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Abstract

CRISPR-Cas9 represents a promising technology for genome editing, yet means of safe and 

efficient delivery remain to be fully realized. Here, we report a novel delivery vehicle to deliver 

the Cas9 protein and single-guide RNA simultaneously based on DNA nanoclews, yarn-like DNA 

nanoparticles synthesized by rolling circle amplification. The bio-inspired vehicles efficiently 

loaded Cas9/single-guide RNA complexes and delivered the complexes to the nuclei of human 

cells, allowing targeted gene disruptions while maintaining cell viability. Editing was most 

efficient when the DNA nanoclew sequence and the sgRNA guide sequence were partially 

complementary, offering a design rule for enhancing delivery. Overall, this strategy provides a 

versatile platform that could be adapted for delivering other DNA-binding proteins or for 

functional nucleic acids.
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CRISPR-Cas9 has rapidly transitioned from an RNA-directed defense system in prokaryotes 

to a facile genome-editing technology.[1] The editing merely requires the Cas9 nuclease and 

an engineered single-guide RNA (sgRNA): the 20-nucleotide guide portion of the sgRNA 

recognizes complementary DNA sequences flanked by a protospacer-adjacent motif (PAM), 

and Cas9 cleaves the recognized DNA.[2] The double-stranded break is then repaired 

through non-homologous end joining (NHEJ) or homology-directed repair (HDR), allowing 

defined alterations to the targeted region.[3]

As CRISPR-Cas9 systems undergo further development toward human therapeutics, 

delivery poses the major challenge. Cas9 and the sgRNA have been overwhelmingly 

encoded within the DNA of plasmids of viral vectors.[4] However, this DNA can randomly 

integrate into the genome, potentially giving rise to cancer or other genetic diseases.[5] 

Furthermore, the template-driven nature of gene expression limits control over the total 

amount of Cas9 protein and sgRNAs, where excess dosing has been attributed to off-target 

cleavage.[6] One alternative is to deliver the Cas9/sgRNA ribonucleotprotein complex,[7] 

which enables greater control over its intracellular concentration and limits the timeframe in 

which editing can occur. However, delivering protein and RNA remains a central challenge 

in drug delivery.[8] Most protein therapeutics, such as enzymes,[9] antibodies[10] or 

transcription factors,[11] suffer from low stability and poor cell membrane permeability as a 

result of their fragile tertiary structures and large molecular sizes.[8] The strong negative 

charges of RNA therapeutics, including siRNA or miRNA, blocks them from diffusing 

across cell membrane and their susceptibility to endonuclease often requires chemical 
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modification to prevent degradation.[12] Thus, devising an appropriate carrier to shield the 

protein and RNA from detrimental physiological environment and escort them 

simultaneously to cell nucleus is highly desirable.

Herein, we report a novel delivery vehicle for CRISPR-Cas9 based on biologically inspired 

yarn-like DNA nanoclew (NC) (Figure 1). The DNA NCs are synthesized by rolling circle 

amplification (RCA)[13] with palindromic sequences encoded to drive the self-assembly of 

nanoparticles. We previously demonstrated that the DNA NC could encapsulate the 

chemotherapeutic agent doxorubicin and drive its release based on environmental 

conditions.[14] Here, we hypothesized that the DNA NC can load and deliver the Cas9 

protein together with an sgRNA for genome editing. Inspired by the ability of single 

stranded DNA (ssDNA) to base pair with the guide portion of the Cas9-bound sgRNA,[15] 

we designed the DNA NC to be partially complementary to the sgRNA. Following loading 

of the DNA NC with the Cas9/sgRNA complex, we applied a coating of the cationic 

polymer polyethylenimine (PEI) to help induce endosomal escape.[16] The Cas9/sgRNA 

complex delivered to the cytoplasm could then be transported into the nucleus via nuclear-

localization-signal peptides fused to Cas9. We expected that the resulting delivery vehicle 

could form uniform particles and drive the formation of targeted insertions or deletions 

(indels) without measurable impact on cell viability.

