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ABSTRACT 

Kevin Chu: PRINT
®
 nanoparticle parameters to improve docetaxel PK/PD  

(under the direction of Professor Joseph M. DeSimone) 

Nanomedicines currently approved for oncology improve certain properties of the 

reformulated small molecule, such as toxicity, but do not always enhance efficacy or 

pharmacokinetics.  Further research to advance the understanding of how nanoparticle design 

can affect in vivo performance will aid in the rational design of nanomedicines.  Particle 

Replication in Non-wetting Templates (PRINT
®

) is a particle fabrication technique capable of 

making precisely controlled formulations which allows for the systematic evaluation of single 

formulation variables.  In this dissertation, three formulation variables were evaluated: particle 

size of non spherical particles, drug loading and release kinetics. 

The findings of this research indicate that reduced particle size decreases particle 

accumulation in the liver, spleen and lungs while enhancing plasma and tumor exposure. 

Reducing the drug loading of the particles had a similar effect, potentially due to blockading the 

mononuclear phagocyte system (MPS).  Decreasing the release rate of docetaxel from the 

particles also improved the plasma exposure in addition to improving the maximum tolerated 

dose of drug.  The improved tolerability through use of a prodrug strategy allowed a higher dose 

of docetaxel to be delivered to achieve improved tumor growth inhibition.  Controlling the 

released docetaxel concentration within the plasma may be a key parameter to improve the safety 

and therapeutic profile of docetaxel.



 

iii 
 

ACKNOWLEDGEMENTS 

I would like to acknowledge those individuals who assisted with the work.  Mathew 

Finniss conducted the synthetic work, and has been a great colleague who I had many 

insightful scientific discussions with and who has always lent a helping hand. Mark Walsh 

and Allison Schorzman developed methods for tissue analysis. Charlene Ross and her core 

have helped conduct many in vivo studies.  Kevin Herlihy and Charlie Bowerman assisted on 

the roll to roll. Ashley Galloway from Liquidia Technologies has also provided advice on 

assessing particle stability and scaling up particle purification.  Elizabeth Enlow laid the 

ground work for fabricating PLGA particles and PLGA docetaxel particles. 

I have been fortunate to have many great mentors I would like to acknowledge.  My 

adviser Joseph DeSimone has provided me guidance and continually challenged me and 

offered me new opportunities to grow as a scientist. William Zamboni and Andrew Wang 

have worked closely with me and have always given time to discuss the dissertation work.  

Russ Mumper and Michael Jay have taught me a lot from my laboratory rotations and have 

continued providing mentorship as part of the committee.  Mary Napier and Chris Luft have 

always been extremely supportive with everything they do.  Z Haroon has continually 

provided me with a lot of scientific guidance and has taught me many valuable life lessons. 

Finally, I would like to acknowledge my parents Sam and Dina for their continued 

support in my pursuits. 

 

 



 

iv 
 

TABLE OF CONTENTS 
Chapter 1 Introduction  ........................................................................................................................... 1 

1.1 Specific Aims and Background  ....................................................................................................... 1 

1.2.1 General Protocol ............................................................................................................................ 7 

1.2.2 Roll to Roll Parameter Optimization ............................................................................................. 8 

1.3 Tumor Delivery ................................................................................................................................ 9 

1.3.1 Tumor Vasculature ........................................................................................................................ 9 

1.3.2 Effect of particle size on tumor delivery ..................................................................................... 10 

1.3.3 Effect of drug loading on tumor delivery .................................................................................... 12 

1.3.4 Effect of drug release kinetics on tumor delivery ........................................................................ 12 

1.4 References ...................................................................................................................................... 14 

Chapter 2 Plasma, Tumor and Tissue Pharmacokinetics of Docetaxel……………………………….23                                           

Delivered Via Nanoparticles of Different Sizes and Shapes in Mice                                              

Bearing SKOV-3 Human Ovarian Carcinoma Xenograft. 

2.1Introduction ..................................................................................................................................... 25 

2. 2 Methods ......................................................................................................................................... 25 

2.2.1Materials ....................................................................................................................................... 25 

2.2.2 Particle Fabrication  ..................................................................................................................... 26 

2.2.3 Particle Characterization ............................................................................................................. 26 

2.2.4 Drug Loading .............................................................................................................................. 26 

2.2.5 In Vitro Release Studies  ............................................................................................................. 26 

2.2.6 SKOV-3 Human Ovarian Carcinoma Tumor Xenografts ........................................................... 27 

2.2.7 Pharmacokinetic Study  ............................................................................................................... 27 

2.2.8 Sample Preparation and Processing   ........................................................................................... 28 

2.2.9 Liquid Chromatography Tandem Mass Spectrometry (LC-MS/MS) .......................................... 29 

2.2.10 Pharmacokinetic Analysis ......................................................................................................... 29 

2.2.11 Statistics ..................................................................................................................................... 30 

2.3 Results ............................................................................................................................................ 30 

2.3.1 Particle Fabrication ...................................................................................................................... 30    



 

v 
 

2.3.2 Pharmacokinetics of PRINT particles and free docetaxel ........................................................... 31 

2.4 Discussion ...................................................................................................................................... 33 

2.5 References ...................................................................................................................................... 37 

Chapter 3 Nanoparticle Drug Loading as a Design Parameter to Improve………...…………………46                                

Docetaxel Pharmacokinetics and Efficacy. 

3.1Introduction………………………………………………………………………………………..46 

3.2 Materials and Methods ................................................................................................................... 47 

3.2.1 Materials ...................................................................................................................................... 47 

3.2.2 Particle Fabrication and Characterization .................................................................................... 47 

3.2.3 A549 Human Alveolar Adenocarcinoma Tumor Xenografts ...................................................... 47 

3.2.4 Pharmacokinetic Study ................................................................................................................ 48 

3.2.5 Protein Precipitation .................................................................................................................... 48 

3.2.6 LC-MS/MS .................................................................................................................................. 49 

3.2.7 Maximum Tolerated Dose Determination ................................................................................... 50 

3.2.8 Tumor Growth Inhibition Studies ............................................................................................... 50 

3.2.9 Hematological Tests .................................................................................................................... 50 

3.2.10 Statistical and Pharmacokinetic Analysis .................................................................................. 51 

3.3 Results ............................................................................................................................................ 51 

3.3.1 Particle Characteristics ................................................................................................................ 51 

3.3.2 Pharmacokinetics ......................................................................................................................... 51 

3.3.3 Maximum Tolerated Dose ........................................................................................................... 53 

3.3.4 White Blood Cell Counts............................................................................................................. 54 

3.3.5 Tumor Growth Inhibition ............................................................................................................ 54 

3.4 Discussion ...................................................................................................................................... 54 

3.5 Conclusion ...................................................................................................................................... 56 

3.6 References ...................................................................................................................................... 57 

Chapter 4 Reduced Toxicity and Improved Pharmacokinetic Profile of……………………………..67                                      

PRINT
®
 Nanoparticle Formulations of an Acid-labile Docetaxel Prodrug 

4.1 Introduction .................................................................................................................................... 67 

4.2 Materials and Methods ................................................................................................................... 68 

4.2.1 Prodrug Synthesis and Characterization ...................................................................................... 68 

4.2.2 Ethyldimethylsilyl Ether Docetaxel (C2) .................................................................................... 68 

4.2.3 Octyldimethylsilyl Ether Docetaxel (C8) .................................................................................... 69 



 

vi 
 

4.2.4 Nanoparticle Fabrication and Characterization ........................................................................... 70 

4.2.5 A549 Human Aveolar Adenocarcinoma Tumor Xenografts ....................................................... 71 

4.2.6 Pharmacokinetics Study .............................................................................................................. 71 

4.2.7 Tumor Growth Inhibition Studies ............................................................................................... 71 

4.2.8 Hematological Tests .................................................................................................................... 71 

4.2.9 In Vitro Conversion in Plasma .................................................................................................... 72 

4.2.10 In Vivo PK Analysis .................................................................................................................. 72 

4.2.11 Standard Curve and Sample Preparation ................................................................................... 73 

4.2.12 LC-MS/MS ................................................................................................................................ 73 

4.2.13 In Vitro Cytotoxicity ................................................................................................................. 74 

4.3.1 Silyl Ether Docetaxel Prodrugs ................................................................................................... 74 

4.3.2 Particle Characterization ............................................................................................................. 75 

4.3.3 Pharmacokinetics ......................................................................................................................... 75 

4.3.4 Tumor Growth Inhibition and Body Weights.............................................................................. 76 

4.3.5 White Blood Cell (WBC) Counts ................................................................................................ 77 

4.4 Discussion ...................................................................................................................................... 70 

4.5 Conclusions .................................................................................................................................... 80 

4.6 References ...................................................................................................................................... 81 

Chapter 5 Conclusions and Future Directions ...................................................................................... 91 

5.1 References ...................................................................................................................................... 96 

 

 

 

 

 

 

 



 

vii 
 

LIST OF TABLES 

Table 2.1. Characterization of particles used in the pharmacokinetics study ....................................... 40 

Table 2.2. Pharmacokinetic parameters for free docetaxel, 200x200 and 80x320 ............................... 41 

Table 3.1. Particle Characteristics of 9%-NP and 20%-NP ................................................................. 60 

Table 3.2. Docetaxel pharmacokinetic parameters of 9%-NP and 20%-NP ........................................ 61 

Table 3.3. Survival at each dose level for MTD study ......................................................................... 62 

Table 3.4. White blood cell counts ......................................................................................................  63 

Table 4.1. NP Characterization of DTXL-NP, C2-NP and C8-NP Formulations ...............................  83 

Table 4.2. Pharmacokinetic parameters of free docetaxel, DTXL-NP, C2-NP……………………… 84                                      

and C8-NP Formulations 

Table 4.3. White blood cell counts measured 4 days after injection with Saline,…………………….85                                

free docetaxel or C2-NP at two dose levels 



 

x 
 

LIST OF FIGURES 

Figure 1.1. Discontinuous fabrication scheme of PRINT PLGA docetaxel NPs. ................................ 17 

Figure 1.2. Roll to Roll (R2) continuous fabrication of PRINT particles ............................................ 18 

Figure 1.3. R2R optimization of 80x320 nm PLGA particles.. ............................................................ 19 

Figure 1.4. R2R optimization of 200x200 nm PLGA particles ............................................................ 20 

Figure 1.5. SEM of (A) 80x320 and (B) 200x200................................................................................ 21 

Figure 1.6. 80x320 PLGA docetaxel stored frozen or lyophilized ....................................................... 22 

Figure2.1. Scanning electron microscopy image of (A) 200x200 particles and……….……………..43                                   

(B) 80x320 particles 

Figure 2.2. Percent Docetaxel released from 80x320 and 200x200 particles…………………...……44                                    

when incubated at 37ºC in 1xPBS 

Figure 2.3. Docetaxel concentration versus time curve  ....................................................................... 45 

Figure 3.1. Pharmacokinetic profiles .................................................................................................... 64 

Figure 3.2. Mean body weight of mice in MTD study.  Dose 1 was on Day 0 .................................... 65 

Figure 3.3. Tumor growth rates and Kaplan-Meier curve of mice with A549………………………..66                           

orthotopic lung xenografts 

Figure 4.1. Synthesis of Silyl Ether Docetaxel Prodrugs ..................................................................... 86 

Figure 4.2. A. Release kinetics of docetaxel, C2 and C8 from PLGA NPs in………………………..87                                     

PBS at 37ºC B. Cytotoxicity of docetaxel, C2 and C8 on A549 cells in vitro.                                      

C. Hydrolysis of C2 in plasma. D. Hydrolysis of C8 in plasma 

Figure 4.3. Pharmacokinetic profiles of free docetaxel, DTXL-NP, C2-NP………………………….88                                         

and C8-NP Formulations  

Figure 4.4. A-B.Tumor growth inhibition curves. C. Body weights……………………...…………..89



 

xi 
 

LIST OF ABBREVIATIONS 

80x320 nm – particle with diameter (d) = 80 nm; height (h) = 320 nm;  

200x200 nm – particle with diameter (d) = 200 nm; height (h) = 200 nm; 

AUC – area under the curve  

DLS – dynamic light scattering  

DMSO – dimethyl sulfoxide  

HPLC – high performance liquid chromatography  

IC50– half maximal inhibitory concentration  

I.V. – intravenous  

kDa – kilodaltons (equivalent to 1,000 grams per mole)  

PBS – phosphate buffered saline  

PDI – polydispersity index  

PEG – poly(ethylene glycol)  

PET – poly(ethylene terephthalate)  

PFPE – perfluoropolyether  

PK – pharmacokinetics  

PLGA – poly(lactic-co-glycolic acid)  

PLLA – poly(L-lactic acid)  

PRINT – particle replication in non-wetting templates  

PVOH – poly(vinyl alcohol)  

R2R – roll to roll fabrication  

SEM – scanning electron microscopy  

SKOV3 – human ovarian adenocarcinoma cell line  



 

xii 
 

Tg – glass transition temperature  

(w/w) – denotes a percentage expressed as weight per weight  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

1 
 

 

 

 

CHAPTER 1: INTRODUCTION 

1.1  Specific Aims and Background 

There have been multiple nanoparticle formulations indicated for cancer that have been 

approved by the Food and Drug Administration (FDA) and many more are in clinical 

development. Though some nanoparticles have received FDA approval and demonstrated 

superiority in preclinical models, nanoparticles have not demonstrated improvement in 

overall survival against the free small molecule formulation in phase III trials [1,2].  The goal 

of this research is to evaluate nanoparticle design parameters to identify optimal nanoparticle 

characteristics to improve the pharmacokinetics, toxicity and efficacy of a model drug, 

docetaxel.  The specific aims of the research are to: 

1. Evaluate the effect of particle size of non spherical particles on docetaxel 

pharmacokinetics 

2. Evaluate the effect of nanoparticle weight percent drug loading on the 

pharmacokinetics and efficacy of docetaxel 

3. Evaluate the effect of release kinetics on the pharmacokinetics and efficacy of 

docetaxel prodrug 

The goal of this research is to improve the understanding of commonly measured 

nanoparticle characteristics on in vivo performance. To accomplish this, particles were 

prepared by a top-down fabrication process known as Particle Replication in Non-wetting 

Templates (PRINT
®

). The PRINT technique utilizes molds with negative features of the 

desired size and shape particles that one desires to make. Using PRINT, single formulation 
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parameters can be altered to evaluate its effect on pharmacokinetics and efficacy because 

PRINT offers precise control particle size, shape and composition.  There are many 

alternative methods to prepare nanoformulations and these processes are summarized in the 

following sections. 

Multiple alternative formulations of taxanes have been prepared to avoid use of 

Cremophor EL as well as improve pharmacokinetics, decrease toxicity and improve efficacy.   

