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ABSTRACT 

Evan L. Busch: Markers of Epithelial-Mesenchymal Transition and Colorectal Cancer Mortality: 

Time-to-Event and Latent-Class Analyses                                                                              

(Under the direction of Robert S. Sandler) 

 

 Most cancer arises in epithelial cells and most cancer deaths are due to metastases.  Many 

cancer patients diagnosed with local disease according to lymph-node evaluation and radiologic 

imaging later experience disease recurrence within a few years of surgery. An additional measure 

of cancer cell detachment from the primary tumor taken in the primary tumor itself at the time of 

surgery might improve our ability to identify which patients are at risk for recurrence and 

therefore should have their treatments adjusted accordingly. 

 Epithelial-mesenchymal transition (EMT) is a mechanism of cancer cell metastasis that 

connects epithelial cells to metastasis.  It identifies candidate markers for the additional 

diagnostic test needed to stratify cancer patients by risk for recurrence. 

 I measured the EMT markers E-cadherin, Integrin beta-6, and Snail in primary tumors 

from subjects in a population-based, case-only prospective cohort of colorectal cancer patients.  

Using Cox proportional hazards models, I estimated the association between each marker and 

time from surgery to death.  I found that E-cadherin expression measured as a weighted average 

of tumor cores was associated with time to death.  No other marker expression variable was 

associated with outcomes. 

 Using latent class analysis, I estimated the sensitivity and specificity of E-cadherin 

expression as a weighted average of tumor cores to classify subjects as those likely to have 

cancer cells detaching or not detaching from the primary tumor at the time of surgery, in 
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conjunction with lymph node evaluation and radiologic imaging.  Latent class analysis permitted 

estimation of sensitivity and specificity under the realistic assumption that none of the tests 

constituted a gold-standard measure of whether cancer cells had detached from the primary 

tumor by the time of diagnosis.  Across the various latent class models that I explored, I found a 

peak E-cadherin sensitivity of 59% and peak specificity of 94%. 

 My results suggested that E-cadherin measurements in colorectal primary tumors at the 

time of surgery might improve the ability of clinicians to assess whether the patient is at risk for 

recurrence.  Incorporating such measurements into standard colorectal cancer diagnostic 

procedures could thereby help to improve patient outcomes.  
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CHAPTER 1. SPECIFIC AIMS 

 Roughly 80% of cancer arises from epithelial cells and about 90% of cancer deaths are 

due to metastases (1).  Epithelial-mesenchymal transition (EMT) is a mechanism of cancer cell 

metastasis that links epithelial biology to the detachment of cancer cells from primary tumors 

(2).  EMT markers measured in primary tumor cancer cells could be important to identify 

patients at risk for metastatic disease, even among those with no evidence of metastatic disease 

according to lymph node evaluation or radiologic imaging.  The impact of EMT markers could 

be especially great in colorectal cancer (CRC), which is 95% epithelial in origin (3) and in which 

about 25% of patients diagnosed with local disease eventually experience recurrence (4).  This 

suggests that many patients have metastatic disease at the time of diagnosis that is not 

successfully captured by conventional diagnostics of lymph node evaluation and imaging. 

 Although several dozen studies of EMT markers in CRC primary tumors and patient 

outcomes have been conducted over the past decade, the methods and results have been 

inconsistent (5).  In addition, data analyses have been crude and not informative in terms of 

whether the markers could be translated to the clinic, where they could impact public health by 

modifying tumor stage diagnosis procedures.  I undertook this research to develop marker 

measurement and data analysis procedures for studies of EMT markers and patient outcomes that 

can standardize methods across studies and provide information that permits clear evaluation of 

whether and how a marker could be used clinically.  The goal was to develop methods that will 

facilitate translation of EMT markers to clinical use so that cancer patients may benefit from the 

opportunity that our biological knowledge of EMT has presented.  The procedures we developed 
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for this research were applied to subjects from a population-based, case-only prospective cohort 

of CRC patients.  The specific aims of the project were as follows: 

 Specific Aim 1: Estimate associations between EMT marker expression levels in 

CRC primary tumor cancer cells and time from surgery to patient death. 

 a) Identify the optimal scale on which to measure each marker. 

 b) Determine the set of adjustment covariates to include in statistical models to produce 

valid estimates of associations between EMT marker expression levels and patient outcomes. 

 c) Develop a method to identify clinically-informative cut points for observed values 

along the scale of expression chosen for a given marker. 

 Hypothesis: Low E-cadherin expression, and high Integrin beta-6 and Snail expression, 

will be associated with shorter times from surgery to death. 

Specific Aim 2: Using latent class analysis, estimate the sensitivity and specificity of 

EMT markers to assess cancer cell detachment from primary tumors without assuming 

that lymph node evaluation or radiologic imaging are gold standard measures of such 

detachment. 

 a) Conduct sensitivity analyses to evaluate how varying one’s assumptions about the 

sensitivity and specificity of lymph node evaluation and imaging impact estimates of the 

sensitivity and specificity of EMT markers. 

 b) Assess how varying the cut point used to determine dichotomous EMT marker 

expression status impacts estimates of the sensitivity and specificity of the EMT marker. 

 Hypothesis: EMT marker expression levels associated with time from surgery to death 

will have high sensitivity and specificity to assess cancer cell detachment from primary tumors. 
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CHAPTER 2. BACKGROUND AND SYSTEMATIC LITERATURE REVIEW 

 2.1. Colorectal cancer 

 Colorectal cancer (CRC) is a leading cause of morbidity and mortality both nationally 

and globally.  In the United States alone there are over 140,000 new cases and 50,000 deaths per 

year attributable to the disease, giving CRC the fourth-largest incidence nationally of any tumor 

site (after prostate, breast, and lung cancer) and second-largest mortality (after lung cancer) (6).  

As is typical of cancer generally, a patient’s prospects for a full recovery decline sharply the 

greater the spread of the tumor.  The five-year relative survival proportion is approximately 90% 

for localized tumors, 69% for tumors that have spread to adjacent lymph nodes and organs, and 

12% for tumors that have spread to distant organs at the time of diagnosis (7). 

 Despite substantial morbidity and mortality due to CRC, the United States has seen a 

declining disease burden.  Overall age-adjusted CRC incidence has fallen from a peak of about 

68 cases per 100,000 people per year in the mid-1980s to around 42 cases per 100,000 people per 

year in 2009 (8).  Similarly, overall age-adjusted CRC mortality has decreased from about 28 

deaths per 100,000 people per year in 1978 to roughly 16 deaths per 100,000 people per year in 

2009 (8).  The improved mortality rate has been attributed to a combination of screening via 

techniques such as colonoscopy; successful treatment via surgery, chemotherapy, and radiation 

therapy; and changes in population risk factor exposures (9, 10).  However, the fact that the CRC 

morbidity and mortality burden remains high despite these trends suggests that additional clinical 

innovations will be needed to drive the overall disease burden still lower. 
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 A number of risk factors are associated with CRC.  Increasing risk is associated with 

increasing age, as over 90% of cases are diagnosed in people over the age of 50 (10).  Smoking, 

diets high in fat and low in folate, and a history of colonic inflammatory disease also increase the 

risk of developing CRC (10).  Blacks are at higher risk for CRC with an age-adjusted incidence 

of nearly 53 cases per 100,000 people per year in 2009 compared to 41 cases per 100,000 people 

per year among whites (8).  Men are more likely to develop CRC with an age-adjusted incidence 

of about 48 cases per 100,000 people per year in 2009 versus 38 cases per 100,000 people per 

year among women (8). 

 Despite the vast increase in our biological understanding of cancer since the 1970s, our 

ability to capitalize on this knowledge to reduce cancer incidence and mortality has been 

relatively disappointing.  Many of the anti-tumor treatments in clinical use were developed 

decades ago without the benefit of the molecular and genetic insights obtained since (1).  

However, the failure to date to match expectations does not mean that the biological insights of 

recent decades do not open up rich possibilities for new clinical interventions that can improve 

CRC outcomes.  Translational research, which attempts to use basic biology knowledge to 

discover effective clinical interventions, holds tremendous promise to build on past advances in 

reducing CRC mortality. 

 2.2. Role of metastasis in CRC outcomes 

 To reduce the CRC mortality burden, effective interventions will target the ways in which 

CRC kills people.  Of course, one approach is to prevent the disease from occurring altogether, 

as polypectomy during colonoscopy often does.  When a tumor has already formed, an 

appropriate approach is to target the particular mechanisms that the tumor uses that ultimately 

lead to the patient’s death.  In CRC, as well as other cancers, this means controlling metastases. 
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 The capacity to invade and metastasize is widely recognized as a distinguishing 

characteristic of cancer, where metastasis can be defined as the spread of cancer cells to parts of 

the body distant from the primary tumor (11).  Such roving cancer cells are dangerous because 

they can found new tumors throughout the body.  More importantly, metastases are responsible 

for approximately 90% of deaths due to cancer (1); it is surprisingly rare for the primary tumor to 

directly kill the patient.   

 Therefore, when any patient is diagnosed with cancer, two of the most critical questions 

that must be answered are whether cancer cells have already begun to detach from the primary 

tumor and, if so, whether healthcare providers can still successfully treat the illness.  Our ability 

to answer these questions correctly depends on how accurately we can assess a host of additional 

factors.  One important issue is determining whether any cancer cells in the primary tumor 

appear to have been capable of breaking off from it.  A second consideration is whether 

metastases can be detected elsewhere in the body.  The latter is particularly difficult to determine 

because most metastases break away from the primary tumor as micrometastases, defined as “[a] 

metastasis that is composed of a single cell or a small clump of cells and is only apparent through 

microscopy” (1). This definition suggests that there may be limits to how well radiologic 

imaging can detect every metastasis that may exist in a patient’s body at the time of tumor 

removal surgery.  Micrometastases that break off from the primary just before the latter is 

removed would be too small to be seen by imaging at that time. 

 Determining whether cancer cells in the primary tumor at the time of surgery have 

acquired the ability to break off could suggest, by inference, whether other cancer cells might 

have already broken off.  This is an appealing approach to cancer treatment.  First, the primary 

tumor is relatively easy to locate.  Second, molecular assessment of whether the primary tumor 
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has been producing cells capable of detaching may add crucial information beyond traditional 

prognostic factors such as tumor size or grade, which can be limited in their ability to predict 

CRC outcomes (12, 13).  For example, while metastases are commonly thought of as being 

produced by large tumors, it has been shown that cancer cells can detach from small tumors (12).  

In short, whether a tumor has cancer cells detaching from it may be independent of its size, 

extent of locoregional spread, and therefore stage (except in the sense that any finding of distant 

metastases is by definition Stage IV).  A tumor that appears to be Stage I or II may be generating 

undetected micrometastases.  Thus, fully assessing the primary tumor after removal may require 

more measurements than the current diagnostics of lymph node evaluation and imaging. 

 2.3. Epithelial-Mesenchymal Transition 

 Given the importance of ascertaining whether a patient has metastatic disease, and the 

appeal of doing so in part in the primary tumor itself, what measurements of cancer cell ability to 

detach should be taken in the primary tumor?  Basic research in recent decades suggests that an 

important mechanism of cancer invasion and metastasis is epithelial-mesenchymal transition 

(EMT).  In EMT, epithelial cancer cells shed their epithelial characteristics and acquire a 

mesenchymal phenotype, which confers greater cell motility and ability to migrate out of the 

tissue of origin (2, 14).  EMT could potentially play an enormous role in CRC metastasis because 

roughly 95% of CRC tumors are adenocarcinomas, which arise from epithelial cells (3).  Indeed, 

about 80% of all cancer originates in epithelial cells (1).  It has been suggested that patients 

develop metastatic disease after cancer cells in the primary tumor acquire the capacity to undergo 

EMT (2).  Figure 1 illustrates the process: 
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Figure 1. Epithelial-mesenchymal transition and associated molecular markers (from Kalluri and 

Weinberg, 2009) (2) 

 

 

 

 Figure 1 shows that a large number of molecular markers have been associated with 

EMT, and the lists are not exhaustive.  This makes sense given that the model posits a global 

change in phenotype from one cell type to another.  Therefore, expression levels of many 

markers should change as part of the process.  Conceptually, EMT markers can be placed into 

three categories: 1) those that induce EMT (i.e. EMT inducers), such as the transcription factors 

Snail, Slug, and Twist; 2) markers of epithelial phenotype (i.e. epithelial markers), such as E-

cadherin and cytokeratin; and 3) markers of mesenchymal phenotype (i.e. mesenchymal 

markers), such as N-cadherin and vimentin.  For cells undergoing EMT, one would expect a 

decrease in expression of epithelial markers, as well as an increase in expression of both EMT 

inducers and mesenchymal markers (2, 14).  

 How can EMT markers be used to assess whether the primary tumor shows evidence of 

containing substantial numbers of cells capable of breaking off?  Prior to undergoing EMT, the 

cancer cells in the tumor remain epithelial cells—albeit abnormal ones—that should exhibit 

typical epithelial-cell levels of EMT markers (high expression of epithelial markers, and low or 
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no expression of EMT inducers and mesenchymal markers).  If the primary tumor, or at least part 

of it, begins generating metastases using the EMT mechanism, it is likely that a steady stream of 

cancer cells in the metastasis-generating portion will undergo the transition.  Once the transition 

is complete for any one cell, the previously-epithelial cancer cell will have become a cancerous 

mesenchymal cell that could detach from the primary tumor and move away from it.  At this 

point the cell would exhibit typical mesenchymal-cell levels of EMT markers (low expression of 

epithelial markers, and high expression of EMT inducers and mesenchymal markers). 

 While in transition, cancer cells will exhibit the “intermediate phenotypes” depicted in 

the middle of Figure 1.  During this time they will be partially epithelial and partially 

mesenchymal, yet still attached to the primary tumor.  Such cells may macroscopically appear to 

remain epithelial but show molecular expression of EMT markers that is abnormal for epithelial 

cells, such as low expression of E-cadherin or high expression of Snail.  Finding cancer cells in 

the primary tumor with molecular expression levels indicative of an intermediate state between 

epithelial and mesenchymal phenotypes would suggest that the primary tumor is generating 

metastases.  Crucially, such measurements could be taken in any primary tumor, regardless of its 

size, stage, or grade, thus satisfying the criterion set forth earlier that new diagnostics of 

metastatic disease measured in the primary tumor should not depend on the established measures 

of lymph node evaluation or imaging. 

 2.4. Public health significance 

 Given that EMT marker expression levels measured in primary tumor cancer cells could 

suggest whether the patient is at high risk for metastatic disease independent of any other 

measurements, there are two ways in which EMT markers could improve CRC outcomes.  First, 

the markers can provide predictive information that can guide therapy.  For example, suppose a 
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primary tumor is discovered that appears to be Stage II by current assessment procedures.  The 

oncologist would likely decide based on current guidelines that surgery alone will suffice to treat 

the tumor and that no systemic chemotherapy is needed (15).  However, if the tumor appears to 

be generating metastases via EMT marker measurements, the oncologist could instead prescribe 

chemotherapy in an attempt to destroy micrometastases that may be present but were not 

detected via imaging or lymph node assessment.  Second, if EMT marker levels in primary 

tumor cancer cells are associated with patient outcomes, then new treatments could be developed 

that target the markers in an effort to hold metastasis in check.  In this report, our concern is 

solely with the use of EMT markers to improve patient risk stratification. 

 Given how closely a CRC patient’s outcome is tied to accurate clinical assessment of 

whether cancer cells have been detaching from the primary tumor, EMT markers hold 

tremendous promise as tools to reduce CRC mortality.  The goal of the present research was to 

assess this promise by estimating associations between EMT marker levels in CRC primary 

tumors at the time of tumor removal and subsequent patient outcomes.  More specifically, we 

sought to do this while designing measurements and analyses that could directly inform and 

facilitate translation of EMT markers to the clinic, where their public health impact stands to be 

realized. 

 

 

 

 

 



 
 

10 
 

Figure 2. Conceptual model of the role of EMT markers in determining CRC patient outcomes 

 

 

 

 

 

 

 

 

 

 

 

 2.5. Systematic review and marker selection 

 2.5.1. Systematic review of literature on EMT markers and CRC outcomes 

 There is no generally agreed upon histopathological definition of EMT (16).  

Consequently, we developed our own approach to measure EMT for this dissertation.  The first 

task was to select which EMT markers to measure in CRC specimens.  To do so, we sought to 

identify original journal articles that measured EMT marker expression levels in clinical CRC 

tumor specimens and related those measurements to patient outcomes.  On 26 October 2012, we 

searched PubMed, EMBASE, and BIOSIS using the same search terms for all databases (see 

Appendix A).  No publication date or language limitations were applied to the search.  The 

searches consisted of four groups of terms: EMT, tumor markers, outcomes, and colorectal 

cancer.  To be captured, an item had to have at least one term from each group. 

 Our searches returned 545 abstracts.  Removing 184 duplicates yielded 361 unique 

abstracts.  I read the 361 abstracts and created a spreadsheet to record the following for each 

abstract: 1) which markers the study examined, 2) whether it looked at cell lines, animals, and/or 
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clinical tissue specimens, 3) whether the paper was a review, and 4) whether it looked at 

outcomes.  Meeting abstracts, reviews, papers not written in English, and studies that only 

looked at animals and/or cell lines were excluded. 

 Based on the 361 abstracts, 122 appeared to have used clinical CRC specimens and 

therefore warranted closer examination.  Inspection revealed that 46 were meeting abstracts and 

1 was a case report.  These 47 were excluded, leaving 75 original journal articles that examined 

EMT markers in CRC tissue specimens.  I then created a second spreadsheet documenting the 

following information for each of the 75 papers: 1) sample size, 2) whether Kaplan-Meier 

survival curves were presented, 3) whether effect estimates such as hazard ratios were calculated, 

4) whether correlations between EMT marker levels and other measurements were presented, 5) 

whether the percent of cases found to have positive expression of EMT markers was provided, 6) 

whether any measures of reliability were reported, and 7) which EMT markers were measured. 

 Thirty papers measured at least one EMT marker in clinical CRC primary tumors and 

evaluated the relationship between EMT marker expression and CRC patient outcomes via either 

Kaplan-Meier analyses or effect estimates.  Between them, these papers measured dozens of 

markers or categories of markers (“categories of markers” meaning, for example, measurement 

of multiple micro-RNAs counts as simply “micro-RNA”).  Because of the sheer diversity of 

EMT markers, we focused on 14 markers and marker categories prominently discussed in the 

EMT literature: E-cadherin, N-cadherin, Vimentin, Snail, Slug, Cytokeratins, Integrins, 

Fibronectin, Twist, ZEB1, ZEB2, Beta-Catenin, TGF-Beta, and Micro RNAs.  We excluded 6 

papers that did not measure at least one of these markers in clinical CRC specimens (17-22), 

leaving a final set of 24 papers that I evaluated for the markers of interest (23-46), though many 

of them measured other markers as well. 
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 For each of the 24 papers, I recorded the following additional information for each EMT 

marker that the paper measured from our selection of 14 markers: whether marker expression 

was measured as protein and/or RNA, how the study defined positive expression for the marker, 

and whether the paper presented Kaplan-Meier analyses stratified by expression levels of that 

particular marker. 

 2.5.2. Marker selection criteria 

 In reviewing the literature, we considered seven criteria for judging whether a particular 

EMT marker might be useful as a clinical tool to assess whether a primary tumor has potentially 

been releasing cancer cells: 

 1. Biological Role: The role of the marker in the EMT mechanism should be well 

understood and critical. 

 2. Percent of subjects with positive expression: A marker that is positive for nearly 0% or 

100% of patients is unlikely to provide much information about the prognosis for different 

patients, given how common metastasis is (47).  Markers for which there are appreciable 

numbers of both marker-positive and marker-negative tumors are likeliest to be clinically useful. 

 3. Reliability: A useful EMT marker for clinical purposes will exhibit a high degree of 

reliability when measured in clinical CRC specimens in the same way.  The reliability of EMT 

markers was difficult to assess because the literature provided little information about both inter-

rater and intra-rater reliability.  Such inconsistencies made comparisons between studies 

difficult, even between studies that measured the same marker using the same laboratory 

technique. 

 4. Validity: To determine the sensitivity or specificity of EMT markers, one would need 

to compare marker expression levels with a “gold standard” measure of whether the patient has 
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metastatic disease.  It was not clear what could constitute such a gold standard in this context.  

Conventional diagnostics of metastatic disease—lymph node evaluation and imaging--are not 

satisfactory because the goal of using EMT markers is to identify those at risk of metastatic 

disease even when no metastases are detected by the other diagnostics.  Correlation between 

EMT marker expression levels and results of the other diagnostics is a helpful, but not definitive, 

demonstration of the validity of an EMT marker for clinical purposes. 

 5. Association with patient outcomes: If the expression levels of a marker play a role in 

generating metastases and the marker is to serve as a clinical indicator of whether the patient is at 

high risk for metastatic disease, then the expression levels should be associated with patient 

time-to-death, that is, the length of time between primary tumor surgery and patient death.  This 

can be assessed using Cox proportional hazards modeling and Kaplan-Meier curves stratified by 

marker expression levels. 

 6. Amount of prior data: Clinical utility ought to be supported by as many studies as 

possible, each of which includes as many subjects as possible.  All else being equal, we had more 

confidence in markers the evidence for which was based on a greater number of subjects. 

 7. Ability to measure the marker: If a marker is difficult to measure accurately in a 

clinical setting, its utility is limited no matter how strong the evidence for it may be according to 

the other criteria described above. 

 2.5.3. Summary of systematic review findings 

 Because most studies measured markers only as protein, results refer to protein 

measurements unless noted otherwise. 

 Beta-Catenin: We found five studies that measured the mesenchymal marker beta-

catenin in CRC tissue (26, 34, 37, 40, 42).  The two that looked at survival by beta-catenin status 
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found no difference in outcomes between marker-positive and marker-negative subjects (34, 40).  

The only study that looked at effect estimates did not find any effect of beta-catenin 

measurements on outcomes (26).  Percent of subjects with positive expression varied, 

particularly by location in the cell (nuclear, cytoplasmic, membranous), but was generally in the 

40-50% range.  Correlations between beta-catenin levels and location in tumor mass were 

inconsistent. 

 Cytokeratins: Of four studies that stained for cytokeratins, two (44, 46) used them only 

as a background stain.  Of the other two studies, one (36) found that cytokeratin-8-positive 

subjects had better survival than cytokeratin-8-negative subjects.  Cytokeratin-14-negative cases 

had better survival than cytokeratin-14-positive cases.  The percent of subjects with positive 

expression was high for cytokeratin-8 (85%) and moderate for cytokeratin-14 (59%).  The last 

study (31) found positive cytokeratin-7 expression in 9% of tumors and no effect on outcomes or 

difference in survival based on cytokeratin-7 expression. 

