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Abstract
BRIANA LEE FISER: The Design, Fabrication, and Magnetic Actuation of a

Microactuator to Accomplish Propulsion and Large Deflection in Viscous and Elastic
Environments

(Under the direction of Dr. Richard Superfine)

Biomimetics is the study of the structure and function of biological organisms, proper-

ties, or substances to inform or inspire the creation of artificial mimics. Nature’s evolution-

arily evolved answers to its own obstacles can become great solutions to our problems in the

fields of physics, materials science, and engineering. The field of biomimetics has both led

to technological advances and utilized biomimetic systems to glean knowledge about their

biological inspirations. I have developed a single biomimetic system which both mimics a

biological system well enough to inform biology and is capable of advancing technology.

This biomimetic system is composed of novel core-shell microrods that closely mimic the

size of biological cilia and generate fluid transport in both viscous and viscoelastic flu-

ids. Complex biological processes such as the determination of left-right asymmetry in

the vertebrate embryonic node and mucociliary clearance in the lung are dependent on the

successful transport of fluids, both buffer-like and viscoelastic. A biomimetic system such

as the one I have developed allows us to compare cilia-driven transport in both aqueous and

viscoelastic fluids. In addition, I have used arrays of these core-shell microrods, comprising

a flexible poly(dimethylsiloxane) core surrounded by a 100 nm shell of nickel, to assess the

time evolution of fluid properties at the microscale, such as the formation of blood clots,

which act to stem the flow of blood in the event of trauma or tissue damage. Using this
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system as an assay for the onset of clot development results in clinically relevant clotting

time measurements. I will discuss these applications for the use of this biomimetic cilia

system, as well as the system’s design parameters and the fabrication procedure.
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Chapter 1

Introduction

Biomimetics is the study of the structure and function of biological organisms, proper-

ties, or substances to inform or inspire the creation of artificial mimics. The word was first

coined by Otto Schmitt whose doctoral research in 1957 comprised the development of a

device which mimicked a nerve’s electrical actions (Bhushan, 2009). Schmitt was heard

using the term ‘biomimetics’ as a substitute for ‘bionics’ when discussing the utilization

of insights obtained from the study of biological phenomenon to develop unique systems

which mimic that phenomenon (Vincent et al., 2006). The creation of biomimetic devices

or platforms may be fueled by the desire for new technology or a simpler, more elegant an-

swer to a common problem. Nature’s evolutionarily evolved answers to its own obstacles

can become great solutions to our problems in the fields of physics, materials science, and

engineering.

Multiple examples exist in biomimetics where biology’s inspiration has fueled a useful

technological advance. One such example is velcro, invented by Swiss engineer George

de Mestral in 1948 after a hunting trip with his dog. de Mestral’s inspiration was a type

of stubborn bur caught in his dog’s fur. As he studied the burs under a microscope, he

determined the cause of their “stickiness” to be the presence of tiny hooks at the end of



each spine. After several engineering attempts with different materials, nylon velcro was

born.

A second example is the lotus leaf, with its superhydrophobicity, a property which has

been studied in great detail and applied to various commercial products. A surface is con-

sidered hydrophobic if the static contact angle between the surface and a water droplet is

greater than 90◦ and superhydrophobic if the contact angle is greater than 150◦. The lotus

leaf’s structure, at the microscale, comprises bumps approximately 4 µm in size spread

across the leaf’s surface. The presence of these structures along with a hydrophobic wax-

like coating, repels water and aids in the self-cleaning of the leaf. The properties of super-

hydrophobicity and self-cleaning are highly desirable in many instances, most especially in

applications where biofouling, the accumulation of microorganisms or plants on a surface,

is a hindrance. Biofouling on large ships or boats increases the vessel’s drag in the water;

building a vessel with an antifouling, or self-cleaning, surface would reduce drag, creating

more fuel efficient vessels. Other applications which have been commercially produced are

self-cleaning paints, windows, and roofing tiles (Bhushan, 2009).

A number of reviews expound upon the vast array of biological inspirations that have

led to technological advances including everything from airplanes to special drag-reducing

swimsuits (Bhushan, 2009; Vincent et al., 2006). However, the biomimetic system that

mimics biology so well it can be utilized to inform or even answer the questions asked

about its biological inspiration is rare, and even rarer still is a biomimetic system which

can do both – inform biology and serve as a new technology. I have designed such a

biomimetic system, and it is the design, fabrication, magnetic actuation, and application of

2



this system to both biology and technology which is the subject of this dissertation.

My biomimetic system is inspired by and seeks to inspire an appendage which is ubiq-

uitous in nature – the biological cilium. Biological cilia are present in nearly every organ

in vertebrates and are responsible for a multitude of different tasks including cell motility,

fluid propulsion, mechanical sensing, and chemosensation, a task only recently attributed

to cilia. In the last two years, ciliated cells in the human airway were found to express

bitter taste receptors which localized along the length of cilia. The introduction of a bitter

compound increased ciliary beat frequency thereby confirming the ability of airway cilia to

sense noxious substances upon entrance into the lungs (Shah et al., 2009).

Biological cilia can be divided into two large classes: motile and non-motile. The dif-

ference between motile and non-motile cilia is the presence or absence of the motor protein

axonemal dynein. A cilium’s structure, also called the axoneme, may be either ‘9+0’ or

‘9+2’, the first number indicating the number of microtubular doublets around the periph-

ery of the cilium and the second number indicating the number of microtubular singlets in

the cilium’s center. Motile cilia have axonemal dyneins attached to the microtubular dou-

blets that walk on neighboring microtubules, resulting in the bend of the cilium (Satir and

Christensen, 2008) and are responsible for a number of biological functions, including mu-

cociliary clearance in the lung (Satir and Sleigh, 1990), the establishment of the left-right

asymmetry in vertebrate embryos (Nonaka et al., 1998), the motility of sperm (Neugebauer

et al., 1990), the transport of fertilized eggs to the uterus (Shi et al., 2011), and the flow

of cerebrospinal fluid in the brain (Worthington and Cathcart, 1963). If typically motile

cilia suffer from immotility, the consequences can be severe and include airway infections,

3



situs inversus, infertility, hydrocephalus, and death (Afzelius, 2004). Non-motile cilia are

typically responsible for sensing applications, including smell, light perception, and flow

sensing within the kidneys. If non-motile cilia are not formed correctly or incapable of

performing their various functions, the consequences could include anosmia, blindness, or

polycystic kidney disease, a disease which includes the development of large cysts on the

kidneys (Pan et al., 2005; Satir and Christensen, 2008).

Part of my research has focused on the design, fabrication, magnetic actuation, and

application of a biomimetic cilia system to develop a deeper understanding of motile bi-

ological cilia responsible for two functions in particular: (i) mucociliary clearance in the

lung, and (ii) the development of left-right asymmetry during vertebrate embryogenesis.

Both of these biological functions require motile cilia to propel fluid flow in a particular

direction. For the lung, viscoelastic mucus must be propelled up and out of the lung by

beating cilia to clear our lungs of pathogens. In the vertebrate embryo, a Newtonian fluid

must be transported from the right side of the embryo to the left by beating cilia to estab-

lish the asymmetry of the embryo. The benefits of utilizing a biomimetic system to ask the

questions which biology is currently asking are enormous. Biomimetic systems allow for

the exploration of the impact of individual parameters on the system as a whole. How does

altering the beat frequency affect fluid transport? How does a different fluid restrict or en-

hance the mobility of a cilium or alter the cilium’s ability to transport that fluid? How does

the beat shape of an array of cilia affect the velocity of transport? All of these questions can

be answered with the use of my biomimetic cilia arrays, which consist of individual flexible

and magnetic rods on the same scale as the biological system. Building a biomimetic array
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of cilia with dimensions that are a true mimic of biological cilia is integral to answering

these questions and more as fluid at the microscale is distinctly different from fluid at the

macroscale.

The system I have designed consists of an array of individual rods that are ten microns

tall and 0.55 µm in diameter, spaced approximately 7-10 µm apart. These rods are both

flexible and magnetic, capable of deforming in response to an applied magnetic field. They

are capable of performing various beat shapes, as all biological cilia do not beat in the

same manner. Both the flexibility and magnetic property of a biomimetic cilium arises

from the combination of materials utilized in the fabrication process. The use of a soft,

elastic polymer poly(dimethylsiloxane) supplies biomimetic cilia with flexibility, and in-

troducing a magnetic material, such as nickel or iron oxide, provides a convenient method

of controlling the cilia array through the use of a magnetic field. By fabricating a novel

core-shell structure, such that a single cilium consists of a polymer core with a nickel shell

surrounding its upper portion, I have created an array of highly responsive rods capable of

bending such that their tips contact the substrate to which they are attached. The highly

responsive nature of these core-shell biomimetic cilia allows me to explore and inform the

biological questions I posed previously, as even within fluids as viscous and elastic as mu-

cus and sputum, I am able to actuate biomimetic cilia arrays, both detecting and measuring

biomimetic cilia amplitude and the resulting cilia-driven fluid flow.

In addition to answering these biological questions, my research has focused on utiliz-

ing arrays of biomimetic cilia as a technological device for the measurement and quantifi-

cation of fluid properties. The ability to detect and measure amplitude changes in highly
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viscous fluids lends itself to a new application, one in which the motion of a single cilium is

employed to monitor changes in the viscosity or elasticity of the fluid in which it sits. More

specifically, this system, as an array of rods, shows potential as a technological advance in

the world of point-of-care devices for measuring the coagulation of blood clots.

Blood clots form to stem the flow of blood from damaged blood vessels. If clotting

occurs too slowly, increased bleeding or hemorrhaging may occur, and conversely, if clot-

ting occurs too quickly, patients are at an increased risk of developing blood clots, which

could impair the flow of blood within the veins. These two possibilities are only two in

an entire class of bleeding or clotting disorders known as coagulopathies. Either of these

scenarios may result in death as coagulopathies are a leading cause of morbidity in the

world (Hess et al., 2008). One in four trauma patients admitted to the emergency room,

which account for 90% of emergency room admissions, is admitted with a coagulopathy

and has a corresponding four fold mortality increase (Hess et al., 2008; Niles et al., 2008).

By monitoring the change in amplitude as a blood clot forms, biomimetic cilia arrays are

capable of measuring the clotting time for blood, and as I will discuss, are more sensitive

to the onset of blood clotting than traditional coagulation assays.

Statistics such as these indicate the necessity of diagnostic tests with the ability to

rapidly assess clot-related parameters for the treatment of patients suffering from trauma.

Several such diagnostic tests are currently on the commercial market; however, these tests

are not packaged in a portable way such that they may be used at the location of the pa-

tient directly after injury is suffered. Immediate diagnosis of a coagulopathy is necessary

to avoid treatments which may aggravate the coagulopathy and worsen patient symptoms.

6



Devices capable of transport to the site of the patient are called point-of-care devices, and

no such point-of-care devices currently exist for monitoring blood coagulation. Due to the

nature of the fabrication process for my biomimetic cilia arrays, the size of the array can

very easily be varied from one square millimeter to sheets as large as the size of the equip-

ment utilized in the fabrication process. As such, a device can be constructed to fit in the

palm of one’s hand to maximize transportability of the diagnostic test.

1.1 Organization of the Thesis

I begin this thesis with a chapter on the biological cilium within the context of mucocil-

iary clearance and embryogenesis. The biological cilium is an amazing structure, and as

the majority of my work has been designing and fabricating a biomimetic system to better

understand biological cilia, I will start by giving the reader a more thorough understanding

of the inspiration for this work. In the third chapter, I will discuss the design parameters

that are considered when fabricating an array of rods, as the rods must be both highly flexi-

ble and highly magnetic to maximize their response to an applied magnetic field in fluids as

viscoelastic as mucus and sputum. Increasing magnetic content to increase responsiveness

typically causes a corresponding increase in stiffness such that the rod becomes less respon-

sive. Devising the core-shell structure, as I describe in Fiser et al., a prepared manuscript

detailing the design and fabrication of these biomimetic cilia, is a smart method to sepa-

rate, as much as possible, the contributions of the magnetic content to the stiffness of the

rod (Fiser et al., 2012).

In Chapter 4, I will detail the fabrication process of biomimetic cilia for three dif-
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ferent types of materials: maghemite ferrofluid-poly(dimethysiloxane) (FFPDMS), mag-

netite ferrofluid-poly(dimethylsiloxane) (FFPDMS-NH2), and poly(dimethylsiloxane) core

- nickel shell. The first two materials are suspensions of magnetic nanoparticles within a

polymer matrix, and the third is a core-shell structure. FFPDMS cilia were developed prior

to my joining the lab by Ben Evans and Adam Shields and are discussed in Evans et al.,

2007. However, these cilia have been utilized in some experiments discussed in both this

thesis and the publication Shields, Fiser, et al., 2010. In addition, the fabrication process

for FFPDMS cilia is similar to the process I have devised for FFPDMS-NH2 and core-shell

biomimetic cilia.

A second material utilized in the fabrication of biomimetic cilia is FFPDMS-NH2,

though these cilia were not used in experiments. The composite material is an improvement

upon FFPDMS; rather than a simple suspension of nanoparticles within a polymer matrix,

individual nanoparticles in FFPDMS-NH2 have polymer strands adsorbed onto their sur-

faces, a process described in Evans, Fiser, et al., 2012. This adsorption of polymer onto

nanoparticle prevents aggregation, thereby allowing for a slightly higher magnetic content

within each cilium without an appreciable increase in stiffness, generating larger rod re-

sponses. The third material, poly(dimethylsiloxane) core - nickel shell, is an improvement

on both FFPDMS and FFPDMS-NH2, as the polymer and magnetic material are separate

and thus an increase in magnetic content has little effect on the flexibility of the cilium.

Core-shell cilia are capable of actuating in highly viscoelastic fluids, a feat which could not

be accomplished by FFPDMS cilia. Because of this, core-shell cilia are ideal actuators for

exploring viscoelastic fluid transport, which I discuss in Chapter 6.
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After detailing the fabrication process for biomimetic cilia, Chapter 5 explores various

techniques for cilia actuation. The beat shape employed to address the biological questions

I have posed in this Introduction (which will be addressed in Chapter 6) is called the ‘tilted

conical beat’ and is performed by vertebrate nodal embryonic cilia. The beat shape em-

ployed in the new technology capable of measuring viscoelastic fluid properties and blood

coagulation (which will be addressed in Chapter 7) is called the ‘linear’ beat and is a beat

shape performed by lung epithelial cilia.

Before presenting the results and discussion for biomimetic cilia-driven fluid flow, in

the beginning of Chapter 6, I will provide a brief overview of fluid flow at the microscale

and discuss the concept of the Reynolds number and the fundamental equation of motion

for fluids, the Navier-Stokes equation. Various solutions to the Navier-Stokes equation for

both purely viscous and viscoelastic fluids will be examined as the solutions are utilized

to describe fluid motion driven by an array of biomimetic cilia. After the introduction

to microhydrodynamics, Chapter 6 is broken down into two further parts: aqueous fluid

transport and viscoelastic fluid transport. Section 6.2 describes the fluid flow above and

below biomimetic cilia tips in a purely viscous fluid as well as the implications I draw from

these results for both biology and technology. For biomimetic cilia-driven viscoelastic fluid

flow, Section 6.3 considers the viscoelastic fluid agarose, which is used in experiments, the

comparison of flow between a viscous and viscoelastic fluid, and again, the implications of

these results for biology and technology.

Finally, in Chapter 7, I move from discussion of the biomimetic cilia array as a plat-

form to study biology to the utilization of biomimetic cilia as a new technology with the
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potential for commercialization. Before applying biomimetic cilia arrays as measuring de-

vices for the quantification of the viscous and elastic components of a fluid, and especially

before arrays become available as commercial point-of-care devices, more research must

be performed. I discuss this future research in the end of Chapter 7.
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Chapter 2

The Biological Cilium

Biological cilia can be motile or non-motile, a determination made by the presence or

absence of axonemal dynein motor proteins which allow them to bend. The biological

cilia I seek to mimic, those responsible for mucociliary clearance in the lung and the de-

velopment of left-right asymmetry during vertebrate embryogenesis, are both motile and

possess axonemal dyneins; however, each cilium’s internal structure is distinctly different.

The internal structure of a cilium is called the axoneme, and it stems from the basal body,

a structure anchored to the cell’s surface by the basal foot. The delineation for the different

internal structures is based on whether or not the cilium is a ‘9+2’ structure or a ‘9+0’ struc-

ture. Initially only 9+2 cilia were considered motile and 9+0 cilia, or primary cilia, were

assumed to be non-motile; however, with the discovery of nodal embryonic cilia, which are

motile and have a 9+0 ultrastructure, cilia are more often described as motile or non-motile

than ‘9+0’ or ‘9+2’ (Satir and Christensen, 2008). Both cilium types consist of nine outer

doublet microtubules that extend along the length of the cilium. In addition to these nine

doublets, the 9+2 cilium contains two microtubule singlets in the axoneme’s center. Figure

2.1 depicts a schematic of the cross-section of a 9+2 cilium’s axoneme (Fauci and Dillon,

2006).



Figure 2.1: Reprinted from Fauci et al. (2006). Schematic of the axoneme for a 9+2
cilium. The significant difference between 9+2 and 9+0 cilia is the presence of the central
microtubules (Fauci and Dillon, 2006).

The nine outer microtubule doublets are connected by nexin links, preventing them

from exhibiting motion with respect to a microtubule neighbor. In addition to these links,

dynein arms are present on each microtubule doublet. The motion of these dynein arms

is driven by ATP, which causes them to walk on the surface of a neighboring microtubule.

This walking produces the bending motion of a cilium. Four doublets on one side operate

to produce the effective stroke, and five doublets on the other side operate to produce the

recovery stroke. The effective stroke occurs in the direction of fluid motion, and during

the recovery stroke, the cilium is typically close to the cell surface. Dynein arms come in

two sets: the inner dynein arms which are thought to control the beat shape and the outer

dynein arms which are thought to control the beat frequency (Fauci and Dillon, 2006; Satir

and Christensen, 2008).

In the 9+2 axoneme, the outer nine microtubule doublets are linked to the central pair

of singlet microtubules by radial spokes. These radial spokes and central pair of singlets

are not present in 9+0 cilia. Because of these structural differences, the motion of 9+2 cilia
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such as those found in the lung and 9+0 cilia such as those found in the embryonic node

is markedly different. The radial spokes in 9+2 cilia serve to reinforce the structure of the

cilium and likely contribute to the planar shape of the 9+2 beat. In 9+0 cilia, the lack of

microtubules in the central region likely contributes to the conical shape of the 9+0 beat.

2.1 Bronchial epithelial cilia

Bronchial epithelial cilia, with a 9+2 ultrastructure, are primarily responsible for filter-

ing and removing pathogens from the lung in order to prevent infection and illness. This

complex process of clearing the lung is called mucociliary clearance. Lining the lung’s

conducting airways are cilia and the airway surface liquid (ASL), a layered fluid composed

of a watery-like periciliary layer (PCL) and the viscoelastic fluid mucus, as illustrated in

Figure 2.2A. The side of the mucus layer not in contact with the PCL is exposed to air.

Human bronchial epithelial cilia are typically 7 µm tall, 250 nm in diameter, and grow in

patches on the apical surface of the cell, as shown in Figure 2.2B and C. The PCL in which

cilia sit is also approximately 7 µm high. In a healthy system, mucus, which has been se-

creted by goblet cells, traps inhaled contaminants and is transported out of the airway by

contact with the beating cilia tips (Boucher, 2004).
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Figure 2.2: (A) Reprinted from Boucher et al. (2004). Schematic of cells in the lung. The
cilia sit in a layer of fluid called the PCL, above which is the mucus layer (Boucher, 2004).
(B-C) Scanning electron micrographs of human airway cilia, which are typically 7 µm tall
and 250 nm in diameter. Lung epithelial cilia grow in patches on the apical cell surface.

Healthy airway cilia beat with an effective stroke, in which a cilium straightens verti-

cally, followed by a recovery stroke, in which bending occurs and the cilium remains near

the cell surface. This beat is almost entirely planar, and the effective stroke occurs in the

direction of fluid motion, driving the fluid upward and out of the lung. This asymmetry in

the cilium’s beat shape is critical for the net transport of mucus out of the lung, as the cilia

exist in a low Reynolds number environment where inertia plays no role.

The mechanism of this transport, however, is still poorly understood. There remain

many open questions concerning interactions between cilia and the mucus layer. When

cilia come into contact with the mucus layer during the effective stroke, what mechanical

interactions occur? The mucus layer in the upper airways is thought to begin at the cilia

tips and extend 15-20 µm above (Boucher, 2004). Within the airways, does this entire

layer move? Must the entire layer of mucus move to clear our lungs of pathogens? My

biomimetic cilia system is poised to answer these questions.

A number of disorders exist which can significantly hamper the mucociliary clearance
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process, two of which are cystic fibrosis (CF) and primary ciliary dyskinesia (PCD). CF is

essentially a disease caused by the failure of the mucociliary process, as patients are born

with healthy lungs, but over the years acquire bacterial infections within their airways. Nor-

mal functioning of the mucociliary process is dependent on a number of factors including

regulation of the PCL height. Without the PCL, cilia are immersed in mucus and become

inefficient at clearing mucus from the lungs. Patients with CF suffer from a depleted PCL,

resulting in a much-thickened mucus, and the mechanical process of mucociliary clearance

no longer works effectively to clear the lungs of pathogens (Boucher, 2004). Biomimetic

cilia immersed in a viscoelastic fluid such that the fluid fills the space throughout and above

the cilia layer (an experiment I discuss in Section 6.3) could contribute to our understanding

of this clearance inefficiency. In this experiment, the rate of net transport of the viscoelastic

fluid was determined to be 1/12 that of buffer, indicating a lack of clearance. Before in-

terpreting and applying results such as these constructively to the biological system, more

experiments would be needed to further elucidate the mechanical interaction between the

cilium and the viscoelastic fluid as a function of viscoelasticity. In addition, as transport

rates may vary in the presence of a layered fluid, it would be informative to investigate

the effect of different layer thicknesses on transport. Again, the biomimetic cilia system is

poised to contribute insight to these biological phenomena.

A second disorder that hampers mucociliary clearance is primary ciliary dyskinesia,

which affects the assembly or function of axonemal dynein, leading to a change in the

beat of cilia including the potential for complete impairment of the beat. Patients who

exhibit PCD may suffer a number of problems other than impaired mucociliary clearance,
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including male infertility and hydrocephalus (Satir and Christensen, 2008).

The linear beat shape employed by airway cilia is mimicked by biomimetic cilia with

the use of a passing permanent magnet (described in Section 5.2.1), as biomimetic cilia

are magnetic and seek to align themselves with the direction of an applied magnetic field.

However, they are currently incapable of accurately mimicking the complexity of the beat

shape exhibited by biological airway cilia; biomimetic cilia act as stiff projections from the

substrate.

2.2 Vertebrate embryonic nodal cilia

The second biological cilium mimicked by biomimetic cilia is the vertebrate embryonic

nodal cilium. The human body has three different axes − the anterior-posterior axis, the

dorsal-ventral axis, and the left-right axis − which are determined during the course of

embryogenesis. The anterior-posterior and dorsal-ventral axes are determined randomly,

though perpendicular to one another. The left-right axis is the final axis to be determined,

and it must be determined with respect to the other two axes. Vertebrate embryonic nodal

cilia, with a 9+0 ultrastructure, play a vital role in determining this left-right axis, which

refer to the left and right sides of a vertebrate embryo, during embryogenesis (Hirokawa

et al., 2009). They produce a leftward flow of extraembryonic fluid in the ventral embryonic

node which is critical for proper determination of the left-right axis of the embryo. A

conservation of this leftward flow has been shown among multiple species, including the

rabbit, medakafish, and mouse (Okada et al., 2005).

Embryonic nodal cilia are located within the embryonic node, a recessed pit on the

16



ventral side of the embryo. Figure 2.3 depicts the embryonic node and nodal cilia of a

mouse. The node comprises a number of cells, each with a single cilium projecting from

its surface. These nodal cilia are approximately 5 µm long and 300 nm in diameter. Because

their ultrastructure is 9+0, they lack a central pair of microtubules and thus do not employ

the planar beat exhibited by 9+2 cilia. Embryonic nodal cilia employ the ‘the tilted conical

beat’, a conical beat that orbits about a tilted axis, typically tilted 40◦ from the vertical

(Hirokawa et al., 2009). The cilium is most efficient at propelling fluid at the top of its beat,

as when the cilium passes near the cell surface, a no-slip boundary condition is in play. In

theoretical treatments, this tilted axis of rotation is critical to the production of directional

flow, as in low Reynolds number environments where viscous forces dominate over inertial

forces, asymmetry is critical in producing net displacement (Cartwright et al., 2007; Smith

et al., 2008).