The only FDA approved nanoparticle formulation of a taxane is Abraxane
®
, which is a 

Cremophor EL free formulation that consists of paclitaxel protein-bound particles.  The 

paclitaxel protein-bound particles are ~130 nanometers (nm) and dissociate into smaller 

albumin particles. Abraxane allows a higher dose of paclitaxel to be administered (260 

mg/m
2
 versus (v) 175 mg/m

2
) and shorter infusion time than Taxol

® 
(3 hours v 30 minutes) 

[2].  Additionally, Abraxane had an improved safety profile; patients receiving Abraxane had 

lower incidence of high grade neutropenia (9% v 22%) [2].  However, in a phase III trial 

patients with metastatic breast cancer receiving Abraxane at 50% higher paclitaxel dose than 

Taxol as a first line treatment did not have improved median survival [2].  Abraxane did not 

improve the pharmacokinetics of paclitaxel when compared to Taxol, in fact, Abraxane 

increased the clearance of paclitaxel (17700 v 10740 mL/hr/m
2
).  Abraxane allows 50% 

higher dose of paclitaxel than Taxol, but plasma exposure as measured by area under the 

curve is similar for both formulations [3].  Abraxane improves the safety and convenience of 

paclitaxel administration, but overall did not improve the pharmacokinetics and perhaps, 

therefore did not improve efficacy despite delivering a higher dose of paclitaxel.  Abraxane is 

unlike other nanoformulations because it dissociates into albumin particles in vivo and thus 

may not rely on the EPR effect to accumulate in tumors. 
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Other taxane formulations, such as NK105 also eliminate the need for Cremophor EL, 

but also improve the pharmacokinetics of paclitaxel.  NK105 is a micellar formulation of 

paclitaxel that uses diblock polymers of polyethylene glycol (PEG) and polyaspartic acid to 

form micelles of ~90 nm in diameter that encapsulate paclitaxel in the core of the particle.  

Compared to Taxol, NK105 decreased the clearance rate (408.6 v 10740 mL/hr/m
2
) and 

volume of distribution (4527.1 v 58900 mL/m
2
) of total paclitaxel within the system and also 

increased the plasma exposure in a phase I trial [3].  NK105 was further evaluated in a phase 

II trial; 56 patients with advanced gastric cancer received NK105 as second line treatment.  

Overall response rate was 25% and median overall survival was 14.4 months [4].  Based on 

the modest activity seen, NK105 was advanced to a phase III trial that is comparing 

progression free survival compared to patients receiving Taxol.  At this time, tolerability of 

NK105 appeared to be similar to that of Taxol, but further studies will determine if NK105 

improves paclitaxel’s safety profile [4].  Micelles are advantageous because they are formed 

by self-assembly and do not require extensive input of mechanical energy to form particles.  

However, their stability in vivo is reliant upon the critical micellar concentration (CMC) of 

the diblock polymer.  NK105 appears to be quite stable in vivo based on the large 

differentiation in the pharmacokinetics of paclitaxel when dosed as a micellar formulation. 

Another taxane formulation that also improves the pharmacokinetics of Taxol is 

poliglumex, which is a biodegradable polymer drug conjugate of paclitaxel that is ~48,000 

daltons [5].  The polymer backbone is Poly-L-glutamic acid and paclitaxel is conjugated to 

the backbone via an ester linkage sensitive to the enzyme cathepsin B [5].  Compared to the 

other taxane formulations, poliglumex offers controlled and triggered release of paclitaxel 

from the polymer backbone because drug release requires internalization of the conjugate 
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followed by cleavage of the linker by the lysosomal enzyme cathepsin B. In 

pharmacokinetics studies, the entire conjugate had a longer terminal elimination half life 

compared to free paclitaxel, but, only 1-2% of paclitaxel was released from the conjugate [6]. 

Poliglumex was evaluated in multiple phase III clinical trials, including one that compared 

poliglumex and docetaxel head to head as second-line treatment for non small cell lung 

cancer.  Patients who received poliglumex had less high grade neutropenia and shorter 

infusion times than patients receiving docetaxel [7].  However, poliglumex did not increase 

the median survival of patients [7].  Survival benefit may be limited by lack of release of 

paclitaxel from the poliglumex conjugate. Subgroup analysis of the phase III clinical trials 

show that efficacy may be enhanced in women compared to men, suggesting that cathepsin B 

levels may be important in predicting efficacy [8].  

Other biodegradable nanocarrier systems include Samyang’s Genexol
®
-PM and Bind 

Biosciences’ BIND-014.  Genexol-PM is a 20-50 nm micellar formulation of paclitaxel that 

is formed using diblocks of poly(lactide) and poly(ethylene glycol).  In preclinical studies, 

Genexol-PM had 1.5-times higher maximum tolerated dose compared to Taxol [9].  In a 

phase I clinical trial, the recommended dose for further study was 300 mg/m
2
, also higher 

than the typical Taxol dose [10]. Interestingly, compared to the other alternative taxane 

formulations, Genexol-PM requires a 3 hour infusion time [10].  Similar to Abraxane, the 

pharmacokinetics of paclitaxel with Genexol-PM is not improved compared to Taxol.  At a 

similar dose to Taxol, the terminal elimination half life of paclitaxel dosed as Genexol-PM is 

actually less than that of paclitaxel dosed as Taxol [10].  Thus, the main benefit of Genexol-

PM appears to be the removal of Cremophor EL from the formulation. Samyang also 

prepared a similar micelle, but with docetaxel rather than paclitaxel. However, with 
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docetaxel, the maximum tolerated dose and safety profile was found to be similar to the 

clinical formulation Taxotere in preclinical models [11].   

The most recent taxane formulation that has entered clinical development is BIND-

014, which is formulated by a nanoemulsion process using a mixture of Poly(L-lactide) and a 

diblock of Poly(L-lactide)-Poly(ethylene glycol) to make particles ~100 nm in diameter [12].  

Compared to the other taxane formulations, BIND-014 provides sustained release of 

docetaxel over days, which is dependent upon the polymer and molecular weight selected.  In 

preclinical studies, slower drug release rate was found to decrease the clearance rate of 

docetaxel and increase the terminal elimination half life [12]. Compared to the other taxane 

formulations that have been approved or are in clinical development, BIND-014 may be the 

most promising due to its addition of targeting.  BIND-014 has targeting ligands that target 

prostate-specific membrane antigen (PSMA), which has been demonstrated to increase the 

retention of nanoparticles in a xenograft tumor [13].  In a phase I trial, BIND-014 increased 

the plasma exposure of total docetaxel compared to Taxotere.  However, patients receiving 

BIND-014 were dose limited by neutropenia and can only be dosed as high as 60 mg/m
2
, 

which is lower than a typical Taxotere dose.   

These taxane formulations vary in their compositions and also greatly in their 

pharmacokinetics and toxicity.  Though removal of Cremophor EL appears to improve the 

tolerability of paclitaxel, BIND-014 and Samyang’s docetaxel formulations did not appear to 

improve the tolerability of docetaxel. In addition, it remains to be established if a 

nanoformulation may enhance the efficacy of docetaxel.  

Though there are no current docetaxel liposomal formulations in clinical 

development, liposomes are an important tool in drug delivery. Liposomes are self-
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assembled unilamellar or multilamellar vesicles prepared from phospholipids and can be 

sized from sub-100nm to micron sized particles.  Liposomes have been extensively studied to 

deliver chemotherapeutics. They can encapsulate both hydrophilic and hydrophobic drugs 

within the aqueous core or within the bilayer and are prepared from biocompatible lipids 

[14].  However, release of the drug is not as well controlled because drug release is 

dependent on the aqueous solubility of the drug and also the composition of the lipid bilayer. 

The attractiveness of liposomes for drug delivery are their long circulation half lives, which 

can be hours or even days, because of the addition poly(ethylene glycol) to the surface of the 

liposome [15].    

 There have been multiple liposomal drug formulations approved by the food and drug 

administration (FDA).  Doxil
™

, a liposomal formulation of the anti-cancer agent doxorubicin, 

is approved for ovarian cancer, AIDS-related Kaposi’s Sarcoma and multiple myeloma in the 

United States.  The half-life of doxil is ~73.9 hours in humans, much longer than that of 

doxorubicin (<10 minutes) [1].  The encapsulation of doxorubicin into liposomes greatly 

decreases the volume of distribution and clearance of doxorubicin compared to the non 

liposomal formulation [16].  The prolonged elmination half life of doxorubicin and reduced 

distribution may enhance passive targeting to tumors and reduce side effects.   In a phase III 

trial comparing Doxil to conventional doxorubicin for first-line treatment of metastatic breast 

cancer, less patients receiving Doxil experienced cardiotoxicity, while efficacy as measured 

by progression-free survival was similar [1].   

 Though liposomes are one of the few FDA approved nanoparticle drug carriers, they 

do have some disadvantages.  Liposomes do not offer as precise size control as the PRINT 

process.  Additionally, liposomes typically have short shelf-lives unless lyophilized and have 
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lower drug loading and depending on the loading method and the drug, low encapsulation 

efficiency [17].  Also, drug release from liposomes is not as well controlled as polymeric 

particles.  

1.2   PRINT PLGA docetaxel NPs 

 PLGA docetaxel NPs of the feature size d = 200 nm; h = 200 nm have been 

previously developed and reported by Elizabeth Enlow with % loadings up to 40.  To more 

easily conduct in vivo studies, the PRINT process was scaled from a discontinuous bench top 

process (illustrated in figure 1.1) to a continuous fabrication scheme, referred to as the roll to 

roll (R2R) using the instrument shown in figure 1.2.   

1.2.1 General protocol 

 For bench top fabrication, a solution at 1 w/w% PLGA and 1 w/w% docetaxel in 

chloroform can be used to draw individual films on PET sheets in segments of 6” x 12” to be 

individually placed through heated nips with the mold.  In the R2R process, a roll of PET is 

placed at position 1.1B and is placed through the heated nips (position 1.1E) and collected at 

position 1.1G.  Likewise, a roll of thin mold is placed at position 1.1A and collected at 

position 1.1F.  As the PET moves from 1.1B to 1.1G, solution is deposited using a syringe 

pump at position 1.1C immediately before a mayer rod (1.1D), which casts the solution into a 

wet film. The solvent is then evaporated by heat guns aimed at the PET to give a dry film of 

polymer and drug.  The contents of the dry film are then filled into mold at position 1.1E and 

collected to position 1.1G.   

 After the mold is filled, the mold is moved to position 1.1A to transfer the particles 

from the mold to PET that will be coated with low molecular weight polyvinyl alcohol 

(PVOH).  During the particle transfer process, the mold and the PVOH coated PET are 
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brought together at the heated nips and collected together at 1.1F or 1.1G.  The mold is then 

peeled away from the PVOH coated PET to leave an array of particles on the PET.  The PET 

is run through two rollers and water is added to dissolve the PVOH and release the particles 

into a solution for further purification and storage.   

1.2.2 R2R Parameter Optimization 

 Once an appropriate process has been established by discontinuous bench top 

fabrication, the parameters are adapted to achieve continuous fabrication.  During this 

optimization, important parameters to control are film thickness of the polymer drug film as 

well as temperature of the heated nips.  Film thickness is controlled by the w/w% solids of 

the particle forming solution, mayer rod number as well as speed that the roll of PET is 

pulled from 1.1C to 1.1J.   

 Process optimization was started with the 80x320 nm using a mayer #3 (figure 1.3A 

and B) or mayer #5 (figure 1.3C and D).  Particles were fabricated with either mayer rod at 3 

different w/w% solutions of PLGA and 3 different speeds.  Particles were then harvested and 

analyzed by DLS.  In general, increased mayer number, w/w% solution and speed lead to 

increased particle size and PDI.  However, for the 80x320 nm particles, 2 w/w% solution and 

a speed of 4-8 ft/min yielded particles with good particle size and PDI. 

 Likewise, the R2R process was optimized for the 200x200 nm particles (shown in 

figure 1.4).  As with the 80x320 nm particles, increased w/w% solution and speed generally 

gave increased particle size and PDI.  A 2 w/w% solution and mayer #3 was sufficient to 

make good particles at speeds 4-8 ft/min, with there being a slight increase in PDI at 8 ft/min. 

 With these initial parameters, further optimization was done with the 2 w/w% 

solution.  A mayer #2 was used to further decrease film thickness to reduce raw material use.  
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Additionally, speeds were altered between 4-8 ft/min.  Final R2R parameters for the 80x320 

nm particles were 6-7 ft/min, 2 w/w% solution and mayer rod #2.  Similarly, the 200x200 nm 

parameters were 6-7 ft/min, 2 w/w% solution and mayer rod #3. Figure 1.5 shows PLGA 

docetaxel particles fabricated with the final process parameters. 

 After particle fabrication was optimized, the 80x320 particles were evaluated for 

storage stability. After particle fabrication, particles were flash frozen and stored at -20°C or 

lyophilized and stored at 4°C.  At set time points, particles were removed and thawed or 

reconstituted in sterile water and measured by DLS.  Particles had good physical stability 

when frozen and stored for 3 months or lyophilized and then stored at 4°C for 6 months. 

 1.3 Tumor Delivery 

Chemotherapy delivery to solid tumors requires drug molecules to cross the vascular 

endothelium, the interstitial space of the tumor and then into the cancer cell to its molecular 

target.  The encapsulation or linkage of drug molecules into nanoparticles or macromolecules 

has been thought to selectively enhance tumor accumulation of drug because some tumors 

may exhibit leakiness to allow larger molecules to extravasate, where as normal endothelium 

normally only allows smaller molecules (few nanometers) to extravasate [18].  The reduced 

permeability of chemotherapeutics in a nanoparticle to cross normal endothelium has the 

potential to decrease toxicity to non cancerous organs.  However, encapsulation of drugs into 

nanoparticles does not guarantee increased extravasation across the vasculature into solid 

tumors because of formidable barriers presented by the physiology of solid tumors.  

1.3.1 Tumor Vasculature 

The enhanced permeability and retention effect is hypothesized to increase tumor 

accumulation of macromolecules and nanoparticles, but solid tumors exhibit many 
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unfavorable characteristics for mass transport. Tumor vasculature is not well distributed in 

the tumor and is more tortuous compared to normal vasculature [18]. The increased tortuosity 

of the vasculature increases resistance to blood flow and lowers perfusion rates in tumors 

compared to normal tissue. Decreased perfusion rates decreases opportunity for nanoparticles 

to extravasate across the vasculature. Because of tumor vasculature heterogeneity, only the 

periphery of a tumor may be well vascularized leading a necrotic core that has low 

penetration of nanoparticles.  

Direct measurement of human tumors has shown that the interstitial fluid pressure is 

elevated [19,20]. This hypertension in the tumor relative to the vasculature decreases 

convection of nanoparticles and impedes mass transport into the tumor. When interstitial 

fluid pressure is high, diffusion is the predominate mode of mass transport. Though 

vasculature in mouse xenograft tumors may have interendothelial junctions that may be as 

wide as a few micrometers in diameter [21], large particles have slow diffusion and will not 

have as deep tumor penetration compared to smaller nanoparticles or traditional 

chemotherapeutics and antibody therapies that are less than a few nanometers.  Additionally, 

deep tumor penetration is inhibited by the interstitial matrix that is primarily composed of 

collagen and other elastic fibers [22].  

1.3.2 Effect of particle size on tumor delivery 

Particle size and molecule size have been demonstrated to affect the percent injected  

dose accumulated at the tumor in in vivo models.  In early studies, F. Yuan et al. found that 

the upper size range for extravasation of liposomes is between 400 – 600 nm in LS174T 

xenograft tumors [23].  More recent studies have demonstrated that in a pancreatic cancer 

xenograft model, micelles with a mean diameter of 30 nm had the best tumor accumulation 
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compared to micelles with diameters of 50, 70 and 100 nm [24].  Additionally, in two 

different xenografts, particles with diameter of 20 and 50 nm had improved tumor 

accumulation compared to particles with diameter of 200 nm [25, 26]. Additionally, the 50 

nm particles with camptothecin were much more efficacious compared to the 200 nm 

particles in a Lew Lung Cancer (LLC) xenograft model [26].  Improved tumor delivery will 

likely be enhanced by decreasing particle diameter. 

