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ABSTRACT 
 

COURTNEY CAMERON: Cocaine abstinence alters nucleus accumbens firing dynamics 
during goal-directed behaviors for cocaine and sucrose 

(Under the direction of Regina M. Carelli) 
 

 Distinct subsets of nucleus accumbens (NAc) neurons differentially encode goal-

directed behaviors for natural versus drug rewards, and the encoding of cocaine-seeking 

is altered following cocaine abstinence. Here, electrophysiological recordings were made 

to determine if NAc selective encoding of natural versus cocaine reward is: (1) 

maintained when the natural reinforcer is highly palatable and (2) altered by cocaine 

abstinence.  Rats (n=14) were trained on a sucrose/intravenous cocaine multiple schedule 

and NAc activity was recorded before and after 30 days cocaine abstinence.  Before 

abstinence, the majority of NA neurons displayed nonoverlapping patterns of activity 

during the task. After abstinence, this pattern was largely maintained; however, more 

neurons became selectively activated during cocaine- versus- sucrose-seeking.  The 

results indicate that although the selective encoding of cocaine and natural rewards is 

maintained even with a highly palatable substance, 30 days of cocaine abstinence 

dynamically alters overall population encoding of natural and drug rewards. 
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CHAPTER 1 

INTRODUCTION 
 
 

The ability to seek and acquire natural rewards such as food and water is essential 

for survival. As such, the brain evolved a highly dynamic system to process information 

about natural reinforcers. It is often hypothesized that drugs of abuse exert their effects 

by ‘tapping into’ this system, causing aberrant reward processing and, ultimately, 

addiction (Wise, 1997). The nucleus accumbens (NAc) is a critical component of this 

system and has been implicated in processing information about both natural and drug 

rewards (Robinson & Berridge, 2000; Kelley, 2004). This structure also plays a key role 

in addiction, as the dopaminergic projection from the ventral tegmental area to the NAc is 

a crucial substrate for the reinforcing properties of abused drugs (DiChiara, 1995; Koob 

& Nestler, 1997; Kalivas & McFarland, 2003; Carlezon & Thomas, 2009).       

Electrophysiological recordings show that NAc neurons display patterned 

discharges (increases or decreases in firing rate) relative to operant responding for both 

natural and drug reinforcers (Carelli & Deadwyler, 1994; Peoples & West, 1996; Carelli 

et al., 2000; Carelli, 2002; Nicola et al., 2004).  However, different populations of NAc 

neurons selectively encode information about goal-directed behaviors for natural rewards 

(food/water) versus intravenous cocaine (Carelli et al., 2000; Carelli & Ijames, 2001). 

Conversely, natural reinforcers activate largely the same population of neurons in the 

NAc (Carelli et al., 2000), even when one is highly palatable (Roop et al., 2002). These 



 

2 

 

findings suggest that drugs and natural rewards activate a separate neural circuit in the 

NAc (Carelli et al., 2000).  

However, the precise manner in which NAc neurons encode goal-directed 

behaviors for drug and natural rewards can be influenced by many factors, including the 

type of reinforcer and also the pattern of drug exposure (Hollander & Carelli, 2005; 

Hollander & Carelli, 2007).  In human cocaine addicts, drug-taking behavior is often 

characterized by binges followed by periods of drug abstinence, increased craving, and 

relapse (Gawin, 1991). Further, animal studies revealed that cocaine abstinence leads to 

neuroadaptations in brain regions important for reward processing, including the NAc 

(Robinson et al., 2001; Lu et al., 2003; Conrad et al., 2008; Pickens et al., 2011).  

Importantly, the percentage of NAc neurons that encode goal-directed behaviors for 

cocaine, and cocaine-associated cues, is dramatically increased following 30 days of 

cocaine abstinence (Hollander & Carelli, 2005; Hollander & Carelli, 2007).  It is 

therefore possible that drug abstinence may alter the differential processing of natural 

versus drug rewards by NAc neurons.  

The present study was completed with two primary objectives. First, we 

determined if the selective encoding by NAc neurons of natural versus cocaine reward is 

maintained when the former is a highly palatable sweet tastant (i.e., sucrose), as opposed 

to less palatable food/water used in prior studies (Carelli et al., 2000; Carelli & Ijames, 

2001).  Second, we examined if the selective encoding by NAc neurons of cocaine- and 

natural reward-seeking is altered by 30 days cocaine abstinence.  To this end, NAc 

neurons were recorded during a sucrose/cocaine multiple schedule before and after 30 

days of cocaine abstinence.  



 

 

 

CHAPTER 2 

METHODS 

 
Animals  

Male Sprague-Dawley rats (Harlan Sprague Dawley, Indianapolis, IN, USA; 

n=14) aged 90-120 days and weighing 260-350g were used as subjects and individually 

housed with a 12/12-h light-dark cycle. Body weights were maintained at no less than 

85% of pre-experimental levels by food restriction (10-15g of Purina laboratory chow 

each day). Water was available ad libitum. This regimen was in place for the duration of 

the experiment, except during the post-operative recovery period when food was given ad 

libitum. All procedures were approved by the UNC Institutional Animal Care and Use 

Committee. 

Surgery and behavioral training 

All training was conducted in custom-made experimental chambers that consisted 

of a 43 x 43 x 53cm Plexiglass chamber housed within a commercial sound-attenuated 

cubicle (Med Associates Inc., St. Albans, VT, USA). One side of the chamber was 

equipped with two retractable levers, a corresponding cue light positioned above each 

lever, and a reward receptacle positioned between the two levers.  

      Rats were first trained to press one lever for sucrose (45mg pellet) on a fixed ratio 

1 (FR1) schedule of reinforcement. The start of the sucrose training session was signaled 

by the onset of the cue light positioned above the active lever and extension of the lever 
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into the chamber. Lever depression resulted in delivery of a sucrose pellet to the reward 

receptacle, onset of a tone (65db, 2900Hz, 20s), and retraction of the lever (20s). Rats

 underwent daily 30 min training sessions until they reached criterion (at least 50 presses 

per session).  

