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Abstract 

 Nanoparticle (NP) delivery of chemotherapeutic drugs can be used to both improve tumor 

toxicity and reduce toxicity to normal tissue in chemo and chemoradiotherapy (CRT). However, 

various properties of nanoparticles with respect to CRT are yet to be explored. For instance, it is 

unknown how particle size may affect the therapeutic index of CRT. Exploration of this topic may 

provide invaluable insight on how NP-based CRT could be administered clinically in the future, 

as there is currently no set standard on an optimal particle size. PEG-PLGA nanoparticles were 

engineered encapsulating either the DNA-PK inhibitor Wortmannin (wtmn) or the ATM inhibitor 

KU60019 of various sizes (50, 100, or 150 nm in diameter) and studied their biodistribution, 

efficacy, and toxicity in CRT. Effects in vitro were observed in three colorectal adenocarcinoma 

lines (HT-29, SW480, and LoVo) and in vivo in mice. These nanoformulations were shown to be 

both cytotoxic and radiosensitizing in these cell lines, and there was no effect of particle size on 

toxicity in vitro. The largest particles were most rapidly cleared by the liver, but still penetrated 

tumors well in vivo. All sizes of nanoformulations were effective radiosensitizers of rectal tumor 

xenografts in vivo. In no instance did the largest or smallest particles appear to demonstrate any 

greater efficacy than medium sized particles when combined with radiation. The 50 nm KU60019 

particles caused greater bowel toxicity than larger particles, and the 100 nm Wortmannin particles 

induced significantly more radiosensitization than larger or smaller particles in SW480 xenografts, 

a trend that was also observed in most other tumor/drug combinations. Radiation-induced rectal 

toxicity was minimal in animals treated with all three particle sizes. There was also no significant 

effect of particle size on hematologic of hepatotoxicity. These results demonstrate that particles in 

the 100 nm size range may be optimal for clinical applications in chemoradiotherapy.  
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Introduction 

Background 

 Historically, several drugs with the potential to be used as powerful chemotherapeutics 

were abandoned in clinical development due to high toxicity to normal tissue or poor stability or 

solubility in blood. For instance, Wortmannin, despite being a potent anti-cancer agent, was 

deemed too hepatotoxic for patient use and demonstrated poor solubility and stability in preclinical 

studies. Because traditional chemotherapies are system-wide, they are not targeted towards a 

primary tumor; thus, toxicity to normal tissue is strictly monitored.1 This problem remains an issue 

for drugs approved for chemotherapy, as patients may have adverse reactions to the drugs and must 

stop treatment before they can effectively treat their cancer. As such, the search to find a targeted 

way to treat cancers while minimizing damage to normal tissue is crucial. 

Targeted chemotherapy in the form of polymeric nanoparticle drug delivery is a method 

currently being studied for its ability to increase effectiveness against cancerous tumors while 

minimizing normal tissue toxicity. Several types of cancers, including many rectal cancers, have 

defective vasculature serving the primary tumor. This leaky vasculature combined with poor 

lymphatic draining systems, allows for less selective permeability and greater retention of 

materials into the tumor.2 Nanoparticles are then able to better penetrate cancerous tumor 

vasculature than that of normal tissue. Nanoparticle formulation of drugs like Wortmannin showed 

decreased toxicity, increased stability and solubility, and increased effectiveness as an anti-cancer 

agent in preclinical studies.1 

Chemoradiotherapy 

 CRT is used to treat various types of solid cancers, including those of the rectum, lungs, 

esophagus, and head and neck.3 Radiosensitizers, which improve the efficacy of radiotherapy, are 
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often given concurrently with radiation.4 While this improves efficacy, it often comes at the price 

of excess toxicity as normal tissues are also sensitized to radiation. Several pre-clinical studies 

have demonstrated that nanoformulations of radiosensitizers can improve the therapeutic index of 

chemoradiotherapy by improving tumor-specific delivery of the drug and reducing normal tissue 

exposure.1 These studies suggest that the rational development and translation of radiosensitizing 

nanoformulations can improve clinical outcomes for cancer patients.  

 One critical limitation to the development and translation of nanotherapeutics for use as 

radiosensitizers is that very little is currently known about the optimal particle characteristics for 

this indication. Physical characteristics, such as particle size, can drastically affect biodistribution 

and other important pharmacokinetic properties. It is generally believed that nanoparticles in the 

sub-50 nm range are desirable as drug delivery vehicles since they should rapidly penetrate tumors 

and be cleared less quickly than larger particles.5 However, it is unclear if these properties are 

desirable in chemoradiotherapy applications in which the goal is to maximize differences between 

normal tissue and tumor drug concentrations. Since radiation is the predominant source of local 

tumor damage in chemoradiotherapy, it is possible that larger particles (100 – 150 nm) may be 

equally if not more efficacious with less toxicity to normal tissue than smaller particles. By 

examining the relationship between particle size and therapeutic index, a rational design for 

nanoparticle drug formulations may be optimized for use in chemoradiotherapy. 