A B C

Figure 2.3: Reprinted from Hirokawa et al. (2009). Scanning electron micrographs of a
mouse embryo. (A) View of the ventral side of a mouse embryo at 7.5 days post-coitum. A

indicates the anterior side of the embryo, P is the posterior side, R is the right side, and L is
the left side of the embryo. (B-C) Magnified views of the nodal pit (Hirokawa et al., 2009).
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The leftward driven fluid flow controls determination of the left-right axis, a result

discovered in 2002, when application of an external fluid flow produced predictable left-

right axes (Nonaka et al., 2002). However, the method through which this mechanical

flow is converted into a chemical signal remains unknown. The current hypothesis relies

on the presence of nodal vesicular parcels (NVPs), membrane-sheathed particles which

were recently discovered within the node. NVPs are hypothesized to be released from the

cell surface, transported leftward within the node carrying morphogens, and ruptured upon

contact with cilia or the left nodal wall, leading to a morphogen gradient (Tanaka et al.,

2005). Biomimetic cilia arrays are capable of replicating the tilted conical beat employed

by nodal cilia. With this beat shape, we have explored biomimetic cilia-driven flow in fluid

of a similar viscosity to fluid in the node (Section 6.2), and our experiments support the

establishment of a long range chemical gradient by cilia-driven flow. These results are

presented in Shields, Fiser, et al., and this biomimetic system is primed for experiments

which delve deeper into this hypothesis (Shields et al., 2010).

The leftward flow produced by cilia specifies the location of the heart and organs within

the body, and thus in animals that lack nodal cilia, the location of these organs is random. In

99% of the human population, the heart is located on the left side of the body, and the liver

is on the right. Situs inversus totalis is a condition in which the heart is located on the right

side of the human body and the liver on the left, in essentially a mirrored replica of healthy

individuals (Hirokawa et al., 2009). The exact mirroring of organ locations is unlikely to

cause complications; however, nearly half of all patients who suffer from situs inversus

totalis also suffer from Kartagener syndrome, which is characterized by bronchiectasis and
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sinusitis. In general, these individuals exhibit symptoms associated with immotile-cilia

syndrome (Afzelius, 2004).

The ubiquity of the cilium as well as the hugely damaging impact improperly func-

tioning cilia have on the quality of human life make the cilium an ideal candidate for the

construction of a biomimetic cilia system. The following chapter details the design of such

a biomimetic system.
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Chapter 3

Designing the Ideal Actuator

Responsive micro- and nanostructures are critical to the future of many technologies

due to their uses as sensors and actuators, providing means for interactions between a sys-

tem and its environment. Technologies at the micro- and nanoscale in general are revolu-

tionizing the future of electronics and devices, requiring less in the way of materials. This

equates to lower fabrication costs, and having the benefit of easy dissemination due to their

size leads to a potentially higher impact on human lifestyles globally. Micro- and nanoscale

actuating structures specifically provide precise control and manipulation in small length

scale environments (Sahu et al., 2010). Magnetically driven actuation of these micro- and

nanoscale actuators is particularly appealing because it has the potential to achieve large

displacements without internal on-chip power sources or wires.

To design the ideal magnetic microactuator, it is important to understand the compe-

tition between magnetic and elastic forces within an actuator. An applied magnetic field

produces a torque on the actuator which may result in a deflection provided the elastic

modulus of the actuator is not so large such that the elastic energy is much greater than the

energy supplied to the actuator through the magnetic field. The optimal magnetic loading

for a given geometry which will yield a responsive actuator with some flexibility must be



determined. Figures of merit for such a determination have been developed by both Cebers

et al. (Cebers, 2005) and Evans et al. (Evans, 2008; Evans and Superfine, 2011). I will

discuss the latter model, modifying it to apply to core-shell actuators in addition to the ho-

mogeneous actuators for which it was created. It determines the maximum bend angle an

actuator can achieve by minimizing the sum of an actuator’s elastic energy, ‘field energy’,

and ‘gradient energy’, where the field energy refers to the magnetic torque on the rod and

the gradient energy refers to effect of the magnetic field gradient on the rod. This model

considers only the static responsiveness of an actuator, or steady-state maximum amplitude

achieved at an applied force. The dynamic responsiveness, or actuator amplitude at an

applied force, oscillating with a given frequency, is an additional factor to consider when

designing a microactuator. Many of the artificial cilia structures I will describe in Section

3.1 suffer from limited static and/or dynamic responsiveness. There exists an inherent lim-

itation to the static responsiveness of micron-sized actuators in their small volumes and

thus only limited driving forces may be applied. The small actuator volume also limits the

dynamic responsiveness as does the presence of strong viscous damping in air or liquid

environments. A basic treatment of artificial cilia-like structures as overdamped, driven

harmonic oscillators demonstrates a need to maximize both static and dynamic responsive-

ness in actuator design.

We model our artificial cilia as slender cantilevered rods; thus, after giving a brief

overview of current microactuators, I will discuss the mechanical model of artificial cilia as

slender cantilevered rods, a model which combines the beam equation and the equation for

a driven, overdamped harmonic oscillator. Assuming small angle deflections, these equa-
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tions together serve as a basic model to understand cilia amplitude in a dynamic context in

a purely viscous fluid. Chapter 7 expounds upon the application of this model to data taken

in fluids with different viscosities. Following the discussion of dynamic responsiveness,

which does not assist in the determination of material parameters, I will utilize Ben Evan’s

energy minimization model and the relationship for magnetic torque on a rod-shaped ac-

tuator to determine the appropriate magnetic and elastic material parameters which will

maximize the static responsiveness of an actuator. In addition, because I am designing an

array of microactuators with higher aspect ratios (length/diameter), adhesive forces play

a significant role and must be considered as they contribute to both ground collapse and

lateral collapse of the microactuators against one another. All of these characterizations

will contribute to a better understanding of the parameter space for an ideal microactuator.

3.1 Current microactuators for use as artificial cilia

The design of actuators at the microscale has garnered much interest in the literature

in the last five years especially. The biological cilium has been the inspiration for many of

these microactuators, as it is a micron-sized actuator with the capacity to perform a large

number of functions including the mixing and pumping of fluids and chemical sensing.

With the increased demands for new microfluidic technologies that facilitate the study of

small volumes of fluids within sub-millimeter sized channels, new methods must be devised

for the manipulation of these fluids at this small scale. Artificial cilia have been developed

as an answer to fluidic manipulation need and are often responsible for mixing and pumping

in microfluidic settings. Experimental fabrication of cilia-like actuators has been explored

22



in depth, and many actuation techniques have been employed including electrostatics (den

Toonder et al., 2008), the use of visible and UV light (van Oosten et al., 2009), SEM

electron beams (Pokroy et al., 2009), PZT microstages (Oh et al., 2009; Oh et al., 2010),

electromagnets (Fahrni et al., 2009b), and permanent magnets (Shields et al., 2010; Fiser

et al., 2012).

I will address these different actuation methods in the following sections, but first, note

that I refer to these microactuators as “artificial” cilia and not “biomimetic” cilia, as many

of them do not accurately replicate or mimic their biological inspiration with respect to

actuator size, beat shape, or drive frequency. Most of the artificial cilia I describe here

are hundreds of microns in at least one dimension and are typically driven at tens of hertz.

These differences in scale and actuation mean artificial cilia are capable of faster fluid

transport and more efficient fluid mixing, and many of the artificial cilia below do drive

fluid transport more rapidly than my arrays. However, the scale, beat shape, and driving

frequency of my core-shell cilia arrays closely replicate the biological cilia system, and

thus I use the term “biomimetic” to describe my system. In addition, of the present artificial

cilia systems, few have been shown to produce fluid flow in Newtonian fluids and none have

indicated flow in a viscoelastic fluid.

3.1.1 Actuation with electrostatics

In 1997, Suh et al. created thin-film artificial cilia by layering polyimides with different

coefficients of thermal expansion onto aluminum electrostatic electrodes. The combination

of polyimides and electrodes produced thin-film cilia capable of achieving large deflection
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and lifting sizable loads. Each actuator consisted of four paddle-like structures ∼430 µm

long, each capable of 95-125 µm displacements and lifting loads as large as 500 mg (Suh

et al., 1997).

In 2008, den Toonder et al. described an electrostic artificial cilium 100 µm wide by

20 µm long, consisting of a 1 µm layer of polyimide and a 20 nm conductive layer of

chromium. These cilia were constructed on an indium tin oxide (ITO) electrode to which

a voltage was applied at a given frequency, causing the cilium to curl and uncurl. At a

driving frequency of 50 Hz, these large cilia generated fast pumping and mixing. However,

because of the paddle’s fast actuation speed, the local Reynolds number around each cilium

was greater than one, creating an environment distinctly different from the low Reynolds

number (∼ 10−3) in which cilia live (Khatavkar et al., 2007; den Toonder et al., 2008).

3.1.2 Actuation with UV-Visible light

In 2009, van Oosten et al. introduced the first light-sensitive artificial cilia constructed

with liquid-crystalline polymers. Liquid-crystalline polymers are highly ordered polymers

that change shape when their molecular order is altered and are capable of exhibiting large

deformations in response to many different types of stimuli including light, heat, and the

chemistry of their environment. By mixing crystalline polymers with azobenzene dyes,

which assist with shape deformations due to light exposure, van Oosten et al. created

liquid-crystalline actuators 1 mm long by 100 µm wide by 20 µm thick capable of bending

approximately 50◦ when exposed to ultraviolet light. Figure 3.1 depicts a side view of

the actuation caused by exposure to ultraviolet light. These liquid crystalline cilia were
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fabricated using an inkjet deposition method where the dye is deposited directly onto a

layer of polyimide (van Oosten et al., 2009).

Figure 3.1: Reprinted from van Oosten et al. (2009). Liquid-crystalline artificial cilia
actuated by exposure to ultraviolet light. Artificial cilia are 1 mm long by 100 µm wide by
20 µm thick. The scale bar is 500 µm (van Oosten et al., 2009).

3.1.3 Actuation with a piezo stage

Oh et al. developed a method for the actuation of polydimethylsiloxane (PDMS) arti-

ficial cilia by attaching cilia to a lead-zirconate-titanate (PZT) microstage and driving the

stage at a given frequency. Artificial cilia were tall rectangular structures, 800 µm long by

10µm wide with a depth of 75 µm, driven from 40−140 Hz and exhibiting resonance at

95 Hz. These artificial cilia were capable of mixing two different fluids an order of magni-

tude faster than could be accomplished by mixing through diffusion alone (Oh et al., 2009;

Oh et al., 2010).

3.1.4 Actuation with magnetics

One of the more popular methods of artificial cilia actuation is the utilization of a mag-

netic driving force. The use of magnetics requires no internal on-chip power or leads and

will not affect any sensitive chemistries within an experiment. Magnetic artificial cilia make

up by far the largest class of artificial cilia in the literature. Within this class, there exist
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two main methods of fabrication: (i) loading elastic polymers with varying concentrations

of magnetic particles (Evans et al., 2007a; Fahrni et al., 2009b), and (ii) chemically or mag-

netically linking paramagnetic beads (Furst et al., 1998; Singh et al., 2005; Vilfan et al.,

2010). Both the ability to vary the magnetic loading within a flexible polymer matrix and

the use of linker molecules of varying molecular weight between magnetic beads creates

a more flexible artificial cilium. In addition, for linked beads, the length and diameter are

easily controlled parameters set by the number and diameter of linked beads, respectively.

The first application of a crosslinked magnetic composite material for the fabrication

of artificial cilia was presented in 2007 by Evans et al. (Evans et al., 2007a). Superpara-

magnetic nanoparticles were dispersed within a hydrophobic polymer matrix (PDMS), and

the mixture was templated into 800 nm diameter by 25 µm tall cylindrical pores. As I uti-

lized this fabrication method to obtain results presented in this thesis, further discussion of

this method will occur in Chapter 4. Following the 2007 publication, Fahrni et al. used a

similar magnetic composite material composed of Fe-C ferromagnetic particles and PDMS

to fabricate artificial cilia 300 µm long by 100 µ wide by 15 µm thick. These cilia were

actuated with a rotating magnetic field, resulting in a torsional motion that induced vortical

movement of fluid around each cilium (Fahrni et al., 2009b).

The other prevalent class of magnetic cilia-like actuators surfaced in 1998 when Furst

et al. presented a method for the synthesis of chains of paramagnetic beads. Amine and

carboxylic acid surface functionalized polystyrene beads (1 µm in diameter) were deposited

into a flow cell of a given height, and a magnetic field was applied perpendicular to the

flow cell. Beads aggregated into chains, and with the introduction of glutaraldehyde to
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the flow cell, a covalent chemical linkage between neighboring beads was formed. These

chains were not anchored to a substrate, and the average length of the chain was not well

controlled in this fabrication process, as reported length averages exhibited large error, such

as 14 ± 7 µm (Furst et al., 1998).

The fabrication process detailed in Singh et al. in 2005 improved upon Furst et al.’s first

design of linked paramagnetic beads by tethering large arrays of linked chains to a glass

substrate. This tethering was achieved by patterning the glass substrate with amine groups

and utilizing carboxylated polystyrene beads ∼790 nm in diameter coated with 25 nm mag-

netic nanoparticles. The linkage between beads was formed with poly(ethylene glycol)

(PEG) diamine and the application of a magnetic field perpendicular to the glass substrate.

After the creation of chains 12−75 µm in length, deflection was obtained by applying a

magnetic field to the chain array. In addition to the benefit of being tethered to a substrate,

the flexibility of these artificial cilia was easily tunable by modifying the molecular weight

of the PEG diamine crosslinking molecule (Singh et al., 2005).

Most recently, Vilfan et al. described the fabrication, actuation, and fluid propulsion

abilities of paramagnetic chains 31 µm long and 4.4 µm in diameter secured to a substrate

at one end (Vilfan et al., 2010). This report on artificial cilia is the closest in size to bio-

logical cilia other than those I will describe in the next chapter which were developed in

our research group. In addition, this is also the only report, other than Shields, Fiser, et al.,

which utilizes a biologically relevant beat shape to drive a net fluid flow. These artificial

cilia are driven at 1 Hz by an electromagnet in a tilted conical beat shape similar to the

beat shape of vertebrate embryonic nodal cilia. With this actuation, Vilfan et al. obtained
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a net flow ten microns above artificial cilia tips. The array size of these artificial cilia is

unfortunately only 3x3, nine cilia total, spanning approximately 50 µm, and little mention

is made of constructing much larger arrays to study fluid flow. Figure 3.2 shows the 3x3

array of paramagnetic chains and the resulting fluid flow above cilia tips, as tracked by the

addition of tracer particles to the fluid (Vilfan et al., 2010).

B

Figure 3.2: Reprinted from Vilfan et al. (2009). (A) Artificial cilia, 31 µm long by 4.4 µm
in diameter, are capable of propelling fluid flow at a velocity of 3.3± 0.2 µm/s when driven
at 1 Hz with a tilted conical beat shape. The tracks shown in (B) are those of tracer particles
added to the fluid (Vilfan et al., 2010).

3.2 Cantilevered beams as damped, driven harmonic os-

cillators

Both biological and biomimetic cilia can be modeled as high aspect ratio rods; thus,

it is important to understand the mechanical properties of slender rods, including how the

deflection of a rod is determined by its load. A cilium can be represented as a cantilevered

beam clamped and immobile at one end and free at the other. For smaller forces, the
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beam’s response, or curvature, will be fairly linear with the torque applied. Cantilevers are

characterized by a curvature κ and a bending moment M. For a purely elastic cantilever,

κ and M are analogous to x and F in Hooke’s law for a spring. The beam equation for a

slender, cantilevered beam experiencing a small force and exhibiting a small deflection is

(Howard, 2001)

M = EIκ. (3.1)

Like Hooke’s law, which has a constant of proportionality called the spring constant k, the

beam equation has a constant of proportionality called the flexural rigidity EI. The flexural

rigidity is a quantity which characterizes all beams by taking into account both the Young’s

modulus E of the beam material and the second moment of inertia I relating to the beam’s

cross section. If a beam’s cross-sectional shape is non-circular, the flexural rigidity may

depend on the direction of the bend. For example, a long rectangular beam like a wooden

coffee stirrer is easier to bend about one axis than the other. The curvature κ of the beam is

the inverse of the radius of curvature R and is effectively a measure of how a line tangent

to the beam’s curve changes as it is measured at various points on the curve.

Figure 3.3 is the coordinate system used in defining the differential equation for all

beams. The beam’s deflection is y, and θ is the angle between the x-axis and a tangent line

drawn at any point m on the deflected beam. The radius of curvature R is then defined as

the change in the angle θ, or dθ, over an arc length ds which is between two points, mi and

mj, on the deflected beam’s curve.
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A

Figure 3.3: (B) Depicts a portion of the cantilever represented in (A). Further details in the
text (Gere and Timoshenko, 1990).

Since κ = 1/R, we can write (Gere and Timoshenko, 1990)

κ =
1
R
=

dθ

ds
. (3.2)

For small angles, I assume cos θ ≈ 1, and thus the geometrical relationship ds = dx/cos θ

seen in Figure 3.3 becomes ds ≈ dx. Equation 3.2 is then

κ =
dθ

ds
=

dθ

dx
. (3.3)

In addition, the slope of the deflection curve is its first derivative, and from Figure 3.3, we
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see dy/dx = tanθ. This relation combined with the small angle approximation tan θ ≈ θ

gives

κ =
dθ

dx
=

d
2
y

dx2 . (3.4)

Equation 3.4 provides us with a relation between the beam’s curvature and its deflection

and is valid for any beam material. However, it is useful only when θ is small. If we are

working with a linearly elastic beam, then Equation 3.4 reduces to Equation 3.1 presented

previously. When the deflection of the beam is not small, we cannot assume that dθ/ds ≈

dθ/dx and must instead use the expression for curvature exactly shown in Figure 3.3. The

differential beam equation then becomes (Gere and Timoshenko, 1990)

κ =
d

2
y

dx2

�
1 +
�

dy

dx

�2�3/2 . (3.5)

For simplicity of the model, I will assume a small deflection, thus using Equation 3.4.

In addition to the mechanical properties of the rod, I need to consider its hydrodynamic

properties. The interaction, such as drag, between a cilium and its surrounding fluid, will

affect cilium response. The deflection of a cantilevered beam with both viscous damping

and an external excitation force f (x, t) per unit length is given by (Brücker et al., 2007)

EI
∂4

y(x, t)
∂x4 + macc

∂2
y(x, t)
∂t2 +

4πη
ln(L/2D)

∂y(x, t)
∂t

= f (x, t) (3.6)

where macc is the accelerated mass, η is the fluid viscosity, and L and D are the cantilever

length and diameter. Equation 3.6 must be integrated over the entire length L of the can-
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tilever to determine deflection curve of the beam and is valid only for low frequencies and

small deflection amplitudes. The third term which represents the drag on the cantilever was

originally derived by Venier et al. in 1994 for microtubules (Venier et al., 1994).

Following the treatment of Brücker et al., 2007, note the similarity between this slender

beam equation and the one-dimensional harmonic oscillator. The flexural rigidity is anal-

ogous to the spring constant k; a mass term is present; the third term represents the drag

force; and f (x, t) is the external force acting on the oscillator. Thus, we approximately have

the following (Brücker et al., 2007):

k
∗
ỹ + m

∗∂
2
ỹ

∂t2 + c
∗∂ỹ

∂t
= f (t). (3.7)

I can treat the coordinate ỹ as the one-dimensional cartesian coordinate y. For complete-

ness, I will briefly discuss the general solution for a damped, driven harmonic oscillator,

after which, I will return to Equation 3.6 to explore the relationship between amplitude and

frequency for my biomimetic cilia system.

3.2.1 The damped and driven harmonic oscillator

The equation of motion for a damped, driven harmonic oscillator includes a driving

force, a damping force, and a restoring force. My experiments utilize a driving force which

oscillates in time which I will approximate as sinusoidally varying with some frequency

ω. The damping force is applied by the actuator’s environment, and for a viscous environ-

ment, it is linearly proportional to the fluid’s viscosity. (I will use the term ‘oscillator’ and

‘actuator’ interchangeably as the actuators I discuss in this thesis are oscillating actuators.)
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The restoring force of the oscillator is approximated as the spring force. Assuming the

oscillation occurs in y as I previously assumed beam deflection in the y direction,

F = −ky − cẏ + F0cos(ωt) (3.8)

where the first term is the restoring force with spring constant k, the second term represents

the damping force with damping coefficient c, and the third term is the sinusoidal driving

force with amplitude F0 and drive frequency ω. The damping force is a viscous retarding

force represented by c, which in turn is proportional to fluid viscosity; the value of this

term will depend on the geometry of the oscillator and fluid environment. Dividing by the

oscillator’s mass m, and letting F = mÿ gives

ÿ = − k

m
y − c

m
ẏ +

F0

m
cos(ωt). (3.9)

Let ω0
2 = k/m, γ = c/2m, and A = F0/m where ω0 is the characteristic angular frequency

of the oscillator without any damping, and γ is the damping factor. After some rearrange-

ment,

ÿ + ω0
2
y + 2γẏ = Acos(ωt) (3.10)

The solution to Equation 3.10 is a two part solution: a transient part and a steady state

part. Transient effects that will die out after some given time; the steady state represents

the natural frequency of the oscillator. For a short period of time, the oscillator’s frequency

is a linear superposition of its natural frequency and the driving frequency. As long as the
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time t >> 1/γ, I can ignore the transient portion of the solution and focus on the steady

state solution (which is caused by the driving force) for y(t),

y(t) =
A

��
ω0

2 − ω2�2 + 4ω2γ2
cos(ωt − δ) (3.11)

where δ is the phase difference between the drive force and resultant motion, evaluated as

δ = arctan

�
2ωγ
ω0

2 − ω2

�
. (3.12)

Because we are looking at the steady state solution, the oscillator should respond at the

drive frequency ω. At low drive frequencies, we expect an oscillator to have the ability to

keep up with the drive force and thus the phase difference between the two equals zero. For

higher drive frequencies, the acceleration will be large, and the phase difference may be as

large as 180◦ as an oscillator’s acceleration is out of phase with its displacement by 180◦.

As I mentioned previously, the relationship among the amplitude, the damping factor

γ, and the drive frequency ω are important in understanding how well an actuator will

perform in a dynamic context with or without a highly viscous environment. Note that

this is not a method for determining material parameters which go into fabrication, merely

it is a predictor of responsiveness based on drive forces, drive frequencies, and actuator

geometry. The amplitude of a damped, driven oscillator is

A(ω) =
F0/m��

ω0
2 − ω2�2 + 4ω2γ2

. (3.13)

When the drive frequency is nearly equal to the undamped natural frequency ω0, a phe-
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nomenon called resonance occurs. Resonance results in a maximum amplitude, and we

can determine the resonance frequency ωr by differentiating Equation 3.13 and setting it

equal to zero. For a simple harmonic oscillator, the resonance frequency is equal to the

natural, undamped frequency, ω0 =
√

k/m. For a damped, driven oscillator, the resonance

frequency ωr becomes a combination of the undamped resonance frequency ω0 and the

damping factor γ:

ωr

2 = ω0
2 − 2γ2. (3.14)

If the damping factor is weak or goes to zero, ωr → ω0, or if 2γ2 > ω0
2, we have

the case of strong damping and no resonance in our system. When γ > ω0, a harmonic

oscillator is considered overdamped, and the amplitude will decrease as the drive frequency

ω increases. This relationship is evident if we consider the limiting case γ2 = ω0
2/2;

Equation 3.13 then becomes

A(ω) =
F0/m��
ω0

4 − ω4� (3.15)

where A(ω) clearly decreases as ω increases.

