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ABSTRACT 

 
JASON PETER MIHALIK: The Study of Head Impact Biomechanics in Adolescent and 

Youth Minor Ice Hockey Players 
(Under the direction of Kevin M. Guskiewicz) 

 
 Mild traumatic brain injuries are one of the most clinically difficult conditions to 

manage in sports medicine. Better understanding the biomechanics of head impacts will 

allow clinicians and researchers to better implement interventions designed specifically to 

reduce the incidence of injury. To date, few studies have looked at the biomechanics of head 

impacts in the young athlete. The overall objective of this dissertation was to evaluate the 

biomechanics of head impact severity during participation in youth ice hockey, with a 

specific evaluation of descriptive factors, and intrinsic and extrinsic factors related to impact 

biomechanics while playing hockey. We studied a two-year cohort of Bantam and Midget-

aged ice hockey players, all of whom participated in all practices and games while wearing 

specially instrumented helmets capable of measuring head impact measures including linear 

acceleration, rotational acceleration, and the Head Impact Technology severity profile 

(HITsp). We also video-recorded every game in the first year of the study and developed an 

evaluation tool in order to characterize a number of aspects related to relative body 

positioning and overall anticipation of impending collisions. We also recorded a wide range 

of information including the number of shifts played, cervical muscle strength, player head 

and neck anthropometrics, measures of trait aggression, and general aerobic fitness. Our data 

support the notion that anticipating collisions may play a role in minimizing head impact 

severity. We also found impacts occurring in the open ice were greater than those occurring 
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along the playing boards. Further, illegal player infractions occur at a relatively high 

frequency and typically result in higher measures of head impact severity than legal 

collisions, especially as it pertains to elbowing, head contact, and high sticking infractions to 

the head. Based on our data, it does not appear that those with stronger neck muscles are 

better able to mitigate the forces associated with head impacts. Our data suggest a continued 

need to educate our players with the necessary technical skills needed to heighten their 

awareness on the ice. Coaches and athletes should incorporate body collision exercises in 

practices, and spend time educating young athletes on these proper checking techniques in an 

attempt to minimize the risk of injury and increase the safety of ice hockey. 
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CHAPTER I 
 

INTRODUCTION 
 

It has been estimated that between 1.6 and 3.8 million traumatic brain injuries (TBI) 

result from sports each year in the United States (Langlois, Rutland-Brown, & Wald, 2006). 

These injuries cost the American health care system approximately $56.3 billion in direct and 

indirect costs (Langlois, Rutland-Brown, & Thomas, 2004), and make TBI among the most 

expensive conditions to treat in children (Schneier, Shields, Hostetler, Xiang, & Smith, 

2006). While teams of medical professionals surround collegiate and professional athletes, it 

is often adolescent athletes who are cared for by parent volunteer coaches with very little 

medical knowledge. As a result, there is a need to study the factors that may contribute to 

mild TBI in order to minimize the risk of injury in our young athletes.  

Much of what researchers know regarding head injury biomechanics is surprisingly 

quite dated. Historically, Pudenz and Shelden (1946) were among the first to study brain 

movement in subhuman primates following forces imparted to the head. In their initial 

studies, the top halves of primate skulls were replaced with transparent plastic domes; and 

accelerative forces were then delivered and high-speed cinephotography filmed the 

movement of the brain. Ommaya and Gennarelli (1974) further elucidated our understanding 

of how linear and rotational accelerations affect injury outcome in the primate model. To this 

day, it is accepted that linear accelerative forces are more likely related to focal lesions while 

rotational mechanisms of injury result in diffuse cerebral injuries (Holbourn, 1943, 1945; 

Ommaya & Gennarelli, 1974). However, research confirming either of these two conclusions 
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has been limited, and controversy remains regarding the relationship between linear and 

rotational accelerations, and how they contribute to injury mechanism, severity, and type of 

cerebral insult. Researchers in the automobile industry continued the majority of the work in 

this area, with very little emphasis as to its direct applicability in the sports arena.  

 In the past 15 years, researchers have come to study the athletic population injuries 

extensively as the athletic venue provides investigators an excellent TBI research laboratory. 

The fact that athletes are exposed to repeated trauma and exhibit high-risk behaviors, coupled 

with the ability to perform extensive preseason baseline testing and equally comprehensive 

post-injury testing, are all positive aspects to the sports TBI laboratory setting. During this 

time, our understanding of head injury biomechanics has improved substantially. The 

National Football League (NFL) mild TBI committee was among the first to study the 

biomechanics relating to concussion. In a series of studies published in 2005 and 2006, 

laboratory reconstruction of NFL video footage presented biomechanical data associated with 

a number of football-related head impacts (Viano, Casson, Pellman, Bir, et al., 2005; Viano, 

Casson, Pellman, Zhang, et al., 2005; Viano, Pellman, Withnall, & Shewchenko, 2006); 

including an analysis of collisions causing concussion, as well as studying the biomechanics 

of the striking player, and the ability of newer helmets in dissipating some of the accelerative 

forces experienced by professional football players.  

Technological advances in recent years have allowed researchers to study the real-

time biomechanical characteristics associated with head impacts in collision sports such as 

football and, more recently, ice hockey. Our work in this field has identified a number of 

preliminary findings that we expect to hold true following additional data collection: most 

severe impacts occur to the top of the head (Mihalik, Bell, Marshall, & Guskiewicz, 2007), 
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concussion injury thresholds proposed in the research literature for helmeted sports do not 

appear to be supported (McCaffrey, Mihalik, Crowell, Shields, & Guskiewicz, 2007), and no 

relationship between the magnitude of linear or rotational acceleration seems to exist with 

clinical measures of concussion such as postural stability, graded symptom reporting, and 

cognitive testing (Guskiewicz, et al., 2007). Despite these technological advancements, our 

understanding of head impact biomechanics in the youth athlete remains limited at best. 

Given the need to understand this injury in order to better address this international health 

care issue, it seems logical to extend this nature of research to the young athlete. Youth ice 

hockey, lending to its increasing popularity in the United States, is an excellent venue for this 

initiative.  

  

Specific Aims 

Descriptive factors  

1) To study the biomechanics of head impacts sustained during games and practices 

in Bantam (13- and 14-year-old) and Midget (15- and 16-year-old) youth ice 

hockey players.  

Extrinsic factors 

2) To evaluate the effect of game-related exposure (i.e. number of playing shifts by 

period) on biomechanical measures of head impact severity. 

3) To evaluate the effect of illegal player conduct on biomechanical measures of 

head impact severity. 

Intrinsic factors 
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4) To evaluate the effect of body collision type on biomechanical measures of head 

impact severity. 

5) To evaluate the effect of cervical muscle strength, cervical and head 

anthropometrics, general aerobic fitness, and player aggression, on biomechanical 

measures of head impact severity. 

 

Statement of the Problem 

 Over one million youth participate annually in ice hockey in Canada and the United 

States; and, arguably, millions more play recreationally every year. Hockey players 

incorporate legal body collisions into the game at relatively young ages. In some regions of 

Canada, for example, this can occur as young as 9 years of age. For the most part, 11-year-

olds (Peewee) are already playing full body contact ice hockey. At young ages, there is 

debate as to whether children are being placed at too much risk of injury. This greater risk 

may be heightened in the Bantam age level (13- and 14-year-old players). Since prepubescent 

adolescents enter puberty during this time, it is not uncommon for physical maturity between 

players at this age level to vary considerably.  

 Further compounding the issue, USA Hockey and Hockey Canada do not require the 

same level of coaching education at the Bantam level as they do in higher levels of play (i.e. 

Midget, Junior, collegiate, and professional). As such, coaches at this level are often 

inexperienced parent volunteers who lack the technical foundation required to instruct young 

ice hockey players the proper technique to mitigate injury risk while they play contact ice 

hockey. Second, there is no required mandate by any of the national hockey agencies to have 

coaches who are trained in first aid; this often leads to difficulty managing obvious player 
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injuries, and an inability to manage more difficult injuries such as mild TBI. Finally, while it 

is generally accepted that USA Hockey’s “Heads Up Hockey” and Hockey Canada’s “Play 

Safe” programs help to reduce the number of catastrophic cervical spine injuries, the 

evidence behind these programs supporting a reduction in sport-related mild TBI remains 

anecdotal at best. 

 

Research Questions 

 In this study, there will be three primary biomechanical measures of head impact 

severity: linear acceleration (expressed relative to gravitational acceleration, g), rotational 

acceleration (measured in rad/s2), and Head Impact Technology severity profile (HITsp). 

These dependent variables will be analyzed for each of the following descriptive, extrinsic, 

and intrinsic research questions.  

Descriptive factors 

1. Are there significant differences in biomechanical measures of head impact severity 

sustained by youth ice hockey players across position, event type, and location of head 

impact? Is there a difference in these measures between striking players and those who are 

struck? 

a. Are there significant differences in biomechanical measures of head impact 

severity between forwards and defensemen? 

b. Are there significant differences in biomechanical measures of head impact 

severity between games or scrimmages, and practices? 
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c. Are there significant differences in biomechanical measures of head impact 

severity between locations of head impacts (i.e. back, front, sides, and top of 

head)? 

d. Are there significant differences in biomechanical measures of head impact 

severity between the striking player and the player that is struck? 

Extrinsic factors 

2. Are there significant differences in biomechanical measures of head impact severity 

sustained by youth ice hockey players due to game-related exposure? 

a. Do significant differences in biomechanical measures of head impact severity 

exist between head impacts sustained in the first, second, and third playing 

periods during games and scrimmages? 

b. What is the effect of an increase in the number of shifts played per period on 

biomechanical measures of head impact severity? 

3. Is there an association between biomechanical measures of head impact severity sustained 

by youth ice hockey players and infraction type at the time of the collision? 

a. Do significant differences in biomechanical measures of head impact severity 

exist between head impacts sustained in legal (i.e. “clean”) body collisions and 

those resulting from a boarding or charging infraction, checking an opponent from 

behind, or elbowing an opponent or deliberately making head contact? 

b. Do significant differences in biomechanical measures of head impact severity 

exist between head impacts sustained in legal (i.e. “clean”) body collisions and 

those resulting from a boarding or charging infraction, checking an opponent from 
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behind, or elbowing an opponent or deliberately making head contact in players 

who are struck? 

Intrinsic factors 

4. Is there an effect of body collision type on biomechanical measures of head impact 

severity sustained by youth ice hockey players? 

a. Are there significant differences between open-ice collisions and those taking 

place along the playing boards? 

b. Are there significant differences between anticipated and unanticipated body 

collisions? 

c. In anticipated body collisions, will relative segmental body position affect head 

impact measures? 

5. Are cervical muscle strength, cervical and head anthropometrics, general aerobic fitness, 

and player aggression, associated with the biomechanical measures of head impact severity 

sustained by youth ice hockey players? 

a. Is increasing the strength of anterior cervical flexors, anterolateral cervical 

flexors, cervical rotators, posterolateral cervical extensors, and the upper 

trapezius, associated with lower biomechanical measures of head impact severity? 

b. Do subject anthropometrics such as player height, mass, head-neck segment 

length, and other head and neck measurements, affect biomechanical measures of 

head impact severity? 

c. Is increasing general aerobic fitness, as measured by an on-ice aerobic 

performance test, associated with lower biomechanical measures of head impact 

severity? 
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d. Is increasing player aggression, as measured using the Buss-Perry Aggression 

Questionnaire and reflected by penalties in minutes (PIM), associated with lower 

biomechanical measures of head impact severity? 

   

Research Hypotheses  

Descriptive factors 

1. Are there significant differences in biomechanical measures of head impact severity 

sustained by youth ice hockey players across position, event type, and location of head 

impact? Is there a difference in these measures between striking players and those who are 

struck? 

a. There will be no significant differences in biomechanical measures of head impact 

severity between forwards and defensemen. 

b. Head impacts sustained in games will be more severe than those sustained during 

practices, as indicated by higher linear and rotation accelerations, and HITsp. 

c. Impacts imparted to or by the top of the head will demonstrate significantly higher 

biomechanical measures of head impact severity compared to those of the back, front, 

and left and right sides. Further, impacts to the front of the head will demonstrate 

significantly lower biomechanical measures compared to those of the back, left, right, 

and top. No other significant differences are hypothesized to exist.  

d. Biomechanical measures of head impact severity will be significantly lower during 

collisions where the player is the striker, compared to collisions where the player in 

our sample is being struck.  

Extrinsic factors 



 9 

2. Are there significant differences in biomechanical measures of head impact severity 

sustained by youth ice hockey players due to game-related exposure? 

a. Head impact severity will be significantly greater in the third period compared to the 

first and second periods. Further, impact severity of collisions in the second period 

will be greater than those observed in the first. 

b. The number of shifts played during the first period will affect the magnitude of head 

impacts sustained in the second period and, likewise, the number of shifts played in 

the first and second periods will affect the magnitude of impacts sustained in the third 

period.  

3. Is there an association between biomechanical measures of head impact severity sustained 

by youth ice hockey players and infraction type at the time of the collision? 

a. Body collisions resulting from illegal conduct will result in significantly higher 

biomechanical measures of head impact severity than those resulting from legal body 

collisions. 

b. Body collisions resulting from illegal conduct will result in significantly higher 

biomechanical measures of head impact severity in players who are struck compared 

to players who strike and opponent.  

Intrinsic factors 

4. Is there an effect of body collision type on biomechanical measures of head impact 

severity sustained by youth ice hockey players? 

a. Open-ice collisions will result in significantly higher biomechanical measures of head 

impact severity compared to collisions occurring along the boards. 
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b. Unanticipated collisions will result in significant increases in biomechanical measures 

of head impact severity when compared to anticipated body collisions. 

c. In instances where players anticipate a body collision (delivering or receiving), 

maintaining a relative body position such that the player’s head is facing forward, and 

the trunk, hips, and knees are flexed, will result in lower biomechanical measures of 

head impact severity.  

5. Are cervical muscle strength, cervical and head anthropometrics, general aerobic fitness, 

and player aggression, associated with the biomechanical measures of head impact severity 

sustained by youth ice hockey players? 

a. Players with stronger cervical muscles as measured by the strength of anterior 

cervical flexors, anterolateral cervical flexors, cervical rotators, posterolateral cervical 

extensors, and the upper trapezius, will experience lower biomechanical measures of 

head impact severity than those players with weaker cervical muscles. 

b. Taller and heavier players will experience lower measures of head impact severity 

than their shorter and lighter counterparts. There will be no differences in measures of 

head impact severity as they relate to head-neck segment length, head-neck segment 

mass, and other head and neck measurements. 

c. Increased general aerobic fitness, as measured by an on-ice aerobic performance test, 

will be associated with lower measures of head impact severity. 

d. Increased player aggression, as measured by the Buss-Perry Aggression 

Questionnaire and reflected in penalties in minutes (PIM) will be associated with 

higher measures of head impact severity. 
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Definitions 

Boarding: A minor or major penalty imposed to a player at the discretion of the referee 

based upon the degree of violence of the impact causing an opponent to be thrown violently 

into the boards.   

Charging: A minor or a major penalty imposed to a player who runs (i.e. takes more than 2 

steps or strides) or jumps into or charges an opponent.  

Checking from behind: A minor or a major penalty imposed to a player who body checks or 

pushes an opponent from behind. Minor penalties incur an automatic misconduct penalty; 

major penalties incur an automatic game misconduct penalty. Further, any check from behind 

resulting in the opponent hitting head first into the end or sideboards, or goal frame, results in 

an automatic major penalty and accompanying game misconduct penalty.  

Elbowing: A minor penalty imposed on or to any player who uses his or her elbow in such a 

manner as to in any way foul an opponent. 

Head contact: A minor or major penalty imposed to any player who intentionally or 

recklessly contacts a player in the head, including with the stick or with an illegal body 

check. 

Legal (“clean”) body collision: A body collision with the intent of the separating the puck 

carrier from the puck without using any illegal infractions. This is done by colliding into an 

opponent who is in possession of the puck by using the hip or shoulder from the front, 

diagonally from the front, or straight from the side, but cannot take more than two strides in 

executing the check. Current USA Hockey regulations allow body checking at the Peewee 

level and higher. 
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Operational Definitions 

Anticipated body collision: A body collision such that a player appears to see it approaching 

and, therefore, knowingly delivers or receives the body collision.  

Open-ice collision: A body collision between two players such that neither of the two players 

involved in the collision hit the playing boards following the collision. 

Penalties in minutes: The total number of penalty minutes handed to a player over the entire 

playing season for infractions they deliver during game participation. 

Playing board collision: Any body collision whereby one or both of the players make 

contact with the playing surface boards during or following a body collision. 

Playing shift: An incident where the player steps onto the ice to actively participate in the 

player and is terminated when the player returns to the team bench. Only one shift is counted 

in instances where there is a stoppage in play (i.e. offside, icing, penalty, goal) but the player 

remains on the ice for the start of the next play. The length of a typical shift ranges from 30 

seconds to one minute. 

Unanticipated body collision: A body collision whereby the receiving player does not appear 

to see it approaching and, therefore, is unable to prepare him or herself to receive it. 

 

Limitations/Assumptions 

 The following assumptions will be made in the study: 

 1. Subjects will complete all testing to the best of their ability and with full effort. 

 2. Subjects will not knowingly or intentionally alter their style of play at any time 

 while participating in the study. 
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 3. Our sample will be comprised of 13- to 16-year-old male ice hockey players only, 

 and be representative of most travel ice hockey players in the United States playing at 

 the AAA level. 

 

Delimitations 

 The following delimitations will be made in the study: 

 1. Participants will consist of male Bantam- and Midget-aged ice hockey players who 

 normally participate in at least three on-ice sessions. 

 2. Visual evaluation of body collisions is considered sufficient to quantify the 

 player’s relative body position.  

 

Significance 

 This research study addresses a number of important questions pertaining to youth ice 

hockey safety, specifically as it pertains to injury risk. Ideally, the results provide valuable 

and applicable information regarding game and practice situations in which youth hockey 

players are at the greatest risk for sustaining head impacts of higher, and potentially 

injurious, magnitudes.  The study provides a foundation for developing informative teaching 

techniques for the prevention of mild TBI in youth hockey. The study outcomes have the 

potential to help create a more positive and safe environment for youth hockey players.   

Information obtained from Specific Aim 1 provides data regarding the nature of head 

impacts sustained on a regular basis by youth ice hockey players, and how these measures 

relate to those reported in contemporary literature. Accelerative forces were studied with 

respect to head impact location, and will be valuable to those organizations who set helmet-
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testing standards such as the American Society for Testing and Materials (ASTM) 

International, the Canadian Standards Association (CSA), the Hockey Equipment 

Certification Council Inc. (HECC), the National Operating Committee on Standards for 

Athletic Equipment (NOCSAE), and to the helmet manufacturers who must meet these 

standards. Increasing head impact severity in the later stages of the game (Specific Aim 2) 

underscores the importance of incorporating endurance conditioning programs in youth ice 

hockey worldwide or limiting the number of shifts played. The knowledge gained by Specific 

Aims 3 and 4 will directly influence coaching and officiating. By understanding the nature of 

head impact severity in the context of player anticipation, and collecting data to support an 

optimal relative body position that minimizes the extent of the head impact, USA Hockey 

and Hockey Canada can address coaching initiatives and interventions designed with the 

express purpose of reducing the risk of injury and promoting safe participation of youth 

athletes in organized ice hockey. While this study will emphasize youth ice hockey, the 

concepts of collision anticipation extend to all other collision sports. Since the tempo and 

aggressiveness of ice hockey is a direct reflection on a game’s officiating, Specific Aim 3 

will serve to better elucidate the effects of player infractions on measures of head impact 

severity. This information, in addition to educational interventions, will have a targeted 

purpose of improving the awareness of these infractions, and emphasize the importance of 

enforcing player infractions likely to result in more severe head impacts. Lastly, the final 

specific aim addressed another potentially important injury prevention strategy. The study 

will attempt to gain an understanding of how cervical strength and anthropometrics relates to 

the severity of head impacts sustained by youth ice hockey players. Little research has 

substantiated the notion that individuals with weaker neck muscles are at greater risk for 
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sustaining concussions.  While this study did not address mild TBI specifically, it will relate 

measures of neck strength and head-neck anthropometrics to measures of head acceleration 

collected by a novel real-time accelerometer-based data collection system. These five 

specific aims were designed with the end purpose of improving the safety of youth ice 

hockey players, while at the same time providing a scientific foundation for intervention 

research in the area of youth head injury biomechanics, and the possibility of extrapolating 

the findings to youth mild TBI research in general.  



 
 

 
 
 

CHAPTER II 

LITERATURE REVIEW 

 

Introduction 

 There has been a recent surge in the number of publications pertaining to sports-

related mild traumatic brain injury (TBI). For example, a recent PubMed search identified 

that more than half the publications related to “sport mild traumatic brain injury” were 

published in the past 5 years alone. Notwithstanding the popularity of this topic within the 

literature, media exposure highlighting high-profile professional athletes forced into early 

retirement has served to elevate the general public’s awareness of this injury. In fact, the 

Centers for Disease Control and Prevention (CDC) have stated that the study of TBI, and 

more specifically its prevention, must continue to be national priorities. With as much 

attention as youth injury receives, there are few research initiatives focused on injury 

biomechanics in order to better design and implement prevention initiatives in this 

population. For reasons that will be made clear throughout this review of the literature, the 

sample proposed in this dissertation is comprised of young ice hockey players. Through the 

2006-07 hockey season, the number of registered members (players, coaches, and officials) 

with USA Hockey has more than doubled since 1990 (USA Hockey, 2008). Due to the 

increasing popularity of this sport in the United States, and its continued popularity and 

growth worldwide including Canada and many countries in Europe, this unique population 

provides an excellent opportunity to study body collisions in youth sport, and to understand 
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the potential for reducing injury risk by minimizing forces via implementing skills changes. 

The purpose of this literature review is to provide a comprehensive appraisal of the content 

matter pertaining to the proposed project, including epidemiological relevance, a review of 

the neuroanatomy, biomechanics of head injury, and methodological considerations.  

 

Epidemiology of traumatic brain injury 

 In a CDC-sponsored report on TBI in the United States for the period of 1995-2001, 

information reported from emergency departments suggested that at least 1.4 million people 

sustain a TBI from all causes annually. Of these injuries, 1.1 million are treated and released 

in emergency rooms and as many as 235,000 result in hospitalization. Sadly, as many as 

50,000 people die every year in the United States as a result of TBI. Children less than 15 

years of age represent the majority of all cases of TBI; during this period of time, they 

represented as many as 475,000 cases each year. A more interesting, and perhaps speculative, 

statistic suggests that many more TBIs are sustained annually in the United States for which 

care is either not sought out in emergency departments, or sought out at all. Adolescents are 

at an increased risk for secondary injury and may often be allowed to return to activity or full 

sport participation without appropriate medical supervision. Further, in almost every age 

group, the rate of TBIs in the United States was higher for males than for their female 

counterparts (Langlois, et al., 2004). 

Adolescent ice hockey traumatic brain injuries 

 Epidemiological study of youth ice hockey injuries has been limited to a small 

number of references, consisting of relatively small sample sizes. Despite their limitations, 

these studies do provide researchers with data pertaining to injury in this population of 
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adolescent athletes. Gerberich et al. studied twelve varsity high school ice hockey programs 

in Minnesota over the course of the 1982-83 season (Gerberich, et al., 1987). An injury rate 

of 75 injuries per 100 ice hockey players was reported, including all types of injuries. 

Additionally, 22% of all injuries sustained were to the head and neck. Subsequent studies 

used exposure rates (i.e. number of injuries per player-hours) rather than rates (i.e. per player 

rates) to compute risk of injury. Stuart et al. expanded this line of research to understand the 

rates of injury across different age and playing levels (Stuart, Smith, Nieva, & Rock, 1995). 

They included in their sample Squirt (9-10 years of age), Peewee (11-12 years of age), and 

Bantam (13-14 years of age) ice hockey players. Stuart and his colleagues reported the injury 

rate in Bantam players to be 4.3 injuries per 1000 player-hours. This was significantly higher 

than the injury rates reported for Peewee (1.8 per 1000 player-hours) and Squirt (1.0 per 

1000 player-hours) ice hockey participants. Stuart et al. were among the first to attempt to 

identify differences between game- and practice-related injury rates. In this same sample of 

Bantam ice hockey players, the game injury rate was reported to be as high as 10.9 per 1000 

player-hours. In comparison, the practice injury rate was reported to be 2.5 injuries per 1000 

player-hours. The Bantam practice injury rate was still higher than overall values reported for 

the Squirt and Peewee players.  

Ice hockey presents a number of factors that predispose the participants to high injury 

rates compared to other collision sports such as basketball and soccer. First, the playing 

surface is made of solid ice and uses rigid boards that contain the playing area. Second, 

players use a stick to manipulate a rigid frozen projectile (the playing puck) that can 

sometimes exceed eighty miles per hour; both of these objects are often involved in injurious 

insults. Compounding these two factors, twelve ice hockey players wearing skates with sharp 
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blades taking up position on the ice travel at high speeds, and are encouraged to purposefully 

collide with any opponent in possession of the puck. All these factors become increasingly 

more significant as players become bigger, faster, and stronger; this is likely the reason for 

the increased injury rates among Bantam ice hockey players compared to their younger 

counterparts. In agreement with these findings are those of Brust et al., where more than half 

of the injuries they observed occurred at the Bantam level (54%) (Brust, Leonard, Pheley, & 

Roberts, 1992). This paper further investigates the cause of injuries, and suggests that as 

many as 15% of all injuries were deemed intentional, and 34% of all injuries occurred in 

games the authors categorized as “hostile.” The authors further describe that of all game-

related collision injuries, 39% occurred from illegal checking and substantially less (20%) 

occurred from legal checking. To summarize Brust et al.’s findings, 86% of all injuries 

sustained in a game, including every incident of serious injury, resulted from checking and 

illegal game infractions. While this study represents a relatively small cohort, it presents a 

number of key findings related directly to the population of interest in this study and how the 

answers to the current research questions and hypotheses may have significant long-term 

intervention directives. For one, Specific Aim 3 addresses the key concern of player actions 

and how illegal game infractions may result in increased head impact forces. Specific Aim 4 

seeks to identify a relative body position in which a youth ice hockey player is best able to 

control head impact forces from impacts delivered and sustained during competition.  

 Collecting and reporting epidemiological data in youth ice hockey can be a difficult 

task. This is evidenced by the limited published reports in this area. Most studies have been 

limited to short-term data collection periods such as tournaments. In one such study, Roberts 

et al. investigated youth ice hockey tournament injuries in a sample consisting of 695 boys 
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and 112 girls (Roberts, Brust, & Leonard, 1999). The ice hockey players, aged eleven to 

nineteen years, were participating in five community-sponsored ice hockey tournaments in 

Minnesota during the 1993-94 winter hockey season. The authors report that body collision 

was involved in 65% of all injuries and, more specifically, 77% of all boys’ injuries deemed 

significant in this study. This would appear to be in agreement with Bernard et al., reporting 

that 75% of all observed Bantam-level injuries were caused by body checking (Bernard, 

Trudel, Marcotte, & Boileau, 1993). Tournaments typically result in higher injury rates 

compared to regular season play for a number of proposed reasons. First, a loss often leads to 

a team’s early elimination from the competition. Second, teams often play a much higher 

number of competitive sessions in a shorter time period; for example, it is not uncommon for 

a team to participate in as many as five games during a single weekend. In the Roberts et al. 

study, eleven penalties were associated with injuries, including six penalties for checking 

from behind. Checking from behind, under current USA Hockey regulations, results in 

immediate expulsion from the contest, and suspension from the ensuing team’s match.  

 Allowing body checking at young ages in ice hockey is not without controversy. 

Many believe body checking leads to a laissez-faire attitude toward body collisions and an 

increase in rule infractions (Parayre, 1989). Tator’s work in the area of catastrophic cervical 

spine injury agrees with this statement (Tator, Carson, & Edmonds, 1997), emphasizing a 

need for strict enforcement of the hit-from-behind rule and the necessity of continued 

education for coaches and players regarding the risk of head and neck injuries in ice hockey. 

Cerebral concussion, a form of mild TBI, occurred in each tournament that allowed body 

checking (Roberts, et al., 1999). The rate of mild TBI ranged from 10.7 to 23.1 per 1000 

player-hours in the tournaments observed by Roberts et al. This rate is markedly higher than 
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regular season rates previously reported. Sutherland et al., for example, recorded 0.09 

concussions per 1000 player-hours (Sutherland, 1976), while Brust et al. and Stuart et al. 

estimated 0.75 concussions per 1000 player-hours and no concussions during a season, 

respectively (Brust, et al., 1992; Stuart, et al., 1995). In contrast, as many as 10% of high 

school ice hockey players sustained a concussion during the regular season (Gerberich, et al., 

1987). Given the reported literature in this area, it is surprising that USA Hockey and Hockey 

Canada have not done more to educate players, parents, officials, and coaches on this topic.  

 A Canadian program labeled Fair Play was introduced to youth ice hockey in 

Quebec. Fair Play is designed to penalize unnecessary roughness by awarding a fair play 

point to teams that reduce the number and severity of their penalties. In one study, penalties 

issued to teams playing under the Fair Play program were compared to those teams not using 

the system (Marcotte & Simard, 1993). The authors reported 30% less major penalties and 

25% less game suspensions were issued to the Bantam-level Fair Play teams compared to 

their non-program counterparts. At the Peewee level, Fair Play teams averaged 1.3 major 

penalties per season compared to 6.3 major penalties for non-program teams. Further, among 

teams using the Fair Play system, 71% of them did not receive a single game suspension. 

This study highlights a number of key points as they relate to injury prevention. First, 

interventions specifically designed to reward teams’ proper behavior appear to result in 

decreases in illegal conduct and, specifically, severe misconduct more likely to result in 

injuring an opponent. Secondly, according to this study, it appears as though interventions 

such as Fair Play have a greater impact on younger players. This suggests that targeting 

younger players may be best suited by these interventions. However, it is unknown whether 

these behavioral modifications due to these interventions will carry forward into older years 
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(i.e. Bantam, Midget, Junior, etc). While understanding the nature of player behavior on the 

ice in terms of illegal conduct is a venture worthy of future research, it would be a premature 

tenet at this time. This dissertation was the first to objectively evaluate several aspects of 

youth ice hockey, and provide the theoretical basis for which future intervention programs 

may be designed in order to minimize the severity of head impacts. A more thorough 

description of head injury biomechanics begins following the discussion of neuroanatomy.  

 

Neuroanatomy 

 A basic understanding of the neuroanatomical structures is essential to providing a 

complete understanding of mild TBI. This section will discuss the main regions of the brain, 

their respective functions and infrastructures, as well as the manifestations that may appear as 

a result of mild TBI. Although this literature review attempts to demarcate these regions, it is 

important to note that the different regions of the brain work in tandem to achieve 

appropriate responses to different stimuli.  

Cerebrum 

 The cerebrum forms the largest portion of the brain, consisting of 2 hemispheres, 

which occupy the anterior and middle cranial fossae. It accounts for approximately 80 

percent of the mass of the brain and is responsible for higher mental functions such as 

memory and reason (Van De Graaff & Fox, 1999). The two cerebral hemispheres carry out 

different functions. The left hemisphere controls analytical and verbal skills such as reading, 

writing, and mathematics. Injuries to this cerebral hemisphere would elicit deficiencies in 

verbal memory. The right hemisphere controls spatial and artistic kinds of intelligence; right 

cerebral injuries would result in difficulties with visual and design memory. 
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 The cerebrum consists of two layers. The first layer is referred to as the cerebral 

cortex and is composed of gray matter approximately 2-4 mm in thickness. Beneath the 

cerebral cortex is the thick white matter of the cerebrum, which manifests as the second layer 

of the cerebrum. The thick white matter of the cerebrum consists of dendrites, myelinated 

axons, and associated neuroglia. These fibers form the billions of connections within the 

brain by which information is transmitted to the appropriate places in the form of electrical 

impulses. The key distinguishing characteristic of the cerebral cortex is the many folds and 

grooves referred to as convolutions. These convolutions effectively triple the area of the gray 

matter, which is composed primarily of cell bodies of neurons (Van De Graaff & Fox, 1999). 

The elevated folds are known as the cerebral gyri (singular, gyrus) and the depressed grooves 

are referred to as cerebral sulci (singular, sulcus). The cerebral gyri and sulci demarcate the 

different lobes of the cerebrum and, in many cases, house specific areas of the brain 

responsible for sensory and motor control. Each cerebral hemisphere contains five lobes; four 

of the lobes appear on the surface of the cerebrum and are named for the overlying cranial 

bones that protect them. The separate lobes and hemispheres exist due to the specificity of 

function. This specificity of function is important to note when performing a clinical 

assessment of mild TBI, as the evaluation should be specific to assess different brain 

functions. A mild (or more severe) TBI may cause temporary (or permanent) impairment of 

cerebral functions. Much of what is known about cerebral function, unfortunately, is a result 

of observing the dysfunctions following trauma to the brain.  

Frontal Lobes  

 The frontal lobes form the anterior portion of the cerebral hemispheres and are the 

largest of all the lobes. The frontal lobes function to initiate voluntary muscle impulses for 
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the movement of skeletal muscles, analyzing sensory experiences, and providing responses 

relating to personality. Secondary functions of the frontal lobes include the following: 

mediation of responses related to memory, emotions, reasons, judgment, planning, and verbal 

communication. This is evidenced by several studies that have used functional magnetic 

resonance imaging (fMRI) techniques to identify brain regions associated with working 

memory (McAllister, et al., 2001). Injuries to the frontal lobe are likely to elicit personality 

changes, changes in memory, confusion, and disorientation. As previously discussed, the 

lobes of the brain often work in tandem. Most of the studies involving fMRI techniques have 

been conducted in healthy controls and have found, with performance of working memory 

tasks, bilateral frontal and parietal activation (Smith & Jonides, 1998). This is further 

evidenced by results that illustrate a functional relationship between frontal eye fields and 

prefrontal and parietal regions of the brain (Calhoun, et al., 2001).  

Parietal Lobes 

 The parietal lobes are separated from the frontal lobes by the central sulcus. The 

postcentral gyrus can be found just posterior to the central sulcus. This gyrus is designated as 

a somatesthetic area because it responds to stimuli from cutaneous and muscular receptors 

throughout the body. In addition to providing somatesthetic stimuli, the parietal lobe 

functions in understanding speech and in articulating thoughts and emotions. The 

interpretation of shapes and textures of objects as they are handled is also a function of the 

parietal lobe. After a mild TBI, some patients may disclose preserved tactile sensations in the 

hand while, at the same time, they are unable to identify an object they are handling with the 

eyes closed (Tomberg & Desmedt, 1999). This phenomenon was found to be related to a 

lesion in the contralateral parietal cortex and is referred to as astereognosia (Caselli, 1991; 
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Mauguiere, Desmedt, & Courjon, 1983). Mild TBI affecting the parietal lobe would elicit 

difficulties in extended processing such as design and visual memory. In a 2001 study, a 

visual perception test was administered to subjects while undergoing fMRI. The researchers 

reported extended durations of parietal involvement during extended processing which was 

required in figural and visuospatial selection (Calhoun, et al., 2001). A previous fMRI study 

revealed that the superior parietal lobe was implicated in mental rotation (Tagaris, et al., 

1996). Mental rotation is the task of differentiating between whether an image is simply 

rotated or is a mirror reflection of the original.  

Temporal Lobes  

 The temporal lobe is located below the parietal lobe and the posterior portion of the 

frontal lobe, and is separated from them by the lateral sulcus. The temporal lobe functions to 

receive sensory neurons from the cochlea of the ear since it is in this lobe that the auditory 

centers are found. The temporal lobe also functions to interpret sensory experiences and 

stores memories of both auditory and visual events. Patients with mild TBI and 

postconcussive symptoms reveal, on positron emission tomography (PET) and single photon 

emission computerized tomography (SPECT) scans, a high incidence of temporal lobe injury 

(Umile, Sandel, Alavi, Terry, & Plotkin, 2002). Injuries to this area would result in visual 

memory deficiencies. Abnormal findings on PET and SPECT scans suggest that medial 

temporal lobe injuries seen in humans may be similar to neuropathologic evidence provided 

by animal studies following mild TBI (Umile, et al., 2002). In a rare case of refractory reflex 

sympathetic dystrophy, a complex regional pain syndrome, symptoms were resolved after the 

patient suffered a traumatic cerebral contusion in the left temporal lobe (Shibata, et al., 

1999). This case report suggests two things: functional changes within the central nervous 
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system (CNS) may occur following mild TBI, and the temporal lobe plays some role in 

nociceptive processing. 

Occipital Lobes  

 The last of the surface lobes, the occipital lobes form the posterior portion of the 

cerebrum. The lobes lie immediately superior to the cerebellum and are not distinctly 

separated from the temporal and parietal lobes. Although they are small, the principal 

function of the occipital lobes concerns vision. The integration of eye movement by directing 

and focusing the eye is one of the main functions of the occipital lobe. It is also responsible 

for visual association; that is, correlating visual images with previous visual experiences and 

other sensory stimuli. The occipital lobe is often injured with a direct blow to the posterior 

aspect of the head or by contact of the head on the ground following a fall.  

Insula  

 The insula is the deepest lobe of the cerebrum and is not visible on the surface; 

portions of the frontal, parietal, and temporal lobes cover it. Not much is known about the 

function of the insula except that it integrates other cerebral activities, and that it is thought to 

play a role in memory. The insula may be linked to areas located on the medial wall of the 

cerebral hemispheres when they are recruited to react to signals leading to self-controlled 

actions (Hulsmann, Erb, & Grodd, 2003). These actions include movement planning and 

preparation (Paus, 2001). 