 In this study, the efficacy and toxicity of polymeric (mPEG-PLGA) nanoformulations of 

the DNA repair inhibitors Wortmannin and KU60019 of three different sizes (50, 100, and 150 

nm) were compared in mouse models of colorectal cancer. Wortmannin is a potent inhibitor of 

DNA-PK and PI3 kinase.6 KU60019 specifically inhibits ATM, a protein kinase recruited and 

activated by double-stranded breaks in DNA.7 The efficacy, toxicity, and biodistribution of these 
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three distinct nanoformulations were compared when combined with radiation in mouse xenograft 

models of colorectal cancer.  

Materials and Methods 

Materials 

KU60019 and Wortmannin were purchased from Apex Bio (Houston, Texas). Methoxy-

poly(ethylene glycol)-block-poly(lactic-co-glycolic acid) (mPEG-PLGA) with molecular weights 

of 2000:15,000 Da (PEG(2K):PLGA(15K)) and 5000:10,000 Da (PEG(5K):PLGA(10K)) were 

purchased from PolySciTech (West Lafayette, IN). Poly(D,L-lactic acid) (PLA) with an average 

molecular weight of 18,000 – 28,000 was purchased from Sigma-Aldrich (St. Louis, MO). 

Acetonitrile (HPLC grade) and double distilled water (HPLC grade) were purchased from Sigma-

Aldrich (St. Louis, MO). Flamma Fluor (FKR648) was purchased from Akina, Inc. (West 

Lafayette, IN).  

Nanoparticle Preparation  

 Nanoprecipitation was used to create nanoparticles of each of the different sizes. Polymers 

and drugs were dissolved in ACN (mPEG_PLGA at 40 mg/mL; PLA, KU60019, Wortmannin at 

2 mg/mL). Drug-polymer mixtures brought to a final volume of 1 mL in ACN were added 

dropwise to 3 mL double deionized water over rapid stirring (800 – 1200 rpm) at room 

temperature. The mixture was constantly stirred under vacuum at room temperature for 3 hours to 

allow self-assembly and evaporation of the organic solvent (ACN). Nanoparticles were then 

centrifuged for 15 min at 8000 x G in 30 KDa cut-off centrifuge filters (Millipore, Billerica, MA), 

washed in 1 mL 1x Dulbecco’s phosphate-buffered saline (DPBS) followed by repeat 

centrifugation. After three washes, the particles were resuspended to desired concentrations in 1x 

DPBS or tissue culture media.  
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 Nanoparticle size was adjusted by modifying polymer compositions within the ACN. 50 

nm particles were obtained by adding 5 mg of 5000:10,000 mPEG-PLGA and 500 µg (10%) drug. 

100 nm particles were generated by adding 5 mg 2000:15,000 mPEG-PLGA, 3 mg PLA, and 800 

µg (10%) drug. 150 nm particles were created by adding 7 mg 2000:15,000 mPEG-PLGA, 9 mg 

PLA, and 800 µg (5%) drug. Drug-free particles of each size were created by bringing polymeric 

solutions to volume.  

Nanoparticle Characterization 

 Purified nanoparticles encapsulating Wortmannin or KU60019 were characterized by 

transmission electron microscopy (TEM), dynamic light scattering, and aqueous electrophoresis. 

Prior to TEM imaging, concentrated NP samples were diluted to 5 mg/mL in deionized water. A 

5 µL sample of each was mixed with 5 µL 4% uranyl acetate aqueous solution before being added 

to a 400 mesh carbon-filmed copper grid. TEM images were captured using a Zeiss TEM 910 

transmission electron microscope operated at 80 kV (Carl Zeiss Micrscopy, LLC, Thornwood, 

NY) in the Microscopy Services Laboratory core facility at the UNC School of Medicine. 

Intensity-average diameter and mean zeta potential (ζ) of nanodispersions were determined by 

dynamic light scattering and an aqueous electrophoresis method using a Zetasizer Nano ZS 

instrument (Malvern Inc, Worcestershire, UK). All measurements were based on the average of 

three separate measurements.  

