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ABSTRACT
JEFFREY ACKERMANN: The Effect of Franchising

on Store Performance and Consumer Utility
(Under the direction of Brian McManus)

I estimate the effect that franchising a store has on its performance. There is a

substantial literature predicting that a franchisee-owned store will generate higher profits

than a franchisor-owned store, all else equal. However, attempts to estimate the effect

of franchising on store performance are hampered by an important selection issue: the

franchisor may choose to assign the least desirable locations to franchisees. I overcome

this issue by using a 2007 corporate sale that resulted in all franchisor-owned Applebee’s

stores in Texas being sold to franchisees as a source of exogenous variation. While I do

not observe store profits, Texas makes store-level alcohol sales data available for all bars

and restaurants that have a liquor license; I use alcohol revenues as a proxy for store

performance.

In the first chapter, I provide a review of relevant literature, create a model of a

profit-maximizing franchisor to illustrate the identification challenge that I face, and give

an overview of my data. In the second chapter, I first find evidence that both observable

and unobservable location-level factors were important in Applebee’s decision to own or

franchise a store prior to the corporate sale. I then use a linear model with store level fixed

effects to estimate the effect of franchising on store performance. In the third chapter, I

create a structural model that uses consumer and store locations to predict alcohol sales

for all bars and restaurants with a liquor license in Texas. Using this model, I find that

franchising an Applebee’s store increases its alcohol revenues by seven percent. I also

find that franchising a store produces a consumer utility gain comparable to a 2.8-mile

reduction in distance from the individual’s home to the store.
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CHAPTER 1

BACKGROUND

My dissertation work examines the impact of franchising on firms and consumers.

The research is unique because it identifies a selection problem and then uses a unique

identification strategy to solve the problem and provide an estimate of the effect of

franchising on firm performance. While a substantial body of research has been done

regarding the reasons that firms choose to franchise some or all of their stores, little work

has been done on how franchising affects a store’s performance. Attempts to estimate

the effect of franchising on store performance have been hampered by an important

selection issue: the franchisor selects the ownership of each store and can therefore choose

the ownership configuration that maximizes franchisor profits. This may lead to the

franchisor owning stores in the most desirable locations while franchisees are assigned

the less lucrative locations. Thus, it is important to determine if differences in store

performance between company-owned and franchisee-owned stores are due to differences

in ownership or differences in location quality. I use a novel data source and a unique

source of identification to identify the effect of franchising on store performance.

In the first chapter, I begin with a review of relevant literature. I then create a

simple model of a franchisor’s decision process regarding whether a given store should be

company-owned or franchised. I then use this model to show why an estimation of the

effect of franchising that does not account for unobservable differences in location quality

may lead to biased estimates. I show that a 2007 corporate acquisition that resulted

in a large number of company-owned Applebee’s restaurants being sold to franchisees

provides the identification necessary in order to measure the effect of franchising. The
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chapter ends with a discussion of the data used in this dissertation: restaurant-level

alcohol tax revenues in the state of Texas.

In the second chapter, I first present evidence that, prior to the corporate sale, both

observable and unobservable location level factors were important in Applebee’s decision

to own or franchise a store. I then use a linear model with store level fixed effects to

estimate the effect of franchising on store performance. I find that franchising a store has a

positive impact on revenue, and I find that failing to account for unobservable differences

in location quality would have resulted in the effect of franchising being underestimated.

In the third chapter, I create a structural demand model which uses consumer and

store locations to predict alcohol sales for all bars and restaurants in Texas with a liquor

license over a ten year period. I find that franchising an Applebee’s restaurant increases

its revenue by about 7 percent and provides substantial utility gains to consumers.

1.1 Review of Literature

Interfirm relationships account for approximately half of all economic activity in the

United States and are the subject of a substantial amount of theoretical and empirical

work. Included in this research is an extensive literature discussing the tradeoffs between

vertical integration and vertical separation. In this section, I first provide an overview

of literature that discusses the role moral hazard plays in interfirm relationships. I

then provide a longer discussion of literature that specifically discusses franchising as

an organizational form. Lastly, I discuss research that uses empirical models of spatial

competition.

1.1.1 Interfirm Relationships and Moral Hazard

Moral hazard has frequently been used to help explain the nature of interfirm rela-

tionships. Here I discuss research on interfirm relationships that is especially relevant for

my work.

Anderson and Schmittlein (1984) provide an empirical analysis of the principal-agent

problem that occurs between firms and workers. They use a logit analysis to predict when
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firms will choose to use an outside firm, rather than employees, to sell their products.1

Grossman and Hart (1986) generate a theoretical model that considers both principal

(upstream) and agent (downstream) moral hazard when assessing the tradeoffs associated

with vertical integration.

Holmstrom and Milgrom (1994) create a model that looks at various methods, which

the authors list as “high-performance incentives, worker ownership of assets, and worker

freedom from direct controls”, for motivating workers. The authors are especially in-

terested in why many relationships between firms and employees or contractors include

aspects of all three methods. This is important in the context of franchising, because

these methods are all exhibited in the franchising relationship. The authors find that

each method can be successfully used to mitigate worker moral hazard, and that the

methods are often compliments.

Slade (1998) examines a vertical relationship known as “traditional franchising.” Tra-

ditional franchising occurs when a franchisor manufactures a product and sells it to the

franchisee, who resells the product to customers. Traditional franchising is substantially

different from business format franchising, which is the subject of my dissertation. Her

model indicates that, when it is difficult to monitor franchisee effort or when high retail

prices charged by one franchisee may hurt the brand’s reputation, it is advantageous for

the franchisor to choose the price charged by franchisees. She then tests these predictions

using an empirical analysis of the relationship between oil companies (franchisors) and

affiliated service stations (franchisees) in Vancouver.2 Using price and sales data, she

finds evidence supporting her predictions. She also finds that, when pricing decisions are

delegated to the retailer, prices tend to be higher.

1Lafontaine (1992), Sen (1993), and Scott (1995) each use a similar empirical analysis to investigate
the motivations for franchising.

2Fuel retailing is one industry in which traditional franchising is very common. Other industries
where this is the case include car dealerships and soft drink bottlers; see Slade (1996) and Arruñada et
al. (2001) for further discussion of traditional franchising.
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Several papers look at the economics of sharecropping. Sharecropping has many

similarities to franchising. Like franchising, a downstream firm (the tenant farmer) pays

the upstream firm (the land owner) for the rights to use the assets of the upstream firm,

and a portion of the farmer’s payment is a form of revenue sharing. Stiglitz (1974) was

among the first to analyze two possible reasons for the sharecropping relationship to

exist. The first is risk sharing. He notes that farming is an inherently risky venture and

contrasts two organizational forms that would result in one party assuming all of the risk:

in one scenario, the farmer would be paid a fixed salary, leading to all risk being borne by

the franchisor, while in another scenario, the farmer would rent the land at a fixed fee from

the landowner, leading to all risk being borne by the farmer. Sharecropping, on the other

hand, allows both parties to assume some risk, because franchisee payments are lower

during low-yield years and greater during high-yield years. The second reason he gives

for the existence of sharecropping is monitoring difficulties; specifically, if the landowner

is unable to monitor farmer effort, a purely wage-based compensation method will result

in shirking by the farmer. Stiglitz also explores the interactions between risk aversion

and monitoring difficulties. While the optimal contract from a monitoring difficulty

perspective is one in which the farmer rents the land at a fixed fee (and, therefore, bears

the full cost of shirking), risk averse farmers will tend to have some revenue sharing in

their contracts.

Ackerberg and Botticini (2002) examine agreements between land owners and tenant

farmers in early Renaissance Italy. They explore the importance of unobserved hetero-

geneity among agents in contract selection. They find that, when there are unobserved

differences in the preferences of land owners or farmers, empirical methods which use

observable characteristics of agents to predict contract choice can produce misleading

results. After controlling for these differences, the authors find evidence that revenue

sharing was used to share risk between the two parties.
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1.1.2 Franchising

I now look closer at one specific type of interfirm relationship: franchising. Franchising

is an organizational form in which a franchisor creates a product, business plan, and

trademarks and then sells the right to open a branded store to a franchisee. The contract

typically contains both a fixed fee and a variable component that depends on store

performance. Thus, the franchisor acts as the upstream firm while the franchisee acts as

the downstream firm.

Two early papers analyzing interfirm relationships that looked specifically at franchis-

ing are Rubin (1978) and Klein (1980). Rubin criticizes what was, at the time, the most

common theory of why franchising exists: capital-constrained franchisors. This theory

suggests that franchising allows a capital-constrained firm to expand more quickly than

it could if it were required to pay all costs associated with opening new stores. He argues

that, if franchising primarily existed as a method for franchisors to gain access to cap-

ital, then franchisors would work to minimize franchisee risk so as to minimize the risk

premium that would need to be paid to a risk averse franchisee. Rubin suggests that this

could be accomplished by giving each franchisee a share of profits from all franchised out-

lets. Instead, franchisees tend to have relatively high-risk portfolios: exclusive ownership

of a small number of geographically concentrated stores. Rubin suggests that minimizing

franchisee moral hazard is the most important reason why firms use franchising. He uses

some anecdotal evidence on store ownership, which makes this one of the first franchising

papers with an empirical component. Klein addresses the topic of seemingly “unfair”

interfirm contracts and, as an example, notes that franchise contracts often appear to be

one-sided because the franchisor demands a substantial initial investment while reserv-

ing the right to terminate the contract for a variety of reasons. He then suggests that

the structure of franchise contracts is designed to minimize franchisee cheating, where

“cheating” is defined as free-riding on the franchisor’s brand and producing a low-quality

product.
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Mathewson and Winter (1985) develop some theoretical foundations for the economics

of franchise contracts. They find that the potential for franchisee free riding is a necessary

condition for franchising to be an optimal strategy. They also predict that franchisors

will execute some degree of control over franchisees, such as imposing quality standards

and business practice standards.

Brickley and Dark (1987) empirically examine chains that have both franchisor-owned

and franchisee-owned stores. They find that stores in locations with high monitoring costs

are more likely to be franchised; this is evidence that franchising is used to solve a moral

hazard problem. They also find that chains where stores are likely to serve the same

customers repeatedly tend to franchise a larger share of their stores; this supports the

hypothesis that franchisees free-riding on the franchisor’s brand is an important concern.

Specifically, a franchisee who rarely serves repeat customers will be tempted to serve a

low-quality product, because the negative impact of the diminished brand reputation will

be borne largely by other stores. Interestingly, while a common prediction in theoretical

literature is that a store located at a highway exit will be less likely to serve repeat

customers and therefore less likely to be franchised,3 Brickley and Dark find no such

relationship.4 They theorize that a store’s proximity to a highway exit is not a good

predictor of its likelihood of serving repeat customers.

Minkler (1990) introduces what he describes as a “search cost” reason for franchising.

He explains that if franchisees “possess superior knowledge about local markets, they can

more cheaply search for the best inputs, production processes, and marketing strategies...”

I refer to this as the “local expert” theory throughout my dissertation. He then tests

this hypothesis using data on locations, opening dates, and franchise status for Taco Bell

stores located in California and Nevada. He finds some limited evidence supporting his

theory.

3Rubin (1978) and Mathewson and Winter (1985) both make this prediction.

4Minkler (1990) also finds no evidence that stores near a highway are less likely to be franchised.
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Lafontaine (1992) uses data on 548 franchisors with 150,000 total affiliated stores to

test various theories related to franchising. She finds that chains that operate in more

states (which she uses as a proxy for geographic dispersion) and chains that require

more discretion on the part of the store’s manager are more likely to use franchising;

this supports the hypothesis that monitoring difficulties and franchisee moral hazard are

important considerations for a franchisor. She also finds that when franchisor inputs are

important to store success, royalty rates are higher and more stores are company-owned.

Both factors increase the franchisor’s incentive to maximize systemwide sales; thus, the

results support the hypothesis that franchisor moral hazard is a significant determinant of

franchising behavior. Lafontaine also observes that, for a given franchisor, each franchisee

has the same fee structure. Sen (1993) uses a data set similar to that of Lafontaine and

conducts similar analyses. Like Lafontaine, he finds evidence that moral hazard for both

the franchisee and franchisor plays an important role in the franchising relationship. He

also finds evidence that the startup investment required for a store is positively correlated

with the fixed franchise fee and that a franchisor’s brand name recognition is positively

correlated with its royalty rate. He finds no evidence that franchisee risk aversion is

an important factor in the franchising relationship. Lafontaine and Sen both find that

capital market imperfections are not an important predictor of franchising behavior.

Kaufmann and Lafontaine (1994) seek to explain why anecdotal evidence suggests

that McDonald’s franchisees frequently earn positive rents, even though basic franchising

theory predicts that a franchisor can design franchise fees such that the ex ante expected

value of store profits go to the franchisor.5 The authors first use financial data to confirm

that franchisees do, in fact, earn positive ex ante rents. They then offer predictions of

why McDonald’s allows its franchisees to earn positive economic profits. They note that

McDonald’s has a strong preference for franchisees who do not hold another job and are

5The authors distinguish between ex ante and ex post rents. Specifically, they explain that ex post
rents may exist as a means to encourage franchisees to give their full effort.
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closely involved in the day-to-day operations of the store, as opposed to investor groups

who may take a more hands-off approach to franchise ownership. The authors theorize

that this leads to franchisees with lower wealth levels and less liquidity, and that these

liquidity constraints prevent McDonald’s from charging a higher initial franchise fee.

Mathewson and Winter (1994) consider the choice made by franchisors of whether

to grant exclusive territories to franchisees. They construct a theoretical model which

indicates that granting exclusivity to franchisees is profit maximizing when franchisee

inputs are especially important to store success. This is because exclusive territories

encourage franchisee investments by ensuring that the franchisee’s future profits will not

be harmed by the opening of a nearby store affiliated with the same chain. They find

empirical evidence that chains whose franchisees are entrusted with more decisions (as

measured by the franchisees’ discretion over advertising and prices) are more likely to

grant exclusive territories, supporting their hypothesis.

Schmidt (1994) uses a linear city framework to model competition between fran-

chisees affiliated with the same franchisor. He finds that, in the absence of a royalty

rate, competition between franchisees will result in prices that are below the price that

would maximize system-wide profits. A positive royalty rate serves to increase prices to

the optimal level by increasing marginal costs for the franchisees. This result is some-

what counterintuitive, because royalty rates are typically thought to result in inefficient

outcomes due to the fact that the marginal cost faced by the franchisee is not the true

marginal cost of production and, as a result, prices are above what would be charged by a

profit-maximizing vertically integrated firm. He uses the empirical results of Lafontaine

(1992) and Sen (1993), which find that franchisors with more outlets (which he considers

a proxy for the degree of intra-franchise competition) tend to charge higher royalty rates,

as evidence supporting his theory.

Scott (1995) focuses on franchisor moral hazard. He considers the possibility that

franchisees, having made substantial firm-specific investments, are subject to opportunis-
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tic behavior by a franchisor. For example, a franchisor could fail to make expenditures

that are necessary to maintain brand reputation. He hypothesizes that franchisors use

franchisor-owned stores to incentivize themselves to maintain the brand’s reputation,

thus encouraging potential franchisees to trust the franchisor’s commitment to maintain-

ing brand reputation. Scott then conducts an empirical analysis similar to that used by

Lafontaine (1992). He uses a different data set and different proxies from Lafontaine for

the importance of franchisor effort, but obtains similar results: when franchisor effort is

more important, chains tend to have a higher share of franchisor-owned stores.

Bhattacharyya and Lafontaine (1995) investigate a contracting feature common in

franchising: the tendency of revenue-sharing contracts to use simple, linear rules which

are not customized for each individual contract.6 They develop a model that looks at

the optimal way to write a revenue sharing or profit sharing contract when both parties

are tempted to exert sub-optimal effort (double-sided moral hazard). They first find

that, with some general assumptions, it can be shown that the optimal revenue sharing

rule can be implemented with a linear contract. They also find that, in many cases,

the optimal royalty rate does not depend on market size or franchisee characteristics.

However, they do not attempt to explain why the fixed franchise fee tends to be the

same for all franchisees.

Lutz (1995) focuses on asset ownership in franchising, specifically that franchisees own

many local assets, but franchisors own trademarks and other assets. She asserts that,

while franchising is considered to be used primarily to mitigate moral hazard issues by

properly incentivizing the manager, a properly designed incentive plan could accomplish

the same goals without franchising; specifically, the manager of a company-owned store

could have her pay more closely tied to the store’s performance. She then suggests

that asset ownership is a crucial component of franchising and that, because both the

6In the case of franchising, this means that franchisees pay a fixed share of their revenue to the
franchisor and that this share does not vary over time.
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franchisee and franchisor own brand-specific assets, both are motivated to maximize chain

profits. Furthermore, she finds that franchising may be a profit-maximizing arrangement

even if employee managers are as productive as franchisees.

Lafontaine (1995) and Graddy (1997) both compare the prices charged at company-

owned and franchisee-owned fast food restaurants. Both find that franchisee-owned es-

tablishments charge higher prices. Lafontaine gives two possible reasons for this finding.

The first is a form of double marginalization in which the royalty rate acts as a tax

on the franchisee. The second is the possibility that a low price at one store can in-

crease system-wide demand by building a reputation of being a low-price chain. Because

the franchisor’s profits are more tied to system-wide sales than a franchisee’s are, the

franchisor will tend to charge lower prices.

Lafontaine and Shaw (1999) use a panel data set to analyze how fixed franchise fees

and royalty rates change over time for a given franchisee. They find that, in general,

both types of franchise fees are persistent over time.7 In subsequent work, Lafontaine

and Oxley (2004) find that chains that sell franchises in both the United States and

Mexico typically use the same fee structure in both countries.

