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ABSTRACT 
 

JESSE W. DAVIS: Thermochronology and cooling histories of plutons: implications for 
incremental pluton assembly.  

(Under the direction of Drew S. Coleman) 
 

 
Zircon U-Pb geochronology results indicate that the John Muir Intrusive Suite of the 

central Sierra Nevada batholith, California, was assembled over a period of at least 9 m.y. 

between 96 and 87 Ma, and the nearby Mount Whitney Intrusive Suite was assembled over at 

least 7 m.y. between 90 and 83 Ma. Bulk mineral thermochronology (U-Pb titanite, 40Ar/39Ar 

hornblende and biotite) of rocks from both suites indicate rapid cooling through titanite and 

hornblende closure following intrusion and subsequent slow cooling through biotite closure. 

Thermochronologic data are consistent with thermal cycling between hornblende and biotite 

closure temperatures for millions of years following intrusion.  

Assembly of intrusive suites over millions of years favors growth by incremental 

intrusion. Estimated long-term pluton assembly rates for the John Muir and Mount Whitney 

intrusive suites are on the order of 0.002 km3·yr-1 which is inconsistent with the rapid magma 

fluxes that are necessary to form large-volume magma chambers capable of producing 

caldera-forming eruptions. If large shallow crustal magma chambers do not typically develop 

during assembly of large zoned intrusive suites, it is doubtful that the intrusive suites 

represent cumulates left behind following caldera-forming eruptions.  

K-feldspar multi-diffusion domain (MDD) thermal modeling for samples from the 

John Muir Intrusive Suite suggests that the central Sierra Nevada batholith underwent a 
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period of accelerated cooling in the Late Cretaceous. In combination with previously 

published low-temperature thermochronologic data, the new data are consistent with a rapid 

cooling event that commenced around 76 Ma in the Sierra Nevada and Peninsular Ranges 

batholiths. Rapid cooling is apparently coincident with high erosion and sedimentation rates 

documented throughout this portion of the Cordilleran orogen. These observations, and the 

possibility that the Sierra Nevada range reached high elevations during the Late Cretaceous, 

indicate that the western edge of North America was tectonically active after the cessation of 

arc magmatism. 
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1. INTRODUCTION 

Pluton Assembly Rates 

During the Mesozoic, the western boundary of North America was an active 

continental magmatic arc. The Sierra Nevada and Peninsular Ranges batholiths, that are 

dominant features of the Cordilleran of the western United States, were assembled during 

subduction of an oceanic plate beneath continental North America (Fig. 1). Today, the 

Cordilleran orogen is exposed as a magnificent mountain range comprising some of the 

highest topography in the contiguous United States.  

The processes by which plutons amalgamate into batholiths and are subsequently 

exposed are important to understanding continental crustal growth. Modern Cordilleran 

exposures are the result of dynamic processes that occurred at various crustal levels over 

hundreds of millions years. Fundamentally, pluton assembly and batholith development are 

tectonic issues because they are controlled by the ability of tectonic processes to produce 

magmas and the ability of the lithosphere to make space to accommodate these magmas. 

Although significant research has focused on the timescales and mechanisms by which 

batholiths grow, controversy remains. At the center of this controversy is understanding the 

rates that plutons are assembled, and the control that assembly rates have over the ability to 

sustain shallow crustal magma bodies with significant (>50%) proportions of liquid (Glazner 

et al. 2004; Lipman 2007). 

Caldera collapse and associated ignimbrite eruptions demonstrate that large-volume 

magma chambers can exist in the upper crust (Lipman 2007). This has led to the view that  
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Fig. 1 Tapestry map of western United States and northern Mexico modified from Barton et 
al. (2003). Black outlines in main figure show the locations of the Sierra Nevada and the 
northern Peninsular Ranges batholiths. 
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plutons represent the remains of large-volume magma chambers and are genetically linked to 

caldera-forming eruptions (Hildreth 2004; Bachmann et al. 2007). In contrast, recent studies 

indicate that some plutonic suites were emplaced incrementally through amalgamation of 

intrusions over millions of years, and that plutons need not form from the crystallization of 

large-volume magma chambers (Coleman et al. 2004; Glazner et al. 2004). Seismic data are 

consistent with this view because geophysical studies have failed to locate large volumes of 

melt beneath active volcanic regions (Iyer 1984; Waite and Moran 2009).  

Detailed geochronology and thermal modeling can be used to test these competing 

hypotheses. Magma fluxes during pluton assembly, in combination with the thermal history 

(T-t) of pluton assembly and subsequent cooling, can be compared to thermal models to 

evaluate whether large-volume magma chambers were present during pluton assembly. 

Research Objective I 

In order to investigate magma flux and T-t histories of zoned intrusive suites, 

crystallization ages and thermal histories (approximately 750-300°C) are determined for 

multiple plutons in the central Sierra Nevada batholith of California. The John Muir and 

Mount Whitney intrusive suites (hereafter referred to as the Muir suite and Whitney suite, 

respectively) are chosen as study areas because they provide excellent exposure and rock-

types that contain minerals useful for quantifying T-t histories (zircon, titanite, hornblende 

and biotite). Furthermore, the intrusive suites are thoroughly mapped (Moore 1963, 1978, 

1981; Bateman 1965; Bateman et al. 1964, 1965; Bateman and Moore 1965; Lockwood and 

Lydon 1975; du Bray and Moore 1985; Moore and Sisson 1985, 1987; Stone et al. 2000), and 

an existing U-Pb geochronological framework is established (Stern et al. 1981; Chen and 
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Moore 1982; Frost and Mattinson 1993; Coleman et al. 2004). The following methodologies 

are conducted to meet the study’s objectives: 

• Zircon U-Pb geochronology is combined with existing geologic mapping to 

determine long-term magma fluxes during the growth of the Muir and 

Whitney intrusive suites 

• U-Pb zircon geochronology is combined with U-Pb titanite dates and  

40Ar/39Ar thermochronology to evaluate the crystallization and T-t histories of 

the Muir and Whitney intrusive suites and their associated wall rocks 

• Thermal models are calibrated against documented T-t histories to evaluate 

pluton emplacement geometries and to evaluate the volume of melt present 

during pluton assembly 

Post-Magmatic History of the Sierra Nevada-Peninsular Ranges Arc 

Magmatism in the Sierran arc ended abruptly in the Cretaceous following assembly of 

the zoned intrusive suites that dominate the high topography between Yosemite National 

Park and Mount Whitney (Stern et al. 1981; Chen and Moore 1982). Several studies 

suggested that the Sierra Nevada and northern Peninsular Ranges batholiths had similar post-

magmatic T-t histories characterized by the onset of rapid cooling between approximately 

80-67 Ma (Dumitru 1990; House et al. 1997; Grove et al. 2003). Dumitru (1990) suggested 

that this cooling event was caused by a shallow subducting oceanic plate resulting in 

significant cooling of the crust from below. Others suggested that this cooling phase 

expresses denudation that may have occurred in response to the removal of the subbatholithic 

mantle and lower crust during shallow subduction (Grove et al. 2003). However, because 

some of the age data from these studies have significant uncertainty, the timing and 
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synchroneity of this cooling event in the two batholiths remains uncertain. Consequently, the 

tectonic significance of these cooling patterns remains to be investigated. 

The first step towards reconciling these issues is to better establish the timing of the 

cooling event in the Sierras. Once this is accomplished, data from other detailed studies can 

be combined, and the true nature and the tectonic significance of this Late Cretaceous 

cooling event can be investigated.  

Research Objective II 

In order to explore the regional tectonic significance of rapid post-magmatic cooling 

in the Sierra Nevada arc, I will better establish the timing of cooling by:  

• Utilizing K-feldspar MDD thermal modeling to evaluate the low-temperature 

T-t history of the John Muir Intrusive Suite (and by inference the central 

Sierra Nevada batholith). 

• Comparing K-feldspar MDD data from the central Sierra Nevada batholith to 

existing published T-t data to better determine the timing of a Late Cretaceous 

cooling event throughout the Sierra Nevada and Peninsular Ranges batholiths. 



 

 

 

2. GEOLOGIC SETTING 

The geology of east-central California is dominated by the Sierra Nevada batholith. 

The batholith formed in the Mesozoic during continental margin subduction beneath the 

North American plate (Fig. 2). The batholith includes over 40,000 km2 of exposed plutonic 

rocks and extends approximately 600 km along the western edge of the North American 

craton (Kistler 1990; Bateman 1992). The majority of the exposed Sierra Nevada batholith 

intruded at depths around 4-15 km (Ague and Brimhall 1988); however, the southern 100 km 

exposes a southward transition from volcanic rocks to exposures of batholithic rocks intruded 

at depths as great as 35 km (Pickett and Saleeby 1993). Batholithic rocks range in 

composition from gabbro to leucogranite, with tonalite, granodiorite, and granite being the 

most abundant (Bateman 1992). Most plutons were emplaced during three major magmatic 

episodes: 225-195 Ma, 180-165 Ma, and 102-85 Ma (Stern et al. 1981; Chen and Moore 

1982; Frost and Mattinson 1993; Saleeby et al. 1990, 2008; Coleman and Glazner 1998; 

Coleman et al. 2004).  

In the eastern Sierra Nevada, the latest magmatic episode is characterized by intrusion 

of closely related plutons with similar composition, texture, fabric, age, and emplacement 

depth that Bateman (1992) assigned to intrusive suites (Fig. 2). From north to south these 

include the Tuolumne, Muir, and Whitney suites. There is also an informally named suite 

north of the Tuolumne Intrusive Suite (the Sonora pluton [Kistler et al. 1986]) and a poorly 

defined and unnamed suite south of the Whitney suite. The geology of the Muir suite,  
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Fig. 2 Map of plutons in the eastern Sierra Nevada that are associated with the Cretaceous 
Sierra Crest magmatic event (Coleman and Glazner 1998). Plutonic units that are 
characterized by the intrusion of closely related plutons with similar composition, texture, 
fabric, age, and emplacement depth were assigned to intrusive suites (Bateman 1992). The 
Sonora Pass Intrusive Suite is an informally named suite (Kistler et al. 1986). Outcrop pattern 
after Bateman (1992) and Tikoff and Teyssier (1992). 
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originally called the John Muir sequence by Bateman and Dodge (1970), is mapped at a 

regional scale (Moore et al. 1963; Bateman et al. 1964, 1965; Bateman 1965, 1992; 

Lockwood and Lydon 1975; Frost and Mahood 1987) with local areas mapped in significant 

detail (Hathaway 2002; Mahan et al. 2003; Gracely 2006; Stearns and Bartley 2010). 

Following the original designation of the Muir suite, U-Pb zircon geochronology (Mahan et 

al. 2003; Gracely 2006) and field relationships (Mahan et al. 2003; Gracely 2006) suggest 

that the Inconsolable Quartz Monzodiorite and the McDoogle Quartz Monzodiorite be 

included in the Muir suite (Fig. 3). Originally, the Evolution Basin Alaskite was included 

with the Muir suite; however, portions of what were mapped as Evolution Basin Alaskite 

were recently reassigned to the Lamarck Granodiorite on the basis of field relations and 

geochronology (Gracely 2006). Also, preliminary zircon U-Pb geochronology from the 

western portion of the Evolution Basin Alaskite suggests a crystallization age of 

approximately 150 Ma (J. Wenner, unpublished data). Consequently, I do not include the 

alaskite in the Muir suite here. The Mt. Givens pluton is also excluded from discussion of the 

Muir suite because the pluton and Muir suite are separated by a large mass of Jurassic and 

older rocks. 

All of the plutons in the Muir suite have elongate map patterns (Fig. 3) However, 

plutons exposed in the northern portion of the suite (including the northern Lamarck 

Granodiorite, Lake Edison Granodiorite, Mono Creek Granite, and the Round Valley Peak 

Granodiorite) have ages, textures, and compositional variations that mimic those of 

concentrically zoned, nested intrusions, such as the Tuolumne and Mount Whitney intrusive 

suites (Bateman 1992; Hirt 2007). Geobarometry data suggest that the exposed surface of the  
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Fig. 3 Simplified geology of the John Muir Intrusive Suite after Bateman (1992). Figure 
shows sample nomenclature and locations. The Late Cretaceous Muir suite is exposed in 
Kings Canyon-Sequoia National Park, California. Darker shaded plutons are more mafic. 
Ages shown are from U-Pb zircon data reported in millions of years and errors are 2-sigma. 
Lamarck Granodiorite (92TF105, MG-8, MG-5) ages from Coleman et al. (1995). Lamarck 
Granodiorite (Db04-05, Db04-06, Db05-04, 32BRJ05) and Inconsolable Quartz 
Monzodiorite (Dbk05-01) ages from Gracely (2006). Round Valley Peak Granodiorite (Rvp-
2) age from Gaschnig (2005). Tinemaha Granodiorite (Jtn06-01, Jtn07-09, Jtn07-11) ages are 
estimated from Chen and Moore (1982). 
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Muir suite crystallized at depths between 8-12 km (Ague and Brimhall 1988). Within the 

Muir suite, a dextral shear zone extends along the northeast edge of the suite and crosses 

through the central region and continues along the southwest margin (Lockwood and Lydon 

1975; Tikoff and Teyssier 1992; Tobisch et al. 1995). 

The Whitney suite includes the granodiorite of Sugarloaf, granodiorite of Lone Pine 

Creek, Paradise Granodiorite, and Whitney Granodiorite (Fig. 4; Moore 1978, 1981; du Bray 

and Moore 1985; Moore and Sisson 1985, 1987; Stone et al. 2000). The Whitney suite is 

characterized by older, equigranular, relatively mafic marginal units that preserve internal 

contacts (Hirt 1989, 2007). These marginal units grade into younger, equigranular to 

porphyritic to megacrystic interior units (Hirt 1989, 2007). Geobarometry data suggest 

crystallization depths of approximately 4-13 km (Ague and Brimhall 1988; Hirt 1989, 2006). 

Two dextral fault/shear zones flank the Whitney suite: the Sierra Crest shear zone to the 

northeast, and the Kern Canyon fault to the southwest. 

Both the Muir and Whitney suites intruded Jurassic and early Cretaceous plutonic 

rocks ranging in composition from quartz diorite to granite (Moore 1981; Bateman 1992). 

Several of these wall rocks with appropriate mineral assemblages (i.e., titanite ± hornblende 

± biotite) were sampled to track their thermal histories during and after Cretaceous 

magmatism. From north to south, these include the quartz diorite of Pine Lake, the Tinemaha 

Granodiorite, the Bullfrog Granite, and unnamed mafic intrusive rocks at the northern end of 

the Whitney suite (Figs. 3 and 4).  

The Jurassic quartz diorite of Pine Lake crops out east of the northern Muir suite, is 

surrounded by Cretaceous intrusions, and was extensively intruded by dikes propagating 

from the Mono Creek Granite of the Muir suite (Frost and Mattinson 1988; Bateman 1992).  
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Fig. 4 Simplified geology of the Mount Whitney Intrusive Suite after Hirt (2007). The Late 
Cretaceous Muir suite is exposed in Kings Canyon-Sequoia National Park, California. Figure 
shows sample nomenclature and locations. Ages shown are from U-Pb zircon data reported 
in this study in millions of years and errors are 2-sigma. Darker shaded plutons are more 
mafic. 
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The Jurassic Tinemaha Granodiorite crops out east of the southern Muir suite and was 

intruded by numerous Cretaceous intrusions including the Muir suite’s Inconsolable Quartz 

Monzodiorite and the Lamarck Granodiorite (Bateman 1992). The Bullfrog Granite is the 

major wall rock unit flanking the northeastern margin of the Whitney suite. Small clusters 

(approximately 2 km2) of unnamed mafic plutonic rocks crop out along the Paradise 

Granodiorite contact and within the southern Bullfrog Granite (Moore 1981). Moore (1981) 

referred to these rocks simply as mafic plutonic rocks and assigned them a Triassic or 

Jurassic age.  

The extension of the Mesozoic arc from the Sierra Nevada batholith southward into 

northwestern Mexico is dominated by the Peninsular Ranges batholith (Fig. 1). As in the 

Sierra Nevada, batholithic rocks in the Peninsular Ranges are predominantly tonalitic to 

granitic in composition and preserve west-east variations of composition, host rock, and 

emplacement age (Ortega-Rivera 2003). Plutonism in the Peninsular Ranges batholith 

migrated from west to east with the western area being intruded between approximately 140-

105 Ma and the eastern area between approximately 105-80 Ma (Ortega-Rivera 2003 and 

references within). In general, emplacement depths in the Peninsular Ranges batholith are 

estimated to be somewhat deeper than the central Sierra Nevada batholith between 11-23 km 

(Ague and Brimhall 1988).  

The Sierra Nevada and Peninsular Ranges batholiths present ideal locations to 

explore pluton emplacement and the post-magmatic thermal history of the western margin of 

the Mesozoic US Cordillera. The zoned Cretaceous intrusive suites of the Sierra Nevada 

provide an opportunity to examine the magma flux rates and thermal histories of the large 

zoned suites that are conceptually linked to silicic ignimbrite eruptions (e.g., Hildreth 2004; 
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Lipman 2007). Together, the Cretaceous intrusions of the Sierra Nevada and Peninsular 

Ranges batholiths are key to understanding the regional tectonic evolution of the western US 

Cordilleran margin because the intrusive suites represent the end of magmatic activity in the 

Sierran arc. Consequently, their post-intrusive thermal histories provide the best opportunity 

for understanding the post-Cretaceous tectonic evolution of the region. Unlike earlier 

Cretaceous, Jurassic, and Triassic intrusive rocks, these terminal arc intrusive rocks should 

preserve thermal histories affected only by post-intrusion cooling and tectonic disturbance of 

the geothermal gradient. 



 

 
 

3. METHODS 

U-Pb Analyses 

Zircon and titanite separates were obtained by mechanical disaggregation (jaw 

crusher and disk mill), followed by water table, heavy liquids, and magnetic separator 

techniques. Zircon grains were thermally annealed and subjected to chemical abrasion to 

eliminate volumes affected by radiation damage and remove inclusions (Mundil et al. 2004; 

Mattinson 2005). Zircon and titanite fractions were spiked using 205Pb-236U-233U solution 

(Parrish and Krogh 1987), and dissolved following a procedure modified after Krogh (1973) 

and Parrish (1987). Uranium and Pb were isolated using HCl (zircon) and two stage HBr-

HCl (titanite) anion exchange procedures modified after Krogh (1973). Isotope ratios of both 

U and Pb were determined by thermal ionization mass spectrometry (TIMS) on the VG 

Sector 54 mass spectrometer at the University of North Carolina at Chapel Hill. All data were 

collected using the Daly detector and peak hopping. Mass fractionation for U was corrected 

by measuring the 233U/236U ratio (a known constant for the spike), assuming linear 

fractionation. Isotope ratios for Pb were corrected assuming a linear fractionation of 

0.15%/amu. Details regarding corrections for blank and common Pb for zircon and titanite 

analyses are provided in Appendix 1. 

Titanite Common Pb Correction 

Titanite fractions have low ratios of radiogenic to common Pb; therefore, titanite 

dates, when compared to zircon ages, are less precise and more sensitive to the initial 
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common Pb correction. To help minimize uncertainty in this correction, the composition of 

the common Pb was determined from leached K-feldspar grains. K-feldspars were separated 

using the same procedures as for zircon and titanite. Milligram-sized fractions of hand-

picked K-feldspar grains were progressively leached following the methods of Schmitz 

(2010). All leachates were dried and redissolved in HBr for separation of Pb by HBr-HCl 

anion exchange chemistry. Separated Pb was analyzed by thermal ionization mass 

spectrometry (TIMS) on the VG Sector 54 mass spectrometer at the University of North 

Carolina at Chapel Hill in static multicollector mode using faraday detectors (Appendix 1). 

The least radiogenic leachate was used as the composition of the common Pb in order to 

calculate titanite dates (e.g., Schmitz and Bowring 2001).  

40Ar/ 39Ar Analyses 

Hornblende, biotite, and K-feldspar separates were obtained from the same samples 

that were used for U-Pb geochronology. Mineral separates were washed, weighed, loaded 

into Cu-foil, and placed into a machined aluminum disk for irradiation. Separates were 

analyzed by the incremental-heating method using a double-vacuum molybdenum resistance 

furnace. Isotope ratios were measured on a MAP-215 50 mass spectrometer at the New 

Mexico Geochronology Research Laboratory, New Mexico Institute of Technology.  

It is common in the Ar community to report apparent dates relative to the Fish 

Canyon sanidine interlaboratory flux monitor (FC-2; 28.02 Ma; Renne et al. 1998) and 

40Ktotal decay constant of 5.543e-10 yr-1 (Steiger and Jäger 1977). However, Renne et al. 

(2009) determined a different Fish Canyon sanidine age of 28.293 ± 0.046 Ma as well as 

different 40Kε
 and 40Kβ decay constants of 5.7926 ± 0.0066e-11 yr-1 and 4.9647 ± 0.0109e-10   
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yr-1, respectively. In this study, the preferred dates were those calculated using Renne et al. 

(2009). 

In composite hornblende grains, fine-grained mica inclusions or fluid infiltration can 

disturb Ar concentrations and result in complex K/Ca release patterns and anomalously 

young ages during low-temperature heating steps (Berger 1975; Sisson and Onstott 1986; 

Miller et al. 1991; Wartho 1995). Heating steps from hornblende separates displaying these 

complexities were excluded from plateau and isochron determinations, and only the 

intermediate and high-temperature heating steps with uniform K/Ca ratios (near 0.1) were 

used in plateaus and isochrons. Similarly, biotite samples that decrease in K/Ca ratio at the 

high temperature steps indicate degassing of mineral phases other than biotite (Lo and 

Onstott 1989), and were excluded from plateau and isochron determinations.  

To evaluate the impact of excess 40Ar on all the dates, plateau dates were compared to 

corresponding inverse isochron dates. Overlap of plateau and inverse isochron dates within 

2-sigma error indicates that any excess 40Ar has negligible effect on date determination (e.g., 

Singer and Pringle 1996). 

Thermochronology  

Bulk mineral thermochronology was used to determine high-temperature (>300°C) T-

t histories by correlating temperatures to ages/dates of coexisting mineral 

thermochronometers: zircon, titanite, hornblende, and biotite. Titanite, hornblende, and 

biotite dates indicate timing when samples passed through respective closure temperatures 

(Dodson 1973). Diffusion experiments were not conducted during this study. Consequently, 

estimated closure temperatures ranges of 700-660°C for titanite dates (Scott and St-Onge 
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1995), 580-490°C for hornblende dates (Harrison 1981), and 345-280˚C for biotite dates 

(Harrison et al. 1985) were used. 

K-Feldspar multi-diffusion domain (MDD) modeling 

K-feldspar age spectra were interpreted using multi-diffusion domain (MDD) 

modeling of thermal histories over the temperature range between approximately 350-150°C 

(Lovera et al. 1989, 1991, 1997, 2002). Thermal modeling was conducted at the New Mexico 

Geochronology Research Laboratory, New Mexico Tech, following the procedures outlined 

in Sanders et al. (2006).  