      Rats were then prepared for extracellular recording in the NAc via implantation of 

microwire electrode arrays during the same surgery as catheter implantation using 

established procedures (Carelli et al., 2000; Hollander & Carelli, 2005). Each array was 

custom-designed (consisting of eight microwires each with 50µm diameter and arranged 

in a 2 x 4 configuration), purchased from a commercial source (NB Labs, Denison, TX). 

Arrays were permanently implanted bilaterally into the NAc core or shell (AP: +1.7mm, 

ML: ±1.3mm for core and ±0.8mm for shell, DV:-6.2mm from brain, relative to bregma, 

level skull; Paxinos & Watson, 2007).  

      Following recovery from surgery, rats were trained to self-administer cocaine on 

an FR1 schedule of reinforcement during daily 2h sessions. The start of the self-

administration session was signaled by the onset of the cue light positioned above the 

active lever and extension of the lever into the chamber. The cocaine-associated lever 

was spatially distinct from the lever previously used during sucrose training. Lever 

depression resulted in intravenous cocaine delivery (0.33 mg/infusion, 6s) via a computer 

controlled syringe pump, onset of a different tone (65db, 800Hz, 20s), and retraction of 

the lever (20s).   The tones associated with cocaine versus sucrose were counterbalanced 

across animals. 

 Following acquisition of cocaine self-administration (2-3 weeks), rats underwent 

electrophysiological recording (described below) during a multiple schedule of 
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reinforcement for sucrose and cocaine. Specifically, rats had access to the sucrose-

reinforced lever (FR1; 15min) followed by a 20s time out period (no lever extended; dark 

chamber) and extension of the second cocaine-reinforced lever (FR1; 2h). Illumination of 

a cue light above each lever signaled the phase (sucrose or cocaine) of the multiple 

schedule. The order of reinforcer availability (sucrose or cocaine) was varied across 

animals and recording days such that the same reinforcer was not always given first. In 

addition, the lever and tone associated with each reinforcer was counterbalanced across 

animals. Rats then underwent a 30 day abstinence period during which drug access was 

interrupted (rats remained in their home cages). After 30 days of abstinence, rats 

underwent a second recording session while performing an identical multiple schedule 

session for sucrose and cocaine.  A timeline of the experimental design is shown in Fig. 

1a. Fig. 1b shows an example of a multiple schedule session where phase 1 involved 

sucrose reward and phase 2 incorporated cocaine self-administration.  

Electrophysiological recordings 

Electrophysiological procedures have been described in detail previously (Carelli 

& Deadwyler, 1994; Carelli et al., 2000; Hollander & Carelli, 2005; Roitman et al., 

2005). Briefly, before the start of the session rats were connected to a flexible recording 

cable attached to a commutator (Med Associates Inc., St. Alban, VT, USA) which 

allowed virtually unrestrained movement within the chamber. NAc activity was recorded 

differentially between each active and the inactive (reference) electrode from the 

permanently implanted microwires. The inactive electrode was examined before the start 

of the session to verify the absence of neuronal spike activity and served as the 

differential electrode for other electrodes with cell activity. Online isolation and 
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discrimination of neuronal activity was accomplished using a neurophysiological system 

commercially available (multi-channel acquisition processor, MAP System, Plexon, 

Dallas, TX). Multiple window-discrimination modules and high-speed analog-to-digital 

signal processing in conjunction with computer software enabled isolation of neuronal 

signals based on waveform analysis. The neurophysiological system incorporated an 

array of digital signal processors (DSPs) for continuous spike recognition. The DSPs 

provided a continuous parallel digital output of neuronal spike events to a Pentium 

computer. Another computer controlled behavioral events of the experiment (Med. 

Associates) and sent digital outputs corresponding to each event to the MAP box to be 

time-stamped along with the neural data. Principal component analysis (PCA) of 

recorded waveforms was performed prior to each session and aided in the separation of 

multiple neuronal signals from the same electrode. A projection of waveform clusters 

was presented in a three-dimensional space, enabling manual selection of individual 

waveforms. Before each session, an individual template made up of many sampled 

waveforms was created for each cell isolated using PCA. During the behavioral session, 

waveforms that matched this template were collected as the same neuron. Cell 

recognition and sorting was finalized after the experiment using the Offline Sorter 

program (Plexon), when neuronal data were further assessed based on PCA of the 

waveforms, cell firing characteristics, and interspike intervals. 

Data analysis 

Changes in neuronal firing patterns relative to sucrose- or cocaine-reinforced 

lever press responses were analyzed by constructing raster displays and peri-event 

histograms (bin width, 250 ms) surrounding each lever press response using 
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commercially available software (Neuroexplorer, Plexon). Cell firing was classified into 

one of three well-defined types of phasic neuronal firing patterns that occurred within 

seconds of the reinforced lever press response (Carelli & Deadwyler, 1994; Carelli et al., 

2000; Hollander & Carelli, 2005; Jones et al., 2008). Specifically, cells were classified as 

type preresponse (PR) if they displayed an anticipatory increase in activity preceding the 

lever press. Cells were classified as type reinforcement-excitation (RFe) if they displayed 

an increase in firing rate immediately following a reinforced response. Cells were 

classified as type reinforcement-inhibition (RFi) if they displayed a decrease in firing rate 

surrounding a reinforced response. Cells that showed no significant change in firing rate 

(increase and/or decrease) relative to a reinforced response were classified as nonphasic 

(NP).  

     Individual units were classified as either type PR, RFe, or RFi if the firing rate was 

greater than or less than the 99.9% confidence interval projected from the baseline period 

(10s before lever response) for at least two 250 ms time bins. This confidence interval 

was selected such that only robust responses were classified as phasic. Some cells in this 

analysis exhibited low baseline firing rates, and the 99.9% confidence interval included 

zero. When this was the case, inhibitions were assigned only if the number of consecutive 

0 spike/s time bins surrounding the reinforced lever response was more than double the 

number of consecutive 0 spike/s time bins in the baseline period. Cells with extremely 

low firing rates (<0.1 spikes/s) or relatively high firing rates (>15 spikes/s) were likely 

not medium spiny neurons and were excluded from further analysis.  