Brickley (1999) builds and empirically tests a model that attempts to explain com-

mon features of franchise contracts. He then attempts to explain the variation across

franchisors in the share of company-owned stores. Brickley first finds that many features

of franchise contracts, including advertising expenditure requirements and a preference

for franchisees who are actively involved in store operations, are most commonly ob-

served when negative inter-franchisee externalities are especially important. He then

finds that the variation in company ownership can be best explained by franchisee liq-

uidity constraints and risk preferences; this supports the theory introduced by Kaufmann

and Lafontaine (1994).

7In the case of fixed fees, because the nominal amount typically does not change over time, the
inflation-adjusted amount tends to decrease.
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While most literature emphasizes the franchisor’s decision process, Kaufmann (1999)

focuses on an entrepreneur’s decision of whether to buy a franchise or open an inde-

pendent store. He follows individuals who expressed an interest in entrepreneurship

over a span of three years and compares the stated preferences of those who eventually

bought franchises with those who did not. He first finds that individuals who go into

entrepreneurship (either as a franchisee or as an independent store owner) tend to do

so because they have strong preferences for independence and being personally involved

in running a business. He also finds that entrepreneurs who go into franchising do so

because they are attracted to the financial benefits of franchising, specifically the fact

that franchising is considered to be a lower-risk option and that financing is more easily

available for franchisees than for other entrepreneurs.

Chaudhuri, Ghosh, and Spell (2001) attempt to explain the fact that many franchisors

choose to have both company-owned and franchisee-owned stores.8 They build a theo-

retical model with two significant assumptions: store locations vary in quality and the

franchisor knows more about location quality than the franchisees. Their results indicate

that the franchisor will choose to own the stores in the best locations and franchise the

stores at the remaining locations. They use these results to explain U.S. Chamber of

Commerce survey data, which show that, for a given sector, company-owned stores tend

to have higher revenues than franchised stores.

Like Kaufmann, Affuso (2002) focuses on modeling the decision process of potential

franchisees.9 Using survey data from the U.K, she finds that stores which are franchised

generally have aspects which franchisees find desirable. For example, chains with lower

up-front costs and those which have been in business longer represent lower-risk invest-

8This is different from previous research, including Brickley (1999), that investigates why the share
of company-owned stores varies among chains.

9This is substantially different from Chaudhuri, Ghosh, and Spell (2001), who essentially assume
that all bargaining power lies with the franchisors; in their model, franchisees are always willing to take
whatever location is offered to them.
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ments and are more likely to be franchised.

Kalnins (2004) examines the consequences of encroachment, which occurs when a

franchisor allows for the opening of new franchised stores near existing stores owned

by a different franchisee. Theory predicts that encroachment is a result of misaligned

incentives: a new store will increase system wide sales (which benefits the franchisor)

while decreasing store-level profits (which hurts the franchisee). Kalnins uses revenue

data from the Texas lodging industry to empirically evaluate the effects of encroachment.

He finds that, as expected, the entry of a nearby establishment affiliated with the same

franchisor causes a decrease in the existing franchisee’s sales. He also finds that this

decrease in revenue is considerably larger than the decrease in revenue that occurs when

a chain that does not use franchising opens a new motel near an existing motel. The

author suggests that this could be because inter-franchisee competition will result in

lower prices, while two stores that share the same owner will not be subject to such

competition.

Kalnins and Lafontaine (2004) look at openings of fast food restaurants in Texas over

a 15 year period in order to determine how franchisors allocate new stores among existing

franchisees. They find that stores are most likely to be assigned to existing franchisees

with stores which are either geographically close or demographically similar to the market

of the new store. They also find that, when the franchisor chooses to own a store, it is

often the case that the franchisor owns nearby stores. Thus, franchisors tend to assign

new stores to the owner of nearby existing stores, a statement that holds true whether

that owner is a franchisee or the franchisor. This supports the hypothesis that local

expertise is an important reason for why franchising exists.

Kalnins and Mayer (2004) also investigate the importance of local expertise. They

find that local experience by the owner is associated with lower failure rates of pizza

restaurant franchises, while there are no benefits from non-local ownership experience.

They also find that franchisees benefit from the local expertise of the franchisor if the
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franchisor owns nearby stores. This indicates that local expertise is important for store

success, but general ownership experience is not.

Yin and Zajac (2004) incorporate theories from the strategy literature into their

analysis of franchising. They suggest that, for a given chain, franchisee-owned stores will

tend to pursue more complicated business strategies, because franchisees will be more

“highly motivated, flexible, and autonomous” and that pursuing these strategies will lead

to higher store profits. They use sales data from a pizza chain and consider restaurants

that offer both dine-in and delivery to be stores using a complicated business strategy.

They find evidence that supports both of their hypotheses. Interestingly, they find that,

while pursuing a complicated strategy is revenue increasing for a franchisee-owned store,

it is revenue decreasing for a company-owned store. One important caveat is that data

limitations prevent the authors from being able to model how each store chooses its

strategy (for example, why some company-owned stores offer both dine-in and delivery,

even though the regression results indicate that this strategy is revenue decreasing for

company-owned stores).

Lafontaine and Shaw (2005) use a panel data set of chain and store characteristics for

over 1,000 franchisors to examine how franchisors choose what share of stores should be

company-owned. First, they find that, for established franchisors, the share of franchised

stores stays roughly constant over time, even as the chain expands. This suggests that

franchisors have a preferred share of company-owned stores. They next find that this

share varies widely across firms. The authors next attempt to explain the causes of

this variance. They find that chains with more valuable brands have a higher share of

company-owned stores, and suggest that is because those chains are more subject to

franchisee free riding.

Yeap (2005) finds that company-owned restaurants sell more alcohol as a share of

total revenue than do franchised restaurants. She also finds that, all else equal, serving

alcohol makes a restaurant more likely to be franchised. For restaurants that serve

13



alcohol, having bar service decreases the probability that the restaurant is franchised.

She considers selling alcohol and performing bar service to be examples of complex tasks,

and, therefore, finds mixed evidence on the correlation between task complexity and

franchisee ownership.

Fuld (2011) empirically tests the theory that, relative to a franchisor, franchisees are

local experts and therefore are better able to customize their stores to their local markets.

He does this using transaction-level sales data for a pizza delivery chain that has both

company-owned and franchisee-owned stores. He first builds a spatial model to estimate

store-level demand for each store. He then examines store-level pricing and promotional

strategies and compares price changes with demand shocks. He finds that franchised

stores are more likely to respond to demand shocks by adjusting prices appropriately,

which supports a theory of local expertise.

Argyres, Bercovitz, and Zanarone (2016) investigate the prevalence of multi-unit fran-

chising, which occurs when a single franchisee owns multiple stores. They first note that

this arrangement seems to negate one of the main benefits of franchising: an owner who

is both highly motivated (due to the structure of franchise contracts) and intimately fa-

miliar with store operations. This happens because a franchisee who owns multiple stores

will be unable to properly supervise each store and will instead hire managers to oversee

store operations, which will open up the same moral hazard problems that franchising is

intended to solve. Their theory predicts that multi-unit franchisees are less likely to free

ride on the franchisor’s brand because the negative spillovers from a diminished brand

will affect all of the franchisee’s stores. They suggest that this will result in greater

cooperation (in the form of brand maintenance) by the franchisor. They conclude with

a prediction that multi-unit franchising will be lead to a better, more stable relationship

between a franchisor and a franchisee. They test this using a data set which contains

information on litigation between franchisees and franchisors. They find that multi-unit

franchisees are less likely to be involved in ligation against a franchisor, which supports
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their theory that multi-unit franchising increases cooperation between franchisees and

franchisors.

1.1.3 Models of Spatial Competition

The structural model in the third section of my paper focuses on consumers choosing

between differentiated retailers, in this case restaurants. Some of the differences are

due to different product offerings and some are due to spatial differences. These spatial

differences are especially important, as consumers’ travel costs and their varying distances

from different restaurants help identify the parameters of the model. Here I discuss some

empirical research that incorporates spatial differences between firms.

Many early models of competition between firms selling non-identical products used

spatial differences as a source of horizontal product differentiation. These models include

Hotelling (1929), Lerner and Singer (1937), and Salop (1979). More recent research

has focused on empirically estimating entry games where firms select product attributes

including geographic location. Manuszak (2001) incorporates individuals’ locations and

travel costs into a model of demand which he uses to analyze the effect of oil company

mergers on fuel prices in Hawaii. Davis (2006) estimates the demand for movie theaters,

incorporating consumer preferences for visiting theaters near where they live. He finds

that spatial differences provide many theaters with substantial market power and that

many theaters are local monopolies. Seim (2006) uses data on the locations of video

rental stores to empirically model the importance of geographic differences on the entry

decisions of firms selling otherwise identical products. McManus (2007) models demand

in a specialty coffee market and estimates consumers’ travel costs. Gowrisankaran and

Krainer (2011) find that spatial differences among ATMs are a source of market power

for their owners.

One paper related to franchising that incorporates spatial competition is Kalnins

(2003). Using data on store locations and prices, he constructs a model that uses geo-

graphic differentiation to examine the degree of substitutability between the hamburgers
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of various fast food restaurants. He finds that hamburgers sold by different chains are not

close substitutes, but hamburgers sold by nearby stores affiliated with the same chain are

substitutes. Thus, he provides evidence that inter-franchisee competition is an important

consideration for franchisors and franchisees.

Holmes (2011) and Ellickson et. al. (2016) use methods that are especially relevant

for my research. Holmes models individuals choosing between different Wal-Mart stores

and an outside option. Each store gives each individual a utility that is a function

of store characteristics and travel distances. The utility function includes a logit error

term, which leads to logit choice probabilities for each individual. Aggregating consumer

behavior leads to predicted revenues for each Wal-Mart store. Ellickson et. al. extend

this model by allowing for competition between firms. Using grocery store revenue data,

they estimate the effects of potential mergers. In both cases, the authors have store-level

sales data for retailers that sell a wide range of products, but they do not have detailed

information on prices and quantities; I face the same data limitations, which is why I

base my model on theirs.

1.2 Institutional Details

As of 2014, there are over 750,000 franchised establishments in the U.S., earning

over $800 billion in revenues and employing over 8 million people (IHS Global Insight,

2015). Franchising is used in a variety of industries including restaurants, fitness centers,

convenience stores, and hotels. While contract forms vary across companies, the most

common fee structure is one in which the franchisee pays the franchisor a fixed fee for

the right to open a store and then a royalty that is a fixed percentage of sales. For a

given franchisor, the fixed fee and royalty rate are usually the same for all franchisees

and all stores. Furthermore, for a given franchisor, franchise fees are generally persistent

over time.

In the United States, the restaurant industry accounts for 4 percent of GDP and 47

percent of total food sales, with projected 2016 sales of $783 billion (National Restaurant
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Association, 2016). In a 2010 USDA survey, over 80% of individuals reported eating a

meal prepared away from home in the last week, and over 20% reported eating six or more

meals prepared away from home. After fast food restaurants, casual dining restaurants

make up the largest segment of the restaurant industry. Casual dining restaurants are

characterized by moderate prices, full table service, and the availability of a variety of

alcoholic beverages. With over 1,800 restaurants and $4.7 billion in annual revenue,

Applebee’s is the largest casual dining chain in the United States. Because I intend to

measure the effect of franchising on Applebee’s, I focus on Applebee’s and its closest

competitors. Specifically, I look at casual dining restaurants that, like Applebee’s, are

affiliated with a national chain and have a wide variety of menu items. In addition to

traditional American fare like hamburgers and steak, their menus include items inspired

by Italian, Asian, and Mexican cuisine. I include the following stores in this grouping:

Buffalo Wild Wings, Chili’s, and T.G.I. Friday’s. Together with Applebee’s, these are

four of the top seven casual dining chains in the United States. Table 1.2 shows a

selection of menu items and prices for each of these four chains; the table shows that

the chains have similar menu items and similar prices. As of 2015, the average check

size at Applebee’s was $12.42 and the average check size at Chili’s was $13.99.10 While

franchising is very common among fast food chains, it is used less frequently by casual

dining chains. For example, all T.G.I. Friday’s, Olive Garden, Outback Steakhouse,

and Red Lobster restaurants in Texas are company-owned. About half of the Buffalo

Wild Wings restaurants and all of the Applebee’s and Chili’s restaurants in Texas are

franchised. One final piece of relevant information is that the casual dining industry is

known to be highly competitive and characterized by low profit margins; in 2010, full-

service restaurants with average check sizes of less than $15 had a median pretax profit

margin of 3% (National Restaurant Association, 2010).

10While average check sizes for Buffalo Wild Wings and T.G.I. Friday are unavailable, given the
similarity in prices among the chains, it is likely that average check size is comparable.
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For the casual dining chains that use franchising, fees follow the standard format

discussed above and are identical for all stores affiliated with a given franchisor. As shown

in Table 1.1, fees are similar across many large chains. Franchise contracts typically have

a long term, around 20 years, so the fixed fee represents a small share of the total fees

paid. Because franchisors typically aim to maintain a consistent brand identity, franchise

contracts often contain specific rules about conforming to franchisor policies. As a result,

restaurants affiliated with the same chain tend to have similar menu offerings and prices.11

1.2.1 Sale to IHOP

In 2007, there were 59 company-owned Applebee’s stores and 33 franchised Applebee’s

stores in Texas. In February of that year, Applebee’s, a publicly traded company, put

itself up for sale. Five months later, IHOP Corporation agreed to purchase the chain

for $1.9 billion. IHOP Corporation is the parent company of IHOP, the largest chain

restaurant in the family dining category.12 IHOP Corporation has a strong preference

toward franchising its stores; at the time of the sale, nearly 100% of IHOP restaurants

were owned by franchisees. Shortly after the sale, IHOP Corporation began selling its

company-owned Applebee’s stores to franchises. By the end of 2008, all Applebee’s

stores in Texas were franchised.13 Annual store counts by ownership type are presented

in Figure 1.1.

One relevant question is why IHOP chose a different ownership strategy than Apple-

bee’s had chosen. A possible indication of IHOP’s reasoning is found in a presentation

11An example of Applebee’s attempt to balance this preference for uniformity with a desire to cater to
local markets can be found in its 2013 franchise disclosure document. Applebee’s creates a uniform menu
for all of its stores and requires all franchisees to use it. However, the chain also allows for franchisees
to “propose additional items that appeal to local trends and traditions.”

12The main difference between the family dining category and the casual dining category is that
family dining restaurants typically do not sell alcohol. Following the sale, IHOP Corporation changed
its name to DineEquity. Throughout the paper, I use “IHOP” to refer to the parent company that owns
Applebee’s.

13This is not a single-state phenomenon; Applebee’s 2014 10-K states that 99 percent of IHOP and
Applebee’s stores are franchised.
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to investors given by IHOP in 2012 regarding the decision to sell company-owned Apple-

bee’s stores to franchisees. In the presentation, IHOP states “[t]he Company believes a

more heavily franchised business model requires less capital investment and reduces the

volatility of its cash flow performance.” Thus, IHOP may have given greater weight to

those concerns than it did to a simple comparison of whether, for a given store, its profits

would be greater as a store owner or as a franchisor. Also in the presentation, IHOP

predicted that each restaurant sale would result in an annual cost savings of $90,000 due

to reduced administrative costs and reduced capital expenditures.

1.3 Motivational Model of Ownership Selection

In this section I construct an model of a profit-maximizing franchisor who decides

whether a given store should be company-owned or franchised. While I do not attempt

to estimate this model, it provides intuition that is used in my empirical models. The

model gives two significant results. First, it predicts that the franchisor will choose to

own stores at the best locations and franchise stores at the other locations. Second, it

highlights the sort of exogenous variation needed to give an unbiased estimate of the

franchise effect.

A franchisor plans to open a store at location j and must decide whether the store

should be company-owned or franchised. If store j is company-owned, the present value

of all future revenues for store j at the time of store j’s opening is

rCj = σaj + ξj, (1.1)

where aj contains location-level attributes that are observed by the econometrician and

ξj represents location-level determinants of revenue that are not observed by the econo-

metrician. Components of aj may include demographics such as the population and

average income of the local market; σ is a vector of parameters. The ξj term is included

because it is likely that store revenues are determined by factors that are known to the

franchisor but unobserved by the econometrician (e.g. the quality of food at competing
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restaurants).

As discussed earlier, there are reasons to believe that a franchised store will outper-

form a company-owned store. I define β as the present discounted value of all additional

revenues earned by a store if it is franchised. So, revenue for a franchised store is

rFj = rCj + β.

Costs are normalized to zero, so maximizing revenue is equivalent to maximizing

profit. For a company-owned store, the franchisor keeps all revenue as profit:

ΠC
j = rCj . (1.2)

For a franchised store, the franchisor earns a share, v, of all revenue collected as well as

a fixed fee, K. Franchisor profit from a franchisee-owned store is

ΠF
j = v

(
rCj + β

)
+K.

The franchisor will choose to franchise store j if ΠF
j > ΠC

j . This occurs when

rCj <
K + βv

1− v . (1.3)

Thus, stores with low values of rCj will be franchised. The intuition for this prediction is

that the franchisor receives all of the profits of a company-owned store and only a fraction

of the revenue of a franchised store. For the best locations (those with the highest values

of rCj ), the franchisor is willing to give up the fixed fee and a share of the revenue in
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order to keep all of the location’s profits.14

To illustrate the impact that this selection has on attempts to measure β, consider

two stores, k and l, that have identical observables, ak = al. Store k is company-owned

and store l is franchised. I define rj as the revenue of store j and fj as a dummy variable

equal to 1 if store j is franchised:

rj = fjr
F
j + (1− fj)rCj .

The difference in store revenues is

rl − rk = ξl − ξk + β.

If the two stores have identical unobservables, or if ownership is randomly determined

such that

E[fj|ξj] = E[fj], (1.4)

then rl − rk is an unbiased estimate of β. However, it is likely that ξj will be correlated

with the ownership decision. There is a direct relationship between ξj and rCj shown in

(1.1). As shown in (1.3), stores with high values of rCj will be company-owned, so it is

likely that ξk > ξl. This means that an estimation of β̂ = rl − rk is likely to be biased

downward. Observing both rCj and rFj for some store j would overcome this obstacle.

