical component of the cohort designal s

additional design and analysis considerations are required to improve the valitigy of

estimate of the drug-condition relationship. COMPASS applies a serieslasier criteria

as part of its study design and also attempts to balance the cohorts using fyrsperesi

stratification across a series of covariates. Figure 9 highlighteshéctions and

adjustments imposed as part of the COMPASS analysis process.
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Restrictions:
Incident exposure: personhas atlzast
tmo of ohservation prior to index date of
first drug use
Contraindications: no contraindications
hava bazan ohsarvad on or vithin dmo
prior to exposurse
Concomitantuse: no overlap in exposura
betveen target and comparator drugs
during time-at-risl.

)

| | posed tl

Adjustments:

Age: Exposureindex date — y2ar of birth

Gender

Indications: For 2ach of FDA-approvadindication” and ‘off-label use’
conditions. a binary classifier of vrhether the condition vrasrecordad
atlzastonce on or vaithin the Smo prior to the exposur= index date
Number of indication medications: countof distinct drugs with same
indication astarget drug that voere usedin the Smoe prior to exposure
Comorbidity score: Charlson indzx, based on conditions cccurring
any time prior to exposure index dats

Number of total drugs: count of all drugsused in Bmo prier to
2Xposure

Number of procedures: count of distinct procedures administer=din
omo prior to exposurs

Number of outpatient visits: count of days of vith atlzastone
outpatient visitin Smo prior to 2xposurse

Number of inpatient visits: count of days of vith atleast one
inpatientvisitin émeo prier to 2xposur=

Observation period

Figure 9: COMPASS pre-exposure design considerations

COMPASS applies an incident user design to compare new users of alternative

treatments. Incident use is inferred by requiring that persons haveta& leanths of

observation prior to the index date of the first drug use of either the target drug or

comparator. It is possible that patients could have been exposed previously, but that

exposure was not observed due to the period of data capture contained within the
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observational database. It is assumed that any potential ‘prevalent usectnatdue to

lack of data coverage represents a small but non-differential bias, arvisgasalyses can
be conducted to evaluate the robustness of any findings by varying the length cfltbetwa
period to be more or less than 6 months. Because of the incident use providing a comparable
initiation of treatment between cohorts, it has been argued that the populatiomsrar

likely to be similar in characteristics that might not be observable in the defaba
Restricting prevalent use allows for a clear temporal sequence for confaaipesment
while minimizing concern of adjusting for intermediate consequence of gaatather than
just treatment predictots Definition of treatment initiation also allows for a more precise
measure of time-at-risk that can be used to assess adverse events waht diffee-to-event
relationships, such as acute and delayed onset.

An additional restriction imposed in COMPASS is that all persons with cotexami
use of drugs in the exposed and unexposed lists during the time-at-risk windowladeaxc
This restriction ensures that events attributable to the target drug amar@ously
classified for the unexposed cohort, or vice versa. The risk window defined willhodue
the degree to which the concomitant use will restrict the overall samplhaagsg potential
acute onset events, where only the first 30 days following exposure start aszastjmill
be less restrictive than exploration of insidious events, where all time expeskdtade
non-overlapping.

Another potential source of bias introduced by the automated comparator selection
heuristic is the potential for factors that influence treatment avoidandasgic example of
channeling bias is studying gastrointestinal effects among users of @bitikars and other

non-steroidal anti-inflammatory drugs (NSAIDs). One of the primary bsrafiCox-2
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inhibitors relative to NSAIDs was greater Gl tolerability; as a tepukscribers tended to
avoid the use of traditional NSAIDs to those patients with peptic ulcers and other
gastrointestinal hemorrhaging and would channel those patients to use Cox-2 mhibitor
Without adequate restriction or adjustment for the channeling effect, anedyspsoduce
biased estimates that indicate Cox-2 inhibitor use has an increased Gkhiskilran a
preventative effect. COMPASS leverages the contraindication informaadatde in the
OMOP standard vocabulary to impose automated exclusion criteria on the cohorts to
minimize this potential source of bias. As shown in Figure 10, all contraiindisatre
mapped through ICD9 codes to SNOMED clinical findings. Patients are removeth&om
cohort if there are one or more contraindication condition era records that start
months prior to the exposure index date. For the lisinopril example, patientsouiid ‘a
hepatic failure’, ‘angioedema’, ‘pregnancy’, and any other listed coulicstion observed in
their record are excluded from both the exposed and unexposed cohorts. Thirestricti
eliminates the subpopulation that may be more predisposed to known risks.

After all restriction criteria have been applied to the cohorts, COMPAS&:sra
series of covariates to use in balancing baseline characteristichtr hafine the effect
estimates. Balancing is achieved through propensity score straificat® 107 212213
whereby the covariates are used in a multivariate logistic regresenel to estimate the
probability of the person being exposed to the target drug vs. the comparator drugs, and
persons in both cohorts are stratified into quantiles based on this probability. &féects
measured within these propensity score strata, and composite sumneaciessaructed
using Mantel-Haenzsel estimator. Strata that contain only exposed or unexpcsss pedi

excluded from analysis, as a means to ensure overlap between comparator populations.
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Stratification is chosen over matching because it is computationallyesitoptonstruct, and
preserves sample without oversampling or imbalanced weighting for outliemtgaf. In

prior applications of propensity score balancing, covariates are selghtrdl@rough

subjective assessment and clinical expertise or through heuristics dstrenthe potential
degree of confounding based on a variable’s relationship to both treatment and 8litcome
116 past studies have demonstrated that inappropriate use of non-confounded covariates that
are related to treatment but not outcome can inflate variance estimated the treatment-
outcome effeéf' 1% 2> A challenge in active surveillance, where hundreds of thousands of
drug-condition pairs may warrant investigation and may need to be explored mpally
regular basis, is that clinical expert review is likely infeasiblé @mputations requiring
pairwise comparisons may not be scalable for use in the initial exploraagesstAs such,
COMPASS creates a restricted set of covariates, based on personalaggmnosgtreatment
indication, comorbidity, and health service utilization, which are expected to adlees
primary sources of bias while avoiding unconfounded relationships, to provide cohort

balancing that is universally sufficient to facilitate simultaneoumeasts of all outcomes.
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Conditions vshich are EITHER ‘FDA-
SNOMED 10s for each 1€ D9 code N approvedindications’ OR ‘off-lahel
uses’ areused as covariatesin
I propensity score modlel
Y
ICD9 codes for each concept .
T SHNOMED IDs for each ICD9 code
Hypertension T
Chronic heartfailure ICD9 codes foreach concept

Myocardial infarction

‘ Diabetic nephropathy
Migraine prevention

Lisinopril ) e n
P Prevention of recurrent atrial fibrillation

Acute hepatic failure
Angioedema
Pregnancy

v

ICD9 cades for each concept " ) . .
‘ Conditions vshich are ‘contraindications

are used as exclusion criteria. Exposures
SHNOMED IDs for each ICDY code o, oL . .
with contraindication 6mo prior to index

dlate are removed from analysis.
Figure 10: COMPASS automated design refinement process

Covariates associated with indication are a primary consideration witiMP@SS.
The comparator drugs are selected based on potential for having a simikaiondis the
target drug. However, the observed prevalence of the indications prior to expasatre i
accounted for. As such, there could be potential for imbalance between the exjbsed a
unexposed populations, resulting in confounding by indication. For example, using the
lisinopril example, if the majority of patients prescribed lisinopril useribdication for their
hypertension, but the majority of patients in the unexposed population are beingftreated
myocardial infarction, there could be cohort differences in the cardiovasculde pfdfie

patients that could bias comparisons in measured post-exposure effects. COMRARSE
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to address this potential concern by using these indications as covariatesltmbeda
through propensity score stratification prior to analysis. Specificallf)E&5S constructs
binary classifiers for each medical concept identified as either andfpfoved indication

or an off-label use. The concepts are constructed through the OMOP standard vwpbgbula
mapping the NDDF concepts to one or more ICD9 codes, which are then mapped to one or
more SNOMED clinical findings. For each indication concept, personsaasfied as 1 if

at least one of the SNOMED codes comprising the indication is recorded in a condition e
start within the 6 months prior the exposure index date, and O otherwise. Figure 10
highlights the heuristic for the lisinopril example; concepts are condrtartall FDA-
approved indications (‘hypertension’, ‘chronic heart failure’, and ‘myocardiatetibn’)

and all off-label uses (including ‘diabetic nephropathy’, ‘migraine presehtand

‘prevention of recurrent atrial fibrillation’) in the FirstDataBank abalary through the
mapping via ICD9 and SNOMED.

A related effect is the number of drugs previously used for the indications. &llhile
patients are incident users to the drug of interest, the cohort definition does notegutiraint
those patients hadn't attempted other alternative treatments for theiryumglditease prior
to initiating treatment to the target or comparator drug. A patientiegdirst-line
treatment for a disease may have different characteristics than sowtemhas switched
due to prior treatment failures. The number of prior drugs used for the indicatioes ag a
proxy for the number of treatment switches and can potentially inform theoliewetlerlying
disease severity insofar as multiple treatments are attempted duertioeitent complexity
of the disease or lack of response to initial treatments by the patient. Thiateovaumber

of indication medications’, is measured as the count of distinct ingredients itisedtine 6
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months prior to the index date that share at least one indication as the target drag. Inth
lisinopril example, this could include the number of beta blockers, diuretics, ARB&gor ot
ACE inhibitors attempted in the 6 mo before lisinopril initiation. A count of O would be
potentially indicative of a patient who is using the target drug as firstreagment for one

of the indications, while larger counts may increase the likelihood that the patient
switching to the target treatment after prior treatment attempts.

Beyond the variable set of covariates defined by the target drug a#iribute
COMPASS also applies a defined set of covariates that are independent ajehdrtag but
are thought to be important in any drug safety analysis. These includes agsasured in
years by the difference in the index year from the patient’s yeartbf §ender, as a binary
classifier indicating male or female status; the Charlson comorldiéx, as a score
reflecting overall disease status, based on conditions observed prior to exposudaigtiex
and four methods of health service utilization. ‘Number of drugs’ is measured tyuiie
of distinct ingredients used within the 6 months prior to the index date. ‘Number of
procedures’ is measured as count of the distinct procedures administeredheithimonths
prior to the index date. ‘Number of outpatient visits’ and ‘number of inpatient visikscref
the number of distinct days for which services were initiated in outpatient anigiipat
centers, respectively. The ‘inpatient’ measure included both hospital sthgsn@rgency
room visits not requiring hospitalization.

The exposed and unexposed cohorts are stratified by propensity scestirRated

by the following logistic regression:
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R
1-P

ﬁcomorbidity * Comorbidilyi +ﬁinpatient* inpatent +ﬂoutpatient* OUtpaten’: +ﬁdrug * drUgs

In(

): a+ ﬂage* agq +IBgender* gendeir+ ﬂindication * indicationi +ﬂindicatior’drugs* indicationdrugs +

The computational efficiency that makes COMPASS viable as an initial hymathes
generating tool also comes at the sacrifice of precision of the assw@&@atimates.
Specifically, global covariates (such as the comorbidity index and agghreztie service
utilization measures) are used in lieu of drug- or disease-specifiaategdnecause
individual covariates could have unobserved confounding, but the confounding effects would
vary by outcome. Preliminary studies using the Charlson comorbidity index in the
propensity score model found improved balance not only of the index, but also reduced

differences in most of the constituent comorbidities that comprise the indeX.as we

3.2.3 COMPASS risk windows

The time-to-event relationship between an exposure and an adverse eveny tase@on
the pharmacologic effect of the medicine and the disease progressioreoétitt. Some
events, such as anaphylaxis reactions, commonly have an acute onset, andralg ge
observed shortly after initial exposure to the medication or never at all. Otinés enaey
have a delayed onset, such as cancer, which may result from long-term expofiwthefti
events may have different time-to-event relationships based on the effethevdrug;
studies exploring drug-related relationships with hip fracture have shown insidi@is ons
with benzodiazepines due to risk of dizziness and falls, while a delayed effecteobséh

proton pump inhibitors hypothesized to be due to long-term calcium malabsorption.
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Traditional pharmacoepidemiologic evaluation studies that focus on one drug-outcome pai
typically have a hypothesis of the type of effect under study that can beoussfthe the

study risk window. In the active surveillance paradigm, where we are expluatiltiple
outcomes to identify potential effects that warrant further review, we do notheletry

of knowing the time-to-event relationship. Alternative active surveillappeoaches may
pre-specify a risk window of interest; for example, the use of self cardrotise series

would traditionally assume insidious onset since the time exposed is used to deiime-the
at-risk. In COMPASS, we seek an alternative to pre-specifying tieetorevent

relationship by instead concurrently testing four clinical scenariesHigeire 11). Time-at-
risk windows are defined as either acute, subacute, insidious, or delayed onsetut& he ac
onset window captures all events that occur within the 30 days following expostire star
Subacute onset includes all events within 60 days of treatment initiation, subshenaoyite
risk window. Insidious onset is defined as any time during exposure (from exp@stte st
exposure end) or within 30 days following exposure end. The additional 30 day surgeillanc
window is to accommodate misclassification in exposure end date estimation, apidite ca
events that may proceed a patient ceasing treatment and seeking an\atdraetpy
(potentially due to lack of effectiveness or tolerability due to sidetsjfedDelayed onset is
defined by the period from 180 days following exposure start until the end of the oloservati
period. The delayed window may or may not include period of exposure. All risk windows
serve as intent-to-treat analyses and are right-censored by theatibseperiod end date. It

is important to highlight that, as with any intent-to-treat analysis, pifisoach may be
susceptible to selection bias due to treatment stopping, switching, augomgraiatl non-

adherence.
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Figure 11: COMPASS alternative risk windows

Within each risk window, events are identified by condition era start dateslthat f
within the time-at-risk. When evaluating prevalent events, each person can cerdneutr
more events during exposure. Across the cohort population, the event rate is es8rtieged a
number of events / total time-at-risk. For each risk window, adjusted rate (ARR) and

adjusted rate differences (ARD) between cohorts can be estimateatiioo@come as:

Z Wsz (OUtcome,o,s,exposed/ timeatrisk,o.s,exposed) Z Wsz (OUtcomﬁo,s,unexposed / tirneatrisk,o.s,unexposed)
ARF% —_s i / s i

2w 2w
s s

ZWSZ (OUtcome,o,s,exposed/timeatrisk,o.s,exposed) ZWSZ(OUtcome,o,s,unexposed/timeatrisk,o.s,unexposed)
ARDO __s i __s i

2w 2w,
s s

Var(ARDo ): Var(ARo,exposed) + Var(ARo,unexposed)

> w,’(outcome, , /timeatrisk, ,*)

var(AR,,) =
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ARDLED5, = ARD, — 196* ,/var(ARD,)

where o0 is the outcome, s in S is the propensity score strata derived fiom@are the
weights for each strata based on the inverse of the variance, and i is the iresehfor
person.

Within an outcome, the selection of the risk window is made by identifying the risk
window that yields the maximum ARRLB95 (see Figure 12). This seleatii@ni& aims to
prioritize the risk window that has the largest relative effect. The lower bowsddsin lieu

of the point estimate to filter out unstable estimates generated by snsalneutounts.

2
Fats ’

ratio

<y

Acute Sulbracute Insiclious [relayed

Selection of risk windovris defined by max, (LB RR)

FR:rateratio: LB: loveer bound of 957 confidence interval

Figure 12: COMPASS prioritization across risk windows

3.2.4 COMPASS prioritization score
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Both the adjusted rate ratio and rate difference measures provide useful irdormati
for assessing the significance and potential public health impact of aifzartioug-outcome
pair. However, in the context of active surveillance, where a potential anexplore
multiple drugs and conditions over time, there is a further need to prioritize the observed
effects so that the limited resources available can focus on those drug-optimiibat are
more likely to be true causal relationships that warrant some sort of interve@ine
conventional approach to prioritization is to construct a dichotomous threshold, whereby
pairs with a score that exceeds the threshold are considered ‘signals’ and thmeetimuj
the threshold are not evaluated further. In the context of the outputs available from
COMPASS, one could derive a signal threshold based on the rate ratio, the ratecdifferen
the confidence intervals around those point estimates, or some combination therein. For
example, drug-outcome pairs with ARRLB95 > 1 reflect pairs that have istdljst
significant rate ratios that indicate some increase in risk betweendleé aad comparator
cohorts. Alternatively a threshold of ARR > 2 reflects the estimated efféot ¢tdirget drug
is more than double that of the unexposed population; note, there is no inherent measure of
uncertainty embedded in the decision making. Thresholds based on rate ratioszmphasi
magnitude of effect size, but do not characterize proportion of population effects. In
contrast, thresholds based on adjusted rate differences, such as ARD > 1/1000, can provide a
designation of a level of potential public health significance that is reqoingdrtant
investigation. Composite thresholds can impose further restrictions, such as AR > 2 a
ARD > 1/1000, which would only be satisfied for those drug-outcome pairs with a large
effect size and a large potential public health impact. When applying thresholds,

performance can be clearly classified by the degree to which the tlirgemarates true
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positives, false positives, true negatives, and false negatives. However, metbodgrere
becomes a function of the threshold, the dichotomization makes prioritization anfengst t
‘signals’ and ‘non signals’ difficult, and it is not clear what the approprmishold to set
for any given drug or outcome.

As an alternative approach, COMPASS constructs a prioritization scoiad|tives
for rank-ordering drug-outcome pairs based on a single scalar value. ofaésdoased on
the confidence interval of the risk difference; if the point estimate of the ABDhen the
score is the lower bound of the 95% confidence interval, otherwise when the ARD < 0, the
score is the upper bound of the 95% confidence interval — the minimum ARDLB atross al
outcomes. Essentially, all outcomes with positive point estimates areipemabove
outcomes with negative point estimates, but amongst positive effects, thé llangedound
is prioritized to reflect the highest confidence in a true associatiorgraodgst the negative
effects, the largest upper bound is prioritized to reflect the lowest confideadaak of
association. Figure 13 provides an illustration of how the prioritization score vemidr
outcomes. Outcome 1 has the largest overall ARD and ARDLB so is ranked first, but
outcome 2 is prioritized over outcome 3 despite having a lower ARD because of its highe
ARDLB. Outcomes 4 and 5 are deprioritized from the first three because ARDut
outcome 5 is ranked higher than 4 because the upper bound reflects greater yntteataint

there may still be a positive effect.
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Figure 13: COMPASS prioritization across outcomes

3.2.5 COMPASS summary

COMPASS is intended to be a fully-automated exploratory analysis method that
allows safety scientists to specify a drug of interest and generate hysathes¢ential
drug-related adverse associations that may warrant further evaluatiodMPASS was
developed using SQL and SAS 9.1 against a Oracle 11g database running in the OMOP
Research Lab on a SUN M5000 server with on a Windows 2003 server with 16 (8x2)
2.14GHz CPU, 64GB RAM, and 50TB of storage. The implementation was customized for

use with the OMOP common data model, but the algorithm could be generalized to the
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format of any observational healthcare database that would allow for theatipi af

temporal relationships between drug exposure and condition occurrence.

The COMPASS algorithm is executed with the following steps:

1.

2.

INPUT: Define the target drug of interest

Identify the FDA-approved indications of the target drug

Identify the ATC drug class of the target drug

Define the comparator drugs as drugs with the at least one of the sameandiaati
the target drug and not in the same ATC drug class (see Figure 8)

Select all persons with at least one exposure to the target drug (target cohort
Select all persons with at least one exposure to one of the comparator drugs
(comparator cohort)

Identify the contraindications of the target drug

Restrict cohorts to exposures with at least 6 months of observation prior to first
exposure index date

Restrict cohorts to exposures without any contraindication conditions within 6 months

prior to first exposure index date (see Figure 10)

10. Exclude persons who have overlapping exposure to target and comparator drugs

during the time-at-risk

11.ldentify the off-label uses of the target drug

12.Create covariates (see Figure 9)

13. Calculate propensity score (probability of being in target cohort) frono@dirates
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14. Stratify population into 20 quantiles based on rank-ordered propensity scores. No
persons from the target or comparator cohorts are dropped from analysis, but
balancing statistics are produced to allow scientists to review if hetdficient
sample in each quantile for each cohort.

15.For all outcomes, calculate the strata-specific incidence ratedoroédour risk
windows, based on acute, subacute, insidious and delayed onset (see Figure 11).
Both cohorts are right-censored at time of observation period end.

16. Calculate adjusted rates, adjusted rate differences and adjustedoateitat
associated confidence intervals for all outcomes and all risk windows.

17.For all outcomes, select the risk window with the maximum rate ratio (gascHi2).

18. Calculate COMPASS prioritization score based on rate differencesamuttsomes
(see Figure 12Figure 13).

19.OUTPUT: COMPASS prioritization scores for all outcomes, rate ratiorate

difference estimates for all risk windows, cohort propensity score badéaicstics

3.3 Data Sources

The primary data source under study is the Thomson Reuters MarketScan

Commercial Claims and Encounters (CCAE), a large administrative aiitabase

containing 59 million privately insured lives. CCAE provides patient-level de-famhtata

from inpatient and outpatient visits and pharmacy claims of multiple insurance plans

addition to CCAE, the performance of COMPASS was evaluated against thet&tan

Lab Database (MSLR), MarketScan Medicaid Multi-State DatabaBe&C(D), MarketScan

Medicare Supplemental and Coordination of Benefits Database (MDCR), ané the G
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Centricity electronic health record (GE). MSLR contains 1.5 million perggmiesenting a
largely privately-insured population, with administrative claims from inpgtautpatient,

and pharmacy services supplemented by laboratory results. MDCD provides adtiais
claims data for 11 million Medicaid enrollees from multiple states. MDQRuIoas
administrative claims for 5 million retirees with Medicare supplemensairance paid for by
employers, including services provided under the Medicare-covered paymentyemmaliol
portion, and any out-of-pocket expenses. GE contains patient-level data for 11 million
persons captured at the point of care from a consortium of providers using the GEtgentri
electronic health record system in their outpatient and specialty psaclieble 1 provides a
comparison of the source populations and data availability.

The five sources reflect the broad diversity of data available and under caimsidera
for a national active surveillance system. They include various populationsresintith
different demographics and health behaviors (privately insured, Medicaid youdigalkée
elderly) as well as both primary data capture processes (adminestktims and electronic
health records). The diversity in the source populations is likely to signifigafitience
active surveillance methods performance, though the potential effect hasmptdaesusly
empirically measured. In particular, the Medicare database sefleatlder population with
higher drug use, more comorbidities, and greater health service utilizeioany other
database, so can be expected to potentially reflect a higher-risk populatisratea more
predisposed to confounded relationship between exposure and outcome. The first and third
aim focused on CCAE since it is the largest database and is most represehntae
general population. Aim 2 applied COMPASS to all sources to study how the unglerlyin

data can influence method performance in identifying drug safety issues.
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Table 1: Source population characteristics

CCAE MSLR MDCD MDCR GE
Population (N) N=59,836,290 N=1,466,617 N=11,188,360 N=4,655,736 N=11,216,208
Years of coverage 2003-2008 2003-2008 2002-2007 2003-2008 2000-2008
Gender
Male: N (%) 29,173,105 515,174 4,665,014 2,071,968 4,751,444
(48.75) (35.13) (41.70) (44.50) (42.36)
Female: N (%) 30,663,185 951,443 6,523,346 2,583,768 6,460,828
(51.25) (64.87) (58.30) (55.50) (57.60)
Age (yrs)
Mean (SD) 32.4(18.1) 39.1(17.5) 23.4(22.7) 74.5 (8.0) 40.6 (22.0)
Observation period length (mo)
Mean (SD) 21.2 (18.6) 18.7 (11.1) 14.2 (13.8) 31.9(22.9) 24.0(31.3)
Number of drug exposure records per person
Median (25-75 %tile) 9 (3-28) 14 (5-35) 14 (5-38) 60 (20-134) 8(3-22)
Number of condition occurrence records per
person
Median (25-75 %tile) 15 (5-39) 27 (12-56) 24 (9-63) 57 (20-129) 5 (2-10)
Number of procedure occurrence records per
person
Median (25-75 %tile) 20(7-52) 39 (19-77) 31 (12-70) 72 (26-154) 10(3-24)

CCAE: Thomson MarketScan Commercial Claims and Encounters; MSLR: Thomsort$¢arkéab; MDCD: MarketScan
Medicaid Multi-State Database; MDCR: MarketScan Medicare Supplaireerd Coordination of Benefits Database; GE: GE

Centricity electronic health record; SD: standard deviation



All data sources have been transformed into the OMOP common dat&thétel
The common data model is a single data schema that can be applied to dispatgiesitda
enable consistent and systematic application of analysis methods to produce blempara
results across sources. The OMOP common data model leverages standardized
terminologies to transform sources that use different coding schemes feadidig
conditions into a common vocabulary. The common data model also imposed consistent
transformation rules for key data elements, such as logic for infermuggeciposure length.
The model was designed to accommodate and distinguish between data elements from
disparate sources, such as recording drug exposure by delineating hateseeiption
dispensings captured by pharmacy claims, procedural administrationslenteredical
claims, and prescriptions written and medication history lists recordedcinoglie health
records system.

Conceptually, the common data model core module has eight entities, shown in
Figure 14. These are:

1. Person, which includes attributes such as gender and year of birth

2. Observation Period (the time at which health care information may be asjailabl

3. Drug Exposure (i.e., the association between Person and Drug for a speeific tim
period)

4. Health Outcome of Interest, which may be based on a combination of:

5. The Person’s medical Condition(s)

6. One or more Clinical Observations about the Person (e.g., laboratory tes} result

7. One or more Medical Procedures that the Person required
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8. One or more Visits for health care services for the Person

- - - Person
Observation
Period
---------- - Drug
Terminology eeessssssssssssssx Condition |-} —
Dictionary
(Concept) '
------------------------- Observation |- -
Health
ssesssssssssssssssssesssessssssesss Procedure 4 b Quicome
v of Interest
--------------------------------------- Visit ‘—’
------ — B e
Concapt One-to-Many Mary-te-Many
Magpping(s) Relationship Relationship

Figure 14: OMOP Common Data Model conceptual schema

For each source, the corresponding person-level data elements from the basedata
are transformed into each of the common data model entities. The analysis conranon dat
model is constrained to only include data elements during periods of time whesemiper
potentially eligible to have both exposure and outcome recorded. In the context of
administrative claims, this restriction corresponds to requiring eiigibihere patients have
both pharmacy and medical benefit coverage. In clinical systems, theb#itgligeriods
can be defined by the first and last observation recorded. In both cases, patients must

contribute at least one valid observation period, and all data elements thathiallthhose
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periods of time are recorded in the corresponding tables. Data that falls owaiide a

observation period is excluded from analysis.

