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ABSTRACT

Daniel Serrano: Error of Estimation and Sample Size in the Linear Mixed Model
(Under the direction of Patrick Curran)

The linear mixed model is increasingly used in psychological applications. Whereas the

model was once only applied rarely, because designs that would require the model were

either avoided, or analyzed improperly, the model has found such favor in psychology

that study designs are being contrived so as to allow use of the model. A potential com-

plication of this trend is the intersection of the small sample sizes routine in psychological

applications and the potential sensitivity of the model to small sample sizes. In truth,

little is known about the small sample properties of the linear mixed model (Demidenko,

2004). Over the past three decades a handful of articles have attempted to understand

the finite sample properties of linear mixed model estimators. Each of these studies has

contributed to our understanding of the behavior of point estimation in the linear mixed

model. A limitation of these preceding studies has been:

1. The simulation of balanced data, which rarely occurs in psychological applications

2. The use of simple models, which are also rarely used in psychological applications.

In this study both of these limitations are addressed. Outcomes of interest include

model convergence rates, point estimate bias and point estimate root mean squared

error (RMSE). Findings indicate that high rates of non-convergence are observed under

unbalanced data when both few independent sampling units (ISUs) are sampled and

few observations are sampled per ISU. Fixed effect point estimates are nearly unbiased

in all sample sizes. Consistent with theory (Demidenko, 2004), for some (co)variance
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parameters, when few ISUs are sampled, no matter how many observations are sampled

per ISU, problematic bias remains. Complex models exhibit greater bias than simpler

models. (Co)variance parameter estimates exhibit more bias when population values are

small than when they are large. When population (co)variance parameters generating

values are small, RMSE is smaller than when population values are large. Consistent with

theory and previous studies, full maximum likelihood (FML) estimates are more biased

than restricted maximum likelihood (REML) estimates. I conclude with implications for

the use of these models in applied research.
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CHAPTER 1

Introduction

The linear mixed model (Harville, 1977; Laird & Ware, 1982; Raudenbush & Bryk,

2002; Demidenko, 2004) is a flexible and powerful tool for modelling dependent data.

Whether independent sampling units (ISUs) are clusters in a sampling design or sub-

jects in a repeated measures design, the model elegantly accommodates the complexities

unique to dependent data in ways classical methods such as analysis of variance (ANOVA)

and regression cannot. The great advantage of the linear mixed model (LMM) over clas-

sical methods is that the LMM estimates sample averaged parameters, known as fixed

effects, as well as both ISU-specific and observation-specific disturbance terms, known as

random effects. The inability of classical methods to estimate ISU specific disturbance

terms when analyzing dependent data often results in negatively biased standard errors

(SEs) and biased test statistics (Scott & Holt, 1982).

In contrast to classical methods, the linear mixed model (LMM) provides standard

errors (SEs) corrected for the dependence in the data. The model easily accommodates a

wide array of covariance structures (Keselman, Algina, Kowalchuck, & Wolfinger, 1998;

Wolfinger, 1993, 1996), as compared to classical methods which are limited to either

homogeneous or compound symmetric covariance structures (Muller & Stewart, 2006).

Moreover, missing and unbalanced data, which in classical methods require either case

deletion or complex methods of estimation (Henderson, 1953), provide little difficulty

for LMM estimation (Muller & Stewart, 2006). However, the model is not without its

limitations. Each of the above mentioned benefits comes at the cost of model assumed



asymptotic sample size (Demidenko, 2004; Muller & Stewart, 2006). Consequences of

violating the asymptotic sample size requirement include imprecision of SEs (Demidenko,

2004; Kackar & Harville, 1984), imprecision of the degrees of freedom estimator (Kackar

& Harville, 1984; Kenward & Roger, 1997), and consequently, inexact small sample

inference (Muller & Stewart, 2006). In addition, certain estimators of the LMM are

not guaranteed to exist under certain sample size conditions (Demidenko, 2004). Yet

this assumption is difficult to interpret in the LMM, for the definition of sample size is

more ambiguous in the LMM than it is in classical methods. Nor is it clear exactly how

violations of this assumption impact parameter estimation.

There are two components in dependent data which constitute sample size: ISUs

and observations sampled within ISUs. It is therefore not easy to intuit to what exactly

an asymptotic sample size requirement applies: ISUs, observations, or both. Nor is

it clear whether a general sample size requirement makes sense: Might ISUs be more

important than observations or vice versa? In fact, Demidenko (2004) proves that ISUs

play a larger role than number of observations in achieving asymptotic properties of

variance component estimators. Preliminary empirical work is consistent with the work of

Demidenko (2004), indicating that estimation error of variance components is minimized

when the number of ISUs is maximized (Bassiri, 1988; Mok, 1995). This is logical, given

that common estimators of variance components depend on the number of ISUs N .

Sample size also plays a role in inference in the LMM, particularly for fixed effects.

While fixed effects tend to be quite robust, mis-specification or estimation error in the

covariance matrix of random effects can result in bias of fixed effect standard errors

(Kenward & Roger, 1997). This is because SEs of the fixed effects are computed as a

function of the estimated covariance matrix of random effects. In small samples, the

precision of the covariance matrix of random effects is compromised, which results in

misspecified SEs of the fixed effects (Kenward & Roger, 1997). Thus sample size is a

vexing problem that permeates both estimation and inference of the linear mixed model.
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Given the seeming importance of this issue it is surprising that so little is known and so

little has been done to elucidate the small sample properties of the LMM. While some

attention has been paid to small sample inferential properties of the LMM (Harville &

Jeske, 1992; Kackar & Harville, 1984; Kenward & Roger, 1997; Prasad & Rao, 1990),

little is known about small-sample estimation (Demidenko, 2004).

In this thesis I seek to elucidate the finite sample behavior of linear mixed model

estimators. Particular attention is paid to the bias and efficiency of point estimates

across a range of ISU and observation sizes. Importantly, the issue is addressed in a

sequence of models that vary in complexity of their fixed and random effects structures.

Examining a sequence of models permits the generalization of findings to a broader class

of modelling conditions. Selecting model types and sample sizes commonly encountered

in social science research provides particular guidance for applied researchers in this field.

I begin with a formal explication of the model and theory underlying estimation.

A review of applied articles in which empirical data sets with few data points were

analyzed with the LMM demonstrates the increasing use of the LMM by psychologists

in cases where model assumptions about sample size may be violated. In an attempt

to understand the trend, attention is paid to recommendations by methodologists which

have encouraged this practice. I next review prior simulation work investigating the role

of sample size in parameter estimation. I then provide an overview of the limitations of

prior simulation work in order to motivate the design of my study.

1.1 Theoretical Background

The linear mixed model equations are usually written for observation i in ISUj (for

example, the reduced form equation of Raudenbush & Bryk, 2002). However, expressing

the model through the matrix equations for ISUj clarifies the model implied distribution

of yj . As most readers are familiar with the model for obsij , I begin by presenting the

reduced form equation for a two predictor model, and discuss how this model generalizes

directly to the vector model for ISUj. The linear mixed model for obsij is written in
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scalar form as

yij = γ00 + γ10x1ij + γ20x2ij + u0j + u1jz1ij + u2jz2ij + eij (1.1)

where the γ are fixed effect parameters, the u parameters are unobservable random effects,

and eij is an observation specific disturbance term. There are three quantities assumed

fixed and known, the outcome yij, the fixed effect predictors xij , and the random effect

predictors zij . A distinction is maintained between fixed and random effect predictors

in order to allow for random effects without fixed effects and vice versa in the model for

ISUj. Extending this model to the model for ISUj results in expanding all parametric

components to vectors and observed quantities, except the outcome, to matrices. Con-

sequently, the γ parameters become elements in the k × 1 vector of fixed effects Γ, the

xij become elements in the nj × k matrix of fixed effects predictors Xj, the u parameters

become elements in the k × 1 vector of unobservable random effects Uj, the zij become

elements in the nj ×k matrix of random effects predictors Zj , the yij become elements in

the nj × 1 outcome vector yj , and the observation specific disturbance terms eij become

elements in the nj ×1 vector of observation specific disturbance terms contained in ISUj ,

ej . Under this specification, the total sample size (Nt) can be expressed as N × nj in

balanced data (where N is the number of ISUs) and as
∑j

j=1 nj in unbalanced data.

Thus, the linear mixed model for ISUj composed of nj observations can be written

as

yj = XjΓ + ZjUj + ej . (1.2)

For this model, Xj and Γ constitute the first moment structure of the outcome yj ,

E(yj) = XjΓ. (1.3)

The ISU specific disturbance terms, or random effect parameters, Uj, are assumed Gaus-

sian, Uj ∼ N(0,T), while the observation specific disturbance terms, ej, are assumed

independent Gaussian, ej ∼ N(0, Ijσ
2). As the densities for both Uj and ej have zero
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mean, and both components are mutually statistically independent, by properties of

Gaussian densities they contribute only to the second moment structure of yj,

Vj = E(yj −XjΓ)2 = ZjTZ′

j + Ijσ
2. (1.4)

From these equations it is apparent that the linear mixed model is a member of the general

linear model family with mean structure XjΓ and covariance structure ZjTZ′

j + Ijσ
2.

We can therefore write the model implied distribution for the outcome as

yj ∼ N(XjΓ,ZjTZ′

j + Ijσ
2). (1.5)

As each ISU has this model implied distribution, and by definition the ISUs are indepen-

dent of one another, the full covariance matrix, V can be written:

V = I ⊗ ZjTZ′

j + Ijσ
2. (1.6)

Where ⊗ is the left Kronecker product which results in a block diagonal matrix whose

diagonal blocks are the ISU specific values of ZjTZ′

j + Ijσ
2. For the case of two ISUs,

V can be expressed as

V =







Z1TZ′

1 + I1σ
2 0

0 Z2TZ′

2 + I2σ
2






. (1.7)

A major consequence of this structure is that the fixed and random effects are orthogonal

(Demidenko, 2004).

A common summary statistic computed as a function of the variance components is

the intra-class correlation coefficient, or heritability. The statistic is computed as a ratio

of variance components, indicating the proportion of variance attributable to between

ISU variance:

ICC =
σ2

b

σ2
b + σ2

w

, (1.8)

where σ2
b is the between ISU variance and σ2

w is the within ISU variance.
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Likelihood estimation is the favored method for obtaining parameter estimates.

There are two likelihoods commonly employed: full maximum likelihood (Hartley &

Rao, 1967) and restricted maximum likelihood (Harville, 1974; Patterson & Thompson,

1971). Full maximum likelihood (FML) jointly maximizes both the fixed and random

effects, estimating the covariance matrix as if the fixed effects were known. Thus, as with

all full maximum likelihood estimators, in balanced data the FML estimate of T is biased

by a factor of N
N−k

where N is the number of ISUs and k is the number of elements in Γ

(i.e., the number of fixed effects).

Following the work of Hartley and Rao (1967) the log likelihood for the LMM with

Gaussian errors may be written as

ℓ(θ) = Ntlnσ2 + ln
∑

|Vj| + σ−2
∑

(yj −XjΓ)′V−1
j (yj − XjΓ), (1.9)

where θ is the vector of estimable parameters contained in Γ, T, and σ2. However,

the variance-profile log-likelihood is often much easier to work with because it requires

likelihood estimation of one fewer parameter than the full likelihood. The variance-profile

log-likelihood is obtained by replacing σ2 with σ̂2, and re-expressing Vj as (ZjTZ′

j + Ij).

The resulting log-likelihood can be written as

ℓ(Γ,T) = Nt + ln
∑

|Vj| +
∑

(yj −XjΓ)′V−1
j (yj − XjΓ). (1.10)

The profiled residual variance estimator is given for both FML and REML as

σ̂2 =
1

Nt

N
∑

i=1

(yi − XiΓ)′(I + ZiTZ′

i)
−1(yi − XiΓ). (1.11)

The fixed effects estimator can be obtained by solving the following derivative for Γ

∂l(Γ,T)

∂Γ
=

∑

X′

jV̂j

−1
(yj −XjΓ) (1.12)

which gives

Γ̂ = (
∑

X′

jV̂j

−1
Xj)

−1
∑

X′

jV̂j

−1
yj , (1.13)
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This can be seen to be a generalized least squares (GLS) estimator. The fixed effects

estimate, Γ̂, can be shown to be an unbiased estimate of Γ. However, the MLE of Vj is

known to be biased. This bias propagates through to inference on the MLE for Γ. For,

while Γ̂ is unbiased with E(Γ̂) = Γ by

E[(X′

jV
−1
j Xj)

−1X′

jV
−1
j yj] = (X′

jV
−1
j Xj)

−1X′

jV
−1
j XjΓ, (1.14)

mis-specification in the covariance matrix for the asymptotic limiting distribution of Γ̂,

(
∑

X′

jV
−1
j Xj)

−1, by the bias of Vj, results in biased estimates of the standard errors

and tests for Γ̂ (Kackar & Harville, 1984; Kenward & Roger, 1997; Prasad & Rao,

1990). However, the robustness of the unbiasedness property of the fixed effects renders

estimation error nearly trivial even in very small samples (Kenward & Roger, 1997)

Restricted maximum likelihood (REML) is a solution to the inherent bias of the FML

estimator. The REML for the linear mixed model with Gaussian errors can be written

as

ℓ(σ2,T) = (Nt − k)lnσ2 + ln
∑

|X′

jVjXj| + ln
∑

|Vj|

+σ−2
∑

(yj −XjΓ̂)′V−1
j (yj − XjΓ̂), (1.15)

As before, the variance-profile log-likelihood is easier to work with. In the case of REML,

the variance-profile log-likelihood is easier to work with, and can be written as

ℓ(T) = (Nt − k) + ln
∑

|X′

jVjXj| + ln
∑

|Vj|

+
∑

(yj − XjΓ̂)′V−1
j (yj − XjΓ̂). (1.16)

Γ̂ = (
∑

X′

jV̂j

−1
Xj)

−1
∑

X′

jV̂j

−1
yj . (1.17)

Restricted maximum likelihood estimates (RMLEs) are obtained by capitalizing on the

orthogonality property of the fixed and random effects. Specifically, given an initial value

of Vj, GLS estimates for Γ are obtained from equation 1.17, conditional upon this GLS
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estimate, the first likelihood estimate for Vj is obtained by solving equation 15. This

initial likelihood estimate of Vj is then used to update the GLS estimate of the fixed

effects, which is in turn used to update the likelihood estimate of Vj. This process is

repeated until some convergence criterion is achieved. As with FML, Γ̂GLS is unbiased

(Kackar & Harville, 1984). Of equal, or greater importance, the covariance matrix for

the asymptotic limiting distribution of Γ̂GLS, (
∑

X′

jV
−1
j Xj)

−1, is unbiased in balanced

data.

The SAS system implements a sweep operator in the construction of the log likelihood

and derivatives which permits estimation of T independent of Γ̂ (Wolfinger, Tobias, &

Sall, 1994). The Algorithm used by SAS capitalizes on an equivalent expression for the

residuals:

ej = yj − XjΓ̂ = yj −Xj((X
′

jV̂
−1
j Xj)X

′

jV̂
−1
j yj) (1.18)

which does not require explicit estimation of Γ̂. This results in a likelihood that only

involves observed variables (X & Z) and variance parameters (Vj).

Though REML and FML differ in their approach to estimating the covariance matrix

of random effects, REML and FML have identical estimators for the residual variance:

σ̂2 =
1

Nt

N
∑

i=1

(yi − XiΓ)′(I + ZiTZ′

i)
−1(yi − XiΓ). (1.19)

Whereas the beneficial properties of the estimators of the covariance matrix of random

effects are attained as N → ∞, it can be seen from equations (1.17) and (1.19) both Γ̂

and σ̂2 attain optimal properties as Nt → ∞.

As FML is approximately biased by a factor of N
N−k

, in the case of balanced data the

REML estimator can be obtained by premultipying

T̂FML =
1

Nσ̂2
FML

(Z′Z)−1Z′ÊÊ′Z(Z′Z)−1 − (Z′Z)−1 (1.20)

by N
N−k

to obtain

T̂REML =
1

N − kσ̂2
FML

(Z′Z)−1Z′ÊÊ′Z(Z′Z)−1 − (Z′Z)−1 (1.21)
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where ÊÊ′ can be defined as

(y −XΓ̂)(y − XΓ̂)′ (1.22)

Pre-multiplication by the factor N
N−k

adjusts the degrees of freedom for the k estimated

fixed effects. This difference – adjusting for the estimation of the k fixed effects or treating

the estimates as a priori known constants – is the key difference between REML and FML

(Corbeil & Searle, 1976). It is important to note the emphasis on balanced data here,

for in the case of unbalanced data neither estimator is unbiased, though REML is less

biased than FML (Demidenko, 2004; Muller & Stewart, 2006). However, as the number

of ISUs tends toward infinity, FML and REML converge.

In addition to the bias of the FML estimator of Vj and its effect on fixed effects

inference, there is a second source of estimation error in the LMM. Both FML and RML

estimates of Vj are compromised as sample size decreases. Pioneering theoretical work on

this topic was done by Kackar and Harville (1984), and supported empirically by Corbeil

and Searle (1976) and Swallow and Monahan (1984). Small sample sizes are believed

to impact the LMM in two ways. First, estimates of Vj show inflated estimation error

(Demidenko, 2004). Second, inference about the fixed effects is likely to deteriorate as

estimation error increases in Vj. This results from the role played by Vj in the SEs

of Γ̂. The problem of imprecise inference regarding the fixed effects extends to both

FML and REML, though such problems are likely compounded in FML as a function of

the inherent bias in the weight matrix, Vj, outlined above (Demidenko, 2004). Another

factor likely to affect estimation in the LMM that is related to small sample sizes is the

degree to which data are unbalanced. While estimation is known to be more complex in

the presence of unbalanced data (Henderson, 1953; Searle, Casella, & McCulloch, 1992),

little work has brought empirical evidence to bear on the question.

While the REML adjustment is appealing given the inherent bias of the FML estima-

tor, there are conditions related to model selection, inference, and estimation properties

that imbue FML with desirable properties. Using either REML or FML, one can test
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the relative fit of any LMM against another when the model of comparison is obtained

by imposing linear constraints on the parameters of the first model and taking the dif-

ference of the likelihoods of the two models (Longford, 1995; Morrell, 1998). In FML

estimation, both the fixed and random effects are contained in the likelihood, and thus

one can impose linear constraints on either fixed or random parameters to obtain the

likelihood for a model nested within the original model. However, because the fixed ef-

fects are not contained in the restricted likelihood presented in equation 1.15, constraints

imposed on the fixed effects result in a model that is not nested within the original model

(Longford, 1995), though Wald tests do exist for linear contrasts of fixed effects within

a model. Consequently, in the case of model selection, FML has some advantages over

REML. Other advantages of FML over REML include the fact that the FML estimator

attains the supremum of the likelihood surface while REML does not, thus FML is a

true Maximum Likelihood Estimator (MLE), while REML is not. As a result of this fact

FML possesses the desirable properties of MLEs while REML does not.

Specifically, there are three main asymptotic properties of MLEs that make them

desirable estimators. Under suitable regularity conditions (Hoel, Port, & Stone, 1971)

the estimators are asymptotically Gaussian, consistent, and efficient. While both FML

and REML are asymptotically Gaussian, only FML is asymptotically consistent (Rao,

1977). In addition, FML is empirically more efficient than REML (Corbeil & Searle,

1976; Swallow & Monahan, 1984). Related to these advantages is the fact that the REML

function is not a minimally sufficient function of the parameters by virtue of its omission

of the fixed effects – thus, while FML is a full information estimator, REML is not (Rao,

1977). Taken together, each of these issues provides applied researchers with distinct and

compelling reasons for using both REML and FML. However, none of the information

provided thus far provides guidance on the use of the model in small sample sizes. While

asymptotic properties are invoked in estimation and inference, theoretical information

guiding application of the model in finite conditions is limited if not absent. This fact,
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coupled with the increasing use of the model in small samples, serves as the impetus for

my thesis. In this context, research detailing finite sample sizes under which optimal

estimation properties are obtained would be of great assistance to applied researchers.

1.2 Applications of the LMM to Small Samples

Researchers have increasingly applied the linear mixed model to ever smaller sample

sizes. While not yet a common practice, the existing examples provide a substantive

motivation for this project.

In a cluster sampling application, Kellam, Ling, Merisca, Brown, and Ialongo (1998)

used the LMM to assess the degree of variability in aggressive behavior of children nested

within 41 classrooms in 19 schools. No information was provided by Kellam et al. (1998)

on the number of observations per school. As part of a larger modeling scheme the

authors estimated a model with fixed effects for gender and random slopes for school,

though they provide no parameter estimates.

Use of the linear mixed model in the case of few ISUs is not restricted to applied

researchers. In their seminal book on the LMM, Raudenbush and Bryk (2002) use the

Huttonlocher, Haight, Bryk, and Sletzer (1991) data set for illustrative purposes. This

data set was composed of repeated measures on 22 infants with 6 to 8 observations

per infant. In some analyses presented in Raudenbush and Bryk (2002), data on only

11 infants were analyzed. The data provided information on infant vocabulary growth

as a function of maternal speech, and were modeled using a second order polynomial

growth curve. Fixed and random effects were estimated for all polynomial terms, thus

an unrestricted 3-dimensional covariance matrix was estimated in the presence of only

11 ISUs.

A common theme in these examples was the use of few ISUs and many observations

per ISU. While the number of ISUs sampled in the reviewed applications seem small rel-

ative to what is implied by asymptotic requirements, the sample sizes encountered in the

social sciences and particularly in psychological applications are, by nature, limited in
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the number of subjects that can be practically and economically assessed. Compound the

problem of small sample size with attrition and item non-response, and the expectation

that applied researchers restrict use of the LMM to data sets of approximate asymptotic

ISU size seems impractical and insensitive. Thus the provision of information guiding

applied researchers through the finite sample behavior and properties of LMM estimators

is imperative. For while applied researchers can not be expected to sample approximately

asymptotic numbers of ISUs, the empirical behavior of the estimators may reveal realisti-

cally attainable finite sample sizes under which estimation error is sufficiently minimized.

A small body of simulation research has provided preliminary information regarding

minimally sufficient sample sizes applied researchers can use and still estimate parameters

with minimal error. Unfortunately, the majority of the studies have examined limited

covariance structures and almost exclusively balanced data conditions. While this lit-

erature provides insight for applied researchers, the limitations of these studies leave

many questions unanswered. Specifically, the effects of unbalanced data, complex covari-

ance structures, and systematic variations in the number of fixed and random effects on

parameter estimation in small samples remain unclear. These are the focus of my thesis.

1.3 Literature Review

In the first empirical study looking into the role of sample size and estimation error

Corbeil and Searle (1976) examined the behavior of both REML and FML estimators

across multiple models, both balanced and unbalanced data, and a range of sample

size conditions. Though some of their sample size conditions were quite low, this was

not unreasonable given that most models had closed form solutions. Nonetheless, they

acknowledged that their sample sizes were smaller than ideal. ISU sizes examined were

10, 20, 60, and 100, and observation sample sizes examined were 6, 10, 15, and 25. Thus,

the largest total sample size contained 2500 data points.

Corbeil and Searle (1976) showed that the FML estimator for each model under

balanced data was more efficient than the REML estimator. The authors suggest that the
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role played by bias in the computation of the MSE, coupled with the noted negative bias

of FML estimators might imbue FML with an inherent efficiency advantage over REML.