 Though many studies have been done with spherical particles, few studies have 

utilized rod shaped or high aspect ratio particles. Prior work within the lab has demonstrated 

that high aspect ratio particles are more readily internalized by cells in vitro, and thus may be 

more useful to improve targeting of particles to cancer cells once active targeting ligands are 

conjugated to the particle surface [27]. However, rod shaped particles of high aspect ratio 

prepared through the PRINT
®
 process requires that one dimension of the particle be greater 

than 100 nm with the smaller dimension being 80 nm.  Though the 80 nm dimension is 

within the preferred range for tumor accumulation, it is unknown how the longer dimension 

of the particle will affect tumor accumulation as well as particle clearance.  It is hypothesized 

that the shorter dimension of a rod shaped particle will have more influence on particle 

biodistribution than the longer dimension.  Filtration studies of a series of rod shaped 

particles with a diameter of 80 nm, and length of 180 to 5000 nm, demonstrated that all 

particles, regardless of particle length, could pass through 0.2 µm filters [28].  Particle 

rigidity was more of an influence in particle recovery after filtration than particle length.  

Thus, a particle with a diameter less than the diameter of the pore is likely to cross the pore, 

even though particle length may be greater than the pore size. A rod shaped particle with a 
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small diameter may allow for improved tumor accumulation of an encapsulated 

chemotherapeutic. 

1.3.3 Effect of drug loading on tumor delivery 

Drug loading, defined as the percent by weight a drug constitutes a formulation has 

not been studied for its effect on drug pharmacokinetics or efficacy.  For a small molecule, 

high plasma concentration of drug drives drug distribution through a concentration gradient. 

An increase in the number particles injected by decreasing drug loading may also drive more 

particles to the tumor through leaky vasculature.  Though number of particles accumulated at 

the tumor may be increased by increasing particle dose, decreased drug loading per particle 

may not actually increase the amount of drug delivered to the tumor.  Thus, evaluating the 

effect of drug loading on drug pharmacokinetics and efficacy may yield valuable insight on 

how well drug loading should be controlled within a manufacturing process.  Ideally, drug 

loading should be kept as constant, but process changes in both particle fabrication and 

purification during the development process may lead to differences in drug loading. 

Understanding if drug loading alters pharmacokinetics will help predict if different batches of 

drug loaded nanoparticles will be bioequivalent during the development process.  

Additionally, decreased drug loading may lead to greater accumulation within the tumor and 

may be a parameter that can be tuned to maximize efficacy.   

1.3.4 Effect of drug release kinetics on tumor delivery 

Sustained drug release of a chemotherapeutic from a particle may lead to improved 

efficacy as well as improved tolerability. Particulate delivery of a chemotherapeutic is 

hypothesized to improve its tumor accumulation; this may require that minimal drug is 

released when the particle is in plasma and drug is triggered to release at the site of the tumor 
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or slowly releases, so that the majority of the released drug within the body is at the site of 

the tumor.  J. Hrkach et al. demonstrated that by reducing docetaxel’s in vitro release rate, the 

plasma pharmacokinetics of the total docetaxel (encapsulated and released docetaxel) is 

improved as measured by terminal elimination half life and exposure by AUC [12].  

However, the influence of in vitro release rate on efficacy and toxicity was not evaluated.  J. 

Hrkach et al. advanced its most stable formulation with the slowest in vitro release kinetics to 

a phase I trial.  Though it appears that sustained release may lead to an increased duration 

that tumor cells are exposed to docetaxel, it is not known what release rate is optimal.  Too 

slow of a release rate may improve tolerability, but decrease efficacy, if a minimum effective 

concentration of the chemotherapeutic is not reached.  A quick release rate may release the 

majority of drug into plasma allowing for distribution into normal tissues. Evaluating the 

effect of release kinetics on efficacy and toxicity may hone in on an optimal release kinetic 

for chemotherapeutic delivery. 
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Figure 1.1. Discontinuous fabrication scheme of PRINT PLGA docetaxel NPs (Figure 

provided by Elizabeth Enlow) 
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Figure 1.2. Roll to Roll (R2) continuous fabrication of PRINT particles  
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Figure 1.3. R2R optimization of 80x320 nm PLGA particles.  A and B used a mayer rod #3.  

C and D used a mayer rod #5. 
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Figure 1.4. R2R optimization of 200x200 nm PLGA particles.  A and B used a mayer rod 

#3. C and D used a mayer rod #5. 
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Figure 1.5. SEM of (A) 80x320 and (B) 200x200 
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Figure 1.6. 80x320 PLGA docetaxel particles stored at -20°C after being flash frozen 

or stored at 4°C after being lyophilized. 
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CHAPTER 2: PLASMA, TUMOR AND TISSUE PHARMACOKINETICS OF 

DOCETAXEL DELIVERED VIA NANOPARTICLES OF DIFFERENT SIZES AND 

SHAPES IN MICE BEARING SKOV-3 HUMAN OVARIAN CARCINOMA 

XENOGRAFT 

2.1  Introduction 

The application of nanotechnology to oncology explores the use of macromolecular 

and nanoparticle carriers to enhance delivery of therapeutics and diagnostic agents. Desired 

outcomes of nanoparticle delivery include enhanced apparent drug solubility, extended drug 

half-life, and passive targeting to solid tumors by the enhanced permeability and retention 

(EPR) effect [1,2] all of which may translate to improved efficacy and decreased toxicity. 

Two Food and Drug Administration (FDA) approved examples of nanoparticle formulations 

are Doxil
®
 (pegylated liposomal doxorubicin) and Abraxane

®
 (albumin-bound paclitaxel 

nanoparticle). Doxil’s advantages compared to doxorubicin are increased half-life of 

doxorubicin in plasma and great tumor delivery and also reduced cardiotoxicity that was 

demonstrated in a single agent phase III study [3].  Abraxane showed benefit in response rate 

and progression free survival in a single agent phase III trial compared to Taxol [4].  Though 

there has been success in nanomedicine, the percent of injected dose of nanoparticles that 

reaches the tumor remains low, and thus further study of factors affecting nanoparticle tumor 

accumulation are warranted [5].   

There are many formulation techniques for nanoparticle fabrication, including self-

assembled systems such as microemulsions [6] and micelles [7], liposomes [8], 
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emulsion/solvent evaporation [9] and nanoprecipitation [10] based polymeric particles.  

Particle compositions and fabrication techniques may vary, but nanoparticles for small 

molecule chemotherapy delivery have similar design criteria [11–13].  Nanoparticles are 

typically sized larger than 10 nm to avoid renal clearance and extravasation to normal tissues 

and are smaller than 200 nm to reduce clearance by the liver and spleen of the mononuclear 

phagocyte system (MPS) [14,15].  Although general trends have been established in desired 

particle size for tumor accumulation and there have been some studies on the role of particle 

size and shape on cellular uptake of particles [16–18], few studies have explored the effect of 

particle shape on in vivo tumor accumulation.  Geng et al demonstrated that flexible 

filomicelles have longer plasma circulation times and evade the MPS [19].  Chauhan et al 

have demonstrated that a rod shaped particle with a small diameter has better tumor 

penetration than spherical particles of similar hydrodynamic diameter [20].   

However, to date, the interdependent effect of size and shape on chemotherapeutic 

tumor delivery has not been explored.  In this study, we applied the PRINT
®
 (Particle 

Replication In Non wetting Templates) technology, which is a soft-lithography process, to 

fabricate monodisperse populations of PLGA particles with high loadings of Docetaxel [21].  

PRINT is a top-down fabrication technique that produces size and shape specific particles 

that provides the ability to understand the role of size and shape on particle distribution in 

vivo [22].  Two particle shapes were used; diameter (d) = 200 nm; height (h) = 200 nm 

(200x200); and d = 80 nm; h = 320 nm (80x320); cylindrical particles. The 80x320 particle 

has an aspect ratio of 4:1. Though this particle has a longer length than the 200x200 particle, 

the 80 nm diameter may allow the particle to transport through smaller pores.  With both 

particle shapes, we demonstrated improved plasma pharmacokinetics and tumor delivery 
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compared to the approved clinical formulation of Taxotere.  Additionally, differences in 

clearance can be seen for the two PRINT particles suggesting that shape may play a role in 

reducing clearance by the MPS and enhancing tumor delivery.   

2. 2  Methods 

2.2.1  Materials 

Poly(D,L-lactide-co-glycolide) (lactide:glycolide 85:15, 0.65 dL/g Inherent Viscosity at 

30ºC) was purchased from Sigma-Aldrich.  Chloroform and solvents (acetonitrile and water) 

for high performance liquid chromatography (HPLC) were purchased from Fisher Scientific.  

Docetaxel was purchased from LC Laboratories.  Taxotere (free docetaxel) was purchased 

from the University of North Carolina at Chapel Hill hospital pharmacy for research 

purposes.  Poly(ethylene terephthalate) (PET) sheets (6” width) were purchased from KRS 

plastics.  Fluorocur®, 200x200 and 80x320 prefabricated molds and 2,000 g/mol polyvinyl 

alcohol (PVOH) coated PET sheets were provided by Liquidia Technologies.   

2.2.2  Particle Fabrication  

 Docetaxel particles were fabricated following previously published methods with 

modification [23].   A thin film of PLGA and docetaxel was deposited on a 6”x12” sheet of 

PET by spreading 150µL of a 10 mg/mL PLGA and 10 mg/mL docetaxel chloroform 

solution using a # 5 Mayer Rod (R.D. Specialties).  The solvent was evaporated with heat.  

The PET sheet with the film was then placed in contact with the patterned side of a mold and 

passed through heated nips (ChemInstruments Hot Roll Laminator) at 130ºC and 80psi.  The 

mold was split from the PET sheet as they both passed through the hot laminator.  The 

patterned side of the mold was then placed in contact with a sheet of PET sheet coated with 

2,000 g/mol PVOH.  This was then passed through the hot laminator to transfer the particles 
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from the mold to the PET sheet.  The mold was then peeled from the PET sheet.  The 

particles were removed by passing the PVOH coated PET sheet through motorized rollers 

and applying water to dissolve the PVOH to release the particles.  To remove excess PVOH, 

the particles were purified and then concentrated by tangential flow filtration (Spectrum 

Labs). 

2.2.3  Particle Characterization  

 Particles were imaged by scanning electron microscopy (SEM) by pipetting a 50 µL 

sample of particle on a glass slide.  The sample was then dried and coated with 3 nm gold 

palladium alloy using a Cressington 108 auto sputter coater.  Images were taken at an 

accelerating voltage of 2 kV using a Hitachi model S-4700 SEM.  For size and zeta potential 

measurement, dynamic light scattering (DLS) (Malvern Instruments Nano-ZS) was used. 

2.2.4  Drug Loading  

 Docetaxel was measured using an Agilent Technologies Series 1200 HPLC with a 

C18 reverse phase column (Zorbax Eclipse XDB-C18, 4.6x150mm, 5 micron).  A linear 

gradient from 100% water to 100% acetonitrile was run over 10 minutes. Then 100% 

acetonitrile was run for 5 minutes.  The flow rate was 1 mL/min and detection was at 210nm.  

Particle samples were prepared by diluting the sample 1 in 10 with acetonitrile and mixing 

the sample to break down the particle.  Standards of docetaxel and PLGA were prepared in 

acetonitrile.   

2.2.5  In Vitro Release Studies  

 100 µL of particle solution (200 µg/mL docetaxel) was placed in a mini dialysis unit 

with a 20k MW cutoff and dialyzed against a stirred 1L bath of 1xPBS at 37ºC.  The bath 

was replaced periodically to maintain sink conditions.  There were three dialysis units for 
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each time point.  At each time point, the particle solution in each dialysis unit was removed 

and centrifuged to pellet the nanoparticles.  The pellet was then analyzed for the amount 

docetaxel remaining.  To determine the percent docetaxel released over time, the amount 

docetaxel remaining was compared to the initial amount of docetaxel in the system.   

2.2.6 SKOV-3 human ovarian carcinoma tumor xenografts   

 This study was done with an approved protocol with the University of North Carolina 

at Chapel Hill’s Institutional Animal Care and Use Committee.  All animals used were 

treated humanely. SKOV-3 human ovarian carcinoma cells, acquired from ATCC, were 

propagated in culture and harvested in log-phase growth.  Female C.B.-17 SCID mice, aged 

6-8 weeks and 14-18 grams in body weight, were ordered from Harlan Sprague Dawley. The 

mice were acclimated for 1 week prior to tumor cell injection. Cells (5.0×10
6
 cells in 200µL 

1xPBS) were injected subcutaneously (SC) into the right flank of each mouse.  Tumor 

volume was calculated using the formula: tumor volume (mm
3
) = (w

2
 × l)/2, where w = width 

and l = length in mm of the tumor. 

2.2.7  Pharmacokinetic study  

 42 days after tumor cell implantation, mice were pair matched according to tumor 

volume into three treatment groups.  Individual tumor volumes ranged from 40 to 253 mm
3 
at 

the time of grouping.  The dosage for Docetaxel administered was based upon previously 

published work [24].  All mice received 10 mg/kg docetaxel via a single tail vein injection.  

Group 1 (n = 17) received free docetaxel.  Group 2 (n = 18) received 200x200.  Group 3 (n = 

18) received 80x320.  Formulations were diluted to 1 mg/mL of docetaxel with normal saline 

and mice were dosed at 10 µL of solution per gram of body weight. 
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Mice (n=3 per time point) were sacrificed at 0.083, 1, 6, 24, 72, and 168 hours after 

dosing.  Blood (~1 mL) was collected via terminal cardiac puncture using sodium heparin as 

an anticoagulant under CO2 anesthesia and processed for plasma by centrifugation (1,500 × g 

for 5 min).  Plasma and tissues were placed in cryopreservation vials and preserved by snap 

freezing using liquid nitrogen.  Tissues were stored at -80°C until analysis. Samples were 

processed for sum total (encapsulated + released) docetaxel using a protein precipitation 

method and analyzed by LC-MS/MS. 

2.2.8  Sample Preparation and Processing   

 Total tissue and tumor weight was recorded at time of collection.  Whole tissue and 

tumors were snap frozen in liquid nitrogen and stored at -80
°
C until homogenized.  To form 

homogenates, the intact tissues or tumors were thawed and sectioned. The sections were 

weighed and diluted in a 1:3 ratio with phosphate buffered saline (PBS) solution (assumes 

tumor and tissue has a density of 1 mg/ml).  Finally, these mixtures were homogenized by 

placing zirconium oxide beads (15 small and 2 large) into 2 mL tubes at 3,000 x g using a 

Precellys 24 homogenizer (Bertin Technologies) twice for 15 sec each with a 5 sec wait 

between each run.  The resulting homogenates were snap frozen in liquid nitrogen and stored 

at - 80
°
C until processed. 