      Cells were then classified based on their phasic activity across both reinforcers 

(sucrose and cocaine) during performance of the multiple schedule. Cells that displayed 
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one of the three types of well-defined patterned discharges (type PR, RFe, or RFi) 

relative to sucrose-reinforced responding, but nonphasic activity relative to the cocaine-

reinforced response were classified as ‘Sucrose-Selective’. Cells that displayed one of the 

three types of patterned discharges relative to cocaine-reinforced responding, but 

nonphasic activity relative to the sucrose-reinforced response were classified as ‘Cocaine-

Selective’. Cells that displayed the same type of phasic activity to both reinforcers (for 

example, type PR to both cocaine- and sucrose-reinforced responses) were classified as 

‘Overlapping’. Finally, cells showing different phasic patterns of activity during 

responding for cocaine versus sucrose were classified as ‘Differentially Phasic’. 

Comparisons of the number of cells in each category were made across recording days 

using Fisher’s exact test. Comparisons of behavioral responding across recording days 

were accomplished with paired t-tests. 

Histology 

Histological reconstruction of electrode positions was accomplished using 

established procedures (Carelli et al., 2000; Hollander & Carelli, 2005).  After the 

experiment, rats were deeply anesthetized with a ketamine and xylazine mixture (100 and 

20mg/kg, respectively) and a 13.5µA current was passed for 5s through all recording 

wires. Rats were perfused with 10% formalin and 3% potassium ferracyanide and brains 

were removed, blocked, and sectioned (40µm) throughout the rostral-caudal extent of the 

NAc. Sections were stained with thionin to aid with identification of structures and 

location of the blue dot reaction product corresponding to the location of the marked 

electrode tip. To reconstruct electrode positions, serial sections were examined under a 

light microscope and the locations of all marked electrode tips were plotted for all 
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subjects on coronal sections taken from the stereotaxic atlas of Paxinos and Watson 

(Paxinos & Watson, 2007). Only neurons recorded from wires positioned in the NAc 

were used in the present study.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

CHAPTER 3 
 

RESULTS 
 

Behavior   

An example of behavioral responding during the multiple schedule for one 

representative animal is shown in Fig. 1c. Before abstinence (Day 1) the rat completed 36 

sucrose-reinforced responses with an average inter-response interval (INT) of 23.60 ± 

1.11s and 24 cocaine-reinforced responses with an average INT of 4.99 ± 0.41 min. On 

Day 30 the same rat made 42 sucrose-reinforced responses with an average INT of 21.55 

± 0.32s and 30 cocaine-reinforced responses with an average INT of 4.07 ± 0.32min. 

Similar response patterns were observed across all animals (n=14). Specifically, during 

sucrose self-administration on Day 1, rats exhibited 37.14 ± 1.99 lever presses with an 

average INT of 30.50 ± 4.89s. On Day 30, the same animals exhibited 32.29 ± 2.73 lever 

presses with an average INT of 45.40 ± 13.69s. Cocaine self-administration responding 

on Day 1 was characterized by 22.43 ± 1.82 lever presses with an average INT of 6.00 ± 

0.40 min. On Day 30, animals completed 22.54 ± 2.22 lever presses with an average INT 

of 5.68 ± 0.43 min. Importantly, behavioral response patterns during the multiple 

schedule were not altered by cocaine abstinence. Specifically, rats displayed a similar 

number of lever press responses during the first day of the multiple schedule (Day 1) and 

following 30 days of abstinence (Day 30) for both sucrose (t(13)=1.861; p>0.05) and 

cocaine (t(12)=0.075; p>0.05; Fig. 1d). Further, there was no significant difference in the 
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average INT from Day 1 to Day 30 for either sucrose (t(13)=1.471; p>0.05) or cocaine 

(t(12)=0.9195; p>0.05).  

NAc neurons exhibit 3 types of neuronal firing patterns relative to reinforced responding 
for sucrose reinforcement or intravenous cocaine 
 
 Independent of abstinence conditions, three types of neuronal firing patterns 

(types PR, RFe & RFi) were recorded in the NAc during the multiple schedule relative to 

reinforced responding for either cocaine or sucrose. The rasters and peri-event histograms 

(PEHs) in Fig. 2 show examples of the activity of representative phasically active 

neurons recorded during the cocaine self-administration phase of the multiple schedule. 

The raster displays and PEHs encompass a 20s time interval surrounding the cocaine-

reinforced response (represented by dashed line at time R). One neuron (left) exhibited an 

anticipatory increase in firing rate immediately before the response, classified as a type 

PR cell. Another neuron (middle) displayed an increase in firing rate immediately after 

the reinforced response, termed type RFe activity. The third neuron exhibited type RFi 

activity (right) showing a decrease in firing surrounding the reinforced response for 

intravenous cocaine. 

Other neurons showed similar types of neuronal firing patterns relative to sucrose 

reinforced responding. The rasters and PEHs in Fig. 3 show examples of representative 

phasically active neurons recorded during the sucrose self-administration phase of the 

multiple schedule. In this case, a neuron classified as a type PR cell (left) exhibited an 

anticipatory increase in firing rate immediately before the sucrose-reinforced lever press, 

while another cell exhibited type RFe activity (middle) characterized by an increase in 

firing rate after the response.  A third neuron displayed type RFi cell activity (right) with 

a decrease in firing rate relative to the reinforced response.  
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 Of all neurons recorded on Day 1, 63% (82 of 130 cells) displayed one of the 

three types of phasic activity described above, regardless of reinforcer condition. On Day 

30, 62% of recorded neurons (70 of 113 cells) exhibited one of the three types of 

patterned discharges noted above. Thus, there was no difference in the overall percentage 

of phasic cells from Day 1 to Day 30 independent of reinforcer type. 