 E-cadherin: We found 15 papers that measured E-cadherin in clinical CRC tissue.  Of 

these, three that measured protein (31, 34, 41) and one that measured RNA (39) failed to provide 

information on the number of tumors considered marker-positive.  Among the other 11 studies, a 

wide range of definitions of marker-positive status were used (24-27, 29, 35, 37, 38, 42, 43, 45).  

Percent of subjects with positive expression varied but mainly fell between 30 and 70%.  Three 

studies looked at survival by E-cadherin status, with all three finding poorer survival associated 

with reduced E-cadherin expression (24, 29, 43).  Three studies looked at effect estimates, with 

two finding no effect of E-cadherin levels on outcomes (26, 27) and one finding that E-cadherin 

levels do affect patient outcomes (43).  
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 Fibronectin: No paper measured fibronectin levels in clinical CRC specimens and 

related them to outcomes. 

 Integrins: Two papers looked at members of the integrin family of proteins, which are 

mesenchymal markers in the context of EMT. One study found 19% of subjects with positive 

expression for integrin alpha-5-beta-1 and 88% of subjects with positive expression for integrin 

alpha-3-beta-1 but did not look at the association of either protein with outcomes (45).  The 

other, much larger study found 37% of subjects with positive expression for integrin alpha-v-

beta-6 and clear differences in survival and effect estimates for the protein’s relationship with 

outcomes (23).  

 Micro-RNAs: Two papers measured micro-RNAs (miR), but one (39) did not provide 

information on how many tumors were considered marker-positive.  The other study reported 

that subjects with high expression of miR-19b and miR-194 had shorter survival than those with 

low expression (32).  

 N-cadherin: Two studies measured the mesenchymal marker N-cadherin in clinical CRC 

specimens.  One of them that included 10 subjects did not find positive N-cadherin expression in 

any of their tumors, and did not look at the relationship of N-cadherin with outcomes (37).  The 

other study found 44% of subjects with positive expression and, while it did not look at survival 

by N-cadherin status, calculated effect estimates and found no effect of N-cadherin on outcomes 

(26).  However, in the latter study, the 193 subjects were divided into training and testing sets 

before effect estimates were calculated, thus reducing the power for each estimate. 

 Slug: Three studies measured the EMT inducer Slug, though one of them (30) that 

measured RNA failed to provide information on the number of tumors considered marker-

positive.  Of the other two studies, one with a sample size of 10 patients found 30% of subjects 
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with positive expression in primary tumors, and observed no difference in survival by Slug status 

(37).  The other study found 37% of subjects with positive expression (43).  Slug-positive 

patients in this last study had poorer survival than Slug-negative patients, and using hazard 

ratios, the authors concluded that Slug was an independent prognostic factor of outcomes. 

 Snail: Four studies measured the EMT inducer Snail.  Three found 40-55% of subjects 

with positive expression (26, 27, 37) and one found 79% positive (28), though the studies used a 

variety of definitions of Snail-positive status.  The two studies that looked at survival both found 

worse survival in Snail-positive subjects than Snail-negative subjects (28, 37).  The two studies 

that did not look at survival did look at effect estimates, and each obtained mixed within-study 

results (26, 27). 

 TGF-beta: One study measured a member of the TGF-beta class of EMT inducers, 

namely TGF-beta-R2.  It found almost 90% of subjects with positive expression and no 

difference in survival by TGF-beta status (40). 

 Twist: Four studies looked at the EMT inducing Twist family in clinical CRC specimens.  

One study (30) that measured mRNA of Twist1 found that 86% percent of subjects showed 

positive expression and that those with positive expression had worse survival than those with 

negative expression.  Survival differences were especially large among early-stage subjects.  Via 

effect estimates, Twist levels had an effect on outcomes. The other three studies measured 

protein.  One with 10 subjects found 100% of subjects with positive expression but did not look 

at outcomes (37).  The other two studies found roughly 50% of subjects with positive expression 

and did not look at survival (26, 27).  Both calculated effect estimates, with mixed results. 

 Vimentin: Of the four studies that measured this mesenchymal marker, one (39) 

measured mRNA and did not provide information on how many specimens were considered 
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marker-positive.  The other three studies measured protein.  Of these, two (31, 37) found 0% of 

subjects with positive expression—despite using different definitions of marker-positive status—

and another (38) found 9% of subjects with positive expression. 

 ZEB1: In the three studies that measured the EMT inducer ZEB1, two (41, 44) did not 

report percent of subjects with positive expression.  The other found 29% of subjects with 

positive expression and that ZEB1-positive patients had much shorter average survival than 

ZEB1-negative patients (31 months vs. 67 months, respectively) (38).  

 ZEB2: Two studies measured the EMT inducer ZEB2.  One with 10 subjects found 90% 

of subjects with positive expression and did not look at survival or effect estimates (37).  The 

other study found that 48% of the tumors were ZEB2-positive at the tumor invasion front and 

41% were ZEB2-positive at the tumor center (33).  This study reported that 73% of the primary 

tumors had greater ZEB2 expression at the invasion front compared to the tumor center.  ZEB2-

positive patients had poorer survival than ZEB2-negative patients.  In terms of effect estimates, 

ZEB2 levels at the invasion front were a predictor of outcomes, but ZEB2 expression at the 

tumor center was not. 

 2.5.4. Marker selection conclusions 

 Of the three kinds of EMT markers—epithelial markers, mesenchymal markers, and 

EMT inducers—it was not clear that one kind was likelier than the others to be a clinically useful 

predictive tool.  Given budgetary constraints, we could only afford to measure a few markers.  

As a compromise between these considerations, we decided to measure three markers, namely, 

the most promising marker from each category based on prior literature.  

 Epithelial marker: 

 Options: cytokeratin, E-cadherin 
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 Discussion: Effectively, only one study looked at cytokeratin.  Although it provides some 

support for cytokeratin in terms of percent of subjects with positive expression and survival by 

cytokeratin status, this is swamped by the large number of studies on E-cadherin.  The overall 

trend of the results suggests that E-cadherin is a promising marker in terms of percent of subjects 

with positive expression and the marker’s association with outcomes.  Furthermore, its biological 

role in EMT is clear and important, and it is by far the most commonly-studied EMT marker.  

Also, E-cadherin antibody had already been optimized by the UNC Translational Pathology 

Laboratory that performed the benchwork for the project, making E-cadherin more cost-effective 

to measure than cytokeratin. 

 Choice: E-cadherin 

 Mesenchymal marker: 

 Options: beta-catenin, fibronectin, integrins, N-cadherin, vimentin 

 Discussion: There was no relevant data about fibronectin.  The data strongly suggest that 

beta-catenin is not a good marker based on lack of association with outcomes and an inconsistent 

percent of subjects with positive expression.  Likewise, the data do not support vimentin based 

on its percent of subjects with positive expression of 0% or close to it, as well as the lack of 

information about whether it is associated with outcomes. 

 The two best candidates are N-cadherin and integrins, specifically integrin alpha-v-beta-

6.  N-cadherin is appealing because it plays an important biological role in the EMT mechanism 

(part of “cadherin switch” with E-cadherin) and in mesenchymal cell motility.  In the one 

meaningful study that measured N-cadherin (the other study being tiny), the percent of subjects 

with positive expression was right where one would want it to be (44%).  The effect estimates of 
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its association found nothing, but the sample sizes involved in the calculations were not large 

(roughly n=100). 

 Two of the three integrins on which we have any data are not serious candidates; only 

integrin alpha-v-beta-6 is.  The percent of subjects with positive expression and clear association 

with outcomes in the one large study provide stronger support than N-cadherin received from its 

one relevant study.  Integrin alpha-v-beta-6 and N-cadherin have similar biological roles as 

membrane-bound proteins that help mesenchymal cells move through their environment.  All 

told, integrin alpha-v-beta-6 is the stronger option.  However, the prior study that measured this 

integrin in CRC primary tumors did so by measuring only the beta-6 sub-unit and then making 

an inference from that to the alpha-v-beta-6 complex (23).  To make our study comparable, we 

decided to measure only the beta-6 sub-unit as well. 

 Choice:  Integrin beta-6 

 EMT inducer: 

 Options: Slug, Snail, TGF-beta, Twist, ZEB1, ZEB2 

 Discussion: TGF-beta was dismissed because the one study that measured it gave clear 

evidence that it is not a good marker.  The evidence was similar and moderately supportive for 

the other five options.  Each was measured in 2-4 studies, with a mixture of results suggesting 

that the marker is and is not associated with outcomes.  Considering all of our selection criteria, 

Snail seemed the best choice because it was measured in the greatest number of studies, 

generally had ideal percentages of subjects with positive expression, and had as much evidence 

showing an association with outcomes as any of the other candidates. 

 Choice: Snail 
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CHAPTER 3. METHODS 

 3.1. Subject selection and enrollment 

 3.1.1. Study population 

 The Cancer Care Outcomes Research and Surveillance Consortium (CanCORS) study 

was undertaken by a consortium of seven teams of investigators across the United States (48).  

Their aim was to study the impact of the characteristics of healthcare delivery systems, patient 

characteristics, and patient beliefs on cancer outcomes.  The study was a population-based, case-

only prospective cohort of lung and colorectal cancer patients.  Subjects were enrolled between 

2003 and 2006.  Every site collected patient surveys, physician surveys, and medical records 

data.  Subjects completed surveys at baseline, 12 months after baseline, and 5 years after baseline 

(49).  Upon enrollment, each subject identified a proxy respondent who completed the next 

follow-up survey in the event of the subject’s death or inability to complete the survey. 

 The patient surveys asked questions on a range of topics, including demographics, 

treatments received (surgery, radiation, chemotherapy), quality of life, and health history and 

behaviors.  Tumor specimens were collected only among North Carolina subjects.  Since the 

main exposures of interest in this dissertation were primary tumor expression levels of EMT 

markers, our study sample was limited to NC subjects for whom tumor tissue was available. 

 The NC site was based at the University of North Carolina at Chapel Hill (UNC).  It 

enrolled 990 incident colorectal cancer (CRC) cases during the CanCORS enrollment period (50) 

that were drawn from 33 counties in eastern and central NC (51).  These subjects constitute a 
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population-based, case-only prospective cohort of incident CRC cases from the 33 counties in 

2003-06. 

 3.1.2. Subject identification, recruitment, and enrollment 

 During the enrollment period, incident CRC cases were identified using a rapid-case 

ascertainment protocol through the NC Central Cancer Registry, to which all new cases of CRC 

in the study region must be reported (52).  Of 1,899 nominally eligible case reports, 350 were 

found to be ineligible and 43 could not be contacted due to physician refusal.  Of 1,506 eligible, 

contactable cases, 326 refused to participate, 77 could not be reached, and 85 were not capable of 

giving consent and had no proxy to participate in their stead.  This left 1,018 cases who agreed to 

be interviewed, provide medical record data, or both, giving a response proportion of 

1,018/1,506 = 67.6%.  Of the 1,018 eligible subjects who agreed to participate, 28 did not end up 

enrolling for unspecified reasons, giving the final UNC study sample of 990. 

 Whenever possible, the patient survey was administered to the patient or to a proxy 4 

months from the date of diagnosis.  Information from all patients selected for contact was 

included in the data from the cohort, regardless of the survival status of the patient.  For patients 

who died by the time of initial contact or before the time of a scheduled interview, attempts were 

made to interview an eligible proxy or surrogate. 

 If the patient was not able to complete an interview, a surrogate had to be interviewed 

instead.  Eligibility criteria for surrogates were: at least 18 years old; patient gave consent for 

investigators to speak with the surrogate or the patient is dead; the patient indicated that the 

surrogate knows best how the patient has done since diagnosis; and the surrogate had to reside in 

one of the 33 counties in the study region. 
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 Of the 990 subjects enrolled in NC, 506 subjects (51%) provided tumor specimens.  The 

major reasons for not obtaining tumor tissue from all study subjects were that subjects did not 

consent to donate tumor tissue, and among those who did consent to give tissue, adequate tumor 

blocks for research were not always available after surgery.  Our study sample for the 

dissertation was a subset of the 506 NC subjects who provided tumor specimens. 

 3.1.3. Subject eligibility criteria 

 Inclusion criteria were as follows (52): 

  a) Sex: males and females eligible 

  b) Age: 21 years or older at time of diagnosis 

  c) Race: no exclusion based on race/ethnicity 

  d) Residence: At the time of diagnosis and initial contact, patient had to be a  

   resident of one of the 33 counties constituting the study region. 

  e) Language: Able to complete study interviews in English, Spanish, or Chinese 

  f) Cancer Diagnosis:  A histologically-confirmed diagnosis of colorectal cancer  

   on 1 January 2003 or later.  All stages of disease except in situ were  

   eligible. 

 3.2. Specimen collection 

 3.2.1. Collection at clinics 

 Tumor specimens were collected at the clinics across NC that performed cancer surgery 

on enrolled subjects.  Portions of these tumors were transported to UNC.  Tumor samples were 

fixed in formalin and embedded in paraffin after surgical removal (53).  Since this initial tissue 

preparation was performed at different hospitals and clinics throughout the study region, there 
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may have been variation in terms of fixation protocols, time from tumor removal to fixation, 

storage conditions at the clinic, and technician skill. 

 During the CanCORS data-collection period, investigators were informed via the rapid-

case ascertainment system of new, nominally-eligible incident cases of CRC within the study 

region.  Investigators checked the pathology report of each case to confirm eligibility (54).  For 

example, they ensured that the diagnosis was for invasive carcinoma since in situ tumors were 

not eligible.  After confirming patient eligibility, investigators requested tumor blocks from the 

hospital or clinic that performed the patient’s cancer surgery.  The goal was to obtain two blocks 

of tumor tissue and two blocks from the tumor margins per patient, the latter including adjacent 

normal tissue (55).  Biopsies and metastases were not requested.  When the primary tumor had 

spread to an adjacent organ beyond the colon or rectum (but without metastasizing), investigators 

obtained normal tissue from the adjacent organ. 

 3.2.2. Specimen preparation and storage at UNC 

 Upon receiving a patient’s tumor blocks at UNC, investigators cut the tissue to prepare 

histology slides, which were then stained with hematoxylin and eosin (53).  A trained pathologist 

verified which parts of a stained slide were normal or tumor.  The tissue was then incorporated 

into a tissue microarray (TMA) along with tissue samples from other subjects.  Using the 

pathologist’s indications on the stained slides as to which parts of tissue samples were normal 

and which were tumor, a TMA technician punched cores of normal and tumor samples from a 

given patient’s blocks.  Most patients had six cores on a TMA: 3 cores of normal tissue and 3 

cores of tumor tissue.   Some patients had more or less than 3 cores of a given tissue type.  

Tissue slides for the dissertation were prepared from the TMAs. 
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 Once prepared, TMAs were stored at 4 degree Celsius (54).  Slides cut from the TMA but 

left unstained for future use were stored at -80 degrees Celsius.  Any unused tissue was returned 

to the hospital or clinic from which it was obtained. 

 3.2.3. Control specimens 

 Tissue specimens for positive and negative controls were obtained from the Funkhouser 

Laboratory in the UNC Department of Pathology and Laboratory Medicine.  Positive control 

specimens were colorectal tumor tissue and negative control specimens were normal (tumor-

free) colorectal tissue.  Controls came from UNC patients who were not enrolled in CanCORS. 

 3.2.4. Sample size 

 The specimens of the 506 CanCORS participants who provided CRC tissue samples were 

distributed across 56 TMAs stored at the Keku Laboratory.  To minimize costs and use of 

specimens, the dissertation committee recommended staining slides from a subset of subjects 

large enough to provide a reasonable chance of observing a substantial hazard ratio estimate.  If 

little variation was found for a particular marker in a sufficiently large subset, this could suggest 

that the expression levels of the marker likely are not able to distinguish between tumors that are 

behaving differently from each other (47), assuming the sample includes a mixture of tumors 

with high and low levels of cancer cell detachment.  Logically, this would imply that it was not 

worthwhile to measure a marker with a narrow expression distribution in more subjects. 

 Many of the TMAs containing CanCORS subject specimens also contain specimens 

collected for another study (the Rectal Study).  Some subjects were enrolled in both CanCORS 

and the Rectal Study; such individuals were treated as CanCORS subjects.  Random selection of 

TMAs for the subset might have resulted in selecting TMAs containing only one or two 

CanCORS subjects, which would have been an inefficient use of resources.  For greater 
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efficiency, we selected TMAs from among those containing the greatest number of CanCORS 

subjects so that a minimal number of TMAs had to be stained to provide the desired sample size. 

 Table 1 shows the results of sample size calculations using PROC POWER in SAS.  The 

parameters used in the calculations were based on the E-cadherin, Integrin, and Snail results 

from the systematic literature review (see Section I.E).  From the literature overall, a 30% 

proportion of patient deaths within 5 years of surgery in the unexposed (those with non-EMT-

like marker expression levels) seemed reasonable and the analysis of the subset aimed to achieve 

80% power.  As Table 1 indicates, this meant the analysis should have a sample size of at least 

165 subjects. 

Table 1. Sample size calculations for initial selection of subjects* 

% outcomes (deaths) 

In unexposed (those with 

Non-EMT marker levels) 

Statistical Power 

70% 80% 90% 

20% 190 240 325 

30% 130 165 220 

40% 100 130 170 

*Total sample size for 70%, 80%, or 90% power to detect a hazard ratio of 2.00 across 5 years of 

follow-up, for 40% exposed (i.e. EMT-like marker levels) and with varying percentages of 

outcomes (deaths) in unexposed (i.e. non-EMT-like marker levels) over the 5-year window, with 

a 2-sided alpha of 5%. 

 

 In anticipation of possible laboratory error when handling the tissue samples, specimens 

from 236 subjects across 13 TMAs with large numbers of CanCORS subjects were prepared for 

staining.  One TMA with specimens from 17 subjects could not be used because the position of 

cores on the tissue section did not match the map for the TMA, making it impossible to 

determine the identity of the cores.  This reduced the available sample size to 219 subjects.  To 

be included in the study sample, subjects had to have at least one core of tumor tissue 

successfully stained for one marker, with that core having at least 50 epithelial cells and 
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unambiguous histology.  From the 12 TMAs, we excluded 26 subjects lacking adequate tumor 

tissue and an additional 3 subjects who could not be linked to medical records data, yielding a 

final study sample of 190 subjects. 

 Figure 3 shows the overall flow of subject inclusion from nominally-eligible CRC cases 

to the final study sample. 
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Figure 3. Flow of patient eligibility and inclusion 
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3.3. Specimen staining 

 3.3.1. Acquisition of antibodies for immunohistochemistry 

 The following antibodies were purchased: 

  a) E-cadherin: Mouse monoclonal ready to use (RTU), clone 36B5  

   (cat #PA0387) from Leica Microsystems Inc. (Norwell, MA)  

  b) Integrin beta-6: Goat polyclonal (sc-6632) from Santa Cruz    

   Biotechnology (Dallas, Texas) 

  c) SNAIL1: Goat polyclonal (ab53519) from Abcam (Cambridge, MA) 

 3.3.2. Immunohistochemistry staining procedures 

 Immunohistochemistry (IHC) was performed at the UNC Translational Pathology 

Laboratory (TPL) using the Bond fully-automated slide staining system (Leica Microsystems 

Inc., Norwell, MA).  Slides were deparaffinized in Bond Dewax solution (AR9222) and hydrated 

in Bond Wash solution (AR9590). Antigen retrieval was performed at 100C for Integrin beta-6 

and Snail (for 20 minutes or 30 minutes, respectively) in Bond-epitope retrieval solution 1 at pH 

6.0 (AR9961) and for E-cadherin for 20 minutes at 100C in solution 2 at pH 9.0 (AR9640).  

After pretreatment, anti-E-cadherin was applied for 15 minutes, anti-Snail (1:200) for 30 minutes 

and anti-Integrin beta-6 (1:100) was applied for 1 hour. 

 Detection of Snail and Integrin beta-6 was performed using the Bond Intense R Detection 

System (DS9263) supplemented with the LSAB+ kit (DAKO, Carpinteria, CA).  E-cadherin 

detection used the Bond Polymer Refine Detection System (DS9800).  Stained slides were 

dehydrated and cover-slipped.  Positive and negative controls (no primary antibody) were 

included for each antibody.  All assays were single-marker (i.e. no multiplex assays). 
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 Stained slides were digitally imaged at 20× magnification using the Aperio ScanScope 

XT (Aperio Technologies, Vista, CA).  Digital images were stored in the Aperio Spectrum 

Database.  Example images of staining and annotations are provided below in Figures 4-6. 

 

Figure 4. Immunohistochemistry examples for positive and negative staining for each of E-

cadherin, Integrin beta-6, and Snail 
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Figure 5. Illustration of Tissue Studio analysis of colon tumor tissue 

 

 

 

 

 

 

 

 

 

 

 

(A) Original image of TMA core stained for E-Cadherin.  Bar = 300um. (B) Green lines show manual 

annotation of tumor areas on image (C) Mark-up of image by Tissue Studio Composer. The algorithm 

was trained to differentiate between epithelial and stromal regions.  Orange highlighted areas are 

enriched in epithelial cells and closely match the regions that were manually annotated in (B).  Blue 

highlighted areas are enriched for stromal cells.  Only the epithelial enriched regions were analyzed.  

(D) Mark-up of analysis results for tumor tissue.  Blue= IHC negative, yellow = 1+, orange = 2+, red = 

3+ (staining intensity).  This tumor tissue core has high concentrations of E-Cadherin, with most of the 

staining classified as 3+ in intensity. 
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Figure 6. Illustration of Tissue Studio analysis of normal colon tissue 

 

(A) Original image of TMA core stained for E-Cadherin.  Bar = 300um. (B) Green lines show manual 

annotation of colon crypt areas on image (C) Mark-up of image by Tissue Studio Composer. The 

algorithm was trained to differentiate between epithelial and stromal regions.  Orange highlighted areas 

are enriched in epithelial cells and closely match the regions that were manually annotated in (B).  Blue 

highlighted areas are enriched for stromal cells.  Only the epithelial enriched regions were analyzed.  (D) 

Mark-up of analysis results for normal tissue.  Blue= IHC negative, yellow = 1+, orange = 2+, red = 3+ 

(staining intensity).   

 

 3.4. Digital image annotation and analysis 

 3.4.1. Annotation rationale and goal 

 Tumors contain not only cancer cells but numerous other kinds of cells, including 

fibroblasts, endothelial cells, cancer stem cells, and immune cells (Figure 7) (11).  Metastases 

form from a subset of the cancer cells within a primary tumor and not from the other cell types.  

However, EMT markers may be expressed—or not expressed—by all types of cells found in a 

tumor.  Thus, when digital slide images are scored by computer, results could be misleading if 

the entire image is scanned when not all of the cells are cancer cells.  Since only EMT marker 
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expression of cancer cells is relevant to determining whether the tumor has been producing cells 

capable of acting as metastases, images must be marked (i.e. annotated) prior to scanning to 

restrict the computer’s analysis of marker expression to cancer cells. 