Because this will involve observing the same store at different times, I define fjt as a

dummy variable equal to 1 if store j is franchised at time t. The condition for a valid

instrument can now be shown as

14The model makes two significant assumptions. The first is that there are no costs. The second
is that β is an additive increase to profits instead a multiplicative increase. (A multiplicative increase
would be shown as rF

j = βrC
j .) However, either of these two assumptions can be loosened. While the

condition for franchising shown in (1.3) will change, the conclusion that stores lower values of rC
j are

more likely to be franchised will remain true. See Chaudhuri, Ghosh, and Spell (2001) for a different
model which generates similar predictions.
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E[fjt|ξj] = E[fjt] (1.5)

for some store j that changes ownership. The best way to achieve this would be for an

exogenous event uncorrelated with store-level unobservables to cause the ownership of a

store to change. The sale of Applebee’s to IHOP satisfies these requirements; after 2008,

E[fjt|ξj] = E[fjt] for all stores because fjt = 1 for all stores.

The sale of Applebee’s to IHOP and the subsequent franchising of all company-owned

stores allows me to identify the effect of franchising. This event has two qualities that

make it a valid instrument. First, it results in some stores being observed both as

company-owned and franchised. Second, all stores are franchised by the end of 2008, so

the post-2008 ownership of a store is uncorrelated with its unobservables.

1.4 Data

I next describe the three data sets used in my analysis. The first is store-level alcohol

revenues for all bars and restaurants in the state of Texas. The second is zip code

level population and income data available from government sources. The third consists

of disclosure documents required by law to be published by franchisors and furnished to

potential franchisees. Summary statistics for store revenues and zip code level populations

during the first quarter of 2013 are shown in Table 1.3. More detailed information

regarding sample selection and geocoding of locations can be found in Appendix B.

Texas mixed beverage sales tax

My research covers restaurant franchising in the state of Texas, specifically those

stores that sell liquor. As of 2015, there are over 43,000 restaurants in Texas with 2016

projected sales of $52.4 billion.15 In 2013, there were over 15,000 restaurants in Texas

that sold liquor, generating more than $5.5 billion in alcohol sales.

Texas imposes a mixed beverage sales tax on all establishments selling liquor to be

15National Restaurant Association, 2016.
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consumed on premises, primarily bars and restaurants. While the tax is only imposed

on establishments that sell liquor, those establishments must pay the tax on all alcoholic

beverages sold, including beer and wine. This tax is equal to a fixed share of revenue

(14 percent during my sample period) from the sales of alcoholic beverages. The amount

collected is publicly available on a per-store, per-month basis. I use data covering 2004

through the third quarter of 2013.

The data have several features. They cover all restaurants with a liquor license,

rather than only a single firm. By dividing the tax revenue by the appropriate tax rate,

I obtain store-level alcohol revenues. By observing when firms appear and disappear in

the data, I can infer when firms enter and exit. Finally, the data include locations for

all firms in the form of street addresses; I use ArcGIS software to identify latitude and

longitude coordinates for each store. The data set also has some limitations. The most

significant is that it only includes alcohol sales, rather than all revenues received by the

restaurant. Thus, I assume that alcohol sales are a proxy for total sales. It is worth

noting that alcohol sales typically have a large impact on store success, because alcohol

sales generate substantially higher profit margins than food sales.16 A second limitation

is that the data include only revenues, rather than prices and quantities. This means that

I cannot differentiate between a store that sells a small quantity of high-priced drinks

and a store that sells a large quantity of low-priced drinks.

For Applebee’s, Buffalo Wild Wings, Chili’s, and T.G.I. Friday’s, I used franchise

disclosure documents, company websites, and online mapping tools to ensure that all

restaurants were properly identified and geocoded. I confirmed that these chains sell

liquor and therefore are included in the tax data. (Furthermore, franchise disclosure

documents indicate that these chains will not allow a store to open without a liquor

license.) The number of stores affiliated with each chain at the beginning of each year

16In 2010, a Nation’s Restaurant News study calculated that median alcohol sales were 350% of costs,
while median food sales were 144% of costs.
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is shown in Figure 1.2. The chains each have similar average per-store revenues, with

Buffalo Wild Wings having the highest per-store revenues and Chili’s the lowest. Chili’s,

which originated in Texas, has more outlets in Texas than the other chains. Yearly

average first quarter per-store alcohol revenues for each chain over time are shown in

Figure 1.3.

Stores other than the four chains mentioned above are grouped together at the zip

code level, with each group representing an outside option. The average outside option

contains 14 stores, with the largest outside option containing 236 stores.

Population data

I use federal income tax return data to estimate annual zip code level populations

from 2003 to 2013. The Internal Revenue Service (IRS) releases information on the

number of tax returns filed in each zip code. Also included in this data is the number

of claimed exemptions filed in each zip code, which the IRS states serves an estimate for

population.17 Because this estimate is not exact, I multiply each zip code’s estimated

population by a constant to ensure that total estimated state population matches the

actual population each year. During my sample period, this constant ranged from 1.04

to 1.09. Thus, the allocation of population among zip codes may be incorrect, but total

statewide population will be correct.18 I next find the latitude and longitude of the

centroid of each zip code using MABLE, an online database maintained by the Missouri

State Library. In 2013, there were 1,623 zip codes in Texas with an average population

of 16,176 and a median population of 8,672. More densely populated areas contain zip

17The number of claimed exemptions in a region has frequently been used in population estimates. The
U.S. Census Bureau uses this information when calculating annual county-level population estimates and
when estimating various statistics, such as poverty rates and health insurance coverage as part of SAIPE
(Small Area Income and Poverty Estimates). See Sailer and Weber (1998) for additional discussion.

18While a more accurate population count would be preferred, the finest level where population is
annually tallied by the U.S. Census Bureau or the state of Texas is by county. Because travel cost
is a key component of my analysis, it is important to be as precise as possible when modeling where
consumers live. There are many more zip codes than counties, so using zip code level populations gives
a better approximation of where people live.
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codes that are geographically smaller, while in less populated regions, a single zip code

can span a very large area.

Texas experienced significant population growth during my sample period, with statewide

population increasing from approximately 22,300,000 to approximately 26,450,000. This

growth varied significantly among zip codes, with a quarter of zip codes experiencing no

population growth and a quarter of zip codes experiencing a population increase of 20

percent or more. This illustrates the importance of using a model that separates revenue

changes due to franchising from revenue changes due to population growth.

I use annual per-capita income data from the U.S. Census Bureau. These data are not

available at the zip code level. So, when zip code level per-capita income data is required

by the model, I assume each zip code has a per-capita income equal to the per-capita

income of the county where the zip code is located. Income quartiles are determined

by assuming that each individual has an income equal to the per-capita income of their

county and then finding cutoff values such that 25%, 50%, or 75% of individuals have

incomes below that value. Income quartiles over time are graphed in Figure 1.4; numbers

indicate the lowest income for an individual in each income quartile.

Franchise disclosure documents

Federal law requires franchisors to create a franchise disclosure document (FDD)

and distribute the FDD to all potential franchisees. FDDs contain information about

the franchisor and the business relationship between the franchisor and its franchisees.

Several states require all franchisors operating in that state to submit an FDD to the

state, in which case the FDD often becomes a public record. Each FDD includes a list

of all franchisee-owned stores.19 I use Applebee’s FDDs from 2006 and 2010-2011 to

determine which stores were company-owned and which were franchised prior to 2008.

19Most FDDs, including those for Applebee’s, also list all company-owned stores.
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1.5 Additional Data Discussion

Table 1.4 gives statistics on populations and alcohol sales for 2013. The ten largest

counties are described individually; all other counties are aggregated together. Overall,

in 2013 there were 14,816 establishments in the state that sold liquor for on-premises

consumption, with total alcohol sales of $5.57 billion, which is an average of $306 per

adult of legal drinking age.20 The sale of Applebee’s to IHOP occurred in 2007, which was

shortly before the financial crisis of 2008 and subsequent recession. Thus, it is important

to understand how the recession affected alcohol consumption and, more generally, how

individuals’ incomes and alcohol choices changed over time. Figure 1.5 shows statewide

total sales and per capita sales from 2004 to 2013. Both figures tend to increase through-

out my sample period, but these increases stall in 2008 and 2009. Figure 1.6 shows how

incomes and total sales as a share of income change over time.21 The share of income

spent on alcohol stays roughly constant throughout most of my sample period; the one

notable aberration is a sharp decrease in 2009.

There is substantial variance in alcohol sales among establishments. In the first

quarter of 2013, the five largest sellers had average revenues of $3.57 million, while there

were 197 establishments with sales of less than $1,000. It is also worth noting that

none of the top ten sellers of alcohol are traditional bars or restaurants; all of them are

hotels, convention centers, airports, or sports arenas. I choose not to remove any of these

large sellers from my analysis for two reasons. First, it is not clear what a reasonable

removal strategy would be, and second, these large sellers are not actually outliers in my

estimation. This is because I estimate both the linear model and the structural model

using logged sales, rather than actual sales. As shown in Figure 1.7 and Figure 1.8, while

20Establishment counts are taken in the first quarter of the year; because firms enter and exit through-
out the year, the total number of establishments will change during each year. Similarly, whenever yearly
population is used in graphs or tables, population as of the first quarter of the year is used.

21Because in my structural model individuals set their alcohol budget as a share of their incomes, per
capita alcohol expenditures as a share of per capita income is an important metric.
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a histogram of sales shows significant outliers on the right side of the distribution, no

such outliers exist on a histogram of logged sales.

Finally, Figure 1.9 is a map of all chain stores in Texas in 2006. Additionally, coun-

ties in the map are shaded based on their per-capita alcohol sales. Three patterns are

noticeable. First, chain stores tend to be located in areas that have high per-capita al-

cohol sales. The cause of this relationship is not clear; it could be that individuals who

live in counties with high per-capita sales have strong tastes for alcohol, and the chain

restaurants respond to those tastes by opening restaurants there. Alternatively, it could

be that the existence of so many chain restaurants encourages individuals to consume

more alcohol at restaurants than they otherwise would have. Second, while most stores

are located in populous areas such as Dallas and Houston, there are also several stores

(mostly Chili’s and Applebee’s) in less populous areas. These areas tend to have only

one store. This may be evidence that these smaller markets can only support one chain

restaurant. Third, company-owned Applebee’s tend to be near other company-owned

Applebee’s, and franchised Applebee’s tend to be near other franchised Applebee’s.

1.6 Franchisor’s Ownership Selection Process

As discussed earlier, past research has found evidence that, when franchisors open

new stores, the franchise status of the new store tends to be identical to that of nearby

stores.22 Figures 1.10 and 1.11 show the locations of company-owned and franchised

stores in Texas. The company-owned stores are mostly clustered in the Dallas and

Houston areas, while franchisees own stores in large cities such as El Paso and Austin as

well as in more isolated markets throughout the state.

Using Texas mixed beverage alcohol sales data from 2000 to 2014, I identify 65 new

22See Kalnins and Lafontaine (2004), Brickley and Dark (1987), and Minkler (1990).
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Applebee’s being opened.23 For each store, I identify, at the time of opening, the existing

store that is closest to the opening store. I then compare the ownership of the two stores.

I exclude from my analysis any opening store that is not within 50 miles of an existing

store and any opening store in which the ownership of either the opening store or the

nearest existing store is unknown. This leaves 55 opening stores. Of those 55 stores, 50

have the same owner as the nearest existing store. Thus, there is significant evidence

supporting the hypothesis that the franchisor prefers nearby stores to share the same

owner. Full results are shown in Table 1.5. There are two possible reasons for this. First,

the franchisor may wish to capitalize on the local experience of a franchisee, and second,

nearby stores will be easier for an existing franchisee to monitor.

It is useful to compare these results to the results of the theoretical model presented

in Section 1.3. In that section, the ownership of each store was determined solely by the

quality of each location, with quality being independent of the ownership of the store.

In order for this theory to be consistent with the observed ownership patterns, it would

need to be the case that location quality tends to be very similar at proximate locations.

For example, all Applebee’s stores in El Paso County were franchisee-owned prior to

2008. According to the model, this means that all El Paso locations are low-quality.

Similarly, all Applebee’s stores in Dallas County were company-owned prior to 2008 and,

therefore, are predicted by the model to be high-quality. Given the array of location

types within a county,24 it seems unlikely that the worst location in Dallas County is

better than the best location in El Paso County. Instead, it seems probable that the

franchisor’s ownership decision depends not just on the quality of the location but on

the owner of nearby stores as well. This does not necessarily mean that the franchisor is

23Note that this is a longer period of time than the data I use throughout my other analyses. This
is because some of the demographic data used in those models was only available for a subset of those
years. I consider a store’s opening date to be the first quarter that it has alcohol sales recorded in the
data set.

24For example, El Paso County contains Applebee’s stores in strip malls, outside of shopping malls,
in residential areas, and next door to airport hotels.
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not pursuing a profit-maximizing ownership strategy. Instead, it may indicate that each

store’s potential revenue is highly dependent on the local expertise or monitoring ability

of its owner.

Most importantly, these results do not affect the most important prediction of Section

1.3: store ownership is likely correlated with unobservables. The reason that this is

likely still true is because, even if unobservables do not directly influence the ownership

decision because the impact of unobservables on profit is small relative to the impact

of a local owner (which, given that the ownership of a new store is so highly correlated

with the ownership of the nearest existing store, appears to be the case), it is likely that

nearby stores have similar observables. Continuing the earlier example, it is likely that

the unobservable determinant of revenue at a given El Paso Applebee’s is closer to the

unobservable component at another El Paso Applebee’s than it is to the unobservable

component at a Dallas Applebee’s, because the factors that determine this unobservable

(such as, for example, quality of competing restaurants or grocery stores, religious beliefs

about alcohol, and socioeconomic factors not included in my population demographics)

will be similar for nearby stores.

While the ownership decision for new stores added during my sample period appears

to be driven by the ownership of nearby stores, it remains to be seen why, for example,

Applebee’s chose to use franchisee ownership for stores in El Paso County but not stores

in Dallas County. I next investigate differences between “company ownership” counties

and “franchisee ownership” counties. In the fourth quarter of 2006 (the last quarter

before Applebee’s put itself up for sale), there were 28 counties that contained company-

owned stores and 19 counties that contained franchised stores. There were a total of 59

company-owned stores and 33 franchised stores. No county contained both company-

owned and franchised stores. Table 1.6 shows county-level averages for the two county

types. Counties with company-owned stores tended to be larger and have higher per-

capita alcohol sales. These counties also had more non-Applebee’s chain stores, both
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in absolute terms and on a per-person basis. Because these stores are competitors, it

may appear surprising that the franchisor chose to own stores in counties with more

competition. However, it is possible that there are counties which have a strong taste for

chain restaurant fare; this feature could have both benefited Applebee’s and led to more

competitors entering the market. I next compare the 2006 fourth quarter revenues of

company-owned and franchised Applebee’s. A histogram of revenues for both ownership

types is shown in Figure 1.12. Summary statistics for the two ownership types are shown

in Table 1.7. Company-owned stores have an average revenue of $80,987, while franchised

stores have a slightly lower average revenue of $78,816. The median revenue of company-

owned stores (79,561) is considerably larger than the median revenue of franchised stores

(66,847) because the average revenue for franchised stores is skewed by some high-revenue

outliers. There is substantial variance in revenues within each ownership type.

I now look for initial evidence of a benefit from franchising. I do this by comparing the

2006 fourth quarter revenues with the 2013 fourth quarter revenues for the two ownership

types.25 In my comparison, I only include stores that were open during that entire time

period. This results in a sample size of 55 company-owned stores and 29 franchised

stores. During these seven years, all company-owned Applebee’s were sold to franchisees;

thus, all else equal, if there is a positive franchise effect, I would expect the stores that

were initially company-owned to have a greater revenue increase than the stores that are

franchisee-owned (or, if there is a downward trend in store revenues, a smaller revenue

decrease).

Summary statistics for the two time periods are shown in Table 1.8. Stores that

were initially company-owned (and, therefore, experienced a change in franchise status)

actually had a slightly smaller average revenue increase on a percentage basis (46% for

franchised stores and 45% for company-owned stores), and stores that were franchised

25I use these end points because the fourth quarter of 2006 is the last quarter before the year that the
IHOP sale occurred while the fourth quarter of 2013 is the last quarter for which I have revenue data.
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actually had a much bigger increase in median sales (76% for franchised stores and 45%

for company-owned stores). Histograms of store revenue for both ownership types and

both time periods are shown in Figure 1.13.