Recall that Brücker’s treatment of the beam equation for a damped, driven cantilever

clamped at one end (Equation 3.6) drew several analogues between the deflection of a

beam due to an excitation force and the equation of motion for a damped, driven harmonic

oscillator (Equation 3.8). Following his treatment and including the mass within the square

root, we can write the amplitude and phase for a damped, driven harmonic cantilever as the
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following (Brücker et al., 2007):

A(ω) =
F0��

k∗ − m∗ω2�2 + c∗2ω2
. (3.16)

δ = arctan



ωc
∗/m∗

�
k∗
m∗

�2 − ω2


 . (3.17)

where the constants are defined as (Brücker et al., 2007)

k
∗ =

60
11

EI

L3 , m
∗ =

13
33

LAρp, c
∗ =

52
33

πηL

ln(L/2D)
. (3.18)

For the constants defined above, A is the cantilever’s cross-sectional area, ρp is the density

of the material, η is the fluid viscosity, and L and D are the length and diameter of the

cantilever. Equation 3.16 with the constants defined in Equation 3.18 model the depen-

dence of the amplitude of a cantilevered rod on frequency and fluid viscosity. For a rod at

low Reynolds number (as discussed in Chapter 6), the mass term in Equation 3.16 can be

neglected due to its small size (on the order of 10−14) and the amplitude becomes

A(ω) =
F0�

k∗2 + c∗2ω2
. (3.19)

With the constants included, Equation 3.19 is

A(ω) = F0



�
60
11

EI

L3

�2
+

�
52
33

πηL

ln(L/2D)

�2
ω2


−1/2

. (3.20)

The first term represents the mechanical properties of the actuator and is on the order

of ∼ 10−10 after being squared and considering the contributions from the second mo-
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ment of inertia (∼ 10−26), the cube of the length scale (∼ 10−15), and the elastic modulus,

which is approximately 106 for a pure PDMS rod. The second term considers the effect

of the fluid (hydrodynamic properties) and the drive frequency. For buffer of viscosity

η = 1 cP=10−3 Pa·s, the damping coefficient squared is on the order of 10−16 due to con-

tributions from the viscosity and rod length (∼ 10−6). The drive frequency ranges from

1−32 Hz, making the second term on the order of ∼ 10−14. It is evident in buffer that the

first term (∼ 10−10) dominates compared to the second term ∼ 10−14, and an increase in

drive frequency with the frequency range of my experiments will have little effect on the

amplitude of the actuator. As viscosity increases and the rod’s elastic properties remain

constant, an increase in drive frequency does begin to affect rod amplitude. For exam-

ple, with a viscosity increase of 100 cP (0.1 Pa·s), the second term is then on the order of

∼ 10−10, and we must consider the effect of viscosity and increasing drive frequency.

In addition, for a cantilevered rod, the natural undamped frequency is ω0 =
√

k/m, and

for k ∼ 10−3 and m ∼ 10−15, w0 ∼ 105. For an oscillator to be overdamped, γ > ω0. For a

buffer of viscosity η = 1 cP, γ = c/(2m) ∼ 106; thus in buffer, which is the lowest viscosity

fluid other than air in which biomimetic cilia oscillate, this system is overdamped.

The following figure represents a survey of cantilevered rod amplitudes in various vis-

cosities as a function of frequency. In the experiments detailed in Chapters 6 and 7, I

utilized three different biomimetic cilia lengths and diameters: 25 µm by 2 µm, 25 µm by

1 µm, and 10 µm by 0.55 µm. Thus, I model the amplitude dependence for two of these

rod geometries, 25 µm by 1 µm and 10 µm by 0.55 µm. The force on the rod is in the

form of a torque acting at the rod’s tip, generated by a 10 mT applied magnetic field. Ex-
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perimentally, I apply an oscillating magnetic field ranging from 10−125 mT. Because the

magnetic dipoles within a rod-shaped actuator align head-to-tail along the rod’s long axis,

when a magnetic field is applied, a torque is generated as the dipoles within the rod seek

to minimize the discrepancy between the applied field direction and the rod’s long axis.

Magnetic torque is discussed in more detail in the next section, as it is a useful parameter

for understanding the limits of an actuator’s ability for force application on a fluid, regard-

less of the fluid. In this model, magnetic force is a numerical value dependent on the rod’s

magnetic moment, the applied field, and the location of subsequent torque application.

25μm by 
1μm
10μm by
0.55μm

Figure 3.4: Core-shell rod amplitude dependence on frequency for varying fluid viscosities
(1 cP, 5 cP, 10 cP, 30 cP, 50 cP, 100 cP, and 500 cP). Notice that the longer rod length may
initially have a larger amplitude; however, as viscosity increases, the amplitude is damped
out much more quickly than for the shorter, smaller diameter rods. In addition, the model
indicates that core-shell oscillators are overdamped for fluids with η ≥1 cP.

The beam equation and the solution for the damped, driven harmonic oscillator are both
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important tools for understanding amplitude dependence on frequency in order to gauge

the dynamic responsiveness of an oscillating actuator. However, these tools do not assist

in determining fabrication parameters such as the amount of magnetic material which will

optimize the response of an actuator in both its elasticity and magnetic permeability. For

these considerations, I turn to an energy minimization model first proposed by Evans et al.

in 2007 (Evans et al., 2007a).

3.3 Figure of Merit for Actuators

To be responsive, the flexibility and magnetic permeability of an actuator must be bal-

anced. Achieving this balance, especially in at small scales can be difficult. For many mi-

croactuators, increasing the amount of magnetic material (or magnetic loading) increases

the amount of force one can apply, but also leads to a decrease in the flexibility of the

actuating structure. Therefore, it is important to design an actuator such that the highest

response possible is obtained. Current designs for actuating structures include chemically

or magnetically linked paramagnetic beads (Furst et al., 1998; Singh et al., 2005; Vilfan

et al., 2010), thin magnetic films deposited onto flexible substrates (Judy et al., 1995; Liu,

1998; Khoo and Liu, 2001; Kudo et al., 2006), elastic polymers loaded with varying con-

centrations of magnetic particles (Evans et al., 2007a; Pirmoradi et al., 2010; Fahrni et al.,

2009b; Fuhrer et al., 2009; Olsson et al., 2010; Evans et al., 2012), and polymer core-metal

shell structures with varying metal shell lengths (Fiser et al., 2012).

In this section, I will explore a figure of merit derived from an energy minimization

model developed by Ben Evans et al. to evaluate the responsiveness of both homogeneous
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and core-shell rod-shaped actuators. The maximum bend angle, or static response, of a

rod-shaped actuator is predicted based on the actuator’s magnetic loading, saturation mag-

netization, and elastic modulus (Evans et al., 2007a; Evans, 2008; Evans and Superfine,

2011).

3.3.1 Energy minimization model

Ben Evans’ energy minimization model was originally designed for a homogeneous

material, an example of which is the composite ferrofluid-PDMS (FFPDMS) I will describe

in Section 4.2. This FFPDMS material is a suspension of magnetic nanoparticles within a

flexible polymer matrix. With a few small substitutions, I am able to apply this model to a

core-shell structure.

In this energy model, the first of its kind to include the effect of the magnetic field

gradient, the total energy of the rod system is defined as the sum of the elastic energy UE

of the bent rod and the magnetic energy UB of the rod in the applied magnetic field. The

magnetic energy UB is a combination of the energy due to the applied field UA(�BA), the

energy due to the rod’s internal magnetic field UI(�BI), and the energy due to the field felt

from neighboring rods UN(�BN) where B represents the magnetic field for each energy. The

rod itself is modeled as a rod with constant curvature to determine the elastic energy and a

straight rod with diameter d and length L, as shown in Figure 3.5, to determine the magnetic

energies.
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Figure 3.5: Reprinted from Ben Evans et al., 2007. Physical parameters in the energy
minimization model. The vector �m is the rod’s magnetic moment, �B is the applied magnetic
field, and∇�B is the magnetic field gradient. All angles shown are with respect to the vertical
axis. The angle φ is the bend angle of the rod, α is the angle of the rod’s moment m, ψ is
angle of the applied field, and ψ� is the angle of the magnetic field gradient (Evans et al.,
2007a).

The elastic energy for a uniform rod of circular cross section is defined as (Evans et al.,

2007a)

UE =
π

2
Er

4

L
φ2 (3.21)

where E is the elastic modulus, r is the radius of the rod, and φ is the rod’s bend angle

as indicated in Figure 3.5. The magnetic energy of the rod is defined as the sum of the

energies due to the applied field, the rod’s internal magnetic field, and the field felt from

neighboring rods. For rod arrays such as mine with a rod spacing on the order of 10 µm,

the field from the rod’s nearest neighbor is at least two orders of magnitude less than the

applied magnetic field and will be ignored. (For a detailed calculation of this, see Evans

2008.) The remaining two energies are termed the ‘gradient energy’ and the ‘field energy’,
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and are given as (Evans, 2008)

UB = −
1
2

m∇BLcos
�
ψ� − φ� − µ0m

2

4V
cos

2 (ψ − φ) (3.22)

where µ0 is the permeability of free space, V is the volume of the rod, and ∇B is the

magnetic field gradient. All angles are defined in Figure 3.5. An applied magnetic field

can act on magnetic rods in two ways − by inducing a torque or by applying a force. A

torque is induced if there is misalignment between the rod’s long axis and the direction of

the applied magnetic field. This internal energy is designated the ‘field energy’ and is the

second term in Equation 3.22. The first term is called the ‘gradient energy’ and is due to

the pull of the magnetic field on the rod to areas of higher magnetic field.

The total energy of the rod, combining elastic and magnetic energies, is (Evans, 2008)

UT =
π

2
Er

4

L
φ2 − µ0m

2

4V
cos

2 (ψ − φ) − 1
2

m∇BLcos
�
ψ� − φ� . (3.23)

The magnetic moment m is defined as m = MV f where f is the magnetic loading, or

volume fraction of magnetic material, and M is the magnetization per unit volume of the

material in response to an applied field. The value for M is taken from SQUID magnetom-

etry measurements of the pure magnetic material such as those discussed in Section 4.2 for

maghemite and magnetite and Section 4.3.3 for nickel.

Evans showed in his thesis that the rod’s moment aligns with the applied magnetic field

under the condition 4B/[µ0M(B) f ] >> 1. This condition does not depend on the actuator’s

geometry, but only the magnetic material. From magnetometry measurements of the ap-
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plied magnetic field and resulting saturation magnetizations, for maghemite, 4B/[µ0M(B) f ] ∼

4.5×106, for magnetite 4B/[µ0M(B) f ] ∼ 1.3×106 and for nickel 4B/[µ0M(B) f ] ∼ 1.6×106.

Thus, I can neglect the term in Equation 3.23 which represents the effect of the magnetic

gradient on the actuator, and the equation for the total energy of a rod in an applied mag-

netic field becomes

UT =
π

2
Er

4

L
φ2 − µ0M

2
f

2

4
cos

2 (ψ − φ) . (3.24)

We can determine the torque on the rod and thus the rod’s maximum bend angle φ by

minimizing the rod’s total energy with respect to the angle φ. This derivative gives the

torque as

∂UT

∂φ
=
πEr

4

L
φ − µ0M

2
f

2

2
cos(ψ − φ)sin(ψ − φ), (3.25)

If an optimal alignment of angles φ and ψ (the angular positions of the rod and applied

field, respectively) is assumed such that the rod’s axis is aligned with the field direction

and cos(ψ − φ)sin(ψ − φ) → 1/2, and if we solve for φ, the maximum bend angle of a

rod-shaped actuator in response to an applied magnetic field is the following:

φ =
µ0M

2
f

2

E

�
L

d

�2
. (3.26)

The first factor in Equation 3.26 represents only the material properties of the actua-

tor, and the second factor considers the geometry of the rod-shaped actuator. For a more

complete comparison among materials, the saturation magnetization Msat is substituted for
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M to consider an actuator’s maximum actuation for a given material. If the magnetization,

elastic modulus, and loading for a given rod geometry is known, the responsiveness of the

actuator can be predicted, allowing for the design of new materials which will maximize

φ. I would like to note before discussing the application of this equation to core-shell actu-

ators that it appears the best way to increase actuator responsiveness for a given magnetic

material is by increasing magnetic loading f . However, for many homogeneous composite

materials, E increases when f increases. Several models have been established to explain

the elastic modulus of a composite material as a function of f (Ahmed and Jones, 1990),

and many of them demonstrate E’s parabolic dependence on f . This dependence may sig-

nify that a small increase in f will result in an astronomical increase in E and a material

which may no longer be workable.

Equation 3.26 was designed to facilitate comparisons of the responsiveness of homo-

geneous actuators. With some modification, it can be applied to core-shell rod structures

to quantify differences among materials using the maximum bend angle, which I will do

in Section 5.1. The most significant modification to Equation 3.26 will involve the vol-

ume fraction. For homogeneous materials, the first factor in Equation 3.26 considers only

material properties; however, with the core-shell structure, I no longer have a single bulk

composite material. The final actuator is a combination of two materials specifically de-

posited into a rod-shaped pore. Figure 3.6 is a diagram of a core-shell structure.
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Figure 3.6: Core-shell rods of length L consist of a polymer core which spans the length of
the entire rod and a nickel shell of length LNi and thickness t. The length of the pure PDMS
portion is denoted LPDMS .

The volume fraction of Ni is given by

fCS =
LNi

L

�
2t

r
− t

2

r2

�
(3.27)

where r is the radius of the rod, LNi is the Ni tube length, t is the Ni tube thickness, and

the CS subscript indicates f is for core-shell cilia. I take L in Equation 3.26 to equal the

length of the PDMS portion, LPDMS = L − LNi, as the portion of the rod surrounded by the

Ni tube acts as a stiff projection from the rod’s soft PDMS base. Substituting this and fCS

into Equation 3.26 gives

φCS =
µ0M

2

E

�
t

r2 −
t
2

2r3

�2 �
LNi −

L
2
Ni

L

�2
. (3.28)

From this result, it is clear there is some Ni tube length which optimizes the actuator’s

responsiveness. The elastic modulus E is also now uncoupled from f , changing only with
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choice of polymer core, since solely the length of the PDMS portion changes as the LNi

changes. The maximum of φCS with respect to LNi occurs at LNi = 0.5L. To achieve a

maximum static bend angle, new core-shell actuators should include a nickel portion one-

half the rod’s entire length.

To determine both ideal and experimentally achievable bend angles for homogeneous

and core-shell rod arrays with Equations 3.26 and 3.28, we first need to understand the

relationship between EFFPDMS and f . For lower volume fractions such as f < 0.4, the elas-

tic modulus of homogeneous composite materials such as FFPDMS is thought to change

very little (Guild and Young, 1989; Ahmed and Jones, 1990); however, many experimen-

tal composite elastomers have magnetic loadings less than 20% as f > 0.2 is difficult to

achieve experimentally (Evans et al., 2012; Evans et al., 2007a; Fahrni et al., 2009a). In

order to predict the elastic modulus at higher volume fractions, I utilize the Mooney equa-

tion, developed by M. Mooney in 1950 to describe rigid inclusions in a non-rigid matrix.

For FFPDMS, the elastic modulus of maghemite nanoparticles is 105 times greater than the

PDMS matrix in which they are entrapped. The Mooney equation is given by (Mooney,

1951)

Gc = Gmexp

�
2.5 f

1 − S f

�
(3.29)

where Gc = GFFPDMS is the shear modulus of the composite material, Gm = GPDMS is the

shear modulus of the matrix material, and S is the self-crowding factor. The self-crowding

factor is a measure of the packing of the spherical particles (maghemite in FFPDMS) within

the matrix material; it is the volume that the particles occupy/the actual physical volume of
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the particles. For a loosely packed composite material, S = 1.0, and for a tightly packed

material S = 1.35 (Mooney, 1951). For volume fractions from 0−0.7, Figure 3.7 illustrates

the upper and lower bounds, provided by S , for the shear modulus of the FFPDMS com-

posite material. The matrix modulus was taken as GPDMS = 0.83 MPa (EPDMS = 2.5 MPa).

Figure 3.7: The Mooney equation (Equation 3.29), which represents the shear modulus of
FFPDMS as a function of volume fraction, has been plotted for loosely packed spherical
inclusions (S = 1.0,−) and tightly packed spherical inclusions (S = 1.35,−−) (Mooney,
1951).

Before substituting this relation for GFFPDMS into Equation 3.26, the shear modulus

must be converted to the elastic modulus by

EFFPDMS = 2GFFPDMS (1 + ν) (3.30)

assuming a Poisson ratio ν = 0.5 for PDMS (Roca-Cusachs et al., 2005). Using this

conversion, Equation 3.26 becomes

47



φ =
µ0M
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2
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�2
. (3.31)

The same can be done for core-shell cilia with Equation 3.28.

Figure 3.8 illustrates how homogeneous materials such as FFPDMS and FFPDMS-NH2

in rod-shaped actuator form compare to core-shell actuators. Because my experiments

utilize rods which are 10 µm and 25 µm in length by 0.55 µm−1.0 µm in diameter, Figure

3.8 plots the theoretical maximum bend angle for rod lengths 10 µm and 25 µm, a rod

diameter ranging from 0.5-1.0 µm. As this energy minimization model gives no upper

bounds for the bend angle, non-physical bend angles are not represented in the figures.

For the smaller rod length of 10 µm, core-shell rods far surpass composite rods, with a

maximum bend angle of 80◦ for a 500 nm rod. FFPDMS rods barely achieve a 45◦ bend

angle; FFPDMS-NH2 rods are capable of bending 65◦. Note that the maximum bend angles

are not necessarily achievable volume fractions for FFPDMS and FFPDMS-NH2 cilia. The

highest volume fractions achieved thus far are indicated on the figure as dashed vertical

lines. For FFPDMS and FFPDMS-NH2, they are f = 0.04 and f = 0.17; at these volume

fractions, composite material bend angles are closer to 5◦ and 35◦, respectively. Thus, the

core-shell material has a wider advantage over the homogeneous composite material, as

larger volume fractions and thus larger bend angles are experimentally achievable.

Considering the 25 µm length and excluding nonphysical bend angles (not shown),

FFPDMS cilia achieve larger amplitudes than core-shell cilia for a given diameter. How-

ever, for FFPDMS, the volume fractions are as yet unachievable to produce these larger

bend angles. Only when larger volume fractions become experimentally achievable will
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the composite material prove advantageous in use with higher aspect ratio actuators.
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B

C

Core-shell

FFPDMS

FFPDMS-NH2

L = 25µm

L = 10µm

L = 25µm

L = 10µm

L = 10µm

Figure 3.8: Bend angles for (A) core-shell, (B) FFPDMS, (C) FFPDMS-NH2 rods with
lengths 10 (−) and 25 (- -) µm and diameters 0.5-1.0 µm in 50 nm increments. The largest
bend angle for L = 10 µm corresponds to d = 0.5 µm. For 25 µm, φ is largest when
d = 0.85 µm in (A), 0.9 µm in (B), and in (C), FFPDMS-NH2 rods have only non-physical
bend angles and are not shown. For FFPDMS and FFPDMS-NH2, bend angles are plotted
with S = 1.0. Vertical lines in each plot indicate experimentally achieved volume fractions.
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3.4 Torque on a Rod

Predicting the maximum bend angle with Evans’ energy minimization model is an ap-

proach to quantify an actuator’s static responsiveness. However, because an increasing

drive frequency and strong environmental damping will cause a decrease in an overdamped

oscillator’s amplitude, it is additionally integral to compare actuators of different materials

utilizing the magnetic torque which can be achieved. The magnetic torque quantifies an

actuator’s ability to apply forces to the fluid regardless of actuator load or drive frequency.

Torque is dependent only on the magnetic material (and thus moment) of an actuator and

the direction of the applied magnetic field. I examine the magnetic torque on a rod-shaped

actuator by assuming a stationary, upright rod where the magnetic moment is optimally

aligned with the applied field. Magnetic torque N on a dipole is written as (Jackson, 1998)

�N = �m × �B = mBsin (θmB) n̂ (3.32)

where B is the applied field and m = MV f is the magnetic dipole moment (as described

in Section 3.3.1). M is the magnetization per unit volume (determined by SQUID mag-

netometry measurements), V is the rod volume, and f is the volume fraction of magnetic

material. Torque is minimized when the rod aligns itself with the applied magnetic field,

as the cross product is equal to zero when the the angle between the dipole moment and

applied field is zero.

Torque depends on the particular magnetic material utilized in an actuator and the vol-

ume fraction of material, but does not depend on an actuator’s geometry. A larger volume
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fraction does supply a higher torque; however, a larger volume fraction also leads to a

higher modulus and stiffer actuator. Utilizing the combination of bend angle and torque is

best to optimize an actuator’s magnetic loading.

Experimentally, the magnetic field B is typically on the order of 10 mT, though it may

range from 1 mT−300 mT. Thus, in the calculation for torque, I let B=10 mT, and M =Msat.

To compare torque for composite materials and core-shell materials with volume fractions

0−1, the rod geometry will be identical to the geometry used for bend angle comparisons,

10 µm or 25 µm lengths and 0.5 µm diameter. The maghemite saturation magnetization is

Msat,Mh = 3.8 × 105 A/m (used in FFPDMS), and for magnetite Msat,Mn = 4.6 × 105 A/m

(used in FFPDMS-NH2). Core-shell biomimetic cilia actuators are fabricated with nickel,

Msat,Ni = 5.2 × 105 A/m. Additionally for the core-shell material, I assume the optimal

nickel tube length LNi = 0.5L (determined in Section 3.3.1).

Figure 3.9 displays the torque for all three materials: maghemite composite (red lines),

magnetite composite (blue lines), and nickel core-shell (black lines). The two lengths

10 µm and 25 µm are represented by solid and dashed lines, respectively. In Figure 3.9,

volume fractions from 0−1 are shown, but the highest volume fraction we have achieved

thus far for FFPDMS is 0.04 and for FFPDMS-NH2 is 0.20, severely limiting the torque

on composite rods and potentially the actuation achievable in a more viscous environment.

The highest volume fraction repeatably achieved for core-shell actuators thus far is ∼0.6.
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L = 25µm

L = 10µm

Figure 3.9: The torque of a rod-shaped actuator with diameter 0.5 µm as calculated by
Equation 3.32. Solid lines are 10 µm long rods; dotted lines represent 25 µm rods.
Across all volume fractions, the nickel core-shell actuator (black lines) outperforms both
the maghemite composite (red lines) and magnetite composite (blue lines) actuators. Ex-
perimentally achieved volume fractions for maghemite, magnetite, and core-shell are 0.04,
0.20, and 0.60, respectively.

As the plot indicates, increasing f for FFPDMS, FFPDMS-NH2, and core-shell cilia

will continue to increase the torque on the cilium. However, a higher torque and therefore

higher volume fraction does not guarantee larger deflection. We may look specifically at

core-shell cilia to see this. Figure 3.10 plots both the bend angle curve and the relation for

torque as functions of volume fraction. As we surpass 30% magnetic material by volume,

the torque nearly doubles, but rod bend angle begins to decrease.
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Figure 3.10: The torque and maximum bend angle as a function of volume fraction for
core-shell cilia with a length of 10 µm and diameter of 500 nm. As torque on the rod
increases, bend angle increases until ∼ f = 0.30, when the bend angle begins to decrease.
At this point, torque continues to increase, though the rod has become less responsive.

The design of various (FFPDMS, FFPDMS-NH2, and core-shell) actuators is strongly

dependent on the application for which they will be utilized; the sacrifice some amount of

deflection to move in a higher viscosity fluid may or may not be a goal. Regardless, utiliz-

ing both the theoretical bend angle and torque to optimize magnetic loading is beneficial in

designing a rod with maximal static responsiveness under potentially large loads. In con-

junction with designing the actuator such that it has a high response, the actuator should be

modeled using the driven, damped harmonic oscillator equations in the first sections of this

chapter to determine whether or not the high static responsiveness will also translate into a

large dynamic responsiveness in both aqueous and high viscosity environments.
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3.5 Ground and Lateral Collapse

In addition to determining material contributions to the design of a more responsive

actuator, it is important to understand the effect of forces at the micron scale on high aspect

ratio fabricated structures. Rods with high aspect ratios are subject to adhesive forces

which act to pull them either to the ground, known as ground collapse, or against their

nearest neighbors, known as lateral collapse. The success of these adhesive forces tends

to be proportional to a rod’s aspect ratio; higher aspect ratios imply a higher likelihood of

collapse. Collapse occurs because the elastic forces which work to keep a rod upright are

weaker than the adhesive forces which work to keep a rod in contact with either the ground

or another rod. This is particularly a problem with PDMS, the polymer utilized for both

composite and core-shell biomimetic cilia, because of its hydrophobic nature and lower

affinity for a liquid environment than for itself. PDMS’s surface energy is therefore lower

when it is in contact with itself (Roca-Cusachs et al., 2005; Zhang et al., 2006).