Drug Loading Efficiency 

 Loading efficiency of KU60019 or Wtmn in the nanoparticles was measured with a 

Shimadzu SPD-M20A high pressure liquid chromatography (HPLC) system (Shimadzu, Kyoto, 

Japan) equipped with a diode array detector at a GP-C18 reverse phase column (pore size = 120 

A, 4.6 x 150 nm, Sepax Technology, Newark DE). For preparation, 100 µL of purified particles 
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was dissolved in 100 µL of ACN, vortexed vigorously, and stored over night at 4°C to allow 

complete dissolution of particles. Drug concentrations were determined by generating standard 

curves from 0 – 100 µM for each drug. A linear gradient from 10% ACN in water to 100% ACN 

was run over 15 min, followed by 100% ACN for 5 min, then 10% ACN for 5 min. Flow rate used 

was 1 mL/min. Wtmn eluted with a retention time of 5.6 min and was detected at a wavelength of 

250 nm. KU60019 eluted with a retention time of 6.4 min and was detected at a wavelength of 230 

nm. Drug loading (wt/wt%) was calculated as (wt drug mg/wt polymer mg) x 100%. Encapsulation 

efficiency was calculated as (concentration of drug in dissolved particles/concentration of drug in 

initial organic phase solution) x 100%. 

Drug Release Studies 

 Release rates of the drugs were measured using 100 µL of purified nanoparticles diluted to 

2.5 mg/mL into Slide-A-Lyzer MINI dialysis tubes with a molecular weight cut-off of 10 kDa 

(Pierce, Rockford, IL) and dialized against 4 L of 1x DPBS with gentle stirring (50 rpm) at 37°C. 

At selected times (0, 1, 3, 6, 12, and 24 hours for Wtmn, 0, 1, 2, 3, 6, 12, 24, 48, and 72 hours for 

KU60019), the entire sample in a dialysis tube was removed and dissolved in equal parts ACN to 

allow dissolution overnight. Drug concentrations were determined using HPLC, as described 

above. Drug loading and encapsulation efficiency were determined at time 0 (immediately after 

initial purification). Drug release half-time (T1/2) is defined as the time for half the encapsulated 

drug to be released and was calculated using GraphPad Prism software V4.0 (La Jolla, CA).  

In Vitro Studies 

Cell Culture: Human colorectal adenocarcinoma cell lines HT-29, SW480, and LoVo were 

collected from the University of North Carolina tissue culture facility in the Lineberger 

Comprehensive Cancer Center. Cells were cultured using Dulbecco’s Modified Eagle Medium 
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(DMEM): Nutrient Mixture F-12 (Gibco, Thermo Fisher Scientific, Waitham, MA) supplemented 

with 10% (v/v) Fetal Bovine Serum (FBS) and 1% penicillin/streptomycin.  

 MTS Cell Viability Assays: In vitro toxicities of the different sized nanoparticles of 

KU60019 and Wtmn were determined using MTS cell viability assays. Cells were plated in 96 

well plates at densities of 10,000 cells per well, left to adhere overnight, then treated with varying 

concentrations of drugs. For cells treated with Wtmn, drug was removed after 3 hours, and cells 

were washed twice with sterile DPBS and grown in fresh media for 48 hours at 37°C. For cells 

treated with KU60019, drug was removed after 24 hours, and cells were washed twice with sterile 

DPBS, and grown in fresh media for another 24 hours at 37°C. Cell viability was assessed using 

MTS reagent (Promega, Madison WI). Absorbance was recorded at 492 nm using a 96-well plate 

reading (Infinite 200 Pro, Tecan i-control). Relative cell survival was determined by dividing the 

intensity of each well by the average intensity obtained in wells containing cells treated without 

drug multiplied by 100. All conditions were done in triplicate. 

 Clonogenic Cell Survival Assays: In vitro radiosensitization effects of KU60019 and Wtmn 

were determined using clonogenic cell survival assays. Cells were cultured at densities ranging 

from 100 – 40,000 cells per dish for 24 hours. Media was then replaced with media containing 

varying concentrations of NP-encapsulated drugs. Cells treated with KU60019 (2.5 µM for HT-

29 and SW480, 1.5 µM for LoVo) were radiated with 0, 2, 4, 6, or 8 Gy of radiation after 3 hours, 

then left with media unchanged for an additional 21 hours for a total of 24 hours. Media was then 

removed, and cells were washed twice with sterile DPBS and cultured in fresh media at 37°C for 

12 days. For Wtmn experiments, cells were treated with media containing free or NP Wtmn 

(equivalent to 20 µM for HT-29 and SW480, 15 µM for LoVo) for 3 hours followed by the same 

doses of radiation. Cells were then washed twice with sterile PBS and cultured in fresh media at 
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37°C for 12 days. Cells were then fixed in a 4% (v/v) neutral buffered formalin solution and stained 

with trypan blue. All colonies with at least a single cell were counted. All conditions were done in 

triplicate.  

In Vivo Studies 

 Mice were maintained in the Center for Experimental Animal Studies (an AAA LAC-

accredited experimental animal facility) at the University of North Carolina. All procedures 

involving mice were done in accordance with protocols approved by the University of North 

Carolina Institutional Animal Care and Use Committee (IACUC) and conformed to the Guide for 

the Care and Use of Laboratory Animals (NIH publication no. 86 – 23). Athymic nude mice were 

obtained from UNC animal services core (Chapel Hill, NC). C57bl/6J mice were obtained from 

Jackson Labs (Barr Harbor, ME).  