Given this finding, Corbeil and Searle (1976) derive a modified MSE measure designed to

minimize this possibility. Evaluation of these modified MSEs produced boundaries below

which REML was more efficient than FML. Using this modified efficiency criterion, and

restricting examination to variance values falling below the boundary for each model,

REML was found to be more efficient. However, in unbalanced data, no closed form

solution to the MSE could be obtained. Consequently, an adjusted MSE could not be

computed, and, as expected, using the empirical MSE, in unbalanced data FML was

found to be more efficient than REML in all cases. These findings were replicated by

Swallow and Monahan (1984) who also demonstrated the relationship between the bias

of FML and its superior MSE properties.

In a subsequent analysis of the simulation work presented in Swallow and Searle

(1978), Swallow and Monahan (1984) examined bias and MSE properties of several esti-

mators, including REML and FML, for the variance component model. The simulation

design employed manipulations of sample size, intra-class correlation coefficient (ICC),

and balancedness of the data. The primary focus of the paper was the estimation of

variance components obtained via the one-way random ANOVA under varying degrees

of unbalancedness. The two primary sampling patterns consisted of sequences of ISUs

with fixed observation size. For example, the smallest sample size cells in the two pat-

terns consisted of three ISUs having 3, 5, and 7, and 1, 5, and 9 observations, respectively.

These two conditions had the same number of ISUs, different numbers of observations

per ISU, and the same total sample size (Nt = 15). Increases in total sample size resulted

from increasing the number of ISUs with fixed observations. Specifically, with six ISUs

the number of ISUs with each of the above mentioned observation sizes was doubled,

and with nine ISUs the number was tripled. Within each cell, 10, 000 replications were

generated.
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In examining point estimation of τ00, Swallow and Monahan (1984) found that when

ICC < .5 the FML estimator was the minimum variance estimator, as measured by the

MSE. Moreover, FML had minimum bias of all estimators considered. When ICC ≥ .5

FML had a downward bias which attenuated the MSE. The authors concluded that

the shrinking of the MSE translated into an illusory advantage of FML over REML. In

fact, bias correction of the FML estimator eliminated the relative advantage of FML

over REML as measured by MSE. However, as proved by Corbeil and Searle (1976),

the theoretical MSE of the FML estimator is smaller than that of the REML estimator

in balanced data for a wide range of models. Whether this is related to theoretical

bias or not, it is nonetheless an advantage of FML. While recent work has focussed on

models with more complex fixed effects structures, only one has generalized the restricted

covariance structures considered by Corbeil and Searle (1976) and Swallow and Monahan

(1984). This is an unfortunate shortcoming, because under balanced data closed form

solutions exist for such models.

In a brief note published in the Multilevel Modelling Newsletter, Mok (1995) pre-

sented the results of a small simulation investigating the impact of sample size under

a known and constant ICC (.1459) on the efficiency and bias of Restricted Iterative

Generalized Least Squares (RIGLS) estimates in the linear mixed model. RIGLS is the

generalized least squares analog of REML, and the two estimators are identical when

{Uj , ej} ∼ N(0,Σj), with the form of Σj varying as a function of the parameter, Uj or

ej , considered (Goldstein, 1986). Because Mok (1995) focused exclusively on the case of

Gaussian balanced data, her work on RIGLS generalizes directly to REML. The model of

interest to Mok (1995) was a mixed model with a fixed intercept and slope, each having

random components and possessing a two-dimensional unstructured covariance matrix.

Mok (1995) employed a fully balanced symmetric sample size design. Eleven ISU and

observation sizes were considered: 5, 10, 20, 30, 40, 50, 60, 70, 80, 100, and 150. Every

ISU size was crossed with every observation size resulting in 121 sample size conditions.
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Within each sample size condition 100 replications were generated and analyzed. For

each cell the empirical MSE and bias of the RIGLS estimates for the model parameters

were computed.

Mok (1995) found that when the number of ISUs was equal to the number of obser-

vations or when the number of ISUs exceeded the number of observations fixed effects

estimates were estimated with near identical precision. However, estimates in both con-

ditions exhibited substantially smaller MSE and bias than did those obtained when the

number of observations exceeded the number of ISUs. Random effect estimates, though

consistent across all conditions, were more biased when the number of observations ex-

ceeded the number of ISUs than when the converse was true. There was no difference

across conditions in the bias of residual variance estimates. Mok (1995) concluded that

it was better to maximize ISU size in order to minimize estimation error.

Consistent with the conclusions of Mok (1995), Bassiri (1988) demonstrated the im-

portance of ISUs in estimating LMM parameters. Bassiri (1988) examined changes in

REML estimates as a function of ICC (.1 vs. .25), number of ISUs (10, 30, 60, 150) and

number of observation per ISU (5, 25, 60, 150). The model was composed of three main

fixed effects, one fixed interaction, and two random effects. The covariance matrix of

the random effects was a two-dimensional heterogeneous variance component structure.

Bassiri found that the number of ISUs was a better predictor of problems in REML esti-

mation than the number of observations per ISU, with smaller numbers of ISUs resulting

in the highest degrees of bias in both the fixed and random effects. Varying the num-

ber of observations within a fixed ISU size affected neither the estimation of fixed nor

random effects. It is interesting to note that at a fixed sample size, estimates obtained

under a large ICC (.25) exhibited less estimation error than when the ICC was small (.1).

Bassiri (1988) suggested that because the ICC is a measure of the degree to which total

variance is the result of between ISU variance, as ICC increases, so does the degree of

variance associated with differences in ISUs. Such increases in variance parameters are
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tantamount to increases in the power to estimate parameters, for as parameters depart

from zero they are likely to be more reliably estimated.

Hox and Maas (2002) also contributed to our understanding of the role of sample

size in the linear mixed model. The model of interest to Hox and Maas (2002) was a

multilevel model with four fixed effects (intercept, two slopes, and an interaction term)

with two random effects (one intercept and one slope) modelled using a two dimensional

homogeneous variance component covariance matrix. Hox and Maas (2002) examined

27 conditions in their design, consisting of three ISU conditions (30, 50, and 100 ISU),

three observation size conditions (5, 30, and 50 observations per ISU), and three ICC

conditions (ICC values of .1, .2, and .3). For each cell of the design 1000 replications

were generated. Like Mok (1995), Hox and Maas (2002) examined bias only in REML

estimates. Hox and Maas (2002) did not encounter any convergence or improper solution

problems. They found negligible bias (average bias was .05%) in REML estimates of the

fixed effects across sample size variations; however, in the smallest sample size condition

(ISU = 30, observations = 5) bias in the fixed effects was .3%. Peculiarly, Hox and Maas

(2002) found the exact same pattern of bias in the random effects, with the average bias

across sample size variations being .05%, and the highest bias of .3% being observed in

the smallest sample size condition.

1.3.1 Summary

There are five general trends in the preceding empirical work: Increasing ISUs de-

creases bias more than increasing observations per ISU, the effect of model complexity

has been ignored, the effect of unbalanced data has been ignored, and the effect of co-

variance magnitude has been ignored, though REML may be less biased than FML, it

may have greater sampling variability.

First, consistent with theory, and as demonstrated in all empirical studies, REML

is unconditionally less biased than FML. However, REML does not necessarily have the

lowest sampling variance. In fact, for some models and sample sizes, REML may exhibit
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greater RMSE than FML.

Second, consistent with theory, Mok (1995) and Bassiri (1988) found that decreasing

the number of ISUs had a substantial effect on (co)variance parameter estimation. In

addition, fixed effects estimates became more precise as the total number of observations

increased (Mok, 1995; Bassiri, 1988).

Third, the effect of model complexity has not been adequately examined. All but one

of the reviewed studies examined the case of a variance component model. While this is

a useful model, and has a rich history in many fields, the complexity of modern designs

allow for estimating models of greater complexity. As a result, models with more than

one random effect are now common in the applied literature. Thus, examining estimation

error in more complex models is necessary.

Fourth, most studies have looked at data types that are both uncommon in appli-

cations and limit estimation error. All of the reviewed studies save Corbeil and Searle

(1976) and Swallow and Monahan (1984) focused exclusively on the case of balanced data.

Yet, we know from Corbeil and Searle (1976) and Searle et al. (1992) that closed form

estimating equations exist for such models in the case of balanced data. Thus, contrary

to Bassiri (1988), simulation studies of variance component models under balanced data

result in a substantial loss of generality. The focus on balanced data has the potential to

result in a loss of generality because it is in the case of unbalanced data that estimation

error is most pervasive and problematic (Corbeil & Searle, 1976; Swallow & Monahan,

1984). The problem of unbalanced data is compounded by the fact that theory, which in

balanced data nearly fully describes the nature of estimation error, provides little guid-

ance in the case of unbalanced data (Corbeil & Searle, 1976; Swallow & Monahan, 1984).

Thus, the need for empirical guidance is greatest in the case of unbalanced data.

Fifth, no study has manipulated the effect of covariance magnitude, assuming instead,

that all covariance components are equally estimable. In contrast, one could conceive of

larger and smaller covariance components being differentially estimable. As components
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tend toward boundary values, point estimation could become less precise and model

convergence rates could decrease (Demidenko, 2004).

These five issues are the focus of my thesis.

1.4 Hypotheses

Based on analytic theory and prior research I tested five hypotheses.

1.4.1 Hypothesis 1: Estimator Effects

Previous research, both empirical and theoretical, has demonstrated the optimal

bias properties of REML relative to FML. Across all conditions I predict that REML

estimates of fixed effects and covariance components will be less biased than FML es-

timates. FML estimates of covariance components should be substantially negatively

biased, while REML estimates should be only slightly negatively biased. In addition,

based on the work of Corbeil and Searle (1976), Swallow and Monahan (1984), and Rao

(1977), FML is predicted to have lower RMSE than REML.

1.4.2 Hypothesis 2: Effect of Varying Independent Sampling Units on T

and Total Sample Size on σ2 and Γ

As the number of ISUs decrease, both FML and REML will exhibit increased bias

in estimates of T. However, FML bias is expected to exceed REML bias. At the same

time, FML should exhibit greater efficiency than REML. While very small nj may have

an effect on estimation error in T, this effect should be small relative to the impact of

varying N . In contrast, fixed effect and residual variance estimates should be unaffected

by decreasing ISU size. However, because σ̂2 and Γ̂ depend on the total sample size,

as the total sample size decreases, the performance of their estimators should erode in

terms of bias and efficiency.
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1.4.3 Hypothesis 3: Effect of Varying the Number of Estimated Fixed

Effects on Estimation of Covariance Parameters

REML estimation is motivated by the fact that the bias of TFML increases as the

number of fixed effects increases. A worst case scenario for the TFML occurs when the

number of ISUs is small and the number of fixed effects is large (Raudenbush & Bryk,

2002). Thus I predict that as model complexity increases, the REML estimator of the

covariance parameters should exhibit lower bias and efficiency, than the FML estimator.

1.4.4 Hypothesis 4: The Effect of Unbalanced Data

Point estimation and inference are known to be more complex under unbalanced data

(Henderson, 1953). For a subset of the cells, point estimates obtained under balanced

data will be contrasted with point estimates obtained under unbalanced data. Theory

would suggest that REML estimates would be unbiased under balanced data. Thus, I

hypothesize that point estimates of all parameters will be more accurate under balanced

data, exhibiting near zero bias, but only for REML; and FML estimates may exhibit

some bias, but only trivial amounts.

1.4.5 Hypothesis 5: Magnitude of Covariance Matrix of Random Effects

Estimation of parameters of small magnitude poses difficulty in the mixed model

(Bassiri, 1988). Consequently, I predict that bias and efficiency of covariance component

estimates will increase and decrease respectively as magnitude of covariance components

decrease.
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CHAPTER 2

Method

The simulation employs a 2 (estimators) X 4 (ISU sizes) X 4 (observation sizes) X 3

(models) X 2 (covariance matrices) design. There are thus 192 cells in the design.

2.0.6 Estimators and ISUs

The two estimators considered in this design were REML and FML. Four ISU sizes

were examined in order to study the behavior of estimators across a range of ISUs. These

ISU sizes reflect the lower end of acceptable ISU sizes as well as one ISU size chosen to

be representative of a very large number of ISUs. The ISU sizes considered were 15, 30,

60, and 120. Because the most complex model had 6 fixed effects, and in such a context

Demidenko’s Inequality 2.87 shows that the MLE exists with probability 1 when the

number of ISUs exceed 13, 15 was employed as a minimum ISU size in order to protect

against non-existence of the MLE.

2.1 Models Considered

A total of three model types were considered. They were: Model 1, which was

a random intercept model, composed of an intercept term containing both fixed and

random components; Model 2, which was a random regression model, composed of an

intercept and two slope parameters, each having both fixed and random components;

lastly, Model 3 added a level 2 predictor, and two cross level interactions to Model 2.

These models can be mathematically represented using reduced form equations as:



Model 1:

yij = γ00 + u0j + eij, (2.1)

Model 2:

yij = γ00 + γ10x1ij + γ20x2ij + u0j + u1jz1ij + u2jz2ij + eij . (2.2)

Model 3:

yij = γ00 +γ10x1ij +γ20x2ij +γ01w1j +γ11w1jx1ij +γ21w1jx2ij +u0j +u1jz1ij +u2jz2ij + eij .

(2.3)

These three models were considered because of their prominence in many model

building strategies. Specifically, in applications it is common to begin analyses by es-

timating a simple model, such as Model 1. This initial model is typically expanded

by looking into the existence of additional random effects. This second stage of model

building is represented by Model 2. Lastly, once an optimal number of random effects

have have been specified, Model 2 is expanded to include one or more predictors de-

signed to explain the variability in the outcome across ISUs. The addition of such level-2

predictor(s) results in the addition of main effect(s) for the level-2 predictor(s) as well as

interactions between the level-2 predictor(s) with every other level-1 predictor. This last

stage of model building is captured by Model 3.

2.1.1 Parametric Specification

The fixed effect vector for Model 1, Γ1, had only a single element, γ00. The fixed

effect vector for Model 2, Γ2, was composed of three elements, γ00, γ10, γ20. The spec-

ification of the fixed effect vector for Model 3, Γ3, was an extension of Γ2, where the

first three elements were identical to those of Γ2. However, Γ3 was augmented by the

inclusion of a level 2 predictor and all cross-level interactions. Model 2 and Model 3

each had a covariance matrix of random effects, T of dimension 3 × 3, while Model 1

only had a single random effect variance component: τ00.
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A common manipulation employed in previous studies of sample size in the mixed

model has been to vary the intra-class correlation (ICC). Since models with low ICCs

generally have smaller intercept variances than do models with large ICCs, manipulating

ICC has been used to determine differences in magnitude of estimation error as param-

eters diverged from zero. However, when the variance components are summarized by

a covariance matrix rather than a scalar variance, the true meaning of manipulating

the ICC is unclear. In such a context it is not clear whether the ICC, as traditionally

computed, has any real meaning (Ahrens, 1976). Because the ultimate impact of such

manipulations is to increase or decrease the magnitude of one element, in the case of a

covariance matrix, a more meaningful manipulation would be to compare covariance ma-

trices with elements of larger magnitude to covariance matrices with elements of smaller

magnitude. Thus, two covariance matrices, T1 and T2, were generated in order to test

Hypothesis 4.

The elements of T1 were of small magnitude, while the elements of T2 were of large

magnitude. Therefore, Model 2 and Model 3 were estimated twice in the design, once

under the covariance matrix of random effects corresponding to T1, and once under T2.

In order to test hypothesis 5 on Model 1, the same procedure was employed, though

instead of alternating covariance matrices, the value of τ00 was varied. Thus, Model 1

was estimated with τ00 set equal to the 1,1 element of T1 and again with τ00 set equal to

the 1,1 element of T2. For economy of writing, from hereon, the two fixed effects vectors

and two covariance matrices of random effects will be generally referred to using an m

subscript. When the reader encounters Γm and Tm this is meant to indicate a statement

applying to either Γ1 and/or Γ2 etc.

2.1.2 Population Values

Because the fixed effects, residual variance, and random effects are orthogonal due

to the block diagonal Hessian of the model (Demidenko, 2004), Γm, Tm and σ2 can

be populated with values that are all mutually independent. Although, in principle,
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parameter estimates could take on infinitely many values, the integer values I chose for

σ2 and the elements of the matrices Γm and Tm were chosen to be representative of the

values commonly encountered in applications or reported in literature. The fixed effects

vectors I used for this thesis are given as:

Γ1 =

(

5 .98 2.3

)

′

, (2.4)

Γ2 =

(

5 .98 2.3 1.9 1.3 .85

)

′

. (2.5)

Proportion of Variance Explained by Fixed Effects

Effect sizes are are not uniquely defined for the linear mixed effect model. However,

it is important to demonstrate how the population values for the fixed effects map onto

commonly encountered or expected values in social science research. I used pseudo-

effect size measures to demonstrate the correspondence between fixed effect value effect

sizes associated with the generating values and Cohen’s rules for effect size (Cohen, 1988).

Because of varying model complexity, the means by which the pseudo-effect size measures

were computed changed across models. All methods fell under the rubric of proportion

of variance reduction methods advocated by Raudenbush and Bryk (2002). For model 2,

all of the fixed effect estimates were associated with level 1 variables, and thus, according

to Raudenbush and Bryk (2002) resulted in decreasing residual variance values. Thus

proportion reduction in variance can be observed in residual variance estimates. In

contrast, with model 3, level 1 predictors can be expected to remain associated with

reductions in residual variance, but the level 2 predictor effect and the corresponding

cross-level interactions can be expected to be associated with reductions in random effect

variance.

For model 2, pseudo-effect size estimates were obtained by first fitting a null model

with random and fixed intercepts, and then incrementally adding the level 1 fixed effects,

23



at each stage computing the proportion reduction in variance between the fitted model

and the baseline model according to the definition given by Raudenbush and Bryk (2002):

PRl1 =
σ2

c

σ2
u + σ2

c

. (2.6)

For model 3, the process was more complex.

For models in which level 2 and cross level effects, Raudenbush and Bryk (2002)

recommend calculating proportion reduction in variance measures on the random effect

variances and not the residual variances. To the extent that the random effects are

correlated, accuracy of proportion reduction in variance techniques will be attenuated.

Nonetheless, the proportion reduction in variance equation used here for the ith level 2

effects is given by Raudenbush and Bryk (2002) as:

PRl2 =
τ c
ii

τu
ii + τ c

ii

, (2.7)

where the c and u superscripts indicate conditional and unconditional values. Uncondi-

tional values are the estimates of τii observed when the ith level 2 effect is not included,

and the conditional values are the estimates of τii, when the ith level 2 effect is included.

Thus, τ11 is conditioned upon inclusion of the level 2 predictor (W1), τ22 is conditioned

upon the inclusion of the first cross level interaction (W1 ∗ D1), and τ33 is conditioned

upon the inclusion of the second cross level interaction (W1 ∗ D2). Results are given

in Table 2.1. As can be seen, proportion reduction in variance values corresponded to

small to moderate effect sizes as defined by Cohen (1988).

Table 2.1: Proportion Reduction in Variance Estimates for Models 2 and 3

SR2 for Fixed Effect Parameters

γ10 γ20 γ01 γ11 γ21

Model 2 T1 0.09 0.14 - - -

Continued on next page
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Table 2.1 – continued from previous page

SR2 for Fixed Effect Parameters

γ10 γ20 γ01 γ11 γ21

Model 2 T2 0.07 0.14 - - -

Model 3 T1 0.05 0.12 0.13 0.15 0.17

Model 3 T2 0.12 0.20 0.26 0.29 0.37

Consistent with the examples provided in Raudenbush and Bryk (2002), the residual

variance I considered in this thesis was large and constant. Thus the residual variance

matrix was be parameterized as Iσ2 for each model, with σ2 = 46.58.

I generated T1 and T2 by first specifying one correlation matrix, R. The correlations

contained in R reflect medium to high correlations. Next, I generated two diagonal

matrices, D1 and D2, corresponding to T1 and T2 respectively. The elements of D1 and

D2 were the standard deviations of the desired covariance matrix (T1 or T2). The two

diagonal matrices differed in magnitude, with D1 having small elements and D2 large

elements. Pre and post-multiplication of the correlation matrix by the corresponding

diagonal matrices resulted in two covariance matrices whose elements differ in magnitude.

Given R1:

R1 =













1 0.44 0.43

0.44 1 0.19

0.43 0.19 1













, (2.8)

and the diagonal matrix

D1 =













12 0 0

0 7 0

0 0 4













, (2.9)

25



the resulting covariance matrix composed of elements of large magnitude is given as:

T1 =













12 4 3

4 7 1

3 1 4













. (2.10)

Starting from the correlation matrix

R2 =













1 0.29 0.32

0.29 1 0.12

0.32 0.12 1













, (2.11)

and the diagonal matrix

D2 =













4 0 0

0 3 0

0 0 2













, (2.12)

the covariance matrix composed of elements of low magnitude is given as:

T1 =













4 1 0.9

1 3 0.3

0.9 0.3 2













, (2.13)

2.2 Data Generation

2.2.1 Unbalanced Data

All data examined in this project were unbalanced, except for the subset of cells

in which balanced data were contrasted with unbalanced. There are several reasons

why balanced data are not interesting to a study of iterative estimators. First, closed

form estimators exist for many mixed models under balanced data (Corbeil & Searle,

1976; Searle et al., 1992). Second, it is rare for field-collected data to be balanced. Thus

simulation findings based on balanced data are likely of limited use to applied researchers.

Unbalanced data were generated using the following mechanism. Unballanced ob-

servations were allocated to ISUs by first dividing the total number of ISUs within an
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ISU condition (15, 30, 60, or 120) into thirds. The first third of the ISUs then sampled

a number of observations within a given observation condition (15, 30, 60, or 120) equal

to 1
3

of the total number of observations in the condition. The second third of the ISUs

then sampled a number of observations equal to 2
3

of the total number of observations in

a given observation condition. The final third of the ISUs sampled a number of obser-

vations equal to the total number of observations in a given observation condition. For

example, with 15 ISUs in the 15 observations per ISU condition, the first 5 ISUs sampled

5 observations, the second 5 ISUs sampled 10 observations, and the last 5 ISUs sampled

15 observations. This process was repeated for each ISU and observation condition.

2.2.2 Generating Random Effects with Known Covariance Structure

In each replication a matrix of standard normal variables was sampled, transformed

so that it was orthogonal to the fixed effect predictors and the errors. This matrix was

then multiplied by the Cholesky factor of the population covariance matrix. The result-

ing matrix had column covariance corresponding to the population covariance matrix

contaminated by the sampling error involved in generating the initial random normal

matrix.

2.2.3 Generating Dependent Variable Under Model

1. After generating random effects with known covariance structure, the dependent

variable was generated under the mixed model as an additive function of the fixed

and random effects, with random error added to generate the level 1 error. Exoge-

nous predictors were generated as realizations from the standard normal distribu-

tion.

2. Unbalanced observations were generated by deleting observations in each observa-

tion cell nested within the 4 ISU size conditions in a manner proportional to the

number of observations under balanced data. Starting from balanced data, unbal-

anced observations were generated by deleting: 2
3

of the observations in the first
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third of the ISUs, 1
3

of the observations in the second third of the ISUs, and zero

observations in the final third of the ISUs. For example, under 15 ISUs and 15

observations per ISU, 10 observations were deleted from each of the first 5 ISUs,

5 observations were deleted from each of the next 5 ISUS, and zero observations

were deleted from the last 5 ISUs. Under 15 ISUs and 30 observations per ISU,

20 observations were deleted from each of the first 5 ISUs, 10 observations were

deleted from each of the next 5 ISUS, and zero observations were deleted from the

last 5 ISUs. This process was repeated in each of the 16 sample size cells.