 The goal of image annotation was to mark images prior to scoring such that all cancer 

cells in the image would be included in the analysis of marker expression while all other cells 

would be excluded. 

Figure 7. Reductionist and heterotypic representations of cancer tumors (from Hanahan and 

Weinberg, 2000) (11) 

 

 

  3.4.2. Image annotation and scoring procedures 

 Computer algorithms annotated and scored every eligible tissue core to obtain continuous 

marker expression data.  Continuous expression data were sought because marker expression is 

inherently continuous.  In addition, continuous data provided maximum flexibility in identifying 

a clinically-useful cut point to define dichotomous marker expression status, the latter reflecting 
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the binary nature of treatment decisions.  We used approximately 65 cores originating from two 

TMAs for algorithm training and automated-analysis validation.   

 Definiens Composer Technology (Tissue Studio version 2.1.1 with Tissue Studio Library 

version 3.6.1; Definiens Inc., Carlsbad CA) was used to identify regions enriched in epithelial 

cells in IHC-stained TMA cores.  To detect differences in cell shape and tissue structure, we 

developed two Composer algorithms per marker—one for cores containing normal adjacent 

tissue and a second for tumor cores—as both types of tissue were present on each TMA.   

 After Composer training, we developed two Tissue Studio scoring algorithms 

(“solutions”) per marker.  Different Composers were used to identify epithelial cell regions but 

identical settings were used to determine relative DAB staining intensity.  The 

Composer_MarkerArea Solution was used to detect E-cadherin staining.  This algorithm gave 

average intensity readings for each core on a continuous scale of 0-3 and included both 

membrane and cytoplasmic E-cadherin staining.   Integrin beta-6 membrane staining was 

detected using the Composer_Nuclei_Membranes&Cells Solution.  We used the 

Composer_Nuclei(Positive_vs_Negative) Solution to detect nuclear Snail expression.  Integrin 

beta-6 and Snail were measured as core percent positive cells (Integrin) or nuclei (Snail) on a 

continuous scale of 0-100. 

 To evaluate the reliability of computer annotations, I used Aperio ImageScope (version 

11.2; Leica Biosystem, Buffalo Grove, IL) to manually annotate the same 65 cores per marker 

that were used to optimize Tissue Studio solutions.  Included regions were marked with the 

positive pen and excluded regions were marked with the negative pen.  I remained blind to 

patient and tumor characteristics while annotating.  This was accomplished by keeping TMA 

data and identification numbers separate from other CanCORS data and identification numbers 
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until after annotation was finished.  As part of the original CanCORS study design, TMAs and 

the rest of the subject data were assigned different identification numbers and could only be 

brought together by use of a linking file.  I did not have access to a linking file until after 

annotating the specimen images, which kept me from connecting any specimen images or data 

with other subject data. 

 The manually-annotated cores—considered the gold standard for digital separation of 

tissue types—were then analyzed using appropriate Aperio scoring algorithms (Membrane v9 

algorithm for E-cadherin and Integrin beta-6, Nuclear v9 algorithm for Snail). Automated scores 

obtained via manual and automated annotation produced Pearson correlations of 0.91 for E-

cadherin, 0.88 for Integrin beta-6, and 0.94 for Snail.  Having verified the accuracy of the 

annotation algorithms for the three markers, all 12 TMAs stained for E-cadherin, Integrin beta-6 

and Snail were analyzed (36 slides in total). 

 Subjects typically had multiple cores available of a given tissue type (tumor or normal).  

To assign an expression value for each subject by marker and tissue type, we handled replicate 

cores in two ways: first, as a weighted average of cores, and second, by assigning the expression 

value of the subject’s “worst” core as the marker expression value.  For weighted averages, the 

weights were area analyzed for E-cadherin, number of cells for Integrin beta-6, and number of 

nuclei for Snail.  The worst score by tissue type was assigned as the lowest core average intensity 

for E-cadherin, as the highest core percent positive cells for Integrin beta-6, and as the highest 

core percent positive nuclei for Snail. 

 After observing unexpected results when comparing mean Snail expression in tumor 

tissue to normal tissue, we trained two additional Snail scoring algorithms on a different TMA 

than the one used to develop the original scoring algorithms: a second nuclear algorithm and a 
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whole-cell algorithm that scored Snail expression in any part of a cell.  These additional Snail 

scoring algorithms measured expression on a continuous percent positive scale and were applied 

to all 12 TMAs.  The results of the two additional Snail algorithms were qualitatively similar to 

those from the original nuclear algorithm.  Thus, for analysis we used only Snail expression 

values based on the original algorithm. 

 Examples of manual and automated annotations are given for tumor tissue (Figure 5) and 

normal tissue (Figure 6). 

 3.4.3. Linkage of marker data with main CanCORS data 

 After image analysis, the CanCORS database manager (Christopher Martin) provided a 

file linking TMA identification numbers with CanCORS identification numbers.  Marker data 

and general CanCORS data (surveys, medical records) were merged via the linking file to 

provide a complete set of variables.  CanCORS subjects for whom EMT markers were not 

measured were dropped, leaving a final working dataset with all variables and containing only 

the subset of CanCORS subjects in whose tumor specimens EMT markers were measured. 

 3.5. Assessment of reliability 

 The public health significance of measuring EMT markers in primary tumors lies in their 

potential clinical use as tools to stratify patients according to risk for worse outcomes.  Clinical 

usefulness depends in part on marker reliability, which is how closely repeated measures of the 

marker in the same specimen match each other.  Two kinds of reliability could be considered.  

First is inter-rater reliability, the consistency of measurements when different people score the 

same specimens.  Second is intra-rater reliability, the consistency of measurements when the 

same person scores a specimen multiple times. 
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 In this research we evaluated a form of inter-rater reliability.  In theory, this could be 

applied at each of two steps: annotation and scoring.  The only scoring that was performed was 

the automated scoring described above.  Thus, computer programs were the only scoring rater 

and no test of scoring reliability was possible given the lack of manual scoring. 

 We did, however, assess the inter-rater reliability of annotation.  The primary rater in this 

case was the set of computer algorithms developed to perform automated annotation as described 

above.  Such annotation was applied to all eligible cores in the EMT dataset.  I served as 

secondary rater with my manual annotations of a subset of eligible cores.  The roughly 65 cores 

that were annotated by computer and also manually constituted our reliability sample. 

 After both sets of annotations were complete, the same automated scoring algorithms 

were applied to each set to generate image scores.  These scores—the automated annotation of a 

given image paired with the manual annotation of the same image—could then be compared by 

Pearson correlations to measure the reliability of the automated annotations. 

 As stated earlier, these correlations were 0.91 for E-cadherin, 0.88 for Integrin beta-6, 

and 0.94 for Snail.  These high correlations suggest that the automated annotations were 

excellent approximations of the gold-standard manual annotations. 

 3.6. Statistical analysis for time-to-event analysis 

 3.6.1. Overview 

 The clinical and public health benefit of an EMT marker would be as a diagnostic of 

metastatic disease in addition to lymph node evaluation and radiologic imaging.  Introducing a 

marker into clinical practice would require first determining whether it provides useful 

information beyond what is provided by established prognostic and predictive factors.  The most 

important aspect of this is whether marker expression levels are associated with patient mortality 
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in the form of length of time from surgery to death, independent of relevant confounders.  

Addressing this issue for our selected EMT markers was the goal of our time-to-event analysis. 

 While marker expression is inherently continuous, an EMT marker would be used to 

make a clinical decision, which is inherently binary.  Therefore, the association of interest is 

between dichotomous marker expression and time-to-death, not the association between 

continuous marker expression and time-to-death.  However, the best way to define dichotomous 

marker expression is to initially measure continuous marker expression for all subjects, then 

identify a clinically-informative cut point along the continuum to classify each individual as 

marker-positive or marker-negative. 

 3.6.2. Definitions 

 Primary Exposures of Interest: EMT marker protein expression levels in the biologically-

relevant portions of cancer cells in CRC primary tumor tissue at the time of tumor removal 

surgery.  “Biologically-relevant portions of cancer cells” meant membrane expression for E-

cadherin and Integrin beta-6, as well as nuclear expression for Snail.  Marker expression is 

inherently continuous and was initially measured as such.  For translational purposes, the 

relevant form of marker expression is dichotomous (marker-positive versus marker-negative) 

based on a clinically-informative cut point along the original continuum.  This is because the 

markers have to be used to make clinical decisions, which are inherently binary.  Thus, the 

primary exposures of interest were dichotomous tumor expression variables for each marker. 

 Outcome of Interest: Time from tumor removal surgery until all-cause mortality.  Vital 

status for all subjects was verified using the Social Security Death Index on 4 May 2010, 

providing at least 42 months of follow-up observation per individual.  The Index records all 
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deaths in the United States, though typically individuals are not entered until two years after their 

deaths. 

 Censoring: Subject follow-up time was administratively censored at 5 years after surgery. 

 Truncation/Immortal Person-Time: An individual could not participate in this analysis 

without providing tumor tissue.  Furthermore, specimens could not be provided to the study until 

tumor removal surgery.  Therefore, all time from a subject’s birth until the date of tumor removal 

was immortal time and was not included in the analysis.  This meant we excluded individuals 

who died before tumor removal.  The “origin” time point for each subject was the date of tumor 

removal. 

 Loss to Follow-Up and Withdrawals: A subject was lost to follow-up if vital status as of 4 

May 2010 could not be assigned.  A subject could have died without being recorded in the Death 

Index if the Index had not yet recorded the date of death, which might have happened to any 

subjects who died after 2008.  For withdrawals, consulting the Death Index allowed verification 

of vital status even if the subject had withdrawn from the study.  In practice, all subjects who 

were not verified as dead as of 4 May 2010 were last observed at a time more than 5 years after 

surgery.  This meant that no outcomes were missing due to loss to follow-up or withdrawals. 

 3.6.3. Descriptive statistics 

 For categorical variables, distributions of demographic, tumor, and treatment 

characteristics were determined using PROC FREQ and presented as frequencies and 

percentages.  For continuous variables, subject characteristics were calculated using PROC 

TTEST and presented as means and standard deviations. 

 The EMT study sample represents a 10% sample of all nominally-eligible CRC cases in 

the catchment area during the enrollment period (190/1,899), a 19% sample of all NC-CanCORS 



 
 

39 
 

subjects (190/990), and a 38% sample of NC-CanCORS subjects who provided tumor tissue 

(190/506) (Figure 3).  This raises the question of whether the EMT study sample remains 

representative of the underlying source population of CRC cases.  The question cannot be 

answered definitively because doing so would require comparing the EMT subjects to all 

nominally-eligible CRC cases across an effectively-infinite number of personal characteristics, 

such as exhaustive considerations of genetics, environmental exposures, life experiences, and 

socioeconomic status.  The difficulty in addressing this is especially great for nominally-eligible 

cases who did not enroll in CanCORS because detailed information on them is not available. 

 Since a great deal of information is available for all CanCORS subjects—not just those in 

the EMT sample—it is possible to compare subject characteristics for overall CanCORS subjects 

to the EMT sample.  This allows some assessment of whether the EMT sample remains 

representative of all enrolled CanCORS subjects.  Consequently, descriptive statistics were 

obtained for both the EMT sample and overall CanCORS.  To formally test whether the 

distributions of the two samples for a given characteristic were different to a statistically-

significant degree, chi-square tests were used for categorical variables and t-tests for continuous 

variables.  P-values less than 0.05 were considered evidence that the EMT sample differed from 

overall CanCORS for the variable in question; p-values of 0.05 or above suggested that the two 

samples were reasonably similar to each other. 

 I also examined the distributions of the expression of each EMT marker in both normal 

and tumor tissue.  This was done for the original continuous expression variables that were 

obtained directly from the data collection and therefore PROC TTEST was used to obtain means 

and standard deviations.  For each marker expression variable, I used unpaired two-sample t-tests 

to compare expression in normal tissue to tumor tissue.  The EMT mechanism sets up clear 



 
 

40 
 

expectations of how expression levels in the two tissue types should relate to each other: 

compared to normal, tumor tissue should have, on average, lower E-cadherin expression and 

higher Snail and Integrin beta-6 expression.  Comparing expression in normal tissue versus 

tumor allowed me to assess whether these expectations were met in the observed data. 

 3.6.4. Identification of statistically-optimal cut points of marker expression 

 The data collection yielded six continuous marker expression variables: weighted average 

and worst score for each of Snail, E-cadherin, and Integrin beta-6.  For each variable, I wished to 

identify the cut point distinguishing marker-positive status from marker-negative that was most 

strongly associated with time-to-death. 

 For every possible cut point along any marker expression continuum, I defined marker-

positive status as expression at or above the cut point and marker-negative status as expression 

below the cut point.  Thus, marker-positive always meant high expression and marker-negative 

always meant low expression.  Whether marker-positive status is clinically desirable depends on 

the particular marker.  E-cadherin-positive status would be expected to correlate with better 

outcomes (i.e. longer time-to-death) (2, 5, 56), whereas Snail-positive (2, 5) or Integrin beta-6-

positive (23) status would be expected to correlate with worse outcomes. 

 To identify the statistically-optimal cut point for each continuous marker expression 

variable, I used a SAS macro to assess the model goodness of fit for a series of bivariate 

associations between dichotomous marker expression status and time-to-death.  The macro 

iteratively dichotomized marker expression at every possible cut point in the observed tumor 

tissue data, with each cut point corresponding to a different subject’s expression value. Each 

dichotomization of marker expression status was fit as the only independent variable in a Cox 

model with time-to-death as the outcome, producing a Bayesian Information Criterion (BIC) 
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model fit statistic.  The expression value with the lowest BIC statistic was considered the 

statistically-optimal cut point for that marker expression variable. 

 This approach is an alternative to receiver operating characteristic curves (ROC).  Both 

methods can be used to select a cut point along a continuum of marker expression values based 

on a criterion that relates marker expression to patient outcomes.  The methods differ in two 

important respects.  

 First, the form of subject outcomes is different.  ROC curves use a binary outcome of 

whether a subject died (yes/no) while our approach uses continuous time-to-death.  It matters 

whether a patient died 5 months or 50 months after surgery.  ROC curves do not account for such 

distinctions whereas our approach does. 

 Second, the criterion used to identify a cut point differs between the methods.  In ROC 

curves, the cut point selected is typically the one corresponding to the most upper-left-hand point 

on a plot of sensitivity versus (1 – specificity) (i.e. true positive rate versus false positive rate).  

In our approach, the statistically-optimal cut point is the one yielding the best model fit in a 

bivariate proportional hazards model of dichotomous marker expression and continuous time-to-

death. 

 This difference between cut point selection criteria implies a difference in interpretation 

between the two methods.  Being based on measures of sensitivity and specificity, the cut point 

selected by an ROC curve is usually interpreted as the one that should be implemented clinically.  

When a cut point is selected in the upper-left-hand corner of the ROC curve, the presumption is 

that false positives and false negatives have clinical consequences of roughly equal importance, 

which is not always true.  In contrast, the optimal cut point in our approach is a statistical 

measure of the largest difference in the observed data between hazard functions for marker-
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positive and marker-negative subjects.  Thus, the direct application of our method is to determine 

whether an association exists between marker expression and time-to-death.  The statistically-

optimal cut point might or might not be judged to be best for clinical use, but that determination 

requires consideration of additional information besides model fit alone. 

 For macro SAS code and further details about our approach, see Appendix B. 

 3.6.5. Bivariate time-to-event analysis 

 The optimization macro was used to identify the statistically-optimal cut point in the 

observed data for each of the six continuous marker expression variables.  On the average 

intensity scale of 0-3 for E-cadherin, we found that the statistically-optimal cut point was about 

0.52 for weighted averages and 0.42 for worst cores.  On a percent positive cells scale for 

Integrin beta-6, the optimal cut point was about 9.4% for weighted averages and 7.7% for worst 

cores.  On a percent positive nuclei scale for Snail using the first nuclear scoring algorithm, the 

optimal cut point was about 25.2% for weighted averages and 63.6% for worst cores.  This 

information was used to create dichotomous expression variables defined by these cut points.  I 

performed bivariate analyses of the relationship between dichotomous marker expression and 

subject survival by generating marker expression-stratified Kaplan-Meier survival curves. 

 The Kaplan-Meier or product limit estimator of survival is given by 

 S(t) = Productti<t[ 1 – (di/ ni) ] 

where S(t) is the probability of a member of a given population having a lifetime exceeding time 

t, ni is the number of subjects at risk for the event of interest (here: death) just prior to time ti, and 

di is the number of deaths at time ti (57).  I used PROC LIFETEST to generate Kaplan-Meier 

survival curves among subjects in our dataset stratified by dichotomous marker expression 

status.  This involved the use of each subject’s recorded time from surgery to death or last 
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observation, as well as information as to whether the subject’s observation time was censored at 

5 years after surgery.  Differences in survival between subjects in different strata of marker 

expression status were tested for statistical significance using the logrank test, using a 

significance threshold of 0.05. 

 Stratified survival curves were generated by stratifying on the following sets of variables: 

 a) E-cadherin weighted average 

 b) E-cadherin worst core 

 c) Integrin beta-6 weighted average 

 d) Integrin beta-6 worst core 

 e) Snail weighted average 

 f) Snail worst core 

 g) Jointly by E-cadherin weighted average and Integrin beta-6 weighted average 

 h) Jointly by E-cadherin worst core and Integrin beta-6 worst core 

 i) Jointly by E-cadherin weighted average and Snail weighted average 

 j) Jointly by E-cadherin worst core and Snail worst core 

 k) Jointly by Integrin beta-6 weighted average and Snail weighted average 

 l) Jointly by Integrin beta-6 worst core and Snail worst core 

 In addition to Kaplan-Meier estimation, I also performed bivariate time-to-event analysis 

using Cox proportional hazards modeling.  The survivor and hazard functions are equivalent and 

are related by the formula  

 h(t) = -d/dt [log S(t)] 

where h(t) is the hazard function and S(t) is the survivor function (57).  Thus, one would expect 

bivariate Cox models to produce the same results, in different form, as Kaplan-Meier estimates.  
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The bivariate Cox models were run using PROC PHREG and included dichotomous marker 

expression as the only independent variable in a model with outcome of time-to-death.  Subjects 

were administratively censored at 5 years after surgery in Cox models as they were in Kaplan-

Meier estimates. 

 3.6.6. Covariate selection 

 The ultimate goal of our time-to-event modeling was to produce valid estimates of the 

association between each dichotomous marker expression variable and time-to-death.  Achieving 

that validity requires, among other things, that confounding of the association of interest by other 

variables be controlled so as not to bias the association of interest (58).  Thus, our most valid 

estimates of the association between dichotomous marker expression and death are those 

adjusted for sources of confounding, insofar as those sources can be discerned. 

 Past studies of associations between EMT marker expression in primary tumors and 

patient outcomes were not consistent in terms of what covariates they adjusted for in multivariate 

models (5).  None of them provided a justification for their decisions.  To identify the most valid 

adjustment set possible supported by a reasonable rationale, we selected covariates for our 

multivariate Cox models based on the results of past studies, considerations of biological 

plausibility, and directed acyclic graph (DAG) theory (59). 

 Figure 8 (below) presents our DAG showing postulated causal relationships between the 

exposure (observed primary tumor cancer cell EMT marker expression), outcome (time from 

surgery to death), and other relevant variables. 
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Figure 8. Directed acyclic graph (causal diagram) depicting postulated relationships between 

primary tumor cancer cell EMT marker expression, time-to-death, and other variables  

 

 

Before describing the consequences of the postulated relationships among the variables, 

the presentation of the DAG should be clarified.  Several nodes contain multiple variables.  This 

is done solely to streamline the presentation.  For each node with multiple variables—say, the 

one containing both M-stage and N-stage—putting the variables in the same node merely 

indicates that each of these variables is thought to have the same relationships with ancestor and 

descendant nodes as every other variable in the node.  Variables “sharing” a node should be 

considered independent of each other apart from sharing the same ancestors and descendants. 

 The measured association of interest is that between Observed EMT and Time from 

Surgery to Death.  Elimination of confounding requires adjusting for a set of covariates that will 

“block” any open paths of association between the main exposure and outcome other than the 

path leading directly from the main exposure to the outcome.  These alternate paths of 

association that must be blocked by adjustment are known as “backdoor paths,” which are open 

paths connecting the main exposure to the outcome while including an arrow head pointing into 
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the main exposure (59).  In this case, there are several backdoor paths, all of them leading into 

the main exposure strictly through the unobserved variable History of EMT, which is the 

expression of EMT markers in cancer cells throughout the tumor mass over the entire history of 

the tumor prior to surgery.  All backdoor paths could in theory be blocked by adjusting for 

History of EMT.  Since the variable is unobserved, each backdoor path must be blocked by 

adjusting for other variables along the path. 

 According to the postulated relationships among variables in Figure 8, the minimal set of 

covariates that would need to be adjusted to block all backdoor paths would be age, T-stage 

(tumor size), neoadjuvant treatments (chemotherapy and radiation), N-stage (lymph node 

metastasis), and M-stage (distant metastasis).  Since overall TNM tumor stage is a composite of 

the component T-, N-, and M-stages, tumor stage can be adjusted for as a single variable for 

overall stage rather than as three separate variables for the components.  Confounding due to 

adjuvant treatments is addressed by adjusting for stage.  The variables in the node including 

“Tumor Location,” while associated with patient outcomes, do not appear to influence EMT 

marker expression in cancer cells and therefore need not be included in models. 

 3.6.7. Multivariate time-to-event analysis 

 Adjusted Cox proportional hazards models to control for identified sources of 

confounding included the following independent variables: dichotomous marker expression 

status (marker-positive/marker-negative), age (continuous), overall tumor stage 

(local/regional/distant), neoadjuvant chemotherapy (yes/no), and neoadjuvant radiation therapy 

(yes/no).  Each model contained only one marker expression variable.  I did not include more 

than one marker expression variable simultaneously because markers were not considered 
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mutual sources of confounding for each other based on our DAG.  As with bivariate models, the 

outcome was time from surgery to death, with administrative censoring at 5 years after surgery. 

 3.6.8. Missing data and multiple imputation 

 Several variables for multivariate modeling had large proportions of missing and/or non-

informative responses.  “Non-informative responses” included responses such as “Don’t Know,” 

“Unknown,” and “No Answer.”  Such non-informative responses were effectively missing data.  

Only subjects with informative responses or values for all model variables could be included in 

models.  Since our sample size of 190 subjects was small, adequate precision was an important 

concern.  Retaining all subjects in multivariate models was essential to preserve the maximum 

possible precision.   