Ground collapse is defined literally as the collapse of rods to the ground and subse-

quent adherence due to adhesion forces such as van der Waals forces. Rods are considered

collapsed if they do not return to their original upright positions. Roca-Cusachs et al. devel-

oped a quantitative model in 2005 to predict the critical aspect ratio above which ground

collapse occurs due to these adhesive forces. This critical aspect ratio is(Roca-Cusachs

et al., 2005)

�
L

d
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=
π5/3

211/331/2
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1 − ν2

�−1/6
�

Ed
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�2/3
(3.33)

55



where ν is Poisson’s ratio, E is the elastic modulus (EPDMS = 2.5 MPa), and W is the

work of adhesion of the material to itself (Roca-Cusachs et al., 2005). Poisson’s ratio for a

material is defined as the negative of the lateral strain over the axial strain, or the decrease

in width divided by the increase in length. For PDMS, ν = 0.5. In addition to ground

collapse, there is also lateral collapse, which is the adhesion of one rod to another due to

their proximity. The critical aspect ratio for lateral collapse is defined as (Roca-Cusachs

et al., 2005)
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d
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�1/2 �Ed
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(3.34)

where s is the spacing between rods, which for our templates is on the order of 7 µm. To

calculate the conditions for ground and lateral collapse for biomimetic cilia, approximate

values for the work of adhesion of PDMS in air, water, and ethanol were taken from Roca-

Cusachs et al.: WA = 44 mN/m, WW = 86 mN/m, and WE = 11 mN/m (Roca-Cusachs

et al., 2005). For rods with a diameter of 0.55 µm, the critical aspect ratios for ground and

lateral collapse are presented in Table 3.1 for air, water, and ethanol.

Table 3.1: Critical rod aspect ratios for ground and lateral collapse

(L/d)g (L/d)L

Air 3.19 11.8
Water 2.04 9.40
Ethanol 8.03 18.7

The values in Table 3.1 indicate that aspect ratios on the order of 10 or larger are un-

likely to survive ground or lateral collapse. To have an array of rods which truly mimic

biological cilia, I typically fabricate rods which are 10 µm and 0.55 µm in diameter, an
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aspect ratio of 18. Thus, it is particularly important to develop materials and a fabrication

process which are more robust as rods with this aspect ratio are not considered stable by

these models for ground and lateral collapse. Figure 3.11 shows several different examples

of collapsed rods with aspect ratios ranging from 18 to 31.

A

B

C

Figure 3.11: SEM images of rods with aspect ratios ranging from 18-31 exhibiting both
ground and lateral collapse. (A) FFPDMS-NH2. (B) FFPDMS. (C) core-shell rods.

57



Chapter 4

Materials and Fabrication

Designing an actuator by maximizing its bend angle and torque through consideration

of flexibility and magnetic permeability is valuable for determining the materials and length

scales used in the fabrication process. Different materials may require fabrication at varying

length scales due to differences in responsiveness. Higher elastic moduli may result in a

more rigid actuator at lower aspect ratios; thus, fabrication at higher aspect ratios may

be required for a particular application. For flexibility in the fabrication process, we use

polycarbonate track-etched filter membranes as a template for our biomimetic cilia. With

these filter membranes, we can easily alter the pore diameter to adjust the aspect ratio,

creating more or less rigid biomimetic cilia for a given material.

In the first section of this chapter, I discuss the template fabrication process including

how pore diameter is altered. This template method is utilized in the remaining sections

where I discuss two types of materials from which we fabricate biomimetic cilia: mag-

netic nanoparticle composite materials and core-shell materials. The magnetic composite

materials utilize either maghemite or magnetite nanoparticles, both of which are superpara-

magnetic. The core-shell materials are fabricated with a nickel shell and are ferromagnetic

in nature. The synthesis of these materials and the fabrication of biomimetic cilia using



these materials are described in detail throughout this chapter.

4.1 Template Fabrication

Polycarbonate track-etched (PCTE) filter membranes are a smart choice for use as a

template due to their commercial availability and the variety of sizes in which they can

be manufactured (Figure 4.1). The physical characteristics of the template − thickness,

pore diameter, and pore density − translate into the biomimetic cilium’s height, cilium

diameter, and cilia spacing, respectively. These membranes can be purchased with standard

thicknesses ranging from 10 µm to 100 µm. (Other thicknesses are available on special

request.)

Figure 4.1: SEM image of PCTE membrane 25 µm thick with an average pore diameter of
1.9 µm.

PCTE membranes are fabricated by bombarding polycarbonate sheets with an ion beam.

Ions pass through the polycarbonate, leaving damage tracks in the ions’ wakes. The beam
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which irradiates the polycarbonate is a directional beam such that each damage track is

perpendicular to the plane of the polycarbonate. Depending on the manufacturer, the irra-

diation source may or may not be directional; thus, some damage tracks may have a diag-

onal orientation or pass through one another. These damage tracks may be widened into

cylindrical pores by incubating the PCTE membranes in a 4M sodium hydroxide (NaOH)

solution. Longer incubation times at higher temperatures produce larger pore diameters.

Figure 4.2 depicts the relationship between a 10 µm thick membrane’s pore diameter and

the incubation time in 4M NaOH at 80◦C. After incubation in NaOH, PCTE membranes

are copiously rinsed in deionized water and dried with a stream of nitrogen.

Figure 4.2: PCTE membrane (10 µm thick) pore diameter as a function of incubation time
in 4M NaOH. Incubation was performed at 80◦C.

Additionally, PCTE membranes are a smart choice for template fabrication as the den-

sity of pores and polymer coating can be specified for a variety of applications. Available

pore densities range from 1x105 pores/cm2 to 6x108 pores/cm2. This large range in pore
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density is especially useful in fabricating structures with large aspect ratios, as higher densi-

ties can lead to lateral collapse for high aspect ratio structures (Section 3.5). Polymer coat-

ings may also be useful depending on the membrane’s application. Poly(vinylpyrrolidone)

(PVP) is a coating applied to PCTE membranes to increase hydrophilicity, thereby increas-

ing the membrane’s ability to wet and its effectiveness as a filter or fillable template.

For the fabrication of biomimetic cilia, we purchased PCTE membranes (www.it4ip.be)

with thicknesses of 25 µm and 10 µm, a pore diameter of 200 nm, and a density of

2 × 106 pores/cm2. With this pore density, the typical spacing between adjacent cilia is

on the order of 10 µm. I utilized 25 µm membranes to fabricate biomimetic cilia with a

ferrofluid-polymer composite material (as described in Section 4.2), and 10 µm membranes

to fabricate biomimetic cilia with a core-shell structure (as described in Section 4.3).

4.2 Magnetic Composite Materials

Inherent in the fabrication of biomimetic cilia are both the need for a driving mecha-

nism which propels the cilium in a given direction at a specified beat frequency and the

ability of the cilium to respond to this driving mechanism. Magnetics offers a promising

solution to driving arrays of biomimetic cilia and microactuators in general. No wires or

internal, on-chip power sources are required, and magnetic fields are unlikely to affect any

chemical reactions occurring in a system. Additionally, large actuator displacements may

be achieved and a complex actuator response may be easily orchestrated by manipulating

magnet geometries or placement. Magnetic material, however, is intrinsically stiff, typi-

cally with an elastic modulus in the GPa range. For microactuators such as biomimetic

61



cilia to be both magnetic and flexible, we must employ a soft polymer as a matrix for the

magnetic material. This type of material is referred to as a magnetic-polymer composite.

Magnetic-polymer composite materials are often used to fabricate highly responsive

actuators with flexibility and large magnetic permeabilities; the responsiveness of a struc-

ture is the competition between these two properties. After the first synthesis of mag-

netic nanoparticles in 1852 by Lefort (Lefort, 1852), researchers have been incorporat-

ing nanoparticles into polymer matrices to explore their properties. Soft hydrogels such

as polyacrylamide (Caykara et al., 2009; Galicia et al., 2003; Mayer et al., 2000) and

polyvinyl alcohol (Barsi et al., 1996; Collin et al., 2003; Lin et al., 2003; Mitsumata et al.,

1999; Resendiz-Hernandez et al., 2008) are often used, as are hydrophobic silicone poly-

mers (Evans et al., 2007a; Fahrni et al., 2009b; Pirmoradi et al., 2010). In 2007, Ben Evans

et al. developed a novel composite material with iron oxide nanoparticles entrapped in the

polymer poly(dimethylsiloxane) (PDMS). PDMS is a smart polymer choice because its low

elastic modulus (E ≈ 2.5 MPa) lends it a flexibility that is useful for actuator applications.

This composite material is essentially a mixture of maghemite ferrofluid and PDMS, called

FFPDMS (Evans et al., 2007a) and is described in Section 4.2.1. In 2008, we designed a

new composite material utilizing magnetite nanoparticles chemically complexed to a sili-

cone polymer, as described in Evans, Fiser, et al. (2012) (Evans et al., 2012). This physical

attachment of polymer to nanoparticle rather than an entrapment of the nanoparticle within

the matrix, allows for a higher loading of magnetic nanoparticles within the final material

as there is less potential for aggregates to form or particles to leach. Loading an actuator

with a higher amount of magnetic material increases actuator response as long as there is
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not also a significant increase in elastic modulus due to the added nanoparticles. I describe

this complexed material in Section 4.2.2.

Both maghemite and magnetite have been utilized previously in polymer complexes

(Vadala et al., 2004; Francois et al., 2007; Kryszewski and Jeszka, 1998; Wilson et al.,

2002), though magnetite more so. Because maghemite and magnetite have high satura-

tion magnetizations, a low sensitivity to oxidation, and the ability to be easily fabricated

in-house, they are excellent nanoparticle choices for our composite materials. Figure 4.3

displays the magnetizations of both maghemite and magnetite, measurements taken on a

Superconducting Quantum Interference Device (SQUID) magnetometer (Quantum Design

Magnetic Property Measurement System) and performed over the range ±5x105 G at a tem-

perature of 300◦K. SQUID magnetometers are highly sensitive instruments used to measure

a material’s response to an applied magnetic field. They are cooled by liquid helium and

have detection limits as low as 2x10−8 emu, or 2x10−11 Am2.
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Bulk maghemite

Magnetite
nanoparticles

Figure 4.3: Magnetization curves for bulk maghemite and magnetite nanoparticles. The left
axis and blue color is mass magnetization, and the right axis and red color is volume mag-
netization. The saturation magnetization for bulk maghemite is higher than for magnetite
nanoparticles, though bulk magnetite has a saturation magnetization of 92-100 Am2/kg
(Cornell and Schwertmann, 2003). The maghemite curve was adapted from Ben Evans’
thesis (Evans, 2008).

Nanoparticles less than 10 nm in diameter are considered superparamagnetic, and thus

we see no evidence of remanence in the magnetization curves in Figure 4.3. Previously

reported saturation magnetization values for bulk maghemite range from 60-80 Am2/kg.

For bulk magnetite, the saturation magnetization ranges from 92-100 Am2/kg (Cornell

and Schwertmann, 2003). However, for magnetite nanoparticles, values are typically 30-

50 Am2/kg (Vadala et al., 2004; Francois et al., 2007; Kryszewski and Jeszka, 1998; Wilson

et al., 2002). The saturation magnetizations in Figure 4.3 do fall within this range.
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4.2.1 Maghemite-polymer composite material

For the fabrication of our maghemite ferrofluid-polymer composite, or FFPDMS, a fer-

rofluid of magnetite nanoparticles must first be synthesized according to Massart’s (Mas-

sart, 1981; Massart et al., 1995) and van Ewijk’s (van Ewijk et al., 1999) work, which

requires their precipitation from ferric chloride (FeCl3) and ferrous chloride (FeCl2) salts

in a 2:1 molar concentration. We dissolve 1.2 g ferric chloride and 0.74 g ferrous chlo-

ride tetrahydrate separately in 20 mL of deionized water, and the two components are then

mixed in a beaker using a stir bar. Concentrated ammonium hydroxide (20 mL, 29% wt. in

water) is added, and the nanoparticles precipitate immediately from solution.

This magnetite ferrofluid is suspended in water and boiled with iron nitrate for oxida-

tion purposes and conversion to maghemite nanoparticles. These solutions contain up to

5% maghemite by weight, but before being incorporated into the organic polymer PDMS,

the maghemite nanoparticles must be moved from an aqueous solution to an organic solu-

tion. To accomplish this, oleic acid is added to the aqueous solution, and the nanoparticles

migrate to the organic oleic acid phase. This organic suspension of maghemite nanoparti-

cles can then be easily combined with PDMS pre-polymer (no crosslinking agent) to form

a ferrofluid-PDMS (FFPDMS) composite material. FFPDMS is stable at room temperature

for months; it will remain a fluid until PDMS crosslinking agent is added. More details on

the fabrication of this material can be found in Benjamin Evans’ thesis (Evans, 2008).

When fabricating biomimetic cilia with FFPDMS, we follow the method described by

Evans et al. (2007). A PCTE membrane with thickness 25 µm, diameter 800 nm, and pore

density 2 × 106 pores/cm2 is filled with liquid FFPMDS such that the pores are fully occu-
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pied by the material (Figure 4.4A). We then immerse this now filled template in uncured

PDMS which has been mixed with a crosslinking agent at a ratio of 10 parts pre-polymer

to 1 part curing agent (Figure 4.4B). The curing agent will leach into the FFPDMS inside

the pores to crosslink that material as well (Evans et al., 2007a).

Figure 4.4: Reprinted with permission from Evans et al. (2007). Copyright 2007 American
Chemical Society. Cross-sectional view of FFPDMS fabrication procedure. (A) FFPDMS
is templated into the porous PCTE membrane. (B) The now filled PCTE membrane is im-
mersed in PDMS mixed 10:1 w/w polymer:crosslinking agent and set into a previously fab-
ricated well structure which will later be used as a fluid reservoir. (C) FFPDMS and PDMS
are crosslinked at 80◦C for at least one hour. After curing, the top layer of PDMS is re-
moved to expose the PCTE membrane. (D) The membrane is dissolved in dichloromethane
at 65◦C for two minutes and rinsed in ethanol. The appropriate fluid may be added and the
well structure is sealed with a top glass coverslip (Evans et al., 2007a).

The entire sample is placed on a No. 1.5 glass coverslip in the center of a permanent

200-300 µm tall PDMS well structure. The well structure acts as a fluid reservoir and are

fabricated in advance by securing crosslinked PDMS doughnut-shaped structures to cov-
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erslips through plasma bonding. The FFPDMS-filled template inside the PDMS well is

put into a vacuum desiccator to evacuate any air bubbles and then into an 80◦C oven for

at least one hour to crosslink the PDMS and FFPDMS (Figure 4.4C). After curing, the

upper PDMS layer must be removed to expose the PCTE template and array of FFPDMS

rods. To free the rods from the PCTE template, we immerse the entire sample in a bath of

dichloromethane (DCM) at 60◦C. This organic solvent dissolves the PCTE membrane (Fig-

ure 4.4D), and we then rinse with ethanol to remove the DCM. The ethanol contains 0.1%

Triton-X, which acts as a surfactant to reduce the surface tension of the ethanol and to re-

duce the interfacial tension between FFPDMS rods and the fluid around them. The ethanol

can be exchanged for any fluid and the top of the well can be sealed with a glass coverslip

and Norland optical adhesive (Fisher) to eliminate evaporation (Evans et al., 2007a).

Figure 4.5 contains SEM images of FFPDMS cilia where rod arrays have been critical

point dried (CPD’d), a process which instantaneously converts liquid carbon dioxide to

carbon dioxide gas. A rod sample which has been CPD’d will never feel the effects of a

meniscus from evaporating or drying fluid and thus will remain standing upright in air.

Figure 4.5: SEM images of FFPDMS biomimetic cilia taken by Adam Shields on a 45◦
tilted sample stage. These arrays have been critically point dried to prevent collapse.
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4.2.2 Magnetite-polymer complexed material

The magnetite nanoparticles used to produce the magnetite-polymer complexed ma-

terial are synthesized following the same initial steps used to synthesize the maghemite

nanoparticles in Section 4.2.1. After the precipitation of the magnetite nanoparticles, the

polymer to which the magnetite will complex is immediately added. We chose the copoly-

mer aminopropylmethylsiloxane (APMS) with dimethylsiloxane (DMS), with 6-7% APMS

mole percent (Gelest, Inc.), as the APMS segment contains amine groups which may be

adsorbed onto the magnetite nanoparticle surface. We refer to this copolymer as PDMS-

NH2.

After synthesis the magnetite nanoparticles are suspended in an aqueous solution with

a pH∼10. We add 2 mL PDMS-NH2 and stir the mixture for 24 hours, after which it

will have separated into a light clear aqueous phase and a dark organic phase. During the

24 hours of stirring, the magnetite nanoparticles are transferred from the aqueous phase

to the organic phase by binding to the PDMS-NH2. Because the pH is greater than the

isoelectric point of magnetite, which is pH∼6.8 (Tewari and McLean, 1972), but less than

the pKa of the amines on the PDMS-NH2, the positively charged magnetite particles will

bind to the negatively charged amine groups. The final product is a complex of a magnetite

nanoparticle surrounded by a siloxane copolymer, or FFPDMS-NH2 (Evans et al., 2012).

A diagram depicting the synthesis process is shown in Figure 4.6.
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Figure 4.6: Synthesis of FFPDMS-NH2 complexed material. Details in the text.

After the magnetite nanoparticles have complexed with the PDMS-NH2, any free mag-

netite or PDMS-NH2 is removed by decanting the aqueous phase and rinsing with methanol.

The complexed material is then sedimented with a permanent magnet and rinsed five times

in methanol, five times in water, and five more times in methanol, sedimenting and decant-

ing after each rinse. We add 15 mL of chloroform and ultrasonicate the solution with a sonic

dismembrator (Fisher Scientific Sonic Dismembrater 550) for at least 20 minutes at 30%

power with 0.1s on/0.1s off pulses. This sonication step is necessary for the FFPDMS-NH2

to fully suspend in the chloroform. We sediment the solution overnight and decant one

final time to remove any unbound material. In order to also remove the majority of the

chloroform, we use a rotovapor until less than 1 mL remains.

To crosslink this material into a magnetic elastomer, we employ a free radical curing

process with 10% wt. dicumyl peroxide. This material, now with the crosslinking agent,

is placed in a 180◦C oven for at least two hours. An initial heating step for two hours

at 80◦C will prevent the formation of bubbles during crosslinking. When we crosslink

FFPDMS-NH2 alone, it is extremely brittle and unsuitable for use as an actuator. To yield a

more flexible elastomer, we dilute the FFPDMS-NH2 before crosslinking by adding varying
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amounts of PDMS-NH2. The FFPDMS-NH2 must first be diluted in chloroform, and the

PDMS-NH2 is then added by wt. %. The entire mixture is ultrasonicated, and the added

chloroform is then removed by rotovapor. We can fabricate elastomers with up to 17%

magnetite by volume; at this concentration of magnetite, the modulus of the elastomer

is still less than 3 MPa. (The elastic modulus of pure, crosslinked PDMS is 2.5 MPa.)

Table 4.1 shows the physical properties of various dilutions of FFPDMS-NH2. Saturation

magnetization values were taken at an applied field of 50,000 G.

Table 4.1: Properties of various dilutions of FFPDMS-NH2 in PDMS-NH2

Saturation Zero-field
FFPDMS-NH2 %wt. %vol. Density Magnetization Elastic Modulus
(%wt. nom.) magnetite magnetite (kg/m3) (kA/m) (MPa)
20% 8.7 1.9 1031 4.84 0.54±0.03
30% 13.7 3.2 1156 8.48 0.92±0.06
40% 22.9 5.7 1190 14.14 1.16±0.10
50% 29.9 8.1 1318 20.45 1.52±0.05
60% 36.5 10.5 1501 28.25 1.9±0.3
70% 39 11.6 1545 30.17 2.05±0.14
80% 44.5 14.2 1712 36.79 2.7±0.3
90% 49.6 16.8 1760 45.06 2.9±0.4

FFPDMS-NH2 is an ideal material for nano- and microscale actuators due to its homo-

geneity at the nanoscale and lack of nanoparticle aggregation. Figure 4.7 is a transmission

electron micrograph showing 70% crosslinked FFPDMS-NH2.
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Figure 4.7: TEM image detailing the small scale homogeneity of crosslinked 70%
FFPDMS-NH2.

The fabrication of biomimetic cilia arrays utilizing this FFPDMS-NH2 material is nearly

identical to the procedure for FFPDMS biomimetic cilia (Figure 4.4). We fill the PCTE

membrane pores with FFPDMS-NH2 (which has been previously diluted into PDMS-NH2

by the desired amount). This FFPDMS-NH2-filled template is then immersed in PDMS-

NH2, which serves to attach the template to a glass coverslip inside a previously affixed

PDMS well structure. Prior to submerging the template in PDMS-NH2, the crosslinking

agent dicumyl peroxide (10% by wt.) is added to PDMS-NH2. Here again, the curing

agent will leach into the FFPDMS-NH2 within the template, crosslinking that material as
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well. The entire sample is put into a 80◦C oven for two hours, followed by a 180◦C oven

for two more hours. To remove the template after crosslinking has occurred, we submerge

the sample in a 60◦C bath of DCM for two minutes and rinse with ethanol. Figure 4.8 is

an SEM image of an array of FFPDMS-NH2 biomimetic cilia that has been critical point

dried.

Figure 4.8: SEM image of a critically point dried FFPDMS-NH2 cilia array taken on a 45◦
tilted sample stage. The entire upper layer of PDMS-NH2 was not fully removed from the
sample before PCTE membrane dissolution.

4.3 Core-shell Materials

Magnetic composites and complexes are extremely useful materials for fabricating

magnetically actuated microstructures capable of moderate responsiveness. However, for

many of these materials, to increase actuator response to an applied magnetic field, one

must increase the amount of magnetic material, or magnetic loading. Unfortunately, this in-
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crease creates a stiffer material and the elastic modulus decreases, leading to a less respon-

sive actuator, limiting the actuator’s applications. Many microactuators are overdamped,

and thus when driven above some threshold frequency, they suffer from a limited deflection

which the application of a larger magnetic field cannot overcome, as the limited magnetic

loading leads to a limited application of torque. Additionally, when increasing magnetic

loading, magnetic composites are sensitive to issues of magnetic particle aggregation. Ag-

gregation can cause material inhomogeneities, limit the maximum magnetic force that may

be applied, and restrict the actuator size.

With a core-shell structure, we can largely uncouple the actuator’s elastic and mag-

netic components to circumvent these issues with loading and flexibility, thereby creating

a structure with the ability to achieve large bend angles and maintain sufficient amplitude

at higher driving frequencies and in the presence of strong damping. As the length of the

shell in a core-shell structure may or may not span the length of the core, the core must be

a flexible material to create a highly responsive actuator. I utilize PDMS for the core ma-

terial, and the shell is electrodeposited nickel (Ni), the length and thickness of which may

be controlled by the electrodeposition process. With this structure, magnetic permeability

is dependent on the size of the Ni shell, and flexibility hinges on the polymer chosen to be

the core (Fiser et al., 2012).

There has been much work with core-shell structures, though nothing has been done

to utilize them as magnetically responsive microactuators. The majority of the work has

focused on nanorods with metal cores surrounded by either metal or metal-oxide shells,

such as SnSe−C, Bi−Bi2O3, Ni−Cu, Au−Ni (Pol et al., 2008; Li et al., 2006; Liu et al.,
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2008; Kim et al., 2008; Evans et al., 2007b). When polymers are incorporated as the core

or shell, they are typically rigid or semi-rigid conducting polymers such as polyaniline

(Cao et al., 2001; Lahav et al., 2006) and polypyrrole (Peng et al., 2007; Liu et al., 2010).

Applications for these various core-shell actuators include magnetic antennae (Cao et al.,

2001), as sensors in electronic devices (Li et al., 2006), and in solar cells (Lahav et al., 2006;

Pol et al., 2008). In addition, though they are not core-shell structures, polypyrrole-metal

nanotubes have been fabricated for use as an electromagnetic actuator which simulates

hand-arm movements (Liu et al., 2010).
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Figure 4.9: Core-shell actuators currently in use. (A) Reprinted from Lahav et al. (2006).
Formation of polyaniline-Au core-shell structures as a function of Au deposition time (La-
hav et al., 2006). (B) Reprinted from Evans et al. (2007)b. TEM image of Au-Ni core-shell
rods embedded in an AAO template (Evans et al., 2007b). (C) Reprinted from Peng et al.
(2007). TEM images of copper hydroxide-polypyrrole core-shell structures (Peng et al.,
2007).

Within the field of core-shell structures, I have replaced semi-rigid polymers such as

polyaniline or polystyrene with silicone and utilized a ferromagnetic metal, thereby devel-

oping a process for an entirely new, highly responsive actuator capable of being fabricated

and actuated at the micron scale (Fiser et al., 2012). For the fabrication of these new actu-

ators, I utilize PCTE templates 10 µm thick with 550 nm pore diameters. This pore size is
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achieved after 30 minutes of incubation in 4M NaOH at 80◦C.

4.3.1 Fabrication of core-shell structures

The fabrication of the core-shell structure first requires the creation of the tubular Ni

shell within the pores of the PCTE template, followed by a filling step where the shell

is filled with polymer. The tubular shell structure is created through the process of elec-

trodeposition, which consists of reducing a solution of positively charged metal ions onto

a negatively charged electrode surface. For Ni,

Ni
+2 + 2e

− � Ni. (4.1)

The electrodeposition system consists of three electrodes: a Cu working electrode, a

Ag/AgCl reference electrode, and a Pt auxiliary electrode. The PCTE template is placed

against the Cu working electrode, and this electrode acts as a negatively charged anode.