To demonstrate the DNA NC-mediated delivery of CRISPR-Cas9, we first selected the well-

characterized and most extensively applied Streptococcus pyogenes Cas9.[17] Recombinant 

Cas9 fused with N-terminal and C-terminal nuclear localization signals[18] was purified 

following overexpression in Escherichia coli (Figure S1 in the SI) and incubated with one of 

two sgRNAs: one designed to target a sequence within the enhanced green fluorescent 

protein (EGFP) gene flanked by an NGG PAM, and the other control sgRNA (cgRNA) 

designed not to appreciably target any DNA sequence in EGFP or the human genome 

(Figure S2a). We confirmed that the resulting Cas9/sgRNA complex was active in vitro 

based on cleavage of a linearized plasmid encoding the EGFP gene, but only in the presence 

of Cas9 and the EGFP-targeting sgRNA (Figure S2b).

We next generated the DNA NC to bind the Cas9/sgRNA complex. The DNA template for 

RCA was designed to encode 12 nucleotides complementary to the 5’ end of the sgRNA 

(NC-12) along with the palindromic repeat that drives self-assembly (Table S1). The 

rationale was that the complementary sequence would promote base pairing between the 

DNA NC and the Cas9/sgRNA complex, thereby forming a strong but reversible interaction. 

To form the nanoparticle consisting of Cas9, sgRNA, NC-12, and PEI (Cas9/sgRNA/NC-12/

PEI), Cas9 and the sgRNA were incubated together, followed by the addition of the NC-12, 

and then the addition of PEI. Measuring the zeta potential at each assembly step showed that 

the positively charged Cas9 (+19.3 ± 3.8 mV) became negatively charged with the addition 

of sgRNA (−19.4 ± 3.7 mV) and then NC-12 (−28.6 ± 5 mV), which was reverted to 

positive charge upon the addition of PEI (+18.6 ± 4.1 mV) (Figure 2a, S3). Dynamic light 

scattering analysis (Figure 2b, S4), atomic force microscopy (Figure 2c, S4) and 

transmission electron microscopy (Figure 2d) revealed that the Cas9/sgRNA/NC-12/PEI 

nanoparticles were uniformly sized with a hydrodynamic size of ~56 nm. Interestingly, the 

fully assembled particle was more compact and uniformly sized than the NC-12 nanoclew 
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and the Cas9/sgRNA/NC-12 complex, potentially due to offsetting the dispersing charges. 

To assess the co-localization of each component, we applied confocal laser scanning 

microscopy (CLSM) to image nanoparticles comprised of Cas9 labeled with Alexa Fluor 

647 (AF647), the sgRNA, the NC-12 stained with Hoechst 33342, and PEI conjugated with 

FITC. Imaging revealed consistent co-localization of all dyes (Figure S5), confirming the 

stable assembly of Cas9/sgRNA/NC-12/PEI.

We further investigated the ability of the particles to deliver Cas9/sgRNA into cultured cells. 

As a model, we used an established U2OS cell line that constitutively expresses a 

destabilized form of EGFP (U2OS.EGFP).[6b] CLSM, a technique with depth selectivity for 

analyzing subcellular location of delivered drugs,[14, 19] was first applied to evaluate the 

localization of the Cas9/sgRNA/NC-12/PEI nanoparticles containing the AF647-labeled 

Cas9 (Figure 3a, S6). Over the course of six hours, the labeled Cas9 first binds to the cell 

surface, then enters the cytosol, and finally localizes to the nuclei as indicated by the 

colocalization of the red fluorescence signal from AF647-Cas9 with the blue fluorescent 

signal of stained nuclei. To elucidate the mechanism of internalization, we applied inhibitors 

of different endocytosis pathways[19b] and measured the relative uptake of the Cas9/sgRNA/

NC-12/PEI nanoparticles containing AF647-labeled Cas9. Flow cytometry analysis revealed 

that the inhibitors methyl-β-cyclodextrin (MCD) and amiloride (AMI) imparted the greatest 

reduction in Cas9 uptake (Figure 3b), suggesting that the particles were mainly internalized 

through lipid rafts and macropinocytosis.[19b] Furthermore, we evaluated the impact of the 

nanoparticles on cell viability. TO-PRO-3 live/dead assay[7a] demonstrated no measurable 

impact on viability even at high concentrations (200 nM) of Cas9 (Figure 3c).