The above statistics only consider two quarters out of a span of seven years. Next, I

incorporate more time periods and look more closely at revenue trends. I first consider

all stores which were open throughout the entire time period of 2004 to 2011. This

includes 39 company-owned stores and 25 franchised stores. Quarterly revenues for each

ownership type are shown in Figure 1.14. This graph provides some initial evidence of a

franchise effect, with the stores that were initially company-owned seeing a substantial

increase in revenue, both in absolute terms and relative to the always-franchised stores,

following the 2007 corporate sale. However, these appears to be a slight upward trend in

revenue for company-owned stores; in my analyses, it will be important to distinguish this

trend from an effect of franchising. The graph also shows that the data exhibit significant

seasonality. Table 1.9 provides evidence of this seasonality. It contains average annual

sales for each quarter of the year. The first quarter had the highest average revenue

($101,247), while the third quarter had the lowest average revenue ($95,278). These

averages include all quarters from 2004 through 2011 for stores which were open in all of

those years.
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Table 1.1: Franchise Fees for Various Casual Dining Chains

Chain Fixed Fee Royalty
(percent)

Applebee’s $35,000 4

Buffalo Wild Wings $40,000 5

Chili’s $40,000 4

T.G.I. Friday’s $50,000 4

Notes: These numbers come from franchise disclosure
documents and do not include any additional fees paid to
the franchisor, including advertising fees.
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Table 1.2: Sample of Menu Items and Prices

Chain Item Price (in dollars)

Applebee’s Chicken Quesadilla 7.49

Chicken Wonton Tacos 7.99

Classic Burger 8.99

Chicken Tenders Platter 10.49

Buffalo Wild Wings Chicken Quesadilla 7.99

Mini Corn Dogs 6.29

Cheeseburger 8.99

Crispy Chicken Tenders 10.29

Chili’s Smoked Chicken Quesadillas 10.29

Southwestern Egg Rolls 8.59

Oldtimer Cheeseburger 8.89

Chicken Crispers 10.49

T.G.I. Friday’s Chicken Quesadilla 8.99

Spinach Florentine Flatbread 9.49

Really Good Cheeseburger 8.80

Crispy Chicken Fingers 10.49

Notes: Prices are taken from the following Dallas outlets: Applebee’s
on 3565 Frankford Rd; Buffalo Wild Wings on 5000 Belt Line Rd.;
Chili’s on 4500 Belt Line Rd.; T.G.I. Friday’s on 4951 Belt Line Rd.
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Table 1.3: Summary Statistics for the First Quarter of 2013

N Mean Std. Dev. Min Max p25 p75

Store Revenues

Applebee’s 100 127,908 52,606 33,876 301,348 86,007 164,084

Buffalo Wild Wings 83 192,246 77,876 43,304 631,270 151,312 208,414

Chili’s 208 107,038 31,658 20,791 215,367 86,430 123,094

T.G.I. Friday’s 31 132,098 56,288 56,004 318,888 102,871 143,570

Outside option 973 1,343,398 3,223,087 491 58,994,137 85,178 1,347,029

Stores per
outside option

973 14 19 1 236 3 19

Zip code level
populations

1,623 16,176 18,320 110 115,975 2,240 25,370

Notes: Each outside option includes all non-chain stores in a zip code.
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Table 1.4: County Level Statistics for 2013

County Population Number of
Stores

Alcohol Sales
(in thousands of

dollars)

People per
Store

Sales per
Person

Harris 4,325,413 2,552 1,198,724 1,695 277

Dallas 2,459,095 1,882 837,970 1,307 341

Tarrant 1,910,975 1,441 536,603 1,326 281

Bexar 1,813,421 1,032 511,175 1,757 282

Travis 1,108,503 962 591,169 1,152 533

Collin 854,036 609 209,761 1,402 246

El Paso 829,726 400 131,629 2,074 159

Hidalgo 818,553 282 74,362 2,903 91

Denton 721,022 356 107,133 2,025 149

Fort Bend 650,693 222 76,489 2,931 118

All other counties 10,958,769 5,078 1,295,455 2,158 118

Statewide 26,450,206 14,816 5,570,470 1,785 211

Notes: All establishments found in the Texas mixed beverage sales tax data are included in the
count of stores. Store counts and populations reflect data for the first quarter of 2013.
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Table 1.5: Ownership of New Stores and Nearest Existing Stores

Nearest Existing Store

Company-Owned Same Franchisee Different Franchisee

New Store: Company-Owned 31 0 0

Franchisee 5 19 0

Notes: Opening stores that are not within 50 miles of an existing store and opening stores in which
the ownership of either the opening store or the nearest existing store is unknown are excluded
from this analysis.
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Table 1.6: County-Level Averages by Applebee’s Ownership Type, Q4 2006

Counties with
Company-Owned

Stores

Counties with
Franchised Stores

Number of Applebee’s 2.18 1.74

Number of Other Chain Stores 7.36 3.26

Number of Non-Chain Stores 284.50 136.53

Total Alcohol Sales $24,800,642 $10,767,421

Population 475,502 286,301

Per Capita Alcohol Sales $52.16 $37.61

People per Non-Applebee’s Chain Store 64,631 87,737

People per Non-Chain Store 1,671 2,097

Number of Counties: 28 19

Notes: In the fourth quarter of 2006, no county included both company-owned and franchised stores
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Table 1.7: Summary Statistics for Applebee’s Alcohol Revenues by Ownership Type, Q4 2006

N Mean Median Std. Dev. p25 p75

Company-Owned 59 53,591 79,561 104,858 80,987 37,392

Franchised 33 54,473 66,847 88,166 78,816 43,973

Table 1.8: Summary Statistics for Applebee’s Alcohol Revenue by Ownership Type, Q4 2006 and Q4 2013

N Mean Median Std. Dev. p25 p75

2006 - Initially Company Owned 55 83,910 80,999 36,747 58,680 108,572

2006 - Initially Franchised 29 79,157 66,847 44,757 56,584 87,675

2013 - Initially Company Owned 55 121,702 118,308 49,314 91,602 152,368

2013 - Initially Franchised 29 115,346 117,393 45,547 82,500 153,404

Initially Company Owned - Growth 55 45% 46% 56% 40%

Initially Franchised - Growth 29 46% 76% 46% 75%

Notes: Only stores which exist in both Q4 2006 and Q4 2013 are included.
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Table 1.9: Average Revenue by Quarter

Quarter Revenue

Q1: January - March $101,247

Q2: April - June $97,709

Q3: July -
September

$95,278

Q4: October -
December

$99,894

Notes: Only stores which were open in all years
from 2004 through 2011 are included. Only sales
figures from 2004 through 2011 are included.
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Figure 1.1: Number of Applebee’s Stores by Year
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Figure 1.3: Average Q1 Alcohol Revenue per Store
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Figure 1.4: Income Quartile Cutoffs for Q1 of Each Year
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Figure 1.5: Statewide Alcohol Revenues
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Figure 1.6: Statewide Income and Alcohol Spending
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Figure 1.7: Histogram of Alcohol Sales for Q1 2013
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Figure 1.8: Histogram of Logged Alcohol Sales for Q1 2013
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Figure 1.9: 2006 Map of Chain Stores
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Figure 1.10: Locations of Company Owned Applebee’s

Notes: Applebee’s open any time between 2006 and 2013 are included.
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Figure 1.11: Locations of Franchised Applebee’s

Notes: Applebee’s open any time between 2006 and 2013 are included.
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Figure 1.12: Histogram of Store Revenues by Ownership Type for Q4 2006

0%

5%

10%

15%

20%

25%

30%

35%

0  20,000  40,000  60,000  80,000  100,000  120,000  140,000  160,000  180,000  200,000  220,000  240,000 260000 280000

Company-Owned Franchised

48



Figure 1.13: Histograms of Store Revenue for Q4 2006 and Q4 2013
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Note: Histogram includes only stores which were still open in the fourth quarter of 2013.
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Figure 1.14: Average Yearly Sales by Ownership Type
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Notes: Only stores which exist in all years from 2004 to 2011 are included. This includes 39
company-owned stores and 25 franchised stores.
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CHAPTER 2

REDUCED FORM ANALYSIS

I begin my analysis by modeling the ownership decisions made by Applebee’s prior

to the 2007 corporate sale, namely whether a given store should be company-owned or

franchised. I observe evidence of selection based on demographics; for example, Apple-

bee’s chose to own stores in higher income areas. I also find evidence that Applebee’s

chose to own stores in locations that were better due to factors that are unobservable

to the econometrician. Next, I use a linear model with store level fixed effects to find

evidence that franchising a store increases its revenue. For stores that change ownership,

I find that franchising a store increases its revenue by 19 percent.

2.1 Empirical Analysis of the Franchisor’s Ownership Decision

Here I investigate how Applebee’s chose whether to own or franchise each store prior

to 2008. I am most interested in investigating whether locations that, for reasons that

are known to the franchisor and franchisee but unobserved by the econometrician, had

higher revenue potential were less likely be franchised, as was predicted by the model in

Section 1.3. I use a binomial logit regression where the dependent variable is equal to one

if the store was initially franchised and zero otherwise. Only Applebee’s stores that were

opened before the IHOP sale are included in the regressions. For demographic variables,

I use values from the beginning of 2008.

First, I examine whether there is selection based on observables. For simplicity, I

initially consider only two observables: the logged population of the store’s county and

the share of the county’s population that is non-Hispanic white.26 This is subsequently

26I use county-level rather than zip code-level variables in these regressions due to data limitations;
some of the demographic variables I use in different specifications of the models are only available on
the county level.
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referred to as “White”. As shown in Specification (1) of Table 2.1, regression results

indicate that company-owned stores tended to be located in higher population areas and

areas with fewer minorities. I expand the model to include two additional demographics.

The first is the percentage of the county’s population that is employed at a full-service

restaurant.27 This is used as a proxy for how competitive the market is and is subse-

quently referred to as “Competition”. The second is the average per capita income for

the store’s zip code. As shown in Specifications (2) and (3) of Table 2.1, I find that

stores located in higher income areas and stores with fewer competitors were more likely

to be company-owned. These coefficients are, in almost all specifications, all significantly

different from zero, indicating that ownership selection was not random.

I next turn to evidence of selection based on unobservables. I do this using a modifica-

tion of the “preprogram” regression described by Heckman and Hotz (1989). Specifically,

I include average quarterly revenue for all periods after 2009 as an explanatory variable.

If unobservable determinants of revenue were relevant in Applebee’s ownership decision,

then, after all stores are franchised and all observable demographics are controlled for,

stores that were initially company-owned should have significantly different revenues than

those that were initially franchised. A more formal explanation can be found in Appendix

A. As shown in Specifications (4) through (6) of Table 2.1, I find that stores that have

higher post-2009 revenues were more likely to be company-owned prior to the 2008 IHOP

sale. This supports the theory raised in Section 1.3 that Applebee’s chose to own stores

in locations with better unobservables.

In Section 1.6, I found that the ownership of nearby stores was highly predictive of

the ownership of a new store. In this section, I adapt my logit model in an attempt

to account for this factor. Specifically, I estimate the model with the same explanatory

variables as those in Table 2.1, but only include stores which existed at the beginning of

27The number of people in each county employed at a full-service restaurant is calculated by County
Business Patterns.
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my sample period.28 This is an attempt to look at how ownership decisions were made

before Applebee’s had a large network of stores. One important caveat is that, at the start

of my sample period, Applebee’s had 51 stores open. Some of these stores are near each

other, and it is likely that the ownership of nearby existing stores affected the opening

of these stores. While results are generally similar to those presented in Table 2.1, there

are some significant differences. The effect of population is smaller and, depending on

the specification, not always significant. The coefficients on Competition and Income are

no longer statistically significant. Perhaps most interestingly, the coefficient on Revenue

is larger in absolute value. This suggests that, for these early stores, revenue potential

was an especially large determinant of store ownership. Complete results are shown in

Table 2.2.

As noted in Section 1.6, at the end of 2006, no counties had both company-owned

and franchised stores. This suggests that Applebee’s made an ownership decision once

for each county. Because of this, the addition of multiple stores from the same county

to the logit model may not improve the model. In Table 2.3, I consider each county to

be a single observation. Results are directionally same to those presented in Table 2.1

and Table 2.2: the coefficients on Population, White, and Income are negative, while the

coefficients on Competition are positive.

2.2 Initial Estimates of the Effect of Franchising

To show preliminary evidence of the effect of franchising on store revenues, I define rjt

as the alcohol sales for Applebee’s store j during quarter t and use a fixed-effects linear

model:

log(rjt) = fjtδ + xjtπ + ξj + εjt, (2.6)

where fjt is an indicator variable that is equal to 1 if store j is franchised at time t, xjt

contains observable variables, ξj is a store-level fixed effect, and εjt is an error term that

28In this case, that is the second quarter of 2001. While I have store ownership data for periods prior
to that, this is the first quarter of data for which I have data on the Competition variable.
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is independent across all observations. The parameters of the model are π and δ, with δ

representing the effect of franchising. Because this is a log-linear model, δ represents the

percentage increase in revenue that occurs when a store switches from company-owned

to franchised. Initially, the only components of xjt are yearly control variables.

I first consider a “naive regression” in which the Applebee’s sale is not used as a

source of variation. The fixed effects model is not appropriate in this context because

any effect of franchising would be absorbed by the store-level fixed effect, so ξj = 0 for

all j. The estimated value of δ represents the difference in sales for two stores that have

the same values of xjt but different ownership structures. I define this estimate of δ as

δNAIV E, and I find that δNAIV E = .085 with p < 0.01.

I next conduct a fixed effects regression by allowing ξj to take on different values;

this allows me to control for location-level unobservables. For stores that are initially

franchised, fjt = 1 for all t, so any effect of franchising is captured in ξj. Identification

of δ depends on the 2008 ownership change of Applebee’s restaurants. For stores that

experience this ownership change, δ is identified as the difference between revenues when

the store is company-owned and revenues when the store is franchised, after controlling

for the observable demographics in xjt. I define the value of δ estimated by this model as

δFE, and I find that δFE = .19 with p < 0.01. Thus, the fixed effects regression predicts

that franchising a store increases its revenue by 19 percent. The fact that δFE > δNAIV E

is consistent with the theory that locations with the best unobservables are more likely

to be company-owned, which leads to the naive regression underestimating the franchise

effect.

This fixed effects estimate does not include any control variables other than yearly

fixed effects. If stores that were initially company-owned were located in counties that

experienced significant population growth, and if this growth caused an increase in rev-

enues relative to the revenues of stores that were always franchised, that revenue increase

could be falsely attributed to a franchise effect. To address this, I estimate several ad-
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ditional specifications using different control variables. Additionally, because I do not

observe when in 2008 the ownership changes occur, I separate the franchising effect into

two components, one for 2008 and one for all subsequent years.

Table 2.4 shows the results from regressions using different demographics in ajt. Be-

cause the model contains a store-level fixed effect, the components of ajt are identified by

demographics of a given county changing over time. So, a positive coefficient on “White”

would reflect that revenue increases as a county’s white population share increases. All

specifications contain yearly and quarterly control variables. Specification (1) is the naive

regression described in Section 2.2, and Specification (2) is the fixed effect regression de-

scribed in Section 2.2. Specifications (3) through (5) continue to use fixed effects and use

different combinations of parameters. For all, the estimated franchise effect is between

15 percent and 19 percent and is statistically significant. The 2008 effect is smaller (be-

tween 6 percent and 8 percent) and statistically insignificant in all specifications. The

two demographics that were statistically significant in all specifications were population

and race. As a county’s population increases, average revenue for an Applebee’s store in

that county actually decreases. As a county’s white population share increases, average

revenue for an Applebee’s store in that county decreases.

Trends

Table 2.10 introduces trends to the model. To address the possibility that the stores

that were initially company-owned were experiencing rapid revenue growth before and

after the ownership change, and that the observed revenue increase was unrelated to any

franchising effect, I use two different types of trends. The first are store level trends, used

in Specifications (1) through (3). In these specifications, each store is given its own time

trend. As a result, the estimated franchise effects are smaller (between 3 percent and 10

percent) and statistically insignificant. The second type of trend is an ownership level

trend. Here, stores that were initially company-owned are all given the same trend. I
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refer to this as “COS trend” and show the coefficients in the table.29 Here, the estimated

franchise effects are between 7 percent and 16 percent, which is closer to the no-trend

estimates. Statistical significance depends on the demographic control variables used.

It is notable that in most specifications the coefficient on the trend is statistically

insignificant; this suggests that there is not actually an upward trend and that the trend

variable is simply causing the franchise effect to be split between the “Franchise effect”

variable and the “COS trend” variable. Also supporting this interpretation is the fact

that the addition of a trend gives only a negligible improvement to the fit of the model.

In Table 2.11, I show several additional specifications using various combinations of

demographic variables. This includes one new demographic: “Age 20-35”, which is equal

to the share of the population in the county where the store is located that is between

20-35. Specifications (1) through (3) do not have a trend; specifications (4) through (6)

include the “COS trend” variable. Results are directionally similar to those discussed

above; with no trends included, the estimated franchise effect is between 13 percent and

15 percent and is statistically significant. With an ownership level trend included, the

franchise effect is between nine percent and 10 percent, and its statistical significance

depends on the choice of demographic variables included in the regression.

Effect of IHOP’s Ownership

Following the acquisition of Applebee’s, IHOP made changes to its menus, suppliers,

and advertising strategies. In a 2008 interview, IHOP’s CEO stated her intention to focus

on increasing Applebee’s alcohol sales by adding televisions to bar areas and emphasizing

the variety of available beverages (Horovitz, 2008). The results of the above regressions

allow me to gain preliminary evidence regarding whether IHOP’s ownership change and

resulting change in business practices had an impact on the revenues of all Applebee’s

stores. Specifically, yearly fixed effects are included in each regression to account for

factors that affect the performance of all Applebee’s stores. Figure 2.1 shows a graph

29Any trend that affected all Applebee’s stores is accounted for in the yearly control variables.
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of the estimated parameters for the yearly fixed effects from Specification (5) of Table

2.4. The estimated fixed effects from 2010 through 2013 are substantially higher than

the estimated fixed effects from 2004 through 2009. However, I cannot identify whether

this is due to a change in macroeconomic conditions or due to policies implemented at

the chainwide level. One piece of evidence supporting the theory that IHOP’s ownership

increased Applebee’s revenues can be found in Figure 1.3, which shows average per-store

revenues for each chain over time; it is likely that any macroeconomic condition that

positively affected Applebee’s would have also had an effect on other chain restaurants.

However, Buffalo Wild Wings and Chili’s do not show a revenue increase after 2009.

T.G.I. Friday’s does have a revenue increase, but it is smaller than the increase experi-

enced by Applebee’s.

Variance of Franchise Effect

I next investigate how the franchise effect varies by store. To do this, I estimate

a model which has the same explanatory variables as Specification (4) in Table 2.4.