Populations of NAc neurons exhibit differential firing properties relative to goal-directed 
behaviors for sucrose versus cocaine prior to abstinence 
 

In prior studies we showed that distinct subsets of NAc neurons differentially 

encode information about goal-directed behavior for a natural (water/food) reward versus 

cocaine self-administration using our multiple schedule design (Carelli et al., 2000; 

Carelli & Ijames, 2001; Carelli & Wondolowski, 2003). One goal of the present study 

was to extend those findings and examine if the majority of NAc neurons continued to 

selectively encode goal-directed behaviors for cocaine versus a natural reward prior to 

abstinence when the later consisted of a highly palatable tastant, sucrose. Consistent with 

previous findings, distinct populations of NAc neurons differentially encoded information 

about lever press responding for cocaine or the palatable natural reward, sucrose, prior to 

abstinence. Specifically, as noted above, a total of 130 neurons were recorded during the 

multiple schedule for sucrose reinforcement and intravenous self-administration of 

cocaine on Day 1. Of 130 cells, 82 (63%) exhibited patterned discharges relative to the 

sucrose- or cocaine-reinforced response. Of 82 responsive neurons, 61 cells (74%) 

exhibited one of three types of patterned discharges (type PR, RFe, or RFi) relative to the 

sucrose- or cocaine-response during the multiple schedule, but not both. Only 17 cells 

(21%) showed similar patterned discharges relative to reinforced responding for sucrose 
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and cocaine. Finally, 5% were classified as ‘Differentially Phasic’, exhibiting different 

types of phasic activity relative to sucrose- and cocaine-reinforced responding. 

 Fig. 4 summarizes these findings and shows PEHs of normalized firing of all 

Cocaine-Selective (left), Sucrose-Selective (middle) and Overlapping neurons (right) 

during the multiple schedule prior to abstinence (Day 1).  Only 4 cells displayed one of 

the three types of phasic activity relative only to cocaine-reinforced responses (nonphasic 

activity relative to sucrose-reinforced responding), termed Cocaine-Selective (Fig. 4, left; 

blue lines). Of the 4 neurons, 1 cell was classified as type PR, 2 cells as type RFe and 1 

cell as type RFi. In all cases, the same neurons exhibited nonphasic activity relative to 

responding for sucrose (Fig. 4, left, gray PEHs).  Interestingly, a much larger number of 

neurons (n=57) displayed one of the three types of phasic firing patterns relative to 

responding for sucrose, but not cocaine, and were classified as Sucrose-Selective (Fig. 4, 

middle; red lines). Of 57 cells, 8 neurons were classified as type PR, 34 as type RFe and 

15 as type RFi cells. The same neurons exhibited nonphasic activity relative to lever 

press responding for cocaine (Fig. 4, middle, gray PEHs).  Another population of neurons 

(n=17) exhibited similar patterns of phasic activity during responding for both cocaine 

and sucrose and were classified as Overlapping (Fig. 4, right).  Finally, a small subset of 

cells (n=4) showed different patterns of phasic activity during responding for cocaine 

versus sucrose, classified as Differentially Phasic (not shown).  

Cocaine abstinence shifts how NAc neurons encode goal-directed actions for cocaine 
versus sucrose reinforcement 
 
      A major goal of the present study was to examine if 30 days abstinence from 

cocaine altered how NAc neurons encode goal-directed actions for sucrose versus 

cocaine reinforcement during the multiple schedule.  To address this issue, the 
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distribution of NAc patterned discharges was compared before and after 30 days of 

cocaine abstinence. Before abstinence a high percentage of Sucrose-Selective cells (57 of 

82 cells, 70%) was observed while a relatively small percentage of Cocaine-Selective 

cells (4 of 82 cells, 5%) was recorded (Fig. 4, 5a). However, after abstinence (Fig. 5b) 

there was a significant increase in the percentage of Cocaine-Selective cells (to 12 of 70 

cells, 17%; p=0.017, Fisher’s exact test) and a significant decrease in the percentage of 

Sucrose-Selective cells (to 32 of 70 cells, 46%; p=0.005, Fisher’s exact test). Further, 

while a slight increase was observed in the percentage of Overlapping cells following 

abstinence (from 17 of 82 cells, 21%, to 23 of 70 cells, 33%), this increase was not 

significant (p=0.099, Fisher’s exact test).  There was no change in the percentage of 

Differentially Phasic cells following abstinence (from 4 of 82 cells, 5%, to 3 of 70 cells, 

4%; p=1.000, Fisher’s exact test). Finally, the percentage of nonphasic cells was not 

altered as a function of abstinence (from 48 of 130 cells, 37%, to 43 of 113 cells, 38%; 

p=0.9027, Fisher’s exact test).   

 The abstinence-induced changes in neuronal firing noted above were 

differentially distributed across the core and shell subregions of the NAc (Fig. 5c). In the 

core, there was a significant increase in the percentage of Cocaine-Selective cells (from 1 

of 36 cells, 3%, to 6 of 27 cells, 22%; p=0.036, Fisher’s exact test). There was also a non-

significant decrease for the percentage of Sucrose-Selective cells from Day 1 to Day 30 

(from 24 of 36 cells, 67%, to 11 of 27 cells, 41%; p=0.2883, Fisher’s exact test). In the 

shell, there was a significant decrease in the percentage of Sucrose-Selective cells (from 

33 of 46 cells, 72%, to 21 of 43 cells, 49%; p=0.032, Fisher’s exact test). Further, there 

was a non-significant increase in the percentage of Overlapping cells from Day 1 to Day 
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30 (from 9 of 46 cells, 20%, to 16 of 43 cells, 37%; p=0.1821, Fisher’s exact test).  The 

increase in Cocaine-Selective cells from Day 1 (3 of 46 cells, 6%) to Day 30 (6 of 43 

cells, 14%) in the shell was not significant (p=0.5246). As above, the percentage of 

nonphasic cells was not altered by abstinence in either the core (from 23 of 59 cells, 39%, 

to 22 of 49 cells, 45%; p=0.7245, Fisher’s exact test) or the shell (from 25 of 71 cells, 

35%, to 21 of 64 cells, 33%; p=0.8657, Fisher’s exact test).      