The databases code drug utilization using several source terminologiesngcludi
National Drug Code (NDC) and Generic Product Identifier (GPI), as wellbagsqural
administrations coded in Current Procedural Terminology, 4th edition (CPT-4)hetralt
Common Procedure Coding System (HCPCS), and ICD9 surgical procedure codes. These
source codes have been mapped into RxNorm as the standard terminology, which provides a
common classification of clinical drugs and ingredients.

As part of its design, the common data model contains a DRUG_EXPOSURE table,
which stores all verbatim records from the source database that could bajwiesed to
infer drug exposure. Most source databases provide an identifier for the npeoltzadt
used and an exposure start date, which requires inferring exposure period éssgtion
other available records. For example, this table may contain prescrippenslisys (with
information such as quantity and days supply), or prescriptions written with quantity
medicine (with information such as number of refills), or medication histdiygss(which
may provide a drug stop date).

Because source databases may vary significantly in the available ligid®tld be
used to infer exposure, a supplemental data table, DRUG_ERA, was created. The
DRUG_ERA table is intended to have one common structure for maintaining periods of
persistent exposure. DRUG_ERA is a derived table, based on the DRUG_EXPOSURE
table that pre-processes the data to make it more analysis-friendly anmdzaitiie

computational burden. The intent behind developing this framework is to establish one
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systematic, transparent process for building DRUG_ERASs that can be eothgiapplied
across all drugs in a database, and across multiple databases.

Drug era construction is a person-level data transformation that seovpsiposes:

1) rolling up different medical products that contain the same active ingredient, and 2)
combining records that overlap in time, subject to a persistence window. The Bttvabj
is accomplished by leveraging the hierarchy within the standardized tdogyrto

aggregate drugs to the ingredient level of RxNorm. The second objective is aclyieved b
deriving end dates for each drug exposure record, then evaluating whether @xpodows
for the same product are sufficiently close to infer continuous use.

For claims related to pharmacy prescriptions, the dispensed date and number of days
supply are used to extrapolate the end date for the period of drug exposure. Thishagproa
commonly used and shown to reliably reflect utilization patfétn&Vhen a person receives
recurring prescriptions for the same product and strength, the multiple ptiessrimay
need to be treated as a single drug era. To determine whether this is indeee, tie cas
drug’s “persistence window,” which is the number of days after the person stopsdaki
drug and during which the person is deemed to still be affected by the drug, naksrbe t
into account. If the number of days between the end date of the prior Drug Exposure and t
start date of the subsequent drug exposure falls within the persistence windowe thvem t
exposures are considered to belong to the same drug era. The ‘persistence femtesy
experiment is defined to be 30 days.

For example, as illustrated in Figure 15, consider a person who is taking two drugs:
Drug A and Drug B. The person has had four prescriptions for Drug A (Al, A2, A3, A4),

each with a sixty-day supply. The Person has also had two prescriptions for (BUgH®).
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Figure 15: Drug era construction

To define the drug era for Drug A, the timing, duration, overlap, and persistence of
the person’s prescriptions for drug A must be considered. A2 was filled beforgtutesl
completion of Al. Similarly, A3 was filled before the expected completion of A2. A4 wa
filled after A3 was completed, but within the persistence window for Drug Aeldre, the
four prescriptions for Drug A will be consolidated into a single drug era @aig, with the
start for prescription Al recorded as the start date for the consolidated nedahe &nd
date for prescription A4 recorded as the end date. As the persistence windaweetked
between filling the two prescriptions for Drug B, they are defined as tstimct Drug Eras.
The start and end dates for DrugEra2 and DrugEra3 are the start and endrdates f
prescriptions B1 and B2, respectively.

Note, the logic for drug eras does not append overlapping exposure time to the end of

the drug exposure length. That is, if a person receives a second 30-day prescriptian 10 day
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before the allotted 30-days supply for the first prescription, the resulting drugpeld be
50 days long. These ten days will not be added to the persistence windowyasvesdrr
This assumes the old prescription was completed or will be used in the future raketloé ti
dispensing or record of the next prescription. Because drugs are rolled up todbeentg
level, this avoids misclassification of dose changes. It could be arguedrbesvative
assumption be revised to augment the exposure length by this overlap, but these@ssumpti
may likely vary by treatment and specific analysis.

In a manner analogous to the construction of drug eras, condition occurrence records
are standardized into a common terminology and aggregated into condition eras prior t
analysis. Specifically, administrative claims databases code diagiwobgsrnational
Classification of Diseases (ICD9) diagnostic codes, while cliniciésys use ICD?9,
Systematized Nomenclature of Medicine-Clinical Terms (SNOMEDBY Medical
Dictionary for Regulatory Activities (MedDRA). These source codesma@oed into
SNOMED as the standard terminology for this analysis.

The common data model contains a CONDITION_OCCURRENCE table, which stores
all verbatim records from the source database that could be potentially usfed tmndition
occurrences. Most source databases provide an identifier for the condition (SDBR&s |
CM diagnosis code) used and a diagnosis date. However, particularly in adteistra
claims systems, diagnoses may be recorded to facilitate reimburseragdrtitular
procedure, and may be recorded multiple times on the same or successive datth&dmor
one service is provided. The CONDITION_ERA table is intended to provide one common
structure for aggregating distinct diagnosis records into episodes dbcargiven

condition.
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Similar to Drug Eras, Condition Eras are chronological periods of Condition Oacerre
Combining individual Condition Occurrences into a single Condition Era servesati®
purposes: 1) it allows aggregation of chronic conditions that require frequent ongaoeng
instead of treating each Condition Occurrence as an independent event; aidvi3 it a
aggregation of multiple, closely-timed doctor visits for the same condition td deable-
counting the Condition Occurrences.

For example, consider a Person who visits his Primary Care Physicia)y (#©OP
diagnoses the Person with a specific condition and refers the Person to assp@aial
week later, the Person visits the Specialist, who confirms the PCP’s diagnogisovides
the appropriate treatment to resolve the condition with no further care requiree twhes
independent doctor visits should be aggregated into one Condition Era.

This model generally fits well for acute conditions, but may be less robust forchroni
conditions. For example, chronic conditions that do not require regular follow-up may be
recorded as multiple Condition Eras because the absence of data in the perioels isitse
does not justify the aggregation of the eras. Because the persistence winchaW, i
likely that multiple visits will be captured in rapid succession for the samdition;
however, it is unlikely that infrequent visits for chronic conditions (e.g. a Pengion w
Rheumatoid Arthritis who visits his rheumatologist every three months) willgiareal.
However, the small window also reduces the likelihood that independent events will be

falsely classified as the same Condition Era.
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Figure 16: Condition era construction

Figure 16 provides an illustration of how the logic for condition eras is applied to
diagnosis codes. Imagine a Person who has been diagnosed with two conditions during his
insurance coverage period: Condition A and Condition B. The Person has been diagnosed
with Condition A four times (Al, A2, A3, A4), and has been diagnosed with Condition B
twice (B1, B2).

To define condition persistence for Condition A, the timing of successive diagnoses is
considered. Here, A2 is within the persistence window of Al. Similarly, A3 is whbin t
persistence window of A2, and A4 is within the persistence window of A3. Thus, the four
diagnoses of Condition A should be consolidated into Condition Eral, with the start date

equal to the diagnosis date for A1, and the end date equal to the diagnosis date for A4. With
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Condition B, significant time has elapsed between diagnoses B1 and B2. Tdatefannot
be assumed that there is dependence between the diagnoses as the time é&eceeded t
persistence window for B1. Therefore two distinct Condition Eras are defined, dnéhatc
corresponds to B1 and B2.

Note, that for Eras built using 30 day-persistence windows no additional 30 days is
being added at the end of the last Condition Occurrence. That means, that Condition-fre
times within an Era is treated as continual Condition, while in the time followingréhao
Condition is assumed. For outcome ascertainment, the condition era onset, and not the era
length, is of most direct relevance.

The potential concern with applying any persistence window when defining episode
of care is misclassification. A longer persistence window risksnigediagnoses that
reflected independent conditions are part of the same continuum of care, while shorter
persistence window assumptions may falsely separate the recordbiésame episode of
care and observe them as distinct occurrences. In the context of activéaesesevhere
condition occurrences may be used as proxies for potential observations of adeetse e
both forms of misclassification bias require careful consideration. Even wimgnau30d
persistence window assumption, the large majority of aggregated era$roomnibe same
diagnosis occurring less than 10 days from one another. In these cases, meezms
unlikely these conditions represent independent events than it does that the gags coinci
with a common episode of care. A sensitivity analysis of the condition eratpecs
window was conducted to assess the degree of consolidation at 0 days and*30 Thigs

analysis shows that between 33% and 45% of records were successfully agigregiaims
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databases using 30 day window, and that >70% of gaps between successive diageoses
within 30 days for the 10 outcomes under study within OMOP.

If a method only uses the first occurrence of cases as a proxy for incidets, ¢lren
consolidation of eras does not matter (since both have the same first s)artHiatever, if
a method attempts to use prevalent cases, as measured by each distinarenace¢the
selection of the persistence window can be significant. To reiterate, mutpléoethe
same condition does not necessarily indicate distinct occurrences of the conditinsteauat
represent independent periods of time where the data suggests the condition may have
occurred. That is, chronic conditions, such as diabetes, are likely to be consideredtto pers
following the first occurrence, but a person may have multiple eras for ekabetause they

do not receive care of the disease on a regular basis.

3.4 Experimental design

The primary objective of this study is to evaluate the performance of COBIRA&

potential hypothesis generating tool for active drug safety sumvedllacross a network of
observational healthcare databases. Performance is measured as #uy &gowhich

COMPASS identifies true effects and discerns from false positivenfisdi The challenge in
prospectively evaluating a hypothesis generating tool for drug safety igritnand truth’

about the drug-outcome relationship is not established; that is, the intended gohlaf suc

tool would be to uncover new safety issues that have not previously been detected. However
new safety issues that are detected may be either true positive® @usitsve findings, and
substantial work in formal evaluation would need to be conducted to confirm or refute any

findings. Prior to prospective use of a hypothesis generating tool, it is imipiorférst
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retrospectively evaluate the performance of the method in an experimetingl setwve can
establish some level of expectation for prospective performance.

The retrospective evaluation of COMPASS is conducted within six observationa
databases, and across the drugs within the Angiotensin Converting Enzymdi{AGE)r
class. COMPASS is applied to a series of drug-condition pairs to producetestirihtne
potential effects. These estimates are then compared to a pre-defined ‘Grah’
classification of drug-condition relationships as either positive or negaiiveols.
Measures of accuracy are compared to other hypothesis generating methodslelmth
absolute and relative assessment.

ACE Inhibitors provide a solid basis for methodological research becausedte cla
represents a large set of mature products that are actively used in the broatibpopd@E
Inhibitors block the conversion of angiotensin | to angiotensin Il within the rennin
angiotensin system, which plays a important role in the pathology of hypertension,
cardiovascular health, and renal funcffoff® Effective blood pressure reduction has been
shown to reduce death, stroke, and heart di$8as&CE inhibitors have been found to be
effective in the control of hypertension, as well as reduce the risk of acutanigbc
infarction among patients with heart failure, left ventricular remodelifteg acute
myocardial infarction, mortality among patients with severe heart falutlaeduced left
ventricular ejection fraction, and progression of renal disease amongaaiskhon-
diabetic patient$®. Angiotensin Il receptor blockers (ARBs) were developed as an
alternative treatment option to ACE inhibitors and have been found to have comparable
impact on hypertension, cardiovascular disease and heart failure, as veglabdisease

progressioff® #*2 Several head-to-head clinical trials and systematic reviews have show
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that products with the ACE inhibitor class have comparable efficacy to one &héthemnd

the class has comparable efficacy to ARBs for the primary indicatioh®forclass&d’ %22

The Joint National Committee on Prevention, Detection, Evaluation and Treatmenhof Hig
Blood Pressure (JNC-7) currently recommends an ACE inhibitors or ARBstEgr

options for patients with stage 1 hypertension who have diabetes, chronic kidney, disease
history of stroke or myocardial infarction, or high cardiovasculaf¥iskhe American
Diabetes Association and Kidney Disease Outcome Quality Initiatiielnes both
recommend use of an ACE inhibitors or ARBs for diabetic patients with hypenensi
diabetic nephropatfi§’, as well as patients with diabetic or non-diabetic proteinuric renal
diseas#”.

The primary adverse events of ACE inhibitors reported include hypotension, cough,
angioedema, hyperkalemia, and acute renal impaiffne@ther adverse effects include
rashes, hepatotoxicity, dysgeusia, and neutropenia. One meta-analysizeexadverse
events in 51 placebo- or standard treatment controlled randomized trials of ABiEbmshn
patients with heart failure or ventricular dysfunction, and found that coughveelati
risk=1.86), hypotension (RR=1.95), renal dysfunction (RR=1.84), dizziness (RR=1.60),
hyperkalemia (RR=7.11), and impotence (RR=6.46) were all significantly pnevalent
among patients treated with ACE inhibitors than among those in the controlGfoups
systematic review comparing ACE inhibitors and ARBs found differencederof cough,
but no difference in rates of other adverse events such as headache and dfzziftess
relative risk of cough was 2.7 in East Asian patients, as compared to’Whité%en ARBs
were added to ACE inhibitor therapy for heart failure, increased risk otérygion, renal

function, and hyperkalemia has been obséRjedNone of the studies have shown
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significant differences in the rates of cough, angioedema, hyperkatemaieute renal
impairment between specific ACE inhibitéfs

While rare in incidence, angioedema has been consistently shown as ajposénti
across all ACE inhibitors in clinical trials, and reinforced by observatiatabdse studiés
Enalapril was shown to have a 4-fold increase in angioedema risk relativedbglrom 1
per 1,000 to 4 per 1,000 among all subjéctsThe ALLHAT study demonstrated the same
incidence and relative effects in lisinopril, with a rate was 4 per 1,000 for liginegrs,
versus <1 per 1,000 for the other treatnféftsThe HOPE trial showed comparable findings
for ramiprif*’. Rates in angioedema were also consistent in trials for captoaniti

perindoprif>?

. The risk of ACE inhibitor-related angioedema is increased in patients of
African descent, with an observed #ftto four-fold”** increased risk relative to white
Americans. The AASK trial showed the significantly differentsatbangioedema among
ramipril users over 3.5 to 6 years of followup (6.4%), versus 2.3% and 2.7% for metoprolol
and amlodipine, respectivéfy In ALLHAT, rates of angioedema were higher in blacks than
non-blacks (0.7% vs 0.3%.

Hypotension (either postural or not defined) was the most consistently reported
adverse event was hypotension, but definitions of ‘significant’ hypotension vadetlywi
between studies, and observed rates varied accordingtates of hypotension among
captopril trials ranged from 8% to 3786 Hypotension rates were comparable between ACE
inhibitor products, including captopfif, enalaprit®®, and perindoprif® Hyperkalemia was
also consistently reported, and while rates varied significantly in thatiite for enalapfif®

238 no evidence of consistent differences between products in the class. Clialisaind

observational studies have reported renal dysfunction for captggisinopril®®’, and
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£33 with no significant disparities. Two observational stuidfe$**reported

perindopri
hematological effects, including leucopenia and thrombocytopenia, but did not observe
differential effects between drugs. In summary, the ACE inhibitor blass well-
established safety profile, with little evidence to suggest differerftesdte between products
within the clas¥.

This study specifically focused on seven medical products within the lesasspril,
moexipril, quinapril, ramipril, benazepril, captopril, and enalapril. Each ingredias
identified by its corresponding RxNorm ingredient concept identifier, andirattat drugs
(including doses, formulations, and combination products for which an ACE inhibitor is one
of the active ingredients) are subsumed through the standard vocabul@gonsbklips. The
number of patients exposed to any ACE inhibitor and each of the individual ingredients for
each of the six databases is shown in Table 2. Within CCAE, there are oveoB mill
patients with at least one exposure to an ACE inhibitor, and at least 15,000 gedpersisd
to each product. Restriction to incident use yield over 1 million persons overall ezatelrgr
than 10,000 patients for all ingredients except perindopril. The total sample size varie
across the network of databases, but CCAE reflects the largest databasbsamgiently the
largest sample of ACE inhibitor users. However, the proportion of ACE inhibitor nsers i
the Medicare and GE populations are markedly higher than the privately-insureatipopul
reflected in CCAE.

Table 3 highlights the FDA-approved indications and off-label uses for each prasluct
identified using the COMPASS automated heuristic. All products share hypantassa
primary indication, with eight conditions listed as an indication and 14 other conditiowgs bei

listed as an off-label use for at least one product. However, there are sparéids in
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secondary indications and off-label uses between products. No two ACE inhibitorthehare
same indication and off-label use profile. In particular, benazepril is tbad@acost
frequently used ACE inhibitor (behind lisinopril) in all sources, but has the femgisations
reported. The indications are used to construct a comparator group definedragiedter
treatments with the same indications, and all indications and off-labelarsesas

covariates in the COMPASS propensity model.

Table 4 lists the alternative treatments that share at least one commatiandidth
each product, and therefore would be selected as part of the COMPASS comparator
definition. There are 78 ingredients used as a comparator for at least one AGHrinhibi
including products from multiple classes such as Angiotensin Il receptdebsobeta
blockers, calcium channel blockers, and diuretics. The ‘any ACE inhibitor’ amalysi
constructed a comparator group based on 73 products; the fewest products used in
comparator selection is 62 (benazepril) while the largest number of comghragstis 74
(ramipril). Note, certain comparator drugs are listed for one ACE iohibitd not others,
due either to differing indications or because the comparator drug maglbdezkdue to a
combination formulation. For example, hydrochlorothiazide is excluded as a comparator
all ACE inhibitors except ramipril because combination products exist, and amdipi
used for only four ACE inhibitors due to combination use. It is important to note that
COMPASS is applying an automated heuristic to comparator selection, anth asosne of
the active comparators selected may be different from those that would be definegyh t
expert subjective assessment. For example, some may argue that aspiopidodrel
may be inappropriate comparator choices for lisinopril, however they are usisthforil

due to shared indication of myocardial infarction prevention.
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Table 2: ACE inhibitor use across databases

CCAE MSLR MDCD MDCR GE
N=59,836,290 N=1,466,617 N=11,188,360 N=4,655,736 N=11,216,208
n (%) n (%) n (%) n (%) n (%)

Any ACE Inhibitor
Prevalent users
Incident users

3,052,264 (5.10)
1,137,211 (1.90)

108,869 (7.42)
32,532 (2.22)

614,703 (5.49)
188,224 (1.68)

1,569,765 (33.72)
483,853 (10.39)

1,361,058 (12.13)
529,767 (4.72)

Lisinopril
Prevalent users
Incident users

1,808,825 (3.02)
837,280 (1.40)

59,039 (4.03)
21,669 (1.48)

374,919 (3.35)
165,749 (1.48)

931,871 (20.02)
395,600 (8.50)

888,890 (7.93)
399,047 (3.56)

Benazepril
Prevalent users
Incident users

576,123 (0.96)
215,215 (0.36)

20,969 (1.43)
7,228 (0.49)

98,911 (0.88)
38,272 (0.34)

253,275 (5.44)
81,463 (1.75)

166,383 (1.48)
68,539 (0.61)

Enalapril
Prevalent users
Incident users

236,215 (0.39)
85,833 (0.14)

12,067 (0.82)
4,292 (0.29)

85,350 (0.76)
31,800 (0.28)

167,866 (3.61)
51,545 (1.11)

130,920 (1.17)
48,202 (0.43)

Ramipril
Prevalent users
Incident users

318,274 (0.53)
128,343 (0.21)

12,356 (0.84)
3,697 (0.25)

76,815 (0.69)
15,441 (0.14)

169,027 (3.63)
67,553 (1.45)

141,059 (1.26)
65,580 (0.58)

Quinapril
Prevalent users
Incident users

195,047 (0.33)
37,571 (0.06)

7,684 (0.52)
1,476 (0.10)

36,146 (0.32)
9,498 (0.08)

95,355 (2.05)
15,341 (0.33)

88,094 (0.79)
33,933 (0.30)

Captopril
Prevalent users

43,613 (0.07)

1,685 (0.11)

23,822 (0.21)

67,609 (1.45)

31,854 (0.28)

Incident users 11,360 (0.02) 345 (0.02) 6,618 (0.06) 13,195 (0.28) 10,761 (0.10)
Moexipril
Prevalent users 43,152 (0.07) 840 (0.06) 7,253 (0.06) 23,262 (0.50) 17,856 (0.16)

Incident users

11,501 (0.02)

164 (0.01)

1,805 (0.02)

4,928 (0.11)

8,063 (0.07)



L8

Table 3: Indication covariates identified by COMPASS for each ACE inkbitor

Indication

ACE Inhibitors

Lisinopril

Benazepril

Enalapril

Ramipril

Quinapril

Captopril

Moexipril

Asymptomatic Left Ventricular Dysfunction

Bartter's Syndrome

Chronic Heart Failure

Cystine Renal Calculi

Cystinuria

Diabetic Nephropathy

>|0|0|>» |0

Diabetic Retinopathy

Diagnostic Test for Primary Aldosteronism

Diastolic Heart Failure

Edema

Hypertension

Hypertension due to Scleroderma

Hypertensive Emergencies

Left Ventricular Dysfunction following Myocardial Infarction

>|0|0|>»|0|0 |0

Migraine Prevention

Myocardial Infarction

Myocardial Infarction Prevention

Nondiabetic Proteinuric Nephropathy

Prevention of Cerebrovascular Accident

Prevention of Recurrent Atrial Fibrillation

o[> |0 |>»

Raynaud's Phenomenon

(@]

Renal Crisis Scleroderma

ojojo|»|O|»|>|0O|>|O|lO0|>»|O|O|O|O|>»|O0|O|>»|O|>»

(@]

A: FDA-approved indication; O-off-label use
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Table 4: Comparator drugs selected by COMPASS for each ACE inhibitor

2
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Drug class Comparator drug
Aldosterone Receptor Antagonists Spironolactone X X X X X X X X
Aldosterone Receptor Antagonists eplerenone X X X X X X X X
Alpha-Beta Blockers Labetalol X X X X X X X X
Alpha-Beta Blockers carvedilol X X X X X X X X
Analgesic - Central Alpha-2 Receptor Agonists Clonidine X X X X X X X X
Angiotensin Il Receptor Blockers (ARBSs) Losartan X X X X X X X X
Olmesartan

Angiotensin || Receptor Blockers (ARBs) medoxomil X X X X X X X X
Angiotensin || Receptor Blockers (ARBs) candesartan X X X X X X X X
Angiotensin Il Receptor Blockers (ARBSs) eprosartan X X X X X X X X
Angiotensin Il Receptor Blockers (ARBSs) irbesartan X X X X X X X X
Angiotensin |l Receptor Blockers (ARBs) telmisartan X X X X X X X X
Angiotensin |l Receptor Blockers (ARBs) valsartan X X X X X X X X
Antianginal - Coronary Vasodilators (Nitrates) Nitroglycerin X X X
Antiarrhythmic - Class IV Diltiazem X X X X X
Antiarrhythmic - Class IV Verapamil X X X X X
Anticoagulants - Coumarin Dicumarol X X
Antihyperlipidemic - HMG CoA Reductase Inhibitors (statins) Lovastatin X X
Antihyperlipidemic - HMG CoA Reductase Inhibitors (statins) Pravastatin X X
Antihyperlipidemic - HMG CoA Reductase Inhibitors (statins) Simvastatin X X
Antihyperlipidemic - HMG CoA Reductase Inhibitors (statins) atorvastatin X X
Beta Blockers Cardiac Selective Atenolol X X X X X X X X
Beta Blockers Cardiac Selective Betaxolol X X X X X X X X
Beta Blockers Cardiac Selective Bisoprolol X X X X X X X X
Beta Blockers Cardiac Selective Metoprolol X X X X X X X X
Beta Blockers Cardiac Selective nebivolol X X X X X X X X
Beta Blockers Cardiac Selective, Intrinsic Sympathomimetic Activity Acebutolol X X X X X X X X
Beta Blockers Non-Cardiac Select., Intrinsic Sympathomimetic Activity Carteolol X X X X X X X X
Beta Blockers Non-Cardiac Select., Intrinsic Sympathomimetic Activity Penbutolol X X X X X X X X
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Drug class Comparator drug

Beta Blockers Non-Cardiac Select., Intrinsic Sympathomimetic Activity Pindolol X X X X X X X X
Beta Blockers Non-Cardiac Selective Nadolol X X X X X X X X
Beta Blockers Non-Cardiac Selective Propranolol X X X X X X X X
Beta Blockers Non-Cardiac Selective Timolol X X X X X X X X
Calcium Channel Blockers - Dihydropyridines Amlodipine X X X X X
Calcium Channel Blockers - Dihydropyridines Felodipine X X X X X
Calcium Channel Blockers - Dihydropyridines Isradipine X X X X X X X X
Calcium Channel Blockers - Dihydropyridines Nicardipine X X X X X X X X
Calcium Channel Blockers - Dihydropyridines Nifedipine X X X X X X X X
Calcium Channel Blockers - Dihydropyridines Nisoldipine X X X X X X X X
Calcium Channel Blockers - Dihydropyridines clevidipine X X X X X X X X
Calcium Channel Blockers - T-Type Channel Acting Agents Mibefradil X X X X X X X X
Central Alpha-2 Receptor Agonists Guanabenz X X X X X X X X
Central Alpha-2 Receptor Agonists Guanfacine X X X X X X X X
Central Alpha-2 Receptor Agonists Methyldopa X X X X X X X X
Central Alpha-2 Receptor Agonists Methyldopate X X X X X X X X
Digitalis Glycosides Digoxin X X X X X X
Direct Acting Vasodilators Hydralazine X X X X X X X X
Direct Acting Vasodilators Minoxidil X X X X X X X X
Direct Acting Vasodilators Nitroprusside X X X X X X X X
Diuretic - Loop Furosemide X X X X X X X X
Diuretic - Loop torsemide X X X X X X X X
Diuretic - Potassium Sparing Amiloride X X X X X X X X
Diuretic - Thiazides and Related Bendroflumethiazide X X X X X X X X
Diuretic - Thiazides and Related Chlorothiazide X X X X X X X X
Diuretic - Thiazides and Related Chlorthalidone X X X X X X X X
Diuretic - Thiazides and Related Hydrochlorothiazide X
Diuretic - Thiazides and Related Hydroflumethiazide X X X X X X X X
Diuretic - Thiazides and Related Indapamide X X X X X X X X
Diuretic - Thiazides and Related Methyclothiazide X X X X X X X X
Diuretic - Thiazides and Related Metolazone X X X X X X X X
Diuretic - Thiazides and Related Polythiazide X X X X X X X X
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Diuretic - Thiazides and Related Trichlormethiazide X X X X X X X X
Ganglionic Blocking, Non-Depolarizing Mecamylamine X X X X X X X X
Peripheral Alpha-1 Receptor Blockers Doxazosin X X X X X X X X
Peripheral Alpha-1 Receptor Blockers Prazosin X X X X X X X X
Peripheral Alpha-1 Receptor Blockers Terazosin X X X X X X X X
Platelet Aggregation Inhibitors - Salicylates Aspirin X X X
Platelet Aggregation Inhibitors - Thienopyridine Agents clopidogrel X X
Postganglionic Blockers, Antihypertensive Guanethidine X X X X X X X X
Postganglionic Blockers, Antihypertensive guanadrel X X X X X X X X
Renin Inhibitor, Direct aliskiren X X X X X X X X
Reserpine and Derivatives Reserpine X X X X X X X X
Reserpine-Thiazide & Related Combinations benzothiazide X X X X X X X X
Thrombolytic - Tissue Plasminogen Activators Alteplase X X
Unclassifed Alseroxylon X X X X X X X X
Unclassifed Pargyline X X X X X X X X
Unclassifed Phenprocoumon X X
Unclassifed cyclothiazide X X X X X X X X
Unclassifed quinethazone X X X X X X X X