However, I separately estimate a different franchise effect for each store. While the

average store experienced a franchise effect of 12.7%, a quarter of the stores have a

franchise effect that is negative, and a quarter of the stores have a franchise effect that

is greater than 43%.30 A histogram of all estimated franchise effects is shown in Figure

2.2.

I next investigate whether the magnitude of the franchise effect is correlated with

store-level unobservables. It is likely that, if the franchisor can determine what the

magnitude of the franchise effect for a given store would be, stores with large franchise

effects will tend to be franchisee-owned. This predicts that stores which are both low-

revenue (after franchising) and company-owned will have a small benefit from franchising;

if the store had a large benefit from franchising and was in a poor location, it would

30It is important to note that a negative franchise effect does not necessarily mean that store revenues
were decreasing; it just means that the store did worse than a comparable store that was already
franchised would have been expected to do.
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have initially been franchised. However, as shown in Figure 2.3, there is essentially no

relationship between a company-owned store’s 2006 revenue and the magnitude of its

franchise effect.

Further Discussion of Ownership Selection

It is worthwhile to compare the results shown in Tables 2.4 and 2.10 with the logit

model results shown in Table 2.1, Table 2.2, and Table 2.3. For example, locations

with more competition tend to have lower revenues. Locations with more competition

were also more likely to be franchised.31 This supports the hypothesis that Applebee’s

preferred to franchise stores with lower revenue potential. Similarly, locations with low

incomes tend to have lower revenues, so it is unsurprising that Applebee’s preferred to

franchise stores in low-income areas. However, Applebee’s preferred to own stores in

counties with fewer minorities, even though those counties tend to have lower revenues,

and Applebee’s preferred to own stores in counties that had higher populations, even

though they tend to have lower revenues.

It is possible that the reason Applebee’s preferred to own stores in high-population

counties is related to the local expertise hypothesis of why firms franchise. It may be the

case that, for large cities like Dallas, Applebee’s management thought that they had a

good understanding of the local market or could easily obtain relevant market research,

while for a small town they believed that a local expert would be better able to deal with

the intricacies of the market. This is a potential area for further research.

2.3 Comparison with Buffalo Wild Wings

As of the first quarter of 2013, Buffalo Wild Wings had 40 company-owned restaurants

and 42 franchised restaurants in Texas. No Buffalo Wild Wings changed franchise status

during my sample period, so I cannot identify the effect of franchising on alcohol revenues.

I am, however, able to see if the findings from the analysis of Applebee’s also hold for

31One important caveat for these comparisons is that for the linear model, because there are store-level
fixed effects, coefficients are identified by changes in demographics for a given county, not by comparing
demographics between counties.
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another chain. Like Applebee’s, many of Buffalo Wild Wings’ company-owned stores are

located in Houston or Dallas, while the franchised stores tend to be located in smaller

markets that contain only one Buffalo Wild Wings. Figures 2.4 and 2.5 show the locations

of company-owned and franchised Buffalo Wild Wings stores in Texas.

I first use a logit model to predict ownership of Buffalo Wild Wings stores, using the

same demographic predictor variables as were used to predict ownership of Applebee’s

stores. As was the case with Applebee’s, company-owned Buffalo Wild Wings stores tend

to be located in counties with higher populations, higher incomes, fewer minorities, and

less competition. Complete results are shown in Table 2.5. Specifications (4) through

(6) include revenue as a predictor. The results find that higher revenues are correlated

with more franchisee ownership. Because there is no ownership change in Buffalo Wild

Wings stores, this cannot be used to estimate unobservables as was done in Section 2.1.

I next use linear regressions to model store revenues. The first set of regressions is

intended to show how demographics affect store revenues. The regressions use county-

level demographics, store-level fixed effects, and yearly and quarterly controls to predict

logged quarterly revenues. Note that, as was the case in the Applebee’s analysis, be-

cause store-level fixed effects are used, demographic effects are identified by changes in

demographics over time at a given store. Results are shown in Table 2.6. As a county’s

population increases, its income increases, or its share of minorities increases, revenues of

Buffalo Wild Wings stores in that county tend to increase. As a county’s restaurant in-

dustry gets more competitive, revenues of Buffalo Wild Wings stores in that county tend

to decrease. Most of these results are directionally similar to the results of the regression

using Applebee’s data shown in Table 2.4. The only differences are that, with Applebee’s

data, the coefficients on Competition and Income were not statistically significant, and

the coefficient on Income was negative.

Finally, I add several binary variables to the regressions discussed above. The first is

equal to one if the store is franchised and is referred to as “Franchised”. The second is
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equal to one if the store is within five miles of an Applebee’s that was initially company-

owned; Figure 2.6 shows the locations of these stores. The third is equal to one if the

store is within five miles of an Applebee’s that was open prior to the IHOP sale and was

initially franchised; Figure 2.7 shows the locations of these stores. Because these variables

do not change for a given store over time, fixed effects are no longer appropriate and are

not used. The results are shown in Table 2.7. Specifications (1) through (3) use the same

demographic variables as the three specifications in Table 2.6. Specification (4) excludes

all demographics.

In all specifications, the coefficient on Franchised is positive and indicates that fran-

chised Buffalo Wild Wings stores earn between 11 percent and 24 percent more than

company-owned stores. I cannot determine if this is because franchising increases store

revenue or because franchised stores are at locations with better unobservables. I turn

next to the coefficients on the binary variables that indicate proximity to an Applebee’s.

The results shown in Specifications (1) and (2) of Table 2.4 and discussed in Section 2.2

suggest that company-owned Applebee’s stores were in locations that are unobservably

better than the locations of franchised Applebee’s stores. It may be that Buffalo Wild

Wings stores located near company-owned Applebee’s stores share these characteristics

and, therefore, earn higher revenues. This would manifest itself in a positive coefficient

on the variable that indicates proximity to a company-owned Applebee’s store. However,

the coefficient on this variable is negative and significant, while the coefficient on the

variable that indicates proximity to an always-franchised Applebee’s store is positive.

This indicates that Buffalo Wild Wings stores that are located near company-owned Ap-

plebee’s stores (which, according to previous results, have “good” unobservables) have

“bad” unobservables.

I next investigate some possible reasons for this finding. For example, it may be that

five miles is a far enough distance that unobservables are not likely to be correlated; it

may be that unobservably “good” locations are not good because they are in good neigh-
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borhoods but because they have chosen to be at the right place within a neighborhood.

To account for this, I rerun the regressions but change the distance requirement from five

miles to two miles. The results are essentially unchanged, as shown in Table 2.8. I also

run a set of regressions that only include data after 2009; this ensures that all Applebee’s

stores are franchised and, thus, differences in performance for Buffalo Wild Wings stores

are not due to some stores competing against franchised stores and others competing

against company-owned stores. Results are shown in Table 2.9 and, again, are essentially

unchanged from the results of baseline model.

While it is not clear why Buffalo Wild Wings stores located near originally company-

owned Applebee’s stores perform worse than those located near originally franchised

Applebee’s stores, one explanation relates to the fact that all of the Buffalo Wild Wings

stores that are located near company-owned Applebee’s stores are located in the eastern

half of the state, mostly in Dallas, while most of the Buffalo Wild Wings stores that

are located near franchised Applebee’s stores are located in other parts of the state. It

may be that people in the eastern part of Texas have an especially strong preference for

Applebee’s relative to Buffalo Wild Wings. This is would be an example of unobserved

heterogeneity among consumers; a more rigorous comparison of the two chains would

need to account for this potential heterogeneity.

2.4 Conclusion

In this chapter, I first found that Applebee’s chose whether to own or franchise a

given restaurant based on a variety of factors, only some of which were observed by

me. I found that, as expected, stores that were initially owned by Applebee’s tended

to have better unobservables, indicating the importance of controlling for endogeneity

of ownership selection when estimating the effect of franchising on store performance. I

next used a fixed effects linear regression to estimate the effect of franchising on store

performance. I found franchising a store increased its alcohol revenue. The magnitude

varied based on the model used; for models without time trends, the estimated effect was

61



between 15% and 19%. For models with time trends, the estimated effect was between

4% and 11% and was not always statistically significant. I also found that, as expected,

a regression that did not take advantage of the ownership changes underestimated the

magnitude of the franchise effect.

Throughout this section, I used the term “unobservables” to include all factors that

were not observed by me but are potentially known by the franchisor. While my analysis

includes only a small set of demographics, it is likely that no available data set would

contain every piece of information relevant to store sales that is available to the franchisor.

Thus, while adding additional demographics and other observables may increase the

precision of my estimates, it is likely that the most important results of this section –

that locations with the best unobservables tend to be company owned and that failing

to account for these unobservables can lead to an underestimate of the franchise effect –

would be unchanged.
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Table 2.1: Logit Model Predicting if a Store Will be Franchised

Variables (1) (2) (3) (4) (5) (6)

Population -1.346*** -1.553*** -0.779 -1.418*** -1.615*** -0.701

(0.359) (0.400) (0.492) 0.372 (0.412) (0.525)

White -13.561*** -14.56*** -10.83*** -14.173*** -15.441*** -11.23***

(3.314) (3.532) (3.853) (3.361) (3.702) (3.939)

Competition 157.9* 215.1** 145.831* 187.4**

(81.02) (88.33) (84.757) (90.79)

Income -1.631** -1.714**

(0.647) (0.691)

Revenue -1.77e-05** -1.75e-5** -2.17e-05**

(7.81e-06) (8.12e-06) (9.57e-06)

Constant 23.818*** 24.47*** 18.00** 26.397*** 27.781*** 20.31***

(6.198) (6.497) (7.086) (6.649) (7.01) (7.406)

Observations 90 90 90 87 87 87

Notes: A positive coefficient indicates that an increase in the value of the variable will result in
an increase in the likelihood that the store is franchised. “Population”, “White”, “Competition”,
and “Income” are demographics for the county where the store is located; “Population” is the
log of the county’s population, “White” is the population share that is non-Hispanic white,
“Competition” is the share of population employed at a full-service restaurant, and “Income” is
the average per-capita income. “Revenue” is the average post-2009 revenue of the store. Robust
standard errors are in parentheses. *** p<0.01, ** p<0.05, * p<0.1
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Table 2.2: Logit Model Predicting if a Store Will be Franchised - Only Stores Open in
Q2 2001 Included

Variables (1) (2) (3) (4) (5) (6)

Population -0.815** -0.884** -0.470 -0.885 -0.641 -0.187

(0.389) (0.428) (0.594) (0.560) (0.644) (0.817)

White -9.610*** -9.801*** -7.360** -15.76*** -15.62*** -13.19**

(2.855) (2.897) (3.717) (4.669) (4.682) (5.349)

Competition 37.27 95.51 -107.0 -52.76

(95.06) (112.8) (144.8) (165.3)

Income -1.257 -1.390

(1.246) (1.638)

Revenue -3.77e-05** -4.20e-05** -4.22e-05**

(1.54e-05) (1.72e-05) (1.79e-05)

Constant 15.28** 15.72** 11.72 24.12** 23.02** 18.94*

(6.215) (6.303) (7.424) (9.373) (9.479) (10.18)

Observations 56 56 56 51 51 51

Notes: A positive coefficient indicates that an increase in the value of the variable will result in
an increase in the likelihood that the store is franchised. “Population”, “White”, “Competition”,
and “Income” are demographics for the county where the store is located; “Population” is the
log of the county’s population, “White” is the population share that is non-Hispanic white,
“Competition” is the share of population employed at a full-service restaurant, and “Income” is
the average per-capita income. “Revenue” is the average post-2009 revenue of the store. Robust
standard errors are in parentheses. *** p<0.01, ** p<0.05, * p<0.1

1
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Table 2.3: Logit Model Predicting the Initial Franchise Status of Applebee’s Stores in
Each County

Variables (1) (2) (3)

Population -2.30e-06* -2.88e-06** -2.04e-06

(1.18e-06) (1.37e-06) (1.47e-06)

White -10.40*** -10.88*** -9.412**

(3.620) (3.704) (4.109)

Competition 139.8 193.8*

(89.11) (102.5)

Income -1.318

(0.937)

Constant 6.509*** 4.923* 7.395**

(2.469) (2.578) (3.435)

Observations 47 47 47

Notes: A positive coefficient indicates that an increase in
the value of the variable will result in an increase in the
likelihood that the store is franchised. “Population”,
“White”, “Competition”, and “Income” are demographics
for the county where the store is located; “Population” is
the log of the county’s population, “White” is the
population share that is non-Hispanic white, “Competition”
is the share of population employed at a full-service
restaurant, and “Income” is the average per-capita income.
Robust standard errors are in parentheses. *** p<0.01, **
p<0.05, * p<0.1
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Table 2.4: Estimated Effect of Franchising: Fixed Effects Model

Variables (1) (2) (3) (4) (5)

Franchise effect 0.0852*** 0.191*** 0.151*** 0.155*** 0.153***

(0.0240) (0.0430) (0.0480) (0.0484) (0.0478)

2008 effect 0.0809* 0.0734* 0.0697

(0.0424) (0.0427) (0.0423)

Population -1.038** -0.930** -0.891**

(0.416) (0.404) (0.373)

White -5.862*** -6.111*** -6.057***

(1.846) (1.807) (1.829)

Competition -15.25 -15.04

(9.681) (9.818)

Income 0.0548

(0.0941)

Fixed effects No Yes Yes Yes Yes

Constant 27.61*** 26.55*** 25.84***

(5.875) (5.703) (5.259)

Observations 3,317 3,223 3,223

R-squared 0.560 0.565 0.565

Notes: The dependent variable is logged quarterly store-level alcohol sales.
“Population”, “White”, “Competition”, and “Income” are demographics for the county
where the store is located; “Population” is the log of the county’s population, “White”
is the population share that is non-Hispanic white, “Competition” is the share of
population employed at a full-service restaurant, and “Income” is the average per-capita
income. Robust standard errors are in parentheses. *** p<0.01, ** p<0.05, * p<0.1
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Table 2.5: Logit Model Predicting if a Buffalo Wild Wings Store Will be Franchised

Variables (1) (2) (3) (4) (5) (6)

Population -1.557*** -1.835*** -1.601*** -1.481*** -1.875*** -1.123**

(0.362) (0.399) (0.412) (0.365) (0.431) (0.466)

White -9.922*** -10.97*** -10.11*** -9.825*** -11.63*** -8.849***

(2.770) (2.761) (2.985) (2.779) (2.882) (3.409)

Competition 233.2** 256.8** 278.0*** 338.3***

(98.51) (100.3) (102.0) (110.8)

Income -0.609* -1.442***

(0.324) (0.540)

Revenue 9.08e-06 1.37e-05** 1.61e-05***

(5.60e-06) (6.63e-06) (6.13e-06)

Constant 25.69*** 26.04*** 24.90*** 22.90*** 23.60*** 17.25**

(6.023) (6.022) (6.299) (6.132) (6.259) (7.274)

Observations 82 82 82 82 82 82

Notes: A positive coefficient indicates that an increase in the value of the variable will
result in an increase in the likelihood that the store is franchised. “Population”,
“White”, “Competition”, and “Income” are demographics for the county where the
store is located; “Population” is the log of the county’s population, “White” is the
population share that is non-Hispanic white, “Competition” is the share of population
employed at a full-service restaurant, and “Income” is the average per-capita income.
“Revenue” is the revenue of the store in the first quarter of 2013. Robust standard
errors are in parentheses. *** p<0.01, ** p<0.05, * p<0.1
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Table 2.6: Impact of Demographics on Buffalo Wild Wings Store Revenue

Variables (1) (2) (3)

Population 0.602*** 0.618*** 0.622***

(0.0567) (0.0591) (0.0590)

White -5.770*** -5.938*** -5.085***

(0.745) (0.775) (0.811)

Competition -11.22* -12.91**

(6.408) (6.408)

Income 0.0770***

(0.0222)

Constant 7.122*** 7.079*** 5.639***

(0.911) (0.926) (0.926)

Observations 2,135 2,047 2,047

R-squared 0.188 0.191 0.196

Notes: The dependent variable is logged quarterly store-level alcohol sales. All
models include store level fixed effects and yearly and quarterly control
variables. “Population”, “White” , “Competition”, and “Income” are
demographics for the county where the store is located; “Population” is the log
of the county’s population, “White” is the population share that is
non-Hispanic white, “Competition” is the share of population employed at a
full-service restaurant, and “Income” is the average per-capita income. Robust
standard errors are in parentheses. *** p<0.01, ** p<0.05, * p<0.1
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Table 2.7: Using Nearby Applebee’s Store Ownership to Predict Buffalo Wild Wings
Store Revenue

Variables (1) (2) (3) (4)

Population 0.0483*** 0.0705*** 0.0194*

(0.00802) (0.00866) (0.00990)

White 0.445*** 0.592*** 0.326***

(0.0438) (0.0478) (0.0554)

Competition -14.41*** -22.48***

(2.276) (2.398)

Income 0.150***

(0.0122)

Franchised 0.186*** 0.215*** 0.238*** 0.112***

(0.0175) (0.0185) (0.0185) (0.0158)

Within 5 of APL C -0.250*** -0.260*** -0.229*** -0.203***

-0.0162 -0.0164 -0.0158 (0.0145)

Within 5 of APL F 0.113*** 0.117*** 0.220*** 0.0731***

(0.0219) (0.0220) (0.0199) (0.0204)

Constant 11.59*** 11.27*** 11.72*** 12.26***

(0.138) (0.143) (0.151) (0.0255)

Observations 2,126 2,038 2,038 2,550

R-squared 0.268 0.284 0.347 0.212

Notes: The dependent variable is logged quarterly store-level alcohol sales. All
models include yearly and quarterly control variables. “Within 5 of APL C” is
equal to 1 if the store is within five miles of an Applebee’s that was originally
company-owned. “Within 5 of APL F” is equal to 1 if the store is within five
miles of an Applebee’s that was open prior to 2007. “Population”, “White”,
“Competition”, and “Income” are demographics for the county where the store
is located; “Population” is the log of the county’s population, “White” is the
population share that is non-Hispanic white, “Competition” is the share of
population employed at a full-service restaurant, and “Income” is the average
per-capita income. Robust standard errors are in parentheses. *** p<0.01, **
p<0.05, * p<0.1