The T-t history experienced by a K-feldspar was modeled using the age spectrum data 

determined during step heating experiments (McDougall and Harrison 1999; but see Parson 

et al. 1999 for a cautionary view). The age spectrum is a measurement of the natural 

radiogenic 40Ar (40Ar*) concentration distribution within the sample, and the release of 39Ar 

with increasing temperature is a measure of the K-feldspar closure temperatures. Modeling 

assumes that the release of Ar was by thermally activated volume diffusion described by an 

Arrhenius equation. Age spectrum and Arrhenius plot characteristics were assumed to be 

controlled by the presence of multiple, discrete, diffusion domains within the K-feldspar 

crystal. Once the diffusion parameters (activation energy and diffusion coefficient) and 

domain distribution parameters (volume fraction and relative domain size) for a sample were 

determined, T-t histories were forward modeled to produce a model age spectrum using the 

algorithms of Lovera et al. (1989, 1991, 1997, 2002). A modeled T-t history results from 

minimizing the differences between the laboratory generated age spectrum and the modeled 

age spectrum (Quidelleur et al. 1997).  
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The MDD algorithm cannot account for excess Ar contamination; however, K-

feldspar Ar release spectra commonly show the effects of degassing fluid inclusions at low 

temperature steps (Harrison et al. 2005). Heating steps that record anomalously old ages were 

corrected for excess Ar prior to modeling following procedures outlined in Sanders et al. 

(2006). Similarly, the MDD algorithm only models cooling from an initial high temperature 

above all possible K-feldspar closure temperatures. Consequently, the high temperature 

portions of the model were not constrained by data and therefore were not interpreted or 

shown on figures.  

(U-Th)/He Analyses 

Zircons chosen for (U-Th)/He analysis were euhedral, clear, and greater than 60 μm 

long in order to minimize effects of long α-stopping distances (Farley et al. 1996). For each 

sample, three single grains were loaded into separate Pt foil packages and degassed by 

heating with a ND-YAG laser. Helium abundances were measured using a quadrupole mass 

spectrometry system. Degassed grains were unpacked and dissolved, and U and Th 

concentrations were measured by isotope dissolution using a Fisons/VG Plasma Quad II 

Inductively Coupled Mass Spectrometer (ICP-MS). All analyses and age corrections for α-

ejection followed the procedures utilized at the University of Kansas (U-Th)/He laboratory. 

Because we did not conduct diffusion experiments, the zircon closure temperature is 

unknown; however, we estimate it to be between approximately 170-190˚C after Reiners et 

al. (2004). 
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Thermal Modeling  

Model Algorithms 

The motivation for using numerical models was to monitor the heat flow within the 

crust during pluton assembly, and model conditions within the pluton (e.g., percent melt 

present) during magma accumulation. I used KWare Heat3D (Wohletz 2008) to model 

incremental pluton growth in two dimensions. Heat3D is a graphically interfaced application 

developed for use in transient thermal regimes, and is based on the numerical solution of the 

heat flow equation using the finite-differencing method. Heat transfer in magmas was 

conductive and convective. Heat transfer by convection was only calculated when the magma 

had a thermal Rayleigh number greater than 2000 (Wohletz 2008). Heat transfer in the wall 

rock was entirely conductive. 

Heat3D only conserves thermal energy within the modeled domain and does not 

conserve mass. Consequently, the model is limited in representing the effects of heat 

advection as rocks are displaced during incremental magma emplacement. Heat3D 

approximates heat advection into nearby cells by using the aspect ratio of the intrusion. For 

example, if the intrusion is vertical and sheet-like, an extensional environment is assumed 

and heat contained in the rock is displaced to either side of the intrusion. Thus, it ignores any 

vertical advection of heat – which is unrealistic and limits the applicability of the model 

during vertical sheeted dike assembly of a magma body. In contrast, if the intrusion is 

horizontal and sheet-like, heat contained in the rock is displaced upwards (Wohletz 2008).  
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Initial and Boundary Conditions 

The limitations of Heat3D imposed by the fact that the model does not conserve mass 

require that modeling be limited to stacking horizontal sheets. Except for well-documented 

evidence for the assembly of the earliest (>92 Ma) parts of the Muir suite as sheeted dikes 

(Mahan et al. 2003; Gracely 2006; Stearns and Bartley 2010), workers in both the Muir 

(Hathaway 2002) and Whitney (Moore 1981; Hirt 2007) agree that field evidence supports 

laccolithic assembly of the suites. This mode of magma accumulation is appropriately 

modeled with Heat3D. 

In order to mimic stacked laccolith assembly, I modeled the growth of the suites as a 

series of horizontal sheets emplaced directly adjacent to one another antitaxially (Bartley et 

al. 2008). Dimensions of the model intrusion and rates of magma accumulation were 

determined by dimensions and fill rates of northern Muir and Whiney suites. Both suites 

have horizontal dimensions of approximately 30 x 80 km, and thickness is assumed to be 5 

km (Hirt 2007). Geochronologic data (see below) indicate assembly times of 6-7 m.y. for 

both suites, resulting in a long-term accumulation rate of approximately 0.002 km3y-1. Only a 

two-dimensional (width and height) half space through the short axis of the intrusive suites 

was modeled. Because the model cannot reproduce steady-state filling of a chamber, this was 

approximated by intruding 0.25 km thick x 15 km wide sheets at a rate of approximately 3 

sheets per m.y. Modeled intrusions had injection and solidus temperatures of 850°C and 

750°C, respectively (Table 1). The first intrusion was emplaced at a depth of 6 km and the 

last at a depth of 11 km. Model wall rock was allowed to absorb latent heat and melt if 

temperatures exceed the solidus. 
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The modeling strategy was to monitor the temperature-time path at various “watch 

points” in the crust. A watch point corresponds to a material point and thus, could correspond 

to a sample location. I monitored the T-t history of numerous watch points at numerous 

depths, both within the intrusions and in adjacent wall rock.  

The model domain was a two-layer crustal section 50 km wide and 35 km tall – 

extending far beyond the intrusion boundaries so as to reduce errors introduced by edge 

effects. The crustal section consists of an andesitic layer extending from the surface to 8 km 

depth, and a granodiorite layer extending from a depth of 8-35 km (Table 1). This crustal 

section is consistent with an oblique column that is exposed in the southern Sierra Nevada 

batholith that preserves volcanic rocks near the surface and predominantly felsic batholithic 

rocks extending to depths of about 35 km (Saleeby et al. 2003).  

Solutions to the heat flow equation require specification of the initial temperatures 

throughout the modeled domain and along each boundary. Along the top (surface) boundary, 

temperature was held constant at 0°C. A steady-state thermal gradient (dT/dt = 0) was 

maintained along the side and bottom boundaries. Assuming a multi-layer crust, a geothermal 

gradient defines the initial temperature conditions at depth within the modeled domain using:  
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where each layer has a thickness of Di, uniform heat production of Ai, and thermal 

conductivity of ki. QDi is heat flux at the base of each layer, zi is depth within a layer, TDi is 

the temperature at the top of each layer (Table 1). 

 Thermal conductivity is an intrinsic property relating to a material’s ability to 

conduct heat. Robertson (1988) suggested, if the mode of the rock is known, its conductivity 

can be estimated using: 
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k = n1k1 + n2k2 + n3k3 + …  Equation 2 

where n1, n2, n3 are volume fractions of mineral phases 1, 2, 3, and k1 ,k2 ,k3 are conductivities 

of the mineral phases. Average k for quartz, alkali feldspar, plagioclase (oligoclase to 

andesine) are 7.7, 2.0, 1.9 W·m-1·K-1, respectively (Robertson 1988). Average Muir and 

Whitney suite plutons have modal values of 25, 17, 44% for quartz, alkali feldspar, 

plagioclase, respectively (Gracely 2006; Hirt 2007). Based on these values, k = 3.1 W·m-1·K-1 

was assumed for depths between 8-35 km (Table 1). This value is consistent with measured 

granitic k values (Robertson 1988; Turcotte and Schubert 2002; Whittington et al. 2009) and 

an average continental crust k value (Spear 1995). For the andesite layer, k = 1.7 W·m-1·K-1 

was assumed (García et al. 1989). Thermal conductivities of magmas are not as well 

understood as those for rocks (Stimac et al. 2001). Murase and McBirney (1973) estimated k 

at 900°C for a rhyolite obsidian to be 2.3 W·m-1·K-1 and 1.1 W·m-1·K-1 for an andesite. I use 

the recent estimate of 1.4 W·m-1·K-1 that Pertermann et al. (2008) calculated for a KAlSi3O8 

melt because it should best approximate the value for late rhyolite melt in a granodiorite 

(Table 1). Whittington et al. (2009) showed that thermal conductivity decreases with 

increasing temperature. This phenomenon reduces heat transfer and magma cooling and is 

simulated in Heat3D using:  
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where k0 is k at 0°C, b is a thermal constant (1.5e-3 °C-1 for upper crust, 1.0e-4 °C-1 for lower 

crust), c is crustal depth constant (1.5e-3 km-1), z is depth (km), and T is temperature (°C) 

(Table 1).  



 

 
 

4. RESULTS 

U-Pb Zircon Analyses 

Ages1 for samples having individual zircon fractions that overlap within uncertainty 

of one another and overlap concordia are reported as concordia ages (Fig. 5; Appendix 1; 

Ludwig 1998). Concordia ages are reported for samples of the Lamarck Granodiorite (Fig. 

5G), Lake Edison Granodiorite (Fig. 5I), granodiorite of Sugarloaf (Fig. 5M), Paradise 

Granodiorite (Fig. 5N), Whitney Granodiorite (Fig. 5O), and Bullfrog Granite (Fig. 5P) and 

are interpreted as crystallization ages. In contrast, ages from the McDoogle Quartz 

Monzodiorite (Fig. 5B), two Mono Creek Granite samples (Fig. 5J, 5K), quartz diorite of 

Pine Lake (Fig. 5L), and the Jurassic-Triassic mafic rock sample (Fig. 5Q) spread along an 

interval of concordia; therefore, a concordia age cannot be determined and instead the range 

of 206Pb/238U ages is reported (Fig. 5). 

Samples of the two oldest Muir suite units yield indistinguishable ages of 95.46 ± 

0.32 Ma for the Inconsolable Quartz Monzodiorite (Fig. 5A; Gracely 2006) and 95.20 ± 0.11 

to 94.60 ± 0.14 Ma for the McDoogle Quartz Monzodiorite (Fig. 5B). A new age from the 

Lamarck Granodiorite is 93.47 ± 0.09 Ma (Fig. 5G). When combined with other 

geochronologic data the Lamarck Granodiorite assembled over 3 m.y. (Fig. 6A; Coleman et 
                                                 

1 Throughout the literature, the words “age” and “date” are often used 
interchangeably. For plutonic rocks, it is generally accepted that the age of a sample indicates 
the time of crystallization, and a zircon U-Pb analysis best represents this time. A date 
indicates the timing of some subsequent event in the sample’s history. For example, “date” is 
used when referring to a time when the sample passed through a particular closure 
temperature isotherm.  
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al. 1995; Gracely 2006). Samples collected from the northern Muir suite plutons are the 

youngest in the suite and are all younger than 90 Ma (Fig. 5H-5K).  

Samples from the Whitney suite were all collected from the northern region of the 

suite (Fig. 4). A sample from the granodiorite of Sugarloaf is 90.59 ± 0.10 Ma (Fig. 5M), 

which is the oldest reported age for this unit and is over 2 m.y. older than the 88 Ma age for 

the same granodiorite reported by Chen and Moore (1982). Ages from the Paradise 

Granodiorite, Whitney Granodiorite, and Bullfrog Granite are 86.43 ± 0.10 Ma (Fig. 5N), 

84.79 ± 0.14 Ma (Fig. 5O), and 100.18 ± 0.31 Ma (Fig. 5P), respectively. These results 

extend the documented intrusive histories of these three plutons to over at least 2 m.y. when 

combined with previous zircon geochronology (Chen and Moore 1982). 
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Fig. 5 
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Fig. 5 
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Fig. 5 Concordia diagrams for zircon and titanite fractions from the John Muir and Mount 
Whitney Intrusive Suites, quartz diorite of Pine Lake (wall rock), Bullfrog Granite (wall 
rock), and Jurassic-Triassic mafic rock (wall rock). Concordia ages (Ludwig 1998) are 
reported for samples with zircon fractions that overlap both age and concordia (A, C, D, E, F, 
G, H, I, M, N, O, P). 206Pb/238U weighted mean age spans are reported for samples having 
individual zircon fraction ages that spread along concordia (B, J, K, L, Q). Tera-Wasserburg 
concordia diagrams (Tera and Wasserburg 1972) are presented for titanite fractions and 
lower intercept ages are reported (R, S). Ages are labeled in millions of years. Error ellipse 
shading increases with overlapping of ellipses. Ellipses and crosses denote 2-sigma error of 
individual fractions. Bold ellipses represent 2-sigma error of concordia age. All errors 
include 238U and 235U decay constant and analytical uncertainties. Concordia diagrams 
generated using Isoplot 3.0 (Ludwig 2003). Ages from the Inconsolable Quartz Monzodiorite 
(A) and Lamarck Granodiorite (C, D, E, F) are from Gracely (2006) and Round Valley Peak 
Granodiorite (H) is from Gaschnig (2005). Ages from the literature are included for clarity of 
discussion and comparison to Ar data. 
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Fig 6A. Summary of U-Pb zircon crystallization ages from the Muir suite indicating an 
intrusive history over 9 m.y. Kmd, McDoogle Quartz Monzodiorite; Kin, Inconsolable 
Quartz Monzodiorite; Klk, Lamarck Granodiorite; Kle, Lake Edison Granodiorite; Kmc, 
Mono Creek Granite; Krv, Round Valley Peak Granodiorite. Ages from this study (Kmd, 
Klk, Kle, Kmc) and after Gracely (2006; Kin, Klk), Gaschnig (2005; Krv), Mahan et al. 
(2003; Kmd), Coleman et al. (1995; Klk), and Tobisch et al. (1995; Kle). Fig 6B. Summary 
of U-Pb zircon crystallization ages from the Whitney suite indicating an intrusive history 
over 7 m.y. Ks, granodiorite of Sugarloaf; Klp, granodiorite of Lone Pine Creek; Kp, 
Paradise Granodiorite; Kw, Whitney Granodiorite. Ages from this study (Ks, Kp, Kw) and 
after Mattinson (2005; Kp), Saleeby et al. (1990; Kw), and Chen and Moore (1982; Ks, Klp, 
Kp, Kw). Note that Chen and Moore (1982) did not report age uncertainties. 
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U-Pb Titanite Analyses 

Individual titanite fractions are dispersed along a line whose lower intercept with the 

Tera-Wasserburg (1972) projection of the concordia curve defines the titanite date of the 

sample (Ludwig 1998). Titanite dates from the McDoogle Quartz Monzodiorite and a sample 

from the Lamarck Granodiorite are 95.31 ± 0.46 Ma (Fig. 5R) and 93.47 ± 0.68 Ma (Fig. 5S), 

respectively, and overlap within uncertainty to their corresponding zircon ages (Fig. 5B, 5C).  

40Ar/39Ar Analyses 

Hornblende 

Hornblende samples yield age spectra with a variety of complications (Fig. 7; 

Appendix 2). The Lamarck Granodiorite and Whitney Granodiorite hornblendes yield simple 

age spectra (Fig. 7B, 7G) and plateaus are assigned from contiguous heating steps that have 

apparent dates that overlap within 2-sigma. Hornblende samples from the Inconsolable 

Quartz Monzodiorite, Lake Edison Granodiorite, granodiorite of Sugarloaf, Paradise 

Granodiorite (two samples), and quartz diorite of Pine Lake all yield age spectra that are 

characterized by high-temperature heating steps that include very small fractions of the total 

gas, anomalously young dates, and anomalously high uncertainties (Fig. 7A, 7C, 7D, 7E, 7F, 

7H). Hornblende breakdown caused by phase changes during in vacuo step heating likely led 

to high-temperature age spectra complexities encountered these samples (e.g., Wartho et al. 

1991). The affected intermediate-temperature heating steps account for less than 8% of the 

39Ar released per sample; therefore, noncontiguous heating steps are used when assigning 

plateaus for these samples (Fig. 7A, 7C, 7D, 7E, 7F, 7H).  
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Hornblendes from both the Muir and Whitney suites have plateau and inverse 

isochron dates that overlap, and thus are interpreted to lack significant excess 40Ar. 

Generally, inverse isochron dates are more robust than plateau dates (Renne 2006). 

Consequently, inverse isochron dates are used to evaluate T-t histories (Table 3). 

The Tinemaha Granodiorite (three samples), Bullfrog Granite, and Jurassic-Triassic 

mafic rock samples were sampled to evaluate the thermal effects of intrusion of the adjacent 

Cretaceous intrusive suites. These samples all yield hornblendes with complicated age 

spectra (Fig. 7I, 7J, 7K, 7L, 7M) that exhibit evidence of partial Ar outgassing during the 

Cretaceous. Outgassing is indicated by a complex age spectrum that lacks a plateau and does 

not define an inverse isochron (not shown). Consequently, integrated ages are used to 

determine T-t histories of these samples (Table 3). With the exception of the three Tinemaha 

Granodiorite hornblende samples (Fig. 7I, 7J, 7K), all wall rock hornblende dates are Late 

Cretaceous and range from 90-86 Ma. Tinemaha Granodiorite hornblende dates are Late 

Jurassic-Early Cretaceous and range from 154-115 Ma. Hornblende dates from the Muir and 

Whitney suites overlap within uncertainty of their corresponding U-Pb zircon ages (Table 4). 

Hornblende dates from wall rock samples are significantly younger than their corresponding 

U-Pb zircon ages (Table 4).  
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Fig. 7 
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Fig. 7 
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Fig. 7 
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Fig. 7 Hornblende 40Ar/39Ar step heating spectra and inverse isochrons from the Muir and 
Whitney Intrusive Suites and associated wall rocks. Errors reported at 2-sigma confidence 
interval. Dates and errors are calculated using Fish Canyon flux monitor age and 40K decay 
constant of Renne et al. (2009). Errors incorporate analytical, J-value, 40K decay constant, 
and Fish Canyon flux monitor age uncertainties. Gray heating steps on inverse isochron are 
excluded from regressions and date calculations (see text for discussion). Horizontal line on 
inverse isochrons indicates 40Ar/36Ar = 295.5.  
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Biotite 

The Lamarck Granodiorite, Lake Edison Granodiorite, McDoogle Quartz 

Monzodiorite, Paradise Granodiorite (two samples), Tinemaha Granodiorite (three samples), 

Bullfrog Granite, and the Jurassic Triassic mafic rock biotites yield simple age spectra (Fig. 

8A, 8B, 8C, 8I, 8J, 8M, 8N, 8O, 8P, 8Q; Appendix 2), and plateaus are determined for all 

contiguous heating steps with dates that overlap within 2-sigma uncertainty. With the 

exception of one Paradise Granodiorite sample (Fig. 8I), the biotite samples do not indicate 

excess 40Ar. Therefore (as for hornblende dates), inverse isochron dates are used to evaluate 

their T-t histories (Table 3). The Paradise Granodiorite biotite (Fig. 8I) has a significant 

component of non-radiogenic argon and did not yield a valid inverse isochron. Consequently, 

the plateau date was used to determine a T-t history for this sample (Table 3).  

Biotite samples from the Inconsolable Quartz Monzodiorite, Lamarck Granodiorite, 

granodiorite of Sugarloaf, and the quartz diorite of Pine Lake yield slightly saddle-shaped 

age spectra (Fig. 8D, 8E, 8H, 8L) thought to be caused by excess 40Ar (e.g., Lanphere and 

Dalrymple 1976). Two Mono Creek Granite biotite samples and a Whitney Granodiorite 

biotite samples (Fig. 8F, 8G, 8K) yield slightly hump-shaped age spectra. This pattern 

suggests that chlorite alteration has affected argon release (Heizler et al. 1988; Sanders et al. 

2006). Integrated ages are used to evaluate T-t histories for samples that have saddle or 

hump-shaped spectra because they lack valid inverse isochrons and do not yield plateaus 

(Table 3). 

Each sample’s biotite date postdates its hornblende date and zircon age by several 

million years with the exception of the Whitney Granodiorite sample which has concordant 

zircon, hornblende, and biotite data (Table 4).  
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Fig. 8 
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Fig. 8 
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Fig. 8 
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Fig. 8 
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Fig. 8 Biotite 40Ar/39Ar step heating spectra and inverse isochrons from John Muir and 
Mount Whitney Intrusive Suites and associated wall rocks. Errors reported at 2-sigma 
confidence interval. Dates and errors are calculated using Fish Canyon flux monitor age and 
40K decay constant of Renne et al. (2009). Errors incorporate analytical, J-value, 40K decay 
constant, and Fish Canyon flux monitor age uncertainties. Gray heating steps on inverse 
isochron are excluded from regressions and date calculations (see text for discussion). 
Horizontal line on inverse isochrons indicates 40Ar/36Ar = 295.5. 
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K-feldspar age spectra 

K-feldspar age spectra are determined for samples across two Muir suite transects 

(Fig. 9; Appendix 2). Anomalously old ages recorded in the initial heating steps for samples 

from most plutons probably reflect excess Ar released from fluid inclusions (Fig. 10C, 10E, 

10G, 10K, 11A, 11C; Harrison et al. 2005). Excluding these steps, K-feldspar age spectra 

from the Muir suite are characterized by initial steep age gradients that climb to plateaus 

between 76-80 Ma (transect A; Fig. 10) and 81-88 Ma (transect B; Fig. 11). Age spectra for 

all samples increase monotonically with temperature and are consistent with Ar release via 

volume diffusion (Harrison et al. 2005). The samples therefore appear to be well-behaved 

and record T-t histories.  