Cerebellum 

 The cerebellum is the second largest structure of the brain. It occupies most of the 

posterior cranial fossa. The cerebellum, too, consists of two hemispheres; it also consists of a 

midline portion called the vermis. The principal function of the cerebellum is coordinating 
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skeletal muscle contractions by recruiting precise motor units within the muscles. It has also 

recently been suggested that it performs fundamental operations such as perception and 

cognition (Hulsmann, et al., 2003). Although the cerebellum is often referred to as the “little 

brain,” it plays a crucial role in our understanding of postural control and proprioceptive 

feedback. The cerebellum constantly initiates impulses to selective motor units for 

maintaining posture and muscle tone. This accurate integration of finely-tuned movements 

have been attributed to the cerebellum since Flourens first published his research experiments 

on the properties and functions of the nervous system on vertebrate animals in 1824 

(Hulsmann, et al., 2003). The cerebellum adjusts to incoming impulses from proprioceptors 

within muscles, tendons, and joints, and spatial sense organs, to refine learned movement 

patterns. Proprioceptors are sensory nerve endings that are sensitive to changes in length or 

tension of a muscle or tendon. The subconscious ability of the cerebellum to regulate and 

manage motion is evidenced by the muscle spindles’ projections that terminate exclusively in 

the cerebellum (Barnett & Harding, 1955).  

Trauma or diseases of the cerebellum frequently cause an impairment of skeletal 

muscle function. Movements often become jerky and uncoordinated. There is also a loss of 

equilibrium resulting in a disturbance of gait. The cerebellum has also been involved in 

motor-related functions such as feedback evaluation, planning, preparation, and response 

selection (Blakemore, Wolpert, & Frith, 1998; Gao, et al., 1996). Strong suggestions can be 

made on cerebellar involvement in tasks such as attention, perception, cognition, and 

consciousness, based on recent observations (Allen, Buxton, Wong, & Courchesne, 1997; 

Wolpert, Ghahramani, & Jordan, 1995). In fact, complementary analyses of fMRI data 

suggest the cerebellum may play a significant role in visual perceptual processing (Calhoun, 
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et al., 2001). There is evidence from other studies to substantiate the suggestion that the 

cerebellum, in addition to frontal eye-field regions, may be involved in primary visual areas 

(Corbetta, et al., 1998; Nitschke, 2000).  

Contrary to the cerebrum, damage in one half of the cerebellum affects the same side 

of the body. We would be likely to see decreases in reaction time in subjects who have 

sustained a mild TBI affecting the cerebellum. In addition to increased norepinephrine levels 

at the lesion site, the contralateral cerebellum also experienced increased levels of 

norepinephrine (Dunn-Meynell, Hassanain, & Levin, 1998). This suggests that the 

cerebellum would be affected regardless of the location in the brain of the traumatic insult. 

Injuries to the cerebellum may be better understood as being involved in diverse cognitive 

processes (Bloedel & Bracha, 1997).  

Reticular formation  

 The reticular formation is a network of nuclei and nerve fibers found in the brain 

stem. It functions as the reticular activation system (RAS) and serves to arouse the cerebrum. 

Portions of the reticular formation can be found in the spinal cord, pons, midbrain, and parts 

of the thalamus and hypothalamus. The principle function of the RAS is to keep the cerebrum 

in a state of alert consciousness and to monitor the sensory impulses perceived by the 

cerebrum. The RAS is extremely sensitive to changes in, and trauma to, the brain. The sleep 

response is thought to occur because of a decrease in the activity of the RAS. A blow to the 

head may cause damage to the RAS, resulting in unconsciousness. With respect to 

neurocognitive function, the RAS is responsible for mental processing speed.   

 Studies have investigated the sensitivity of the reticular formation in rats. For 

example, electrical and chemical stimulation of the medullary and pontine reticular formation 
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in decerebrate rats induced muscle atonia (Devor & Zalkind, 2001; Hajnik, Lai, & Siegel, 

2000; Taguchi, Kubin, & Pack, 1992). Further supporting the role of the reticular formation 

in regard to unconsciousness are the results of a study published in 2000 in which functional 

brain imaging of 11 volunteer subjects under general anaesthesia revealed suppression of 

reticular formation activity (Alkire, Haier, & Fallon, 2000).  

Protective Mechanisms of the Brain 

 Due to its intricate design, function, and significance, the brain has a number of 

structures that help protect it from external trauma. The eight cranial bones enclose and 

protect the brain, the meninges are membranous connective tissue coverings that surround 

the brain and spinal cord, and the cerebrospinal fluid (CSF) provides a buoyant cushion 

around the brain and its structures. The eight cranial bones consist of the frontal, two 

parietals, two temporals, and the occipital, sphenoid, and ethmoid bones. The frontal bone 

forms the anterior roof of the cranium—the forehead—and the roof of the nasal cavity; it also 

contains the frontal sinuses, which are connected to the nasal cavity. These sinuses act with 

others to lessen the weight of the skull. The spinal cord attaches to the brainstem through the 

foramen magnum located at the base of the skull. 

 In addition to the eight cranial bones, three membranous connective tissue coverings 

called the meninges also protect the brain. From outermost to innermost, they are the dura 

mater, the arachnoid mater, and the pia mater. The separation of the three meninges allow for 

spaces between the meningeal layers. The dura mater is the outermost and toughest of the 

membranes covering the CNS. Of special interest is that the attachment of the dura mater to 

the bones in the floor of the cranial fossae is firmer than its other points of attachment. Thus, 

a blow to the head at other points of attachment can detach the dura mater without fracturing 
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the bones; whereas, a basal fracture usually tears the dura mater and results in leakage of 

CSF into the soft tissues of the neck, nose, ear, and nasopharynx. The arachnoid mater is a 

delicate, transparent membrane and, as its name suggests, is composed of a web-like tissue. 

Although the pia mater is very thin, it is thicker than the arachnoid. The pia is the innermost 

of the three layers of meninges and is a highly vascularized, loose connective tissue 

membrane that adheres closely to the surface of the brain.   

 The CSF is also a protective barrier, assisting the meningeal layers in sheltering the 

brain from mechanical injury. This is accomplished since the CSF acts as a buoy for the 

CNS. The CSF reduces the damaging effects of brain trauma by spreading the force over a 

larger area. The CSF reduces the effective mass of the brain by 97%. Although up to 800 ml 

of CSF are produced daily, only 140-200 ml is present at any time (Van De Graaff & Fox, 

1999). Leakage of the CSF at the level of the spine or into the middle ear in acute settings 

should trigger appropriate emergency transport to a medical facility. It has been reported that 

headaches caused by decreases in intracranial pressure are often due to spontaneous leaks of 

CSF (Mokri, 2003). Furthermore, a case study was presented whereby computed tomography 

revealed leakage of CSF in the epidural space, causing postural headaches in a 33-year-old 

female (Goadsby & Jager).  

 In addition to the skeletal protection afforded by the cranial bones, the brain’s 

autoregulatory system also serves to provide some form of internal protection. Existing data 

demonstrate an increase in norepinephrine release following cerebral contusion. These data 

suggest that this is protective and may act to stabilize the blood-brain barrier in areas 

surrounding the injury site (Dunn-Meynell, et al., 1998). This protective mechanism does not 

come without a price. The Dunn-Meynell et al. study also revealed a blockade of 
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norepinephrine function during the first few hours after TBI, suggesting that a return to play 

in this time period may predispose the brain to further insult. Furthermore, animal studies 

suggest that these alterations and elevations in norepinephrine and other hormones can be 

prolonged and may, in some cases, impair catecholaminergic function following brain trauma 

(Prasad, Tzigaret, Smith, Soares, & McIntosh, 1993).  

 

Biomechanics of traumatic brain injury 

 The biomechanics of TBI remains an area elusive to many researchers. Investigators 

in this area are faced with a number of issues as it pertains to understanding head injury 

impact mechanics. Current ethics standards have made the use of primate and other 

mammalian animal models very difficult to pursue; animal basic research in this area has 

been limited to the rat and small mammals in recent years. Second, the use of post-mortem 

cadavers does not allow researchers the ability to study impact mechanics in the context of 

everyday activities, including sports participation and work. The lack of muscle tonus and 

decreased volumes of CSF further make it difficult to replicate an in-vivo sample in the 

context of this area of study. Given these factors, and the evolutionary nature of head impact 

mechanics, it is worthwhile to review the historical literature in this area. The review of the 

literature continues to discuss the notion of linear and rotational acceleration, how impact 

location may play a role in injury severity, and concludes with a discussion of contemporary 

head impact mechanics research. 

Historical biomechanics research 

 A number of landmark studies have precipitated our understanding of head impact 

biomechanics. These studies were initiated in the 1940s by Denny-Brown and his colleagues. 
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The general theme for Denny-Brown and Russell revolved around TBI biomechanics 

(Denny-Brown & Russell, 1941). While they used primarily cats—monkeys and dogs were 

also used—the innovative advance in their line of research was twofold: they used a 

pendulum hammer to impart the head impact and suspended their subjects such that the head 

was free to move following an experimental impact. Until that time, impacts had been 

imparted on animals whose heads were fixed, disregarding entirely the actual dynamics of 

impact situations such as those occurring in motor vehicle accidents or head impacts 

sustained on the playing field. Unfortunately, when using animals it is often difficult to 

assess subtle post-impact cognitive awareness. While loss of consciousness and death are 

obvious markers in animal subjects, the ability to objectively measure mental status in 

animals following a given head impact is difficult. Further compounding this issue, most 

animal studies employed light anesthesia in their animals using substances such as 

pentobarbital. Pentobarbital is approved for human use to treat seizures and as a preoperative 

sedative. It functions by depressing the CNS at all levels including the sensory cortex, motor 

activity, and altered cerebellar function (Deglin & Vallerand, 2009). Pentobarbital has also 

been used to reduce intracranial pressure and lower cerebral oxygen demands in TBI patients 

(San Diego Reference Library, 2008) and is the primary ingredient in both veterinary and 

human euthanasia compounds. Knowing this, it is easy to understand how the use of 

pentobarbital and other anesthetics masked any cognitive decline that could be observed in 

the animal model. Complementing this original work and venturing to eliminate the need for 

the animal model, physical models of the human skull and brain were constructed, and 

several kinds of impacts were imparted to these models (Holbourn, 1943, 1945). The skull 

was made of wax while the brain within it was composed of a gelatinous structure. While 
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most of the credit for angular acceleration has been credited to Ommaya and Gennarelli (see 

later section), it was Holbourn who initially described that rotational motion was likely 

needed to produce cortical lesions and concussion.  

 One of the greatest advances in TBI mechanics occurred shortly after the work by 

Denny-Brown and Holbourn. Pudenz and Shelden (1946) removed the top half of monkey 

skulls and replaced them with a transparent plastic dome (Pudenz & Shelden, 1946). Using 

high-speed cinephotography, the researchers were able to capture the movement of the brain 

following a head impact. Supporting Holbourn’s basic tenet, Pudenz and Shelden 

documented the brain noticeably lags behind the skull upon rotational head movement due to 

inertia. Almost thirty years later, Ommaya and Gennarelli used animal models and confirmed 

Holbourn’s basic theory (Ommaya & Gennarelli, 1974). In their study, they imparted several 

rotational impacts to squirrel monkeys; the monkeys suffered a concussion as a result. An 

important addition to the literature occurred as a result of the studies published by Ommaya 

and Gennarelli. They observed that a direct impact to the head was not a necessary 

requirement to result in head trauma; but, rather, inertial non-impact loading resulting from 

an impulsive force may provide sufficient force to induce a mild TBI following a tackle or 

with more common whiplash mechanisms associated with car accidents (Letcher, Corrao, & 

Ommaya, 1973; Ommaya, Corrao, & Letcher, 1973; Ommaya & Gennarelli, 1974; Ommaya, 

Hirsch, Flamm, & Mahone, 1966; Ommaya, Rockoff, & Baldwin, 1964). 

Linear and rotational acceleration 

 Denny-Brown and Russell were among the first to describe sudden changes in the 

velocity of the head as an acceleration-deceleration concussion (Denny-Brown & Russell, 

1941). While earlier definitions of concussion did not formally exist until the Congress of 
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Neurological Surgeons published their definition (Committee on Head Injury Nomenclature 

of the Congress of Neurological Surgeons, 1966), Denny-Brown and Russell struggled to 

clearly delineate the criteria they used to identify concussion. Further, the use of 

pentobarbital in their animal subjects made level of consciousness difficult to assess. A 

strength of their work, however, was that they emphasized the importance of head 

movements in the context of mild TBI and, more importantly, how these head movements 

may or may not elicit concussion. Holbourn used these findings to justify his theory that 

angular acceleration of the head propagated movements of the brain within the skull, 

generating shear strains most prominent at the surface of the brain (Holbourn, 1945). This 

usually results in the transient deficits clinicians observe following mild TBI, as opposed to 

deeper brainstem lesions resulting in more severe forms of TBI. While animals subjected to 

linear accelerations typically showed no loss of consciousness, many of them did sustain 

cortical contusions and subdural hematomae. These results all connect to an important role 

for rotational movements eliciting an episode of mild TBI. Based on their definition of 

concussion, Ommaya and Gennarelli found that no observable injuries were produced when 

isolated linear impacts were imparted to twelve monkeys tested (1974). This was contrasted 

by thirteen monkeys who experienced a loss of consciousness for periods ranging from 2 to 

12 minutes when impacted with their device while in the rotational mode. One of these 

thirteen monkeys never awoke and two others died within one hour of the impact.  

 In the context of mild TBI, the term impact typically denotes an injurious blow that 

makes direct contact with the head. An impulse, on the other hand, refers to a force that sets 

the head in motion without directly striking it. Examples of impacts range from helmet-to-

helmet collisions, striking an opponent’s head with a stick, or being struck in the head by a 
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projectile used in the sport (e.g. soccer ball, hockey puck, etc). Impulsive forces are most 

commonly caused by tackling or body checking, and are the result of abruptly stopping an 

opponent’s body from traveling in the direction in which it was headed. To relate this notion 

in layperson’s terms, it is similar to the effect experienced by passengers when a car quickly 

accelerates or stops. Impacts and impulses are traditionally linear (translational) or angular 

(rotational) in nature. In real-world activities, there is usually some combination of both 

linear and angular accelerations associated with impacts and impulses. The question that still 

remains elusive to researchers and a matter of contention, for that matter, is “how do the 

relative contributions of angular and linear accelerations induce mild TBI?” Many factors are 

thought to play a role in the body’s ability to dissipate head impact forces including 

individual differences in CSF levels and function, vulnerability to brain tissue injury, relative 

musculoskeletal strengths and weaknesses, and the anticipation of an oncoming impact or 

impulse.   

While the literature review has discussed the phenomena of impacts and impulses, 

and linear and angular accelerations, there is a need to describe the reasons why not every 

impact or impulse results in an injurious episode. If the head does not move following a 

collision, the kinetic energy transferred by the blow should theoretically be transmitted 

elsewhere leaving the athlete otherwise unharmed. It was this principle that did not allow 

researchers prior to Denny-Brown and Russell to more fully understand the phenomenon of 

mild TBI (Denny-Brown & Russell, 1941). Secondly, CSF protects the brain within the 

cranium. As a result, some impacts or impulses do not exceed a threshold needed to drive the 

brain to impact the inside walls of the cranium and cause transient lesions and subsequent 

mild TBI. When an athlete experiences a rotational mechanism, it is thought that rotation of 
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the cerebrum about the brainstem produces shearing and tensile strains. Since activity in the 

midbrain and upper brainstem are responsible for alertness and responsiveness, rotational 

mechanisms of TBI are believed to more likely result in loss of consciousness than 

predominantly linear types of impacts or impulses. Regardless of the type, attribute, or 

severity of a particular impact or impulse, the end result is as follows: the effective mass of 

the head has become too large for the body to overcome the acceleration or deceleration 

forces that have sent it in motion. 

Impact locations 

 While the history of head impact biomechanics has been discussed, and attempts to 

parse out the literature as it relates to linear and rotational acceleration mechanisms of injury, 

a discussion of the effect of impact locations on mild TBI remains. Surprisingly, very little 

data are available to this effect. Hodgson et al. studied reversible cerebral concussion in the 

context of head impact location (Hodgson, Thomas, & Khalil, 1983). Using an air-propelled 

striker, impacts were imparted to the frontal (front), temporoparietal (side), occipital (rear), 

and cranial (top) aspects of rigid protective caps worn by six anesthetized female primates 

(macca speciosa). Following each impact, the monkey’s head was allowed to freely move as 

much as 8 cm in any one direction before encountering a Styrofoam cushion. Following 

analysis of high-speed cinematography (4000 frames per second), one observational finding 

of the study was that all impacts resulted in linear and angular movements. The air-propelled 

striker delivered its force such that the impacts did not coincide with the head center of 

gravity (COG) and, as a result, a finding to the contrary would not have been expected. 

Another reason was that no neck force constraints were present in the monkeys due to partial 

anesthesia. An interesting finding reported by Hodgson et al. was that impacts to the 
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temporoparietal region (side) produced periods of unconsciousness up to three times longer 

than loss of consciousness resulting from impacts imparted to the other areas of the head. It is 

difficult to explain this phenomenon since there are no obvious anatomic reasons in the 

monkey why this area should be more sensitive than others. Further, since all impacts were 

imparted at the same level above the head COG, it is plausible that the oval shape of the 

animal head produces lower mechanical impedance to higher accelerations for side impacts. 

Hodgson et al. imparted four reversible concussive impacts to each animal within a two-

month period. Evidence of neurological deficit or neurogenic dysfunction was not observed 

in any of the animals. It is unclear based on their report how they purported to determine the 

extent of neurological deficit.  

 It is difficult to compare more contemporary literature to Hodgson et al. for two 

primary reasons: there was no follow-up work to this research question by the Hodgson 

group and modernized research in this area does not provide substantive data for which 

comparisons would be deemed meaningful. One such study is that of Guskiewicz et al. 

(Guskiewicz, et al., 2007). This paper represented the third of three companion papers 

reporting the results of an ongoing study on injury biomechanics in American football 

players. This study employed a real-time helmet accelerometer data collection methodology 

in eighty-eight Division I collegiate football players across three playing seasons. This 

sample sustained in excess of 104,000 total head impacts resulting in a measurable linear 

acceleration exceeding 10 g. Of all the impacts collected, thirteen resulted in a clinical 

diagnosis of mild TBI. The data suggest a higher propensity of top-of-the-head impacts and 

an increased risk of concussion for impacts to this region. Six of thirteen mild TBI occurred 

from impacts to the top of the head; this is in contrast to four, two, and one concussions 
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occurring to the front, right, and back, respectively. The data suggest that top-of-helmet 

impacts may result in larger postural stability deficits following mild TBI. It was speculated 

that top-of-helmet impacts might result in a coup-contrecoup mechanism occurring in a 

superior-inferior direction causing the cerebellum to impact the base of the skull and recoil 

superiorly into the cerebellar tentorium. Interestingly, the data also indicate that top-of-

helmet impacts typically result in relatively lower rotational acceleration values compared to 

injuries following impacts to the other areas of the head. This information brings into 

question the notion that rotational acceleration is the leading precursor to injury and is 

suggestive that type of acceleration, in combination with impact location, may be a better 

determinant for both onset and severity of injury. 

Theoretical thresholds and accelerometer-based research studies 

 Mild TBI research has provided clinicians with useful information as it pertains to 

individual pieces of the proverbial concussion puzzle including, but not limited to, 

symptomatology, postural stability, and cognitive function. While these studies have 

provided us with important information and have changed the way many medical 

professionals manage injuries, they do very little to help us understand what causes a 

concussion and how we might best be able to minimize the risk of injury entirely. A number 

of contemporary studies have investigated impact biomechanics and have sought to shed 

light on proposed injury thresholds for mild TBI. In the Hodgson et al. study previously 

discussed, only short-duration impacts (1 to 2 ms) were imparted to the six monkeys 

(Hodgson, et al., 1983). They report, however, that the linear accelerations of the impacts 

causing concussion ranged from 2000 to 5000 g. A few years earlier, Ommaya and 

Gennarelli reported tangential accelerations ranging from 108,000 to 371,000 rad/s2 
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(Ommaya & Gennarelli, 1974). These are significantly higher than those values reported in 

human mild TBI (reported later in this section) and may be explained by a number of factors. 

First, monkey skulls and musculoskeletal anthropometrics such as bone density, skull 

thickness, and musculoskeletal strength, are significantly superior to that of humans. Second, 

the ability of the researchers to accurately measure linear and rotational accelerations more 

than 25 years ago were quite limited compared to today’s standards. Lastly, definitions of 

concussion employed for research purposes prior to 1997 (American Academy of Neurology, 

1997) almost all included some level of loss of consciousness, suggesting they were 

imparting more serious and severe impacts to the monkey subjects in order to render them 

“concussed.” Unterharnscheidt and Higgens report from their study that rotational 

accelerations in excess of 200 rad/s2 produced cerebrovascular injury to most subjects in their 

sample (Unterharnscheidt & Higgens, 1969).  

 More recently, Hugenholtz and Richard were among the first in the literature to 

propose a mild TBI injury threshold in terms of linear acceleration g-forces (Hugenholtz & 

Richard, 1982). In their report, they proposed that a mild TBI would likely result from a blow 

to the head exceeding 80 to 90 g, and that these blows be sustained for greater than 4 ms. 

Over the past six years, the National Football League (NFL) has recently published a 

sequence of studies in Neurosurgery describing many facets of concussion and mild TBI in 

their league. The initial study from these efforts pertained to the laboratory reconstruction of 

concussive injuries captured on video (Pellman, Viano, Tucker, Casson, & Waeckerle, 2003); 

they represented the most sophisticated method of analyzing concussive injuries in 

professional football players at the time. The studies are not without limitations. For one, the 

laboratory retrospective reenactments were based on game video footage and important 
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mathematical derivations were extrapolated from relatively low-speed video capture 

frequencies. Second, only 31 cases out of 182 reviewed were reconstructed in the laboratory. 

Conclusions were made based on this very small and selective sample of cases. Based on 

these data, Pellman et al. suggest that mild TBI in helmeted impacts are likely to occur 

between 70 and 75 g. This contrasts with data we have previously published where only 7 of 

1858 (less than 0.38%) head impacts exceeding 80 g resulted in a diagnosed case of mild TBI 

(Mihalik, et al., 2007). One reason for the discrepancy may be explained by the fact that 

Pellman et al. studied professional football players while we investigated this phenomenon in 

collegiate football players. Given similarities in player size, these differences are very 

unlikely to be explained by the different samples.  

 Zhang et al. shortly thereafter proposed injury threshold values, employing the use of 

the Wayne State University Brain Injury Model (Zhang, Yang, & King, 2004). This model 

replicates a 50th percentile adult male head and includes anatomical structures including the 

dura, falx cerebri, tentorium and falx cerebelli, the CSF, cerebrum, cerebellum, and 

brainstem. Prior to analyses, the model was prevalidated against cadaveric intracranial and 

ventricular pressure data previously published (Nahum, Smith, & Ward, 1977; Trosseille, 

Tarriere, Lavaste, Guillon, & Domont, 1992). Twenty-four head-to-head impacts sustained in 

professional football were duplicated using their finite element head model to predict injury 

thresholds based on brain tissue responses. They reported that resultant linear accelerations 

of the head COG of 66 g, 82 g, and 106 g, were associated with a 25%, 50%, and 80% 

probability of mild TBI, respectively. These values are similar to those proposed by Ono et 

al., who suggested that impacts of 90 g sustained for 9 ms or longer would result in mild TBI 

(Ono, Kikuchi, Nakamura, Kobayashi, & Nakamura, 1980). The Wayne State Tolerance 
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Curve, published in 1964 by Gurdjian et al., deemed an 80 g impact noninjurious and an 

impact greater than 90 g could produce a mild TBI (Gurdjian, Lissner, Hodgson, & Patrick, 

1964). Zhang et al. also propose rotational accelerations more in line with those we have 

collected in our own ongoing work. They associate rotational accelerations of 4600 rad/s2, 

5900 rad/s2, and 7900 rad/s2 with a 25%, 50%, and 80% probability of sustaining a mild TBI. 

While the University of North Carolina at Chapel Hill data suggest that there is far from a 

50% probability of sustaining a mild TBI with an impact exceeding 82 g or 5900 rad/s2, it is 

important to note that theoretical thresholds are derived primarily from animal models and 

the direct relation of these theoretical thresholds of injury to the human model remains an 

area of continued exploration.  

 Real-time accelerometer data collection is a novel tool recently made available to 

researchers attempting to better understand the biomechanics of mild TBI. Preliminary data 

capture techniques were limited in design. For example, Naunheim et al. attempted to study 

the linear accelerations sustained by high school student-athletes; specifically, an ice hockey 

defenseman, football offensive lineman, football defensive lineman, and a soccer player. A 

triaxial accelerometer was inserted within a football and ice hockey helmet and linear 

acceleration values were recorded during actual play. The data obtained from the soccer 

player are meaningless to interpret for two main reasons. First, since there was no method of 

affixing the accelerometer to the player’s head, the soccer player wore an instrumented 

football helmet. Secondly, game data were not captured; instead, the soccer player was asked 

to head 23 balls kicked to him or her at a standardized velocity. The mean linear acceleration 

measured in the football and ice hockey players were 29.2 g and 35.0 g, respectively. The 

football-related data are higher than what we have observed in our collegiate football sample 
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(Mihalik, et al., 2007). Further, our preliminary data in youth ice hockey players suggest 

mean linear accelerations typically do not exceed 19 g (Mihalik, Guskiewicz, Jeffries, 

Greenwald, & Marshall, 2008). While Naunheim’s study represented an important advance 

toward real-time data collection, they were limited by a very small sample and did not 

transform the data to render it to be a normal distribution; this tends to overestimate the 

actual linear acceleration values measured.  

 Duma et al. were the first to employ acceleration-measuring technology in helmets 

for large numbers of athletes during normal practice and game situations (Duma, et al., 

2005). This technology, the Head Impact Telemetry (HIT) System (Simbex; Lebanon, NH) 

will be described in more detail later. Duma et al. reported the magnitude of head impacts to 

be 32 ± 25 g. This contrasts the range of 20 to 23 g in a similar sample of Division I 

collegiate football players we would later record and report (Mihalik, et al., 2007). A number 

of explanations exist to account for these differences. Linear acceleration is a highly skewed 

measure, with the majority of all head impacts yielding low linear acceleration outcomes. 

Duma et al. calculated the mean and standard deviation of their impacts without first 

controlling for the highly skewed distribution of their data. Secondly, they alternated eight 

accelerometer units among their sample, selectively targeting players throughout the course 

of the season. Our study measured all head impacts sustained by each player in every practice 

and game throughout the season and alternated between players only to replace an individual 

who no longer remained in our study due to season-ending musculoskeletal injuries.  

 Our work continued in this area, attempting to better understand the effect of 

sustaining head impacts in excess of previously published injury thresholds. In one study, 

McCaffrey et al. studied how football players performed on clinical measures used to 
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evaluate and diagnose concussion following a game or practice session in which they 

sustained an impact exceeding 90 g (McCaffrey, et al., 2007). Testing was completed within 

16 to 24 hours following the end of the given session. Athletes were tested only in the 

absence of a concussion diagnosis. Her results found that in a convenience sample of 

collegiate football players, simply sustaining an impact in excess of 90 g does not result in a 

clinically observable case of mild TBI.  

 Others have joined in the effort of implementing the HIT System in the realm of high 

school and collegiate football. It was not until recently, however, that more extensive study 

of youth ice hockey started. We have been studying head impact biomechanics in Bantam-

aged youth ice hockey players for two complete hockey seasons. Preliminary data in this 

sample suggest that 13- and 14-year-old ice hockey players sustain head impacts nearing the 

magnitude of those sustained by collegiate football players (Mihalik, Guskiewicz, et al., 

2008). While research continues in this area, it will be important for researchers to use this 

novel instrumentation to not only better appreciate the nature of head impacts sustained by 

athletes, but to understand how players can better protect themselves and their opponents 

from sustaining high-magnitude impacts, hopefully resulting in lower incidences of mild TBI 

in amateur, collegiate, and professional sports, alike. 

The role of neck musculature, and anticipation, on head injury 

 In reviewing the literature, there remains very little known about the types of forces 

that cause mild TBI and, perhaps alarmingly, very few suggested methods to reduce head 

impact forces. Cantu suggests there are five methods that can result in a reduction of mild 

TBI: changes in rules and coaching technique, improvements in conditioning and equipment, 

and increasing medical supervision (Cantu, 1996). While the brain is not thought to be able 
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to condition itself to accept repeated blows, it is anecdotally believed the neck can be 

strengthened and the risk of mild TBI reduced. 

 The basic tenet of the neck muscle theory for reducing brain injury is that an athlete 

who anticipates an oncoming collision will be better able to control head movement by 

contracting (i.e. tensing) their cervical musculature. Using a Newtonian approach, 

acceleration is the result of force divided by mass. When the cervical musculature is 

contracted, it is thought to significantly increase the effective mass of the head-neck-trunk 

segment, resulting in a lower acceleration of the head. When an impact is unanticipated, and 

the cervical musculature is not tensed and prepared for a collision, the effective mass is 

reduced to that of the head. Given an equal force from a body collision, the head would 

experience a substantially greater acceleration and, therefore, more likely to sustain an injury. 

In theory, this seems rather intuitive; however, research has been ambiguous in this regard 

partly due to a general lack of research in this area. Studies in this area have focused 

primarily on a soccer-heading task. 

 In one study, Tierney et al. investigated the gender differences in head-neck dynamic 

stabilization during head acceleration (Tierney, et al., 2005). These perturbations were 

delivered in a known and unknown scenario, and in directions of forced extension and forced 

flexion. Their results suggest an increase in forced-flexion (males and females) and forced-

extension (males) angular acceleration, as well as forced-flexion and forced-extension 

angular displacement in both males and females when force application was unknown (i.e. 

unanticipated). Similar trends were observed for electromyographic activity of the 

sternocleidomastoid and trapezius muscles. A number of limitations exist with this study that 

make it difficult to relate to our topic. First, a college-aged sample was studied in the Tierney 
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et al. report. Second, subjects were seated and a 50 N force was applied to a pulley system 

attached at one end to the subject’s forehead.  

 Another study tested the effects of a neck strengthening resistance program on head-

neck dynamic stabilization in male and female collegiate soccer players (Mansell, Tierney, 

Sitler, Swanik, & Stearne, 2005). This study measured electromyographical data of the 

sternocleidomastoid and upper trapezius muscles. Anticipation of an impact (known vs. 

unknown) did not significantly affect upper trapezius muscle activity. While this would 

appear to counter our speculation, this same study demonstrated observable increases in 

forced-extension head-neck segment kinematic data (acceleration and displacement) when 

the force application was unknown compared to when it was anticipated. Similar findings 

were observed for forced-flexion head-neck segment kinematic data. This would suggest that 

while muscle activity levels appear equal, not anticipating a heading task results in greater 

kinematic movement (displacement and acceleration). Due to differences between the two 

samples, it is difficult to draw relationships to this current study. While this work provides 

interesting data, it relates to head-neck stabilization through cervical muscle activation, as 

actual strength measures were not recorded.  

 There is still strong anecdotal support for the role neck musculature may play in 

reducing the risk of mild TBI that is worthy of investigation in a young, at-risk sample. The 

question remains: why do humans sustain mild TBI at relatively low loads and other animals 

(i.e. woodpeckers, rams, buffalo, etc) appear to be unaffected by repetitive high-magnitude 

loading? The woodpecker, for example, decelerates at a rate of approximately 1000 g each 

time its beak strikes the tree (May, Fuster, Haber, & Hirschman, 1979). It is believed the 

powerful muscles of the head and neck act not only to control the rapid head movement of 
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the woodpecker, but also serve to concurrently absorb the energy generated by the collision 

of their bills with the wood (May, Fuster, Newman, & Hirschman, 1976). Further 

investigation into this area reveals the woodpecker typically strikes the tree with its bill in a 

linear fashion. Ommaya and Genarelli report that concussion almost always occurred 

following angular acceleration, but very few of their primate subjects experienced concussion 

following a linear mechanism (Ommaya & Gennarelli, 1974). 

 

Player Behaviors 

 While the purpose of this study is not to understand coaches’ and players’ aggressive 

behavior, it is difficult to ignore this aspect of ice hockey; and a brief discussion of this is 

warranted in the context of the current literature review. Though sportsmanlike conduct is 

promoted extensively by USA Hockey and Hockey Canada, the culture of the sport among 

its participants often predicates a mentality among players to ignore injury, play recklessly, 

and encourages unsportsmanlike conduct such as fighting and illegal checking. In the United 

States, a study of Peewee-level players reported that fighting broke out in approximately 17 

of 52 games observed; and players considered fighting a natural consequence of the game 

and experienced a certain resignation about fighting (Gerberich, et al., 1987). Another 

interesting finding reported by Brust et al. is that while 100% of coaches felt sportsmanship 

was “real important,” only 59% of players shared this attitude (Brust, et al., 1992). Parents 

and coaches, in this sample, viewed the enforcement of rules as being the most important 

factor in reducing injuries.  

 



 47 

Methodological considerations 

Subject pool 

 This dissertation includes Bantam- and Midget-aged ice hockey players. Players in 

these age levels are typically 13-14 and 15-16 years of age, respectively. Previous work has 

established anthropometric and biomechanical force profiles for each player in a sample of 

youth ice hockey players (Bernard, et al., 1993). The height and mass of Bantam players 

differed by as much as 41 cm (16.14 inches) and 48 kg (105.6 pounds), respectively. Further, 

when the authors simulated body checking between the smallest and largest players, they 

observed a 357% difference in the force of impact.  

 The Canadian Academy of Sports Medicine notes that serious injury in ice hockey 

begins to appear in the Peewee level, and continues to escalate in Bantam-aged players. They 

further assert body checking should not be allowed because of the differences in body size 

between players (Sullivan, 1992). In a study of children’s ice hockey injuries (Brust, et al., 

1992), more than half of the injuries occurred at the Bantam level (54%) compared to 

younger players in Peewee (27%) or Squirt (19%). They posit the reason for this trend to be a 

difference of as much as 53 kg (116.6 pounds) and 55 cm (21.65 inches) between players on 

Bantam teams in this study. The University of North Carolina at Chapel Hill youth hockey 

athletes in this study of the Bantam age level had observed differences within Bantam-aged 

players to be as high as 44.18 kg (97.20 pounds) and 35.56 cm (14 inches).  

Head Impact Telemetry (HIT) System 

 This study used HIT System technology (Crisco, Chu, & Greenwald, 2004) 

incorporated within the Sideline Response System (Riddell; Elyria, OH). A major component 

of the HIT System is the installation of six single-axis accelerometers that are custom fitted 
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directly into the foam component of the ice hockey helmet (see Methods section and Figure 

3.1). These accelerometers are positioned tangentially to the head in Reebok RBK 6K/8K 

(Reebok-CCM Hockey, Inc.; St-Laurent, QC, Canada) and Easton Stealth S9 (Easton Sports, 

Inc.; Van Nuys, CA) helmets. In order for head acceleration data to be recorded, the 

acceleration of any individual accelerometer must exceed a desired threshold; this threshold 

is set at 10 g for this study. Precedence for this cutoff threshold has been established from 

previous work (Guskiewicz, et al., 2007; McCaffrey, et al., 2007; Mihalik, et al., 2007; 

Mihalik, Guskiewicz, et al., 2008). A question often raised is whether the HIT System 

measures head acceleration or helmet acceleration. The HIT System has been laboratory 

validated at multiple test facilities against Hybrid III test dummies, which are considered to 

be the gold standard in impact biomechanics testing. In all cases, the mean difference in 

linear acceleration measurements were within 8%, and as low as 2%, of Hybrid III 

measurements. In short, the HIT System measures head acceleration and not helmet 

acceleration (Manoogian, McNeely, Duma, Brolinson, & Greenwald, 2006). Further, data 

collected may be used to compute standard measures of head acceleration such as linear and 

rotational accelerations, Head Injury Criterion, Gadd Severity Index, and the Head Impact 

Technology severity profile (HITsp). The telemetry system is capable of transmitting 

accelerometer data from as many as 100 players over a distance well in excess of the length 

of a standard international ice surface. In addition, information from 100 separate head 

impacts can be stored in non-volatile memory built into the accelerometer device (i.e. resides 

in the helmet proper) in the event communication between the helmet and sideline controller 

is temporarily unavailable. This system has been successfully employed in the football 

studies (Brolinson, et al., 2006; Duma, et al., 2005; Guskiewicz, et al., 2007; McCaffrey, et 
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al., 2007; Mihalik, et al., 2007; Schnebel, Gwin, Anderson, & Gatlin, 2007) and has recently 

been employed in youth ice hockey (Mihalik, Guskiewicz, et al., 2008). 

 Linear acceleration and rotational acceleration both represent common measures used 

in the field of head injury biomechanics. Unfortunately, limited injury data has supported 

linear or rotational acceleration as the gold standard. That is, their respective sensitivity and 

specificity to diagnosing concussion have been questioned in the literature as a result of 

previous work performed at The University of North Carolina at Chapel Hill (Guskiewicz, et 

al., 2007; McCaffrey, et al., 2007; Mihalik, et al., 2007). These latter studies have suggested 

that variables such as impact location and impact duration may play an equally important role 

in identifying injuries among athletes. Greenwald et al. (2008), in more recent work, sought 

to identify a composite variable to do just that. Using collapsed data across a number of 

institutions that have implemented the HIT System, they performed principal component 

analyses on 289916 head impacts collected from 449 athletes. They report that all 

biomechanical measures (linear acceleration, rotational acceleration, and Head Injury 

Criterion) were more predictive of concussion than simply guessing. When they confine the 

data to include only the top 1% and 2% of all impacts (of which 82% of all their injuries 

were accounted for in this subset), only a principal component score containing linear 

acceleration, rotational acceleration, and impact duration, weighted by impact location 

(termed wPCS) was found to be more predictive of injury than the other classical measures 

of head impact severity alone. However, with limited numbers of injuries it is impossible to 

ascertain fully its superiority, the wPCS appears to stand out as a novel measure in this area 

of research. In the commercial version of the HIT System, called the Sideline Response 
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System (Riddell; Elyria, OH), wPCS is referred to as the Head Impact Technology severity 

profile (HITsp). 