Antitumor Efficacy: Xenograft tumors were injected into the left flanks of male nude 

athymic mice (6 – 7 weeks old, 28 – 30 g). For HT-29, mice were inoculated with 1 x 106 cells in 

a 1:1 mixture of plain DMEM F-12 media:matrigel mixture. The average tumor volume after 7 

days was 200.0 mm3. For SW 480, mice were inoculated with 2.25 x 106 cells in a 1:1 mixture of 

plain DMEM F-12 media:matrigel mixture. Average tumor volume after 10 days was 166.3 mm3. 

For these experiments, a fractionated radiation schedule with repeated dosing of NPs was utilized. 

This type of treatment schedule is clinically relevant as radiation is most frequently given in a 

fractionated manner. Further, radiation is known to affect vascular permeability and structure8 

which could in turn affect anti-tumor efficacy or toxicity of particles in a size-dependent manner.  

On the first day of treatment (7 days after inoculation for HT-29, 10 days after inoculation 

for SW480), animals were injected with saline or NP drug (50, 100, 150 nm formulations) via tail 

vein injection (0.07 mg/kg Wtmn and 0.5 mg/kg KU60019). Three hours after injection, tumors 
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were irradiated at 5 Gy using a Precision X-Ray: X-RAD 320 irradiation system (Precision X-Ray 

Inc) operating at 320 KVp and 12.5 mA. The source-surface distance was 47 cm at a dose rate of 

100 cGy/min. For radiation, the tumors were left exposed and mice were shielded with 4 mm of 

lead. On the second day, animals were again treated with 5 Gy of radiation with no drug. On day 

3, animals were again injected with saline or NP drug and treated with 5 Gy radiation 3 hours later. 

To test the effects of particle size on chemotoxicity without radiation, a separate control group  of 

mice were treated with saline or NP formulations on days 1 and 3 with no radiation. Tumor volume 

was measured every 3 days via manual caliper measurements in two perpendicular directions. 

Tumor volume was calculated as 0.5 * x * y2, where x is the larger dimension and y is the smaller 

dimension. Mice were euthanized by CO2 overdose when tumors exceeded 20 mm in greatest 

dimension or reached 3500 mm3 in volume.  

Toxicity: Histologic assessment of small bowel crypt density following CRT was used to 

quantify gastrointestinal (GI) toxicity. Small bowel was selected as it is frequently the dose-

limiting structure in pelvic/abdominal CRT.9 Tumor-free C57bl/J6 mice were treated with saline 

or NP injections on days 1 and 3 (using the same treatment schedule as that of the in vivo tumor 

efficacy studies) and 3 daily doses of 5 Gy whole abdominal radiation. Mice were euthanized 48 

hours after the final radiation fraction, and distal ilium were harvested and fixed in 4% neutral 

buffered formalin solution overnight, then stored in 70% ethanol prior to being embedded in 

paraffin and processed at the University of North Carolina tissue core facility. Immunostainings 

of paraffin-embedded samples were performed, and antigen retrieval was accomplished by boiling 

samples in a 10 mM sodium citrate buffer at pH 6.0 for 20 min. Samples were incubated with 

rabbit anti-mouse EpCam antibody (1:100, Abcam). Stainings were visualized with Alexa 488-
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conjugated secondary goat antibodies (molecular probes) and nuclei were counterstained with 

DAPI (molecular probes). 

Effects of nanoparticle size on systemic toxicities of Wtmn and KU60019 were measured 

by analyzing complete blood count (CBC with differential) and hepatotoxicity in tumor-free 8 – 

week old C57bl/6J mice treated with the various sized particle formulations on days 1 and 3 

without radiation. Mice were anesthetized with a ketamine/xylazine solution 48 hours after the 

final inection and blood was collected through cardiac puncture. A 100 µL sample of whole blood 

was stored in EDTA-coated tubes at 5°C prior to analysis at the University of North Carolina 

Animal Clinical Core Facility. For hepatotoxicity, a 400 µL sample of whole blood was transferred 

to a serum separator tube and stored at room temperature for 30 min followed by centrifugation at 

5000 x G for 10 min to separate plasma from the cellular components. Isolated plasma was stored 

at 5°C prior to analysis at the UNC Animal Clinical Core Facility. Pink samples (indicating 

hemolysis) and sample readings which exceeded 3 standard deviations of the mean were presumed 

to be hemolyzed and discarded, as hemolysis can contaminate samples with target enzymes 

coming from somewhere besides the liver (n = 2 for saline treated mice and n = 1 for all other 

groups).  