Sample processing for determining plasma, tissue, or tumor concentrations of 

docetaxel was similar and based on previously published methods [25]. Calibration 

standards, quality control samples, and dilution control samples were prepared in equivalent 

matrix that had demonstrated no interfering components by the addition of 10 l of a 10X 

solution of analyte in acidified methanol (0.1%v/v acetic acid).  Dilution controls and diluted 

unknown samples were diluted 1:10 (10 uL sample + 90 uL appropriate matrix) prior to any 
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processing. All samples, standards, and controls were processed as follows:  100l of plasma 

or, tumor or tissue homogenate was pipetted into a 96-well silanized glass insert, protein-

precipitated with the addition of 100 l of a 50:50 mixture of methanol:acetonitrile 

containing the internal standard solution (paclitaxel), vortexed for 1 min, and centrifuged for 

15 min at 3,000 x g at 4ºC.  The supernatants were analyzed by liquid chromatography with 

detection by tandem mass spectrometry with no further manipulation needed.   

2.2.9  Liquid Chromatography Tandem Mass Spectrometry (LC-MS/MS) 

 A previously described LC-MS/MS analytical method was used for the quantification 

of analytes [26]. A Shimadzu solvent delivery system, and an Applied Biosystems API 4000 

triple quadruple mass spectrometer with an APCI ion source (Applied Biosystems) were used 

for these analytical studies.  Separation was accomplished using a Gemini
®
 C18, 30x2.0 mm 

column, with a 5 µm particle size. The mass spectrometer was operated in positive ion mode 

using multiple reaction monitoring: docetaxel,
 
808.5 527.5 m/z and paclitaxel 854.4 286.1 

m/z [26].   

 2.2.10 Pharmacokinetic Analysis 

 The pharmacokinetics of free docetaxel, 200x200 and 80x320 in plasma, tumor and 

tissue were analyzed by noncompartmental methods using WinNonlin Professional Edition 

version 5.2.1 (Pharsight Corp, Cary, NC). The area under the concentration versus time curve 

(AUC) was calculated using the linear up/log down rule.  AUC from 0 to t (AUC0-t) and 

AUC from 0 to ∞ (AUC0-∞) were calculated. Volume of distribution (Vd) and clearance (CL) 

were calculated using standard equations. The maximum concentration (Cmax), time of Cmax 

(Tmax), last measured concentration (Clast) and time of Clast (Tlast) were determined by visual 

inspection of the concentration versus time curve data. 
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2.2.11 Statistics  

 Data was analyzed for statistical differences by one-way analysis of variance 

(ANOVA) followed by Bonferroni’s modified t-test for multiple comparisons using 

GraphPad Prism (GraphPad Software, Inc., La Jolla, CA).  The confidence interval was set at 

95% (P<0.05) to determine statistical significance.   

2.3 Results 

2.3.1  Particle Fabrication    

 The characteristics for the 80x320 and 200x200 particles are shown in Table 2.1.  

The PRINT fabrication process makes highly monodisperse particles as visualized by the 

SEM images (Figure 2.1). The particles had slightly negative zeta potential because of the 

PVOH that remains associated with the particle following harvesting and purification and 

because the PLGA was ester terminated. During fabrication, the particles are transferred from 

the mold to PVOH coated PET sheets. When the harvest sheet is dissolved with water during 

bead harvesting to release the particles from the sheet to solution, PVOH is adsorbed onto the 

particle surface.  This slightly negative zeta potential may decrease nonspecific cellular 

uptake.   

Particles were measured for size by DLS.  Although the non-spherical particle shapes 

are not ideal for DLS measurement, the recorded measurements for both particle shapes were 

greater than 200 nm and the difference in hydrodynamic diameter was only ~30 nm.  The 

similarity of hydrodynamic diameter allows for a more fair comparison of shape effects on 

drug pharmacokinetics.    

Additionally, as previously demonstrated [23], the docetaxel w/w% is much higher 

than what can currently be achieved with conventional bottom up formulation approaches 
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[27–30].  The 80x320 particles were loaded at a lower w/w% than the 200x200 particles 

(33.5% vs 45.2%) due to the purification process post particle fabrication.  The particles were 

originally charged with 50% by weight of docetaxel.  Particles were washed with sterile 

water and concentrated by tangential flow filtration, which allowed some docetaxel to leach.  

The 80x320 loses a larger percentage of docetaxel during this purification process.  This 

observation also matches the in vitro release profile of docetaxel from the particles (Figure 

2.2).  The 80x320 particles have a greater burst release than the 200x200 particles.  ~60% of 

the docetaxel is released in vitro for 80x320 particles by 3 hours compared to ~38% for the 

200x200 particles.  Additionally, at 24 hours, nearly 100% of drug is released from the 

80x320 particles mean while the 200x200 particles still hold ~27% of its cargo.  The 

difference in release may be dictated by the particle geometry.  Per unit volume, a 80x320 

particle has more surface area compared to a 200x200 particle.  This calculation assumes the 

80x320 particle is a cylinder that is 80 nm in diameter and has a length of 320 nm and 

assumes the 200x200 particle is a cylinder that is 200 nm in diameter and has a length of 200 

nm.  Increased surface area per unit volume leads to faster drug release.  

2.3.2  Pharmacokinetics of PRINT particles and free docetaxel  

 Sum total (encapsulated and released) docetaxel was measured for each organ. The 

concentration versus time profiles of Taxotere, 200x200 and 80x320 in plasma, tumor, 

spleen, liver and lungs are presented in Figure 2.3.  The pharmacokinetic parameters of free 

docetaxel, 200x200 and 80x320 in plasma, tumor, spleen, liver and lungs are presented in 

Table 2.2.  The PRINT particles had ~20-fold higher plasma exposure as measured by AUC 

compared to free docetaxel.  The 80x320 and 200x200 particles had ~5-fold and ~7-fold 

higher maximal plasma docetaxel concentration than free docetaxel, respectively.  The 
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difference in Cmax was statistically significant higher for both PRINT particles compared to 

free docetaxel (P<0.05).  Additionally, the volume of distribution was much lower for the 

PRINT particles compared to free docetaxel.  The Vd for 80x320 and 200x200 was ~18-fold 

and ~33-fold, respectively, less than that of free docetaxel.  Encapsulation of docetaxel into 

PRINT particles also decreased the clearance by ~24-fold compared to free docetaxel.   

 The 80x320 and 200x200 particles had a 53% and 76% increase in total tumor 

docetaxel exposure compared to free docetaxel from 0 to 168 h.  Interestingly, looking at the 

tumor concentration versus time curve for 0 to 24 hours, the 80x320 particles gave a higher 

docetaxel exposure than the 200x200 particles, despite 200x200 particles having higher 

exposure from 0-168 hours. The tumor AUC0-24h for 80x320 was 20% higher than 200x200, 

but for AUC0-168, the value for 200x200 particles was ~15.5% higher than that of 80x320. 

Also, the maximal tumor docetaxel concentration was at 1 hour for the 200x200 particles as 

opposed to 6 hours for the 80x320 particles. Additionally, the docetaxel concentration at 24 

hours was higher for the 80x320nm particles compared to the 200x200nm particles (387 

ng/mL versus 27 ng/mL).  This indicates that the 80x320 may have steady accumulation at 

the site of the tumor.  The plasma AUC for 0-24 hours and 0-168 hours of the 80x320 and 

200x200 particles are similar. Thus, for the same plasma exposure from 0-24 hours, it 

appears that the 80x320 is more efficient at delivering docetaxel to the tumor than the 

200x200 particle.  However, from 0-168 hours, for similar plasma exposure, the 200x200 

gave higher docetaxel exposure in the tumor.  The Clast of the 200x200 particles was higher in 

the tumor than the 80x320 particles. Changing the 80x320 particle to decrease drug release 

rate may increase docetaxel exposure at the tumor at longer time points. 
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Both particles had higher docetaxel exposure in the spleen and liver compared to free 

docetaxel as expected for a nanoparticle formulation [5,12-13].  However, the 200x200 

particles had ~4.8-fold higher docetaxel exposure in the spleen compared to the 80x320 

particles.  The maximal spleen concentration was also higher for the 200x200 particles 

compared to 80x320 (18,038 ng/mL vs 32,333 ng/mL, statistically significant).  The spleen 

docetaxel concentration for the 200x200nm particles was also higher than the 80x320nm 

particles at all times points after 5 minutes.  Despite the longer 320nm dimension, the higher 

aspect ratio 80x320 particle had less docetaxel exposure in the spleen compared to the 

200x200 particles.  

 The liver docetaxel exposure for the 200x200 particle was 1.4-fold higher than 

80x320 particles for AUC0-24h.  However, the maximal concentrations were not significantly 

different.  The lung docetaxel exposure for the 200x200 particle was also 1.4-fold higher than 

80x320 particles.  The 200x200 particles also gave a higher maximal docetaxel concentration 

in the lungs compared to the 80x320 particles, which was statistically significant.  The 

200x200 particles, possible due to its larger diameter, gets cleared more in organs such as the 

lung, liver and spleen compared to the 80x320 particles.     

2.4  Discussion 

 Monodisperse size and shape specific PLGA docetaxel nanoparticles were fabricated 

by the PRINT process.  These particles had very high loadings of docetaxel relative to other 

nanoparticles of docetaxel [27-30].  Although the role of drug loading on drug 

pharmacokinetics and efficacy has not yet been established, higher drug loaded particles 

allows for less of the non-active excipients to be injected. The formulations Taxotere and 

Taxol may cause adverse reactions related to the surfactants used (polyoxyethylated castor 
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oil and tween 80) [31,32].  Thus, injecting less non active excipient relative to active drug 

may increase tolerability of the formulation, especially as related to infusion related reactions 

[4, 33]. 

 The PRINT particles resulted in much higher plasma exposures of docetaxel 

compared to free docetaxel.  Accordingly, the volume of distribution and clearance of the 

PRINT particles was reduced related to free docetaxel. Encapsulation of docetaxel into 

PRINT nanoparticles keeps the docteaxel more confined to the plasma compartment to allow 

for longer circulation and subsequently increased tumor accumulation. Additionally, reduced 

distribution to normal tissues may enhance the tolerability of the PRINT formulation 

compared to free docetaxel.  Furthermore, the two particles had similar plasma docetaxel 

exposure, but from 0-24 hours, the 80x320 particle had higher tumor docetaxel exposure 

compared with 200x200. Thus, though different particles may have longer circulation times 

and higher plasma drug exposure, the shape of the particle may play a role in the efficiency 

of delivery to the tumor.  Because minimal amount of drug compared to total dose 

administered reaches the tumor, incremental changes to improve tumor delivery and transport 

may prove to be worthwhile.   

Shape selection may also aid in reducing nanoparticle clearance from MPS related 

organs such as the spleen and liver.  Despite its longer 320 nm dimension, the 80x320 

particle had reduced docetaxel exposure in the spleen, liver and lung than the 200x200 

particle. Thus, the smallest dimension of the particle may be the determining factor of 

particle clearance and therefore drug clearance.  On a similar note, Chauhan et al found that d 

= 14 nm; h = 55 nm rods had the same tumor transport as 13 nm PEG-coated CdSe/CdS 

quantum dots, and concluded that the smallest dimension may be the determining factor in 
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tumor transport [20].  Thus, future particle design may be dictated by choosing smaller 

particle diameters for better tumor delivery and MPS evasion.   

However, though particles with smaller diameter may be preferred for enhanced 

passive targeting applications, smaller particles will typically have increased drug release 

rates due to increased surface to volume ratio.  This likely explains the higher docetaxel 

levels for 80x320 particles in the tumor from 0-24 hours, but not from 0-168 hours compared 

to the 200x200 particles.  Decreasing release rate may also be preferred to keep docetaxel 

within the particle while the majority of particles are still circulating within the first 24 hours 

after administration.  Studies have been conducted to determine the effect of drug release rate 

on pharmacokinetics and biodistribution in particles of the same size that have varied release 

rate by using different polymers as well as a prodrug strategy. 

Fabrication of particles by the PRINT produces monodisperse particles of specific 

size and shape that allows for the study of the effects of size and shape on drug distribution.  

In this study, the effect of size and shape on docetaxel pharmacokinetics was studied using a 

higher aspect ratio shaped 80x320 particle and a 200x200 particle. Both particles were 

compared to the clinical comparator for docetaxel, Taxotere. The 80x320 and 200x200 

particles both resulted in much higher docetaxel plasma levels and also greatly decreased 

distribution volume and clearance.  The increase in docetaxel plasma exposure due to 

docetaxel particle encapsulation led to increased tumor docetaxel exposure for both particles 

compared to free docetaxel.  The 80x320 particle had higher tumor docetaxel accumulation 

from 0-24 hours and also higher docetaxel plasma levels than the 200x200 particles at24 

hours.  Additionally, the 80x320 particle had significantly less docetaxel exposure in the 

spleen as well as the liver and lungs.  Though both particles had improved pharmacokinetics 
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over free docetaxel, the 80x320 particle may be preferred for long circulation due to its 

smaller diameter to penetrate pores, which results in better evasion of the MPS and higher 

tumor accumulation.  Future studies that track particle biodistribution are being conducted to 

determine if the measured drug concentrations reported in this study follows the 

concentration – time trend of the particle itself. 
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Particle 
Dtxl 

w/w% 

Size 

(nm) 
PDI 

Zeta Potential 

(mV) 

80x320 33.5 
227 ± 

10 

0.18 ± 

0.03 
-3.2 ± 0.5 

200x200 45.2 
263 ± 

1.8 

0.09 ± 

0.01 
-3.4 ± 0.5 

Table 2.1. Characterization of particles used in the pharmacokinetics study. 
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Specimen Parameter Units 
Formulation 

Free docetaxel 200x200 80x320 

Plasma 

AUC0-t ng/mL·h 5,809 (0-72h) 

5,358 (0-24h) 

 

 

138,359 (0-168h) 

134,429 (0-72h) 

136,942 (0-24h)  

  136,419 (0-168h) 

133,462 (0-72h) 

132,041 (0-24h) 

Cmax ng/mL(mean+SD) 

 

*
,
†10,550+1,431 ‡75,167+2,843 52,233+3,656 

CL 

 

mL/h/kg 1,757 72 73 

Vd 

 

mL/kg 8,509 257 474 

Tumor 

AUC0-t ng/mL·h 224,481(0-168h) 

63,197 (0-24h) 

  

396,104 (0-168h) 

79644 (0-24h)  

342,937 (0-168h) 

95,516 (0-24h) 

Cmax ng/mL (mean+SD) 

 

3,564+949 4,413+323 4,187+23 

Tmax h 

 

1 1 6 

Clast ng/mL 

 

568 2321 757 

Tlast h 

 

168 168 168 

Liver 

AUC0-t ng/mL·h 

 

 

10,902 (0-24h)  264,273(0-168h) 

87,255 (0-24h)  

91,770 (0-168h)  

64,274 (0-24h) 

Cmax ng/mL (mean+SD) 

 

15,167+2,324 13,400+964 10,920+2,275 

Clast ng/mL 

 

19.4 682 16.3 

Tlast h 

 

24 168 168 

Spleen 

AUC0-t ng/mL·h 

 

 

13,298 (0-24h)  2,258,411 (0-168h) 

712,579 (0-24h)  

470,351 (0-168h) 

324978 (0-24h)  

Cmax ng/mL (mean+SD) 

 

*
,
†2,947+605 ‡32,333+5,659 18,038+6,260 

Clast ng/mL 

 

59.6 4,106.3 67.8 

Tlast h 

 

24 168 168 

Lung 

AUC0-t ng/mL·h 

 

 

13,575 (0-72h)  62,791.9 (0-168h) 