 Ideally, we would like to instrument both the striking and struck players with an 

instrumented helmet. This poses a limitation to our study and is the direct result of both 

funding and geographical issues. However, given the number of collisions we anticipate, we 

are confident that we will observe a high number of both striking collisions and struck 

collisions for the players in our sample.  

Carolina Hockey Evaluation of Children’s Checking (CHECC) List 

 The CHECC List represents the first attempt by researchers to develop a video 

analysis-grading rubric designed to specifically evaluate a player’s technique while 

delivering or sustaining a body collision. The objective of the CHECC List is to provide 

amateur coaches and parents an easy way, without the need for expensive motion capture 

equipment, to break down a body collision using a simple video feed from a standard video 

camera. By doing so, it is believed coaches will be able to use this information to modify an 

individual’s ability to more safely minimize head impact forces during a body collision.  



 

 

CHAPTER III 

METHODOLOGY 

 

Study Design 

 This study employed a prospective quantitative research design in order to address the 

study’s hypothesis-driven specific aims. Data collection occurred through the end of the 

2008-09 ice hockey season, with data reduction commencing immediately and continuing 

through May 2009. Data pertaining to this dissertation were also collected over the course of 

the 2007-08 season. Testing and data collection occurred at a number of local, state, national, 

and international venues as the ice hockey teams traveled abroad for their competitions. Data 

reduction and analysis took place at The University of North Carolina at Chapel Hill. The 

study timeline is provided in Figure 3.1. 

 

Participants 

The study included Bantam- and Midget-level ice hockey players aged 13-14 years 

and 15-16 years, respectively. These players participated in at least three practice or game 

sessions each week over the course of the playing season. These players represented a 

convenience sample of participants from two elite AAA-level ice hockey teams. A detailed 

explanation of the study was provided for all the athletes, coaches, and parents, prior to the 

start of the season. While data pertaining to previous history of concussion and years of 

playing experience were collected, they did not serve as exclusion criteria. Parental 
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permission and minor assent forms approved by the university’s institutional review board 

were signed by each parent and player, respectively, prior to fitting an athlete with an 

instrumented ice hockey helmet (see Procedures section). The subject recruitment process 

employed in this study is provided in Figure 3.2. 

 

Instrumentation 

Head Impact Telemetry (HIT) System 

 This study used commercially available Reebok RBK 6K and 8K helmets (2007-2008 

cohort; Reebok-CCM Hockey, Inc.; St-Laurent, Quebec, Canada), or Easton Stealth S9 

(2008-2009 cohort; Easton Sports, Inc.; Van Nuys, CA) modified to accept the Head Impact 

Telemetry (HIT) System technology (Simbex; Lebanon, NH). The helmet's foam liner was 

custom cut to accept six single-axis accelerometers, a battery pack, and the telemetry 

instrumentation (Figure 3.3 depicts an Easton S9 helmet model).  The custom helmets 

passed both ASTM (1045-99) and CSA (Z262.1-M90) helmet standards and were approved 

by the Hockey Equipment Certification Council (HECC) for use during competition. The 

HIT System utilized spring-loaded accelerometer holders to maintain contact with the head 

during an impact event. This method has been shown to successfully decouple 

accelerometers from the head allowing for measurement of head—not helmet—acceleration 

(Manoogian, et al., 2006). These accelerometers were positioned tangentially to the head. 

Linear acceleration of the center of gravity (COG) of the head was computed using a least-

squares regression algorithm (Chu, Beckwith, Crisco, & Greenwald, 2006; Crisco, et al., 

2004). Data from the six accelerometers were collected at 1 kHz for a period of 40 ms (8 ms 

pre-trigger and 32 ms post-trigger) following the acceleration of any individual 
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accelerometer exceeding 10 g. The data were time-stamped, encoded, stored locally, and then 

transmitted in real time to a sideline controller (antenna) incorporated within the Sideline 

Response System (Riddell; Elyria, OH) via a radiofrequency telemetry link. The sideline 

controller (Figure 3.4) was typically positioned along the playing surface sideboards or in 

the team’s dressing room. Biomechanical measures of head impact severity (see Data 

Reduction section) were computed and stored. The HIT System was capable of transmitting 

accelerometer data from as many as 100 players over a distance well in excess of the length 

of a standard international ice surface. In some instances when the real-time transmission of 

head impact data was unavailable (i.e. signal interruptions, sideline system not set up, etc), 

information from 100 separate head impacts were capable of being stored in non-volatile 

memory built into the acceleration monitoring system. 

Player shift recording 

 Appendix A depicts a data collection form used to record the number of playing shifts 

during games and scrimmages. This form was used by researchers positioned immediately 

behind the players’ bench during games to document the number of shifts played during a 

competition session. One shift was defined as an incident where the player stepped onto the 

ice to actively participate in the play during game and scrimmage events, and was terminated 

when the player returned to the team bench. Only one shift was counted in instances where 

there was a stoppage in play (i.e. offside, icing, penalty, goal) but the player remained on the 

ice for the start of the next play. The length of a typical shift ranged from 45 seconds to one 

minute. 
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Video recording  

 This study employed the use of a standard digital video camera (Model: PV-GS35; 

Panasonic Corporation of North America; Secaucus, NJ) to record live game footage onto 

60-minute miniDV tapes (Model: M-DV60ME; JVC Americas Corp.; Wayne, NJ). The 

video camera was capable of recording video footage at 120 Hz, and had a built-in sports 

exposure mode that allowed for clear video recording of quick action. It was equipped with a 

30X optical zoom and 1000X digital zoom, allowing for close-up and contained images 

regardless of where on the ice the play was occurring (Figure 3.5). Video footage was 

recorded during games and scrimmages for the primary purpose of addressing Specific Aims 

3 and 4, and addressing the descriptive factor of the striking player and player struck 

(addressed as part of Specific Aim 1).  

Strength and anthropometric testing 

Cervical muscle strength was measured with isometric “break tests” using a hand-

held dynamometer (Model: 01163; Lafayette Instrument Co.; Lafayette, IN). The unit was 

small and convenient to use, and was similar to handheld dynamometers readily available to 

clinicians. It weighed 260 grams (10 ounces), was capable of measuring strength up to 

136.36 kg (300 pounds) of force, and had an accuracy of ± 0.45 kg (1.0 pound) in the high 

range and ± 0.23 kg (0.5 pounds) in the low range. Length and diameter anthropometric 

measurements were recorded using a small anthropometer (Model: 01291; Lafayette 

Instrument Co.; Lafayette, IN). Circumferential measurements were recorded using a 

standard clinical tape measure. The procedures employed to measure strength and 

anthropometrics are described in the Procedures section (see below) and illustrated in 

Figures 3.7 to 3.14.  
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Faught Aerobic Skate Test (FAST) 

 The FAST was designed to assess maximum aerobic power using a hockey-specific 

on-ice testing protocol. Players began at a slow pace and progressed to exhaustion by 

following cues delivered by the FAST audio track through the arena’s public address system. 

The FAST was designed to promote continuous skating in a counter-clockwise direction 

without any stops and starts. The FAST took approximately 10 minutes to complete at each 

administration. Players were instructed to divide into 2 equal groups positioned at opposite 

corners of the ice. The subjects were required to skate a 160-foot (48.77-meter) distance from 

one end of the ice surface to the other within the allotted time (Figure 3.6). The allotted time 

for each length began at 15 seconds and decreased by 0.5 seconds every third length (Table 

3.1). Previous work found no differences between the maximal oxygen consumption 

(VO2max) predicted from the FAST and VO2max measured during a modified Bruce 

incremental treadmill protocol performed in a laboratory in young ice hockey players 

(Petrella, Montelpare, Nystrom, Plyley, & Faught, 2007). Good reliability of this instrument 

has been demonstrated in adult ice hockey players (r = 0.76) (Faught, Nystrom, & 

Montelpare, 2003); as well as in a younger Bantam-aged cohort (r=0.81) (Petrella, 

Montelpare, Nystrom, Plyley, & Faught, 2005). 

Carolina Hockey Evaluation of Children’s Checking (CHECC) List 

 The CHECC List (Appendix B) was scored on 11 readily observable features of 

human movement during a body collision. These included relative body positioning 

including knee position, trunk position, and stance width. The use of shoulders, elbows, 

hands, or a stick, during the collision was also included. Also included were whether a player 

was looking ahead in the direction of movement, and if he appeared to see the impending 
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body collision. The overall impression of collision “quality,” whether the player was striking 

an opponent or was the player struck, whether an infraction took place during the collision, 

and where on the playing surface the collision occurred were all variables of interest included 

on the CHECC List. The CHECC List was developed along with feedback from a team of 

USA Hockey-certified coaches directly involved in the coaching of youth ice hockey players. 

Every member of this group verified the criteria and felt they addressed components of a 

body collision of interest to youth ice hockey coaches, and those that could be modified 

through some form of intervention program at the youth/amateur ice hockey level. The 

intratester reliability of the CHECC List was established as a part of this study. A subsample 

of body collisions observable on the video footage was re-evaluated by the principal 

investigator no less than 3 months after the end of the initial video analyses. Intrarater Kappa 

agreements ranged from 0.40 to 0.92 for the 15-item CHECC List. Interrater agreement 

suggested moderate to strong agreement between hockey coaches with no scientific 

experience when reviewing a subsample of 25 collisions independently of each other (Table 

3.2).   

The Buss-Perry Aggression Questionnaire 

 The Buss-Perry Aggression Questionnaire (BPAQ) consisted of a 29-item, five-point 

Likert scale ranging from one (“extremely uncharacteristic of me”) to five (“extremely 

characteristic of me”). There are four widely used subscales of the BPAQ established on the 

basis of factor analyses (Buss & Perry, 1992): physical aggression (9 items), verbal 

aggression (5 items), anger (7 items), and hostility (8 items). In order to foster an 

environment whereby participants did not feel pressured in any particular way, the players 

were asked to complete a paper version of the BPAQ on their own time at home. Test-retest 
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reliability had previously been established for the physical aggression (0.80), verbal 

aggression (0.76), anger (0.72), and hostility (0.72) subscales of the BPAQ (Buss & Perry, 

1992). The BPAQ distributed to the athletes is available in Appendix C.  

 

Procedures 

Helmet fitting 

 Prior to the start of the season, players were measured for helmet and facemask size. 

They were properly fit with Reebok RBK 6K/8K (2007-2008 cohort) or Easton Stealth S9 

(2008-2009 cohort) helmets by a certified athletic trainer (ATC). The ATC instructed each 

participant to wet his hair to simulate sweating. Facemasks owned and used by the players 

were secured to the new helmet if they were deemed to be in good condition, and if the 

facemask was compatible with the new helmet. Otherwise, players were asked to purchase a 

new facemask or were allocated one by the investigators. They were then fitted with the 

helmet such that the brim of the helmet rested 3.5 cm (two finger-widths) above the 

participant’s eyebrows. The facemask chinstrap fit tightly under the chin and was securely 

fastened to the helmet. As a quick test, participants were instructed to hold their head still 

while the principal investigator attempted to move the helmet. If the investigator was able to 

move the helmet with no movement of the head, the fitting procedure was repeated. Helmet 

and facemask fit was verified on a biweekly basis to ensure proper fit throughout the course 

of the playing season. 

Video recording 

 The principal investigator recorded video games over the course of the 2007-08 ice 

hockey season. Prior to each game, the video camera date- and time-stamping features were 
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synchronized to the Sideline Response System date and time. In order to maximize video 

image size, the camera followed movement of the puck in an attempt to isolate body 

collisions during play and to maximize the capture of these events by the camera. Impacts 

occurring outside the view of the camera were excluded from our analyses, as there was no 

way to analyze these collisions using the CHECC List. In order to make the most of the 

miniDV tapes, video recording began as the players lined up for a faceoff, and was paused 

when a whistle was blown signaling the end of a play. As such, one tape was often capable of 

storing video collected during one complete game. In some instances, late body collisions 

occurring shortly after the officials blew the whistle were not captured and, therefore, were 

excluded from our analyses. Since the video footage was time-stamped, a short video clip of 

the scoreboard was taken at the start of each playing period, enabling us to assign HIT 

System data to a particular playing period.  

Cervical strength and anthropometric measurements 

Cervical muscle strength was measured as described by Kendall et al. with isometric 

“break tests” using a hand-held dynamometer (Kendall, McCreary, & Provance, 1993). 

Strength testing for cervical rotators followed the procedure described by Hislop & 

Montgomery (Hislop & Montgomery, 1986). Strength of the anterior neck flexors, and 

bilateral strength measurements of the anterolateral neck flexors, cervical rotators, 

posterolateral neck extensors, and upper trapezius were recorded. Bilateral peak strength 

measurements were averaged into a single measure. Two practice trials were performed prior 

to three test trials for each direction of motion, with a 30-second rest period between trials; 

each trial lasted 3 seconds. The maximum break force for each of the three test trials were 

averaged, and then normalized to the player’s body mass to facilitate comparisons between 
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individuals of varying body size. Pilot data suggested good to excellent intrasession 

reliability (all ICC3,1 ≥ 0.821) and precision of the measurements for all the strength tests. 

These results are presented in Table 3.3. 

 In order to measure anterior neck flexor strength, the subject was positioned supine 

with his elbows bent and hands overhead, while resting on a treatment table (Figure 3.7). 

The subject attained the test position by lifting his head from the table with the chin 

depressed and approximated toward the sternum. Pressure was delivered through the hand-

held dynamometer against the forehead in a posterior direction.  

 The subject was then asked to maintain the same body position, while rotating his 

head to one side in order to evaluate anterolateral neck flexor muscle strength. The subject 

lifted his head off the table and the investigator applied pressure against the temporal region 

of the head in an obliquely posterior direction (Figure 3.8). 

 The patient remained supine with his cervical spine in neutral in order to test the 

cervical rotators. The head was supported on the table with the face turned as far to one side 

as possible. The patient attempted to rotate his head slightly toward the neutral (i.e. face up) 

position against resistance directed towards returning the subject back to the fully rotated 

position (Figure 3.9).  

 The subject then moved into a prone position with his elbows bent and hands 

overhead while resting on a table and moved into posterolateral neck extension with his face 

turned to the side being tested (Figure 3.10). The investigator applied pressure against the 

posterolateral aspect of the head in an anterior direction. 

 Upper trapezius strength testing was accomplished by placing the subject in a seated 

position. The subject was then asked to elevate the acromial end of the clavicle and scapula, 
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bring his occiput toward the elevated shoulder with the face turned in the direction opposite 

the side of testing (Figure 3.11a). The head was stabilized and the investigator attempted to 

depress the scapula (Figure 3.11b). 

 Anthropometric measurements included subject height, mass, head-neck segment 

length, neck circumference, neck medial-lateral diameter, neck anterior-posterior diameter, 

head circumference, head medial-lateral diameter, and head anterior-posterior diameter. 

Height and mass were recorded on a standard medical scale. Head-neck segment length was 

measured as the vertical distance between the seventh cervical vertebra (C7) spinous process 

and the top of the head while the subject looked directly in front of them (Figure 3.12). Neck 

circumference and diameter measurements were taken at the level just above the thyroid 

cartilage (Figure 3.13). Head circumference was measured across the middle of the forehead 

as it would when fitting a player with an ice hockey helmet (Figure 3.14a). Head medial-

lateral diameter was recorded just above the top of the ears (Figure 3.14b), and the anterior-

posterior diameter was measured from the middle of the forehead to the middle of the 

posterior aspect of the head (Figure 3.14c). We observed very good intrasession reliability 

(ICC3,1 ≥ 0.782) and precision for all anthropometric measurements.  

Faught Aerobic Skate Test (FAST) 

 While players required no previous experience with the FAST, they performed a 

familiarization trial of the FAST during one practice session, and were tested for the purpose 

of this study in two subsequent on-ice sessions. To avoid a confounding contribution of non-

test fatigue, the protocol was administered at the start of practice when it was assumed 

players were not experiencing fatigue. In order to remain consistent with game situations, 

players were wearing all of their playing equipment during the testing. The team was 
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separated into two equal groups and positioned in opposite corners of the rink. The test 

instructions were played over the arena public address system, and the players were then 

cued with an audible “beep” to begin skating. Players skated counter-clockwise the length of 

the ice in order to continue to the next FAST length. The automated audio track provided the 

skaters with a three-second countdown near the end of each length as a warning of time 

remaining to complete the length. The time required to complete each FAST length 

decreased by 0.5 seconds every 3 lengths. A subject’s test was deemed completed when they 

were unable to reach the destination line in the allotted time for two consecutive lengths, or if 

they voluntarily discontinued owing to fatigue. The subject’s final successfully completed 

length was recorded as their maximum FAST length. 

Evaluation of video footage 

 Prior to any analysis of game video, the principal investigator met with members of a 

coaches’ committee and reviewed a select number of body collisions with them to ensure 

agreement with how the body collisions should be viewed and evaluated. The principal 

investigator then independently analyzed all game video footage in a quiet environment in 

order to avoid distractions. As stated earlier, video footage was date and time-stamped to 

match the data collected by the HIT System. The principal investigator employed the 

CHECC List to assist in the evaluation of each video-recorded impact.  

 In order to standardize the evaluation of player collisions based on video recordings, a 

committee consisting of five USA Hockey-certified coaches (4 head coaches and 1 assistant 

coach; one with Level 5, three with Level 4, and another with Level 3 coaching 

certifications) with extensive experience in coaching ice hockey was created. The pre-study 

expectation was that many collisions would be difficult to evaluate from the video footage 
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and would require an adjudication process to remediate these cases. However, upon 

completion of all viewable collisions, only three (of 669 evaluated) proved difficult. Due to 

this low number, these collisions were omitted entirely from our analyses. Instead, the 

committee independently reviewed 25 collisions selected at random to ensure intertester 

reliability in the use of the CHECC List. The members of the review committee were able to 

view this video footage, but were not provided with information related to biomechanical 

measures of head impact severity associated with the collisions, or to how the principal 

investigator initially evaluated the collision.  

 

Data reduction 

Biomechanical measures of head impact severity 

 The raw head impact data were exported from the Sideline Response System into 

Matlab 7 (The Mathworks, Inc.; Natick, MA), where data were reduced to include only those 

impacts sustained during practices, scrimmages, and games. Impacts occurring outside of 

team-sanctioned events (i.e. pick-up hockey, impacts imparted to the helmet during handling 

of equipment or travel, etc) were thus omitted from our analyses. Only impacts registering a 

linear acceleration greater than 10 g were included for the purposes of our analyses as 

impacts below this threshold are considered negligible with respect to impact biomechanics 

and their relationship to head trauma. As each impact was linked to a player enrolled in our 

study by unique identifiers, we were able to easily associate impacts that belonged to a 

particular player, and to categorize those impacts based on player position information we 

had collected at the start of the season. Resultant linear head acceleration, resultant rotational 

head acceleration, and Head Impact Technology severity profile (HITsp), were the outcome 
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measures of interest and retained for further analysis. These variables were automatically 

computed by the HIT System. Azimuth and elevation data collected from the accelerometers 

in the instrumented helmets were used to categorize the location of head impacts. In keeping 

with our previous work studying Division I collegiate football players (Mihalik, et al., 2007) 

and youth ice hockey players (Mihalik, Guskiewicz, et al., 2008), we had originally proposed 

that any impact sustained at an angle greater than 60° in elevation from a horizontal plane 

through the estimated location of the center of gravity of the head would be categorized as an 

impact to the top of the head. In developing the wPCS (HITsp as it appears in the HIT 

System), Greenwald et al. (2008) established the top of the head to represent all impacts 

sustained at an angle greater than 65° in elevation from horizontal. As such, we have adopted 

this definition. Front head impacts were defined as those occurring within 45° from either 

side of the sagittal midline. Similarly, impacts within 45° of either side of the sagittal midline 

posterior to the head were categorized as an impact to the back of the head. Impacts sustained 

within 45° of the frontal plane were accordingly categorized as a side impact, regardless of 

whether the impact occurred to the right or left side of the head (Figure 3.15). 

Player shift recording 

 At the end of each playing period, the total number of playing shifts was tabulated 

and recorded. These data were used in combination with the biomechanical measures of head 

impact severity to address Specific Aim 2. These data were entered into the statistical 

spreadsheet and used as part of our analyses addressing the effects of game-related exposure 

on biomechanical measures of head impact severity. 

Video footage 

 All raw video footage was imported from the video camera connected to a Windows-
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based laptop computer using a standard universal serial bus (USB) cable. This was done 

using MotionDV Studio LE (Version 6.0; Panasonic Corporation of North America; 

Secaucus, NJ). Once raw video footage was imported, date and time-stamp information were 

inlayed onto the video, and the video was then exported to a DivX-encoded audio video 

interleave (AVI) file for storage. Video playback during CHECC List evaluations was 

performed on a personal desktop (iMac; Apple, Inc.; Cupertino, CA) using QuickTime 

Player Pro (Version 7.5.5; Apple Inc.; Cupertino, CA). 

Strength and anthropometric testing 

 The peak force generated during each of the strength-testing trials was ensemble 

averaged and recorded for the purpose of data analysis. In cases where bilateral 

measurements were recorded for the left and right sides, the ensemble mean of each side was 

averaged together to result in a single measure of strength for that muscle group. For 

example, the mean of the trials for the right anterolateral cervical flexors were averaged with 

the mean of the trials for the left anterolateral cervical flexors into a single measure for 

anterolateral cervical flexion strength. The strength measures were then normalized to the 

players’ mass. A variable of total neck strength was computed as the sum of the five 

individual relative strength measures. Head and neck anthropometrics yielded a single 

measure for each of the following: head-neck segment length, neck circumference, neck 

medial-lateral diameter, neck anterior-posterior diameter, head circumference, head medial-

lateral diameter, and head anterior-posterior diameter. Body mass index (BMI) was also 

computed. 
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Carolina Hockey Evaluation of Children’s Checking (CHECC) List 

 Every body collision was assigned a unique event identification number. This 

identification number was indicated on the CHECC List form used to evaluate a given body 

collision. Each of the eleven body position criteria (identified in Appendix B) represented a 

dichotomous response (yes or no). These variables were included in the statistical models 

used to address Specific Aim 4. 

The Buss-Perry Aggression Questionnaire 

 Data from the BPAQ were compiled and entered into our database. It was originally 

proposed that these measures of aggression were to be used as covariates of interest designed 

to control for differing levels of aggression that may manifest in more reckless or aggressive 

behavior while participating in ice hockey. Preliminary analyses suggested these measures 

were not useful in this capacity. As such, player aggression was added to Specific Aim 5 and 

analyzed as an independent variable of interest. The BPAQ was factored into four subscales 

as follows: physical aggression, verbal aggression, anger, and hostility. In addition to these 

subscale scores, a total score was also computed and these scores were used in our analyses. 

Though not a part of the BPAQ, the total number of penalties in minutes (PIM) was also 

analyzed. This is typically a measure of player aggression used in ice hockey, with those 

athletes with higher PIM thought to exhibit a more physically aggressive style of play.   

 

Statistical analyses 

For our continuous outcomes of playing shift exposures, strength, anthropometrics, 

general aerobic fitness, and aggression, we categorized our data into three groups (tertiles). 

For example, the tertiles allowed us to model the differences in biomechanical measures of 
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head impact severity between the strongest players, those with moderate strength, and the 

weakest players, for our measures of strength. Since head impact data were highly skewed in 

favor of low-magnitude impacts, data were transformed using a natural logarithmic function 

in order to meet the assumptions of normality for the proposed parametric analyses described 

below. All estimates obtained from our analyses were then back-transformed to their original 

scale for purposes of presentation.  

Descriptive analyses (means and 95% confidence intervals) were calculated for the 

three biomechanical measures of head impact severity (dependent variables): resultant linear 

acceleration, resultant rotational acceleration, and the HITsp. In order to address our specific 

aims, separate random intercepts general mixed linear models were employed for each of our 

dependent variables. Player represented one level in each statistical model as a repeated 

factor. Independent variables as determined by each specific aim were included in the 

statistical model when appropriate. Player position, event type, location of head impact, and 

whether a player was the striker or the player being struck, served as independent variables of 

interest included in separate statistical models used to address Specific Aim 1. Specific Aim 

2 required the inclusion of the number of shifts played as a level in the statistical model in 

addition to the player repeated factor. Infraction type was included as an independent 

variable (in addition to player) in the statistical models employed to address Specific Aim 3. 

Specific Aim 4 required several random intercepts general mixed linear models, each one 

modeled to include separate independent variables (in addition to player) to address all of the 

research questions associated with this aim. Lastly, Specific Aim 5 required the inclusion of 

measures of cervical muscle strength measures, head and neck anthropometrics, general 

aerobic fitness, and player aggression, as separate independent variables in the statistical 
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model. Table 3.4 represents our general research objectives, dependent and independent 

variables, and proposed statistical methods.  

In addition to the originally proposed statistical methods, we performed a number of 

additional exploratory analyses by including covariates in our model. As player cervical 

muscle strength, anthropometrics, aerobic fitness, and player aggression were not evaluated 

for our Year 1 cohort, we were unable to contrast these variables against the descriptors 

observed using the CHECC List. We felt that body mass index (BMI) would serve as a 

potential surrogate for cervical muscle strength in our statistical models and, as such, 

performed a Pearson bivariate correlation between BMI and total neck strength. We found 

that those who had larger BMI values typically had lower neck strength; that is, those who 

were more fit were stronger (r30 = -0.618; P < 0.01). We therefore used BMI as a covariate to 

represent cervical muscle strength during some of our exploratory analyses. Random 

intercepts general mixed linear models (PROC MIXED) were performed in SAS/STAT 

(Version 9.1; SAS Institute, Inc.; Cary, NC). The level of significance was set at P < .05 a 

priori.  
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Study Process 2007-08 Season 2008-09 Season 
Subject recruitment    
 Bantam AAA sample       
 Midget AAA sample      
Data Collection/Procedures       
 HIT System data      
 Player shift recording      
 Competition game footage      
 Strength testing     
 Head/neck anthropometrics     
 Faught Aerobic Skate Test     
 CHECC List      
 Buss-Perry Aggression Questionnaire     
 Adjudication (process     
Data reduction and analysis       
 Data reduction      
  Statistical analyses       

 

Figure 3.1. Timeline for subject recruitment, data collection, and data analysis 

The shaded areas of the figure represent the timeline for subject recruitment, data collection 

procedures, and data reduction and analysis.
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Figure 3.2. Subject recruit process 

This figure illustrates the subject recruitment process employed for this project. Note that 

cervical muscle strength, head and neck anthropometric measurements, general aerobic 

fitness, and player aggression were only collected on Bantam and Midget AAA players 

comprising the 2008-09 season cohort.

Carolina Youth Hockey Initiative 
Cohort n = 52 

2007-08 Season 
Bantam AAA 

n = 15 

Descriptive 
factors 

Positional 
differences 

Event type 
differences 

Location of 
head impacts 

Striking vs. 
struck player 

Extrinsic  
factors 

Game-related 
exposure 

Infraction type 

Intrinsic  
factors 

Collision type: 

Open-ice vs. 
board 

Anticipated vs. 
unanticipated 

Relative body 
position 

2008-09 Season 
Bantam and Midget AAA 

n = 37 (16B + 21M) 

Descriptive 
factors 

Positional 
differences 

Event type 
differences 

Location of 
head impacts 

Intrinsic  
factors 

Neck muscle 
strength 

Head and neck  
anthropometrics 

General aerobic 
fitness 

Player aggression 
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Figure 3.3. Accelerometer installation and setup 

The protective foam of the ice hockey helmets were removed from the helmet shell (Easton 

Stealth S9 model depicted; RBK 6K/8K not depicted).  Following this, six single-axis 

accelerometers were fitted into custom holes cut into the foam. The figure depicts the 

location of the helmet accelerometers in the protective liner (hard shell removed) in both 

exterior (A) and interior (B) views. The location of the six accelerometers (two in front, and 

two on each side) as viewed from the inside of a fully assembled playing ice hockey helmet 

(C). 
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Figure 3.4. Riddell Sideline Response System 

The Sideline Response System consisted of a sideline controller (antenna) connected to a 

laptop computer, and was positioned near the ice hockey playing area. Ice hockey helmets 

fitted with accelerometers collected head impact data which were then transmitted wirelessly 

and in real-time to the Sideline Response System.  
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Figure 3.5. Panasonic PV-GS35 video camera 
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Figure 3.6. The Faught Aerobic Skate Test (FAST) 
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Figure 3.7. Evaluation of anterior neck flexor muscle strength 

The subject was positioned supine with elbows bent and hands overhead, resting on a 

treatment table. The test position was attained by lifting the head from the table with the chin 

depressed and approximated toward the sternum. Pressure was delivered through the hand-

held dynamometer against the forehead in a posterior direction. 
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Figure 3.8. Evaluation of anterolateral neck flexor muscle strength 

The subject was positioned supine with elbows bent and hands overhead. The subject tucked 

the chin in towards the sternum, lifted the head off the table, and faced the left side. The 

investigator applied pressure against the temporal region of the head in an obliquely posterior 

direction. The procedure was repeated with the subject facing the right side. Illustrated is the 

position for testing the right anterolateral neck flexors. 
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Figure 3.9. Evaluation of cervical rotation muscle strength 

The patient was positioned supine with the cervical spine in neutral. The head was supported 

on the table with the face turned as far to one side as possible. The patient attempted to rotate 

the head slightly toward the neutral (i.e. face up) position against resistance directed towards 

returning the subject back to the fully rotated position. Illustrated is the position for testing 

the right cervical rotators. 
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Figure 3.10. Evaluation of posterolateral neck extensor muscle strength 

The subject was placed in the prone position with elbows bent and hands overhead while 

resting on a table. They were asked to move into posterolateral neck extension with their face 

turned to the side being tested. The investigator applied pressure against the posterolateral 

aspect of the head in an anterior direction. Illustrated are the test positions for the right (A) 

and left (B) posterolateral neck extensors.  
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Figure 3.11. Evaluation of upper trapezius muscle strength 

Upper trapezius strength testing was performed with the subject in a seated position. The 

subject was asked to elevate the acromial end of the clavicle and scapula, and to bring the 

occiput toward the elevated shoulder with their face turned in the direction opposite the side 

of testing. The head was stabilized and the investigator attempted to depress the scapula. 

Illustrated are the start (A) and test (B) positions for the right upper trapezius muscle.  
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Figure 3.12. Measurement of head-neck length 

Head-neck length consisted of the vertical distance between the spinous process of C7 and 

the top of the head measured while the subject was looking at an object at eye level. 

Illustrated are the lateral (A) and posterior (B) views of this measurement technique. 
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Figure 3.13. Neck anthropometric measurements 

Neck circumference (A) was measured using a standard clinical tape measure. Medial-lateral 

(B) and anterior-posterior (C) diameters were measured using an anthropometer.  
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Figure 3.14. Head anthropometric measurements 

Head circumference (A) were measured using a standard clinical tape measure. Medial-

lateral (B) and anterior-posterior (C) diameters were measured using an anthropometer. 
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Figure 3.15. Categorization of head impact locations 

Head impacts were categorized as back, front, side, or top, as defined by azimuth and 

elevation data collected at the time of each head impact. Regardless of azimuth position, any 

impact sustained at an elevation greater than 65° were categorized as an impact to the top of 

the head. This figure is from earlier work published by Greenwald et al. (2008) (with 

permission). 
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Table 3.1. Interval progressions of the Faught Aerobic Skate Test 

 
 
 Length Interval (sec) Shuttle Time(min) 
 
 
 1 15 0:15.0  
 2  0:30.0  
 3  0:45.0  
 4 14.5 0:59.5  
 5  1:14.0  
 6  1:28.5  
 7 14 1:42.5  
 8  1:56.5  
 9  2:10.5  
 10 13.5 2:24.0  
 11  2:37.5  
 12  2:51.0  
 13 13 3:04.0  
 14  3:17.0  
 15  3:30.0  
 16 12.5 3:42.5  
 17  3:55.0  
 18  4:07.5  
 19 12 4:19.5  
 20  4:31.5  
 21  4:43.5  
 22 11.5 4:55.0  
 23  5:06.5  
 24  5:18.0  
 25 11 5:29.0  
 26  5:40.0  
 27  5:51.0  
 28 10.5 6:01.5  
 29  6:12.0  
 30  6:22.5  
 31 10 6:32.5  
 32  6:42.5  
 33  6:52.5  
 34 9.5 7:02.0  
 35  7:11.5  
 36  7:21.0  
 37 9 7:30.0  
 38  7:39.0  
 39  7:48.0  
 40 8.5 7.56.5  
 41  8:05.0  
 42  8:13.5  
 43 8 8:21.5  
 44  8:29.5  
 45  8:37.5  
 46 7.5 8:45.0  
 47  8:52.5  
 48  9:00.0  
 49 7 9:07.0 
 50  9:14.0  
 51  9:21.0  
 52 6.5 9:27.5  
 53  9:35.0  
 54  9:40.5  
 55 6 9:46.5  
 56  9:52.5  
 57  9:58.5  
 58 5.5 10:04.0  
 59  10:09.5  
 60  10:15.0  
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Table 3.2. Interrater agreements for the CHECC List 

Interrater agreements CHECC Item 

% 6/6 agree1 % 5/6 agree % 4/6 agree % 3/6 agree 

Look ahead 60% (15/25)2 80% (20/25) 100% (25/25) 100% (25/25) 

See hit 64% (16/25) 92% (23/25) 100% (25/25) 100% (25/25) 

Knees flexed 40% (10/25) 72% (18/25) 96% (24/25) 100% (25/25) 

Trunk flexed 40% (10/25) 72% (18/25) 96% (24/25) 100% (25/25) 

Use shoulders 44% (11/25) 72% (18/25) 92% (23/25) 100% (25/25) 

Use elbows 56% (14/25) 80% (20/25) 96% (24/25) 100% (25/25) 

Use hands 48% (12/25) 80% (20/25) 96% (24/25) 100% (25/25) 

Feet shoulder width apart 4% (1/25) 40% (10/25) 72% (18/25) 100% (25/25) 

Use stick 72% (18/25) 80% (20/25) 100% (25/25) 100% (25/25) 

Use legs 24% (6/25) 60% (15/25) 96% (24/25) 100% (25/25) 

Passing/shooting 84% (21/25) 88% (22/25) 96% (24/25) 100% (25/25) 

Overall impression 80% (20/25) 96% (24/25) 100% (25/25) 100% (25/25) 

Striker/struck 84% (21/25) 96% (24/25) 100% (25/25) 100% (25/25) 

Infraction 44% (11/25) 76% (19/25) 96% (24/25) 100% (25/25) 

Board/open-ice 76% (19/25) 96% (24/25) 100% (25/25) 100% (25/25) 

1 Six (6) raters completed a CHECC List evaluation and agreements are demarcated by how 
many of the six raters agreed on an evaluation. 
2 Twenty-five collisions were evaluated by the six raters.  
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Table 3.3. Reliability and precision – Strength and anthropometric measurements. 

Intrasession reliability (ICC3,1) and precision (standard error of measurement) for strength 

and anthropometric measurements 

  Reliability (ICC3,1) Precision (SEM) 

Strength (kg)   

 Anterior neck flexors 0.962 0.849 

 Anterolateral neck flexors 0.969 0.613 

 Cervical rotation 0.909 0.790 

 Posterolateral neck extensors 0.821 1.794 

 Upper trapezius 0.890 2.113 

Anthropometric measurements   

 Height (cm) 0.999 0.287 

 Mass (kg) 1.000 0 

 Head-neck segment length (cm) 0.782 0.667 

 Neck circumference (cm) 0.996 0.251 

 Neck medial-lateral diameter (cm) 0.948 0.301 

 Neck anterior-posterior diameter (cm) 0.974 0.238 

 Head circumference (cm) 0.969 0.335 

 Head medial-lateral diameter (cm) 0.977 0.097 

 Head anterior-posterior diameter (cm) 0.967 0.139 
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Table 3.4. Data analysis plan 

 RQ Objective Variables Statistical Method 
1 Test for differences in 

biomechanical measures of 
head impact severity across 
player position, event type, 
location of head impact, and 
between the striking player 
and player struck. 

Dependent1: 
   Linear acceleration 
   Rotational acceleration 
   HITsp 
 
Independent (IV): 
   Player position 
   Event type 
   Location of impact 
   Striking vs. struck 

Separate two-level 
random intercepts 
general mixed linear 
models: 
   Player 
   IV 

2 Test for effects of game-
related exposure on 
biomechanical measures of 
head impact severity. 

Dependent1 

 
Independent: 
   Shifts played 
   Period of play 

Three-level random 
intercepts general 
mixed linear model: 
   Player 
   Shifts played 
   Period of play 
    

3 Test for differences in 
biomechanical measures of 
head impact severity across 
infraction type. 

Dependent1 
 
Independent: 
   Infraction type 
    
 

Two-level random 
intercepts general 
mixed linear model: 
   Player 
   IV 

4 Test for differences in 
biomechanical measures of 
head impact severity across 
collision type. 

Dependent1 

 
Independent:   
   Open-ice vs. boards 
   Level of anticipation 
   Relative body position 
 

Separate two-level 
random intercepts 
general mixed linear 
models: 
   Player 
   IV 

5 To determine the effects of 
cervical muscle strength, 
head-neck anthropometrics, 
general aerobic fitness, and 
player aggression on 
biomechanical measures of 
head impact severity 

Dependent1 

 
Independent: 
   Cervical strength 
   Anthropometrics 
   Aerobic fitness 
   BPAQ2 

   PIM3 

Separate two-level 
random intercepts 
general mixed linear 
model: 
   Player 
   IV 

1 Dependent variables (DV) for all analyses will consist of linear acceleration, rotational 
acceleration, and Head Impact Technology severity profile (HITsp). 
2 BPAQ includes individual subscales of physical aggression, verbal aggression, anger, and 
hostility, as well as the total aggression score (sum of all four individual subscales). 
3 PIM refers to measure of penalties in minutes.