 In the presence of missing data, retaining all subjects required imputation of reasonable 

“guesses” for missing values on variables to be included in multivariate Cox models (60).  Many 

imputation methods based on conventional analytic approaches exist—marginal mean 

imputation, multiple regression, and weighted least squares, among others—but these methods 

tend to underestimate standard errors and overestimate test statistics (60).  I used multiple 

imputation (MI), a method that provides consistent, asymptotically efficient, and asymptotically 

normal estimates, assuming the data are missing at random (60). 

 Briefly, MI involves assigning an imputed value for each missing value for a given 

variable conditional on relevant covariates (the imputation model) and by introducing a random 

component into the imputation process.  The imputation model should be at least as rich as the 

analysis model used subsequently.  Using this approach, a statistical package performing MI will 

assign imputed values for all missing values for every variable being imputed, creating a 

complete dataset.  This was done 100 times to generate 100 complete datasets.  Each of these 
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datasets was then analyzed separately using the desired analysis model—in our case, Cox 

proportional hazards models of time-to-death regressed on dichotomous marker expression 

status, age, stage, and neoadjuvant treatments—to produce 100 point estimates and standard 

errors.  The 100 analysis results were finally combined into a single, stabilized estimate and 

confidence interval.  To perform MI, I used the following procedure for every multivariate Cox 

model that I ran after recoding non-informative responses as missing values: 

 First, PROC MI was used to implement Markov Chain Monte Carlo imputation for 100 

imputed datasets.  The imputation model included the following variables: dichotomous marker 

expression status, age, sex, race, tumor stage, tumor location, tumor grade, whether received 

neoadjuvant chemotherapy, whether received neoadjuvant radiation therapy, time from diagnosis 

to death, time from diagnosis to surgery, and time from surgery to death. 

 Therefore, any missing values for all independent variables and also the dependent 

variable of time from surgery to death were substituted for an imputed value.  Multiple time-to-

event variables were included in the imputation model because, while time from surgery to death 

was the outcome of interest, it was missing for some subjects in the final EMT sample.  In fact, 

time from surgery to death was not a variable collected by CanCORS.  Instead, I derived it from 

two variables that were collected: time from diagnosis to death (or last observation), and time 

from diagnosis to surgery.  The formula for time from surgery to death was (time from diagnosis 

to death or last observation) – (time from diagnosis to surgery), keeping in mind that surgery 

virtually always comes after diagnosis. 

 The dataset had no missing data for time from diagnosis to death (or last observation), but 

had about 14% missing data for time from diagnosis to surgery.  Applying the formula above 

produced about 14% missing data for time from surgery to death.  Therefore, to retain all 
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subjects, imputation had to be performed for the dependent variable as well as independent 

variables.  Of note, there was no association between having a missing value for time from 

surgery to death and whether a subject died during the observation period (chi square p-

value=0.3). 

 Second, after creating 100 imputed datasets, I used PROC PHREG to carry out the Cox 

analysis model on each imputed dataset, producing 100 point estimates and standard errors.  The 

analysis model used time from surgery to death as the dependent variable and, for the 

independent variables, included dichotomous marker expression status, age, tumor stage, receipt 

of neoadjuvant chemotherapy, and receipt of neoadjuvant radiation therapy. 

 Third and finally, PROC MIANALYZE was used to combine the 100 point estimates and 

standard errors into a single, stabilized point estimate and 95% confidence interval that retained 

all 190 subjects. 

 3.7. Statistical analysis for latent class analysis 

 3.7.1. Overview 

 The time-to-event analysis addressed the basic question of whether expression levels of a 

given marker were associated with patient outcomes, especially independent of tumor stage.  The 

answer to that question does not, however, provide all of the information we would want to know 

about the marker in terms of its diagnostic usefulness.  We would also want a measurement of 

the diagnostic validity or accuracy of the marker (58).  The basic measures of such accuracy are 

sensitivity and specificity, and estimating these quantities in an appropriate fashion for EMT 

markers was the aim of my latent class analysis. 

 Sensitivity and specificity are defined in terms of both a dichotomous diagnostic test and 

a dichotomous outcome or health state (58).  The clinical use of EMT markers fits comfortably 
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within this framework.  Binary EMT marker expression status—marker-positive versus marker-

negative—is easily defined, even if EMT marker expression measurements are initially 

continuous.  The decision that an oncologist faces and that an EMT marker would inform is 

inherently binary: at the time of diagnosis, and given that a primary tumor has been found, does 

the patient likely have or not have metastatic disease? 

 Traditional, straightforward calculations of sensitivity and specificity are based on a 

cross-tabulation of patient classification according to the new or “test” diagnostic and patient 

classification according to a gold standard measure of the health state of interest (58).  A gold 

standard measure has perfect (or nearly perfect) accuracy in correctly classifying both those with 

and without the health state of interest, which in this case is presence or absence of metastatic 

disease.  The standard measures of presence or absence of metastatic disease are lymph node 

evaluation (LN) and radiologic imaging (RI).   

 Empirically, it is clear that these measures, either individually or taken together, are not 

sufficiently accurate to be considered a gold standard.  Specifically, about 25% of CRC patients 

found to have local disease according to these diagnostics ultimately experience disease 

recurrence (4).  Such patients likely had metastatic disease at the time of diagnosis that was not 

successfully detected by LN or RI.  Since about 40% of CRC patients are diagnosed as having 

local disease, this suggests that approximately 10% of all CRC patients—about 14,000 people 

nationwide each year—have metastatic disease at the time of diagnosis that the two conventional 

diagnostics jointly fail to detect (8, 10). 

 The failure of LN and RI to constitute a gold standard measure implies that EMT marker 

sensitivity and specificity cannot be estimated by simple calculations based on a cross-tabulation.  

However, it is possible to estimate the sensitivity and specificity from statistical models that do 
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not require the assumption that any member of a panel of diagnostic tests counts as a gold 

standard.  Latent class models are precisely suited for this purpose (61).  We used latent class 

analysis (LCA) to estimate the sensitivity and specificity of EMT markers to assess cancer cell 

detachment from primary tumors while accounting for the sensitivity and specificity of LN and 

RI to do the same, but without assuming that any of the diagnostics constituted a gold standard. 

 3.7.2. Latent class framework 

 Latent class models are a subset of latent variable models, which attempt to identify 

subgroups within a population by postulating that the subgroups represent different levels of an 

unobserved, error-free latent variable (62).  The latent variable is measured indirectly by multiple 

observed indicator variables (also called manifest variables), each of which is conceived as being 

determined by its own error term and the latent variable.  Individuals’ response patterns to the 

indicators can be used to estimate two kinds of parameters: the prevalence of each latent 

subgroup (gamma parameters or class-membership probabilities) and, within each latent 

subgroup, the probability of a given response to each indicator (rho parameters or item-response 

probabilities).  Latent class models are latent variable models that use categorical indicators and 

postulate a categorical latent variable.  Figure 9 depicts a generic latent class model with three 

manifest variables. 
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Figure 9. Generic latent class model with three indicator variables (based on Collins and Lanza, 

2010) (62) 

 

 

 

 

 

 

 

 

 

 

 In a valid latent class model, the indicators are related to each other through the latent 

variable but are otherwise independent of one another (62).  This is known as the local 

independence assumption.  It implies that the error terms of the indicators are not associated or 

correlated with each other.  A further implication is that, within any single (unobserved) latent 

class, the indicator variables are independent of each other.  In fact, this conditioning on latent 

class is what the “local” in “local independence assumption” refers to. 

 3.7.3. Latent class model for diagnostics of cancer cell detachment from primary  

           tumors 
 

 Figure 10 depicts my conceptual model of the relationship between cancer cell 

detachment from the primary tumor and the diagnostic tests to assess it.  Detachment is the latent 

variable, that is, the phenomenon of interest that is not observed directly.  EMT markers, LN, 

and RI are the indicators. 
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Figure 10. Latent class model of diagnostic tests to evaluate cancer cell detachment from primary 

tumors 

 

 

 

 

 

 

 

 

 

 

 

 3.7.4. Data used for latent class analysis 

 Based on the results of the time-to-event analysis, only E-cadherin expression as a 

weighted average of tumor cores was associated with time-to-death.  Therefore, EMT status in 

the LCA was defined solely in terms of E-cadherin weighted average expression.  The LCA was 

limited to the 188 subjects in the EMT study sample with E-cadherin weighted average 

measurements, as 2 of the 190 subjects did not have E-cadherin measurements.  

  The only data input into LCA models were the three diagnostic tests of cancer cell 

detachment.  The sensitivity and specificity of each diagnostic could be estimated freely or set to 

fixed values.  Free estimation requires observed data for that particular diagnostic, while a fixed 

value does not.  All diagnostics were treated as binary test-positive versus test-negative.  Test-

positive meant evidence supporting cancer cell detachment from the primary tumor while test-

negative meant evidence supporting lack of cancer cell detachment. 
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EMT 

 In the time-to-event analysis, we identified three different cut points along the continuum 

of observed E-cadherin weighted average expression that provided informative relationships 

between dichotomous marker expression and patient outcomes.  On the average intensity scale of 

0-3, these were 0.52, 0.60, and 0.85.  In the LCA we examined how sensitivity and specificity 

varied with cut point.  For any given cut point, EMT-positive status meant low E-cadherin 

expression (below the cut point) and EMT-negative status meant high E-cadherin expression (at 

or above the cut point).  EMT sensitivity and specificity were both freely estimated in all latent 

class models. 

 Lymph Node Evaluation and Radiologic Imaging 

 Freely estimating all possible sensitivity and specificity parameters in a setting with only 

three binary diagnostics leads to poor model specification (see Analysis section below).  To cope 

with this, in each model I fixed (i.e. set or restricted) some of the values of LN and RI sensitivity 

and specificity while freely estimating the others as well as EMT sensitivity and specificity.  This 

approach required both observed LN and RI test results for freely estimated parameters and also 

determination of fixed values for restricted parameters. 

 Observed LN and RI results were not available in CanCORS.  As an approximation, I 

inferred them from subject tumor stage using the rules presented in Table 2.  These inferred test 

results were used for freely estimated LN and RI sensitivity and specificity parameters. 

 For LN and RI parameters assigned fixed values in a given model, a value of 60% or 80% 

was assigned for each restricted sensitivity parameter and a value of 90% or 100% was assigned 

for each restricted specificity parameter.  These values were chosen to represent bounds to assess 

the influence on model results of different combinations of assumptions about high or low 
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diagnostic accuracy for RI and LN.  We varied the combinations of fixed values and of which 

LN and RI parameters were restricted across models to observe how doing so impacted the EMT 

estimates. 

 The choice of 60% to represent poor sensitivity and 80% to represent good sensitivity 

was based in part on the fact that about 25% of colorectal cancer patients diagnosed with local 

disease experience recurrence after surgery (4).  In addition, roughly 40% of colorectal cancer 

patients are currently diagnosed with local disease (63).  Together, these facts suggest that the 

“double false negative” proportion for LN and RI is about 10% of all colorectal cancer patients. 

 

Table 2. Rules for inferring lymph node and radiologic imaging test results from tumor stage 

Tumor Stage Diagnosis Lymph Node Assignment Imaging Assignment 

Local Negative Negative 

Regional Positive Negative 

Distant Based on diagnosed N-stagea Positive 
aFor 23 subjects diagnosed with distant disease, lymph node status was assigned as lymph node-

negative if N0 (n=3) and as lymph node-positive if N1 or N2 (n=11).  Nine subjects with 

unknown N-stage were assigned as lymph node-positive. 

 

 For metastatic disease, false negative results are more clinically serious than false 

positive results.  However, the problem is not testing falsely negative for either LN or RI, but 

testing falsely negative for both.  The false negative proportion for a single diagnostic is equal to 

(100 – sensitivity)% (58).  Thus, a test with sensitivity of 60% or 80% will have a false negative 

proportion of 40% or 20%, respectively.   

 Assuming that LN and RI test results are conditionally-independent events, the double 

false negative proportion is the product of the false negative proportions for each of the two tests.  

Both tests having sensitivity of 80% yields a double false negative proportion of 4%.  If both 

tests have sensitivity of 60%, then the double false negative proportion is 16%.  If one test has 
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sensitivity of 60% and the other has sensitivity of 80%, then the double false negative proportion 

is 8%. 

 I chose 60% and 80% as values representing low and high test sensitivity, respectively, 

because when either LN or RI has low sensitivity and the other has high sensitivity, the assumed 

double false negative proportion of 8% is close to the observed estimate of 10%.  In addition, 

when both tests are set to high sensitivity or both set to low sensitivity, the resulting double false 

negative proportions of 4% and 16% set up reasonable extreme bounds around the observed 

estimate. 

 Specificity bounds of 90% and 100% were chosen because I assume that the specificities 

of both LN and RI are close to perfect.  To get a false positive result for either of these tests, the 

radiologist or pathologist would have to believe that he is looking at cancer cells in a scan or 

under the microscope when in fact he is not.  This might occur occasionally but I assume it is 

relatively rare. 

 Whether freely estimated or restricted, every LN and RI sensitivity and specificity 

parameter represented a binary diagnostic test.  LN-positive would mean that cancer cells were 

found in lymph nodes near the primary tumor and LN-negative that no cancer cells were found 

there.  RI-positive would indicate detection of a distant metastasis via imaging and RI-negative 

would indicate no such detection of distant metastasis. 

 3.7.5. Analysis 

 All models included all three diagnostic tests.  In every case, I sought a 2-class solution 

distinguishing high risk from low risk for metastatic disease. 

 A properly specified latent class model has a positive number of degrees of freedom (df), 

given by df = W – P – 1, where W is the number of possible response patterns and P is the 
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number of parameters estimated (62).  Three binary indicators yield 23 = 8 possible response 

patterns.  When all class-membership and item-response parameters are freely estimated, a 2-

class model with 3 indicators estimates 7 parameters (1 class-membership and 6 item-response), 

leaving 8 - 7 - 1 = 0 df.  Using fixed sensitivity or specificity values for LN and RI reduced the 

number of parameters estimated in a given model, thereby giving positive degrees of freedom. 

 I ran separate models using each of the different E-cadherin cut point values mentioned 

earlier—about 0.52, 0.60, and 0.85—to create the EMT indicator to assess the impact of E-

cadherin cut point on the sensitivity and specificity of the resulting indicator.  The fixed values 

assigned for LN and RI sensitivity or specificity were also varied across models.  I used PROC 

LCA in SAS for the latent class analyses (64).  The SAS procedure used an iterative expectation-

maximization algorithm to obtain maximum likelihood estimates for freely-estimated 

parameters. 

 3.8. Ethical considerations 

 3.8.1. IRB approval 

 The dissertation proposal was defended on 16 April 2013.  On 23 April 2013, an 

application for approval of the project was submitted to the UNC Institutional Review Board 

(IRB).  The project was assigned IRB Study #13-1897.  On 25 April 2013, the IRB notified us 

that the project was approved.  No implementation activities were undertaken until IRB approval 

was received.  The IRB granted one-year extensions on 24 February 2014 and 14 January 2015, 

covering the entire period from just after the proposal through graduation from the PhD program. 

 3.8.2. Informed consent  

 Subjects consented to participate in the study and provide tumor specimens at the time of 

enrollment in 2003-06.  While they did not specifically consent to have their tumor specimens 
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used to study EMT markers, they did consent to the tissue samples being used for biomarker 

research generally.  Thus, the original consent covered all dissertation project activities, and 

therefore subjects did not need to be sought out and re-consented to carry out the project. 

 3.8.3. Potential risks to subjects 

 The only risk this research posed to subjects was possible breach of confidentiality in the 

event that data security was compromised.  Subject data used in the project were deidentified and 

never linked to the CanCORS key of subject identifiers.  Further, all analyses were carried out on 

a password-protected computer used only by the candidate.  To the best of our knowledge, data 

security was never breached.  Even if it was breached without our knowledge, it appeared 

unlikely that subject confidentiality could be compromised even then since the data were 

deidentified. 

 3.8.4. Potential benefits to subjects 

 There were no direct benefits of this research to participating subjects.  While the 

knowledge gained could benefit future CRC patients, the work was performed long after the 

knowledge could have been beneficial to those enrolled. 

 

 

 



 
 

59 
 

CHAPTER 4. MARKERS OF EPITHELIAL-MESENCHYMAL TRANSITION AND 

MORTALITY IN A POPULATION-BASED PROSPECTIVE COHORT OF 

COLORECTAL CANCER PATIENTS 

 

 4.1. Introduction 

 Epithelial-mesenchymal transition (EMT) is widely considered an important mechanism 

of cancer cell metastasis (2, 65, 66).  It connects epithelial cells to metastasis, which account for 

roughly 80% of cancer and 90% of cancer deaths, respectively (1).  EMT markers measured in 

primary-tumor cancer cells are potentially useful diagnostic tools to assess patient risk of 

metastatic disease and guide treatment decisions, even when metastases are not detected by 

lymph-node evaluation or radiologic imaging. 

 The EMT mechanism involves epithelial cells temporarily becoming mesenchymal cells 

(2).  This occurs when cellular expression levels of EMT inducers increase, leading to decreased 

expression of epithelial markers and increased expression of mesenchymal markers.  These 

changes are manifest as loss of adhesion to adjacent cells that enables detachment of the 

transitioning cell from the primary tumor, as well as cytoskeletal and other modifications that 

enhance motility and invasiveness. 

 Past studies of associations between EMT markers in primary tumors and patient 

outcomes have measured marker expression in different ways and often performed statistical 

analyses that were not as informative as possible (5).  For example, previous studies have used 

single-hospital samples that typically are not representative of a well-defined population.  

Different studies of the same marker measured using the same laboratory technique often used 

different scoring scales and defined marker-positive versus marker-negative status in different 
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ways.  The lack of uniform methods across studies could contribute to inconsistent findings and 

hamper translation of EMT markers to clinical use. 

 Selecting markers based on our previous literature review (5), we measured the EMT 

inducer Snail, epithelial marker E-cadherin, and mesenchymal marker Integrin beta-6 in primary 

tumors from a population-based prospective cohort study of colorectal cancer (CRC) mortality 

and estimated their associations with time-to-death.  We hypothesized that low expression of E-

cadherin, and high expression of Snail and Integrin beta-6, would be associated with shorter 

times from surgery to death compared to opposite expression levels.  We also introduce methods 

that might help to improve standardization of measurements and analyses across studies. 

 4.2. Methods 

 4.2.1. Study population 

 Subjects were enrolled in the Cancer Care Outcomes Research and Surveillance 

Consortium (CanCORS), a population-based, prospective, case-only, multi-site observational 

study of colorectal and lung cancer patients (48).  Briefly, the study assessed the impact of 

health-system, provider, and patient factors on cancer outcomes.  Patients were at least 21 years 

of age at diagnosis and were enrolled within 3 months of diagnosis during 2003-06.  The study 

collected patient surveys, surrogate surveys for patients who were deceased or too ill to 

participate, and medical records data.  Vital status for all subjects was verified using the Social 

Security Death Index on 4 May 2010, providing at least 42 months of follow-up observation per 

individual. 

 Medical records abstractors at each site collected information on tumor characteristics 

and cancer treatments.  Patient and, when necessary, surrogate surveys were completed using 

computer-assisted telephone interviews that queried demographic and socioeconomic factors 
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(age, insurance coverage, income), as well as treatment preferences and interactions with 

providers (67). 

 The North Carolina CanCORS site was the only one to collect tumor specimens.  It 

enrolled 990 CRC patients but no lung cancer patients.  Subjects in the present biomarker study 

came from a catchment area of 33 counties in eastern and central North Carolina at the time of 

diagnosis.  Investigators obtained primary tumor and normal adjacent colorectal tissue samples 

from 506 subjects.  

 Formalin-fixed, paraffin-embedded tissue specimens were sent from hospitals across the 

catchment area to the University of North Carolina at Chapel Hill (UNC), where they were used 

to construct tissue microarrays (TMAs) as described previously (50).  Most subjects had multiple 

cores from both primary tumor and normal margin.   For this analysis, we measured EMT 

markers in 12 representative TMAs that included specimens from 219 subjects.  To be included 

in the study sample, subjects had to have at least one core of tumor tissue successfully stained for 

one marker, with that core having at least 50 epithelial cells and unambiguous histology.  From 

the 12 TMAs, we excluded 26 subjects lacking adequate tumor tissue and an additional 3 

subjects who could not be linked to medical records data, yielding a final study sample of 190 

subjects. 

 4.2.2. Immunohistochemistry 

 We selected EMT markers for evaluation based on the results of previous studies and 

criteria discussed in our prior literature review (5).  Marker protein expression was measured 

using the following antibodies: E-cadherin (mouse monoclonal ready to use [RTU], clone 36B5 

[cat #PA0387] from Leica Microsystems Inc. [Norwell, MA]), Integrin beta-6 (goat polyclonal 
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[sc-6632] from Santa Cruz Biotechnology [Dallas, Texas]), and Snail (goat polyclonal [ab53519] 

from Abcam [Cambridge, MA]). 

 Immunohistochemistry (IHC) was performed at the UNC Translational Pathology 

Laboratory (TPL) using the Bond fully-automated slide staining system (Leica Microsystems 

Inc., Norwell, MA).  Slides were deparaffinized in Bond Dewax solution (AR9222) and hydrated 

in Bond Wash solution (AR9590). Antigen retrieval was performed at 100C for Integrin beta-6 

and Snail (for 20 minutes or 30 minutes, respectively) in Bond-epitope retrieval solution 1 at pH 

6.0 (AR9961) and for E-cadherin for 20 minutes at 100C in solution 2 at pH 9.0 (AR9640).  

After pretreatment, anti-E-cadherin was applied for 15 minutes, anti-Snail (1:200) for 30 minutes 

and anti-Integrin beta-6 (1:100) was applied for 1 hour. 

 Detection of Snail and Integrin beta-6 was performed using the Bond Intense R Detection 

System (DS9263) supplemented with the LSAB+ kit (DAKO, Carpinteria, CA).  E-cadherin 

detection used the Bond Polymer Refine Detection System (DS9800).  Stained slides were 

dehydrated and cover-slipped.  Positive and negative controls (no primary antibody) were 

included for each antibody.  All assays were single-marker (i.e. no multiplex assays). 

 Stained slides were digitally imaged at 20× magnification using the Aperio ScanScope 

XT (Aperio Technologies, Vista, CA).  Digital images were stored in the Aperio Spectrum 

Database.  Example images of staining and annotations are provided in Figures 4-6. 

 4.2.3. Automated analysis of digital IHC images 

 Computer algorithms annotated and scored every eligible tissue core to obtain continuous 

marker expression data.  We used approximately 65 cores originating from two TMAs for 

algorithm training and automated-analysis validation.   
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 Definiens Composer Technology (Tissue Studio version 2.1.1 with Tissue Studio Library 

version 3.6.1; Definiens Inc., Carlsbad CA) was used to identify regions enriched in epithelial 

cells in IHC-stained TMA cores.  To detect differences in cell shape and tissue structure, we 

developed two Composer algorithms per marker—one for cores containing normal adjacent 

tissue and a second for tumor cores—as both types of tissue were present on each TMA.   