2.2.4 Manipulation Check of Data Generation Process

Because data generation does not vary by parameter values or model complexity, in

order to determine whether the procedure generated valid data I restricted attention to a

fixed and large sample size and generated data under model 2. The test simulation used

3000 ISUs and 2000 observations per ISU, resulting in a total sample size of 6 million

data points. The Mixed procedure in SAS was used to determine whether parameters

governing data generation could be adequately recovered in estimation

Table 2.2: Model 2 Manipulation Check of Data Generation

T2

Model Parameter True RML FML

Model2 γ00 5 5 4.9

Model2 γ10 .98 .98 .84

Model2 γ20 2.3 2.29 2.16

Model2 σ2 46.58 46.65 46.37

Model2 τ11 4 4.03 4.02

Model2 τ21 1 .94 1.03

Model2 τ22 3 2.88 3.2

Continued on next page
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Table 2.2 – continued from previous page

T2

Model Parameter True RML FML

Model2 τ31 .9 .9 .77

Model2 τ32 .3 .3 .4

Model2 τ33 2 1.98 1.74

As can be seen, the parameter estimates were close to expectation at asymptotic

sample sizes, thus empirical evidence suggests that the data generation procedure is

valid.

2.3 Analyses

2.3.1 Improper and Non-converged Solutions

Non-converged solutions are defined as solutions in which, for some reason, a maxi-

mum is not obtained in 100 iterations. This is double the default number of iterations in

Proc Mixed, and is employed to maximize the chance for models to converge in the small-

est sample sizes. Improper solutions were defined as any solution in which the estimated

covariance matrix of random effects was not positive definite at the last iteration.

To track the frequency of such problems as a function of sample size, indicator

variables were generated tallying the number of non-converged or improper solutions

relative to the total number of solutions in a given cell of the design.

2.3.2 Measuring Estimation Error

Estimation error was measured using percent relative bias (PRB), and root mean

squared error (RMSE). These two statistics were computed using the following equations:

PRB = 100 ∗
1
N

∑N

i=1(θ̂i − θ)

θ
(2.14)
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RMSE = [
1

N

N
∑

i=1

(θ̂i − θ)2]
1

2 (2.15)

Values of the two measures of estimation error were computed by pooling across the

1000 replications in each cell of the design. Tabular estimation error results are presented

in appendices. However, because it is often difficult to interpret tabular information

in simulation studies, I employed two methods to further examine results: graphical

summaries, and meta-modeling. Consistent with the guidelines presented by Kaplan

(1988), bias values exceeding 10% were considered problematic.

2.3.3 Plots

In addition to examining the behavior of estimation error statistics arranged in tables,

graphical summaries of estimation error were generated by plotting PRB and RMSE

across ranges of sample size (ISUs for covariance parameters, and fixed effects). To

permit simple contrasts across conditions, casement plots were generated for the sample

size and estimator effects.

2.3.4 Testing Hypotheses 1 and 2: Meta-Model

Estimation error, as defined by 100 × (θ̂i−θ)
θ

, was calculated for the covariance pa-

rameters, and the residual variance estimates obtained from every model in every cell

of the design. For each model (Model 1, Model 2, and Model 3) a general linear

model (GLM) was fit to the outcome of statistics (PRB or RMSE) for each estimated

parameter (each variance, covariance, and fixed effect). In order to determine the effect

of varying the following facets of the design: the number of ISUs, the total sample size,

and the type of estimator (REML or FML), reference cell coded main effects and inter-

actions were estimated. Results were contrasted across covariance matrix condition to

determine the effect of covariance element magnitude. All possible two way interactions

were estimated. Least squares means for each cell of the design matrix corresponded to

the PRB estimates for each cell of the simulation design.
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Hypotheses regarding model complexity (hypothesis 3) and covariance matrix mag-

nitude (hypothesis 5) were tested by contrasting meta-model effects (Multiple R2) as well

as bias and RMSE cell means across the three models of interest and the two covariance

matrix conditions.
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CHAPTER 3

Results

3.1 Outline

I begin by describing a subset of results that I will not present in detail. First, cells

with model convergence rates below 5% were excluded. Second, the fixed effects and

balanced data results were excluded because they exhibited very low levels of bias and

RMSE. Results obtained from the meta-models are presented next. I then present results

for covariance parameter bias. Results are arranged in order of model complexity, starting

with model 1 and finishing with model 3. Results initially focus on the estimator and

covariance matrix effect. Subsequently, sample size and estimator effects are explored for

each covariance matrix and model. A summary provides contrasts across all conditions

examined. Following the parameter bias summary, results are provided in the same order

for parameter RMSE.

3.2 Results Restricted to Cells With Less Than 5% NCV Solutions

Because the simulation was run in each cell until 1000 proper solutions were obtained,

in the smallest sample size cells, where proper solutions were very rare, the probability

that the 1000 obtained solutions were sampled from the extrema of the distribution

of solutions was great. Solutions observed in such cells could provide idiosyncratic or

inexplicable results, which could be expected to have very low external validity. In

order to maximize the external validity of the study I excluded cells with initial attempt

convergence rates less than 5%. In other words, I require that at least 50 of the first



1000 replications converge to a proper solution. Cells excluded from analysis because

of rates of non-convergence exceeding the pre-specified threshold are indicated in Tables

3.1, 3.2, and 3.3 by red highlighting. Convergence rates are not presented for model

1 because all solutions converged in the first attempt. Thus, no cells were excluded for

model 1.

As can be seen in Table 3.1, for model 2, FML and REML had nearly identical

rates of excluded cells. The proportion of excluded cells varied over covariance matrix,

with higher rates under T2 than under T1. Unfortunately, the result of these exclusions

was the elimination of the smallest sample size cells from analyses, which were the cells

of primary interest to this study. Though fewer cells were eliminated under T1, the

eliminated cells were still among the absolute smallest sample size cells of the design.

Cells of the design not displayed in Table 3.1 exhibited 100% convergence rates.

Table 3.1: Convergence Rates for Model 2

% of Replications Converging in First Trial

T1 FML T1 REML T2 FML T2 REML

15 ISU, 15 OBS 0.0% 0.0% 0.0% 0.0%

15 ISU, 30 OBS 0.20% 0.20% 0.20% 0.20%

15 ISU, 60 OBS 8.10% 8.30% 2.80% 3.10%

15 ISU, 120 OBS 25.30% 100.00% 2.60% 2.60%

30 ISU, 15 OBS 0.90% 4.90% 1.10% 1.30%

30 ISU, 30 OBS 12.80% 12.90% 5.00% 5.40%

30 ISU, 60 OBS 100.00% 100.00% 0.70% 0.70%

30 ISU, 120 OBS 100.00% 100.00% 100.00% 100.00%

60 ISU, 15 OBS 42.30% 85.10% 0.80% 7.70%
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Table 3.2 demonstrates that under balanced data, rates of non-convergence and

improper solutions were much lower than were observed under unbalanced data. As

in Table 3.1, only the set of cells with convergence problems are presented, cells not

presented in Table 3.2 exhibit 100% convergence rates. Under balanced data, only one

cell, where 15 ISUs were sampled with 15 observations per ISU, was excluded based on

the criterion set forth for admission to analysis. However, in order to provide a fair

comparison between balanced and unbalanced data, in all analyses and plots the same

cells excluded under model 2 unbalanced data were excluded under model 2 balanced

data.

Table 3.2: Convergence Rates for Model 2, Balanced Data

% of Replications Converging in First Trial

T1 FML T1 REML T2 FML T2 REML

15 ISU, 15 OBS 2.4% 2.5% 0.1% 0.7%

15 ISU, 30 OBS 100.0% 100.0% 7.5% 23.3%

15 ISU, 60 OBS 100.0% 100.0% 100.0% 100.0%

15 ISU, 120 OBS 100.0% 100.0% 100.0% 100.0%

30 ISU, 15 OBS 100.0% 100.0% 15.0% 36.5%

As can be seen in Table 3.3, patterns of non-convergence and cell-exclusion under

model 3 were nearly identical to the rates observed under model 2. Under model 2 for

T2, REML and FML excluded cells coincided perfectly except for one cell; however, as

observed in Table 3.3 under T2, for model 3 there were two cells for which exclusion was

not coincident for REML and FML. A curious effect of interest was that, under model

3, when models failed to converge, the probability that all replications in a given cell

would converge in the first attempt was virtually zero, whereas under model 2 there was
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a non-zero probability.

Table 3.3: Convergence Rates for Model 3

% of Replications Converging in First Trial

T1 FML T1 REML T2 FML T2 REML

15 ISU, 15 OBS 0.0% 0.0% 0.0% 0.0%

15 ISU, 30 OBS 0.40% 0.40% 0.0% 0.0%

15 ISU, 60 OBS 0.80% 4.10% 0.90% 0.90%

15 ISU, 120 OBS 14.70% 37.70% 3.50% 5.10%

30 ISU, 15 OBS 0.20% 0.30% 0.0% 0.0%

30 ISU, 30 OBS 12.50% 38.30% 0.0% 9.70%

30 ISU, 60 OBS 100.00% 100.00% 100.00% 100.00%

30 ISU, 120 OBS 100.00% 100.00% 100.00% 100.00%

60 ISU, 15 OBS 6.40% 6.40% 5.30% 6.00%

3.3 Exclusion of Fixed Effects

I restrict the detailed presentation of results to covariance parameters. There exist

two compelling arguments for ignoring a detailed treatment of the fixed effect results.

First, they are theoretically unbiased, with identical estimating equations for REML and

FML. Second, results obtained in this study demonstrated that the asymptotic unbiased-

ness of the fixed effect estimator was robust to finite sample sizes. Because the MLEs of

fixed effects do not differ between FML and REML, fixed effects estimates were nearly

identical across estimators, with PRB values highly correlated, ρ̄ = .99, with no cor-

relation in any condition below .98. In addition to the near zero bias observed in the

fixed effects, both estimators exhibited identical and low levels of RMSE. These effects
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were consistent across all models, covariance matrices, and sample sizes. All plots de-

picting these effects are presented in appendix 1a, and full tabular results are presented

in appendices 3 and 4.

3.4 Restriction of Attention to Unbalanced Results

This study focussed on estimation error under unbalanced data. However, the effect

of unbalanced data is only meaningful to the extent that it is distinct from the effect for

balanced data. Because a comprehensive treatment of the contrast between balanced and

unbalanced data was beyond the scope of this project, but some treatment is important,

in this section I provide a brief overview of the effect of balanced data on model 2. Full

results for balanced data PRB are presented in Table 5.3, RMSE results are presented

in 5.7, and graphical results are provided in appendix 1b. As expected, bias was greatly

reduced when balanced data were analyzed. Across both estimators, covariance matrix

conditions and sample sizes, balanced data estimates were much less biased and exhibited

far lower RMSE than those observed for unbalanced data.

As observed in figure 5.19, under balanced data, bias exceeded ±10% for only

τ11 & τ32, and then only for FML, and only when 15 ISUs were sampled with 30 obser-

vations per ISU. However, as described in Table 3.2, under balanced data many more

cells were accepted for analysis because of the higher rates of convergence and proper

solutions observed. Figure 5.21 indicates that when analyzed cells were equated across

data types, balanced data never exhibited bias exceeding ±10% under T1. As can be

seen in figure 5.22, under T2, when analyzed cells were equated, balanced data exhibited

very low bias, with only three estimates of τ11 exceeding ±10% , and only for FML.

3.5 Meta-Model Results

For each estimated covariance parameter, general linear models were fit predicting

variability in estimation error from the ISU effect, observations effect, and estimator

effect, along with all possible two way interactions. Because the simulation design over-
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powers tests of point estimates of model effects, meta-model results are restricted to

effect size estimates. Model R2 values are presented in Tables 3.4, 3.5, 3.6. Effects

were generally small. Investigation of within-cell variance in estimation error indicated

that cell variances ranged from approximately 8 to 20 times greater than cell means. Be-

cause Within-cell variance in estimation error exceeded between cell variance, multiple

R2 estimates were generally low.

Table 3.4: Meta-Model Results: Model 1

Meta Model Multiple R2

Parameter T1 T2

σ2 0.036 0.028

τ11 0.097 0.087

Table 3.5: Meta-Model Results: Model 2

Meta Model Multiple R2

Parameter T1 T2

σ2 0.009 0.001

τ11 0.013 0.009

τ21 0.004 0.002

τ22 0.007 0.004

τ31 0.003 0.002

τ32 0.001 0.001

τ33 0.009 0.005
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Table 3.6: Meta-Model Results: Model 3

Meta Model Multiple R2

Parameter T1 T2

σ2 0.008 0.005

τ11 0.035 0.028

τ21 0.013 0.007

τ22 0.02 0.014

τ31 0.006 0.004

τ32 0.002 0.003

τ33 0.023 0.016

3.6 Covariance Parameter Bias

This section details the bias observed in parameter estimates of covariance compo-

nents (variances and covariances). Five effects believed to impact severity of bias are

considered: Number of ISUs sampled, number of observations sampled per ISU, esti-

mator, covariance matrix magnitude, and model complexity. Recall that the ISU effect

was parameterized with four levels, 15, 30, 60, & 120 ISUs. The observations effect was

parameterized under an unbalanced model of thirds. Initially, 15, 30, 60, & 120 observa-

tions were allocated to each ISU. Which were then subjected to conditional elimination

resulting in average observations per ISU of 10, 20, 40, & 80 respectively. Therefore,

rather than referring to the observations allocated under balanced data, throughout the

results section, when observations are referenced, they are referred to in terms of what

the average observations per ISU is in a given condition. The estimator effect had two

levels: FML and REML. The covariance matrix magnitude effect was tested by ma-

nipulating the generating matrix for the covariance matrix of random effects. The first
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generating matrix, T1, had elements of large magnitude, and the second, T2, had el-

ements of small magnitude. Model complexity was manipulated with three models: a

random effects ANOVA (model 1); a random effects regression model with an intercept

and two predictors, each having a fixed and random component (model 2); and a ran-

dom effects regression model with six predictors: an intercept and two predictors, each

having fixed and random components, a level 2 predictor, and the two estimable cross

level interactions (model 3).

The results are initially described within model by estimator and across covariance

matrix, and then within model by estimator and sample size across covariance matrix.

3.6.1 The Covariance Matrix, Estimator, and Model Complexity Effect

Figures presented in this section detail the relationship between the estimator effects

and differences as a function of the covariance matrix effect. FML and REML bias values

are plotted against one another. REML bias is plotted along the vertical axis and FML

bias is plotted along the horizontal axis. The horizontal line emanating from the REML

axis indicates zero REML bias, while the vertical line emanating from the FML axis

indicates zero FML bias. Bias values falling on the intersection of the two zero bias lines

indicates zero bias for a specific covariance parameter in a given condition. A 45◦ line is

overlaid and the points that fall on the line indicate where FML and REML bias estimates

are identical. For PRB plots a green square demarcates the thresholds indicative of excess

or problematic bias levels. Bias values outside of the green square along the vertical axis

are estimates for which REML bias exceeds ±10%, while values outside the green square

along the horizontal axis are estimates for which REML bias exceeds ±10%, and values

outside the green square along both axes indicate excess bias in both estimators. Because

some population values were less than 1, raw bias plots were examined to determine any

effect of the relative bias metric on results. Though in a few cases the relative bias was

different from raw bias, PRB never produced outliers, and observed discrepancies were

consistent with expectations. Specifically, they were restricted to parameters with the
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smallest generating values. Given the general consistency between relative and raw bias,

and the advantage of the interpretable metric associated with the relative bias metric,

emphasis was placed on the relative bias findings.

Model 1

Under T1, REML PRB values ranged from -8 to 2.8, while FML PRB values ranged

from -17.2 to 2.8; no REML estimates exceeded 10% bias, while 2 FML estimates exceeded

10% bias. Under T2, bias was more extreme, with REML PRB values ranging from -18.7

to 2.6, and FML PRB values ranging from -30.3 to 2.4; three REML estimates exceeded

10% bias and 7 FML estimates exceeded 10% bias. As observed in figure 3.1 and 3.2,

REML and FML estimates of σ2 were identical and exhibited trivial degrees of bias.

There was no effect for covariance matrix on this parameter because the log likelihoods

(both REML and FML) used in SAS’ Mixed procedure profile out the residual variance,

ensuring independence of the residual variance and covariance matrix of random effects.

Profile estimation ensured that FML and REML estimates would be identical because

the closed form estimator is identical across the two likelihoods. The random intercept

parameter exhibited a different and slightly more complex pattern of bias. Though both

FML and REML estimates of τ11 were uniformly negatively biased, the bias was more

severe for FML under both T1 and T2. Compared to T1, T2 estimates of τ11 exhibited a

much greater degree of bias. Examination of raw bias (see figures 3.3 and 3.4) revealed

that the patterns observed in the relative bias metric were somewhat inconsistent with

the raw bias metric. Whereas T2 raw bias levels were lower than T1 raw bias levels, T2

PRB levels were greater than T1 PRB levels. However, no extreme cases were produced

in the PRB metric because the generating values for τ11 were both greater than 1. At the

same time, because the T2 generating value was 1
3

the magnitude of the T1 value, the

PRB values under T2 were necessarily more extreme than the T1 values, all else being

equal.
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Figure 3.1: Random Effect PRB Model 1 T1 REML & FML
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Figure 3.2: Random Effect PRB Model 1 T2 REML & FML
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Figure 3.3: Random Effect Raw Bias Model 1 T1 REML & FML
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Figure 3.4: Random Effect Raw Bias Model 1 T2 REML & FML
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Model 2

Under T1, REML PRB values ranged from -4.7 to 6.3, while FML PRB values ranged

from -14.8 to 4.1; no REML estimates exceeded 10% bias, while four FML estimates ex-

ceeded 10% bias. Under T2, bias was more extreme, with REML PRB values ranging

from -12.2 to 55.2, and FML PRB values ranging from -18.7 to 38.8; three REML es-

timates exceeded 10% bias and 5 FML estimates exceeded 10% bias. As can be seen

in figure 3.5, under T1, FML was consistently negatively biased, with several values

exceeding the threshold defining severe bias, while REML displayed a symmetric distri-

bution of bias about zero, with no values exceeding the threshold defining severe bias.

Though some substantial bias was observed in FML, there did not appear to be any

extreme cases, indicating that the relative bias metric did not distort or exaggerate the

magnitude of the observed bias. This was confirmed when figure 3.5 was contrasted

with raw bias contained in figure 3.7. Both plots lead to the same conclusion regarding

estimator performance within T1. Given that T1 was the generating matrix of large

values, with no generating value less than 1, this finding was not surprising. Findings for

T2, presented in figures 3.5 and 3.7 lead to different conclusions, both with regard to

performance of the estimators and the influence of the relative bias metric on findings.

As observed in both figures, FML exhibited the substantial negative bias observed under

T1, however, for some parameters, so too did REML. However, REML bias was gener-

ally symmetrically distributed about zero. Unlike T1 PRB, contrasting figures 3.6 and

3.8 indicated that under T2, the relative bias metric appeared to exaggerate the bias ef-

fect. Specifically, the two most extreme PRB values corresponded to the two parameters,

τ31 & τ32, which had the smallest generating values, .9 & .3 respectively. If there were

two parameters for which the relative bias metric could be expected to produce any ex-

treme cases it would be these. Thus, the degree of bias observed for τ31 & τ32 was likely

a combination of some bias and the exaggerating effect of PRB applied to parameters

having small generating values.
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Figure 3.5: Random Effect PRB Model 2 T1 REML & FML
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Figure 3.6: Random Effect PRB Model 2 T2 REML & FML
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Figure 3.7: Random Effect Raw Bias Model 2 T1 REML & FML
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Figure 3.8: Random Effect Raw Bias Model 2 T2 REML & FML
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Model 3

Under T1, REML PRB values ranged from -12.9 to 9, while FML PRB values ranged

from -18.8 to .9. Under T2, bias was more extreme, with REML PRB values ranging

from -73.5 to 14.2, and FML PRB values ranging from -81.1 to 6.3. Under model 3,

extreme bias values tended to be negative, whereas under model 2 extreme values tended

to be positive. As demonstrated in figure 3.9, under T1 only one REML estimate

exceeded 10% bias, whereas 11 FML estimates exceeded 10% bias. Under T2, seven

REML estimates exceeded 10% bias, while 16 FML estimates exceeded 10% bias. Figure

3.10 demonstrates that under T2, the extreme positive bias associated with τ32 observed

in model 2 was replaced with extreme negative bias in model 3. The negative bias trend

was not unique to τ32. Under T2 the trend was observed in all covariance parameters.

However, as with model 2, the covariances under T2 were associated with generating

values less than 1, consequently, it is no surprise that extreme cases observed in the PRB

plots were exclusively associated with covariance parameters. Examination of figures

3.11 and 3.12 revealed that the relative bias metric reversed the trend observed in the

raw bias metric. T2 raw bias exhibited lower dispersion than T1 raw bias, but, as already

discussed, T2 PRB exhibited greater dispersion than T1 PRB. This increased dispersion

was a direct result of the relative bias metric, observed in covariances, whose generating

values were less than 1, and thus an expected result of the relative bias metric.
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Figure 3.9: Random Effect PRB Model 3 T1 REML & FML
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Figure 3.10: Random Effect PRB Model 3 T2 REML & FML
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Figure 3.11: Random Effect Raw Bias Model 3 T1 REML & FML
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Figure 3.12: Random Effect Raw Bias Model 3 T2 REML & FML
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3.6.2 Conditioning Upon ISUs and Observations: The Covariance Matrix,

Estimator, and Model Complexity Effect

Figures presented in this section detail how the covariance matrix, estimator and

model complexity effects vary over increasing ISUs and observations. Within a covariance

matrix condition and model, casement plots graph the change in PRB (plotted along

the ordinate) across increasing ISUs (plotted along the abscissa). Each sub-plot in the

casement plot corresponds to a given average observations condition. Within each sub-

plot, as many as three horizontal lines are overlain. In every graph a zero bias line

is inserted; for graphs in which PRB only exceeds −10%, a line demarcating −10% is

overlain; for those in which PRB only exceeds 10%, a line demarcating 10% is overlain;

and for those in which PRB exceeds ±10%, lines demarcating ±10% are overlain. PRB

values exceeding the lines demarcating ±10% are considered problematic.

Model 1

As can be seen in figures 3.13 and 3.15, PRB for the residual variance parameter,

σ2, was the same across estimators, and uniformly low, never exceeding 4% bias in any

sample size condition. Conversely, as demonstrated in figures 3.14 and 3.16, even for

a relatively simple model like model 1, substantial bias was observed in estimates of τ11.

As seen previously, FML was more negatively biased than REML. Though the literature

acknowledges REML bias under unbalanced data (Demidenko, 2004), for a simple model

like model 1, REML only exhibited excess bias in finite sample sizes. When sample

size was large (120 ISUs), REML appeared unbiased, with FML only slightly biased.

Bias levels appeared greater across covariance matrices as well, with more extreme bias

observed under T2 than under T1. Nonetheless, patterns of bias were consistent with

expectation: bias decreased as sample size increased, and FML was uniformly more biased

than REML. Full results for this model are contained in Table 3.1. Neither REML nor

FML estimates of σ2 ever exhibited bias levels exceeding 10% for any model, covariance
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matrix, or sample size, and are not discussed further.