Biodistribution: Nude mice were inoculated with HT-29 xenografts (1 x 106 cells). Seven 

days after inoculation, the average tumor size was 150 mm3. Tumors were treated with 3 daily 

doses of 5 Gy radiation. After the third fraction of radiation, the mice were injected with saline or 

165 mg/kg Flamma Fluor-labeled nanoparticles by IV tail vein injection. Anesthetic overdose was 

administered, and the animals were decapitated to harvest target organs (heart, liver, spleen, tumor 

xenograft) 1, 3, 6, 12, and 24 h after injection for ex vivo imaging. Fluorescent images were 

obtained using an IVIS Living Image system (Caliper Life Science, Hopkiton, MA) equipped with 
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an excitation filter of 640 nm and an emission filter of 680 nm in the University of North Carolina 

Small Animal Imaging Facility. Region of interest values were recorded as photon flux in total 

photon count per cm2 per steradian.  

Statistical Analysis 

 In vitro cytotoxicity was assessed using two-way analysis of variance (ANOVA) using 

Prism software (Carlesbad, CA) with particle size and drug concentration as variables. Clonogenic 

cell survival assays were plotted in a linear quadratic regression calculated using CS Cal 

clonogenic survival calculation software pack. Hematologic and hepatotoxicity were assessed 

using one-way ANOVA of particle size Post-hoc analysis were performed with Tukey’s t test when 

significant main effects were identified. In vivo tumor growth was assessed using area under the 

curve analysis with R software.  

Results 

Nanoparticle Size Distribution 

 Nanoparticle KU60019 and Wtmn were engineered with average sizes of 50, 100, and 150 

nm by altering polymeric compositions. The nanoprecipitation method produced monodisperse 

populations of nanoparticles with polydispersity indices (PDIs) of less than 0.1. Table 1 shows the 

polymeric formulations used to generate each size as well as the mean particles sizes and PDIs. 

Figure 2 shows representative TEM images of Wtmn and KU60019 nanoformulations, size 

distribution plots showing virtually no overlap between the largest and smallest sized particles, 

and release rates for all three sizes of both drugs demonstrating almost identical release rates.  

Formulation Mean Diameter PDI 

5000:10000 Da PEG-PLGA 10% Wtmn 48.4 +/- 1.1 nm 0.07 +/- 0.02 

2000:15000 Da PEG-PLGA 38% PLA 10% Wtmn 101.5 +/- 2.1 nm 0.06 +/- 0.02 
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2000:15000 Da PEG-PLGA 56% PLA 5% Wtmn 147.3 +/- 2.4 nm 0.08 +/- 0.04 

5000:10000 Da PEG-PLGA 10% KU600019 44.3 +/- 0.9 nm 0.07 +/- 0.03 

2000:15000 Da PEG-PLGA 38% PLA 10% KU60019 94.6  +/- 1.8 nm 0.08 +/- 0.02 

2000:15000 Da PEG-PLGA 56% PLA 5% KU60019 138 +/- 2.4 nm 0.09 +/- 0.03 

Table 1. Polymeric nanoparticle composition and physical characteristics.  

In Vitro Efficacy 

 Nanoformulations of Wtmn and KU60019 showed comparable levels of cytotoxicity in the 

absence of radiation (figure 2, top panels). The IC90 for both drugs was about 20 µM in HT-29 

and SW480 cells and about 10 µM in LoVo. Particle size did not affect cytotoxicity in vitro.  

Wtmn particles potential sensitized all three cell lines to radiation at doses corresponding 

to roughly the IC90. Cells treated with KU60019 particles showed significantly more potent 

radiosensitization in comparision to Wtmn in vitro, and drug dose was reduced to nearly 1/10th the 

IC90 in order to observe enough colony formation to permit quantification. Again, there was no 

significant effect of particle size for either drug (figure 2, bottom panels).  

In Vivo Efficacy 

Antitumor efficacy of particles as both chemotherapeutics and as radiosensitizers were 

tested by injecting mice with HT-29 or SW480 xenografts and treatments of equivalent doses of 

each of the different sized NPs. All nanoformulations had little to no effect on tumor growth in the 

absence of radiation (figure 3). By comparison, nanoformulations of both drugs demonstrated 

potent radiosensitization to both types of tumors (figure 4). There was a slight trend (P < 0.10) of 

improved sensitization with 100 nm nanoparticles in both xenograft models with both drugs. 