MDD models 

A modeled T-t history from a sample is accepted if the modeled age spectrum (black 

line overlain on gray release spectrum; Figs. 10 and 11) meets fitting criteria relative to the 

measured age spectra (Quidelleur et al. 1997). MDD models for K-feldspar from the Muir 

suite exhibit a tight distribution of acceptable solutions that are reflected by the narrow range 

of T-t histories (Figs. 10 and 11). The T-t histories are characterized by slow cooling from 

approximately 82 until 76 Ma, except two Mono Creek Granite samples (Fig. 10H, 10J) that 

show no evidence for a period of slow cooling. At about 76 Ma, all samples show evidence 

for a period of accelerated cooling that continued until at least 73-71 Ma. Models for two 

samples (Fig. 10B, 10J) suggest a return to slow cooling beginning at about 70 Ma. 
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Fig. 9 Simplified geology of the John Muir Intrusive Suite after Bateman (1992). Figure 
shows sample nomenclature and locations for samples utilized in K-feldspar MDD thermal 
modeling. Bold black lines mark sample transects. 
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Fig. 10 K-feldspar 40Ar/39Ar age spectra and monotonic MDD thermal models generated for 
the northern John Muir Intrusive Suite transect (A). Gray age spectra are measured; whereas, 
black lines are modeled age spectra. Gray envelopes in MDD models represent all modeled 
thermal histories meeting the fitting criteria of Quidelleur et al. (1997); whereas, the black 
envelopes represent 90% confidence of the mean modeled thermal histories. Black boxes are 
biotite dates (2-sigma error) using an estimated closure temperature range from 345-280 °C 
(Harrison et al. 1985).  
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Fig. 11 K-feldspar 40Ar/39Ar age spectra and monotonic MDD thermal models generated for 
the southern John Muir Intrusive Suite transect (B). Gray age spectra are measured; whereas, 
black lines are modeled age spectra. Gray envelopes in MDD models represent all modeled 
thermal histories meeting the fitting criteria of Quidelleur (1997); whereas, black envelopes 
represent 90% confidence of the mean modeled thermal histories. Open circles are mean 
zircon (U-Th)/He dates with 2-sigma error bars. Black boxes are biotite dates (2-sigma error) 
using an estimated closure temperature range from 345-280 °C (Harrison et al. 1985).   
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(U-Th)/He Analyses 

Zircon (U-Th)/He dates range from 83 to 70 Ma and are characterized by large 

uncertainties (Table 2). For all samples, the (U-Th)/He dates overlap within uncertainty with 

the low-temperature portions of these MDD models. 

Thermal Modeling 

Temperature-time histories were monitored at twelve watch points throughout the 

modeled domain (Fig. 12). All watch points exhibit a characteristic saw-tooth T-t history 

pattern (Fig. 13). When an intrusive body grows by the incremental emplacement of 

horizontal sheets, the early increments are emplaced into relatively cool wall rocks and 

solidify rapidly (Fig. 13; watch points 1, 7). With time, the heat dissipated by new intrusions 

increases temperatures throughout the system; thus, the later increments are emplaced into 

hotter environments (Fig. 13; watch points 2, 3, 4, 8, 9, 10). Like the chamber regions 

intruded by early increments, these regions cool quickly but are maintained at temperatures 

above the ambient background. In this model, the heat advected by the emplacement of 

multiple intrusions kept temperatures elevated but did not cause temperatures to be reheated 

above 450°C. Only when an actual intrusion was emplaced at the level of a watch point did 

that watch point reach high temperatures. Temperatures in the wall rock above the magma 

chamber were barely affected by the intrusions (Fig. 13; watch point 5). In contrast, 

temperatures below the magma chamber were raised significantly above background ambient 

(Fig. 13; watch point 6).   
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Fig. 12 Domain schematic for 2-D thermal model. Model was run as a half-space with the 
left boundary acting as an axis of symmetry. Dimensions of the model intrusion and rates of 
magma accumulation were determined by dimensions and fill rates of northern Muir and 
Whiney suites. Red box represents the final magma chamber dimensions after stacking 0.25 
km thick horizontal sheets, from the top down, for approximately 7 m.y. Black dots and 
corresponding numbers are watch points. At each watch point the temperature - time path is 
monitored for the duration of the simulation (see Fig. 13). 
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Fig. 13 Watch points from various locations throughout the modeled domain (see Fig. 12). At each 
watch point the T-t history is monitored for the duration of the simulation. All watch point exhibit a 
characteristic saw-tooth T-t history pattern which likely indicates temperature oscillation due to the 
incremental growth of the magma chamber. Early increments are emplaced into relatively cool wall 
rocks and solidify rapidly (watch points 1, 7). In contrast, the later increments are emplaced into 
hotter environments (watch points 2, 3, 4, 8, 9, 10, 12). 
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For the duration of model, a large-volume magma chamber containing melt + crystals 

did not develop (Fig 14). Although the size of a magma chamber increases during pluton 

assembly, the percentage of the magma chamber that is above the solidus decreases as the 

chamber grows. This suggests that during pluton growth the volume of liquid present in the 

chamber at any point in time is low compared to the overall volume of the chamber. 

 

 

Fig. 14 Percent of magma chamber that is above the solidus during the construction of a 
chamber built by antitaxially stacking horizontal sheets from the top down over a 7 m.y. 
period. Note that as the chamber grows the percentage of the chamber above the solidus 
decreases. This suggests that during pluton growth the volume of liquid present in the 
chamber at any point in time is low compared to the overall volume of the chamber. These 
results are consistent with geophysical data (Iyer 1984; Waite and Moran 2009) that fail to 
locate large volumes of liquid (> 50%) beneath active volcanic regions.   

 

 
 



 

 

 

5. DISCUSSION 

Zircon U-Pb Crystallization Ages 

Most samples from this study yield tightly clustered U-Pb data for which a concordia 

age can be calculated and those ages are accepted as crystallization ages for the samples. 

However, several samples yielded data that are either discordant (Fig. 5L, 5N), or 

concordant, but spread along an interval of concordia, and do not overlap within uncertainty 

(Fig. 5B, 5J, 5K, 5Q).  

The discordant data are likely the result of Pb-loss and inheritance. The quartz diorite 

of Pine Lake (Fig. 5L) was dated because an earlier study suggested an age (97.5 Ma) similar 

to the Muir suite (Frost and Mattinson 1988). Zircon fractions from this study for the quartz 

diorite spread along a discordia line and have 206Pb/238U ages ranging from 181-132 Ma (Fig. 

5L). Two zircon fractions have indistinguishable 206Pb/238U ages of 180.7 Ma that is 

interpreted as the crystallization age. Discordance in the other fractions is attributed to Pb-

loss because the quartz diorite is a small body (3 km2) that is pervasively intruded by Late 

Cretaceous granitoids that make up 40% of the outcrop area at Pine Lake, where samples 

from both studies were collected (Frost and Mattinson 1988). These horizontal sheets of 

Mono Creek Granite likely contributed enough heat and fluids to disturb zircon systematics. 

Consequently, the Pine Lake body is interpreted to be Jurassic and the discordant 97.5 Ma 

age of Frost and Mattinson (1988) to reflect Pb-loss caused by the intrusion of the Muir suite.  

The Paradise Granodiorite sample (Fig. 5N) contains one zircon fraction that is 

significantly older (96.7 Ma) than the cluster of fractions used to determine the concordia age 
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(84.8 Ma). This fraction is discordant and interpreted to contain an inherited component. 

Consequently, the concordia age of the clustered data is used to interpret the T-t history of 

this sample (Table 4). 

The observation that zircon data for individual samples are distributed along an 

interval of concordia, and do not yield ages that overlap within uncertainty is recognized with 

increasing frequency as the precision of U-Pb data improves (e.g., Miller and Wooden 2004; 

Miller et al. 2007). The age dispersion along an interval of concordia indicates the potential 

effects of Pb-loss, grain resorption and regrowth, or extended intervals of zircon 

crystallization.  

Age spread due to Pb-loss is possible in the Jurassic-Triassic mafic rock (Fig. 5Q), 

the McDoogle Quartz Monzodiorite (Fig. 5B), and the Mono Creek Granite (Fig. 5J, 5K) 

samples, but is not favored here for several reasons. Zircons from the units are not 

characterized by anomalously high U and Th which can lead to Pb-loss (Mattinson 2005). In 

addition, there is nothing unusual about the morphology, zoning, or degree of alteration of 

zircons from these samples in comparison to other samples from the study (and in some 

cases, from the same unit). There is also no obvious reason why thermal annealing and 

chemical abrasion of only these samples from the area would not minimize or eliminate Pb-

loss. Finally, in the case of the Jurassic-Triassic mafic rock, Pb-loss during intrusion of the 

Cretaceous Whitney suite would likely have driven points off concordia along a discordia 

array as is proposed for the quartz diorite of Pine Lake. 

Miller and Wooden (2004) suggest that zircon U-Pb age dispersion along concordia 

can result from high-temperature fluctuations resulting in zircon resorption and subsequent 

regrowth in a long-lived magma chamber. Estimated zircon saturation temperatures (Watson 
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and Harrison 1983) of approximately 755°C are calculated using geochemical data from the 

Muir and Whitney suite plutons (Frost and Mahood 1987; Hirt 2007); however, the general 

observation from this study that U-Pb ages and 40Ar/39Ar hornblende dates are concordant for 

all samples suggest reheating by younger intrusions did not re-elevate temperatures above 

hornblende closure (approximately 550°C). Therefore, it is unlikely that the nearly 4 m.y. age 

dispersion in data from one of the Mono Creek samples (Fig. 5K) is caused by zircon grain 

resorption and regrowth. The McDoogle Quartz Monzodiorite (Fig. 5B) and a second sample 

of the Mono Creek Granite (Fig. 5J) have much a much smaller spread in ages 

(approximately 0.5 m.y.) which is within the uncertainty of determining concordancy of 

zircon and hornblende dates. Thus, resorption and regrowth is a plausible explanation for the 

age dispersion exhibited by these samples. Although, hornblende from the sample of the 

Jurassic-Triassic mafic rock was reset by the Whitney suite intrusions during in the Late 

Cretaceous (Fig. 7M), regrowth of zircon in the Cretaceous should have driven those points 

off concordia (Fig. 5Q). 

The large spread in concordant ages for the Jurassic-Triassic mafic rock (Fig. 5Q) and 

Mono Creek sample (Fig. 5K) are consistent with prolonged or episodic periods of zircon 

growth. This pattern of zircon growth is most consistent with the presence of antecrysts - 

grains that crystallized from earlier pulses of magma that were incorporated into younger 

magma from the same system (e.g., Miller et al. 2007). This interpretation seems particularly 

likely in the case of the Mono Creek sample, for which there are nearby dated samples 

spanning the range of zircon ages from the sample. The same interpretation may be valid for 

both the McDoogle Quartz Monzodiorite (Fig. 5B), and second Mono Creek Granite sample 

(Fig. 5J), but is not distinguishable from the resorption/regrowth hypothesis.  
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If dispersion of the data along concordia is the result of resorption/regrowth or the 

presence of antecrysts, the youngest age for each sample probably best estimates the 

crystallization age. However, to be conservative, for all data representation, interpretation, 

and thermal modeling, the entire range in zircon dates for these samples is used to estimate 

their crystallization age. 

Incremental Emplacement 

Zircon U-Pb crystallization ages indicate that the Muir suite assembled over about 9 

m.y. from 96 to 87 Ma (Fig. 6A). Similarly, ages from this study, combined with zircon data 

from other studies, indicate that the Whitney suite assembled over about 7 m.y. from 90 to 83 

Ma (Fig. 6B; Chen and Moore 1982; Saleeby et al. 1990; Mattinson 2005). Within the suites, 

individual plutons also record extended age ranges: the Lamarck Granodiorite of the Muir 

suite was assembled over at least 3 m.y., and data for the Mono Creek (Muir suite), and 

Sugarloaf, Paradise and Whitney (Whitney suite) plutons all suggest at least 2 m.y. for their 

assembly. Plutons with crystallization ages spanning millions of years, and intrusive suites 

with age ranges approaching 10 m.y., cannot be intruded as one (or just a few) pulses of 

magma, but must have been assembled incrementally (Coleman et al. 2004; Glazner et al. 

2004; Matzel et al. 2006). This is consistent with field data from the Muir suite and 

elsewhere that demands amalgamation of even superficially homogeneous plutons as 

incrementally assembled sheeted bodies (Mahan et al. 2003; Bartley et al. 2008). Even the 

relatively rapidly assembled Torres del Paine pluton preserves evidence for incremental 

assembly (Michel et al. 2008). The growing body of data requiring million year age spans for 

the crystallization of plutons, supported by a growing body of field evidence for incremental 

assembly, suggests that incremental pluton growth is the norm and not the exception. 
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Therefore, caution should be exercised when accepting a single age as representative of any 

pluton. Also interpretation of the timing of structures by dating deformed or cross cutting 

plutons must be restricted to samples immediately adjacent to the structure of interest. 

Interpretation of Thermal Histories 

Muir Suite thermal history  

For all samples in this study, zircon crystallization ages are concordant within 

uncertainty with titanite and hornblende dates, indicating rapid cooling immediately 

following intrusion. In addition, this indicates that the hornblende dates were not reset by 

younger intrusions in the suites. Following an initial interval of rapid cooling immediately 

after intrusion, slow cooling then persisted for millions of years, as indicated by the 5-11 

m.y. separation between hornblende and biotite dates (Fig. 15). Together, the data suggest 

that temperatures remained between hornblende and biotite closure temperatures for millions 

of years following intrusion. 

Two interpretations can account for rapid, followed by slow cooling: exhumation 

millions of years following emplacement, or cooling complicated by multiple reheating 

events during the approximately 9 m.y. intrusive history of the rocks.  

During the time of emplacement, if ambient temperatures were above biotite closure, 

the protracted cooling through biotite closure temperatures could reflect cooling during 

exhumation. In this case, biotite dates would be set once rocks were exhumed through the 

biotite closure temperature isotherm. In the absence of folding or faulting, biotite dates 

reflecting regional exhumation cooling should fall in a narrow range (e.g., Renne et al. 1993). 

The spread of biotite dates throughout the Muir suite is inconsistent with this view (Fig. 15). 

A spread in biotite ages, like those in this study, could result if deformation  
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Fig. 15 Temperature-time (T-t) histories for John Muir Intrusive Suite. An estimated zircon 
saturation temperature (Watson and Harrison 1983) of 750°C is an average of three whole 
rock samples from the Lamarck Granodiorite (Frost and Mahood 1987). Estimated titanite 
closure temperatures (700-660°C) after Scott and St-Onge (1995). Estimated hornblende 
(580-490°C) and biotite (345-280°C) closure temperatures after Harrison (1981) and 
Harrison et al. (1985), respectively.  
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resulted in exhumation of some areas prior to others. However, no such deformation is 

evident in the region that could account for the age spread in biotites. Therefore, exhumation 

cooling is not favored as a mechanism producing the T-t histories throughout the Muir suite. 

Thermal modeling shows that when plutons are assembled incrementally, as 

demonstrated for the Muir suite here, temperatures oscillate with the intrusion and cooling of 

each magma pulse, and remain above ambient background for extended time periods (Annen 

et al. 2006). Thus, the gap between hornblende and biotite dates for the Muir suite could 

reflect temperature oscillation for millions of years following emplacement. The range of 

temperature oscillations appears to be limited to being between biotite and hornblende 

closure because K-feldspar MDD modeling suggests a distinct time gap between biotite 

closure (estimated to be 345-280˚C) and feldspar cooling (models typically suggest 

temperatures of approximately 320˚C; Figs. 10 and 11). If temperatures during incremental 

assembly were dropping significantly below 320˚C, and biotite was getting reset during a 

subsequent heating event, high-temperature dates for the K-feldspar should be similar to the 

biotite dates. Instead the data suggest very slow cooling between biotite closure and the onset 

of high-temperature Ar retention in the K-feldspar. 

Throughout the Muir suite, the data indicate that there is a greater time gap between 

crystallization and subsequent passage through biotite closure for older plutons than for 

younger plutons (Fig. 16). Older plutons such as the Inconsolable Quartz Monzodiorite, 

McDoogle Quartz Monzodiorite, and Lamarck Granodiorite record an 11-8 m.y. gap; 

whereas, younger plutons such as the Lake Edison Granodiorite and Mono Creek Granite 

record a 6-5 m.y. gap between crystallization and biotite closure. More protracted cooling in  
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Fig. 16 Summary of geo-thermochronology data from the John Muir Intrusive Suite. As the 
crystallization ages get younger the cooling time interval between zircon ages and biotite 
dates decrease. Kmd, McDoogle Quartz Monzodiorite; Kin, Inconsolable Quartz 
Monzodiorite; Klk, Lamarck Granodiorite; Kle, Lake Edison Granodiorite; Kmc, Mono 
Creek Granite; Krv, Round Valley Peak Granodiorite. Note that not all zircon ages have 
corresponding argon dates. Zircon ages from this study (Kmd, Klk, Kle, Kmc) and after 
Gracely (2006; Kin, Klk), Gaschnig (2005; Krv), Mahan et al. (2003; Kmd), Coleman et al. 
(1995; Klk), Tobsich et al. (1995; Kle). Hornblende, titanite, and biotite dates from this 
study. Error bars are 2-sigma. 
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older plutons is consistent with modeling that shows the thermal anomalies of younger 

intrusions building across the decaying temperature profiles of older intrusions (e.g., Barton 

and Hanson 1989; Hanson and Barton 1989). Temperatures in the younger units likely did 

not stay at elevated temperatures for as long because not long after they intruded the regional 

magmatic activity waned (e.g., Chen and Moore 1982). 

Whitney Suite thermal history 

As for the samples from the Muir suite, samples from the Whitney suite yield U-Pb 

zircon ages and Ar-Ar hornblende dates that overlap within uncertainty consistent with rapid 

initial cooling after intrusion (Fig. 17). Also like the Muir suite, the older plutons in the 

Whitney suite took longer to cool below biotite closure temperatures (Fig. 18); however, the 

pattern is not as clear. The granodiorite of Sugarloaf experienced approximately 3 m.y. of 

slow cooling following emplacement, and the Paradise Granodiorite experienced about 2 

m.y. of slow cooling. Thus, the granodiorite of Sugarloaf and the Paradise Granodiorite are 

interpreted to have oscillated between hornblende and biotite closure temperatures for 2-3 

m.y. In contrast, the sample from the Whitney Granodiorite crystallized and cooled through 

biotite instantaneously within the uncertainty of the age determinations.  

The time gap between hornblende and biotite dates for the Whitney suite is 

significantly shorter than the Muir suite. One reason for the difference between these two 

may be that the Whitney suite was assembled at shallower crustal levels than the Muir suite. 

This would result in more rapid relaxation of the elevated geotherm through biotite closure 

temperature across the Whitney suite relative to the Muir suite. Also, the Whitney suite is 

one of the youngest intrusive suites in the Sierras and, coincident with, or shortly after, its 

emplacement, magmatism in the entire Sierra Nevada shut down (Stern et al. 1981; Chen and  
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Fig. 17 Temperature-time (T-t) histories for Mount Whitney Intrusive Suite. An estimated 
zircon saturation temperature (Watson and Harrison 1983) of 760°C is an average determined 
by using forty-three whole rock samples from the Whitney suite (Hirt 2007). Estimated 
hornblende (580-490°C) and biotite (345-280°C) closure temperatures after Harrison (1981) 
and Harrison et al. (1985), respectively. 
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Fig. 18 Summary of geo-thermochronology data from the Mount Whitney Intrusive Suite. 
Ks, granodiorite of Sugarloaf; Klp, granodiorite of Lone Pine Creek; Kp, Paradise 
Granodiorite; Kw, Whitney Granodiorite. Zircon ages from this study (Ks, Kp, Kw) and after 
Chen and Moore (1982; Ks, Klp, Kp, Kw), Saleeby et al. (1990; Kw), Mattinson (2005; Kp). 
Note that Chen and Moore (1982) did not report age uncertainties. Note that not all zircon 
ages have corresponding argon dates. Hornblende and biotite dates from this study. Error 
bars are 2-sigma. 
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Moore 1982). As the rate of magma intrusion decreased, relaxation of the elevated geotherm 

and cooling of intrusions was likely accelerated. 

Wall rock thermal histories 

Hornblendes from wall rock samples adjacent to both the Muir and Whitney suites 

are significantly younger than the corresponding U-Pb zircon ages, and biotite dates from 

these same samples are several to tens of millions of years younger than the corresponding 

hornblende dates (Fig. 19). The thermal histories of wall rocks are placed into two groups: 

those with dates completely reset and those with dates partially reset. In the Whitney suite 

area, the Bullfrog Granite, and the Jurassic-Triassic mafic rocks yield statistically identical 

hornblende dates that cluster around 90.4 Ma (Fig. 7L, 7M). This age is indistinguishable 

from the age of the granodiorite of Sugarloaf of the Whitney suite (Fig. 5M) and I suggest 

that intrusion of the Whitney suite locally raised temperatures above hornblende closure and 

completely reset wall rock dates.  

Similarly, the quartz diorite of Pine Lake has a crystallization age of 181 Ma (Fig. 

5L) and a hornblende date of 86.2 Ma (Fig. 7H) that is interpreted to reflect complete 

resetting by the adjacent Muir suite. The quartz diorite is a small body (3 km2; Frost and 

Mattinson 1988) that is pervasively intruded by horizontal sheets from the 87 Ma Mono 

Creek granite (Frost and Mattinson 1988; Bateman 1992). A biotite date of 79.5 Ma (Fig. 8L) 

suggests that this sample cooled slowly for 5 m.y. – similar to the cooling history of the 

adjacent Muir suite.  

Hornblende dates from the Tinemaha Granodiorite range from 154-116 Ma and there 

is no correlation between a date and distance of the sample from the Muir suite (Fig. 3). I  
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Fig. 19 Temperature-time (T-t) histories for wall rocks adjacent to the John Muir and Mount 
Whitney Intrusive Suites. Zircon saturation temperatures (Watson and Harrison 1983) were 
not determined for these samples. Instead, an estimated zircon saturation temperature of 
760°C is used. This value is consistent with zircon saturation temperatures determined for 
both the Muir and Whitney suites. Estimated hornblende (580-490°C) and biotite (345-
280°C) closure temperatures after Harrison (1981) and Harrison et al. (1985), respectively. 
U-Pb zircon ages for Tinemaha Granodiorite (Jtn06-01, Jtn07-09, Jtn07-11) are estimated 
from Chen and Moore (1982). 
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suggest these dates reflect partial degassing of Ar during intrusion by numerous Cretaceous 

plutons in addition to those in the Muir suite (Bateman 1992). Thus, the hornblende dates 

have no geologic meaning. Biotite dates from the Tinemaha Granodiorite yield simple 

plateaus and inverse isochrons. These biotites were completely reset by Cretaceous plutonism 

and indicate the time when samples passed back through closure temperature. 

Pluton Emplacement Modeling 

 Thermal modeling predicts that, during the construction of an incrementally 

assembled plutonic suite in the shallow crust, it is unlikely that temperatures are maintained 

significantly higher than background ambient (Fig. 13). Once an intrusion is emplaced, it 

cools and solidifies rapidly as heat is dissipated into the surrounding area. Subsequent 

intrusions raise the temperatures of the nearby rocks, yielding the saw-tooth T-t patterns seen 

in all watch points (Fig. 13).  This predicts that rocks from a plutonic suite will experience 

long time-spans of thermal oscillations during assembly. In addition, at the intrusion rates 

dictated by the geochronology, raising temperatures high enough to reset the hornblende 

dates (approximately 550°C) of any early intruded increments is unlikely at depths of less 

than 10 km (e.g., many Sierran rocks; Ague and Brimhall 1988). The model predicts that 

after 7 m.y. of magmatic activity the hottest parts of the domain are still less than 500°C (Fig. 

13; watch points 4, 6). This is consistent with T-t history determined from individual samples 

analyzed throughout both the Muir and Whitney intrusive suites (Figs. 15 and 17) which 

suggest that rock units likely resided at temperatures below hornblende closure for the 

duration of assembly period.  