 
 

CHAPTER IV 

RESULTS 

 

Introduction 

 This chapter will include the results associated with each of the five Specific Aims 

presented in Chapter I. However, it should be noted that the content related to Specific Aims 

3 and 4 will be the focus of Manuscript 1 (Appendix D) and Manuscript 2 (Appendix E), 

respectively. Over the course of the two-year study, we recruited a total of 52 youth ice 

hockey players (age = 14.7 ± 1.0 years; height = 172.5 ± 6.1 cm; mass = 65.5 ± 8.8 kg) 

(Table 4.1). Fifteen subjects were from our 2007-2008 Bantam-aged cohort and the 

remaining 37 participants were from the 2008-2009 Bantam- (N = 16) and Midget-aged 

(N = 21) cohorts. Three subjects who withdrew from the study during the second season are 

not included in our results. One subject had an illness at the start of the season (we collected 

head impact data on a very small number of collisions) and never returned to the team, 

another subject left to play for another organization out of state, and the third subject quit the 

team mid-season for personal reasons. We had 35 forwards and 19 defensemen represented 

in our sample. Four athletes played both positions over the course of the season. Data over 

the two playing seasons were collected during 151 games and 137 practices. During the 

2007-08 season, we collected 4608 head impacts resulting in a linear acceleration greater 

than 10 g. During the second season (2008-09), we collected 7850 head impacts for both the 

Bantam and Midget cohorts combined. 
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Specific Aim 1 

 The first specific aim was designed to study the biomechanics of head impacts 

sustained during games and practices in Bantam (13- and 14-year-old) and Midget (15- and 

16-year-old) youth ice hockey players. This specific aim served as the foundation of our 

work in this area, and provided important descriptive information pertaining to the nature of 

head impacts sustained in youth ice hockey. Data included in the analyses for the positional, 

event-type, and head location differences included all Bantam impacts sustained over the 

course of the 2007-08 playing season, in addition to all Bantam and Midget impacts we 

recorded during the 2008-09 ice hockey season (N = 12392). The data pertaining to the 

player involvement (striker vs. player struck) included all Bantam impacts sustained over the 

course of the 2007-08 playing season in which collisions were observable in video footage 

and for which a collision was assessed using the CHECC List (N = 666). The information 

provided below includes all omnibus statistical findings in addition to individual means and 

95% confidence intervals. All post hoc differences were deemed significant at the P < 0.05 

level, and P values associated with these post hoc comparisons are omitted from the written 

results for reasons of clarity. All these post hoc P values, however, are included in Tables 4.2 

to 4.4. 

 Player position differences 

 We did not observe a statistically significant difference in head linear acceleration 

between defensemen and forwards (F1,4 = 0.13, P = 0.738). Forwards experienced mean head 

linear accelerations of 18.4 g (95% CI: 17.9-18.9), and defensemen experienced impacts 

averaging 18.3 g (95% CI: 17.4-19.2). When comparing head rotational accelerations 
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following impacts, no statistically significant differences were observed between defensemen 

(1433.3 rad/s2; 95% CI: 1317.5-1559.3) and forwards (1476.8 rad/s2; 95% CI: 1409.7-

1547.1) in our sample (F1,4 = 0.99, P = 0.376). Lastly, the HITsp did not differ significantly 

between defensemen (13.9; 95% CI: 13.4-14.4) and forwards (14.1; 95% CI: 13.9-14.3) in 

our sample (F1,4 = 1.20, P = 0.336). 

Event type differences 

  We observed a statistically significant difference when comparing the rotational 

acceleration of head impacts of youth ice hockey players across games and practices 

(F1,48 = 19.85, P < 0.001). Head impacts sustained in games (1485.8 rad/s2; 95% CI: 1420.8-

1553.7) were greater than those sustained in practices (1373.8 rad/s2; 95% CI: 1313.3-

1437.1). The HITsp of impacts sustained during games (14.1; 95% CI: 13.9-14.4) were 

significantly greater than those recorded during practices (13.6; 95% CI: 13.3-13.9) in our 

sample (F1,48 = 17.40, P < 0.001). There were no significant differences in head linear 

acceleration between impacts sustained in games (18.4 g; 95% CI: 18.0-18.9) and those 

sustained in practices (18.3 g; 95% CI: 17.6-19.0) in our sample (F1,48 = 0.40, P = 0.531).  

Location of head impact differences 

 We observed a statistically significant difference when comparing the linear 

acceleration of head impacts of youth ice hockey players across four different impact 

locations (F3,145 = 37.09, P < 0.001). Head impacts sustained to the top of the head (21.2 g; 

95% CI: 20.0-22.4) were statistically higher than those sustained to the back (19.9 g; 95% CI: 

19.3-20.7), front (17.8 g; 95% CI: 17.3-18.3), or sides (17.2 g; 95% CI: 16.9-17.6). 

Rotational head accelerations also differed across the four impact locations (F3,145 = 38.84, 

P < 0.001). Contrasting the results we observed for linear acceleration, head impacts 
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sustained to the top of the head (1038.3 rad/s2; 95% CI: 977.5-1102.9) resulted in 

significantly lower rotational accelerations compared with those sustained to the back 

(1443.8 rad/s2; 95% CI: 1387.5-1502.4), front (1469.2 rad/s2; 95% CI: 1400.4-1541.3), or 

sides (1599.2 rad/s2; 95% CI: 1512.8-1690.6). With respect to the HITsp, we also observed 

significant differences between location of head impacts (F3,145 = 651.27, P < 0.001), such 

that impacts to the top of the head (8.5; 95% CI: 8.2-8.9) had a significantly lower HITsp 

than impacts sustained to the back (11.2; 95% CI: 10.9-11.4), front (15.9; 95% CI: 15.6-

16.1), or sides (16.8; 95% CI: 16.5-17.0).  

Striking player vs. Player struck  

 There were no significant differences in head linear accelerations between impacts 

sustained as a result of striking an opponent compared to those impacts sustained when 

players were struck by opponents (F1,14 = 0.04; P = 0.853). Striking players sustained mean 

linear accelerations of 21.3 g (95% CI: 19.7-22.9) compared to 21.4 g for impacts sustained 

by players struck by opponents (95% CI: 19.8-23.0). Rotational accelerations sustained by 

striking players (1419.5 rad/s2; 95% CI: 1351.6-1490.7) and those struck by opponents 

(1452.3 rad/s2; 95% CI: 1344.7-1568.4) were not statistically different (F1,14 = 0.68; 

P = 0.423). Lastly, the HITsp of impacts sustained by striking players (15.9; 95% CI: 15.0-

16.8) and players struck (15.6; 95% CI: 14.8-16.5) were not found to be different 

(F1,14 = 0.45; P = 0.513). We further explored these findings by categorizing impacts in low, 

moderate, severe, and traumatic quartiles for each of the three outcome measures of linear 

acceleration, rotational acceleration, and HITsp. We then performed three separate random 

intercepts linear mixed models including our independent variables for striker/player struck, 

quartile variable, and the interaction between the two. We did not find a significant 
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interaction between severity of the linear acceleration measure and whether a player struck 

an opponent or was struck by an opponent (F3,34 = 0.99; P = 0.409). Further, no significant 

interactions were identified between increasing severity of rotational acceleration and 

striking nature of a collision (F3,36 = 0.21; P = 0.888). Lastly, we did not observe a significant 

interaction between the severity of HITsp and whether a player struck or was struck during a 

collision (F3,36 = 2.15; P = 0.111). Hypothesizing that being struck by an opponent would be 

associated with higher magnitudes of head impact measures, we then performed a chi-square 

test of association between increasing magnitude of collision (using quartiles employed 

above) and striking nature of the collision (striking player vs. player struck). We did not find 

any association between magnitude of linear acceleration (χ2(3) = 0.48; P = 0.922), rotational 

acceleration (χ2(3) = 1.98; P = 0.577), or HITsp (χ2(3) = 5.05; P = 0.168), and striking nature 

of the collision. Further, we performed random intercepts general linear mixed models while 

selecting only those cases with the head impact measure in the highest tertile, and still found 

no differences between players who struck opponents, and those who were struck by 

opponents (P > 0.05). 

 

Specific Aim 2 

 The second specific aim was designed to study the effect of game-related exposure 

(i.e. number of playing shifts by period) on the biomechanics of head impacts sustained 

during games in Bantam (13- and 14-year-old) and Midget (15- and 16-year-old) youth ice 

hockey players. We observed 2978 collisions over the course of the Bantam 2007-08 playing 

season such that we were able to identify the period in which the collision occurred, and for 

which we also had recorded the number of shifts the subject played per period in that contest. 
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The information provided below includes all omnibus statistical findings in addition to 

individual means and 95% confidence intervals. Since no one has evaluated the nature of 

playing shift data on measures of head impact severity, we explored four separate methods of 

accounting for playing exposure, and used these variables in separate random intercepts 

linear mixed models. Table 4.5 provides the mean number of shifts played per period, and 

provides information regarding the covariate data employed during our analyses of game-

related exposures (see section below). All post hoc differences were deemed significant at the 

P < 0.05 level, and P values associated with these post hoc comparisons are omitted from the 

written results for reasons of clarity. All these post hoc P values, however, are included in 

Tables 4.6 to 4.8. 

Effect of playing period 

 Of the 2978 body collisions we observed, 30.8% (918 of 2978) occurred in the first 

period, 30.8% (916 of 2978) took place in the second period, and the remaining 38.4% (1144 

of 2978) were sustained in the third period. We observed a statistically significant difference 

in head linear acceleration in impacts sustained across the playing periods in a hockey contest 

(F2,30 = 6.50, P = 0.005). Linear accelerations measured during collisions in the third period 

(20.7 g; 95% CI: 19.9-21.6) were significantly greater than those sustained during the first 

(19.5 g; 95% CI: 18.8-20.3) and second (19.4 g; 95% CI: 18.6-20.3) periods, respectively. No 

significant differences in rotational acceleration were observed across the three playing 

periods (F2,30 = 0.90, P = 0.418).  Likewise, no differences existed in HITsp across the three 

playing periods (F2,30 = 1.27, P = 0.296). 
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Effect of game-related exposures 

 Absolute number of playing shifts: For these analyses, our models analyzed our 

outcome of interest while controlling for the number of shifts the subject played during the 

period in which the collision took place. In so doing, however, we did not observe any 

significant associations between the number of shifts played in a period and increases in the 

linear accelerations of collisions occurring in those periods (F1,2955 = 0.08; P = 0.771). No 

associations were found for rotational acceleration (F1,2955 = 0.45; P = 0.502) or HITsp 

(F1,2955 = 0.56; P = 0.456). Based on our tertile analyses, subjects who participated in a 

higher number of shifts during the period in which they sustained an impact did not 

experience higher linear accelerations than athletes who participated in less playing shifts 

(F2,27 = 0.24; P = 0.787). No differences were noted for rotational acceleration (F2,27 = 1.17; 

P = 0.326) or the HITsp (F2,27 = 0.24; P = 0.789) for absolute number of playing shifts. 

 Weighted summation of playing shifts: For these analyses, we included a weighted 

summation of playing shifts in our statistical models. These were computed as follows for the 

three playing periods: 

 Period 1: shifts in Period 1 

 Period 2: (1*shifts in Period 2) + (0.5*shifts in Period 1) 

 Period 3: (1*shifts in Period 3) + (0.5*shifts in Period 2) + (0.25*shifts in Period 1) 

We observed a positive relationship such that an increase in the weighted summation of 

playing shifts resulted in higher linear accelerations sustained by subjects in our sample 

(F1,2955 = 7.80; P = 0.005). No relationships were found for rotational acceleration 

(F1,2955 = 1.14; P = 0.286) or HITsp (F1,2955 = 1.19; P = 0.275). Based on our tertile analyses, 

subjects who exhibited a higher weighted summation of playing shifts did not experience 
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higher linear accelerations than athletes who had a lower weighted summation of playing 

shifts (F2,29 = 1.03; P = 0.369). No differences were noted for rotational acceleration 

(F2,29 < 0.01; P = 0.999) or the HITsp (F2,29 = 0.27; P = 0.763) for the weighted summation 

of playing shifts. 

 Average number of playing shifts: For these analyses, we included the mean of the 

number of playing shifts in our statistical models. These were computed as follows for the 

three playing periods: 

 Period 1: number of shifts in Period 1 

 Period 2: (shifts in Period 2 + shifts in Period 1) ÷ 2 

 Period 3: (shifts in Period 3 + shifts in Period 2 + shifts in Period 1) ÷ 3 

We did not observe any relationships between the average number of playing shifts and 

increases in linear acceleration (F1,2955 = 0.77; P = 0.379). Likewise, no relationships were 

found for rotational acceleration (F1,2955 = 1.56; P = 0.212) or HITsp (F1,2955 = 0.13; 

P = 0.719). Based on our tertile analyses, subjects who exhibited a higher average number of 

playing shifts did not experience higher linear accelerations than athletes who had a lower 

average number of playing shifts (F2,26 = 0.69; P = 0.511). No differences were noted for 

rotational acceleration (F2,26 = 0.88; P = 0.428) or the HITsp (F2,26 = 2.54; P = 0.098) for 

average number of playing shifts. 

 Weighted average number of playing shifts: For these analyses, we included the 

weighted average number of playing shifts in our statistical models. These were calculated 

very similarly to the weighted summation of playing shifts above, with some modifications 

as follows: 

 Period 1: shifts played in Period 1 
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 Period 2: [(1*shifts played in Period 2) + (0.5*shifts played in Period 1)] ÷ 1.5 

 Period 3: [(1*shifts Period 3) + (0.5*shifts Period 2) + (0.25*shifts Period 1)] ÷ 1.75 

We did not observe any relationships between the weighted average number of playing shifts 

and increases in linear acceleration (F1,2955 = 0.44; P = 0.508). Similarly, no relationships 

were found for rotational acceleration (F1,2955 = 1.05; P = 0.306) or HITsp (F1,2955 = 0.01; 

P = 0.942). Based on our tertile analyses, subjects who exhibited a higher weighted average 

number of playing shifts did not experience higher linear accelerations than athletes who had 

a lower weighted average number of playing shifts (F2,27 = 0.23; P = 0.798). No differences 

were noted for rotational acceleration (F2,27 = 0.65; P = 0.528) or the HITsp (F2,27 = 0.07; 

P = 0.935) for weighted average number of playing shifts. 

Interactions between playing period and the number of playing shift exposures 

 In an attempt to further identify the effects of playing shift exposures, we endeavored 

to study the interactions between the playing period in which the collision took place and the 

number of playing shifts (as measured by the four different methods identified in the 

previous subsections of Specific Aim 2) on the severity of head impacts sustained by our 

subjects. First, we did not observe a significant interaction between playing period and the 

absolute number of playing shifts on measures of linear acceleration (F2,2951 = 1.34; 

P = 0.262), rotational acceleration (F2,2951 = 0.54; P = 0.584), or the HITsp (F2,2951 = 1.56; 

P = 0.211). Secondly, we did not observe a significant interaction between playing period 

and the weighted summation of playing shifts on measures of linear acceleration 

(F2,2951 = 1.21; P = 0.297), rotational acceleration (F2,2951 = 0.35; P = 0.702), or the HITsp 

(F2,2951 = 1.86; P = 0.156). Next, we did not observe a significant interaction between playing 

period and the average number of playing shifts on measures of linear acceleration 
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(F2,2951 = 2.18; P = 0.113), rotational acceleration (F2,2951 = 0.88; P = 0.417), or the HITsp 

(F2,2951 = 2.54; P = 0.079). Lastly, we did not observe a significant interaction between 

playing period and the weighted average number of playing shifts on measures of linear 

acceleration (F2,2951 = 1.74; P = 0.176), rotational acceleration (F2,2951 = 0.69; P = 0.499), or 

the HITsp (F2,2951 = 2.13; P = 0.119). 

 

Specific Aim 3 

 The focus of Manuscript 2 (Appendix E), Specific Aim 3 was designed to address the 

following research question: Is there an association between biomechanical measures of head 

impact severity sustained by youth ice hockey players and infraction type at the time of the 

collision? In addition to a comparison between legal and illegal collisions, we also sought to 

answer a secondary question that included different infraction types including boarding or 

charging, checking an opponent from behind, and elbowing an opponent or deliberately 

making head contact. Data in these analyses included all Bantam impacts sustained over the 

course of the 2007-08 playing season in which collisions were observable in video footage 

and for which a collision was assessed using the CHECC List (N = 665). The information 

provided below includes all omnibus statistical findings in addition to individual means and 

95% confidence intervals. All post hoc differences were deemed significant at the P < 0.05 

level (unless otherwise specified), and are omitted from the written results for reasons of 

clarity. All these post hoc P values, however, are included in Tables 4.9 to 4.11. In addition 

to understanding the effect of illegal infractions on measures associated with head impact 

severity, we also sought to identify how infraction types affect those players who are struck 

by the offending players.   
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Legal vs. illegal collisions 

 We observed a total of 665 body collisions for which we were able to complete a 

CHECC List and assign a level of infraction. Of these collisions, 82.7% (550 of 665) were 

deemed to be legal body collisions, while the remaining 17.3% (115 of 665) were deemed to 

be illegal in nature. The specific types of illegal infractions were analyzed and are presented 

below. Generally speaking, we observed a statistically significant difference in head linear 

acceleration in impacts sustained from legal collisions compared to those sustained from 

illegal infractions (F1,13 = 8.46, P = 0.012). Linear accelerations measured during collisions 

involving illegal infractions (23.0 g; 95% CI: 21.4-24.8) were significantly greater than those 

sustained during legal collisions (21.0 g; 95% CI: 19.5-22.5). The HITsp measures for illegal 

infractions (16.8; 95% CI: 15.8-17.9) were significantly greater than those we observed for 

legal collisions (15.5; 95% CI: 14.7-16.4) in our sample (F1,13 = 6.86; P = 0.021). No 

significant differences between illegal infractions (1529.9 rad/s2; 95% CI: 1388.5-1685.8) 

and legal collisions (1417.5 rad/s2; 95% CI: 1334.8-1505.3) were observed for measures of 

rotational acceleration (F1,13 = 2.45; P = 0.142). 

Types of illegal infractions 

 In an effort to better understand head impact biomechanical measures resulting from 

different types of infractions, we further distinguished the illegal infractions into the 

following: boarding or charging, checking an opponent from behind, and elbowing an 

opponent or deliberately making head contact (with their body or playing stick). Of all 

impacts evaluated using the CHECC List, 82.7% (550 of 665) were legal body collisions, 

3.0% (20 of 665) were boarding or charging infractions, 2.9% (19 of 665) were a result of a 



 98 

check from behind, and 11.4% (76 of 665) were a result of elbowing, intentional head 

contact, or high sticking to the head.  

 We found a statistically significant difference in head linear acceleration in impacts 

sustained from legal collisions compared to those sustained from illegal infractions 

(F3,28 = 4.36, P = 0.012). Linear head accelerations due to elbowing, intentional head contact, 

or high sticking to the head (24.0 g; 95% CI: 21.9-26.2) were significantly greater than those 

observed in legal collisions (21.0 g; 95% CI: 19.5-22.5). There were no differences between 

legal collisions, those sustained from boarding or charging (21.2 g; 95% CI: 18.7-24.0), and 

checking from behind (21.4 g; 95% CI: 18.8-24.3). Rotational head accelerations differed 

across legal collisions and infraction types (F3,28 = 3.53, P = 0.028). Impacts involving 

elbowing, head contact, or high sticking infractions (1614.3 rad/s2; 95% CI: 1419.6-1835.7) 

were significantly greater than those observed for legal collisions (1418.4 rad/s2; 95% CI: 

1335.4-1506.5). Though not statistically significant, we observed a trend in the data to 

suggest differences between boarding or charging infractions (1575.9 rad/s2; 95% CI: 

1419.2-1749.9), and legal collisions (P = 0.103). Checking from behind (1197.7 rad/s2; 95% 

CI: 953.3-1504.9) did not result in any significant differences in head rotational acceleration 

compared to legal collisions. With respect to the HITsp, the data are suggestive of a 

significant difference between legal collisions and the different infraction types (F3,28 = 2.78; 

P = 0.059). Further exploring this finding, we observed impacts resulting from elbowing, 

head contact, or high sticking infractions (17.6; 95% CI: 16.0-19.2) to exhibit higher severity 

profiles than legal collisions (15.5; 95% CI: 14.7-16.4) (P = 0.010). No significant 

differences were observed between legal collisions and those sustained as a resulting from 
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boarding or charging infractions (16.8; 95% CI: 14.6-19.3) and those as a result of checking 

from behind (14.12; 95% CI: 12.0-16.7). 

Interactions between infraction types on striking and struck players 

 While our original interest was to determine whether overall differences existed in 

biomechanical measures of head impact severity between legal collisions and illegal 

infractions, we acknowledge the importance of understanding the effects of infraction types 

in the context of whether a player was delivering a body check or was the recipient of a 

collision. In so doing, we were testing the hypothesis that players who were struck as a result 

of illegal infractions would experience more pronounced measures of head impact severity 

compared to those who instigated the infraction by striking an opponent. We observed a 

significant interaction between infraction type and whether a player was striking an opponent 

or was struck by an opponent on measures of rotational acceleration (F3,15 = 4.81; P = 0.015). 

Surprisingly, players who were checked from behind sustained lower rotational head 

accelerations (1151.6 rad/s2; 95% CI: 910.0-1457.3) than those who struck opponents from 

behind (1395.9 rad/s2; 95% CI: 1200.5-1623.2). No differences were observed between 

players who were struck as a result of a boarding or charging infraction (1785.2 rad/s2; 95% 

CI: 1480.6-2152.5) and those players who boarded or charged opponents (1609.2 rad/s2; 95% 

CI: 1450.4-1785.4) (P = 0.083). Elbowing, head contact, or high sticking infractions between 

players who were struck (1738.0 rad/s2; 95% CI: 1514.4-1994.6) and those who delivered the 

collisions (1592.0 rad/s2; 95% CI: 1392.5-1820.1) were not different from each other 

(P = 0.116).  We did not observe any interaction effects between infraction type and whether 

a player delivered or received an illegal infraction at the time of the body collision for linear 

acceleration (F3,15 = 0.67; P = 0.583) or the HITsp (F3,15 = 1.07; P = 0.391). The results 
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related to the main effects of infraction type and striking player/player struck in the 

interaction models did not differ from analyses for these variables previously reported in this 

chapter.  

 

Specific Aim 4 

 The focus of Manuscript 1 (Appendix D), Specific Aim 4 was designed to address the 

following research question: Is there an effect of body collision type on biomechanical 

measures of head impact severity sustained by Bantam-aged ice hockey players? In addition 

to a comparison between anticipated and unanticipated collisions, we also sought to answer a 

secondary question that included an evaluation of head impact severity between impacts 

occurring along the playing boards and those occurring in the open ice. In anticipated 

collisions, we also sought to identify what relative body positions might be most effective in 

mitigating the severity of head impacts sustained by youth ice hockey players. Data in these 

analyses included all Bantam impacts sustained over the course of the 2007-08 playing 

season in which collisions were observable in video footage and for which a collision was 

assessed using the CHECC List (N = 666). The information provided below includes all 

omnibus statistical findings in addition to individual means and 95% confidence intervals. 

All post hoc differences were deemed significant at the P < 0.05 level (unless otherwise 

specified), and are omitted from the written results for reasons of clarity. All these post hoc P 

values, however, are included in Tables 4.12 to 4.14. 

Collisions along the boards vs. open-ice collisions 

 We observed a total of 666 body collisions for which we were able to complete a 

CHECC List and evaluate whether the collision took place along the boards or in the open 
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ice. Of these collisions, 63.3% (421 of 666) took place along the playing boards, while the 

remaining 36.8% (245 of 666) occurred in the open ice (percentages add up to 100.01% due 

to rounding). We observed a statistically significant difference in head linear acceleration in 

impacts sustained along the playing boards compared to those sustained in the open ice 

(F1,14 = 5.40, P = 0.036). Linear accelerations sustained from open-ice collisions (22.4 g; 

95% CI: 20.6-24.3) were significantly greater than those sustained from collisions along the 

playing boards (20.7 g; 95% CI: 19.4-22.2). The rotational acceleration measures for open-

ice collisions (1564.7 rad/s2; 95% CI: 1440.3-1699.9) were significantly greater than those 

we observed for collisions along the playing boards (1367.7 rad/s2; 95% CI: 1295.6-1443.9) 

in our sample (F1,14 = 12.75; P = 0.003). With respect to the HITsp, the data suggests a very 

strong trend towards a significant difference between open-ice collisions and those occurring 

along the playing boards (F1,14 = 4.38; P = 0.055). Further exploring this finding, we 

observed impacts during open-ice collisions (16.3; 95% CI: 15.3-17.3) to have a greater 

HITsp than impacts occurring along the boards (15.5; 95% CI: 14.7-16.3).  

Level of anticipation 

 We observed a total of 666 body collisions for which we were able to complete a 

CHECC List and evaluate whether the collision was anticipated or unanticipated. Of these 

collisions, 84.7% (564 of 666) were anticipated while the remaining 15.3% (102 of 666) 

were deemed to be unanticipated collisions. Though linear accelerations tended to be greater 

in unanticipated collisions (22.6 g; 95% CI: 20.9-24.5) compared to anticipated collisions 

(21.1 g; 95% CI: 19.5-22.8), the differences we observed were not statistically significant 

(F1,14 = 2.52; P = 0.135). A similar trend in the data was observed such that anticipated 

collisions (1414.3 rad/s2; 95% CI: 1330.6-1503.3) resulted in lower rotational head 
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accelerations than unanticipated collisions (1550.0 rad/s2; 95% CI: 1377.4-1744.2). These 

differences were not statistically significant (F1,14 = 2.47; P = 0.138). No significant 

differences in the HITsp between anticipated and unanticipated collisions were observed 

(F1,14 = 0.10; P = 0.755). 

 The previous analyses did not take into account the level of anticipation; that is, 

anticipated collisions were categorized as “anticipated” regardless of whether we deemed an 

athlete to be in an optimal relative body position for the impending collision or not. For the 

ensuing analyses, these same collisions were further subcategorized in an “overall 

impression” variable consisting of the three following levels: anticipated collision (with a 

good relative body position), anticipated collision (with a poor relative body position), and 

unanticipated collision. Of these collisions, 47.3% (315 of 666) were anticipated with a good 

relative body position, 37.4% (249 of 666) were anticipated with a poor relative body 

position, while the remaining 15.3% (102 of 666) were deemed to be unanticipated 

collisions. While we observed an increasing trend in the linear accelerations of head impacts 

sustained during collisions that were anticipated and where the player was in a good position 

to deliver or sustain the impact (20.7 g; 95% CI: 19.1-22.5), impacts that were anticipated in 

which the player was not in a good position (21.4 g; 95% CI: 19.6-23.4), and unanticipated 

collisions (22.6 g; 95% CI: 20.9-24.5), these differences were not statistically significant 

(F2,28 = 1.46, P = 0.249) with a 2,28 degree of freedom mixed model. Since the data 

suggested the trend just described, we subsequently performed a 1 degree-of-freedom linear 

trend, observing suggestive evidence of a trend in our data (F1,649 = 2.55; P = 0.111). No 

significant differences in rotational head accelerations (F2,28 = 1.24, P = 0.304) or HITsp 

(F2,28 = 0.70, P = 0.503) across anticipation type were observed. These analyses were 
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repeated while including BMI as a covariate and no changes in the results presented above 

were observed.  

Additional analyses 

 In an attempt to better understand the effect of high-magnitude collisions on collision 

type and level of anticipation for our three biomechanical measures of head impact severity, 

we performed additional analyses aimed at determining if impact magnitudes for select 

comparisons (anticipated vs. unanticipated; open-ice vs. along playing boards) were more 

disparate in the high-end impact range. Using linear acceleration as our criterion variable, we 

identified the 75th, 90th, and 95th percentiles. Using each percentile range as a 

predetermined cutoff value, we performed separate random intercepts general mixed linear 

models for each of our dependent measures. We repeated this procedure using HITsp as our 

criterion variable, also identifying the 75th, 90th, and 95th percentiles for this value. We 

performed separate random intercepts general mixed linear models for our dependent 

measures.  Regardless of our cutoff value, the results did not yield any significant differences 

in linear acceleration, rotational acceleration, and HITsp, between open-ice collisions and 

those occurring along the playing boards (P > 0.05). We also did not observe any significant 

differences in linear acceleration, rotational acceleration, and HITsp, between anticipated 

(good), anticipated (poor), and unanticipated collisions (P > 0.05). 

 Additionally, we explored a number of different impact ranges, particularly those 

between the 25th to 75th percentile of linear acceleration measures, as well as those between 

the 50th and 75th percentiles. For the former, we observed a statistically significant 

difference in linear acceleration (F2,27 = 4.29; P = 0.024), such that anticipated—good 

collisions (18.7 g; 95% CI: 18.0-19.4) were significantly lower than unanticipated (19.9 g; 
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95% CI: 19.1-20.7) body collisions (P = 0.007). We evaluated those collisions occurring 

between the 25th to 75th percentile of HITsp measures, as well as those between the 50th and 

75th percentiles. For the latter, we observed a significant difference in rotational acceleration 

(F2,19 = 6.83; P = 0.006), such that impacts from anticipated—good (1215.11 rad/s2; 95% CI: 

1112.6-1327.1) and anticipated—poor (1218.9 rad/s2; 95% CI: 1107.2-1341.9) collisions 

were significantly lower than unanticipated collisions (1465.7 rad/s2; 95% CI: 1240.7-

1731.4). We also observed a significant difference in HITsp (F2,19 = 4.35; P = 0.028), such 

that impacts from anticipated—good (15.2; 95% CI: 15.0-15.5) and anticipated—poor (15.3; 

95% CI: 15.1-15.5) collisions were significantly lower than unanticipated collisions (15.6; 

95% CI: 15.3-15.9). All other analyses did not yield any statistically significant findings (P > 

0.05). 

Relative body positioning 

 We performed several analyses comparing the linear accelerations, rotational 

accelerations, and the HITsp across a number of characteristics we used to describe a 

player’s relative body position at the time of a body collision. These included whether or not 

a player was looking ahead in the direction of movement, whether they appeared to be 

looking in the direction of the impending collision, whether the athlete’s knees were flexed, 

and many others (please refer to the CHECC List in Appendix B). For clarity of presentation, 

subsections delineating each of the eleven separate body collision descriptors can be found 

below. Analyses pertaining to the remaining four descriptors including overall impression of 

body collision, player involvement in body collision (striker vs. player struck), infraction 

type associated with collision, and location of body collision (open-ice vs. along playing 

boards), have previously been addressed in this chapter. With the exception of a single 
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statistically significant finding (linear acceleration) and a statistical trend (HITsp) with 

respect to using one’s legs to drive into or through a body collision, all other findings were 

not statistically significant (P > 0.05). The detailed statistical findings of these analyses, 

however, are provided below and can also be found in Tables 4.15 to 4.17. 

 Player looking ahead in direction of movement: No significant differences in linear 

head acceleration were observed between collisions where the player was looking ahead in 

the direction of movement and those in which they were not (F1,9 = 0.82; P = 0.388). No 

differences were noted for rotational acceleration (F1,9 = 0.04; P = 0.844) or the HITsp 

(F1,9 = 0.04; P = 0.845) for this body collision descriptor.   

 Player appears to be looking in direction of impending body collision: No significant 

differences in linear head acceleration were observed between collisions where the player 

was looking in the direction of the impending body collision and those in which they were 

not (F1,14 = 0.21; P = 0.658). No differences were noted for rotational acceleration 

(F1,14 = 0.07; P = 0.794) or the HITsp (F1,14 = 2.74; P = 0.120) for this body collision 

descriptor.  

 Knee flexion greater than 30 degrees at the time of body collision: No significant 

differences in linear head acceleration were observed between collisions where the player 

was in a knee-flexed position compared to those collisions in which the athlete appeared to 

be in a more knee-extended position (F1,14 < 0.01; P = 0.996). Again, no differences were 

noted for rotational acceleration (F1,14 = 0.14; P = 0.715) or the HITsp (F1,14 = 0.04; 

P = 0.846) for relative knee flexion. 

 Trunk flexion at time of body collision: Athletes positioned in trunk flexion did not 

experience lesser linear acceleration than those athletes whose trunks were in a more upright 
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position at the time of collision (F1,14 = 0.23; P = 0.639). No differences were noted for 

rotational acceleration (F1,14 = 0.09; P = 0.771) or the HITsp (F1,14 < 0.01; P = 0.961) for 

relative trunk flexion. 

 Player drives into collision with shoulders: Athletes who drive into a body collision 

with their shoulders do not experience lower linear accelerations than athletes who fail to do 

so (F1,14 = 1.05; P = 0.323). No differences were noted for rotational acceleration 

(F1,14 = 0.58; P = 0.460) or the HITsp (F1,14 = 0.26; P = 0.619) for the use of shoulders during 

a body collision. 

 Player uses elbow(s) in body collision: Athletes who drive into a body collision with 

their elbows, regardless of whether this act would be deemed an elbowing infraction, do not 

experience lower linear accelerations than athletes who restrain from using their elbows 

during a collision (F1,12 = 0.02; P = 0.901). No differences were noted for rotational 

acceleration (F1,12 = 0.42; P = 0.531) or the HITsp (F1,12 = 0.03; P = 0.869) for the use of 

elbows during a body collision. 

 Player uses hands in body collision: Youth ice hockey players who drive into a body 

collision with their hands do not experience lower linear accelerations than athletes who 

restrain from using their hands during a collision (F1,12 = 0.51; P = 0.488). No differences 

were noted for rotational acceleration (F1,12 = 0.43; P = 0.525) or the HITsp (F1,12 = 1.93; 

P = 0.190) for the use of hands during a body collision. 

 Feet are shoulder width apart at the time of the body collision: Body collisions in 

which the young player’s feet are shoulder width apart do not demonstrate lower linear 

accelerations than collisions in which this is not the case (F1,14 = 0.21; P = 0.656). Further, no 
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differences were noted for rotational acceleration (F1,14 = 0.02; P = 0.877) or the HITsp 

(F1,14 < 0.01; P = 0.986) for the use of hands during a body collision. 

 Player uses stick during collision: Athletes who use their stick during a body 

collision, regardless of whether this act would be deemed a high-sticking infraction, do not 

experience lower linear accelerations than athletes who restrain from using their sticks during 

a collision (F1,9 = 0.28; P = 0.608). No differences were noted for rotational acceleration 

(F1,9 = 0.04; P = 0.841) or the HITsp (F1,9 = 0.03; P = 0.873) for the use of sticks during a 

body collision. 

 Player uses legs to drive into or through a body collision: Athletes who drive into or 

through a body collision with their legs (20.5 g; 95% CI: 19.2-21.9) experience lower linear 

accelerations than athletes who do not use their legs (21.7 g; 95% CI: 20.1-23.5) during a 

collision (F1,13 = 4.67; P = 0.049). No differences were noted for rotational acceleration 

(F1,13 = 0.62; P = 0.446). A moderate trend observed for the HITsp (F1,13 = 3.47; P = 0.085) 

suggests that athletes who use their legs to drive through a body collision (15.3; 95% CI: 

14.6-16.1) experience lower severity profiles than those instances in which athletes do not 

use their legs to drive through a collision (16.0; 95% CI: 15.1-16.9).  

 Player delivering or receiving a pass or shot at the time of body collision: Athletes 

who are passing or shooting the puck at the time of the collision do not experience lower 

linear accelerations than athletes who have already delivered the puck prior to the body 

collision (F1,14 < 0.01; P = 0.956). No differences were noted for rotational acceleration 

(F1,14 = 0.61; P = 0.446) or the HITsp (F1,14 = 0.56; P = 0.466) for this body collision 

descriptor.  
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Specific Aim 5 

 Specific Aim 5 was designed to evaluate the effect of relative cervical muscle 

strength, cervical and head anthropometrics, general aerobic fitness, and player aggression, 

on biomechanical measures of head impact severity during games in Bantam (13- and 14-

year-old) and Midget (15- and 16-year-old) youth ice hockey players. This specific aim 

addressed the following research question: Are cervical muscle strength, cervical and head 

anthropometrics, general aerobic fitness, and player aggression, associated with the 

biomechanical measures of head impact severity sustained by youth ice hockey players? Data 

in these analyses included all Bantam and Midget impacts (N = 7718) sustained over the 

course of the 2008-09 playing season for which these anthropometric, strength, aerobic 

fitness, and aggression measures were collected for the players in our sample. The 

information provided below includes all omnibus statistical findings in addition to individual 

means and 95% confidence intervals. All post hoc differences were deemed significant at the 

P < 0.05 level (unless otherwise specified), and are omitted from the written results for 

reasons of clarity. All these post hoc P values, however, are included in tables as identified in 

the following subsections.  

Cervical muscle strength 

 We performed several analyses comparing the linear accelerations, rotational 

accelerations, and the HITsp across a number of cervical muscle strength measurements we 

collected across our sample. These included anterior neck strength, anterolateral neck 

strength, cervical rotation strength, posterolateral neck strength, and upper trapezius strength. 