Treatment with the 50 nm particles did not result in greater antitumor efficacy than the larger 

particles in vivo in any cases. 
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Figure 1. Top: TEM images of Wortmannin and KU60019 nanoparticles. Middle: Size distribution plots 

demonstrating virtually no overlap between the largest and smallest sized particles. Bottom: All three sizes had similar 

release rates for both drugs.  
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Figure 2. In vitro efficacy of drug-loaded NPs. Top two panels: Toxicity of drug-loaded particles without radiation in 

three rectal cancer cell lines. Bottom two panels: Radiosensitization of rectal cancer cell lines by polymeric Wtmn and 

KU60019 nanoparticles.  
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Figure 3. In vivo efficacy of drug-loaded nanoparticles without radiation. Tumor growth curves of mice bearing HT-

29 (left panels) or SW480 (right panels) xenografts treated with Wtmn (top panels) or KU60019 (bottom panels) 

nanoparticles. Black circles represent saline treated controls. Red open circles represent mice treated with 50 nm NPs. 

Blue triangles represent mice treated with 100 nm NPs. Purple triangles represent animals treated with 150 nm NPs. 

 

In Vivo Toxicity 

 Small bowel crypt density was measured to quantify GI toxicity 48 h after the final fraction 

of whole abdominal radiation (figure 4). Radiation with free drugs produced a substantial decrease 

in crypt density, while nanoformulation largely reduced the synergistic toxicity between drug and 

radiation. There was no significant effect of particle size in the Wtmn nanoparticles, while only 

the 50 nm KU60019 were more toxic than the larger particles.  

 
Figure 5. Radiosensitization demonstrating effect of nanoparticle size in vivo. *Significantly different from indicated 

groups. NS non-significant.  
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 Hematologic and hepatic toxicities of each drug were assessed 48 h after treatment with 

two injections of nanoparticles (days 1 and 3) without radiation (table 2). Hepatotoxicity is a major 

barrier to the use of Wtmn clinically as a chemotherapeutic.1 NP formulation greatly reduced this 

effect, with greater AST and ALT levels in mice with NP Wtmn in comparison to saline, but not 

significantly (P < 0.23). Treatment with NP KU60019 did significantly increase plasma AST 

concentrations compared to saline (P < 0.05), but there was no significant effect of particle size on 

the hepatotoxicity of either drug. A CBC of the mice demonstrated that Wtmn particles do cause 

significant decreases in white blood cells, but this effect was relatively small with no effect due to 

particle size. KU60019 nanoparticles had no effect on any CBC variables. 

Liver Function 

 Wortmannin KU60019 

 AST ALT AST ALT 

Normal Range 30 – 60 U/L 30 – 60 U/L 30 – 60 U/L 30 – 60 U/L 

Saline 57.5 +/- 6.2 36.8 +/- 3.1 57.5 +/- 6.2 36.8 +/- 3.1 

50 nm 76.3 +/- 5.6 41.3 +/- 4.0 77.6 +/- 5.1* 33.6 +/- 2.2 

100 nm 71.3 +/- 4.0 40.1 +/- 2.0 80.0 +/- 5.9* 39.6 +/- 1.3 

150 nm 69.7 +/- 5.6 44.4 +/- 2.7 81.7 +/- 6.2* 37.2 +/- 1.3 

Hematologic Profile 

 Hb (g/dL) Hct (%) RBC (106/µL) Hb (g/dL) Hct (%) RBC (106/µL) 

Normal  10.1 – 16. 1  32.8 – 48 6.5 – 10.1 10.1 – 16.1 32.8 - 48 6.5 – 10.1 

Saline 15.6 +/- 0.2 46.6 +/- 0.7 9.7 +/- 0.1 15.6 +/- 0.2 46.6 +/- 0.7 9.7 +/- 0.1 

50 nm 15.8 +/- 0.4 45.9 +/- 0.8 9.8 +/- 0.2 15.4 +/- 0.2 45.2 +/- 1.0 9.6 +/- 0.2 

100 nm 16.0 +/- 0.3 46.9 +/- 0.7 9.9 +/- 0.2 15.7 +/- 0.3 46.8 +/- 1.1 9.8 +/- 0.2 

150 nm 15.8 +/- 0.4 46.1 +/- 0.5 9.6 +/- 0.2 15.2 +/- 0.2 45.3 +/- 0.8 9.5 +/- 0.2 

 

 WBC 

(103/µL) 

Lymphocytes 

(103/µL) 

Granulocytes 

(103/µL) 

Monocytes 

(103/µL) 

WBC 

(103/µL) 

Lymphocytes 

(103/µL) 

Granulocytes 

(103/µL) 

Monocytes 

(103/µL) 

Normal 2.6 – 10.1 1.3 – 8.4 0.4 – 2.0 0 – 0.3 2.6 – 10.1  1.3 – 8.4 0.4 – 2.0 0 – 0.3 
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Saline 5.5 +/- 0.6 4.5 +/- 0.4 0.6 +/- 0.2 0.5 +/- 0.1  5.5 +/- 0.6 4.5 +/- 0.4 0.6 +/- 0.2 0.5 +/- 0.1 