X: drug used in comparator group
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Table 5: Contraindications used as restriction criteria by COMPASS foreach ACE inhibitor

X: condition listed as contraindication

2
2l =| 8] 2| =| 2| 2| =T
wl 8] a| G| 2| 8| 8| 2
O m
<
Indication
Abnormal Hepatic Function Tests X X X
Acute Hepatic Failure X X
Acute Pancreatitis X X X X X X X
Acutely Decompensated Chronic Heart Failure X X
Anaphylaxis occuring from Desensitization to Allergens X X
Angioedema X X X X X X X
Anuria X X X X X X X
Aortic Valve Stenosis X X X X X X
Ascites X X
Atrial Fibrillation with Lown-Ganong-Levine Syndrome X X
Atrial Fibrillation with Wolff-Parkinson-White X X
Azotemia X X
Bone Marrow Depression X X X X X X X
Bradycardia X X
Cardiogenic Shock X X
Cerebrovascular Insufficiency X X X X X X
Chronic Heart Failure X X
Chronic Idiopathic Constipation X X X
Complete Atrioventricular Block X X
Connective Tissue Disease X X X X X X X X
Cough X X
Dehydration X X X X
Diabetes Mellitus X X X X X X X
Disease of Liver X X X X X X X X
Disorder of Electrolytes X X
Gout X X X X X X X
Head and Neck Angioedema X X X
Hemodialysis with High-Flux Membrane X X X X X X X X
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Indication

ACE Inhibitors

Lisinopril

Benazepril

Enalapril

Ramipril

Quinapril

Captopril

Moexipril

Hepatic Cirrhosis

Hepatic Coma

Hereditary Angioedema

Hypercalcemia

Hypercholesterolemia

Hyperkalemia

Hyperparathyroidism

XXX X [X [X

XXX X [X [X

Hypertrophic Cardiomyopathy

Hyperuricemia

Hypokalemia

Hypomagnesemia

Hyponatremia

Hypotension

XXX | X [ X

XXX XX XXX X [X X | X

XXX | X [ X

XXX XX XXX X [X X | X

XXX XXX XXX [X [X [X

Hypovolemia

Immunosuppression

XXX XXX XXX XXX | X | X

x

x

x

x

Incomplete AV Heart Block

Intestinal Angioedema

x

Jaundice

Left Ventricular Dysfunction following Myocardial Infarction

Myocardial Infarction

x

Myocardial Ischemia

Neonatal Hyperbilirubinemia

Neutropenic Disorder

x

x

x

Oliguria

x

XX [ X |X

Peripheral Edema

Pregnancy

x

Renal Artery Stenosis

x

x

x

Renal Disease

XXX X [X [ X |X

SIADH Syndrome

XXX | X

Scleroderma

Severe Aortic Valve Stenosis

Severe Coronary Artery Disease

DX XX XXX XXX XXX XXX XXX XXX XXX XXX [X [ XX | X | X
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Indication

Severe Diarrhea X X

Severe Hepatic Disease X X

Severe Hypotension X X X

Severe Renal Disease X X X X X X X

Severe Vomiting X X

Sick Sinus Syndrome X X

Sympathectomy X X X X X X X

Systemic Lupus Erythematosus X X X X X X X X

Transplantation Procedure X X X X

Ventricular Tachycardia X X




The safety profile of ACE inhibitors is thought to be well-characterizetyydimg a
broad set of known safety issues that span the continuum from common, nuisance effects,
such as cough, to rare and more series events, like angioedema and renefioiysfuro
conduct the retrospective evaluation of COMPASS, we must first define enefeset of
‘positive controls’ and ‘negative controls’ that can be used to assess methdalshpace.

This objective was achieved through a systematic analysis of the stduystadeict labels,
using labeled events as surrogate markers for ‘positive controls’ andrgeteains
unrelated to any labeled events as ‘negative controls’.

Regenstrief Institute has developed a novel application, Structured Profett La
Information Coder and Extractor (SPLICER), which performs natural languragessing
on structured product labels (SPL) to extract terms that may be adverds. e8PLs are
FDA-approved labeling from product manufacturers, publicly available from thernda
Library of Medicine, that is formatted in XML to facilitate standardizeal@ation. The
application classifies the events by the location of occurrence, as ‘BlagkWarnings and
Precautions’, ‘Adverse Reactions’ or ‘Post-marketing experience’, ares ¢bd terms of
MedDRA preferred terms (PTs). Each SPL was mapped to a corresponding RxNgrm dr
concept.

SPLICER’s most recent run was performed on 12/19/2009 and include 5602 SPL’s from
the DailyMed sit€®®. This set of labels comprised 1706 distinct generic drugs and 2861
distinct brand names. SPLICER successfully coded and extracted 608,948 adverse events
from these labels. These events were mapped to 4627 distinct MedDRA prefensedAe

evaluation of SPLICER’s performance in retrieving events from the Ad#saetion

94



section of 100 labels demonstrated a recall of 93% and a precision of 95%. The output of
SPLICER for SPLs from the ACE inhibitors was used for defining the refesstce

Table 6provides a descriptive summary of the number of events extracted from dach SP
summarized by the ingredients within each DOI. For example, there arei@8ét @§tLs

that involve lisinopril. Among those 28 labels, SPLICER identified 234 distinct MedDRA
PTs. On average, each of the labels listed 184 distinct events, with the minimum of 60
events and a maximum of 205 events. This table highlights the variability observed in
product labeling, both among labels for the same ingredient as well as am@auengr

within the same drug class.

Table 6: Labeled events identified in SPLs by ingredient

Distinct Min Average Max
events | events | events | events
Ingredient Number | across | among | among | among

name of SPLs SPLs SPLs SPLs SPLs
Lisinopril 28 234 60 184 205
Moexipril 6 261 72 158 242
Quinapril 15 174 72 101 151
Ramipril 9 112 87 100 110
Benazepril 19 180 58 89 133
Captopril 12 143 103 114 135
Enalapril 15 211 117 142 171
Fosinopril 12 183 116 132 140
Perindopril 3 153 150 151 152

Selecting ‘positive controls’

Labeled events were selected as ‘positive controls’ test cases ittheea were
satisfied:

1. MedDRA PT was listed on >=50% of structured product labels within the OMOP

DOl
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2. MedDRA PT had at least one ICD-9-CM code directly mapped to it within the
OMOP standardized terminology
3. One of the ICD-9-CM codes mapped to the MedDRA PT also directly mapped to at

least one SNOMED concept

We created two levels of classification: Tier 1 events are those condhairsccur in
either the ‘Black box’ or ‘Warnings/Precautions’ sections on >=50% of the ®tis the
class. Tier 2 events are those conditions that occur as adverse events aagvithere
product label (Black box, warnings/precautions, adverse reactions, or Post-ngarketi
experience) on >=50% of the SPLs within the class. Tier 1 events are a subséfief 2
labeled events. It could be argued that events listed in black box warnings or
warnings/precautions are more likely to be causally related and obseraivrary analyses
will be based on all Tier 2 events, but Tier 1 classification offers a potemnistigiey
analysis when assessing methods performance.

The rationale for criteria #1 was that the majority of labels contributitiget drug class
needed to list the event in order to have some confidence that the association could be
potentially observed. The rationale for criteria #2 and #3 is to ensure the event is
theoretically observable across the data sources under study. That i8]soDRA
preferred terms include adverse event concepts that have no corresponding code®-in ICD
CM, so could not possibly be recorded in any US administrative claims systantheA
issue is that some ICD-9 codes may map to multiple concepts; in thesdltas€®-9 code
is mapped in the standardized terminology to a surrogate concept and is excluded from

consideration as a test case. We chose to restrict our focus to concepts tateals
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corresponding SNOMED concepts to enable us to evaluate both MedDRA and SNOMED as

alternative standardized terminologies for active surveillance.

As a class, ACE Inhibitors have 84 SNOMED-based ‘true positives’, 21 of which are

Tier 1 Warning events. The list of the terms is shown in Table 7. The observedbackgr

prevalence in CCAE is categorized for each condition.

Table 7: ACE Inhibitor 'true positive' reference set

Position in
ConceptID Condition Concept Name Prevalence Label
196490 Acute renal failure following labor AND/OR delivery Low Tier 1 Warning
197320 Acute renal failure syndrome High Tier 1 Warning
316447  Chronic hypotension High Tier 1 Warning
254761 Cough High Tier 1 Warning
22350 Edema of larynx High Tier 1 Warning
193782 End stage renal disease High Tier 1 Warning
197988 Generalized abdominal pain High Tier 1 Warning
316866 Hypertensive disorder High Tier 1 Warning
193519 Impaired renal function disorder High Tier 1 Warning
317002 Low blood pressure High Tier 1 Warning
314432 Maternal hypotension syndrome Low Tier 1 Warning
313829 Maternal hypotension syndrome - delivered with postnatal problem Medium Tier 1 Warning
31967 Nausea High Tier 1 Warning
27674 Nausea and vomiting High Tier 1 Warning
75365  Oliguria and anuria High Tier 1 Warning
196764 Post-delivery acute renal failure - delivered with postnatal problem Low Tier 1 Warning
4167493 Pregnancy-induced hypertension Medium Tier 1 Warning
195014 Renal failure following molar AND/OR ectopic pregnancy Medium Tier 1 Warning
4058979 Renal sclerosis NOS None Tier 1 Warning
433879  Umbilical pain High Tier 1 Warning
441408  Vomiting High Tier 1 Warning
440979  Acquired hemolytic anemia High Tier 2 Label
440372  Acquired thrombocytopenia High Tier 2 Label
4110022  Acute bronchitis and bronchiolitis Medium Tier 2 Label
23798  Acute laryngopharyngitis High Tier 2 Label
258453  Acute upper respiratory infection of multiple sites High Tier 2 Label
139902  Allergic urticaria High Tier 2 Label
439777  Anemia High Tier 2 Label
321318 Angina High Tier 2 Label
73231  Arthralgia of temporomandibular joint High Tier 2 Label
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ConceptID
78508
77642
81112
79106
78516

437113
317009
438727
256717
77670
256448
4110029
75860
136775
75635
196523
312437
433440
318556
437448
436297
318566
80141
440674
440071
78234
23325
194087
138565
434610
312950
436962
252658
77074
435224
194133
78517
437834
375838
314666
319041
315078
135338
78162
134159
441264
4067066

Condition Concept Name
Arthralgia of the ankle and/or foot
Arthralgia of the forearm

Arthralgia of the lower leg

Arthralgia of the pelvic region and thigh
Arthralgia of the upper arm

Asthenia

Asthma

Atypical depressive disorder
Bronchospasm

Chest pain

Chronic asthmatic bronchitis

Chronic pharyngitis and nasopharyngitis NOS
Constipation

Contact dermatitis due to solar radiation
Cramp

Diarrhea

Dyspnea

Dysthymia

Epistaxis

Exhaustion due to excessive exertion
Exhaustion due to exposure

Flushing

Functional diarrhea

Gout

Gout associated problem

Hand joint pain

Heartburn

Hepatitis due to infection
Hyperhydrosis disorder
Hyperkalemia

IgE-mediated allergic asthma
Insomnia

Intrinsic asthma without status asthmaticus
Joint pain

Leukopenia

Low back pain

Multiple joint pain

Non-autoimmune hemolytic anemia
Objective tinnitus

Old myocardial infarction

Orthostatic hypotension

Palpitations

Pemphigus

Peripheral vertigo

Precordial pain

Primary thrombocytopenia

Pruritus and related conditions
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Prevalence
High
High
High
High
High
High
High
Medium
High
High
High
Medium
High
High
High
High
High
High
High
Medium
Medium
High
High
High
Medium
High
High
Medium
High
High
High
High
High
High
High
High
High
Medium
Medium
High
High
High
Medium
High
High
High
Low

Position in
Label

Tier 2 Label
Tier 2 Label
Tier 2 Label
Tier 2 Label
Tier 2 Label
Tier 2 Label
Tier 2 Label
Tier 2 Label
Tier 2 Label
Tier 2 Label
Tier 2 Label
Tier 2 Label
Tier 2 Label
Tier 2 Label
Tier 2 Label
Tier 2 Label
Tier 2 Label
Tier 2 Label
Tier 2 Label
Tier 2 Label
Tier 2 Label
Tier 2 Label
Tier 2 Label
Tier 2 Label
Tier 2 Label
Tier 2 Label
Tier 2 Label
Tier 2 Label
Tier 2 Label
Tier 2 Label
Tier 2 Label
Tier 2 Label
Tier 2 Label
Tier 2 Label
Tier 2 Label
Tier 2 Label
Tier 2 Label
Tier 2 Label
Tier 2 Label
Tier 2 Label
Tier 2 Label
Tier 2 Label
Tier 2 Label
Tier 2 Label
Tier 2 Label
Tier 2 Label
Tier 2 Label



Position in

ConceptID Condition Concept Name Prevalence Label
136184  Pruritus of skin High Tier 2 Label
441540 Reactive confusion High Tier 2 Label

78232  Shoulder joint pain High Tier 2 Label
140821 Spasm High Tier 2 Label
381864  Subjective tinnitus High Tier 2 Label
377575  Tinnitus High Tier 2 Label

4181583  Upper respiratory infection High Tier 2 Label

Selecting ‘negative controls’:
Labeled events were selected as ‘negative control’ test casesdfiteuia were satisfied:

1. MedDRA PT does not have the same High Level Term as any PT that waseelxtract
from any location (black box, warnings/precautions, adverse reactions, post-
marketing experience, indications) of any structured product labels amypwaigLey

2. MedDRA PT had at least one ICD-9-CM code directly mapped to it within the
OMOP standardized terminology

3. One of the ICD-9-CM codes mapped to the MedDRA PT also directly mapped to at
least one SNOMED concept

4. MedDRA PT belongs to a System Organ Class other than "Pregnancy, puerperium

and perinatal conditions" and "Congenital, familial and genetic disorders"

Criteria #1 ensures that no ‘negative control’ is related to any labeled evests @
conservative restriction to avoid selecting any terms that could be datgerély eliminating
all adverse events that occurred on at least one label. The ‘negative contraXrsiist a
High Level Term without any other labeled events to minimize the chance thegative

control’ would be selected because it was a distinct term even though it waallglinic
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similar. For example, ‘myocardial infarction’ is a labeled event, butéacytocardial
infarction’ and ‘myocardial ischemia’ are not; however, since all threestbelong to the
HTL ‘Coronary ischemic disorders’, all are excluded as candidate imegantrols’.
Criteria #4 was applied because pregnancy-related adverse eventsrark-défined and

typically reflect special case circumstances that are not thdisgecus of this study.

Based on these criteria, 2,800 distinct SNOMED terms were identifiedgeitreecontrols’.

Table 8: ACE Inhibitor negative controls, by prevalence

Prevalence SNOMED terms
High 608
Medium 1439
Low 724
None 29
Total 2800

It is acknowledged that the objective heuristic used to construct the refeestnboth true
positives and negative controls, is subject to misclassification. Becaubéi&mbt known
for any drug, we are required to select some surrogate (which has its owmeshdef
sensitivity and specificity). We understand that labeled events have not nécbssa
shown to be causally related to drug, or may not be expected to be observed in subsequent
study. In particular, adverse events listed in the Adverse Reactions and Postiida
Experience section may reflect occurrence from clinical trials or speotg reporting
without any expectation of causality. Similarly, it is possible that ‘negabntrols’ have
been selected that do have legitimate temporal relationships with the drugsestjrand
either have not been previously identified or were not listed on the product label. For
purposes of the experiment, all scores for ‘negative controls’ that suggésti@nship were

classified as false positive findings. The process used to identify thenefeset was
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empirically driven to minimize subjective assessment, but carries itsiontations.
SPLICER may misclassify adverse events, either missing orgadi code events that exist
on the label or identifying terms on the labels that are not actual adverse evéitesth@/
application has strong performance characteristics for the AdversedrReaection, it may
be more prone to error in the Black Box or Warnings/Precautions sections due to the
unstructured nature of the text. SPLICER classifies all matched teretmqgs criteria as
potential adverse events, though may misclassify terms that were insketadtors or
contraindications.

That said, it is not necessary to identify all potential ‘positive controls’ @ligible
‘negative controls’. Instead, the number of test cases can be considered tleesszanpl
within this methodological experiment. Because the same set of testheagyi
consistently applied across all methods, any misclassification oftssst ¢either ‘positive
controls’ that are not related, or ‘negative controls’ that have an associatiorg sboul
introduce differential bias to the experiment and should not influence the relatgsrassit
of performance measures between methods.

A key limitation in this experimental design is the potential lack of gemellity in
the results. A method’s performance in identifying known drug safety issulediscerning
from known non-issues may not be consistent with performance of classifying unknown
effects. Because the performance characteristics calculatealsaa dn the artificial
definition of truth used for experiment, care should be taken when attempting to predict how
methods may perform prospectively in an active surveillance network. Instesglnibgics
should be considered to be most appropriate for comparative purposes across methods and

databases. The experiment’s use of six data sources should provide a robust measure of
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performance across disparate data, but the findings may not be directlyl@dppbca
network of different data sources that could potentially be used for a natiomal acti
surveillance system. While ACE inhibitors offer a wide array of drug sefetes to test
again, the results may not be generalizable to all potential effects exfmebgedetected
within an active surveillance system. In particular, the performance aigthes medical
products, such as newly marketed medicines with low initial use, products for other
therapeutic uses, and drugs with acute or intermittent exposure, may varysubs re

observed in this study.

3.5 Performance measures

The potential use of COMPASS as a hypothesis generating tool for idemtiiyig safety

issues is analogous to signal detection theory, and measures of performafati®wh&bm
diagnostic and screening testing are well suited for study. The aim iglictgréinary
classification of drug-condition status (there is, or is not, a causal relapdretween

exposure and outcome). The method prediction is a continuous valued score, but could be
imagined to be dichotomized at some defined threshold. In this context, the tesboédes

be categorized into the following 2x2 contingency table (Figure 17), and variousreseab

performance can be estimated.
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Drug-condition status
Y —‘truc association’,
N — ‘negative control’

Y N
Method Positive predictive
P —_— lue — precision —
prediction: Y| Truepositives False positives o
Drug-condition P P TP/ (TP+FP)
pairmet a
Sﬁf]nﬁdld Negative predictive
resho . _
N | Falsenegatives True negatives value=TN/
(FN+TN)
Sensitivity Spccificity
- Recall - — TN/ (FP+TN)
TP/ (TP+FN)

Figure 17: Performance measures for 2x2 contingency table

Measures of accuracy can be applied within the experiment that are nchioealsto
defined dichotomization of the method score. In addition to studying COMPASS
performance at logical thresholds, such as ARDLB>0, the performance oPES#was
characterized through multiple measures of accuracy, including meageapeeaision,
precision-at-k, and area under receiver operator characteristic (RO/@)

‘Mean average precision’ (MAP) can be thought of as the average precisiah at ea
threshold value that represents a ‘true positive’ association. MAP is\edfgdhe
equivalent to the area under precision-recall curve. MAP can be formaftigdes follows.

Let y,. =1 if thedth drug is associated with tisth condition (‘positive control’) and zero

otherwised=1,...D, c=1....C. Let M = >y, denote the number of causal combinations and
d,c

N =DxC the total number of combinations. L&} denote the predicted value for tiite
drug and theth condition. For a given set of predicted valles: (z,,A ,24.) , we define

“precision-atKk” denoted P(K)(g ) as the fraction of causal combinations amongsKthe
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largest predicted values D . Specifically, letz,, >A > z,, denote the ordered values of

Y Then:
1 K
P(K)(g) = —z Yiy »
K=

wherey;; is the true status of the combination correspondiizg to“Mean Average

Precision” is then defined as:

S:

3 P2

1

WK:y(K):l

Unscored conditions are treated as if they produced a minimum score, such that
methods receive the maximum penalty for not classifying ‘positive controls’

‘Precision-at-k’ (P@Xk) is commonly used in information retrieval, anéceflthe
proportion of correctly classified objects at a defined cutoff (k) among aredrdet. So, in
drug safety contexts, setting k=100, P@k could be interpreted as: ‘among the top 100
estimates produced by the method, what proportion of the drug-condition pairs reflect
positive controls’.

An additional tool for assessing accuracy is the Receiver Operator Chatacte
(ROC) curve, which are based on evaluating true positive rate (sensdivityalse positive
rate (1-specificity). The area under the ROC curve (AUC) provideslar measure of
performance at all potential thresholds.

Finally, we define ‘recall-at-FP’ (R@fp) as the sensitivity obtdiata defined

tolerance of false positive rate. So, for example, setting FP=5%, R@fp odrrpested as:
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‘what proportion of true positives can a method identify before 5% of negative sontrol
would also be identified'.

Mean average precision, precision-at-k, area under curve, and recall-at-tpaépr
scalar measures of performance, but each reflect a complementary cotripone
interpretation. None are sufficient, since each have inherent liomisatiPrecision-at-k and
recall-at-fp are inherently threshold-based, insofar as a subjectieesasent of k and fp is
required. In contrast, MAP and AUC are threshold-independent, but provide a composite
score that may reflect boundary conditions of little practical use. FormpdsaAUC
integrates over all levels of specificity, including high false posrates that would likely be
unacceptable in a drug safety context. Similarly, MAP integrates tvevels of recall,
though it may be unrealistic to expect that a given method can identify all advense e
with high precision and focus on more modest levels of detection may be more appropriate
A method that produces higher performance scores across all summary measure
considered to have superior aggregate performance. However, it is feasibéthfodsrio
have differential behavior across the summary measures.

Moreover, summary performance measures do not reflect expectations for
performance for any specific adverse event, as each condition can havedifeieutes
(such as background prevalence, time-to-onset, strength of association, an@tegree
confounding) that could alter a method’s behavior for that relationship. For eaeh drug
condition pair, a method produces a score, but the performance of that pair cannot be
measured without putting the score into context with other scores produced by the nrethod fo
other drug-condition pairs. As such, for each event, it is possible to measusepracd

false positive rate at the score produced by essentially treatingethieseore as the
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threshold for dichotomizing scores, as shown in Figure 17. Event-based performance
measures were provided to explore differential method performance dwgsssitive

controls.

3.5 Data analysis by Aim

Aim 1: Characterize the performance of COMPASS in identifying known afety issues
associated with ACE inhibitor exposure within an administrative claimsdatabase

This aim studied how COMPASS performs in the Thomson Reuters MarketScan
Commercial Claims and Encounters (CCAE), a large administrative aiitabase
containing 59 million privately insured lives. COMPASS was applied to the AChitohi
drug class to generate estimates of outcome relationships for a definé@&®4 potential
adverse events. These outcomes include both the 84 known associations previously
characterized in the product label as well as a sample of 2800 'negatingd’ contlitions for
which there is no evidence of drug-related effects. Each test castsraft@ndition concept
in the SNOMED terminology that subsumes one or more ICD9 codes.

Descriptive statistics summarized the distribution of the estimates #athgaacross
attributes of the conditions, such as the ground truth status, background prevalence rate,
confidence in association, and expected degree of confounding. Stratified piypdeab8ity
functions were used to explore two-way interactions between ground truth and condition
characteristics.

The objective of a hypothesis-generating tool is to accurately distinguisbdretiue

and false relationships. The performance of COMPASS were charactéarizeght multiple
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measures of accuracy, including mean average precision, area under RGpetd,

and recall-at-fp. These measures provide an estimate of overall peréera@oss all test
cases. In addition, we evaluated the tradeoff between four perfornfearaeteristics
(sensitivity, specificity, positive predictive value, and negative predictalue) at alternative
threshold values, including ARD LBCI > 0, which would be a natural indicator for
designating a significant relationship. For each ‘true positive’, we cteaized performance
by assessing the false positive rate and precision if the threshold werthsedeat case
score. This review across specific conditions allows the exploration of diftdre
performance among the true relationships.

These measures were compared to those from three alternative mettaudiséo
surveillance signal generation: disproportionality analysis; observhsoreening; and,
univariate self-controlled case series. Each method has previously been gpfopose in
active surveillance, yet use fundamentally different analyticaksjfies for producing drug-
condition estimates. Disproportionality analysis reflects an adaption ta andang signal
detection approach used in spontaneous adverse event reporting. Observationagjscreeni
applies an unadjusted cohort-based design to compare event rates during exposuré to that
the overall population. Self-controlled case series is a case-based hpghatattempts to
measure drug effects based on time exposed and unexposed among those with at least one
outcome. All three approaches have been made publicly available as part of tire OMO
methods library, and are described in further detail below. For each ttemathod, the
same descriptive statistics used for COMPASS were applied to facddenparisons. In

addition, because method scores are measured on different scales and maydrane diff
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degrees of variability, the rank of scores from each method were used to ensdlization
of relative performance across methods on a normalized scale.

The comparison of these hypothesis generating tools is explonatoayure. As such,
there is no formal statistical test being applied to determine that CE&FPAsuperior or
non-inferior to other alternative approaches. Such tests do exist for comparingeé&zn
alternative diagnostic tests. However, in active surveillance, there xpactation that no
single method will be sufficient for all potential active surveillance needisthat multiple
approaches may be useful across a network of disparate data sources. This isedue to t
heterogeneity that exists within the potential drug-condition associatimes potential
study. Unlike a diagnostic tool for a defined condition, such as DXA for detecting hip
fracture, where the variability in the tool’s performance is inherent to the dindiVbeing
assessed, the variability in an active surveillance tool stems from vityiabthe adverse
event, the exposure, and the source population. For example, overall performance as
measured by MAP or AUC may suggest the use of a particular tool, but for acspecifi
condition with a particular set of characteristics, an alternative appraacbhearpreferred.
Instead, the objective of this study is to determine if COMPASS has the padiential

complement existing approaches.