50,887 (0-72h)  

44,377 (0-72h) 

Cmax ng/mL (mean+SD) 

 

†4,070+590 ‡7,280+225 4,967+709  

Clast ng/mL 

 

21.3 43.9 46.3 

Tlast h 

 

72 168 72 
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Table 2.2. Pharmacokinetic parameters for free docetaxel, 200x200 and 80x320. * denotes  

statistical significance between free docetaxel and 80x320.  † denotes statistical significance  

between free docetaxel and 200x200.  ‡ denotes statistical significance between 80x320 and  

200x200.  AUC0-t is area under the curve from 0 to specified time. CL is clearance.  Vd is  

volume of distribution.  Cmax is the maximal concentration and Tmax is the time at which this  

occurred.  Clast is the last measurable concentration and Tlast is the time at which this  

occurred.  All mice received 10 mg/kg docetaxel. 
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Figure 1. Scanning electron microscopy image of (A) 200x200 particles and (B) 80x320  

particles 
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Figure 2.2. Percent Docetaxel released from 80x320 and 200x200 particles when incubated  

at 37ºC in 1xPBS.  ■ for 200x200 particles and ▲ for 80x320 particles.  N=3 measurements  

per time point.   
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Figure 2.3. Docetaxel concentration versus time curve for (A) Tumor (0-168 hours), (B)  

Tumor (0-24 hours), (C) Plasma, (D) Lung, (E) Spleen and (F) Liver.  Docetaxel  

concentration values for each mouse are represented by ● for free docetaxel, ■ for 200x200  

particles and ▲ for 80x320 particles.  The lines are connected by the mean value for each  

time point.  Drug concentrations may not be shown for all time points if concentration  

detected was below the limit of detection.  All mice received 10 mg/kg docetaxel. 
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CHAPTER 3: NANOPARTICLE DRUG LOADING AS A DESIGN PARAMETER 

TO IMPROVE DOCETAXEL PHARMACOKINETICS AND EFFICACY            

3.1 Introduction 

NP drug delivery has the potential to improve the effectiveness of small molecule 

chemotherapeutics.  Though design parameters such as particle geometry [1–5] and surface 

chemistry [6] have been extensively studied to improve passive targeting, the effect of NP 

drug loading on therapeutic efficacy and pharmacokinetics has not been evaluated.  NP drug 

loading is highly variable and often dependent upon the fabrication process.  Polymeric 

formulations prepared by nanoprecipitation typically only achieve 1-2% drug loading, but 

NPs prepared by emulsion/solvent evaporation have reported drug loadings as high as 14% 

[7,8].  Other commonly used nanocarriers that encapsulate chemotherapeutics such as 

liposomes, microemulsions and micelles also only achieve ~10% drug loading [9–12]. 

To our knowledge, no prior studies have evaluated the relationship between drug loading 

in NPs and the pharmacokinetics and efficacy of small molecules in vivo. To fill this 

knowledge gap, we aimed to compare particles with two different drug loadings.  To 

accomplish this, we prepared biodegradable NPs containing docetaxel using the soft-

lithography template-based fabrication approach known as PRINT
®
.  The PRINT

®
 

technology is capable of fabricating size and shape-specific particles with variable loadings 

of docetaxel [13]. In this report, the pharmacokinetics and efficacy of two identically sized 

and shaped NPs at 9% or 20% docetaxel loading were evaluated in vivo. 
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3.2 Materials and Methods 

3.2.1 Materials 

 Poly(D,L-lactide-co-glycolide) (lactide:glycolide 85:15, 0.65 dL/g Inherent Viscosity 

at 30ºC) and Poly(L-lactide) (0.5 dL/g Inherent Viscosity at 25ºC) were purchased from 

Sigma-Aldrich.  Chloroform and solvents (acetonitrile and water) for high performance 

liquid chromatography (HPLC) were purchased from Fisher Scientific.  Docetaxel was 

purchased from LC Laboratories.  Taxotere
®
 (free docetaxel) was purchased from the 

University of North Carolina at Chapel Hill hospital pharmacy for research purposes.  

Poly(ethylene terephthalate) (PET) sheets (6” width) were purchased from KRS plastics.  

Fluorocur
®
, diameter (d) = 80 nm; height (h) = 320 nm; (80x320) prefabricated molds and 

2,000 g/mol polyvinyl alcohol (PVOH) coated PET sheets were provided by Liquidia 

Technologies.   

3.2.2 Particle Fabrication and Characterization 

 Particles were fabricated with solutions of PLA, PLGA and docetaxel dissolved in 

chloroform.  The ratio of PLA:PLGA was 30:70.  Two particle formulations at different 

weight percents of docetaxel were prepared.  The particle fabrication and characterization 

follows previously published methods [13].   

3.2.3 A549 human alveolar adenocarcinoma tumor xenografts   

 This study was done with an approved protocol with the University of North Carolina 

at Chapel Hill’s Institutional Animal Care and Use Committee.  All animals used were 

treated humanely. A549 cells were acquired from ATCC.  Female nude mice, aged 4-6 

weeks and ~20 grams in body weight, were ordered from University of North Carolina at 

Chapel Hill’s animal core. The mice were acclimated for 1 week prior to tumor cell injection. 
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Cells (5.0×10
6
 cells in 200 µL 1xPBS) were injected subcutaneously into the right flank of 

each mouse.  Tumor volume was calculated using the formula: tumor volume (mm
3
) = (w

2
 × 

l)/2, where w = width and l = length in mm of the tumor.   

 For the orthotopic lung cancer model, A549-luciferase-c8 cells were harvested and 

suspended in phosphate buffered saline and BD Matrigel Basement Membrane Matrix at a 

ratio of 4:1.  Cells (5.0×10
6
 cells in 50 µL 1xPBS:Matrigel) were injected directly into the 

left lung parenchyma [14]. 

3.2.4 Pharmacokinetic study  

40 days after cells were inoculated subcutaneously when all mice had a median tumor   

 volume of 150 mm
3
, mice were pair matched according to tumor volume.  All mice received  

10 mg/kg docetaxel via a single tail vein injection.  Formulations were diluted to 1 mg/mL of  

docetaxel with normal saline and mice were dosed at 10 µL of solution per gram of body  

weight.  Mice (N=3 per time point per arm) were sacrificed at 0.083, 1, 6, 24, 72, and 168  

hours after dosing.  Blood (~1 mL) was collected via terminal cardiac puncture using K3- 

EDTA as an anticoagulant under CO2 anesthesia and processed for plasma by centrifugation  

(1,500 × g for 5 min).  Plasma and tissues were placed in cryopreservation vials and  

preserved by snap freezing using liquid nitrogen, and stored at -80°C until analysis. Tissues  

were homogenized in water (1:3, tissue:water) prior to analysis [15]. 

3.2.5 Protein precipitation 

Docetaxel and paclitaxel stock solutions (1 mg/mL) were stored in methanol at -20°C.  

The standard curve concentrations of docetaxel in matrix were 1, 3, 5, 10, 30, 50, 100, 300, 

500, 1000, 3000 and 5000 ng/mL and the quality control (QC) concentrations were 4, 40, 

400, and 4000 ng/mL. The matrix for the standard curve and QCs consisted of control mouse 
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plasma for all plasma samples, or control plasma mixed 1:1 with a control tissue homogenate 

for the tissue being analyzed.  A liver/plasma surrogate matrix was used for tumor samples.  

All tumor and tissue samples were mixed 1:1 with control plasma prior to analysis.  

Docetaxel was dissolved from the NP and extracted from 50 µL of sample by protein 

precipitation with 200 µL acetonitrile/0.1% formic acid containing 20 ng/mL paclitaxel 

internal standard. Samples were vortexed for 5 minutes and centrifuged at 3,000 x g for 10 

minutes at 4°C.  170 µL supernatant was transferred to a clean 1.5 mL tube, lyophilized 

 of MeOH/0.1% formic acid.  50 µL of sample was 

transferred to a silanized glass 96-well plate insert containing 50 µL ddH2O and 10 µL of 

sample injected for LC-MS/MS analysis.    

3.2.6 LC-MS/MS 

Docetaxel and paclitaxel (internal standard) were separated on a Waters XSelect CSH 

Phenyl-

mobile phase consisting of 0.1% formic acid in water (mobile phase A) and 0.1% formic acid 

and 10% isopropanol in acetonitrile (mobile phase B) on a Shimadzu LC-20AD liquid 

chromatography system.  The flow rate was 0.33 mL/min and the total run time was 6 

minutes.  The compounds were measured using a Thermo TSQ Ultra triple quadrupole mass 

spectrometer equipped with a heated electrospray ionization source in the positive ion mode.  

The discharge current was held at 3.7 kV and the vaporizer temperature at 225°C.  Docetaxel 

and paclitaxel were detected by selected-reaction monitoring (SRM) using the transitions 808 

-> 527 and 854 -> 286, respectively.  Calibration curves were fit using linear regression with 

1/X
2
 weighting in Xcalibur® v. 2.0 (Thermo Fisher Scientific, Waltham, MA). 
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3.2.7 Maximum Tolerated Dose Determination 

 The maximum tolerated doses (MTD) of free docetaxel and the docetaxel NPs were 

determined for a weekly x 6 schedule in female nude mice.  At time of the first dose, mice 

were 6 weeks in age. Mice were monitored for body weight loss and overall health.  Mice 

were sacrificed if body weight loss exceeded 20% or if they exhibited excessive signs of 

toxicity.  The MTD was selected as the dose that did not cause excessive toxicity that 

required a mouse to be sacrificed or body weight loss greater than 10%.   

3.2.8 Tumor Growth Inhibition Studies 

 16 days after cell inoculation to the lung, mice were randomized into four groups 

(N=8 mice per group for mice receiving free docetaxel, 9%-NP, or 20%-NP and N=6 mice 

per group for mice receiving saline).  Mice were dosed via tail vein at 10 µL per gram body 

weight.  Mice either received saline, 10 mg/kg docetaxel for free docetaxel, or 15 mg/kg 

docetaxel for mice receiving 9%-NP and 20%-NP.  Mice were sacrificed when they had 

excessive body weight loss or excessive toxicity.  Mice were imaged once a week using an 

IVIS Lumina Imager.  Prior to imaging, mice were injected 10 µL per gram body weight 

with a 15 mg/mL luciferase solution.  Mice were anesthetized with isoflurane prior to 

imaging.   

3.2.9 Hematological Tests 

 50 µL of blood was collected into EDTA-coated tubes by submandibular bleeding the 

day of the first injection, 4 days after the 1
st
 injection and 4 days after the 6

th
 injection.  Blood 

was analyzed for complete blood counts with differential using Heska’s blood counter. 
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3.2.10 Statistical and Pharmacokinetic Analysis 

 GraphPad Prism was used to perform statistical tests.  Student’s t-test was utilized 

when only two groups were compared.  One way analysis of variance (ANOVA) followed by 

a modified t-test for multiple comparisons was used when more than 2 groups were 

compared.  Survival data was analyzed by Log-Rank test.  Pharmacokinetic data was 

analyzed by noncompartmental methods using WinNonlin Professional Edition version 5.2.1 

(Pharsight Corp, Cary, NC). The area under the concentration versus time curve from 0 to t 

(AUC0-t) was calculated using the linear up/log down rule.  Volume of distribution (Vd) and 

clearance (CL) were calculated using standard equations. The maximum concentration (Cmax) 

and time of Cmax (Tmax) were determined by visual inspection of the concentration versus 

time curve data. 

3.3 Results 

3.3.1 Particle Characteristics 

To achieve different loadings, PLA/PLGA particles were fabricated with different 

amounts of docetaxel.  Despite having different drug loadings of docetaxel, all other particle 

characteristics were identical as shown in Table 3.1.  As measured by dynamic light 

scattering (DLS), both sets of 80x320 NPs were 216 nm in hydrodynamic diameter with 

polydispersity indices (PDI) of less than 0.1.  The total percent drug released after 24 hours 

was similar for both NPs (Figure 3.1F), but the 20%-NP had slightly faster burst release 

within the first 6 hours compared to the 9%-NP. 

3.3.2 Pharmacokinetics                                                                                                        

The pharmacokinetic parameters and profiles of the 9%-NP and 20%-NP are shown in  

Table 3.2 and Figure 3.1A-E.  The sum total (encapsulated and released) docetaxel was  
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measured and is reported.   

Docetaxel plasma exposure as measured by AUC of the concentration – time curve was 

1.15-fold higher for mice receiving 9%-NPs compared to 20%-NPs.  The Vd and CL of 

docetaxel was lower for the 9%-NP group.  The Cmax observed in both NP groups were not 

statistically significant and T1/2 were similar.  Docetaxel was not detectable at 168 hours post 

injection for both NPs. 

Large differences in tissue docetaxel accumulation were observed between both NP 

groups.  Mice receiving 9%-NP had 1.39-fold higher tumor docetaxel exposure than mice 

receiving 20%-NP. Maximum tumor docetaxel concentrations were not statistically 

significant between the two NP groups, but the Cmax was observed at different times.  For the 

20%-NP group, the Cmax was observed immediately after injection at 5 minutes, where as the 

Cmax of the 9%-NP group was observed at 24 hours post injection. 

Liver exposure of the 20%-NP group was ~1.40-fold higher than the 9%-NP group, but 

the observed Cmax of both groups were not statistically significant.  At 6 and 72 hours post 

injection, the docetaxel concentration of the 20%-NP group was statistically higher than the 

9%-NP group: P=0.02 at 6 hours (12,468 ± 1,512 versus 8,025 ± 2,214) and P=0.05 at 72 

hours (10,464 ± 2,828 versus 5,765 ± 525).  Spleen exposure of the 20%-NP group was 

~1.31-fold higher than the 9%-NP group.  Spleen docetaxel concentration was statistically 

higher for the 20%-NP group at 1 hour post injection (P=0.03, 73,061 ± 10,855 versus 31,117 

± 19,382).  Lung exposure of the 20%-NP group was ~1.56-fold higher than the 9%-NP 

group.  
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3.3.3 Maximum Tolerated Dose 

The maximum tolerated dose of free docetaxel and the 20%-NP was determined in 

female non tumor bearing nude mice following a weekly dosing schedule for 6 weeks.  The 

MTD of free docetaxel was expected to be 13-20 mg/kg [16,17].  Poly(L-lactide) NPs 

containing taxanes have been shown to have a higher MTD than the free taxane formulation 

[18].  Thus, 20 mg/kg was selected as the starting dose for the free docetaxel group and 30 

mg/kg was selected as the starting dose for the docetaxel NP group.   

The MTD of free docetaxel in female non tumor bearing mice was found to be 20 mg/kg 

weekly for 6 weeks.  2 mice were sacrificed within the 27 mg/kg arm and 1 mouse was 

sacrificed in the 35 mg/kg arm for excessive toxicity.  Additionally, mice in both the 27 

mg/kg and 35 mg/kg free docetaxel arms had body weight loss that surpassed 10%.  The 

MTD of the docetaxel NPs was found to be 30 mg/kg weekly for 6 weeks.  At 37.5 mg/kg, 2 

mice were sacrificed after the 6
th

 dose and at 45 mg/kg, all mice were sacrificed after the 6
th

 

dose.  Also, the mean body weight loss of mice receiving 37.5 mg/kg and 45 mg/kg exceeded 

10%.  The mean body weights and survival are shown in Figure 3.2 and Table 3.3, 

respectively. 