50 nm 2.8 +/- 0.8* 2.2 +/- 0.9* 0.2 +/- 0.1 0.3 +/- 0.1* 4.3 +/- 0.4 3.7 +/- 0.3 0.4 +/- 0.1 0.3 +/- 0.6 

100 nm 2.9 +/- 0.6* 2.6 +/- 0.6* 0.1 +/- 0.1 0.2 +/- 0.1* 3.8 +/- 0.5 3.3 +/- 0.4 0.2 +/- 0.1 0.3 +/- 0.1 

150 nm 3.0 +/- 0.8* 2.5 +/- 0.7* 0.2 +/- 0.1 0.3 +/- 0.1* 4.1 +/- 0.5 3.6 +/- 0.5 0.2 +/- 0.1 0.3 +/- 0.1 

Table 2. Plasma levels of liver enzymes AST and ALT shown on top table (Wtmn left, KU60019 right). Peripheral 

blood values for specific hematologic values (hemoglobin (Hb), hematocrit (HCT), red blood cells (RBC), white blood 

cells (WBC), lymphocytes, granulocytes, and monocytes. *Significantly different from saline-treated controls. 

 

Biodistribution 

 Effect of particle size on biodistribution was tested by injecting NPs labeled with a flamma 

fluor fluorescent tag and imaging organs (heart, liver, spleen, tumor xenograft) harvested at 1, 3, 

6, 12, and 24 h after drug administration. Figure 6 depicts representative images of organs 

normalized to the unlabeled control background. The 150 nm particles rapidly accumulated in the 

liver and the spleen. The 100 nm particles accumulated more in the liver and spleen than the 50 

nm particles, but less than the 150 nm particles. NPs of all sizes accumulated within tumors at 

similar overall average intensity levels but was most homogenous among the 50 nm particles.  

Discussion 

 Several studies have shown the potential of nanoformulations of radiosensitizing drugs to 

improve the therapeutic index of CRT. However, very little is known about the optimal particle 

characteristics for use in CRT. Here, we compared the efficacy and toxicity of nanoparticles 

ranging from 50 – 150 nm in diameter, a size range consistent with nanoparticles currently in 

clinical development.10 While our data does support previous publications that suggest sub-50 nm 

nanoparticles penetrate tumors more homogenously than larger particles, we were unable to 

demonstrate any therapeutic advantage to using sub-50 nm nanoparticles when combined with 

radiation. Our results suggest that using sub-50 nm NPs may not be optimal for use in CRT. 

 In addition to size, physical characteristics of particles which affect drug release kinetics 

are also important determinants of therapeutic efficacy in CRT. Particles of different sizes but 
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identical release rates were engineered to minimize the effects of variables other than size on 

 

Figure 6. Effect of particle size on in vivo biodistribution. Background-normalized images of various organs harvested 

6 h after in vivo administration of fluorescent-labeled nanoparticles (50 nm left, 100 nm middle, 150 nm right). Far 

right column shows accumulation of particles in the different organs at different times over 24 h. *Significantly more 

than 50 nm. **Significantly more than all other groups.  

 

toxicity and efficacy. A particularly difficult variable to control for is drug sequestration within 

particles of different sizes. Small changes in particle diameter result in relatively large changes in 

particle volume (V = 4/3πr3). Consequently, equal weights of polymer produce substantially fewer 

particles with considerably more drug per particle when formulating larger particles. How drug 
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sequestration within particles affects therapeutic efficacy and toxicity in CRT is unknown. It is 

possible that larger particles could at least partially offset poorer tumor penetration by delivering 

more drug per particle.  

 As chemotherapeutics, NP formulations of Wtmn and KU60019 had similar cytotoxic 

efficacies in vitro and that there was no effect due to particle size. When combined with radiation, 

NP formulations of KU60019 were substantially more toxic than Wtmn particles in vitro. 

Interestingly, this difference in efficacy between Wtmn and KU60019 particles with radiation was 

not observed in vivo. There are multiple significant differences between the two drug formulations 

which could affect their relative efficacy. For example, the two drugs have very different release 

kinetics, and the optimal time interval between radiation and particle administration in vivo is 

likely quite different between slow and fast releasing drugs. The purpose of this study was not to 

compare the relative efficacy of Wtmn and KU60019 nanoformulations, but rather to demonstrate 

that the effect of particle size on CRT was conserved across nanoformulations of different 

radiosensitizing drgus. the optimal administration of individual drugs will need to be considered 

on a case-by-case basis and is beyond the scope of this research. 