In addition, thermal modeling reveals that the assembly of plutons results in a 

persistently low melt fraction that is present in the magma chamber at any one time (Fig. 14). 
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Figure 14 demonstrates that as an incrementally assembled magma chamber grows the 

intrusions are not fluxing heat rapidly enough to maintain elevated temperatures necessary 

for melt-rich chambers to be maintained (e.g., Annen 2009). Together these observations 

suggest that it is unlikely that the Whitney suite or the Muir suite ever existed as large, high-

melt (>50%) fraction magma chambers.  

Incremental Emplacement and Volcanic-Plutonic Connections 

Detailed geochronology for the Lamarck Granodiorite and field mapping permit the 

calculation of an average magma flux during pluton growth. Assuming an area of 500 km2 

(Bateman 1992) and estimating a thickness between 5-15 km, a long-term average magma 

flux between 0.0010-0.0025 km3·yr-1 (1-2.5x106 m3·yr-1) is needed to construct the Lamarck 

Granodiorite. Expanding to the entire Muir suite, an estimated area of 1700 km2 (Bateman 

1992) and a thickness between 5-15 km yields essentially the same flux. The Whitney suite 

has a total outcrop of approximately 1200 km2 (Hirt 2007). Using the same range of 

thicknesses estimated for the Muir suite, the same long-term average magma flux is 

necessary to construct the Whitney suite. These fluxes are consistent with those calculated 

for other plutons including the Tuolumne Intrusive Suite and the Mount Stuart batholith (e.g., 

Annen 2009).  

A growing body of geochronological data and numerical models shows that the rate 

of magma emplacement likely determines whether a caldera-forming eruption is possible 

(e.g., Glazner et al. 2004; Annen 2007, 2009; Crowley et al. 2007; Costa 2008). Caldera-

forming eruptions offer evidence that large magma chambers can exist in the upper crust; 

however, numerical simulations show that magma fluxes greater than 0.1 km3·yr-1 are 

necessary to develop and maintain magma chambers voluminous enough to feed the 
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eruptions (Annen 2009). Rapid magma fluxes are consistent with geochronologic data from 

ignimbrites that suggest magma residence times less than 1 m.y. and likely less than 500 k.y. 

prior to eruption (Bachmann et al. 2007; Crowley et al. 2007; Costa 2008; Simon et al. 2008). 

Several recent papers calculated pluton growth rates on the order of 0.1 to >1 km3·yr-1 that 

are necessary to support ignimbrite eruption by assuming rapid assembly times 103 to 105 

years (Petford et al. 2000; de Silva 2007). However, no detailed geochronology supports such 

rapid assembly rates. In contrast, a growing body of geochronological data indicate that 

pluton emplacement fluxes are too slow to develop large magma chambers (Annen 2009). 

The low magma fluxes during assembly of the Lamarck Granodiorite and the Muir 

and Whitney suites precluded the development of large, dominantly liquid magma chambers 

during construction. This interpretation is consistent with the concordance of zircon ages and 

titanite and hornblende dates, and thermal modeling presented in this study (Fig. 14). 

Modeling by Annen (2009) also suggests that such low fluxes are capable of maintaining no 

more than a few percent melt. This conclusion is supported by geophysical data from active 

volcanic regions that are never consistent with significant melt percentages being present in 

sub-volcanic magma chambers (Iyer 1984; Moran et al. 1999; Masturyono et al. 2001). If 

large magma chambers typically do not develop during pluton construction, the genetic 

relationship hypothesized to exist between zoned plutons and zoned ignimbrites is 

problematic and must be reevaluated (e.g., Hildreth 2004; Bachmann et al. 2007; Lipman 

2007).  

Several lines of evidence suggest that the link between plutonic and volcanic rocks 

may not be through huge ignimbrite eruptions, but rather through “typical” arc volcanism. 

Data from the Chilean Andes indicates that volcanic centers there record eruptive histories 
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comparable to the assembly time for zoned intrusive suites (e.g., Aucanquilcha 11 m.y.; 

Grunder et al. 2008). These centers are also similar in size to the zoned intrusive suites 

(approximately 3000 km2), and show similar patterns of compositional evolution through 

time (Grunder et al. 2008). Finally, although it is difficult to compare time scales, estimates 

of modern fill rates beneath Andean volcanoes made using InSAR are on the order of 0.05 

km3·yr-1 (Pritchard and Simons 2004). These rates are intermediate between estimates 

necessary for ignimbrite formation and estimates of pluton filling rates, but it seems likely 

that this short-term measurement overestimates long-term rates. Taken together, I 

hypothesize that “Sierran-type” zoned intrusive suites are actively forming beneath modern 

arc volcanoes, and that suites such as the Muir and the Whitney hold information about 

“typical” arc magmatism, rather than catastrophic ignimbrite events. 

Assembly of the Muir Suite and Regional Tectonics 

Slow pluton assembly of the Muir suite over at least 9 m.y. is consistent with passive 

emplacement mechanisms operating at rates comparable to lithospheric strain rates (Hutton 

1988; Tikoff and Teyssier 1992; Menand 2008). If magma intrusion is passive, the sequence, 

shapes, and timing of the intrusions are controlled by the regional structures and tectonics 

(Hutton 1988; Tikoff and Teyssier 1992). Therefore, pluton emplacement is fundamentally a 

tectonic matter because it is controlled by the ability of subduction processes to generate 

magma, and the lithosphere to make space to accommodate magma.  

Assembly of the Muir suite spans a shift in regional tectonics that occurred at the 

western margin of North America. Between approximately 105-90 Ma, throughout the 

central Sierra Nevada batholith deformational patterns define tectonic strain regimes that 

fluctuated between weakly extensional and weakly contractional (Tobisch et al. 1995). This 
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was followed by a shift to a transpressive and dextral strike-slip tectonic setting that was 

active between approximately 90-78 Ma (Tikoff and Teyssier 1992; Tobisch et al. 1995; 

Mahan et al. 2003).  

The pre-90 Ma tectonic setting of the central Sierra Nevada batholith is recorded 

within shear zones by solid state deformation adjacent to and within the Muir suite. 

Throughout the region, numerous steeply dipping reverse-sense shear zones were active from 

about 102-91 Ma (Tobisch et al. 1995; Mahan et al. 2003; Stearns and Bartley 2010). Plutons 

in the Muir suite preserve evidence for passive emplacement during this time interval. For 

example, the McDoogle Quartz Monzodiorite displays compelling evidence for emplacement 

as a series of vertical sheets into a steeply dipping reverse-sense shear zone during a period 

of relaxed horizontal compression or local dilation (Mahan et al. 2003; Bartley et al. 2008; 

Stearns and Bartley 2010). Similarly, field data suggest that the Lamarck Granodiorite, 

particularly in Dusy Basin, grew by crack-seal as a series of vertical sheets shortly after the 

McDoogle Quartz Monzodiorite (Gracely 2006). 

Following intrusion of these oldest portions of the Muir suite, by about 90 Ma, a shift 

in tectonism occurred in the central Sierra Nevada (Tikoff and Teyssier 1992; Tobisch et al. 

1995). Tikoff and Teyssier (1992) suggested that plutons in the central Sierra Nevada 

batholith, specifically the Mono Creek Granite, were emplaced passively into dilational areas 

during post 90 Ma transpressional deformation. This deformation occurred, in part, along the 

a shear zone that records dextral shear along the northeast edge of the Mono Creek Granite 

and crosses through the central Mono Creek Granite, Lake Edison Granodiorite, and the 

Lamarck Granodiorite (Lockwood and Lydon 1975; Tikoff and Teyssier 1992; Tobisch et al. 

1995; Saint Blanquat and Tikoff 1997). Similarly, north of the Muir suite, a segment of a 
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large unnamed shear zone, that was active prior to and during the emplacement of nearby 

plutons around 94-91 Ma, records dominant sub-vertical stretching and sub-horizontal 

shortening (Greene and Schweickert 1995).  

There is little direct evidence for a change in the style of pluton assembly in the Muir 

Suite that may reflect the change in regional tectonics that occurred around 90 Ma. Saint 

Blanquat and Tikoff (1997) suggested that the presence of sub-horizontal felsic dikes 

originating from the Mono Creek Granite indicated a regional vertical least compressive 

stress direction around 87 Ma, consistent with deformation in the shear zones. Additionally, 

several observations about the younger (post 93 Ma) plutons in eastern part of the Muir suite 

distinguish them from the older plutons in the west. There are distinct differences in the map 

patterns of pre- and post-93 Ma plutons of the Muir, including a change from well-

documented elongate sheeted dikes (Mahan et al. 2003; Gracely 2006) to more “bulbous”, 

nested units (Fig. 3; Bateman 1992). There are also clearly subhorizontal mafic units in the 

younger eastern Lamarck Granodiorite (Bateman 1992 in the region around Piute Pass) in 

contrast to dike-like units in the older western portions (Gracely 2006). Finally, extremely 

detailed mapping by Hathaway (2002) in the youngest parts of the Lamarck Granodiorite 

(approximately 92 Ma) indicate that some of the pluton was assembled by laccolith intrusion. 

Together, these data suggest that an apparent shift in intrusion geometry of Muir suite 

plutons after 93 Ma could be consistent with, and the result of, a shift in tectonic setting at 

about 90 Ma. 
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Post-Magmatic History of the Sierra Nevada-Peninsular Ranges Arc 

Late Cretaceous Cooling of the John Muir Intrusive Suite 

The combination of U-Pb crystallization ages, 40Ar/39Ar hornblende and biotite dates, 

and K-feldspar MDD thermal modeling enables a detailed evaluation the overall T-t history 

of the Muir suite (and by inference the central Sierra Nevada batholith). The complete 

cooling histories of samples from the Muir suite show two distinct inflections, and perhaps a 

third inflection that is poorly defined: the first is a time-transgressive (dependent on the age 

of the intrusion) slowing of cooling rates following intrusion, the second is a sudden 

acceleration of cooling that is reflected in all samples, an the third is a likely return to slow 

cooling (Fig. 20). The southern Muir suite region began accelerated cooling at about 77 Ma 

and the northern Muir suite region at about 76 Ma. Generally, thermal models indicate that 

cooling rates increased from less than 15°C·m.y-1 to about 50°C·m.y-1, and samples from 

both transects (Figs. 10 and 11) resided at temperatures around 150°C by 72 Ma. A 

compilation of Sierran-wide apatite (U-Th)/He dates from samples collected at elevations 

similar to those in this study (approximately 2500-3500 m a.s.l.) yields a weighted average 

date of 63 Ma (House 1997; House et al. 2001; Clark et al. 2005). Together with the MDD 

modeling, these data indicate the region likely underwent a period of decelerated cooling 

from 72 Ma to at least 63 Ma.   

Explanations for the onset of rapid cooling include cooling from below in response to 

shallow subduction with (Dumitru 1990; Grove et al. 2003) and without (Cross and Pliger 

1982; Gutscher et al. 2000) coincident removal of the subbatholith lithospheric mantle, and 

cooling from above in response to tectonic and erosional exhumation (Grove et al. 2003; 

Saleeby et al. 2007; Saleeby et al. 2010).  
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Fig. 20 Compilation of John Muir Intrusive Suite thermal histories. The complete cooling histories 
for samples show two distinct inflections: the first is a time-transgressive (dependent on the age of the 
intrusion) slowing of cooling rates following intrusion, and the second a sudden acceleration of 
cooling that is reflected in all samples at about 76 Ma. Error bars on individual minerals are 2-sigma. 
Envelopes in MDD models represent all modeled thermal histories meeting the fitting criteria of 
Quidelleur et al. (1997); whereas, black envelopes represent 90% confidence of the mean modeled 
thermal histories. Samples are color coordinated. Southern transect: Lamarck Granodiorite Db05-04-
blue; Lamarck Granodiorite Db04-05-red; Inconsolable Quartz Monzodiorite Dbk05-01-teal; 
McDoogle Quartz Monzodiorite Ms07-F8-green; Jurassic Tinemaha Granodiorite Jtn06-01-gray. 
Northern transect: Lamarck Granodiorite Kl07-01-blue; Lamarck Granodiorite Kl07-02-red; Lake 
Edison Granodiorite Kle07-05-green; Mono Creek Granite Km07-06-yellow; Mono Creek Granite 
Km07-08-orange; Jurassic quartz diorite of Pine Lake Pcp07-07-light gray. Estimated zircon 
saturation temperature (Watson and Harrison 1983) of 750°C is an average calculated from three 
whole rock compositions from samples of the Lamarck Granodiorite (Frost and Mahood 1987). 
Estimated titanite closure temperature 700-660°C after Scott and St-Onge (1995). Estimated 
hornblende closure temperature 580-490°C after Harrison (1981). Estimated biotite closure 
temperature 345-280°C after Harrison et al. (1985). Estimated zircon (U-Th)/He closure temperature 
190-170°C after Reiners et al. (2004).   
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Thermal modeling of fission-track data suggests the Sierran batholith could have 

rapidly cooled from below as a cold subducting plate shallowed and removed the overriding  

lithospheric mantle (Dumitru 1990). However, xenolith data from basalts erupted through the 

central Sierra Nevada indicate the preservation of a lithospheric mantle (Ducea and Saleeby 

1998; Saleeby et al. 2003). Saleeby (2003) argued that only regions in the southern Sierra 

Nevada batholith and Mojave Desert provide evidence for subbatholith lithosphere removal 

during Laramide time. Therefore, it seems unlikely that cooling from below in response to 

subbatholith lithospheric mantle removal is a possible mechanism responsible for the onset of 

rapid cooling throughout the entire region.  

Cross and Pilger (1982) suggested that an increase in the plate convergence rate can 

cause shallowing of the subducting plate and coeval arc migration. The period of time during 

and immediately following the cessation of Sierran and Peninsular Ranges magmatism is 

characterized by an increase in the rate of convergence between the North American and 

Farallon plates (to rates greater than 100 mm·yr-1; Engebretson et al. 1985). The rate increase 

potentially initiated a period of arc-wide shallow subduction, but not necessarily resulting in 

the removal of the subbatholith lithosphere. Prolonged shallowing of an oceanic plate can 

cool and thicken the overriding continental lithosphere (Cross and Pilger 1982; Gutscher et 

al. 2000). However, the time scale for this thermal perturbation to reach shallow crustal 

levels is far too long (hundreds of millions of years) to account for the rapid cooling 

documented in this study. 

The inflection points in the Muir suite T-t histories are therefore only consistent with 

cooling in response to exhumation (e.g., Harrison and Clarke 1979). Thermal modeling 

predicts that exhumation yields T-t histories characterized by rapid cooling as the sample 
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approaches the surface (Harrison and Clarke 1979). Thus, it appears that the central Sierra 

Nevada was characterized by rapid exhumation (cooling rates of up to 50˚C·m.y-1.) 

immediately following the cessation of magmatism in the Sierran arc. 

Late Cretaceous Cooling of the Sierra Nevada-Peninsular Ranges Arc 

House et al. (1997) combined helium age-elevation profiles from multiple Sierran and 

northern Peninsular Ranges transects and concluded that the batholiths had similar low-

temperature T-t histories during Late Cretaceous through mid-Cenozoic time. Using titanite 

and apatite fission track data, Dumitru (1990) determined that the central Sierra Nevada 

batholith cooled rapidly from above 270°C to below 95°C from 73-67 Ma, largely consistent 

with K-feldspar MDD modeling from this study. In the east-central Peninsular Ranges 

batholith, Grove et al. (2003) interpreted biotite dates and K-feldspar MDD modeling and 

suggested a major cooling event from approximately 78-68 Ma with a maximum average 

cooling rate of around 30°C·m.y-1. at about 73 Ma. Rocks in the far eastern part of the 

batholith recorded cooling rates up to 80°C·m.y-1. from about 76-72 Ma (Grove et al. 2003). 

Together, the data suggest that a Sierran-Peninsular Ranges-wide rapid cooling event 

commenced at around 76 Ma.  In contrast, Saleeby et al. (2007) document a very similar 

rapid cooling event in the southern Sierra Nevada batholith, but at a significantly earlier time 

(100˚C·m.y-1. peaking at approximately 95 Ma). These authors also attributed the cooling to a 

rapid exhumation event. 

In support of a rapid exhumation event across the Sierran and Peninsular Ranges arcs, 

sedimentological data indicate that thick sequences of eroded debris were shed to westward 

from the Cordilleran arc during the Late Cretaceous. A dramatic increase in the deposition of 

K-feldspar-rich detritus in the forearc basin led Mansfield (1979) to suggest that significant 
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erosion of plutonic rocks occurred very late in the Cretaceous. Wakabayashi and Sawyer 

(2001) inferred that high accumulation rates of sediment shed from the central Sierra Nevada 

throughout the Late Cretaceous were likely related to accelerated erosion caused by uplift. 

Finally, regional erosional surfaces throughout the Peninsular Ranges batholith suggest 

significant exhumation during the Late Cretaceous (Kies and Abbott 1983). Thus, a variety 

of independent data support Late Cretaceous exhumation as the likely cause of rapid cooling 

documented in plutonic rocks. 

The 20 m.y. difference in the timing of cooling between the southern Sierra Nevada, 

and the central Sierras and Peninsular Ranges seems significant. Although cooling in the 

southern Sierras has been attributed to extensional unroofing (Bartley et al. 2007; Saleeby et 

al. 2007) this same unroofing event cannot entirely account for the cooling in the central 

Sierras and Peninsular Ranges because the rocks in the southern Sierra are derived from 

significantly deeper structural levels (8-10 kbar; Saleeby et al. 2007) than the others 

(typically < 3 kbar). Unroofing alone should have caused cooling in the shallow rocks before 

the deep rocks, not 20 m.y. later. Consequently, I suggest that a significant component of the 

rapid cooling in the southern Sierra Nevada is likely to have been driven from below. Unlike 

the central Sierras and Peninsular Ranges, where there is good evidence for preservation of 

the lithospheric mantle during flat slab subduction, the occurrence of the Rand Schist 

adjacent to the southern Sierras strongly supports tectonic erosion of the mantle lithosphere 

in that region during the late Cretaceous. 



 

 
 

6. CONCLUSIONS 

Zircon U-Pb geochronology results indicate that the John Muir Intrusive Suite was 

assembled over at least 9 m.y. from 96 and 87 Ma and the Mount Whitney Intrusive Suite 

was assembled over at least 7 m.y. from 90 to 83 Ma. Assembly over millions of years favors 

the development of the intrusive suites, and the individual plutons within them, as a series of 

incrementally emplaced intrusions. Bulk mineral thermochronology indicate complicated 

cooling histories that were typically rapid immediately following intrusion, followed by slow 

cooling as temperatures were maintained between hornblende and biotite closure throughout 

assembly of the suites. K-feldspar MDD thermal modeling suggests that all of the plutons, 

and perhaps the entire central Sierra Nevada batholith, then experienced a period of 

accelerated cooling that began at approximately 76 Ma. This episode of cooling may be 

related to well-documented rapid cooling elsewhere in the western US Cordillera. Cooling in 

the central Sierra Nevada and northern Peninsular Ranges likely resulted from rapid 

exhumation. However, in the southern Sierra Nevada, cooling by exhumation was likely 

enhanced by cooling from below following tectonic erosion of the lithospheric mantle during 

an episode of shallow subduction that ultimately led to the Laramide Orogeny.  

The high density of U-Pb zircon geochronology for rocks in the Muir and Whitney 

suites permits reasonable estimates of long-term magma flux during assembly of the suites. 

Estimated pluton assembly rates for the Muir suite and one of its members, the Lamarck 

Granodiorite, as well as the Whitney suite, are on the order of 0.0010-0.0025 km3·yr-1, 

similar to independent estimates of assembly rates from elsewhere. Thermal modeling 
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reveals that assembly of plutons at such slow rates results in a persistently low melt fraction 

present. Therefore, it is unlikely that the Whitney Suite or the Muir suite or the Lamarck 

Granodiorite ever existed as large, high-melt fraction magma chambers. This result is 

consistent with geophysical data for magma zones beneath active arcs, but is sharply at odds 

with petrologic models that place heavy emphasis on processes such as stoping and crystal 

settling in shallow magma chambers, and the concept that zoned intrusive suites are 

genetically linked with large silicic ignimbrite eruptions.  
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TABLES 
 
 

Table 1 Thermal model input parameters 
      
Parameter Symbol Units Layer1 Layer 2 Magma 
      
Density ρ kg·m-1 2450 2690 2475 
      
Specific Heat Cp J·kg-1·K-1 1000 1000 1150 
      
Thermal conductivity k W·m-1·K-1 1.7 3.1 1.4 
      
Radiogenic heating rate A μW·m-3 1.5 2.0 1.4 
      
Initial geothermal gradient dT/dz °C·km-1 35 18 - 
      
Grid spacing Δx m 250 250 - 
      
Layer thickness zi m 5000 30000 - 
      
Intrusion thickness - m - - 250 
      
Intrusion temperature - °C - - 850 
      
Solidus temperature - °C - - 750 
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Table 2 Zircon (U-Th)/He thermochronology 

Sample Date a 
[Ma] 

± b 
[Ma] 

U 
(ppm) 

Th 
(ppm) Th/U He 

(nmol/g) 
mass 
(μg) Ft c 

         
Lamarck Granodiorite 
Db0405-1 73.6 5.9 321.0 163.3 0.5 117.2 11.9 0.82 
Db0405-2 77.4 7.0 260.7 141.8 0.5 98.9 9.7 0.80 
Db0405-3 75.7 6.1 240.4 127.6 0.5 86.0 7.6 0.78 
Db0405d 75.6 6.3 274.0 144.3 0.5 100.7 9.7 0.80 
         
Lamarck Granodiorite 
Db05-04-1 76.2 6.9 340.4 172.7 0.5 112.2 3.4 0.73 
Db05-04-2 69.6 5.6 445.6 145.8 0.3 130.8 3.2 0.72 
Db05-04-3 71.1 5.7 286.1 156.0 0.5 93.9 5.3 0.76 
Db05-04d 72.3 6.1 357.3 158.1 0.5 112.3 4.0 0.74 
         
Inconsolable Quartz Diorite 
Dbk0501-1 76.7 6.1 121.6 44.6 0.4 46.5 19.9 0.85 
Dbk0501-2 74.7 6.0 189.6 98.2 0.5 67.0 8.0 0.78 
Dbk0501-3 69.1 3.9 164.8 151.2 0.9 63.5 13.3 0.82 
Dbk0501d 73.5 5.3 158.7 98.0 0.6 59.0 13.7 0.81 
         
Tinemaha Granodiorite 
Jtn06-01-1 65.9 5.3 333.9 215.5 0.6 102.5 4.8 0.75 
Jtn06-01-2 72.2 5.8 340.9 204.3 0.6 120.7 8.6 0.79 
Jtn06-01-3 73.1 5.8 414.4 225.5 0.5 143.0 6.5 0.77 
Jtn06-01d 70.4 5.6 363.1 215.1 0.6 122.1 6.6 0.77 
         