Disproportionality analysis

Disproportionality analysis methods for drug safety surveillance reqmrése primary class
of analytic methods for analyzing data from spontaneous adverse event reystengss
(SRSs). SRSs receive reports that comprise of one or more drugs, one odvecse avents

(AEs), and possibly some basic demographic information (in addition to narrativexaind te
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data). Disproportionality analysis methods include the multi-item ganoisaah shrinker
(MGPS), proportional reporting ratios (PRR), reporting odds ratios (ROR), andi@ayes
confidence propagation neural network (BCPNN). The methods search SRS databases f
“Interesting” associations and focus on low-dimensional projections of thesgatafically

2-dimensional contingency tables, as shown below.

AEj= AEj=No Total
Yes
Dl'Ug i=Yes V¥c Wo1 W=
Drug i = No W W11 W
Total Wk Wi Was

Given a two-by-two table such as Table 2, various disproportionality metridseca

estimated as shown below.

Proportional reporting ratto*

PRR= WOO/WOO + WOl
WlC/Wlo + Wll
Reporting odds ratfg™

ROR: WOO/WIO
WOl/Wll

Multi-item Gamma Poisson ShrinRer

Let woo(i,j) denote thevyg entry for the two-by-two table for thth drug and thgh

condition. Assume that ea@l(i,j) is a draw from a Poisson distribution with mea(in;).

Letm(i,j) =1(i,))*E(i,)), where Ei(j)=wo.(i,j)*Wsa(i,j)/w(i,)), i.e., the expected value of

Wo(i,j) under independence and is assumed to be known. The goal is to estimate the values of

thel’s . Al(i,j) far from one supports the notion that driamnd conditior) are not
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independent. MGPS is a Bayesian procedure and starts with a particular&wess prior

distribution for the collection dfs:

ﬁ(l;alyﬁlyayﬂp P) = Pg(ﬂ“!aliﬁl) + (1_ P)g(ﬂ’aZﬁZ)
where g(1;«, ) denotes a gamma density witth. The “EBGM” measure is defined as:

EBGM(i, j) = 272":(D)
where:

EBIlog, = (Q,[w (s + Woo — 109(8, + E) |+ (- Q,)[w(et, + Wy, — l0g(5, + E) Y l0g(2)
Q, = Pf (W1, 8, E) /[Pf (Woor 1, B, E) + (1= P) f (W 5, B, E)] and
f(Wogsa, B, E) = L+ BIE) ™ L+ E/S) ™ T'(a + Wyo) IT ().

MGPS uses an empirical Bayes approach and chagdas ay, b,, andP to maximize:

[ IPf(Woo(i, 1), B, E L 1)) + (0= P) f (Woo(i, 1); 2,8 ELL 1)) -

The EBGM score is the mean of the posterior digtiim of the true RR. Other summaries
are possible. For example, DuMouchel mentions “EBOBhis is the &' percentile of the
posterior distribution — meaning that there is &9arobability that the “true” RR exceeds
the EBO5. Since EBOS is always smaller than EBGI, tim a sense, adds extra shrinkage

and represents a more conservative choice than EBGM

Bayesian confidence propagation neural network (BiEPInformation Component (IC5>

. Wi, ) +1/2
IC(i,j) = log, 2>%-———

(D) =log. =2 i 717
Disproportionality analysis methods can be reaadplied to longitudinal observational
databases insofar as the longitudinal data canbalswojected into 2x2 contingency tables.
Various design alternatives are available for defjrihis projection. These decisions
include: how to count events (whether to categatigénct patient status or replicate the

notion of spontaneous reports of conditions follogvexposure); definition of outcomes
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based on incident or prevalent occurrence of camdif definition of a surveillance window
to infer time-at-risk relative to exposure staread (30 days from onset; all time exposed,
time exposed + 30 days from end, any time followemgosure start); and whether to stratify
on age, gender and/or year of report to calcubgpected values. Combined with the
various potential metrics, there are 112 configaret of the OMOP disproportionality

analysis under experimentation.

Observational screening

Observational screening is a method originally ttgyed at GlaxoSmithKline and now made
commercially available as part of the SAEfetyWorksa@tware application by ProSanbds
193196 screening applies a basic cohort design to agtithe rate of condition occurrence

during the time exposed to a particular product d:

-1

¥

SR, = .

1

where for the i-th person; ks the number of conditions that occurred durhmgtime-
at-risk {, as defined by the periods of exposure (drug edadate — drug era start
date) and some surveillance window.

This screening rate is then compared to the ovieagkground rate of the condition to

produce a screening rate ratio:

2 X
SREE: = SEE‘"""TL—T:

where SR is the screening rate for the drug of interestrd] X is the number of
conditions that occurred any time within the i-#rgopn’s observation period

(regardless of exposure status) and The total observation time.
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The estimate is unadjusted and therefore susceptiblarious forms of confounding. The
primary intent, in its original conception, wasttBareening rate ratios could be calculated
very efficiently for all potential drug-conditioraps across large observational databases,
and could provide a first-pass approach for idgintif potential issues that warrant further
evaluation. The screening rate ratio metric isugle estimate of the absolute effect size,
which could be used to identify differences in acence of outcomes during exposure.
Screening assumes the screening rate ratio igoeofatvo Poisson distributed rates, and uses

the closed form solution by Graham et al to estntainfidence interval:

UB95: (t/to)*((2*X 1*X o+ Zu2™* (X 1+X0) + V( Zor2™ (X 1+X0)*(4*X 1*X o+

Zo2™(X1+X0))))/(2*(x1)?))

LBO5: (ta/to)*((2*X 1*X 0 Za2 (X 17+X0) = V( Zuy2™ (X 1+X0)*(4*X 1*X o+ Zoy2™*(X 1+%0))))/(2*(X1)?))

where ¢ is person-time exposure for cohort 0,
t; is person-time exposure for the entire data squrce
Xo Is the number of events occurring during exposumhort O,

X1 is the number of events occurring at any timeHlerentire data source

Various design decisions can alter the screenitegestimate, some of which are under
experimentation within the OMOP implementation b§ervational screening. These
include: the use of first exposure or all exposudesining outcomes based on incident

conditions, prevalent conditions, or first conditi@ppearing within time-at-risk; definition
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of a surveillance window to infer time-at-risk rél@ to exposure start or end (30 days from
onset; all time exposed, time exposed + 30 days &nd, any time following exposure
start); and whether to count as outcomes conditimaisoccur on the first day of exposure.
Additionally, both the screening rate ratio poistimate and lower bound of the confidence
interval can be used as scores to use for primgtigotential effects. In total, 32 different
parameter settings are explored as potential ali#econfigurations of observational

screening.

Self-controlled case series

The univariate self-controlled case series (USCapyoach assumes that events arise
among persons as a non-homogeneous Poisson pgfote$8 The method only makes use
of persons who have time exposed and unexpose@|smtiave experienced at least one
event. The observation period for person i istitine period during which an event could be
observed. Each person’s observation period isisplitrisk periods, indexed by j. Lefe
denote the time spent by individual i in risk pdrjoThe incidence, denoteg, is assumed

to be constant within each interval. The curremtlementation of univariate self-controlled
case series assumes a multiplicative model fointtidence functiond = exp@®; + ;)
where®; represents an effect for each person i, fiamepresents an effect for risk group j,
with Bp = 0. The incidence function during the baseliegqa is simplykip = exp@®;).

Note, other logical extensions can be applied, sscturther risk modeling based on age

groups, concomitant drug use, or other time-vargioxariate®’, but are not included in the
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current model proposed for active surveillancenditioning on the number of events n

observed for person i during the observation petioel log likelihood is multinomial:

- exp(B_)es

The desirable phenomenon within the self-controtieske series framework is that all person-
level effectsd; cancel out, because incidence rates are compaited & given person’s

time window. In the active surveillance contex§CLCS can be applied across multiple
drugs and conditions, but the estimates of the-damglition relationships are treated
independently. The estimgiecan be used as a relative measure of effect,sgmduced as
the score for each drug-condition pair by the OMggR-controlled case series program.
Within the self-controlled case series framewoekiesal design decisions are required that
are under experimentation within OMOP. These ithelwhether to define outcomes based
on incident or prevalent occurrence of conditiomsether to include the first day of
exposure in the time-at-risk; definition of a sulte&ce window to infer time-at-risk relative
to exposure start or end (30 days from onsetina#t exposed, time exposed + 30 days from
end, exposure + 60 days from end); and, preciditimeoNormal prior (0.5, 0.8, 1, 2).
Measures of standard error for the univariate desan be estimated, but are not included
within the current approach under considerati@il combinations of potential parameter

settings are empirically evaluated to produce &4rdit self-controlled case series analyses.

Aim 2: Evaluate consistency of COMPASS estimates across a network of phsate

databases
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An active surveillance network is likely to comgriswultiple data sources, as it is
recognized that there is currently no single USeHaource that can be expected to satisfy
all requirements of allowing investigation of aledical products for all potential adverse
events and across all populations of interest. él@w there is little research to inform the
expected behavior of active surveillance analysthods when applied to disparate
databases, or the potential benefits of integrasignates across sources to improve method
performance.

This aim conducted the COMPASS analysis for ACHhinbrs across five databases.
Beyond CCAE, the method was applied to the Markat3@b Database (MSLR),
MarketScan Medicaid Multi-State Database (MDCD) rk4&Scan Medicare Supplemental
and Coordination of Benefits Database (MDCR), dnr@dGE Centricity electronic health
record (GE). For each database, COMPASS was dpplithe ACE Inhibitor drug class to
generate estimates of outcome relationships fosdhge set of 2884 test cases (84 ‘positive
controls’ and 2800 ‘negative controls’).

Four accuracy measures (mean average precisi@nyader ROC, precision-at-k, and
recall-at-fp) were calculated for each databasedasure overall performance across the test
cases. In addition, for each ‘true positive’, ikai@acterized the performance in each source
by assessing the false positive rate and prec#itime test case score. These accuracy
measures from each source were compared to aksasdiability in performance.

|12 statistics were calculated to assess the hetesiigém COMPASS estimates across
data sources. Scatterplots were used to explereetationships among scores between each

of the 21 pairwise combinations of data sources.
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In addition, we explored three approaches to priogucomposite estimates based on the
individual scores provided from each contributimgedsource. The first composite will
apply a simple threshold heuristic to categorizt ¢ases based on the number of sources
that produce a statistically significant estimalle= ¥.(ARD LBCI, = 0), where i is the
index for the sources. Here, the composite sca&@sares how many sources corroborate the
association, with the expectation that greatercasuwith significant relationships reflect
increased confidence in a potential relationshipygh each source contributes equally to
the measure). Note, when €5, then in effect, this approach provides a eorative
assessment that requires all sources to corrobamnagssociation before the condition is
considered a potential issue.

The first composite score is proposed becauseviges a simple heuristic that has been
suggested as a potential approach to considemwatdistributed network of active
surveillance systems. A more formal approach ot the estimates and measures of
uncertainty within a meta-analytic framework. Thoenposite score £s based on a pooled

rate difference from fixed effect model using thedrse variance methd**

L A— E__ = :I -
: Tk u
T
'I__i'.'__ = .
Coat,t — bitT
1
SE(RD) = ——
Vaw
RD CI=RD +z, _,, *SE(RD)

Where i is the data source, k is the total numibeparces, @s the number of events in

the exposed group; ts the person-time in the exposed groups the number of events in
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the comparator group, ts the person-time in the comparator group, ancflects the
inverse of the estimated variance for each study.

The heterogeneity statistic is given by:

Q= Z w, (RD, — RD)?

12=100% * (Q—d.f)/Q

Q follows a chi-square distribution with k-1 degsex freedom under the null hypothesis
that the true treatment effect is the same fosaikrces. 4for the homogeneity test will be
provided for each outcorff&. A distribution of heterogeneity measures wavided to
determine the degree to which source variabilitiygences estimation across the range of
true positives and negative controls. Given tiverdity in the data sources, we fully expect
the potential for significant heterogeneity betwsenrces. In fact, the heterogeneity may be
sufficiently large that the use of meta-analysislpd estimates could be questioned.
Certainly, in the contexts of producing a validreste for a formal evaluation,
considerations around the sources of variability laow they may influence effect estimates
require specific attention. However, in the cohtEbactive surveillance, where we are
trying to produce estimates to generate hypothasest potential effects, we are primarily
concerned the degree to which a composite estipratédes a more reliable screening tool,
even in spite of observed heterogeneity.

We also explored a DerSimonian and Laird randoceffmodel to relax the assumption
that there is a common treatment effect acrossdhece®’. Here, we assume the true effect

follows a Normal distribution with mean and variant, where:
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SE(RD)? + 12
x fa; b
= [H. [r—r)]
‘:I:IE — R — .}_‘k =) )
L= W
SE(RD) = ——

It seemed initially compelling to consider usingpadom-effects meta-regression
technique to further adjust for study-level covisa such as database demographics (age
and gender distribution), data capture characiesisind potentially the accuracy measure
(AUC). However, despite having access to 6 laiaga dources, we are underpowered for
meta-regression because the unit of analysis isttly, not the population, and we do not
have sufficient degrees of freedom with 6 estimaigeoduce a reliable composite
summary.

Using these composite estimates, we then useathe sieasures of performance as
described in Aim 1 to evaluate will then evaludtte telative performance of the pooled
estimate in predicting drug safety issues as coeapiar source-specific performance to
assess the potential advantages of a network-laggedach to active surveillance. Itis
expected the composite estimates should have iragmperformance to the source-specific
estimates, both due to pooling data to increaseepaw/well as the minimization of source-

specific effects that could lead to false posifinelings.
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Aim 3: Explore differential effects across ingredients within ACEinhibitor class

The general consensus within the clinical commusityat all ACE inhibitors have
similar safety profiles. However, examination loé fproduct labels suggests differences in
which adverse events have been reported. Futttezg is little information to assess the
relative effect size of adverse events across ptedn a real-world setting. This aim applied
COMPASS to seven medical products within the dBsisopril, moexipril, quinapril,
ramipril, benazepril, captopril, enalapril), to eehine whether meaningful differences are
observed within observational databases. In ihis @OMPASS was used as a hypothesis
generating tool to highlight potential disparitiesadverse event rates between products that
may warrant further evaluation. The results of #aploratory analysis should not be
considered definitive; indeed, differences willdizserved through indirect comparisons of
adjusted risk differences. A formal pharmacoepidérgy evaluation would likely design a
study that provides a direct assessment of théweleffect, and would tailor the analysis to
address the specific adverse event of interesthisrcontext, as an initial active surveillance
tool, COMPASS is used to identify the differencesa®en products to facilitate
prioritization of effects that may require this &duohal analysis.

Table 9 highlights the events that were exploréHimthis study. Among the
conditions, 17 events were consistently recordedsaahe product labels for all nine
ingredients. These events include events listedaasings, such as cough, hypotension, and
renal dysfunction. The product labels do not pitevevidence about the anticipated effect
size, or whether the risks should be anticipatdaetdifferential among specific ingredients.

In absence of any additional information, it cob&lassumed that the effects should be
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shown to be consistent for these 17 events. COMPAB be applied to these events to
generate hypotheses about potential differensélprofiles.

The additional six events in the table reflect adgesvents that are not consistently
reported in the product labels. For example, apistand tinnitus are listed on product labels
for all ingredients except quinapril and captopriRamipril does not list asthma, flushing,
low back pain, or bronchospasm as potential effattisough the majority of the other
products do include these events. These dispantay reflect true differences in observed
adverse events, or could simply reflect artifaéthe product labeling standards and the lack
of enforcement of consistency across product matwirs. COMPASS was applied to
these six events to discern whether risk differsrmaa be observed across the products.

Table 9: Adverse events to explore across ACE inhibitor ingredients

= o = = = = =
o | 5| §|B|E|B 5|8
c|l 8| 8| E|lc| 2|
eventon| @ | S| €| S| 5| ®| S
SNOMED term label | 2| o | Y |TF| 5|0 E
Consistent events
Acquired hemolytic anemia 0 X K X
Constipation 9 X X X X X X X
Cough 9] X| X| X| X| X| X| X
Diarrhea 9] X X| X| X| X| X| X
Dyspnea 9 X X X X X X X
End stage renal disease 9 |X [X [X X [X |[X |[X
Generalized abdominal pain 9 X X XX K K X K
Impaired renal function disorder 9 KX K K X K X X
Leukopenia 9 X X X X X X X
Low blood pressure D X X X X
Nausea 9 X X X X X X X
Oliguria and anuria 9 X X X X X XN X
Orthostatic hypotension 0 X X )
Palpitations 9 X X X X X X X
Primary thrombocytopenia 0 X X X
Pruritus of skin 9 X X X X X X
Vomiting 9| X| X| X| X| X| X| X
Inconsistent events
Epistaxis 70 X X X| X X
Tinnitus 71 X| X| X| X X
Asthma 6] X| X| X X| X| X

120



Flushing 6] X| X| X X| X

Low back pain 6 X X X X X
Bronchospasm 5 X X X| X

COMPASS produced an adjusted rate difference aswteded confidence interval for each
ingredient-outcome pair. These estimates withaheaitcome can then be compared to

determine if two products have potentially differaheffects.
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CHAPTER FOUR: MANUSCRIPT 1:
“Systematic identification of drug safety issuesdministrative claims data: Performance
of hypothesis generation methods for active suarek”

Abstract
There is emerging interest to expand the use afrgbional databases, such as

administrative claims and electronic health recoagdspart of an active surveillance network
to identify potential drug safety concerns in a entamely manner. However, few studies
have evaluated the operational characteristicseftethods proposed for such surveillance.
This study explored the performance of three engstnethods (disproportionality analysis,
observational screening, and self-controlled cases and introduced a new approach,
Comparator-Adjusted Safety Surveillance (COMPAS®)ich augments an inception cohort
design with automated heuristics for comparatactin, inclusion/exclusion criteria, and
covariate adjustment through propensity scoreifita@ion. Methods were evaluated in a
large administrative claims database to assessabuity to identify true safety concerns and
discern from false positive findings associatechvdCE inhibitor exposure. COMPASS
generated the fewest safety signals, had the |dadsst positive rate, highest predictive
probability and greatest precision of the four meth Self-controlled case series achieved
higher sensitivity but lower specificity. Theoposed COMPASS method is a new
alternative analysis approach to consider in dgietpa national active surveillance system,
but further methodological research is needed fwane the utility of all methods as

hypothesis generating tools.



Background

Safety assessment of medical products involvegia airay of information. Prior to
regulatory approval, pre-clinical toxicology stuslipharmacology experiments and clinical
trials provide initial assessment of adverse daagtions, but are limited both in
generalizability to real-world populations and iresfor detection of less common events or
reactions with modest increased risks from backuglabserved rates (1). In the post-
approval setting, spontaneous adverse event regatiers the opportunity for patients and
providers to notify FDA and product manufactureradverse experiences post-exposure.
However, this passive surveillance system suffigrsfgcant limitations for providing a
complete safety assessment, including event unutatieg, reporting bias, incomplete
information and lack of follow-up (2). An additiahsource of post-approval safety
information has been the conduct of analytic phaoepidemiologic evaluation studies,
which are typically defined to explore a specifipbthesis about a drug-related effect within
a real-world population. Observational healthalatbases, such as administrative claims
and electronic health records, have provided usefoitmation for pharmacoepidemiologists
to conduct these retrospective studies by applgifaymal study design to an available
dataset in order to estimate the magnitude of ffleetebetween a particular exposure and
outcome (3). While pharmacoepidemiologic studresodten less resource-intensive than
randomized studies, they require significant expernd several months before the
customized assessment of the individual hypothesiempleted. The often intractable
challenges of confounding in observational studeéegiire substantial effort to address and
often limit the confidence the community placeshiese studies, in relation to other available

experimental evidence.
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The increasing availability of these data sourceapled with recent information
technology innovations, has raised interest in pajpay the use of large linked healthcare
data to create an active drug safety surveillagstem that would complement current
practice. The active surveillance system is eoned to “actively search for patterns in
prescription, outpatient and inpatient data systérasmight suggest the occurrence of an
adverse event, or safety signal, related to drapfyy” (4). Unlike the existing use of
pharmacoepidemiologic studies to study pre-defmgumbtheses of individual drugs and
outcomes at a particular timepoint, the active sillance system would be applied across a
network of disparate databases continuously owes to both generate and refine hypotheses
of potential issues associated with all regulatedical products and across a large array of
potential adverse events.

In the US, the development of a national activeaillance system is being
coordinated by the FDA under the Sentinel Initiat{8), but little evidence is available to
inform best practices about appropriate methodséoor expected operating characteristics
for such a system once it comes online. The Obsenal Medical Outcomes Partnership
(OMOP) was established to conduct methodologic®aech for the national active
surveillance system (6), and has provided a pdibtiom for experimentation amongst data
holders and methods developers to begin to addmss of these outstanding research
questions. Several methods have been proposesteagtipl approaches for active
surveillance, including disproportionality analysas adapted from spontaneous data
mining(7,8); observational screening, an unadjustdwrt-based design(9); and univariate
self-controlled case series(10,11). All of thessthds were implemented within the OMOP

community (12). In this study, we introduce a repproach, Comparator-Adjusted Safety
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Surveillance (COMPASS), which applies a propensityre cohort design using automated
heuristics for key design elements, including corafm selection, inclusion/exclusion
criteria, and covariate adjustment. The overafi af this study is to measure the
performance of these alternative analysis methadadtive surveillance. To address this,
we performed a retrospective evaluation of all fm@thods against a large administrative
claims database, assessing each method’s perfoenmatieir ability to properly classify

adverse events with their known association wittEAGhibitors.

Materials and Methods

Data

The study population used for the evaluation caim the Thomson Reuters
MarketScan Commercial Claims and Encounters (CCAErge administrative claims
database containing 59 million privately insuregd. CCAE provides patient-level de-
identified data from inpatient and outpatient wsihd pharmacy claims of multiple large
employer-based health plans from 2003 to 2008. ECéntains 3,052,264 persons with at
least one prescription dispensing record for an A@bitor, though each method uses a
different fraction of that sample based on a paldicstudy design. The CCAE database was
transformed into an OMOP common data model [CDMihwternational Classification of
DiseasesNinth Revision (ICD-9) diagnosis codes translated a standardized terminology
using condition concepts froBystematized Nomenclature of Medicine-Clinical Berm

(SNOMED CT).
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Method
Disproportionality analysis

Disproportionality analysis (DP) methods were depet for use in analyzing
spontaneous adverse event reporting databasesiyfythg drug-event combinations that
were co-reported more frequently than what wouléXgected had the drug and event been
independent. Spontaneous reports can be usedstrect a series of 2x2 contingency
tables, one for each drug-event combination, orb#sés of whether the report contains the
drug of interest and whether the report contairsetrent of interest. Several metrics can be
applied to these 2x2 tables to produce estimatdseadssociation, including multi-item
gamma-Poisson shrinker (MGPS), proportional repgmtatios (PRR), reporting odds ratios
(ROR), and Bayesian confidence propagation ne@taark (BCPNN) (7,8).
Disproportionality analysis methods can be reaaiplied to longitudinal observational

databases insofar as the longitudinal data canba&lgwojected into 2x2 contingency tables.

Observational screening

Observational screening (OS) is a method originddlyeloped at GlaxoSmithKline
and now made commercially available as part oSAEfetyWorks® software application
by ProSanos (9, 13,14). Observational screenipfiespa basic cohort design to estimate the
rate of condition occurrence during the time exgdsea particular product, and compares
that rate to the overall background rate of theddan in the overall population. The
estimate is unadjusted and therefore susceptiblartous forms of confounding. The
primary intent, in its original conception, wastteareening rate ratios could be calculated

efficiently for all potential drug-condition paiexross large observational databases, and
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could provide a first-pass approach for identifypajential issues that warrant further

evaluation.

Self-controlled case series

The univariate self-controlled case series (USCappyoach assumes that events
arise among persons as a hon-homogeneous Poiss@sp(15). The method only makes
use of persons who have are both exposed and wekparing the observation period, and
also have experienced at least one event. Theotheftimates the relative rate within each
person by evaluating the rate of events duringiposed and unexposed time, before
producing a composite effect estimates acrossaa#< The self-controlled design thus is

unconfounded by patient characteristics that alglstover time.

COMPASS

COMParator-Adjusted Safety Surveillance (COMPASS) statistical algorithm that
estimates adjusted rate ratios for all outcomestefest for a given medical product through
propensity score stratification across exposedusieskposed cohorts. COMPASS applies an
automated heuristic for defining a comparator groaged on the indication of the medical
product, and provides multivariate adjustment basekiey risk factors, including person
demographics, comorbidity, and health serviceaailon. Figure 1 highlights the conceptual
model that serves as the basis for COMPASS. Timndafmental goal of a drug safety
analysis is to assess the temporal relationshipdset treatment and outcome. However, in
the context of an active surveillance system tnagdages longitudinal healthcare databases
in a non-experimental design, specific attentiongsded to minimize bias when estimating

the drug-outcome association. COMPASS applietrasggective cohort design to compare
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the effects of the target drug of interest to aexposed population, defined as those exposed
to an alternative treatment for the same indicatibhe COMPASS model focuses on
minimizing bias from four primary sources: persos@mographics (such as age and gender),
confounding by indication, effects of comorbidignd health service utilization.

The COMPASS approach incorporates several notaebteres into its analysis that
bear particular consideration. First, it incorgesdarge biomedical ontologies, or networks
of clinical concepts such as relationships betwi#iseases and treatments, to automate
comparator selection by identifying all drugs thlaare at least one FDA-approved indication
but have different mechanisms of action than thgetadrug of interest. Second, it imposes
automated study design heuristics, including cobectusion criteria based on
contraindications and covariate selection baseld@-approved indications and off-label
uses. Third, the use of a comorbidity index andtipila measures of health service
utilization as additional aggregate covariatesvasléor improved balancing of exposed and
unexposed cohorts that are universally applicaiialf outcomes while minimizing
concerns of inflating bias due to unconfoundedti@iahips with any specific outcome.
Fourth, the algorithm simultaneously applies migtiisk windows to identify effects with
differential time-to-event relationships, such aste, subacute, insidious or delayed onset.
Fifth, COMPASS produces a composite score basedljusted risk differences and ratios
that enable prioritization across multiple potdragfety concerns based on both magnitude
of effect and public health significance. Finallycontrast to traditional
pharmacoepidemiology evaluation designs, whichygieally implemented to estimate the
effect of one drug-condition pair, the COMPASS mniaglelesigned to be scalable to allow

estimation of multiple drug-outcome pairs concutlserand is computationally feasible to
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screen thousands of potential adverse events withins. This efficiency enables key
principles of pharmacoepidemiology to be broughtear during the initial exploratory

phase of hypothesis generation.