3.3.4 White blood cell counts 

White blood cell counts (WBC) were measured one week before the 1
st
 injection and 4 

days after the 1
st
 and 6

th
 injection of free docetaxel or docetaxel NPs and are reported in 

Table 3.4.  WBC counts of all groups were not statistically significant 1 week before the 1
st
 

dose as measured by one-way ANOVA.  Mice receiving 9%-NP or 20%-NP did not have 

statistically significant differences in their WBC 4 days after the 1
st
 and 6

th
 dose. 
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3.3.5 Tumor Growth Inhibition 

Efficacy was evaluated in an orthotopic tumor model of non small cell lung cancer.  

Because MTDs of the docetaxel formulations were determined in non tumor bearing mice, 

the MTDs may be lower in mice with orthotopic lung xenografts.  To avoid toxicity 

attributed to docetaxel, mice received doses that were half of the MTD in non-tumor bearing 

mice.  Survival analysis by Kaplan-Meier estimate demonstrated that 9%-NP was the 

superior treatment (P=0.03 compared to free docetaxel).  Mice that received 9%-NPs or 20%-

NPs had minimal or no tumor growth even 150 days post cell implantation (Figure 3.3).  6/6 

mice in the saline group and 6/8 mice in the free docetaxel treatment groups had tumor 

growth that required mice to be sacrificed.  

3.4 Discussion 

We studied drug loading as a parameter that affects the therapeutic efficacy, 

pharmacokinetics and toxicity of docetaxel.  Most NP fabrication techniques are limited to 

drug loadings of ~10%.  PRINT
®
 has previously demonstrated the ability to make NPs with 

variable drug loadings.  Therefore, we prepared one NP formulation to match the loading of a 

taxane NP that is currently in clinical development [7] and for comparison, a second NP 

formulation was prepared that targeted to double the loading to 20%.   

There are multiple benefits of preparing NP formulations with higher drug loading.  

Higher drug loading is preferable because less non active excipients are used to produce the 

same quantity of active pharmaceutical ingredient (API) in the NP formulation.  At a higher 

drug loading, a lower number of particles need to be manufactured to deliver an equivalent 

dose of API.  Reducing the number of NPs that need to be manufactured can reduce 
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manufacturing and processing time, raw material usage, and energy needs as many NP 

manufacturing processes require input of mechanical energy.   

From a manufacturing viewpoint, achieving the highest drug loading possible is desired, 

but we have demonstrated that there are benefits in using NPs with lower drug loading.  Mice 

receiving the 9%-NPs had more favorable pharmacokinetic profile compared to mice 

receiving 20%-NP.  Less liver and spleen accumulation as measured by AUC was observed 

in mice receiving 9%-NPs compared to the 20%-NPs.  Though all mice in the NP arms 

received 15 mg/kg of docetaxel, the total dose of particles received in the 9%-NP group was 

~109 mg/kg compared to only 50 mg/kg in the 20%-NP group. The higher particle dose 

associated with the 9%-NP formulation may have saturated the mononuclear phagocyte 

system (MPS) of the liver and spleen.  Reduced docetaxel accumulation in the liver and 

spleen of mice receiving 9%-NP may account for the increased plasma and tumor docetaxel 

exposure relative to the 20%-NP group.  Tumor docetaxel concentration increased during the 

first 24 hours post injection for the 9%-NP group where as the 20%-NP group reached 

docetaxel Cmax immediately after injection.  

Multiple preclinical studies have evaluated the effect of concurrently or pre-administering 

NPs on the pharmacokinetics of a second dose of NPs [19–24].  These studies demonstrated 

that NP clearance could be limited by the saturation of the mononuclear phagocyte system 

(MPS), most notably in the liver by NPs.  Additionally, differences in MPS saturation were 

observed between liposomes and polymeric particles of different compositions and surface 

chemistries [21,22,24].  Similarly, increasing the number of particles injected may saturate 

the MPS.  Future studies are planned to investigate this phenomenon in more depth.  Assays 
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to identify the drug distribution in the cells of the MPS after administration of docetaxel NPs 

to mice are currently being developed. 

3.5 Conclusion 

To our knowledge this is the first report to demonstrate the dependence of small molecule 

pharmacokinetics on drug loading in a NP.  This study demonstrates that NP drug loading is 

an important parameter that affects docetaxel pharmacokinetics and therapeutic efficacy.  As 

variations in drug loading may alter in vivo performance, these findings highlight drug 

loading as an important consideration in the manufacturing of NPs.  
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Formulation Size (nm) PDI Zeta Potential (mV)  Weight percent docetaxel 

20%-NP 216 ± 2 0.07 ± 0.01 -3.36 ± 0.16 20.1 ± 1.5 

9%-NP 216 ± 1 0.09 ± 0.03 -3.11 ± 0.28 9.2 ± 1.6 

Table 3.1. Particle Characteristics of 9%-NP and 20%-NP. 
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Specimen Parameter Formulation 

9%-NP 20%-NP 

Plasma AUC (ng/mL h) 95,692 (0-72 h) 82,743 (0-72 h) 

Cmax (ng/mL) 19,583 ± 7,997 26,753 ± 5,603 

CL (mL/h/kg) 105 121 

Vd (mL/kg) 943 1278 

T1/2 (h) 

 

6.6 7.4 

Tumor AUC (ng/mL h) 99,586 (0-168 h) 71,848 (0-168 h) 

Cmax (ng/mL) 1,199 ± 1,115 1038 ± 366 

Liver AUC (ng/mL h) 1,080,179 (0-168 h) 1,513,225 (0-168 h) 

Cmax (ng/mL) 16,359 ± 11,681 19,274 ± 10,838 

Spleen AUC (ng/mL h) 5,282,385 (0-168 h) 6,934,196 (0-168 h) 

Cmax (ng/mL) 44,294 ± 26,239 73,061 ± 10,855 

Lung AUC (ng/mL h) 

 

165,962 (0-168 h) 258,766 (0-168 h) 

Cmax (ng/mL) 

 

17,218 ± 6,347 20,200 ± 2,861 

Table 3.2. Docetaxel pharmacokinetic parameters of 9%-NP and 20%-NP 
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 Formulation 

Dose (mg/kg) free docetaxel Docetaxel NP 

20 3/3 - 

27 1/3 - 

30 - 3/3 

35 2/3 - 

37 - 1/3 

45 - 0/3 

Table 3.3. Survival at each dose level for MTD study. 
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 Saline Free 

docetaxel  

(10 mg/kg) 

9%-NP  

(15 mg/kg) 

20%-NP  

(15 mg/kg) 

1 week before 1
st
 dose 3.8 ± 1.1 4.7 ± 2.0 3.6 ± 0.8 3.7 ± 0.8 

4 days after 1
st
 dose 3.1 ± 1.1 2.2 ± 0.5 1.4 ± 0.8 1.6 ± 0.6 

4 days after 6
th

 dose 2.3 ± 0.6 1.9 ± 0.6 1.1 ± 0.3 1.0 ± 0.4 

Table 3.4. White blood cell counts (10
3
/µL). N=8 per group. 

 

 

 

 



 

64 
 

 

Figure 3.1. Pharmacokinetic profiles of (A) Plasma, (B) Tumor, (C) Liver, (D) Spleen and 

(E) Lung.  (F) In vitro release kinetics of 9%-NP (●) and 20%-NP (■). Each replicate is 

shown and the lines are connected by the mean of three replicates.  Mice received 10 mg/kg 

docetaxel. 
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Figure 3.2. Mean body weight of mice in MTD study.  Dose 1 was on Day 0.  Mice were 

dosed weekly x 6. 
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Figure 3.3. Tumor growth rates and Kaplan-Meier curve of mice with A549 orthotopic lung 

xenografts.  Mice were dosed weekly x 6. Dose 1 was on day 16. 
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CHAPTER 4: REDUCED TOXICITY AND IMPROVED PHARMACOKINETIC 

PROFILE OF PRINT
® 

NANOPARTICLE FORMULATIONS OF AN ACID-LABILE 

DOCETAXEL PRODRUG 

4.1  Introduction 

NP delivery of small molecule chemotherapeutic agents has the potential to improve 

chemotherapy delivery to solid tumors while also decreasing systemic toxicity.  Sub-100 nm 

NPs are ideal for enhanced tumor accumulation and mononuclear phagocyte system (MPS) 

evasion but often have undesirable release kinetics [1–4].  As particle size decreases, surface 

area per unit volume increases resulting in faster release kinetics [2,5].  Furthermore, 

improved surface chemistries are extending particle plasma circulation times, making 

mechanisms for controlled release even more relevant [6].  Many approaches have been 

employed to prolong drug release from NPs.  These strategies include the investigation of 

polymer composition and molecular weight [7], particle coatings [7–9], covalent attachment 

of drugs to nanoparticles and drug modification [10–12].  In this report, drug release rate 

from PLGA NPs was controlled using lipophilic acid-labile silyl ether prodrugs of docetaxel.  

NP release kinetics were tuned by modifying docetaxel at the C2’ alcohol with silyl ether 

protecting groups of various alkyl chain lengths.  The lipophilic acid-labile alkyl silyl ether 

docetaxel prodrugs were used to decrease the rate of docetaxel release from PLGA NPs with 

the intention of improving their in vivo toxicity, pharmacokinetics and efficacy.  The 

traditional dosing regimen of taxanes is at its maximum tolerated dose (MTD) every three 

weeks [13,14].  Doses are administered every three weeks to allow for normal tissues to 
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recover, but this time period may also allow tumor cells to recover.  Thus, we hypothesize 

that a sustained release of docetaxel will decrease the toxicity of docetaxel while enhancing 

its efficacy. 

4.2        Materials and Methods 

4.2.1 Prodrug Synthesis and Characterization 

All reagents were purchased from Sigma-Aldrich, Acros Organics or Fisher Scientific 

and used as received unless otherwise stated.  Docetaxel 99 % was used as received without 

any further purification from LC Laboratories.  Chloro(dimethyl)octylsilane 97 % and 

chlorodimethylethylsilane 97 % were purchased from Sigma-Aldrich and used without any 

further purification.  All reactions were carried out under normal atmospheric conditions at 

room temperature unless otherwise noted.  Solvents were used as received without any 

further purification or drying. 

NMR measurements were recorded on a Bruker AVANCE III spectrometer at room 

temperature.  
1
H NMR measurements were collected at 600 MHz and 

13
C NMR 

measurements were collected at 150 MHz.  All chemical shifts () are reported in parts per 

million (ppm).  Electrospray ionization mass spectrometry (ESI-MS) measurements were 

recorded on a TriVersa Nanomate Quattro II. 

4.2.2 Ethyldimethylsilyl Ether Docetaxel (C2) 

In a dry 100 mL round bottom flask purged with N2, docetaxel 99 % (1.50 g, 1.86 

mmol, 1 eq.) was dissolved in anhydrous DMF (50 mL) and anhydrous pyridine (0.60 mL, 

7.45 mmol, 4 eq.).  Chlorodimethylethylsilane 97 % (0.23 g, 1.86 mmol, 1 eq.) was added to 

the solution until no more docetaxel was visualized by thin layer chromatography (TLC) (2:1 

v/v hexanes:ethyl acetate; Rf = 0.10).  After completion, the reaction was diluted with ethyl 
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acetate (100 mL) and washed with saturated NaCl (3 x 50 mL). The organic layer was dried 

over excess MgSO4, filtered and the solvent removed by rotary evaporation.  The product 

was isolated by column chromatography (silica, 2:1 v/v hexanes:ethyl acetate, Rf = 0.10), and 

dried in vacuo.  Yield: 0.53 g (0.59 mmol, 31.9 %), white solid. 
1
H NMR (600 MHz, CDCl3): 

 = -0.18 (s, 3H), -0.14 (s, 3H), 0.34 (m, 1H), 0.39 (m, 1H), 0.76 (t, 3H, J = 7.9 Hz), 1.13 (s, 

3H), 1.26 (s, 3H), 1.31 (s, 9H), 1.75 (s, 3H), 1.86 (m, 1H), 1.92 (s, 3H), 2.17 (m, 1H), 2.37 

(m, 1H), 2.53 (s, 3H), 2.59 (m, 1H), 3.95 (d, 1H, J = 7.1 Hz), 4.21 (d, 1H, J = 8.6 Hz), 4.26 

(dd, 1H, J = 11.1 Hz, J = 6.6 Hz), 4.33 (d, 1H, J = 8.6 Hz), 4.46 (s, 1H), 4.98 (dd, 1H, J = 9.5 

Hz, J = 1.8 Hz), 5.20 (s, 1H), 5.27 (d, 1H, J = 7.8 Hz), 5.53 (d, 1H, J = 8.6 Hz), 5.70 (d, 1H, 

J = 7.1 Hz), 6.30 (t, 1H, J = 8.9 Hz), 7.28 (m, 3H), 7.37 (t, 2H, J = 7.6 Hz), 7.49 (t, 2H, J = 

7.7 Hz), 7.60 (t, 1H, J = 7.4 Hz), 8.12 (d, 2H, J = 7.6 Hz).  
13

C NMR (150 MHz CDCl3):  = 

-3.17, -2.97, 6.33, 7.71, 9.84, 20.90, 22.81, 26.28, 28.04, 35.58, 36.52, 43.05, 46.32, 56.51, 

57.45, 71.36, 71.78, 74.25, 75.09, 75.15, 76.44, 78.82, 79.63, 80.91, 84.34, 126.39, 127.57, 

128.37, 128.56, 129.19, 130.07, 133.44, 135.53, 138.72, 138.99, 155.10, 166.85, 169.99, 

171.41, 210.93.  LR MS (m/z) observed for C47H63NO14Si, [M + H
+
]
+
 = 894.33 ([M + 

H
+
]

+
theoretical = 894.40) and [M + K

+
]
+
 = 932.22 ([M + K

+
]

+
theoretical = 932.50). 