Whitney Granodiorite 
Wp03-07-1 75.8 6.1 724.0 404.0 0.6 232.0 2.2 0.69 
Wp03-07-2 75.0 6.0 597.9 312.8 0.5 188.7 2.2 0.69 
Wp03-07-3 73.2 5.9 383.2 252.5 0.7 122.5 2.5 0.70 
Wp03-07d 74.6 6.0 568.4 323.1 0.6 181.0 2.3 0.69 
         
Paradise Granodiorite  
Pp02-12-1 81.2 6.5 759.7 512.8 0.7 288.9 5.0 0.75 
Pp02-12-2 82.4 6.6 422.5 246.6 0.6 165.7 6.4 0.77 
Pp02-12-3 87.9 7.0 268.1 168.2 0.6 114.9 7.4 0.78 
Pp02-12d 83.8 6.7 483.4 309.2 0.6 189.8 6.3 0.77 
         
a Ages corrected for alpha-ejection (Farley et al. 1996) 
b Errors reported at 2-sigma  
c Ft denotes retained fraction of He (Farley et al. 1996) 
d Date determined from the mean value of 3 zircon aliquots 
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Table 3   40Ar/39Ar date comparisons for the John Muir and Mount Whitney Intrusive Suites 
and associated wall rock 
Pluton Sample ID Mineral Date  Date 
   (Ma)a (Ma)b c 
Inconsolable  Dbk05-01 hornblende d 94.5 ± 0.6 95.4 ± 0.7 
Qtz-monzodiorite  biotite e 86.6 ± 0.3 87.4 ± 0.5 

 
Lamarck Granodiorite Db05-04 hornblende d 93.1 ± 0.4 94.0 ± 0.6 
  biotite d 84.8 ± 0.2 85.6 ± 0.5 

 
Lamarck Granodiorite  Db04-05 biotite e 83.2 ± 0.2 84.0 ± 0.5 

 
McDoogle  Ms07-F8 biotite d 83.0 ± 0.2 83.8 ± 0.5 
Qtz-monzodiorite     

 
Lake Edison  Kle07-05 hornblende d 88.2 ± 1.0 89.0 ± 1.0 
Granodiorite  biotite d 82.3 ± 0.4 83.1 ± 0.4 

 
Mono Creek Granite Km07-06 biotite e 81.3 ± 0.2 82.1 ± 0.5 

 
Mono Creek Granite Km07-08 biotite e 81.3 ± 0.2 82.1 ± 0.5 
     
granodiorite of  S-21 hornblende d 89.5 ± 1.8 90.4 ± 1.9 
Sugarloaf  biotite e 86.9 ± 0.4 87.7 ± 0.6 
     
Paradise Granodiorite Pp02-12 hornblende d 86.8 ± 0.8 87.6 ± 1.0 
  biotite f 85.2 ± 0.2 86.0 ± 0.5 
     
Paradise Granodiorite Pp03-09 hornblende d 84.4 ± 0.4 85.2 ± 0.6 
  biotite d 82.2 ± 0.2 83.0 ± 0.5 
     
Whitney Granodiorite Wp03-07 hornblende d 83.6 ± 0.6 84.4 ± 0.7 
  biotite e 83.5 ± 0.2 84.3 ± 0.5 
     
Bullfrog Granite  Kb06-02 hornblende e 89.7 ± 0.4 90.6 ± 0.6 
  biotite d 86.8 ± 0.6 87.6 ± 0.8 
     
Jurassic-Triassic mafics Jtrm06-02  hornblende e 89.2 ± 0.8 90.1 ± 0.9 
  biotite d 84.3 ± 0.4 85.1 ± 0.6 
     
quartz diorite of Pine Lake Pcp07-07 hornblende d 85.4 ± 0.3 86.2 ± 0.6 
  biotite e 78.7 ± 0.2 79.5 ± 0.5 
     
Tinemaha Granodiorite Jtn06-01 hornblende e 115.5 ± 0.4 116.6 ± 0.7 
  biotite d 83.8 ± 0.4 84.6 ± 0.6 
     
Tinemaha Granodiorite Jtn07-09 hornblende e 142.8 ± 0.6 144.1 ± 1.0 
  biotite d 87.1 ± 0.4 87.9 ± 0.6 
     
Tinemaha Granodiorite Jtn07-11 hornblende e 153.0 ± 0.6 154.4 ± 1.0 
  biotite d 89.8 ± 0.2 90.7 ± 0.5 
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 Errors reported at 2-sigma 
 a Ar dates calculated using Fish Canyon standard age of 28.02 Ma (Renne et al., 1998) and 
λ40Ktotal = 5.543e-10yr-1 (Steiger and Jäger, 1977). Errors incorporate analytical and J-value 
uncertainties 
 b Ar dates calculated using Fish Canyon standard age of 28.293 ± 0.046 Ma (Renne et al., 
2009) and λ40Kε= 5.7926 ± 0.0066e-11yr-1 (Renne et al., 2009) and λ40Kβ  = 4.9647 ± 0.0109e-

10yr-1 (Renne et al., 2009). Errors incorporate analytical, J-value, 40K decay constant, and Fish 
Canyon flux monitor age uncertainties 
 c Dates recalculated using EARTHTIME Ar tool: http://www.earth-time.org/ar-ar.html  
 d Dates from inverse isochron 
 e Dates from weighted average of all heating steps 
 f Dates from plateau 
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Table 4 Compilation of U-Pb, K-Ar, and (U-Th)/He data used to determine T-t histories for the 
John Muir and Mount Whitney Intrusive Suites and associated wall rocks  
Pluton Sample ID Mineral  Age/Date 
    (Ma) a 
Inconsolable  Dbk05-01 zircon  95.5 ± 0.3 
Qtz-monzodiorite  hornblende b  95.4 ± 0.7 
  biotite c  87.4 ± 0.5 
  (U-Th)/He zircon d  73.5 ± 5.3 

 
Lamarck Granodiorite Db05-04 zircon  94.1 ± 0.2 
  hornblende b  94.0 ± 0.6 
  biotite b  85.6 ± 0.5 
  (U-Th)/He zircon d  72.3 ± 6.1 

 
Lamarck Granodiorite Db04-05 zircon  94.2 ± 0.2 
  biotite c  84.0 ± 0.5 
  (U-Th)/He zircon d  75.6 ± 6.3 

 
McDoogle  Ms07-F8 zircon  95.2 - 94.6 
Qtz-monzodiorite  titanite  95.3 ± 0.5 
  biotite b  83.8 ± 0.5 

 
Lake Edison  Kle07-05 zircon  88.8 ± 0.1 
Granodiorite  hornblende b  89.0 ± 1.0 
  biotite b  83.1 ± 0.4 

 
Mono Creek Granite Km07-06 zircon  87.2 – 83.4 
  biotite c  82.1 ± 0.5 

 
Mono Creek Granite Km07-08 biotite c  82.1 ± 0.5 
     
granodiorite of  S-21 zircon  90.6 ± 0.1 
Sugarloaf  hornblende b  90.4 ± 1.9 
  biotite c  87.7 ± 0.6 
     
Paradise Granodiorite Pp02-12 zircon  86.4 ± 0.1 
  hornblende b  87.6 ± 1.0 
  biotite e  86.0 ± 0.5 
  (U-Th)/He zircon d  83.8 ± 6.7 
     
Paradise Granodiorite Pp03-09 hornblende b  85.2 ± 0.6 
  biotite b  83.0 ± 0.5 
     
Whitney Granodiorite Wp03-07 zircon  84.8 ± 0.1 
  hornblende b  84.4 ± 0.7 
  biotite c  84.3 ± 0.5 
  (U-Th)/He zircon d  74.6 ± 6.0 
     
Bullfrog Granite Kb06-02 zircon  100.2 ± 0.3 
  hornblende c  90.6 ± 0.6 
  biotite b  87.6 ± 0.8 
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Jurassic-Triassic mafics Jtrm06-02 zircon  146.1 – 144.9 
  hornblende c  90.1 ± 0.9 
  biotite b  85.1 ± 0.6 
     
quartz diorite of Pine Lake Pcp07-07 zircon  180.7 ± 0.3 
  hornblende b  86.2 ± 0.6 
  biotite c  79.5 ± 0.5 
     
Tinemaha Granodiorite Jtn06-01 hornblende c  116.6 ± 0.7 
  biotite b  84.6 ± 0.6 
  (U-Th)/He zircon d  70.4 ± 5.6 
     
Tinemaha Granodiorite Jtn07-09 hornblende c  144.1 ± 1.0 
  biotite b  87.9 ± 0.6 
     
Tinemaha Granodiorite Jtn07-11 hornblende c  154.4 ± 1.0 
  biotite b  90.7 ± 0.5 

 
 Errors reported at 2-sigma 
 a Ar dates calculated using Fish Canyon standard age of 28.293 ± 0.046 Ma (Renne et al., 
2009) and λ40Kε= 5.7926 ± 0.0066e-11yr-1 (Renne et al., 2009) and λ40Kβ  = 4.9647 ± 0.0109e-

10yr-1 (Renne et al., 2009). Errors incorporate analytical, J-value, 40K decay constant, and Fish 
Canyon flux monitor age uncertainties 
 b Dates from inverse isochron 
 c Dates from weighted average of all heating steps 
 d  Date determined from the mean value of 3 zircon aliquots 
 e Dates from plateau 
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ID Temp 40Ar/39Ar 37Ar/39Ar 36Ar/39Ar 39ArK K/Ca   40Ar* 39Ar   Age   ±1s   

(°C) (x 10-3)  (x 10-15 mol) (%)   (%)   (Ma)   (Ma)   

Dbk05-01 am1, Amphibole, 3.59 mg, J=0.0036114±0.09%, D=1.002±0.001, NM-194C,  Lab#=56123-02

A 800 57.06 1.093 100.611 0.212 0.467 48.1 0.9 170.5 8.4
B 900 19.16 1.840 9.871 0.166 0.277 85.6 1.6 103.9 10.2
C 1000 17.36 6.440 8.573 2.678 0.079 88.6 13.1 97.9 0.7
D 1030 15.53 6.199 3.637 14.824 0.082 96.5 76.8 95.4 0.2
E 1050 15.55 5.660 10.705 0.382 0.090 82.8 78.4 82.2 4.6
F 1070 15.62 5.779 12.168 0.360 0.088 80.2 80.0 80.0 4.6
G 1090 17.83 6.203 11.320 0.497 0.082 84.2 82.1 95.6 3.0
H 1120 15.74 6.742 5.605 1.057 0.076 93.2 86.7 93.5 1.5
I 1300 16.01 6.589 5.049 2.734 0.077 94.2 98.4 96.1 0.7
J 1700 36.94 8.421 73.846 0.375 0.061 42.8 100.0 100.8 4.7
Integrated n=10 K2O=0.69% 95.9 0.3
Plateau steps D, G-J n=5 MSWD=0.81 95.5 0.2
Isochron steps D, G-J n=5 MSWD=0.79 40Ar/36Ar=    300±20 94.5 0.3

Db05-04 am1, Amphibole, 1120 mg, J=0.0007864±0.06%, D=1.004±0.001, NM-215C,  Lab#=57615-01

A 800 108.13 0.354 132.278 0.711 1.442 63.9 4.5 95.5 1.1
B 900 73.70 0.638 44.088 0.520 0.800 82.4 7.7 84.2 1.3
C 1000 80.49 4.507 59.646 0.930 0.113 78.6 13.5 87.8 0.9
D 1020 84.12 9.968 55.521 1.229 0.051 81.5 21.2 95.3 0.7
E 1040 73.68 9.344 26.083 3.569 0.055 90.6 43.6 92.9 0.3
F 1060 69.41 8.550 9.912 3.122 0.060 96.8 63.2 93.4 0.4
G 1120 69.09 8.779 11.810 1.426 0.058 96.0 72.1 92.3 0.6
H 1180 69.87 10.621 13.221 1.599 0.048 95.7 82.1 93.1 0.5
I 1250 74.45 9.943 25.894 2.369 0.051 90.8 97.0 94.1 0.4
J 1650 254.77 11.583 625.414 0.480 0.044 27.8 100.0 98.7 2.9
Integrated n=10 K2O=0.01% 93.0 0.3
Plateau steps E-J n=6 MSWD=2.30 93.2 0.3
Isochron steps E-J n=6 MSWD=2.00 40Ar/36Ar=    302±7 93.1 0.2

40Ar/39Ar analytical data

Appendix 2:
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ID Temp 40Ar/39Ar 37Ar/39Ar 36Ar/39Ar 39ArK K/Ca   40Ar* 39Ar   Age   ±1s   

(°C) (x 10-3)  (x 10-15 mol) (%)   (%)   (Ma)   (Ma)   

Kle07-05 am1, Amphibole, 5.4 mg, J=0.00225±0.06%, D=1.002±0.001, NM-212A,  Lab#=57409-01

A 800 30.38 0.415 36.091 4.743 1.229 65.0 10.9 78.5 1.1
B 900 25.84 0.277 20.929 2.250 1.844 76.1 16.0 78.1 2.0
C 1000 23.02 1.370 9.694 2.723 0.372 88.0 22.2 80.5 1.0
D 1050 26.50 4.457 21.242 2.360 0.114 77.7 27.6 81.9 1.0
E 1080 23.81 7.231 7.768 18.255 0.071 92.9 69.4 88.0 0.3
F 1100 22.80 5.168 5.153 2.875 0.099 95.2 76.0 86.3 0.7
G 1120 23.14 6.464 5.546 2.070 0.079 95.2 80.8 87.7 1.1
H 1140 24.21 7.310 8.821 1.429 0.070 91.9 84.0 88.5 1.5
I 1160 23.17 7.626 12.572 0.935 0.067 86.7 86.2 80.2 2.2
J 1220 23.54 8.725 7.888 2.022 0.058 93.2 90.8 87.4 1.0
K 1650 26.65 7.772 19.129 4.018 0.066 81.2 100.0 86.2 0.8
Integrated n=11 K2O=1.38% 85.2 0.3
Plateau steps E-H, J-K n=6 MSWD=1.70 87.6 0.3
Isochron steps E-H, J-K n=6 MSWD=2.00 40Ar/36Ar=    280±30 88.2 0.5

Db04-05 bt1, Biotite, 6.93 mg, J=0.0007983±0.07%, D=1.004±0.001, NM-208A,  Lab#=57125-01

A 650 128.63 0.127 312.206 0.445 4.012 28.3 1.0 51.7 1.2
B 750 64.83 0.012 26.073 4.345 43.368 88.1 10.9 80.5 0.2
C 850 61.04 0.007 4.790 9.064 76.049 97.7 31.5 83.9 0.1
D 920 61.69 0.008 6.239 4.796 60.391 97.0 42.4 84.2 0.2
E 1000 63.40 0.014 15.264 4.455 37.734 92.9 52.5 82.9 0.2
F 1075 62.46 0.009 10.462 6.319 54.170 95.1 66.8 83.5 0.2
G 1110 61.17 0.014 6.058 4.673 36.673 97.1 77.5 83.6 0.2
H 1180 61.66 0.030 6.137 5.490 17.046 97.1 89.9 84.2 0.2
I 1210 61.30 0.097 3.817 3.306 5.250 98.2 97.4 84.7 0.2
J 1250 61.88 0.538 5.291 0.907 0.948 97.5 99.5 84.9 0.3
K 1300 68.82 1.290 29.327 0.120 0.396 87.6 99.8 84.8 1.5
L 1700 86.02 1.214 85.353 0.098 0.420 70.8 100.0 85.7 2.0
Integrated n=12 K2O=3.06% 83.2 0.1
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ID Temp 40Ar/39Ar 37Ar/39Ar 36Ar/39Ar 39ArK K/Ca   40Ar* 39Ar   Age   ±1s   

(°C) (x 10-3)  (x 10-15 mol) (%)   (%)   (Ma)   (Ma)   

Kle07-05 bt1, Biotite, 7.3 mg, J=0.0022504±0.06%, D=1.003±0.0011, NM-212A,  Lab#=57408-01

A 625 42.45 0.136 99.240 6.470 3.754 30.9 0.7 52.5 1.0
B 700 24.73 0.017 19.049 17.646 29.872 77.2 2.6 75.9 0.4
C 750 21.62 0.007 4.588 47.743 68.215 93.7 7.8 80.4 0.2
D 800 21.01 0.005 1.498 83.901 106.361 97.9 16.9 81.6 0.1
E 875 20.95 0.004 0.970 107.860 132.410 98.6 28.6 82.0 0.1
F 975 21.17 0.006 1.305 130.256 82.004 98.2 42.7 82.4 0.1
G 1075 21.08 0.012 1.211 168.239 43.798 98.3 61.0 82.2 0.1
H 1250 20.93 0.050 0.600 324.198 10.174 99.2 96.1 82.3 0.1
I 1700 21.20 0.672 2.382 35.694 0.759 96.9 100.0 81.6 0.2
Integrated n=9 K2O=21.56% 81.7 0.1
Plateau steps F-H n=3 MSWD=1.37 82.3 0.1
Isochron steps F-H n=3 MSWD=2.44 40Ar/36Ar=    304±54 82.3 0.2

Km07-06 bt1, Biotite, 6.9 mg, J=0.0022529±0.07%, D=1.003±0.0011, NM-212A,  Lab#=57411-01

A 625 53.07 0.266 144.116 3.452 1.919 19.8 0.5 42.2 1.7
B 700 27.61 0.029 28.600 14.142 17.582 69.4 2.5 76.2 0.4
C 750 21.78 0.009 5.197 40.705 58.699 93.0 8.1 80.4 0.2
D 800 20.88 0.004 1.413 75.586 117.006 98.0 18.7 81.3 0.1
E 875 20.74 0.004 0.876 109.824 118.854 98.8 34.0 81.3 0.1
F 975 20.83 0.008 0.905 124.189 63.196 98.7 51.3 81.7 0.1
G 1075 21.00 0.019 1.043 123.022 26.216 98.5 68.4 82.2 0.1
H 1250 20.73 0.091 0.548 192.174 5.582 99.3 95.2 81.7 0.1
I 1700 20.78 0.441 1.334 34.717 1.157 98.3 100.0 81.1 0.1
Integrated n=9 K2O=17.74% 81.3 0.1

Km07-08 bt1, Biotite, 8.8 mg, J=0.0007963±0.10%, D=1.0032±0.0012, NM-215A,  Lab#=57602-01

A 625 69.09 0.062 87.318 4.052 8.241 62.7 2.5 61.1 0.4
B 700 58.68 0.007 3.478 22.330 78.358 98.2 16.6 81.0 0.1
C 750 58.27 0.004 0.537 20.107 127.024 99.7 29.2 81.6 0.1
D 800 58.70 0.004 1.271 18.387 128.476 99.4 40.8 81.9 0.1
E 875 59.30 0.008 2.284 19.268 66.091 98.9 52.9 82.3 0.1
F 975 59.44 0.015 1.874 30.046 35.169 99.1 71.8 82.7 0.2
G 1075 58.87 0.027 2.271 28.529 18.631 98.9 89.7 81.7 0.2
H 1250 64.02 0.253 20.048 16.386 2.015 90.8 100.0 81.6 0.2
Integrated n=8 K2O=8.72% 81.3 0.1
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ID Temp 40Ar/39Ar 37Ar/39Ar 36Ar/39Ar 39ArK K/Ca   40Ar* 39Ar   Age   ±1s   

(°C) (x 10-3)  (x 10-15 mol) (%)   (%)   (Ma)   (Ma)   

Db05-04 bt1, Biotite, 7.1 mg, J=0.0007992±0.08%, D=1.0032±0.0012, NM-215A,  Lab#=57604-01

A 625 85.09 0.043 116.660 1.552 11.930 59.5 0.8 71.5 1.0
B 700 61.73 0.004 9.883 25.131 116.291 95.3 14.4 82.9 0.2
C 750 60.31 0.003 0.690 26.267 189.907 99.7 28.5 84.6 0.1
D 800 60.64 0.003 1.454 11.572 163.753 99.3 34.8 84.8 0.2
E 875 61.09 0.004 2.260 19.358 139.480 98.9 45.2 85.1 0.1
F 975 60.92 0.005 2.474 33.731 94.517 98.8 63.4 84.8 0.2
G 1075 60.76 0.012 2.085 43.719 44.190 99.0 86.9 84.7 0.2
H 1250 63.94 0.257 12.217 24.278 1.983 94.4 100.0 85.0 0.2
Integrated n=8 K2O=12.56% 84.4 0.1
Plateau steps C-H n=6 MSWD=1.40 84.8 0.1
Isochron steps C-H n=6 MSWD=1.30 40Ar/36Ar=    312±12 84.8 0.1

Ms07-F8 bt1, Biotite, 6.6 mg, J=0.0008012±0.10%, D=1.0032±0.0012, NM-215A,  Lab#=57605-01

A 625 174.22 0.040 461.920 2.524 12.871 21.7 1.5 53.7 1.4
B 625 60.67 0.009 26.846 1.587 56.676 86.9 2.4 74.7 0.7
C 700 59.74 0.004 10.552 12.327 118.674 94.8 9.7 80.0 0.2
D 750 58.98 0.003 1.818 16.330 163.611 99.1 19.3 82.6 0.2
E 800 60.00 0.002 3.820 15.645 205.810 98.1 28.6 83.2 0.2
F 875 60.03 0.005 4.426 24.628 108.051 97.8 43.1 83.0 0.1
G 975 59.64 0.005 2.800 42.786 93.920 98.6 68.3 83.1 0.1
H 1025 59.30 0.010 2.190 15.448 53.617 98.9 77.4 82.9 0.2
I 1075 59.48 0.020 2.037 15.670 25.196 99.0 86.7 83.2 0.2
J 1150 59.56 0.163 2.838 16.689 3.128 98.6 96.5 83.0 0.2
K 1200 63.19 0.472 14.085 4.666 1.081 93.5 99.3 83.4 0.3
L 1300 129.75 0.126 241.418 1.224 4.047 45.0 100.0 82.5 1.2
Integrated n=12 K2O=12.31% 82.3 0.2
Plateau steps E-L n=8 MSWD=0.75 83.0 0.1
Isochron steps E-L n=8 MSWD=1.90 40Ar/36Ar=    296±4 83.0 0.1

88



ID Temp 40Ar/39Ar 37Ar/39Ar 36Ar/39Ar 39ArK K/Ca   40Ar* 39Ar   Age   ±1s   

(°C) (x 10-3)  (x 10-15 mol) (%)   (%)   (Ma)   (Ma)   

Dbk05-01, Biotite, 3.16 mg, J=0.0036195±0.09%, D=1.002±0.001, NM-194C,  Lab#=56124-01

A 650 22.90 0.0612 55.54 2.26 8.3 28.3 0.7 41.8 1.5
B 750 14.62 0.0071 4.574 31.8 72.1 90.8 10.8 84.6 0.2
D 920 14.19 0.0066 1.538 95.1 77.4 96.8 41.0 87.5 0.1
E 1000 14.42 0.0157 2.479 58.5 32.6 94.9 59.6 87.2 0.2
F 1075 13.98 0.0270 1.338 66.9 18.9 97.2 80.8 86.6 0.2
G 1110 14.00 0.0141 1.116 31.2 36.2 97.7 90.7 87.1 0.2
H 1180 13.99 0.0727 0.6939 28.2 7.0 98.6 99.7 87.8 0.2
I 1210 14.60 0.2206 8.249 1.05 2.3 83.4 100.0 77.8 1.5
Integrated n=8 K2O=10.58% 86.6 0.1