For clarity of presentation, subsections delineating each of the five cervical muscle strength 

measures can be found below. With the exception of a single significant finding (HITsp) for 
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upper trapezius muscle strength, and two statistical trends (for rotational acceleration) with 

respect to anterior neck strength and posterolateral neck strength measures, all other findings 

were not statistically significant (P > 0.05). More detailed descriptions of these statistical 

findings, however, are provided below and are also included in Tables 4.18 to 4.20.  

 Anterior neck strength: Though not statistically significant (F2,29 = 3.10; P = 0.060), 

we observed rotational accelerations in athletes with the weakest anterior neck muscle 

strength (1642.9 rad/s2; 95% CI: 1530.6-1763.4) to be higher than rotational accelerations in 

the moderate (1482.6 rad/s2; 95% CI: 1409.0-1560.1) and strong (1581.4 rad/s2; 95% CI: 

1453.3-1720.7) tertiles. No significant differences between the strength groups were 

observed for linear acceleration (F2,29 = 0.95; P = 0.399) and the HITsp (F2,29 = 0.03; 

P = 0.969). 

 Anterolateral neck strength: Athletes who exhibit stronger anterolateral neck muscles 

do not experience lower linear accelerations than athletes who possess moderate to low 

anterolateral neck muscle strength (F2,29 = 0.01; P = 0.987). No differences were noted for 

rotational acceleration (F2,29 = 0.56; P = 0.579) or the HITsp (F2,29 = 0.81; P = 0.456) for 

anterolateral neck muscle strength measures.  

 Cervical rotation strength: Athletes who exhibit stronger cervical rotation muscles do 

not experience lower linear accelerations than athletes who possess moderate to low cervical 

rotation muscle strength (F2,29 = 2.14; P = 0.136). No differences were noted for rotational 

acceleration (F2,29 = 1.51; P = 0.238) or the HITsp (F2,29 = 0.98; P = 0.389) for cervical 

rotation strength measures.  

 Posterolateral neck strength: A trend observed for rotational acceleration 

(F2,29 = 2.49; P = 0.101) suggests that athletes with the weakest posterolateral neck muscle 
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strength (1631.2 rad/s2; 95% CI: 1535.4-1733.0) experienced higher rotational accelerations 

than those in the moderate (1480.1 rad/s2; 95% CI: 1383.6-1583.4) and strong (1591.4 rad/s2; 

95% CI: 1464.1-1729.7) tertiles.  No significant differences between the strength groups 

were observed for linear acceleration (F2,29 = 0.13; P = 0.883) and the HITsp (F2,29 = 0.60; 

P = 0.556). 

 Upper trapezius muscle strength: There was a significant difference in the HITsp in 

athletes across three tertiles of upper trapezius muscle strength (F2,29 = 3.71; P = 0.037). 

Athletes with the strongest upper trapezius muscle strength (14.4; 95% CI: 14.0-14.8) 

experienced higher HITsp measures than athletes with moderate (14.0; 95% CI: 13.5-14.4) or 

low (13.6; 95% CI: 13.2-14.0) upper trapezius strength. No differences were noted for linear 

acceleration (F2,29 = 0.11; P = 0.892) or rotational acceleration (F2,29 = 0.38; P = 0.689) for 

upper trapezius strength measures. 

 Additional analyses for cervical muscle strength: We performed three additional 

random intercepts general linear mixed models (one for each dependent variable) while 

including all five measures of cervical muscle strength in the same statistical model. While 

adjusting for the other four measures of neck strength, cervical rotation strength appeared to 

significantly affect linear acceleration (F2,21 = 8.79; P = 0.002). Those athletes who had the 

weakest cervical rotators experienced higher linear accelerations (18.6 g; 95% CI: 17.9-19.3) 

than those who had the strongest cervical rotation strength (17.4 g; 95% CI: 16.9-17.9) 

(P < 0.001). Participants with moderate cervical rotation strength (17.5 g; 95% CI: 17.0-18.1) 

also experienced higher linear accelerations than those with the strongest cervical rotation 

strength (P = 0.018). While adjusting for the other four measures of neck strength, athletes 

with the greatest upper trapezius muscle strength (14.4; 95% CI: 13.9-14.8) experienced 
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higher HITsp measures than athletes with moderate (13.9; 95% CI: 13.6-14.3; P = 0.034) or 

low (13.5; 95% CI: 13.1-14.0; P = 0.003) upper trapezius strength (F2,21 = 6.62; P = 0.006). 

We did not observe any changes in our findings of rotational acceleration that differed from 

what we have presented based on our individual analyses involving only one muscle group at 

a time. 

Cervical, head, and player anthropometrics 

 We performed several analyses comparing the linear accelerations, rotational 

accelerations, and the HITsp across a number of cervical and head anthropometric measures 

we collected across our sample. These included head-neck segment length, head and neck 

circumference, head and neck medial-lateral diameter, and head and neck anterior-posterior 

diameter. We also recorded player height and mass as additional anthropometric 

measurements. For clarity of presentation, subsections delineating each of the nine body, 

cervical, and head anthropometric measures can be found below. The means, 95% 

confidence intervals, and associated P values for our anthropometric data can be found in 

Tables 4.21 to 4.23. 

 Player height: Taller athletes do not experience lower linear accelerations than 

athletes who are of medium height or those who represent the shortest players in our sample 

(F2,29 = 0.41; P = 0.665). No differences were noted for rotational acceleration (F2,29 = 0.34; 

P = 0.716) or the HITsp (F2,29 = 0.39; P = 0.680) for player height measures. 

 Player mass: A significant difference in rotational acceleration (F2,29 = 6.80; 

P = 0.004) suggests that the heaviest athletes in our sample (1675.8 rad/s2; 95% CI: 1574.6-

1783.4) experienced higher rotational accelerations than the lightest athletes (1467.3 rad/s2; 

95% CI: 1408.5-1528.5).  No significant differences were observed for linear acceleration 
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(F2,29 = 0.37; P = 0.692) and the HITsp (F2,29 = 2.17; P = 0.133) between the heaviest, 

medium, and lightest, players in our sample. 

 Head-neck segment length: Athletes with the longest head-neck segment length do 

not experience lower linear accelerations than athletes who have shorter head-neck segment 

lengths in our sample (F2,29 = 0.52; P = 0.601). No differences were noted for rotational 

acceleration (F2,29 = 0.02; P = 0.982) or the HITsp (F2,29 = 0.82; P = 0.450) for head-neck 

segment length measures. 

 Neck circumference: Athletes with the greatest neck girth do not experience lower 

linear accelerations than athletes who have smaller neck girths in our sample (F2,29 = 0.82; 

P = 0.452). No differences were noted for rotational acceleration (F2,29 = 1.73; P = 0.195) or 

the HITsp (F2,29 = 0.60; P = 0.555) for neck circumferential measures. 

 Neck medial-lateral diameter: Athletes with the widest neck medial-lateral diameter 

do not experience lower linear accelerations than athletes who have smaller neck medial-

lateral diameters in our sample (F2,29 = 1.85; P = 0.175). No differences were noted for 

rotational acceleration (F2,29 = 0.37; P = 0.697) or the HITsp (F2,29 = 0.35; P = 0.706) for 

neck medial-lateral diameter measures. 

 Neck anterior-posterior diameter: A significant difference in rotational acceleration 

(F2,29 = 3.53; P = 0.043) suggests athletes with wider neck anterior-posterior diameters in our 

sample (1695.7 rad/s2; 95% CI: 1572.9-1828.2) experienced higher rotational accelerations 

than athletes with moderate neck anterior-posterior diameters (1530.8 rad/s2; 95% CI: 

1417.0-1653.7) and those with the smallest neck anterior-posterior diameters (1506.7 rad/s2; 

95% CI: 1425.7-1592.3). A trend observed for linear acceleration (F2,29 = 2.55; P = 0.095) 

suggests that athletes with the smallest neck anterior-posterior diameters (17.2 g; 95% CI: 
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16.8-17.7) experienced lower linear accelerations than those in the moderate (17.4 g; 95% 

CI: 17.0-17.8) and widest (18.2 g; 95% CI: 17.4-18.9) tertiles. No significant differences 

were observed for the HITsp (F2,29 = 2.17; P = 0.133) between neck anterior-posterior neck 

sizes across players in our sample.  

 Head circumference: A significant difference in rotational acceleration (F2,29 = 20.77; 

P < 0.001) suggests athletes with larger head circumferences in our sample (1722.7 rad/s2; 

95% CI: 1612.9-1840.0) experienced higher rotational accelerations than athletes with the 

smallest head circumferences (1409.4 rad/s2; 95% CI: 1355.5-1465.4). A significant 

difference was also observed with respect to the HITsp (F2,29 = 9.60; P < 0.001) suggesting 

athletes with larger head circumferences in our sample (14.2; 95% CI: 13.8-14.6) 

experienced a higher HITsp than athletes with the smallest head circumferences (13.4; 95% 

CI: 13.0-13.8). No significant differences were observed for linear acceleration (F2,29 = 0.01; 

P = 0.990) between head circumferential sizes across players in our sample. 

 Head medial-lateral diameter: A significant difference in rotational acceleration 

(F2,29 = 5.00; P = 0.014) suggests athletes with wider head medial-lateral diameters in our 

sample (1714.6 rad/s2; 95% CI: 1582.7-1857.5) experienced higher rotational accelerations 

than athletes with more narrow head medial-lateral diameters (1478.5 rad/s2; 95% CI: 

1402.6-1558.5). A trend in our model (P = 0.059) suggested those with moderate head 

medial-lateral diameters (1552.6 rad/s2; 95% CI: 1454.8-1657.0) also experienced lower 

rotational accelerations than those with the widest head medial-lateral diameters. No 

differences were noted for linear acceleration (F2,29 = 1.47; P = 0.248) or the HITsp 

(F2,29 = 1.24; P = 0.305) for head medial-lateral diameter measures. 
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 Head anterior-posterior diameter: A significant difference in the HITsp (F2,29 = 3.59; 

P = 0.041) suggests athletes with wider head anterior-posterior diameters in our sample 

(14.2; 95% CI: 13.8-14.6) experienced higher HITsp than athletes with more narrow head 

anterior-posterior diameters (13.4; 95% CI: 13.0-14.0). No significant differences were 

observed for linear (F2,29 = 0.16; P = 0.851) or rotational (F2,29 = 2.30; P = 0.118) 

accelerations between head anterior-posterior diameter measures across players in our 

sample. 

 Additional analyses for player head and neck anthropometrics: We performed three 

additional random intercepts general linear mixed models (one for each dependent variable) 

while including all seven measures of head and neck anthropometrics in the same statistical 

model. In so doing, we observed significant differences not recognized in our original 

analyses. After adjusting for the other anthropometric measures, we observed significant 

differences in linear acceleration for head-neck segment length (F2,17 = 7.16; P = 0.006), neck 

medial-lateral diameter (F2,17 = 4.55; P = 0.026), neck anterior-posterior diameter 

(F2,17 = 6.44; P = 0.008), and head medial-lateral diameter (F2,17 = 5.18; P = 0.018). In all 

cases, those athletes representing the smallest in terms of the respective anthropometric 

measurement experienced significantly lower linear accelerations than those with the largest 

measurements (P < 0.05).  

 While adjusting for all other anthropometric measures, we observed that athletes with 

the shortest (or more narrow) anthropometric measurements experienced significantly lower 

rotational accelerations than those with the longest (or widest) anthropometric measurements 

for the following: head-neck segment length (F2,17 = 4.34; P = 0.030), neck circumference 

(F2,17 = 4.78; P = 0.023), neck medial-lateral diameter (F2,17 = 10.57; P = 0.001), neck 
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anterior-posterior diameter (F2,17 = 6.64; P = 0.007), head circumference (F2,17 = 43.61; 

P < 0.001), and head medial-lateral diameter (F2,17 = 12.48; P = 0.001). There were no 

differences from our original analyses for HITsp when all anthropometric measurements 

were included in the same model.  

General aerobic fitness 

 We performed several analyses comparing the linear accelerations, rotational 

accelerations, and the HITsp for two measures of general aerobic we collected across our 

sample. These included the number of lengths completed during the FAST, as well as the 

gender-, height- and mass-predicted maximal aerobic power as an estimate of volume of 

maximal oxygen consumption (VO2max). For clarity of presentation, subsections delineating 

these two measures of general aerobic fitness can be found below. The means, 95% 

confidence intervals, and associated P values for our general aerobic fitness data can be 

found in Tables 4.24 to 4.26. 

 Laps attained during the Faught Aerobic Skating Test: A significant difference in 

linear acceleration was observed (F2,29 = 3.93; P = 0.031) suggesting athletes who were 

among those attaining the highest levels of the FAST in our sample (18.0 g; 95% CI: 17.4-

18.6) experienced higher linear accelerations than athletes who performed the poorest in this 

aerobic task (17.1 g; 95% CI: 16.7-17.5). A significant difference in rotational acceleration 

(F2,29 = 3.46; P = 0.045) was also observed suggesting athletes attaining the highest levels of 

the FAST (1678.6 rad/s2; 95% CI: 1573.7-1790.4) experienced higher rotational 

accelerations than athletes who performed in the lowest tertile on the aerobic test 

(1497.8 rad/s2; 95% CI: 1406.9-1594.5). No significant differences were observed for the 

HITsp (F2,29 = 0.52; P = 0.600) between the FAST performance levels in our sample. 
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 Maximal oxygen consumption (VO2max): While the actual number of laps attained on 

the FAST provides a quick evaluation for ice hockey coaches at the time of testing, it fails to 

account for player size (height and mass), gender, and other factors that may mitigate a lower 

score in one player relative to another. We used the number of laps a player attained in the 

FAST, in addition to their mass, height, and gender and introduced it into a predetermined 

prediction model to estimate VO2max (Petrella, et al., 2007). In so doing, we were able to 

evaluate the effects of general aerobic fitness while accounting for other mitigating 

anthropometric measures including player height and mass. A significant difference in linear 

acceleration was observed (F2,29 = 8.51; P < 0.001) suggesting athletes who were among the 

most aerobically fit in our sample (18.0 g; 95% CI: 17.7-18.2) experienced higher linear 

accelerations than those who represented the least aerobic fitness in our sample (17.0 g; 95% 

CI: 16.6-17.4). No significant differences were observed for rotational acceleration 

(F2,29 = 0.04; P = 0.959) or the HITsp (F2,29 = 0.30; P = 0.744) between the VO2max levels in 

our sample. 

Player aggression 

 We performed several analyses comparing the linear accelerations, rotational 

accelerations, and the HITsp for six measures of player aggression we collected across our 

sample. These included subscales of physical aggression, verbal aggression, anger, and 

hostility derived from the BPAQ. A total aggression score was also tallied representing total 

player aggression and resulting from the sum of the four BPAQ subscales. Lastly, we 

recorded PIM, a measure commonly used in ice hockey to identify aggressive players. It is a 

measure of the total number of penalty minutes assessed to an individual player across the 

entire season. For clarity of presentation, subsections delineating these six measures of player 
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aggression can be found below. The means, 95% confidence intervals, and associated P 

values for our player aggression data can be found in Tables 4.27 to 4.29. 

 Physical aggression: There was a significant difference in the HITsp between highly 

physically aggressive players (14.2; 95% CI: 13.7-14.7) and players exhibiting moderate 

physical aggressive (13.5; 95% CI: 13.2-13.9) tendencies (F2,29 = 3.43; P = 0.046). No 

differences were noted for linear acceleration (F2,29 = 0.04; P = 0.957) or rotational 

acceleration (F2,29 = 1.04; P = 0.366) for physical aggression measures. 

 Verbal aggression: Linear acceleration of head impacts did not differ between 

athletes who reported strong, moderate, or low verbal aggression tendencies (F2,29 = 1.13; 

P = 0.336). No differences were noted for rotational acceleration (F2,29 = 0.50; P = 0.612) or 

the HITsp (F2,29 = 0.35; P = 0.710) for verbal aggression measures. 

 Anger: Linear acceleration of head impacts did not differ between athletes who 

reported high, moderate, or low anger tendencies (F2,29 = 1.37; P = 0.270). No differences 

were noted for rotational acceleration (F2,29 = 0.31; P = 0.733) or the HITsp (F2,29 = 0.25; 

P = 0.784) for anger measures. 

 Hostility: Our data suggests a trend such that athlete reporting the highest amount of 

hostile tendencies (17.7 g; 95% CI: 17.3-18.0) experienced higher linear accelerations than 

those athletes reporting moderate levels (17.1 g; 95% CI: 16.5-17.6) of hostility (F2,29 = 2.59; 

P = 0.092). No differences were noted for rotational acceleration (F2,29 = 1.27; P = 0.297) or 

the HITsp (F2,29 = 1.27; P = 0.296) for hostility measures. 

 Total aggression score: When combining all subscales of the BPAQ (physical 

aggression, verbal aggression, anger, and hostility), we noted no significant differences in 

linear rotation (F2,29 = 0.16; P = 0.850), rotational acceleration (F2,29 = 0.42; P = 0.663), or 
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the HITsp (F2,29 = 0.23; P = 0.795) across the tertiles representing strong, moderate, and low 

levels of aggression in our sample. 

 Penalties in minutes: Athletes who experienced the highest number of PIM 

experienced higher rotational accelerations (1631.7 rad/s2; 95% CI: 1503.4-1771.1) than 

those athletes experiencing lower numbers of PIM (1465.2 rad/s2; 95% CI: 1382.5-1552.9) in 

our sample (F2,29 = 3.80; P = 0.034). Similarly, athletes with higher PIM (14.3; 95% CI: 

13.9-14.7) experienced greater HITsp measures than those with lower PIM (13.6; 95% CI: 

13.1-14.0) in our youth ice hockey sample (F2,29 = 3.42; P = 0.046). No significant 

differences were observed in linear acceleration between players with high, moderate, and 

low numbers of PIM in our sample (F2,29 = 0.58; P = 0.566).  

 Additional analyses for player aggression: We performed three additional random 

intercepts general mixed linear models (one for each dependent variable) while including all 

six measures of player aggression in the same statistical model. While adjusting for all other 

measures of aggression, we were able to identify a significant difference in rotational 

acceleration for our measure of physical aggression (F2,19 = 5.85; P = 0.011) such that those 

who are most physically aggressive experience significantly lower rotational acceleration 

(P = 0.003) than those who are least physically aggressive. Also while adjusting for all other 

measures of aggression, we observed significantly lower measures of HITsp (13.6; 95% CI: 

13.2-14.0) in athletes with moderate trait verbal aggression compared to those with the 

greatest amounts of trait verbal aggression (14.1; 95% CI: 13.6-14.5) (F2,19 = 3.51; 

P = 0.050). No significant differences were observed for linear acceleration (P > 0.05), and 

the results associated with all aggression measures not expanded on in this subsection are the 

same as presented in the aforementioned subsections.
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Table 4.12. Body collision type – linear acceleration. 

Frequency (percentage) of recorded impacts, mean resultant linear acceleration of head 

impacts sustained by body collision type, anticipation, and overall impression. The associated 

95% confidence intervals and p-values are provided. 

 95% CI 
 

Frequency 
of impacts1 

Linear 
acceleration (g) Lower Upper P value2 

Body collision type      
     Along playing boards 421 (63.3%) 20.7 19.4 22.2 0.036 
     Open-ice3 245 (36.8%) 22.4 20.6 24.3 — 
Anticipation      
     Anticipated 564 (84.7%) 21.1 19.5 22.8 0.135 
     Unanticipated3 102 (15.3%) 22.6 20.9 24.5 — 
Overall impression      
     Anticipated—good 315 (47.3%) 20.7 19.1 22.5 0.098 
     Anticipated—poor 249 (37.4%) 21.4 19.6 23.4 0.279 
     Unanticipated3 102 (15.3%) 22.6 20.9 24.5 — 
Total 666 21.5 20.8 22.3 — 
1 Percentages may add up to 100.01% due to rounding 
2 P values reflect significant differences relative to reference category used by random 
intercepts general mixed linear model analyses  
3 Denotes the reference category used in mixed linear models 
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Table 4.13. Body collision type – rotational acceleration. 

Frequency (percentage) of recorded impacts, mean resultant rotational acceleration of head 

impacts sustained by body collision type, anticipation, and overall impression. The associated 

95% confidence intervals and p-values are provided. 

 95% CI 
 

Frequency 
of impacts1 

Rotational 
acceleration (rad/s2) Lower Upper P value2 

Body collision type      
     Along playing boards 421 (63.3%) 1367.7 1295.6 1443.9 0.003 
     Open-ice3 245 (36.8%) 1564.7 1440.3 1699.9 — 
Anticipation      
     Anticipated 564 (84.7%) 1414.3 1330.6 1503.3 0.138 
     Unanticipated3 102 (15.3%) 1550.0 1377.4 1744.2 — 
Overall impression      
     Anticipated—good 315 (47.3%) 1409.4 1303.0 1524.4 0.145 
     Anticipated—poor 249 (37.4%) 1420.4 1312.4 1537.3 0.184 
     Unanticipated3 102 (15.3%) 1549.9 1377.3 1744.2 — 
Total 666 1439.9 1385.5 1496.4 — 
1 Percentages may add up to 100.01% due to rounding 
2 P values reflect significant differences relative to reference category used by random 
intercepts general mixed linear model analyses  
3 Denotes the reference category used in mixed linear models 
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Table 4.14. Body collision type – HITsp. 

Frequency (percentage) of recorded impacts, mean HITsp of head impacts sustained by body 

collision type, anticipation, and overall impression. The associated 95% confidence intervals 

and p-values are provided. 

 95% CI 
 

Frequency 
of impacts1 HITsp Lower Upper P value2 

Body collision type      
     Along playing boards 421 (63.3%) 15.5 14.74 16.3 0.055 
     Open-ice3 245 (36.8%) 16.3 15.3 17.3 — 
Anticipation      
     Anticipated 564 (84.7%) 15.8 15.0 16.6 0.755 
     Unanticipated3 102 (15.3%) 15.5 14.2 17.1 — 
Overall impression      
     Anticipated—good 315 (47.3%) 15.6 14.6 16.5 0.990 
     Anticipated—poor 249 (37.4%) 16.1 15.2 17.0 0.491 
     Unanticipated3 102 (15.3%) 15.5 14.2 17.1 — 
Total 666 15.8 15.3 16.3 — 
1 Percentages may add up to 100.01% due to rounding 
2 P values reflect significant differences relative to reference category used by random 
intercepts general mixed linear model analyses  
3 Denotes the reference category used in mixed linear models 
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Table 4.15. Relative body position – linear acceleration. 

Frequency (percentage) of recorded impacts, mean resultant linear acceleration of head 

impacts sustained by relative body position as evaluated by the CHECC List. The associated 

95% confidence intervals and p-values are provided. 

95% CI CHECC List item Frequency 
of impacts 

Linear 
acceleration (g) Lower Upper P value1 

Player looking ahead in direction of movement?    
     No 20 (3.0%) 22.9 19.2 27.2 0.388 
     Yes2 646 (97.0%) 21.3 19.8 22.8 — 
Player appears to be looking in direction of impending body collision?   
     No 139 (20.9%) 21.6 20.1 23.2 0.658 
     Yes2 102 (15.3%) 21.2 19.6 22.9 — 
Knee flexion greater than 30 degrees at the time of body collision?   
     No 235 (35.3%) 21.3 19.8 23.0 0.996 
     Yes2 431 (64.7%) 21.3 19.8 23.0 — 
Trunk flexion at time of body collision?   
     No 315 (47.3%) 21.7 19.7 23.8 0.639 
     Yes2 249 (37.4%) 21.1 19.3 23.0 — 
Player drives into collision with shoulders?   
     No 315 (47.3%) 21.8 20.1 23.6 0.323 
     Yes2 249 (37.4%) 20.9 19.4 22.6 — 
Player uses elbow(s) in body collision?   
     No 315 (47.3%) 21.3 19.8 22.9 0.901 
     Yes2 249 (37.4%) 21.5 18.3 25.2 — 
Player uses hands in body collision?   
     No 315 (47.3%) 21.2 19.6 22.8 0.488 
     Yes2 249 (37.4%) 22.0 19.7 24.5 — 
Feet are shoulder width apart at the time of the body collision?   
     No 315 (47.3%) 21.1 19.2 23.2 0.656 
     Yes2 249 (37.4%) 21.4 20.0 22.9 — 
Player uses stick during collision?   
     No 315 (47.3%) 21.3 19.9 22.9 0.608 
     Yes2 249 (37.4%) 20.3 16.2 25.3 — 
Player uses legs to drive into or through a body collision?   
     No 315 (47.3%) 21.7 20.1 23.5 0.049 
     Yes2 249 (37.4%) 20.5 19.2 21.9 — 
Player delivering or receiving a pass/shot at the time of body collision?   
     No 315 (47.3%) 21.3 19.9 22.9 0.956 
     Yes2 249 (37.4%) 21.3 19.6 23.1 — 
Total 666 21.5 20.8 22.3 — 
1 P values reflect significant differences relative to reference category2 used by random 
intercepts general mixed linear model analyses  
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Table 4.16. Relative body position – rotational acceleration. 

Frequency (percentage) of recorded impacts, mean resultant rotational acceleration of head 

impacts sustained by relative body position as evaluated by the CHECC List. The associated 

95% confidence intervals and p-values are provided. 

95% CI CHECC List item Frequency 
of impacts 

Rotational accel. 
(rad/s2) Lower Upper P value1 

Player looking ahead in direction of movement?    
     No 20 (3.0%) 1419.3 1274.4 1580.8 0.844 
     Yes2 646 (97.0%) 1435.7 1354.6 1521.6 — 
Player appears to be looking in direction of impending body collision?   
     No 139 (20.9%) 1446.2 1335.7 1565.9 0.794 
     Yes2 102 (15.3%) 1432.1 1348.0 1521.5 — 
Knee flexion greater than 30 degrees at the time of body collision?   
     No 235 (35.3%) 1448.4 1330.3 1577.0 0.715 
     Yes2 431 (64.7%) 1427.9 1347.5 1513.0 — 
Trunk flexion at time of body collision?   
     No 315 (47.3%) 1450.2 1329.4 1581.9 0.771 
     Yes2 249 (37.4%) 1426.9 1324.4 1537.4 — 
Player drives into collision with shoulders?   
     No 315 (47.3%) 1463.9 1350.0 1587.5 0.460 
     Yes2 249 (37.4%) 1411.8 1314.2 1516.7 — 
Player uses elbow(s) in body collision?   
     No 315 (47.3%) 1430.8 1344.8 1522.3 0.531 
     Yes2 249 (37.4%) 1516.5 1283.7 1791.6 — 
Player uses hands in body collision?   
     No 315 (47.3%) 1422.9 1329.4 1522.9 0.525 
     Yes2 249 (37.4%) 1487.8 1318.0 1679.5 — 
Feet are shoulder width apart at the time of the body collision?   
     No 315 (47.3%) 1428.3 1316.7 1549.3 0.877 
     Yes2 249 (37.4%) 1438.1 1347.2 1535.1 — 
Player uses stick during collision?   
     No 315 (47.3%) 1434.0 1349.4 1523.9 0.841 
     Yes2 249 (37.4%) 1476.5 1098.0 1985.4 — 
Player uses legs to drive into or through a body collision?   
     No 315 (47.3%) 1424.8 1326.6 1530.3 0.446 
     Yes2 249 (37.4%) 1455.6 1393.3 1520.8 — 
Player delivering or receiving a pass/shot at the time of body collision?   
     No 315 (47.3%) 1420.3 1358.5 1485.0 0.446 
     Yes2 249 (37.4%) 1456.0 1334.6 1588.4 — 
Total 666 1439.9 1385.5 1496.4 — 
1 P values reflect significant differences relative to reference category2 used by random 
intercepts general mixed linear model analyses  
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Table 4.17. Relative body position – HITsp. 

Frequency (percentage) of recorded impacts, mean HITsp of head impacts sustained by 

relative body position as evaluated by the CHECC List. The associated 95% confidence 

intervals and p-values are provided. 

95% CI CHECC List item Frequency 
of impacts HITsp Lower Upper P value1 

Player looking ahead in direction of movement?    
     No 20 (3.0%) 15.9 14.1 18.0 0.845 
     Yes2 646 (97.0%) 15.7 15.0 16.6 — 
Player appears to be looking in direction of impending body collision?   
     No 139 (20.9%) 15.2 14.3 16.2 0.120 
     Yes2 102 (15.3%) 15.9 15.1 16.7 — 
Knee flexion greater than 30 degrees at the time of body collision?   
     No 235 (35.3%) 15.8 14.9 16.8 0.846 
     Yes2 431 (64.7%) 15.7 14.9 16.6 — 
Trunk flexion at time of body collision?   
     No 315 (47.3%) 15.8 14.9 16.7 0.961 
     Yes2 249 (37.4%) 15.7 14.8 16.8 — 
Player drives into collision with shoulders?   
     No 315 (47.3%) 15.8 15.1 16.7 0.619 
     Yes2 249 (37.4%) 15.7 14.7 16.6 — 
Player uses elbow(s) in body collision?   
     No 315 (47.3%) 15.8 14.9 16.6 0.869 
     Yes2 249 (37.4%) 15.5 13.4 18.0 — 
Player uses hands in body collision?   
     No 315 (47.3%) 15.5 14.7 16.4 0.190 
     Yes2 249 (37.4%) 16.6 15.1 18.2 — 
Feet are shoulder width apart at the time of the body collision?   
     No 315 (47.3%) 15.7 14.8 16.7 0.986 
     Yes2 249 (37.4%) 15.7 14.9 16.6 — 
Player uses stick during collision?   
     No 315 (47.3%) 15.7 14.9 16.6 0.873 
     Yes2 249 (37.4%) 15.8 14.4 17.5 — 
Player uses legs to drive into or through a body collision?   
     No 315 (47.3%) 16.0 15.1 16.9 0.085 
     Yes2 249 (37.4%) 15.3 14.6 16.1 — 
Player delivering or receiving a pass/shot at the time of body collision?   
     No 315 (47.3%) 15.9 15.0 16.7 0.466 
     Yes2 249 (37.4%) 15.6 14.7 16.5 — 
Total 666 15.8 15.3 16.3 — 
1 P values reflect significant differences relative to reference category2 used by random 
intercepts general mixed linear model analyses  
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Table 4.18. Cervical muscle strength – linear acceleration. 

Frequency (percentage) of recorded impacts, mean resultant linear acceleration of head 

impacts across the tertile measures of cervical muscle strength. The associated 95% 

confidence intervals and p-values are provided. 

95% CI Cervical muscle group Frequency of 
impacts 

Linear 
acceleration (g) Lower Upper P value1 

Anterior neck      
     Weak 2679 (34.5%) 17.3 16.8 17.9 0.217 
     Moderate 2585 (33.3%) 17.4 17.0 17.9 0.264 
     Strong2 2506 (32.3%) 17.9 17.3 18.5 — 
Anterolateral neck      
     Weak 2514 (32.4%) 17.6 16.9 18.4 0.895 
     Moderate 2695 (34.7%) 17.5 17.2 17.9 0.978 
     Strong2 2561 (33.0%) 17.5 17.1 18.0 — 
Cervical rotation      
     Weak 2487 (32.0%) 17.9 17.1 18.7 0.115 
     Moderate 2736 (35.2%) 17.6 17.3 18.0 0.084 
     Strong2 2547 (32.8%) 17.2 16.8 17.6 — 
Posterolateral neck      
     Weak 2572 (33.1%) 17.7 16.9 18.4 0.687 
     Moderate 2574 (33.1%) 17.5 17.1 17.8 0.950 
     Strong2 2624 (33.8%) 17.5 17.0 18.0 — 
Upper trapezius      
     Weak 2590 (33.3%) 17.6 16.9 18.3 0.758 
     Moderate 2540 (32.7%) 17.6 17.2 18.0 0.637 
     Strong2 2640 (34.0%) 17.4 16.8 18.1 — 
Total 7770 17.5 17.3 17.7 — 
1 P values reflect significant differences relative to reference category used by random 
intercepts general mixed linear model analyses  
2 Denotes the reference category used in mixed linear models 
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Table 4.19. Cervical muscle strength – rotational acceleration. 

Frequency (percentage) of recorded impacts, mean resultant rotational acceleration of head 

impacts across the tertile measures of cervical muscle strength. The associated 95% 

confidence intervals and p-values are provided. 

95% CI Cervical muscle group Frequency of 
impacts 

Rotational 
accel. (rad/s2) Lower Upper P value1 

Anterior neck      
     Weak 2679 (34.5%) 1642.9 1530.6 1763.3 0.485 
     Moderate 2585 (33.3%) 1482.6 1409.0 1560.1 0.191 
     Strong2 2506 (32.3%) 1581.4 1453.3 1720.7 — 
Anterolateral neck      
     Weak 2514 (32.4%) 1597.0 1496.9 1703.9 0.827 
     Moderate 2695 (34.7%) 1516.8 1401.7 1641.4 0.459 
     Strong2 2561 (33.0%) 1579.7 1461.8 1707.2 — 
Cervical rotation      
     Weak 2487 (32.0%) 1641.6 1536.8 1753.5 0.268 
     Moderate 2736 (35.2%) 1513.5 1406.7 1628.5 0.613 
     Strong2 2547 (32.8%) 1553.7 1441.7 1674.3 — 
Posterolateral neck      
     Weak 2572 (33.1%) 1631.2 1535.4 1733.0 0.627 
     Moderate 2574 (33.1%) 1480.1 1383.6 1583.4 0.177 
     Strong2 2624 (33.8%) 1591.4 1464.1 1729.7 — 
Upper trapezius      
     Weak 2590 (33.3%) 1527.1 1421.7 1640.2 0.455 
     Moderate 2540 (32.7%) 1579.2 1483.0 1681.6 0.853 
     Strong2 2640 (34.0%) 1595.8 1451.2 1754.8 — 
Total 7770 1587.7 1565.4 1610.2 — 
1 P values reflect significant differences relative to reference category used by random 
intercepts general mixed linear model analyses  
2 Denotes the reference category used in mixed linear models 
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Table 4.20. Cervical muscle strength – HITsp. 

Frequency (percentage) of recorded impacts, mean HITsp of head impacts across the tertile 

measures of cervical muscle strength. The associated 95% confidence intervals and p-values 

are provided. 

95% CI Cervical muscle group Frequency of 
impacts HITsp Lower Upper P value1 

Anterior neck      
     Weak 2679 (34.5%) 14.0 13.5 14.5 0.992 
     Moderate 2585 (33.3%) 13.9 13.5 14.3 0.840 
     Strong2 2506 (32.3%) 14.0 13.5 14.5 — 
Anterolateral neck      
     Weak 2514 (32.4%) 13.9 13.5 14.3 0.401 
     Moderate 2695 (34.7%) 13.8 13.2 14.3 0.228 
     Strong2 2561 (33.0%) 14.2 13.7 14.6 — 
Cervical rotation      
     Weak 2487 (32.0%) 14.1 13.6 14.6 0.965 
     Moderate 2736 (35.2%) 13.7 13.2 14.2 0.218 
     Strong2 2547 (32.8%) 14.1 13.7 14.5 — 
Posterolateral neck      
     Weak 2572 (33.1%) 14.0 13.7 14.4 0.941 
     Moderate 2574 (33.1%) 13.7 13.2 14.3 0.329 
     Strong2 2624 (33.8%) 14.1 13.6 14.5 — 
Upper trapezius      
     Weak 2590 (33.3%) 13.6 13.2 14.0 0.011 
     Moderate 2540 (32.7%) 14.0 13.5 14.4 0.140 
     Strong2 2640 (34.0%) 14.4 14.0 14.8 — 
Total 7770 14.0 13.9 14.1 — 
1 P values reflect significant differences relative to reference category used by random 
intercepts general mixed linear model analyses  
2 Denotes the reference category used in mixed linear models 
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Table 4.21. Head, neck, and player anthropometrics – linear acceleration. 

Frequency (percentage) of recorded impacts, mean resultant linear acceleration of head 
impacts across the tertile measures of cervical, head, and player anthropometrics. The 
associated 95% confidence intervals and p-values are provided. 

95% CI Anthropometric measure Frequency of 
impacts 

Linear 
acceleration (g) Lower Upper P value1 

Player height      
     Short 2595 (33.4%) 17.5 17.0 18.0 0.744 
     Moderate 2930 (37.7%) 17.7 17.2 18.3 0.388 
     Tall2 2245 (28.9%) 17.4 16.8 18.0 — 
Player mass      
     Light 2566 (33.0%) 17.4 16.9 17.9 0.466 
     Moderate 2481 (31.9%) 17.6 17.3 17.9 0.796 
     Heavy2 2723 (35.0%) 17.7 17.0 18.4 — 
Head-neck segment length      
     Short 3057 (39.3%) 17.6 17.2 18.0 0.835 
     Moderate 1798 (23.1%) 17.3 16.7 17.9 0.373 
     Long2 2915 (37.5%) 17.7 17.0 18.3 — 
Neck circumference      
     Short 2870 (36.9%) 17.4 16.9 17.8 0.666 
     Moderate 2357 (30.3%) 17.9 17.2 18.5 0.415 
     Long2 2543 (32.7%) 17.5 17.0 18.1 — 
Neck medial-lateral diameter     
     Narrow 2679 (34.5%) 17.9 17.6 18.1 0.100 
     Moderate 2494 (32.1%) 17.4 16.8 18.2 0.808 
     Wide2 2597 (33.4%) 17.3 16.8 17.9 — 
Neck anterior-posterior diameter     
     Narrow 2917 (37.5%) 17.2 16.8 17.7 0.033 
     Moderate 2419 (31.1%) 17.4 17.0 17.8 0.070 
     Wide2 2434 (31.3%) 18.2 17.4 18.9 — 
Head circumference      
     Short 2787 (35.9%) 17.6 17.0 18.1 0.983 
     Moderate 2266 (29.2%) 17.5 16.9 18.1 0.891 
     Long2 2717 (35.0%) 17.6 17.0 18.1 — 
Head medial-lateral diameter     
     Narrow 2505 (32.2%) 17.6 16.9 18.3 0.502 
     Moderate 2957 (38.1%) 17.3 16.9 17.8 0.098 
     Wide2 2308 (29.7%) 17.9 17.4 18.4 — 
Head anterior-posterior diameter     
     Narrow 2360 (30.4%) 17.6 17.0 18.3 0.596 
     Moderate 2965 (38.2%) 17.6 17.1 18.1 0.692 
     Wide2 2445 (31.5%) 17.4 16.9 17.9 — 
Total 7770 17.5 17.3 17.7 — 
1 P values reflect significant differences relative to reference category2 used by random 
intercepts general mixed linear model analyses  
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Table 4.22. Head, neck, and player anthropometrics – rotational acceleration. 