 After Composer training, we developed two Tissue Studio scoring algorithms 

(“solutions”) per marker.  Different Composers were used to identify epithelial cell regions but 

identical settings were used to determine relative DAB staining intensity.  The 

Composer_MarkerArea Solution was used to detect E-cadherin staining.  This algorithm gave 

average intensity readings for each core on a continuous scale of 0-3 and included both 

membrane and cytoplasmic E-cadherin staining.   Integrin beta-6 membrane staining was 

detected using the Composer_Nuclei_Membranes&Cells Solution.  We used the 

Composer_Nuclei(Positive_vs_Negative) Solution to detect nuclear Snail expression.  Integrin 

beta-6 and Snail were measured as core percent positive cells (Integrin) or nuclei (Snail) on a 

continuous scale of 0-100. 

 To evaluate the reliability of computer annotations, one of us (ELB) used Aperio 

ImageScope (version 11.2; Leica Biosystem, Buffalo Grove, IL) to manually annotate the same 

65 cores per marker that were used to optimize Tissue Studio solutions.  He remained blind to 

patient and tumor characteristics while annotating.  The manually-annotated cores—considered 

the gold standard for digital separation of tissue types—were then analyzed using appropriate 

Aperio scoring algorithms (Membrane v9 algorithm for E-cadherin and Integrin beta-6, Nuclear 

v9 algorithm for Snail). Automated scores obtained via manual and automated annotation 

produced Pearson correlations of 0.91 for E-cadherin, 0.88 for Integrin beta-6, and 0.94 for Snail.  
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Having verified the accuracy of the annotation algorithms for the three markers, all 12 TMAs 

stained for E-cadherin, Integrin beta-6 and Snail were analyzed (36 slides in total). 

 Subjects typically had multiple cores available of a given tissue type (tumor or normal).  

To assign an expression value for each subject by marker and tissue type, we handled replicate 

cores in two ways: first, as a weighted average of cores, and second, by assigning the expression 

value of the subject’s “worst” core as the marker expression value.  For weighted averages, the 

weights were area analyzed for E-cadherin, number of cells for Integrin beta-6, and number of 

nuclei for Snail.  The worst score by tissue type was assigned as the lowest core average intensity 

for E-cadherin, as the highest core percent positive cells for Integrin beta-6, and as the highest 

core percent positive nuclei for Snail. 

 After observing unexpected results when comparing mean Snail expression in tumor 

tissue to normal tissue, we trained two additional Snail scoring algorithms on a different TMA 

than the one used to develop the original scoring algorithms: a second nuclear algorithm and a 

whole-cell algorithm that scored Snail expression in any part of a cell.  These additional Snail 

scoring algorithms measured expression on a continuous percent positive scale and were applied 

to all 12 TMAs.  The results of the two additional Snail algorithms were qualitatively similar to 

those from the original nuclear algorithm.  Thus, for analysis we used only Snail expression 

values based on the original algorithm. 

 4.2.4. Outcome 

 In statistical models, the dependent variable was length of time in days from primary 

tumor surgery until all-cause mortality, with administrative censoring at 5 years after surgery. 
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4.2.5. Covariates 

 Covariates for multivariate statistical models were selected based on prior studies (5), 

considerations of biological plausibility, and directed acyclic graph theory (59). 

 We adjusted for age, neoadjuvant chemotherapy, neoadjuvant radiation therapy, tumor 

size (T-stage), lymph-node metastasis diagnosis (N-stage), and distant metastasis diagnosis (M-

stage).  We adjusted for overall TNM stage as a single variable instead of adjusting for the 

component stages as three separate variables since including both overall stage and any of the 

component stages would constitute inappropriate overadjustment.  Because we adjusted for 

stage, cancer treatments prior to surgery were included as covariates but we excluded cancer 

treatments occurring after surgery. 

 Age was modeled as a continuous variable.  We categorized stage (local/regional/distant), 

neoadjuvant chemotherapy (yes/no), and neoadjuvant radiation (yes/no). 

 4.2.6. Marker expression cut point optimization 

 Our data collection yielded six continuous marker expression variables: weighted average 

and worst score for each of Snail, E-cadherin, and Integrin beta-6.  For each variable, we wished 

to identify the cut point distinguishing marker-positive status from marker-negative that was 

most strongly associated with time-to-death. 

 For every possible cut point along any marker expression continuum, we defined marker-

positive status as expression at or above the cut point and marker-negative status as expression 

below the cut point.  Thus, marker-positive always meant high expression and marker-negative 

always meant low expression.  Whether marker-positive status is clinically desirable depends on 

the particular marker.  E-cadherin-positive status would be expected to correlate with better 
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outcomes (i.e. longer time-to-death) (2, 5, 56), whereas Snail-positive (2, 5) or Integrin beta-6-

positive (23) status would be expected to correlate with worse outcomes.  

 To identify the statistically-optimal cut point for each continuous marker expression 

variable, we used a SAS macro to assess the model goodness of fit for a series of bivariate 

associations between dichotomous marker expression status and time-to-death.  The macro 

iteratively dichotomized marker expression at every possible cut point in the observed tumor 

tissue data, with each cut point corresponding to a different subject’s expression value. Each 

dichotomization of marker expression status was fit as the only independent variable in a Cox 

model with time-to-death as the outcome, producing a model fit statistic.  The expression value 

with the lowest model fit statistic was considered the statistically-optimal cut point. 

 For macro SAS code and further details, including comparison of this approach to 

receiver operating characteristic curves, see Appendix B. 

 4.2.7. Statistical analysis 

 We first used unpaired two-sample t-tests to assess whether average continuous marker 

expression differed between tumor and normal tissue.  All subsequent analyses used tumor tissue 

only.  We applied the macro to the tumor tissue data for the six marker expression variables to 

identify the statistically-optimal cut point for each.  Every optimal cut point was used to create a 

dichotomous marker expression variable (positive/negative). 

 We generated Kaplan-Meier survival curves stratified by dichotomous marker expression 

status for one marker or two markers jointly, assessing differences between strata using the 

logrank test.  Next, for each optimally-dichotomous marker expression variable, we fit 

unadjusted and adjusted Cox proportional hazards models of time-to-death.  Prior to modeling, 

non-informative observations (e.g. “No Answer,” “Don’t Know,” “Unknown”) were recoded as 
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missing.  Missing data for all model variables were evaluated using multiple imputation.  P-

values of 0.05 or below were considered statistically significant.  All analyses were performed 

using SAS 9.3 (SAS Institute, Cary, NC). 

 The Institutional Review Board at UNC approved the protocol.  All subjects provided 

informed consent. 

 4.3. Results 

 Comparison of subject characteristics for overall North Carolina CanCORS and the 

subset for whom EMT markers were measured in primary tumors suggests that the EMT study 

sample remains representative of the source population (Table 3). 

 On average, tumor tissue had lower E-cadherin expression and greater Integrin beta-6 

expression than normal adjacent tissue regardless of whether expression values were assigned as 

a weighted average of cores or as the worst core (Table 4).  However, average Snail expression 

was higher in normal tissue than in tumor tissue.  While the difference was not large, this 

relationship was consistent across both ways of assigning expression values and all three Snail 

scoring algorithms. 

 On the average intensity scale of 0-3 for E-cadherin, we found that the statistically-

optimal cut point was about 0.52 for weighted averages and 0.42 for worst cores.  On a percent 

positive cells scale for Integrin beta-6, the optimal cut point was about 9.4% for weighted 

averages and 7.7% for worst cores.  On a percent positive nuclei scale for Snail using the first 

nuclear scoring algorithm, the optimal cut point was about 25.2% for weighted averages and 

63.6% for worst cores.  For weighted average and worst core expression for each marker, Table 

5 presents the cross-tabulation of dichotomous marker expression status defined by the 
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statistically-optimal cut point, first, with tumor stage, and second, with the risk of dying within 5 

years of surgery. 

 For E-cadherin weighted averages, subjects with low tumor expression had worse 

survival than those with high tumor expression (Figure 11).  None of the Kaplan-Meier curves 

stratified by the other five optimally-dichotomous marker expression variables revealed a 

statistically-significant difference in survival (Figures 12-16).  We also generated survival curves 

jointly stratified by two dichotomous marker expression variables (Figures 17-22).  While 

several of these produced statistically-significant logrank test results, graphical examination did 

not suggest any clear patterns based on biological expectations or clinical usefulness. 

 Bivariate proportional hazards model results paralleled the single-variable stratified 

survival curves: low E-cadherin weighted average expression was associated with greater 

hazards of dying than high expression (Hazard Ratio [HR] =2.84, 95% Confidence Interval [CI] 

1.29, 6.28), and no associations were found for any of the other optimally-dichotomous 

expression variables (Table 6).  These relationships held in adjusted models: low E-cadherin 

weighted average expression remained strongly “harmful” relative to high expression (HR=2.57, 

95% CI 1.10, 6.03), while no other optimally-dichotomous marker expression variables had an 

effect on time-to-death. 

 We explored several trade-offs between strength of cut-point/time-to-death association 

and the number of subjects whose treatments might change due to clinical use of EMT markers.  

Specifically, we considered three different E-cadherin weighted average cut points that were 

either statistically significant or nearly so: about 0.52 (statistically-optimal value), 0.60, and 0.85 

(Table 7).  Setting the cut point to a value other than the statistically-optimal value led to hazard 

ratio point estimates that were weaker than the one at the optimal cut point, but marker 
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expression status was still effectively associated with outcomes at each of these cut points.  

Notably, the precision of hazard ratio estimates was better at cut points other than the 

statistically-optimal value.   

 The number of subjects whose treatments might change based on E-cadherin 

measurements—those diagnosed with local disease who are E-cadherin-negative—varied 

substantially with cut point.  Of 99 subjects with E-cadherin measurements and diagnosed with 

local disease, 6 were E-cadherin-negative at the optimal cut point, 16 at a cut point of 0.60, and 

56 at a cut point of 0.85. 

 4.4. Discussion 

 EMT markers can link epithelial cancer cells in primary tumors to risk for metastatic 

disease.  We found that, when measured as a weighted average of tumor cores, E-cadherin 

expression in colorectal cancer cases was associated with mortality independent of stage.  By 

identifying possible metastatic disease that might be undetected by radiologic imaging or lymph-

node evaluation, measurement of E-cadherin or other EMT markers in primary tumor cancer 

cells has the potential to alter the treatment and outcomes of cancer patients. 

 An EMT marker must overcome at least two hurdles to become a useful diagnostic tool.  

First, expression levels measured in cancer cells from resected primary tumors must be 

associated with the length of time from surgery to death, independently of other relevant clinical 

factors.  Second, the most clinically-useful definition of marker expression status must be 

determined.  Though related, these issues are not identical: the first is statistical and the second 

practical.  They differ because marker expression is inherently continuous, while treatment 

decisions are binary and therefore imply cut points.  Many cut points along a continuum could 
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yield significant associations with time-to-death.  Deciding which one to use clinically is not a 

matter of best model fit alone. 

 E-cadherin has been the most-studied EMT marker in prior reports (5, 56).  Among 

hospital-based samples that examined survival stratified by E-cadherin expression status, four 

found that reduced E-cadherin was associated with worse outcomes (24, 29, 43, 68).  Four 

studies found that E-cadherin expression by itself was not associated with survival (16, 69-71).  

In terms of multivariate modeling of overall survival, one study found that E-cadherin was an 

independent prognostic marker (43) while three concluded that it was not (29, 68, 70). 

 To our knowledge, there has been only one previous population-based study that 

measured E-cadherin in CRC primary tumor cancer cells and estimated its association with 

patient outcomes (72).  The study assigned each specimen a separate score for membrane and 

cytosolic staining.  They found no evidence that membrane staining was associated with either 

overall survival or time-to-recurrence.  Cytosolic staining was associated with time-to-recurrence 

but not overall survival. 

 A meta-analysis concluded that reduced E-cadherin expression was associated with worse 

CRC outcomes (56).  This summary must be interpreted with caution because it combined results 

from studies with very different definitions of E-cadherin positive/negative status.  We have 

argued elsewhere that combining studies in this fashion is not valid (5).  Nevertheless, the 

summary suggests that, given conflicting findings when comparing individual studies of the 

prognostic value of E-cadherin, overall the evidence supports its utility.  Past studies do not, 

however, provide much clarity in deciding the best way to measure E-cadherin or what cut point 

to use for clinical purposes. 
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 Our study supports the use of E-cadherin as an independent prognostic marker of CRC 

patient outcomes, at least when measured as a weighted average of tumor cores.  While the 

marker had no effect on time-to-death when measured as worst (i.e. lowest) core expression, the 

weighted average is more representative of the tumor’s overall E-cadherin status because it 

incorporates measurements from at least as many cells as the worst core.  Notably, the 

association between dichotomous E-cadherin weighted average status and outcomes was 

independent of TNM stage.  This suggests that the marker provides prognostic information 

beyond what is captured by tumor size, lymph-node evaluation, and radiologic imaging. 

 Our results can only be directly compared to other studies using the same data collection 

and analysis procedures in terms of type of data collected (continuous or ordinal), marker 

expression scale (for continuous data: average intensity, percent positive, or H scores), and cut 

point and covariate selection.  At present, no such direct comparison with another study is 

possible.   

 Most prior studies that measured continuous E-cadherin data did so on the percent 

positive scale.  We encourage future investigators to adopt our use of the average intensity scale 

for E-cadherin, for two reasons.  First, the average intensity scale imposes fewer assumptions on 

the data than the percent-positive and H-score scales.  Second, at the level of the individual cell, 

the percent-positive and H-score scales assign coarser expression measurements than average 

intensity.  Altogether, these arguments suggest that the average intensity scale provides the 

richest, most-informative continuous scale on which to measure E-cadherin. 

 On the average intensity scale, we found that Integrin beta-6 and Snail had much lower 

expression than E-cadherin, with a high proportion of cores having expression values below the 

threshold for background staining (Figure 4).  Therefore, we suggest that the percent positive 
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scale is appropriate for EMT inducers and mesenchymal markers, and would reserve the average 

intensity scale for epithelial markers. 

 Clinical implementation of an E-cadherin assay based on a continuous average intensity 

scale would require automated analysis of IHC slide images.  Standardized controls with known 

E-cadherin staining intensities would have to be included with each run to ensure proper staining 

and analysis calibration.  However, it would be possible to establish such an assay since whole-

slide imaging for diagnostic purposes is widely used for the evaluation of estrogen receptor, 

progesterone receptor and HER2/Neu IHC stains.  The College of American Pathologists 

recently released guidelines for validating new digital analysis assays for diagnostic use (73). 

 For Integrin beta-6, to our knowledge only one previous study has examined its 

prognostic role in CRC (23).  The study reported that high expression was associated with worse 

survival, especially among Stages I and II patients.  It found that Integrin beta-6 was an 

independent prognostic marker in a multivariate Cox model.  These results matched what one 

would expect for this mesenchymal marker. 

 We found no evidence that Integrin beta-6 expression was associated with survival or 

could serve as an independent prognostic marker.  Numerous differences in design and analysis 

could have contributed to the discrepancy between the first study and ours.  The earlier study 

used manual IHC scoring, a different antibody, had a larger sample size (n=488), and used a 

different outcome for analysis (disease-related deaths compared to our use of all-cause 

mortality). 

 Our Integrin beta-6 estimates have poor precision, particularly for worst cores.  It is 

possible that the particular antibody we used had nonspecific staining, which would be a problem 
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with the antibody rather than the marker.  We encourage further work on Integrin beta-6 to 

resolve the inconsistent findings between studies. 

 For Snail, previous studies had highly conflicting results.  Two studies found that 

elevated expression was associated with worse survival than low Snail expression (37, 70) while 

two reported no difference in survival by Snail expression status (71, 74).  In multivariate time-

to-death modeling, one paper reported an effect of Snail expression status on outcomes (70) and 

another found no effect (74). 

 We found no evidence that Snail expression status was associated with survival or was an 

independent prognostic marker.  Indeed, in our study Snail failed to meet minimal expectations 

based on the EMT mechanism when normal tissue exhibited greater average expression than 

tumor tissue.  Unlike Integrin beta-6, for which there is only one prior study, our finding of lack 

of association between Snail and outcomes can be compared to inconsistent findings across 

several previous studies.  Although the lack of association in our study might be due to 

nonspecific staining as could be the case with Integrin beta-6, taken together, prior and present 

results suggest that Snail would not be a useful clinical marker for CRC. 

 Our study had a number of important strengths.  First, it used tumor specimens from a 

population-based prospective observational study.  This gives our results greater external validity 

than the hospital-based samples typically used in studies of EMT markers and patient outcomes 

(75).  The only previous population-based study of this topic in CRC used tumor specimens from 

a single hospital that served virtually every CRC case in a defined geographic region (72).  As 

far as we know, ours is the first study of EMT markers and CRC outcomes that collected tumor 

specimens from multiple clinics, with all of the variation in specimen handling and transport that 
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implies.  This makes our finding that E-cadherin expression was associated with CRC outcomes 

particularly striking. 

 Another strength is our approach to cut point determination.  After collecting continuous 

marker expression data, for each expression variable we performed an exhaustive automated 

search along the continuum for the cut point that yielded the largest difference by model fit 

between the hazard functions (i.e. survival experiences) of marker-positive and marker-negative 

subjects.  Most studies have only examined a small number of possible cut points, often because 

they collected ordinal data but even when they collected continuous data.  In addition, cut point 

decisions have typically been arbitrary, often using convenient percentiles or subjective 

judgments about high versus low staining.  In contrast, our approach fully exploits the richness 

of continuous data, and identifies a cut point based on an objective criterion (best model fit) 

applied to an examination of how marker expression relates to the outcome of interest in the 

observed data. 

 Notably, of our six continuous marker expression variables, the optimal cut point of only 

one (E-cadherin weighted average) yielded an association with time-to-death.  For a given 

continuum, the optimization macro identifies the observed cut point with the best model fit 

compared to all of the other observed cut points, but this does not guarantee that the statistically-

optimal cut point will be associated with outcomes.  This suggests that the optimization 

technique is ideal for evaluating associations between cancer biomarkers and patient outcomes.  

If the marker is associated with outcomes, it will find the strongest statistical association that 

exists in the data.  If the marker is not associated with outcomes, the exhaustiveness of the 

procedure provides especially strong evidence that no association could be detected. 
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 Finally, to promote standardization across studies, we selected our modeling adjustment 

variables based on the results of past studies and an appropriate conceptual framework of 

directed acyclic graph theory.  Estimates of the effect of marker expression on time-to-death are 

only comparable across studies if the studies adjusted for the same set of covariates, preferably 

with the same variable coding.  Thus, it is important that researchers working on studies of EMT 

markers and patient outcomes standardize their covariate adjustment sets across investigative 

teams. 

 Several limitations must be noted.  Our study did not sample tumors in a consistent way.  

Ideally, each tumor would have been sampled at the invasive front, tumor center, and an edge of 

the tumor away from the invasive front.  However, for any given tumor in our dataset, we do not 

know from which part of the tumor our tissue specimens came.  EMT marker expression could 

vary throughout a tumor and it may be that, for clinical purposes, physicians should always 

sample a particular portion (e.g. the invasive front).  Not knowing from which part of the tumor 

each core came, we could not calculate portion-specific estimates of, say, the association 

between invasive front E-cadherin and time-to-death, and separately, the association between 

tumor center E-cadherin and time-to-death. 

 A second limitation is that our outcome in statistical models was time to all-cause 

mortality.  This may have led to weaker associations than would have been observed with an 

outcome of time to cancer-specific mortality or time to recurrence. 

 Finally, our cut point optimization technique is an informative method for determining 

whether an association exists between marker expression and patient outcomes.  However, 

finding an association using the statistically-optimal cut point based on best model fit does not 

automatically mean that one has found the best cut point for clinical purposes.  The patients most 
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likely to benefit from introducing EMT markers into clinical practice are those diagnosed with 

local disease according to lymph-node evaluation and radiologic imaging, but whose EMT 

marker measurements suggest poor prognosis.  These patients generally would not receive 

chemotherapy based on conventional staging (15), but their stage and treatments might be 

reconsidered in light of their EMT marker status. 

 For example, consider how the cross-tabulation of E-cadherin status and stage changes as 

the cut point varies (Table 7).  Of 99 subjects with E-cadherin measurements and diagnosed with 

local disease, 16 were E-cadherin-negative at a cut point of 0.60 versus 6 such subjects at the 

statistically-optimal cut point of about 0.52.  The hazard ratio point estimate for a cut point of 

0.60 is nearly as strong as the point estimate for the best-fitting cut point.  Primary tumors with 

E-cadherin values between 0.52 and 0.60 probably are not biologically much different with 

respect to cancer cell detachment from tumors with values below 0.52.  Nevertheless, a notable 

number of subjects diagnosed with local disease had E-cadherin values just above the 

statistically-optimal cut point and would not have their treatments changed if the clinical cut 

point were set at the statistically-optimal value.  In addition, the cross-tabulation of stage and E-

cadherin status fits what is known about disease recurrence better at a cut point of 0.60 than 0.52, 

as about 25% of diagnosed Stage I/II CRC patients experience recurrence after surgery (4).  

Altogether, these considerations suggest that cut point model fit should be one of several criteria 

used to determine a clinical cut point, but not the sole criterion. 

 In sum, we believe that our methods for marker expression measurement, cut point 

identification, and covariate selection provide informative results and hope that future studies of 

EMT markers and patient outcomes will adopt them.  By doing so, investigators would make 
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possible meaningful comparisons of results from different research groups and valid meta-

analyses. 