Wp03-07 bt1, Biotite, 4.47 mg, J=0.0036036±0.05%, D=1.002±0.001, NM-194C,  Lab#=56121-01

A 650 40.44 0.3859 120.0 1.72 1.3 12.4 0.3 32.2 1.7
B 750 16.08 0.0174 11.58 25.7 29.4 78.7 5.4 80.4 0.2
C 850 13.68 0.0073 1.751 49.7 70.1 96.2 16.7 83.6 0.1
D 920 13.63 0.0111 0.9596 32.4 46.0 97.9 25.5 84.7 0.2
E 1000 14.01 0.0178 1.732 44.5 28.6 96.4 40.1 85.6 0.1
F 1075 13.50 0.0244 0.9109 51.5 20.9 98.0 61.7 84.0 0.1
G 1110 13.48 0.0306 1.128 26.5 16.7 97.5 75.7 83.5 0.2
H 1180 13.35 0.2496 0.7661 32.9 2.0 98.5 96.9 83.4 0.2
I 1210 13.36 0.3383 0.7672 4.30 1.5 98.5 100.0 83.5 0.4
Integrated n=9 K2O=6.42% 83.5 0.1

S-21 bt1, Biotite, 5.67 mg, J=0.0036311±0.12%, D=1.002±0.001, NM-194C,  Lab#=56126-01

A 650 41.33 0.0270 107.5 7.38 18.9 23.1 1.3 61.5 1.1
B 750 15.81 0.0060 8.199 67.1 85.2 84.7 13.2 85.6 0.2
C 850 14.01 0.0059 0.7366 128.2 86.7 98.5 35.9 88.1 0.1
D 920 14.06 0.0097 0.9469 67.4 52.4 98.0 47.8 88.0 0.1
E 1000 14.09 0.0221 1.668 74.8 23.1 96.5 61.0 86.9 0.1
F 1075 13.91 0.0524 1.298 85.7 9.7 97.3 76.2 86.5 0.1
G 1110 14.01 0.0248 1.385 43.7 20.5 97.1 83.9 86.9 0.2
H 1180 13.94 0.0614 0.5547 71.3 8.3 98.9 96.6 88.0 0.1
I 1210 13.96 0.2241 1.612 19.5 2.3 96.7 100.0 86.3 0.2
Integrated n=9 K2O=10.54% 86.9 0.2
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ID Temp 40Ar/39Ar 37Ar/39Ar 36Ar/39Ar 39ArK K/Ca   40Ar* 39Ar   Age   ±1s   

(°C) (x 10-3)  (x 10-15 mol) (%)   (%)   (Ma)   (Ma)   

Pp02-12 bt1, Biotite, 4.66 mg, J=0.0036152±0.07%, D=1.002±0.001, NM-194C,  Lab#=56129-01

A 0 -47.3748 8.220 -453.7827 0.004 0.062 -184.5 0.0 497.8 316.2
B 750 14.32 0.0105 5.262 33.9 48.5 89.1 8.5 81.3 0.2
C 850 13.53 0.0050 0.5542 79.1 102.6 98.8 28.5 85.1 0.1
D 920 13.50 0.0099 0.4602 64.4 51.7 99.0 44.7 85.1 0.2
E 1000 13.61 0.0094 0.6449 80.7 54.4 98.6 65.0 85.4 0.1
F 1075 13.46 0.0138 0.5302 83.8 36.9 98.8 86.1 84.7 0.1
G 1110 13.48 0.0301 0.8424 29.8 17.0 98.2 93.6 84.3 0.2
H 1180 13.44 0.2689 0.4184 22.0 1.9 99.2 99.1 84.9 0.3
I 1210 13.71 0.5695 2.973 3.50 0.90 93.9 100.0 82.1 0.7
Integrated n=9 K2O=9.05% 84.6 0.1
Plateau steps C-E n=3 MSWD=2.22 85.2 0.1

S-21 am1, Amphibole, 11.77 mg, J=0.0036269±0.11%, D=1.002±0.001, NM-194C,  Lab#=56125-01

A 750 28.52 0.3571 49.32 1.81 1.4 49.0 2.1 89.2 1.7
B 850 14.54 0.1647 3.488 4.42 3.1 93.0 7.1 86.3 0.6
C 920 14.51 0.5154 3.856 2.67 0.99 92.4 10.2 85.7 0.8
D 970 14.81 1.182 5.003 2.26 0.43 90.7 12.8 85.8 0.9
E 1000 15.84 3.611 8.554 2.38 0.14 85.9 15.5 87.1 1.0
F 1030 16.86 7.016 9.945 11.1 0.073 86.1 28.2 92.9 0.3
G 1060 14.98 5.656 4.246 42.3 0.090 94.8 76.5 90.9 0.2
H 1090 14.72 4.729 3.361 7.25 0.11 96.0 84.8 90.4 0.3
I 1120 14.72 3.932 4.308 2.62 0.13 93.6 87.8 88.2 0.8
J 1150 14.89 6.850 4.871 3.29 0.074 94.2 91.6 89.9 0.7
K 1300 15.56 7.621 6.420 6.15 0.067 91.9 98.6 91.6 0.5
L 1700 23.17 9.279 36.01 1.21 0.055 57.4 100.0 85.5 1.9
Integrated n=12 K2O=0.79% 90.2 0.2
Plateau steps G-H,J-K n=4 MSWD=1.81 90.8 0.2
Isochron steps G-H,J-K n=4 MSWD=1.10 40Ar/36Ar=    380±100 89.5 0.9
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ID Temp 40Ar/39Ar 37Ar/39Ar 36Ar/39Ar 39ArK K/Ca   40Ar* 39Ar   Age   ±1s   

(°C) (x 10-3)  (x 10-15 mol) (%)   (%)   (Ma)   (Ma)   

Pp02-12 am1, Amphibole, 8 mg, J=0.0036233±0.10%, D=1.002±0.001, NM-194C,  Lab#=56128-01

A 800 69.08 1.270 176.8 0.775 0.40 24.5 2.4 107.6 3.4
B 900 22.11 1.105 31.44 0.892 0.46 58.4 5.1 82.5 2.3
C 970 20.33 4.602 25.06 0.956 0.11 65.4 8.0 85.1 1.9
D 1000 21.86 12.14 31.38 2.03 0.042 62.1 14.2 87.3 1.3
E 1030 18.01 11.32 17.59 5.21 0.045 76.3 30.0 88.3 0.6
F 1050 14.88 9.208 7.036 8.75 0.055 91.1 56.7 87.0 0.4
G 1070 14.63 8.064 6.267 5.53 0.063 91.9 73.5 86.2 0.4
H 1090 17.95 10.94 20.48 1.15 0.047 71.3 77.0 82.3 1.7
I 1300 16.87 11.16 14.39 5.50 0.046 80.2 93.8 87.0 0.5
J 1700 20.84 11.07 27.86 2.05 0.046 64.9 100.0 86.8 1.3
Integrated n=10 K2O=0.44% 87.2 0.3
Plateau steps F-G,I-J n=4 MSWD=0.73 86.8 0.3
Isochron steps F-G,I-J n=4 MSWD=1.10 40Ar/36Ar=    295±17 86.8 0.5

Kb06-02 bt1, Biotite, 5.61 mg, J=0.0007971±0.07%, D=1.004±0.001, NM-208A,  Lab#=57124-01

A 650 428.2 0.3816 1396.3 0.899 1.3 3.6 2.8 22.3 2.6
B 750 100.3 0.0258 176.4 2.76 19.8 48.0 11.3 67.9 0.4
C 850 65.23 0.0161 18.81 5.92 31.8 91.5 29.6 83.8 0.2
D 920 65.49 0.0179 11.72 5.02 28.6 94.7 45.1 87.1 0.2
E 1000 67.63 0.0309 19.73 5.44 16.5 91.4 61.9 86.7 0.2
F 1075 64.04 0.0392 7.567 5.25 13.0 96.5 78.1 86.8 0.1
G 1110 62.52 0.0497 4.738 2.62 10.3 97.8 86.2 85.8 0.2
H 1180 62.18 0.1773 5.489 2.56 2.9 97.4 94.1 85.1 0.2
I 1210 62.35 0.4533 4.543 1.42 1.1 97.9 98.5 85.7 0.3
J 1250 63.62 2.463 7.011 0.394 0.21 97.1 99.7 86.8 0.6
K 1300 66.72 3.307 13.61 0.091 0.15 94.4 100.0 88.5 2.0
Integrated n=11 K2O=2.78% 82.7 0.2
Plateau steps D-F n=3 MSWD=1.09 86.8 0.1
Isochron steps D-F n=3 MSWD=2.10 40Ar/36Ar=    300±30 86.8 0.3
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ID Temp 40Ar/39Ar 37Ar/39Ar 36Ar/39Ar 39ArK K/Ca   40Ar* 39Ar   Age   ±1s   

(°C) (x 10-3)  (x 10-15 mol) (%)   (%)   (Ma)   (Ma)   

Jtn06-01 bt1, Biotite, 4.39 mg, J=0.0008008±0.10%, D=1.004±0.001, NM-208B,  Lab#=57126-01

A 650 121.1 0.0581 269.2 0.344 8.8 34.3 1.0 59.0 1.2
B 750 64.04 0.0091 21.15 2.95 56.4 90.2 9.8 81.6 0.2
C 850 61.16 0.0048 6.923 5.79 105.8 96.7 26.9 83.5 0.1
D 920 61.62 0.0075 6.653 3.53 68.2 96.8 37.4 84.2 0.2
E 1000 61.19 0.0119 6.531 6.27 42.7 96.8 55.9 83.6 0.1
F 1075 60.41 0.0201 2.955 7.06 25.3 98.6 76.9 84.0 0.1
G 1110 60.01 0.0293 2.669 3.86 17.4 98.7 88.3 83.6 0.2
H 1180 60.66 0.0717 2.872 2.57 7.1 98.6 95.9 84.4 0.2
I 1210 60.91 0.4019 2.783 0.961 1.3 98.7 98.8 84.9 0.3
J 1250 62.06 2.528 4.050 0.330 0.20 98.4 99.7 86.3 0.7
K 1300 67.32 2.803 14.57 0.046 0.18 94.0 99.9 89.3 4.1
L 1700 112.8 2.328 197.4 0.040 0.22 48.5 100.0 77.5 4.8
Integrated n=12 K2O=3.69% 83.4 0.1
Plateau steps D-G n=4 MSWD=3.37 83.9 0.2
Isochron steps D-G n=4 MSWD=5.00 40Ar/36Ar=    300±60 83.8 0.2

Wp03-07 am1, Amphibole, 9.71 mg, J=0.0007977±0.08%, D=1.0068±0.0015, NM-208B,  Lab#=57128-01

A 800 413.7 0.7267 1231.4 0.202 0.70 12.0 3.8 70.4 4.1
B 900 116.1 0.3768 211.1 0.278 1.4 46.3 9.0 75.7 1.2
C 1000 87.07 0.6945 102.8 0.329 0.73 65.2 15.1 79.9 0.7
D 1050 81.29 1.475 76.65 0.235 0.35 72.3 19.5 82.7 1.0
E 1080 79.34 4.671 81.89 0.218 0.11 70.0 23.6 78.4 1.1
F 1100 80.79 7.807 75.55 0.226 0.065 73.2 27.8 83.6 1.2
G 1120 75.51 8.311 60.54 0.341 0.061 77.2 34.2 82.5 0.7
H 1140 71.21 8.404 43.95 0.583 0.061 82.7 45.1 83.3 0.6
I 1160 68.08 8.259 32.63 0.781 0.062 86.8 59.7 83.6 0.4
J 1220 68.12 7.582 35.41 0.691 0.067 85.6 72.6 82.4 0.5
K 1650 78.59 9.519 71.80 1.47 0.054 74.0 100.0 82.3 0.4
Integrated n=11 K2O=0.27% 81.6 0.4
Plateau steps F-K n=6 MSWD=1.32 82.9 0.3
Isochron steps F-K n=6 MSWD=1.16 40Ar/36Ar=    283±17 83.6 0.3
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ID Temp 40Ar/39Ar 37Ar/39Ar 36Ar/39Ar 39ArK K/Ca   40Ar* 39Ar   Age   ±1s   

(°C) (x 10-3)  (x 10-15 mol) (%)   (%)   (Ma)   (Ma)   

Jtn06-01 am1, Amphibole, 9.02 mg, J=0.0007956±0.09%, D=1.0044±0.001, NM-208B,  Lab#=57129-01

A 800 196.6 0.1782 257.5 0.545 2.9 61.3 6.1 165.2 0.9
B 900 72.16 0.0624 46.15 0.797 8.2 81.1 15.0 82.1 0.4
C 1000 67.11 0.3337 20.83 0.598 1.5 90.9 21.6 85.5 0.4
D 1050 65.79 0.7437 19.87 0.568 0.69 91.2 28.0 84.1 0.4
E 1080 81.11 2.891 44.82 0.451 0.18 84.0 33.0 95.4 0.5
F 1100 96.57 6.827 49.37 0.875 0.075 85.5 42.7 115.3 0.4
G 1120 96.96 6.691 28.12 1.58 0.076 92.0 60.4 124.2 0.3
H 1140 96.24 5.228 17.67 1.10 0.098 95.0 72.7 127.1 0.3
I 1160 82.69 3.496 20.36 0.424 0.15 93.1 77.4 107.5 0.8
J 1220 89.64 5.816 34.94 0.305 0.088 89.0 80.8 111.5 0.7
K 1650 103.5 6.622 41.05 1.72 0.077 88.8 100.0 128.0 0.3
Integrated n=11 K2O=0.48% 115.5 0.2

JTrm 06-02 bt1, Biotite, 5.9 mg, J=0.002252±0.05%, D=1.003±0.0011, NM-212A,  Lab#=57407-01

A 625 49.40 0.1281 129.0 2.93 4.0 22.9 1.3 45.3 1.6
B 700 35.77 0.0304 60.93 4.63 16.8 49.7 3.4 70.7 0.9
C 750 25.53 0.0221 21.87 8.22 23.1 74.7 7.1 75.8 0.5
D 800 22.46 0.0131 7.625 14.7 38.9 90.0 13.7 80.3 0.4
E 875 22.18 0.0145 5.005 17.5 35.2 93.3 21.5 82.2 0.3
F 975 22.16 0.0125 3.303 35.5 40.9 95.6 37.5 84.1 0.2
G 1075 22.24 0.0122 3.543 57.1 42.0 95.3 63.1 84.1 0.2
H 1250 21.80 0.1185 2.022 74.1 4.3 97.3 96.4 84.1 0.1
I 1700 22.31 0.6607 5.178 8.04 0.77 93.4 100.0 82.7 0.3
Integrated n=9 K2O=6.44% 82.6 0.2
Plateau steps F-H n=3 MSWD=0.10 84.1 0.1
Isochron steps F-H n=3 MSWD=0.02 40Ar/36Ar=    281±36 84.3 0.2
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ID Temp 40Ar/39Ar 37Ar/39Ar 36Ar/39Ar 39ArK K/Ca   40Ar* 39Ar   Age   ±1s   

(°C) (x 10-3)  (x 10-15 mol) (%)   (%)   (Ma)   (Ma)   

Pcp07-07 bt1, Biotite, 6.03 mg, J=0.0022697±0.07%, D=1.002±0.001, NM-212B,  Lab#=57417-01

A 625 42.78 0.3733 125.7 4.35 1.4 13.3 0.9 23.1 1.3
B 700 26.97 0.0329 40.63 15.1 15.5 55.5 4.0 60.3 0.4
C 750 23.36 0.0213 16.18 22.6 23.9 79.5 8.6 74.5 0.2
D 800 21.78 0.0130 7.162 31.7 39.2 90.3 15.0 78.8 0.2
E 875 21.01 0.0088 3.605 67.6 58.2 94.9 28.8 79.8 0.1
F 975 21.41 0.0151 4.111 64.2 33.8 94.3 41.9 80.8 0.1
G 1025 21.59 0.0146 5.303 49.6 34.9 92.7 52.0 80.1 0.1
H 1075 21.43 0.0138 5.143 63.7 37.0 92.9 65.0 79.7 0.1
I 1150 21.04 0.0168 3.671 79.3 30.3 94.9 81.1 79.9 0.1
J 1200 21.01 0.0345 3.046 43.3 14.8 95.7 90.0 80.5 0.2
K 1300 20.88 0.5335 2.374 46.0 0.96 96.9 99.3 81.0 0.2
L 1700 31.90 0.8197 40.92 3.20 0.62 62.3 100.0 79.6 0.9
Integrated n=12 K2O=13.77% 78.7 0.1

Pcp07-07 am1, Amphibole, 9.2 mg, J=0.0022835±0.10%, D=1.002±0.001, NM-212C,  Lab#=57421-01

A 800 59.30 1.410 122.4 2.32 0.36 39.3 3.2 93.6 1.8
B 900 23.16 1.103 18.34 1.97 0.46 77.0 6.0 72.0 1.1
C 1000 22.77 4.659 9.429 5.81 0.11 89.5 14.1 82.3 0.5
D 1050 22.19 5.596 5.454 24.0 0.091 94.9 47.6 85.0 0.2
E 1080 21.24 5.759 1.993 18.3 0.089 99.5 73.2 85.4 0.3
F 1100 18.24 5.363 -5.0943 2.41 0.095 110.7 76.6 81.6 1.0
G 1120 18.04 6.541 -7.9812 1.90 0.078 116.3 79.2 84.7 1.2
H 1140 12.22 7.095 -30.7082 0.811 0.072 179.4 80.4 88.5 2.7
I 1160 13.25 7.907 -23.9811 0.919 0.065 158.6 81.6 84.9 2.3
J 1220 21.22 7.663 1.572 7.40 0.067 100.8 92.0 86.5 0.5
K 1650 24.65 7.269 13.30 5.74 0.070 86.5 100.0 86.2 0.5
Integrated n=11 K2O=1.31% 84.9 0.2
Plateau steps D-E,G-K n=7 MSWD=2.42 85.4 0.2
Isochron steps D-E,G-K n=7 MSWD=2.90 40Ar/36Ar=    296±16 85.4 0.2
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ID Temp 40Ar/39Ar 37Ar/39Ar 36Ar/39Ar 39ArK K/Ca   40Ar* 39Ar   Age   ±1s   

(°C) (x 10-3)  (x 10-15 mol) (%)   (%)   (Ma)   (Ma)   

Kb06-02 am1, Amphibole, 6.6 mg, J=0.002285±0.10%, D=1.002±0.001, NM-212C,  Lab#=57422-01

A 800 40.02 0.2876 60.65 13.6 1.8 55.3 16.5 89.0 0.6
B 900 24.46 0.0995 10.62 15.1 5.1 87.2 34.8 85.8 0.3
C 1000 24.43 0.8624 9.256 14.6 0.59 89.1 52.6 87.6 0.3
D 1050 27.77 6.467 16.46 11.6 0.079 84.4 66.7 94.5 0.4
E 1080 24.09 6.222 7.866 7.48 0.082 92.5 75.8 89.9 0.4
F 1100 23.64 4.071 6.819 4.07 0.13 92.9 80.7 88.6 0.6
G 1120 24.22 4.035 8.527 2.91 0.13 91.0 84.3 88.8 0.8
H 1140 25.21 4.608 11.78 1.38 0.11 87.9 85.9 89.3 1.7
I 1160 25.32 4.392 9.197 1.18 0.12 90.7 87.4 92.5 1.6
J 1220 24.68 3.879 9.592 2.68 0.13 89.8 90.6 89.3 0.9
K 1650 29.32 8.247 20.78 7.72 0.062 81.4 100.0 96.3 0.5
Integrated n=11 K2O=2.10% 89.7 0.2

Pp03-09 bt1, Biotite, 5.8 mg, J=0.0008008±0.11%, D=1.0032±0.0012, NM-215A,  Lab#=57600-01

A 625 105.5 0.0589 198.1 2.93 8.7 44.5 2.4 66.6 0.8
B 700 60.37 0.0118 11.59 15.8 43.1 94.3 15.1 80.5 0.2
C 750 59.28 0.0069 3.091 19.2 73.7 98.5 30.6 82.4 0.1
D 800 59.97 0.0078 5.892 11.7 65.4 97.1 40.1 82.2 0.2
E 875 60.36 0.0141 7.685 15.6 36.2 96.2 52.7 82.0 0.2
F 975 59.83 0.0138 5.383 27.1 36.9 97.3 74.6 82.2 0.1
G 1075 59.37 0.0431 3.826 15.7 11.8 98.1 87.3 82.2 0.2
H 1250 66.04 0.4595 25.51 15.7 1.1 88.6 100.0 82.7 0.2
Integrated n=8 K2O=10.23% 81.7 0.2
Plateau steps C-H n=6 MSWD=1.47 82.3 0.1
Isochron steps C-H n=6 MSWD=1.11 40Ar/36Ar=    308±15 82.2 0.1

Jtn07-09 bt1, Biotite, 8.5 mg, J=0.0007968±0.10%, D=1.0032±0.0012, NM-215A,  Lab#=57603-01

A 625 114.8 0.0447 243.5 2.62 11.4 37.3 1.5 60.6 0.9
B 700 69.00 0.0155 30.63 17.6 33.0 86.9 11.4 84.2 0.2
C 750 64.62 0.0108 8.939 19.0 47.4 95.9 22.2 87.0 0.2
D 800 65.58 0.0138 11.99 13.0 37.0 94.6 29.5 87.0 0.2
E 875 65.67 0.0166 12.50 24.0 30.7 94.4 43.1 87.0 0.2
F 975 65.46 0.0123 12.42 46.1 41.6 94.4 69.2 86.7 0.2
G 1075 64.46 0.0566 8.409 31.9 9.0 96.2 87.3 87.0 0.2
H 1250 67.73 0.7695 15.92 22.5 0.66 93.1 100.0 88.5 0.2
Integrated n=8 K2O=10.03% 86.4 0.2
Plateau steps C-G n=5 MSWD=0.58 86.9 0.1
Isochron steps C-G n=5 MSWD=0.68 40Ar/36Ar=    281±31 87.1 0.2
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ID Temp 40Ar/39Ar 37Ar/39Ar 36Ar/39Ar 39ArK K/Ca   40Ar* 39Ar   Age   ±1s   

(°C) (x 10-3)  (x 10-15 mol) (%)   (%)   (Ma)   (Ma)   

Jtn07-09 am1, Amphibole, 10.8 mg, J=0.0007844±0.07%, D=1.004±0.001, NM-215C,  Lab#=57614-01