Frequency (percentage) of recorded impacts, mean resultant rotational acceleration of head 
impacts across the tertile measures of cervical, head, and player anthropometrics. The 
associated 95% confidence intervals and p-values are provided. 

95% CI Anthropometric measure Frequency of 
impacts 

Rotational 
accel. (rad/s2) Lower Upper P value1 

Player height      
     Short 2595 (33.4%) 1537.5 1426.7 1656.9 0.421 
     Moderate 2930 (37.7%) 1562.4 1460.7 1671.3 0.589 
     Tall2 2245 (28.9%) 1607.7 1479.4 1747.2 — 
Player mass      
     Light 2566 (33.0%) 1467.3 1408.5 1528.5 0.001 
     Moderate 2481 (31.9%) 1569.3 1422.3 1731.5 0.258 
     Heavy2 2723 (35.0%) 1675.8 1574.6 1783.4 — 
Head-neck segment length      
     Short 3057 (39.3%) 1573.5 1448.3 1709.5 0.852 
     Moderate 1798 (23.1%) 1564.0 1471.7 1662.0 0.932 
     Long2 2915 (37.5%) 1557.9 1454.2 1669.1 — 
Neck circumference      
     Short 2870 (36.9%) 1500.8 1418.3 1588.1 0.091 
     Moderate 2357 (30.3%) 1586.2 1466.4 1715.7 0.576 
     Long2 2543 (32.7%) 1637.9 1504.0 1783.7 — 
Neck medial-lateral diameter     
     Narrow 2679 (34.5%) 1546.5 1438.9 1662.2 0.995 
     Moderate 2494 (32.1%) 1602.5 1501.4 1710.5 0.501 
     Wide2 2597 (33.4%) 1545.9 1418.8 1684.5 — 
Neck anterior-posterior diameter     
     Narrow 2917 (37.5%) 1506.7 1425.7 1592.3 0.015 
     Moderate 2419 (31.1%) 1530.8 1417.0 1653.7 0.062 
     Wide2 2434 (31.3%) 1695.7 1572.9 1828.2 — 
Head circumference      
     Short 2787 (35.9%) 1409.4 1355.5 1465.4 < 0.001 
     Moderate 2266 (29.2%) 1638.2 1565.8 1713.9 0.208 
     Long2 2717 (35.0%) 1722.7 1612.9 1840.0 — 
Head medial-lateral diameter     
     Narrow 2505 (32.2%) 1478.5 1402.6 1558.5 0.004 
     Moderate 2957 (38.1%) 1552.6 1454.8 1657.0 0.059 
     Wide2 2308 (29.7%) 1714.6 1582.7 1857.5 — 
Head anterior-posterior diameter     
     Narrow 2360 (30.4%) 1487.7 1367.9 1617.9 0.046 
     Moderate 2965 (38.2%) 1561.5 1473.3 1655.1 0.170 
     Wide2 2445 (31.5%) 1659.1 1552.9 1772.6 — 
Total 7770 1587.7 1565.4 1610.2 — 
1 P values reflect significant differences relative to reference category2 used by random 
intercepts general mixed linear model analyses  
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Table 4.23. Head, neck, and player anthropometrics – HITsp. 

Frequency (percentage) of recorded impacts, mean HITsp of head impacts across the tertile 
measures of cervical, head, and player anthropometrics. The associated 95% confidence 
intervals and p-values are provided. 

95% CI Anthropometric measure Frequency of 
impacts HITsp Lower Upper P value1 

Player height      
     Short 2595 (33.4%) 13.8 13.3 14.3 0.384 
     Moderate 2930 (37.7%) 14.0 13.6 14.4 0.683 
     Tall2 2245 (28.9%) 14.1 13.6 14.6 — 
Player mass      
     Light 2566 (33.0%) 13.8 13.3 14.2 0.069 
     Moderate 2481 (31.9%) 13.8 13.2 14.4 0.146 
     Heavy2 2723 (35.0%) 14.3 13.9 14.7 — 
Head-neck segment length      
     Short 3057 (39.3%) 14.1 13.6 14.6 0.687 
     Moderate 1798 (23.1%) 13.7 13.4 14.1 0.433 
     Long2 2915 (37.5%) 13.9 13.5 14.4 — 
Neck circumference      
     Short 2870 (36.9%) 13.8 13.4 14.3 0.287 
     Moderate 2357 (30.3%) 13.9 13.4 14.4 0.534 
     Long2 2543 (32.7%) 14.1 13.7 14.6 — 
Neck medial-lateral diameter     
     Narrow 2679 (34.5%) 14.1 13.7 14.5 0.414 
     Moderate 2494 (32.1%) 13.9 13.4 14.4 0.753 
     Wide2 2597 (33.4%) 13.8 13.3 14.3 — 
Neck anterior-posterior diameter     
     Narrow 2917 (37.5%) 13.8 13.4 14.3 0.232 
     Moderate 2419 (31.1%) 13.8 13.5 14.2 0.226 
     Wide2 2434 (31.3%) 14.2 13.7 14.7 — 
Head circumference      
     Short 2787 (35.9%) 13.4 13.0 13.8 0.006 
     Moderate 2266 (29.2%) 14.5 14.1 14.8 0.251 
     Long2 2717 (35.0%) 14.2 13.8 14.6 — 
Head medial-lateral diameter     
     Narrow 2505 (32.2%) 13.7 13.4 14.1 0.133 
     Moderate 2957 (38.1%) 14.0 13.5 14.5 0.507 
     Wide2 2308 (29.7%) 14.2 13.7 14.7 — 
Head anterior-posterior diameter     
     Narrow 2360 (30.4%) 13.4 13.0 14.0 0.026 
     Moderate 2965 (38.2%) 14.2 13.9 14.6 0.876 
     Wide2 2445 (31.5%) 14.2 13.8 14.6 — 
Total 7770 14.0 13.9 14.1 — 
1 P values reflect significant differences relative to reference category2 used by random 
intercepts general mixed linear model analyses  
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Table 4.24. General aerobic fitness – linear acceleration. 

Frequency (percentage) of recorded impacts, mean resultant linear acceleration of head 

impacts across the tertile measures of general aerobic fitness. The associated 95% confidence 

intervals and p-values are provided. 

95% CI Aerobic fitness measure Frequency of 
impacts 

Linear 
acceleration (g) Lower Upper P value1 

Laps complete during the FAST     
     Least 2480 (31.9%) 17.1 16.7 17.5 0.013 
     Moderate 2653 (34.1%) 17.7 17.1 18.3 0.501 
     Most2 2637 (33.9%) 18.0 17.4 18.6 — 
Maximal oxygen consumption (VO2max)     
     Least 2703 (34.8%) 17.0 16.6 17.4 < 0.001 
     Moderate 2493 (32.1%) 17.8 17.1 18.6 0.731 
     Most2 2574 (33.1%) 18.0 17.7 18.2 — 
Total 7770 17.5 17.3 17.7 — 
1 P values reflect significant differences relative to reference category used by random 
intercepts general mixed linear model analyses  
2 Denotes the reference category used in mixed linear models 
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Table 4.25. General aerobic fitness – rotational acceleration. 

Frequency (percentage) of recorded impacts, mean resultant rotational acceleration of head 

impacts across the tertile measures of general aerobic fitness. The associated 95% confidence 

intervals and p-values are provided. 

95% CI Aerobic fitness measure Frequency of 
impacts 

Rotational 
accel. (rad/s2) Lower Upper P value1 

Laps complete during the FAST     
     Least 2480 (31.9%) 1497.8 1406.9 1594.5 0.015 
     Moderate 2653 (34.1%) 1552.8 1435.1 1680.1 0.128 
     Most2 2637 (33.9%) 1678.6 1573.7 1790.4 — 
Maximal oxygen consumption (VO2max)     
     Least 2703 (34.8%) 1566.3 1469.4 1669.6 0.860 
     Moderate 2493 (32.1%) 1577.5 1460.9 1703.4 0.773 
     Most2 2574 (33.1%) 1551.8 1424.2 1690.9 — 
Total 7770 1587.7 1565.4 1610.2 — 
1 P values reflect significant differences relative to reference category used by random 
intercepts general mixed linear model analyses  
2 Denotes the reference category used in mixed linear models 
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Table 4.26. General aerobic fitness – HITsp. 

Frequency (percentage) of recorded impacts, mean HITsp of head impacts across the tertile 

measures of general aerobic fitness. The associated 95% confidence intervals and p-values 

are provided. 

95% CI Aerobic fitness measure Frequency of 
impacts HITsp Lower Upper P value1 

Laps complete during the FAST     
     Least 2480 (31.9%) 13.8 13.3 14.3 0.557 
     Moderate 2653 (34.1%) 14.1 13.7 14.6 0.587 
     Most2 2637 (33.9%) 14.0 13.6 14.3 — 
Maximal oxygen consumption (VO2max)     
     Least 2703 (34.8%) 13.8 13.4 14.2 0.505 
     Moderate 2493 (32.1%) 14.0 13.5 14.5 0.906 
     Most2 2574 (33.1%) 14.0 13.5 14.6 — 
Total 7770 14.0 13.9 14.1 — 
1 P values reflect significant differences relative to reference category used by random 
intercepts general mixed linear model analyses  
2 Denotes the reference category used in mixed linear models 
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Table 4.27. Player aggression – linear acceleration. 

Frequency (percentage) of recorded impacts, mean resultant linear acceleration of head 

impacts across the tertile measures of player aggression. The associated 95% confidence 

intervals and p-values are provided. 

95% CI Aggression measure Frequency of 
impacts 

Linear 
acceleration (g) Lower Upper P value1 

Physical aggression      
     Least 2664 (34.3%) 17.5 17.0 18.0 0.772 
     Moderate 2525 (32.5%) 17.6 17.0 18.2 0.922 
     Greatest2 2581 (33.2%) 17.6 17.0 18.2 — 
Verbal aggression      
     Least 2272 (29.2%) 17.7 17.3 18.3 0.810 
     Moderate 2949 (38.0%) 17.3 16.9 17.7 0.369 
     Greatest2 2549 (32.8%) 17.6 17.0 18.3 — 
Anger      
     Least 2719 (35.0%) 17.9 17.4 18.3 0.176 
     Moderate 2319 (29.8%) 17.3 16.6 18.0 0.750 
     Greatest2 2732 (35.2%) 17.4 17.0 17.9 — 
Hostility      
     Least 2917 (37.5%) 17.9 17.3 18.5 0.533 
     Moderate 2273 (29.3%) 17.1 16.5 17.6 0.065 
     Greatest2 2580 (33.2%) 17.7 17.3 18.0 — 
Total aggression score      
     Least 2676 (34.4%) 17.6 17.2 18.1 0.579 
     Moderate 2669 (34.4%) 17.5 16.8 18.2 0.913 
     Greatest2 2425 (31.2%) 17.5 17.0 17.9 — 
Penalties in minutes      
     Least 2395 (30.8%) 17.4 17.0 17.8 0.732 
     Moderate 2538 (32.7%) 17.8 17.1 18.5 0.483 
     Greatest2 2837 (36.5%) 17.5 17.0 18.1 — 
Total 7770 17.5 17.3 17.7 — 
1 P values reflect significant differences relative to reference category used by random 
intercepts general mixed linear model analyses  
2 Denotes the reference category used in mixed linear models 
 



 146 

Table 4.28. Player aggression – rotational acceleration. 

Frequency (percentage) of recorded impacts, mean resultant rotational acceleration of head 

impacts across the tertile measures of player aggression. The associated 95% confidence 

intervals and p-values are provided. 

95% CI Aggression measure Frequency of 
impacts 

Rotational 
accel. (rad/s2) Lower Upper P value1 

Physical aggression      
     Least 2664 (34.3%) 1581.6 1493.8 1674.6 0.596 
     Moderate 2525 (32.5%) 1505.0 1394.7 1624.1 0.173 
     Greatest2 2581 (33.2%) 1622.7 1498.6 1757.2 — 
Verbal aggression      
     Least 2272 (29.2%) 1568.3 1458.2 1686.9 0.604 
     Moderate 2949 (38.0%) 1605.5 1497.8 1721.0 0.326 
     Greatest2 2549 (32.8%) 1526.3 1413.6 1648.0 — 
Anger      
     Least 2719 (35.0%) 1602.0 1486.0 1727.0 0.502 
     Moderate 2319 (29.8%) 1548.3 1450.5 1652.8 0.961 
     Greatest2 2732 (35.2%) 1544.5 1425.6 1673.3 — 
Hostility      
     Least 2917 (37.5%) 1631.4 1520.4 1750.4 0.124 
     Moderate 2273 (29.3%) 1564.4 1469.5 1665.5 0.419 
     Greatest2 2580 (33.2%) 1502.1 1386.5 1627.2 — 
Total aggression score      
     Least 2676 (34.4%) 1603.5 1502.3 1711.6 0.623 
     Moderate 2669 (34.4%) 1539.8 1442.7 1643.4 0.827 
     Greatest2 2425 (31.2%) 1559.1 1417.3 1715.1 — 
Penalties in minutes      
     Least 2395 (30.8%) 1465.2 1382.5 1552.9 0.037 
     Moderate 2538 (32.7%) 1622.2 1520.1 1731.1 0.910 
     Greatest2 2837 (36.5%) 1631.7 1503.4 1771.1 — 
Total 7770 1587.7 1565.4 1610.2 — 
1 P values reflect significant differences relative to reference category used by random 
intercepts general mixed linear model analyses  
2 Denotes the reference category used in mixed linear models 
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Table 4.29. Player aggression – HITsp. 

Frequency (percentage) of recorded impacts, mean HITsp of head impacts across the tertile 

measures of player aggression. The associated 95% confidence intervals and p-values are 

provided. 

95% CI Aggression measure Frequency of 
impacts HITsp Lower Upper P value1 

Physical aggression      
     Least 2664 (34.3%) 14.2 13.7 14.6 0.877 
     Moderate 2525 (32.5%) 13.5 13.2 13.9 0.037 
     Greatest2 2581 (33.2%) 14.2 13.7 14.7 — 
Verbal aggression      
     Least 2272 (29.2%) 13.9 13.5 14.4 0.723 
     Moderate 2949 (38.0%) 14.1 13.7 14.5 0.421 
     Greatest2 2549 (32.8%) 13.8 13.3 14.3 — 
Anger      
     Least 2719 (35.0%) 14.0 13.5 14.4 0.642 
     Moderate 2319 (29.8%) 14.0 13.6 14.5 0.496 
     Greatest2 2732 (35.2%) 13.8 13.4 14.3 — 
Hostility      
     Least 2917 (37.5%) 14.2 13.7 14.6 0.408 
     Moderate 2273 (29.3%) 13.7 13.3 14.1 0.581 
     Greatest2 2580 (33.2%) 13.9 13.4 14.4 — 
Total aggression score      
     Least 2676 (34.4%) 14.1 13.6 14.5 0.725 
     Moderate 2669 (34.4%) 13.8 13.4 14.3 0.793 
     Greatest2 2425 (31.2%) 13.9 13.4 14.5 — 
Penalties in minutes      
     Least 2395 (30.8%) 13.6 13.1 14.0 0.014 
     Moderate 2538 (32.7%) 14.0 13.6 14.5 0.312 
     Greatest2 2837 (36.5%) 14.3 13.9 14.7 — 
Total 7770 14.0 13.9 14.1 — 
1 P values reflect significant differences relative to reference category used by random 
intercepts general mixed linear model analyses  
2 Denotes the reference category used in mixed linear models 
 



 

 

CHAPTER V 

GENERAL DISCUSSION 

 

Most contemporary research in the field of mild TBI has taken place in laboratory 

settings. It is often difficult to research this injury in the general population since it occurs in 

many domains (e.g. motor vehicle accidents, workplace injuries, etc), and is not confined to 

the sports arena. With recent developments in real-time head impact tracking systems, 

researchers are now able to better elucidate the issue of mild TBI in the sports arena, with the 

overall potential of impacting health care change for all patients afflicted with this condition. 

Most of what clinicians understand about mild TBI is a direct result of what is observed in 

patients following a mild TBI. Increased symptomatology, decreased postural control, 

decreased cognitive function, and increased risk of subsequent injuries, are all characteristics 

of mild TBI researchers can only study once a patient has already sustained the injury. The 

study of biomechanics and the causes of mild TBI are likely the most important pieces of this 

clinical puzzle. Understanding these areas will directly improve equipment development, 

educational interventions, and rule changes, with the emphasis on improving safety in sports 

and other recreational activities.  

To our knowledge, this dissertation was the first prospective study designed 

specifically to understand the multifaceted nature of descriptive, intrinsic, and extrinsic 

factors that clinicians have long believed to be associated with mild TBI, and to relate these 

factors to a sample of young, uninjured ice hockey players. On average, we observed head 
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impacts in our sample of youth ice hockey players to be only slightly lower than what we 

have observed in Division I collegiate football players (Mihalik, et al., 2007). This may be of 

concern since the hockey players we have studied are shorter and lighter in stature than the 

football players we have studied, with the added risk of injury inherent to the developing 

brain. While we acknowledge little is known regarding the tolerance of the developing brain 

to head impacts, we postulate children may be less able to withstand repetitive subconcussive 

head impacts than their adult counterparts (Ommaya, Goldsmith, & Thibault, 2002).  

 

Descriptive factors (Specific Aim 1) 

 This dissertation endeavored to evaluate how a number of descriptive factors 

associated with participation in youth ice hockey affect biomechanical measures of head 

impact severity including linear acceleration, rotational acceleration, and HITsp. These 

descriptive factors included playing position (defensemen vs. forwards), event type 

(game/scrimmage vs. practice), location of head impact (i.e. back, front, side, or top), and the 

striking nature of the subject involved in the body collision (striker vs. player struck). 

Effects of player position 

 We followed 52 players over 2 complete seasons (Bantam = 31; Midget = 21) 

consisting of a total of 151 games and 137 practices, collecting in excess of 12,400 head 

impacts. This specific aim builds on our earlier work, where we reported a comparison of 

linear acceleration across playing position (Mihalik, Guskiewicz, et al., 2008). We found a 

similar finding in that linear acceleration did not differ between defensemen and forwards in 

our sample, adding also that no differences existed for measures of rotational acceleration 

and HITsp across the two playing positions. This agreed with our stated hypotheses. Due to 
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the two-piece design of modern goaltender facial protection, we were unable to instrument a 

sufficient number of goaltenders in our sample to draw any meaningful comparisons within 

our positional data. Our study would appear to disagree with another report in which a single 

high school hockey player was instrumented and observed over a period of 6.52 player-hours 

(Naunheim, Standeven, Richter, & Lewis, 2000). Of the 161 impacts collected, Naunheim et 

al. reported a mean peak linear acceleration as high as 35.0 g, which contrasts greatly to the 

mean we reported in our sample of defensemen (18.3 g). Our data clearly do not seem to 

support a mean linear acceleration of this magnitude. A number of possibilities exist that may 

account for these differences. First, our project would appear to have accounted for a much 

higher sample (N = 19) of defensemen. Secondly, since head impact data are usually heavily 

skewed toward low-magnitude impacts, we employed the appropriate data transformations 

necessary to correctly analyze and report our measures. Next, Naunheim et al. did not use 

accelerometers coupled to the head.  Previous research has demonstrated that head 

acceleration is significantly different than helmet acceleration in helmeted sports 

(Manoogian, et al., 2006). Previous work in the area of cervical spine injury management in 

ice hockey has suggested that a very high proportion of ice hockey players do not fit or wear 

their helmets properly (Mihalik, Beard, Petschauer, Prentice, & Guskiewicz, 2008), 

suggesting that helmet-coupled accelerometers do very little to measure actual head 

acceleration. Using head-mounted accelerometers directly in contact with the head provide a 

more accurate means of measuring in real-time the biomechanical characteristics of head 

impacts sustained in sports including youth ice hockey. While the mean magnitude reported 

by Naunheim et al. far exceeds what we report in this study, it should be noted that no impact 

sustained by the ice hockey player in their study resulted in an observable case of concussion, 
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and no impacts as low as 35.0 g have resulted in a diagnosed concussion in the cases we have 

observed as part of our ongoing work in this area. 

Effects of event type 

 While we observed statistically significant differences in head rotational acceleration 

and HITsp between impacts sustained in games and practices agreeing with our hypothesis, 

we were surprised to have not observed any differences in linear acceleration across event 

type. The latter opposed our earlier work in which we observed significantly greater linear 

acceleration in games than practices (Mihalik, Guskiewicz, et al., 2008). In our 2008 work, 

we studied fourteen Bantam-aged ice hockey players who were not included in the cohorts 

used for this dissertation. We observed three times more impacts in games and scrimmages 

(9,343) than in practice (3,115). Those who are opposed to introducing contact into ice 

hockey at young ages would likely appreciate the fact that our youth ice hockey players do 

not experience much in way of head impacts during practice. However, it can be argued the 

observed increase in frequency of head impacts during games and scrimmages, combined 

with the statistically significant increase in rotational acceleration and HITsp, should prompt 

coaches to emphasize the education of safe contact drills during practice in order to better 

prepare their athletes. These findings in event type differences are in contrast to data 

collected on Division I collegiate football players (Mihalik, et al., 2007), where as many as 

77% of head impacts were sustained during practices and linear acceleration during practices 

were observed to be significantly higher than those sustained in games. Due to high ice rental 

costs, most youth ice hockey programs do not have an opportunity to practice daily. To date, 

we have not observed any concussions sustained during practice in the three years we have 

been studying youth ice hockey. The risk of mild TBI has been reported to be as high as 14.7 
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and 8.2 times higher during competition than during practice in men’s and women’s 

collegiate ice hockey, respectively (Agel, Dick, Nelson, Marshall, & Dompier, 2007; Agel, 

Dompier, Dick, & Marshall, 2007). Further, the game injury rate in Bantam players was 

reported to be as high as 10.9 per 1000 player-hours compared to 2.5 injuries per 1000 

player-hours during practice (Stuart, et al., 1995). The finding of increased rotational 

acceleration and HITsp during games, coupled with the increased risk of injury during 

competition, seems justified by the initial work in this area dating back to Holbourn (1945). 

Holbourn showed that angular acceleration of the head propagated movements of the brain 

within the skull, generating shear strains most prominent at the surface of the brain. These 

shear strains are believed to result in the transient deficits clinicians observe following mild 

TBI, as opposed to deeper brainstem lesions resulting in more severe forms of TBI not as 

common during athletic participation. While animals tested in Holbourn’s work were 

subjected to linear accelerations that typically did not result in loss of consciousness, many of 

them did sustain more serious cortical contusions and subdural hematomae. These results all 

connect to an important role for rotational movements eliciting an episode of mild TBI. 

Based on their definition of concussion, Ommaya and Gennarelli found that no observable 

injuries were produced when isolated linear impacts were imparted to twelve monkeys tested 

(1974). This was contrasted by thirteen monkeys who experienced a loss of consciousness for 

periods ranging from 2 to 12 minutes when impacted with their device while in the rotational 

mode. One of these thirteen monkeys never awoke and two others died within one hour of 

the impact. The question that still remains elusive to researchers and a matter of contention, 

for that matter, is “how do the relative contributions of angular and linear accelerations 

induce mild TBI?” Many factors play a role in the body’s ability to mitigate head impact 
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forces including individual differences in CSF levels and function, vulnerability to brain 

tissue injury, relative musculoskeletal strengths and weaknesses, and the anticipation of an 

oncoming impact or impulse. The potential effect of musculoskeletal strength is described in 

further detail later in this chapter, and the effect of anticipation is the focus of Manuscript 1 

(see Appendix D). The ability to ever fully study these phenomena in real-time and in-vivo is 

a quandary that we sought to attain in this dissertation. Regardless of the type, attribute, or 

severity of a particular impact or impulse, the end result is as follows: the effective mass of 

the head has become too large for the body to overcome the acceleration or deceleration 

forces that have sent it in motion. 

Effects of head impact location 

 One of the more interesting and unexpected findings in our analysis of descriptive 

factors is that of the location of head impact differences. First, we observed a smaller 

proportion of head impacts sustained to the top of the head (9.6%); we had previously 

reported as many as 14.2% of impacts occurred to the top of the head (Mihalik, Guskiewicz, 

et al., 2008). One reason is that we employed an elevation cutoff of 60° in our initial work in 

this area as opposed to the cutoff of 65° in elevation employed in this dissertation. Had the 

change not been made, we would have observed 12.7% of impacts occurring to the top of the 

head, which is more commensurate with our previously published result. Still, a 1.5% 

difference in our sample represents close to 200 fewer impacts to the top of the head. This 

decreased number could be the result of including an older subsample (Midget) in our 

analyses. These older players typically have the advantage of more playing experience and 

possess the skill required to “keep their head up” while playing ice hockey. Similar to our 

previous work, and in line with our stated hypothesis, the linear acceleration of head impacts 
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sustained to the top of the head were significantly higher than those to other areas of the head 

(i.e. back, front, or side). These findings may have some implications to youth ice hockey 

and other collision sports. First, it reinforces our need to address the instruction of youth ice 

hockey players in keeping their heads up so that they can become more aware of their 

surroundings on the ice. Second, the finding also illustrates that an impact to the top of the 

head results in a greater resultant head linear acceleration than those impacts where players 

have their heads up. This is in agreement with previous work studying this effect in Division 

I collegiate American football players (Mihalik, et al., 2007). Given the propensity of using 

the crown of the head as a weapon in football, a direct comparison of this study and ours is 

difficult. We speculate that by seeing an impact approach, the player is able to better prepare 

themselves for the oncoming collision; thus, controlling head and neck movement in a more 

protective manner (see Appendix D). Contrasting our hypotheses, however, were the results 

pertaining to significantly lower rotational acceleration and HITsp to the top of the head 

compared to the other areas of the head. Biomechanically, this finding can likely be 

explained by the relative lack of an axis of rotation of the head for impacts directed through 

the top of the head. Impacts sustained to the back, front, or side of the head can more easily 

yield a rotational movement of the head. For example, an impact to the back of the head can 

more easily cause a rotation of the head in the anterior direction, and vice versa for impacts 

sustained to the front of the head. Impacts directly to the side of the head yield angular 

movements in the same movement direction as the impact, and more easily elicit rotation of 

the head about the neck. As posterior neck and upper back muscles tend to be much stronger 

than those of the anterior neck, it is not surprising we observed higher rotational 

accelerations following impacts to the front of the head compared to those of the back. Weak 
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rotatory muscles of the neck are likely less able to overcome the effective mass of the head in 

impacts sustained to the sides.  

 Surprisingly, very little data are available to the effect of impact locations on mild 

TBI. Hodgson et al. (1983) studied reversible cerebral concussion in the context of head 

impact location. They imparted impacts to the front, side, back, and top aspects of rigid 

protective caps worn by six anaesthetized primates using an air-propelled striker. They 

reported an interesting finding in that impacts to the side produced periods of 

unconsciousness up to three times longer than loss of consciousness resulting from impacts 

imparted to the other areas of the head. It is difficult to compare more contemporary 

literature to our work and that of Hodgson et al. for two primary reasons: there was no 

follow-up work to this research question by the Hodgson group and modernized research in 

this area does not provide substantive data for which comparisons would be deemed 

meaningful. One such study is that of Guskiewicz et al. (2007). This paper employed a real-

time helmet accelerometer data collection methodology—similar to the one employed in this 

dissertationin—in eighty-eight Division I collegiate football players across three playing 

seasons. The data in that study suggest a higher propensity of top-of-the-head impacts and 

the relative risk of concussion. In this regard, six of thirteen mild TBI occurred from impacts 

to the top of the head; this is in contrast to one concussion occurring following impact to the 

side. The latter injury, however, represented the greatest departures from preseason baseline 

in symptom score, postural stability, and neurocognitive function. It should be noted that this 

case represented the second injury sustained by the same athlete that season, and direct 

comparisons to our data are speculative at best. Guskiewicz et al. (Guskiewicz, et al., 2007) 

injury data support our findings in that top-of-helmet impacts typically result in relatively 
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lower rotational acceleration values compared to injuries following impacts to the other areas 

of the head. This information brings into question the notion that rotational acceleration is the 

leading precursor to injury, and is suggestive that the type of acceleration, in combination 

with magnitude of impact and impact location, may be a better determinant for both onset 

and severity of injury. 

Effects of striking nature of collision 

 Our results did not support our underlying research hypothesis that the biomechanical 

measures of head impact severity would be lower for the striking player compared to the 

measures we observed when the player who was struck. A number of factors may contribute 

to these findings. First, regardless of who is striking or being struck, the notion that player 

anticipation of impending body collisions may play a role in mitigating head impact severity 

has long been believed, and the discussion of this particular topic can be found in Appendix 

D. In exploring this theory, we included the interaction effect between level of anticipation 

and striking nature of the collision in our analysis models and found linear accelerations were 

not influenced by the level of anticipation in our players (P = 0.170). Those who strike 

opponents could be considered by many to be more aggressive in nature. Our results 

pertaining to player aggression would suggest those who are more aggressive tend to 

experience more severe head impacts following body collision, and may lend support to our 

finding of higher linear accelerations in the striking player. When we controlled for BMI in 

our analyses, a surrogate for total cervical muscle strength, our findings did not change. 

Notwithstanding, the effects of cervical muscle strength, player anthropometrics, general 

aerobic fitness, and player aggression, are anecdotally believed to mitigate the forces 

associated with head impacts. These are all further discussed later in this chapter. We should 



 157 

also note that a difference of 1.3 g might not represent a clinical difference, although 

researchers are far from understanding the cumulative effect of subconcussive impacts on 

athletes, let alone adolescent athletes.  

 

Extrinsic factor – Game-related exposure (Specific Aim 2) 

 We observed measures of linear acceleration to be greater in the third period 

compared to the second and first, which was in support of our research hypothesis. However, 

no differences existed between the first and second period, challenging our hypothesis. No 

differences existed between period of play for measures of rotational acceleration or HITsp. 

Given the evidence provided earlier suggesting rotational mechanisms result in more serious 

injuries than linear mechanisms, our period data suggest a non-increasing trend in injury risk 

over the course of the game. Our data suggest a similar mean number of playing shifts (5.6 

vs. 5.4 vs. 5.4) per player across the three playing periods. While factors associated with 

fatigue could possibly explain an increase in the number of playing shifts in the third period 

(i.e. players are participating in more frequent, but shorter shifts), we did not observe this. 

We also included player BMI as a covariate, expecting that by controlling for a player’s 

relative physique we would see changes in our original results. Player BMI did not affect our 

results. Overall, our analyses on cervical muscle strength (see Specific Aim 5 below) did not 

suggest an effect of muscle strength on mitigating the head impact severity following 

collisions in youth ice hockey. Since period of collision was collected with our retrospective 

sample, and cervical muscle strength with our prospective sample, we were unable to draw 

these into a single statistical model for direct comparisons. While we cannot neglect the 

effect of general fatigue that takes place over the course of the game, we speculate that as 



 158 

athletes tire, they are less likely to keep their head up and resort to lazy technical skills during 

play. This would align with our data described above in our discussion of significantly higher 

linear accelerations occurring to the top of the head. 

 To our knowledge, no one has published any work studying the short-term (i.e. one 

game) dose-response of game-related exposure on biomechanical measures of head impact 

severity. We sought to explore this in a number of different ways. First, we analyzed our 

measures of head impact severity by controlling for the absolute number of playing shifts the 

athlete participated in during the period the impact was sustained. We found that this did not 

affect our biomechanical measures. Next, we arbitrarily weighted the number of playing 

shifts such that those occurring in the period of the impact were weighted as “1” and those 

occurring in the preceding period were weight as “0.5.” For those occurring two periods 

preceding the period of collision (i.e. impacts in the third period), those shifts were weighted 

as “0.25.” While we felt this method would more adequately represent the cumulative nature 

of game-related exposure, this covariate did not identify any differences in our 

biomechanical measures of head impact severity. Next, we explored the potential for 

controlling for the average number of playing shifts for all periods up to and including the 

period in which the collision took place. We found that those who represented the highest 

average number of shifts played experienced higher rotational acceleration measures than 

those who represented the moderate and low average number of shifts played. It should be 

noted than approximately 55 rad/s2 separates the lowest from the highest, and would be 

deemed clinically insignificant especially given our other non-significant findings pertaining 

to this specific aim. Lastly, the weighted average number of playing shifts (using the same 

weighting system, but dividing the sum by the total weights) did not yield any statistically 
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significant findings. In addition, we performed a number of confirmatory interaction analyses 

to identify whether the effect of playing period was influenced by the game-related exposure. 

None of the interactions were significant, regardless of which of the four control variables we 

employed in our model, and indifferent across our three biomechanical measures of head 

impact severity. Our extensive testing of the data suggests that the number of playing shifts 

in a game does not lead to higher impact severity. Practically, those athletes who participate 

in an increasing number of playing shifts tend to be the better players on the team. They are 

usually attributed this role because they are more skilled and in a better state of fitness as a 

result. Injury researchers believe that the more a person is exposed to a potential event, the 

higher their risk of experiencing the event. Though this may be argued, perhaps more skilled 

players who are on the ice more often possess a skill set superior to their teammates who play 

less frequently. This skill set includes increased aerobic fitness, technical skill (i.e. skating 

with their head up), and possess an awareness of on-ice presence. These are all believed by 

coaches and players to reduce the risk of injury in ice hockey players, and may offset the 

increased exposure to a potential injury.  

 

Intrinsic factors – strength, anthropometrics, fitness, and aggression (Specific Aim 5) 

 We sought to identify the effects of a number of intrinsic factors on biomechanical 

measures of head impact severity. The primary factors studied included body collision type 

(open-ice vs. along playing boards), anticipation of body collision, and relative body 

position. These are included in Manuscript 1 (Appendix D). Other intrinsic factors of interest 

included cervical muscle strength, anthropometrics, general aerobic fitness, and player 

aggression. These will be discussed further in the ensuing sections. 
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Cervical muscle strength 

 We evaluated the strength of cervical muscles using methods consistent with how 

these muscle groups are tested clinically (Hislop & Montgomery, 1986; Kendall, et al., 

1993). Specifically, we evaluated anterior neck, anterolateral neck, posterolateral neck, 

cervical rotation, and upper trapezius muscle strength. To provide a comparative analysis, we 

categorized each strength measure into three ordinal categories: weak, moderate, and strong. 

Our results did not support our research hypothesis. That is, we did not find any differences 

between weak, moderate, and strong athletes in our sample for linear or rotational 

acceleration. Additionally, no differences across these tertile groups were observed for 

anterior neck, anterolateral neck, cervical rotation, and posterolateral neck strength. 

Surprisingly, subjects representing those with the weakest upper trapezius muscles 

experienced lower HITsp measures than those representing the strongest in our sample. The 

stronger players may be more likely to attempt open-ice collisions, which were shown in 

Appendix D to result in greater rotational acceleration and HITsp measures than impacts 

along the playing boards. The argument could be made that the players were likely in the 

“strong” group because they were bigger and heavier, and more likely to sustain a higher 

magnitude impact as a result. However, all strength measures—recorded in kilograms—were 

normalized to the athletes’ body mass, adjusting these values for differences in player mass. 

Our findings are surprising, especially given the strong anecdotal support for cervical muscle 

strength as a factor in mitigating head impact severity. The basic tenet of the neck muscle 

theory is that an athlete who anticipates an oncoming collision will be better able to control 

head movement by contracting (i.e. tensing) their cervical musculature. When the cervical 

musculature is contracted, it is thought to significantly increase the effective mass of the 
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head-neck-trunk segment, resulting in a lower acceleration of the head. When an impact is 

unanticipated, and the cervical musculature is not tensed and the athlete is unprepared for a 

collision, the effective mass is reduced to that of the head. Given an equal force from a body 

collision, the head would experience a substantially greater acceleration and, therefore, more 

likely to sustain an injury. While this seems rather intuitive, there is very little research to 

corroborate these beliefs. There is a total lack of this research in the area of ice hockey. 

Studies in this area have focused primarily on a soccer-heading task and do not serve as a 

particularly strong foundation for comparison (Mansell, et al., 2005; Tierney, et al., 2005). 

Effect of player anthropometrics 

 Our hypothesis that taller and heavier players would sustain higher biomechanical 

measures of head impact severity was not supported by our data. No differences were 

observed for linear acceleration and HITsp, and the heaviest players sustained higher 

rotational accelerations, on average, than the lightest players. In retrospect, this is not 

surprising. The mass disparities between opponents—and within the same team—can range 

by as much as 48 kg (105.6 lbs). Given this, heavier players may perceive less of a threat 

from the other players on the ice, and be less likely to “tense up” during a collision as their 

lighter counterparts may be. The implication of player size has long been a concern, 

especially at the Bantam age level. While there tends to be minimal disparity in the height 

and mass of players within the Peewee (11 and 12 years of age) and Midget (15 and 16 years 

of age) playing levels, this trend is not shared among Bantam-aged players. Previous work 

has established anthropometric and biomechanical force profiles for each player in a sample 

of youth ice hockey players (Bernard, et al., 1993). When the authors simulated body 

checking between the smallest and largest players, they observed a 357% difference in the 
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force of impact. However, these differences were not observed in this dissertation. The 

Canadian Academy of Sports Medicine notes that serious injury in ice hockey escalates in 

Bantam-aged players, further asserting body checking should not be allowed because of the 

differences in body size between players (Sullivan, 1992). In a study of children’s ice hockey 

injuries presented earlier in this literature review (Brust, et al., 1992), more than half of the 

injuries occurred at the Bantam level (54%) compared to younger players in Peewee (27%) 

or Squirt (19%). They posit the reason for this trend to be a difference of as much as 53 kg 

(116.6 pounds) and 55 cm (21.65 inches) between players on Bantam teams in this study. In 

our study, we observed differences within Bantam-aged players to be as high as 30.5 kg (67.1 

pounds) and 30 cm (11.8 inches). 