 Our results suggest that E-cadherin could be a useful marker to identify colorectal cancer 

patients at risk for metastatic disease, even among those who appear to have local disease 

according to lymph-node evaluation and radiologic imaging.  Clinical measurement of E-

cadherin expression in primary tumor cancer cells might increase the accuracy of stage 

diagnosis, thereby altering the treatments that some patients receive and improving their 

outcomes. 
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Table 3. Subject characteristics for overall North Carolina CanCORS and subset in whose 

primary tumors EMT markers were measured 

Characteristic 

Mean (SD) or N (%)a 

Overall NC-CanCORS 

(N=990) 

EMT Study Sample 

(N=190) 

P-value 

Age at Baseline (years) 66.3 13.2 66.6 13.1 0.8 

Sex     0.6 

     Male 488 49.3% 90 47.4%  

     Female 502 50.7% 100 52.6%  

Race     0.6 

     Non-Hispanic White 762 77.0% 150 78.9%  

     Other 228 23.0% 40 21.1%  

Tumor Stage     0.9 

     Local 437 51.1% 100 52.6%  

     Regional 311 36.4% 66 34.7%  

     Distant 107 12.5% 24 12.6%  

     Missing/Noninformative 135  0   

Tumor Location     0.07 

     Proximal 279 42.9% 82 50.9%  

     Distal 371 57.1% 79 49.1%  

     Missing/Noninformative 340  29   

Tumor Grade     0.4 

     Well/Moderately Differentiated 539 83.7% 129 81.1%  

     Poorly/Not Differentiated 105 16.3% 30 18.9%  

     Missing/Noninformative 346  31   

Neoadjuvant Chemotherapy     0.3 

     Yes 46 8.5% 8 5.7%  

     No 496 91.5% 132 94.3%  

     Missing/Noninformative 448  50   

Neoadjuvant Radiation     0.09 

     Yes 41 7.6% 5 3.6%  

     No 501 92.4% 135 96.4%  

     Missing/Noninformative 448  50   

Died Within 5 Years of Baseline 366 37.0% 62 32.6% 0.3 
aPercentages are for informative non-missing data. 
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Table 4. Average continuous EMT marker expression in tumor tissue compared to normal 

adjacent tissue 

Marker Algorithm Scale Tissue 

Type 

N Marker Expression 

Weighted Averagea Worst Coreb 

Mean SD P-value Mean SD P-value 

E-

cadherin 

Membrane+ 

Cytoplasm 

Average 

Intensity 

Tumor 188 0.84 0.22 <0.0001 0.74 0.24 <0.0001 

  (0-3) Normal 181 0.98 0.22  0.87 0.28  

Integrin 

Beta-6 

Membrane Percent 

Positive Cells 

Tumor 181 58.1 26.8 <0.0001 69.9 25.4 <0.0001 

  (0-100) Normal 177 38.5 25.6  52.1 29.2  

Snail First Nuclearc Percent 

Positive 

Nuclei 

Tumor 185 41.7 22.1 0.02 52.3 24.9 0.0004 

  (0-100) Normal 173 47.9 27.9  62.1 27.2  

Snail Second 

Nuclearc 

Percent 

Positive 

Nuclei 

Tumor 185 44.4 26.5 0.08 57.0 29.5 0.02 

  (0-100) Normal 173 49.5 27.7  64.1 28.0  

Snail Whole Cellc Percent 

Positive Cells 

Tumor 185 34.3 24.0 0.005 46.6 28.7 0.004 

  (0-100) Normal 173 41.9 26.4  55.3 28.3  
aMarker expression values assigned as weighted average of cores by tissue type (weighted by area 

analyzed for E-cadherin, number of cells for Integrin, and number of nuclei/cells for Snail). 
bMarker expression values assigned as expression by tissue type of the core with lowest expression for E-

cadherin and highest expression for Integrin and Snail. 
cSeveral different Snail scoring algorithms were developed and applied to all tissue microarrays.  See 

Section 4.2.3 (pp. 62-64) for details. 
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Table 5. Optimally-dichotomized marker expression status cross-tabulated with tumor stage and 

with risk of dying within 5 years of surgerya,b 

 E-cadherin Integrin beta-6 Snail 

 Weighted 

Average 

Worst 

Core 

Weighted 

Average 

Worst 

Core 

Weighted 

Average 

Worst 

Core 

Stage Neg. Pos. Neg. Pos. Neg. Pos. Neg. Pos. Neg. Pos. Neg. Pos. 

Local 6 93 3 96 10 82 5 87 29 69 54 44 

Regional 5 61 3 63 3 63 1 65 14 51 45 20 

Distant 0 23 0 23 1 22 0 23 1 21 13 9 

             

Mortality Risk             

Died within 5 

   Years 

7 55 3 59 6 55 0 61 17 44 43 18 

Total 11 177 6 182 14 167 6 175 44 141 112 73 

5-Year Risk of 

   Death Post- 

   Surgery (%) 

 

64 

 

31 

 

50 

 

32 

 

43 

 

33 

 

0 

 

35 

 

39 

 

31 

 

38 

 

25 

aOf 190 overall subjects in the EMT study, the number with tumor tissue marker data available 

was 188 for E-cadherin, 181 for Integrin, and 185 for Snail. 
bMarker-negative status is expression in tumor tissue below the statistically-optimal cut point 

(low expression) and marker-positive status is expression in tumor tissue at or above the 

statistically-optimal cut point (high expression).  The a priori hypotheses were that E-cadherin-

negative subjects would have worse outcomes while Integrin-positive and Snail-positive subjects 

would have worse outcomes. 

Neg.=marker-negative status, Pos.=marker-positive status 
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Table 6. Unadjusted and adjusted Cox proportional hazards models of the effect of optimally-

dichotomized marker expression status on time-to-death censored at 5 years after surgery 

(n=190)a 

Variable Weighted Averageb Worst Corec 

Unadjusted Adjustedd Unadjusted Adjustedd 

HR 95% CI HR 95% CI HR 95% CI HR 95% CI 

E-cadherine 2.84 1.29, 6.28 2.57 1.10, 6.03 1.53 0.47, 4.95 1.56 0.32, 7.63 

         

Integrin beta-6f 0.68 0.29, 1.59 0.45 0.19, 1.08 --g -- --g -- 

         

Snailf 0.83 0.48, 1.45 0.61 0.33, 1.13 0.62 0.36, 1.08 0.57 0.32, 1.02 
aPrior to dichotomization, continuous E-cadherin measured as core average intensity (0-3) and continuous 

Integrin beta-6 and Snail measured as core percent positive cells (Integrin) or nuclei (Snail) (0-100).  

Subjects with missing data for a given marker expression variable had values imputed to retain full 

sample size.  For the value of the statistically-optimal cut point for each marker expression variable, see 

Materials and Methods section. 
bMarker expression values assigned as weighted average of tumor cores (weighted by area analyzed for 

E-cadherin, number of cells for Integrin, and number of nuclei for Snail). 
cMarker expression values assigned as average intensity of the subject’s tumor core with the lowest 

average intensity for E-cadherin, or as percent positive cells/nuclei of the subject’s tumor core with the 

highest percent positive cells/nuclei for Integrin or Snail. 
dAdjusted for age (continuous), TNM stage (local/regional/distant), neoadjuvant chemotherapy (yes/no), 

and neoadjuvant radiation therapy (yes/no).  Expression status for a given marker was not adjusted for the 

other markers. 
eComparison is E-cadherin-negative (low expression) to E-cadherin-positive (high expression). 
fComparison is marker-positive (high expression) to marker-negative (low expression). 
gNot estimable due to no deaths within 5 years of surgery among those classified as Integrin-negative. 
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Table 7. Trade-offs between strength of cut-point/time-to-death association and number of 

patients whose treatments would be reassigned, by stage distribution and 5-year risk of death for 

E-cadherin weighted average statusa 

 Cut Point 0.52c Cut Point 0.60 Cut Point 0.85 

 HR 95% CI HR 95% CI HR 95% CI 

Cox Model Estimateb 2.57 1.10, 6.03 2.40 1.29, 4.49 1.75 0.99, 3.08 

 

Stage 

E-cad 

Negative 

E-cad 

Positive 

E-cad 

Negative 

E-cad 

Positive 

E-cad 

Negative 

E-cad 

Positive 

Local (n=99) 6 93 16 83 56 43 

Regional (n=66) 5 61 11 55 41 25 

Distant (n=23) 0 23 1 22 11 12 

       

Mortality Risk       

Died Within 5  

   Years (n=62) 

7 55 14 48 42 20 

Total (n=188) 11 177 28 160 108 80 

5-Year Risk of Death 

   Post-Surgery (%) 

63.6 31.1 50.0 30.0 38.9 25.0 

       

Mortality Risk  

Effect Estimatesd 

 

Estimate 

 

95% CI 

 

Estimate 

 

95% CI 

 

Estimate 

 

95% CI 

Risk Difference (%) 32.6 3.3, 61.8 20.0 0.2, 39.8 13.9 0.7, 27.1 

Risk Ratio 2.05 1.25, 3.37 1.67 1.07, 2.59 1.56 0.99, 2.43 
aContinuous E-cadherin measured as weighted average (weighted by area analyzed) of tumor core 

average intensities (0-3) prior to dichotomization.  Of 190 subjects, 2 had missing data for E-cadherin, but 

multiple imputation enabled retention of these 2 in Cox models. 
bFor effect of dichotomous E-cadherin expression (negative versus positive) on time-to-death, adjusted 

for age (continuous), TNM stage (local/regional/distant), neoadjuvant chemotherapy (yes/no), and 

neoadjuvant radiation treatments (yes/no). 
cStatistically-optimal cut point by best model fit. 
dUnadjusted comparisons of marker-negative versus marker-positive expression status. 
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Figure 11. Kaplan-Meier survival stratified by levels of dichotomous E-cadherin weighted 

average expression status 
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Figure 12. Kaplan-Meier survival stratified by levels of dichotomous E-cadherin worst core 

expression status 
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Figure 13. Kaplan-Meier survival stratified by levels of dichotomous Integrin beta-6 weighted 

average expression status 
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Figure 14. Kaplan-Meier survival stratified by levels of dichotomous Integrin beta-6 worst core 

expression status 
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Figure 15. Kaplan-Meier survival stratified by levels of dichotomous Snail weighted average 

expression status 
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Figure 16. Kaplan-Meier survival stratified by levels of dichotomous Snail worst core expression 

status 
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Figure 17. Kaplan-Meier survival jointly stratified by levels of dichotomous E-cadherin weighted 

average expression status and dichotomous Integrin beta-6 weighted average expression status 
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Figure 18. Kaplan-Meier survival jointly stratified by levels of dichotomous E-cadherin worst 

core expression status and dichotomous Integrin beta-6 worst core expression status 
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Figure 19. Kaplan-Meier survival jointly stratified by levels of dichotomous E-cadherin weighted 

average expression status and dichotomous Snail weighted average expression status 
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Figure 20. Kaplan-Meier survival jointly stratified by levels of dichotomous E-cadherin worst 

core expression status and dichotomous Snail worst core expression status 
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Figure 21. Kaplan-Meier survival jointly stratified by levels of dichotomous Integrin beta-6 

weighted average expression status and dichotomous Snail weighted average expression status 
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Figure 22. Kaplan-Meier survival jointly stratified by levels of dichotomous Integrin beta-6 

worst core expression status and dichotomous Snail worst core expression status 
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CHAPTER 5. ESTIMATING SENSITIVITY AND SPECIFICITY OF MARKERS OF 

EPITHELIAL-MESENCHYMAL TRANSITION TO EVALUATE CANCER CELL 

DETACHMENT FROM PRIMARY TUMORS: A LATENT CLASS ANALYSIS 

 

5.1. Introduction 

 Metastases are responsible for about 90% of cancer deaths (1).  An essential component 

of cancer diagnosis is accurately assessing whether cancer cells have detached from the primary 

tumor because this impacts adjuvant therapy decisions. 

 Currently, physicians use two diagnostic tests to assess cancer cell detachment: 

examination of lymph nodes near the primary tumor and radiologic imaging.  While highly 

useful, these methods do not always successfully detect metastases.  For example, roughly 25% 

of colorectal cancer patients diagnosed with local disease later experience recurrence (4).  Most 

of these recurrences are likely due to metastases that were present at the time of diagnosis but 

were too small to be detected by imaging or lymph node evaluation.  Adding a third test could 

substantially reduce the number of joint false negative results across the entire panel of tests. 

 Markers of epithelial-mesenchymal transition (EMT), a mechanism of metastasis, might 

be able to serve this role (5).  Roughly 80% of cancer is epithelial (1) and EMT involves 

epithelial cells temporarily transforming into mesenchymal cells by decreasing expression of 

epithelial markers and increasing expression of mesenchymal markers (2, 14).  EMT marker 

expression levels measured in primary tumor cancer cells could suggest whether the tumor 

contains a substantial number of cells capable of breaking off from the tumor, thereby putting the 

patient at risk for metastatic disease (5). 
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 Previous studies have shown that EMT marker levels in primary tumor cancer cells are 

associated with patient outcomes (5, 24, 29, 43, 56, 68).  These studies did not, however, 

evaluate the diagnostic accuracy of EMT markers in terms of sensitivity and specificity, which is 

important to decide whether to add them to the panel of tests of cancer cell detachment. 

 Standard calculations of sensitivity and specificity require comparing the new test to a 

gold standard (58).  However, this condition cannot be reasonably met for EMT markers because 

imaging and lymph node evaluation are unsuccessful too often to qualify as gold standard 

measures of metastatic disease.  Latent class models provide a way to estimate sensitivity and 

specificity of each item in a panel of diagnostic tests without assuming that any of the tests is a 

gold standard (61).  In this analysis, we used latent class models to estimate the sensitivity and 

specificity of EMT markers to assess cancer cell detachment from primary tumors in a cohort of 

colorectal cancer patients. 

 5.2. Methods 

 5.2.1. Study population 

 

 Subjects were 188 cancer patients enrolled in the Cancer Care Outcomes Research and 

Surveillance Consortium (CanCORS) for whom the EMT marker E-cadherin was measured in 

primary tumor specimens (76).  CanCORS was a population-based, case-only, multi-site 

prospective cohort study of lung and colorectal cancer that enrolled subjects during 2003-06 

(48).  All subjects in this analysis were colorectal cancer patients from North Carolina.  Survey 

and medical records data were collected. 

 5.2.2. Latent class models 

 Latent variable models attempt to identify subgroups within a population by postulating 

that the subgroups represent different levels of an unobserved, error-free latent variable (62).  
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The latent variable is measured indirectly by multiple observed indicator variables (also called 

manifest variables), each of which is conceived as being generated jointly by its own random 

error term and the latent variable.  Individuals’ response patterns to the indicators can be used to 

estimate the prevalence of each latent subgroup (gamma parameter or class-membership 

probability) and, within each latent subgroup, to estimate the probability of a given response to 

each indicator (rho parameter or item-response probability).  Latent class models are latent 

variable models that use categorical indicators and postulate a categorical latent variable.  An 

important practical issue in implementing any given latent class model is deciding which 

parameters to freely estimate and which, if any, to assign a fixed, a priori value. 

 Figure 10 shows our conceptual model of the relationship between cancer cell 

detachment from the primary tumor and the tests used to assess it.  Detachment was the latent 

variable, that is, the phenomenon of interest that was not observed directly.  EMT markers, 

lymph node evaluation, and imaging were the indicators. 

 5.2.3. Diagnostic tests of cancer cell detachment from primary tumors 

 Each test was treated in models as binary test-positive versus test-negative.  Test-positive 

meant evidence supporting cancer cell detachment from the primary tumor while test-negative 

meant no evidence supporting cancer cell detachment. 

 EMT 

 EMT in primary tumor cancer cells was measured using E-cadherin (76), an epithelial 

membrane protein that plays a crucial role in adhesion between adjacent epithelial cells (1, 2).  

An epithelial cancer cell undergoing EMT will downregulate E-cadherin expression, making low 

expression suggestive of increased risk for cell detachment from the tumor (2).  E-cadherin was 

measured using immunohistochemistry in tissue microarrays.  We reported previously that, when 
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E-cadherin expression was measured as a weighted average of tumor cores among these subjects, 

low expression was associated with greater risk of death within 5 years of surgery than was high 

expression (76). 

 E-cadherin was measured on a continuous average intensity scale of 0-3.  This allowed us 

to explore the impact on EMT sensitivity and specificity of setting different cut points to define 

high expression versus low expression.  For any given cut point, EMT-positive status meant low 

E-cadherin expression (below the cut point) and EMT-negative status meant high E-cadherin 

expression (at or above the cut point).  Both EMT sensitivity and specificity were freely 

estimated in all models. 

 Lymph Node Evaluation and Radiologic Imaging 

 Each latent class model had seven parameters: one class-membership and six item-

response parameters (sensitivity and specificity for each of EMT, lymph node evaluation, and 

imaging).  Freely estimating all seven parameters would have led to poor model specification 

(see Analysis section below).  In most models, we fixed (i.e. set or restricted) two of the six item-

response parameters—either the sensitivities of lymph node evaluation and imaging or the 

specificities of lymph node evaluation and imaging—while freely estimating the other four as 

well as the class-membership parameter.  This approach required observed test results for lymph 

node evaluation and imaging for freely estimated parameters as well as determination of fixed 

values for restricted parameters. 

 Observed lymph node evaluation and imaging results were not available in CanCORS.  

As an approximation, we inferred them from subject tumor stage using the rules presented in 

Table 2.  These inferred test results were used for freely estimated lymph node evaluation and 

imaging sensitivity and specificity parameters. 
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 In models where the sensitivities of lymph node evaluation and imaging were fixed, we 

assigned a value of 60% or 80% for each fixed parameter.  Nationwide clinical data suggested 

that, between lymph node evaluation and imaging, the average sensitivity of each of these two 

tests by itself is about 65% (see Discussion for details) (4, 63).  The values of 60% and 80% 

were chosen to represent bounds to assess the influence on model results of different 

combinations of assumptions about high or low sensitivity for lymph node evaluation and 

imaging.  For models in which the specificities of lymph node evaluation and imaging were 

fixed, we assigned bounds of 90% or 100% for each fixed parameter.  These specificity bounds 

reflected our assumption that false positive results for each of these tests are rare. 

 Across models, we varied the combinations of fixed values and of which lymph node 

evaluation and imaging parameters were restricted to observe how doing so impacted the EMT 

estimates.  For each EMT cut point, we also ran a model in which all seven parameters were 

freely estimated. 

 Whether freely estimated or restricted, every lymph node evaluation or imaging 

parameter represented a binary test.  For interpretation, lymph node-positive meant that cancer 

cells were found in lymph nodes near the primary tumor and lymph node-negative that no cancer 

cells were found there.  Imaging-positive meant detection of a metastasis via imaging and 

imaging-negative indicated no such detection of metastasis via imaging. 

5.2.4. Analysis 

 Every model included all three tests and estimated a 2-class solution distinguishing high 

risk from low risk for metastatic disease.  Making parameter estimates interpretable as sensitivity 

or specificity required binary tests and grouping the data into two latent classes. 
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 A properly specified latent class model has a positive number of degrees of freedom (df), 

given by df = W – P – 1, where W is the number of possible response patterns and P is the 

number of parameters estimated (62).  Three binary indicators yielded 23 = 8 possible response 

patterns.  When all class-membership and item-response parameters were freely estimated, a 2-

class model with 3 binary indicators estimated 7 parameters (1 class-membership and 6 item-

response), leaving 0 df.   

 Using fixed sensitivity or specificity values for lymph node evaluation and imaging 

reduced the number of parameters estimated in a given model, thereby giving positive degrees of 

freedom.  Fixing the values of two item-response parameters in a model yielded 2 df.  Across 

models, different combinations of fixed lymph node evaluation and imaging values were used to 

assess the impact of different assumptions about low or high accuracy of those tests on EMT 

estimates.  We also evaluated models in which all parameters were freely estimated, i.e. 0 df. 

 We have shown previously that, when E-cadherin expression is measured as a weighted 

average of tumor cores on a continuous average intensity scale of 0-3, values of 0.52, 0.60, and 

0.85 are three possibilities for selection of a clinical cut point to distinguish low-risk from high-

risk patients (76).  We ran separate models using each of these values to create the EMT 

indicator. 

 All analyses were performed using SAS 9.3 (SAS Institute, Cary, NC), with PROC LCA 

used for the latent class analyses (64).  The SAS procedure used an iterative expectation-

maximization algorithm to obtain maximum likelihood estimates for freely-estimated 

parameters. 
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5.3. Results 

 The study sample was mainly non-Hispanic whites, about evenly divided by sex, and had 

a mean age close to the national average for colorectal cancer (63) (Table 8).  Of 188 subjects, 90 

(48%) tested positive for at least one of lymph node evaluation or imaging.  This is comparable 

to the approximately 56% of colorectal cancer cases in the United States diagnosed with regional 

or distant disease (63). 

 At an EMT cut point of 0.52, the specificity of the EMT diagnostic test was over 90% 

across all variations in lymph node evaluation and imaging parameter restrictions (Table 9).  

However, the sensitivity under these conditions was never greater than 6%. 

 For an EMT cut point of 0.60, specificity was somewhat lower than at a cut point of 0.52, 

but remained greater than 80% in all variations tested (Table 10).  Sensitivity was consistently 

higher in these models than those at a cut point of 0.52, but peaked at 14%. 

 At an EMT cut point of 0.85, specificity dropped substantially from what it was at a cut 

point of 0.60, falling to about 40% across variations in parameter restrictions (Table 11).  

Sensitivity was greater at this cut point than at the others, generally around 50-60%.   

 The model at which the EMT marker could reduce the number of false local diagnoses to 

the greatest extent used a cut point of 0.85.  When lymph node evaluation and imaging 

specificity were both fixed at 90%, EMT sensitivity and specificity were estimated to be 59% 

and 44%, respectively.  Notably, though 59% is low for optimal sensitivity, the freely-estimated 

sensitivities of lymph node evaluation and imaging in this model were 97% and 26%, 

respectively. 

 For a given set of lymph node evaluation and imaging parameter restrictions, the 

estimated prevalence of the latent class at high risk for metastatic disease was very consistent 
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across EMT cut points (Tables 9-11).  The prevalence of the high risk group was low when 

lymph node evaluation and imaging sensitivities were fixed (about 16-21%) but increased 

substantially when lymph node evaluation and imaging specificities were fixed (41-53%).  For 

each EMT cut point, freely estimating all parameters (i.e. no lymph node evaluation and imaging 

parameter restrictions) produced results roughly equivalent to the worst-performing model with 

restrictions at that cut point. 

 5.4. Discussion 

 We used latent class analysis to estimate the sensitivity and specificity of EMT markers 

to evaluate cancer cell detachment from primary tumors under varying assumptions about the 

accuracy of lymph node evaluation and imaging to assess the same.  EMT outperformed the 

freely-estimated parameters of the other tests in some scenarios and EMT specificity was over 

90% in several models, while the peak sensitivity was 59%. 

 In the United States there are around 140,000 new cases of colorectal cancer annually 

(77).  Of these, about 40% (~56,000 cases) are diagnosed as having local disease and 60% 

(~84,000 cases) as having some form of metastatic disease, whether regional or distant (63).   

Among those diagnosed with local disease, roughly 25% (~14,000 cases) later experience 

recurrence and therefore likely had undetected metastases at the time of diagnosis (4).  This 

implies that about 10% of all new colorectal cancer cases each year consist of patients who have 

metastatic disease at diagnosis but who test falsely negative for both lymph node evaluation and 

imaging.  A further implication is that, of 140,000 annual incident cases, about 98,000 truly have 

metastatic disease at the time of diagnosis rather than the 84,000 currently diagnosed as such.  

Thus, among those who truly have metastatic disease, false diagnoses would account for 



 
 

103 
 

14,000/98,000=14%.  In other words, the joint false negative proportion for lymph node 

evaluation and imaging would be 14% and therefore their joint sensitivity would be 86%. 