The Ag/AgCl reference electrode is free floating in the solution of Ni ions and responsible

for feedback between the computer and the electrodeposition system. The auxiliary elec-

trode serves as the positively charged cathode in the system. This electrode is typically Pt,

but may be replaced by another metal depending on the ions deposited. Figure 4.10 is a

schematic illustrating the electrodeposition set-up and the role of each electrode.
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Figure 4.10: The electrodeposition system with its three electrodes. The working elec-
trode (labeled as A) acts as the negatively charged anode. Ni ions reduce onto the working
electrode. The reference electrode (labeled as B) provides feedback to the controlling com-
puter and monitors the deposition. The auxiliary electrode (labeled as C) acts as a positively
charged cathode.

As the Ni ions reduce onto the working electrode, they are reducing into the PCTE

template, as the template is placed against the working electrode. However, good electrical

contact must be made between the two, and merely pressing the PCTE template against

the working electrode does not achieve this contact. Instead, we deposit a 200 nm layer of

metal onto one side of the PCTE template. The thickness of 200 nm has been optimally

chosen such that the layer does not significantly occlude the pores, as shown in Figure 4.11.

This lack of occlusion is central to the creation of tubes rather than rods.
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Figure 4.11: SEM image of 200 nm Cu layer sputtered onto one side of the PCTE mem-
brane. Originally, the pore diameter was 550 nm; with the Cu layer, the pore diameter is
approximately 400 nm.

This layer of metal is deposited by conventional physical vapor deposition sputtering

techniques either in a desktop sputter coater (Ted Pella Cressington 108) or in a cleanroom

sputtering system (Kurt Lesker PVD 75); the technique used depends on the desired metal.

I have explored many different metals for use as a working electrode contact: Al, Au,

Au/Pd, Cu, Ti. Each of these has a different conductivity and different method for removal

after the electrodeposition process is complete and biomimetic cilia samples have been

made. For a description of each metal’s characteristics, see Table 4.2.
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Table 4.2: Characteristics of sputtered metals

Metal Conductivity (×105) Etchant Etch Time
Al 3.77/Ωcm 1M NaOH 30 sec
Au 4.52/Ωcm KI·I2−phosphate complex 45 sec - 4 min
Pd 0.950/Ωcm N2HSO4 1 min
Cu 5.96/Ωcm KOH > 1 hr
Ti 0.234/Ωcm Deep reactive ion etcher 30-45 min

Figure 4.13 describes the core-shell cilia fabrication process step by step. The ini-

tial sputtering step is illustrated in Figure 4.13A. After being sputtered, I place the metal-

sputtered side against the Cu working electrode and electrodeposit Ni from a Ni solution

consisting of 60 g/L NiSO4·6 H2O, 30 g/L H3BO3, and adjusted to pH 2.9 using H2SO4

(Kumar and Chakarvarti, 2004). The deposition occurs at a controlled voltage of -1 V. If

a voltage less than 1 V is utilized, the deposited metal may not be fully Ni, but instead a

combination of Ni and NiO2.

I typically deposit 30-50 mC of charge into a 5 mm circular area of PCTE membrane

(Figure 4.13B); this is approximately 2.04 mC/mm2 and produces Ni tubes 3-7µm in length

and 100 nm in thickness. After Ni tube deposition, the sample is removed from the elec-

trodeposition chamber, rinsed with deionized water, dried with N2, and set on a 60◦C hot

plate for ten minutes until all fluid has evaporated. At this point we have Ni tubes of a

given length, LNi, inside a PCTE template. Figure 4.12 is an SEM image of a larger Ni

tube, fabricated to be 2 µm in diameter.
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Figure 4.12: SEM image of a 3 µm diameter Ni tube.

I cut the 5 mm circular template into smaller 1 mm x 1 mm squares; each square is

a biomimetic cilia array sample, and a sample contains on the order of 20,000 cilia. As

illustrated in Figure 4.13C, every sample is immersed in PDMS, which is mixed at a 10:1

w/w polymer to curing agent ratio. The PDMS enters the pores and fills the Ni tubes,

becoming the core in the core-shell structure.

Similar to the FFPDMS and FFPDMS-NH2 fabrication processes, samples are placed

inside a 200-300 µm tall PDMS well structure which was previously crosslinked into a

solid and plasma-bonded to a glass coverslip. For core-shell samples, I ensure the metal-

sputtered side of the membrane is facing upward to ensure the Ni tube will enclose the upper

portion of the core-shell microrod. To evacuate any air bubbles, the sample is degassed for

approximately ten minutes, and the PDMS is cured in an oven at 80◦C overnight (Figure

4.13D).
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After curing, the upper layer of PDMS and the metal-sputtered layer must be removed.

Using a microscope and tweezers, I carefully remove the PDMS, and depending on the

type of metal sputtered onto the sample, this layer is removed according to Table 4.2. After

removing the upper layers, the dissolution process continues as it did for the FFPDMS and

FFPDMS-NH2. The entire template-well structure is immersed in DCM for two minutes

(Figure 4.13E) and rinsed with ethanol containing 0.1% Triton-X without exposing the rods

to air.
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Figure 4.13: Cross-sectional view of core-shell cilia fabrication procedure. (A-B) Au/Pd is
sputtered onto the PCTE membrane and serves as the working electrode for Ni electrode-
position. (C) PCTE membrane is immersed in uncured PDMS and set inside a PDMS well
structure. (D) The sample is thermally cured, and the upper layer of PDMS and Au/Pd
is removed to expose the PCTE membrane. (E) The PCTE membrane is dissolved with
DCM, and cilia are rinsed with ethanol. The appropriate fluid is added, and the sample is
sealed (Fiser et al., 2012).

Figure 4.14 consists of SEM images of critical point dried rod arrays. When fabricating

core-shell cilia, we have two ways to control the length of the Ni shell, LNi: (i) alter the

pore diameter of the PCTE template and deposit a specified amount of Ni, or (ii) alter the

amount of Ni charge deposited into a given pore size. The two images in Figure 4.14 are
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pore-size controlled.

A
LNi

3 µm B

LNi

3 µm

Figure 4.14: SEM images of core-shell cilia with various sizes of LNi taken on a 45◦C tilted
stage. The amount of Ni electrodeposited is identical, but the pore sizes are (A) 660 nm
and (B) 590 nm.

I have utilized methods other than scanning electron microscopy for the characteriza-

tion of these novel core-shell structures. Energy Dispersive X-ray spectroscopy (EDS),

which is typically affixed to a scanning electron microscope, is a technique for the ele-

mental analysis of a sample or field of view. From this, I may learn about the chemical

composition of the material electrodeposited into the PCTE membrane which acts as the

shell in the core-shell rod. Another technique which will provide a measure of the mag-

netic responsiveness of these structures is called SQUID magnetometry. This technique

was used to measure the magnetizations of maghemite and magnetite nanoparticles as a

function of applied magnetic field and previously described in Section 4.2.

4.3.2 Energy Dispersive X-ray analysis

To verify the presence of a Ni shell and PDMS core, I used Energy Dispersive X-ray

spectroscopy (EDX or EDS), a technique that employs a high energy electron beam which

penetrates a sample up to 2 µm deep to determine its composition. The electron beam
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interacts with electrons in the inner shell of an atom, exciting and ultimately ejecting them

from the shell. When new electrons from a higher energy shell move in to fill the vacancy,

the characteristic differences in these higher energies and the lower energies of the inner

shell are released as X-rays. The energies measured by EDS are energies characteristic to

specific atoms from which they were emitted. Thus, this method will verify the elemental

structure of core-shell rods.

The geometry of a sample determines the type of scan performed. Using Inca’s EDS

software, the user may specify a particular field of view, the shape of the area of a scan, the

sampling resolution, and the scan time. I performed a line scan (Figure 4.15) to determine

the elemental composition along the length of a rod. From left to right along the rod, a

sharp signal change exists at the core-shell boundary. The Ni signal increases dramatically,

and a corresponding decrease in silicon signal is observed as PDMS has a silicon-oxygen

backbone. Several measurements such as these were performed on numerous rod array

samples with differing Ni tube lengths.
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Figure 4.15: An Energy Dispersive X-ray Spectroscopy line scan of a 10 µm long and
660 nm diameter core-shell cilium with a Ni deposition of 2.04 mC/mm2, resulting in a
tube length of approximately 3.5 µm and thickness of 100 nm. At 4 µm into the scan, note
the increase in Ni signal and decrease in the Si signal. This change in material can also be
seen in the SEM image; the Ni appears as a bright portion at the right end of the rod (Fiser
et al., 2012).

4.3.3 Applied field dependence

To characterize the magnetic properties of core-shell biomimetic cilia, I fabricated sam-

ples as described in Figure 4.13, but in this case, the rods remained inside the PCTE mem-

brane. The final release step shown in Figure 4.13E was not performed. The arrays (en-

cased in the PCTE membrane) were inserted into a straw holder such that the microrods’

long axes were parallel or perpendicular to the applied magnetic field. All magnetization

curves were run at 300◦K. Initial runs over a large range of applied field determined that the

nickel saturated at ±1400 Oe, and so future runs were performed over the range ±3000 Oe.
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In addition, the magnetization of the background was obtained, and all data presented has

been background subtracted.

Figure 4.16: The magnetic field was applied both perpendicular (◦) and parallel (•) to
the rod axis, and the signal is normalized by the volume of Ni deposited into the PCTE
membrane (Fiser et al., 2012).

The microrods’ saturation was the same whether the field was applied parallel or per-

pendicular to the rods long axes, and the saturation magnetization was 397±13 emu/cm3,

a value that approaches saturation magnetizations in literature (Ferre et al., 1997; Kisker

et al., 1995; Cordente et al., 2001). The ferromagnetic nature of core-shell cilia was con-

firmed by the presence of hysteresis in the curves. In addition, I checked for the presence

of shape anisotropy which appears as a general shape change in the hysteresis curves when

the magnetic field is applied in different orientations. As shown in Figure 4.16, data indi-

cate there may be a subtle anisotropy. When the rods’ long axes are aligned parallel to the

applied field, the sample appears to approach saturation more quickly than when the rods’

long axes are aligned perpendicular to the applied field. This phenomenon is expected as
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more energy is required to rotate the moment of individual domains away from the long

(easy) axis of the rod. Shape anisotropy has been shown in previous magnetization studies

of Ni nanorods with packing densities less than 35%. Larger porosities (>35%) have ex-

hibited a reduced anisotropy due to the dipolar coupling between rods, as shown in Figure

4.17 (Encinas-Oropesa et al., 2001). The porosity of rods in Figure 4.17A is 4%, and the

porosity of rods in Figure 4.17B is 35-38%. I utilize PCTE membranes with a porosity of

0.31%.

Figure 4.17: Reprinted from Encinas-Oropesa et al. (2009). The magnetic field was applied
both perpendicular (open circles) and parallel (filled circles) to the rod axis, and the signal
is normalized by the saturation magnetization. The Ni nanowires in (a) have a porosity of
4% and diameter of 56 nm, and in (b), the porosity is 35-38% and the diameter is 250 nm
(Encinas-Oropesa et al., 2001).
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Chapter 5

Magnetic Actuation

Magnetic forces, such as those generated by permanent magnets or electromagnets, of-

fer an appealing solution to driving arrays of biomimetic cilia. The effect of a magnetic field

may be long range, and for permanent magnets, no wires or internal, on-chip power sources

are required. Additionally, large actuator displacements may be achieved, and a complex

actuator response may be easily orchestrated by manipulating magnet geometries or place-

ment. Permanent magnets are therefore a simple and commercially available method for

the application of a magnetic field.

Magnetic fields are able to actuate biomimetic cilia through two different mechanisms:

torque and force. The nickel tubes surrounding core-shell biomimetic cilia are ferromag-

netic as can be seen in Figure 4.3.3, and are thus capable of retaining a magnetization

after the magnetic field has been removed, though the hysteresis is slight. Typically at the

microscale objects are superparamagnetic, such as FFPDMS cilia, and dipoles within the

material do not remain aligned when a magnetic field is removed.

The torque which is applied to a dipole is (Jackson, 1998)

�N = �m × �B (5.1)



where B is the applied field and m is the magnetic dipole moment. If a dipole is aligned

with the magnetic field, the torque on the dipole will give zero, and when the field and

dipole are perpendicular, the torque will be a maximum; thus, the torque acts to align a

dipole with the applied field. The force which is applied by the magnetic field to the dipole

is (Jackson, 1998)

�F = ∇(�m · �B), (5.2)

which is dependent on the direction of the greatest increase of �m · �B. Thus, the magnetic

field rotates a dipole and the field gradient pulls a dipole closer. In biomimetic cilia, dipoles

within the nickel shell interact with one other and the torque and force are both minimized

with a head-to-tail alignment along the long (or easy) axis of the cilium. If the long axis of

the cilium is not parallel to the applied magnetic field, dipoles within the rod will attempt

to align themselves with the field while maintaining their alignment with the cilium’s long

axis, causing a torque on the cilium. This torque minimizes the angle between the direction

of the applied field and the dipoles. As discussed in Section 3.3.1, the effect of the magnetic

gradient, and thus magnetic force, on the actuator is negligible.

I magnetically actuate biomimetic cilia arrays using rare-earth neodymium-iron-boride

permanent magnets (K&J Magnetics) situated from 2-15 mm above the sample. The rect-

angular magnet is oriented such that the north and south ends are parallel to the sample

plane. This effectively orients the magnet field in a direction perpendicular to the relaxed

orientation of cilia, maximizing the applied torque on the rod. The distance between the

magnet and sample controls the strength of the applied magnetic field, as shown in Figure
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5.1, where the magnetic field was measured as a function of distance using a gaussmeter

(F.W. Bell Teslameter, model 5080G). Each curve in Figure 5.1 represents measurements

made with respect to a different location of the magnet.

Figure 5.1: The permanent magnet used in all experiments had dimensions 1.0 in x 0.5 in
x 0.25 in. The magnetic field was measured as a function of distance from the center of the
1 in x 0.5 in face of the magnet (solid line) and from the center of the 1.0 in x 0.25 in face
of the magnet (dashed-dotted line). In experiments, the magnet is oriented with the 1.0 in
x 0.25 in face of the magnet parallel to the sample plane.

In this chapter, I will first compare the responsiveness of composite FFPDMS rods and

core-shell rods to an applied magnetic field in various fluids, and follow this by character-

izing the abilities of core-shell rods in general. At the low end of the range of magnetic

field strength achievable with commercially obtained neodymium magnets (1 in x 0.5 in x

0.25 in), ∼5 mT, core-shell cilia achieve bend angles of approximately 20◦. Increasing the

field to a moderate 30−100 mT field strength causes the nickel portion of the cilium to bend

a full 90◦ such that the tip of the cilium contacts the substrate and sticks momentarily. Bend

90



angles achieved by FFPDMS cilia, even at the higher applied fields approaching 200 mT,

are no larger than 40◦. In addition to the responsiveness from a given applied field, I will

discuss how we utilize various magnetic setups and oscillating fields to engender actuator

beat shapes similar to those of biological cilia.

5.1 Responsiveness of composite and core-shell actuators

Designing an actuator to be highly responsive requires the optimization of magnetic

loading for a given geometry. This optimization was discussed in the context of Ben Evans’

energy minimization model as utilizing the volume fraction of magnetic material at which

an actuator achieves a maximum static deflection. This definition of ’optimal’ implies that

maximum actuation is the ultimate goal of an actuator. The goal of an actuator should

depend on its application. Thus, a possible goal may also be to design an actuator with

larger torque, such that it has the ability to deflect in a more viscous environment.

The design of FFPDMS, FFPDMS-NH2, and core-shell actuators is strongly depen-

dent on the application for which they will be utilized. The sacrifice of some deflection

to achieve a higher torque in a higher viscosity environment may or may not be neces-

sary. FFPDMS biomimetic cilia are highly damped in fluids with larger viscosities. This

damping worsens as drive frequency increases. In PBS, a buffer with a zero-shear viscos-

ity η0 = 1.05 cP, FFPDMS cilia arrays actuate at appreciable amplitudes, approximately

∼5-6µm (with bend angles on the order of 30◦), but when actuated in 0.25% agarose, a vis-

coelastic fluid with η0 ∼630 cP, the bend angle and amplitude become nearly undetectable.

Figure 5.2 shows minimum intensity projections of thirty second videos where two differ-
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ent arrays of FFPDMS cilia are driven at 32 Hz in both buffer and 0.25% agarose. Each

dark oval shape is the motion of a cilium tip over the course of thirty seconds.

Figure 5.2: Minimum intensity projection of two different FFPDMS cilia arrays (25 µm
long, 800 nm diameter) driven at 32 Hz in PBS (at left) and 0.25% agarose (at right) with
a maximum applied field of ∼130 mT. The viscosity of 0.25% agarose (∼600 cP greater
than PBS) restrained nearly all cilia motion. The amplitude decreases from ∼5.5 µm to an
average of 0.8 µm, decreasing to 9% its original value.

In higher viscosity environments, core-shell cilia are preferable as they are capable of

maintaining larger amplitudes and applying higher forces to the fluid. Figure 5.3 shows

minimum intensity projections of core-shell cilia actuated at 16.3 Hz. The left image is in

PBS buffer (η0 = 1.05 cP) at an applied field of 11 mT, and the right image is in 0.25%

agarose(η0 = 630 cP) at an applied field of 125 mT. The low magnetic field needed to

obtain large amplitude in buffer indicates the large responsiveness of these arrays. The

rod amplitude is diminished in a fluid 660 times more viscous, but still easily detectable

and has been marked on the figure. Amplitude decreases from approximately 5 µm in

PBS to 1.5 µm in 0.25% agarose. Note that these core-shell cilia are less than half the

size of FFPDMS cilia, and the applied field in buffer necessary to achieve large core-shell
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amplitudes is 9% of the field required to achieve large FFPDMS amplitudes.

Figure 5.3: The same core-shell cilia array (10 µm long, 550 nm diameter) driven at 16.3 Hz
in PBS (at left) and 0.25% agarose (at right). The applied magnetic field at left is 11 mT, and
the applied field at right is 125 mT. From PBS to 0.25% agarose, the amplitude decreases
from 5 µm to 1.5 µm, a decreasing to 28% its original value. Recall that core-shell cilia are
less than half the size of FFPDMS cilia, and the amplitude for FFPDMS cilia decreased to
9% its original value.

I have also looked at core-shell arrays in a purely viscous environment, as the elasticity

of agarose may greatly contribute to the dampened amplitude. Minimum intensity projec-

tions of core-shell cilia beating at 8 Hz in both buffer and 2.5 M sucrose (η0 ∼ 100 cP) are

shown in Figure 5.4. For the same array, the bend angle remains nearly unaffected by the

fluid’s viscosity, 55◦±5◦ to 46◦±3◦, respectively.
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Figure 5.4: Minimum intensity projection of the same core-shell cilia array (10 µm long,
550 nm diameter) driven at 8 Hz in PBS (at left) and 2.5 M sucrose (at right). The act of
exchanging sucrose for PBS (or vice versa) causes some rods to collapse. Rod amplitude
decreases little when the array is transferred to a fluid nearly 100 times more viscous.

In addition to exhibiting a high static responsiveness, core-shell cilia maintain their

responsiveness with an increase in frequency. Figure 5.5 shows amplitude measured as

function of frequency for both FFPDMS cilia and core-shell cilia. Note the offsets on the

y-axis. The applied magnetic field for core-shell cilia was 11 mT, and the applied magnetic

field for FFPDMS cilia was ∼100 mT. With 11% of the magnetic field, core-shell achieve a

larger amplitude. For core-shell cilia, increasing the frequency from 0.65 to 16 Hz reduces

the amplitude by only ∼7%. For FFPDMS cilia, increasing the frequency from 2.9 to

10.3 Hz reduces the amplitude by ∼10%. Linear fits indicate a decrease in amplitude from

0.65 to 32 Hz of only 13% for core-shell cilia, and 24% for FFPDMS cilia. Some change in

amplitude as a function of frequency is desirable when measuring viscoelastic parameters;

however, if the amplitude decrease is too large, the actuator may become ineffectual, as

was described in Figure 5.2 for FFPDMS cilia.
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Figure 5.5: Rod amplitude as a function of frequency in PBS. Error bars represent stan-
dard deviation. The change in amplitude from 0.65 Hz to 16.3 Hz is ∼7% for core-shell
actuators. For FFPDMS actuators, the change from 2.9 Hz to 10.3 Hz is ∼10%, and from
2.9 Hz to 32 Hz, the amplitude drops ∼23%. The dashed lines connecting each point is
only for visual purposes, though a least squares fit was performed for core-shell cilia and
may be found in Section 7.1. Note that different fields were applied for the two cilia arrays:
∼100 mT for FFPDMS cilia and ∼11 mT for core-shell cilia.

5.1.1 The power of the core-shell structure

Because of the high responsiveness of core-shell biomimetic cilia, applying a low mag-

netic field of 30 mT induces a bend angle of the nickel portion of the rod greater than

90◦. This large bend angle is shown in Figure 5.6 when, at the maximum extension of the

rod’s tip from its equilibrium position, the tip contacts the substrate and remains for several

frames of video. The left image in Figure 5.6 is a minimum intensity projection of two

seconds of a single rod’s path. Each dark stroke is a single video frame of the rod’s motion.

All rods within the camera’s field of view performed similarly, contacting the substrate at

the same instant. The image at right in Figure 5.6 is the rod’s average angular velocity as a

function of time for a single rotation. The asterisks in both the image and the plot denote
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the portion of the beat where bending of the Ni tube is greater than 90◦ at the Ni-PDMS

interface. The Ni portion contacts the substrate and is restrained for one-tenth of a second.

Following this restraint, there is a large spike in angular velocity as the rod tip ‘pops’ off

the substrate fairly quickly. Another interesting portion of the beat is indicated by arrows in

the minimum intensity projection. Because the array is imaged in a reflectance brightfield

mode, the Ni tube reflects light back to the camera when it is horizontal.

Figure 5.6: With a 30 mT magnetic field, we can actuate the rods such that their Ni tubes
contact the substrate. The left image is a time lapse image of two seconds of a single rod’s
rotational beat. Arrows denote a brighter region where light reflects off the horizontally-
oriented Ni tube. The plot at right is average angular velocity as a function of time for the
same rod. Asterisks in both indicate where the Ni tube bends more than 90◦ to contact the
substrate.

5.2 Mimicking the biological cilia beat shape

Motile biological cilia are known to beat in two different physical patterns, a planar beat

and a tilted conical beat. An example of cilia which exhibit the linear beat pattern are lung

epithelial cilia. They beat with a forward effective stroke where the cilium fully extends

itself upward away from the cell surface and a backward recovery stroke where the cilium

bends low and close to the cell surface. During the effective stroke, mucus is propelled up
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the lung and toward the throat, and during the recovery stroke, the cilium is close to the

no-slip boundary condition of the cell surface, thereby inhibiting flow deeper into the lung.

The tilted conical beat pattern is executed by vertebrate embryonic nodal cilia. The tips

of nodal cilia move in a circular pattern which is not centered around the cilium base, but

around a tilted axis, such that during part of one beat rotation, the tip of a nodal cilium is

closer to the no-slip boundary condition at the cell surface. The net motion of the fluid is in

the cilium tip’s direction when it is farthest from the cell surface. Figure 5.7 is a diagram

of both the lung epithelial cilia beat shape and the vertebrate embryonic nodal cilia beat

shape.

A

B

Figure 5.7: (A) Reprinted from Chilvers et al. (2000). Diagram of the linear beat shape
performed by lung epithelial cilia (Chilvers and O’Callaghan, 2000). (B) Reprinted from
Hirokawa et al. (2006). Diagram of the tilted conical beat shape exhibited by vertebrate
embryonic nodal cilia. Blue arrows indicate the direction of nodal flow; purple arrows
indicate viscous drag (Hirokawa et al., 2006).
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5.2.1 The linear beat

To drive a linear beat, I utilize a variable frequency motor and multiple permanent mag-

nets (K&J Magnetics) with dimensions 1.0 in x 0.5 in x 0.25 in. These permanent magnets

are affixed to a disc-like structure which is then attached to a variable speed motor’s shaft

(Figure 5.8A). Four magnets sit on the edge of the disc equidistant from one another, and

the disc is positioned such that its edge passes over the biomimetic cilia sample, producing

the beat shape illustrated in Figure 5.8B. Currently, I have only utilized the planar beat

shape for the technological application of core-shell cilia as detectors of the onset of blood

coagulation, which I discuss in Chapter 7.
N

rod upright

magnets

motor

disc

sample

objective

N

A B

Figure 5.8: (A) Magnet set-up utilized to drive a linear beat. Permanent magnets are affixed
to the edge of the disc with any spacing between them. The entire disc is affixed to a rotating
motor, causing each magnet to pass over a cilia array. (B) Minimum intensity projection of
the linear beat of core-shell cilia driven by the disc-magnet set-up in (A). The center spot of
each dark object is the cilium’s upright position; the two dark spots on either side represent
the cilium’s excursions as it follows the magnetic field. A description of the torque applied
to a cilium as the magnet passes the sample is detailed in the text and in Figure 5.9.