Histology      

 Histological reconstruction of electrode placement confirmed the location of 

recording wires in the NAc core or shell (Figure 6).  A total of 130 NAc neurons were 

recorded on Day 1 (core, n=59; shell, n=71), while 113 neurons were recorded after 30 

days of abstinence (core, n=49; shell, n=64).  Only data from electrode placements within 

the borders of the NAc, as depicted in the atlas of Paxinos and Watson (2007) were 

included in the analysis.  



 

 

 

CHAPTER 4 
 

DISCUSSION 
 
 

The present study was completed with two primary objectives. First, we examined 

if the selective encoding of goal-directed behaviors for cocaine versus natural rewards 

would be maintained when the later is a highly palatable tastant.  Prior to abstinence, 

NAc neurons that encoded goal-directed behaviors for intravenous cocaine were largely 

separate from neurons activated during sucrose self-administration. These findings are 

consistent with earlier work (Carelli et al., 2000; Carelli & Ijames, 2001; Carelli & 

Wondolowski, 2003), but extend those findings by showing that this differential encoding 

is maintained even when the natural reinforcer is highly palatable. Second, we examined 

if 1-month cocaine abstinence alters this predominantly selective encoding of cocaine- 

and sucrose-related information by NAc neurons. Results revealed that after abstinence 

the majority of NAc cells (67%) displayed differential, nonoverlapping patterns of phasic 

activity relative to cocaine- versus sucrose-reinforced responding. Further, there was a 

significant increase in the overall percentage of cells that were selective for cocaine-

related information and a significant decrease in the percentage of cells that were 

selective for sucrose-related information. These findings may be relevant to the decrease 

in reinforcing properties of natural rewards often reported by human drug addicts (Gawin 

& Kleber, 1986; Gawin, 1991). Each of the primary findings of the present study is 

discussed in detail below. 



 

17 

 

NAc neurons differentially encode information about cocaine versus the highly palatable 
natural reward sucrose prior to abstinence 
 

As noted above, the first objective of this study was to examine if the selective 

encoding of goal-directed behaviors for cocaine versus natural rewards (Carelli et al., 

2000; Carelli & Ijames, 2001; Carelli & Wondolowski, 2003) is maintained when the 

later is a highly palatable sweet tastant, as opposed to a more neutral food (Purina Lab 

chow) or water reinforcer. As noted above, this differential encoding by NAc neurons 

was largely maintained when sucrose was the natural reinforcer in the multiple schedule. 

Interestingly, in the present study the percentage of overlapping neurons (21% before 

abstinence) was higher than that observed during a multiple schedule for cocaine and 

water (8% overlapping) or cocaine and food (7% overlapping) in our prior work (Carelli 

et al., 2000). Further, there was a greater percentage of neurons that were selective for 

sucrose-related information (70% in the present study) compared to neurons that were 

selective for water-related information (48% in the previous study). These differences 

may be related to the greater hedonic value of sucrose, compared to water.  

However, our previous work also suggests that the percentage of NAc neurons 

that encode reinforcer-related information is not attributed solely to hedonics. For 

example, when animals performed a multiple schedule for water and sucrose, the 

majority of NAc neurons (65%) were similarly activated even though one was of greater 

hedonic value (Roop et al., 2002). . Others have also shown that goal-directed behaviors 

for different types of abused drugs (cocaine and heroin) predominantly activate distinct 

subsets of NAc neurons (Chang et al., 1998), suggesting that the functional segregation 

of NAc neurons is sensitive to not only natural versus drug rewards but also different 

classes of abused drugs.  Together, these findings suggests that the degree of overlap in 
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populations of NAc neurons activated during goal-directed behaviors prior to abstinence 

is functionally complex and could be influenced by several interdependent factors 

including hedonics, reinforcer type (e.g., sweet tastant versus food/water), and the 

inclusion of a drug reinforcer in the multiple schedule task. 

The selective encoding of cocaine versus the natural reward sucrose is largely 
maintained following 1 month of cocaine abstinence  
 
 A second objective of this study was to determine if 1-month cocaine abstinence 

alters the predominantly selective encoding by NAc neurons of cocaine- and sucrose-

related information noted above. As previously reported, the percentage of NAc neurons 

phasically active during operant responding for cocaine, or during presentation of 

cocaine-related cues, is dramatically increased following 30 days of cocaine abstinence 

(Hollander & Carelli, 2005; Hollander & Carelli, 2007). Therefore, the current study was 

performed to determine if a specific population of NAc neurons account for the increase 

in cocaine-related information following abstinence. One possibility is that more NAc 

neurons exhibit overlapping phasic activity (i.e., similar types of phasic firing during 

cocaine and sucrose seeking) after abstinence. This finding would indicate that cells that 

normally process information about highly palatable natural reinforcers are also recruited 

to process information about goal-directed actions for cocaine following abstinence. 

However, this was not the case; differential encoding of goal-directed behaviors for the 

two reinforcers was largely maintained following 1 month abstinence.  These results 

provide evidence that functionally segregated microcircuits exist in the NAc that 

selectively process specific types of reward-related information, and these microcircuits 

remain stable following 1-month abstinence. 
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 Further, the anatomical organization of the NAc lends support to this model of 

functional segregation. The classical view of the NAc as a limbic-motor integrator 

(Mogenson et al., 1980) is supported by anatomical studies which show that the NAc 

receives synaptic inputs from limbic areas including the ventral tegmental area, 

hippocampus, basolateral amygdala, and prefrontal cortex (Zahm & Brog, 1992; Brog et 

al., 1993). In turn, the NAc can guide motor output through connections with the ventral 

pallidum and lateral hypothalamus (Zahm, 1999). However, it is unlikely that the NAc as 

a whole sends a single integrated output to its target structures in order to initiate 

behavior. Theories of basal ganglia function suggest that the NAc is embedded in a larger 

system that is organized into several structurally and functionally discrete circuits that are 

essentially parallel in nature (Alexander et al., 1986; Alexander & Crutcher, 1990).  