4.2.3 Octyldimethylsilyl Ether Docetaxel (C8) 

 In a dry 100 mL round bottom flask purged with N2, docetaxel 99 % (1.00 g, 1.24 

mmol, 1 eq.) and imidazole (0.34 g, 4.97 mmol, 4 eq.) were dissolved in anhydrous DMF (50 

mL).  Chloro(dimethyl)octylsilane 97 % (0.26 g, 1.234 mmol, 1 eq.) was added to the 

solution until no more docetaxel was visualized by thin layer chromatography (TLC) (2:1 v/v 

hexanes:ethyl acetate, Rf = 0.16).  After completion, the reaction was diluted with ethyl 

acetate (200 mL) and washed with saturated NaCl (3 x 50 mL). The organic layer was dried 
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over excess MgSO4, filtered and the solvent removed by rotary evaporation.  The product 

was isolated by column chromatography (silica, 2:1 v/v hexanes, ethyl acetate, Rf = 0.16), 

and dried in vacuo.  Yield: 0.46 g (0.47 mmol, 37.9 %), white solid. 
1
H NMR (600 MHz, 

CDCl3):  = -0.19 (s, 3H), -0.11 (s, 3H), 0.32 (m, 1H), 0.38 (m, 1H), 0.88 (t, 3H, J = 7.2 Hz), 

1.07 (m, 2H), 1.11 (s, 3H), 1.18 – 1.31 (m, 22H), 1.72 (s, 3H), 1.85 (m, 1H), 1.91 (s, 3H), 

2.17 (m, 1H), 2.35 (m, 1H), 2.53 (s, 3H), 2.56 (m, 1H), 3.94 (d, 1H, J = 7.0 Hz), 4.20 (d, 1H, 

J = 8.5 Hz), 4.25 (dd, 1H, J = 11.0 Hz, J = 6.7 Hz), 4.32 (d, 1H, J = 8.6 Hz), 4.47 (s, 1H), 

4.97 (d, 1H, J = 9.7 Hz), 5.22 (s, 1H), 5.27 (d, 1H, J = 8.3 Hz), 5.57 (d, 1H, J = 9.1 Hz), 5.67 

(d, 1H, J = 7.1 Hz), 6.30 (t, 1H, J = 8.8 Hz), 7.28 (m, 3H), 7.37 (t, 2H, J = 7.5 Hz), 7.48 (t, 

2H, J = 7.7 Hz), 7.58 (t, 1H, J = 7.3 Hz), 8.10 (d, 2H, J = 7.6 Hz).  
13

C NMR (150 MHz 

CDCl3):  = -2.50, -2.12, 10.02, 14.20, 14.27, 16.22, 21.18, 22.73, 22.82, 22.98, 26.42, 

28.21, 29.26, 29.28, 31.97, 33.44, 35.79, 36.83, 43.22, 46.45, 56.67, 57.62, 71.48, 71.99, 

74.47, 75.22, 76.66, 79.07, 79.91, 81.08, 84.40, 126.54, 127.74, 128.55, 128.78, 129.30, 

130.26, 133.67, 135.61, 139.08, 139.17, 155.29, 167.12, 170.16, 171.57, 211.42.  .  LR MS 

(m/z) observed for C53H75NO14Si, [M + H
+
]
+
 = 978.46 ([M + H

+
]

+
theoretical = 978.50) and [M + 

Na]
+
 = 1000.50 ([M + Na

+
]

+
theoretical  = 1000.49). 

4.2.4 Nanoparticle Fabrication and Characterization 

 PRINT
®
 NPs were fabricated with solutions of Poly(D,L–lactide–co-glycolide) 

(PLGA) and docetaxel or docetaxel prodrugs, C2 or C8, dissolved in chloroform.  

Unmodified docetaxel loaded into NPs is referred to as DTXL-NP whereas the prodrugs are 

referred to as C2-NP and C8-NP. PLGA (lactide:glycolide 85:15, 0.65 dL/g Inherent 

Viscosity at 30ºC) was purchased from Sigma-Aldrich.  The NP fabrication and 

characterization follows previously published methods [15,16]. 



 

71 
 

4.2.5 A549 Human Aveolar Adenocarcinoma Tumor Xenografts 

 All animal studies were done with an approved protocol with the University of North 

Carolina at Chapel Hill’s Institutional Animal Care and Use Committee.  All animals used 

were treated humanely.  A549 cells were acquired from ATCC.  Female nude mice, aged 4-6 

weeks and ~20 grams in body weight, were acquired from the University of North Carolina 

at Chapel Hill’s animal core. The mice were acclimated for 1 week prior to tumor cell 

injection. Cells (5.0 x 10
6
 cells in 200 µL 1 x PBS) were injected subcutaneously (SC) into 

the right flank of each mouse.  Tumor volume was calculated using the formula: tumor 

volume (mm
3
) = (w

2
 x l)/2, where w = width and l = length in mm as measured by calipers.   

4.2.6 Pharmacokinetics Study 

~Fourty days after cells were inoculated, mice were pair matched according to tumor 

volume.  A median tumor size of ~150 mm
3 

was targeted.  All mice received 10 mg/kg 

docetaxel or an equivalent molar dosage of 10 mg/kg docetaxel via a single tail vein 

injection.  Formulations were diluted to 1 mg/mL of docetaxel with saline and mice were 

dosed at 10 µL of solution per gram of body weight.  Mice (N = 3 per time point) were 

sacrificed at 0.083, 1, 6, 24, 72, and 168 hours after dosing. 

4.2.7 Tumor Growth Inhibition Studies 

 ~Fourty days after cells were innoculated, mice were randomized into different 

treatment groups.  A median tumor volume of ~150 mm
3
 was targeted.  Mice were dosed at 

10 µL of solution per gram of body weight via tail vein injection.  Dosing schedules were 

either weekly x 3 or weekly x 6.  Doses ranged from 15 mg/kg docetaxel or docetaxel 

equivalents to 50 mg/kg docetaxel equivalents.  Relative tumor volume (RTV) for each 
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mouse was calculated by dividing the tumor volume on each measured day by the tumor 

volume measured on day 0.   

4.2.8 Hematological Tests 

 ~50 µL of blood was collected by submandibular bleeding on the day of the 1
st
 

injection and also 4 days after the 1
st
 and 6

th
 injection of saline, free docetaxel or C2-NPs at 

20-50 mg/kg docetaxel equivalents and collected into ethylenediaminetetraacetic acid 

(EDTA)-coated tubes.  Blood was analyzed for complete blood counts with differential using 

Heska’s blood counter. 

4.2.9 In Vitro Conversion in Plasma 

C2 and C8 were added to control CD-1 mouse K3-EDTA plasma (Bioreclamation)  at 

4,000 ng/mL and incubated at 37°C with shaking at 250 RPM for one week.  50 µL aliquots 

were removed in triplicate at 0.083, 1, 3, 6, 24, 72, and 168 hours, processed by protein 

precipitation and lyophilized.  All samples were analyzed by LC-MS/MS on the same day. 

4.2.10  In Vivo PK Analysis  

 Blood was harvested in K3 EDTA blood collection tubes (Fisher Scientific) and 

centrifuged at 2,000 x g for 5 minutes at 4°C to isolate the plasma, which was stored at -

80°C.  Tumors and tissues were flash frozen after harvest and stored at -80°C prior to 

homogenization.  They were weighed and homogenized in water as previously described 

[15].  Pharmacokinetic data was analyzed by noncompartmental methods using WinNonlin 

Professional Edition version 5.2.1 (Pharsight Corp, Cary, NC). The area under the 

concentration versus time curve (AUC0-t) from 0 to t was calculated using the linear up/log 

down rule.  Volume of distribution (Vd) and clearance (CL) were calculated using standard 
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equations. The maximum concentration (Cmax) was determined by visual inspection of the 

concentration versus time curve data. 

4.2.11  Standard Curve and Sample Preparation 

Docetaxel, C2, C8, and paclitaxel stock solutions (1 mg/mL) were stored in 

acetonitrile at -20°C.  The standard curve concentrations of docetaxel and C2 or C8 in matrix 

were 1, 3, 5, 10, 30, 50, 100, 300, 500, 1000, 3000 and 5000 ng/mL and the quality control 

(QC) concentrations were 4, 40, 400, and 4000 ng/mL. Prodrug-only QCs were included at 

400 ng/mL to monitor ex vivo conversion to docetaxel during sample processing.  Less than 

5% of C8 converted to docetaxel whereas conversion was below the limit of quantitation for 

C2. The matrix for the standard curve and QCs consisted of control mouse plasma for all 

plasma samples, or control plasma mixed 1:1 with a control tissue homogenate for the tissue 

being analyzed.  A liver/plasma surrogate matrix was used for tumor samples.  All tumor and 

tissue samples were mixed 1:1 with control plasma prior to analysis.  Docetaxel, C2 and C8 

were dissolved from the NP and extracted from 50 µL of sample by protein precipitation with 

200 µL acetonitrile containing 20 ng/mL paclitaxel (internal standard). Samples were 

vortexed for 5 minutes and centrifuged at 3,000 x g for 10 minutes at 4°C.  140 µL 

supernatant was transferred to a glass 96-well plate insert containing 60 µL ddH2O and 10 

µL of sample injected for LC-MS/MS analysis.    

4.2.12  LC-MS/MS 

Docetaxel and C2 or C8 were separated on a Waters XSelect CSH Phenyl-Hexyl 

consisting of 0.1% formic acid in water (mobile phase A) and 0.1% formic acid and 10% 

isopropanol in acetonitrile (mobile phase B) on a Shimadzu LC-20AD liquid chomatograph.  



 

74 
 

The flow rate was 0.33 mL/min and the total run time was 6 minutes.  The compounds were 

measured using a Thermo TSQ Ultra triple quadrupole mass spectrometer equipped with a 

heated electrospray ionization source in the positive ion mode.  The discharge current was 

held at 3.7 kV and the vaporizer temperature at 225°C.  Docetaxel, C2, C8 and paclitaxel 

(internal standard) were detected by selected-reaction monitoring (SRM) using the transitions 

808 -> 527, 894 -> 268, 978 -> 352 and 854 -> 286, respectively.  Calibration curves were fit 

using linear regression with 1/X
2
 weighting in Xcalibur

®
 v. 2.0 (Thermo Fisher Scientific, 

Waltham, MA). 

4.2.13 In Vitro Cytotoxicity 

The cytotoxicity of free docetaxel, C2 and C8 dissolved in DMSO was evaluated in 

A549 cells.  Methods were previously published (16). 

4.3       Results 

4.3.1 Silyl Ether Docetaxel Prodrugs 

The silyl ether docetaxel prodrugs, C2 and C8, were prepared by a single step 

reaction of docetaxel with chlorodimethylethylsilane or chloro(dimethyl)octylsilane, 

respectfully (Scheme 1).  It has been well documented that the C2’ alcohol of taxanes 

preferentially react with electrophiles, such as acid chlorides and anhydrides [12,17,18].  As 

expected, the C2’ monosubstituted silyl ether prodrugs of docetaxel formed and were isolated 

in good yield. 

The rate of conversion of the prodrug to docetaxel is the consequence of simple 

hydrolysis and can be tuned by altering the substituents on the silicon atom.  To achieve 

rapid prodrug hydrolysis upon release from the NP, alkyl dimethyl silyl chlorides were 

selected (Figure 4.2A and 4.2B).  The conversion of the prodrugs to docetaxel was studied in 
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mouse plasma and quantified by LC-MS/MS.  The t1/2 of C2 and C8 in mouse plasma were 

similar, 8 hours for the C2 prodrug and 10 hours for the C8 prodrug.  The majority of the C2 

and C8 prodrugs are converted within the first 24 hours.  The toxicity of C2 and C8 were 

compared to free docetaxel in vitro in A549 cells (Figure 4.2C).  With a 24 hour incubation 

time, the toxicity of the C2 and C8 prodrugs were less than that of free docetaxel. 

4.3.2  Particle Characterization 

Cylindrical particles with diameter (d) = 80 nm and height (h) = 320 nm were 

prepared using a poly(lactide-co-glycolide) polymer. By dynamic light scattering (DLS), the 

hydrodynamic radius was measured as ~200 nm.  The particle samples were monodisperse 

with a polydispersity index (PDI) of less than 0.1 and as low as 0.05.  PRINT
®
 NPs were 

loaded with drug at weight percents of 20% - 22%.  NP formulations of docetaxel and two 

docetaxel prodrugs, C2 and C8, were prepared.  All formulations were similar in particle size 

and drug loading (Table 4.1).  The release kinetics of the three formulations, DTXL-NP, C2-

NP and C8-NP, were evaluated at 37C in phosphate buffered saline (Figure 4.2D).  The 

release kinetics were dependent upon the length of the alkyl chain of the docetaxel prodrug.  

Unmodified docetaxel was fully released after 24 hours where as the C2 prodrug was fully 

released after 4 days and C8 prodrug was fully released after 7 days. 

4.3.3  Pharmacokinetics 

The pharmacokinetic parameters and profiles of the NP formulations compared to 

free docetaxel at equal-molar dosing are shown in Figure 4.3 and Table 4.2.  All NP 

formulations (prodrug + released docetaxel) had much higher plasma exposures compared to 

free docetaxel when measured by the AUC.  A 60-fold increase in AUC was realized for the 

DTXL-NP where as the C2-NP and C8-NP formulations displayed a 182-fold and 84-fold 
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increase in AUC, respectfully.  Additionally, the C2-NP and C8-NP formulations had at least 

2-fold increased plasma exposure than the DXTL-NP as measured by AUC.  The Cmax of the 

NP formulations were many-fold higher than free docetaxel.  The order of Cmax from least to 

highest for the NP formulations emulated the in vitro release kinetics: docetaxel, C2 and then 

C8.  However, minimal conversion of C2 and C8 to docetaxel was observed in plasma; of the 

total drug, the percentage of released docetaxel were 2.3% and 1.9% for C2 and C8, 

respectively.  As expected, the CL and the Vd of the C2-NP and C8-NP as well as the DTXL-

NP were much lower than free docetaxel.  The C2-NP and C8-NP formulations also had 

decreased CL and Vd compared to the DTXL-NP. 

The tumor AUC of total drug for all NP formulations were lower than that of free 

docetaxel. Interestingly, the extent of prodrug conversion was greater in tumor than in 

plasma, spleen and liver.  The percentage of released docetaxel was 32% for C2 and 27% for 

C8.  No correlation was observed between total tumor exposure and plasma exposure. Free 

docetaxel gave the highest tumor total drug exposure and the C2-NP gave the lowest total 

tumor drug exposure. 

Total spleen and liver drug exposure was correlated with plasma exposure.  All 

particle formulations had much higher exposure in spleen and liver than free docetaxel.  The 

C2-NP formulation had the highest total plasma exposure and also the highest spleen and 

liver exposure. 

4.3.4  Tumor Growth Inhibition and Body Weights 

The efficacy of the NP formulations were compared to free docetaxel in an A549 SC 

xenograft mouse model.  Figure 4.4A shows the tumor growth curves for the fastest release 

formulation, DTXL-NP, compared to the slowest formulation, C8-NP, as well as free 
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docetaxel and saline.  All mice were given an equal molar amount of docetaxel (15 mg/kg) or 

an equivalent volume of saline.  The RTV of the DTXL-NP was similar to free docetaxel for 

the first 37 days.  Mice receiving the C8-NP had no tumor growth inhibition.  The tumor 

growth curve of C8-NP was similar to that of saline.  Figure 4.4B shows the tumor growth 

curves for the 4 day release formulation, C2–NP, at an equal molar dose to free docetaxel (20 

mg/kg) and at its MTD (50 mg/kg).  The RTV of the C2-NP was found to be equal to at 

equimolar dosing.   However, at 50 mg/kg, mice receiving the C2-NP had statistically lower 

mean tumor volume than mice receiving free docetaxel at 20 mg/kg.  Body weights (Figure 

4.4C) for saline and equimolar doses of free docetaxel and C2-NP remained stable over the 

course of treatment, while some body weight loss was observed for the 50 mg/kg dose of C2-

NP over the course of 6 doses.    

4.3.5  White Blood Cell (WBC) Counts 

Table 4.3 shows the mean WBC count of mice receiving the C2-NP (20 mg/kg or 50 

mg/kg) compared to free docetaxel (20 mg/kg).  Blood was collected 4 days after injection 

and measured for complete blood counts.  Mice receiving the C2-NP formulation at an equal 

molar dose to free docetaxel trended towards statistically higher WBC 4 days after the 1
st
 

dose and statistically higher WBC 4 days after the 6
th

 dose.   