69



Table 2.8: Prediction of Buffalo Wild Wings Store Revenue - Two Mile Maximum
Distance

Variables (1) (2) (3) (4)

Population 0.0415*** 0.0604*** 0.0224**

(0.00901) (0.00998) (0.0112)

White 0.330*** 0.444*** 0.211***

(0.0489) (0.0564) (0.0655)

Competition -11.25*** -18.37***

(2.624) (2.823)

Income 0.120***

(0.0144)

Franchised 0.227*** 0.253*** 0.293*** 0.154***

(0.0169) (0.0182) (0.0191) (0.0142)

Within 2 of APL C -0.186*** -0.186*** -0.155*** -0.153***

(0.0163) (0.0164) (0.0156) (0.0138)

Within 2 of APL F 0.118*** 0.132*** 0.191*** 0.0747***

(0.0252) (0.0259) (0.0247) (0.0216)

Constant 11.74*** 11.43*** 11.77*** 12.20***

(0.154) (0.159) (0.167) (0.0246)

Observations 2,126 2,038 2,038 2,550

R-squared 0.206 0.217 0.260 0.166

Notes: The dependent variable is logged quarterly store-level alcohol sales. All
models include yearly and quarterly control variables. “Within 5 of APL C” is
equal to 1 if the store is within two miles of an Applebee’s that was originally
company-owned. “Within 5 of APL F” is equal to 1 if the store is within two
miles of an Applebee’s that was open prior to 2007. “Population”, “White”,
“Competition”, and “Income” are demographics for the county where the store
is located; “Population” is the log of the county’s population, “White” is the
population share that is non-Hispanic white, “Competition” is the share of
population employed at a full-service restaurant, and “Income” is the average
per-capita income. Robust standard errors are in parentheses. *** p<0.01, **
p<0.05, * p<0.1
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Table 2.9: Prediction of Buffalo Wild Wings Store Revenue - 2009 and Later

Variables (1) (2) (3) (4)

Population 0.0310*** 0.0508*** 0.00382

(0.00959) (0.0107) (0.0115)

White 0.485*** 0.610*** 0.352***

(0.0522) (0.0584) (0.0646)

Competition -10.96*** -19.59***

(2.630) (2.740)

Income 0.150***

(0.0139)

Franchised 0.139*** 0.172*** 0.195*** 0.0837***

(0.0211) (0.0237) (0.0229) (0.0190)

Within 5 of APL C -0.249*** -0.259*** -0.225*** -0.187***

(0.0200) (0.0204) (0.0194) (0.0168)

Within 5 of APL F 0.126*** 0.123*** 0.237*** 0.0851***

(0.0274) (0.0281) (0.0238) (0.0253)

Constant 11.51*** 11.40*** 11.65*** 12.20***

(0.159) (0.163) (0.161) (0.0240)

Observations 1,369 1,287 1,287 1,793

R-squared 0.251 0.266 0.347 0.178

Notes: The dependent variable is logged quarterly store-level alcohol sales. All
models include yearly and quarterly control variables. “Population”, “White”,
“Competition”, and “Income” are demographics for the county where the store
is located; “Population” is the log of the county’s population, “White” is the
population share that is non-Hispanic white, “Competition” is the share of
population employed at a full-service restaurant, and “Income” is the average
per-capita income. Robust standard errors are in parentheses. *** p<0.01, **
p<0.05, * p<0.1
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Table 2.10: Estimated Effect of Franchising: Comparison of Time Trends

Time Trend: Store Level Trends Ownership Level Trend

Variables (1) (2) (3) (4) (5) (6)

Franchise effect 0.0812 0.0413 0.0539 0.108** 0.0773 0.0850

(0.0600) (0.0586) (0.0639) (0.0492) (0.0521) (0.0541)

2008 effect -0.00344 -0.0317 -0.0284 0.0605 0.0358 0.0375

(0.0484) (0.0479) (0.0479) (0.0451) (0.0447) (0.0446)

Population 2.218* 2.000 1.917 -1.054** -0.954** -0.925**

(1.177) (1.205) (1.209) (0.419) (0.404) (0.372)

White -6.241 -7.589 -7.944 -5.688*** -5.798*** -5.797***

(5.397) (5.696) (5.751) (1.852) (1.821) (1.831)

Competition -20.69** -21.71** -15.96 -15.74

(10.41) (10.53) (9.786) (9.849)

Income 0.0498 0.0364

(0.0623) (0.0956)

COS trend 0.00215 0.00393 0.00350

(0.00215) (0.00241) (0.00218)

Constant -14.32 -10.53 -9.375 27.71*** 26.67*** 26.18***

(17.02) (17.67) (17.74) (5.873) (5.663) (5.234)

Observations 3,317 3,223 3,223 3,317 3,223 3,223

R-squared 0.726 0.730 0.730 0.561 0.566 0.566

Notes: All specifications use store-level fixed effects. “Population”, “White” ,
“Competition”, and “Income” are demographics for the county where the store is
located; “Population” is the log of the county’s population, “White” is the population
share that is non-Hispanic white, “Competition” is the share of population employed at
a full-service restaurant, and “Income” is the average per-capita income. “COS trend” is
a linear time trend that applies to all stores that were initially company-owned. Robust
standard errors are in parentheses. *** p<0.01, ** p<0.05, * p<0.1
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Table 2.11: Estimated Effect of Franchising: Alternative Specifications

No Trends Ownership-Level Trend

Variables (1) (2) (3) (4) (5) (6)

Fra. effect 0.136*** 0.138*** 0.149*** 0.0980* 0.0980* 0.0864

(0.0459) (0.0470) (0.0471) (0.0550) (0.0550) (0.0523)

2008 effect 0.0641 0.0685 0.0775* 0.0461 0.0461 0.0432

(0.0413) (0.0420) (0.0419) (0.0453) (0.0453) (0.0451)

Population -1.261*** -1.296*** -0.999** -1.257*** -1.282*** -1.018***

(0.366) (0.393) (0.383) (0.365) (0.387) (0.383)

White -6.019*** -6.084*** -5.802*** -5.874*** -5.872*** -5.679***

(1.792) (1.769) (1.863) (1.800) (1.792) (1.861)

Competition -13.23 -13.53 -13.75 -14.16

(9.397) (9.265) (9.421) (9.359)

Income 0.0639 0.0518 0.0528 0.0432

(0.0945) (0.0971) (0.0960) (0.0983)

Age 20-35 -5.175** -5.027* -4.837* -4.606*

(2.595) (2.575) (2.741) (2.706)

COS trend 0.00199 0.00269 0.00164

(0.00217) (0.00244) (0.00189)

Constant 31.74*** 32.40*** 26.92*** 31.55*** 31.99*** 27.12***

(5.341) (5.698) (5.404) (5.339) (5.610) (5.398)

Observations 3,223 3,223 3,317 3,223 3,223 3,317

R-squared 0.569 0.568 0.561 0.569 0.569 0.561

Notes: All specifications use store-level fixed effects. “Population”, “White” ,
“Competition”, “Income”, and “Age 20-35” are demographics for the county where the
store is located; “Population” is the log of the county’s population, “White” is the
population share that is non-Hispanic white, “Competition” is the share of population
employed at a full-service restaurant, “Income” is the average per-capita income, and
“Age 20-35” is the population share that is between the ages of 20 and 35. “COS trend”
is a linear time trend that applies to all stores that were initially company-owned.
Robust standard errors are in parentheses. *** p<0.01, ** p<0.05, * p<0.1
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Figure 2.1: Fixed Effects Regression Estimate of Yearly Control Variables
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Figure 2.2: Histogram of Estimated Franchise Effects by Store
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Figure 2.3: Relationship Between Estimated Store-Level Franchise Effect and 2006
Revenue
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Notes: Franchise effect estimates are taken from a fixed effects regression which includes control variables
used in Specification (4) in Table 2.4. A separate franchise effect is estimated for each store.
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Figure 2.4: Locations of Company Owned Buffalo Wild Wings Stores

+
Notes: All stores open at any time between 2006 and 2013 are included.
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Figure 2.5: Locations of Franchised Buffalo Wild Wings Stores

Notes: All stores open at any time between 2006 and 2013 are included.
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Figure 2.6: Buffalo Wild Wings Located Near Company Owned Applebee’s Stores

Notes: Graph shows all Buffalo Wild Wings located within five miles of an Applebee’s store that was
originally company-owned.
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Figure 2.7: Buffalo Wild Wings Located Near Franchised Applebee’s Stores

Notes: Graph shows all Buffalo Wild Wings located within five miles of an Applebee’s store that
opened prior to 2007 and was originally franchised.
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CHAPTER 3

STRUCTURAL MODEL

During my sample period, there were significant changes in the nearby populations

and competitive landscapes of Applebee’s stores. It is important for me to be able to

distinguish a positive franchise effect from differences in revenue caused by such changes.

For this reason, I turn to a more structural model. Specifically, I create a utility-based

model where individuals take restaurant characteristics and travel costs into considera-

tion when choosing how to allocate their restaurant budgets. This model will also allow

me to estimate how franchising affects consumer utility. The model generates revenue

predictions for every restaurant in my data set. I use nonlinear least squares to select

parameters that minimize the difference between observed revenues and predicted rev-

enues. Results indicate that franchising a store has a positive impact on revenues. By

simulating a counterfactual in which the stores are not franchised, I calculate the effects

of franchising on firms and and competitors. I find that franchising a store increases its

revenues by 7 percent, and that about 30 percent of this additional revenue comes from

consumers switching away from competing national chains. I also find that consumer

utility gains from visiting a franchised rather than company-owned store are equivalent

to utility gains that would be experienced by a 2.8 mile reduction in travel distance to a

company-owned store.

3.1 Utility Model

I now introduce a model of consumer preferences for restaurants. These preferences

are used to predict purchase decisions and subsequent store revenues. The store rev-

enues before and after an exogenous ownership change can be used to find the effect of
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franchising. I estimate this model in Section 3.2. Consumers are defined by two factors:

their incomes and where they live. All consumers live in the population-weighted cen-

troid of their zip codes and have an income equal to the median per-capita income for

their zip codes. Thus, all consumers within a zip code are identical. Time is indexed

by t = 1, ..., T . I model quarterly sales, so each t represents a quarter. Zip code i has a

population of nit at time t.

The model proceeds as follows. First, the consumer decides how much money to

spend at restaurants during time t. A consumer in zip code i at time t has income

Iit and budgets bit for eating out. Consumers spend a fixed share of their income at

restaurants:

bit = QitηIit. (3.7)

I allow the share of income spent at restaurants to vary by income quartile and define

Qit = [Q1
it, Q

2
it, Q

3
it, Q

4
it] as a vector of indicator variables; Qq

i,t = 1 if zip code i is

in income quartile q at time t. Similarly, I define η = [η1, η2, η3, η4] as a vector of

parameters. Thus the share of income spent at restaurants by an individual in income

quartile q is equal to ηq.

Note that this method is different from models that assume each individual demands

a certain quantity of a good. For example, Berry et al. (1995) consider consumers

who purchase, at most, a single car. I consider a consumer who has a fixed budget for

restaurants and is deciding how to spend this money. This sort of model is used by

Holmes (2011) and Ellickson et al. (2016); in both papers, the authors observe revenues

but not prices and quantities.

Next, the consumer determines where to spend each dollar of their restaurant budget

by examining all stores and choosing the one that offers the greatest utility. As I will

detail later, my econometric model is based on matching predicted sales to observed sales.

To improve the tractability of the model, I use different utility specifications for chain
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stores (as defined in Section 1.2: Applebee’s, Buffalo Wild Wings, Chili’s, and T.G.I.

Friday’s) and non-chain stores.

Chain store utility

If store j is a chain store, the utility that individual i gets from spending dollar d at

store j at time t is

Uijtd = Ajtα + Fjtβ + γHjt +Dijτ + εijtd. (3.8)

I defineAjt as a vector of indicator variables, [AAPLCjt , AAPLFjt , AAPLNjt ABWW
jt , ACHIjt , ATGIjt ],

that identify chain affiliation and, in the case of an Applebee’s store, its original owner.

ABWW
jt = 1 if store j is a Buffalo Wild Wings and ABWW

jt = 0 otherwise. ACHIjt

(Chili’s) and ATGIjt (T.G.I. Friday’s) are defined similarly. I divide Applebee’s stores

into three groups, depending on their original ownership. AAPLCjt = 1 if store j is an

Applebee’s that was company-owned when it first opened. AAPLFjt = 1 if store j is

an Applebee’s that was franchised when it first opened and store j was opened prior

to 2007. AAPLNjt = 1 if store j is an Applebee’s that opened in 2007 or later. Thus,

α = [αAPLCjt , αAPLFjt , αAPLNjt , αBWW
jt , αCHIjt , αTGIjt ] is a vector of parameters represent-

ing the utility intercept for each store type.

In order to identify the effect of franchising on store performance, Fjt is defined as

an indicator variable where Fjt = 1 if store j is an Applebee’s store that was originally

company-owned and t is a time period after 2007. Thus, for stores that change ownership,

Fjt = 1 if the store is franchised at time t. Note that for Applebee’s stores that are

always franchised, Fjt equals zero for all values of t. This means that αAPLF and αAPLN

account for any benefits due to franchisee ownership of these stores; because these stores

never experience an ownership change, the effect of franchising cannot be specifically

identified. The additional utility that a consumer receives from shopping at a franchised

store, relative to the utility received if the same store were company-owned, is equal to

β. In other words, if a store switches from company-owned to franchised, consumers will
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get additional utility in the amount of β for each dollar spent at that store.

As discussed earlier, existing literature suggests two main avenues by which franchis-

ing can provide additional utility to consumers and thereby increase demand. The first

is moral hazard. Because a franchisee has higher-powered incentives than a manager,

she may be more motivated than a manager to maximize store performance. For exam-

ple, a franchisee may be willing to spend more time reviewing resumes and interviewing

candidates in order to ensure that all employees are friendly and professional. Better

employees will translate into a better customer experience. The second is local expertise.

A franchisee may have a better sense of local tastes and therefore be better able to cus-

tomize their store to fit the market. For example, an Applebee’s franchisee may adjust

restaurant decor or implement new menu items to appeal to the local market.32

It is also possible that IHOP implemented company-wide policies that affected the

revenues of all Applebee’s stores. To account for this, I define Hjt as an indicator variable

equal to 1 if store j is an Applebee’s and t is a time period after 2008.33 Thus, γ is a

parameter that represents the effect that IHOP’s corporate ownership has on the revenue

of all Applebee’s stores.

To account for travel costs, Dij equals the distance from an individual in zip code i

to store j in miles. The disutility of travel is represented by τ , a parameter that I expect

to be negative. Thus, a consumer will get less utility from a store located far from her

home. As a result, stores located in highly populated areas will get more customers, all

else equal. Finally, εijtd is a random error term that follows the extreme value distribution

for a nested logit; the nesting structure is described below.

32These examples are not purely hypothetical. As discussed in footnote 11, Applebee’s allows for the
possibility of a franchisee introducing new menu items. Applebee’s stores are also often decorated with
local sports memorabilia.

33I use 2008 rather than 2007 as a cutoff here to ensure that there is a sufficient amount of time for
IHOP to have implemented new policies.
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Non-chain store utility

Non-chain stores are aggregated by zip code. Specifically, I assume that all non-chain

stores within a zip code are grouped together at the centroid of the zip code as one

“outside option,” and that the only revenue observed is the total revenue of all stores.

This could be compared to a food court at a mall where sales at all of the restaurants in

the food court are combined. There is an outside option for each zip code that contains

a non-chain store.

Utility for outside option j is:

Uijtd = Qitφ+ ρ logNj +Dijτ + εijtd.

The income quartile indicator Qit is included to allow for the utility of non-chain stores,

relative to that of chain stores, to differ by income. Individuals’ utility from the outside

option is therefore given by the parameter φ = [φ1, φ2, φ3, φ4]. If, relative to chain stores,

consumers in the fourth income quartile like non-chain stores more than consumers in

the first income quartile, then φ4 will be greater than φ1. Nj is the number of non-chain

stores included in j (i.e. the number of non-chain stores in zip code j). The ρ logNj

term is included because I expect consumers to prefer zip codes with more stores. I

have two reasons for this prediction. First, a zip code with more stores is more likely to

have a store that is located near the consumer’s house. Second, a zip code with more

stores is more likely to have the type of food that the consumer is looking for. Thus, ρ

is expected to be positive. I also expect that this benefit diminishes as the number of

stores increases. This is because, once there are a large number of stores, it is less likely

that an additional store will be more preferred, in terms of geography or food type, than

the existing options. The log operator is used to account for these diminishing returns.
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Nesting

To account for the possibility that consumers’ tastes for Applebee’s are correlated

with their tastes for other chain restaurants, I use a nested logit model with two nests:

one nest contains chain restaurants and the other nest contains outside options. λ ∈ (0, 1)

is a measure of correlation. If λ = 1, there is no correlation among taste shocks and the

model simplifies to a standard multinomial logit. If λ = 0, taste shocks within a nest are

perfectly correlated.34 I define JCt as the collection of all chain stores at time t and JOt
as the collection of all outside options at time t.

Store revenues

I define Ūijt as follows: Ūijt = Uijtd−εijtd. For a given chain store, the only differences

in Ūijt among consumers are due to different travel distances and, in the case of Apple-

bee’s, whether the store was originally franchised. The share of an individual’s budget

spent at a store is equal to the probability of the individual choosing to spend a given

dollar at that store; probabilities follow the standard formulas for the nested logit model.