Under T1, when 15 ISUs were sampled with an average of 10 or 20 observations per

ISU, FML estimates of τ11 exhibited PRB levels exceeding 10%. Results described for

τ11 can be seen in figure 3.17. Full details are given in Table 3.1. Only FML estimates

exhibited problematic levels of PRB; all REML estimates were biased by less than 10%.

Figure 3.13: σ2 PRB Model 1 T1 REML & FML
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Figure 3.14: τ11 PRB Model 1 T1 REML & FML
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Full Results for T2 are presented in figure 3.16 and Table 3.2; bias levels exceeding

10% are described in detail below. Both FML and REML estimates of τ11 exhibited

problematic PRB levels. FML bias exceeded 10% whenever 15 ISUs were sampled, no

matter how many observations (average observations of 10, 20, 40, or 80 per ISU) were

sampled. When 30 ISUs were sampled with an average of 10 or 20 observations per ISU,

FML bias exceeded 10%. When 60 ISUs were sampled with an average of 10 observations

per ISU, FML bias exceeded 10%. When 15 ISUs were sampled with an average of 10 or

20 observations per ISU, REML bias exceeded 10%. When 30 ISUs were sampled with

an average of 10 observations per ISU, REML bias exceeded 10%. FML was always more

negatively biased than REML, but, consistent with theory, REML was not unbiased,

simply less negatively biased than FML.
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Figure 3.15: σ2 PRB Model 1 T2 REML & FML
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Figure 3.16: τ11 PRB Model 1 T2 REML & FML
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Model 2

Results were more complicated to interpret under model 2. Except for a few co-

variances that exhibited severe positive bias (see figures 3.26 and 3.27), REML was

uniformly less biased than FML. However, given the values observed in figures 3.26 and

3.27, it is more accurate to say that REML was more positively biased then FML, and

when parameter estimates were negatively biased, as variance components tended to be,

REML appeared to be the less biased estimator. But when the parameter estimates

were positively biased, as covariances sometimes were, REML appeared to be the more

biased estimator. Though some covariance components exhibited inconsistent trends in

bias across increasing ISU sizes, overall, bias monotonically decreased for all variance

and covariance components as the number of ISUs sampled increased. Of interest was

the scarcity with which REML bias values exceeded 10%, especially given the frequency

with which FML bias exceeded 10% in model 1. Recall however, that in model 1, all

bias values exceeding 10% occurred whenever an average of 10 or 20 observations were

sampled per ISU. In Model 2, as in model 3, those cells were excluded from analysis when

few ISUs were sampled due to high rates of non-convergence, which reduced the chance

of observing excessive bias levels because the excluded cells were the cells in which bias

levels were expected to be greatest.

Under T1, FML estimates of τ11, τ21, & τ22 were biased by more than 10%, and are

the focus of discussion here. Results described for τ11 can be seen in figure 3.17; for

τ21, in figure 3.18; for τ22, in figure 3.19. Full details are given in Table 3.5. When

15 ISUs were sampled with an average of 40 or 80 observations per ISU, FML estimates

of τ11, τ21, & τ22 exhibited negative bias exceeding 10%. Under T1, REML estimates

never exhibited bias exceeding 10%; all covariance components were unbiased based on

the criterion set forth for this study.
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Figure 3.17: τ11 PRB Model 2 T1 REML & FML
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Figure 3.18: τ21 PRB Model 2 T1 REML & FML
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Figure 3.19: τ22 PRB Model 2 T1 REML & FML
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Figure 3.20: τ31 PRB Model 2 T1 REML & FML
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Figure 3.21: τ32 PRB Model 2 T1 REML & FML
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Figure 3.22: τ33 PRB Model 2 T1 REML & FML
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Under T2, FML estimates of τ11, τ21, τ31, & τ32 were biased by more than 10%, and

are the focus of discussion here. Results described for τ11 can be seen in figure 3.23; for

τ21, in figure 3.24; for τ31, in figure 3.26; and for τ32, in figure 3.27. Full details are given

in Table 3.6. When 30 ISUs were sampled with an average of 20 observations per ISU,

FML estimates of τ11, τ21, & τ31 were biased by −10% or more, while FML estimates of

τ32 were biased by +10% or more. When 120 ISUs were sampled with an average of 10

observations per ISU, FML estimates of τ32 exhibited bias exceeding −10%. Under T2,

when 30 ISUs were sampled with an average of 20 observations per ISU, REML estimates

of τ31 were biased by −10% or more, while REML estimates of τ32 were biased by +10%

or more. As with FML estimates, when 120 ISUs were sampled with an average of 10

observations per ISU, REML estimates of τ32 exhibited bias exceeding −10%, however,

FML estimates were slightly more negatively biased than REML estimates.
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Figure 3.23: τ11 PRB Model 2 T2 REML & FML
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Figure 3.24: τ21 PRB Model 2 T2 REML & FML
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Figure 3.25: τ22 PRB Model 2 T2 REML & FML
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Figure 3.26: τ31 PRB Model 2 T2 REML & FML
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Figure 3.27: τ32 PRB Model 2 T2 REML & FML
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Figure 3.28: τ33 PRB Model 2 T2 REML & FML
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Model 3

Under T1, when 15 ISUs were sampled, even with an average of 80 observations

sampled per ISU, FML bias always exceeded −10% for every variance and covariance

parameter. When 30 ISUs were sampled with an average of 20 observations per ISU,

FML estimates of τ11, τ21, τ22, & τ32 were biased by −10% or more. When 30 ISUs

were sampled with an average of 40 observations per ISU, FML estimates of τ21 were

biased by −10% or more. Sampling 60 ISUs with an average of 10 or 20 observations per

ISU resulted in FML bias exceeding −10% for τ21 Unlike FML, under T1, only REML

estimates of τ32 exhibited bias of −10% or more, and only when 30 ISUs were sampled

with an average of 20 observations per ISU.
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Figure 3.29: τ11 PRB Model 3 T1 REML & FML
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Figure 3.30: τ21 PRB Model 3 T1 REML & FML
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Figure 3.31: τ22 PRB Model 3 T1 REML & FML
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Figure 3.32: τ31 PRB Model 3 T1 REML & FML
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Figure 3.33: τ32 PRB Model 3 T1 REML & FML
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Figure 3.34: τ33 PRB Model 3 T1 REML & FML
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Under T2, When 30 ISUs were sampled with an average 40 observations per ISU,

FML bias for τ11, τ21, τ22, & τ32 exceeded −10%. When 30 ISUs were sampled with an

average 80 observations per ISU, FML bias for τ21 & τ32 exceeded −10%. When 60 ISUs

were sampled with an average of 10 or 20 observations per ISU, FML bias for τ11 & τ32

exceeded −10%. When 60 ISUs were sampled, no matter how many observations were

sampled per ISU (whether an average of 10, 20,40, or 80 observations were sampled per

ISU), FML bias for τ21 exceeded 10%. FML bias for τ31 exceeded 10% when 60 ISUs were

sampled with an average of 10 observations per ISU. When 120 ISUs were sampled with an

average of 10 observations per ISU, FML bias for τ11, τ21, & τ32 exceeded −10%. When

30 ISUs were sampled with an average of 40 observations per ISU, REML bias for τ32

exceeded −10%. REML bias for τ21, τ31, τ32 & τ33 exceeded 10%, but only when 60 ISUs

were sampled with an average of 10 observations per ISU. When 60 ISUs were sampled

with an average of 20 observations per ISU, REML bias exceeded 10% for τ33 & τ21.

When 120 ISUs were sampled with an average of 10 observations per ISU, REML bias

for τ32 exceeded −10%.
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Figure 3.35: τ11 PRB Model 3 T2 REML & FML
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Figure 3.36: τ21 PRB Model 3 T2 REML & FML
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Figure 3.37: τ22 PRB Model 3 T2 REML & FML
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Figure 3.38: τ31 PRB Model 3 T2 REML & FML
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Figure 3.39: τ32 PRB Model 3 T2 REML & FML
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Figure 3.40: τ33 PRB Model 3 T2 REML & FML
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3.6.3 Summary

Model 1

In model 1 when the generating covariance matrix was composed of large elements

(i.e. T1), excessive bias was only observed in the smallest samples for FML estimates,

and never for REML estimates. When the generating covariance matrix was composed

of small elements (T2), excessive bias was not restricted to the smallest sample sizes,

and could be observed in moderate to large sample sizes (i.e. FML estimates of τ11

when 60 ISUs were sampled with an average of 80 observations per ISU). In contrast,

REML estimates remained unbiased except for the smallest of sample sizes (i.e. when

15 ISUs were sampled with an average of 10 or 20 observations per ISU, or 30 ISUs

were sampled with an average of 10 observations per ISU). As observed in the FML

bias results, when few ISUs were sampled (fifteen in this case), no matter how many

observations were sampled per ISU, bias remains a problem. These results are consistent

with the simulation findings of Mok (1995) and the theoretical work of Demidenko (2004).

Model 2

When the generating covariance matrix of random effects was composed of large

elements, T1, results were similar to model 1. However, there was a noticeable model

complexity effect: because many more parameters were estimable, many more biased es-

timates were observed. Specifically, FML bias for multiple parameters, mostly variances,

exceeded 10%, but only in the smallest sample sizes, and REML did not exhibit any

excessive bias.

When the generating covariance matrix was composed of small elements, T2, results

were again similar to model 1, only more complex. FML estimates of all covariances were

biased by 10% or more, but only one variance, τ11, was biased by 10% or more. FML bias

was mostly restricted to the second smallest sample size: when 30 ISUs were sampled

with an average of 20 observations per ISU. However, even when 120 ISUs were sampled
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with an average of 10 observations per ISU, FML estimates of τ32 remained quite biased.

REML bias was restricted to covariances, and specifically to the two covariances with

the smallest generating values of all elements in T2: τ31 & τ32, each having generating

values less than 1. The most severe bias associated with these parameters occurred in

the smallest sample size. As with FML, REML estimates of τ32 exhibited substantial

bias even when 120 ISUs were sampled, so long as few observations were sampled per

ISU.

Other than the cases described, FML and REML estimates of variances and co-

variances appeared well behaved, with little bias. What little bias existed consistently

decreased as ISUs increased. FML PRB decreased more than REML PRB, primarily

because FML PRB exceeded REML PRB, and thus had more room for improvement

than did REML.

FML estimates of covariance components (variances and covariances) were uniformly

more negatively biased than REML estimates. When covariance component estimates

exhibited positive bias FML estimates were less biased than REML estimates. It is rou-

tinely stated in the literature (Demidenko, 2004) that REML estimates are less biased

than FML estimates. It appears as though this is only the case for negatively biased

estimates. It is, therefore, more accurate to state that REML is more positively biased

than FML estimates, and when estimates are negatively biased REML appears less bi-

ased than FML, but when estimates are positively biased REML appears more biased

than FML. Thus, the estimators maintain their relative ranking in bias and the better

estimator, in terms of bias, varies as a function of the direction of bias associated with

the estimates.

When balanced data were analyzed, and analyzed cells were equated to those ana-

lyzed under unbalanced data, bias was dramatically reduced. Under T1, neither REML

nor FML exhibited bias exceeding 10%, though FML was consistently more negatively

biased than REML, and REML exhibited near-zero bias; even when only 15 ISUs were
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sampled. Under T2, REML bias never exceeded 10%, and FML only did so for τ11. No

matter whether 30, 60, or 120 observations were sampled per ISU, whenever 15 ISUs

were sampled, FML bias exceeded 10%,.

Model 3

As with model 1, no matter how many observations were sampled per ISU, FML

estimates of every covariance component were excessively biased when 15 ISUs were

sampled. Thus, with very few ISUs, increasing the number of observations sampled

per ISU was insufficient to offset the bias induced in the FML covariance component

estimates. Though excessive bias was observed in larger sample sizes, consistent with

simpler models, the majority of the problematic bias was restricted to the smaller sample

size cells. In fact, excess bias occured for only one parameter, τ21, when 60 ISUs were

sampled, and then, only when an average of 10 or 20 observations were sampled per ISU.

Consistent with model 2 findings, excess bias in REML estimates was restricted to

covariances, τ32, and this bias only appeared in a single cell of the design. Thus, even in

complex models, REML was a robust estimator of covariance components.

Under T2, in contrast to simpler models, excessive bias was not restricted to smaller

sample sizes, and was observed across a wide range of sample sizes, many involving

large numbers of ISUs as well as many observations per ISU. Whereas under simpler

models, FML bias was generally restricted to conditions in which few ISUs (15 or 30) were

sampled, under model 3, excess FML bias was routinely observed in several parameters

when 60 ISUs were sampled. Moreover, FML bias exceeded the threshold of 10% for all

parameters, save τ33. Thus, as model complexity increased, excess FML bias was more

pervasive and less easily remedied by sampling large but reasonable numbers of ISUs.

Whereas FML estimates of nearly all variances and covariances exhibited bias ex-

ceeding 10% for at least one sample size, REML estimates exhibited bias exceeding 10%

for only one variance, τ33, at only one sample size. Other than τ33, REML estimates

exhibiting substantial bias under T2 were restricted to covariances, as was observed for
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model 2. However, under model 3, as with FML, the range of sample sizes at which

REML bias exceeded 10% was much wider, with many bias values exceeding 10% when

60 and 120 ISUs were sampled, so long as few observations were sampled per ISU (an

average of 10 per). This effect was unique to model 3, and most salient when covariance

component generating values were small, and only under the relative bias metric.

3.7 Covariance Component RMSE

In this section the root mean squared error (RMSE) of the estimators is contrasted

across covariance components, covariance matrices, sample sizes, and models. Prior

simulation and theoretical work has demonstrated that for some models, REML, though

uniformly less biased than FML, may exhibit greater RMSE than FML for certain models

as model complexity increases (Corbeil & Searle, 1976). This is consistent with theoretical

work by Demidenko (2004) demonstrating that REML is not a true likelihood, and thus

does not possess the asymptotic property of efficiency that FML does. RMSE is a function

of the squared bias and the sampling variance of the estimator. A necessary consequence

of these facts is that for two equally biased estimates, RMSE is a measure of efficiency,

upon which we would expect FML to outperform REML. As will be seen, for most models

this is the case, but only slightly, and only for complex models.

Plots presented in the following section plot REML RMSE and FML RMSE against

one another. REML RMSE is plotted along the abscissa, and FML RMSE is plotted

along the ordinate. A 45◦ line is overlaid, and points falling on the line indicate when

REML RMSE and FML RMSE are equivalent. Points falling below the line indicate

when FML RMSE exceeds REML RMSE, points falling above the line indicate when

REML RMSE exceeds FML RMSE. Plots for the sample size effect are presented in

appendix 3 and are not discussed here. Discussion of the sample size effect on RMSE

is omitted because there was a relatively simple and consistent pattern in the results:

REML RMSE and FML RMSE values generally coincided, deviations from equality were

relatively small, and only occur with a magnitude of interest when 15 ISUs were sampled.
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3.7.1 Model 1 RMSE

As can be seen in figure 3.41, under T1, when FML RMSE and REML RMSE values

departed from equality, it was FML that had higher values. However, this was only for

τ11, and for only a subset of the design cells. For virtually all cells of the design, RMSE,

for estimates of σ2, coincided between estimators; the same was true for estimates of τ11

when 30 or more ISUs were sampled.
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Figure 3.41: Random Effect RMSE Model 1 T1 REML & FML

Results presented in figure 3.42 for T2, are identical to those observed in figure 3.41,

except that the magnitude of the observed RMSE was shrunken toward zero, and few

values deviated from equality. However, as with figure 3.41, when REML RMSE and

FML RMSE deviated from equality, it was FML RMSE that exceeded REML RMSE.
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Figure 3.42: Random Effect RMSE Model 1 T2 REML & FML

95



3.7.2 Model 2 RMSE

Under T1 (see figure 3.43), REML RMSE and FML RMSE values were rather coin-

cident. Though departures from equality occurred in both directions (REML exceeding

FML and vice versa), generally, REML RMSE exceeded FML RMSE. Thus, the effect

of estimator observed under model 1 was reversed in model 2. The inconsistency of the

estimator effect on RMSE was not a new discovery,(see parameters τ11 & τ22), exhibit-

ing substantial RMSE. In the bias results, covariances tended to be most biased of all

parameters, however, variances exhibited greater levels of RMSE than did covariances.
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Figure 3.43: Random Effect RMSE Model 2 T1 REML & FML

Similar to the results observed under model 1, figure 3.44 demonstrates that when

the generating matrix of random effect covariances was composed of small elements,

RMSE values were much less dispersed than they were when the generating matrix was

composed of large values. Observed maximum values under T2 were nearly half the

maximum values observed under T1. In addition to lower dispersion, departures from
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equality were less frequent and substantial across estimators.

Figure 3.44: Random Effect RMSE Model 2 T2 REML & FML
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3.7.3 Model 3 RMSE

Values of RMSE obtained under T1 are displayed in figure 3.45. Trends observed in

RMSE were similar to those observed in model 2. REML RMSE and FML RMSE values

were highly correlated, and though FML RMSE sometimes exceeded REML RMSE,

it was much more common for REML RMSE to exceed FML RMSE. Another trend

observed in model 3 RMSE under T1, that was consistent with model 2 RMSE obtained

under T1, was the difference between variances and covariances. As in model 2, variances

exhibited the largest RMSE, particularly estimates of τ11 & τ22.

99



Figure 3.45: Random Effect RMSE Model 3 T1 REML & FML

As in model 2, figure 3.46 demonstrates that model 3 RMSE values observed under

T2 were much less dispersed than those observed under T1. Maximum RMSE values

under T2 were approximately half the maximum values observed under T1.
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Figure 3.46: Random Effect RMSE Model 3 T2 REML & FML
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3.7.4 Summary

The RMSE effect can be interpreted more succinctly than the bias effect. Estimators

differed in RMSE only at the smallest sample sizes, otherwise estimators could not be

differentiated on RMSE. When the estimators differed in RMSE, the most substantial

differences were observed when REML RMSE exceeded FML RMSE. Consistent with

previous research (Corbeil & Searle, 1976), the estimator effect varied as a function

of model complexity. In the case of model 1, FML RMSE exceeded REML RMSE,

but under model 2 and model 3, REML RMSE generally exceeded FML RMSE. When

population covariance parameters were large (T1) RMSE values were much larger than

when population covariance parameters were small (T2) for both estimators. In both

model 2 and model 3, variances exhibited higher RMSE values than did covariances.

When data were balanced, lower dispersion was observed in RMSE for both estimators

than when data were unbalanced. However, REML and FML differed in the magnitude of

RMSE for τ11 when data were balanced, such that FML RMSE exceeded REML RMSE.
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CHAPTER 4

Conclusions

The goal of this study was to provide researchers, both applied and quantitative,

with information on the behavior of the two most common estimators for linear mixed

effect model parameters under realistic data conditions. Heretofore, simulation work has

focussed exclusively on unrealistically simple models and balanced data. Both of these

facets have limited the generalizability of previous findings because researchers often fit

complex models and rarely, if ever, have access to balanced or complete data. Criticism

of preceding studies must be qualified by the fact that only one of the cited simulation

studies, Hox and Maas (2002), was completed after the development of standard soft-

ware routines for estimating complex models. Thus, the ability to test complex models

under realistic data conditions was limited by the state of the art. While at the time

these studies provided valuable information on models that were estimable and esti-

mated then, advances in software have allowed researchers to fit more complex models,

thus rendering the findings less applicable to current practice. However, to the extent

that applied researcher’s models conform to the conditions examined in the preceding

studies, information contained in those studies is useful.

Two effects were observed for sample sizes in this study. The first relates to con-

vergence: when very few ISUs (15) were sampled and model complexity was moderate

(model 2) or substantial (model 3), rates of non-converged and improper solutions were

so high that bias was of little concern given that estimates worth interpreting were never

likely to be observed. Doubling the sampled ISUs to 30, permitted assessment of the sec-



ond sample size effect: consistent with the findings of Mok (1995), results indicated that

bias was most problematic when few ISUs were sampled. Even so, there was a noticeable

effect for the number of observations sampled per ISU in moderating the degree of bias.

However, sampling few ISUs resulted in high degrees of bias, in most cases, irrespective

of the number of observations sampled per ISU.

Model complexity also impacted the effects of ISUs. As model complexity increased,

the number of ISUs required before bias ceased to be problematic, increased. An anomaly

observed in the results involved inconsistencies across models in the effect of sampling

many observations per ISU when few ISUs were sampled. Models 1 and 3, but not model

2, had parameters for which, when a certain number of ISUs were sampled, excessive

bias was observed, no matter how many observations were sampled per ISU. Given that

model 2 was more complex than model 1 and model 3 was more complex than model

2, one would have expected model 2 to exhibit the same effect. Preferably there would

have been some monotonic relationship between model complexity and the number of

ISUs sampled at which, no matter how many observations were sampled per ISU, bias

remained substantial. In all likelihood, it is not that the phenomenon did not occur

for model 2, but rather that the number of ISUs for which the phenomenon would be

observed was not sampled in this study. For model 1, 15 ISUs were sufficiently low to

observe the phenomenon; for model 3, 60 ISUs were sufficient to observe the phenomenon;

for model 2, given that the phenomenon was not observed at 30 ISUs, as might have been

expected, the number of ISUs required to observe the phenomenon was likely somewhere

between 15 and 30.

As previously stated, the impact of sample size on RMSE was relatively straightfor-

ward. RMSE values were highest when very few ISUs were sampled, but decreased rather

quickly as increasing numbers of ISUs were sampled. REML RMSE and FML RMSE

were coincident for the most part, but when few ISUs were sampled, REML tended to

exhibit slightly higher values of RMSE. The small amount by which REML RMSE ex-
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ceeded FML RMSE, and the few cells in which this occurred was insufficient to require

qualifying the endorsement of REML estimation in finite samples. Taken together, the

substantial gains in bias reduction obtained from REML when few ISUs were sampled,

and the rare and negligible increase in RMSE associated with REML when few ISUs were

sampled, suggested that in finite samples REML may be the preferred estimator.

As with sample size, the covariance matrix effect can be decomposed into two main

effects: the impact on convergence and the impact on bias. As Tables 3.1 and 3.3

demonstrate, rates of non-convergence tended to be higher under T2 than under T1.

Under model 2, T2 had 2.3 times more cells excluded from analysis because of excessive

non-convergence rates than did T1. Under Model 3, T2 had 1.5 times more cells excluded

from analysis because of excessive non-convergence rates than did T1. In addition, the

results of this study elucidated an interesting phenomenon associated with the relative

bias metric for T1 and T2. In the raw bias metric, T2 bias exhibited less dispersion than

did T1 bias, however, in the relative bias metric, T2 PRB exhibited greater dispersion

than did T1 PRB. The phenomenon was generally associated with covariances, which,

under T2, had small generating values (only one of the three generating values was larger

than 1, and then, only slightly). Use of the relative bias metric when parameters have

small generating values can make bias effects appear more severe than trends observed in

raw bias. For cases in which concern existed about the potential misleading effect of the

relative bias metric, raw bias results were presented. Generally, there was no difference

in the relative ranking of the estimators, and the main effect of the relative metric was

to render more salient the existing effects for parameters.

Irrespective of model complexity, if few ISUs were sampled, FML PRB could exceed

10% even with many observations per ISU, as many as an average of 80 per ISU. Thus,

as far as covariance components were concerned, no matter how many observations were

sampled per ISU, when few ISUs were sampled, point estimates could be severely biased.