4.4      Discussion 

The implications of slower docetaxel release rates from PLGA NPs on 

pharmacokinetics and efficacy was investigated in an A549 model of NSCLC in mice.  The 

PRINT
®
 process was utilized to prepare monodisperse particles with identical docetaxel 

loading.  Alkyl silyl ether prodrugs of docetaxel were synthesized and formulated into NPs to 

achieve variable release rates while maintaining the same particle composition (Table 1).  
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These prodrugs were ideal to study the effect of release rate on in vivo toxicity, 

pharmacokinetics and efficacy because release kinetics could be tuned by varying the alkyl 

chain length, without altering prodrug conversion kinetics.  The rate of prodrug conversion is 

controlled by the steric hindrance of the substituents on the silicon atom.  Rapid conversion 

was observed for both the C2 and C8 prodrugs (Figure 4.2A and B), because dimethyl 

substituents were selected.  A previous study that utilized a diisopropyl constituent yielded 

no conversion over 168h (data not shown).  

In vitro release kinetics (Figure 4.2D) confirmed that release rates of the prodrugs 

were much slower than that of unmodified docetaxel.  The PK parameters also suggest a 

slower release with higher exposures of the prodrug in plasma, liver and spleen.  The 

exposure in tumor was greater for Taxotere and DTXL-NP for the time course observed in 

this study. Silyl ethers are widely used as protecting groups in synthetic organic chemistry 

and can be easily removed by acid hydrolysis [19].  Thus, conversion of the C2 and C8 

prodrugs should occur faster in the acidic environment of the tumor  than in the plasma and 

tissues, and subsequently minimize systemic toxicity.  Preferential conversion of the silyl 

ether prodrugs in the tumor was observed in the PK studies.  The percentage of released 

docetaxel in the plasma for the C2-NP and C8-NP was 2.3% and 1.9%, but 32% and 27% 

within the tumor.  The extent of conversion of C2 and C8 prodrugs to docetaxel observed in 

the liver and spleen were also much less than the conversion observed in the tumor.  The 

docetaxel prodrugs, C2 and C8, reduce cytotoxicity (Figure 4.2C) and systemic toxicity (as 

evidenced by stable body weights), by decreasing drug release while the particles are in 

circulation and also by preferentially converting in the acidic environment of the tumor. 
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The benefit of using the C2-NP was realized in the WBC measurements.  At equal 

molar doses to free docetaxel, mice receiving the C2-NP had statistically higher WBC than 

free docetaxel.  Structure-activity relationship studies of taxanes reported in the literature 

have demonstrated that modification of the C2’ alcohol greatly diminishes the activity of 

taxanes [20].  In addition to the sustained release of C2-NP formulation, the diminished 

activity of the C2 prodrug in the C2-NP formulation may also contribute to its reduced 

neutropenic effect.  In clinical studies that compared administration of docetaxel once every 

3 weeks [75 mg/m
2
] versus once a week [33.3 mg/m

2
], patients receiving weekly 

administrations of docetaxel had less toxicity, including less neutropenia and leucopenia 

[21].  Furthermore, dosing schedule was not found to alter overall survival. Increasing the 

duration of dose administration, as achieved by deceasing drug release rate from NPs, may 

explain the observed reduction in hematological toxicity.  In addition to achieving reduced 

toxicity, a sustained release formulation is more convenient for patients over a cycle of 

chemotherapy.   

Interestingly, despite greatly reducing systemic toxicity, the C2-NP was equal in 

effectiveness to free docetaxel at equal molar dose in an A549 xenograft mouse model.  

Sustained released of docetaxel from a NP may not improve the efficacy of docetaxel, but 

may improve the safety profile and improve patient convenience.  However, because of the 

observed improvement in the safety profile of the C2-NP, a much higher dose of docetaxel 

was delivered.  This translated to an equivalent docetaxel dose of 50 mg/kg, which resulted 

in improved tumor growth inhibition compared to free docetaxel at 20 mg/kg. 
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4.5       Conclusions 

PRINT
®
 technology was used to prepare particles of the exact same size and 

composition to study the effect of sustained drug release on in vivo toxicity, 

pharmacokinetics and efficacy.  The use of an acid-labile docetaxel prodrug, C2, that reduces 

drug release rate from PLGA NPs and preferentially converts within the tumor greatly 

increased plasma exposure, decreased systemic toxicity while also improving tumor growth 

inhibition.  The silyl ether prodrug strategy is amenable to many other chemotherapeutics and 

may have wide implications in improving the pharmacokinetics and safety profile of small 

molecule chemotherapeutics when delivered via a NP. 
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Formulation Size (nm) PDI Zeta Potential (mV) Weight percent 

loading 

DTXL-NP 213 +/- 1 0.07 +/- 0.01 -2.81 +/- 0.23 21.2 +/- 0.5 

C2-NP 205 +/- 2 0.05 +/- 0.02 -2.65 +/- 0.52 20.7 +/- 0.4 

C8-NP 208 +/- 7 0.09 +/- 0.02 -3.78 +/- 0.36 22.3 +/- 1.9 

Table 4.1. NP Characterization of DTXL-NP, C2-NP and C8-NP Formulations. 
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Specimen Parameter Formulation 

Taxotere DTXL-

NP 

C2-NP C8-NP 

DTXL DTXL C2 DTXL C8 DTXL 

Plasma AUC (ng/mL h) 1,227 79,192 227,735 5,381 103,979 2,003 

Cmax (ng/mL) 2,314 23,359 78,952 1,994 83,785 1,678 

CL (mL/h/kg) 8,150 126 49 1,858 96 4,992 

Vd (mL/kg) 10,508 4513 237 9,535 1,171 85,924 

Tumor AUC (ng/mL h) 73,222 60,858 26,799 12,897 40,611 15,056 

Cmax (ng/mL) 453 476 946 288 573 127 

Liver AUC (ng/mL h) 7,246 73,270 131,023 19,916 142,440 9,840 

Cmax (ng/mL) 12,254 6,693 23,359 12,637 16,108 2,566 

Spleen AUC (ng/mL h) 30,162 390,222 1,004,965 28,442 468,037 28,442 

Cmax (ng/mL) 6,391 20,580 64,365 2,419 77,983 5,261 

Table 4.2. Pharmacokinetic parameters of free docetaxel, DTXL-NP, C2-NP and C8-NP 

Formulations. 
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Time Point Saline 
Free docetaxel 

(20 mg/kg) 
C2-NP (20 mg/kg) C2-NP (50 mg/kg) 

 WBC (10
3
 cells/L) 

Day of dose 1 2.07 +/- 0.21 1.34 +/- 0.36 1.67 +/- 0.54 1.54 +/- 0.35 

4 days after dose 1 2.81 +/- 0.91 0.84 +/- 0.65 *1.41 +/- 0.65 0.49 +/- 0.38 

4 days after dose 6 3.43 +/- 1.13 1.53 +/- 0.52 †3.00 +/- 1.10 0.56 +/- 0.28 

Table 4.3. White blood cell counts measured 4 days after injection with Saline, free 

docetaxel or C2-NP at two dose levels. * indicates trend towards statistically significance 

compared to free docetaxel (P=0.12).  † indicates statistical significance compared to to free 

docetaxel (P=0.008). 
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Figure 4.1. Synthesis of Silyl Ether Docetaxel Prodrugs 
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Figure 4.2. A. Release kinetics of docetaxel, C2 and C8 from PLGA NPs in PBS at 37ºC.  B. 

Cytotoxicity of docetaxel, C2 and C8 on A549 cells in vitro. C. Hydrolysis of C2 in plasma. 

D. Hydrolysis of C8 in plasma. 
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Figure 4.3. Pharmacokinetic profiles of free docetaxel, DTXL-NP, C2-NP and C8-NP 

Formulations. Each replicate is shown and lines are connected by the means of three 

replicates at each time point.  Mice received 10 mg/kg docetaxel or docetaxel equivalents. 
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Figure 4.4. A-B.Tumor growth inhibition curves (Mean±SEM). Mice received 3 or 6 weekly 

doses. Mice receiving C2 NP at 50 mg/kg had tumor volumes lower than mice receiving free 

docetaxel (P<0.05 starting on day 10).  C. Body weights (Mean±Std Dev). 
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CHAPTER 5: CONCLUSIONS AND FUTURE DIRECTIONS 

 Nanoparticle delivery of chemotherapeutics has the potential to significantly alter 

small molecule pharmacokinetics, and thus change its efficacy and toxicity.  The brief review 

(Chapter 1) of the various particle technologies that have been used reformulate taxanes 

demonstrates that different particle types yield vastly different pharmacokinetics, efficacy 

and toxicity of the encapsulated small molecule.  In this dissertation, the nanoparticle 

fabrication platform PRINT
®
 was utilized to produce particles with well controlled geometry 

and composition to evaluate how key characteristics such as particle size of rod-shaped 

particles, drug loading and release kinetics affect in vivo performance.   

 Nanoparticles are useful as drug delivery carriers for oncology because they limit 

distribution to normal tissues, but passively target solid tumors by extravasation through 

leaky vasculature.  To improve plasma exposure and extravasation of nanoparticles to the 

tumor, design has focused on optimizing surface chemistry and particle size of spherical 

particles.  Thus, the focus of this research was to explore how the formulation parameters: 

particle size of rod-shaped particles, drug loading and release kinetics can affect 

chemotherapeutic delivery.  Decreased particle diameter, drug loading and release kinetics 

were all found to improve the sum total pharmacokinetics of docetaxel with varying effects 

on efficacy and toxicity. 

Multiple groups have demonstrated that reduced particle size of spherical particles 

has lead to improved tumor accumulation and penetration in vivo [1-4], but high aspect ratio 
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rod-shaped particles have not been as thoroughly characterized in vivo.  Rod-shaped particles 

may be advantageous because recent studies have shown that cationic [5] or targeted [6] high 

aspect ratio particles improve cellular uptake in cancer cells.  However, improving particle 

internalization in vitro through use of a rod-shaped particle design may decrease the 

particles’ potential for passive targeting to tumors.  Particle size greater than 200 nm may 

increase particle clearance by the spleen [7], so rod shaped particles could potentially have 

increased clearance compared to spherical particles commonly used for oncology which are  

~100 nm in diameter.   Docetaxel encapsulated in high aspect ratio 80x320 nm particles had 

favorable sum total plasma docetaxel pharmacokinetics in vivo in a SKOV-3 subcutaneous 

xenograft model.  Mice receiving 80x320 nm docetaxel particles had less docetaxel exposure 

within their liver and spleen, but higher docetaxel exposure in the tumor (0-24 h) compared 

to mice receiving 200x200 nm particles.  The smaller dimension of a particle appeared to 

have a greater influence on biodistribution than its longer dimension, which is favorable for 

high aspect ratio particles.  However, in this study, sum total docetaxel was monitored, rather 

than the particle or the polymer itself.  Thus, future studies will track the particle itself to 

confirm the findings concluded by tracking sum total drug.  Additionally, future studies will 

compare cylindrical particles with similar diameter to 80 nm, but with shorter length than 

320 nm.  If cylindrical particles with a common diameter, but different lengths have similar 

biodistribution, then high aspect particles may be the preferred particle for delivering 

chemotherapeutics by improving cellular uptake without compromising passive tumor 

accumulation. 

 Drug loading was also evaluated as a parameter to alter sum total docetaxel 

pharmacokinetics.  For a given dose of drug, changing the nanoparticle drug loading varies 
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the number of particles or mass of polymer within that dose.  Because nanoparticles are 

primarily cleared by the MPS, changing the number of particles injected may alter 

nanoparticle clearance if the MPS can be saturated.   Decreased drug loading, which 

increases the number of particles injected per mass drug dosed, increased the sum total 

plasma exposure and decreased the sum total spleen and liver exposure of docetaxel.  As a 

result, the lower drug loading nanoparticle dose had increased sum total docetaxel exposure 

and trend towards improved efficacy. 

Future studies will evaluate a wider range of drug loadings at the same docetaxel dose 

to confirm that sum total docetaxel plasma exposure increases nonlinearly as drug loading 

decreases.  Gabizon et al. demonstrated that plasma and tumor doxorubicin concentrations 

from Doxil increased disproportionally as dose increased [7].  In addition, doxorubicin 

concentrations within the liver did not increase proportionally with increased dosage [7].  

Gabizon et al. hypothesized that Doxil clearance was saturated, which resulted in nonlinear 

pharmacokinetics as dosage was increased.  Thus, it may be possible for the rate of clearance 

for docetaxel encapsulated in a nanoparticle to be decreased as drug loading is lowered 

Though it is unknown whether or not the rate of clearance is affected in humans as 

dosage of a nanoparticle is changed, the results of chapter 3 demonstrate that particles of 

different drug loadings were not bioequivalent in a preclinical model.  Thus, during 

nanoparticle development, keeping nanoparticle drug loading a consistent parameter is 

important to achieve consistent results.  Additionally, drug loading and even dosing regimen 

may be important parameters to control to maximize efficacy achieved by nanoparticle 

formulations through increasing sum total plasma drug exposure.  Interestingly, though sum 
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total plasma drug exposure was increased with lower drug loading, toxicity was measured by 

white blood cell counts were not statistically different for the formulations tested.   

Finally, the results of chapter 4 demonstrated that controlling drug release rate with a 

prodrug strategy had significant impact on the toxicity and efficacy of docetaxel.  A slower 

release rate through use of a prodrug also increased the sum total drug plasma exposure.   

However, too slow of a release, as seen with the C8 prodrug, did not result in any efficacy.  

For a non targeted nanoparticle, efficacy is caused by a combination of drug released from 

the nanoparticle within the plasma and drug that is released from the nanoparticle at the site 

of the tumor.  A potential explanation is that a slow release rate may not achieve efficacy 

because the minimum effective concentration in the plasma was not reached.   If the prodrug 

is retained too long within the particle, the majority of the prodrug docetaxel would be 

cleared while still encapsulated in the particle. As a result, even though sum total prodrug 

docetaxel is high within the plasma, the drug is not available to exert its pharmacological 

activity unless released.  Alternatively, the particle could be reaching the tumor, but at the 

site of the tumor, the drug is still releasing too slowly to kill tumor cells at a rate greater than 

tumor growth.   

However, with a moderate release rate provided by the C2 prodrug, similar efficacy 

compared to free docetaxel was observed at equal molar dosing.  In addition, toxicity was 

improved compared to free docetaxel; the MTD of C2-NP was 2.5-times higher than free 

docetaxel compared to only 1.5-times higher for the regular DTXL-NP.  This improved 

tolerability a much higher dose of C2-NP to be administered relative to free docetaxel to 

achieve improved tumor growth inhibition.  The toxicity profile of docetaxel was likely 

improved by minimizing the percent of free docetaxel released from the C2-NP.  Thus, future 
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work will further explore the relationship between the AUC of released docetaxel and 

toxicity as well as efficacy.  Potentially, the pharmacokinetic parameters of the released drug 

molecule may be a better predictor of toxicity and efficacy. 

The work of this dissertation has demonstrated that controlling key nanoparticle 

formulation parameters drastically varies the pharmacokinetics of the encapsulated docetaxel 

or docetaxel prodrug to alter toxicity and efficacy.  By selecting the optimal parameter for 

each formulation variable, improved nanoparticle formulations can ultimately be designed to 

achieve the maximum improvement in tolerability and efficacy of the encapsulated 

chemotherapeutic.  Decreased particle diameter and drug loading may decrease drug 

clearance to maximize plasma AUC to improve tumor accumulation, but sustained release 

may manage toxicity by controlling the pharmacokinetics of the released chemotherapeutic. 
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