If store j is a chain store, the total share of consumer i’s budget spent at store j at time

t is

pijt =
eŪijt/λ

(∑
k∈JC

t
eŪijt/λ

)λ−1

 ∑
k∈JC

t

eŪijt/λ

λ +
 ∑
k∈JO

t

eŪijt/λ

λ
. (3.9)

If j represents one of the outside options, the total share of consumer i’s budget spent

at outside option j at time t is

pijt =
eŪijt/λ

(∑
k∈JO

t
eŪijt/λ

)λ−1

 ∑
k∈JC

t

eŪijt/λ

λ +
 ∑
k∈JO

t

eŪijt/λ

λ
.

34A more thorough discussion of the nested logit can be found in Davidson and MacKinnon (2004).
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While each consumer has each store in their choice set, the disutility of travel should lead

to stores far from an individual’s home being chosen with a low probability.35

Individual purchase shares can be aggregated to find store revenues. Consumer i

spends a total of

Rijt = pijtbit (3.10)

at store j at time t. Total revenue for store j is

Rjt =
∑
i∈Zt

nitRijt, (3.11)

where Zt represents the set of all zip codes at time t.

I do not observe prices and quantities and therefore do not attempt to estimate

demand. However, as discussed in Jin and Leslie (2003), an increase in revenues can be

attributed to an upward shift of the demand curve.36 In my model, for a given location at

a given time, any changes in store revenues are due to changes in Ūijt. Thus, controlling

for changes in population and budgets, if a store earns more revenue, it must be because

the utility it provides consumers increased. If store j changes from being company-owned

to franchised, Fjt will change from 0 to 1 and, if β is positive, Ūijt will increase for all

consumers. The magnitude of β will determine the size of the increase in Ūijt and the

subsequent increase in Rjt. Therefore, estimating the effect of franchising on revenues is

analogous to estimating β.

35I also estimated specifications in which choice sets were limited to locations within 75 miles of the
consumer. Results are similar to those presented in this paper.

36This is true even if I allow for the possibility that a franchisee can reduce marginal costs. If the cost
reduction is accompanied by a price reduction, then an increase in revenues may be due to a decrease in
prices. However, because my model is concerned with utility per dollar spent, a reduction in price has
the same effect on Ūijt as an increase in quality.
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3.2 Econometric Analysis

I now explain how I adapt the model from Section 3.1 for estimation, using the sale of

Applebee’s to IHOP and subsequent franchising of all company-owned Applebee’s stores

to identify the effect of franchising on store-level alcohol revenues.

There are 671,426 revenue observations in my data set, where an observation is the

alcohol revenue of a single store in a single quarter. However, as discussed earlier, I

aggregate non-chain stores into aggregate stores. This reduces the number of observations

to 81,138. My econometric model is based on using nonlinear least squares to minimize

the difference between predicted revenue and observed revenue for these observations.

I now finalize a list of parameters to estimate and detail my estimation method. As

described in Section 3.1, I aggregate individual expenditures to find store revenues. I

define θ = (α, β, γ, τ, φ, ρ, λ) as the set of parameters that determine how individuals

allocate their budget across stores. Because I do not observe when in 2008 the ownership

changes occur, I separate F and β into two components, one for 2008 and one for all

subsequent years: β08 is an estimate of the franchise effect in 2008 and β09 is an estimate

of the franchise effect in 2009 and later. I consider β09 to be a more accurate estimate of

the franchise effect, because all stores are definitely franchised starting in 2009. F 08
jt and

F 09
jt are defined similarly. The share of income spent on on-premises alcohol consumption

is represented by the vector η, which is a parameter to be estimated. Θ = (θ, η) is the

full set of parameters. In logit demand models, utilities are relative, so a normalization

is needed. I set φ1 = 0, meaning that a consumer in the lowest income quartile eating at

an outside option that contains a single store without having to travel receives a utility

of zero. Expressions for budgets, utilities and expenditure shares can now be expressed

as functions of parameters, i.e. bit(θ), Ūijt(θ), and pijt(θ).

Consumers in zip code i spend a total of

Rijt(Θ) = pijt(θ)bit(η)nit
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at store j at time t. Total predicted revenue for store j at time t is

Rjt(Θ) =
∑
i∈Zt

Rijt(Θ).

I attribute all differences between predicted revenue, Rjt(Θ), and observed revenue, RO
jt,

to measurement error. I model this measurement error as a mean-zero random multi-

plicative shock, ujt, that affects each store and is independent across stores and time

periods:

RO
jt = eujtRjt(Θ).

Nonlinear least squares estimation produces the estimator

Θ̂ = argmin
Θ

T∑
t=1

∑
j∈Jt

(
log(RO

jt )− log (Rjt(Θ))
)2
,

where Jt is the union of JCt and JAt . This estimator is consistent and asymptotically

normal. Standard errors are computed by the appropriate transformation of the Hessian

matrix.37

3.3 Results

Results for this model are presented as Specification (1) in Table 3.1. I next add a

linear time trend to the model in an attempt to separate gradual changes in store revenues

from abrupt changes caused by the IHOP sale. This accounts for the possibility that,

overall, Applebee’s was becoming more or less popular over time. For example, it may be

that its brand reputation was improving or that American diners were developing a taste

for Applebee’s fare. These results are shown as Specification (2) in Table 3.1. There is

a positive and statistically significant upward trend. Because this trend is statistically

significant and significantly improves the fit of my model, I consider its results to be the

most reliable and discuss them in this section.

37See Wooldridge (2010) for a full explanation of the nonlinear least squares estimator.
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The most important result is that the franchise effect (β09) is positive and statisti-

cally significant, with a coefficient of 0.051 and p < 0.01. This means that consumers get

additional utility equal to 0.051 when visiting a franchised Applebee’s compared with

a company-owned Applebee’s. The coefficient itself does not provide an intuitive de-

scription of the value of franchising. However, it can be compared with other estimated

coefficients to draw meaningful interpretations of the additional utility consumers receive

from a franchised store. I next use the estimated values of travel cost (τ) and value of

each outside-option store (ρ) to perform such comparisons.

As expected, travel cost is negative, with a coefficient of -0.018 and p < 0.01. By

dividing β09 by τ , I find that a consumer would be indifferent between a franchised

Applebee’s and an otherwise identical company-owned Applebee’s that is located 2.8

miles closer to her home. The estimate of ρ is positive, indicating that consumers prefer

outside options that contain more restaurants. The coefficient is equal to 0.893 with

p < 0.01. The increase in utility from shopping at an Applebee’s store that becomes

franchised is equivalent to the utility increase that occurs when the number of stores in

an outside option increases from 14 (the average number of stores in an outside option)

to 14.8. Utility calculations for all specifications are shown in Table 3.2.

I find that the sale to IHOP had a positive impact on revenues for Applebee’s stores

of all ownership structures. As mentioned in Section 2.1, this may be due to new chain-

wide policies such as new menu items. The additional utility enjoyed by patrons of an

Applebee’s store due to IHOP’s ownership is equivalent to the utility gain from an 3.1

mile decrease in travel distance to that store.

The 2008 effect of franchising is negative but not significant. There are two likely

explanations for this result. The first is that, as discussed earlier, it is possible that stores

that changed ownership were company-owned during some part of 2008 and therefore any

franchise effect would be diminished. The second is that, because there are relatively few

observations where F 08
jt = 1, it is difficult to separate causality from random noise.
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Budget coefficients are displayed as dollars spent each a quarter per $10,000 in annual

income. Individuals in the second income quartile spend the greatest percentage of their

income and individuals in the highest income quartile the least. Preference for chain

restaurants relative to other stores decreases as income quartile increases. The nesting

coefficient is 0.68 with p < 0.01, indicating that preferences for Applebee’s stores are

correlated with those for other chain stores.

I turn next to α, the vector of utility intercepts. Each component of α can be thought

of as an approximation of each store type’s unobserved utility determinants. For example,

Buffalo Wild Wings stores tend to have higher alcohol revenues than other chains. One

possible explanation for this is that Buffalo Wild Wings stores are located in areas with

higher populations or less competition. An alternative explanation is that, all else being

equal, Buffalo Wild Wings stores generate more revenues than other chain stores due to

factors that are unobservable to the researcher. For example, it may be that, because

Buffalo Wild Wings markets itself as a sports bar, it tends to draw customers who will stay

longer and buy more alcohol. These unobservable factors determine αBWW . I find that

αBWW is greater than the other components of α, indicating that there are unobserved

factors leading to Buffalo Wild Wings stores having greater revenues.

I am most interested in αAPLC , αAPLF , and αAPLN . While αAPLF and αAPLN also

reflect any increase in utility due to franchisee ownership, αAPLC does not. The post-2008

utility intercept for an Applebee’s store that changes ownership is given by αAPLC +β09.

This reflects both the original intercept as well as the additional utility provided by

franchising. I next compare αAPLF , αAPLN , and αAPLC +β09; these intercepts all include

the benefits from franchising, so remaining differences indicate differences in utility due

to unobserved location quality. I find that αAPLC + β09 > αAPLF , meaning that stores

that were initially company-owned tended to be located in better locations than those

that were initially franchised, because Applebee’s chose to own the stores with the best

unobservables, which supports my earlier hypothesis and corroborates the findings from
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the reduced form regressions. I also find that αAPLN is between αAPLC +β09 and αAPLF .

This is likely because, after the sale to IHOP, there was no longer any ownership selection,

so αAPLN includes both the good and bad locations.

While this method estimates the effect of franchising on stores that change ownership,

this may be a lower bound on the average effect of franchising on all Applebee’s stores

(not just those that were initially company-owned). In addition to choosing to own the

best locations, Applebee’s may have also chosen to own the locations where franchising

would have provided the smallest benefit. For example, suppose that there is a possible

location that is next door to Applebee’s corporate headquarters. Applebee’s may believe

that, because the store is so close, they will avoid the monitoring difficulties and local

inexpertise that typically plague company-owned stores.38 If this is the case, they may

find that the benefits of franchising are negligible and instead decide to own the store. On

the other hand, the stores that would see the biggest benefit from franchising are most

likely to be initially franchised; these stores do not experience an ownership change and

are not used to estimate the franchise effect. One way to investigate this further would

be to find an instance where an exogenous event caused franchised stores to become

company-owned.

Additional time trends

Next, I combine the time trend described above with a linear time trend that applies

only to Applebee’s stores that were initially company-owned. This accounts for the pos-

sibility that the stores that were initially company-owned were improving throughout my

sample, and that this improvement was greater than the overall improvement occurring in

Applebee’s stores. When I include this trend, the estimated effect of franchising becomes

much smaller and statistically insignificant. However, the trend itself is not statistically

significant, and the addition of the trend adds very little to the predictive power of the

38Kalnins and Lafontaine (2013) provide evidence that increasing the distance from a store to its
corporate headquarters decreases store performance.
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model. (The sum of squared residuals decreases by 0.0006 percent)

One possibility for the positive trend of company-owned stores is that these stores

were located in areas where preferences for Applebee’s were increasing over time. For

example, there were five stores in Austin at the time of the sale to IHOP, all of them

company-owned. There may have been an unobserved demographic change occurring

in Austin during my sample period, where people who like Applebee’s were moving

into the city and those who dislike Applebee’s were moving out. To account for this

possibility, I combine the linear time trend for all Applebee’s used in Specification (2)

with an additional time trend. This time trend applies to both Applebee’s stores that

were company-owned and other chain stores that are located within 15 miles of those

Applebee’s stores. I assume that, if tastes for Applebee’s are increasing, tastes for other

chain stores are increasing as well. (Continuing the earlier example, if the new residents of

Austin have a taste for Applebee’s, it seems likely that they would have similar feelings

for Chili’s.) I also include an additional intercept term to distinguish any trend from

the possibility that these stores were in locations with better unobservables. Results are

shown as Specification (4) in Table 3.1. This new intercept is positive, with a coefficient of

0.126 and p<0.01. The new trend is negative with p<0.01 but very small in magnitude,

with a coefficient of -0.0027. Overall, because the intercept is much larger than the

trend, the overall effect is positive for all time periods in my sample. This indicates that

company-owned Applebee’s were located in areas where preferences for chain restaurants

were especially high. The franchise effect is positive, with a coefficient of 0.09 and p <

0.01.

Adaptation

I next adjust the model to allow for non-Applebee’s chain stores that were located

near an Applebee’s store that changed ownership to adapt to the Applebee’s ownership

change. For example, it may be that a nearby Chili’s store was able to copy customiza-

tions made by the new Applebee’s franchisee or that it faced competitive pressure to
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improve its offerings. I also include an additional intercept term for these stores. This

intercept term is added to the store’s value of α and distinguishes an adaptation following

the IHOP sale from the possibility that these stores were in locations with better unob-

servables. I find that the coefficient on this intercept term is positive but not statistically

significant. Perhaps surprisingly, the adaptation coefficient is actually negative, indicat-

ing that chain stores responded to the Applebee’s franchising by getting worse. One

possible explanation for this is that the new Applebee’s franchisees hired away the best

employees of these competing stores. Alternatively, it may be that the new franchisees

were especially effective at targeting customers of the other chain stores, perhaps by

copying the menu items or marketing strategies of these stores. If the additional revenue

earned by Applebee’s stores that changed franchise status came disproportionately from

consumers switching away other chain stores, this could result in a negative adaptation

coefficient. Complete results are shown as Specification (5) in Table 3.1.

3.4 Simulations

To estimate the magnitude of the franchise effect, I simulate a scenario in which the

franchise effect (β09) equals zero. This allows me to compare predicted revenue to what

store revenues would have been if there were no positive impact from franchising or if the

stores had not changed ownership. In this section, I discuss results from Specification

(2). Results for other specifications are shown in Table 3.2.39

I find that franchising increases average store revenue by 7.4 percent. In 2013, average

39For Specification 5, because the nearby chain stores get worse following the ownership change, they
lose revenues to both Applebee’s stores and aggregate stores. As a result, their net revenue loss is greater
than the increase in revenue experienced by the Applebee’s stores that become franchised. Similarly,
while aggregate stores lose some revenue to the Applebee’s stores that change ownership, they gain a
substantial amount of revenue at the expense of the non-chain stores that get worse. Overall, aggregate
stores see their revenue increase following the Applebee’s ownership change. This explains the unusual
values for the “Share” rows for this specification in Table 3.2. This odd result, where an Applebee’s
ownership change results in a net revenue gain for aggregate stores, is a consequence of the nested logit;
any time an alternative gets worse, it loses consumers to every other store. Because aggregate stores
earn much more revenue than Applebee’s stores, it is unsurprising that a majority of the revenue lost
by chain stores goes to aggregate stores. An alternative model could allow the nesting parameter to
change; this would be a better way to model the theory that the new franchisees are especially effective
at targeting chain restaurant customers.
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annual alcohol revenues were $479,000 per Applebee’s store, meaning that franchising

brought in an additional $35,000 in alcohol sales per store. Because there is no outside

or composite good in this model and budget formation is independent of restaurant

options, all additional revenue due to franchising comes from individuals switching away

from other restaurants. Specifically, 30.3 percent percent of this additional revenue comes

from individuals switching away from non-Applebee’s chain stores, and 68.4 percent of

the revenue comes from individuals switching away from non-chain stores. An additional

1.3 percent comes from individuals switching away from another Applebee’s store. I also

examine the variation in the franchise effect between stores. While each store receives

the same increase to its utility intercept, differences in competitive landscapes will result

in stores having heterogeneous responses to the increase. I find that there is relatively

little variance in the magnitude of the franchise effect among stores; for the first quarter

of 2013, the median store revenue increase due to franchising was 7.3 percent, and half

of all stores saw an increase between 7.29 percent and 7.38 percent.

To estimate the impact of the IHOP sale, I simulate a counterfactual in which the

effect of IHOP’s ownership on store revenues, γ, is equal to zero. Note that, in this

counterfactual, I do not set β09 to zero; I am isolating the impact that IHOP’s ownership

had on all stores from the benefits from franchising experienced by stores that change

ownership. I find that IHOP’s ownership increased statewide Applebee’s revenues by

7.8 percent. I call this the “IHOP effect” in Table 3.2. Adding this IHOP effect to

the estimated franchising effect of 7.4 percent, I find that the total revenue increase

experienced by Applebee’s stores that changed ownership is approximately 15 percent.

Store Differences

In the above model, predicted Applebee’s store revenues are determined by three

factors: observables, unobservables, and ownership. Observables are all determinants of

store revenue which are observed by the econometrician; in this case, that includes the

location and type (chain or non-chain) of all competing stores and the locations and
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incomes of all consumers. Unobservables include everything that affects the potential

revenue of a location and is not observed by the econometrician. For example, if a store’s

parking lot is hard to access because it requires making a left turn at a busy intersection,

that could negatively affect store revenues. Finally, as found above, a store’s ownership

significantly affects its performance. In this section I decompose the revenue for each

Applebee’s store into these three components. This allows me to determine, for example,

whether stores that were initially company-owned have better unobservables than those

that were initially franchised.40

To gain a better understanding of how both observable and unobservable determi-

nants of location quality affect store performance, I conduct three counterfactuals, using

Specification (2) of Table 3.1 as my baseline. I first simulate a situation in which Ap-

plebee’s stores differ only in observables and no store benefits from franchising. Next, I

allow stores to have differences in unobservables but continue to not allow any store to

benefit from franchising. Finally, I simulate the full estimated model, which allows for

both unobservable differences and benefits from franchising. In order to conduct these

three counterfactuals, I make one modification to the model. As discussed in Section 3.3,

differences between αAPLF , αAPLN , and αAPLC + β09 reflect differences in utility due to

unobserved location quality. I subtract β09from each of these values when defining utility

intercepts so that the intercept reflects a scenario in which stores receive no benefit from

franchising.41

For the first counterfactual, in order to isolate the effect of observables, I give each

Applebee’s store a utility intercept of αAPLN and set β08 and β09 equal to zero. Thus,

all differences in simulated revenues are due to differences in store location. For the sec-

ond counterfactual, I assign each Applebee’s type its estimated utility intercept (αAPLC ,

40This comparison is analogous to the logit regressions described in Section 2.1 that used post-
franchising revenue as an explanatory variable.