 Since a diagnosis of local disease requires testing negative on every measure of cancer 

cell detachment, adding a third test to the panel could substantially reduce the number of these 

diagnostic failures.  If the third test has a sensitivity of 70%, and therefore a false negative 

proportion of 30%, it would cut the joint false negative proportion for the entire panel from 14% 

to 4%.  In other words, the third test would reduce the annual number of false diagnoses of local 

disease from 14,000 to a little over 4,000. 

 A necessary trade-off for this benefit is that the number of false positives would increase.  

Some patients who truly do not have metastatic disease and who test negative for both lymph 

node evaluation and imaging would test positive for EMT.  However, the clinical consequences 

of false negative and false positive diagnoses of metastatic disease must be weighed against each 

other.  False positives lead to administration of chemotherapy when it is unlikely to benefit the 

patient.  False negatives generally lead to withholding chemotherapy when the patient truly has 

metastatic disease, which could be fatal. 

 Our analysis had several important strengths.  First, we estimated EMT sensitivity and 

specificity under a variety of reasonable assumptions about the diagnostic accuracy of lymph 

node evaluation and imaging.  The empirical estimate that about 10% of all colorectal cancer 

patients jointly test falsely negative for lymph node evaluation and imaging suggests that each of 

these two tests individually has an average sensitivity of about 65%.  This is because the 

probability of testing falsely negative for lymph node evaluation and also testing falsely negative 

for imaging is, as independent events, the product of the false negative proportions of each test.   
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 To show this, assume that lymph node evaluation and imaging have the same false 

negative proportion X.  It follows that (X)(X) = 0.14 (i.e. 14%, the proportion of colorectal 

cancer patients we estimate to truly have metastatic disease at diagnosis that is not detected by 

either test), and therefore X = 0.37.  Since the sensitivity of a single test is equal to 1 – (false 

negative proportion), for each test sensitivity = 1 – 0.37 = 0.63 = 63% (58).  We used this 

conclusion to choose our values of 60% and 80% for fixed lymph node evaluation and imaging 

sensitivity parameters.  These choices set up reasonable bounds to assess the impact on estimates 

of EMT sensitivity and specificity of assuming high or low sensitivity of lymph node evaluation 

and imaging. 

 A second strength is that latent class analysis provided valid estimates of EMT sensitivity 

and specificity because it did not require the assumption that either lymph node evaluation or 

imaging constitutes a gold standard measure of cancer cell detachment from primary tumors.  

Standard calculations of sensitivity and specificity are based on a cross-tabulation between a new 

test and a gold standard.  The only tests that EMT can be compared to in this fashion are lymph 

node evaluation and imaging.  The calculation in the preceding paragraph supports the 

conclusion that neither of the conventional tests of cancer cell detachment is perfectly accurate or 

nearly so.  Therefore, standard calculations of sensitivity and specificity would not be valid.  

These quantities must be estimated using a method that does not assume that any of the tests is a 

gold standard.  Latent class analysis is precisely suited to this task (61). 

 Third, testing the impact of several different marker expression cut points to define EMT 

status allowed us to assess whether the estimates from our latent class models reflected how one 

would expect sensitivity and specificity to change as marker cut point changes.  At a cut point of 

0.52, few subjects were classified as EMT-positive, and one would expect the test to have high 
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specificity and low sensitivity.  As the cut point was raised to 0.60 and then 0.85, the proportion 

of subjects classified as EMT-positive increased, and one would expect test specificity to 

decrease and sensitivity to increase accordingly.  Our models across different cut points matched 

this pattern exactly (Tables 9-11), supporting the validity of latent class analysis as an estimation 

technique for EMT sensitivity and specificity. 

 Our analysis had several limitations.  First, our sample size was small and there was a 

slight overrepresentation of subjects diagnosed with local disease compared to the national 

average.  Second, our dataset lacked information on lymph node evaluation and imaging test 

results, leading us to infer them based on tumor stage diagnosis.  Although this was probably a 

good approximation, we cannot verify this and it is likely that our inferred test results do not 

exactly match what was observed clinically.  A third limitation was the inherently constrained 

setting of latent class estimation with three binary indicators.  Free estimation of all model 

parameters led to model saturation (i.e. 0 df), and our saturated models performed about as well 

as our worst-performing models with lymph node evaluation and imaging parameter restrictions.  

Conversely, models restricting all 4 lymph node evaluation and imaging item-response 

parameters essentially make it impossible to estimate latent classes because only EMT can vary.  

Therefore, the best compromise was to fix some, but not all, of the lymph node evaluation and 

imaging parameters in each model. 

 Future research on this topic is warranted.  Latent class analysis of EMT marker 

sensitivity and specificity should be carried out in larger datasets with information available on 

directly observed lymph node evaluation and imaging results.  In addition, Bayesian approaches 

to latent class estimation may provide more model flexibility and allow for deeper exploration of 

the latent class structure than was possible with our relatively simple models (78-80).  For 
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example, an important assumption in latent class analysis is the local independence assumption: 

within a given latent class, that the indicators are statistically independent of each other (62).  

This is likely reasonable for tests of cancer cell detachment from primary tumors because lymph 

node evaluation, imaging, and EMT would be measured at different sites (lymph nodes, distant 

sites, and primary tumor, respectively) using different technologies and evaluated by different 

personnel (radiologist and pathologist).  Bayesian analysis could allow for evaluation of this 

assumption.  In addition, Bayesian approaches could provide more informative estimates of the 

“value added” by adding a third measure to the panel of tests of cancer cell detachment.  

However, an effective Bayesian analysis would probably require a much larger sample size than 

was available in our dataset. 

 Latent class analysis provides an important strategy to obtain valid estimates of EMT 

marker sensitivity and specificity in a setting without a true gold standard.  Our results suggest 

that EMT markers could help to substantially reduce the number of cancer patients incorrectly 

diagnosed as having local disease. 
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Table 8. Subject characteristics (n=188) 

Characteristic   

   

Age (years) (Mean, SD) 67 13 

   

Sex N % 

     Male 89 47% 

     Female 99 53% 

Race   

     Non-Hispanic White 149 79% 

     Other 39 21% 

Tumor Stage   

     Local 99 53% 

     Regional 66 35% 

     Distant 23 12% 

Lymph Node Diagnostic Statusa   

     Positive 86 46% 

     Negative 102 54% 

Radiologic Imaging Diagnostic Statusa   

     Positive 23 12% 

     Negative 165 88% 

EMT Diagnostic Status, Cut Point=0.52b   

     Positive 11 6% 

     Negative 177 94% 

EMT Diagnostic Status, Cut Point=0.60b   

     Positive 28 15% 

     Negative 160 85% 

EMT Diagnostic Status, Cut Point=0.85b   

     Positive 108 57% 

     Negative 80 43% 
aInferred from tumor stage using rules given in Table 2. 
bBased on E-cadherin expression measured as a weighted average of tumor cores on a continuous 

average intensity scale of 0-3.  Low E-cadherin expression (below the cut point) is evidence of 

EMT (EMT-positive). 
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Table 9. Estimated sensitivity and specificity of EMT markers, and prevalence of high risk for metastatic 

disease, at EMT cut point of 0.52 and varying fixed values of sensitivity or specificity for other tests 

(n=188)a 

   Estimates at EMT cut point 0.52 

Fixed Lymph-Node 

Parameter 

Fixed Imaging 

Parameter 

Model 

DF 

Sensitivity Specificity Prevalence of High Risk  

for Metastatic Diseaseb 

Sensitivity  

60% 

Sensitivity  

60% 

2 0% 93% 21% 

Sensitivity  

80% 

Sensitivity  

60% 

2 0% 93% 21% 

Sensitivity  

60% 

Sensitivity  

80% 

2 0% 93% 16% 

Sensitivity  

80% 

Sensitivity  

80% 

2 0% 93% 16% 

Specificity  

90% 

Specificity  

90% 

2 6% 94% 41% 

Specificity  

100% 

Specificity  

90% 

2 6% 94% 47% 

Specificity  

90% 

Specificity  

100% 

2 5% 94% 47% 

Specificity  

100% 

Specificity  

100% 

2 6% 94% 53% 

None None 0 0% 93% 20% 
aEMT measured by immunohistochemistry as a weighted average of cancer cell E-cadherin expression in 

primary tumor cores on a continuous average intensity scale of 0-3, then dichotomized into values below 

0.52 (EMT-positive) and at or above 0.52 (EMT-negative).  Low E-cadherin expression suggests 

occurrence of EMT in cancer cells. 
bPrevalence of low-risk group for metastatic disease is (100 – prevalence of high-risk group). 

DF=degrees of freedom 
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Table 10. Estimated sensitivity and specificity of EMT markers, and prevalence of high risk for metastatic 

disease, at EMT cut point of 0.60 and varying fixed values of sensitivity or specificity for other tests 

(n=188)a 

   Estimates at EMT cut point 0.60 

Fixed Lymph-Node 

Parameter 

Fixed Imaging 

Parameter 

Model 

DF 

Sensitivity Specificity Prevalence of High Risk  

for Metastatic Diseaseb 

Sensitivity  

60% 

Sensitivity  

60% 

2 5% 82% 21% 

Sensitivity  

80% 

Sensitivity  

60% 

2 5% 82% 21% 

Sensitivity  

60% 

Sensitivity  

80% 

2 5% 83% 16% 

Sensitivity  

80% 

Sensitivity  

80% 

2 5% 83% 16% 

Specificity  

90% 

Specificity  

90% 

2 13% 84% 41% 

Specificity  

100% 

Specificity  

90% 

2 14% 84% 47% 

Specificity  

90% 

Specificity  

100% 

2 12% 83% 46% 

Specificity  

100% 

Specificity  

100% 

2 13% 84% 53% 

None None 0 5% 83% 20% 
aEMT measured by immunohistochemistry as a weighted average of cancer cell E-cadherin expression in 

primary tumor cores on a continuous average intensity scale of 0-3, then dichotomized into values below 

0.60 (EMT-positive) and at or above 0.60 (EMT-negative).  Low E-cadherin expression suggests 

occurrence of EMT in cancer cells. 
bPrevalence of low-risk group for metastatic disease is (100 – prevalence of high-risk group). 

DF=degrees of freedom 
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Table 11. Estimated sensitivity and specificity of EMT markers, and prevalence of high risk for metastatic 

disease, at EMT cut point of 0.85 and varying fixed values of sensitivity or specificity for other tests 

(n=188)a 

   Estimates at EMT cut point 0.85 

Fixed Lymph-Node 

Parameter 

Fixed Imaging 

Parameter 

Model 

DF 

Sensitivity Specificity Prevalence of High Risk  

for Metastatic Diseaseb 

Sensitivity  

60% 

Sensitivity  

60% 

2 49% 40% 21% 

Sensitivity  

80% 

Sensitivity  

60% 

2 50% 41% 21% 

Sensitivity  

60% 

Sensitivity  

80% 

2 48% 41% 16% 

Sensitivity  

80% 

Sensitivity  

80% 

2 49% 41% 16% 

Specificity  

90% 

Specificity  

90% 

2 59% 44% 41% 

Specificity  

100% 

Specificity  

90% 

2 59% 44% 47% 

Specificity  

90% 

Specificity  

100% 

2 58% 43% 47% 

Specificity  

100% 

Specificity  

100% 

2 58% 44% 53% 

None None 0 51% 41% 21% 
aEMT measured by immunohistochemistry as a weighted average of cancer cell E-cadherin expression in 

primary tumor cores on a continuous average intensity scale of 0-3, then dichotomized into values below 

0.85 (EMT-positive) and at or above 0.85 (EMT-negative).  Low E-cadherin expression suggests 

occurrence of EMT in cancer cells. 
bPrevalence of low-risk group for metastatic disease is (100 – prevalence of high-risk group). 

DF=degrees of freedom 
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CHAPTER 6. DISCUSSION 

 6.1. Summary of findings 
 

 In this study I explored the potential for EMT markers to improve CRC outcomes by 

serving as a test of cancer cell detachment from primary tumors in addition to lymph node 

evaluation and radiologic imaging.  This exploration involved three steps.  First, I reviewed the 

literature to identify the most promising EMT markers.  Second, I measured the selected markers 

in a set of CRC primary tumors from a population-based prospective cohort study and used time-

to-event analysis to estimate associations between marker expression and time from surgery to 

death.  Third, using the one marker that was associated with mortality in the second step, I used 

LCA to estimate the diagnostic accuracy of EMT while accounting for lymph node evaluation 

and imaging, but without assuming that any of the tests was a gold standard. 

 6.1.1. Associations between EMT marker expression and time-to-death 

 I decided to study the most promising marker from each of the three categories of EMT 

markers: epithelial markers, mesenchymal markers, and inducers.  Based on the literature, I 

selected E-cadherin, Integrin beta-6, and Snail, respectively.  The expression of each marker was 

measured on a continuous scale in CRC primary tumors from a population-based prospective 

cohort study.  For E-cadherin, this was average intensity ranging from 0-3.  For Integrin and 

Snail, I used the scale of percent positive cells or nuclei, respectively (range: 0-100).  In addition, 

for a given marker the expression score for each subject was assigned in two different ways: as a 

weighted average of tumor cores and as the worst tumor core, where “worst” meant lowest 

expression for E-cadherin and highest expression for Snail and Integrin.  For each of the 
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resulting six continuous marker expression variables, I examined every possible dichotomization 

of the data to identify the cut point with the best model fit in a bivariate proportional hazards 

model between dichotomous marker expression and time-to-death. 

 When marker expression was dichotomized at the continuum-specific statistically-

optimal cut point, I found for E-cadherin weighted average that, compared to high expression, 

low expression was associated with a greater hazard of dying within 5 years of surgery.  

Optimally-dichotomous expression was not associated with outcomes for any of the other marker 

expression variables, including E-cadherin worst core.  Adjusting for age, tumor stage, and 

neoadjuvant treatments did not change any of these findings. 

 To further explore how E-cadherin weighted average data might be implemented 

clinically, I compared several different cut points along this continuum that could each predict 

outcomes: the statistically-optimal cut point of about 0.52 as well as 0.60 and 0.85.  I found that, 

in moving from 0.52 to 0.85, the strength of the proportional hazards association between 

dichotomous marker expression and time-to-death attenuated but precision increased.  The same 

pattern appeared on the risk-difference and risk-ratio scales. 

 Cross-tabulating dichotomous E-cadherin weighted average expression status and tumor 

stage further complicated the picture.  The statistically-optimal cut point would lead to changes 

in treatment for only 6 of 99 subjects diagnosed with local disease and having E-cadherin 

measurements available.  The corresponding numbers for 0.60 and 0.85 were 16 and 56, 

respectively.  These results should be compared to the clinical observation that about 25% of 

CRC patients diagnosed with local disease later experience recurrence (4).  This suggests that 

about 25 of the 99 subjects diagnosed with local disease and having E-cadherin measurements 

would ideally be classified as E-cadherin-negative and therefore as EMT-positive. 



 
 

113 
 

 6.1.2. Latent class estimates of EMT sensitivity and specificity to evaluate cancer cell 

           detachment from primary tumors 
 

 I used LCA to estimate the diagnostic accuracy of EMT markers to evaluate cancer cell 

detachment from primary tumors.  Based on the finding from time-to-event analysis that only E-

cadherin weighted average was associated with outcomes, in the LCA I classified subjects as 

EMT-positive or EMT-negative based on their E-cadherin weighted average measurements.  I 

examined results when varying each of several different conditions: assumptions about the 

sensitivity or specificity of lymph node evaluation and radiologic imaging, as well as the E-

cadherin weighted average cut point used to classify subjects as EMT-positive or EMT-negative. 

 The LCA results reproduced the general patterns one would expect to see when varying 

the cut point of a continuous variable.  When the cut point was at a low value of 0.52, such that 

few subjects were classified as EMT-positive, the specificity of the marker was high (over 90%) 

but the sensitivity was low (under 10%).  As the cut point was progressively raised and the 

proportion of subjects classified as EMT-positive increased accordingly, the specificity 

decreased and sensitivity increased.  The fact that the LCA models produced results that fit the 

expected pattern of changes in sensitivity and specificity as cut point changed supported the 

validity of LCA as an estimation procedure in this setting. 

 For metastatic disease diagnosis, false negatives have more serious clinical consequences 

than false positives.  A false negative in this setting is a case that truly has metastatic disease but 

receives a negative result for every diagnostic test.  In other words, the patient would need 

chemotherapy but likely would not receive it.  A false positive would occur when the patient 

truly does not have metastatic disease but receives a positive result for at least one test.  This 

patient would not benefit much from chemotherapy but would probably receive it.  The 

consequences of a false positive would generally be that the patient would unnecessarily suffer 
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the serious side effects of chemotherapy.  In contrast, the consequences of a false negative could 

easily be fatal. 

 I estimated that there are about 14,000 cases each year in the United States of colorectal 

cancer patients with metastatic disease at the time of diagnosis who nonetheless are diagnosed 

with local disease (4, 77).  In addition, I estimated that there are about 42,000 colorectal cancer 

patients in the United States each year who are diagnosed with local disease and truly do not 

have metastatic disease (4, 63, 77).   

 The most plausible set of assumptions that I explored using LCA assumed was that, 

between lymph node evaluation and imaging, one of them has a sensitivity of 80% and the other 

a sensitivity of 60%.  Under these conditions, the best-performing EMT cut point that I 

examined—E-cadherin weighted average cut point of 0.85 on a continuous average intensity 

scale of 0-3—had an EMT sensitivity of about 50% and specificity of about 40%.  This implies 

an EMT false negative proportion of 50% and false positive proportion of 60%.   

 Combining these EMT diagnostic accuracy estimates with the population estimates for 

true and false diagnoses of local disease allows us to see the overall clinical trade-off that EMT 

markers offer per the results of my analyses.  In short, implementing EMT as a test of metastatic 

disease at an E-cadherin weighted average cut point of 0.85 could eliminate 50% of the false 

diagnoses of local disease each year (about 7,000 cases).  This gain would come at the expense 

of over-treating 60% of those who are currently accurately diagnosed with local disease (about 

25,200 cases). 

 The best-performing EMT estimates that I found involved a cut point of 0.85 and 

assumed a lymph node specificity of 90% and imaging specificity of 90%.  Under these 

conditions, EMT had a sensitivity of 59% and specificity of 44%, implying a false negative 
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proportion of 41% and false positive proportion of 56%.  These estimates translated to 

elimination of about 8,300 false diagnoses of local disease per year, but at the cost of over-

treating about 23,500 cases that are currently correctly diagnosed with local disease. 

 In sum, under the best estimates of sensitivity and specificity that I obtained, EMT 

markers presented a clinical trade-off between eliminating false negatives and creating new false 

positives that would probably not be considered a net improvement.  Under the most plausible 

assumptions, even the best-performing EMT cut point produced sensitivity and specificity 

estimates that would not represent a net improvement. 

 6.2. Strengths and limitations 

 The project had a number of important strengths.  First, it used a population-based 

sample, meaning it was based on a well-defined source population and therefore should be 

regarded as having greater external validity than would a hospital-based sample (75).  Although 

we were only able to measure EMT markers in primary tumor specimens for roughly 20% of NC 

CanCORS subjects, the EMT study sample seemed to closely resemble overall NC CanCORS, 

preserving the interpretation of the EMT study sample as population-based. 

 A second strength is that we measured continuous marker expression data using 

automated procedures.  Continuous data enabled a more detailed examination of clinically-

informative cut points and exploration of how marker expression varied with time-to-death than 

would have been possible with ordinal data, such as that typically produced by manual scoring.  

In addition, we assigned continuous expression scores in two ways: as a weighted average of 

cores by tissue type (normal or tumor) and as the “worst” core by tissue type.  This allowed us to 

assess the impact of marker expression heterogeneity throughout a tumor.  As will be discussed 
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later, this assessment of heterogeneity was severely limited by the lack of consistent, informative 

sampling of primary tumors. 

 Third, we assessed the reliability of our automated annotations of tissue specimens by 

comparing them to gold-standard manual annotations.  We found correlations of about 90% 

between the automated scores produced by automated annotation and the automated scores 

produced by manual annotation.  This quality-control step supported the accuracy of our marker 

expression measurements. 

 Fourth, we developed an automated procedure to examine, for each marker expression 

continuum, every possible cut point and its relationship with time to patient death.  In addition to 

exhaustiveness, we also identified an objective criterion that could be used to find a clinically-

informative cut point based on best model fit.  This approach allowed us to fully exploit the 

richness of the continuous data that we measured.  It also made it possible to consider the impact 

of choosing clinical cut points that differed from the statistically-optimal cut point.  For example, 

we found for E-cadherin weighted average that the statistically-optimal cut point would lead to a 

number of patients whose treatments would be reassigned that was probably too low, given the 

proportion of subjects diagnosed with local disease who later experience recurrence.  However, 

by exploring multiple cut points, we identified a cut point with a point estimate only a little 

weaker than the one at the statistically-optimal cut point, but with better precision and a more 

appropriate number of patients whose treatments would be reassigned.  In short, while the 

statistically-optimal cut point might not be the clinically-optimal cut point, our procedures 

towards data collection and analysis provided maximum flexibility to evaluate such trade-offs. 

 Finally, I estimated EMT marker sensitivity and specificity using LCA to avoid the 

assumption that any diagnostic test of metastatic disease constituted a gold standard, which was 
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likely not a valid assumption.  Diagnostic accuracy as expressed by sensitivity and specificity is 

an important measure of the clinical benefit of any biomarker.  In the setting of metastatic 

disease diagnosis, no gold standard exists to which EMT markers can be compared using 

standard calculations.  A true gold standard would have both a sensitivity and specificity of 

100%.  While lymph node evaluation and imaging could well have specificities close to 100%, I 

estimated that the average sensitivity for each of them is only around 65%.  Using LCA allowed 

me to obtain valid accuracy estimates for EMT while still taking into account the accuracy of 

lymph node evaluation and imaging. 

 The study had several limitations.  First was the small sample size.  This led to poor 

precision even among the statistically-significant estimates.  The low power of the full sample 

size also prevented me from dividing the dataset into training and validation sets.  It also 

impeded a richer consideration of different E-cadherin weighted average cut points to better 

explore which one might be best for clinical purposes.  Aside from examining a cut point of 

about 0.52 because it had the best model fit, I examined the alternative cut points of 0.60 and 

0.85 because they either remained statistically significant (0.60) or were very nearly so (0.85).  

Most cut points in the range of 0.50 to 1.05 had strong hazard ratio point estimates between 1.60 

and 2.60.  However, the lower 95% confidence limit would often dip to around 0.85 or 0.90.  

Though this was almost certainly due to the small sample size rather than a lack of effect, such 

imprecision made it difficult to consider cut points such as 0.70 or 0.90 more deeply. 