A 800 297.0 0.2295 279.9 1.74 2.2 72.2 6.7 280.4 1.5
B 900 74.91 0.2347 58.01 1.33 2.2 77.1 11.9 80.0 0.6
C 1000 76.59 1.383 36.83 2.84 0.37 85.9 22.9 90.9 0.3
D 1050 108.3 6.728 24.68 6.54 0.076 93.8 48.1 138.9 0.3
E 1080 106.1 5.193 5.110 5.78 0.098 99.0 70.4 143.3 0.3
F 1100 82.42 3.539 -9.8363 0.908 0.14 103.9 73.9 117.5 0.9
G 1120 84.23 4.694 -23.6224 0.440 0.11 108.7 75.6 125.6 1.6
H 1140 84.91 5.454 -40.1864 0.358 0.094 114.5 77.0 133.1 2.0
I 1160 92.10 5.748 -12.0226 0.741 0.089 104.4 79.9 131.7 1.1
J 1220 113.2 7.124 7.701 4.49 0.072 98.5 97.2 152.0 0.4
K 1650 228.9 7.522 413.4 0.717 0.068 46.9 100.0 146.6 2.1
Integrated n=11 K2O=1.17% 142.8 0.3

Pp09-09 am1, Amphibole, 13.4 mg, J=0.000788±0.07%, D=1.004±0.001, NM-215C,  Lab#=57617-01

A 800 103.0 0.3485 170.8 1.51 1.5 51.0 8.9 73.3 1.0
B 900 77.57 0.4281 76.54 1.26 1.2 70.9 16.3 76.5 0.7
C 1000 73.10 3.409 56.80 1.49 0.15 77.4 25.0 78.9 0.7
D 1020 74.27 7.695 53.66 0.868 0.066 79.5 30.1 82.5 0.9
E 1040 68.67 8.727 29.59 2.38 0.058 88.3 44.1 84.7 0.4
F 1060 62.95 8.270 11.13 3.14 0.062 95.9 62.6 84.3 0.4
G 1120 62.89 6.806 10.63 2.46 0.075 95.9 77.1 84.1 0.4
H 1180 63.70 9.768 22.22 1.47 0.052 91.0 85.7 81.1 0.6
I 1250 70.24 9.053 34.95 2.22 0.056 86.4 98.8 84.7 0.5
J 1650 504.3 9.841 1526.1 0.207 0.052 10.7 100.0 76.0 7.7
Integrated n=10 K2O=0.62% 81.9 0.3
Plateau steps D-G,I-J n=6 MSWD=1.55 84.3 0.3
Isochron steps D-G,I-J n=6 MSWD=1.60 40Ar/36Ar=    292±7 84.4 0.2

Jtn07-11 am1, Amphibole, 11.2 mg, J=0.0007881±0.05%, D=1.004±0.001, NM-215C,  Lab#=57616-01

A 800 1164.2 0.7837 552.8 0.426 0.65 86.0 1.9 1049.6 8.2
B 900 84.25 1.105 40.41 0.391 0.46 85.9 3.6 100.2 1.6
C 1000 128.8 5.708 66.58 1.43 0.089 85.1 10.0 150.0 0.8
D 1020 113.1 7.729 35.90 3.04 0.066 91.2 23.5 141.7 0.5
E 1040 93.72 7.154 13.75 6.52 0.071 96.3 52.5 124.5 0.3
F 1060 95.97 6.329 11.20 2.82 0.081 97.1 65.0 128.4 0.5
G 1120 88.27 6.923 6.966 0.809 0.074 98.3 68.6 119.9 0.9
H 1180 96.55 8.612 14.39 1.77 0.059 96.3 76.5 128.3 0.6
I 1250 101.2 8.332 20.16 5.01 0.061 94.8 98.8 132.2 0.4
J 1650 407.1 7.236 1099.0 0.277 0.071 20.4 100.0 114.8 5.2
Integrated n=10 K2O=0.98% 153.0 0.3
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ID Temp 40Ar/39Ar 37Ar/39Ar 36Ar/39Ar 39ArK K/Ca   40Ar* 39Ar   Age   ±1s   

(°C) (x 10-3)  (x 10-15 mol) (%)   (%)   (Ma)   (Ma)   

Jtrm06-02 am1, Amphibole, 12.7 mg, J=0.0007843±0.06%, D=1.004±0.001, NM-215C,  Lab#=57613-02

A 800 426.7 0.8833 1124.3 1.42 0.58 22.2 6.5 129.1 2.7
B 900 107.9 1.005 240.6 0.009 0.51 34.2 6.6 51.5 54.7
C 900 85.87 0.2785 91.33 1.82 1.8 68.6 14.9 81.5 0.6
D 1000 80.93 1.607 60.96 3.08 0.32 77.9 29.0 87.2 0.4
E 1020 82.51 5.106 63.17 1.88 0.100 77.9 37.6 89.0 0.6
F 1040 71.83 7.523 32.26 3.57 0.068 87.6 54.0 87.3 0.4
G 1080 67.12 5.173 20.64 3.74 0.099 91.6 71.1 85.2 0.3
H 1120 67.87 3.323 28.92 1.62 0.15 87.8 78.5 82.6 0.6
I 1180 66.21 7.641 14.94 1.11 0.067 94.3 83.6 86.7 0.8
J 1250 71.54 9.376 30.55 2.92 0.054 88.5 97.0 87.9 0.4
K 1700 276.4 12.76 714.0 0.662 0.040 24.1 100.0 92.5 2.5
Integrated n=11 K2O=0.84% 89.2 0.4

Jtn07-11 bt1, Biotite, 6 mg, J=0.0007859±0.06%, D=1.004±0.001, NM-215C,  Lab#=57612-02

A 650 114.0 0.1551 249.6 1.53 3.3 35.3 1.6 56.3 0.9
B 750 70.85 0.0221 32.39 8.31 23.1 86.5 10.2 84.9 0.2
C 850 68.30 0.0179 12.04 13.6 28.4 94.8 24.2 89.5 0.2
D 920 68.06 0.0153 8.495 11.1 33.3 96.3 35.7 90.6 0.2
E 1000 68.86 0.0132 11.95 24.6 38.7 94.9 61.0 90.3 0.2
F 1075 66.35 0.0200 4.431 19.1 25.5 98.0 80.7 89.9 0.1
G 1110 66.54 0.0395 3.848 9.77 12.9 98.3 90.8 90.4 0.2
H 1180 67.58 0.6666 8.211 7.06 0.77 96.5 98.1 90.2 0.2
I 1210 72.41 2.855 20.90 1.17 0.18 91.8 99.3 92.0 0.6
J 1250 81.72 1.508 49.11 0.382 0.34 82.4 99.7 93.1 1.5
K 1300 100.7 1.127 124.0 0.270 0.45 63.7 100.0 88.8 2.4
Integrated n=12 K2O=7.89% 89.2 0.1
Plateau steps D-J n=7 MSWD=3.66 90.3 0.2
Isochron steps D-J n=7 MSWD=2.20 40Ar/36Ar=    341±15 89.8 0.1
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ID Temp 40Ar/39Ar 37Ar/39Ar 36Ar/39Ar 39ArK K/Ca   40Ar* 39Ar   Age   ±1s   

(°C) (x 10-3)  (x 10-15 mol) (%)   (%)   (Ma)   (Ma)   

Dbk05-01 k1, K-Feldspar, 2.62 mg, J=0.003605±0.07%, D=1.002±0.001, NM-194C,  Lab#=56122-01

B 460 95.43 0.5263 270.7 0.262 0.97 16.2 0.1 98.0 8.9
C 460 36.14 0.7752 84.41 0.119 0.66 31.1 0.2 71.8 14.8
D 510 18.40 0.3411 23.38 0.240 1.5 62.6 0.3 73.4 7.3
E 510 13.72 0.3964 12.54 0.287 1.3 73.2 0.4 64.1 6.3
F 560 13.21 0.2391 6.898 0.602 2.1 84.7 0.6 71.3 2.9
G 560 11.72 0.1744 2.418 0.711 2.9 94.0 0.9 70.2 2.5
H 610 13.81 0.0934 4.570 1.86 5.5 90.3 1.7 79.2 1.0
I 610 11.90 0.1102 1.449 1.85 4.6 96.5 2.5 73.1 1.0
J 660 11.88 0.0823 0.6490 3.44 6.2 98.4 4.0 74.5 0.5
K 660 11.86 0.0863 0.7110 3.73 5.9 98.3 5.5 74.2 0.5
L 710 11.98 0.0869 0.8278 5.26 5.9 98.0 7.8 74.8 0.4
M 710 11.92 0.0739 0.2127 5.72 6.9 99.5 10.2 75.5 0.3
N 760 11.99 0.0781 0.2375 7.36 6.5 99.5 13.3 75.9 0.3
O 760 12.05 0.0722 0.4947 7.18 7.1 98.8 16.3 75.8 0.3
P 810 12.11 0.0789 0.3412 8.49 6.5 99.2 19.9 76.4 0.2
Q 810 12.15 0.0771 0.3729 7.58 6.6 99.1 23.1 76.6 0.3
R 860 12.19 0.0673 0.2767 7.56 7.6 99.4 26.3 77.1 0.3
S 860 12.28 0.0627 0.4630 7.20 8.1 98.9 29.3 77.3 0.3
T 910 12.41 0.0684 0.3557 7.40 7.5 99.2 32.5 78.3 0.3
U 910 12.44 0.0520 0.4631 7.08 9.8 98.9 35.5 78.3 0.3
V 960 12.58 0.0442 0.4145 7.04 11.5 99.1 38.4 79.2 0.3
W 960 12.68 0.0355 0.6400 7.01 14.4 98.5 41.4 79.4 0.3
X 1010 12.73 0.0330 0.5206 6.76 15.5 98.8 44.2 79.9 0.3
Y 1010 12.81 0.0357 0.8359 6.75 14.3 98.1 47.1 79.9 0.3
Z 1060 12.97 0.0452 0.7587 6.97 11.3 98.3 50.0 81.0 0.3
AA 1060 13.04 0.0300 0.9859 7.39 17.0 97.8 53.2 81.0 0.3
AB 1110 13.61 0.0526 1.631 8.19 9.7 96.5 56.6 83.4 0.3
AC 1110 13.45 0.0409 1.171 7.95 12.5 97.5 60.0 83.3 0.3
AD 1110 13.58 0.0355 1.635 11.8 14.4 96.5 65.0 83.2 0.2
AE 1110 13.75 0.0361 2.589 13.5 14.1 94.5 70.7 82.5 0.2
AF 1210 13.90 0.0272 1.686 13.3 18.8 96.4 76.3 85.1 0.2
AG 1260 13.71 0.0301 2.003 26.3 17.0 95.7 87.4 83.3 0.2
AH 1360 13.75 0.0821 2.388 17.6 6.2 94.9 94.8 82.9 0.2
AI 1700 14.28 0.0889 3.678 12.2 5.7 92.4 100.0 83.8 0.2
Integrated n=34 236.7 8.9 K2O=9.63% 80.3 0.1
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ID Temp 40Ar/39Ar 37Ar/39Ar 36Ar/39Ar 39ArK K/Ca   40Ar* 39Ar   Age   ±1s   

(°C) (x 10-3)  (x 10-15 mol) (%)   (%)   (Ma)   (Ma)   

Jtn06-01 k1, K-Feldspar, 8.38 mg, J=0.0007956±0.08%, D=1.0068±0.0015, NM-208A,  Lab#=57122-01

A 520 621.8 0.0365 845.6 0.337 14.0 59.8 0.3 467.6 3.2
B 520 63.82 0.0502 50.18 0.392 10.2 76.8 0.7 69.0 0.6
C 570 78.54 0.0268 40.93 0.625 19.0 84.6 1.3 92.9 0.5
D 570 55.23 0.0170 15.27 0.612 30.0 91.8 1.9 71.4 0.4
E 620 83.55 0.0185 45.85 1.13 27.5 83.8 3.0 97.8 0.4
F 620 54.50 0.0153 9.160 1.02 33.3 95.0 4.0 72.8 0.3
G 670 55.06 0.0070 9.794 0.972 73.3 94.7 5.0 73.4 0.3
H 670 56.13 0.0061 9.838 1.86 83.7 94.8 6.8 74.8 0.2
I 720 53.88 0.0074 5.202 1.54 69.1 97.1 8.3 73.6 0.3
J 720 53.01 0.0040 3.361 2.27 126.4 98.1 10.5 73.2 0.2
K 770 54.49 0.0083 5.694 2.27 61.5 96.9 12.8 74.2 0.2
L 770 53.33 0.0085 2.981 2.58 60.0 98.3 15.3 73.8 0.2
M 820 54.15 0.0077 4.659 2.26 66.1 97.5 17.5 74.2 0.2
N 820 53.56 0.0083 2.963 2.45 61.2 98.4 19.9 74.1 0.2
O 870 54.77 0.0103 6.359 1.98 49.4 96.6 21.8 74.4 0.2
P 870 54.27 0.0064 4.699 2.09 79.7 97.4 23.9 74.4 0.2
Q 920 55.42 0.0064 8.717 1.67 79.2 95.4 25.5 74.3 0.2
R 920 54.58 0.0088 6.525 1.82 57.9 96.5 27.3 74.0 0.2
S 970 58.47 0.0102 17.53 1.48 50.2 91.1 28.7 74.9 0.3
T 970 56.04 0.0114 12.14 1.68 44.7 93.6 30.4 73.8 0.3
U 1020 61.65 0.0147 26.95 1.46 34.7 87.1 31.8 75.5 0.3
V 1020 60.32 0.0066 21.71 1.99 77.6 89.4 33.8 75.8 0.3
W 1070 65.63 0.0090 37.27 1.81 56.9 83.2 35.5 76.7 0.3
X 1070 64.30 0.0116 31.03 2.39 43.9 85.7 37.9 77.4 0.3
Y 1120 69.33 0.0086 42.55 2.23 59.0 81.9 40.1 79.7 0.3
Z 1170 68.15 0.0153 39.12 2.54 33.4 83.0 42.5 79.5 0.3
AA 1170 65.96 0.0147 30.26 4.27 34.7 86.4 46.7 80.0 0.2
AB 1170 64.71 0.0106 25.01 4.46 48.0 88.6 51.1 80.5 0.2
AC 1170 65.03 0.0125 23.88 4.82 40.7 89.2 55.8 81.3 0.2
AD 1170 66.27 0.0079 24.39 5.07 64.2 89.1 60.8 82.8 0.2
AE 1270 72.77 0.0155 36.20 2.35 32.8 85.3 63.1 87.0 0.3
AF 1320 70.30 0.0030 24.95 12.1 168.2 89.5 75.0 88.1 0.2
AG 1370 68.69 0.0015 17.95 16.6 346.2 92.3 91.2 88.8 0.2
AH 1570 67.49 0.0045 19.26 5.90 112.3 91.6 97.0 86.6 0.2
AI 1720 67.80 0.0046 29.87 3.05 110.3 87.0 100.0 82.7 0.3
Integrated n=35 102.1 65.6 K2O=5.88% 82.9 0.2
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ID Temp 40Ar/39Ar 37Ar/39Ar 36Ar/39Ar 39ArK K/Ca   40Ar* 39Ar   Age   ±1s   

(°C) (x 10-3)  (x 10-15 mol) (%)   (%)   (Ma)   (Ma)   

Kle07-05 k1, K-Feldspar, 15.2 mg, J=0.0022532±0.06%, D=1.002±0.001, NM-212A,  Lab#=57406-01

A 500 76.20 0.4074 160.6 1.36 1.3 37.8 0.4 113.4 2.4
B 500 30.37 0.1933 38.04 0.961 2.6 63.0 0.7 76.2 2.3
C 550 21.92 0.2723 9.299 1.57 1.9 87.6 1.2 76.4 1.3
D 550 20.70 0.0583 9.185 1.75 8.8 86.9 1.7 71.6 1.2
E 600 19.80 0.0493 4.152 2.07 10.4 93.8 2.3 73.9 1.1
F 600 21.84 0.0362 7.498 5.26 14.1 89.9 3.9 78.1 0.5
G 650 19.23 0.0493 3.388 5.73 10.3 94.8 5.6 72.6 0.4
H 650 19.37 0.0467 2.263 4.96 10.9 96.6 7.1 74.4 0.4
I 700 18.91 0.0774 1.942 4.84 6.6 97.0 8.5 73.0 0.4
J 700 19.27 0.0465 2.340 5.66 11.0 96.4 10.2 74.0 0.4
K 750 18.90 0.0425 1.695 6.67 12.0 97.4 12.2 73.3 0.3
L 750 19.13 0.0348 2.181 7.36 14.7 96.6 14.4 73.6 0.3
M 800 19.32 0.0322 1.180 8.76 15.8 98.2 17.0 75.5 0.3
N 800 19.20 0.0475 2.395 8.49 10.7 96.3 19.6 73.6 0.3
O 850 19.28 0.0398 1.971 7.92 12.8 97.0 21.9 74.4 0.3
P 850 19.48 0.0223 1.758 8.53 22.8 97.3 24.5 75.4 0.3
Q 900 19.52 0.0311 1.939 8.05 16.4 97.1 26.9 75.4 0.3
R 900 19.69 0.0211 2.065 8.92 24.2 96.9 29.5 75.9 0.3
S 950 19.85 0.0329 3.384 7.44 15.5 95.0 31.8 75.0 0.3
T 950 19.92 0.0171 2.729 8.16 29.9 96.0 34.2 76.0 0.3
U 1000 20.30 0.0271 3.670 5.91 18.8 94.7 36.0 76.5 0.4
V 1000 20.43 0.0199 4.059 8.41 25.6 94.1 38.5 76.5 0.3
W 1050 20.62 0.0332 5.556 7.18 15.4 92.0 40.6 75.5 0.4
X 1050 21.12 0.0218 6.420 8.80 23.4 91.0 43.3 76.5 0.3
Y 1100 21.52 0.0325 6.935 7.56 15.7 90.5 45.5 77.4 0.4
Z 1100 21.97 0.0386 8.222 9.18 13.2 89.0 48.3 77.7 0.3
AA 1100 23.61 0.0304 13.50 8.32 16.8 83.1 50.8 78.0 0.4
AB 1100 25.20 0.0329 18.39 10.7 15.5 78.4 54.0 78.6 0.4
AC 1100 28.87 0.0310 30.97 12.0 16.4 68.3 57.5 78.4 0.4
AD 1100 35.81 0.0350 53.08 12.6 14.6 56.2 61.3 80.0 0.6
AE 1200 24.39 0.1067 13.16 3.39 4.8 84.1 62.3 81.5 0.7
AF 1300 21.32 0.0189 4.844 51.3 27.0 93.3 77.7 79.1 0.2
AG 1350 21.65 0.0309 5.587 29.6 16.5 92.4 86.5 79.5 0.2
AH 1550 22.00 0.0664 6.967 44.4 7.7 90.7 99.8 79.3 0.2
AI 1700 546.1 9.074 1759.1 0.696 0.056 5.0 100.0 107.3 13.0
Integrated n=35 334.6 8.7 K2O=3.75% 77.5 0.2
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ID Temp 40Ar/39Ar 37Ar/39Ar 36Ar/39Ar 39ArK K/Ca   40Ar* 39Ar   Age   ±1s   

(°C) (x 10-3)  (x 10-15 mol) (%)   (%)   (Ma)   (Ma)   

Km07-06 k1, K-Feldspar, 9.1 mg, J=0.0022513±0.07%, D=1.002±0.001, NM-212A,  Lab#=57410-01

A 500 126.1 0.0662 341.0 3.26 7.7 20.1 0.1 100.1 2.6
B 500 39.57 0.0197 72.90 3.20 25.9 45.6 0.3 71.7 1.1
C 550 23.41 -0.0054 15.13 2.42       - 80.9 0.4 75.3 0.9
D 550 20.57 0.0077 10.19 7.22 66.6 85.4 0.7 69.9 0.3
E 600 22.10 0.0089 9.854 12.9 57.5 86.8 1.3 76.3 0.3
F 600 19.00 0.0083 3.282 12.0 61.7 94.9 1.8 71.8 0.2
G 650 19.15 0.0084 2.281 16.9 60.5 96.5 2.6 73.5 0.2
H 650 18.92 0.0078 1.700 17.9 65.8 97.3 3.4 73.2 0.2
I 700 18.77 0.0075 0.8695 16.5 68.2 98.6 4.1 73.6 0.2
J 700 18.82 0.0085 1.290 24.5 59.8 98.0 5.2 73.3 0.1
K 750 18.89 0.0073 1.069 34.9 69.5 98.3 6.8 73.8 0.1
L 750 18.77 0.0062 0.9388 39.9 81.9 98.5 8.6 73.5 0.1
M 800 18.92 0.0081 0.9654 47.2 63.3 98.5 10.7 74.1 0.2
N 800 18.77 0.0057 0.6090 47.4 88.9 99.0 12.8 73.9 0.2
O 850 18.86 0.0045 0.6321 41.4 112.3 99.0 14.7 74.2 0.2
P 850 18.95 0.0047 0.5317 63.6 107.8 99.2 17.6 74.7 0.2
Q 900 18.96 0.0042 0.6155 44.3 121.6 99.0 19.5 74.7 0.1
R 900 18.99 0.0034 0.5506 57.3 152.1 99.1 22.1 74.9 0.2
S 950 19.01 0.0043 0.5534 52.3 118.4 99.1 24.5 74.9 0.2
T 950 19.08 0.0023 0.4977 56.4 217.3 99.2 27.0 75.3 0.2
U 1000 19.18 0.0032 0.8232 41.9 161.7 98.7 28.9 75.3 0.2
V 1000 19.22 0.0027 0.8483 49.0 192.5 98.7 31.1 75.4 0.2
W 1050 19.53 0.0042 1.716 37.0 121.9 97.4 32.7 75.6 0.1
X 1050 19.46 0.0030 1.784 46.3 168.5 97.3 34.8 75.3 0.2
Y 1100 19.76 0.0073 2.752 39.1 69.8 95.9 36.6 75.3 0.2
Z 1100 19.59 0.0054 2.232 46.7 93.7 96.6 38.7 75.3 0.2
AA 1100 19.78 0.0053 2.742 45.5 97.1 95.9 40.7 75.4 0.2
AB 1100 20.01 0.0054 2.903 55.3 94.6 95.7 43.2 76.1 0.2
AC 1100 20.37 0.0042 4.286 62.8 120.3 93.8 46.0 75.9 0.2
AD 1100 21.09 0.0040 6.300 68.1 127.4 91.2 49.1 76.4 0.1
AE 1200 20.42 0.0077 3.641 21.5 66.0 94.7 50.0 76.9 0.2
AF 1300 20.22 0.0025 3.022 338.8 200.6 95.6 65.2 76.8 0.1
AG 1350 20.58 0.0026 4.362 344.7 195.8 93.7 80.7 76.6 0.1
AH 1550 20.74 0.0036 4.571 425.5 140.3 93.5 99.8 77.1 0.1
AI 1700 52.01 1.484 108.3 4.53 0.34 38.7 100.0 80.0 1.2
Integrated n=35 2228.2 71.5 K2O=41.78% 75.9 0.1
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ID Temp 40Ar/39Ar 37Ar/39Ar 36Ar/39Ar 39ArK K/Ca   40Ar* 39Ar   Age   ±1s   