Further, Pennartz et al. (1994) proposed that the NAc is composed of a collection of 

functionally heterogeneous ‘neuronal ensembles’ that are characterized by distinct 

afferent-efferent projections. Within this framework, unique sets of limbic inputs 

converge on specific ensembles of NAc neurons which then generate output to a 

particular set of target structures, inducing behavioral effects that are specifically linked 

with each ensemble. The present findings showing differential activation of discrete 

subsets of NAc neurons during goal-directed behavior for sucrose versus cocaine even 

after abstinence supports this view of NAc organization. 

Cocaine abstinence increases population encoding of cocaine-related information  

In the present study, before abstinence there was a relatively high percentage of 

sucrose-selective cells (70%) and a low percentage of cocaine-selective cells (5%). The 

exact reasons for this predominance of sucrose-selective encoding are not clear at the 
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present time. Regardless, it is clear that 1 month abstinence from cocaine alters this 

pattern of encoding of sucrose- and cocaine-related information by distinct populations of 

NAc neurons. That is, after 1 month of abstinence, there was an increase in the selective 

encoding of cocaine-related behaviors and a concomitant decrease in the selective 

encoding of sucrose-related behaviors. This switch was reflected in an increase in the 

percentage of Cocaine-Selective cells as well as a decrease in the percentage of Sucrose-

Selective cells recorded in the NAc. These results could provide significant insight into 

the development of an addicted state.  

That is, cocaine addicts going through withdrawal experience anhedonia, 

dysphoria, and an inability to perceive of anything other than cocaine as potentially 

pleasurable (Gawin & Kleber, 1986).  Furthermore, the intensity of these symptoms is 

associated with the patient’s degree of cocaine craving. Human imaging studies using 

positron emission tomography in cocaine addicts going through withdrawal have 

consistently demonstrated a reduction in striatal dopamine D2 receptor availability as well 

as a reduction in dopamine release in the striatum (Volkow et al., 1993; Volkow et al., 

1997; Volkow et al., 1999). It is hypothesized that this hypodopaminergic activity in the 

striatum (including the NAc) could result in decreased activation of reward circuits by 

natural reinforcers, causing natural rewards to pale in comparison to drug rewards, thus 

leading to continued cocaine use as a means to compensate for this decreased reward 

sensitivity (Volkow et al., 1999; Volkow et al., 2010). The shift from primarily sucrose-

related firing to more cocaine-associated discharges in the present study may therefore 

represent a neurophysiological correlate of this reduction in sensitivity to natural rewards 

relative to drug rewards following repeated cocaine administration and abstinence.  
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Implications for the accumbal hypoactivity model 
 

Evidence of accumbal hypoactivity caused by repeated cocaine exposure comes 

from electrophysiological studies that have demonstrated depression of excitatory 

synaptic transmission onto NAc medium spiny neurons following repeated cocaine 

injections (Thomas & Beurrier et al., 2001), sensitization to the inhibitory effects of 

dopamine on glutamate evoked firing of NAc neurons following cocaine self-

administration (White & Harris et al., 1995), and reduced whole-cell sodium (Zhang & 

Hu et al., 1998) and calcium (Zhang & Cooper et al., 2002) currents in NAc medium 

spiny neurons after repeated cocaine injections. However, given the selective potentiation 

of cocaine-related behaviors relative to other non-drug behaviors in addicts, it is difficult 

to explain how a general hypoactivity of all NAc neurons might lead to addiction. 

Therefore, Peoples et al. (2007) proposed that NAc neurons that encode drug-related 

behaviors may be spared from the hypoactivity induced in neurons that encode other 

types of motivated behavior, leading to a relative increase in the transmission of drug-

directed behaviors through accumbal circuits and the differential changes in drug- and 

non-drug-directed behaviors that characterize addiction (termed the differential inhibition 

hypothesis). An important assumption of this hypothesis is that there exist populations of 

NAc neurons that are selectively activated during performance of cocaine-related 

behaviors, but not during the performance of other types of motivated behavior. The 

present study as well as our previous studies showing differential, nonoverlapping 

encoding of natural versus drug reinforcers by NAc neurons (Carelli & Ijames et al., 

2000; Carelli & Ijames, 2001; Carelli & Wondolowski, 2003) support this supposition.  
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Further, electrophysiological recordings of NAc neurons from behaving rats 

during cocaine self-administration show that neurons that encode events related to drug-

taking behavior (‘Task-Activated’ neurons) exhibit no significant change in average 

firing rates across early (2 or 3 days) and late (30 days) sessions (Peoples & Kravitz et 

al., 2007). In contrast, other NAc neurons that do not encode aspects of the cocaine self-

administration task (‘Task-Non-Activated’ neurons) exhibit a significant decrease in 

average firing rates between early and late self-administration sessions, suggesting that 

these neurons undergo cocaine-induced hypoactivity. The results of our study are 

consistent with those findings and also include a direct comparison of NAc cell firing 

during responding for cocaine versus a natural reinforcer. Following abstinence, there 

was a significant increase in the percentage of cocaine-selective cells (comparable to 

‘Task-Activated’ neurons mentioned above) and a significant decrease in sucrose-

selective cells (comparable to ‘Task-Non-Activated’ neurons). Further, there was a slight, 

though non-significant increase in the percentage of overlapping cells, which could be 

considered comparable to ‘Task-Activated’ neurons as they displayed phasic activity 

during cocaine self-administration. It is possible that the cocaine-induced hypoactivity 

that occurred in ‘Task-Non-Activated’ neurons in the above study also occurred in 

sucrose-selective cells in our study, thus mediating the reduction in the percentage of 

sucrose-selective cells and associated increase in the percentage of cocaine-selective and 

overlapping cells reported here.  