Analysis

Drug-outcome effect estimates generated from athous were compared to a binary
classification made to partition the test cases imbsitive controls’ and ‘negative controls’.
The classification was performed by OMOP througsteayatic review of structured product
labels available on the FDA website before DecemBef009, using the occurrence of a
condition in the adverse event section of the nitgjof labels within a class as a surrogate
for a ‘positive control’, and selecting conditiomsrelated to any labeled events as ‘negative
controls’ (16). For ACE inhibitors, 84 ‘positivewtrols’ and 2780 ‘negative controls’ were
identified and used for experimentation. The ‘peesicontrols’ include labeled events
known to be related to ACE inhibitor exposure, sasttough, hypotension, hyperkalemia,
and renal impairment (17). ‘Negative controls’lude a wide range of conditions observed
in the database that are unrelated to any knovectedf exposure, such as uterine
leiomyoma, osteomyelitis, ankle fracture, incisidmarnia, malignant neoplasm of brain, and
hammer toe. The full set of test cases is aval&dl download at (16). Sensitivity was
measured as the proportion of the 84 labeled eveentsified at statistically significant
levels, based on alpha = 0.05 and 0.001. Spegyifics measured as the fraction of the 2780
negative controls that failed to meet statistigghi$icance. Positive predictive value was
estimated as the proportion of the outcomes mestatgtical significance that were

classified as positive controls.
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For each method, a receiver operating characte(RMC) curve was produced. All
drug-outcome pairs were rank-ordered by the effizet point estimate, and the sensitivity
and specificity was estimated at all observed tiolesvalues. Five complementary
measures of performance were estimated based s& R@C curves. The c statistic, or the
area under the ROC curve, provides a predictivbahitity that two random drug-outcome
pairs, one positive control and one negative cgnrould be properly rank-ordered. The c
statistic ranges from 0 to 1, with 1 indicatingfpet prediction and 0.5 a random prediction.
Partial area under ROC curve at 10% false podiidJC10) is used to focus on the highest
scores and eliminate the range of the ROC curve wiaicceptable low specificity. The
value of PAUC10 ranges from 0 to 0.10, with randmediction scoring 0.005. Recall at 5%
false positive (RECALLS) estimates what fractiortlod positive controls is identified at a
threshold of 95% specificity. Precision at 100q@)1provides a measure of what proportion
of the drug-outcome pairs amongst the 100 higlstshates are positive controls. ‘Mean
average precision’ (MAP) is a metric commonly usethformation retrieval that provides
the average precision at each threshold value¢pagsents a ‘true positive’ association.

Each method has multiple parameter settings, basel@sign decisions around
surveillance windows to define time-at-risk, coases to include, and metrics to calculate.
Parameter settings for all methods were selectazhbygsing the configuration that
maximizes PAUC10. Sensitivity analysis was perfedito assess impact of different design

decisions of the all performance measures.
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Results

Table 1 shows that COMPASS generates the fewasfisant signals (n=114) of all
methods, and also has the highest precision (0GOMPASS dominates DP, with both
higher sensitivity and specificity. USCCS hasgher sensitivity than COMPASS (0.61 vs.
0.42), but comes at the expense of four-fold irsgen false positive rate (0.13 vs. 0.03). OS
has the highest sensitivity (0.71) but also thegsivspecificity (0.55) and lowest precision.

Figure 2 shows the impact of changing the alphestiwld for statistical significance
from a=0.05 to a=0.001 on the number of signalssisigity and specificity of all four
methods. COMPASS continues to produce the fevwgsals of all methods, but identifies
34 fewer significant associations at the stridieeshold. Decreasing the significance level
from a=0.05 to a=0.001 decreases COMPASS sengitioin 0.42 to 0.37, while increasing
specificity from 0.97 to 0.98. COMPASS sensitivatyd specificity remain higher than DP.
For USCCS, specificity increases from 0.87 to Ov@dile sensitivity decreases to 0.50. OS
identifies the same 60 true positives at both alpthels, but the false positive rate decreases
from 0.45 to 0.35. Under both alpha levels, COMBAfas the highest precision of the four
methods, increasing to 0.39 for a=0.001. In othends, 39% of the 80 signals identified by
COMPASS with p<0.001 were true labeled events.

Across all five summary measures, COMPASS hasdkeperformance in
classifying ACE inhibitor labeled events from negatcontrols (Table 2). Figure 3
highlights the receiver operating characteristiR®C) curves for each method, used to
derive these statistics. ROC curves do not re@6folsensitivity and 100% false positive
rate, because methods may fail to produce an dstiinao events are observed for a given

outcome, in which case AUC calculations assumearedoconditions receive the minimum
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possible score. COMPASS observed the highestgireglivalue (c = 0.648), with the ROC
curve furthest departed from random prediction shaith the dashed diagonal line. If
unscored conditions were ranked at random instegiven minimum score, then c statistic
would increase to 0.738. DP has the next-high&€KE Ac=0.631. USCCS has the least
predictive model, c=0.555. Each ROC is annotatitid point estimate thresholds to
facilitate comparison of interpreting observed ssdrom each method. When defining the
threshold as relative risk (RR) > 1.0, COMPASS s&ssitivity = 0.51 and specificity = 0.85.
At the same threshold of requiring a positive dfféd is observed to have
sensitivity/specificity tradeoff of (0.48/0.76), Gs(0.75/0.36), and USCCS is (0.69/0.42).
Imposing a stricter criteria that RR>1.4, COMPASS (0.06/0.99), DP has (0.26/0.92), OS
has (0.25/0.81), USCCS has (0.13/0.87). COMPASS dot identify any label events at
RR>2, but DP has (0.13/0.97), OS is (0.25/0.81,d8CCS is (0.06/0.99). A threshold of
RR>3.0 is required to observe a false positive @05 for OS. The estimate distributions
suggest each method has different degrees of yositas, with OS and USCCS being most
susceptible to generating positive effect estimates

For COMPASS, the optimal setting set the washotibge¢o 180d, specified
inclusion criteria that at least one indicationgtiasis is observed prior to index exposure,
excluded all patients with contraindication in 3@r first exposure, applied 20 propensity
score strata, and identified incident events wi0d from exposure start. This setting
produced the maximum PAUC10, MAP, and RECALLS5. Tieximum P100 was 0.15,
observed when changing the washout period to 9be. highest observed AUC for
COMPASS was 0.673, by not restricting by prior @adions, reducing the number of strata

to 10, and including all events during the 30d gogiosure start.
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For DP, the optimal setting selected prevalent syarsed the empiric Bayes
geometric mean metric from the MGPS algorithm,rehtl stratify on age and gender, and
applied a surveillance window of 30d from expossieat. This setting also yielded the
highest MAP, P100, and RECALL5 amongst the DP guométions. Changing the condition
type parameter to incidence events produced a h&H€ (c=0.637). For OS, the setting
that yielded the highest PAUC10 used first expastoelrugs, first occurrence of conditions,
and compared the rate of events with all time pagbsure (excluding the index date) to the
overall background rate. The maximum AUC amongst®S configurations was 0.615,
maximum MAP = 0.053, and maximum RECALL5=0.15,dddtained by using all drug
exposures and all condition occurrences and réetithe surveillance window to 30d from
exposure start, including the index date. The maxri P100 observed for OS was 0.11. For
USCCS, the optimal setting selected incident evexisuded the index date of exposure,
defined time-at-risk as the length of exposure &, @hd specified the precision of the
Normal prior as 2. This setting was the maximutfiamntrolled configuration based on
P100 and RECALLS5 as well. A different setting,ngsBOd from exposure start as the
surveillance window, had the maximum AUC (c=0.680) MAP = 0.054 for USCCS.

One potential explanation for performance diffeemnbetween the methods is the
extent to which confounding factors could influemesults. Table 3 shows the impact that
propensity score adjustment played within the COMBAnethod. Relative risks for each
adverse event were estimated by comparing the wseutcome rate in the exposed
population (those with incident exposure to ACEhitbrs) to an unexposed population
constructed as those patients with incident exgouan alternative drug that shares the

same indication as ACE inhibitors but has a difitraechanism of action. The drug set

133



identified included angiotensin receptor blockéeta blockers, calcium channel blockers,
and diuretics. Both cohorts were restricted tduide patients with a recorded diagnosis for
one of the ACE inhibitor indications, and exclugedients with a recent diagnosis of any
ACE inhibitor contraindication. These two cohostsre observed to have important
differences, with ACE inhibitor users having a hegproportion of males, greater
medication use and procedures recorded, highelgdinacomorbidity index, with higher
background rates of diabetes, congestive heauréaihypertension, renal crisis scleroderma,
and diabetic nephropathy. Covariate adjustmeputjit propensity score stratification
reduced the observed imbalanced to <5% differebeegeen cohorts. Inherent in the
USCCS approach is the self-controlled design thattended to address time-invariant
confounders, but temporal changes in health sentiteation and increasing disease
severity can bias results. Both DP and OS arejusiadl association measures, using
observed rates from the overall population to dateuexpectations to use to compare with
observed counts, so these methods could be susegptbias from any of the covariate
imbalances identified. DP and OS could also bsdualdy additional factors not observed in
COMPASS due to the required similarities betweenetkposed and unexposed populations
in the design.

Figure 4 highlights the observed effect estimates3¥% confidence intervals of all
four methods for 35 selected labeled events. Antbese labeled conditions, COMPASS
identified 17 statistically significant associatsori 1 of which were among the conditions
identified with false positive rate < 0.05 (Coudharrhea, functional diarrhea, gout,
heartburn, impaired renal function disorder, lowdal pressure, nausea, orthostatic

hypotension, pruritus of skin, and vomiting). foe same set of labeled events, DP also
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identified 17 statistically significant associatsowith 11 conditions having 5% false positive
rate or less. Only three of the conditions idésdifvere the same as those identified by
COMPASS (gout, low blood pressure, and orthostgtaotension). For OS, 29 of the
labeled events were identified at p<0.05, but @yt of those conditions were detected
with specificity > 95%. USCCS had 9 conditionsateatatistical significance at a false
positive rate lower than 5%.

Amongst the four methods, COMPASS was the only oweth identify diarrhea,
functional diarrhea, heartburn, nausea, prurituskof, and vomiting. USCCS was only
method to identify bronchospasm, edema of laryng,laukopenia. DP exclusively
identified chest pain and palpitations, while O$wee only method to detect asthenia.
Three events (acute laryngopharynagitis, asthmappéyus) were not identified as statistical
significant by any method. Additionally, 10 condits were not identified by any method
with specificity > 95%: acquired hemolytic anena#lergic urticaria, anemia, constipation,
dyspnea, flushing, generalized abdominal pain,nmsa, oliguria and anuria, and primary

thrombocytopenia.

Discussion

We compared four different active surveillance mdthin a retrospective claims
database analysis to determine their ability totidetrue safety findings and discern from
negative control events within ACE inhibitor expoessi COMPASS was the best
performing method in terms of fewest signals, laWalse positive rate, highest predictive
probability, and greatest precision. If greaterssi#vity is desired, the self-controlled case

series design outperforms COMPASS but comes anerpaf a four-fold increase in false
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positives. Disproportionality analysis is outpenied by COMPASS in terms of both
sensitivity and specificity. Observational scregnis positively biased with estimates
consistently greater than relative risk > 1, armtpces an unacceptable false positive rate at
conventional levels of statistical significance.

COMPASS attempts to incorporate accepted practiph@armacoepidemiology
evaluation studies, with bioinformatics innovatidgasnake automated heuristics for many of
the design decisions typically customized on a-tgsease basis. The method is similar in
intent to the high-dimensional propensity score BH) approach proposed by Schneeweiss
et al. (18), but differs in its covariate selectfpocedures. The HDPS heuristic requires both
the exposure and outcome to identify empiric conflaus, whereas COMPASS uses only
information about the exposed and unexposed popatat Rubin argues that outcome
information should not be used to estimate probglf treatment (19), but Brookhart et al.
showed in simulation study the potential for a c@ta related to exposure and unrelated to
outcome to inflate variance without decreasing (83. From a technical standpoint,
COMPASS is more scalable than HDPS for examiningglaets of drugs and outcomes on a
continual basis, because it only requires constrgane propensity score model for each
exposure that can be applied across all outcoB€OMPASS analyses of ACE
inhibitors, 480 configurations executed for 2864comes against the CCAE database, were
run in the OMOP research lab in 91 hours. An #oltiil advantage of COMPASS as an
active surveillance tool is that its systematicalbplies existing clinical information to
objectively and transparently define study desigagions (comparator selection,

inclusion/exclusion criteria, covariate adjustmet)l facilitates a comprehensive sensitivity
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analysis, rather than requiring expert assessroenidtomize a study plan that can be timely
to develop and subject to potential disagreemewisacstakeholder groups.

Both the AUC and PAUC10 suggest that all four mdghare better than random
predictions, but each leave substantial room f@rowement. While the COMPASS method
approaches AUC in line with other clinical diagnosin the range of 0.65-0.80 (21-26), in
the context of an active surveillance system, teguency of false positives and the potential
for false negatives may be considered unacceptdldee, it is important to reinforce the
need for an active surveillance system to complémnather than replace, existing practice
and to be used to generate and prioritize potemyiabtheses that require further evaluation.
Also, while COMPASS is observed to have better aV@erformance than DP, OS, and
USCCS, the event-specific analysis suggests thiipleumethods may be necessary for an
active surveillance to comprehensively evaluatdulepectrum of events, as each method
uniguely identified positive controls. Furthereasch is needed to determine why these
patterns exist and for developing strategies tegirstte evidence from across different
methods.

We believe our results provide a useful first gtepard characterizing the expected
performance of an active surveillance system ialiity to reliably identify true drug safety
issues. The chief limitation in our study is ooicldis on one drug class, as several factors
could influence performance across medical prodimtiuiding prevalence and duration of
exposure, maturity of the drug class and clinicahfort with the mechanism of action,
disease complexities in the underlying indicatepyation, and the potential for differential
confounding across different safety effects. hentretrospective studies of other products

would aid in increasing both the precision of teefprmance estimates and also improve the
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generalizability of the findings to support our udehe active surveillance system
prospectively.
Another limitation of the current study is the putel for misclassification in the definition
of ‘positive controls’ and ‘negative controls’. iSlground truth classification was based on
events occurring on the product label, but someisdvevents may be listed on labels due to
observations from clinical trials or spontaneoysorés but in absence of definitive evidence
of a true causal relationship. Similarly, negateatrols were selected based on the
condition being unrelated to any labeled eventyghat is possible that there is a previously
unknown association that has been uncovered tiradtsad being classified as a ‘false
positive’ within this study. The risk of a truegaive control seems minimal, since ACE
inhibitors are mature products with presumably welllerstood safety profiles. Further
misclassification can arise due to the mappindneflabeled events to specific diagnosis
codes that occur in the data. In this study, @itomes defined by occurrence of diagnosis
codes may limit method performance, and performamag be differential to the severity of
the disease. In a typical pharmacoepidemiologjuetian study of a specific drug-outcome
association, the outcome definition may be mormeefto include sets of diagnosis codes,
potentially in conjunction with diagnostic or trent procedures and laboratory values. For
an active surveillance system to be applied aadagye array of outcomes, this health
outcome of interest definitions would need to beettegped a priori.

The current study used all data accumulated ones ih CCAE, from 2003 to 2008.
Since an active surveillance system may also bkealio newly marketed products with
accumulating exposures in a continuous fashiothdéu@nalysis should evaluate method

performance in that context. ACE inhibitors do matke a good case study for this scenario,
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since the class reflects a mature product thatappsoved prior to data availability in most
data systems. Thomson MarketScan Commercial Claimd€Encounters database reflects
only one viable data source that could contribatart active surveillance network. It reflects
privately insured population, so may not be gemeahble to the overall US population and
may not accurately reflect ACE inhibitor use of exbe event experiences. Administrative
claims data reflects data captured for reimbursénae may be different than data capture
systems for electronic health records. Methodguerénce should be evaluated across
multiple disparate sources. Strategies for inta@ggaestimates across the data network

should also be explored.
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Tables and Figures

Table 10: Operating characteristics of the fourhrods at alpha=0.05

Total True False
Method signals | positives| positives| Sensitivity | Specificity | Precision
COMPASS 114 35 79 0.42 0.97 0.31
DP 252 31 221 0.37 0.92 0.12
USCCS 402 51 351 0.61 0.87 0.13
0S 1302 60 1242 0.71 0.55 0.05

COMPASS-Comparator-adjusted Safety Surveillance[Jdproportionality analysis;
USCCS-Univariate self-controlled case series; OSeDkational screening

Table 11: Performance measures of the four methAdkC-Area under receiver operating
characteristic curve; PAUC10 - Partial AUC at 1G#6¢ positive rate; MAP- mean average
precision; P100- precision at top 100 signals; RECH- recall at 5% false positives

METHOD AUC PAUC10 | MAP P100 | RECALLS

COMPASS 0.648 0.023] 0.085 0.14 0.274
DP 0.631 0.017] 0.075 0.12 0.202
0S 0.573 0.014 0.05 0.10 0.131
USCCS 0.555 0.011] 0.044 0.09 0.131

Metrics: AUC-Area under receiver operating chanastie curve (min=0.0; random=0.5;
max=1.0); PAUC10 - Partial AUC at 10% false pogtrate (min=0.0; random=0.005;
max=0.1); MAP- mean average precision (min=0; maxB100- precision at top 100
signals (min=0; max=0.84); RECALLS5 - recall at 5&8dsk positives (min=0; max=1)
Methods: COMPASS-Comparator-adjusted Safety Suaneie; DP-Disproportionality
analysis; USCCS-Univariate self-controlled caseesefOS-Observational screening
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Table 12: COMPASS propensity score balance efféotgpsed- ACE inihibitor; Unexp- unexposed; RRatiek risk

Pre-adjustment

Post-adjustment

Exposed | Unexp | RR Exposed | Unexp | RR
Demographics
Age 51.71 50.34 1.03 50.79 51.21 | 0.99
Gender (% male) 0.56 0.47 1.20 0.50 0.49 | 1.02
Lifestyle risk factors
Smoking 0.07 0.07 0.98 0.06 0.06 | 0.98
Obesity 0.06 0.05 1.27 0.05 0.06 | 0.93
Alcohol 0.05 0.04 1.13 0.06 0.04 | 1.34
Drug abuse 0.01 0.01 1.02 0.01 0.01 | 1.01
Health service utilization measures
Total medication count 1.30 1.20 1.09 1.24 1.22 | 1.02
Indication medication count 1.03 0.16 6.34 0.25 0.40 | 0.62
Total procedure count 5.92 5.64 1.05 5.94 5.59 | 1.06
Total outpatient visits 2.57 2.65 0.97 2.53 2.61 | 0.97
Total inpatient visits 0.41 0.40 1.03 0.37 0.38 | 0.97
% Exposed within inpatient visit 0.10 0.11 0.90 0.10 0.10 | 1.00
Charlson score 1.86 1.36 1.36 1.58 1.51 | 1.05
Comorbidities within Charlson index (% of persons with condition)
Diabetes (mild to moderate) 0.44 0.26 1.67 0.34 0.32 | 1.05
Diabetes with chronic complications 0.26 0.15 1.75 0.18 0.19 | 1.00
Chronic pulmonary disease 0.20 0.19 1.04 0.21 0.19 | 1.10
Congestive heart failure 0.11 0.07 1.70 0.06 0.08 | 0.84
Cerebrovascular disease 0.10 0.09 1.08 0.10 0.09 | 1.09
Any malignancy 0.06 0.07 0.92 0.06 0.07 | 0.91
Peripheral vascular disease 0.06 0.04 1.51 0.07 0.04 | 1.63
Renal disease 0.05 0.02 191 0.04 0.03 | 1.38
Rheumatologic disease 0.04 0.04 1.07 0.04 0.04 | 0.93
Mild liver disease 0.03 0.03 1.10 0.04 0.03 | 1.57
Myocardial infarction 0.02 0.01 2.73 0.01 0.01 | 0.76
Peptic ulcer disease 0.01 0.01 1.07 0.01 0.01 | 0.93
Metastatic solid tumor 0.01 0.02 0.61 0.01 0.01 | 0.95
Dementia 0.01 0.01 1.26 0.01 0.01 | 0.89
Hemoplegia or paralegia 0.01 0.01 0.90 0.01 0.01 | 0.97
Indication covariates (% of persons with condition)
Hypertension 0.76 0.70 1.08 0.72 0.76 | 0.95
Hypertensive Emergencies 0.52 0.43 1.22 0.47 0.49 | 0.97
Renal Crisis Scleroderma 0.51 0.42 1.21 0.46 0.48 | 0.97
Hypertension due to Scleroderma 0.50 0.41 1.22 0.45 0.46 | 0.97
Diabetic Nephropathy 0.29 0.17 1.65 0.21 0.21 | 1.00
Myocardial Infarction 0.24 0.27 0.89 0.24 0.24 | 0.97
Myocardial Infarction Prevention 0.22 0.25 0.88 0.22 0.23 | 0.97
Prevention of Cerebrovascular Accident 0.19 0.24 0.81 0.21 0.21 | 0.97
Left Ventricular Dysfunction following Myocardial Infarction 0.13 0.10 1.40 0.09 0.10 | 0.90
Prevention of Recurrent Atrial Fibrillation 0.11 0.09 1.20 0.10 0.09 | 1.09
Chronic Heart Failure 0.10 0.06 1.63 0.06 0.07 | 0.84
Diastolic Heart Failure 0.08 0.05 1.67 0.04 0.05 | 0.84
Edema 0.08 0.07 1.13 0.06 0.07 | 0.90
Diabetic Retinopathy 0.07 0.04 1.88 0.04 0.05 | 0.81
Nondiabetic Proteinuric Nephropathy 0.05 0.03 1.51 0.03 0.04 | 0.88
Migraine Prevention 0.05 0.06 0.82 0.05 0.05 | 0.99
Cystine Renal Calculi 0.04 0.04 1.13 0.04 0.04 | 0.95
Raynaud's Phenomenon 0.03 0.03 1.33 0.06 0.03 | 2.12
Asymptomatic Left Ventricular Dysfunction 0.02 0.02 1.25 0.02 0.02 | 0.90
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CHAPTER FIVE: MANUSCRIPT 2:
“Integrating active drug safety surveillance anafy/across a network of observational
healthcare databases”

Abstract

Background: The development of an active drug safety suivedé system requires access
to a network of disparate observational healthdata sources. There is little empirical
evidence to anticipate performance of active sllargie analyses in their ability to identify
true drug safety issues and discern from falsdipedindings or the consistency of evidence
observed across data sources.

Objectives: To measure the operating characteristics of aneastirveillance method in five
disparate observational databases by retrospemtaleation of known adverse events
associated with ACE inhibitor exposure.

Results: In all five databases, Comparator-Adjusted Safetyveillance provided a
moderately predictive model with high specificitp?%. The total number of events
reaching statistical significance and the sensjtivi identifying labeled events varied
considerably by data source. Composite summaagsdoon meta-analysis of source-
specific effect estimates did not yield additiopeddictive ability or identify additional

outcomes not found using individual sources ald82% of the outcomes with a statistically



significant composite effect estimate were obsetedthve high heterogeneity @tatistic >
75%) of point estimates among databases.

Conclusions: Active surveillance across a network of dispadate sources can provide
valid information to complement existing evidensepart of a comprehensive drug safety
assessment. Independent replication of statistisaghificant findings improves precision of
observational analyses, but does not eliminateafigélse positive findings. Substantial
heterogeneity across data sources requires théopgevent of a strategy to assess emerging
drug safety issues by examining both source-spegifect estimates and composite
summaries.

Key words: Active surveillance; Meta-analysis; Drug safety
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Introduction

In 2007, Congress passed the Food and Drug Admatiest (FDA) Amendment Act,
which called for the establishment of an “activetpaarket risk identification and analysis
system” with access to patient-level observatioagh from 100 million lives by 2012 In
the US, creating such a system requires estabjjshiretwork of disparate data sources, as it
is recognized that currently no single data holdes adequate capture of information from
throughout the healthcare delivery system or sefiicsample that is adequately
representative of the general population.

Several initiatives demonstrate the feasibilitgobrdinating a network of disparate
observational data sources. The HMO Research Netwas established a consortium of 16
health maintenance organizations to conduct multgzepharmacoepidemiologic evaluation
studies across their administrative claims daBDA’s Mini-Sentinel pilot project
announced access to data for 60 million persorth, auirrent focus on administrative claims
from privately insured populatiohsAs part of its methodological research effatts,
Observational Medical Outcomes Partnership (OMGBR)dished a data network of 10 data
sources covering over 200 million persons, andesgnting the breadth of disparate data
available (administrative claims aggregated frosuiers, large employers, and directly from
the point-of-care and electronic health recordmfiopatient systems, outpatient services,
and across an integrated health information exakaaugd the diversity of population
demographics of interést

In the context of active drug safety surveillangbere the data network is envisioned

to be used for systematic monitoring of any medicatuct and any health outcome of
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interest, several methodological issues requirefebconsideration. Paramount to these
pursuits is a full understanding of the accuracgaiive surveillance methods that correctly
identify true drug safety issues and discern fptsstive findings. Operating characteristics
of methods, such as sensitivity, specificity andifpee predictive value, may be influenced
by attributes of the underlying data, including plapion size, patient demographics and
health profile, completeness in data capture, anditudinality of coverage, i.e. the ability to
track all interactions with the healthcare systemiridividual patients over time within a
dataset. Across a network of disparate data ssuneethod performance and the relative
confidence in information gained from each conttitgisource may vary. There is a need to
investigate how effect estimates from disparatecgsucan be meaningfully integrated to
produce composite summaries, such as within a aretgtic framework, and to assess the
predictive performance of these summary estimatds.also important to understand the
extent of heterogeneity that may be present adiffesent sources to help provide context
and facilitate the proper interpretation of acsueveillance results.