Based on the evidence that the Cas9/sgRNA would reach cell nucleus, we next evaluated the 

extent to which Cas9/sgRNA could drive the formation of indels through targeted DNA 

cleavage and repair by the endogenous NHEJ pathway. By targeting the coding region of 

EGFP, most indels would shift the reading frame, thereby preventing proper EGFP 

expression. To evaluate the impact on EGFP expression, we incubated cells with the 

particles containing the EGFP-targeting sgRNA (Cas9/sgRNA/NC-12/PEI, Figure 4a) or the 

non-targeting cgRNA (Cas9/cgRNA/NC-12/PEI, Figure S7). Fluorescence microscopy and 

flow cytometry analysis revealed that the sgRNA reduced fluorescence in ~36% of the cells, 

whereas the cgRNA had a negligible effect in comparison to untreated cells. We also 

evaluated particles prepared with only Cas9, sgRNA, and PEI; these particles reduced 

fluorescence in only 5% of the cells, demonstrating the importance of the DNA NC for 

effective delivery. To assess whether the reduction in fluorescence was attributed to indel 

formation, we applied the SURVEYOR assay that quantifies the frequency of mutations 

within an amplified target region.[3] The assay revealed mutation frequencies of 28% and 

1.5% for cells treated with Cas9/sgRNA/NC-12/PEI and Cas9/sgRNA/PEI (Figure 4b), 

respectively, closely paralleling the flow cytometry analysis. We also subcloned the 

amplified target region of cells incubated with the Cas9/sgRNA/NC-12/PEI nanoparticles. 

Sanger sequencing of 20 clones revealed 7 clones with typical indels within the PAM or the 

sequence complementary to the sgRNA guide (Figure S7), confirming the genetic disruption 

of EGFP expression by CRISPR-Cas9.[3] One-time treatment with the DNA NC mediated 

Cas9/sgRNA delivery system lead to higher editing efficacy than the cell-penetrating 

peptides (CPPs) based vector (9.7%) if the variation of cell line and targeted locus were not 
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taken into account.[7b] Although the cationic lipid/anionic EGFP based delivery strategy 

showed higher editing efficacy (80%),[7a] lipid-vehicles are often hampered by serum 

instability, which could be alleviated by polymer-based carriers.[8, 20]

Then we asked how complementarity between the DNA NC and the sgRNA impacted the 

efficacy of Cas9-driven genome editing. To address this, we generated two additional 

variants of the DNA NC with 0 or 23 nucleotides complementary to the sgRNA (designated 

as NC-0 and NC-23, respectively). Agarose gel electrophoresis confirmed that NC-0 and 

NC-23 yielded similar molecular weight distributions as NC-12 and were resistant to Cas9/

sgRNA degradation (Figure S9). Subjecting the resulting particles to the U2OS.EGFP cells 

revealed that NC-12 yielded the highest fraction of EGFP negative cells (Figure 4c). This 

trend was upheld for different molar ratios of Cas9 and the sgRNA, where the 1:1 standard 

stoichiometry of the Cas9/sgRNA complex yielded the greatest activity. Altogether, these 

results suggest that partial complementarity between the sgRNA and the NC are important 

for efficient delivery, which may be attributed to the need for balancing Cas9/sgRNA 

loading and release.

We further evaluated the in vivo EGFP disruption potency of Cas9/sgRNA delivered by 

NC-12 using U2OS.EGFP tumor bearing mice as models. 10 days after intratumoral 

injection, ~25% the U2OS.EGFP cells in the frozen tumor sections near the site of injection 

lost EGFP expression in the Cas9/sgRNA/NC-12/PEI treated mice, while the tumors in the 

untreated group or the group treated with Cas9/cgRNA/NC-12/PEI did not show any loss of 

EGFP signal (Figure 5, S10).

In summary, we have demonstrated a novel delivery vehicle to achieve targeted genome 

editing with CRISPR-Cas9. Our DNA NC-based delivery system represents, to our 

knowledge, the first example of a polymeric nanoparticle for the delivery of CRISPR-Cas9. 