Importantly, in our study we examined changes in the percentage of phasic 

neurons (those that displayed short-duration changes in firing rate time-locked to specific 

behavioral events). While the Peoples et al. (2007) study reported changes in the average 
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basal firing rates of ‘Task-Activated’ versus ‘Task-Non-Activated’ neurons, they did not 

observe any changes in the percentage of neurons that exhibited phasic activity during 

drug-directed behaviors, even though the differential inhibition hypothesis might predict 

this. However, their study did not include an abstinence period, while the present study 

did. This suggests that a period of drug abstinence may be critical for the development of 

neuroadaptations mediating the increase in phasic activity observed in our studies.    

 In support, prolonged periods of cocaine abstinence have been shown to lead to a 

variety of neuroadaptations in the NAc. These include molecular neuroadaptations such 

as increased levels of GluR1, NMDAR1, GluR2, and PKA (Lu & Grimm et al., 2003) as 

well as changes in neurotransmitter levels including increased extracellular GABA 

concentrations (Xi & Ramamoorthy et al., 2003) and reduced extracellular glutamate 

concentrations mediated by a reduction in the activity of the cystine/glutamate exchanger 

(Baker & McFarland et al., 2003). A variety of changes in gene expression have also 

been observed in the NAc following cocaine abstinence (Toda & McGinty et al., 2002). 

Of particular interest is the finding that prolonged abstinence from cocaine self-

administration leads to the formation of GluA2-lacking AMPARs in the NAc (Wolf & 

Ferrario, 2010). Relative to GluA2-containing AMPARs, GluA2-lacking AMPARs are 

more sensitive to excitatory stimulation as a result of their higher channel conductance, 

permeability to calcium ions, and inward rectification. Incorporation of GluA2-lacking 

AMPARs can therefore lead to enhanced responsiveness of NAc neurons to 

glutamatergic inputs (Wolf & Ferrario, 2010). One possibility is that this enhanced 

responsiveness of NAc neurons to excitatory inputs underlies the increase in cocaine-

related phasic activity previously reported (Hollander & Carelli, 2005; Hollander & 
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Carelli, 2007). Importantly, formation of GluA2-lacking AMPAs in NAc neurons 

following prolonged cocaine abstinence has been shown to mediate the increase in 

cocaine-seeking behavior observed during this period (Conrad & Tseng et al., 2008). 

Further studies will be necessary to determine whether the increases in phasic activity of 

NAc neurons that we have observed are a direct result of any of the neuroadaptations 

described above. Nevertheless, it is apparent that cocaine abstinence causes significant 

alterations in the NAc and larger mesocorticolimbic system that are correlated with 

changes in cell-firing and cocaine-seeking behavior.  

Examination of NAc activity in the core versus shell 

 Here, abstinence-induced changes in cell-firing were different within the core and 

shell subregions. While the overall pattern of reduced sucrose encoding and increased 

cocaine encoding was seen in both the NAc core and shell, the increase in the percentage 

of Cocaine-Selective cells following abstinence was significant in the core but not the 

shell. Conversely, the decrease in the percentage of Sucrose-Selective cells following 

abstinence was significant in the shell but not the core. Considering the differences in 

afferent/efferent projections (Zahm & Brog, 1992; Zahm, 1999) and electrophysiological 

characteristics (Pennartz et al., 1992) between the core and shell, it is not surprising that 

there were differential changes in these subregions following abstinence. The larger 

increase in the percentage of Cocaine-Selective cells after abstinence in the core may be 

related to the selective increase in the percentage of phasic neurons in the core following 

cocaine abstinence we reported in our earlier studies (Hollander & Carelli, 2005; 

Hollander & Carelli, 2007). However, it is important to note that in the current study the 

increase in Cocaine-Selective cells was only significantly enhanced in the core although 
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there was a tendency toward an increase in the shell. The earlier cocaine abstinence 

studies did not include a multiple schedule, therefore an interesting finding of the current 

study is that the performance of a sucrose/cocaine multiple schedule appears to recruit 

NAc shell neurons so that there is a change in both subregions of the NAc following a 

month of cocaine abstinence.   

Effects of cocaine abstinence on behavioral responding during the multiple schedule 

  Animals displayed consistent cocaine and sucrose self-administration behavioral 

response profiles across recording days. There was no effect of abstinence on either 

number of lever press responses or inter-response interval for either reinforcer. These 

results are consistent with previous studies in which rats were allowed to resume self-

administration of sucrose (Jones et al., 2008) or cocaine (Hollander & Carelli, 2005; 

Hollander & Carelli, 2007) following abstinence. While cocaine abstinence has been 

shown to enhance motivation to obtain the drug as measured by an increase in operant 

responding after abstinence (termed ‘incubation of drug craving’; Grimm et al. 2001), it 

is important to note that these experiments were performed under extinction conditions in 

which operant responding did not result in drug infusion. In the present study, rats were 

allowed to resume self-administration of cocaine after the abstinence period. Therefore, 

increases in operant responding were not predicted, consistent with similar experimental 

manipulations previously used in our lab (Hollander & Carelli, 2005; Hollander & 

Carelli, 2007). However it is important to note that animals also underwent a period of 

‘sucrose abstinence’ as well as cocaine abstinence in the present study. Although others 

have documented an incubation of sucrose craving (Lu et al., 2004; Grimm et al., 2005), 
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we have not previously observed this effect in our prior studies (Jones et al., 2008), or in 

the current study that incorporated the multiple schedule.   

As discussed above, the present findings indicate that cocaine self-administration 

followed by a prolonged period of abstinence can lead to a disruption in reward 

processing such that encoding of cocaine is enhanced relative to the natural reward 

sucrose. This neural encoding mirrors the reduced sensitivity to natural rewards seen in 

cocaine addicts. In the present study, animals did not display a reduction in sucrose self-

administration or an increase in cocaine self-administration following abstinence. 