 Second, the goat antibodies that we used for Snail and Integrin beta-6 could have been 

rendered ineffective by nonspecific staining.  My analyses suggested that Snail and Integrin 

expression levels simply had no effect on patient time-to-death.  However, this could have been 

due to poor performance of the particular antibodies that were used rather than a reflection of a 
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genuine lack of association between these markers and patient outcomes.  We were not able to 

examine this possibility but it is a potentially serious flaw in these marker measurements. 

 Third, some amount of selection bias was potentially present in the sample because not 

all eligible CRC cases enrolled in NC CanCORS.  During the enrollment period, there were 

1,899 nominally-eligible and 1,506 fully-eligible incident CRC cases in the study catchment area 

(Figure 3).  Of these, 990 patients enrolled in the study.  Thus, NC CanCORS included 66% of 

fully-eligible cases and 52% of nominally-eligible cases.  Any systematic differences between 

those who did not enroll and those who did would bias our results away from the true estimates 

for the source population.  For example, 85 eligible cases could not give consent to enroll and 

had no proxy to consent for them.  These cases were probably sicker at the time of diagnosis than 

those who enrolled.  Their inability to consent means we have no study data for them, including 

tumor specimens.  Exclusion of these cases meant that NC CanCORS, and therefore the EMT 

study sample, differ at least somewhat from the targeted source population. 

 Fourth, the dataset had a large amount of missing data.  This problem arose in two 

different ways: as substantial proportions of missing data on variables that were collected, and 

also lack of variables that were relevant to the analysis.  For the first issue, variables for 

neoadjuvant treatments—which were part of our multivariate Cox modeling adjustment set—had 

missing or non-informative values for 50 of 190 subjects (26%) in the EMT study sample.  The 

time-to-event outcome variable of time from surgery until all-cause mortality was missing for 27 

of 190 subjects (14%).  Missing values for these variables had to be imputed using multiple 

imputation before running proportional hazards models.  Other variables relevant to 

characterizing cancer patients also had substantial proportions of missing or non-informative 

data, such as tumor grade (16%) and tumor location (15%).  Although multiple imputation is as 
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robust a method for handling missing data as is available, and though our effect estimates were 

stable in sensitivity analyses comparing complete cases to all cases with imputed values for 

missing data, imputation is still inferior to complete information on all subjects. 

 The problem of crucial variables not being available at all was manifest in the latent class 

analysis.  Observed test results were needed for all three tests: lymph node evaluation, radiologic 

imaging, and EMT.  Results for the first two were not part of the CanCORS medical records data 

collection.  Therefore, results for these two variables were inferred from tumor stage, which 

likely did not exactly match what was observed clinically. 

 Fifth, in the latent class analysis, tests of metastatic disease presented a highly 

constrained setting that complicated estimation of meaningful results.  The reason is that the 

flexibility of latent class models varies directly with the number of possible response patterns.  In 

a setting with three binary tests, there are only 8 possible response patterns.  Since free 

estimation of all parameter yields a poorly-performing model with 0 df, better model 

specification and performance were achieved when fixing the values of two parameters (of 7 

possible) per model.  In some models with restrictions these parameters were the sensitivities of 

lymph node evaluation and imaging; in others they were the specificities of these two tests.  

While reasonable fixed values were assigned, clearly our results are limited to the sets of 

assumptions implemented in the models that were run.  Had we used different combinations of 

fixed values, we would have observed different results. 

 The sixth and final limitation of the study was probably the most important.  EMT marker 

expression likely is not homogeneous throughout the cancer cells in a primary tumor.  Rather, 

certain portions of the tumor are probably much more likely to have cancer cells likely to 

undergo EMT compared to other parts of the tumor, with the invasive front thought to be the 
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chief source of transitioning cells (81).  Ideally, every primary tumor in the study would have 

been sampled in an informative, consistent manner, such as systematically sampling the invasive 

front, tumor center, and an edge of the tumor away from the invasive front (5).  This would have 

enabled us to estimate, say, not just the association between E-cadherin weighted average 

expression and outcomes, but between invasive front E-cadherin weighted average expression 

and outcomes.  Separately, we could also have estimated the association between tumor center E-

cadherin weighted average and outcomes.  This would have allowed us to assess marker 

expression heterogeneity most directly. 

 However, informative tumor sampling was not carried out in CanCORS.  This meant that 

we were looking at some unknown mixture of invasive front samples, tumor center samples, and 

samples from other parts of the tumors.  The most probable impact of this problem would have 

been to attenuate our effect estimates compared to what they would be if we only had invasive 

front expression.  I would expect marker expression from parts of the tumor other than the 

invasive front to have a weaker association with outcomes than what would be seen with 

invasive front expression.  A further implication is that we could not evaluate tumor expression 

heterogeneity.  This could explain why we saw no effect of E-cadherin worst core expression on 

outcomes but did see a relationship for E-cadherin weighted average expression.  “Worst core” 

may not mean much if the tumors are not sampled in an informative way.  The weighted average 

at least had the virtue of being more representative of marker expression for the overall tumor 

because it generally accounted for more cells than did the worst core. 
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 6.3. Public health implications and future directions 

 The potential clinical and public health benefit of EMT markers is as an additional 

diagnostic test of metastatic disease to complement conventional tests.  Specifically, the markers 

could identify as high risk a substantial number of patients who truly have metastatic disease at 

diagnosis but that test negative according to lymph node evaluation and imaging.  This would 

enable these patients to receive more appropriate treatments than they would otherwise. 

 I found that E-cadherin measured as a weighted average of tumor cores was associated 

with time from surgery to patient death.  However, the picture was complicated when I estimated 

the diagnostic accuracy of E-cadherin weighted average as marker sensitivity and specificity.  I 

examined a variety of combinations of E-cadherin cut point and assumptions about the 

diagnostic accuracy of lymph node evaluation and imaging.  I did not find E-cadherin accuracy 

estimates that simultaneously resulted from plausible assumptions and provided an acceptable 

trade-off between the number of false negatives that would be eliminated and the number of new 

false positives that would result. 

 These mixed results and the strengths and limitations of the study suggest important 

considerations for future work on EMT markers and patient outcomes.  First, much larger sample 

sizes are needed.  Specifically, sample sizes must be big enough that the sample can be divided 

into training and validation sets, each of which having much better precision than the sample 

used in the present study. 

 Second, informative tumor sampling is essential.  I recommend that every primary tumor 

be sampled for at least two cores from each of the invasive front, tumor center, and an edge of 

the tumor away from the invasive front.  Cores from different parts of the tumor should not be 
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averaged together.  Different analyses should be run using marker expression data from each of 

the various tumor portions separately. 

 Third, future studies should collect data on all-cause mortality, cancer-specific mortality, 

and time to recurrence.  This would enable comparison between different time-to-event analyses 

using each of the three outcomes to assess whether this makes a difference.  In our study, we 

only had all-cause mortality available and therefore could not compare the results to what would 

have been obtained with cancer-specific mortality or time to recurrence as the outcome. 

 Fourth, future latent class estimates of EMT marker sensitivity and specificity should be 

based on direct observations of lymph node evaluation and imaging test results, not inferred from 

tumor stage or other information. 

 Finally, latent class analyses to estimate EMT marker diagnostic accuracy should be 

carried out within a Bayesian framework.  This would allow for more informative estimates and 

greater flexibility in testing assumptions than was possible with our simple frequentist models.  

An effective Bayesian analysis would almost certainly require a substantially greater sample size 

than was available in the present work. 

 In this study we have developed numerous ideas about how best to measure EMT 

markers in primary tumors and analyze the data to provide clinically-informative estimates.  In 

turn, these estimates can be used to decide whether and how to use the markers in clinic.  Though 

we lacked the resources to implement all of our ideas, we hope that future studies will be able to 

do so and thereby realize our intention in undertaking this work to improve cancer outcomes. 
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APPENDIX A. SEARCH TERMS FOR SYSTEMATIC LITERATURE REVIEW OF 

EMT MARKERS AND OUTCOMES 

 Below is the search we ran in PubMed.  Search terms were reformatted and run in 

EMBASE via Elsevier and BIOSIS via Thomson Reuters Web of Science. 

(epithelial mesenchymal[tw] OR epithelial to mesenchymal[tw] OR emt[tw] OR epithelium 

mesenchyme[tw]) AND (tumor markers, biological[mesh] OR tumor marker*[tw] OR twist*[tw] 

OR e-cadherin[tw] OR ecadherin[tw] OR n-cadherin[tw] OR ncadherin[tw] OR vimentin*[tw] OR 

fibronectin*[tw] OR zeb1[tw] OR zeb 1[tw] OR zeb2[tw] OR zeb 2[tw] OR Cytokeratin*[tw] OR 

snail[tw] OR slug[tw] OR beta catenin[tw] OR integrin*[tw] OR microRNA*[tw] OR micro 

RNA*[tw] OR miRNA*[tw] OR TGF-beta*[tw] OR TGFbeta*[tw] OR TGFB*[tw] OR transforming 

growth factor beta*[tw]) AND (mortality[mesh] OR mortality[subheading] OR mortalit*[tw] OR 

prognosis[mesh] OR prognosis[tw] OR prognost*[tw] OR surviv*[tw] OR hazard[tw] OR rate[tw] 

OR risk[tw] OR ratio[tw] OR analys*[tw] OR analyz*[tw]) AND ("Colorectal Neoplasms"[Mesh] 

OR (tumor[tw] OR tumors[tw] OR tumour*[tw] OR cancer[tw] OR cancers[tw] OR carcinoma*[tw] 

OR adenoma*[tw] OR adenocarcinoma*[tw] OR polyp[tw] OR polyps[tw]) AND (colorectal[tw] 

OR colonic[tw] OR rectal[tw] OR colon[tw] OR rectum[tw] OR anal[tw] OR anus[tw] OR large 

bowel[tw])) 

  

 The search consisted of four groups of terms: EMT, tumor markers, outcomes, and 

colorectal cancer.  To be included, an item had to contain at least one term from each of the 

groups.  The tumor-marker group was designed to capture any marker using the generalized 

“tumor markers, biological” MeSH term and “tumor marker*” text-word term.  Particular 

markers were specified as a “safety net” for markers prominent in the EMT literature but did not 

exclude other markers.  The search can be modified from colorectal cancer to other kinds of 

cancer by replacing the colon- and rectum-specific terms in the last group with analogous terms 

for other tumor sites. 
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APPENDIX B. MARKER CUT POINT OPTIMIZATION MACRO: SAS CODE  

AND DETAILS 
 

 B.1. Introduction 

 At the end of this supplement we present the SAS code for the macro (“opt”) used to find 

the cut point for a continuous marker expression variable that yields the best model fit for a Cox 

regression of the association between the dichotomized marker expression variable and time 

from surgery to patient death. 

 For anyone who wishes to use the macro, we describe the features of the code that can be 

adapted to the investigator’s data and desire to control the output.  For ease of reference, every 

fifth line of code has been numbered.  Skipped lines and annotations do not count in the line 

numberings.  The code was written using SAS version 9.3 (SAS Institute, Cary, NC). 

 B.2. Features of the code 

 The macro input is a dataset with one observation per subject and containing the 

following information: continuous marker expression variables, length of time from surgery to 

patient death, and any censoring variable to be used in Cox proportional hazards modeling.  In 

our example, the input dataset is called “markercore7” and is read-in in line 3. 

 For any continuous marker expression variable, the macro orders the expression values of 

all subjects from least to greatest, identifying the observed range of values.  For a given marker 

expression value, the program dichotomizes the variable at that value, thereby establishing 

distinct marker-positive and marker-negative groups as defined by the particular cut point. 

 The dichotomized marker expression variable is fit as the only independent variable in a 

Cox proportional hazards model of time from surgery to death (PROC PHREG in lines 41-45).  

In our example, TTE5 is the time-to-event variable, with administrative censoring at 5 years.  
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CENSOR5 is an indicator of whether the subject was censored at 5 years (0=not censored, 

1=censored).  The Cox model produces a fit statistic for the current iteration of the program. 

 The macro repeats this process for every continuous expression value in the observed 

data.  The dichotomous marker expression variable is named “cut.”  The macro output is a list of 

expression values and corresponding model fit statistics when marker expression is dichotomized 

at that particular expression value.  The list is ordered from lowest fit statistic (best fit) to highest 

fit statistic (worst fit).  See Section 3 below for an example. 

 Investigators using the macro may wish to tailor the output at several points.  First, the 

investigator can control what kind of model fit statistics are produced by setting the value of 

“_n_” in line 49.  Setting the value to 1 requests -2 log likelihood statistics, a value of 2 requests 

AIC statistics, and 3 requests BIC statistics.  We chose to work with BIC statistics and so used a 

value of 3, as well as naming the fit statistic output variable “bic.” 

 Second, the macro incorporates a “switch” variable that can be set to 0 or 1.  Setting 

switch=0 produces a complete list of all expression values and corresponding model fit statistics, 

ordered from lowest to highest fit statistics.  Switch=1 restricts the output to the lowest model fit 

statistic and its corresponding expression value. 

 The final line of the code calls the macro for a particular continuous marker expression 

variable: “%opt(EAIWAV_T,0);” (line 85).  The items in parentheses are particular values of the 

general form (continuous marker expression variable, switch variable).  Our example expression 

variable is EAIWAV_T, which stands for “continuous E-cadherin expression measured on the 

average intensity scale, values assigned as weighted averages of cores, for tumor cores.”  We 

request that the program show the full macro output for this variable and so have set switch=0. 
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B.3. Sample macro output 

 Below is the first 10 rows of output for marker expression variable EAIWAV_T with 

BIC model fit statistics.  Since we had 190 subjects in our dataset, the actual list of output results 

has as many rows as the number of subjects, minus ties for continuous expression values.  These 

first 10 results are the 10 lowest (best-fitting) BIC values for this expression continuum in our 

study.  E-cadherin was measured on a continuous average intensity scale ranging from 0 to 3. 

Result for EAIWAV_T 

 

cut bic 

0.51537 624.441 

0.56128 624.976 

0.50443 625.234 

0.47189 625.410 

0.52104 625.965 

0.56590 626.022 

0.47018 626.048 

0.58048 626.208 

0.82207 626.332 

1.55779 626.346 

 

 The top result sets the cut point at an expression value of 0.51537 (what we refer to in the 

main text as “about 0.52”) and has the best fit of all bivariate associations between dichotomous 

marker expression status and time-to-death in our observed data.  We thus refer to 0.51537 as the 

statistically-optimal cut point for E-cadherin weighted average.  A dichotomous 

positive/negative status variable was created for E-cadherin weighted average using this cut 

point.  We used this dichotomous variable in the E-cadherin weighted average Cox models 

presented in Tables 5 and 6. 
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 B.4. Comparison of optimization macro to receiver operating characteristic (ROC)  

         curves 

 

 Our approach is an alternative to ROC curves.  Both methods can be used to select a cut 

point along a continuum of marker expression values based on a criterion that relates marker 

expression to patient outcomes.  The methods differ in two important respects.  

 First, the form of subject outcomes is different.  ROC curves use a binary outcome of 

whether a subject died (yes/no) while our approach uses continuous time-to-death.  It matters 

whether a patient died 5 months or 50 months after surgery.  ROC curves do not account for such 

distinctions whereas our approach does.   

 Second, the criterion used to identify a cut point differs between the methods.  In ROC 

curves, the cut point selected is typically the one corresponding to the most upper-left-hand point 

on a plot of sensitivity versus (1 – specificity) (i.e. true positive rate versus false positive rate).  

In our approach, the statistically-optimal cut point is the one yielding the best model fit in a 

bivariate proportional hazards model of dichotomous marker expression and continuous time-to-

death. 

 This difference between cut point selection criteria implies a difference in interpretation 

between the two methods.  Being based on measures of sensitivity and specificity, the cut point 

selected by an ROC curve is usually interpreted as the one that should be implemented clinically.  

However, selecting the upper-left-hand corner of the ROC curve implies that false positives and 

false negatives have clinical consequences of roughly equal importance, which is rarely true.  In 

contrast, the optimal cut point in our approach is a statistical measure of the largest difference in 

the observed data between hazard functions for marker-positive and marker-negative subjects.  

Thus, the direct application of our method is to determine whether an association exists between 

marker expression and time-to-death.  The statistically-optimal cut point might or might not be 
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judged to be best for clinical use, but that determination requires consideration of additional 

information besides model fit alone. 

 B.5. SAS code for marker cut point optimization macro 

%macro opt(var,switch); 

/* no missing */ 

  data _internal_; 

    set markercore7; 

    if &var^=.; 

  run;                                                        /* line 5 */ 

/* values of &VAR ordered */ 

  proc freq data=_internal_ noprint; 

    tables &var/out=_table_(keep=&var); 

  run; 

/* number unique values of &VAR to &NN */ 

  data _null_; 

    set _table_ end=end;                                      /* line 10 */ 

    if end then do; 

      nn=put(_n_,8.); 

   call symput("nn",nn); 

    end; 

  run;                                                        /* line 15 */ 

/* initialize the output data set to _NULL_ */ 

  data _rsq_; 

    set _null_; 

  run; 

  %do i=1 %to &nn; 

/* get the present cut point */ 

    data _cut_;                                               /* line 20 */ 

   set _table_; 

   rename &var=cut; 

   if _n_=&i then do; 

     xx=put(&var,25.10); 

  call symput("cut",xx);                            /* line 25 */ 

  output; 

   end; 

 run; 

/* merge and assign to groups */ 

 data _use_; 

   if _n_=1 then set _cut_;                              /* line 30 */ 

   set _internal_; 

   group=(&var<=cut); 

   x1=group*&var; 

   x0=(1-group)*&var; 

 run;                                                    /* line 35 */ 

 proc datasets; 

   delete _cut_; 

 run; 

 quit; 

/* model */ 

 ods listing close;                                      /* line 40 */ 

 proc phreg data=_use_; 

   model TTE5*CENSOR5(1)=x1; 
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   ods output fitstatistics=_fit_(keep=withcovariates); 

 run; 

 quit;                                                   /* line 45 */ 

 ods listing; 

    data _fit_; 

      set _fit_; 

      if _n_=3; 

      rename withcovariates=rsquare;                          /* line 50 */ 

    run; 

 data _rsq_; 

   set _rsq_ _fit_(in=in); 

   keep cut bic; 

   if in then do;                                        /* line 55 */ 

     cut=&cut; 

  bic=rsquare; 

   end; 

 run; 

 proc datasets;                                          /* line 60 */ 

   delete _use_ _fit_; 

 run; 

 quit; 

  %end; 

  proc datasets;                                              /* line 65 */ 

    delete _table_ _internal_; 

  run; 

  quit; 

  proc sort data=_rsq_ out=_rsq_; 

    by bic;                                                   /* line 70 */ 

  run; 

  title "Result for %upcase(&var)"; 

  proc print noobs data=_rsq_ 

  %if &switch=1 %then %do; 

    (obs=1)                                                   /* line 75 */ 

  %end; 

  ; 

  run; 

  title; 

  proc datasets;                                              /* line 80 */ 

    delete _rsq_; 

  run; 

  quit; 

%mend; 

 

/* call macro for each continuous expression variable */ 

 

%opt(EAIWAV_T,0);                                             /* line 85 */ 
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APPENDIX C. LATENT CLASS ANALYSIS: SAS CODE AND DETAILS 

 Below is sample code for one of the latent class models that I ran.  Running a model with 

parameter restrictions using PROC LCA in SAS 9.3 required three steps.   

 First, I created a dataset with starting values for each parameter (lca_start_85_2).  Since I 

modeled 2-class solutions for three binary indicators—EMT, lymph node evaluation, and 

radiologic imaging—each model had seven parameters: 1 gamma (class-membership 

probability) and 6 rho (item-response probabilities, specifically sensitivity and specificity for 

each of the three indicators).  In the example, I used EMT status defined as E-cadherin weighted 

average expression dichotomized at a cut point of 0.85 on a continuous average intensity scale of 

0-3 (EMT85).  The gamma parameter was set to “random” start values of 0.5 for each of the two 

classes.  Class 1 was the “healthy” class, that is, those who tested negative for a given indicator 

and corresponded to those at low risk for metastatic disease.  Therefore, it was the group in 

whom we obtained estimates for specificity.  Class 2 was the “sick” class, that is, those who 

tested positive for a given indicator and corresponded to those at high risk for metastatic disease.  

Sensitivity was estimated among Class 2. 

 The second step was to create a dataset that designated which parameters would be 

restricted (i.e. given fixed values and not estimated) and which would be freely estimated 

(lca_restr_85_2).  In the example, the fixed parameters were lymph node (LN3) sensitivity of 0.8 

and radiologic imaging (RI) sensitivity of 0.6.  The rest were freely estimated.  Fixed parameters 

were designated with a 0 and freely estimated parameters with a 1.  However, PROC LCA 

required that restricted parameters be designated with a 0 in only one of the two classes.  

Therefore, each fixed parameter is given a value of 0 for one of the two classes and a value of 1 

for the other class. 
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 The third step is to run the analysis using PROC LCA and incorporating the start-value 

and restriction datasets set up in the first two steps.  The RHO PRIOR statement is used to ensure 

smooth model estimation in the event that any of the estimates would have values of 0 or 1, 

making it difficult for the algorithm to compute an overall solution and appropriate standard 

errors. 

/* set up parameter start values */ 

 

DATA lca_start_85_2; 

INPUT param $ group variable $ respcat estlc1 estlc2; 

DATALINES; 

 GAMMA 1 . . 0.5 0.5 

 BETA  1 . . 0.0 0.0 

 RHO  1 LN3 1 0.6 0.2 

 RHO  1 RI 1 0.6 0.4 

 RHO  1 EMT85 1 0.7 0.3 

 RHO  2 LN3 2 0.4 0.8 

 RHO  2 RI 2 0.4   0.6 

 RHO  2 EMT85 2 0.3 0.7 

 ; 

RUN; 

 

 

/* assign parameters as restricted or freely estimated */ 

 

DATA lca_restr_85_2; 

INPUT param $ group variable $ respcat estlc1 estlc2; 

DATALINES; 

 GAMMA 1 . . 1 1 

 BETA  1 . . 1 1 

 RHO  1 LN3 1 1 0 

 RHO  1 RI 1 1 0 

 RHO  1 EMT85 1 1 1 

 RHO  2 LN3 2 1 1 

 RHO  2 RI 2 1 1 

 RHO  2 EMT85 2 1 1 

 ; 

RUN; 

 

/* run latent class model using designated start values and restrictions */ 

 

PROC LCA data=lca OUTEST=lca_out_85_2 START=lca_start_85_2 

RESTRICT=lca_restr_85_2; 

 TITLE1 "EMT85 Model 2: LN fixed Se 0.80, RI fixed Se 0.60"; 

 NCLASS 2; 

 ITEMS LN3 RI EMT85; 

 CATEGORIES 2 2 2; 

 MAXITER 5000; 

 CRITERION 0.000001; 

 RHO PRIOR=1; 

RUN;  
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