 While we did not hypothesize any differences across the other head and neck 

anthropometrics, there are some findings worthy of discussion. In agreement with the 

aforementioned explanations, all significant findings were such that measures representing 

the smallest players in our sample suggest linear and rotational acceleration, and HITsp are 

lower than those players representing the biggest in our sample. This was especially true of 

head anthropometrics, whereby we noted those with the smallest head circumference and the 

narrowest anterior-posterior and medial-lateral diameters sustained lower rotational 

accelerations than those representing the largest and widest of these anthropometric 

measures, respectively. Speculating those with smaller heads, as evidenced by shorter head 

circumferences and narrower diameters, have less head mass to overcome following a head 

impact, it is possible they are able to use their neck muscles to counter the effective mass that 

has been set in motion. As head and neck anthropometrics are genetic and we are unable to 

modify this factor, it is difficult to determine how to apply these findings clinically.  
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General aerobic fitness 

 Our hypothesis that increased general aerobic fitness would result in lower 

biomechanical measures of head impact severity was not supported. While our results 

suggest those with the least aerobic fitness experience lower linear and rotational 

accelerations than those who were deemed most fit, differences in linear acceleration did not 

exceed 1.0 g or 200 rad/s2. These findings are in line with those reported for Specific Aim 2 

(game-related exposure), where athletes with the lowest average number of shifts played 

experience lower rotational accelerations than those who played the highest average number 

of shifts. The importance of superior aerobic conditioning may not be as prevalent in a single 

event, but may play an important role in the last of five games held over a period of 2 days. 

Long-term prospective evaluations of general aerobic fitness in conjunction with the number 

of games played in a brief period of time (i.e. tournaments) are warranted to better 

understand the effect of general aerobic fitness.  

Player aggression 

 Although we originally were going to evaluate trait aggressiveness with the Buss-

Perry Aggression Questionnaire (Buss & Perry, 1992), we also opted to include penalties in 

minutes (PIM) as a measure of aggression commonly used in ice hockey to represent 

aggressive players. In support of our hypothesis, we observed more severe head impacts in 

players exhibiting a greater number of penalties in minutes than those who did not (i.e. more 

disciplined players). Our findings are in support of previous work that used the BPAQ to 

predict aggressive penalty minutes over the course of the season (Bushman & Wells, 1998). 

While the immediate purpose of our study was not to understand coaches’ and players’ 

aggressive behavior, it is difficult to ignore this aspect of ice hockey. The culture of ice 
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hockey predicates a mentality among players to ignore injury, play recklessly, and 

encourages unsportsmanlike conduct such as fighting and illegal checking. In the United 

States, a study of Peewee-level players reported that fighting broke out in approximately 17 

of 52 games observed. In that sample, players considered fighting a natural consequence of 

the game and experienced a certain resignation about fighting (Gerberich, et al., 1987). 

Another interesting finding reported by Brust et al. is that while 100% of coaches felt 

sportsmanship was “real important,” only 59% of players shared this attitude (Brust, et al., 

1992). Parents and coaches, in this sample, viewed the enforcement of rules as being the 

most important factor in reducing injuries.  

 

Limitations  

 A discussion of this project would not be complete without a disclosure of some of 

the limitations. While no direct intervention was established on our part, the players knew 

they were wearing specially instrumented helmets. This may have altered their normal style 

of play knowing their impacts would be recorded. However, we recorded head impacts 

across every on-ice session over a period of two years and feel that whatever short-lived 

alterations in playing style would have been washed out by the high number of events 

recorded. Secondly, our sample was comprised of 13- to 16-year-old male ice hockey players 

only. As such, they may not be representative of all youth ice hockey players, and these 

results may not be related to collegiate and professional ice hockey players. Relating these 

findings to women’s ice hockey, where bodychecking is not permissible, may be difficult. As 

we did not capture cervical muscle strength, player anthropometrics (aside from height and 

mass), general aerobic fitness, or aggression measures in our Year 1 sample, we were unable 
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to include these variables into our explanatory statistical models in order to better explain our 

findings. We did find a moderate relationship (r = -0.618) between BMI and cervical muscle 

strength in our Year 2 cohort and, thus, used BMI as a covariate in the models associated 

with our Year 1 data analyses. We did not study the effect of any of these factors on actual 

injury incidence observed in our sample. During the course of the two-year period, we 

observed six separate instances of concussion, a number too few for any relevant analyses 

and comparisons. It will require significantly more injuries to substantiate the specific 

biomechanical factors associated with sports-related concussion in youth athletes.  

 

Conclusions 

 Overall, the sport of youth ice hockey is a relatively safe sport, with only six injuries 

resulting from over 12,000 head impacts sustained by the hockey players in our sample. 

However, our findings suggest that collisions involving infractions still remain a problem in 

this sport. We observed as many as 17% of collisions resulting in some form of illegal 

infraction, primarily elbowing and head contact penalties. As these infractions resulted in the 

greatest measures of linear acceleration, rotational acceleration, and severity profile (HITsp), 

there should be concern from policy makers as to how we can best reduce the frequency of 

these collisions with the goal of reducing the incidence of head injuries related to these 

infractions. The notion that heightened player anticipation can mitigate the severity of head 

impacts seems supported by our data, especially as it pertains to measures of rotational 

acceleration sustained during collisions in the moderate range of intensity (50th to 75th 

percentile). Additionally, the results of this dissertation have implications to the current 

helmet testing standards, as our descriptive factors identified differences in linear and 
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rotational accelerations depending on where the head impact occurred on the helmet. For 

example, while linear accelerations were greatest at the top of the head relative to the back, 

front, and sides, rotational accelerations were greatest at the sides. As each location and 

acceleration-type combination represent potential for injury, helmet standards must be 

modified to evaluate the efficacy of minimizing all types of acceleration at multiple head 

impact locations. In addressing these issues, testing standards can be modified to improve the 

efficacy of equipment to reduce injury, and may be the simplest manner in which widespread 

injury prevention can infiltrate athletes at the grass roots level. Prospective studies evaluating 

the effect of player education and technical training on reducing injury rates at the youth 

level should be undertaken. As no formal cervical strength training program was carried out 

by the athletes in our sample, it will be important to further understand the effects of cervical 

muscle strength on mitigating the severity associated with head impacts in youth ice hockey, 

and to do so in a controlled and prospective manner. Prior to implementing any long-term 

educational interventions in this young population, we must first evaluate the health behavior 

models associated with hockey players at the amateur level. In so doing, we will be better 

able to implement interventions with the end of goal of increasing athlete reporting of head 

injuries to their coaches and parents, which will reduce the risk of complications associated 

with secondary impacts. While this study did not investigate injuries, future work will better 

elucidate how the descriptive, intrinsic, and extrinsic factors studied in this dissertation affect 

outcome following mild traumatic brain injury.  
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Appendix B. Carolina Hockey Evaluation of Children’s Checking (CHECC) List 
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Appendix C. The Buss-Perry Aggression Questionnaire 

Please read the following 29 statements carefully. Circle the response you feel best represents 
your true feelings. Your options are Extremely uncharacteristic of me, Somewhat 
uncharacteristic of me, Neither uncharacteristic nor characteristic of me, Somewhat 
characteristic of me, or Extremely characteristic of me. 
 
 The statement is… 
 Extremely 

uncharacteristic 
of me 

Somewhat 
uncharacteristic 

of me 

Neither 
uncharacteristic 

nor characteristic 
of me 

Somewhat 
characteristic 

of me 

Extremely 
characteristic 

of me 

1. Some of my friends 
think I am a 
hothead. 

1 2 3 4 5 

2. If I have to resort 
to violence to 
protect my rights, I 
will. 

1 2 3 4 5 

3. When people are 
especially nice to 
me, I wonder what 
they want. 

1 2 3 4 5 

4. I tell my friends 
openly when I 
disagree with them 

1 2 3 4 5 

5. I have become so 
mad that I have 
broken things. 

1 2 3 4 5 

6. I can’t help getting 
into arguments 
when people 
disagree with me. 

1 2 3 4 5 

7. I wonder why 
sometimes I feel so 
bitter about things. 

1 2 3 4 5 

8. Once in a while, I 
can’t control the 
urge to strike 
another person. 

1 2 3 4 5 

9. I am an even-
tempered person. 1 2 3 4 5 

10. I am suspicious of 
overly friendly 
strangers. 

1 2 3 4 5 

11. I have threatened 
people I know. 1 2 3 4 5 

12. I flare up quickly 
but get over it 
quickly. 

1 2 3 4 5 

13. Given enough 
provocation, I may 
hit another person. 

1 2 3 4 5 
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 The statement is… 
 Extremely 

uncharacteristic 
of me 

Somewhat 
uncharacteristic 

of me 

Neither 
uncharacteristic 

nor characteristic 
of me 

Somewhat 
characteristic 

of me 

Extremely 
characteristic 

of me 

14. When people annoy 
me, I may tell them 
what I think of 
them. 

1 2 3 4 5 

15. I am sometimes 
eaten up with 
jealousy. 

1 2 3 4 5 

16. I can think of no 
good reason for 
ever hitting a 
person. 

1 2 3 4 5 

17. At times I feel I 
have gotten a raw 
deal out of life. 

1 2 3 4 5 

18. I have trouble 
controlling my 
temper. 

1 2 3 4 5 

19. When frustrated, I 
let my irritation 
show. 

1 2 3 4 5 

20. I sometimes feel 
that people are 
laughing at me 
behind my back. 

1 2 3 4 5 

21. I often find myself 
disagreeing with 
people. 

1 2 3 4 5 

22. If somebody hits 
me, I hit back. 1 2 3 4 5 

23. I sometimes feel 
like a powder keg, 
ready to explode. 

1 2 3 4 5 

24. Other people 
always seem to get 
the breaks. 

1 2 3 4 5 

25. There are people 
who pushed me so 
far that we came to 
blows. 

1 2 3 4 5 

26. I know that 
“friends” talk 
about me behind 
my back. 

1 2 3 4 5 

27. My friends say that 
I am somewhat 
argumentative. 

1 2 3 4 5 

28. Sometimes I fly off 
the handle for no 
good reason. 

1 2 3 4 5 

29. I get into fights a 
little more than the 
average person. 

1 2 3 4 5 
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ABSTRACT 
Objective: The objective of the study was to determine the effects of body collision type and 

level of player anticipation on mitigating the severity of head impacts sustained by youth ice 

hockey players. In anticipated collisions, we also sought to identify an optimal body position 

for delivering and receiving body collisions. We hypothesized open-ice collisions would be 

more dangerous than collisions along the playing boards, and that anticipated collisions 

would be less severe than unanticipated collisions with respect to impact biomechanics. 

Patients and Methods: The prospective study included sixteen male Bantam-aged ice 

hockey players (age = 14.0 ± 0.5 years) equipped with helmets instrumented with 

accelerometers to record biomechanical measures (i.e. linear acceleration, rotational 

acceleration, severity profile) associated with head impacts in real-time. Body collisions 

observed through video footage captured over a 54-game season were evaluated for collision 

type (open ice vs. along playing boards), level of anticipation (anticipation vs. 

unanticipation), and relative body positioning.  

Results: The linear acceleration (P = 0.036) and rotational acceleration (P = 0.003) of 

collisions occurring in the open ice were significantly greater than those occurring in 

collisions along the playing boards. Though not statistically significant, our data are 

suggestive of a trend such that anticipated collisions resulted in less severe head impacts than 

unanticipated collisions.  

Conclusions: Our data support the notion that anticipating collisions may play a role in 

minimizing head impact severity. We found that the differences in impacts occurring along 

the playing boards and those occurring in the open ice, in combination with our findings that 

unanticipated impacts result in higher impact forces, represent a continued need to educate 

our players with the necessary technical skills needed to heighten their awareness on the ice. 
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Clinically, coaches and athletes should incorporate bodychecking exercises in practices, and 

spend time educating young athletes on these proper checking techniques in order to 

minimize the risk of injury and increase the safety of ice hockey. 
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INTRODUCTION 

 The Centers for Disease Control and Prevention (CDC) have acknowledged traumatic 

brain injury (TBI) to be a serious public health problem in the United States. Children less 

than 15 years of age represent as much as 40% of the 1.1 million TBIs resulting in 

emergency department visits each year.1 Perhaps more alarming is the actual number of 

young TBI victims who do not seek out evaluation for their injuries and are not seen in 

emergency departments. In addition to representing one of the most difficult conditions to 

manage in sports medicine, TBIs were estimated in 2000 to account for over $60 billion in 

direct medical and indirect costs.2   

 Youth athletes participating in collision sports are at particular risk for sustaining 

concussion and other forms of mild TBI. First, technical development is often limited since 

parent volunteers often serve as coaches and lack the skill and training to adequately educate 

athletes on proper collision techniques. Medical supervision of these young athletes is also 

lacking in comparison to the medical personnel involved with collegiate and professional 

athletics. Second impact syndrome—a condition resulting in immediate brainstem swelling 

when an athlete sustains a head impact, often minor, when symptoms associated with an 

initial TBI have not fully resolved—has only been reported in the adolescent athlete and has 

typically resulted in cases where TBI has been mismanaged by parents, coaches, or medical 

personnel. Understanding the nature of head impacts sustained in youth athletics, with an 

emphasis on improving our comprehension of how best to mitigate the severity of head 

impacts, may lead to interventions directly related to reducing the incidence of TBI in our 

youth, minimizing the risks for second impact syndrome, and decreasing the financial costs 

incurred by our medical system. 
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 Therefore, the purpose of this investigation was to study the effect of body collision 

type (i.e. open-ice vs. along playing board) and player anticipation (i.e. anticipated vs. 

unanticipated) on biomechanical measures of head impact severity including linear 

acceleration, rotational acceleration, and severity profile. A secondary purpose was to 

identify whether different relative body positions we observed resulted in lower 

biomechanical measures of head impact severity. 
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PATIENTS AND METHODS 

Study Design and Participants 

 This study employed a prospective quantitative research design in order to evaluate 

the effect of body collision type and level of player anticipation on biomechanical measures 

of head impact severity in youth ice hockey players. We recruited sixteen male Bantam-level 

ice hockey players (age = 14.0 ± 0.5 years; height = 171.3 ± 4.5 cm; mass = 63.7 ± 6.6 kg) 

representing a convenient sample of participants from a AAA-level program. Our sample 

included nine forwards and six defensemen; one goaltender was removed from our analyses 

due to lack of body collisions. Data were collected during 54 games over the course of the 

season; data from 38 practices were not included since these events were not captured on 

video. Regardless of previous history of concussion or years of playing experience, none of 

the athletes were excluded from participating in the study. Parental permission and minor 

assent forms approved by the university’s institutional review board were signed by each 

parent and player, respectively, prior to fitting an athlete with an instrumented ice hockey 

helmet (see Procedures section).  

Instrumentation 

 Head Impact Telemetry (HIT) System. This study used commercially available 

Reebok RBK 6K and 8K helmets (Reebok-CCM Hockey, Inc.; St-Laurent, Quebec, Canada) 

modified to accept the Head Impact Telemetry (HIT) System technology (Simbex; Lebanon, 

NH). The helmet's foam liner was modified to accept six single-axis accelerometers, a battery 

pack, and the telemetry instrumentation (Figure 1). The custom helmets passed American 

Society for Testing and Materials (ASTM 1045-99) and Canadian Standards Association 

(CSA Z262.1-M90) helmet standards, and were approved by the Hockey Equipment 
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Certification Council (HECC) for use during competition. This instrumentation has been 

previously described in detail.3 The head impact data were time-stamped, encoded, stored 

locally, and then transmitted in real time to the Sideline Response System (Riddell; Elyria, 

OH) via a radiofrequency telemetry link. The Sideline Response System was typically 

positioned along the playing surface sideboards or in the team’s dressing room. The HIT 

System is capable of transmitting accelerometer data from as many as 100 players over a 

distance well in excess of the length of a standard international ice surface.  

 Carolina Hockey Evaluation of Children’s Checking (CHECC) List. We developed 

the Carolina Hockey Evaluation of Children’s Checking (CHECC) List to enable the use of a 

standardized evaluation rubric to be used when analyzing video footage of body collisions. 

The CHECC List is scored on 11 readily observable features (see Table 1) of human 

movement when involved in a body collision. In addition to these, whether the collision 

occurred in the open ice or along the playing boards, and whether the collision was 

anticipated or unanticipated were also variables of interest included on the CHECC List. We 

further distinguished the level of anticipation into the following overall impressions: 

anticipated in a good body position, anticipated in a poor body position, and unanticipated. 

Intrarater Kappa agreements ranged from 0.40 to 0.92 for the 15-item CHECC List. Interrater 

agreement suggested moderate to strong agreement between hockey coaches with no 

scientific experience. The range of agreement was 60% to 96% in which at least five of six 

coaches agreed on each individual criterion. 

 Video recording. Prior to each game, we synchronized the date and time on our video 

camera with the date and time on the Sideline Response System. This allowed us to 

accurately align body collisions observable on the video footage with the biomechanical 
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measures of head impact severity recorded by our instrumented helmets. We recorded video 

footage for all 54 games over the course of the season. In an attempt to maximize player size 

in our footage and capture of collisions we could later analyze, we followed the movement of 

the puck carrier. As a result, some impacts occurred outside the view of the camera and were 

excluded from our analyses. In order to maximize length of video capture on our miniDV 

tapes, we began filming with the start of play, and paused recording when the official blew 

the whistle signaling a stop in the play. In some instances, late body collisions occurring 

shortly after the end of a play were sometimes not captured and were subsequently unable to 

be analyzed in our study. All raw videos were imported into a personal computer where the 

date and time-stamp information were inlayed onto the videos. The videos were then 

exported into a compressed format and later played back using QuickTime Player Pro 

(Version 7.5.5; Apple Inc.; Cupertino, CA) for evaluation via the CHECC List. 

Procedures 

 Prior to the start of the season, players were measured for helmet and facemask size. 

They were properly fit with Reebok RBK 6K/8K helmets (and their personal facemasks) by a 

certified athletic trainer (ATC). The ATC instructed each participant to wet his hair to 

simulate sweating, and ensured that the facemask chinstrap was securely fastened to the 

helmet and fit tightly under the chin. Helmet and facemask fit was verified on a biweekly 

basis to ensure proper fit throughout the course of the season. 

 The raw head impact data collected over the course of the season were exported from 

the Sideline Response System into Matlab 7 (The Mathworks, Inc.; Natick, MA), where data 

were reduced to include only those impacts sustained during games and scrimmages. Impacts 

occurring outside of team-sanctioned events were omitted from our analyses. As impacts 
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below 10 g of linear acceleration (measured in terms of gravity force, g) are considered 

negligible with respect to impact biomechanics and their relationship to head trauma, only 

impacts registering a linear acceleration greater than 10 g were included for the purposes of 

our analyses. Our biomechanical measures of head impact severity consisted of linear 

acceleration, rotational head acceleration (measured in rad/s2), and Head Impact Technology 

severity profile (HITsp). The HITsp is a weighted composite score including aspects of linear 

and rotational acceleration, as well as impact location, and has previously been described in 

more detail.4  

Statistical analyses 

 Head impact data were transformed using a natural logarithmic function to address 

the skewness of the data toward low-magnitude head impacts. All estimates were then back-

transformed to their original scale for presentation and interpretation. Descriptive analyses 

(means and 95% confidence intervals) were calculated for resultant linear acceleration, 

resultant rotational acceleration, and the HITsp. In order to address our study purpose, 

separate random intercepts general mixed linear models were employed for each of these 

dependent variables. Body collision type and level of anticipation were included as separate 

independent variables (in addition to player) in the statistical models employed in this study. 

“Player” represented one level in each statistical model as a repeated factor. In addition to 

understanding the effects of body collision type and level of anticipation associated with 

head impact severity, we also sought to identify how relative body positioning affected head 

impact measures. As a result, we performed separate analyses that included each single 

relative body descriptor as an independent variable in separate random intercepts general 

mixed linear models. All random intercepts general mixed linear models (PROC MIXED) 
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were performed in SAS/STAT (Version 9.1; SAS Institute, Inc.; Cary, NC). The level of 

significance was set at P < .05 a priori. 
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RESULTS 

 We observed a total of 666 body collisions for which we were able to complete a 

CHECC List and evaluate whether the collision took place along the boards or in the open 

ice, judge whether the collision was anticipated, and determine relative body positioning of 

these impacts. Of these collisions, 63.3% (421 of 666) took place along the playing boards, 

while the remaining 36.8% (245 of 666) occurred in the open ice. Anticipated collisions 

accounted for 84.7% (564 of 666) of the bodychecks we observed, while the remaining 

15.3% (102 of 666) were deemed to be unanticipated collisions. We further categorized 

anticipation into an overall impression score assigning a body collision to one of the 

following three levels of anticipation: anticipated collision (with a good relative body 

position), anticipated collision (with a poor relative body position), and unanticipated 

collision. Of these collisions, 47.3% (315 of 666) were anticipated with a good relative body 

position, 37.4% (249 of 666) were anticipated with a poor relative body position, while the 

remaining 15.3% (102 of 666) were deemed to be unanticipated collisions.  

Body collision type 

 We observed a statistically significant difference in head linear acceleration in 

impacts sustained along the playing boards compared to those sustained in the open ice 

(F1,14 = 5.40, P = 0.036). Linear accelerations sustained from open-ice collisions were 

significantly greater than those sustained from collisions along the playing boards (Table 2). 

However, the rotational acceleration measures for open-ice collisions were significantly 

greater than those we observed for collisions along the playing boards in our sample (F1,14 = 

12.75; P = 0.003), and these data are reported in Table 3. With respect to the HITsp, a 

weighted composite score including aspects of linear and rotational acceleration, as well as 
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impact location,4 the data (Table 4) suggest a strong trend towards a significant difference 

between open-ice collisions and those occurring along the playing boards (F1,14 = 4.38; P = 

0.055).  

Level of anticipation 

 Though linear accelerations tended to be greater in unanticipated collisions compared 

to anticipated collisions, the differences we observed were not statistically significant (F1,14 = 

2.52; P = 0.135). A similar trend was observed such that anticipated collisions resulted in 

lower rotational head accelerations than unanticipated, but these differences were not 

statistically significant (F1,14 = 2.47; P = 0.138). No significant differences in the HITsp 

between anticipated and unanticipated collisions were observed (F1,14 = 0.10; P = 0.755). 

  Linear accelerations were greatest under unanticipated conditions, followed by 

anticipated impacts with poor positioning, and anticipated collisions with good positioning, 

respectively, but these differences were not statistically significant (F2,28 = 1.46, P = 0.249) 

with a 2,28 degree of freedom mixed model. Since the data suggested the trend just 

described, we subsequently performed a 1 degree-of-freedom linear trend, observing 

suggestive evidence of a trend in our data (F1,649 = 2.55; P = 0.111). Likewise, a significant 

difference in rotational head accelerations across anticipation type was not observed (F2,28 = 

1.24, P = 0.304). A linear trend in the mean data, however, is suggestive of lower rotational 

acceleration measures in anticipated collisions where players were in a good position to 

deliver or sustain the impact, compared to impacts that were anticipated in which the player 

was in a poor position and unanticipated collisions. No significant differences in the HITsp 

across the anticipation types were observed (F2,28 = 0.70, P = 0.503). After controlling for 

body mass index (BMI), we did not see any alterations in our original findings. As BMI is 
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moderately related to measures of cervical muscle strength (r = -0.618) in our ongoing work 

(but not available for this current study), we felt this would represent a good surrogate for 

cervical muscle strength in our study.  

 Additionally, we explored a number of different impact ranges, particularly those 

between the 25th to 75th percentile of linear acceleration measures, as well as those between 

the 50th and 75th percentiles. For the former, we observed a statistically significant 

difference in linear acceleration (F2,27 = 4.29; P = 0.024), such that anticipated—good 

collisions (18.7 g; 95% CI: 18.0-19.4) were significantly lower than unanticipated (19.9 g; 

95% CI: 19.1-20.7) body collisions (P = 0.007). We evaluated those collisions occurring 

between the 25th to 75th percentile of HITsp measures, as well as those between the 50th and 

75th percentiles. For the latter, we observed a significant difference in rotational acceleration 

(F2,19 = 6.83; P = 0.006), such that impacts from anticipated—good (1215.11 rad/s2; 95% CI: 

1112.6-1327.1) and anticipated—poor (1218.9 rad/s2; 95% CI: 1107.2-1341.9) collisions 

were significantly lower than unanticipated collisions (1465.7 rad/s2; 95% CI: 1240.7-

1731.4). We also observed a significant difference in HITsp (F2,19 = 4.35; P = 0.028), such 

that impacts from anticipated—good (15.2; 95% CI: 15.0-15.5) and anticipated—poor (15.3; 

95% CI: 15.1-15.5) collisions were significantly lower than unanticipated collisions (15.6; 

95% CI: 15.3-15.9). All other analyses did not yield any statistically significant findings (P > 

0.05). 

Relative body positioning 

 Analyses of body positioning during collision revealed that athletes who drive into or 

through a body collision with their legs (20.5 g; 95% CI: 19.2-21.9) experience lower linear 

accelerations than athletes who do not use their legs (21.7 g; 95% CI: 20.1-23.5) during a 
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collision (F1,13 = 4.67; P = 0.049). No differences were noted for rotational acceleration (F1,13 

= 0.62; P = 0.446). A moderate trend observed for the HITsp (F1,13 = 3.47; P = 0.085) 

suggests that athletes who use their legs to drive through a body collision (15.3; 95% CI: 

14.6-16.1) experience lower severity profiles than those instances in which athletes do not 

use their legs to drive through a collision (16.0; 95% CI: 15.1-16.9). All other comparisons 

evaluating the effect of relative body positioning did not result in any statistically significant 

differences (P > 0.05).  
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DISCUSSION 

 To our knowledge, this is the first study focused on the biomechanical measures 

associated with head impact severity in youth ice hockey players, especially as it pertains to 

player anticipation, body collision type, and relative body positioning. The findings suggest 

head impact severity decreases with heightened player anticipation. It has long been believed 

by clinicians that athletes who are more aware of their surroundings and better at anticipating 

and preparing for impending body collisions would best be able to mitigate the forces to the 

head associated with those collisions. Surprisingly, there remains very little known about the 

types of forces that cause mild TBI and, perhaps alarmingly, very few suggested methods to 

reduce head impact forces. Cantu suggests there are five areas that can result in a reduction in 

the incidence of mild TBI: changes in rules and coaching technique, improvements in 

conditioning and equipment, and increasing medical supervision.5 Of interest are our findings 

that differences in rotational acceleration between unanticipated and anticipated collisions in 

the mid-intensity range (defined as those impacts between the 50th and 75th percentile of 

HITsp) were greater than differences we observed in the high- and low-intensity ranges. This 

elucidates concern clinicians may have with impacts occurring within this intensity level. 

First, it highlights that severe impacts (those in the top 25th percentile) are perhaps equally 

dangerous regardless of anticipation. Second, in impacts that may not appear “severe” to 

coaches, parents, and other players, there is evidence to suggest that player anticipation may 

mitigate the severity of head impacts that may otherwise cause injury. Thus, anticipating 

collisions for these moderate-severity impacts may play a role in reducing risk of injury. 

While it has not yet been shown that the brain can be conditioned to accept repeated blows, it 

is believed the neck can be strengthened and the risk of mild TBI reduced. This is true only 
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in cases where collisions are anticipated and the athlete is able to tense up their cervical 

musculature. Our data would support this plausible explanation, as unanticipated collisions 

yielded a trend towards higher linear and rotational accelerations compared to those 

collisions that were anticipated. Future research in this area by other independent researchers 

will be important in building on this area of research. Using a simple Newtonian approach, 

acceleration is the result of force divided by mass. When the cervical musculature is 

contracted, it is thought to significantly increase the effective mass of the head-neck-trunk 

segment, resulting in a lower acceleration of the head. When an impact is unanticipated, and 

the cervical musculature is not tensed and prepared for a collision, the effective mass is 

reduced to that of the head. Given an equal force from a body collision, the head would 

experience a substantially greater acceleration and, therefore, more likely to sustain an injury. 

Although this may seem rather intuitive, studies in the area of event anticipation have 

focused primarily on a soccer-heading task in collegiate athletes.6, 7 Results have been 

ambiguous in this population so far, and extrapolations to a collision sport such as ice hockey 

and a younger population are very difficult. While we did not control for cervical muscle 

strength in our analyses, our data from ongoing work suggest a moderate relationship exists 

between BMI and total cervical muscles strength. As such, we felt that BMI would represent 

a comparable surrogate for cervical muscle strength in our statistical models. This did not 

affect any of our original findings and lends some support to the event anticipation work by 

Tierney et al.6 described above. Notwithstanding some of the preliminary work in this area, 

there is still strong anecdotal support for the role neck musculature may play in reducing the 

risk of mild TBI that is worthy of investigation in a young, at-risk sample, and future 

research should investigate this as a potential intervention for preventing mild TBI.  
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 Impacts occurring at different areas of the ice (open-ice vs. along boards) may present 

different concerns for the clinician ultimately responsible for the management of mild TBI 

sustained by young individuals. In real-world activities, there is usually some combination of 

both linear and angular accelerations associated with impacts and impulses. In isolation, 

however, TBI from linear accelerative forces are believed to result in more focal lesions 

while rotational mechanisms of injury result in diffuse cerebral injuries.8-10 We offer that the 

increased linear forces in collisions we observed in the open ice are the result of allowing 

movement of the player’s head since no contact with the rigid playing boards takes place 

following the body collision. In open-ice collisions, we observed significantly greater 

rotational accelerations than those collisions occurring along the playing boards. These 

differences were on the magnitude of approximately 200 rad/s2, and previous work has 

measured the rotational acceleration causing a concussive injury to be as low as 163.35 

rad/s2.11 When an athlete experiences a rotational mechanism, it is thought that rotation of the 

cerebrum about the brainstem produces shearing and tensile strains. Since activity in the 

midbrain and upper brainstem are responsible for alertness and responsiveness, it is perhaps 

not surprising that rotational mechanisms contributing to TBI are believed to more likely 

result in loss of consciousness than predominantly linear types of impacts or impulses. 

Anecdotally, this is reflected when one observes video highlights of “serious” injuries to 

players presented in the media. The question that still remains elusive to researchers and a 

matter of contention, for that matter, is “how do the relative contributions of rotational and 

linear accelerations induce mild TBI?” Many factors play a role in the body’s ability to 

dissipate head impact forces including individual differences in cerebrospinal fluid levels and 

function, vulnerability to brain tissue injury, relative musculoskeletal strengths and 
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weaknesses, and the anticipation of an oncoming impact or impulse. The ability to ever fully 

study these phenomena in real-time and in-vivo is a quandary that may never be attained. 

Regardless of the type, attribute, or severity of a particular impact or impulse, the end result 

is as follows: the effective mass of the head has become too large for the body to overcome 

the acceleration or deceleration forces that have sent it in motion. These whiplash-type 

mechanisms (i.e. hockey bodycheck, football tackle, automobile accident) are believed to 

contribute equally to mild TBI in addition to direct impacts to the head.10, 12-15 

 We also sought to identify whether a relative body position could be identified that 

would best mitigate impact forces associated with body collisions sustained in youth ice 

hockey. We were surprised in that only one of the relative body position descriptors yielded 

any significantly different results. Teaching players to “skate through the bodycheck” has 

been encouraged by USA Hockey and Hockey Canada, and has long been taught by coaches 

to young players in both countries and abroad. It is possible that due to the large number of 

low-magnitude non-injurious impacts we observed, we would not expect any differences in 

athletes who exhibited a positive relative body position descriptor compared to those who did 

not. As we continue in this line of research and record more injuries, it will be interesting to 

see the trends associated with relative body descriptors in better understanding the 

biomechanics associated with youth TBI and the subsequent clinical manifestations of those 

collisions. It should be important to note, in our opinion, that the “ready” position taught by 

USA Hockey and Hockey Canada should continue to be taught to our young hockey players 

until further research can suggest better interventions targeted at reducing mild TBI in youth 

athletes. Given the overall lack of significant differences, it further strengthens the notion 
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that anticipation of a collision may be more important at minimizing head impact severity 

than the position an athlete may be in at the time of the collision. 

 Coaches can play a significant role with respect to teaching young hockey players to 

better anticipate collisions. In practices, game-related drills with full contact will pattern 

players to adapt to constantly changing scenarios during play. A relatively recent trend in 

coaching practices is the implementation of “small games” drills. These drills emphasize 

high speed, quick movements, and game-related tasks (i.e. passing, shooting, checking) in 

small and confined spaces (i.e. corner of the rink). These drills are excellent at forcing 

athletes to play with a heightened sense of awareness that allows them to anticipate better 

incoming body collisions. These drills are also excellent at promoting the quick movement of 

the puck, which limits the amount of time a player is susceptible to a potentially 

unanticipated collision. Officials are also mandated with the task of immediately and 

severely penalizing any player who takes advantage of opponents in susceptible and 

vulnerable position to deliver an unsuspecting collision. This act is not in the spirit of the 

rules, whereby body collisions are meant to simply separate a player from puck possession, 

and not meant to result in an attempt to injure. Player education is also important in 

promoting safe hockey practices. This may range from practice drills, coaching instruction 

during games related specifically to where a player’s teammates were on the ice during a 

particular play (i.e. promoting player awareness of his or her surroundings), and interventions 

designed to evaluate the player’s deemed importance of awareness during play.  

 Due to the costs associated with real-time biomechanical data collection, we were 

limited in sample size to a single team cohort of Bantam-aged hockey players. We chose this 

age due to the large discrepancies in player height and mass previously reported in this age 
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group,16, 17 and the resulting increases in injury risk. Since only the athletes enrolled in our 

study wore instrumented helmets, we only observed the quality of the body collision in our 

players and did not take into account the opponents. As studies in this area become more 

affordable, it will be interesting to study the effect of body collisions between two players 

both wearing instrumented helmets. This is partly possible in football since heavy hitting 

between teammates often takes place during practice, whereas this rarely occurs with the 

same frequency in ice hockey. We are also limited in that we were unable to report a 

sufficient number of injuries for which any meaningful conclusions could be drawn. We 

acknowledge that varying player heights and masses, differences in strength, and aggressive 

tendencies in young athletes may predispose some to more severe head impacts than others. 

This will be important to account for in future work, as our understanding of these intrinsic 

factors may have a direct implication to preventive interventions aimed at reducing TBI 

among our youth. 
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CONCLUSION 

 We employed an athletic research model with the goal of better understanding the 

nature of head impacts sustained by youth ice hockey players, and to describe how body 

collision type, level of anticipation, and relative body position, may mitigate the severity of 

these head impacts. Though we studied youth ice hockey players, the results of this study can 

easily be extended to other youth athletes participating in equipment-intensive collision 

sports including football and lacrosse. The notion that heightened player anticipation can 

mitigate the severity of head impacts is supported by our data, especially as it pertains to 

measures of rotational acceleration sustained during collisions in the moderate range of 

intensity (50th to 75th percentile). Our finding of increasing head impact severity with 

decreasing anticipation suggests that coaches target this aspect of ice hockey in their 

technical development of players during practices to promote the skills necessary to perform 

at high levels while keeping the safety of ice hockey at the forefront. Teaching players to be 

aware of their surroundings and, in particular, an opponent who may be striking them is a 

task not to be ignored by coaches. We recommend hockey coaches spend time during 

practices educating players on how to safely deliver and receive body collisions in all areas 

of the ice, including along the playing boards and in the open ice. There is also the 

responsibility of the player to develop this skill set as well. We strongly support that officials 

begin to implement more severe penalties for collisions delivered to unsuspecting players. 

Prospective studies evaluating the effect of player education and technical training on 

reducing injury rates at the youth level should be undertaken. As no formal cervical strength 

training program was carried out by the athletes in our sample, it will be important to further 

understand the effects of cervical muscle strength on mitigating the severity associated with 
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head impacts in youth ice hockey, and to do so in a controlled and prospective manner. 

Though continued research in this area is necessary, we must use the information we know 

and implement interventions designed to increase the safety of youth ice hockey players in 

order to prevent the onset of TBI in young athletes. 
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Table 1. The eleven descriptors of relative body position evaluated using the CHECC List. 

Relative body position descriptor1,2 

Was the player looking ahead in the direction of movement? 

Did the player appear to be looking in the direction of impending body collision? 

Were the player’s knees flexed to greater than 30 degrees at the time of the collision? 

Was the player’s trunk flexed at the time of collision? 

Did the player drive into the collision with their shoulders? 

Did the player use their elbows, regardless of infraction or not, during the collision? 

Did the player use their hands, regardless of infraction or not, during the collision? 

Were the player’s feet shoulder width apart at the time of the collision? 

Did the player use their stick, regardless of infraction or not, during the collision? 

Did the player use their legs to drive into or through the body collision?3 

Was the player receiving or delivering a pass, or taking a shot, at the time of the collision? 