 We hypothesized that the smallest particles may have better therapeutic efficacy in vivo, 

since they should be more penetrating. However, in no instance was the 50 nm nanoformulation 

any more efficacious than the larger particles. Indeed, there was greater radiosensitization in the 

100 nm nanoparticles. Differences in tumor penetration with particle size may partially explain 

this observation. Indirectly ionizing radiation (such as photons) is dependent upon sufficient 

oxygen levels in the immediate vicinity of the site of damage.11 Tumor oxygenation is highly 

heterogeneous with areas of relatively high and low oxygenation and DNA repair inhibitors are 

only minimally sensitizing in the absence of oxygen.12 By distributing homogeneously within 
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tumors, the smallest particles are indiscriminately localizing drug in oxygen-rich and hypoxic 

regions. In contrast, larger particles accumulate within the perivascular space, thus concentrating 

drug within the oxygenated tumor regions which are most likely to benefit from 

radiosensitization.13 The 100 nm nanoparticles may be optimal because they provide the best 

balance between tumor penetration and perivascular accumulation. Whether this benefit is 

maintained over more protracted treatment schedules like those utilized in the clinic remains to be 

seen.  

 NP formulations of all sizes were well tolerated with CRT. Although it may be predicted 

that little leaking of 50 nm NPs through unaffected normal tissue vasculature would occur, it is 

possible that vascular damage caused by radiation may preferentially allow more tissue penetration 

of the 50 nm particles than the larger particles.14 Toxicity in the GI tract specifically was studied 

because this area receives the highest doses of radiation during treatment for colorectal cancer.15 

No significant increase in radiation-induced toxicity was identified with the smallest particles. In 

fact, no particles of any size increased rectal toxicity compared to radiation alone. Some 

measurable systemic toxicity was observed in terms of increased plasma liver enzymes and 

decreased blood counts following nanoparticle administration. However, there was no effect due 

to particle size. Further, these effects were relatively small, and no mice demonstrated any obvious 

outward signs of treatment-related toxicity such as lethargy or weight loss.  

 In line with previous studies, we demonstrated that larger nanoparticles more rapidly 

accumulate in the liver and spleen.16 By also measuring therapeutic efficacy and toxicity, two 

important observations were presented. First, increased hepatic and splenic clearance of larger 

particles does not translate into decreased efficacy with CRT. Even though a larger fraction of the 

total particle population is cleared, tumor accumulation still appears to be adequate with larger 
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particles. Second, increasing hepatic accumulations of particles encapsulating hepatotoxic drugs 

does not increase the hepatotoxicity of larger particles. Exactly how the liver clears drug from 

particles without incurring excess toxicity is currently unclear. The results of our study suggest 

that differences in biodistribution patterns with particle size do not necessarily translate into 

predictable changes in toxicity or efficacy when combined with radiation.  

 A few other limitations to this study should be considered. First, we engineered particles 

over a fairly large size range. It is possible that particle sizes between the tested ranges offer 

therapeutic advantages compared to the sizes actually tested in these experiments. Second, while 

we used a fractionated treatment regimen to mimic clinical delivery of CRT, this only consisted of 

3 fractions of radiation and 2 injections of drug. Clinical CRT treatments tend occur over a longer 

and more separated period of time (20 – 30 fractions over 4 – 6 weeks),17 and it is possible that 

changes in tumor or normal tissue vasculature in this setting may produce toxicity and/or efficacy 

profiles which more clearly favor a particular NP size. Finally, xenograft models of tumors were 

used, which have different physiological properties than native tumors, particularly with respect 

to the microenvironment surrounding the tumor. This likely limits our ability to extrapolate our 

results to spontaneously-occurring human tumors.  

Conclusions 

 This study has demonstrated that nanoparticles encapsulating radiosensitizing drugs in 

clinically relevant size ranges (50 – 150 nm) are potent radiosensitizers and well-tolerated in vivo. 

Our results are the first to suggest that engineering sub-50 nm particles may not be optimal for use 

in chemoradiotherapy. While particle size has very clear effects on biodistribution and tumor 

penetration, its effects on antitumor efficacy when combined with radiation are more subtle and 

do not demonstrate any advantage to using small sized NPs. Indeed, when significant differences 
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in efficacy were observed, they favored the 100 nm nanoparticles over the other sizes. Whether 

this difference is observed in clinical practice or other model systems remains to be seen. 
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Abbreviations 

 

ACN    Acetonitrile 

CRT    Chemoradiotherapy 

DMEM   Dulbecco’s Modified Eagle Medium 

DPBS    Dulbecco’s phosphate-buffered saline 

Gy    Gray (SI unit) 

HPLC    High-pressure liquid chromatography  

mPEG-PLGA   Methoxy-poly(ethylene glycol)-block-poly(lactic-co-glycolic acid)  

NP    Nanoparticle 

PBS    Phosphate-buffered saline 

PDI    Polydispersity index 

PLA    Poly(D,L-lactic acid)      

TEM    Transmission electron microscopy 

Wtmn    Wortmannin 

 