This study evaluated the performance of one astiveeillance method, Comparator-
Adjusted Safety Surveillance (COMPASS), across figparate observational databases in
its ability to identify known adverse events asata with ACE inhibitors exposure. The
study also examined the operating characterisficeraposite estimates and measured the

heterogeneity across the data network.
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Methods

Five observational data sources from within the GMfata network were used for
this analysis. Thomson Reuters MarketScan Comaté€taims and Encounters (CCAE) is
a large administrative claims database containthmiilion privately insured lives, and
provides patient-level de-identified data from itiat and outpatient visits and pharmacy
claims of multiple large employers. MarketScan Database (MSLR) contains 1.5 million
persons representing a largely privately-insurguufagion, with administrative claims from
inpatient, outpatient, and pharmacy services supgheed by laboratory results. MarketScan
Medicaid Multi-State Database (MDCD) provides adstnative claims data for 11 million
Medicaid enrollees from multiple states. MarketSkeedicare Supplemental and
Coordination of Benefits Database (MDCR) captudimiaistrative claims for 5 million
retirees with Medicare supplemental insurance fmitdy employers, including services
provided under the Medicare-covered payment, eneplpgid portion, and any out-of-
pocket expenses. GE Centricity electronic hea&tord (GE) contains patient-level data for
11 million persons captured at the point of caoenfia consortium of providers using the GE
Centricity system in their outpatient and specigligctices. Analyses were conducted
independently in each database, despite the patémtipatient overlap across multiple
databases, due to lack of unique patient identifier

COMPASS is a statistical algorithm that estimatjasted rate ratios for all
outcomes of interest for a given medical produaiugh propensity score stratification
across exposed and unexposed cohorts for a givdicah&reatment. COMPASS applies a

retrospective inception cohort design to compageeffects of the target drug to the effects
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of alternative treatments for the same indicatiefingéd by an automated heuristic. The
COMPASS model focuses on minimizing bias from fpumary sources: personal
demographics (such as age and gender), confoubglimglication, effects of comorbidity,
and health service utilization. COMPASS followsnyaf the design features advocated in
the literatur& ® and has been demonstrated to have better perfomtharacteristics than
other active surveillance methods under considerasiuch as self-controlled case series,
disproportionality analysis, and observational eoneg, when examining known effects
within a large claims databdseCOMPASS was executed against all data sourdeg the
same configuration, specifically, having set thehaut period (time from observation start
to index exposure) to 90 days, specified inclusidteria that at least one indication
diagnosis was observed prior to index exposurdudgd all patients with contraindication
in 30 days prior first exposure, applied 20 projigresore strata, and identified incident
events within 30 days from exposure start. Corepletails of the COMPASS method and
implementation are availaBle

The Aniotensin Converting Enzyme (ACE) inhibitoudrclass was selected for the
retrospective evaluation of method performanceabse of the products’ widespread use
and length of time on the market. Product longewias important for accurately
characterizing the product’s existing safety pegfithich may not be fully understood for
newly marketed medicin&s Effect estimates generated from COMPASS werepaned to
a binary classification made to partition the teses into ‘positive controls’ and ‘negative
controls’. The classification was performed by ORI@rough systematic review of
structured product labels available on the FDA welsefore December 19, 2009, using the

occurrence of a condition in the adverse event@eof the majority of labels within a class
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as a surrogate for a ‘positive control’, and sébgctonditions unrelated to any labeled
events as ‘negative controls’For ACE inhibitors, 84 ‘positive controls’ and@& ‘negative
controls’ were identified and used for experimantat The ‘positive controls’ include
labeled events known to be related to ACE inhiketqpnosure, such as cough, hypotension,
hyperkalemia, and renal impairm&ht‘Negative controls’ include a wide range of
conditions observed in the database that are uadela any known effect of exposure, such
as uterine leiomyoma, osteomyelitis, ankle fragtureisional hernia, malignant neoplasm of
brain, and hammer toe. The full set of test cageames is available for download from the
OMOP websité

Effect estimates for all test cases were produsgtyuCOMPASS within each data
source. Additionally, composite estimates sumniagithe relative risks across the sources
were produced using both fixed-effects and randéfects meta-analysis We used both
meta-analytical approaches in order to assessnpact of heterogeneity on the accuracy of
the composite estimates. Drug-outcome pairs wassified by how many sources produced
significant associations to assess the impactpdiceged findings on performance
characteristics. Five operating characteristiceevmeeasured for each data source as well as
the composite meta-analysis estimates. Sensitiaty measured as the proportion of the 84
labeled events identified at statistically sigrafi¢ levels, based on alpha = 0.05. Specificity
was measured as the fraction of the 2780 negabintais that failed to meet statistical
significance at alpha = 0.05. Positive predictrakie (PPV) was estimated as the proportion
of the outcomes meeting statistical significance there classified as positive controls (e.g.
labeled events). The c statistic, or the are@utite Receiver Operating Characteristic

(ROC) curve, provides a predictive probability thab random drug-outcome pairs, one true
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relation and one negative control, would be prgperhk-ordered with the higher score
being more likely to be true. The c statistic m&ffom 0 to 1, with 1 indicating perfect
prediction and 0.5 a random prediction. Partiahainder the ROC curve at 10% false
positive (PAUC10) is used to focus on the highestes and eliminate the range of the ROC
curve with unacceptably low specificity. The vabfd®AUC10 ranges from 0 to 0.10, with
random prediction scoring 0.005. Heterogeneitpsssources was measured usingthe |

statistic, classified as low?d25%), medium, or high{+75%) heterogeniets;

Results

Table 13 provides a comparison of the source ptipukand data availability from
across the data network used for this study. afhdases include a higher proportion of
females, with MSLR having the largest differencd &CAE having more balance. The
databases had substantial variability in age 8igions, with MDCD a greater number of
younger persons and MDCR predominantly elderly. @IChad the highest turnover rate,
and GE had greater variability in the observatioradon. Differences in the numbers of
drugs, conditions, and procedures reflect the uyidgrdisease severity of the source
populations as well as the characteristics of Hta dapture process within each system.
Within CCAE, there were over 3 million patients it least one exposure to an ACE
inhibitor. Restriction to incident use, definedfiast exposure to an ACE inhibitor at least
180 days after observation period start, yieldesr dvmillion persons overall. The total
sample size varied across the network of databbee§CAE was the largest database and
as such had more ACE inhibitor users. However,paoed to the privately-insured

population (reflected in CCAE), the proportionsA&E inhibitor users in the Medicare and
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GE populations were markedly higher, likely assuheof the higher burden of illness in the
elderly population.

The operating characteristics of COMPASS acrosditle data sources and amongst
the composite meta-analysis estimates are presgniatle 14. CCAE produced the largest
number of significant associations amongst the slatiaces (n=127), 38 of which were
labeled events and 89 of which were negative ctmtyeelding both the highest sensitivity
(0.45) and lowest specificity (0.97). CCAE had liighest AUC (0.645), and the second-
largest PAUC10 behind GE. COMPASS identified dhbignificant associations within
GE, all of which were true labeled events (cougistliymia, and shoulder joint pain) for a
PPV of 1.  All sources except GE had PPVs ranffiom 0.30 to 0.36. MDCD and
MDCR, despite representing disparate populatidmaresl 11 true positive findings in
common and had very similar operating charactessin all measures.

Ninety-four outcomes were statistically significamider the fixed-effects meta-
analysis model, identifying two fewer true positvand 31 fewer false positives than CCAE
alone. Estimates from the fixed effects model $taoing correlations with CCAE estimates,
since CCAE is the largest database and therefara higgher weight, since weight is
proportional to the inverse of the variance ofeffect estimate within a database. As a
result, operating characteristics between the fedéelcts and CCAE were similar, although
the fixed-effects model had higher precision andUBAO. The random-effects model had
fewer outcomes reach significance than the fixéeetes model (n=14), with 57% of those
events being true positives. The random-effesigion was higher than both the fixed-

effect model and all individual sources, except@&t. The fixed-effects model had a
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comparable AUC with CCAE, while the random-effatista-analysis yielded a less
predictive model than individual AUC predictionsiin CCAE, MSLR, MDCR, and MDCD.

Across the five databases, 168 outcomes were figehéis statistically significant in
at least one source, with 48 of those outcomeglsgnificant in 2 or more sources, 18
events in 3 or more sources, and 3 events in £ss\{fable 14). No events were
statistically significant in all five databasessiky significance in multiple sources as a
criterion, we see that requiring 2 or more souxdekls sensitivity of 0.37, specificity of
0.99, and PPV of 0.48. Requiring a majority (3rare) of the sources to show a significant
finding substantially increases precision to 088213 of the 18 identified outcomes were
true labeled events.

Two labeled events were identified in all but oagatbase: cough (not MSLR) and
diarrhea (not GE), but one negative control wasistently identified as a false positive in
four databases: benign neoplasm of the colon (CGAH,R, MDCD, MDCR). The
combination of databases that produced consistafih§s differed by outcome; amongst the
11 labeled events identified by 3 databases, 9 feared within CCAE, MDCD, and MDCR
(including orthostatic hypertension, nausea, vargjtinsomnia, and arthralgia of the pelvic
region), but dysthymia was identified in CCAE, MDCahd GE, and shoulder joint pain was
significant in CCAE, MDCD, and GE. Figu®2 provides forest plots for 42 labeled events,
and highlights how the consistency in estimatessacsources varies substantially by
outcome.

Within the negative controls, all sources excepti@Ghtified false positive events
that were not replicated in any other source. CQA& 65 unique false positives, including

hammer toe and multiple sclerosis. MSLR was tHg source to falsely identify the two
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events, hemoglobin SS disease with crisis and mendis of lower limb. MDCD had 24
false positives, including Acquired deformity oetand candidiasis of the esophagus, while
MDCR identified 15 such unique outcomes, includisge positives for primary malignant
neoplasm of vermillon border of lower lip and acqdispondyloisthesis. In no cases did
meta-analysis (fixed or random-effects) productatssically significant estimate for a true
positive or negative control that wasn’t otherwientified by at least one database
individually.

Figure 23 highlights the magnitude of heterogeneltyerved across all test cases,
classified by both their status as a labeled ewentgative control and also the statistical
significance of the fixed-effects composite estimaftmongst the 36 significant labeled
events, 31 (86%) had values > 75%, indicating high heterogeneity. #%he 58
significant false positives were also observedawehf values > 75%. In contrast, 24% of
the 34 false negatives have high heterogeneity1&raf the outcomes haved 25%. 84%
of the true negatives have low heterogeneftyx£25%), and only 4% of true negatives were
observed with4> 75%. There is no significant correlation betweéect size and’ Mithin
each quadrant, though extremely small relativesridserved (RR<0.4) in the true negatives

were associated with high heterogeneity.

Discussion

We evaluated an active surveillance method acrostveork of five observational
databases to assess method performance in ity abiproperly classify true drug safety
issues from negative controls in a range of diffedata sources. In all five databases,

COMPASS produced a moderately predictive model igh specificity > 97%. The total
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number of events reaching statistical significaaice the sensitivity in identifying labeled
events varied considerably by data source. Wilettteption of the GE data, all data
sources had precision estimates suggesting that ahe in three significant outcomes were
labeled events.

The number of associations identified appears torihemarginally related with
population size, as CCAE is 5 times larger than NIDdDd 12 times larger than MDCR, but
only yielded 2.5 times as many significant outcomeBis may be explained, in part, by the
underlying source characteristics as the privateyred population in CCAE may be
generally healthier, with fewer comorbidities amshcomitant medications, and have less
frequent health service utilization.

GE showed a notably different performance profiterf the other databases; despite
being the second-largest database in populatien isizielded the fewest significant
outcomes (n=3) all of which were true positives &ad the highest PAUC10 but the lowest
AUC, in part due to the large number of outcomesvisich COMPASS failed to generate
estimated as a result of absence of observed oftes drug-outcome co-occurrence.
Unlike the other four sources, which derive drugasure from pharmacy dispensing and
condition occurrence from diagnosis codes on médiaans, GE drug exposure is inferred
from prescriptions written and medication histongl@utcomes are identified from problem
lists, both of which are generally maintained inpagient centers and under-represent
inpatient care. This finding suggests speciahétia is needed to understand the process
that results in data capture, as analysis appredmdmed on assumptions of how claims data

are captured may not generalize.
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Composite estimates produced through conventioetd4analysis approaches (both
fixed-effects and random-effects models) were notenpredictive than estimates from
individual sources, suggesting that pooling datanfacross sources will not necessarily
provide greater confidence in assessing drug-outaetationships. Meta-analysis has been
a popular framework for aggregating effect estimdtem multiple sources. In the context
of randomized clinical trials, where effect estiesaaire assumed to be unbiased measures of
the average treatment effect, conventional metAacel approaches need only be
concerned with the variance within each effecnesté and the heterogeneity across
estimate¥’. In contrast, observational analyses may be sttibiases, which may vary by
data source due to the underlying data capture amésrin, such as accuracy of capture of
measurable covariates and degree of unmeasuresucaliig. As a result, composite
estimates produced from meta-analysis across arietf observational databases may
present a false sense of precision, as meta-anaigiihods do not address the nature or
magnitude of bias that exists within each sourckaam’'t overcome the heterogeneity that
exists across the data network. This study prevédfrst empirical evaluation of the
magnitude of this potential problem and its impatthe predictive value of meta-analyses
for exploring drug safety effects. These empinieaults seem consistent with general
guidelines for the use of meta-analysis that haenldiscussed previously in other contexts
14—17.

This study also demonstrates the relative impogariéndependent replication in
observational analyses. Amongst outcomes idedt#gesignificant in only one source, 13%
were labeled events. The precision increased% \8Ben evaluating outcomes identified as

significant in two sources, and increased substiyto 73% if outcomes were significant in
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three databases. These findings suggest thatendept replication of a statistically
significant association in multiple sources camimge informative than a single significant
finding that is not substantiated in other sourbesobserving significance in multiple
sources does not eliminate the risk of false pasiindings and does increase the risk of
false negatives. Benign neoplasm of the colon¢ckvhias a negative control that showed
significant associations in four databases, beanticplar consideration. There has been an
active debate about the potential merits of ACHbibrs as treatment to prevent colorectal
cancer, with some studies showing no associatamd others hypothesizing a protective
effect®. As aresult, increased effects observed instidy could be the result of channeling
bias and confounding by off-label indication, atigres who are at greater risk of having
prior diagnosis for colon cancer may be more likelype exposed to ACE inhibitors. This
case study underscores the expected challengesféadd by an active surveillance system
and the need to evaluate the information produe®d Such a system in context with all
other available evidence as part of a comprehessifgty assessment.

Another key finding from this study is the magniuaf the observed heterogeneity
that is observed within effect estimates acrosditleedata sources. 82% of the outcomes
with a statistically significant composite effestienate were observed to have high
heterogeneity, with’l> 75%. The results indicate that elevated ridiesiified within a
network of databases are more likely to be accompdyy greater risk of variability in
estimates across the network than drug-outcome pétinout observed relationships. The
substantial heterogeneity explains, in part, tfife@inces in performance observed between
the fixed-effects and random-effects models, agfalmg-outcome pairs reached

significance within the random-effects model whiie fixed-effects model was heavily
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weighted toward the largest database, CCAE. ifhportant to highlight the heterogeneity
observed is based on variability between souradst ban be difficult to determine the
specific attribute within a source that is caugimginconsistent results. Further research,
including the use of meta-regression techniquey, leral insight but may already require a
larger network of data sources to compare. Oniealids aspect of a network-based
approach is that the central coordinating centerecesure estimates are received from across
the network, and minimize the risk of bias dueittecential reporting. Here, we've
demonstrated the examination of forest plots t@nkesheterogeneity across sources, but
funnel plots of sample size and variance can aigaige a useful tool for examining bias
across the reported estimat&s?

Given the observed potential for large heteroggraitl the substantial variability in
heterogeneity across outcomes, we recommend ttiag garveillance system results be
presented with source-specific estimates in cotionavith any composite estimates, as
typically shown in a forest plot. Pooling patidéetel data across sources or statistical
adjustment by adding source as a covariate (iset af indicator variables) in a multivariate
model are unlikely to fully address the heteroggriiat can be present and may risk biased
estimates leading to misinterpretation of the dougcome relationship. Guidelines for
appropriate reporting of meta-analysis of obseovetii studies provide a useful framework
that could be followed.

A key limitation of this current study is the poti@hfor misclassification in the
definition of ‘positive controls’ and ‘negative dools’. Ground truth was based on using the
proxy of events occurring on the product label,dmrhe adverse events may be listed on

labels due to observations from clinical trialspontaneous reports but in absence of
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definitive evidence of a true causal relationsHgimilarly, negative controls were selected
based on the condition being unrelated to any éabeVent, though it is possible that there is
a previously unknown association that has beenwaned that is instead being classified as a
‘false positive’ within this study. Further misskfication can arise due to the mapping of
the labeled events to specific diagnosis codesatair in the data, and the lack of
confirmation of those event definitions through meurecord verification. Method
performance could be improved with greater prenigmooutcome definitions and reference
set classification.

We believe our results provide a useful first gtepard characterizing the expected
performance of active surveillance analysis acaosstwork of disparate observational
databases in its ability to reliably identify trdeug safety issues. The chief limitation in our
study is our focus on one drug class, as sever@riacould influence performance of both
the method and the data sources across medicalgispihcluding prevalence and duration
of exposure, maturity of the drug class and clinbcanfort with the mechanism of action,
disease complexities in the underlying indicatepyation, and the potential for differential
confounding across different safety effects. Aeotimitation of this study is the focus on
one active surveillance method, as other approaclagsxist or could be developed. In that
regard, these results could serve as a minimumhinesad to foster further methods
innovation and evaluation. Similarly, while thedidata sources used in this analysis reflect
the broad diversity of data available, additioretiedsources under consideration for
inclusion in a national system should be evaluafuke sources included in this study
represent various populations of interest withedtdht demographics and health behaviors

(privately insured, Medicaid young, Medicare elgeds well as both primary data capture
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processes (administrative claims and electronittiheacords), but the observed variability

in performance suggest that operating charactesiatie unlikely to be generalizable across
databases and that each new data source needagsdssed independently prior to inclusion
in an active surveillance network. Further retexdjve studies of an array of drugs using a
portfolio of alternative methods against a broadswork of potential data sources would
improve the applicability of the findings to suppour use of the active surveillance system

prospectively.
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Tables and Figures

Table 13: Data source characteristics

CCAE MSLR MDCD MDCR GE

Population (N) N=59,836,290 N=1,466,617 N=11,188,360 N=4,655,736 N=11,216,208
Gender

Male: N (%) 29,173,105 (48.75) 515,174 (35.13) 4,665,014 (41.70) 2,071,968 (44.50) 4,751,444 (42.36)

Female: N (%) 30,663,185 (51.25) 951,443 (64.87) 6,523,346 (58.30) 2,583,768 (55.50) 6,460,828 (57.60)
Age (yrs)

Mean (SD) 32.4(18.1) 39.1(17.5) 23.4(22.7) 74.5 (8.0) 40.6 (22.0)
Observation period length (mo)

Mean (SD) 21.2 (18.6) 18.7 (11.1) 14.2 (13.8) 31.9(22.9) 24.0 (31.3)
Number of drug exposure records per person

Median (25-75 %tile) 9 (3-28) 14 (5-35) 14 (5-38) 60 (20-134) 8 (3-22)
Number of condition occurrence records per person

Median (25-75 %tile) 15 (5-39) 27 (12-56) 24 (9-63) 57 (20-129) 5 (2-10)
Number of procedure occurrence records per person

Median (25-75 %tile) 20 (7-52) 39 (19-77) 31 (12-70) 72 (26-154) 10 (3-24)

Any ACE Inhibitor exposure
Prevalent users: N (%) 3,052,264 (5.10) 108,869 (7.42)
Incident users: N (%) 1,137,211 (1.90) 32,532 (2.22)

614,703 (5.49)
188,224 (1.68)

1,569,765 (33.72)
483,853 (10.39)

1,361,058 (12.13)
529,767 (4.72)

CCAE: Thomson Reuters MarketScan Commercial ClantsEncounters
MSLR: Thomson Reuters MarketScan Lab Supplemental
MDCD: MarketScan Multi-state Medicaid database

MDCR: MarketScan Medicare Supplemental and Coatitin of Benefits Database

GE: GE Centricity

Incident users, defined as first exposure >180 ftays observation period start
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Table 14: Operating characteristics of COMPASS sxdata sources and within composite summaries

Total True False
Source signals  positives Positives Sensitivity Specificity PPV AUC PAUC10
CCAE 127 38 89 0.45 0.97 0.30 0.645 0.022
MSLR 9 3 6 0.04 1.00 0.33 0.598 0.014
MDCR 47 17 30 0.20 0.99 0.36 0.613 0.011
MDCD 51 16 35 0.19 0.99 0.31 0.608 0.012
GE 3 3 0 0.04 1.00 1.00 0.537 0.033

Meta-analysis composite estimates

Fixed effects 94 36 58 0.43 0.98 0.38 0.644 0.032
Random
effects 14 8 6 0.10 1.00 0.57 0.557 0.017

Threshold based on number of sources meeting significance

1+ 168 39 129 0.46 0.95 0.23
2+ 48 23 25 0.27 0.99 0.48
3+ 18 13 5 0.15 1.00 0.72
4+ 3 2 1 0.02 1.00 0.67

CCAE: Thomson Reuters MarketScan Commercial ClantsEncounters

MSLR: Thomson Reuters MarketScan Lab Supplemental

MDCD: MarketScan Multi-state Medicaid database

MDCR: MarketScan Medicare Supplemental and Coatitin of Benefits Database

GE: GE Centricity

‘Signal’- an outcome with a statistically signifitaassociation (p<0.05)

PPV: Positive predictive value

AUC: Area under receiver operating characterigtive

PAUC10: Partial area under receiver operating cherigtic curve, at 10% false positive rate
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Figure22: Forest plots of effect estimates for 42 ACE lnitorr labeled events
Only positive relationships (RR>1) are highlighted purposes of identification of risks.
Outcomes without estimates for specific databased@e to small case counts.
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CHAPTER SIX: MANUSCRIPT 3:
“Comparative safety of ACE inhibitors: Evaluating active surveillance framework”

Abstract

Background: Angiotensin-converting enzyme (ACE) inhibitors/egroven effective
treatments for hypertension. Product labelingreatly suggests differences in adverse event
profiles among ACE inhibitors, but little evideneeists about the comparative safety profile
in real-world settings.

Objectives: To estimate and compare the risk of 23 adversetgw@nong seven products
within the ACE inhibitor class (lisinopril, benazépenalapril, ramipril, quinapril, captopril,
and moexipril) by applying an active surveillancethod against a large administrative
claims database.

Results: Most risks were comparable across the ACE inhilaikass, though differential
increased effects for ramipril (low blood pressir&=1.60 [95% CI 1.54-1.67]) and
enalapril (orthostatic hypotension, RR=2.12 [95%1.B5-2.42]) were identified.
Conclusions: The safety profiles of products within the ACHilsitor class are largely
consistent, with differences in product labeling olbserved in real-world study. Systematic
use of observational databases for comparativéysassessment provides important, real-
world evidence for decision-making.

Key words: Active surveillance; ACE inhibitors; Drug safety



Introduction

Angiotensin-converting enzyme (ACE) inhibitors, ragowith diuretics, angiotensin |l
receptor blockers (ARBSs), calcium channel blockarg] beta-blockers, offer providers and
patients many options for pharmacologic treatméhtypertension. ACE inhibitors have
been found to be effective in the control of blgodssure, reducing the risk of acute
myocardial infarction among patients with hearuied, and decreasing progression of
kidney damage among diabetic and hypertensiversgtieACE inhibitors are generally
well-tolerated, though are known to have potersiidé effects, such as cough, hyperkalemia,
and hypotension, and in rare occasions, angioe@achaenal dysfunctiéii. While there
have been many placebo-controlled randomized @iadssome head-to-head experiments
synthesized in meta-analyses, little evidence te das distinguished the efficacy or safety
profile between the products within the cfa84® Some observational studies have explored
specific potential risks, such as congenital matfmions®, cancet* ** and angioedemy
but there have been no pharmacoepidemiologic S@di@mining the full comparative safety
profile of ACE inhibitors.

There has been increasing interest in expandingdbendary use of large linked
healthcare databases, such as administrative cémdhelectronic health records, towards the
development of systems for active drug safety slliamee and comparative effectiveness
researctr® Such systems could apply standardized procésseentify and evaluate real-
world effects of medicines, and to explore diffdrated outcomes among alternative
treatments. Several methodological issues exishsore the appropriate use of
observational data for comparative stutfié but few studies have been conducted that

evaluate the performance of observational analysesrd this aim.
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This study explores the comparative safety of s@reducts within the ACE
inhibitor class (lisinopril, benazepril, enalapraymipril, quinapril, captopril, and moexipril)
by applying an active surveillance method agairiatge administrative claims database.
The aim of the study is to assess the incidens@efeffects listed on the product labels, and

to evaluate the potential utility of a standardipedcess for evidence generation.

Methods

Data Source

The study population used for this evaluation céim® the Thomson Reuters
MarketScan Commercial Claims and Encounters (CCAErge administrative claims
database containing 59 million privately insuregd. CCAE provides patient-level de-
identified data from inpatient and outpatient wsihd pharmacy claims of multiple large
employer-based health plans from 2003 to 2008. ECéntains 3,052,264 persons with at
least one prescription dispensing record for an A@ibitor, though the sample size
available for each active ingredient varies by esaghe CCAE database was transformed
into the Observational Medical Outcomes Partner@@MOP) common data mod&lwith
all International Classification of Diseasdsinth Revision (ICD-9) diagnosis codes
translated into a standardized terminology uSlggtematized Nomenclature of Medicine-

Clinical Terms(SNOMED CT) condition concepts.

Product label review
Candidate outcomes were identified through natarajuage processing of all

structured product labels within the cf&sand subsequently refined though manual review
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of product labels for each drug in the cfélssA set of 23 outcomes were selected for
exploration based on the adverse event being listdte product label and the event being
observable in claims data through ICD-9 diagnosiées mapped in the OMOP standardized

terminology"”.

Statistical Analysis

COMParator-Adjusted Safety Surveillance (COMPASS) statistical algorithm that
estimates adjusted rate ratios for all outcomestefest for a given medical product through
propensity score stratification across exposedusmetposed cohorts within an incident user
design. COMPASS applies an automated heuristiddéining a comparator group based on
the indication of the medical product, and providestivariate adjustment focused on
minimizing bias from four primary sources: persos@mographics (such as age and gender),
confounding by indication, effects of comorbidignd health service utilization.