41This requires the assumption that all stores receive the same benefit, equal to β09, from franchising.
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αAPLF , or αAPLN) but, as before, set β08 and β09 equal to zero. This allows for stores

with different ownership histories to have differences in unobservable location quality.

For the final counterfactual, I make no adjustments to the estimated parameters. Me-

dian and average store revenues for the three counterfactuals for all stores open prior to

the IHOP sale are shown as Specifications (1), (2), and (3) in Table 3.3.

Comparing the median revenues of the different store types for the three counterfac-

tuals provides some interesting results. Looking at the first specification, the initially

franchised stores have a median simulated revenue that is 38% greater than the stores

that were initially company-owned. This means that the initially franchised stores are

in locations that have better observables; in the context of this model, it means they are

in locations with more people and fewer competitors. Turning now to Specification (2),

I find that allowing each store to have its originally estimated utility intercept (αAPLF

or αAPLC) has substantially different effects on the two store types. Relative to the re-

sults of Specification (1), the median store revenue increases for initially company-owned

stores and decreases for initially franchised stores. This is expected, as αAPLN , the utility

intercept assigned to both ownership types in Specification (1), is greater than αAPLF

and less than αAPLC . Thus, by assigning each store its estimated utility intercept, origi-

nally franchised stores see their intercept decrease while originally company-owned stores

see their intercept increase. As a result of this, in absence of any franchise effect, the

simulated median store revenue for initially company-owned Applebee’s stores, is slightly

greater than the simulated median store revenue of initially franchised Applebee’s stores.

Finally, in Specification (3), stores are impacted by the franchise effect. As with the

previous specification, stores that were initially company-owned have higher predicted

sales than those that were initially franchised. From Specification (2) to Specification

(3), both store types saw an increase in revenues of about seven percent; unsurprisingly,

this is approximately the same franchise effect found in Specification (2) of Table 3.1,

the results of which are the coefficients used in this simulation analysis.
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To summarize, on average, the two store types have similar revenues. However, stores

that were initially franchised tend to be in locations that are observably better (e.g.

higher population and less competition, especially from competing chain restaurants),

while stores that were initially company-owned tend to be in locations that are unob-

servably better (e.g. located near people who are especially fond of chain restaurants).

Regarding the second observation, there are at least two possible reasons for this. The

first is discussed in Section 1.3: the franchisor chooses to own the best locations, includ-

ing those that are better in ways that are unobservable to the researcher. A second is

that it may be the case that, within a given market, the franchisor is better able to find

a high revenue location. This is, however, different from what would be predicted by

a theory of local expertise, since it seems likely that a local franchisee would be better

able to assess the profit potential of each possible location. One possibility is that the

franchisor has the resources necessary to commission a market research study or use data

analytics to assess location quality, while a franchisee will tend to rely on experience and

intuition. This is an area for further research.

3.5 Conclusion

In this paper, I used the sale of Applebee’s to IHOP and subsequent franchising of

all Applebee’s stores in the state of Texas to estimate the effect of franchising on store

revenues. I find that franchising increased store alcohol revenues by approximately seven

percent. This supports the hypotheses of many theoretical and empirical papers which

predict that, all else equal, franchised stores will outperform company-owned stores.

These results only account for increases in alcohol revenue. I am unable to determine

what effect franchising has on food revenues, or if some of this increase is caused by

Applebee’s customers switching from food consumption to alcohol consumption. I also

am unable to model how profits are affected.

The estimated franchise effect of seven percent is substantially different from the

franchise effect estimated in the reduced form models in Chapter 2, which ranged from 15
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percent to 19 percent depending on the demographic variables used. One possible cause

for this difference is the different ways that the models account for competing chain stores.

In the structural model, chain stores are separated out from other stores and tracked

individually. The nesting coefficient shows the importance of doing this, as preferences

for different chain restaurants are positively correlated. This means that revenues for a

given Applebee’s store are significantly affected by the entrance or exit of a nearby chain

store. The reduced form model does not differentiate between chain stores and non-

chain stores; the only way that the influence of competing stores is modeled is through

the Competition variable, which is simply a measure of total restaurant employment. In

future research, I plan to add a variable that accounts for the influence of competing

chain restaurants by identifying the number of competing chain restaurants located in

the same county as a given Applebee’s store.

The economics of franchising have recently been pushed into policy discussion. In

December 2014, the National Labor Relations Board issued a ruling that McDonald’s and

its franchisees are “joint employers” of McDonald’s employees who work at franchisee-

owned stores.42 Franchise trade groups generally opposed the decision, arguing that

the new laws would reduce the autonomy of franchisees and lead to fewer franchised

businesses. My research suggests that policies that lead to fewer franchised stores will

have a negative impact on store revenues and consumer utility.

42The National Labor Relations Board describes itself as “an independent federal agency that protects
the rights of private sector employees to join together, with or without a union, to improve their wages
and working conditions.”
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Table 3.1: Parameter Estimates

Param. Description (1) (2) (3) (4) (5)

β09 Franchise effect 0.065∗∗∗ 0.051∗∗ 0.011 0.09∗∗∗ 0.038

(0.026) (0.028) (0.064) (0.032) (0.044)

γ IHOP sale 0.187∗∗∗ 0.055∗∗ 0.076∗∗ 0.033 0.058

(0.022) (0.030) (0.040) (0.038) (0.052)

β08 2008 effect 0.040∗ -0.024 -0.033∗ -0.018 -0.022

(0.032) (0.025) (0.025) (0.038) (0.051)

τ Travel cost -0.018∗∗∗ -0.018∗∗∗ -0.018∗∗∗ -0.019∗∗∗ -0.019∗∗∗

(0.001) (0.001) (0.001) (0.001) (0.005)

ρ Per-store utility 0.898∗∗∗ 0.893∗∗∗ 0.894∗∗∗ 0.916∗∗∗ 0.905∗∗∗

(0.034) (0.030) (0.023) (0.041) (0.034)

λ Nesting parameter 0.682∗∗∗ 0.678∗∗∗ 0.679∗∗∗ 0.695∗∗∗ 0.687∗∗∗

(0.026) (0.023) (0.018) (0.031) (0.016)

η1 Budget 1 10.182∗∗∗ 10.181∗∗∗ 10.181∗∗∗ 10.188∗∗∗ 10.186∗∗∗

(0.105) (0.113) (0.109) (0.121) (0.129)

η2 Budget 2 14.467∗∗∗ 14.470∗∗∗ 14.470∗∗∗ 14.454∗∗∗ 14.459∗∗∗

(0.161) (0.158) (0.156) (0.163) (0.237)

η3 Budget 3 8.251∗∗∗ 8.252∗∗∗ 8.252∗∗∗ 8.257∗∗∗ 8.256∗∗∗

(0.124) (0.129) (0.128) (0.111) (0.217)

η4 Budget 4 7.274∗∗∗ 7.275∗∗∗ 7.274∗∗∗ 7.274∗∗∗ 7.274∗∗∗

(0.088) (0.089) (0.091) (0.095) (0.124)

φ2 Outside 2 0.666∗∗∗ 0.664∗∗∗ 0.664∗∗∗ 0.644∗∗∗ 0.649∗∗∗

(0.032) (0.032) (0.034) (0.036) (0.047)

φ3 Outside 3 0.733∗∗∗ 0.736∗∗∗ 0.736∗∗∗ 0.782∗∗∗ 0.785∗∗∗

(0.040) (0.039) (0.038) (0.044) (0.084)

φ4 Outside 4 1.038∗∗∗ 1.041∗∗∗ 1.041∗∗∗ 1.057∗∗∗ 1.064∗∗∗

(0.036) (0.037) (0.037) (0.04) (0.045)

αAP LC APLC intercept 0.463∗∗∗ 0.274∗∗∗ 0.253∗∗∗ 0.407∗∗∗ 0.342∗∗

(0.104) (0.092) (0.077) (0.130) (0.168)

Continued . . .
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Table 3.1: (continued)

Param. Description (1) (2) (3) (4) (5)

αAP LF APLF intercept 0.281∗∗∗ 0.080 0.111∗ 0.113 0.121∗

(0.096) (0.089) (0.077) (0.115) (0.090)

αAP LN APLN intercept 0.346∗∗∗ 0.125∗ 0.160∗∗ 0.166∗ 0.179∗∗∗

(0.107) (0.096) (0.089) (0.123) (0.063)

αBW W BWW intercept 1.071∗∗∗ 1.054∗∗∗ 1.056∗∗∗ 1.132∗∗∗ 1.093∗∗∗

(0.124) (0.109) (0.082) (0.151) (0.146)

αCHI CHI intercept 0.584∗∗∗ 0.568∗∗∗ 0.570∗∗∗ 0.633∗∗∗ 0.601∗∗∗

(0.106) (0.093) (0.071) (0.129) (0.062)

αT GI TGI intercept 0.640∗∗∗ 0.624∗∗∗ 0.626∗∗∗ 0.692∗∗∗ 0.658 ∗∗∗

(0.108) (0.096) (0.072) (0.132) (0.137)

APL trend 0.007∗∗∗ 0.006∗∗∗ 0.008∗∗∗ 0.007∗∗

(0.001) (0.002) (0.001) (0.004)

COS trend 0.002

(0.003)

COS and market trend -0.0027∗∗∗

(0.0007)

COS market trend intercept 0.126∗∗∗

(0.032)

Nearby adapt -0.064∗∗

(0.032)

Nearby adapt intercept -0.053

(0.058)

SSR 32,136.83 32,128.69 32,128.51 32,120.43 32,119.00

Notes: Travel cost is expressed as the utility cost per mile travelled. Budget reflects dollars
spent per $10,000 in annual income. "Outside" represents utility from aggregate stores. Budget
and outside utility vary by income quartile. BWW, CHI, and TGI represent Buffalo Wild Wings,
Chili’s, and T.G.I. Fridays, respectively. APLC represents an Applebee’s that was company-owned
when it first opened. APLF respresents an Applebee’s that was initially franchised and was opened
prior to the IHOP sale. APLN represents an Applebee’s that was opened after the sale to IHOP.
Trends are linear time trends. Robust standard errors are in parentheses. *** p<0.01, ** p<0.05,
* p<0.1
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Table 3.2: Impact of Franchising - Utility Comparisons and Simulation Results

Empirical Specification (1) (2) (3) (4) (5)

Equivalent distance reduction 3.6 2.8 0.6 2.1 2.0

Equivalent outside store increase 1.1 0.8 0.2 1.3 0.6

Franchise effect 9.4% 7.4% 1.5% 13.0% 6.6%

Share from outside. 68.7% 68.4% 68.6% 70.0% -167.1%

Share from chain 30.0% 30.3% 30.2% 28.9% 269.9%

Share from APL 1.3% 1.3% 1.3% 1.2% 2.8%

IHOP effect 29.3% 7.8% 11.0% 4.6% 8.2%

Notes: "Equivalent distance reduction" reflects the reduction in distance to a company-
owned Applebee’s store that would produce a utility gain equal to the utility gain caused
by franchising that store. "Equivalent outside store increase" reflects the increase in the
number of stores in an outside option with the mean number of stores (14) that would
produce a utility gain equal to the utility gain caused by a company-owned Applebee’s
store being franchised. "Franchise effect" indicates the percentage increase in revenue due
to franchising. "Shares" are equal to the loss in revenue for that store type divided by the
gain in revenue for Applebee’s stores that become franchised; "chain", "outside", and "APL"
indicate non-Applebee’s chain stores, outside options, and Applebee’s stores, respectively.
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Table 3.3: Simulation Summary Statistics for Q1 2013

(1) (2) (3)

Variation Among Stores

Differences in Observables Yes Yes Yes

Differences in Unobservables No Yes Yes

Effect of Franchising No No Yes

Originally Franchised Stores

Average 119,681 104,592 112,096

Median 131,619 115,431 123,906

Originally Company Owned
Stores

Average 93,967 115,703 124,146

Median 95,313 117,720 126,261

Notes: Summary statistics are presented for simulated revenues for three different
scenarios. In Specification (1), there are no unobservable differences in location
quality and there is no franchise effect. In Specification (2), there are both
observable and unobservable differences in location quality, but there is no
franchise effect. Specification (3) is a simulation of the full estimated model; it
includes both observable and unobservable differences in location quality and a
franchise effect.
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APPENDIX A

ESTIMATION OF UNOBSERVABLES IN SELECTION MODEL

Here, I explain how I use post-2009 revenues to find the effect of unobservable deter-

minants of revenue on ownership selection. I write the logit model as

Pj = f(Xjα + γRj), (A.12)

where Pj is the probability that store j is franchised, Xj is a vector of observable variables

and Rj is store j’s average quarterly revenue for all periods after 2009; α and γ are

parameters to be estimated. I define f(t) as the standard binomial logistic function:

f(t) = 1/(1 + e−t). Revenue is determined as follows:

Rj = Xjβ + ξ.

By combining equations, (A.12) can be rewritten as

Pj = f(α̃Xj + γξ),

where α̃ = α + γβ. This shows that the estimated value of γ actually measures the

impact of unobservable determinants of utility on the franchising decision.
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APPENDIX B

DATA APPENDIX

Geocoding

According to the U.S. Census Bureau (USCB), zip codes are “not areal features

but a collection of mail delivery routes.” Because of this, the USCB created Zip Code

Tabulation Areas (ZCTAs), which are “generalized areal representations” of zip codes.

I use ZCTAs when geocoding zip code-level populations. I used multiple resources to

geocode ZCTAs. First, I used MABLE, an online database maintained by the Missouri

State Library. This database provides population-weighted centroids for every ZCTA in

the United States, with 2010 census data being used for population weighting. For data

prior to 2009, approximately 25 percent of zip codes (representing a share of population

of approximately 2 percent) did not find a match in MABLE. For these, I used a privately

maintained database at Boutell.com for matching. This database typically gives an area-

weighted centroid. A small number of zip codes (representing about 0.01 percent of the

population) were invalid. These were excluded from my analysis.

As mentioned earlier, per-capita income data is only available at the county level. To

find the county that each zip code is located in, I use MABLE. Several zip codes include

parts of multiple counties; MABLE lists the percentage of the zip code’s population

that resides in each county, as of the 2010 census. For these zip codes, I use whichever

county contains the largest percentage of that zip code’s population. For some zip codes,

representing about 1% of all person-quarter observations in my sample, I was unable

to assign a county to the zip code. For these locations, I assumed that the per-capita

income was equal to the per-capita income for the state of Texas that quarter. Per-capita

income data is calculated by the U.S. Bureau of Economic Analysis.

The Mixed Beverage Tax Receipts data contains addresses of each store, but not

latitude and longitude coordinates. I used multiple resources to convert addresses to
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coordinates. I first used ArcGIS software. For about 10% of restaurants, ArcGIS was

unable to determine the location of the establishment (this is most likely because the

address in the Texas alcohol sales file was incorrect). For these locations, I used the

web service SmartyStreets, which gets its geocoding data from the U.S. Postal Service.

One advantage of this website is that, for stores which it cannot find an exact match,

it generates coordinates that match the address as closely as possible. For example, if

the name of a street can be found in the SmartyStreets database but the street number

is invalid, then the coordinates generated will correspond to a location on the street. If

the street name is not valid, the coordinates generated will correspond to the centroid

of the location’s zip code. In order to increase the number of stores that could be

matched, I made some modifications to the address names. For example, I eliminate all

suite numbers from store addresses, because including a suite number often prevented

geocoding software from finding the street name. As mentioned in the paper, I was able

to identify the exact locations of all stores identified as “chain stores” in the structural

model.

In the structural model, non-chain stores are grouped at the zip code level. Because

stores included in a given zip code typically have different coordinates, it is necessary for

me to use an average store location in order to assign a single coordinate pair to each

zip code. Specifically, for each quarter, I compute the average latitude and longitudes

of the stores within each zip code and then average those averages across quarters. The

averaging across quarters is necessary because my estimation routine requires that zip

code locations remain constant over time.

All distances were calculated using latitude and longitude coordinates and an ellip-

soidal model of the earth.

Sample selection

I model quarterly alcohol sales. Mixed beverage tax data is available on a monthly

basis, so monthly sales are aggregated for each quarter. For the purposes of aggregation,

105



stores are considered to be the same only if they have identical names and addresses. I

believe this is a reasonable assumption because it appears that restaurants do not need

to re-enter their names addresses when filing their tax forms each month; store names,

even those with obvious typographical errors, typically do not change over time.

I excluded all observations that were the first or last quarter that a chain store was in

the data set, because they likely represent sales for only a part of the quarter. If any store

has less than $100 in sales during a quarter, that store’s quarter is omitted from the data.

The only restaurants specifically excluded were those in Dallas / Ft. Worth International

Airport. These stores often reported their taxes as a single, combined entity, meaning

that store-level sales could not be identified. One of these excluded stores was a T.G.I.

Friday’s.

Occasionally, the same store has multiple tax filings for the same month. When this

occurs, I add the tax revenues and use the sum to calculate the store’s total alcohol sales

for that month.

Population and income data are available on a yearly basis. I smooth annual changes

uniformly over the course of the year. Because annual per-capita income statistics are

not available at the zip-code level, I assign each zip code the per-capita income of its

county. If zip code include parts of multiple counties, whichever county contains the

highest population of residents living in the zip code is considered to be the county in

which that zip code is located.

In all logit models, I only include stores that have at least 4 quarters of data. For

logit models including post-2009 store-level revenue as an explanatory variable, only

stores that were observed for at least 3 quarters after 2009 are included.
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