The DNA NC pre-organized the Cas9/sgRNA into nanoparticles and increased the charge 

densities of the core in the core-shell assembly, which may have acted to stabilize the 

nanoparticle.[7a, 21] Partial complementarity between the DNA nanoclew and the sgRNA 

guide sequence promoted the greatest extent of gene editing, potentially due to balancing 

binding and release of the Cas9/sgRNA complex by the nanoclew. Future implementation of 

the delivery vehicles may focus on attaching cell-specific targeting ligands,[22] engineering 

the environmentally responsive release of the CRISPR-Cas9,[14, 23] modifying the sequence 

of DNA NC to incorporate multiple sgRNAs for multiplexed editing, or employing the DNA 

NC or packaged DNA sequences as templates for homology-directed repair. The same NC 

architecture could also be used to incorporate other functional DNA-binding proteins, such 

as transcription factors, zinc-finger nucleases, and TALE nucleases, as well as other 

functional or protein-coding RNAs. The potential immunogenicity associated with DNA 

NCs should be further investigated for clinical translation.[24]

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Schematic design of the DNA NC mediated CRISPR-Cas9 delivery system. (a) Preparation 

of Cas9/sgRNA/NC/PEI. I: The NC was synthesized by RCA and loaded with the Cas9/

sgRNA complex through Watson-Crick base pairing; II: PEI was coated onto Cas9/

sgRNA/NC for enhanced endosome escape. (b) Delivery of Cas9/sgRNA by the DNA NC 

based carrier to the nucleus of the cell for genome editing. I: Bind to cell membrane; II: 

Endocytosis; III: Endosome escape; IV; Transport into the nucleus; V: Search for target 

DNA locus in the chromosome and introduce double strand breaks for genome editing.
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Figure 2. 
Particle characterization of Cas9/sgRNA/NC-12/PEI. (a) Monitoring zeta potential of the 

Cas9/sgRNA/NC-12/PEI assembly process. Bars represent mean ± SD (n = 3). (b) 

Hydrodynamic size distribution of Cas9/sgRNA/NC-12/PEI. (c) AFM image and d) TEM 

image of Cas9/sgRNA/NC-12/PEI with scale bars of 400 nm and 100 nm, respectively.
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Figure 3. 
a) CLSM images of U2OS.EGFP cells incubated with Cas9/sgRNA/NC-12/PEI for 1 h, 2 h, 

4 h and 6 h (Cas9 and sgRNA concentrations at 100 nM). Green for EGFP, red for Cas9 

stained with AF647 and blue for nuclei stained with Hoechst 33342. Scale bar is 10 µm. b) 

Relative Cas9/sgRNA/NC-12/PEI uptake by U2OS.EGFP cells in the presence of different 

endocytosis inhibitors (Cas9 and sgRNA concentrations at 100 nM). **P<0.01 as compared 

to the control group. Bars represent mean ± SD (n = 3). c) In vitro cell viability of 

U2OS.EGFP cells treated with Cas9/sgRNA/NC-12/PEI and Cas9/sgRNA/PEI by flow 

cytometry. The cells were stained with TO-PRO-3 live/dead stain after the treatment and 

analyzed by flow cytometry. Bars represent mean ± SD (n = 3).
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Figure 4. 
Genome editing by Cas9/sgRNA delivered by DNA NC (8 µg/mL) coated with PEI (10 µg/

mL). a) Fluorescent microscope images and flow cytometry analysis of U2OS.EGFP cells 

treated with Cas9/sgRNA/PEI and Cas9/sgRNA/NC-12/PEI (Cas9 and sgRNA 

concentrations at 100 nM). Green represents EGFP and blue represents nuclei stained with 

Hoechst 33342. Scale bar is 100 µm. b) T7EI assay of U2OS.EGFP cells treated with Cas9/

gRNA/NC-12/PEI and Cas9/gRNA/PEI. c) EGFP disruption assay of Cas9/gRNA delivered 

by different DNA NCs. Percentages of EGFP negative cells after treating with Cas9/sgRNA/
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NC-23/PEI, Cas9/sgRNA/NC-12/PEI, Cas9/sgRNA/NC-0/PEI and Cas9/sgRNA/PEI at 

different Cas9/sgRNA molar ratios were profiled. Bars represent mean ± SD (n = 3).
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Figure 5. 
In vivo delivery of Cas9/sgRNA into U2OS.EGFP xenograft tumors in nude mice. Tumor 

sections were collected 10 days after intratumoral injection of Cas9/sgRNA/NC-12/PEI. The 

EGFP was stained by FITC conjugated GFP antibody and nuclei were stained with Hoechst 

33342. Scale bar is 50 µm.
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