However, given that the behavioral paradigm used here did not test operant responding 

under extinction conditions nor involve a direct choice between cocaine and sucrose, it is 

not unexpected that animals would respond similarly before and after abstinence. Many 

studies that used behavioral paradigms that more directly examined hedonic processing 

or reward choice provide evidence that both animals (Aigner & Balster, 1978; Aston-

Jones & Harris, 2004; Harris et al., 2007; Negus & Rice, 2008) and humans (Lubman et 

al., 2009) experience a decrease in sensitivity to natural reinforcers with repeated drug 

exposure. Furthermore, work from our laboratory has shown that cocaine experience can 

alter the hedonic value of a natural reinforcer that predicts access to drug self-

administration (Wheeler et al., 2008; Wheeler et al., 2011). Therefore, although no overt 

changes in behavior were observed here during the sucrose/cocaine multiple schedule 

following abstinence, our findings are consistent with prior work showing that natural 

reinforcers become devalued as a consequence of repeated drug experience and 

abstinence. 
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Conclusions 

Overall, the results of this study indicate that drugs of abuse such as cocaine do 

not simply ‘turn on’ the same brain reward circuits that have evolved to process 

information about natural reinforcers. Rather, cocaine activates a neural circuit in the 

NAc that is largely separate from the one engaged during goal-directed behaviors for 

natural rewards. Further, it appears that following prolonged abstinence normal reward 

processing is dysregulated and the encoding of drug-related information is potentiated at 

the cost of natural physiological rewards. It is possible that with more drug exposure and 

extended or repeated periods of abstinence these effects will become even greater, 

leading to the loss of control over drug-directed behaviors that is characteristic of the 

addicted state in humans.    
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Figure 1. Experimental design and behavior. a, Diagram of the experimental timeline. 

Each circle represents 1 day. During sucrose self-administration training (~5 days), rats 

had access only to sucrose during daily 30 min sessions. During cocaine self-

administration training (~14 days), rats had access only to cocaine during daily 2h 

sessions. On Recording Day 1 and Recording Day 30, rats performed a sucrose/cocaine 

multiple schedule. Cocaine abstinence lasted for 30 days, during which time rats 

surgery 
Recording 

Day 1 
 

Recording 
Day 30 
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remained in their home cages without drug access. See Methods for details. b, Schematic 

diagram of the multiple schedule. On Recording Day 1 and Recording Day 30, rats had 

access to the sucrose-reinforced lever for 15 min followed by access to the cocaine-

reinforced lever for 2h. See Methods for details. c, Example of a representative 

behavioral response pattern for one rat. Each vertical line indicates one lever press 

response. On Day 1 (top), the rat completed 36 responses on the sucrose lever and 24 

responses on the cocaine lever. On Day 30 (bottom), the rat completed 42 responses on 

the sucrose lever and 30 responses on the cocaine lever. d, Rats (n=14) displayed 

consistent numbers of lever press responses across recording sessions (Day 1 and Day 

30) for both sucrose and cocaine.   
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Figure 2. Examples of individual NAc neurons showing one of the three types of 

patterned discharges (PR, RFe, RFi) during cocaine self-administration. Raster displays 

and PEHs show the activity of each neuron recorded during a 20 s time period 

surrounding the cocaine-reinforced response (indicated by dashed line at time R). 

Individual cells exhibited type PR activity (left), type RFe activity (middle), or type RFi 

activity (right).      

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

31 

 

 
 

 
 

Figure 3. Examples of individual NAc neurons showing one of the three types of 

patterned discharges (PR, RFe, RFi) during sucrose self-administration. Raster displays 

and PEHs show the activity of each neuron recorded during a 20 s time period 

surrounding the sucrose-reinforced response (indicated by dashed line at time R). 

Individual cells exhibited type PR activity (left), type RFe activity (middle), or type RFi 

activity (right). 
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Figure 4. Population histograms of the three cell classifications (Cocaine-Selective, 

Sucrose-Selective, Overlapping) recorded prior to abstinence (Day 1), separated by type 

of phasic activity (PR, RFe, or RFi). Lever press responses are indicated by dashed black 

line at time R in all PEHs. Averages were z-normalized, and baseline is indicated by the 

dashed gray line at 0. Left column, Population averages of Cocaine-Selective cells. The 

activity of the same neurons relative to cocaine responding (blue lines) versus sucrose 

responding (gray filled histograms) plotted on the same graph. Normalized firing 

displayed one of the three well-defined patterns of phasic activity (PR, top; RFe, middle; 

RFi, bottom) relative to cocaine-reinforced responses but the same cells showed no 

change from baseline relative to sucrose-reinforced responses. Middle column, 

Population averages of Sucrose-Selective cells. Normalized firing displayed one of the 

three patterns of phasic activity (PR, top; RFe, middle; RFi, bottom) relative to sucrose-



 

33 

 

reinforced responses (red lines), but no change from baseline relative to cocaine-

reinforced responses (gray filled histograms). Right column, Population averages of 

Overlapping cells. Normalized firing displayed the same types of phasic activity (PR, top; 

RFe, middle; RFi, bottom) relative to both cocaine- (blue lines) and sucrose- (red lines) 

reinforced responses.   
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Figure 5. Distribution of phasic activity of NAc neurons during sucrose/cocaine multiple 

schedule. a, Breakdown of phasic activity of NAc neurons (core and shell, combined) 

recorded before cocaine abstinence. b, Phasic activity of NAc neurons (core and shell, 

combined) recorded following 30 days of cocaine abstinence. After abstinence, the 

percentage of Sucrose-Selective cells significantly decreased while the percentage of 

Cocaine-Selective cells significantly increased. *p<0.05.  c, Phasic activity of neurons in 

the NAc core vs. shell. In the core, the percentage of Cocaine-Selective cells significantly 

increased from Day 1 to Day 30. In the shell, the percentage of Sucrose-Selective cells 

significantly decreased from Day 1 to Day 30. *p<0.05.  
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Figure 6. Schematic representation of electrode tip placements in the NAc core (dots) 

and shell (crosses). Numbers to left of coronal sections indicate distance anterior to 

bregma (Paxinos & Watson, 2007).            
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