COMPASS leverages large biomedical ontologies gbwarks of clinical concepts
such as relationships between diseases and traatrteeautomate comparator selection by
identifying all drugs that share at least one Fpfraved indication but have different
mechanisms of action than the target drug of isterEor this study, the heuristic matched
each product in the ACE inhibitor class to alteineatreatments for the same indications
(indications listed in Table 15). Comparator pradithat were included for all ACE
inhibitors were: Angiotensin Il receptor blockeogta-blockers, calcium channel blockers,
and diuretics. Ramipril’'s comparator group in@dddtatins and nitroglycerin. Captopril's
comparator group also included nitroglycerin. Bramail and enalapril were the only drugs

to not include class IV antiarhythmics (diltiazererapamil) and amlodipine and felodipine
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(due to combination use). Digoxin was includedomparator groups for all drugs but
benazepril and moexipril. Lisinopril and ramigztdmparator groups included aspirin,
clopidoprel, alteplase, and phenprocoumon.

COMPASS imposes automated study design heurigtidsiding cohort exclusion
criteria based on contraindications and covariekection based on FDA-approved
indications and off-label uses. Persons includetiis study were required to have a
diagnosis code for at least one approved indicdtioiable 1) any time prior to the index
exposure, and were excluded if they had a diagmdsidisted contraindication (such as
pregnancy, liver disease, and renal artery stenmsior angioedema, neutropenia, and
hyperkalemia) within 30 days of exposure. Off-lales, such as diastolic heart failure,
prevention of recurrent atrial fibrillation, ancheg crisis scleroderma, were used as
covariates in the propensity score model. The rarrabprior medications dispensed for the
indication was also used as a covariate to adpugidst treatment attempts. The Romano
version of the Charlson comorbidity index and iisstituent diseas&s*® as well as total
conditions were used to adjust for disease bdfdeDovariates for total prescriptions
dispensed, total procedures, and total inpatiethtoamtpatient visits 30 days prior to exposure
were used as proxies to balance on health sertilczation. Additional covariates included
patient demographics (age at exposure and genagipraxies for lifestyle risk factors:
smoking, obesity, alcohol and drug abuse. Theensity score was estimated within each
calendar year using multivariate logistic regressieing all covariates described above to
estimate probability of exposure classificatiorg #me cohorts were stratified into 20
guantiles based on the propensity score distributi©ohort balance pre- and post-

adjustment was assessed using a heatmap visualizatioss all covariates and each
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products. Outcomes were identified as incidentlt@n occurrences, based on date of
recorded diagnosis codes, within 30 days from #te df first exposure for focus on acute
onset events with close proximity to exposure. cOue counts were tabulated within each
propensity score strata, and adjusted relative rigkre estimated through inverse variance
weighting of the strata-specific effects. COMPAB& developed using SAS version 9.2
(Cary, NC).

COMPASS has previously been shown to have bettésrpeance than other viable
active surveillance methods in identifying truegisafety issues and discerning from false
positive findings when exploring ACE inhibitor ctasffect§®>. COMPASS has been studied
across a network of five disparate databases, &#&EGvas shown to have the highest
sensitivity and best predictive model amongst tralable sourcés.

Event counts and unadjusted incidence estimates garerated for each ACE
inhibitor product and its corresponding active canapor group. Adjusted relative risks and

95% confidence intervals (Cl) were calculated fIG@MPASS for each outcome.

Results

Table 15 shows the number of persons that werilitpr inclusion in the exposed
and comparator cohorts within the inception coldesign. Lisinopril had the largest cohort
size (n=339,556) while both captopril and moexipat fewer than 10,000 persons meeting
the study criteria. Each drug had a large samgxel to define the comparator cohort, with at
least 696,353 exposed to alternative treatmene cbmparator cohort sizes vary due to
differences in the FDA-approved indications forlereatment (highlighted in Table 15), as

well as differing contraindications used as resuiccriteria.
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Each ingredient has notable differences in baselagacteristics among the exposed
populations. Persons with incident ramipril expesare older and more heavily weighted
toward males than other products. Both ramipri eaptopril cohorts have higher average
disease severity, as measured by Charlson inddxjigher health service utilization, in
terms of total concomitant medications, procedadsinistered, and inpatient and
outpatient visits prior to incident exposure. Ramhiand captopril patients, on average, had
exposure to 2.3 prior medications for the respedtidications, while patients with incident
exposure to other ACE inhibitors had at least pexosure to an alternative indicated
treatment (1.35-1.87).

Figure 24 depicts the number of patients in theoegd and comparator cohorts
within propensity score strata. For all produtiigre is substantial sample in the comparator
group throughout all 20 strata; the"Xighest strata within lisinopril analysis offefet
smallest sample (n=6906). However, there are antiat differences in the distribution of
exposed persons across the propensity strata gmahscts, indicating differential
discrimination in the propensity score model. tHa ramipril cohort, 65% of the exposures
(n=32,771) fell within the top 5% of propensity Captopril and moexipril have strata
with fewer than 100 patients, while ramipril, quindg and enalapril have fewer than 1000
exposed in the lowest 5% propensity score strata.

Figure 25 depicts a heatmap that highlights thearhpf propensity score adjustment
on baseline characteristics, including patient dgnayehics, health service utilization,
comorbidities, lifestyle risk factors, and indicatiprevalence. Each column in the graph
represents a covariate, and the color gradienimditte column reflects the range of

observed values across all cohorts (darker catalisate higher mean values). Within each
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product, trellised in rows with ingredient nametba right, there are summary measures
displayed for the exposed (1) and comparator (Bpxte pre- and post-adjustment. Color
differences between pre-0 and pre-1 rows reflelsbtambalances in the mean of that
attribute; for example, benazepril cohort had déigroportion of males and greater number
of prior indication medications than its comparatohort (columns 2 and 3, rows 3 and 4).
Balance after propensity score stratification cambserved by assessing post-1 and post-0
rows; the benazepril cohort was well-balanced wétltomparator cohort on gender (column
2, rows 1 and 2) and indication medications coldnrmows 1 and 2), as evidenced by similar
color. Ramipril and captopril exposed cohorts tedhighest rates of comorbidities and risk
factors (obesity, smoking, and alcohol abuse)cointrast, the moexipril cohort had the
lowest rates of health service utilization and cdribties, but the highest prevalence of
prior hypertension diagnosis. For all productd)@ance between exposed and comparator
groups was observed on multiple baseline charatiteyj but the magnitude and
directionality of those imbalances vary widely bpguct. Propensity score stratification
achieves greater covariate balance for all progdbcissome residual imbalance is observed.
For captopril, after adjustment the exposed grasgptigher prevalence of mild to moderate
diabetes (0.17 vs. 0.11) and diabetic nephrop&hy(vs. 0.06), but lower prevalence of
chronic pulmonary disorder (0.14 vs. 0.17) thanatmparator cohort. For ramipril, the
exposed cohort had 57% male vs. 51% in the congragedup, and higher prevalence of
renal crisis scleroderma (0.46 vs. 0.38), but feweident exposures occurred within an
inpatient visit (0.02 vs. 0.05).

Review of the product labels identified similaritiend differences across the ACE

inhibitors. Angioedema, hypotension, and leukopeme listed in the warnings section of
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each label, while cough, hyperkalemia, and impaies@l function are cited as possible
adverse events within the precautions section. itheahél events consistently listed in the
Adverse Reactions section of the product labelsidiec hemolytic anemia, constipation,
diarrhea, dyspnea, end stage renal disease, abalquain, nausea, oliguria, palpitations,
pruritis, and vomiting. Bronchospasm is not listedthe product labels for benazepril,
quinapril, and ramipril. Asthma not listed for rgml. Flushing is listed for all products,
except quinapril and ramipril. Low back pain id hsted for captopril and ramipril.
Tinnitus is on labels for all but captopril and mapril. Table 16 shows the number of events
and prevalence of these outcomes across the sesgucgs. The active comparator for
benazepril is provided as a benchmark, as it rsflbe smallest comparator with the
common indication across all products. Acquirechbkgtic anemia, bronchospasm, edema
of larynx, end stage renal disease, flushing, ingglaienal function disorder, leucopenia,
oliguria and anuria were observed to occur in fetlvan 10 patients for all products, except
lisinopril. Cough, dyspnea, low back pain and patns were the four most prevalent
conditions across the cohorts. The unadjustedémcie of asthma amongst products with
the event listed on the product label ranged frod@ @ 3.00 per 1000 persons; ramipril (the
only member of the class with asthma not listedhenabel) had 98 cases for incidence of
1.94 /1000 persons. Ramipril also did not haveback pain listed on the product label, but
the unadjusted incidence of 4.53 was similar te¢habserved for all products with the
labeled events. Two products, captopril and quihapat did not list tinnitus as an adverse
event on the labels, had 3 and 4 cases, respsctivel

Figure 26 shows the adjusted relative risks, eséchhy COMPASS, for all products

across 12 of the labeled events. Two relativesng&re observed with lower bounds of 95%
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confidence intervals > 1.5; low blood pressurerémipril ( RR=1.60; 1.54-1.67) and
orthostatic hypotension for enalapril (RR=2.12512843). Ramipril was the only product
with statistically significant risks for asthma,siynea, hyperkalemia, and nausea. Moexipril
use was associated with significant lower riskaigh than comparator (RR=0.55; 0.49-
0.60). Low back pain for captopril appears lowenrt alternative treatments (RR=0.65;
0.56-0.75), while other ACE inhibitors show consigtrelative risks with comparators. All
other observed effects were small in magnitudeveatidconcordance in direction among

two or more products.

Discussion

This is the first study to examine the full porifobf potential side effects of ACE
inhibitors in observational data through an actveveillance framework. The observational
analysis of real-world population complements thisteng evidence from clinical trials, and
provides a first side-by-side comparison of risksdividual ACE inhibitors relative to
alternative treatment. The analysis is derivethfeolarge privately insured population, with
over 535,000 new users of ACE inhibitors over a&ryperiod.

The analysis suggests that the seven ACE inhibitoder study have largely
comparable safety profiles, in terms of inciderates of 23 events suggested from product
labeling. All but four events (asthma, cough, dyesm and palpitations) had unadjusted rates
amongst ACE inhibitors that varied by less thawéngs per 1000 persons, and only dyspnea
was observed within an ACE inhibitor (captopril)iave an incremental risk greater than 1
per 1000 persons relative to the active comparadtonwever, the analysis also generated a

few hypotheses of differential effects that maynamat further study. Unlike the other drugs
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in the class, users of ramipril had a significatilyher incidence of low blood pressure than
alternative treatments. Persons initiating endlapd a two-fold increase in the risk of
orthostatic hypotension. Captopril users were Megeto have a lower incidence rate of low
back pain than its comparator, whereas other A@Qbbitors had consistently similar rates to
alternative treatments. Cough has been demorsiratdinical trials to be one of the most
prevalent adverse events for all ACE inhibitoroonK of the ACE inhibitors were associated
with clinically significant increased risks, and exapril use was associated with significantly
fewer cough events than its comparator.

Prior studies have suggested that the adverse eaterif ACE inhibitor-induced
cough is far higher than those reported from ciihitials and in product labéfs*’. Part of
the difference between observational analyses eatthbuted not only to the different
source populations but also due to study desigijsa®r et af° conducted a case-control
design to explore medication-related effects aneasgs of cough vs. matched controls,
whereas COMPASS studied the relative effects of A@ibitors relative to other
antihypertensives. Both studies may be suscepbhiesidual channeling bias, since
providers are generally aware of the known sidecefind may accordingly alter treatment
decisions for those at risk Note also neither study performed source regerification to
confirm the cough diagnoses.
A noteworthy finding from this study is the relaigoncordance of safety profiles of ACE
inhibitors in light of observed differences in pund labeling. The ramipril labeling does not
report asthma, bronchospasm, flushing, or low lpeik as adverse events on its US product
label, but the observed rates within ramipril usgigear consistent with other products in the

class. Similarly, quinapril labeling does not umbé bronchospasm, flushing, or tinnitus, but
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no differences between quinapril and other ACEhitbrs were observed in this study. Only
in one instance was the discrepancy between tletslabnsistent with differences observed
in this study; the omission of low back pain on ¢aptopril labeling is supported by the
statistically significant decreased risk that wasabserved with any other product. Perhaps
most notable is that majority of the labeled evevise not observed to occur at significantly
different rates than alternative treatments.

Discrepancies between product labeling and realenaiyservation aren’t necessarily
unexpected. Product labels offer one importaritfaogoroduct manufacturers and regulators
to communicate with providers and patients aboapibtential effects of medicines. Serious
side effects are often highlighted in boxed warsjray described in the Warnings and
Precautions sections of labels, while other advevsats are listed in the Adverse Reaction
sectiorf®. The evidence used to support product labelingiserally based on randomized
clinical trials, often using placebo as a comparaigor to approval, although post-approval
spontaneous adverse event reports may also be datenn Randomized trials are often
limited by lack of generalizability and restrictedmple sizes, such that the observed
frequency of event occurrence can be small andtegdifferences between treatment arms
may be statistically insignificant. Spontaneougegise event reporting reflects case series of
self-reported suspicions of drug-event relationshiqut can suffer from substantial bias in
underreporting and are limited in interpretatiom doi lack of denominator for
contextualizing the rate of events relative to otreigs™ *® In neither case is the intention
to provide a relative assessment of comparativeygdiut instead to provide an absolute
reporting of adverse events that have been obse®é guidance suggest that labels

should only include adverse event evidence thaidvoe “useful to health care practitioners
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making treatment decision” based on frequency of occurrence or rates obdtswation

or suspicion of a causal effect. While producelaloffer evidence of the occurrence of
adverse events during the product lifecycle, threpot communicate the level of confidence
in a causal attribution of the effect nor are thregnded to communicate comparative
differences between alternative treatments fostree indication.

Observational data offer the potential for provglmore precise measures of risk
using large samples, but observational analysesumeeptible to bias and confounding.
Pharmacoepidemiologic evaluation studies are isangly becoming an important source of
post-approval evidence, but typically focus on gpecified hypotheses of risk and are often
not conducted in a consistent and reproducibledashObservational database networks for
active surveillance and comparative effectivenessanable a systematic process for
evidence generation that can provide ongoing asssgsof the both the beneficial and
negative effects of medicines, relative to alteueatreatments, in real-world populations.
However, as these efforts continue their developnieraises the need for a central evidence
source that comprise all existing information, frpre-clinical studies, clinical trials,
spontaneous reporting, and observational datac#mbe used to support safety and
effectiveness assessments and inform medical daaisaking about alternative treatments.
Currently, evidence like that produced in this gtutbes not have a logical home beyond the
peer-review literature.

It is important to reinforce that COMPASS is inteddas a hypothesis generating
tool, used within an active surveillance systera agandardized process to enable proactive
monitoring of medical products to identify and nefihypotheses about potential drug effects.

While COMPASS applies many of the analytical ansigie choices typically considered
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within a pharmacoepidemiologic stddy*®*° the results should be considered exploratory in
nature and interpreted with caution accordingly pérticular, researchers should consider
additional sources of confounding that may havenlleadequately addressed in the
COMPASS model. For example, while COMPASS usesugates of lifestyle risk factors,
such as smoking, obesity, tobacco and alcoholthesee variables are known to be poorly
represented in administrative claims data and aream accurate reflection of these
characteristics in the populatiin There may also be a need to examine the validlitiye
outcomes, which are initially defined only by diagis codes without source record
verification. The analysis should be embeddediwithbroader sensitivity analysis
framework whereby alternative decisions for isdikestime-at-risk definition, covariate
selection, and adjustment strategy can be systeaiigtevaluated. Each potential
association uncovered in this exploratory phasscte surveillance requires further
evaluation as part of a causal assessment. OtluEnee to raise confidence in the potential
effect beyond the temporal association that is eskin these observational databases is the
biological plausibility of the relationship basedl dinical pharmacology and additional
evidence of a dose-response relationship.

Here, COMPASS has been used to evaluate the cotiwpasafety of products within
a specific class through indirect comparisons. s€hrdirect comparisons complicate the
interpretation of results, but are necessary becaash product has different indications and
contraindications that should be accounted fohédonstruction of a proper referent group
with similar baseline characteristics. Each praodves evaluated against a proxy for
standard of care by comparing effects patients gegbto the product with patients exposed

to alternative treatments for the same indicatemthe target drug. In the case of ACE
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inhibitors, all products share a common FDA-appdowelication for hypertension, but some
products have approved indications for other commt such as chronic heart failure,
prevention of myocardial infarction and stroke, aabetic nephropathy. The impact of
adjustment via propensity score is different acpysslucts since the underlying populations
reflect different patient demographics, health merwutilization patterns, comorbidities and
other risk factors. The observed differences ww®e the importance of a thorough
examination of comparator populations prior to ssseent of outcome differenéés In this
instance, the substantial heterogeneity in basehaeacteristics between products in the
ACE inhibitor class would have been obscured haditings not been analyzed separately.
Further methodological research is needed to éstaldst practices for integrating and
evaluating evidence through indirect comparisorthiwitherapeutic classes and across
observational databases. Alternative analyticaf@aches should also be evaluated and
compared with COMPASS. This may include strategpe=nable direct comparisons across
the ACE inhibitor products, with further adjustmémtaddress the different indicated
populations and concerns for channeling bias.

This study serves as a proof-of-concept to demaigsthe opportunities and
challenges awaiting the development of a natioc@@ surveillance system. While the
safety profile of ACE inhibitors is generally thdugo be well-established, COMPASS
provided corroborating evidence about the magnibfdesk that is consistent across the
drug class, highlighted substantial differences@atment patterns among the products, and
identified hypotheses about potential differengiiécts that may warrant further evaluation.
It bears mentioning that there is currently littleentive for comprehensive research on

mature products that are off-patent, such as A@ibitors. However, given their
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widespread use and cost-effectiveness, it coulakgpeed that relative assessments of mature
products could provide the most impactful evidetacenprove patient health while reducing
overall healthcare costs. Further work will bedexkto establish the operating
characteristics of COMPASS and other potentiavacturveillance methods across a
broader array of medical products to understandetbility of the evidence the system can
provide. Once established, it could be anticipateth as system could directly support the
assessment of newly marketed medicines with emgsgifety concerns. More broadly, the
availability of comparative evidence of medicalrtiges should support all stakeholders in
the healthcare community, including product mantwiigss, regulators, payors, healthcare

systems, and clinicians, in maximizing the carevighed to patients.
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Tables and Figures

Table 15: Cohorts, baseline characteristics, iridinoa

Lisinopril Benazepril |Enalapril Ramipril Quinapril  [Captopril Moexipril
Incident users of drug 339,556 96,325 27,750 50,560 12,900 3,330 5,024
Comparator cohort 699,946 696,353 703,574 1,126,697 778,472 828,155 794,778
Baseline characteristics
Age (mean) 50.75 50.77 50.30 53.36 51.18 51.75 50.27
Gender (% males) 0.53 0.55 0.52 0.58 0.53 0.48 0.46
Charlson index (mean) 0.76 0.68 0.86 1.36 0.79 1.25 0.56
Indication medication count 1.55 1.87 1.60 2.38 1.71 2.35 1.35
Total medication count 0.75 0.78 0.77 1.09 0.78 0.93 0.76
Total procedure count 1.67 1.57 1.57 4.28 1.52 2.58 1.50
Total outpatient visits 1.17 1.26 1.16 2.00 1.19 1.36 1.28
Total inpatient visits 0.09 0.06 0.12 0.29 0.08 0.28 0.05
FDA-approved indications
Asymptomatic Left Ventricular Dysfunction X
Chronic Heart Failure X X X X X
Diabetic Nephropathy X
Hypertension X X X X X X
Left Ventricular Dysfunction following Myocardial Infarction X X
Myocardial Infarction X
Myocardial Infarction Prevention X
Prevention of Cerebrovascular Accident X
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Table 16: Event rates by ingredient

Unexposed
comparator Benazepril Captopril Enalapril Lisinopril Moexipril Quinapril Ramipril
Events/ Events/ Events/ Events/ Events/ Events/ Events/ Events/

ACE Inhibitor Labeled Events 1000 1000 1000 1000 1000 1000 1000 1000
(exceptions bold in grey) Events |[persons |Events |persons |Events |persons |Events [persons [Events [persons |Events |persons |Events |persons |[Events [persons
Acquired hemolytic anemia 4 0.01 1 0.01 0 0.00 0 0.00 4 0.01 0 0.00 0 0.00 1 0.02
Asthma 1534 2.20 143 1.48 10 3.00 57 2.05 593 1.75 3 0.60| 24 1.86 98 1.94
Bronchospasm 84 0.12 3 0.03 0 0.00 2 0.07 40 0.12 1 0.20 2 0.16 2 0.04
Constipation 970 1.39 120 1.25 4 1.20 47 1.69 404 1.19 8 1.59 15 1.16 64 1.27
Cough 3713 5.33 486 5.05 21 6.31 168 6.05 1892 5.57 19 3.78 67 5.19 275 5.44
Diarrhea 1390 2.00| 137 1.42 10 3.00 51 1.84 682 2.01 8 1.59 16 1.24 101 2.00
Dyspnea 6184 8.88 460 4.78 33 9.91 181 6.52 2003 5.90 16 3.18 69 5.35 475 9.39
Edema of larynx 19 0.03 1 0.01 0 0.00 0 0.00 14 0.04 1 0.20] 0 0.00| 2 0.04
End stage renal disease 89 0.13 5 0.05 0 0.00 3 0.11 33 0.10 0 0.00 1 0.08 4 0.08
Flushing 99 0.14 9 0.09 0 0.00 1 0.04 22 0.06 0 0.00 3 0.23 3 0.06
Generalized abdominal pain 1370 1.97 137 1.42 6 1.80 59 2.13 598 1.76 7 1.39 24 1.86 100 1.98
Hyperkalemia 492 0.71 44 0.46 5 1.50 19 0.68 208 0.61 1 0.20 6 0.47 49 0.97
Impaired renal function disorder 49 0.07 7 0.07 1 0.30 2 0.07 31 0.09 0 0.00 1 0.08 5 0.10
Leukopenia 40 0.06 3 0.03 1 0.30 1 0.04 19 0.06 0 0.00 1 0.08 2 0.04
Low back pain 3226 4.63 425 4.41 13 3.90 128 4.61 1578 4.65 22 4.38 57 4.42 229 4.53
Low blood pressure 623 0.89 36 0.37 3 0.90 18 0.65 282 0.83 4 0.80] 8 0.62 65 1.29
Nausea 942 1.35 86 0.89 6 1.80 30 1.08 397 1.17 7 1.39 8 0.62 65 1.29
Oliguria and anuria 18 0.03 1 0.01 0 0.00 0 0.00 12 0.04 0 0.00 1 0.08 0 0.00
Orthostatic hypotension 205 0.29 17 0.18 1 0.30 16 0.58 109 0.32 1 0.20 3 0.23 17 0.34
Palpitations 4625 6.64 251 2.61 12 3.60 82 2.95 1155 3.40 9 1.79 49 3.80) 248 4.91
Pruritus of skin 181 0.26 22 0.23 2 0.60 8 0.29 83 0.24 1 0.20] 4 0.31 13 0.26
Tinnitus 326 0.47 44 0.46 3 0.90 14 0.50 139 0.41 0 0.00 4 0.31 19 0.38
Vomiting 473 0.68 52 0.54 5 1.50 22 0.79 241 0.71 4 0.80] 5 0.39 27 0.53
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CHAPTER SEVEN: CONCLUSION AND DISCUSSION

7.1. Motivation for study

In the recent past, three remarkable forces haweed¢ogether that have substantially
raised the importance of ‘real-world’ data in uredanding key outcomes of health care:
advances in health IT, regulatory imperatives, pudlic / political activism in assuring the
safety of medications.

The secondary use of automated healthcare datalsasbsas administrative claims
and electronic health records, has been a cormergtgpharmacoepidemiology, health
outcomes and services research for many yearseaR#®rs with access to these data
sources have designed observational studies toiegansafety issue reported to be
associated with a medical product, to compareradtere therapies for a given disease, and
to assess the impact of new interventions withinhtealthcare delivery system on health
service utilization and quality of care. Whiléhds long been recognized that observational
studies can suffer from various biases not preagsesm experimental setting, observational
analyses remain a particularly valuable compongtiteevidence generation process for
healthcare. In settings where prospective randednidals are infeasible or unethical, such
as the study of rare safety events with a latesébfollowing intervention, observational

results may be the best evidence available tonmfoedical decision-making.



Recent advances in health information technology iacreased capture of
observational healthcare data and raised interesiardinating large-scale efforts to
leverage these data to better understand the £fféatedical treatments. A recent report
from the President's Council of Advisors on Sciemge Technology highlights the
opportunities for how “improved health IT can ditg@affect, and improve, clinical
encounters between doctor and patient, healthecgemizations, clinical research, and the
monitoring of public healtR*

In the US, several national efforts offer the preenio significantly expand the use of
observational data for evidence development. D¥2Congress passed the Food and Drug
Administration (FDA) Amendment Act, which called fine establishment of an “active
postmarket risk identification and analysis systevith access to data from 100 million lives
by 2012 It is envisioned that an active surveillanceayswould “use sophisticated
statistical methods to actively search for pattémnsrescription, outpatient, and inpatient
data systems that might suggest the occurrence adeerse event, or safety signal, related
to drug therapy"*®

This reflects a significant evolution in the usdlwdse data from the customized
design of an individual study of a particular drugtcome association applied to specific
database at single point in time to the developrokatsystematic solution to a broader
effort that effectively uses these data for acthanitoring of any medical product and any
health outcome of interest across a network ofadlete databases. The envisioned system
would go beyond the retrospective evaluation ofdtlypsized effects to proactively explore

the data to generate and refine hypotheses of fjiatessues that warrant further scrutiny.

198



In January 2011, as part of its Sentinel InitiativBA announced it had the “capacity
to ‘query’ the electronic health information of nadhan 60 million people, posing specific
questions in order to monitor the safety of appdowveedical product$**. This initial focus
on traditional pharmacoepidemiology evaluation Esi@f ‘specific questions’ supports the
notion held by some that further research is ne¢aledtablish appropriate methods and gain
understanding of operating characteristics pridgheosystem’s more widespread use.
Consistent with the trends in networks of data sesiand the investigation of new methods,
The Observational Medical Outcomes Partnership (BMQ public-private partnership
chaired by the FDA and managed through the Foumdédr the National Institutes of
Health, is conducting methodological research torm these national efforts by empirically
measuring the performance of an array of altereativalysis methods across a network of 10
databases covering over 200 million patient fit®sSimilar efforts are underway in Europe
to assess performance of active surveillance mesthombss international data sources,
including IMI-PROTECT*° and EU-ADR?.