These findings were consistent with those of Mok (1995) in the case of balanced data.
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On the other hand, REML estimates rarely exceeded 10% bias, even when few ISUs

were sampled, especially when covariance components were large (T1). When covariance

components were small (T2) REML was less robust when few ISUs were sampled. For

Model 1, REML estimates never exceeded 10% under T1, whereas under T2 REML

estimates of τ11 exceeded 10%, but only under the three smallest sample size conditions:

when 15 ISUs were sampled with an average of 10 or 20 observations per ISU, and

when 30 ISUs were sampled with an average of 10 observations per ISU. For Model 2,

REML estimates never exceeded 10% except for estimates of τ31 and τ32, but only under

T2. For model 3, REML estimates never exceeded 10% except for T1 estimates of τ32,

and T2 estimates of τ21, τ31, τ32, and τ33. Thus REML PRB was problematic, but this

was primarily isolated to covariances, and generally only in the smallest sample sizes.

The incidence of both problematic REML and FML PRB values increased with model

complexity. Lastly, the incidence of problematic PRB was much lower in REML than it

was in FML.

REML estimates were uniformly less biased than FML estimates so long as estimates

exhibited negative bias (as covariance components tend to be). In addition, REML

estimates exhibited only slightly more RMSE than did FML estimates, but only when

15 ISUs were sampled and only for complex models. Bias and RMSE measure distinct

aspects of estimators. Bias measures the average discrepancy between an estimator

and the population value over repeated samples. Thus, researchers committed to a

cumulative science, in which sequences of studies replicate a given design in order to

determine the stability theoretically meaningful effects, may emphasize bias more than

RMSE when selecting estimators. RMSE is a function of the squared bias and the

sampling variance of the estimator, and measures the dispersion about the population

value for a given estimator. Thus researchers interested in using an estimator that will,

in a given replication, likely provide estimates close to the population values should

use RMSE as their criterion for estimator selection. To the extent that variance across
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studies is great in both design and analysis in psychological applications, bias may be

the less optimal measure when selecting estimators. Fortunately, of the linear mixed

model estimators considered in this study, both bias and RMSE generally suggested that

REML was the optimal estimator. When bias and RMSE disagreed, they did so only

slightly. REML as nearly always favored by bias, and in the few cases where RMSE

favored FML, it did not do so by much. In those cases of disagreement, combining the

overwhelming advantage of REML in terms of bias with the negligible decrements in

RMSE lead to the same conclusion, REML was the better estimator in finite samples

for linear mixed models where data were consistent with model assumptions. However,

given the excess within-cell variability observed in the meta-model results, the difference

in REML and FML may not be meaningful in a statistical sense. Therefore, no definitive

or strong endorsement of one estimator over another can be made based upon the results

presented in this study.

A consistent trend observed in the bias results was the reversal of effects as a function

of changes in metric. Specifically, in the raw bias metric, T2 bias estimates exhibited

less dispersion than did T1 bias estimates. However, under the relative bias metric, T2

PRB estimates exhibited greater dispersion than did T1 PRB estimates. The greater

dispersion, some cases qualifying as extreme cases, in the T2 PRB estimates were uni-

versally associated with covariances and not variances in model2 and model 3, but for

model 1, even the random intercept variance exhibited greater dispersion under T2 than

under T1. The most likely cause of this phenomenon was that the T2 generating values

were all smaller than the T1 generating values. Under model 1, the random intercept

variance generating value for T2 was 1
3

of the T1 generating value. Under model 2 and

model 3, covariance generating values under T2 were all 1 or less than 1, roughly 1
4

of

the T1 generating values. Nonetheless, It was clear from comparisons of figures 3.1, 3.5,

and 3.9 and comparisons of figures 3.2, 3.6, and 3.10 that increasing model complexity

was associated with increased rates of problematic PRB. Comparisons of the same figures
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reveal that REML was uniformly less biased than FML, FML was consistently negatively

biased, and REML PRB was consistently evenly distributed about zero.

In more complex models covariances tended to be more severely biased than vari-

ances. This difference was particularly salient in REML estimates, where under model

2, only covariances were substantially biased, and under model 3, all covariances were

biased but only one variance was substantially biased. Coupling the high rates of bias

observed in covariances with the rarity with which covariances are interpreted in psycho-

logical applications begs the question: why estimate unstructured covariance matrices.

If in fact, variances are the sole parameters of interest to substantive researchers, and

covariances are biased, would it not behoove researchers to simply eliminate covariances

from estimation. Rates of non-convergence would also likely be aided by such a shift

in parameterization. Moreover, this model is a testable model, whereas the unstruc-

tured matrix is not. Thus applied researchers could test whether they were justified in

excluding covariances from estimation. It is likely the case that under such a variance

component model, REML estimates for models with many random effects would exhibit

even less bias than was observed in this simulation – simply because the parameters most

likely to be biased would be eliminated from estimation.

Though specific hypotheses were posed and tested, the goal of the study was not

to provide rules of thumb or make strong statements about the minimum sample size

required in analyses using the linear mixed model. Though applied researchers often

seek such guidance, and questions regarding minimum sufficient sample size to fit a

model are often of singular and primary interest, there are far too many nuances involved

in model fitting; from measurement error and distributional violations, to unknowable

missing data mechanisms and sample selection problems to permit any meaningful or

generalizable statement on minimally sufficient numbers of ISUs and observations per

ISU required to obtain accurate point estimates. Applied researchers must keep these

considerations in mind when applying these findings to their data or design, and should
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realize that these results are incapable of validating or canonizing a specific design or

sample size. Rather these results provide researchers with information on what, over

repeated sampling, the expected bias is across several feasible sample sizes, models,

estimators, and data conditions.

With these caveats in mind, clear recommendations can be made to applied re-

searchers whose data or designs correspond closely to those considered in this study. Use

of restricted maximum likelihood for point estimation of linear mixed model parameters

may yield dividends in finite samples that are not available under full maximum like-

lihood. Variances are generally easy to estimate, so long as the population values are

large. Covariance are generally difficult to estimate, exhibiting higher degrees of bias;

when population values are small, bias can be extreme. Based on the findings for covari-

ances, if there is no compelling reason to estimate covariances, applied researchers may

be well served by either not estimating or ignoring covariances. For simple models like

the random effect ANOVA employed in model 1, primarily when REML is employed,

researchers can obtain accurate point estimates of variance components with as few as

15 ISUs with an average of 10 observations per ISU, but only when population variance

components are large. When population variance components are small, 15 ISUs are

sufficient when an average of 40 or 80 observations are sampled per ISU, but 60 ISUs are

required when an average of 10 observations are sampled per ISU, and 30 ISUs when an

average of 20 observations are sampled per ISU.

For moderately complex models like the random effects regression model with satu-

rated covariance structure considered in model 2, the minimally sufficient number of ISUs

required before minimal bias is observed varies as a function of rates of convergence. For

designs with reasonable convergence rates and large population covariance components

(an untestable condition in applications), REML estimates of all parameters display neg-

ligible bias at the minimum sample sizes considered. When an average of 10 observations

are sampled per ISU, 60 ISUs are required to obtain adequate point estimates. When
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an average of 20 observations are sampled per ISU, 30 ISUs are required to obtain ade-

quate point estimates. When an average of 40 or 80 observations are sampled per ISU,

15 ISUs are required to obtain adequate point estimates. When population covariance

components are small (again, an untestable condition in applications), the sample sizes

associated with reasonable convergence rates are larger, and thus, minimal bias is asso-

ciated with larger sample sizes. When an average of 10 observations are sampled per

ISU, 120 ISUs are required to obtain adequate point estimates. When an average of

20 observations are sampled per ISU 30 ISUs are sufficient for variance estimates, but

60 ISUs are required for covariance estimates. When an average of 40 observations are

sampled per ISU, 60 ISUs are adequate. When 80 observations are sampled per ISU, 30

ISUs are required to obtain good estimates of variances and covariances. Thus, for both

large and small population covariance components, minimum sample sizes for which rea-

sonable rates of model convergence can be observed are associated with acceptably low

rates of bias, though the minimally sufficient sample sizes may differ between variances

and covariances.

As with model 2, for complex models like the random effects regression model with

saturated covariance structure, level 2 predictor, and cross-level interactions considered in

model 3, the minimally sufficient number of ISUs required before minimal bias is observed

varies as a function of rates of convergence. For designs with reasonable convergence rates,

REML estimates of all parameters, except τ32, display negligible bias at the minimum

sample sizes considered. When an average of 10 observations are sampled per ISU, 60

ISUs are required to obtain adequate point estimates. When an average of 20 observations

are sampled per ISU, 30 ISUs are required to obtain adequate point estimates, except for

τ32, which requires 60 ISUs. When an average of 40 observations are sampled per ISU, 30

ISUs are required to obtain adequate point estimates. When an average of 80 observations

are sampled per ISU, 15 ISUs are required to obtain adequate point estimates. As with

model 2, when population covariance component values are small, minimally sufficient
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sample sizes are greater. When an average of 10 observations are sampled per ISU, 60

ISUs are required, though all covariances, and τ33 require 120 ISUs. When an average

of 20 observations are sampled per ISU, 60 ISUs are sufficient, except for τ21, which

requires 120 ISUs. When an average of 40 observations are sampled per ISU, 30 ISUs

are sufficient for all parameters except τ32, which requires 60 ISUs. When an average of

80 observations are sampled per ISU, 30 ISUs are sufficient for all parameters.

4.1 Limitations

4.1.1 Fixed Effects

Traditionally, problems with statistical inference for fixed effects have been associ-

ated with missing or unbalanced data and complex covariance structures. Under simple

covariance structures, i.e. independence or compound symmetry models, inference is

quite simple (Muller & Stewart, 2006). However, inference can be quite difficult for more

complex models, such as time series and unstructured covariance patterns (Kenward &

Roger, 1997; Schalje & Fellingham, 2001; Fai & Cornelius, 1996). While fixed effect point

estimation was considered in this study, and found to be robust in finite samples, fixed

effect inference was not evaluated, as this was beyond the scope of the project. However,

the generality of the design implemented in this study lends itself to an examination of

problems with fixed effect inference. This study examined two models with moderately

large unstructured covariance patterns (models 2 and 3), and one with a compound sym-

metric pattern (model 1), contrasts across these two sets would permit tests of problems

of inference associated with covariance pattern complexity. Unbalanced data was another

central feature of the simulation design employed in this study. The design was intended

to be general enough to apply to either cluster sampling or repeated measures designs,

hence the use of the design-neutral ISU and observations per ISU terminology. Thus,

little effort would be required to extend this design to include a manipulation of fixed

effect inference. Though a body of excellent work exists on the topic of fixed effect infer-
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ence (Kackar & Harville, 1984; Kenward & Roger, 1997; Prasad & Rao, 1990; Harville

& Jeske, 1992; Schalje & Fellingham, 2001; Fai & Cornelius, 1996), none of these stud-

ies examined the models typically fit in psychological applications, nor those considered

here. Future research would do well to study these issues more closely.

4.1.2 Generation of Unbalanced Data

one detailed limitation of this design was the sampling design that was used for

generating unbalanced designs. The manner in which observations were sampled within

ISUs invoked unequal sampling probabilities. Though the data adhere to concepts like

observations missing at random (MAR), this is only within a given ISU, across ISUs

observations are missing with unequal probabilities. Consider the cell with 15 ISUs: for

the first five of these ISUs, observations have a probability of selection of 5/15; for the

second five ISUs, observations have probabilities of selection of 10/15; and for the last

five ISUs, observations have probabilities of selection of 1. Probability of selection varies

as a function of which ISU observations come from, thus violating the assumption of a

simple random sample. Thus, while the missingness mechanism is, in principle, MAR,

the MAR is conditioned upon clusters of ISUs. A well known consequence of using mixed

models in the presence of complex sampling designs is bias of the variance components.

An additional consequence is shrinking of the standard errors of the fixed effects, which

results in higher type I error rates (Kovacevic & Rai, 2003; Pfefferman, Skinner, Holmes,

Goldstein, & Rasbash, 1998; Rabe-Hesketh & Skrondal, 2005). While the bias rates of

the covariance components may have been affected by this, the impact is not necessarily

quantifiable, given that expected bias rates for such models in the conditions examined

do not exist. On the other hand, the impact of this potential bias would be obvious in

the departure from nominal alpha rates of the fixed effect tests, had they been examined.
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4.2 Future Directions

As previously stated, treatment of fixed effect inference was beyond the scope of

this study. Fixed effect inference is integral to the use and importance of the linear

mixed effect model. A logical and advantageous complement to this study would be the

examination of fixed effect inference under the general models considered here. Such a

study would likely benefit from the addition of a contrast between the performance of

inference procedures under generalized covariance patterns – both classical time series

and the unstructured patterns typically fit in psychological applications. Such a study

would either need to use a different procedure for generating unbalanced data, or use

two procedures, one of which was the current method. Use of the method used in this

study along with another one would permit a contrast of the effect of complex sampling

probabilities on inference for the fixed effects when compared to simple random sampling.

This study focussed on a properly specified linear mixed model conforming to the

assumptions of the model. In practice, models fit in a sample rarely conform to a/the

population generating process which produced the observed sample data. Data can be

from an unknowable distribution, which we approximate with the normal distribution,

or be misspecified in some way. Model misspecification is a complex issue. Traditionally,

misspecification has been manipulated by either omission of parameters used to generate

data, often referred to parametric misspecification. However, this procedure assumes

that there is a model which, if fit, would correspond exactly to the population generating

model. In reality, misspecification can be a function of any number of causes: nonlinear

relationships, distributional violations, sampling complexities, informative missingness,

parametric misspecification, etc, as well as all possible combinations of these factors.

Unfortunately, positing that a generating model could be observed in a sample realization

seems like a rather convoluted contrivance. Rather, it seems more consistent with what

we believe about models (Box, 1979), to generate data under misspecifications where the

misspecification is induced by non-parametric methods.
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This work has been addressed in the covariance structure modeling framework

(Cudeck & Browne, 1992). However, implementing the procedure proposed by Cudeck

and Browne (1992) requires the development of two components established in covari-

ance structure modeling but currently undefined for the linear mixed model. The Cudeck

and Browne (1992) procedure requires a function for defining the discrepancy between a

fitted and saturated model, which requires the definition of a saturated model; neither

of which have been defined in the linear mixed model. I am currently working on the

issue of saturated models and discrepancy function analogs for the linear mixed effect

model. Results are promising but are restricted to testable structures in the covariance

parameters, which necessarily excludes unstructured models – usually the models of in-

terest in psychological applications. A logical future direction for this work would be to

examine how findings change for point estimation under non-parametric misspecification.

Results for such a study would be of greatest interest to researchers focussed on intensive

longitudinal or time-series designs.

In order to maintain accurate statistical inference for the fixed effects and point esti-

mation of the variance components, the conditional distribution of the response given the

predictors must conform to the gaussian distribution. Though the Cudeck and Browne

(1992) procedure may be useful for testing a wide array of unspecified model misspecifi-

cations, or a broadly defined model misspecification, it may not be useful in addressing

the issue of deviations from distributional assumptions. In order to test deviations from

normality, explicit manipulations of the degree of conformation to the gaussian distri-

bution may be preferred to use of the Cudeck and Browne (1992) method. In order to

determine the impact of violations of the gaussian assumption in fixed effect inference and

variance component point estimation, future studies should consider such manipulations

as an additional interesting facet for manipulation in the simulation design.

In sum, the linear mixed model (LMM) is an elegant and flexible method for estimat-

ing regression parameters adjusted for complex dependencies in data of both balanced and
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unbalanced or mistimed types. As with all models, the LMM is not without limitations.

However, it is our view that, when the limitations are understood, the model’s utility can

be maximized. This study has attempted to elucidate the limitations of the model. Re-

sults indicate that applied researchers designing a cluster sampling or repeated measures

study design will maximize the accuracy of covariance component estimates by sampling

large numbers of ISUs, and that the minimally sufficient number of ISUs required to

obtain good point estimates vary as a function of expected convergence rates for models,

and parameter (variances or covariances). If balanced data can be collected, researchers

are encouraged to do so, as this permits greater accuracy in variance estimates at smaller

sample sizes. Thus, researches whose budgets would not permit sampling numbers of

ISUs, could sample fewer ISUs with fewer observations per ISU if they can implement

procedures to guarantee collected data will be balanced. Regardless of sampling design,

researchers should exclusively employ REML in model estimation.
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CHAPTER 5

Appendices

5.1 Appendix 1: Covariance Component PRB Tables

5.1.1 Model 1

Table 5.1: Positive Definite Solutions for Model 1 Comparing Percent Relative Bias for

REML and FML Estimates of Covariance Parameters Across T1 and T2

T1 T2

Covparm ISU OBS θT1 θT2 RML FML RML FML

σ2 1 1 48.86 48.86 2.80 2.81 2.57 2.40

σ2 2 1 48.86 48.86 1.02 1.03 0.78 0.76

σ2 3 1 48.86 48.86 0.75 0.75 0.51 0.52

σ2 4 1 48.86 48.86 0.17 0.17 0.27 0.27

σ2 1 2 48.86 48.86 0.98 0.98 1.07 1.09

σ2 2 2 48.86 48.86 0.75 0.75 0.68 0.68

σ2 3 2 48.86 48.86 0.38 0.38 0.31 0.31

σ2 4 2 48.86 48.86 0.14 0.14 0.15 0.15

σ2 1 3 48.86 48.86 0.80 0.80 0.66 0.66

σ2 2 3 48.86 48.86 0.40 0.40 0.35 0.35

σ2 3 3 48.86 48.86 0.06 0.06 0.22 0.22

σ2 4 3 48.86 48.86 0.07 0.07 0.05 0.05

Continued on next page



Table 5.1 – continued from previous page

T1 T2

Covparm ISU OBS θT1 θT2 RML FML RML FML

σ2 1 4 48.86 48.86 0.37 0.37 0.26 0.26

σ2 2 4 48.86 48.86 0.15 0.15 0.20 0.20

σ2 3 4 48.86 48.86 0.08 0.08 0.11 0.11

σ2 4 4 48.86 48.86 0.06 0.06 0.00 0.00

τ11 1 1 12 4 -8.01 -17.24 -18.74 -30.32

τ11 2 1 12 4 -4.34 -9.04 -10.99 -17.92

τ11 3 1 12 4 -1.90 -4.28 -6.24 -9.94

τ11 4 1 12 4 -1.12 -2.32 -2.83 -4.70

τ11 1 2 12 4 -4.71 -12.64 -11.31 -21.61

τ11 2 2 12 4 -2.72 -6.74 -6.24 -11.59

τ11 3 2 12 4 -0.94 -2.98 -3.58 -6.29

τ11 4 2 12 4 -0.34 -1.36 -1.67 -3.04

τ11 1 3 12 4 -2.20 -9.50 -8.47 -16.87

τ11 2 3 12 4 -1.41 -5.09 -3.85 -8.20

τ11 3 3 12 4 -0.70 -2.55 -2.05 -4.25

τ11 4 3 12 4 -0.25 -1.18 -0.79 -1.90

τ11 1 4 12 4 -1.20 -8.18 -3.41 -11.03

τ11 2 4 12 4 -0.75 -4.26 -1.74 -5.60

τ11 3 4 12 4 -0.12 -1.89 -0.98 -2.92

τ11 4 4 12 4 -0.22 -1.10 -0.29 -1.27

5.1.2 Model 2
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Table 5.2: Positive Definite Solutions for Model 2 Comparing Percent Relative Bias for

REML and FML Estimates of Covariance Parameters Across T1 and T2

T1 T2

Covparm ISU OBS θT1 θT2 RML FML RML FML

σ2 15 4̄0 46.58 . 0.77 0.72 . .

σ2 15 8̄0 46.58 . 0.47 0.50 . .

σ2 30 2̄0 46.58 46.58 0.74 0.78 0.67 0.59

σ2 30 4̄0 46.58 . 0.41 0.41 . .

σ2 30 8̄0 46.58 46.58 0.13 0.14 0.14 0.15

σ2 60 1̄0 46.58 . 0.77 0.88 . .

σ2 60 2̄0 46.58 46.58 0.50 0.50 0.31 0.29

σ2 60 4̄0 46.58 46.58 0.19 0.20 0.18 0.19

σ2 60 8̄0 46.58 46.58 0.01 0.01 0.15 0.16

σ2 120 1̄0 46.58 46.58 0.34 0.34 0.25 0.24

σ2 120 2̄0 46.58 46.58 0.15 0.15 0.25 0.26

σ2 120 4̄0 46.58 46.58 0.05 0.05 0.13 0.13

σ2 120 8̄0 46.58 46.58 0.05 0.05 0.07 0.07

τ11 15 4̄0 12 . -4.70 -12.52 . .

τ11 15 8̄0 12 . -0.36 -10.52 . .

τ11 30 2̄0 12 4 -2.03 -7.27 -7.20 -13.51

τ11 30 4̄0 12 . 0.14 -4.49 . .

τ11 30 8̄0 12 4 0.21 -4.01 -0.54 -5.49

τ11 60 1̄0 12 . -0.82 -4.22 . .

τ11 60 2̄0 12 4 -0.83 -3.41 -1.92 -5.36

τ11 60 4̄0 12 4 -0.64 -2.92 -1.43 -4.29

τ11 60 8̄0 12 4 -0.48 -2.55 -0.29 -2.75

τ11 120 1̄0 12 4 -0.27 -1.86 -1.63 -4.11
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Table 5.2 – continued from previous page

T1 T2

Covparm ISU OBS θT1 θT2 RML FML RML FML

τ11 120 2̄0 12 4 -1.06 -2.35 -1.96 -3.73

τ11 120 4̄0 12 4 -0.46 -1.59 -0.06 -1.50

τ11 120 8̄0 12 4 -0.13 -1.16 -0.53 -1.76

τ21 15 4̄0 4 . -3.03 -14.85 . .

τ21 15 8̄0 4 . 0.43 -9.86 . .

τ21 30 2̄0 4 1 -0.86 -8.37 -4.78 -11.95

τ21 30 4̄0 4 . 2.94 -3.27 . .

τ21 30 8̄0 4 1 0.82 -4.51 1.98 -6.03

τ21 60 1̄0 4 . 2.35 -2.80 . .

τ21 60 2̄0 4 1 -0.05 -3.58 1.68 -4.95

τ21 60 4̄0 4 1 -0.38 -3.37 1.11 -3.75

τ21 60 8̄0 4 1 -0.41 -2.98 2.34 -1.57

τ21 120 1̄0 4 1 -0.30 -2.54 3.46 -0.94

τ21 120 2̄0 4 1 -0.08 -1.87 0.01 -3.08

τ21 120 4̄0 4 1 0.39 -1.10 1.66 -0.75

τ21 120 8̄0 4 1 0.05 -1.24 0.65 -1.29

τ22 15 4̄0 7 . -1.52 -12.55 . .

τ22 15 8̄0 7 . -0.83 -7.70 . .

τ22 30 2̄0 7 3 -1.03 -7.60 3.53 -2.54

τ22 30 4̄0 7 . 1.63 -3.59 . .

τ22 30 8̄0 7 3 0.60 -3.94 0.36 -4.87

τ22 60 1̄0 7 . -0.89 -4.73 . .