To understand the effect of the passing magnets on the cilia array, I consider a single

cilium. When no magnet is present over the cilium, the cilium remains upright. As a
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magnet nears, the magnetic field induces the alignment of dipoles within the nickel portion

of the rod, assuming the rod has no prior magnetization. These dipoles seek to maintain the

alignment of the rod’s long axis with the magnetic field lines as the magnet passes over the

cilium, applying a torque to the rod. Initially, as the magnet nears, and the magnetic field

is at an angle between 0◦ and 90◦ with respect to the vertical; the rod bends to align with

the field. When the magnet is oriented such that the field is 90◦ with respect to the vertical

(parallel to the sample plane), the rod is approaching its largest deflection. As the magnet

passes, and the angle between the field and the vertical becomes greater than 90◦, the rod

again seeks to align itself with the field. Since both the substrate and material comprising

the rod prevent it from bending greater than 90◦ and since core-shell rods are ferromagnetic,

within at most 33 ms for a 2 Hz beat, the rod orients itself at an angle left of the vertical,

aligning itself antiparallel to the direction of the magnetic field. Figure 5.9 illustrates this

actuation. Ben Evans energy minimization model can be utilized to predict energy minima

which correspond to the angle of the applied magnetic field; details can be found in his

thesis where this phenomena is called the ‘snap-beat’ and described for superparamagnetic

cilia (Evans, 2008).
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Figure 5.9: (A) When the magnet approaches the cilium, the magnetic field is at an angle of
0◦ with the vertical, and the cilium feels no torque, remaining upright. (B) As the magnet
nears, the magnetic field is at an angle between 0◦ and 90◦. The rod feels a torque aligning
it with the field. (C) When the magnetic field is at 90◦, parallel to the sample plane, the rod
attempts to maintain its alignment. (D) As the magnet continues past the cilium, the field
approaches an angle greater than 90◦. At this point, material parameters may prevent the
rod from following the field’s increasing angle with respect to the vertical. Experimentally,
the rod is seen to physically ‘snap’ from the right side of the vertical to the left side of the
vertical, in an attempt to become anti-aligned with the magnetic field. This ‘snap’ happens
within at most 33 ms for a 2 Hz beat.

In the minimum intensity projection in Figure 5.8B, the beat frequency of cilia is 2 Hz,
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meaning two of the four magnets securing to the rotating disc pass over the array every

second. The disc itself is approximately 16.5 cm in diameter. For the same applied voltage

and number of permanent magnets, a larger diameter disc would result in a lower beat fre-

quency. The entire passage of a single magnet, the period of a rod’s beat, is approximately

one-third of a second.

5.2.2 The tilted conical beat

To perform the tilted conical beat, a permanent magnet is affixed to the shaft of a rotat-

ing variable speed motor. The magnet is attached such that its poles are oriented parallel to

the sample plane, as shown in Figure 5.10A. This orientation causes the magnetic field at

or near the sample to also be parallel to the sample plane. As the motor and magnet rotate

from 0◦ to 360◦, the magnetic field rotates from 0◦ to 360◦, and a cilium which follows the

magnetic field will follow this circular rotation. As illustrated in Figure 5.9C, when the

magnetic field is nearly 90◦ with respect to the vertical, the cilium’s bend anglewill be as

large as possible, restrained by its material parameters. This bend angle is analogous to

the tilt angle plus half cone angle depicted in Figure 5.10B. Since the permanent magnet is

fixed in space, the angle between the magnetic field and the vertical axis does not change.

The permanent magnet does, however, rotate in space, and in spherical coordinates the an-

gle swept out is φ, where 0 ≤ φ < 2π. As the permanent magnet and thus the magnetic field

rotates, the cilium follows.
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Figure 5.10: (A) Magnet position with respect to the sample is characterized by the mag-
net’s height above the sample, and the magnet’s x-offset from the sample center. For ref-
erence, the microscope stage and objective are included in the diagram. (B) The x-offset
controls the direction of the magnetic field experienced by the cilia array and thus the tilt
angle θ of a cilium as further detailed in Figure 5.11. The distance from the magnet to the
sample controls the strength of the magnetic field and thus the half cone angle ψ. (C) Min-
imum intensity projection of a top down view of single rod performing the tilted conical
beat.

The distance from the permanent magnet to the cilia sample affects the strength of the

applied magnetic field. A shorter distance between magnet and sample will increase the

field strength, thereby increasing the amplitude and half cone angle ψ (as illustrated in

Figure 5.10B) of the cilium. In addition, offsetting the center of the permanent magnet

laterally with respect to the cilia array affects the axis around which cilia rotate. Figure

5.10C is a top down view of a time lapse minimum intensity projection of a single core-

shell rod performing this tilted conical beat shape. Each dark line denotes a position of the

rod, the darkness of which is caused by the Ni tube. When the x-offset is zero, the magnet

is directly above the cilia array such that the rotational axis of the magnet is aligned with

the cilium’s axis. As shown in Figure 5.11A, a cilium responds to this magnet orientation

with an upright, conical beat shape. The tilt angle θ = 0◦.
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Figure 5.11: (A) When the axis of the permanent magnet is aligned with the cilium’s ro-
tational axis, θ = 0◦. The cilium will rotate as the magnetic field rotates, and its half cone
angle ψ will be determined by the magnetic field strength. (B) When the axis of the per-
manent magnet is offset by some x, the cilium’s rotational axis attempts to align itself with
the magnet’s axis producing a nonzero θ. The cilium will then rotate around its tilted axis
as the magnetic field rotates.

With the introduction of an x-offset between the magnet center and cilia array, a cilium’s

rotational axis will point toward the magnet’s center rather than vertically, tilted at an angle

θ. As a laterally offset magnet rotates, a cilium will beat around its newly tilted axis, and

the half cone angle ψ is measured with respect to θ, as shown in Figure 5.11B. A larger

x-offset induces a larger tilt angle. The asymmetry in beat shape produced by the offset of

the magnet is integral to achieving fluid flow at the microscale, as theoretically detailed by

Smith et al. (2008). Fluid flow at the microscale will be discussed in Chapter 6.

A cilium’s tilt angle, bend angle, and beat amplitude are measured using brightfield

videos. To determine the tilt angle θ and half cone angle ψ as shown in Figure 5.10B, the
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straight line displacement from the rod’s base to its tip’s nearest and farthest extent (d1 and

d2) in the direction of the tilt are measured over one beat cycle, as shown in Figure 5.12.

d1
d2

Figure 5.12: Minimum intensity projection of the cilium’s path over the course of several
beats. The tilt angle θ is calculated by first measuring the nearest and farthest extent of the
cilium tip with respect to its base and then utilizing Equation 5.3. The bend angle is found
using d1 and the rod’s known height.

The tilt angle θ is then

θ = 1/2
�
sin
−1(d1/L) + sin

−1(d2/L)
�
, (5.3)

and the half cone angle ψ is

ψ = θ −
�
sin
−1(d1/L)

�
. (5.4)

The bend angle is determined by measuring the farthest straight line displacement of the

rod’s tip from its base, or θ+ψ which is equivalent to d1 in Figure 5.12, and using the rod’s

known height of L = 10 µm. In order to measure the amplitude of the cilium, the path

traced out by the cilium tip is fit to an ellipse, and the amplitude is one-half the length of
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the ellipse’s major axis. The amplitude is measured in this way to control for varying tilt

angles across biomimetic cilia specimens.

This tilted conical beat shape is the shape utilized for all experiments discussed in Chap-

ter 6. I have not yet been successful in replicating the asymmetrical planar beat employed

by biological airway cilia. However, with the tilted conical beat, I am able to compare

my flow results in aqueous fluids directly to the biological cilia-driven flow in vertebrate

embryonic nodes, the ultimate illustration of the utility of a system such as mine.

5.3 Tracking the fluid motion

To image the flow produced by biomimetic cilia beating with a tilted conical beat

shape, fluids are seeded with one micron red latex fluorescent microspheres (FluoSpheres).

(Throughout this thesis I will interchangeably use microspheres, tracers, and tracer particles

to indicate the particles I utilize to track flow in biomimetic cilia arrays.) Depending on the

fluid, the microspheres may or may not be PEGylated, a process which binds low molecular

weight polyethylene glycol (PEG) to a microsphere’s surface to reduce (or neutralize) its

surface charge. If using polymer solutions such as mucus or guar, coating microspheres’

surfaces with PEG reduces the potential that beads will become attached to the polymer

matrix and cease their thermal and/or driven motion. In an aqueous solution such as buffer

PEGylation does not affect the motion of microspheres. Additionally, in some polymer so-

lutions such as agarose, diffusion measurements taken by David Hill, a research associate

with the Cystic Fibrosis Center at UNC-Chapel Hill, also indicate that PEGylation has little

effect on microsphere motion.
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To investigate the flow above and below the array of biomimetic cilia, the focal plane

of the objective is changed in increments of tens of microns, and both brightfield and flu-

orescent videos are taken using a Pulnix camera, model TM-6710CL (JAI, Inc.), and an

EDT-PCI DV (Engineering Design Team) frame grabber card. With fluorescence, videos

may be captured close to and within the cilia layer without interference from moving cilia.

In each video, the fluorescent microspheres are tracked using CISMM’s Video Spot Tracker

(cismm.org/downloads), and velocities are extracted using in-house Matlab scripts.
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Chapter 6

Fluid Transport in Aqueous and

Viscoelastic Fluids

The thrust of this thesis thus far has concentrated on the design and realization of fab-

ricated microstructures in the same physical parameter space as biological cilia. Because

biological cilia are responsible for propelling both aqueous and viscoelastic fluids, creating

an identically sized biomimetic system has been an important endeavor. In hydrodynam-

ics, viscous and viscoelastic fluids are characterized by a group of dimensionless numbers

which represent the dominant forces and timescales in a fluid. In order to use an experi-

mental apparatus, such as biomimetic cilia, at a larger scale and accurately represent fluidic

phenomena, all dimensionless numbers characterizing the experiment must be equivalent

(Metzner et al., 1966). For purely viscous fluids, this is a relatively simple undertaking

as the Reynolds number is the significant dimensionless number that must be scaled. Any

purely viscous fluid may be utilized in a macro-scale experiment, producing similar results

to a micro-scale experiment, if the Reynolds number is equivalent. For viscoelastic fluids,

the Reynolds number, Deborah number, and Weissenberg number must all be scaled with

the physical dimensions of the experiment. This scaling is nearly impossible unless the



exact same fluid is used every time; it is difficult to make any generalization concerning

all three dimensionless numbers for viscoelastic fluids (Metzner et al., 1966). For these

reasons, core-shell biomimetic cilia are an ideal system for the study of fluid propulsion at

the micro-scale, being the only system currently capable of viscoelastic fluid propulsion at

the scale of biological cilia.

In addition to dimensionless numbers, the field of fluid dynamics has developed a num-

ber of constitutive relations to understand how, for a particular fluid, stress and shear (or

strain) rate are related. Purely viscous fluids, also called Newtonian fluids, which exhibit a

linear relationship between stress and shear rate with a proportionality constant that is the

fluid’s viscosity, are understood analytically for a number of problems with simple geome-

tries. The introduction of a little complexity, however, may require the use of computational

methods. As such, very little is understood about viscoelastic fluids, or non-Newtonian flu-

ids, which are fluids that exhibit a time dependent response to an applied stress or strain.

In this chapter, I will first give a brief review of the relevant hydrodynamics including an

overview of the three significant dimensionless numbers used to describe both viscous and

viscoelastic fluids, the governing equation in fluid dynamics, the Navier-Stokes equation,

and canonical solutions for both viscous and linear viscoelastic fluids, including Stokes’

1st and 2nd problems. Following this will be an analysis and extensive discussion of the

characteristics of fluid flow driven by biomimetic cilia in both aqueous (Section 6.2) and

viscoelastic (Section 6.3) fluids. Biological cilia are responsible for driving flow in multiple

kinds of fluids including both buffer-like (aqueous) and mucus-like (viscoelastic) fluids.

Thus, it is important to utilize our biomimetic platform to understand driven flow in both
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environments.

Our theoretical understanding of viscous and viscoelastic fluids far surpasses our ex-

perimental understanding, especially as it pertains to biological systems. By using simple

theoretical models for viscous and viscoelastic fluids and treating my biomimetic cilia tips

as a single moving boundary (also known as coarse-graining), I am able to gain insight into

the fluid dynamics of the system and apply this insight to both embryonic nodal cilia and

lung epithelial cilia.

In the purely viscous, or aqueous, fluid, both FFPDMS and core-shell cilia are ca-

pable of driving transport with the tilted conical beat shape. The hydrodynamic model

which supports the experimental data considers the motion of all cilia as a single translat-

ing plane and is a superposition of two canonical solutions to the low Reynolds number

Navier-Stokes equation. This model was first identified in our publication in 2010 (Shields

et al., 2010) and has been expounded upon in significant detail by Adam Shields in his

dissertation (Shields, 2010).

In viscoelastic fluids, FFPDMS cilia are incapable of maintaining a sufficiently large

amplitude to attain flow, and thus all presented results were collected with core-shell bioimimetic

cilia. The data for flow in a viscoelastic fluid at low Reynolds number is markedly differ-

ent than purely viscous flow, and to better understand these differences, I first apply the

purely viscous models to the viscoelastic data. These models are quickly shown to be in-

sufficient at explaining the fluid dynamics and a model which better incorporates the elastic

contributions of a viscoelastic fluid is discussed.
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6.1 Review of microscale hydrodynamics

6.1.1 Dimensionless Numbers

The field of hydrodynamics utilizes numerous dimensionless numbers which are useful

in characterizing the dominant phenomena in an environment. Three dimensionless num-

bers used to describe both the environment in which cilia live and the characteristics of the

fluid surrounding cilia are the Reynolds number, the Deborah number, and the Weissenberg

number (Metzner et al., 1966).

These dimensionless numbers are often called scaling relations; a system may be scaled

as large or small as necessary and still exhibit the same fluidic phenomena if the dimen-

sionless numbers which correspond to length and time scales within the experiment are

equivalent. For purely viscous fluids, the dominant dimensionless number is the Reynolds

number, Re, which relates inertial forces to viscous forces. Thus to explore aqueous fluid

dynamics, with a constant Re, we can apply fluid dynamics solutions at the microscale to

the macroscale and vice versa (Macosko, 1994).

When time becomes a variable, as it does with viscoelastic fluids, multiple dimension-

less numbers must be utilized to characterize the system including the Reynolds number.

The Deborah number De is the primary dimensionless number, and it relates the time scale

of the fluid to the time scale of the experiment. In addition to Re and De, the Weissenberg

number We, which characterizes the elastic contribution to the nature of the fluid, is also

of considerable importance for viscoelastic fluids (Metzner et al., 1966; Liu et al., 1998). I

discuss each of these dimensionless numbers briefly below.
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Reynolds Number

Biological cilia and other microorganisms live in an environment completely different

from ours. If a force is applied to a microorganism, and suddenly the force is removed, the

microorganism’s motion also stops nearly instantaneously. When inertia is irrelevant and

the viscosity of the surrounding environment becomes significant, the ratio of inertial to

viscous forces, called the Reynolds number, becomes very small. The Reynolds number,

Re, is defined as (Purcell, 1977)

Re =
inertial f orces

viscous f orces
. (6.1)

At low Reynolds number, every motion is reversible and time invariant. The speed

at which an action is performed does not affect the outcome of the action. This is best

illustrated by the famous scallop theorem put forth by Purcell (Purcell, 1977). To move

in its environment, a scallop opens its shell slowly and closes its shell quickly to expel

water and push itself in a forward direction. In a low Reynolds number environment where

speed of motion (time rate of change of direction) has no effect, the scallop is effectively

performing a reciprocal motion, opening and closing its shell in the same configuration.

When the configuration is symmetrical, the scallop does not achieve net displacement and

is trapped in place. For microorganisms like the scallop or microstructures like cilia that

rely on their bodies’ motions to displace themselves, the motion must be asymmetric in

space to achieve net transport (Purcell, 1977).

Explicitly, the Reynolds number is written as
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Re =
vlρ

η
. (6.2)

where v and l are the characteristic velocity and length scales of the system (which may vary

from system to system), ρ is the fluid’s density, and η is the fluid’s dynamic viscosity. The

density ρ and viscosity η can be combined into the kinematic viscosity ν, and Re becomes

Re =
vl

ν
. (6.3)

To understand the difference between the world of the cilium and the world in which

we live, we can compare the Reynolds number for cilia to the Reynolds number for our

everyday environment. To illustrate, let l be height, 2 m, and if we walk across the room

at ∼ v = 2 m/s in air (ρ = 1.18 kg/m3 and η = 1.78 × 10−2 cP), the Reynolds number is

approximately 270,000. This Reynolds number is considered high, in a turbulent regime

of flow characterized by eddies and vortices. Turbulent flow typically begins at a Reynolds

number greater than 1000. For aqueous solutions, on average, ρ = 1000 kg/m3 and η = 1 cP,

which is equivalently Re = vl/10−6
m

2/s. To live in a low Reynolds number environment,

in a laminar flow regime, vl ≤10−3 m
2/s. For both biological and biomimetic cilia, the

relevant length and velocity (at a beat frequency of 10 Hz) scales are listed in Table 6.1,

and the Re are on the order of 10−3, solidly within the laminar flow regime.
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Table 6.1: Characteristic scales of biological and biomimetic cilia

Length Diameter Tip velocity Re
(µm) (nm) (µm/s)

Biological cilia 7 250 ∼200 (Hill et al., 2010) ∼1.4x10−3

Biomimetic cilia 10 or 25 550-800 ∼220 ∼2.2x10−3

An illustration of turbulent and laminar flow can be seen flowing from a kitchen sink

faucet. When the water pours from the faucet at a low flow speed (velocity), the fluid

appears to move smoothly and steadily; this flow is laminar. Greatly increase the velocity

of the fluid by allowing more water to exit the faucet, and the motion of the water undergoes

a distinct change. No longer is the flow steady and smooth, but instead, the water tends to

flow in every direction. The paths of fluid parcels cross over one another, intermingle, and

are impossible to predict; this is turbulent flow.

In laminar flow, fluid parcels moving side by side will never cross paths or mix with

one another. The only mixing which occurs in laminar flow is through diffusion. Nearly

all microfluidics channels are at low Reynolds number for aqueous solutions. Mixing two

fluids in a microfluidic or lab on a chip device more quickly than occurs through diffusion is

impractical without some additional construct which forces the interaction of fluid parcels

with one another. Because of this, many mixing devices, including several artificial cilia

discussed in Section 3.1, have been developed to fulfill this technological need. In Section

6.2.3, I will address how our biomimetic cilia system may be one avenue of addressing the

need for mixers in microfluidics.
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Deborah Number

For viscoelastic fluids, one important characteristic is the timescale over which they

flow. The response to an applied strain for purely viscous fluids is independent of time

− upon the achievement of a constant strain, the Newtonian fluid relaxes nearly instantly.

Applying a constant strain rate to a viscoelastic fluid evokes a gradual relaxation of stress to

zero over a prolonged time (Macosko, 1994). The relaxation time is essentially the time it

takes the material to adjust to any changes in the applied stress or strain. Because of the time

dependent nature of the relaxation phenomena for a viscoelastic fluid, carefully selecting a

time over which to observe the viscoelastic fluid is critical. The Deborah number, De, is

the ratio of a material’s relaxation time λ to the experiment’s observation time t (Macosko,

1994):

De =
λ

t
. (6.4)

For De << 1, the relaxation time is small compared to the observation time, and the

material behaves like a liquid. Purely viscous liquids have Deborah numbers much less

than one as their relaxation times are very short. For De >> 1, the material behaves like

a solid, as the material never fully relaxes within the observation time. A material with a

Deborah number which is of the order 1 is viscoelastic, exhibiting both viscous, liquid-like

characteristics and elastic, solid-like characteristics (Macosko, 1994).

In order for biological cilia to be efficient in propelling fluid, the Deborah number for

the fluid must be De ≤ 1. If De > 1, the fluid will behave like a solid, and as De increases,
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cilia will become responsible for the propulsion of a solid-like material. If we consider

the observation time, or flow time, for cilia to be the beat frequency the solid-like fluid is

incapable of responding on a comparable time-scale, and the combined cilia-fluid system

may not be efficient. This concept was investigated in 2010 with a computational model

of a free undulating sheet swimming in a viscoelastic fluid. Teran et al. found that the

swimmer moved more quickly and efficiently when its beat frequency was on the same

order as the fluid’s relaxation time. When compared to a finite-length swimming sheet in

a purely viscous fluid where De << 1, the swimmer with De ∼ 1 moved a distance 25%

farther in the same length of time (Teran et al., 2010).

Weissenberg Number

A viscoelastic fluid comprises both viscous and elastic contributions from the polymers

within the fluid. Similar to the Deborah number, the Weissenberg number We indicates

whether the material is slightly or largely viscoelastic, as it is the ratio of elastic to viscous

forces. We is defined as (Metzner et al., 1966)

We =
λv

l
(6.5)

where λ is the zero-shear-rate relaxation time, v is the velocity of the fluid, and l is the

characteristic length scale of the system. A fluid with a longer relaxation time will be more

elastic, as purely viscous Newtonian fluids relax nearly instantly under a constant applied

stress. Thus, a larger We will correspond to a more elastic fluid. In a typical experiment

considering flow past a cylinder, l represents the diameter of the cylinder (Liu et al., 1998).
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For a biological or biomimetic core-shell cilium, this is approximately 250−550 µm, further

increasing the contribution of the elastic component of the fluid.

6.1.2 Navier-Stokes equation

In continuum fluid mechanics, the governing equations are the conservation of mass

equation (also known as the continuity equation) and the conservation of momentum equa-

tion (essentially �F = m�a for fluid elements). The conservation of mass equation states that

the rate of change in density within a volume element must equal the rate of mass trans-

ported into the same volume element across a surface. This relationship is also known as

the continuity equation because it implies a constant flow velocity field. Quantitatively, the

conservation of mass equation states

∂ρ

∂t
= −∇ · (ρ�u). (6.6)

where ρ is the fluid density, t is time, and u is the velocity of the fluid element. Unless the

flow velocity is approaching the speed of sound, the fluid is typically considered incom-

pressible and has a constant density. With this assumption, Equation 6.6 becomes

∇ · �u = 0, (6.7)

also known as the incompressibility constraint.

The equation for conservation of momentum is written as Newton’s second law for

fluids. Surface forces exerted on a fluid are equal and opposite the rate of momentum
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transported by the flow across the surface, or (Goodwin and Hughes, 2008)

∂(ρ�u)
∂t
+ ∇ · (ρ�u�u) = ∇ · Π + ρ �f . (6.8)

This equation is actually three equations as it represents momentum in all three directions,

and these three equations combined with the continuity equation represent the Navier-

Stokes equations. In Equation 6.8, the surface forces can be divided into two categories:

forces exerted onto the entire surface externally (such as gravity) and forces exerted inside

the surface by the fluid parcels (such as viscous stresses). The first term on the left side of

Equation 6.8 represents the rate of momentum increase; the second term to the left of the

equal sign is the rate of momentum transported across a surface by flow. On the right side

of the equation, the first term encompasses all surface forces exerted by the fluid, and the

latter term is all external forces exerted on the body of the fluid as a whole.

In Equation 6.8, Π is called the total Cauchy stress tensor (used for small deformations)

and can be written as the sum of its diagonal and off diagonal elements,

Π = −pδ + τ (6.9)

where p is the pressure, δ is the Kronecker delta, and τ is the viscous stress tensor. Taking

the divergence of Equation 6.9 gives

∇ · Π = −∇p + ∇ · τ (6.10)

which can be substituted into the Navier-Stokes equation (Equation 6.8) to describe the
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flow of any type of fluid, (Macosko, 1994)

∂(ρ�u)
∂t
+ ∇ · (ρ�u�u) = −∇p + ∇ · τ + ρ �f . (6.11)

The equations thus far have remained general and are applicable to any fluid if the

incompressibility constraint is not enforced. To determine the flow for a particular fluid,

we need the fluid’s stress-strain relationship, often represented by the viscous stress tensor

τ, also called a constitutive relation. The constitutive relation will vary depending on the

material. As an example, Table 6.2 lists a number of constitutive relations for both purely

viscous and viscoelastic fluids (Macosko, 1994). The double underline indicates a tensor.