Within the American Recovery and Reinvestment A&QD9, $1.1 billion was
committed to comparative effectiveness researcliR|CHhe Federal Coordinating Council
for Comparative Effectiveness Research defines @&ERhe conduct and synthesis of
research comparing the benefits and harms of difténterventions and strategies to
prevent, diagnose, treat and monitor health camdhitin “real world” settings. The purpose
of this research is to improve health outcomesdwebbping and disseminating evidence-
based information to patients, clinicians, and otleeision-makers, responding to their
expressed needs about which interventions are effestive for which patients under

specific circumstance$® A key priority within this investment is establisia data
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infrastructure that provides coordinated linkage aocess to administrative claims and
electronic health records to enable research ofaakdterventions by a broad array of
stakeholders.

While the opportunities abound, substantial redemraeeded to inform the
appropriate use of observational healthcare datadhive drug safety surveillance and
comparative effectiveness research. Empiricalistuare needed to determine the
contribution of individual data sources into an@tational data network and gain
understanding of the performance characteristienafytical methods when applied across
the network in their ability to provide reliableidgnce about the effects of medical products.
This dissertation provides one body of researciméxag the use of a novel method across a
network of observational databases to study thepapative safety of Angiotensin

Converting Enzyme (ACE) Inhibitors.

7.2. Review of study results

This dissertation compiles a series of effortendied to shed some light on the
potential opportunities and challenges of an adiwweillance system. First, it introduces a
new method, COMPASS, designed to integrate starngtamacoepidemiology principles
into a systematic process for drug-outcome risktifleation. The method was then applied
in these experimental contexts to evaluate itsoperdnce, relative to other existing methods,
and across a network of disparate observationabdaes. Finally, the method was applied
to the specific clinical context of the comparatsadety of ACE inhibitors to assess its

potential utility as a tool for evidence generation
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COMParator-Adjusted Safety Surveillance (COMPASS) statistical algorithm that
estimates adjusted rate ratios for all outcomestefest for a given medical product through
propensity score stratification across exposedusmetposed cohorts within an incident user
design. COMPASS applies an automated heuristiddéining a comparator group based on
the indication of the medical product and providestivariate adjustment focused on
minimizing bias from four primary sources: persos@mographics (such as age and gender),
confounding by indication, effects of comorbidignd health service utilization.

COMPASS was developed as a systematic procespposiactive surveillance, designed to
incorporate basic epidemiologic principles typigalsed for evaluation studies of specific
drug-outcome hypotheses but adapted to enabléeeffiscalable analyses for proactive
monitoring of multiple products and multiple outcesrsimultaneously. As such,
COMPASS applies a consistent set of heuristicsimitie framework to approximate the
subjective decisions typically made during an eatdun design, such as comparator
selection, inclusion/exclusion criteria, covariatjustment strategy, and time-at-risk
definition. It is important to reinforce that COMIBS is designed as an automated
surveillance tool intended to supplement, not replaxisting pharmacovigilance practice.
The outstanding question this research soughtdcead is whether COMPASS can provide
useful supplemental information, as compared teralctive surveillance methods under
consideration.

In “Systematic identification of drug safety issuesdministrative claims data:
Performance of hypothesis generation methods toreasurveillance,” the first aim was
addressed by characterizing the performance of C&B&in identifying known safety

issues association with ACE inhibitor exposure imin administrative claims database.
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This study compared the operating characterisi€@IMPASS with three existing active
surveillance methods (disproportionality analystsservational screening, and self-
controlled case series) within the Thomson MarkatS€Commercial Claims and Encounters
database. Each method was applied to ACE inhibiposure, studying the same set of
potential adverse events to assess the methodisndilsation between true positives (events
listed on the product labeled which are known ta&sociated with ACE inhibitors, such as
cough, hypotension, and renal dysfunction) and theggaontrols (events not believed to be
drug-related).

Amongst the four methods, COMPASS generated thedesafety signals
(statistically significant positive associationsad the lowest false positive rate, highest
predictive probability and greatest precision. CRASS was the only method to have
specificity > 0.95. Given that COMPASS employed thost comprehensive strategy for
addressing potential bias from between-person casqus, it is reasonable to suggest that
many of the false positives identified by disprdjmorality analysis and observational
screening could be successfully mitigated througtfaunding adjustment. While
COMPASS has the highest discrimination of the foethods (AUC=0.648), the absolute
performance demonstrates the significant oppogtdaitmethod improvement. While
COMPASS, along with all methods, performs subsadlgtbetter than random, they are far
from perfectly predictive models. The observedsgesity of 0.42 for COMPASS suggests
further work is needed to ensure that the strasemiplied are not too restrictive as to fail to
identify true relationships.

COMPASS's positive predictive value (0.31), whildstantially better than the other

three methods, underscores the risk of a activeslance system to generate a majority of
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hypotheses that are false positives. The tolerahfadse positives comes at a tradeoff for
acceptability of false negatives. Only through erogl studies that provide experimental
evidence of the operating characteristics of thiw@surveillance methods can stakeholders
begin to establish policies for interpreting sulleeice results. As a frame of reference,
many have held the Vaccine Safety Datalink (VSDihasbellwether for successful
implementation of an active surveillance systenit has been used to enable the study of
newly marketed vaccines across a network of headtimtenance organization claims
databases. A recent assessment of the performétioe VSD system- which applies an
unadjusted cohort design within the maximized setialeprobability ratio testing
framework- has highlighted that 9 of the 10 sigrgeerated were subsequently determined
to be false positivés’, which would be the equivalent of PPV=0.10. Gitleat
epidemiologic study of vaccine exposure is oftess leusceptible to challenges with
confounding (since most vaccines are administeredmore homogenous healthy infant or
adolescent population), the fact that COMPASS shewperior performance within the
context of surveillance for prescription drugs ddqarovide strong encouragement of the
promise of the active drug safety surveillanceeyst

In “Integrating active drug safety surveillance lggas across a network of
observational healthcare databases”, the consistdlCOMPASS estimates was evaluated
across five disparate data sources. This studicaggd the design as the first aim,
measuring the operating characteristics of COMPAS&n examining labeled events and
negative control outcomes associated with ACE itdilexposure. COMPASS was applied
across five databases to assess the performaeeelvtource independently, as well as

alternative strategies for composite assessmerdssathe data network. COMPASS was
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observed to have high specificity across all daaeb$>=0.97) and consistent positive
predictive value (>=0.30), but with substantiafeli€nces in sensitivity (range: 0.04 to 0.45).
Several differences among the data sources, syobpasation size; patient demographics
and underlying disease severity; and longitudipalftdata capture, may explain some of the
performance inconsistency. The variability in pemiance characteristics across data
sources should provide caution to those lookinggtweralize methodological results to a
wide array of data sources. This study findingggsts each contributing source within a
data network should be properly benchmarked threoghe retrospective empirical
evaluation so as to gain sufficient understandinigaw method results should be interpreted
in the context of other findings.

Perhaps the most noteworthy observation from tingysivas the magnitude of
heterogeneity that existed across sources whenaua specific outcomes and its apparent
impact on alternative strategies to synthesizirideswce across a data network. 82% of the
statistically significant outcomes were observetidge high heterogeneity’ ¢ 75%) of
point estimates among databases. As a resulpasite summaries based on both fixed-
effects and random-effects meta-analysis of sospeeific effect estimates did not yield
additional predictive ability or identify additiohautcomes not found by individual sources
alone. The results suggest that, in the face lidtantial heterogeneity, review should focus
on the source-specific estimates and the explan&dionvhy sources demonstrate
consistency. An alternative approach to asses®mds is on the basis of how many sources
yield statistically significant results, followirtge principle that repeated independent
replication should provide higher confidence iruiess This study demonstrated that

positive predictive value and specificity couldibgroved through increasingly restrictive
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criteria requiring 2+, 3+ or 4+ significant findimgrom the five databases. However, the
number of pairs that satisfied these criteria desmd as well, reducing the sensitivity.
Further independent replication was not suffictergliminate the risk of false positive
findings, potentially due to consistent sourcebia$ that persisted throughout the analyses.
These findings suggest that while highly consistestilts across the network may be more
reliable, it appears likely that a more common o@nce will be inconsistent estimates that
are more difficult to discriminate.

These findings should give pause to the currejediary of development of the
national active surveillance system. A unique oppuoty within a national system is the
ability to examine the effects of medical produoten across a network of disparate data
sources, with the presumption that the source-Bp@stimates could be somehow combined
to provide a more comprehensive summary. By pggimpulations across the network to
comprise over 100 million persons, it has been ebgokthat sample size increases for
exposed patients would enable more precise essmeffects and facilitate exploration of
rare events that are challenging to study in onecgoalone. The Mini-Sentinel protocol that
evaluates the cardiovascular effects of saxaglgotishother oral anti-diabetic treatments
assumes summary counts from each participatin@gsitess the Mini-Sentinel data network
will be aggregated at the central coordinating @ebéfore conducting a composite Poisson
regression at defined time intervals, and is podraceordingly for this type of pooled
analysi®. If the results from the present study were galiEsble to the Mini-Sentinel
protocol, there could be substantial concernsttteatomposite estimates produced could be
biased and less accurate than review of sourcefispestimates. Further research is needed

to determine the most effective strategies forlsgsizing evidence across disparate

205



observational data sources, as traditional metgAamapproaches based on inverse variance
weighting are likely to be insufficient to meet ttigallenges of bias presented in these data.

In “Comparative safety of ACE inhibitors: Evalugjian active surveillance
framework,” the differential effects across ingesds within the ACE inhibitor class were
explored using COMPASS against the Thomson Marlet&ommercial Claims and
Encounters database. This study offered the oppitytto apply the active surveillance
method to seven products (lisinopril, benazepniglapril, ramipril, quinapril, captopril, and
moexipril) to assess whether product labeling diffiees in adverse event reporting were
true clinical phenomenon observable in an admatis® claims database. We observed
substantial variation in the populations exposetiiterns of use amongst the seven
products. The product differences in FDA-approwelications and listed contraindications
resulted in COMPASS’s automated heuristics selgatiique comparator cohorts for each
product and demonstrating differential succes®iradate balance through propensity score
stratification. Most risks were comparable actbesACE inhibitor class, with differences
in product labeling not observed in real-world studwo hypotheses were generated that
suggest the risk of hypotensive outcomes of ratrapid enalapril may be elevated, though
further exploration would be necessary to deterrifities is a true causal effect. Also of
note was that adverse events listed on the ACBitaniproduct labels did not appear to
occur more frequently during ACE inhibitor expostivan the comparator groups.

This comparative safety assessment highlightsuhent gap in available evidence
about relative safety effects of medical produsthile product labels offer evidence of the
occurrence of adverse events during the produatyidie, they do not communicate the level

of confidence in a causal attribution of the effieat are they intended to communicate
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comparative differences between alternative treatsnfer the same indication. National
efforts to develop active drug safety surveillannd comparative effectiveness systems have
a significant opportunity to enable the establishiwé a centralized source of real-world
evidence about relative effects of alternativedpess, so that patients and providers can

have a greater understanding of the potential ougsan treatment.

7.3. Lessons through the evolution of the research program

The three manuscripts represent a summary ofrtdenfys that were generated as a
final work product from the research. However, boey of work reflects an evolution in
development from its inception. The proposed nesedesign was followed to specification
where possible, but necessary adjustments that ramehe exploratory process are worth
mentioning.

The most substantial area of improvement camesdinténative development of the
COMPASS algorithm itself. Several enhancement&wesorporated into COMPASS to
address apparent limitations impacting the methpdiformance. In an attempt to increase
the balance between cohorts on important potectiafiounders, the set of covariates used in
the propensity score model was expanded to indlfestyle risk factors (obesity, tobacco,
alcohol and drug abuse) and comorbid diseasesdedlwithin the Charlson index. The
lifestyle covariates were initially excluded duethe known limitations of administrative
claims data in observing these effects. Howewamn éf available data elements were poor
proxies for these risk factors, it could be stédl\mluable to provide some level of adjustment
in light of the strong confounding these varialdans often induce with specific outcomes.

The inclusion of the individual diseases within @learlson index ensured greater balance
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among specific comorbidities in addition to balantéhe composite index. COMPASS was
also enhanced to allow both restriction and adjastrof indications and contraindications,
with the recognition that either or both forms ohtrol may be considered when exploring a
given medical product. The current study’s appitcaof restriction on both indication and
contraindication came at the recommendation ofthA, who are most focused on
managing risks for medical products when used @smenended, as opposed to unintended
effects during off-label use.

A key lesson in the application of COMPASS thatas discussed in the study
findings is the sensitivity of time-at-risk defilit on effect estimates and method
performance. As part of the proposed heuristicMP@ASS generates an effect estimate by
selecting the maximum risk observed across multfiernative risk windows (acute,
subacute, insidious, and delayed). This was pexpasder the premise that different
adverse events have varied time-to-event relatipashith exposure, which may not be fully
characterized at the time of initial exploratiohll empirical studies showed that COMPASS
performance was optimized by focusing instead erattute risk window, defined as 30 days
from exposure initiation. This finding warrantsther examination to determine if this is a
consistent phenomenon or an artifact of this paldicstudy design. It could be hypothesized
that the acute risk window yielded the highest eacyisimply because the test cases under
study (labeled events for ACE inhibitors) were mideely to have been acute time-to-event
relationships. Alternatively, it is possible theting longitudinal healthcare data is more
accurate during the immediate periods around exppand studies of effects requiring a
longer duration between exposure and outcome hezantly more challenging due to the

increasingly potential for confounding and nois¢hie data to surface.
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The second study that examined COMPASS acrossvaredf data sources was
originally intended to include results from COMPA&inst the Regenstrief Indiana
Network of Patient Care (INPC) database, which wdave provided an additional clinical
source to complement the findings from the GE Gatyrsource. COMPASS was
developed within the OMOP research lab, which dfdrthe opportunity to have access to
de-identified patient-level data for the five datairces used in the study. The highly
iterative process of methods development and etraludemanded access to these data to
support the exploration. Results from INPC wereinduded because the method execution
within a distributed network framework presenteditidnal logistical challenges that made
the same level of exploration and understandinffiarent and unobtainable. The data
access model currently advocated for active drégfysaurveillance is a distributed network,
whereby data holders maintain secure access enpdtivel data and a central coordinating
center is responsible for managing participatioth aggregating summary-level results from
across the netwot® #3241 While this model has the potential to offer tigh level of
patient data privacy and foster more active pgiton among organizations who see their
data holdings as proprietary, it presents a legitnobstacle to methods development and
evaluation. In-depth understanding of method perémce often requires exploration of
patient-level data to examine potential sourcasnaidjusted confounding or other previously
unidentified artifacts in the data that can beibgsesults. Because of the observed
heterogeneity across disparate sources, it is/likesafe to assume a method implementation
on one data source is sufficiently generalizableddress the particularities of another
source. The centralized data access model, wiardte sources are de-identified and

made accessible through a common systems infraste,ics more conducive to
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transparency and enabling full data explorationraises its own set of concerns with data
sharing. Until advanced analytics within an autt@darocess can be demonstrated to be
executed across a distributed network and yieldlykd, accurate results, it seems reasonable
to consider the choice of a data access model émbtner outstanding question that requires
further research.

The original study design called for examinatioralbingredients within the ACE
inhibitor class for the third aim. Beyond the sepeoducts that were studied (lisinopril,
benazepril, enalapril, ramipril, quinapril, captbprnd moexipril), this would have included
fosinopril and perindopril. Perindopril was thaseé commonly prescribed ACE inhibitor
across all data sources, while the number of fasihexposures was comparable to that of
captopril. However, the automated heuristics ilMEFASS were unable to be applied to
these two products because the information sowged for comparator selection did not
include these ingredients in its set of relatiomkis limitation underscores the need for
constant manual review throughout the automate@sygic process envisioned for an
active surveillance system. While the COMPASS gllgm was successfully applied in
some circumstances, it is not feasible in otheteods, so it is important to determine the
scenarios where the system will be unavailabléeatify areas that require further

supplemental effort.

7.4. Limitations of the COMPASS method

While the study results demonstrate promise for @S as a viable active
surveillance method, several limitations in therapph bear consideration for future

enhancement. COMPASS applies an automated heudstelect alternative treatments that
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serve as a comparator group. This comparator geompended as a proxy for standard of
care, in that it is constructed based on the seteafical products that could have been used
for the target drug indication. This comparatarug is used as a benchmark for assessing
the relative effects of all potential outcomes.e Heuristic, selecting all drugs that share an
FDA-approved indication but have a different meas@nof action, is an objective
approximation of the expert-based selection typicaquired in a customized evaluation
study. Since the comparator can be comprised dfpteudrugs, it is possible there is exists
heterogeneity in effects amongst the comparatggsioat could results in the background
rate being divergent from the true effects withiry given comparator product. This may be
particularly true for medical products with muleghdications, in which case it may be
reasonable to consider stratifying the analysiedmh indicated condition. It is also possible
that the comparator may be inappropriate for aexaicomes, based on secondary
indications or other factors. Further researaesded to assess the concordance of
comparator selection between what would have bkeesen by experts as compared to
automated heuristics, and to assess how differentes would impact accuracy of method
performance.

COMPASS uses a standardized procedure for covatgstment through
propensity score stratification. As with all aggliions in propensity score adjustment, it is
important to assess balance in baseline charaateridn customized studies, when balance
is insufficiently achieved, analysts may modify firepensity model and re-assess the
adjustment approach. Within an automated proagdsas COMPASS, it is important to
provide a comprehensive summary of covariate balai¢hile attempts have been made in

this work and illustrated within the studies, ip@ssible that there is residual confounding
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due to insufficient control which would impact timerpretation of the effect estimates.
While the COMPASS model uses proxies for demographifestyle risk factors,
comorbidities and health service utilization, ipssible that other covariates are relevant
which have not been included in the model. Formgda, there may be additional covariates
to consider that reflect diseases which are higilted to the indicated conditions. Some
covariates used may be poorly recorded in spet#iabases, such as obesity and tobacco
use in administrative claims. There are additidaetors that may influence treatment
selection that COMPASS doesn’t account for becthesgare unavailable in the data model,
such as patient socioeconomic status and provedet-Characteristics.

COMPASS was implemented to be an efficient todatdlitate rapid monitoring of
medical products within an active surveillance reelwv Within a cohort design, it becomes
very straightforward to simultaneously assess pleltbutcomes for a given treatment.
Specific attention was made to develop COMPASSficiently explore multiple treatments
concurrently, but the nature of the design makssdperation more computationally
demanding. One substantial value of the autonatecess is that multiple alternative
design decisions can be evaluated simultaneougigra®f a comprehensive sensitivity
analysis. However, further work is needed to aetee how to interpret results from across
the sensitivity analysis, particularly when incaent findings are observed among

seemingly reasonable parameter settings.

7.5. Limitations of observational data

A key limitation of this study is the fundamentabtlenge facing the enterprises of

active drug safety surveillance and comparativectiffeness-- the integrity of the
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observational healthcare databases. In theseesfwidé evaluated an analytic method in its
ability to identify temporal associations betweeaglexposure and outcome occurrence.
However, the secondary use of administrative claintselectronic health record data
requires an array of assumptions to infer drug symand the temporal relationship to
disease onset. In neither type of data is theeedinformation about exposure, but instead
information about prescriptions written by provisler dispensed by pharmacies. Outcomes
are inferred from diagnosis codes, either capttnad billing claims as part of
reimbursement justification or from problem listsorded by clinicians to support their care
process. Typical pharmacoepidemiology evaluatinodies may define outcomes using
combinations of diagnosis codes, potentially injgoation with other markers such as
procedure codes or laboratory values, and ofteiomersome level of source record
verification to increase the confidence that obsémvents are true outcomes. In this study,
individual diagnosis codes were used as crude @sd®ir outcome occurrence, with no
source record verification. These diagnosis cadias serve to define the covariates used in
the propensity adjustment and as the restrictiger@ for indications and contraindications.
COMPASS allows for cohort restriction based on mpinadication recorded, but patients may
have the indicated disease without having the disigrcode recorded on a claim or have the
indication show up in the record after exposuras Timitation of the underlying data could
be a central reason for the overall poor perforraaiall surveillance methods and may
provide one of the most significant opportunities erformance enhancements independent
from the statistical methodology. As more robustionic medical records are established
and disparate data sources (claims, EHRs, perbea#h records, registries, death indexes,

clinical trials) are able to be linked through coompatient identifiers, not only will more
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comprehensive data be captured for individualsalad analyses should be able to more

accurately ascertain patterns across populations.

7.6. Limitations of the COMPASS experiments

The studies conducted have provided initial evidesfcthe utility of COMPASS as a
viable active surveillance method, but further sgaghould be designed to address some of
the limitations in this existing work. Perhaps tiogpactful is that in order to justify the use
of COMPASS as a reliable tool, it is important tove confidence that prior methodological
research is generalizable to the types of scenantisipated by the envisioned active
surveillance system. The current studies haveskdwn the performance of COMPASS
within one class of medical products, ACE inhilstdout it remains to be seen whether the
operating characteristics observed are consistiéntewpectations for other prescription
drugs. Focus on one drug class has allowed feepeat dive and firmer understanding of
how the method behaved, but limits the overall gaizability. OMOP has created a larger
panel of drug-outcome pairs to study but suffessifproblem of breadth vs. depth. The
knowledge needed to have confidence in the creafiamational system requires both
breadth and depth in methodological research. Sthidy is only a first step in that direction.
Evaluation of method performance in its accuracglisariminate between positive controls
and negative controls rests on the confidencettieajround truth established for the test
cases is in fact accurate. In this study, positimatrols were defined by adverse events that
were listed in the product labeling for ACE inhdo, while negative controls were selected
based on conditions that were unrelated to any knanwg effect.  Given the maturity and

wide use of the drug class, it seems reasonalehegect the negative controls to be accurate,
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with little chance that a true effect exists amtmgm that had not been previously
discovered. However, as the third study showehesadverse events listed on product
labels are not necessarily true causal effectdlaréfore shouldn’t expect to be observed as
positive associations. As a result, method perémre may be understating sensitivity if
some of the test cases are misclassified as tfeet®f Future experiments should establish a
reference set where all test cases have high @d@in correct classification of causal
status to minimize this concern of measurement.etdse of simulated data, where ground
truth can be defined a priori, may be a valuabjgpiment to these real-world

investigations.

COMPASS was evaluated on its overall performancesisgle tool for active
surveillance. However, it is quite possible thaksholders should not expect a single
method to be a magic bullet with consistently t@ggperformance, but instead should
consider that the tool's accuracy may vary by lattes of the drug and outcome under study
or based on the database that it is applied agdinsbuld be that some methods are more or
less appropriate for specific circumstances, btérdaning these scenario operating
characteristics cannot be judged through expefestibe assessment alone and requires
further empirical research.

COMPASS was evaluated against five disparate ds¢abavhich represents one of
the most comprehensive methodological assessnardsug safety to date. However, given
the substantial heterogeneity that was observexsathose five sources, the study raises
guestions about the generalizability of the finding other data sources. It could be
reasonable to expect that performance results warildifferent had COMPASS been

applied to a different network of databases. Furéxpansion of this methodological
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research to additional data sources should begjield insights about the sources of
heterogeneity and how to predict method accuramysa@ broader range of available data

resources.

7.7. Contributions to the field

With these limitations in mind, these studies pdeva solid foundation of research that
should directly inform an important national issuéhe results of this study should inform
decisions about the appropriateness and utilipnalyzing observational data as part of a
future drug safety surveillance process and adiediterature in several important ways,
with clinical, methodological, and policy implicatis.

First, from the clinical perspective, the explorgtanalyses of ACE inhibitors have
provided the first known comprehensive assessnfaheacomparative safety of ACE
inhibitors in an active surveillance framework. light of the comparable safety profiles,
there may be interest in examining why these prisdo@ve inconsistencies in product
labeling and how further comparative studies catebexform clinical practice about
appropriate use of products within the class.

Second, from a methodological perspective, theyshad detailed and provided
empirical evidence to inform the potential use abael method for identifying drug safety
issues in automated healthcare databases as pertaotive surveillance system. This
method leverages advances in pharmacoepidemidiogyedical informatics, and
pharmaceutical sciences to provide an analytieahé&work that could support continued

drug outcome research beyond the scope of thig'std€E inhibitor analyses.
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Finally, from a policy perspective, the evaluatairhow to interpret findings across a
network of data sources may have broader implinatfor initiating the national active
surveillance system. There is little researchtorm how decision-making processes will
accommodate information when generating, strengtlyeand confirming hypotheses about
potential drug-related effeéfs Prior to this study, the role of exploratory lysas in an
active surveillance system and the relative confiédn information that can be gained from
such analyses was undetermined. The examinatibatefogeneity across sources and the
potential use of a meta-analytic framework to inabg estimates have provided insights that
should inform the governance of the future nati@wive surveillance system. More
broadly, the measurement of operating charactesisfian active surveillance system should
help establish a greater understanding of howtespnet surveillance results in the context
of all other available information as part of agality assessment for an emerging drug
safety issue.

While this body of work represents a significantiiution to the field, it is a small step
on a long-term journey toward developing a capighitir improving our understanding of
the effects of medical products. This researchréiaed many additional questions that
warrant further investigation. Improving the penfiance of methods requires a deep-dive
exploration to better explain why methods faileddentify known effects or falsely
highlighted positive associations for negative oalst so that strategies can be developed to
mitigate these inaccuracies. This exploration ireguurther examination of other potential
sources of bias and testing hypotheses about hdusion of additional covariates and/or
imposing new inclusion/exclusion criteria impadfeet estimates. Such work demands

clinical review of patient-level records and secanydconfirmation that operational
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definitions for exposure and outcome are providipgropriate ascertainment across the data
sources. Methods improvement needs to be comptech&rth more precise and
comprehensive evaluations of performance througlexpansion of methodological
experiments to include a broader set of medicalyets and outcomes that better reflect the
anticipated scenarios envisioned within a compaeatifectiveness and active surveillance
system. A sustainable research partnership tipgtosts a common experimental framework
is paramount to establishing a benchmark for ctiegpectations, facilitating discovery and
development of methodological innovation, and meaguprogress as research continues
moving forward.

Developing a high-quality system for evidence depeient using a network of
observational healthcare databases requires guaitieipation from all stakeholders,
including government, industry, academia, and healte organizations, and it demands a
full understanding of the perspectives from theslen-makers that these analyses should
ultimately inform, including regulators, payersppiders, and patients. Advancing the
science of active surveillance and clinical effestiess requires interdisciplinary
collaboration between statistics, epidemiology ltheservices research, computer science,
medical informatics, engineering, and the cling@knces. As these innovations are
developed and applied in medical practice, sp@tiahtion will continue to be needed to
ensure the appropriate use of electronic healttdatigeand interpretation of inferences about

the effects of medical treatments.
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