τ22 60 2̄0 7 3 -0.89 -3.96 1.08 -3.06

τ22 60 4̄0 7 3 -0.25 -2.80 0.64 -2.51
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Table 5.2 – continued from previous page

T1 T2

Covparm ISU OBS θT1 θT2 RML FML RML FML

τ22 60 8̄0 7 3 -0.19 -2.42 0.45 -2.12

τ22 120 1̄0 7 3 -0.73 -2.74 1.68 -1.12

τ22 120 2̄0 7 3 0.46 -1.09 0.42 -1.63

τ22 120 4̄0 7 3 0.51 -0.76 0.70 -0.87

τ22 120 8̄0 7 3 -0.03 -1.14 0.43 -0.86

τ31 15 4̄0 3 . -0.85 -8.62 . .

τ31 15 8̄0 3 . 1.60 -7.00 . .

τ31 30 2̄0 3 0.9 0.46 -2.76 -12.23 -18.69

τ31 30 4̄0 3 . -0.84 -4.30 . .

τ31 30 8̄0 3 0.9 0.40 -3.04 -0.18 -3.64

τ31 60 1̄0 3 . 0.37 0.82 . .

τ31 60 2̄0 3 0.9 1.14 -0.64 0.07 -2.67

τ31 60 4̄0 3 0.9 -0.05 -1.79 2.32 0.43

τ31 60 8̄0 3 0.9 0.14 -1.56 -1.82 -3.54

τ31 120 1̄0 3 0.9 -0.40 -1.44 -3.19 -4.16

τ31 120 2̄0 3 0.9 0.07 -0.85 -1.02 -1.98

τ31 120 4̄0 3 0.9 0.57 -0.31 1.22 0.30

τ31 120 8̄0 3 0.9 0.19 -0.66 1.38 0.49

τ32 15 4̄0 1 . 5.86 -6.61 . .

τ32 15 8̄0 1 . 0.09 -9.99 . .

τ32 30 2̄0 1 0.3 -2.68 -6.95 55.20 38.83

τ32 30 4̄0 1 . -1.10 -4.74 . .

τ32 30 8̄0 1 0.3 0.46 -3.13 -5.79 -9.30

τ32 60 1̄0 1 . -0.91 -7.36 . .
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Table 5.2 – continued from previous page

T1 T2

Covparm ISU OBS θT1 θT2 RML FML RML FML

τ32 60 2̄0 1 0.3 6.32 4.13 -6.08 -8.92

τ32 60 4̄0 1 0.3 -3.80 -5.60 -1.98 -4.07

τ32 60 8̄0 1 0.3 0.99 -0.77 -5.74 -7.49

τ32 120 1̄0 1 0.3 -0.95 -2.14 -10.89 -13.92

τ32 120 2̄0 1 0.3 0.99 -0.04 -0.90 -2.04

τ32 120 4̄0 1 0.3 2.50 1.54 -0.48 -1.51

τ32 120 8̄0 1 0.3 1.41 0.52 0.39 -0.55

τ33 15 4̄0 4 . 1.27 -7.10 . .

τ33 15 8̄0 4 . -0.46 -7.63 . .

τ33 30 2̄0 4 2 -1.59 -6.90 3.07 -4.62

τ33 30 4̄0 4 . -0.27 -4.85 . .

τ33 30 8̄0 4 2 -0.57 -4.51 -0.89 -5.40

τ33 60 1̄0 4 . 3.40 1.59 . .

τ33 60 2̄0 4 2 -0.64 -3.44 -0.21 -3.92

τ33 60 4̄0 4 2 0.72 -1.58 0.25 -2.61

τ33 60 8̄0 4 2 0.26 -1.71 -0.79 -3.03

τ33 120 1̄0 4 2 1.39 -0.71 2.88 0.29

τ33 120 2̄0 4 2 -1.09 -2.54 0.55 -1.45

τ33 120 4̄0 4 2 0.50 -0.64 1.04 -0.38

τ33 120 8̄0 4 2 -0.68 -1.66 0.11 -1.02

5.1.3 Balanced Model 2
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Table 5.3: Balanced Positive Definite Solutions for Model 2 Comparing Percent Relative

Bias (PRB) for REML and FML Estimates of Covariance Parameters Across T1 and T2

T1 PRB T2 PRB

Parm OBS ISU θT1 θT2 RML FML RML FML

σ2 2 1 46.58 46.58 1.61 1.59 1.12 1.23

σ2 3 1 46.58 46.58 0.95 0.95 0.63 0.57

σ2 4 1 46.58 46.58 0.43 0.43 0.4 0.4

σ2 1 2 46.58 46.58 1.58 1.56 1.53 1.53

σ2 2 2 46.58 46.58 0.77 0.77 0.81 0.8

σ2 3 2 46.58 46.58 0.36 0.36 0.39 0.39

σ2 4 2 46.58 46.58 0.23 0.23 0.24 0.24

σ2 1 3 46.58 46.58 0.88 0.88 0.81 0.81

σ2 2 3 46.58 46.58 0.45 0.45 0.4 0.4

σ2 3 3 46.58 46.58 0.18 0.18 0.2 0.2

σ2 4 3 46.58 46.58 0.09 0.09 0.09 0.09

σ2 1 4 46.58 46.58 0.41 0.41 0.4 0.4

σ2 2 4 46.58 46.58 0.18 0.18 0.2 0.2

σ2 3 4 46.58 46.58 0.09 0.09 0.1 0.1

σ2 4 4 46.58 46.58 0.06 0.06 0.06 0.06

τ11 2 1 12 4 -4.38 -8.48 -13 -17.7

τ11 3 1 12 4 -2.27 -4.35 -5.87 -8.51

τ11 4 1 12 4 -1.04 -2.09 -3.6 -5.07

τ11 1 2 12 4 -4.64 -11.87 -13.98 -22.48

τ11 2 2 12 4 -2.16 -5.86 -6.69 -11.13

τ11 3 2 12 4 -1.11 -2.98 -3.45 -5.72

τ11 4 2 12 4 -0.57 -1.51 -2.19 -3.33

τ11 1 3 12 4 -2.52 -9.46 -6.93 -14.46
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Table 5.3 – continued from previous page

T1 PRB T2 PRB

Parm OBS ISU θT1 θT2 RML FML RML FML

τ11 2 3 12 4 -1.16 -4.68 -3.34 -7.22

τ11 3 3 12 4 -0.59 -2.36 -1.68 -3.65

τ11 4 3 12 4 -0.26 -1.15 -0.74 -1.73

τ11 1 4 12 4 -1.22 -8.03 -3.41 -10.5

τ11 2 4 12 4 -0.54 -3.97 -1.74 -5.34

τ11 3 4 12 4 -0.26 -1.97 -0.92 -2.73

τ11 4 4 12 4 -0.15 -1.01 -0.42 -1.33

τ21 2 1 4 1 1.89 -1.61 -10.07 -10.46

τ21 3 1 4 1 -0.48 -2.14 3.18 0.78

τ21 4 1 4 1 -0.63 -1.46 0.86 0.02

τ21 1 2 4 1 -1.2 -7.85 -8.69 -19.9

τ21 2 2 4 1 -0.47 -3.74 0.21 -3.17

τ21 3 2 4 1 0.09 -1.57 -0.58 -2.24

τ21 4 2 4 1 0.37 -0.46 -0.31 -1.14

τ21 1 3 4 1 -1.11 -7.7 -2.67 -9.11

τ21 2 3 4 1 0.27 -3.07 -0.05 -3.39

τ21 3 3 4 1 0.38 -1.29 0.68 -0.99

τ21 4 3 4 1 -0.31 -1.14 0.18 -0.66

τ21 1 4 4 1 -0.74 -7.36 -1 -7.6

τ21 2 4 4 1 -0.13 -3.46 -1.46 -4.74

τ21 3 4 4 1 0.05 -1.61 -0.41 -2.07

τ21 4 4 4 1 0 -0.84 0.42 -0.41

τ22 2 1 7 3 1.92 -2.87 10.33 0.67

τ22 3 1 7 3 -0.75 -3.18 0.59 -2.68
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T1 PRB T2 PRB

Parm OBS ISU θT1 θT2 RML FML RML FML

τ22 4 1 7 3 -0.42 -1.64 0.89 -0.85

τ22 1 2 7 3 -0.45 -8.75 1.71 -11.11

τ22 2 2 7 3 0.43 -3.64 1.78 -3.48

τ22 3 2 7 3 0.44 -1.62 0.18 -2.37

τ22 4 2 7 3 0.33 -0.69 -0.84 -2.11

τ22 1 3 7 3 -0.26 -7.66 1.41 -6.92

τ22 2 3 7 3 0.47 -3.26 0.31 -3.91

τ22 3 3 7 3 0.54 -1.33 -0.23 -2.33

τ22 4 3 7 3 -0.2 -1.12 0.05 -1

τ22 1 4 7 3 -0.44 -7.45 0.35 -7.21

τ22 2 4 7 3 -0.37 -3.87 -0.19 -3.95

τ22 3 4 7 3 0.11 -1.65 -0.22 -2.1

τ22 4 4 7 3 0.01 -0.87 -0.18 -1.12

τ31 2 1 3 0.9 1.55 -2.05 -3.21 -9.47

τ31 3 1 3 0.9 0.24 -1.44 2.76 -0.07

τ31 4 1 3 0.9 -0.61 -1.45 -1.57 -2.41

τ31 1 2 3 0.9 0.7 -6.06 -11.06 -9.47

τ31 2 2 3 0.9 1.06 -2.31 -0.45 -3.78

τ31 3 2 3 0.9 0.5 -1.18 -1.21 -2.86

τ31 4 2 3 0.9 0.24 -0.59 0.84 -0.01

τ31 1 3 3 0.9 0.75 -5.97 1.8 -5.11

τ31 2 3 3 0.9 0.19 -3.15 2.12 -1.28

τ31 3 3 3 0.9 -0.37 -2.03 -1.05 -2.7

τ31 4 3 3 0.9 -0.53 -1.36 1.34 0.49
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Table 5.3 – continued from previous page

T1 PRB T2 PRB

Parm OBS ISU θT1 θT2 RML FML RML FML

τ31 1 4 3 0.9 -0.54 -7.18 -1.44 -8.02

τ31 2 4 3 0.9 0.23 -3.11 1.4 -1.99

τ31 3 4 3 0.9 0.52 -1.16 -0.45 -2.11

τ31 4 4 3 0.9 -0.37 -1.2 -0.35 -1.18

τ32 2 1 1 0.3 8.39 5.32 -18.01 -1.83

τ32 3 1 1 0.3 -2.82 -4.45 5.71 4.46

τ32 4 1 1 0.3 -3.92 -4.73 4.16 3.28

τ32 1 2 1 0.3 -4.22 -10.57 -1.21 -29.64

τ32 2 2 1 0.3 1.09 -2.18 5.01 0.16

τ32 3 2 1 0.3 -2.44 -4.07 -2.66 -4.26

τ32 4 2 1 0.3 0.9 0.06 4.1 3.23

τ32 1 3 1 0.3 -1.82 -8.36 -1.52 -8.82

τ32 2 3 1 0.3 -1.21 -4.5 -3.26 -6.5

τ32 3 3 1 0.3 -0.44 -2.1 4.61 2.87

τ32 4 3 1 0.3 0.32 -0.51 -2.31 -3.13

τ32 1 4 1 0.3 -0.2 -6.86 0.02 -6.68

τ32 2 4 1 0.3 -1.67 -4.95 -2.44 -5.71

τ32 3 4 1 0.3 0.27 -1.41 -1.8 -3.44

τ32 4 4 1 0.3 -0.77 -1.6 -0.23 -1.07

τ33 2 1 4 2 1.39 -4.68 15.67 5.16

τ33 3 1 4 2 -1.4 -4.62 1.5 -2.05

τ33 4 1 4 2 0.01 -1.59 0.11 -2.21

τ33 1 2 4 2 0.6 -8.54 13.33 4.5

τ33 2 2 4 2 0.49 -4.27 1.09 -4.65
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Table 5.3 – continued from previous page

T1 PRB T2 PRB

Parm OBS ISU θT1 θT2 RML FML RML FML

τ33 3 2 4 2 0.62 -1.78 -0.94 -4.01

τ33 4 2 4 2 0.32 -0.88 0.46 -1.08

τ33 1 3 4 2 -0.66 -8.67 1.02 -8.25

τ33 2 3 4 2 -0.83 -4.82 -0.84 -5.52

τ33 3 3 4 2 0.27 -1.74 -0.69 -3.02

τ33 4 3 4 2 -0.15 -1.16 0.22 -0.95

τ33 1 4 4 2 0.17 -7.17 0.23 -7.78

τ33 2 4 4 2 -0.22 -3.88 0.6 -3.42

τ33 3 4 4 2 0.31 -1.53 0.03 -1.97

τ33 4 4 4 2 -0.11 -1.03 -0.06 -1.05

5.1.4 Model 3

Table 5.4: Positive Definite Solutions for Model 3 Comparing Percent Relative Bias for

REML and FML Estimates of Covariance Parameters Across T1 and T2

T1 T2

Covparm ISU OBS θT1 θT2 RML FML RML FML

σ2 15 8̄0 46.58 . 0.42 0.49 . .

σ2 30 2̄0 46.58 . 0.82 0.92 . .

σ2 30 4̄0 46.58 46.58 0.57 0.55 0.39 0.36

σ2 30 8̄0 46.58 46.58 0.29 0.28 0.20 0.18

σ2 60 1̄0 46.58 46.58 0.85 0.76 -0.35 -0.53

σ2 60 2̄0 46.58 46.58 0.31 0.27 0.51 0.48
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Table 5.4 – continued from previous page

T1 T2

Covparm ISU OBS θT1 θT2 RML FML RML FML

σ2 60 4̄0 46.58 46.58 0.31 0.29 0.27 0.25

σ2 60 8̄0 46.58 46.58 0.14 0.13 0.08 0.07

σ2 120 1̄0 46.58 46.58 0.56 0.48 0.17 0.08

σ2 120 2̄0 46.58 46.58 0.18 0.15 0.26 0.23

σ2 120 4̄0 46.58 46.58 0.08 0.06 0.14 0.13

σ2 120 8̄0 46.58 46.58 0.07 0.07 0.07 0.06

τ11 15 8̄0 12 . 3.23 -13.70 . .

τ11 30 2̄0 12 . -3.65 -12.66 . .

τ11 30 4̄0 12 4 -1.13 -9.22 -3.45 -13.29

τ11 30 8̄0 12 4 1.11 -6.59 0.11 -8.65

τ11 60 1̄0 12 4 -3.77 -8.88 -4.58 -12.31

τ11 60 2̄0 12 4 -2.37 -6.73 -5.98 -11.78

τ11 60 4̄0 12 4 -0.90 -4.79 -3.17 -7.90

τ11 60 8̄0 12 4 1.10 -2.61 -2.17 -6.27

τ11 120 1̄0 12 4 -3.14 -5.58 -6.31 -10.07

τ11 120 2̄0 12 4 -0.82 -2.94 -3.37 -6.19

τ11 120 4̄0 12 4 -0.73 -2.62 -1.42 -3.73

τ11 120 8̄0 12 4 -0.00 -1.81 -0.88 -2.88

τ21 15 8̄0 4 . -0.64 -17.86 . .

τ21 30 2̄0 4 . -8.26 -16.56 . .

τ21 30 4̄0 4 1 -4.54 -13.89 -9.81 -24.07

τ21 30 8̄0 4 1 -0.69 -9.24 -4.61 -16.51

τ21 60 1̄0 4 1 -9.76 -15.79 -17.90 -14.91

τ21 60 2̄0 4 1 -5.21 -10.28 -12.63 -21.02
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T1 T2

Covparm ISU OBS θT1 θT2 RML FML RML FML

τ21 60 4̄0 4 1 -4.14 -8.43 -8.09 -14.50

τ21 60 8̄0 4 1 0.30 -3.69 -6.45 -11.52

τ21 120 1̄0 4 1 -5.92 -8.76 -9.27 -13.53

τ21 120 2̄0 4 1 -2.14 -4.50 -6.10 -9.85

τ21 120 4̄0 4 1 -2.05 -4.09 -6.09 -9.02

τ21 120 8̄0 4 1 -1.17 -3.06 -4.63 -6.98

τ22 15 8̄0 7 . 2.72 -13.39 . .

τ22 30 2̄0 7 . -1.15 -10.29 . .

τ22 30 4̄0 7 3 0.58 -8.61 0.18 -11.21

τ22 30 8̄0 7 3 2.23 -5.99 1.20 -8.36

τ22 60 1̄0 7 3 -2.51 -9.30 9.48 5.34

τ22 60 2̄0 7 3 -0.90 -6.13 -1.17 -8.50

τ22 60 4̄0 7 3 -1.45 -5.77 -0.53 -5.94

τ22 60 8̄0 7 3 0.81 -3.12 -0.16 -4.61

τ22 120 1̄0 7 3 -2.65 -5.90 -1.25 -5.36

τ22 120 2̄0 7 3 -0.70 -3.20 -1.15 -4.55

τ22 120 4̄0 7 3 -0.30 -2.42 -1.33 -3.93

τ22 120 8̄0 7 3 0.11 -1.81 -1.10 -3.26

τ31 15 8̄0 3 . 5.31 -10.03 . .

τ31 30 2̄0 3 . -1.85 -5.31 . .

τ31 30 4̄0 3 0.9 2.63 -4.40 -0.69 -8.36

τ31 30 8̄0 3 0.9 3.01 -3.98 2.24 -5.08

τ31 60 1̄0 3 0.9 -4.54 -8.06 -20.48 -24.75

τ31 60 2̄0 3 0.9 0.81 -2.76 -2.74 -7.49
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T1 T2

Covparm ISU OBS θT1 θT2 RML FML RML FML

τ31 60 4̄0 3 0.9 1.14 -2.32 1.15 -2.40

τ31 60 8̄0 3 0.9 1.26 -2.17 1.06 -2.45

τ31 120 1̄0 3 0.9 -0.30 -2.21 -5.42 -7.55

τ31 120 2̄0 3 0.9 -0.39 -2.14 0.31 -1.63

τ31 120 4̄0 3 0.9 0.07 -1.64 1.27 -0.49

τ31 120 8̄0 3 0.9 0.70 -1.00 1.14 -0.59

τ32 15 8̄0 1 . 1.69 -18.78 . .

τ32 30 2̄0 1 . -12.90 -14.60 . .

τ32 30 4̄0 1 0.3 4.99 -2.54 -16.20 -24.10

τ32 30 8̄0 1 0.3 3.56 -3.65 -7.45 -15.03

τ32 60 1̄0 1 0.3 -3.66 -7.73 -73.54 -81.14

τ32 60 2̄0 1 0.3 2.62 -1.31 -2.99 -10.82

τ32 60 4̄0 1 0.3 -0.63 -4.14 -3.19 -6.94

τ32 60 8̄0 1 0.3 2.09 -1.45 -0.02 -3.68

τ32 120 1̄0 1 0.3 -2.22 -4.48 -14.10 -15.82

τ32 120 2̄0 1 0.3 -1.15 -2.99 -5.02 -7.19

τ32 120 4̄0 1 0.3 1.31 -0.47 -0.29 -2.15

τ32 120 8̄0 1 0.3 0.00 -1.75 1.46 -0.35

τ33 15 8̄0 4 . 6.88 -11.16 . .

τ33 30 2̄0 4 . 2.74 -5.89 . .

τ33 30 4̄0 4 2 2.17 -6.78 2.50 -8.25

τ33 30 8̄0 4 2 2.79 -5.13 1.31 -7.48

τ33 60 1̄0 4 2 9.05 0.78 14.21 6.28

τ33 60 2̄0 4 2 2.43 -3.10 1.41 -5.36

Continued on next page
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Table 5.4 – continued from previous page

T1 T2

Covparm ISU OBS θT1 θT2 RML FML RML FML

τ33 60 4̄0 4 2 1.99 -2.44 1.67 -3.68

τ33 60 8̄0 4 2 1.45 -2.45 1.95 -2.44

τ33 120 1̄0 4 2 -0.76 -4.46 3.97 -1.37

τ33 120 2̄0 4 2 -0.40 -3.10 -0.22 -3.75

τ33 120 4̄0 4 2 0.39 -1.79 1.49 -1.17

τ33 120 8̄0 4 2 0.72 -1.21 0.57 -1.59
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5.2 Appendix 1a: Fixed Effect Graphical Results

Figure 5.1: Fixed Effect PRB Model 1 T1 REML & FML
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Figure 5.2: Fixed Effect PRB Model 1 T2 REML & FML
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Figure 5.3: Fixed Effect RAW BIAS Model 1 T1 REML & FML

133



Figure 5.4: Fixed Effect RAW BIAS Model 1 T2 REML & FML
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Figure 5.5: Fixed Effect RMSE Model 1 T1 REML & FML
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Figure 5.6: Fixed Effect RMSE Model 1 T2 REML & FML
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Figure 5.7: Fixed Effect PRB Model 2 T1 REML & FML
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Figure 5.8: Fixed Effect PRB Model 2 T2 REML & FML
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Figure 5.9: Fixed Effect RAW BIAS Model 2 T1 REML & FML
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Figure 5.10: Fixed Effect RAW BIAS Model 2 T2 REML & FML
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Figure 5.11: Fixed Effect RMSE Model 2 T1 REML & FML
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Figure 5.12: Fixed Effect RMSE Model 2 T2 REML & FML
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Figure 5.13: Fixed Effect PRB Model 3 T1 REML & FML

143



Figure 5.14: Fixed Effect PRB Model 3 T2 REML & FML
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Figure 5.15: Fixed Effect Raw Bias Model 3 T1 REML & FML
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Figure 5.16: Fixed Effect Raw Bias Model 3 T2 REML & FML
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Figure 5.17: Fixed Effect RMSE Model 3 T1 REML & FML
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Figure 5.18: Fixed Effect RMSE Model 3 T2 REML & FML
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5.3 Appendix 1b: Covariance Component PRB and RMSE for Balanced

Data

Figure 5.19: Random Effect PRB Balanced Data Model 2 T1 REML & FML
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Figure 5.20: Random Effect PRB Balanced Data Model 2 T2 REML & FML
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Figure 5.21: Random Effect PRB Balanced Data Restricted Cells Model 2 T1 REML &

FML
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Figure 5.22: Random Effect PRB Balanced Data Restricted Cells Model 2 T2 REML &

FML
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Figure 5.23: τ11 PRB Balance Data Cells Restricted Model 2 T1 REML & FML
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Figure 5.24: τ21 PRB Balance Data Cells Restricted Model 2 T1 REML & FML
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Figure 5.25: τ22 PRB Balance Data Cells Restricted Model 2 T1 REML & FML
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Figure 5.26: τ31 PRB Balance Data Cells Restricted Model 2 T1 REML & FML
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Figure 5.27: τ32 PRB Balance Data Cells Restricted Model 2 T1 REML & FML
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Figure 5.28: τ33 PRB Balance Data Cells Restricted Model 2 T1 REML & FML
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Figure 5.29: τ11 PRB Balance Data Cells Restricted PRB Model 2 T2 REML & FML
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Figure 5.30: τ21 PRB Balance Data Cells Restricted PRB Model 2 T2 REML & FML
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Figure 5.31: τ22 PRB Balance Data Cells Restricted PRB Model 2 T2 REML & FML
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Figure 5.32: τ31 PRB Balance Data Cells Restricted PRB Model 2 T2 REML & FML
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Figure 5.33: τ32 PRB Balance Data Cells Restricted Model 2 T2 REML & FML
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Figure 5.34: τ33 PRB Balance Data Cells Restricted Model 2 T2 REML & FML
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Figure 5.35: Random Effect RMSE Balanced Data Cells Restricted Model 2 T1 REML

& FML
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Figure 5.36: Random Effect RMSE Balanced Data Cells Restricted Model 2 T2 REML

& FML
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5.4 Appendix 2: Covariance Component RMSE Tables

5.4.1 Model 1

Table 5.5: Positive Definite Solutions for Model 1 Comparing Root Mean Squared Error

(RMSE) for REML and FML Estimates of Covariance Parameters Across T1 and T2

T1 T2

Covparm ISU OBS θT1 θT2 RML FML RML FML

σ2 1 1 48.86 48.86 3.82 3.83 3.71 3.65

σ2 2 1 48.86 48.86 2.65 2.65 2.53 2.53

σ2 3 1 48.86 48.86 1.79 1.79 1.89 1.89

σ2 4 1 48.86 48.86 1.26 1.26 1.28 1.28

σ2 1 2 48.86 48.86 2.41 2.41 2.38 2.39

σ2 2 2 48.86 48.86 1.69 1.69 1.70 1.70

σ2 3 2 48.86 48.86 1.21 1.21 1.14 1.14

σ2 4 2 48.86 48.86 0.84 0.84 0.81 0.81

σ2 1 3 48.86 48.86 1.64 1.64 1.62 1.62

σ2 2 3 48.86 48.86 1.14 1.14 1.09 1.09

σ2 3 3 48.86 48.86 0.81 0.81 0.82 0.82

σ2 4 3 48.86 48.86 0.58 0.58 0.59 0.59

σ2 1 4 48.86 48.86 1.13 1.13 1.20 1.20

σ2 2 4 48.86 48.86 0.78 0.78 0.75 0.75

σ2 3 4 48.86 48.86 0.55 0.55 0.58 0.58

σ2 4 4 48.86 48.86 0.39 0.39 0.39 0.39

τ11 1 1 12 4 3.50 3.76 2.07 2.12

τ11 2 1 12 4 2.32 2.44 1.63 1.67

τ11 3 1 12 4 1.56 1.60 1.15 1.17

τ11 4 1 12 4 1.17 1.18 0.81 0.81

Continued on next page
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Table 5.5 – continued from previous page

T1 T2

Covparm ISU OBS θT1 θT2 RML FML RML FML

τ11 1 2 12 4 2.30 2.57 1.41 1.51

τ11 2 2 12 4 1.55 1.68 0.99 1.04

τ11 3 2 12 4 1.02 1.06 0.69 0.71

τ11 4 2 12 4 0.78 0.79 0.49 0.49

τ11 1 3 12 4 1.50 1.79 0.95 1.07

τ11 2 3 12 4 1.09 1.20 0.67 0.72

τ11 3 3 12 4 0.74 0.79 0.46 0.48

τ11 4 3 12 4 0.53 0.55 0.32 0.32

τ11 1 4 12 4 1.03 1.37 0.68 0.76

τ11 2 4 12 4 0.75 0.88 0.44 0.48

τ11 3 4 12 4 0.53 0.57 0.30 0.32

τ11 4 4 12 4 0.37 0.39 0.21 0.22

5.4.2 Model 2

Table 5.6: Positive Definite Solutions for Model 2 Comparing Root Mean Squared Error

(RMSE) for REML and FML Estimates of Covariance Parameters Across T1 and T2

T1 T2

Covparm ISU OBS θT1 θT2 RML FML RML FML

σ2 15 4̄0 46.58 . 1.81 1.82 . .