Table 6.2: Viscous stress tensors (Macosko, 1994)

Model name Function
Generalized Newtonian τ = −η(γ̇)γ̇

Generalized linear viscoelastic τ = −
t�

−∞
G(t − t

�)γ̇(t�)dt
�

(Lodge model)
Maxwell τ + λ

∂τ

∂t = −η0γ̇

Upper convected Maxwell τ + λ
�
τ = −η0γ̇

Lower convected Maxwell τ + λ
�
τ = −η0γ̇

Oldroyd B fluid τ + λ1
�
τ = −η0(γ̇ + λ2

�
γ̇)

In Table 6.2, η is the fluid viscosity, η0 is the steady state fluid viscosity, λ is the material’s

relaxation time, γ̇ is the shear rate, and the upper and lower convected derivatives are

defined as (Macosko, 1994)
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�
τ =
∂τ

∂t
+ u · ∇τ − (∇u)T · τ − τ · ∇u (6.12)

�
τ =
∂τ

∂t
+ u · ∇τ + ∇u · τ + τ · (∇u)T . (6.13)

I am interested in both viscous and viscoelastic fluids. Thus, the following two sections

will discuss the pertinent viscous stress tensors for both types of fluids.

6.1.3 Navier-Stokes equation and purely viscous stresses

In applying the Navier-Stokes equation to purely viscous Newtonian fluids at low Reynolds

number, several assumptions can be made. The first assumption is the incompressibility

constraint; we have an incompressible fluid, ∇·�u = 0, and thus the second term in Equation

6.11 is equal to zero. The second assumption is an absence of external body forces acting

on the fluid. (I am ignoring forces such as gravity.) Thus, in Equation 6.11, �f = 0. The

third assumption is that of low Reynolds number, and the fourth is the presence of a steady

flow. This fourth assumption implies that the velocity does not change as a function of

time, ∂(�u)/∂t = 0, and the first term in Equation 6.11 is equal to zero. After all of these

assumptions, the Navier-Stokes equation becomes

∇p = ∇ · τ. (6.14)

We can now include the stress tensor τ for a purely viscous fluid. Purely viscous fluids

obey Newton’s Law of Viscosity, which puts forth a linear relationship between stress and

strain rate with a proportionality constant equal to the fluid’s viscosity. Mathematically,
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(Macosko, 1994)

τ = ηγ̇ = η[∇u + (∇u)T ] (6.15)

where η is the dynamic fluid viscosity and u is the fluid velocity, and because of the incom-

pressibility constraint,

∇p = η∇2
u. (6.16)

The solution for the fluid velocity u in this equation is now dependent on the applied bound-

ary conditions.

Poiseuille and Couette Flow

Two independent analytical solutions to this low Reynolds number Navier-Stokes equa-

tion for Newtonian fluids, called Poiseuille and Couette flow, are of immediate interest as

they will be utilized to describe cilia-driven velocity u as a function of height z above the

cilia array. In both Poiseuille and Couette flow, fluid is situated between two no-slip par-

allel plates that extend infinitely in the x and y directions. Poiseuille flow is driven by a

nonzero pressure gradient which results in a parabolic velocity profile (Figure 6.1), while

in Couette flow, a constant velocity translation of one of the infinite plates drives a linear

velocity profile.

120



u

u

Poiseuille flow Couette flow
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Figure 6.1: Schematics of both Poiseuille (at left) and Couette (at right) flow profiles.
Poiseuille flow is a parabolic velocity profile with a nonzero pressure gradient between two
stationary infinite plates. Couette flow is a linear velocity profile driven by a uniformly
translating bottom plate with a stationary top plate as a second boundary.

Taking the linear superposition of these two independent solutions to Navier-Stokes

produces a third solution which we call Poiseuille-Couette (PC) flow. More generally, this

represents a limiting case of driven cavity flow where the cavity length and width are much

larger than its height and a single boundary translates at constant velocity, driving vortical

flow throughout the cavity (Bye, 1966; Albensoeder et al., 2001). The equation describing

PC flow is given as

u(z) =
u0

h
(h − z) +

∇p

2η
z(z − h) (6.17)

where u0 is the translating velocity of the bottom plate (located at z = 0) relative to the

stationary top plate (located at z = h) (Shields et al., 2010) .
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6.1.4 Stokes’ 1st and 2nd problems

For both viscous and linear viscoelastic fluids, Stokes’ first and second problems are

benchmark problems in fluid mechanics and have many applications. They are both exact

solutions to the Navier-Stokes equation but have different boundary conditions. In both

problems, there is a semi-infinite space above a flat infinite plane. In Stokes’ 1st problem,

the system is initially at rest, and at time t = 0, the plane suddenly begins translating at

a velocity u = U. In Stokes’ 2nd problem, the infinite plane sinusoidally oscillates in

time with a velocity u = U0sin(ωt) where ω is the frequency of the oscillation. For both

problems, no pressure gradient exists, and as the motion of the infinite plate is only in the

x direction, the fluid velocity is also only in the x direction and only a function of y. The

Navier-Stokes equation (Equation 6.11) in the x direction reduces to the following for both

Stokes’ 1st and 2nd problems with a purely viscous fluid,

∂u

∂t
= ν
∂2

u

∂y2 (6.18)

where u is the fluid velocity in the x direction, and ν is the kinematic viscosity η/ρ. For

Stokes’ 1st problem, the boundary conditions are

u(0, t) =




0 t ≤ 0,

U t > 0
(6.19)

and the condition that the fluid velocity remain finite as we move far away from the plane

(as y → ∞). The initial condition we apply is u(0, 0) = 0, indicating the fluid is at rest at
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time zero. As I am more interested in Stokes’ 2nd problem with the sinusoidally oscillating

plane, I will give the solution to Stokes’ 1st problem:

u(y, t) = U

�
1 − erf

�
y

2
√
νt

��
(6.20)

where erf is the error function.

For Stokes’ 2nd problem, the boundary condition of a finite velocity as y→ ∞ remains,

and in addition,

u(0, t) =




0 t ≤ 0.

Usin(ωt) t > 0
(6.21)

The initial condition is still u(0, 0) = 0. We can assume a solution of the form

u(y, t) = �
�
f (y)eiωt

�
(6.22)

where � indicates the imaginary part of the solution and f (y) is the amplitude of the os-

cillation as a function of the distance from the oscillating plane. Substituting this solution

into Equation 6.18 gives

�
�
iω f (y)eiωt

�
= ν�

�
d

2
f (y)

dy2 e
iωt

�
=⇒ d

2
f (y)

dy2 =
iω

ν
f (y). (6.23)

This second order homogeneous differential equation has a solution of the form

f (y) = c1e
r1y + c2e

−r2y (6.24)
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where c1 and c2 are constants determined using boundary and initial conditions, and r1, and

r2 are roots of the characteristic equation. Immediately, we know f(y) must remain finite as

y→ ∞, which does not happen for the first term. Thus c1 = 0, and we are left with

f (y) = c2e
−r2y (6.25)

where substitution into the original differential equation, Equation 6.23, gives

c2r2
2
e
−r2y =

iω

ν
c2e
−r2y. (6.26)

From this, we can see that r2 =
√

iω/ν. The solution then becomes

f (y) = c2e
−√iω/ν y, (6.27)

and inserting this back into the original solution, Equation 6.22, gives

u(y, t) = �
�
c2e
−√iω/ν y

e
iωt
�
. (6.28)

Before taking the imaginary part of this solution, I will substitute
√

i = (1 + i)/
√

2 into

the above equation. Making this substitution and taking the imaginary part using Euler’s

relation e
iθ = cosθ + isinθ gives

u(y, t) = c2e
−
√
ω
2ν y

sin

�
ωt −

�
ω

2ν
y

�
. (6.29)
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We can use the final set of boundary conditions on the velocity where u(0, t) = Usin(ωt),

implying that c2 = U. The solution to Stokes’ 2nd problem for a viscous fluid then becomes

u(y, t) = Ue
−
√
ω
2ν y

sin

�
ωt −

�
ω

2ν
y

�
, (6.30)

a solution which describes an oscillating velocity, maximally valued at the location of the

oscillating boundary and decaying as a function of distance y from the boundary.

It is interesting to understand from Equation 6.30 the length scale associated with the

penetration of the motion of the lower boundary into the fluid. This length scale is called

the penetration depth and is defined as the height y above the oscillating plate where the

velocity is equal to 1/e its original value. Since the value of sine in Equation 6.30 has a

maximum value of one, we can write

1
e

U = Ue
−
√
ω
2ν α (6.31)

where α is the penetration depth. After some algebra, we have

α =

�
2ν
ω
, (6.32)

illustrating that as the viscosity of the fluid above the oscillating boundary increases, the

penetration depth increases, and the effects of the boundary are felt farther into the fluid.

This result is depicted in Figure 6.2 with a boundary located at y = 0 oscillating at ω =

1 Hz. Each plot represents a different kinematic viscosity (ν = 1, 2, 4). In an individual

plot, a single line represents a moment in time where the center of the plane is moving with
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a velocity equal to the x-intercept. As the plane oscillates, the color of the lines changes

from red to green to blue. As the viscosity increases, the coupling between the boundary

and the fluid increases as can be seen by the increased penetration depth and the lack of

a sharp decrease in velocity with increased height. Conversely, though it is not illustrated

in the figure, as the oscillating frequency of the boundary increases, the penetration depth

decreases.

direction of plane

Figure 6.2: A simulation of Stokes’ 2nd problem for a purely viscous fluid illustrates the
effects of an increasing viscosity on the propagation of stress throughout the fluid. Each
plot represents a different viscosity (ν = 1, 2, 4), and within a plot, a line indicates an instant
in time after a steady state has been reached. Red lines correspond to earlier times and blue
lines correspond to later times. The frequency of the oscillating plane is ω = 1 Hz. As the
viscosity increases, the effect of the oscillating plane penetrates farther into the fluid.
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6.1.5 Modified Stokes’ 2nd problem

The previous solution was only for the purely viscous fluid which follows Newton’s

Law of Viscosity. If we consider a fluid which obeys a different constitutive law, the equa-

tion of motion will differ as will the resulting solution for the velocity of the fluid. In

addition, changing the boundary conditions for any fluid type will alter the solution to the

differential equation. Adding a stationary upper boundary at y = h is called the Modi-

fied Stokes’ 2nd problem, and for the viscous fluid, the presence of the upper boundary

means we cannot ignore the positive exponential term in Equation 6.24. Thus, for a plate

oscillating at u(y, t) = Usin(ωt), we have a hyperbolic sine function, and the fluid velocity

becomes (Mitran et al., 2009)

u(y, t) = �

Ue

iωt
sinh[ δ0

A
(h − y)]

sinh[ δ0
A

h]


 (6.33)

where � refers to taking the imaginary part, A = U/ω, and δ0 = (1 + i)
√
ω/(2ν). Each

plot in figure 6.3 shows the flow profile for a given kinematic viscosities (ν = 1, 2, or 4).

Each line within a plot is a moment in time after a steady state flow has been reached. As

with Figure 6.2, red lines indicate the plane’s passage to the right, green lines indicate the

plane’s passage to the left, and blue lines indicate the plane’s passage to the right again.

The penetration depth is related to the inverse of�(δ0). When comparing the flow profiles

of Stokes’ 2nd problem and Modified Stokes’ 2nd problem, the effects of the oscillating

plane in Stokes’ 2nd problem penetrate farther into the fluid as in Modified Stokes’ 2nd

problem, the fluid velocity must be zero at the upper boundary. Notice again the decrease
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in velocity as a function of height for the lower viscosity fluid as compared to the higher

viscosity fluid. The effects of the oscillating boundary penetrate farther into the fluid as ν

increases.

direction of plane

Figure 6.3: A simulation of Modified Stokes’ 2nd problem for a purely viscous fluid il-
lustrates the effects of an increasing viscosity on the propagation of stress throughout the
fluid. The frequency is assumed to be ω = 1 Hz. Each plot represents a different viscos-
ity (ν = 1, 2, 4), and within a plot, a line indicates a single time step after a steady state
has been reached. Red lines correspond to earlier times and blue lines correspond to later
times. The three plots demonstrate that as ν increases, the coupling between the fluid and
the boundaries increases.

For viscoelastic fluids, the original differential equation for which I seek a solution will

not include Newton’s Law of viscosity, but will instead be a constitutive relation for the the

viscous stress tensor τ which, depending on the fluid, may or may not lead to an analytical
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solution of the Modified Stokes’ 2nd problem. For two viscoelastic fluids, the linear vis-

coelastic Maxwell model and the nonlinear upper convected Maxwell and Giesekus mod-

els, modified Stokes’ 2nd problem has been solved analytically. Both Maxwell models are

listed in Table 6.2.

The Maxwell model was first proposed by Maxwell in 1867 in differential form for

small changes in stress and strain (Macosko, 1994),

τ + λ
∂τ

∂t
= −ηγ̇ (6.34)

where η is the fluid viscosity, and λ is the material’s relaxation time. This model actually

falls out of the Generalized linear viscoelastic constitutive relation (in Table 6.2) if we as-

sume only one single relaxation time within the fluid. Describing a fluid with a Generalized

linear viscoelastic model implies a linear relationship between the change in stress (dτ) and

strain (γ) with a proportionality constant equal to the change in the relaxation modulus G,

or dτ = dGγ. These fluids do have memory as the generalized model integrates over all pre-

vious elapsed time. Graphically, Maxwell models are represented as a spring and dashpot

combination, as shown in Figure 6.4, with the spring representing the elastic contribution

and the dashpot representing the viscous contribution of the fluid. This concept that the

application of slow stresses versus rapidly changing stresses affects a material’s response

ties into later discussion when I introduce the viscoelastic fluid agarose (Macosko, 1994).
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τ

G η

Figure 6.4: The spring and dashpot represent the linear Maxwell model with a single re-
laxation time. τ is the stress applied to the fluid.

It is much simpler to consider the Navier-Stokes equation in its non-dimensional form

where the position variables in the equation have been divided by the appropriate charac-

teristic length scale, the velocity has been divided by the characteristic velocity, and the

time has been divided by the ratio of the length scale over the velocity scale. The non-

dimensional Navier-Stokes equation is then

∂u

∂t
+ ∇ · (�u�u) =

1
Re
∇ · (−p + τ) (6.35)

where Re is the Reynolds number. Assuming we still have no pressure gradient, a driving

plane oscillation of u(t) = Usin(ωt) such that the fluid is only in the x direction, and

the viscous stress represented by the Generalized linear constitutive relation (where I will

include G specific to the Maxwell model), the non-dimensional Navier-Stokes equation

becomes (Mitran et al., 2009)

∂u

∂t
=

1
Re

∂

∂y

��
t

−∞
G(t − t

�)
∂u(y, t�)
∂y

dt
�
�

(6.36)

where η0 is the zero-shear viscosity and for a Maxwell model, G(t) = (ηp/λ)e−t/λ with ηp

non-dimensionalized by η0 and λ non-dimensionalized by ω giving
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∂u

∂t
=
ηp

λRe

�
t

−∞
e
−(t−t

�)/λ ∂
2
u(y, t�)
∂y2 dt

�. (6.37)

This equation simplifies to a damped wave equation (Mitran et al., 2009),

∂2
u

∂t2 +
1
λ

∂u

∂t
=
ηp

λRe

∂2
u

∂y2 . (6.38)

The solution to Equation 6.38 has a very similar appearance to the solution for a purely

viscous fluid (Equation 6.33) and has been written down by Mitran et al. (2009) in its

non-dimensionalized form:

u(y, t) = �
�
e

it
sinh[δ(H − y)]

sinh(δH)

�
(6.39)

where δ = (1 + i)
�

Re/(2η∗), in dimensional variables Re = U
2/(ων), and t is measured in

units of ω. The variable η∗ is the complex viscosity of the fluid, and equal to η� − iη�� where

η� is the viscosity and η�� is the elasticity of the fluid. Figure 6.5 illustrates Modified Stokes’

2nd problem for a viscoelastic fluid as a function of changing viscosity and elasticity. Three

cases are shown in the figure: (i) η� = 0.5η��, (ii) η� = η��, (iii) η� = 2η��. For each case,

a series of curves is displayed with each curve illustrating a moment in time after a steady

state flow has been achieved.

Initially in the figure the elasticity of the fluid dominates the fluid’s viscous response,

and the coupling between the fluid and the boundaries is strong, as we see the effects of

the oscillating plate continue to affect fluid elements near the upper boundary. In addition,

it is interesting to note the increased velocity of the fluid is larger near the center of the
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channel. This increase is likely due to the constructive interference of propagating and

reflected shear waves (off the stationary upper boundary). This increased velocity is not

present when the viscosity is on the same order or larger than the elasticity. In these cases

(η� ∼ η�� and η� > η��), the velocity profile begins to look more like a purely viscous fluid

in that the effect of the oscillating boundary is damped by the viscosity of the fluid more

quickly than in the first case where η� = 0.5η��.
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direction of plane

Figure 6.5: Flow velocity as a function of height in a viscoelastic fluid with kinematic
viscosity ν = 1 as obtained using the analytical solution to Modified Stokes’ 2nd problem.
Each plot illustrates a different relationship between the fluid’s dynamic viscosity η� and
its elasticity η��. Within a single plot, each curve represents a moment in time after steady
state has been reached. Red lines indicate earlier times and blue lines correspond to later
times. As viscosity η� increases with respect to the elasticity η��, the effect of the oscillating
plane appears to die down more quickly; the velocity decays as height above the oscillating
plane increases.

As I explore the flows produced by my biomimetic cilia in both viscous and viscoelastic

fluids, these hydrodynamics solutions will be applied as a way to understand the underlying

fluid dynamics in my systems, including the relationship among cilia beat frequency, flow

velocity, and fluid viscosity and elasticity.
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6.2 Fluid Transport in Aqueous Fluids

Both FFPDMS and core-shell cilia have produced driven transport in aqueous fluids

utilizing the same tilted conical beat shape. To better understand how a single cilium con-

tributes to the flow as a whole, I will present a hydrodynamic model which treats the motion

of all cilia as a moving plane. This model is a superposition of two canonical solutions to

the low Reynolds number Navier-Stokes equation and was first identified in our publication

in 2010 (Shields et al., 2010) and later expounded upon in more detail by Adam Shields in

his dissertation (Shields, 2010). The model is essentially that of a driven cavity (assuming

a length and width much larger than height) and correlates well with both flow produced by

our biomimetic cilia arrays and by biological vertebrate nodal embryonic cilia, allowing us

to model both flows. An understanding of the low Reynolds number flow for purely viscous

fluids also provides me with a first step in understanding more complex viscoelastic fluid

flow; thus, the conclusions I present will be used in the following section (Section 6.3) to

assist in the interpretation of viscoelastic cilia-driven flow.

In addition to looking at the flow driven by FFPDMS and core-shell cilia tips in this

section, I will also discuss the flow below FFPDMS tips, which is drastically different from

flow above cilia tips and characterized by large fluctuations in flow velocities from one

spatial region to another. These large fluctuations in flow velocity and the lack of a uniform

flow below cilia tips lends our biomimetic cilia to the application of mixing in microfluidics

channels, which will be discussed in Section 6.2.3.
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6.2.1 Flow velocity dependence on cilia beat frequency

Before discussing the flow profile (flow velocity as a function of height) in an aqueous

fluid for a particular cilia beat frequency, it is important to understand how changing the

beat frequency affects the flow velocity. The beat frequency is an easily controlled pa-

rameter in my artificial core-shell cilia system. By increasing the voltage supplied to the

motor to which the permanent magnet is attached, the frequency of the motor may be in-

creased, thereby increasing the cilia beat frequency. In addition, I control the flow direction

by controlling the direction of the cilia beat; altering the rotational direction of the motor

(clockwise to counterclockwise) changes the direction of the core-shell cilia beat.

Figure 6.6: Flow direction as produced by core-shell biomimetic cilia can be altered by
altering the direction of rotation of the driving motor and magnet. From time 0 to approx-
imately 9.5 s, core-shell cilia are beating in the counterclockwise direction. From 9.5 s
to 13 s, the magnet is stationary and cilia are no longer beating, and from 13 s to 24 s,
core-shell cilia are beating in the clockwise direction, reflecting the change in the motor’s
rotational direction. Data was taken 10 µm above the cilia tips.
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Figure 6.6 displays the velocity as a function of time where the direction of the driving

force, created by the rotating motor plus magnet, is at first counterclockwise, removed

from the array, rotated in the clockwise direction, removed from the array, and so on.

As the frequency of the driving force increases, so does the flow velocity driven by the

core-shell cilia array in a purely viscous fluid. Figure 6.7 displays this linear relationship

for core-shell biomimetic cilia. This positive linear velocity dependence on frequency is

also seen with FFPDMS biomimetic cilia up to frequencies of at least 32 Hz. The effect

of changing frequency on flow velocity in a viscoelastic fluid does not appear linear and

will be discussed in Section 6.3.2. In addition, altering the tilt angle of the array affects

flow velocity, though regardless of tilt angle, the relationship between frequency and flow

velocity remains linear. A larger tilt angle increases the resulting flow velocity driven by

the array. (Shields, 2010)
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Figure 6.7: Flow velocity as a function of frequency 20 µm above the core-shell cilia tips
in an aqueous phosphate buffered saline (PBS) solution. Flow velocity and frequency are
linearly related, as indicated by the least squares linear fit.
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In biology, we do have evidence that increased flow velocities are in some way related

to increases in beat frequency. In 2005, Okada et al. published a study on the embryonic

nodal cilia for three different species: mouse, medakafish, and rabbit. The study found that

the cilia of each species beat at different frequencies, producing varying flow velocities

in the purely viscous environment of the node. For the mouse, cilia beat at 10.7±2.8 Hz;

for the medakafish, cilia beat at 42.7±2.6 Hz; and for the rabbit, cilia beat at 7.2±2.3 Hz.

The leftward driven flow velocities for each species was correspondingly different, ranging

from 1.3±0.4 µm/s for rabbits to 7.4±3.6 µm/s for medakafish (Okada et al., 2005). This

relationship between frequency and velocity is not exactly linear, but note that the data

represents three different species with various cilia sizes. The experiment to alter the beat

frequency of cilia and understand resulting flow velocities in the node of a single embryo

has not yet been realized.

6.2.2 Two regimes of flow

To evaluate the flow produced by biomimetic cilia in an aqueous Newtonian fluid, PBS

seeded with 500 nm diameter fluorescent microspheres at a concentration of 1:300 was

added to arrays mimicking the tilted conical beat of embryonic nodal cilia. This experiment

has been performed with both 25 µm tall FFPDMS cilia (Shields et al., 2010) and 10 µm

tall core-shell cilia (Fiser et al., 2012). However, two distinct regimes of flow have been

studied only for the taller FFPDMS cilia arrays. Because of their height, these taller arrays

show a distinct separation between the directed flow occurring above the cilia tips and the

lack of directed flow below the cilia tips. Several fluorescent tracer particles below the
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tips of shorter cilia arrays have been seen to exhibit large fluctuations in speed and rapid

movements, jumping from the vortex created by one cilium to another, but for the most

part, directional flow dominates, and most tracer particles travel at the same rate and in the

same direction as the flow above the cilia tips.

These two regimes of flow present in 25 µm tall FFPDMS biomimetic cilia arrays are

distinctive in nature, with a very sharp transition between them. As I mentioned previously,

above the cilia tips, the flow is uniform and directed across the entire array, which is ap-

proximately 2 mm x 2 mm in size. This directed flow is fastest at the cilia tips and decreases

as the distance above the cilia tips increases. At some point above the cilia tips, the flow be-

gins to reverse itself and recirculate throughout the enclosed flow cell. Almost immediately

below the cilia tips, the flow becomes nondirectional and appears rapid. Tracer particles

jump from one cilia-induced vortex to another, sampling the flows around multiple cilia.

The flow regime below cilia tips strongly resembles an enhanced diffusive process. Figure

6.8 illustrates the two regimes of flow. In the next two sections, I discuss the characteriza-

tion of these regimes in further detail, the directed transport present in both FFPDMS and

core-shell cilia arrays and enhanced diffusion in FFPDMS cilia arrays.
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Figure 6.8: Reprinted from Shields et al. (2010). Biomimetic cilia driven flow in aqueous
fluids exhibits different behavior above and below the cilia tips. Below the cilia tips, flow
is rapid and nondirectional. Directly above the cilia tips, the flow is strongly directional
and uniform across the entire array. As the height above the cilia array increases, the flow
begins to reverse direction due to the enclosed nature of the fluidic cell in which the cilia
sit (Shields et al., 2010).