(°C) (x 10-3)  (x 10-15 mol) (%)   (%)   (Ma)   (Ma)   

Pcp07-07 k1, K-Feldspar, 11.7 mg, J=0.0022666±0.06%, D=1.002±0.001, NM-212B,  Lab#=57416-01

A 500 80.71 0.1015 199.2 13.5 5.0 27.1 0.9 87.2 2.2
B 500 35.95 0.0867 74.86 3.60 5.9 38.5 1.1 55.7 2.1
C 550 30.38 0.0635 31.54 7.40 8.0 69.3 1.6 84.1 0.7
D 550 20.31 0.0541 10.36 3.66 9.4 84.9 1.8 69.2 0.6
E 600 22.29 0.0671 13.22 3.69 7.6 82.5 2.1 73.6 0.6
F 600 22.95 0.0618 10.69 9.39 8.3 86.3 2.7 79.2 0.4
G 650 21.06 0.0664 7.338 12.4 7.7 89.7 3.5 75.6 0.3
H 650 18.46 0.0573 1.371 12.8 8.9 97.8 4.3 72.3 0.2
I 700 18.54 0.0605 0.9113 14.2 8.4 98.6 5.2 73.2 0.2
J 700 18.50 0.0522 0.6020 18.4 9.8 99.1 6.4 73.4 0.2
K 750 18.75 0.0518 1.321 23.0 9.8 97.9 7.9 73.5 0.1
L 750 18.51 0.0416 0.5081 28.2 12.3 99.2 9.8 73.6 0.1
M 800 18.63 0.0419 0.6617 26.4 12.2 99.0 11.5 73.8 0.1
N 800 18.68 0.0303 0.5138 38.0 16.8 99.2 13.9 74.2 0.2
O 850 18.59 0.0287 0.6992 45.5 17.8 98.9 16.9 73.6 0.2
P 850 18.58 0.0209 0.3905 46.6 24.4 99.4 19.9 73.9 0.1
Q 900 18.33 0.0225 0.3663 41.0 22.6 99.4 22.6 73.0 0.3
R 900 18.55 0.0205 0.4912 46.8 24.9 99.2 25.6 73.7 0.2
S 950 18.74 0.0278 0.5173 39.4 18.3 99.2 28.2 74.4 0.3
T 950 18.75 0.0226 0.5241 45.4 22.6 99.2 31.1 74.4 0.1
U 1000 18.89 0.0329 0.8933 33.1 15.5 98.6 33.3 74.6 0.1
V 1000 18.89 0.0152 0.7346 39.3 33.7 98.9 35.8 74.7 0.2
W 1050 19.13 0.0246 1.229 31.9 20.8 98.1 37.9 75.1 0.2
X 1050 19.11 0.0210 1.224 39.7 24.3 98.1 40.5 75.1 0.2
Y 1100 19.51 0.0331 1.972 30.8 15.4 97.0 42.5 75.8 0.2
Z 1100 19.57 0.0317 2.073 38.2 16.1 96.9 45.0 75.9 0.2
AA 1150 20.08 0.0555 2.750 25.4 9.2 96.0 46.6 77.1 0.2
AB 1150 20.15 0.0525 2.555 34.4 9.7 96.3 48.9 77.6 0.3
AC 1150 20.17 0.0411 2.906 36.7 12.4 95.8 51.2 77.2 0.2
AD 1150 20.33 0.0318 3.404 49.2 16.0 95.1 54.4 77.3 0.2
AE 1150 20.72 0.0250 4.474 63.2 20.4 93.6 58.6 77.6 0.2
AF 1150 21.50 0.0182 6.619 77.4 28.0 90.9 63.6 78.2 0.1
AG 1200 20.61 0.0291 3.529 7.27 17.6 95.0 64.1 78.3 0.3
AH 1300 20.56 0.0117 3.022 115.1 43.6 95.7 71.5 78.6 0.1
AI 1350 20.61 0.0087 3.171 157.6 58.6 95.5 81.8 78.7 0.1
AJ 1550 20.67 0.0086 3.351 271.2 59.0 95.2 99.4 78.7 0.1
AK 1700 28.09 0.1201 27.63 8.99 4.2 71.0 100.0 79.7 0.5
Integrated n=37 1538.5 20.3 K2O=22.28% 76.6 0.1

102



ID Temp 40Ar/39Ar 37Ar/39Ar 36Ar/39Ar 39ArK K/Ca   40Ar* 39Ar   Age   ±1s   

(°C) (x 10-3)  (x 10-15 mol) (%)   (%)   (Ma)   (Ma)   

Kl07-02 k1, K-Feldspar, 15.7 mg, J=0.0022815±0.07%, D=1.002±0.001, NM-212C,  Lab#=57418-01

A 500 112.1 0.0248 232.8 8.13 20.6 38.6 0.4 170.1 1.7
B 500 24.42 0.0010 25.65 11.3 507.8 69.0 0.8 68.0 0.4
C 550 22.04 0.0009 10.78 15.8 559.6 85.5 1.5 76.0 0.3
D 550 17.29 -0.0001 3.982 17.2       - 93.2 2.3 65.1 0.2
E 600 24.03 0.0033 10.21 39.3 154.3 87.4 4.0 84.4 0.2
F 600 17.74 0.0012 1.964 27.6 417.6 96.7 5.2 69.2 0.1
G 650 18.47 0.0022 2.125 38.1 227.4 96.6 6.9 72.0 0.2
H 650 18.22 0.0014 1.168 33.1 368.6 98.1 8.3 72.1 0.3
I 700 18.03 0.0022 0.9725 31.8 233.4 98.4 9.7 71.6 0.2
J 700 17.98 -0.0005 0.8617 33.7       - 98.6 11.2 71.5 0.3
K 750 18.18 0.0018 0.9473 34.2 284.1 98.5 12.7 72.2 0.3
L 750 18.01 0.0016 0.9059 36.0 320.2 98.5 14.2 71.5 0.3
M 800 18.17 0.0025 1.118 25.1 202.6 98.2 15.3 71.9 0.1
N 800 17.99 0.0032 1.001 40.2 161.7 98.4 17.1 71.4 0.2
O 850 18.24 0.0013 1.157 31.0 401.4 98.1 18.5 72.1 0.2
P 850 18.27 0.0019 1.122 31.5 268.1 98.2 19.8 72.3 0.2
Q 900 18.37 0.0037 1.203 26.8 137.0 98.1 21.0 72.6 0.1
R 900 18.29 0.0027 1.002 29.0 187.4 98.4 22.3 72.5 0.1
S 950 18.50 0.0062 1.669 31.2 82.1 97.3 23.6 72.6 0.2
T 950 18.45 0.0027 1.333 37.9 191.4 97.9 25.3 72.8 0.2
U 1000 18.81 0.0063 2.002 34.7 81.1 96.9 26.8 73.4 0.1
V 1000 18.67 0.0027 1.891 46.8 186.1 97.0 28.8 73.0 0.2
W 1050 19.09 0.0038 3.034 45.9 132.6 95.3 30.8 73.3 0.2
X 1050 18.96 0.0028 2.241 60.4 184.0 96.5 33.5 73.8 0.2
Y 1100 19.33 0.0041 3.175 57.4 123.7 95.1 36.0 74.1 0.2
Z 1100 19.32 0.0029 2.304 63.3 178.5 96.5 38.7 75.1 0.2
AA 1150 19.41 0.0043 3.189 53.1 117.5 95.1 41.1 74.4 0.2
AB 1150 19.31 0.0051 2.186 59.4 99.7 96.7 43.7 75.2 0.2
AC 1150 19.53 0.0030 2.082 55.7 170.4 96.9 46.1 76.2 0.2
AD 1150 19.74 0.0032 2.589 70.4 161.6 96.1 49.2 76.4 0.1
AE 1150 20.09 0.0027 3.519 85.4 189.2 94.8 52.9 76.7 0.1
AF 1150 20.59 0.0020 5.011 97.2 255.4 92.8 57.1 76.9 0.1
AG 1200 20.69 0.0031 5.415 7.08 166.3 92.3 57.4 76.9 0.3
AH 1300 20.21 0.0019 3.621 129.9 270.7 94.7 63.1 77.1 0.1
AI 1350 20.19 0.0014 3.435 264.1 376.8 95.0 74.7 77.2 0.1
AJ 1550 20.36 0.0018 3.614 562.2 283.7 94.8 99.2 77.7 0.1
AK 1700 22.70 0.0324 11.71 18.4 15.7 84.8 100.0 77.5 0.2
Integrated n=37 2290.3 190.3 K2O=24.56% 75.9 0.1
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ID Temp 40Ar/39Ar 37Ar/39Ar 36Ar/39Ar 39ArK K/Ca   40Ar* 39Ar   Age   ±1s   

(°C) (x 10-3)  (x 10-15 mol) (%)   (%)   (Ma)   (Ma)   

Kl07-01 k1, K-Feldspar, 9 mg, J=0.0007955±0.06%, D=1.0032±0.0012, NM-215B,  Lab#=57607-01

B 460 507.1 -0.0980 1629.5 0.093       - 5.0 0.0 36.2 8.9
C 460 67.04 -0.0549 102.2 0.247       - 55.0 0.1 52.1 2.0
D 510 90.16 -0.0125 62.17 0.599       - 79.6 0.4 100.2 1.2
E 510 42.04 0.0073 11.23 0.866 70.3 92.1 0.7 54.7 0.7
F 560 53.23 0.0043 17.52 1.97 118.0 90.3 1.5 67.7 0.4
G 560 44.95 -0.0046 4.917 1.57       - 96.8 2.1 61.4 0.5
H 610 50.60 0.0046 8.697 2.83 109.9 94.9 3.2 67.6 0.2
I 610 49.36 0.0089 5.390 3.09 57.2 96.8 4.4 67.3 0.3
J 660 52.69 0.0025 7.627 3.27 208.0 95.7 5.6 71.0 0.2
K 660 51.69 0.0049 3.536 3.58 103.7 98.0 7.0 71.3 0.2
L 710 52.18 0.0022 4.242 3.99 228.7 97.6 8.6 71.6 0.2
M 710 51.73 0.0034 2.775 4.80 151.7 98.4 10.4 71.6 0.2
N 760 51.93 0.0014 2.059 5.00 368.9 98.8 12.4 72.2 0.2
O 760 51.63 0.0043 2.103 5.76 118.8 98.8 14.6 71.8 0.2
P 810 52.04 0.0042 2.873 5.21 120.9 98.4 16.6 72.0 0.2
Q 810 52.11 0.0049 1.805 5.36 103.1 99.0 18.7 72.5 0.2
R 860 51.97 0.0057 2.754 4.21 89.0 98.4 20.3 72.0 0.2
S 860 52.50 0.0064 2.655 4.51 79.5 98.5 22.1 72.7 0.2
T 910 52.53 0.0035 2.330 3.50 147.2 98.7 23.4 72.9 0.2
U 910 53.17 0.0036 2.969 4.25 140.9 98.4 25.1 73.5 0.2
V 960 52.96 0.0029 4.165 3.64 178.7 97.7 26.5 72.7 0.2
W 960 53.41 0.0024 3.562 4.87 211.2 98.0 28.3 73.6 0.2
X 1010 53.60 0.0067 5.347 4.25 76.2 97.1 30.0 73.2 0.2
Y 1010 54.31 0.0020 5.329 5.99 260.6 97.1 32.3 74.1 0.2
Z 1060 55.38 0.0021 7.363 5.36 237.4 96.1 34.4 74.8 0.2
AA 1060 55.52 0.0027 7.151 7.63 190.3 96.2 37.3 75.1 0.2
AB 1110 57.12 0.0062 11.12 6.95 82.9 94.2 40.0 75.7 0.2
AC 1110 57.09 0.0061 9.232 8.80 83.9 95.2 43.4 76.4 0.2
AD 1110 57.44 0.0048 9.456 8.24 106.3 95.1 46.6 76.8 0.2
AE 1110 58.49 0.0040 12.25 9.70 127.2 93.8 50.4 77.1 0.2
AF 1110 60.17 0.0027 16.41 10.9 185.6 91.9 54.6 77.7 0.2
AG 1110 63.47 0.0020 25.18 11.3 260.9 88.3 59.0 78.7 0.2
AH 1210 62.28 0.0050 22.60 4.95 102.3 89.3 60.9 78.1 0.3
AI 1310 64.08 0.0025 25.39 74.6 202.3 88.3 89.8 79.4 0.2
AJ 1360 65.98 0.0043 33.78 17.3 119.1 84.9 96.5 78.6 0.2
AK 1560 73.80 0.0126 58.85 7.02 40.3 76.4 99.2 79.2 0.3
AL 1710 136.5 -0.0064 274.8 2.07       - 40.5 100.0 77.7 0.9
Integrated n=37 258.3 144.3 K2O=13.86% 76.1 0.1
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ID Temp 40Ar/39Ar 37Ar/39Ar 36Ar/39Ar 39ArK K/Ca   40Ar* 39Ar   Age   ±1s   

(°C) (x 10-3)  (x 10-15 mol) (%)   (%)   (Ma)   (Ma)   

Km07-08 k1, K-Feldspar, 15 mg, J=0.0007908±0.05%, D=1.004±0.001, NM-215B,  Lab#=57610-01

B 460 1692.3 -0.2001 5576.7 0.037       - 2.6 0.0 62.2 28.6
C 460 152.2 -0.0691 361.9 0.134       - 29.8 0.0 63.5 4.9
D 510 93.49 0.0097 89.36 0.303 52.6 71.8 0.1 93.3 2.1
E 510 49.82 0.0081 19.59 0.623 63.0 88.4 0.2 61.7 0.9
F 560 54.02 0.0093 14.98 1.16 55.0 91.8 0.5 69.4 0.6
G 560 49.35 0.0144 5.324 1.90 35.4 96.8 0.9 66.9 0.4
H 610 51.93 0.0150 7.126 2.60 34.1 95.9 1.5 69.7 0.3
I 610 51.46 0.0175 1.561 3.62 29.2 99.1 2.3 71.3 0.3
J 660 52.64 0.0207 3.393 4.28 24.6 98.1 3.3 72.2 0.2
K 660 52.28 0.0171 1.603 5.64 29.8 99.1 4.5 72.4 0.2
L 710 52.70 0.0215 1.567 6.33 23.7 99.1 5.9 73.0 0.2
M 710 52.26 0.0157 0.3647 8.53 32.4 99.8 7.8 72.9 0.2
N 760 52.66 0.0154 0.7039 8.94 33.1 99.6 9.8 73.3 0.2
O 760 52.57 0.0132 0.3574 11.6 38.7 99.8 12.4 73.3 0.1
P 810 52.90 0.0115 0.8515 10.9 44.5 99.5 14.8 73.6 0.2
Q 810 53.10 0.0096 0.1749 13.2 52.9 99.9 17.8 74.1 0.1
R 860 53.35 0.0111 0.4524 11.3 46.0 99.8 20.3 74.4 0.1
S 860 53.47 0.0090 0.3320 13.0 56.9 99.8 23.2 74.6 0.1
T 910 53.37 0.0094 0.3712 10.0 54.4 99.8 25.4 74.4 0.2
U 910 53.51 0.0070 0.4948 11.7 72.9 99.7 28.0 74.6 0.1
V 960 53.87 0.0075 1.090 9.01 67.6 99.4 30.0 74.8 0.2
W 960 54.32 0.0072 1.159 10.5 70.8 99.4 32.4 75.4 0.1
X 1010 54.75 0.0068 2.706 8.13 75.5 98.5 34.2 75.4 0.2
Y 1010 55.08 0.0045 3.688 10.5 114.4 98.0 36.5 75.4 0.1
Z 1060 56.13 0.0046 6.986 8.84 110.9 96.3 38.5 75.5 0.2
AA 1060 56.22 0.0053 7.101 12.2 96.1 96.3 41.2 75.6 0.1
AB 1110 57.32 0.0060 10.99 11.0 85.6 94.3 43.7 75.5 0.2
AC 1110 57.00 0.0077 9.480 14.4 66.6 95.1 46.9 75.7 0.1
AD 1110 56.74 0.0071 8.633 13.8 72.1 95.5 49.9 75.7 0.1
AE 1110 57.10 0.0092 9.670 16.8 55.7 95.0 53.7 75.8 0.1
AF 1110 58.27 0.0086 12.04 16.3 59.4 93.9 57.3 76.4 0.1
AG 1110 59.93 0.0072 16.54 18.5 71.2 91.8 61.4 76.9 0.1
AH 1210 59.57 0.0105 16.91 10.2 48.4 91.6 63.7 76.2 0.2
AI 1310 60.94 0.0023 19.38 111.4 223.0 90.6 88.5 77.1 0.1
AJ 1360 61.24 0.0031 21.24 17.9 164.8 89.8 92.5 76.8 0.2
AK 1560 63.68 0.0036 29.92 26.6 142.8 86.1 98.4 76.6 0.2
AL 1710 86.94 0.0024 105.5 7.22 209.4 64.2 100.0 77.9 0.4
Integrated n=37 449.2 73.2 K2O=14.54% 75.6 0.1
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ID Temp 40Ar/39Ar 37Ar/39Ar 36Ar/39Ar 39ArK K/Ca   40Ar* 39Ar   Age   ±1s   

(°C) (x 10-3)  (x 10-15 mol) (%)   (%)   (Ma)   (Ma)   

Db05-04 k1, K-Feldspar, 13 mg, J=0.0007918±0.06%, D=1.004±0.001, NM-215B,  Lab#=57611-01

B 460 457.3 -0.0294 1441.5 0.044       - 6.8 0.0 44.2 16.4
C 460 51.42 0.1628 21.73 0.093 3.1 87.5 0.0 63.2 5.9
D 510 141.9 0.0170 38.81 0.336 30.1 91.9 0.1 177.4 2.3
E 510 46.89 0.0271 -2.7243 0.588 18.8 101.7 0.3 66.9 0.9
F 560 58.49 0.0160 6.828 1.31 31.9 96.6 0.7 78.9 0.5
G 560 51.27 0.0157 3.004 1.88 32.4 98.3 1.2 70.6 0.4
H 610 53.41 0.0114 3.560 2.97 44.6 98.0 2.0 73.3 0.3
I 610 52.95 0.0093 1.791 3.95 55.0 99.0 3.1 73.4 0.2
J 660 54.17 0.0107 2.976 5.07 47.7 98.4 4.5 74.6 0.2
K 660 53.72 0.0104 2.068 6.17 49.2 98.9 6.2 74.3 0.2
L 710 54.26 0.0107 2.026 7.43 47.5 98.9 8.3 75.1 0.2
M 710 54.12 0.0092 1.775 8.69 55.6 99.0 10.7 75.0 0.2
N 760 54.11 0.0089 1.755 9.18 57.3 99.0 13.2 75.0 0.1
O 760 54.23 0.0064 1.548 10.9 79.9 99.2 16.3 75.2 0.1
P 810 54.30 0.0062 1.661 10.3 81.8 99.1 19.1 75.3 0.2
Q 810 54.36 0.0066 1.574 12.1 77.5 99.1 22.5 75.4 0.1
R 860 54.56 0.0073 1.009 10.4 69.9 99.5 25.4 75.9 0.2
S 860 54.66 0.0057 1.505 12.6 90.3 99.2 28.9 75.8 0.1
T 910 54.76 0.0067 1.520 10.9 76.3 99.2 31.9 76.0 0.1
U 910 55.05 0.0055 1.601 12.7 92.1 99.1 35.4 76.3 0.1
V 960 55.16 0.0059 2.012 9.47 85.8 98.9 38.1 76.3 0.2
W 960 55.42 0.0026 1.707 11.2 194.6 99.1 41.2 76.8 0.2
X 1010 55.53 0.0042 2.880 8.72 122.7 98.5 43.6 76.5 0.2
Y 1010 55.62 0.0034 3.321 11.1 148.2 98.2 46.7 76.4 0.1
Z 1060 56.72 0.0049 4.276 9.16 103.6 97.8 49.2 77.5 0.2
AA 1060 56.97 0.0050 4.860 12.1 101.4 97.5 52.6 77.6 0.2
AB 1110 57.57 0.0063 6.132 10.6 81.2 96.9 55.5 77.9 0.1
AC 1110 58.15 0.0061 6.224 13.6 84.2 96.8 59.3 78.7 0.1
AD 1110 58.61 0.0061 7.020 12.4 83.2 96.5 62.7 79.0 0.2
AE 1110 59.22 0.0065 7.897 14.6 78.1 96.1 66.8 79.5 0.2
AF 1110 60.89 0.0054 11.77 13.7 94.0 94.3 70.6 80.2 0.2
AG 1110 62.89 0.0039 18.17 14.7 131.7 91.5 74.7 80.4 0.2
AH 1210 62.48 0.0099 13.77 5.84 51.6 93.5 76.3 81.6 0.2
AI 1310 62.77 0.0018 14.92 69.5 284.4 93.0 95.6 81.5 0.1
AJ 1360 63.44 0.0043 18.99 9.50 117.7 91.2 98.3 80.8 0.2
AK 1560 75.99 0.0075 63.13 3.28 67.6 75.5 99.2 80.1 0.4
AL 1710 125.3 0.0055 234.1 2.99 92.8 44.8 100.0 78.5 0.7
Integrated n=37 360.1 91.7 K2O=13.44% 78.1 0.1
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ID Temp 40Ar/39Ar 37Ar/39Ar 36Ar/39Ar 39ArK K/Ca   40Ar* 39Ar   Age   ±1s   

(°C) (x 10-3)  (x 10-15 mol) (%)   (%)   (Ma)   (Ma)   

Notes:

Isotopic ratios corrected for blank, radioactive decay, and mass discrimination, not corrected for interfering reactions.

Errors quoted for individual analyses include analytical error only, without interfering reaction or J uncertainties.

Integrated age calculated by summing isotopic measurements of all steps.

Integrated age error calculated by quadratically combining errors of isotopic measurements of all steps.

Plateau age is inverse-variance-weighted mean of selected steps.

Plateau age error is inverse-variance-weighted mean error (Taylor, 1982) times root MSWD where MSWD>1.

Plateau error is weighted error of Taylor (1982).

Decay constants and isotopic abundances after Steiger and Jäger (1977).

# symbol preceding sample ID denotes analyses excluded from plateau age calculations.

Weight percent K2O calculated from 39Ar signal, sample weight, and instrument sensitivity.

Ages calculated relative to FC-2 Fish Canyon Tuff sanidine interlaboratory standard at  28.02 Ma 

Decay Constant (LambdaK (total)) =  5.543e-10/a

Correction factors:

    (39Ar/37Ar)Ca = 0.00068 ± 5e-05

    (36Ar/37Ar)Ca = 0.00028 ± 2e-05

    (38Ar/39Ar)K = 0.0125

    (40Ar/39Ar)K = 0 ± 0.0004
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