1 All relative body descriptors were evaluated using a dichotomous outcome of “yes” or “no” 

2 All comparisons between “yes” and “no” responses for linear acceleration, rotational 

acceleration, and HITsp were not statistically significant (with the exception noted in 3 

below) 

3 Using legs resulted in lower linear acceleration compared to collisions where the athlete did 

not use legs. A moderate trend in the same direction for HITsp was observed. No differences 

in rotational acceleration were noted. 
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Table 2. Frequency (percentage) of recorded impacts, mean resultant linear acceleration of 

head impacts sustained by body collision type, anticipation, and overall impression. The 

associated 95% confidence intervals and p-values are provided. 

 95% CI 

 

Frequency 

of impacts1 

Linear 

acceleration (g) Lower Upper 
P value2 

Body collision type      

     Along playing boards 421 (63.3%) 20.7 19.4 22.2 0.036 

     Open-ice3 245 (36.8%) 22.4 20.6 24.3 — 

Anticipation      

     Anticipated 564 (84.7%) 21.1 19.5 22.8 0.135 

     Unanticipated3 102 (15.3%) 22.6 20.9 24.5 — 

Overall impression      

     Anticipated—good 315 (47.3%) 20.7 19.1 22.5 0.098 

     Anticipated—poor 249 (37.4%) 21.4 19.6 23.4 0.279 

     Unanticipated3 102 (15.3%) 22.6 20.9 24.5 — 

Total 666  —  — — 

1 Percentages may add up to 100.01% due to rounding 

2 P values reflect significant differences relative to the reference category employed by the 

random intercepts general mixed linear model analyses  

3 Denotes the reference category used in mixed linear models 
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Table 3. Frequency (percentage) of recorded impacts, mean resultant rotational acceleration 

of head impacts sustained by body collision type, anticipation, and overall impression. The 

associated 95% confidence intervals and p-values are provided. 

 95% CI 

 

Frequency 

of impacts1 

Rotational 

acceleration (rad/s2) Lower Upper 
P value2 

Body collision type      

     Along playing boards 421 (63.3%) 1367.7 1295.6 1443.9 0.003 

     Open-ice3 245 (36.8%) 1564.7 1440.3 1699.9 — 

Anticipation      

     Anticipated 564 (84.7%) 1414.3 1330.6 1503.3 0.138 

     Unanticipated3 102 (15.3%) 1550.0 1377.4 1744.2 — 

Overall impression      

     Anticipated—good 315 (47.3%) 1409.4 1303.0 1524.4 0.145 

     Anticipated—poor 249 (37.4%) 1420.4 1312.4 1537.3 0.184 

     Unanticipated3 102 (15.3%) 1549.9 1377.3 1744.2 — 

Total 666  —  — — 

1 Percentages may add up to 100.01% due to rounding 

2 P values reflect significant differences relative to the reference category employed by the 

random intercepts general mixed linear model analyses  

3 Denotes the reference category used in mixed linear models 
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Table 4. Frequency (percentage) of recorded impacts, mean HITsp of head impacts sustained 

by body collision type, anticipation, and overall impression. The associated 95% confidence 

intervals and p-values are provided. 

 95% CI 

 

Frequency 

of impacts1 
HITsp 

Lower Upper 
P value2 

Body collision type      

     Along playing boards 421 (63.3%) 15.5 14.74 16.3 0.055 

     Open-ice3 245 (36.8%) 16.3 15.3 17.3 — 

Anticipation      

     Anticipated 564 (84.7%) 15.8 15.0 16.6 0.755 

     Unanticipated3 102 (15.3%) 15.5 14.2 17.1 — 

Overall impression      

     Anticipated—good 315 (47.3%) 15.6 14.6 16.5 0.990 

     Anticipated—poor 249 (37.4%) 16.1 15.2 17.0 0.491 

     Unanticipated3 102 (15.3%) 15.5 14.2 17.1 — 

Total 666  —  — — 

1 Percentages may add up to 100.01% due to rounding 

2 P values reflect significant differences relative to the reference category employed by the 

random intercepts general mixed linear model analyses  

3 Denotes the reference category used in mixed linear models 
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ABSTRACT 

Purpose: Considering the issues regarding the management of sports-related concussion, 

especially in youth athletes, we aimed to identify the effects of infractions sustained during 

participation in youth ice hockey on biomechanical measures of head impact severity.  

Methods: Sixteen young male Bantam-aged ice hockey players (age = 14.0±0.5 years; height 

= 171.3±4.5 cm; mass = 63.7±6.6 kg) were recruited and subsequently equipped with 

instrumented helmets. The helmets housed six single-axis accelerometers capable of 

measuring linear acceleration, rotational acceleration, and Head Impact Technology severity 

profile (HITsp) associated with collisions sustained while participating in ice hockey. Video 

footage from 54 games was synchronized with the helmet data and all viewable collisions (N 

= 665) were evaluated as resulting from a legal collision or an infraction. Infractions were 

further categorized into boarding or charging, checking from behind, and elbowing or 

intentional head contact. Statistical analyses included random intercepts general linear mixed 

models. 

Results: As many as 17.3% (115 of 665) of all body collisions were the result of observable 

infractions. Illegal collisions resulted in significantly higher linear accelerations (P=0.012) 

and HITsp (P=0.021) than legal collisions. Specifically, elbowing, head contact, and high 

sticking infractions resulted in greater linear (P=0.012) and rotational accelerations 

(P=0.028) than legal collisions. A strong trend for HITsp was also present for this infraction 

type (P=0.059).  

Conclusion: Based on our data, infractions occur at a relatively high frequency and typically 

result in higher measures of head impact severity than legal collisions. This information 

provides objective data to strengthen the ongoing need to educate athletes and coaches to 
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educate conformity to playing rules, and for establishing a baseline for officiating 

interventions at the youth ice hockey level.  
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INTRODUCTION 

 It has been estimated that between 1.6 and 3.8 million traumatic brain injuries (TBI) 

result from sports each year in the United States (14). These injuries cost the American health 

care system approximately $56.3 billion annually in direct and indirect costs (13), and make 

TBI among the most expensive conditions to treat in children (26). While teams of medical 

professionals surround collegiate and professional athletes, it is often adolescent athletes who 

are cared for by parent volunteer coaches with very little medical knowledge. As a result, 

there is a need to study the factors that may contribute to mild TBI in order to minimize the 

risk of injury in our young athletes. In the midst of the popularity of professional and 

collegiate athletics, the young athlete has often been ignored in research. In the area of TBI-

related research, it has been found that children with moderate to severe TBI suffer more 

serious adverse physiological effects after injury than adults with equal severity of brain 

injury (2). Other studies have also elucidated the increased severity and prolonged recovery 

of TBI in younger athletes including complications resulting from Second Impact Syndrome 

(5, 8, 12, 24).  

 While much has been published in the area of sports-related concussion and mild TBI 

research in the last 10 years, few studies have sought to understand the biomechanics 

associated with concussive injuries (10, 11, 17, 18, 22, 25). To date, only one study to our 

knowledge has disseminated descriptive data on biomechanical measures of head impacts in 

youth ice hockey players (19). The latter study reported that impacts occurring during games 

and scrimmages resulted in significantly greater linear accelerations than those sustained 

during practices. This study, however, failed to report rotational acceleration, a measure that 

previous animal research has elucidated to be an important contributor to injury (20). Ice 
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hockey injury rates are among the highest of collision sports. Injury rates as high as 75 

injuries per 100 ice hockey players have been reported, with 22% of these injuries sustained 

to the head and neck (9). The injury rate in Bantam players was reported to be 4.3 injuries per 

1000 player-hours, with a game injury rate as high as 10.9 per 1000 player-hours (27). Ice 

hockey presents a number of factors that predispose the participants to higher risk of injury 

compared to other collision sports. First, the playing surface is made of solid ice and uses 

rigid boards that contain the playing area. Second, players use a stick to manipulate a rigid 

frozen projectile (the playing puck) that can sometimes exceed 80 mph. Compounding these 

two factors, twelve ice hockey players wearing skates with sharp blades taking up position on 

the ice travel at high speeds, and are encouraged to purposefully collide with any opponent in 

possession of the puck.  

 Allowing body collisions at the youth amateur level is a topic not without 

controversy. Proponents for allowing body collision at young ages offer it is an opportunity 

to teach proper technique while athletes are not big and strong enough to cause undue injury. 

Opponents to body collision at young ages argue that the size of the players, especially at the 

Bantam level (13- and 14-year-olds), can vary significantly and predispose smaller players to 

injury. Previous work has established anthropometric and biomechanical force profiles for 

each player in a sample of youth ice hockey players (3). The height and mass of Bantam 

players differed by as much as 41 cm (16.1 inches) and 48 kg (105.6 pounds), respectively.  

 The culture of ice hockey often predicates a mentality among players to ignore injury, 

play recklessly, and encourage unsportsmanlike conduct such as fighting and illegal 

checking. In a sample of 12 and 13 year old players, fighting was considered a natural 

consequence of the game (9). Further, while 100% of coaches reported that sportsmanship 
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was “real important,” only 59% of players shared this attitude (4). Parents and coaches in this 

sample viewed the enforcement of rules as being the most important factor in reducing 

injuries. 

 The sports arena provides us with an optimal laboratory in which we can better study 

the effects of head impacts in young ice hockey players. To our knowledge, this represents 

the first study to objectively evaluate biomechanical measures of head impact severity in the 

context of understanding the effects of player infractions on youth ice hockey players. 

Therefore, the primary purpose of this study was to determine the effects of infractions and 

infraction types on the biomechanical measures of head impact severity in youth ice hockey 

players. A secondary purpose was to evaluate whether an interaction existed between 

infraction type and whether a player caused the offending penalty or was struck illegally by 

an opponent. 
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METHODS 

 

Study Design and Participants 

 This study employed a prospective quantitative research design to evaluate the effect 

of infractions on head impact severity in youth ice hockey players. Data collection occurred 

at a number of local, state, national, and international venues, as the ice hockey team traveled 

for many of their competitions. The study included sixteen male Bantam-level ice hockey 

players (age = 14.0 ± 0.5 years; height = 171.3 ± 4.5 cm; mass = 63.7 ± 6.6 kg) representing 

a convenient sample of participants from an AAA-level program. One of the players was a 

goaltender not actively involved in body collisions and did not have any penalty minutes 

served to him during the season. Therefore, he was removed from the analyses included in 

this study. Our sample represented 9 forwards and 6 defensemen. Data were collected during 

54 games and 38 practices.  

 Athletes in our sample participated in at least three sessions (practice or game) each 

week over the course of the playing season. A detailed explanation of the study was provided 

for all the athletes, coaches, and parents, prior to the start of the season. While data pertaining 

to previous history of concussion and years of playing experience were collected, they did 

not serve as exclusion criteria. Parental permission and minor assent forms approved by the 

university’s institutional review board were signed by each parent and player, respectively, 

prior to fitting an athlete with an instrumented ice hockey helmet (see Procedures section).  

 

Apparatus 

Head Impact Telemetry (HIT) System 
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 This study used commercially available Reebok RBK 6K and 8K helmets (Reebok-

CCM Hockey, Inc.; St-Laurent, Quebec, Canada) modified to accept the Head Impact 

Telemetry (HIT) System technology (Simbex; Lebanon, NH). The helmet's foam liner was 

custom cut to accept six single-axis accelerometers, a battery pack, and the telemetry 

instrumentation (Figure 1). The custom helmets passed American Society for Testing and 

Materials (ASTM 1045-99) and Canadian Standards Association (CSA Z262.1-M90) helmet 

standards, and were approved by the Hockey Equipment Certification Council (HECC) for 

use during competition. The HIT System utilized spring-loaded accelerometer holders 

to maintain contact with the head during an impact event. This method has been shown to 

successfully decouple accelerometers from the head allowing for measurement of head—not 

helmet—acceleration (15). These accelerometers were positioned tangentially to the head. 

Linear acceleration of the center of gravity of the head was computed using a least-squares 

regression algorithm (6, 7). Data from the six accelerometers were collected at 1 kHz for a 

period of 40 ms (8 ms pre-trigger and 32 ms post-trigger) following the acceleration of any 

individual accelerometer exceeding 10 g. The data were time-stamped, encoded, stored 

locally, and then transmitted in real time to a sideline controller (antenna) incorporated 

within the Sideline Response System (Riddell; Elyria, OH) via a radiofrequency telemetry 

link. The sideline controller was typically positioned along the playing surface sideboards or 

in the team’s dressing room. Biomechanical measures of head impact severity were 

computed and stored. The HIT System is capable of transmitting accelerometer data from as 

many as 100 players over a distance well in excess of the length of a standard international 

ice surface. In some instances when the real-time transmission of head impact data was 

unavailable (i.e. signal interruptions, sideline system not set up, etc), information from 100 
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separate head impacts were capable of being stored in non-volatile memory built into the 

acceleration monitoring system. 

 

Evaluation of body collisions 

 A tool was designed to evaluate body collisions observed during video footage 

playback. The Carolina Hockey Evaluation of Children’s Checking (CHECC) List was 

scored on 11 readily observable features of human movement when involved in a body 

collision (Table 1). Additional variables of interest on the CHECC List included: whether the 

player was striking an opponent or was the player struck, and whether an infraction took 

place during the collision. We further distinguished the illegal infractions into the following 

types: boarding or charging, checking an opponent from behind, and elbowing an opponent 

or deliberately making head contact (with their body or playing stick). Intrarater Kappa 

agreements ranged from 0.40 to 0.92 for the 15-item CHECC List. Interrater agreement 

suggested moderate to strong agreement between hockey coaches with no scientific 

experience. The range of agreement was 60% to 96% in which at least five of six coaches 

agreed on each individual criterion.   

 

Video recording  

 This study employed the use of a standard digital video camera (Model: PV-GS35; 

Panasonic Corp.; Secaucus, NJ) to record live game footage onto 60-minute miniDV tapes 

(Model: M-DV60ME; JVC Americas Corp.; Wayne, NJ). The video camera was capable of 

recording video footage at 120 Hz, and had a built-in sports exposure mode that allowed for 

clear video recording of quick action. It was equipped with a 30X optical zoom and 1000X 
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digital zoom, allowing for close-up contained images regardless of where the play was 

occurring on the ice relative to the research assistant filming the game. Video footage was 

recorded for every game and scrimmage during the season. Prior to each game, the video 

camera date- and time-stamping features were synchronized to the Sideline Response System 

date and time. In order to maximize video image size, the camera followed movement of the 

puck in an attempt to isolate body collisions during play and to maximize the capture of these 

events by the camera. Impacts occurring outside the view of the camera were excluded from 

our analyses, as there was no way to analyze these collisions using the CHECC List. In some 

instances, late body collisions occurring shortly after the officials blew the whistle were not 

captured and, therefore, were excluded from our analyses. All raw videos were imported 

from the video camera connected to a personal computer using a standard universal serial bus 

(USB) cable. Date and time-stamp information were inlayed onto the videos, and the videos 

were then exported to a DivX-encoded audio video interleave (AVI) file for storage and 

future playback. Video playback during CHECC List evaluations was performed on a 

personal laptop (MacBook; Apple, Inc.; Cupertino, CA) using QuickTime Player Pro 

(Version 7.5.5; Apple Inc.; Cupertino, CA). 

 

Procedures 

Helmet fitting 

 Prior to the start of the season, players were measured for helmet and facemask size. 

They were properly fit with Reebok RBK 6K/8K helmets by a certified athletic trainer 

(ATC). The ATC instructed each participant to wet his hair to simulate sweating. Facemasks 

owned and used by the players were secured to the new helmet if they were deemed to be in 
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good condition. Otherwise, players were asked to purchase a new facemask or were allocated 

one by the research team. They were then fitted with the helmet such that the brim of the 

helmet rested 2.5-3.0 cm (two finger-widths) above the participant’s eyebrows. The facemask 

chinstrap fit tightly under the chin and was securely fastened to the helmet. As a quick test, 

participants were instructed to hold their head still while the principal investigator attempted 

to move the helmet. If the investigator was able to move the helmet with no movement of the 

head, the fitting procedure was repeated. Helmet and facemask fit was verified on a biweekly 

basis to ensure proper fit throughout the course of the season. 

 

Biomechanical measures of head impact severity 

 The raw head impact data collected over the course of the season were exported from 

the Sideline Response System into Matlab 7 (The Mathworks, Inc.; Natick, MA), where data 

were reduced to include only those impacts sustained during practices, scrimmages, and 

games. Impacts occurring outside of team-sanctioned events (i.e. pick-up hockey, impacts 

imparted to the helmet during handling of equipment or travel, etc) were thus omitted from 

our analyses. Only impacts registering a linear acceleration greater than 10 g were included 

for the purposes of our analyses as impacts below this threshold are considered negligible 

with respect to impact biomechanics and their relationship to head trauma. As each impact 

was linked to a player enrolled in our study by unique identifiers, we were able to easily 

identify impacts that belonged to a particular player. Resultant linear head acceleration 

(measured in terms of gravity force, g), resultant rotational head acceleration (measured in 

rad/s2), and Head Impact Technology severity profile (HITsp), were the outcome measures of 

interest and retained for further analysis. The HITsp is a weighted composite score including 
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aspects of linear and rotational acceleration, as well as impact location, and has previously 

been described in more detail (10). These variables were computed by the HIT System.  

 

Statistical analyses 

 Since head impact data were highly skewed in favor of low-magnitude impacts, data 

were transformed using a natural logarithmic function in order to meet the assumptions of 

normality for the analyses described below. All estimates were then back-transformed to 

their original scale for purposes of presentation. Descriptive analyses (means and 95% 

confidence intervals) were calculated for the three biomechanical measures of head impact 

severity (dependent variables): resultant linear acceleration, resultant rotational acceleration, 

and the HITsp. In order to address our study purpose, separate random intercepts general 

mixed linear models were employed for each of our dependent variables. Presence of 

infraction and infraction type were included as separate independent variables (in addition to 

player) in the statistical model employed in this study. “Player” represented one level in each 

statistical model as a repeated factor. We also included the independent variable of “strike,” 

coded to distinguish between collisions in which the player struck an opponent or in which 

the player was struck by an opponent, in our statistical model. We did so in order to identify 

how infraction types affect those players who are struck by the offending players. All random 

intercepts general mixed linear models (PROC MIXED) were performed in SAS/STAT 

(Version 9.1; SAS Institute, Inc.; Cary, NC). The level of significance was set at P < .05 a 

priori.  
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RESULTS 

Legal vs. illegal collisions 

 We recorded 4608 head impacts during the 2007-2008 season. We observed a total of 

665 body collisions for which we were able to complete a CHECC List and assign a level of 

infraction. Of these collisions, 82.7% (550 of 665) were deemed to be legal body collisions, 

while the remaining 17.3% (115 of 665) were deemed to be illegal in nature. Linear 

accelerations measured during collisions involving illegal infractions (23.0 g; 95% CI: 21.4-

24.8) were significantly greater than those sustained during legal collisions (20.9 g; 95% CI: 

19.5-22.5) in our sample (F1,13 = 8.46, P = 0.012). The HITsp measures for illegal infractions 

(16.8; 95% CI: 15.8-17.9) were significantly greater than those we observed for legal 

collisions (15.5; 95% CI: 14.7-16.4) in our sample (F1,13 = 6.86; P = 0.021). No significant 

differences between illegal infractions and legal collisions were observed for measures of 

rotational acceleration (F1,13 = 2.45; P = 0.142). 

 

Infraction types 

 Of all impacts evaluated using the CHECC List, 82.7% (550 of 665) were legal body 

collisions, 3.0% (20 of 665) were boarding or charging infractions, 2.9% (19 of 665) were a 

result of a check from behind, and 11.4% (76 of 665) were a result of elbowing, intentional 

head contact, or high sticking to the head. Linear head accelerations due to elbowing, 

intentional head contact, or high sticking to the head (24.0 g; 95% CI: 21.9-26.2) were 

significantly greater than those observed in legal collisions (20.9 g; 95% CI: 19.5-22.5). 

There were no differences between legal collisions, those sustained from boarding or 

charging, and checking from behind. Rotational head accelerations differed across legal 
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collisions and infraction types (F3,28 = 3.53, P = 0.028). Impacts involving elbowing, head 

contact, or high sticking infractions (1614.3 rad/s2; 95% CI: 1419.6-1835.7) were 

significantly greater than those observed for legal collisions (1418.4 rad/s2; 95% CI: 1335.4-

1506.5). Though not statistically significant, we observed a trend in the data to suggest 

differences between boarding or charging infractions (1575.9 rad/s2; 95% CI: 1419.2-

1749.9), and legal collisions (P = 0.103). Checking from behind did not result in any 

significant differences in head rotational acceleration compared to legal collisions. With 

respect to the HITsp, the data are suggestive of a trend towards a significant difference 

between legal collisions and the different infraction types (F3,28 = 2.78; P = 0.059). Further 

exploring this finding, we observed impacts resulting from elbowing, head contact, or high 

sticking infractions (17.6; 95% CI: 16.0-19.2) to exhibit higher severity profiles than legal 

collisions (15.5; 95% CI: 14.7-16.4). No significant differences were observed between legal 

collisions and those sustained as a resulting from boarding or charging infractions and those 

as a result of checking from behind. When we controlled for body mass index (BMI) in our 

analyses, we did not observe any changes suggesting body size does not appear to have 

mitigated any of our previously reported findings. 

 

Interactions between infraction types on striking and struck players 

 We observed a significant interaction between infraction type and whether a player 

was striking an opponent or was struck by an opponent on measures of rotational acceleration 

(F3,15 = 4.81; P = 0.015). Players who were checked from behind sustained lower rotational 

head accelerations (1151.6 rad/s2; 95% CI: 910.0-1457.3) than those who struck opponents 

from behind (1395.9 rad/s2; 95% CI: 1200.5-1623.2). A moderate trend was observed 
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suggesting players who were struck as a result of a boarding or charging infraction sustained 

greater rotational accelerations than those players who boarded or charged opponents (P = 

0.083). There were no significant effects of elbowing, head contact, or high sticking 

infractions between players who were struck and those who delivered the collisions (P = 

0.116). We did not observe any interaction effects between infraction type and whether a 

player delivered or received an illegal infraction at the time of the body collision for linear 

acceleration (F3,15 = 0.67; P = 0.583) or the HITsp (F3,15 = 1.07; P = 0.391). All means, 95% 

confidence intervals, and associated P values for significant and non-significant comparisons 

are presented in Tables 2 to 4. 
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DISCUSSION 

 Infractions that occur while participating in youth ice hockey result in more 

pronounced biomechanical measures of head impact severity compared to legal contact. Our 

primary finding was that illegal collisions, particularly those involving elbowing, intentional 

head contact, or high sticking to the head, result in higher measures of linear and rotational 

acceleration, and HITsp. Unfortunately, based on our analyses, more than 17% of body 

collisions were deemed to result in an infraction and as many as two-thirds of those 

infractions were the result of intentional head contact with the elbow, playing stick, or player 

body. To our knowledge, this study is the first to objectively evaluate the effect infractions 

may have on brain trauma in the young athlete. It is the first to employ a novel real-time data 

collection system for the purposes presented in this study. Due to the increasing popularity of 

ice hockey in the United States, and its continued popularity and growth worldwide including 

Canada and many countries in Europe, this young population provides us an excellent 

opportunity to study body collisions in youth sport, and how we may begin to implement 

skill changes in order to mitigate the forces associated with head impacts sustained during 

participation.  

 Our results did not entirely agree with our hypotheses. We anticipated that all types of 

illegal infractions would result in higher biomechanical measures of head impact severity. 

Boarding and charging infractions resulted in similar linear and rotational accelerations 

compared to legal collisions sustained while participating. A boarding penalty is imposed to a 

player at the discretion of the official based upon the degree of violence of the impact 

causing an opponent to be thrown violently into the playing boards. Charging is assessed to a 

player who takes more than 2 steps or strides (i.e. takes a run), or jumps into or charges an 
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opponent. Given the overly aggressive nature of these infractions, it was surprising to not 

have found any differences in head impact measures compared to legal collisions. There are 

some possible explanations for this finding. First, our initial analyses did not differentiate 

between the striking player and the player struck. Secondly, though players may have been 

boarded or charged by opponents, their level of anticipation or overall preparedness of these 

impending collisions may have led them to better absorb the forces associated with these 

collisions. Checking from behind, a very dangerous infraction imposed to a player who body 

checks or pushes an opponent from behind. This infraction is usually delivered to an 

unsuspecting opponent who is often unable to protect him or herself. It also represents the 

leading mechanism of injury for catastrophic cervical spine injuries in ice hockey at all levels 

(29). Given this, the result that biomechanical measures of head impact severity did not differ 

between collisions involving checks from behind and legal collisions was unexpected. We 

hypothesized that this effect could best be described by the relative body position an athlete 

was in at the time of the collision. When we included the interaction term of infraction type 

and the total CHECC List score for the eleven body descriptors (higher score results in better 

relative body position), we did not find any interaction effects suggestive of the role of 

relative body position on mitigating the effects of infraction type.  

 In agreement with our hypotheses was that elbowing, head contact, and high sticking 

to the head infractions resulted in more pronounced biomechanical measures of head impact 

severity. An elbowing infraction is imposed to any player who uses his or her elbow in such a 

way as to attempt to foul an opponent. A head contact is imposed on any player who 

intentionally or recklessly contacts a player in the head, including with the stick or with an 

illegal body check. Since contact for this group of infractions is sustained directly to the 
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head, with the intent to strike the head with excessive force, our findings of increased linear 

and rotational acceleration compared to legal collisions was expected. In cases where an 

athlete would anticipate the impending collision, it could be argued the forces generated by 

the cervical musculature would be unable to overcome the inertial forces of an opponent 

traveling at high speeds and directing their body mass through the opponent’s head during a 

collision. Controlling for cervical muscle strength in these types of analyses will be an 

important step for future work in this area. In our own ongoing work, we have observed a 

good relationship between total cervical muscle strength and BMI (r = -0.618). This would 

suggest that as BMI increases (i.e. athletes become more overweight and, thus, less fit) 

athletes have weaker cervical muscle strength. Given this relationship, we included BMI as a 

surrogate covariate to cervical muscle strength in our analyses. We felt that including 

cervical muscle strength (represented by BMI in these analyses) would provide us with an 

outlet to better understand and explore the effects these covariates may play on the severity 

of head impact measures following illegal collisions. In other words, would players with 

strong cervical muscles better able to mitigate the magnitude of head impact forces following 

an illegal collision? After controlling for BMI, the effects of infraction type on 

biomechanical measures of head impact severity do not appear to be affected. Elbowing and 

head contact infractions, in our opinion, provide the greatest likelihood of incurring brain 

injury to ice hockey players. Given their nature, it is our opinion that these findings may be 

extended to other collision sports including football and lacrosse. Though some of these 

infractions may not be relevant in those sports, the danger of deliberate head contacts, 

especially in unsuspecting athletes, remains a concern to sports medicine professionals tasked 

with the care of these athletes. This presents a number of challenges to maintaining the safety 
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of participants involved with ice hockey. Coaches should be tasked to promote a fair method 

of play among their players. Taking the time during practices to promote safe body checking 

techniques, instructing players not to “take runs” at unsuspecting opponents, and promoting 

body collisions in the spirit of their original intent which was to separate the opponent from 

puck possession, and not to deliberately injure an opponent. Officials should be responsible 

for maintaining a safe playing environment, which often can be as simple as keeping control 

of the game and not allowing it to get out of hand from a hostility standpoint. Players should 

recognize that their actions may directly injure an opponent, and should be taught to play 

fairly and within the confines of the rules set forth by their respective governing bodies. 

Lastly, parents should recognize the value of body collisions for their purpose, and to foster 

an environment for their children such that safe and fair play are rewarded and illegal actions 

are dealt with swiftly.  

 While the immediate purpose of this study was not to understand coaches’ and 

players’ aggressive behaviors and why they may behave in this manner, it is difficult to 

ignore this aspect of ice hockey, and a brief discussion of this is warranted in the context of 

the results presented in this study. Although USA Hockey and Hockey Canada strongly 

encourage sportsmanlike behavior, the culture of ice hockey predicates a mentality among 

players to ignore injury, play recklessly, and encourages unsportsmanlike conduct such as 

fighting and illegal checking. In the United States, a study of Peewee-level players reported 

that fighting broke out in approximately 17 of 52 games observed. In this sample, players 

considered fighting a natural consequence of the game and experienced a certain resignation 

about fighting (9). Another interesting finding is that while 100% of coaches felt 

sportsmanship was “real important,” only 59% of players shared this attitude (4). Parents and 
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coaches in the latter sample viewed the enforcement of rules as being the most important 

factor in reducing injuries. Tator’s work in the area of catastrophic cervical spine injury 

agrees with this statement and emphasizes a need for strict enforcement of the hit-from-

behind rule and the necessity of continued education for coaches and players regarding the 

risk of head and neck injuries in ice hockey (29). Notwithstanding, our results suggest that as 

many as 17.3% of all collisions we observed involved some form of illegal infraction. While 

a low number of checks from behind (2.9%) were still observed, they occurred at a much 

lower frequency than elbowing and head contact infractions. This is suggestive that 

interventions implemented by USA Hockey and Hockey Canada to reduce the risk of 

catastrophic neck injuries resulting from checks from behind appear, at quick glance, to be 

effective.  

 A number of interventions have sought to mitigate the frequency of penalties and 

aggressive play in order to reduce injury rates at the youth ice hockey level. A Canadian 

program labeled Fair Play was introduced to youth ice hockey in the province of Quebec. 

Fair Play was designed to penalize unnecessary roughness by awarding a fair play point to 

teams that reduce the number and severity of their penalties. In one study, penalties issued to 

teams playing under the Fair Play program were compared to those teams not using the 

system (16). The authors reported 30% less major penalties and 25% less game suspensions 

were issued to the Bantam-level Fair Play teams compared to their non-program 

counterparts. While our study did not compare a pre- and post-intervention, our data would 

suggest that elbowing and head contact infractions still occur at a fairly high rate in youth ice 

hockey. At the Peewee level, Fair Play teams averaged 1.3 major penalties per season 

compared to 6.3 major penalties for non-program teams. Further, among teams using the Fair 
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Play system, 71% of them did not receive a single game suspension. The Fair Play study 

highlights a number of key points as they relate to the current study. First, interventions 

specifically designed to reward teams’ proper behavior appear to result in decreases in illegal 

conduct and, specifically, severe misconduct more likely to result in injuring an opponent by 

possibly mitigating the head impact severity associated with those collisions. Secondly, 

according to this study, it appears as though interventions such as Fair Play have a greater 

impact on younger players. This suggests that targeting younger players, such as those 

included in our sample or younger, may be best suited by these interventions. Since our data 

suggest that almost 1 in 5 collisions involve some form of infraction, it will be important to 

educate officials on the dangers of unsafe actions during play. Future work in this area should 

draw on these findings and study the effects on injury rates as a result of targeted officiating 

designed specifically to reduce head trauma and its severity in youth ice hockey.   

 Allowing body checking at young ages in ice hockey is not without controversy. 

Many believe body checking leads to a laissez-faire attitude toward body collisions and an 

increase in rule infractions (21). Cerebral concussion (i.e. mild TBI) occurred in each of four 

tournaments that allowed body checking (23). The rate of mild TBI ranged from 10.7 to 23.1 

per 1000 player-hours in the tournaments observed by Roberts et al. This rate is markedly 

higher than regular season rates previously reported. Sutherland et al., for example, recorded 

0.09 concussions per 1000 player-hours (28), while Brust et al. and Stuart et al. estimated 

0.75 concussions per 1000 player-hours and no concussions during a season, respectively (4, 

27). In contrast, as many as 10% of high school ice hockey players sustained a concussion 

during the regular season (9). Given the reported literature in this area, it is surprising that the 
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national governing bodies for amateur hockey in the United States and Canada have not done 

more to educate players, parents, officials, and coaches on this topic.  

 Our study is not without a number of limitations worthy of discussion. First, we were 

limited to only 665 body collisions in which we were able to observe video footage in order 

to complete the CHECC List, and an even smaller number (N = 115) consisted of observable 

infractions. Second, our athletes represented a convenient sample of Bantam-aged ice hockey 

players from a single elite hockey team. As a result, the results of this study may be difficult 

to extend to non-elite levels of youth ice hockey including local travel, recreational, and 

house leagues. Since every participant knew he was wearing an instrumented helmet, there 

may have been a level of competition among the teammates (unknown to the researchers) 

that may have predisposed an athlete to want to hit an opponent harder than their fellow 

teammates. Finally, infractions were assessed based on careful review of game footage. 

Videos were played back in regular time, slow motion, and freeze frame forwarding, a 

number of times before an infraction type was assigned to a given body collision. We are 

aware that on-ice officials are tasked with making immediate calls and are often unable to 

identify potentially injurious collisions that may occur beyond their field of vision. It should 

be noted that not every infraction we observed was called as such by the on-ice officials.  

 As we begin to better understand the causes and effects of cerebral concussion in 

pediatric athletes, it is believed we will become better prepared to introduce prevention 

programs and improved emergency care and injury management programs. The outcomes 

from this study and others in this area have the potential to help create a more positive and 

safe environment for youth hockey players. The results provide valuable information 

regarding situations in which youth hockey players are at the greatest risk for sustaining head 
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impacts of higher, and potentially dangerous, magnitudes. Since the tempo and 

aggressiveness of ice hockey is a direct reflection on a game’s officiating, this study serves to 

better elucidate the effects of player infractions on measures of head impact severity. This 

information, in addition to educational interventions, can have a targeted purpose of 

improving the awareness of these infractions among players, coaches, and officials, and 

emphasize the importance of enforcing player infractions likely to result in more severe head 

impacts.  
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Table 1. The eleven descriptors of relative body position evaluated using the CHECC List. 

Relative body position descriptor1 
Was the player looking ahead in the direction of movement? 

Did the player appear to be looking in the direction of impending body collision? 

Were the player’s knees flexed to greater than 30 degrees at the time of the collision? 

Was the player’s trunk flexed at the time of collision? 

Did the player drive into the collision with their shoulders? 

Did the player use their elbows, regardless of infraction or not, during the collision? 

Did the player use their hands, regardless of infraction or not, during the collision? 

Were the player’s feet shoulder width apart at the time of the collision? 

Did the player use their stick, regardless of infraction or not, during the collision? 

Did the player use their legs to drive into or through the body collision? 

Was the player receiving or delivering a pass, or taking a shot, at the time of the collision? 

1 All relative body descriptors were evaluated using a dichotomous outcome of “yes” or “no” 
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Table 2. Frequency (percentage) of recorded impacts, mean resultant linear acceleration of 

head impacts sustained by legality of collision, and infraction type. The associated 95% 

confidence intervals and p-values are provided. 

 95% CI 

 

Frequency 

of impacts 

Linear 

acceleration (g) Lower Upper 
P value1 

Legality of body collision      

     Illegal collision 115 (17.3%) 23.0 21.4 24.8 0.012 

     Legal collision2 550 (82.7%) 21.0 19.5 22.5 — 

Type of infraction      

     Boarding/charging 20 (3.0%) 21.2 18.7 24.0 0.868 

     Checking from behind 19 (2.9%) 21.4 18.8 24.3 0.722 

     Elbowing/head contact 76 (11.4%) 24.0 21.9 26.2 0.005 

     Legal collision2 550 (82.7%) 21.0 19.5 22.5 — 

Total 665  —  — — 

1 P values reflect significant differences relative to the reference category employed by the 

random intercepts general mixed linear model analyses  

2 Denotes the reference category used in mixed linear models 
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Table 2. Frequency (percentage) of recorded impacts, mean resultant rotational acceleration 

of head impacts sustained by legality of collision, and infraction type. The associated 95% 

confidence intervals and p-values are provided. 

 95% CI 

 

Frequency 

of impacts 

Rotational 

acceleration (rad/s2) Lower Upper 
P value1 

Legality of body collision      

     Illegal collision 115 (17.3%) 1529.9 1388.5 1685.8 0.142 

     Legal collision2 550 (82.7%) 1417.5 1334.8 1505.3 — 

Type of infraction      

     Boarding/charging 20 (3.0%) 1575.9 1419.2 1749.9 0.103 

     Checking from behind 19 (2.9%) 1197.7 953.3 1504.9 0.144 

     Elbowing/head contact 76 (11.4%) 1614.3 1419.6 1835.7 0.059 

     Legal collision2 550 (82.7%) 1417.5 1334.8 1505.3 — 

Total 665  —  — — 

1 P values reflect significant differences relative to the reference category employed by the 

random intercepts general mixed linear model analyses  

2 Denotes the reference category used in mixed linear models 



  235 

Table 3. Frequency (percentage) of recorded impacts, mean HITsp of head impacts sustained 

by legality of collision, and infraction type. The associated 95% confidence intervals and p-

values are provided. 

 95% CI 

 

Frequency 

of impacts 
HITsp 

Lower Upper 
P value1 

Legality of body collision      

     Illegal collision 115 (17.3%) 16.8 15.8 17.9 0.021 

     Legal collision2 550 (82.7%) 15.5 14.7 16.4 — 

Type of infraction      

     Boarding/charging 20 (3.0%) 16.8 14.6 19.3 0.364 

     Checking from behind 19 (2.9%) 14.1 12.0 16.7 0.199 

     Elbowing/head contact 76 (11.4%) 17.6 16.0 19.2 0.010 

     Legal collision2 550 (82.7%) 15.5 14.7 16.4 — 

Total 665  —  — — 

1 P values reflect significant differences relative to the reference category employed by the 

random intercepts general mixed linear model analyses  

2 Denotes the reference category used in mixed linear models 
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FIGURE 1. The protective foam of the ice hockey helmets were removed from the helmet 

shell. Following this, six single-axis accelerometers were fitted into custom holes cut into the 

foam. The figure depicts the location of the helmet accelerometers in the protective foam 

(hard shell removed) in both front (A) and rear (B) views. The arrows identify the location of 

the six accelerometers as viewed from the inside of a fully assembled playing ice hockey 

helmet (C). 
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