σ2 15 8̄0 46.58 . 1.15 1.05 . .

σ2 30 2̄0 46.58 46.58 1.75 1.76 2.03 2.08

Continued on next page
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Table 5.6 – continued from previous page

T1 T2

Covparm ISU OBS θT1 θT2 RML FML RML FML

σ2 30 4̄0 46.58 . 1.21 1.21 . .

σ2 30 8̄0 46.58 46.58 0.82 0.82 0.84 0.84

σ2 60 1̄0 46.58 . 2.20 2.27 . .

σ2 60 2̄0 46.58 46.58 1.34 1.34 1.32 1.32

σ2 60 4̄0 46.58 46.58 0.86 0.86 0.86 0.86

σ2 60 8̄0 46.58 46.58 0.57 0.57 0.56 0.56

σ2 120 1̄0 46.58 46.58 1.54 1.54 1.55 1.55

σ2 120 2̄0 46.58 46.58 1.00 1.00 0.91 0.91

σ2 120 4̄0 46.58 46.58 0.61 0.61 0.59 0.59

σ2 120 8̄0 46.58 46.58 0.42 0.42 0.39 0.39

τ11 15 4̄0 12 . 3.65 3.57 . .

τ11 15 8̄0 12 . 3.34 3.41 . .

τ11 30 2̄0 12 4 3.23 3.22 1.42 1.44

τ11 30 4̄0 12 . 2.63 2.58 . .

τ11 30 8̄0 12 4 2.05 2.03 0.92 0.91

τ11 60 1̄0 12 . 2.76 2.80 . .

τ11 60 2̄0 12 4 2.11 2.10 1.00 1.00

τ11 60 4̄0 12 4 1.59 1.60 0.77 0.77

τ11 60 8̄0 12 4 1.37 1.38 0.62 0.62

τ11 120 1̄0 12 4 1.83 1.82 1.04 1.04

τ11 120 2̄0 12 4 1.42 1.43 0.73 0.73

τ11 120 4̄0 12 4 1.16 1.17 0.54 0.53

τ11 120 8̄0 12 4 1.01 1.01 0.42 0.42

Continued on next page

169



Table 5.6 – continued from previous page

T1 T2

Covparm ISU OBS θT1 θT2 RML FML RML FML

τ21 15 4̄0 4 . 2.52 2.37 . .

τ21 15 8̄0 4 . 2.34 2.25 . .

τ21 30 2̄0 4 1 2.22 2.15 1.15 1.10

τ21 30 4̄0 4 . 1.81 1.74 . .

τ21 30 8̄0 4 1 1.43 1.39 0.66 0.64

τ21 60 1̄0 4 . 2.05 2.08 . .

τ21 60 2̄0 4 1 1.54 1.51 0.74 0.73

τ21 60 4̄0 4 1 1.19 1.18 0.60 0.59

τ21 60 8̄0 4 1 0.97 0.96 0.47 0.46

τ21 120 1̄0 4 1 1.41 1.40 0.78 0.77

τ21 120 2̄0 4 1 1.04 1.03 0.57 0.56

τ21 120 4̄0 4 1 0.87 0.86 0.42 0.42

τ21 120 8̄0 4 1 0.68 0.68 0.31 0.31

τ22 15 4̄0 7 . 2.85 2.71 . .

τ22 15 8̄0 7 . 2.40 2.29 . .

τ22 30 2̄0 7 3 2.46 2.41 1.66 1.61

τ22 30 4̄0 7 . 1.94 1.88 . .

τ22 30 8̄0 7 3 1.52 1.49 0.89 0.86

τ22 60 1̄0 7 . 2.44 2.50 . .

τ22 60 2̄0 7 3 1.79 1.78 1.10 1.08

τ22 60 4̄0 7 3 1.36 1.35 0.77 0.76

τ22 60 8̄0 7 3 1.06 1.06 0.59 0.58

τ22 120 1̄0 7 3 1.73 1.72 1.15 1.14
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Table 5.6 – continued from previous page

T1 T2

Covparm ISU OBS θT1 θT2 RML FML RML FML

τ22 120 2̄0 7 3 1.25 1.24 0.75 0.75

τ22 120 4̄0 7 3 0.98 0.98 0.54 0.54

τ22 120 8̄0 7 3 0.72 0.72 0.42 0.42

τ31 15 4̄0 3 . 1.83 1.73 . .

τ31 15 8̄0 3 . 1.36 1.34 . .

τ31 30 2̄0 3 0.9 1.49 1.44 0.95 0.93

τ31 30 4̄0 3 . 1.14 1.11 . .

τ31 30 8̄0 3 0.9 0.87 0.85 0.49 0.47

τ31 60 1̄0 3 . 1.56 1.54 . .

τ31 60 2̄0 3 0.9 1.09 1.07 0.64 0.63

τ31 60 4̄0 3 0.9 0.76 0.75 0.46 0.46

τ31 60 8̄0 3 0.9 0.59 0.59 0.34 0.34

τ31 120 1̄0 3 0.9 1.09 1.08 0.71 0.71

τ31 120 2̄0 3 0.9 0.73 0.72 0.46 0.46

τ31 120 4̄0 3 0.9 0.56 0.55 0.33 0.32

τ31 120 8̄0 3 0.9 0.42 0.41 0.23 0.23

τ32 15 4̄0 1 . 1.58 1.45 . .

τ32 15 8̄0 1 . 1.14 1.10 . .

τ32 30 2̄0 1 0.3 1.37 1.32 0.81 0.74

τ32 30 4̄0 1 . 1.02 0.99 . .

τ32 30 8̄0 1 0.3 0.78 0.75 0.49 0.47

τ32 60 1̄0 1 . 1.40 1.35 . .

τ32 60 2̄0 1 0.3 0.96 0.94 0.65 0.64
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Table 5.6 – continued from previous page

T1 T2

Covparm ISU OBS θT1 θT2 RML FML RML FML

τ32 60 4̄0 1 0.3 0.70 0.69 0.45 0.44

τ32 60 8̄0 1 0.3 0.48 0.47 0.33 0.32

τ32 120 1̄0 1 0.3 1.01 1.00 0.70 0.69

τ32 120 2̄0 1 0.3 0.69 0.69 0.46 0.45

τ32 120 4̄0 1 0.3 0.49 0.49 0.32 0.32

τ32 120 8̄0 1 0.3 0.37 0.37 0.23 0.22

τ33 15 4̄0 4 . 1.32 1.26 . .

τ33 15 8̄0 4 . 0.94 0.93 . .

τ33 30 2̄0 4 2 1.40 1.34 0.92 0.85

τ33 30 4̄0 4 . 0.96 0.95 . .

τ33 30 8̄0 4 2 0.65 0.65 0.48 0.48

τ33 60 1̄0 4 . 1.58 1.54 . .

τ33 60 2̄0 4 2 1.04 1.03 0.74 0.72

τ33 60 4̄0 4 2 0.66 0.65 0.51 0.50

τ33 60 8̄0 4 2 0.45 0.45 0.33 0.33

τ33 120 1̄0 4 2 1.14 1.12 0.84 0.83

τ33 120 2̄0 4 2 0.69 0.69 0.54 0.54

τ33 120 4̄0 4 2 0.47 0.46 0.35 0.34

τ33 120 8̄0 4 2 0.32 0.33 0.24 0.24

5.4.3 Balanced Model 2
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Table 5.7: Balanced Positive Definite Solutions for Model 2 Comparing Root Mean

Squared Error (RMSE) for REML and FML Estimates of Covariance Parameters Across

T1 and T2

T1 RMSE T2 RMSE

Parm OBS ISU θT1 θT2 RML FML RML FML

σ2 2 1 46.58 46.58 1.67 1.66 1.54 1.53

σ2 3 1 46.58 46.58 1.15 1.16 1.08 1.06

σ2 4 1 46.58 46.58 0.77 0.77 0.78 0.78

σ2 1 2 46.58 46.58 1.22 1.22 1.16 1.19

σ2 2 2 46.58 46.58 0.78 0.78 0.77 0.77

σ2 3 2 46.58 46.58 0.55 0.55 0.53 0.53

σ2 4 2 46.58 46.58 0.37 0.37 0.37 0.37

σ2 1 3 46.58 46.58 0.63 0.63 0.59 0.6

σ2 2 3 46.58 46.58 0.4 0.4 0.39 0.39

σ2 3 3 46.58 46.58 0.26 0.26 0.26 0.26

σ2 4 3 46.58 46.58 0.18 0.18 0.18 0.18

σ2 1 4 46.58 46.58 0.29 0.29 0.3 0.3

σ2 2 4 46.58 46.58 0.19 0.19 0.19 0.19

σ2 3 4 46.58 46.58 0.13 0.13 0.13 0.13

σ2 4 4 46.58 46.58 0.09 0.09 0.09 0.09

τ11 2 1 12 4 1.08 1.37 0.99 1.07

τ11 3 1 12 4 0.71 0.83 0.66 0.69

τ11 4 1 12 4 0.48 0.52 0.45 0.47

τ11 1 2 12 4 0.81 1.52 0.74 1.04

τ11 2 2 12 4 0.51 0.82 0.48 0.59

τ11 3 2 12 4 0.36 0.49 0.34 0.38
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Table 5.7 – continued from previous page

T1 RMSE T2 RMSE

Parm OBS ISU θT1 θT2 RML FML RML FML

τ11 4 2 12 4 0.24 0.29 0.22 0.24

τ11 1 3 12 4 0.41 1.16 0.37 0.62

τ11 2 3 12 4 0.27 0.6 0.25 0.35

τ11 3 3 12 4 0.18 0.33 0.16 0.2

τ11 4 3 12 4 0.12 0.18 0.11 0.13

τ11 1 4 12 4 0.2 0.97 0.18 0.44

τ11 2 4 12 4 0.13 0.49 0.12 0.23

τ11 3 4 12 4 0.09 0.25 0.08 0.13

τ11 4 4 12 4 0.06 0.13 0.05 0.07

τ21 2 1 4 1 1.3 1.26 0.89 0.84

τ21 3 1 4 1 0.91 0.89 0.61 0.6

τ21 4 1 4 1 0.63 0.63 0.43 0.43

τ21 1 2 4 1 1.26 1.21 0.69 0.64

τ21 2 2 4 1 0.85 0.84 0.53 0.51

τ21 3 2 4 1 0.61 0.6 0.39 0.39

τ21 4 2 4 1 0.42 0.42 0.28 0.27

τ21 1 3 4 1 0.81 0.82 0.5 0.47

τ21 2 3 4 1 0.61 0.6 0.37 0.35

τ21 3 3 4 1 0.42 0.41 0.25 0.25

τ21 4 3 4 1 0.3 0.3 0.17 0.17

τ21 1 4 4 1 0.57 0.61 0.36 0.34

τ21 2 4 4 1 0.42 0.43 0.23 0.23

τ21 3 4 4 1 0.3 0.3 0.17 0.17

τ21 4 4 4 1 0.2 0.2 0.12 0.12
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Table 5.7 – continued from previous page

T1 RMSE T2 RMSE

Parm OBS ISU θT1 θT2 RML FML RML FML

τ22 2 1 7 3 2 1.93 1.42 1.31

τ22 3 1 7 3 1.36 1.36 0.98 0.97

τ22 4 1 7 3 0.97 0.97 0.71 0.7

τ22 1 2 7 3 1.89 1.86 1.27 1.11

τ22 2 2 7 3 1.26 1.25 0.93 0.9

τ22 3 2 7 3 0.92 0.91 0.63 0.62

τ22 4 2 7 3 0.65 0.64 0.45 0.45

τ22 1 3 7 3 1.31 1.33 0.87 0.83

τ22 2 3 7 3 0.89 0.89 0.63 0.62

τ22 3 3 7 3 0.63 0.63 0.42 0.42

τ22 4 3 7 3 0.46 0.46 0.3 0.3

τ22 1 4 7 3 0.89 0.98 0.58 0.59

τ22 2 4 7 3 0.6 0.64 0.42 0.42

τ22 3 4 7 3 0.45 0.45 0.28 0.28

τ22 4 4 7 3 0.32 0.32 0.2 0.2

τ31 2 1 3 0.9 1.34 1.29 0.88 0.85

τ31 3 1 3 0.9 0.97 0.95 0.65 0.64

τ31 4 1 3 0.9 0.71 0.71 0.46 0.45

τ31 1 2 3 0.9 1.25 1.18 0.75 0.72

τ31 2 2 3 0.9 0.89 0.86 0.55 0.53

τ31 3 2 3 0.9 0.65 0.64 0.4 0.4

τ31 4 2 3 0.9 0.44 0.44 0.28 0.28

τ31 1 3 3 0.9 0.87 0.83 0.51 0.48

τ31 2 3 3 0.9 0.6 0.59 0.37 0.35
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T1 RMSE T2 RMSE

Parm OBS ISU θT1 θT2 RML FML RML FML

τ31 3 3 3 0.9 0.42 0.42 0.26 0.26

τ31 4 3 3 0.9 0.3 0.3 0.18 0.18

τ31 1 4 3 0.9 0.58 0.58 0.33 0.32

τ31 2 4 3 0.9 0.43 0.42 0.25 0.24

τ31 3 4 3 0.9 0.29 0.29 0.17 0.17

τ31 4 4 3 0.9 0.2 0.2 0.12 0.12

τ32 2 1 1 0.3 1.34 1.28 0.91 0.79

τ32 3 1 1 0.3 0.91 0.9 0.67 0.65

τ32 4 1 1 0.3 0.63 0.63 0.49 0.48

τ32 1 2 1 0.3 1.24 1.16 0.9 0.84

τ32 2 2 1 0.3 0.84 0.81 0.62 0.6

τ32 3 2 1 0.3 0.61 0.6 0.44 0.43

τ32 4 2 1 0.3 0.41 0.41 0.3 0.3

τ32 1 3 1 0.3 0.84 0.79 0.57 0.53

τ32 2 3 1 0.3 0.55 0.53 0.41 0.4

τ32 3 3 1 0.3 0.39 0.38 0.27 0.27

τ32 4 3 1 0.3 0.3 0.3 0.2 0.2

τ32 1 4 1 0.3 0.56 0.53 0.4 0.37

τ32 2 4 1 0.3 0.4 0.39 0.28 0.27

τ32 3 4 1 0.3 0.28 0.28 0.19 0.18

τ32 4 4 1 0.3 0.19 0.19 0.13 0.13

τ33 2 1 4 2 1.65 1.59 1.21 1.13

τ33 3 1 4 2 1.21 1.2 0.88 0.86

τ33 4 1 4 2 0.86 0.85 0.65 0.64
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T1 RMSE T2 RMSE

Parm OBS ISU θT1 θT2 RML FML RML FML

τ33 1 2 4 2 1.47 1.41 1.17 1.1

τ33 2 2 4 2 1.11 1.09 0.79 0.77

τ33 3 2 4 2 0.76 0.75 0.57 0.57

τ33 4 2 4 2 0.53 0.53 0.41 0.41

τ33 1 3 4 2 0.95 0.95 0.74 0.7

τ33 2 3 4 2 0.71 0.71 0.53 0.52

τ33 3 3 4 2 0.5 0.5 0.36 0.36

τ33 4 3 4 2 0.37 0.37 0.25 0.25

τ33 1 4 4 2 0.69 0.71 0.51 0.5

τ33 2 4 4 2 0.48 0.49 0.36 0.35

τ33 3 4 4 2 0.34 0.34 0.23 0.23

τ33 4 4 4 2 0.23 0.23 0.17 0.17

5.4.4 Model 3

Table 5.8: Positive Definite Solutions for Model 3 Comparing Root Mean Squared Error

(RMSE) for REML and FML Estimates of Covariance Parameters Across T1 and T2

T1 T2

Covparm ISU OBS θT1 θT2 RML FML RML FML

σ2 15 8̄0 46.58 . 1.17 1.19 . .

σ2 30 2̄0 46.58 . 1.98 1.82 . .

σ2 30 4̄0 46.58 46.58 1.25 1.25 1.25 1.25
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T1 T2

Covparm ISU OBS θT1 θT2 RML FML RML FML

σ2 30 8̄0 46.58 46.58 0.82 0.82 0.80 0.80

σ2 60 1̄0 46.58 46.58 2.33 2.32 2.01 1.93

σ2 60 2̄0 46.58 46.58 1.35 1.34 1.36 1.36

σ2 60 4̄0 46.58 46.58 0.83 0.83 0.84 0.83

σ2 60 8̄0 46.58 46.58 0.59 0.59 0.58 0.58

σ2 120 1̄0 46.58 46.58 1.59 1.58 1.54 1.52

σ2 120 2̄0 46.58 46.58 0.92 0.92 0.97 0.96

σ2 120 4̄0 46.58 46.58 0.59 0.59 0.57 0.57

σ2 120 8̄0 46.58 46.58 0.41 0.41 0.42 0.42

τ11 15 8̄0 12 . 3.63 3.88 . .

τ11 30 2̄0 12 . 3.31 3.21 . .

τ11 30 4̄0 12 4 2.75 2.79 1.23 1.25

τ11 30 8̄0 12 4 2.25 2.25 1.02 1.01

τ11 60 1̄0 12 4 2.96 3.03 1.49 1.47

τ11 60 2̄0 12 4 2.33 2.38 1.12 1.16

τ11 60 4̄0 12 4 1.71 1.75 0.84 0.86

τ11 60 8̄0 12 4 1.49 1.47 0.67 0.69

τ11 120 1̄0 12 4 2.03 2.07 1.08 1.10

τ11 120 2̄0 12 4 1.46 1.48 0.76 0.78

τ11 120 4̄0 12 4 1.18 1.20 0.55 0.56

τ11 120 8̄0 12 4 0.99 1.00 0.45 0.46

τ21 15 8̄0 4 . 2.43 2.28 . .

τ21 30 2̄0 4 . 2.29 2.23 . .
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T1 T2

Covparm ISU OBS θT1 θT2 RML FML RML FML

τ21 30 4̄0 4 1 1.96 1.90 0.89 0.85

τ21 30 8̄0 4 1 1.58 1.52 0.73 0.69

τ21 60 1̄0 4 1 2.07 2.06 1.24 1.07

τ21 60 2̄0 4 1 1.68 1.66 0.82 0.81

τ21 60 4̄0 4 1 1.28 1.27 0.62 0.61

τ21 60 8̄0 4 1 1.03 1.01 0.48 0.47

τ21 120 1̄0 4 1 1.45 1.45 0.77 0.76

τ21 120 2̄0 4 1 1.05 1.05 0.58 0.58

τ21 120 4̄0 4 1 0.86 0.86 0.42 0.42

τ21 120 8̄0 4 1 0.71 0.71 0.33 0.33

τ22 15 8̄0 7 . 2.57 2.29 . .

τ22 30 2̄0 7 . 2.64 2.69 . .

τ22 30 4̄0 7 3 2.11 2.05 1.16 1.13

τ22 30 8̄0 7 3 1.69 1.63 0.93 0.90

τ22 60 1̄0 7 3 2.29 2.30 1.73 1.62

τ22 60 2̄0 7 3 1.84 1.83 1.17 1.15

τ22 60 4̄0 7 3 1.40 1.41 0.82 0.81

τ22 60 8̄0 7 3 1.05 1.04 0.61 0.60

τ22 120 1̄0 7 3 1.72 1.72 1.14 1.12

τ22 120 2̄0 7 3 1.21 1.21 0.80 0.79

τ22 120 4̄0 7 3 0.93 0.93 0.55 0.55

τ22 120 8̄0 7 3 0.73 0.73 0.42 0.42

τ31 15 8̄0 3 . 1.59 1.35 . .
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Table 5.8 – continued from previous page

T1 T2

Covparm ISU OBS θT1 θT2 RML FML RML FML

τ31 30 2̄0 3 . 1.67 1.42 . .

τ31 30 4̄0 3 0.9 1.25 1.17 0.71 0.66

τ31 30 8̄0 3 0.9 0.91 0.85 0.52 0.49

τ31 60 1̄0 3 0.9 1.43 1.40 1.05 1.04

τ31 60 2̄0 3 0.9 1.15 1.12 0.69 0.67

τ31 60 4̄0 3 0.9 0.82 0.79 0.48 0.47

τ31 60 8̄0 3 0.9 0.61 0.59 0.35 0.34

τ31 120 1̄0 3 0.9 1.15 1.13 0.69 0.68

τ31 120 2̄0 3 0.9 0.75 0.74 0.48 0.47

τ31 120 4̄0 3 0.9 0.58 0.58 0.32 0.31

τ31 120 8̄0 3 0.9 0.42 0.41 0.24 0.24

τ32 15 8̄0 1 . 1.34 1.14 . .

τ32 30 2̄0 1 . 1.53 1.37 . .

τ32 30 4̄0 1 0.3 1.06 0.99 0.66 0.61

τ32 30 8̄0 1 0.3 0.78 0.72 0.51 0.47

τ32 60 1̄0 1 0.3 1.28 1.24 1.14 1.13

τ32 60 2̄0 1 0.3 1.05 1.01 0.66 0.63

τ32 60 4̄0 1 0.3 0.72 0.70 0.47 0.45

τ32 60 8̄0 1 0.3 0.53 0.51 0.33 0.32

τ32 120 1̄0 1 0.3 1.00 0.98 0.73 0.71

τ32 120 2̄0 1 0.3 0.70 0.68 0.47 0.46

τ32 120 4̄0 1 0.3 0.50 0.49 0.32 0.32

τ32 120 8̄0 1 0.3 0.37 0.37 0.23 0.23
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Table 5.8 – continued from previous page

T1 T2

Covparm ISU OBS θT1 θT2 RML FML RML FML

τ33 15 8̄0 4 . 1.13 0.98 . .

τ33 30 2̄0 4 . 1.51 1.38 . .

τ33 30 4̄0 4 2 1.00 0.97 0.75 0.71

τ33 30 8̄0 4 2 0.66 0.64 0.47 0.46

τ33 60 1̄0 4 2 1.72 1.62 1.00 0.91

τ33 60 2̄0 4 2 1.06 1.02 0.74 0.72

τ33 60 4̄0 4 2 0.71 0.69 0.49 0.47

τ33 60 8̄0 4 2 0.47 0.46 0.36 0.35

τ33 120 1̄0 4 2 1.17 1.17 0.83 0.81

τ33 120 2̄0 4 2 0.73 0.73 0.54 0.53

τ33 120 4̄0 4 2 0.48 0.48 0.35 0.34

τ33 120 8̄0 4 2 0.32 0.32 0.23 0.23

5.5 Appendix 3: Fixed Effect PRB Tables

5.5.1 Model 1

Table 5.9: Positive Definite Solutions for Model 1 Comparing Percent Relative Bias for

REML and FML Estimates of Fixed Effects Across T1 and T2

T1 T2

Effect ISU OBS θ RML FML RML FML

γ00 1 1 5 -0.17 -0.16 0.08 0.12
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Table 5.9 – continued from previous page

T1 T2

Effect ISU OBS θ RML FML RML FML

γ00 2 1 5 0.27 0.27 0.06 0.06

γ00 3 1 5 -0.01 -0.00 -0.05 -0.05

γ00 4 1 5 -0.03 -0.03 -0.01 -0.01

γ00 1 2 5 0.12 0.12 -0.01 0.01

γ00 2 2 5 0.16 0.16 -0.06 -0.06

γ00 3 2 5 -0.05 -0.05 0.08 0.08

γ00 4 2 5 -0.08 -0.08 0.00 0.00

γ00 1 3 5 0.08 0.08 0.01 0.01

γ00 2 3 5 0.05 0.05 -0.01 -0.01

γ00 3 3 5 -0.05 -0.05 0.01 0.01

γ00 4 3 5 0.05 0.05 0.00 -0.00

γ00 1 4 5 -0.06 -0.06 -0.04 -0.03

γ00 2 4 5 -0.09 -0.09 -0.05 -0.05

γ00 3 4 5 -0.03 -0.03 0.00 0.00

γ00 4 4 5 -0.06 -0.06 0.03 0.03

5.5.2 Model 2

Table 5.10: Positive Definite Solutions for Model 2 Comparing Percent Relative Bias for

REML and FML Estimates of Fixed Effects Across T1 and T2

T1 T2

Effect ISU OBS θ RML FML RML FML

γ00 15 4̄0 5 -0.93 -1.17 . .
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Table 5.10 – continued from previous page

T1 T2

Effect ISU OBS θ RML FML RML FML

γ00 15 8̄0 5 0.00 0.03 . .

γ00 30 2̄0 5 0.55 0.52 0.85 0.70

γ00 30 4̄0 5 0.39 0.38 . .

γ00 30 8̄0 5 -0.10 -0.10 0.18 0.18

γ00 60 1̄0 5 0.18 0.20 . .

γ00 60 2̄0 5 0.26 0.25 -0.05 -0.08

γ00 60 4̄0 5 0.02 0.02 0.03 0.03

γ00 60 8̄0 5 -0.10 -0.10 0.11 0.11

γ00 120 1̄0 5 0.20 0.20 0.06 0.07

γ00 120 2̄0 5 0.17 0.17 -0.00 -0.00

γ00 120 4̄0 5 0.17 0.17 0.02 0.02

γ00 120 8̄0 5 0.02 0.02 -0.02 -0.02

γ10 15 4̄0 0.98 -5.56 -6.84 . .

γ10 15 8̄0 0.98 0.61 0.43 . .

γ10 30 2̄0 0.98 2.90 2.80 2.37 1.04

γ10 30 4̄0 0.98 1.74 1.72 . .

γ10 30 8̄0 0.98 -0.18 -0.19 0.90 0.92

γ10 60 1̄0 0.98 0.62 -0.10 . .

γ10 60 2̄0 0.98 1.79 1.76 0.43 0.28

γ10 60 4̄0 0.98 0.36 0.36 0.35 0.36

γ10 60 8̄0 0.98 -0.60 -0.61 0.35 0.34

γ10 120 1̄0 0.98 0.86 0.85 0.13 0.22

γ10 120 2̄0 0.98 0.63 0.63 0.20 0.19

γ10 120 4̄0 0.98 0.72 0.72 0.07 0.07
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Table 5.10 – continued from previous page

T1 T2

Effect ISU OBS θ RML FML RML FML

γ10 120 8̄0 0.98 0.15 0.16 -0.07 -0.07

γ20 15 4̄0 2.3 -0.93 -0.87 . .

γ20 15 8̄0 2.3 0.04 -0.58 . .

γ20 30 2̄0 2.3 -1.84 -1.80 -1.67 -1.71

γ20 30 4̄0 2.3 -0.25 -0.25 . .

γ20 30 8̄0 2.3 -0.18 -0.18 -0.01 -0.01

γ20 60 1̄0 2.3 0.24 0.68 . .

γ20 60 2̄0 2.3 0.02 0.02 -0.25 -0.20

γ20 60 4̄0 2.3 -0.01 -0.01 0.14 0.14

γ20 60 8̄0 2.3 0.03 0.03 0.01 0.01

γ20 120 1̄0 2.3 0.01 0.01 0.43 0.37

γ20 120 2̄0 2.3 0.14 0.14 -0.37 -0.37

γ20 120 4̄0 2.3 0.03 0.03 0.14 0.14

γ20 120 8̄0 2.3 -0.03 -0.03 0.05 0.05

5.5.3 Model 3

Table 5.11: Positive Definite Solutions for Model 3 Comparing Percent Relative Bias for

REML and FML Estimates of Fixed Effects Across T1 and T2

T1 T2

Effect ISU OBS θ RML FML RML FML

γ00 15 8̄0 5 0.48 1.69 . .

γ00 30 2̄0 5 -1.23 0.60 . .
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Table 5.11 – continued from previous page

T1 T2

Effect ISU OBS θ RML FML RML FML

γ00 30 4̄0 5 0.07 0.08 0.17 0.10

γ00 30 8̄0 5 -0.16 -0.17 0.23 0.25

γ00 60 1̄0 5 6.58 6.69 -1.32 -0.96

γ00 60 2̄0 5 1.25 1.26 -0.18 -0.22

γ00 60 4̄0 5 0.19 0.20 -0.03 -0.03

γ00 60 8̄0 5 -0.54 -0.54 0.05 0.05

γ00 120 1̄0 5 0.30 0.37 -0.19 -0.14

γ00 120 2̄0 5 0.05 0.05 -0.10 -0.08

γ00 120 4̄0 5 0.11 0.11 0.21 0.21

γ00 120 8̄0 5 -0.28 -0.29 0.03 0.03

γ01 15 8̄0 1.9 -2.67 -6.44 . .

γ01 30 2̄0 1.9 7.17 -0.39 . .

γ01 30 4̄0 1.9 -0.68 -0.71 -1.53 -1.30

γ01 30 8̄0 1.9 0.41 0.43 -0.53 -0.58

γ01 60 1̄0 1.9 -22.19 -22.53 3.66 2.26

γ01 60 2̄0 1.9 -4.39 -4.41 0.31 0.37

γ01 60 4̄0 1.9 0.03 0.01 0.24 0.23

γ01 60 8̄0 1.9 1.83 1.84 -0.61 -0.63

γ01 120 1̄0 1.9 -1.29 -1.54 0.32 0.18

γ01 120 2̄0 1.9 -0.82 -0.82 0.38 0.31

γ01 120 4̄0 1.9 -0.15 -0.15 -0.37 -0.37

γ01 120 8̄0 1.9 0.93 0.94 0.03 0.02

γ10 15 8̄0 0.98 1.72 7.63 . .

γ10 30 2̄0 0.98 -4.38 5.16 . .
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Table 5.11 – continued from previous page

T1 T2

Effect ISU OBS θ RML FML RML FML

γ10 30 4̄0 0.98 0.29 0.31 0.57 0.29

γ10 30 8̄0 0.98 -0.59 -0.63 0.94 1.03

γ10 60 1̄0 0.98 30.29 30.81 -6.07 -4.91

γ10 60 2̄0 0.98 5.49 5.53 -0.59 -0.84

γ10 60 4̄0 0.98 0.84 0.86 -0.25 -0.23

γ10 60 8̄0 0.98 -2.13 -2.15 0.25 0.27

γ10 120 1̄0 0.98 1.37 1.68 -0.76 -0.58

γ10 120 2̄0 0.98 0.29 0.29 -0.28 -0.21

γ10 120 4̄0 0.98 0.53 0.52 1.12 1.12

γ10 120 8̄0 0.98 -1.09 -1.10 0.25 0.25

γ11 15 8̄0 1.3 -2.16 -6.42 . .

γ11 30 2̄0 1.3 9.41 -1.40 . .

γ11 30 4̄0 1.3 -0.56 -0.60 -1.37 -1.09

γ11 30 8̄0 1.3 0.40 0.42 -0.75 -0.81

γ11 60 1̄0 1.3 -27.91 -28.31 3.98 2.26

γ11 60 2̄0 1.3 -6.01 -6.04 -0.32 -0.18

γ11 60 4̄0 1.3 0.48 0.45 0.53 0.52

γ11 60 8̄0 1.3 2.43 2.45 -0.97 -1.00

γ11 120 1̄0 1.3 -1.31 -1.63 -0.33 -0.45

γ11 120 2̄0 1.3 -0.55 -0.55 0.23 0.13

γ11 120 4̄0 1.3 0.20 0.21 -0.63 -0.63

γ11 120 8̄0 1.3 0.87 0.88 0.23 0.23

γ20 15 8̄0 2.3 -0.24 -0.24 . .

γ20 30 2̄0 2.3 0.41 0.61 . .
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Table 5.11 – continued from previous page

T1 T2

Effect ISU OBS θ RML FML RML FML

γ20 30 4̄0 2.3 -0.39 -0.39 0.13 0.09

γ20 30 8̄0 2.3 -0.10 -0.10 -0.04 -0.04

γ20 60 1̄0 2.3 0.22 0.18 1.46 1.24

γ20 60 2̄0 2.3 0.17 0.17 0.32 0.33

γ20 60 4̄0 2.3 -0.25 -0.25 0.26 0.26

γ20 60 8̄0 2.3 -0.01 -0.01 0.15 0.16

γ20 120 1̄0 2.3 -0.38 -0.41 0.04 0.03

γ20 120 2̄0 2.3 -0.46 -0.46 0.07 0.06

γ20 120 4̄0 2.3 -0.13 -0.13 0.13 0.13

γ20 120 8̄0 2.3 0.05 0.05 -0.12 -0.12

γ21 15 8̄0 0.85 2.02 0.79 . .

γ21 30 2̄0 0.85 1.30 0.39 . .

γ21 30 4̄0 0.85 0.96 0.97 -2.28 -2.05

γ21 30 8̄0 0.85 1.13 1.13 -0.20 -0.19

γ21 60 1̄0 0.85 -13.11 -13.20 -4.31 -4.34

γ21 60 2̄0 0.85 -1.50 -1.52 -0.64 -0.70

γ21 60 4̄0 0.85 0.42 0.42 -0.18 -0.17

γ21 60 8̄0 0.85 -0.11 -0.11 0.26 0.25

γ21 120 1̄0 0.85 2.55 2.56 -0.24 0.05

γ21 120 2̄0 0.85 0.65 0.66 -0.05 -0.03

γ21 120 4̄0 0.85 0.29 0.29 -0.54 -0.54

γ21 120 8̄0 0.85 0.11 0.11 0.08 0.08
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5.6 Appendix 4: Fixed Effect RMSE Tables

5.6.1 Model 1

Table 5.12: Positive Definite Solutions for Model 1 Comparing Root Mean Squared Error

(RMSE) for REML and FML Estimates of Fixed Effects Across T1 and T2

T1 T2

Effect ISU OBS θ RML FML RML FML

γ00 1 1 5 0.31 0.32 0.29 0.29

γ00 2 1 5 0.23 0.23 0.20 0.20

γ00 3 1 5 0.15 0.15 0.14 0.14

γ00 4 1 5 0.10 0.10 0.10 0.10

γ00 1 2 5 0.23 0.23 0.21 0.21

γ00 2 2 5 0.15 0.15 0.15 0.15

γ00 3 2 5 0.11 0.11 0.11 0.11

γ00 4 2 5 0.08 0.08 0.07 0.07

γ00 1 3 5 0.16 0.16 0.15 0.16

γ00 2 3 5 0.11 0.11 0.11 0.11

γ00 3 3 5 0.08 0.08 0.08 0.08

γ00 4 3 5 0.06 0.06 0.05 0.05

γ00 1 4 5 0.11 0.11 0.11 0.11

γ00 2 4 5 0.08 0.08 0.08 0.08

γ00 3 4 5 0.06 0.06 0.05 0.05

γ00 4 4 5 0.04 0.04 0.04 0.04

5.6.2 Model 2
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Table 5.13: Positive Definite Solutions for Model 2 Comparing Root Mean Squared Error

(RMSE) for REML and FML Estimates of Fixed Effects Across T1 and T2

T1 T2

Effect ISU OBS θ RML FML RML FML

γ00 15 4̄0 5 0.56 0.56 . .

γ00 15 8̄0 5 0.48 0.47 . .

γ00 30 2̄0 5 0.43 0.43 0.45 0.46

γ00 30 4̄0 5 0.36 0.36 . .

γ00 30 8̄0 5 0.31 0.31 0.24 0.24

γ00 60 1̄0 5 0.36 0.37 . .

γ00 60 2̄0 5 0.30 0.30 0.23 0.23

γ00 60 4̄0 5 0.26 0.26 0.19 0.19

γ00 60 8̄0 5 0.21 0.21 0.16 0.16

γ00 120 1̄0 5 0.25 0.25 0.18 0.18

γ00 120 2̄0 5 0.20 0.20 0.16 0.16

γ00 120 4̄0 5 0.18 0.18 0.14 0.14

γ00 120 8̄0 5 0.15 0.15 0.11 0.11

γ10 15 4̄0 0.98 0.50 0.51 . .

γ10 15 8̄0 0.98 0.41 0.40 . .

γ10 30 2̄0 0.98 0.39 0.40 0.41 0.42

γ10 30 4̄0 0.98 0.32 0.32 . .

γ10 30 8̄0 0.98 0.27 0.27 0.22 0.22

γ10 60 1̄0 0.98 0.35 0.35 . .

γ10 60 2̄0 0.98 0.28 0.28 0.22 0.22

γ10 60 4̄0 0.98 0.23 0.23 0.17 0.17

γ10 60 8̄0 0.98 0.18 0.18 0.15 0.15

γ10 120 1̄0 0.98 0.24 0.24 0.18 0.18
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Table 5.13 – continued from previous page

T1 T2

Effect ISU OBS θ RML FML RML FML

γ10 120 2̄0 0.98 0.19 0.19 0.15 0.15

γ10 120 4̄0 0.98 0.16 0.16 0.13 0.13

γ10 120 8̄0 0.98 0.13 0.13 0.10 0.10

γ20 15 4̄0 2.3 0.19 0.19 . .

γ20 15 8̄0 2.3 0.15 0.15 . .

γ20 30 2̄0 2.3 0.22 0.22 0.22 0.23

γ20 30 4̄0 2.3 0.16 0.16 . .

γ20 30 8̄0 2.3 0.11 0.11 0.10 0.10

γ20 60 1̄0 2.3 0.22 0.22 . .

γ20 60 2̄0 2.3 0.16 0.16 0.15 0.14

γ20 60 4̄0 2.3 0.11 0.11 0.10 0.10

γ20 60 8̄0 2.3 0.07 0.07 0.08 0.08

γ20 120 1̄0 2.3 0.16 0.16 0.14 0.14

γ20 120 2̄0 2.3 0.10 0.10 0.10 0.10

γ20 120 4̄0 2.3 0.08 0.08 0.07 0.07

γ20 120 8̄0 2.3 0.05 0.05 0.05 0.05

5.6.3 Model 3
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Table 5.14: Positive Definite Solutions for Model 3 Comparing Root Mean Squared Error

(RMSE) for REML and FML Estimates of Fixed Effects Across T1 and T2

T1 T2

Effect ISU OBS θ RML FML RML FML

γ00 15 8̄0 5 0.67 0.72 . .

γ00 30 2̄0 5 0.96 1.00 . .

γ00 30 4̄0 5 0.67 0.69 0.63 0.65

γ00 30 8̄0 5 0.48 0.49 0.47 0.48

γ00 60 1̄0 5 0.83 0.84 0.86 0.82

γ00 60 2̄0 5 0.71 0.72 0.63 0.64

γ00 60 4̄0 5 0.49 0.50 0.47 0.47

γ00 60 8̄0 5 0.32 0.32 0.34 0.34

γ00 120 1̄0 5 0.73 0.73 0.64 0.64

γ00 120 2̄0 5 0.49 0.50 0.47 0.48

γ00 120 4̄0 5 0.35 0.35 0.34 0.34

γ00 120 8̄0 5 0.24 0.24 0.24 0.25

γ01 15 8̄0 1.9 0.77 0.82 . .

γ01 30 2̄0 1.9 1.21 1.28 . .

γ01 30 4̄0 1.9 0.84 0.86 0.79 0.81

γ01 30 8̄0 1.9 0.62 0.63 0.59 0.60

γ01 60 1̄0 1.9 1.15 1.16 1.11 1.06

γ01 60 2̄0 1.9 0.94 0.95 0.82 0.83

γ01 60 4̄0 1.9 0.66 0.66 0.61 0.62

γ01 60 8̄0 1.9 0.43 0.44 0.45 0.46

γ01 120 1̄0 1.9 0.98 0.98 0.84 0.85

γ01 120 2̄0 1.9 0.69 0.69 0.62 0.63

γ01 120 4̄0 1.9 0.49 0.49 0.47 0.47
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Table 5.14 – continued from previous page

T1 T2

Effect ISU OBS θ RML FML RML FML

γ01 120 8̄0 1.9 0.33 0.33 0.34 0.34

γ10 15 8̄0 0.98 0.56 0.60 . .

γ10 30 2̄0 0.98 0.83 0.86 . .

γ10 30 4̄0 0.98 0.58 0.59 0.55 0.56

γ10 30 8̄0 0.98 0.41 0.42 0.40 0.41

γ10 60 1̄0 0.98 0.71 0.72 0.75 0.71

γ10 60 2̄0 0.98 0.61 0.62 0.55 0.55

γ10 60 4̄0 0.98 0.42 0.42 0.40 0.40

γ10 60 8̄0 0.98 0.27 0.27 0.29 0.29

γ10 120 1̄0 0.98 0.63 0.63 0.56 0.56

γ10 120 2̄0 0.98 0.43 0.43 0.41 0.41

γ10 120 4̄0 0.98 0.29 0.30 0.29 0.29

γ10 120 8̄0 0.98 0.20 0.20 0.21 0.21

γ11 15 8̄0 1.3 0.65 0.67 . .

γ11 30 2̄0 1.3 1.02 1.09 . .

γ11 30 4̄0 1.3 0.72 0.74 0.68 0.69

γ11 30 8̄0 1.3 0.53 0.54 0.49 0.50

γ11 60 1̄0 1.3 0.99 0.99 0.89 0.87

γ11 60 2̄0 1.3 0.79 0.80 0.70 0.70

γ11 60 4̄0 1.3 0.55 0.56 0.51 0.52

γ11 60 8̄0 1.3 0.37 0.37 0.38 0.38

γ11 120 1̄0 1.3 0.82 0.82 0.71 0.71

γ11 120 2̄0 1.3 0.57 0.58 0.53 0.53

γ11 120 4̄0 1.3 0.41 0.41 0.39 0.39
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Table 5.14 – continued from previous page

T1 T2

Effect ISU OBS θ RML FML RML FML

γ11 120 8̄0 1.3 0.28 0.28 0.28 0.29

γ20 15 8̄0 2.3 0.17 0.17 . .

γ20 30 2̄0 2.3 0.25 0.25 . .

γ20 30 4̄0 2.3 0.17 0.17 0.17 0.17

γ20 30 8̄0 2.3 0.12 0.12 0.11 0.11

γ20 60 1̄0 2.3 0.26 0.26 0.27 0.27

γ20 60 2̄0 2.3 0.17 0.17 0.16 0.16

γ20 60 4̄0 2.3 0.12 0.12 0.12 0.12

γ20 60 8̄0 2.3 0.08 0.08 0.08 0.08

γ20 120 1̄0 2.3 0.18 0.18 0.16 0.17

γ20 120 2̄0 2.3 0.12 0.12 0.12 0.12

γ20 120 4̄0 2.3 0.09 0.09 0.08 0.08

γ20 120 8̄0 2.3 0.05 0.05 0.06 0.06

γ21 15 8̄0 0.85 0.26 0.27 . .

γ21 30 2̄0 0.85 0.39 0.39 . .

γ21 30 4̄0 0.85 0.28 0.28 0.26 0.27

γ21 30 8̄0 0.85 0.18 0.18 0.18 0.18

γ21 60 1̄0 0.85 0.44 0.44 0.37 0.39

γ21 60 2̄0 0.85 0.27 0.27 0.26 0.26

γ21 60 4̄0 0.85 0.19 0.19 0.18 0.18

γ21 60 8̄0 0.85 0.13 0.13 0.13 0.13

γ21 120 1̄0 0.85 0.29 0.29 0.26 0.26

γ21 120 2̄0 0.85 0.20 0.20 0.19 0.19

γ21 120 4̄0 0.85 0.14 0.14 0.13 0.13
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Table 5.14 – continued from previous page

T1 T2

Effect ISU OBS θ RML FML RML FML

γ21 120 8̄0 0.85 0.09 0.09 0.09 0.09
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