Directed transport and the flow profile

Above the cilia tips, the flow is uniform, and strongly directional with tracer particles

traveling the fastest directly at the cilia tips. The direction of the cilium beat when it

is furthest from the floor determines the flow direction above the cilia tips. In order to

develop a model of cilia-generated fluid flow, it is essential to understand how a single

cilium contributes to the bulk fluid flow, also known as coarse-graining. Constructing a

flow profile is key to understanding the motion of the bulk fluid. The flow profile, or

velocity as a function of height, was generated by averaging the velocities of tracer particles

in each individual focal plane within the fluidic cell (both above and below the cilia tips).

Figure 6.9 shows the flow profiles for both FFPDMS and core-shell cilia arrays beating at
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a frequency of 34 and 16 Hz, respectively. Both profiles are markedly similar in shape,

though velocity and height values are different.
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Figure 6.9: The flow profile at left is for FFPDMS biomimetic cilia, and the profile at right
is for core-shell cilia. The flow velocity is largest at the cilia tips, with the core-shell cilia
driving a larger velocity (∼24 m/s) than FFPDMS cilia (∼9 m/s) for beat frequencies 16
and 34 Hz, respectively. Around a height of z = 100 µm, the flow begins to recirculate in
both cilia arrays. Below cilia tips, the distribution of velocities is much larger due to the
nondirectional flow and large variations in velocity from tracer to tracer. As indicated by
the solid (FFPDMS cilia) and dashed (core-shell cilia) lines in both flow profiles, the PC
model accurately represents the flow above cilia tips. For FFPDMS cilia, u0 = 8.7 µm/s
and ∇p = 1.05 Pa/m. For core-shell cilia, u0 = 24 µm/s and ∇p = 2.0 Pa/m

Looking at the flow velocities at and above the cilia tips (z = 25 → 225 µm for FF-

PDMS cilia and z = 10 → 235 µm for core-shell cilia), we can characterize the flow as a

linear superposition of Poiseuille and Couette flow (PC flow), two classical solutions to the

low Reynolds number, incompressible Navier-Stokes equation for Newtonian fluids (Equa-

tion 6.16. To apply PC flow to biomimetic cilia within a fluidic cell, I set z
� = z − 25 µm

for FFPDMS cilia and z
� = z−10 µm for core-shell cilia. For both FFPDMS and core-shell

cilia, the cilia tips represent the lower plate at z
� = 0 translating with a constant velocity

u0, and the stationary upper plate is located at z
� = 200 µm and z

� = 225 µm for the two

cilia arrays, respectively. The solid blue line on the left plot in Figure 6.9 and the dashed
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black line on the right plot are least squares fits of Equation 6.17 to the flow profiles. Fit

parameters include the pressure gradient ∇p and the velocity of the translating plate u0.

From these fits, we conclude that our biomimetic cilia tips collectively generate a shear

stress on the fluid, effectively acting as a moving plate. Additionally, the flow appears to

have an effective pressure gradient driving recirculation within the fluidic cell. For a vis-

coelastic fluid with an elasticity comparable to viscosity, the flow velocity may not appear

to decay as nicely as Figure 6.9 represents for a purely viscous fluid. The effects of a longer

relaxation time and shear wave reflection off the upper boundary may create an nonlinear

change in velocity as a function of height. All of these potential changes to the flow profile

with the incorporation of a viscoelastic fluid will be discussed in Section 6.3.3.

In addition to describing our biomimetic cilia systems with PC flow, in Shields et al.

(2010), we apply this PC flow fit to velocity data taken in a mouse embryonic node by

Okada et al. (Okada et al., 2005), as shown in Figure 6.10. The cilia tips and node ceiling

are indicated in the figure, information we gleaned from their work. From this fit and from

Figure 6.9, we conclude that both our fabricated biomimetic cilia and biological nodal cilia

behave as shear stress generating boundary for the fluid above the cilia tips.
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Figure 6.10: PC flow profile fit to mouse nodal flow velocity data obtained from Okada et
al. (2005) at three different heights (Okada et al., 2005). Fit parameters are u0 = 4 µm/s
and ∇p = 79 Pa/m.

Enhanced diffusion with FFPDMS cilia

Below the cilia tips, the flow appears rapid and nondirectional, and tracers exhibit large

fluctuations in speed. Each cilium is associated with a local vortex, and tracers appear to

jump from one vortex to the next, sampling the flows around multiple FFPDMS cilia. To

understand more about this nonuniform flow below the tips, we need to understand how the

velocities of tracer particles throughout the flow scale with time. The position r of a par-

ticle undergoing a constant velocity v, which is also called ballistic motion, scales linearly

with time at the rate of the constant velocity, or r = vt. If the motion is not ballistic, the

relationship between a particle’s position at a time t will not be linear. To understand the re-

lationship between position and time more generally, we use the mean square displacement

(MSD), which defines a characteristic length scale over which a particle moves,

�r2(τ)� = ατγ (6.40)
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where τ is a lag time, or time window, rather than an absolute time. For ballistic motion,

Equation 6.40 reduces to α = v
2 and γ = 2. For diffusive motion, motion which varies in

time like a random walk, α = 2dD and γ = 1 where d is the Euclidean dimension (d = 2

for two dimensions) and D is the diffusion coefficient, or diffusivity. Processes which are

not considered ballistic or diffusive are either superdiffusive (1 < γ < 2) or subdiffusive

(γ < 1).

When determining the type of process exhibited by particles in a fluid, it is often simpler

to look at the MSD in log-log space. Equation 6.40 becomes

log

�
�r2(τ)�

�
= log(α) + γlog(τ) (6.41)

such that when plotted, the slope of the curve is equal to γ and the y-intercept is equal to α,

or for diffusive motion, γ = 1 and α = 2dD.

Before looking at the motion of tracer particles below the cilia tips, the advective com-

ponent of the flow was removed. This removal was done by analyzing the relative dis-

persion of pairs of tracers, with a separation of �R(t) = �x2(t) − �x1(t) (Babiano et al., 1990;

Artale et al., 1997; LaCasce and Bower, 2000). This relative dispersion method treats the

separation of particles as a single particle; thus, four tracer particles in a fluid become six

effective particles using relative dispersion. As with the transport of particles themselves,

the transport of particle separations can be characterized by the MSD for two dimensions,

�R2(τ)� = 4D
R

e f f
τγ (6.42)
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where τ is again a lag time, D
R

e f f
is an effective relative diffusivity, and γ is the time depen-

dence exponent. Performing a linear least squares fit to log(�R2(τ)�) versus log(τ) returned

γ = 1 at all heights above the sample floor, indicating that the motion is effectively a

diffusive process with an enhanced transport rate given by D
R

e f f
. The expected relative dif-

fusivity for 500 nm diameter microspheres in PBS with no cilia motion is D
R

0 = 1.8 µm2/s.

As shown in Figure 6.11, biomimetic cilia motion drives a maximum relative diffusivity of

42 µm2/s, an enhancement in D
R

e f f
of 25 compared to D

R

0 . For more detail on the charac-

terization of an effective diffusion process, see the dissertation of Adam Shields (Shields,

2010).

Figure 6.11: The cilia-driven motion of tracer particles below the cilia tips scales as a dif-
fusive process with an enhanced transport rate of D

R

e f f
. The red line indicates the expected

relative diffusivity of tracers in PBS without cilia present (Shields et al., 2010).
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6.2.3 Implications for biology and technology

Our biomimetic cilia arrays are the first to truly mimic a biological system, and with

it, we can inform our understanding of biological cilia. Biomimetic FFPDMS cilia-driven

flow regimes were created by driving cilia in a tilted conical beat pattern, as described

in Section 5.2.2, directly mimicking the tilted conical beat performed by vertebrate nodal

embryonic cilia. Nodal embryonic cilia, in performing this beat, drive flow from the right

to left sides of the embryonic node (Nonaka et al., 2002), and biomimetic cilia are capable

of driving fluids in a similar fashion. I have shown that the flow profile established by nodal

cilia above their tips correlates well with the flow profile established by biomimetic cilia

above their tips (Section 6.2.2).

In addition to merely driving directional flow, there is a morphogen gradient generated

within the nodal pit that plays a key role in determining left-right asymmetry in the ver-

tebrate embryo (Nonaka et al., 2002). The morphogen gradient is more concentrated on

the left side of the embryo, the same direction as the flow driven by nodal cilia. As I dis-

cussed in Chapter 2, within the node are nodal vesicular parcels (NVPs), one micron sized

morphogen-loaded vesicles that carry their cargo toward the left side of the embryo and

subsequently rupture, creating this morphogen gradient. The flow within the node must

advect the NVPs efficiently to the left while transporting the released morphogens slowly

enough to preserve the morphogen concentration gradient. Directed flow above the cilia

tips appears to provide the initial establishment of a long-range chemical gradient; how-

ever, in order to form a gradient, NVPs must first reach the area where the directed flow

regime dominates.
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In 2005, Tanaka et al. proposed a mechanism for the release of NVPs into the advec-

tive flow layer such that microvilli at the cell surface dynamically extend NVPs into the

flow (Tanaka et al., 2005). The directed flow results presented support this idea; some

mechanism must be present to establish the initial morphogen gradient. Whether or not

the gradient remains after initial transport into the advective layer depends on the competi-

tion between cilia-driven transport and the rate of intrinsic diffusive transport. The particle

transport rate below the cilia tips is more rapid than the flow above, but it is nondirectional

and effectively diffusive. Based on flow speed alone, it is unlikely that a chemical gradient

would persist; however, cilia-driven mixing below the tips dominates intrinsic diffusivity

for particle sizes larger than 10 nm. Thus, small molecules used to set up the chemical

gradient within the node would not be affected by the enhanced mixing.

Besides being a tool for understanding biological cilia-driven flow, as a technological

application, one use of microactuators such as ours has been as pumps or mixers in mi-

crofluidic systems. Microfluidics studies small volumes of fluids (typically microliter vol-

umes) usually within sub-millimeter sized channels or systems of channels. Microfluidic

systems deal almost exclusively with low Reynolds number laminar flows because of their

small length scales, and in this environment, pumping without external syringe pumps and

mixing are difficult. In laminar flow, the mixing of adjacent fluid particles is achieved only

through diffusion, and thus is an inherently slow process. Many techniques exist in the lit-

erature which introduce physical constructs into the microfluidics channels, such as raised

features on the sidewalls or floor, which interact with the fluid and cause fluid parcels to

mix (Stroock et al., 2002). The time for a fluid to mix only through diffusion over a length
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l in a fluid is

tm = l
2
D. (6.43)

Thus, a higher diffusivity D gives rise to a faster mixing time tm, which for our biomimetic

cilia may be 25 times faster. This enhanced diffusivity combined with the pumping action

above the cilia tips make for a versatile device which can both mix and pump in two very

spatially segregated regimes. In addition, one may alter the length of the biomimetic cil-

ium, thereby changing the size of the mixing layer such that within a single microfluidics

channel, one could span half the channel with a mixing regime and half the channel with a

pumping regime, for selectively treating various fluids.

6.3 Fluid transport in viscoelastic fluids

All of our perceptions about motion and velocity are discarded in low Reynolds number

environments where time is essentially irrelevant, and it is strictly the asymmetry of organ-

ism motion which determines whether an organism achieves net transport. In Section 6.2, I

addressed this phenomenon in purely viscous fluids such as water and phosphate buffer. In

this section, I will address the transport produced by biomimetic cilia in viscoelastic fluids.

Adding an elastic component to the fluid further alters our understanding of phenomena

at low Reynolds number, and this section will reach an understanding of these phenomena

by first comparing them to the previously discussed viscous fluid case. The dependence of

flow velocity on both cilia beat frequency and height in a viscoelastic fluid are important for
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gaining a better understanding of biological cilia in the lung and the process of mucociliary

clearance as a whole. There are many open questions concerning interactions between cilia

and the mucus layer lining our lungs. The hurdle to answering these questions lies in part

in the difficulty of obtaining in vivo samples of lung tissue. Much of our current under-

standing is derived from cell culture or animal models, both of which contribute greatly to

our knowledge, but suffer from the drawback of being either a two-dimensional system or a

system which is not entirely representative of the human airway. My biomimetic system is

another model platform, one over which we have enormous control, that can also provide

valuable contributions to our understanding of the interaction between cilia motion and the

resulting viscoelastic fluid flow.

Before discussing results and implications, however, I take a moment to briefly review

the nature of viscoelastic fluids and discuss the particular viscoelastic fluid, agarose, which

is used in these flow experiments. Every fluid is, in the widest sense of the word, a vis-

coelastic fluid, consisting of both a viscous, or liquid, response, and an elastic, or solid

response. Whether one characteristic or the other exhibits itself depends on the timescale

t at which the material is probed (or over which the observation occurs) and the stress σ

which is exerted on the material. As an example of a simple viscoelastic fluid, let us utilize

the Maxwell model introduced in Section 6.1.5, which comprises a spring and dashpot in

series representing the elastic and viscous contributions of a fluid’s response, respectively.

For the spring, the shear stress σ is proportional to the strain γ by the shear modulus G, and

for the dashpot, the shear stress σ is proportional to the shear rate γ̇ by the shear viscosity

η. (Goodwin and Hughes, 2008) Suppose we quickly apply a small strain to a Maxwell
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model fluid; the spring will respond immediately and the stress will remain constant over

the entire application of strain. This stress will slowly dissipate, however, due to the dash-

pot piston’s slow motion through its fluid. The stress decay as a function of time for the

Maxwell fluid will be an exponential decay, σ = σ0e
−t/tm where tm is a time constant asso-

ciated with the fluid called the decay time. Dividing the stress equation by strain supplies

us with a relaxation function, relating the modulus and decay time (Goodwin and Hughes,

2008):

G(t) =
σ

γ

=
σ0

γ
e
−t/tm . (6.44)

When the observation time t is small compared to the decay time of the fluid, we can see

that the exponential approaches one, and in the limit that t → 1, G(t) = G, indicating that a

Maxwell model fluid exhibits an elastic response at short time scales. As time passes, the

stress is dissipated by the dashpot, which is indicative of a viscous response at long time

scales. Short and long time scales correspond to high and low frequencies, respectively;

thus the elastic response will display itself with high frequency interactions. Understand-

ing the relationship between time and applied stress on material properties is integral to

understanding the viscoelastic nature of a material.
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6.3.1 The viscoelastic fluid agarose

As one of the motivations for my dissertation is to investigate the biological implica-

tions of our biomimetic system, I elected to understand biomimetic cilia-driven flow in

the viscoelastic fluid agarose. Agarose is a polysaccharide derived from agar, which can be

found in the cell walls of certain species of red algae. In the literature and in my own exper-

iments, agarose has been shown to exhibit gross viscoelastic properties similar to those of

bronchial epithelial mucus. In 1974, King et al., looked at the transport properties of multi-

ple potential mucus mimics on cleaned frog palates. Transport was measured with 0.8 mm

steel spheres. Agarose gels from 0.35-0.75% were tested and found to be transportable by

the frog’s depleted palate at approximately half the transport rate of native mucus (King

et al., 1974).

In addition to King et al.’s measurements, I have measured the apparent viscosity as

a function of shear rate for two concentrations of agarose, 0.1 and 0.25%, and compared

these values to similar measurements obtained by Jeremy Cribb for two Human Bronchial

Epithelial (HBE) mucus concentrations, 2.5 and 5.3% (Cribb, 2010). The two concentra-

tions of HBE mucus were chosen because 2.5% corresponds to a ‘normal’ mucus sample,

and 5.3% is considered similar to sputum obtained from a patient suffering with chronic

obstructive pulmonary disease (COPD). Measurements were taken on a stress-controlled

cone and plate rheometer (AR-G2, TA instruments) with a cone 40 mm in diameter at an

angle of 1◦. For agarose, a stress of 0.1 Pa was maintained and the frequency was varied

between 10−2 and 104 rad/s. The Cox-Merz rule, which equates the shear rate dependence

of the steady state viscosity η and the frequency dependence of the linear viscoelastic vis-
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cosity η∗, or essentially η(γ̇) = |η∗(ω)|, was applied to obtain viscosity as a function of shear

rate (Macosko, 1994). In Figure 6.12, agarose data is included on the same plot as HBE

mucus measurements for side-by-side comparison.

Figure 6.12: HBE mucus at concentrations of 2.5% and 5.2% (Cribb, 2010) and agarose at
0.1% and 0.25% exhibit similar gross viscoelastic properties.

Based on these comparisons, I use a concentration of 0.1% agarose to represent a

healthy mucus and 0.25% agarose to represent a COPD-like mucus. Before adding these

solutions to an array, I measured the viscous and elastic components of the fluid using the

cone and plate rheometer. The application of a sinusoidally oscillating stress will produce

a sinusoidal strain phase in the material shifted by the amount δ. This strain phase can

further be divided into two waves with the same frequency; one wave is in phase with the

strain, and the other is 90◦ out of phase with the strain. The in-phase wave is designated as

the storage modulus, G
�, and the out-of-phase wave is designated as the loss modulus, G

��.

The storage modulus is a measure of the elastic component of a fluid, and the loss modulus

is a measure of the energy dissipation of the fluid, representing the viscous component. We
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relate the storage and loss moduli to the fluid’s viscosity η� and elasticity η�� as G
� = ωη��,

and G
�� = ωη�. A viscoelastic liquid has G

�� > G
�, and a viscoelastic solid has G

� > G
��.

The loss tangent, or ratio of G
�� to G

�, is frequently used to classify a viscoelastic material’s

behavior as liquid-like or solid-like. This loss tangent is written as (Macosko, 1994)

tan δ =
G
��

G�
. (6.45)

Both of these moduli can be measured as a function of frequency and applied stress.

Ideally, the measurement would be collected at a frequency and applied stress represen-

tative of the biomimetic cilia experiment, 16 Hz and at least 5 Pa (assuming a minimum

cilia tip velocity of 50 µm/s). However, I am unable to explore the material’s response at a

frequency of 16 Hz as the material does not offer enough torque resistance to the motion of

the cone, and the signal becomes extremely noisy and unreliable. This noisiness and signal

unreliability occurs at frequencies as low as 10 Hz; thus, a frequency of 1 Hz was utilized

to characterize agarose on the cone and plate rheometer. An applied stress of 0.01 Pa was

also utilized as stresses larger than ∼0.01 Pa explore the nonlinear regime of the material,

a regime in which few assumptions can be made and little is understood about trends in

the material response. Within the linear regime, G
� and G

�� are independent of the chosen

stress amplitude and frequency. Figure 6.13 is a stress sweep at two different frequencies

to illustrate the dependence of storage and loss moduli on frequency and stress outside the

linear regime. The loss tangent, tan δ, for each data set in Figure 6.13, is shown in Fig-

ure 6.14. Recall that a loss tangent less than one implies the material exhibits solid-like

behavior.
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Figure 6.13: Stress sweeps in 0.1% agarose at a frequency of 0.1 Hz and 1 Hz at room
temperature. Both G

� and G
�� become nonlinear at stresses greater than 0.01 Pa; thus, all

cone and plate experiments were run with an applied stress of approximately 0.01 Pa.
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Figure 6.14: Loss tangent in 0.1% agarose at a frequency of 0.1 Hz and 1 Hz at room
temperature. When tan δ < 1, the material exhibits solid-like behavior, and when tan

δ > 1, the material exhibits liquid-like behavior.

Throughout my experiments, the beat frequency of my biomimetic system ranges from

0.65 Hz to 16 Hz, but the stress is likely always greater than 0.01 Pa as a cilia tip velocity

even as slow as 5 µm/s would apply a stress of ∼0.2 Pa. Because of this, and because

typical experimental practices to explore higher frequencies such as time-temperature su-

perposition do not work well for agarose, the values for the storage and loss moduli must

be estimated utilizing the parameters I have discussed.

The agarose utilized in the following experiments was created by adding low gelling

temperature agarose in powder form (Sigma-Aldrich, cat no. A0701) to 150mM sodium

chloride. For example, a 0.1% solution requires the addition of 20 mg agarose to 19.98 g

NaCl. I typically use a 50 mL conical tube to contain the solution. The tube is wrapped with

parafilm to prevent evaporation and tumbled in a 68◦C oven for approximately two hours.
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Solutions are aliquoted into 2-10 mL aliquots and stored at 4◦C for up to one week. Prior

to utilizing agarose in an experiment, it must be heated to 65◦C such that the liquid form

can be easily pipetted. Fluorescent microspheres can then be added to the heated agarose

solution, usually at a concentration of 1:300, and this solution is then added to core-shell

cilia arrays.

6.3.2 Flow velocity dependence on biomimetic cilia beat frequency

How does the presence of an elastic component to the fluid alter the relationship be-

tween cilia beat frequency and flow velocity? Biological cilia in the human lung beat at

a frequency of ∼8-10 Hz (Chilvers and O’Callaghan, 2000; Hill et al., 2010). This fre-

quency varies from species to species. Does the motivation for assuming a beat frequency

stem solely from the mechanical properties of the cilium and its dynein motors, the inter-

action between cilia and mucus, or both? We can turn this question around and instead ask

whether the mucus’ viscoelasticity is tuned perfectly for the natural beat frequency of cilia.

Does the fact that mucus is a viscoelastic fluid play a role in the response of mucus to cilia

beat frequency? To my knowledge, no one has yet explored how altering the beat frequency

of biological cilia affects mucus transport rates, though as I mentioned previously, altering

the fluid itself does affect transport rates (King et al., 1974).

In this section, I explore the relationship between frequency and flow velocity for 0.1%

agarose. Recall from Section 6.2.1, that in a purely viscous fluid, an increase in cilia beat

frequency results in an increase in flow velocity, as shown in Figure 6.7 in Section 6.2.1.

This relationship is exhibited to an extent in agarose. Figure 6.15 illustrates the dependence
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of flow velocity on frequency at five different heights above the core-shell cilia tips located

at z = 10 µm): z = 20 µm, z = 30 µm, z = 40 µm, z = 70 µm, and z = 100 µm.
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Figure 6.15: Flow velocity in the x-direction tends to increase as the beat frequency of an
array of core-shell cilia increases, though not necessarily linearly. Displayed in the plot
is the relationship between velocity and beat frequency for five different heights above the
cilia tips (located at z = 10 µm). For a purely viscous fluid, the relationship would be
perfectly linear.

To better understand the velocity-frequency relationship in a viscoelastic fluid, we can

build from our purely viscous understanding. In Figure 6.15, notice first the increase in flow

velocity which occurs as beat frequency increases. This relationship is similar in viscous

fluids; however, in viscous fluids, the proportionality is linear. We can attempt a linear

least squares fit to the velocities at z = 20 µm; this fit is shown in Figure 6.16. From this

fit, a linear relationship does not appear to be a good descriptor of the phenomena. The

curve itself has a wave-like form such that the velocity increases and decreases from one

156



frequency to the next, though globally, flow velocity increases.
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Figure 6.16: To better understand the velocity-frequency relationship in a viscoelastic fluid,
we can build from our purely viscous understanding by performing a linear least squares fit
to the flow velocity versus core-shell beat frequency. In a viscous fluid, velocity is linearly
dependent on cilia beat frequency. In this viscoelastic fluid, 0.1% agarose, the fit does not
adequately explain the velocity-frequency relationship. (Data was taken at z = 20 µm.)

Besides the global increase in flow velocity as a result of increased frequency, it is

also interesting to note the change in flow velocity for a given frequency as a function of

increased height above the cilia layer. As shown in Figure 6.15, for the flow at z = 20 µm,

z = 30 µm, and z = 40 µm, the onset of a net velocity appears to occur at increased

frequency. For example, at z = 20 µm, flow begins at a beat frequency of ∼2.1 Hz. At z =

30 µm, flow is not present until a beat frequency of ∼10 Hz, and at z = 40 µm, significant

flow is not seen until ∼13 Hz. For the larger heights (>70 µm), little to no net flow is

present. The top boundary of the flow cell for this experiment is located at approximately
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z = 150 µm. Recall for the purely viscous fluid, when driven at a higher frequency (at 16 Hz

specifically), flow is present throughout the entire flow cell, except at the height where the

direction of flow begins to reverse due to the cell’s enclosed nature (as shown in Figure

6.9). To further investigate flow velocity as a function of frequency, additional data would

be collected in both 0.1% agarose and in a viscoelastic fluid with a lower viscoelasticity.

The benefit of a lower viscoelasticity would be in the larger flow velocities produced at

lower frequencies and larger flow velocities (above diffusion) produced at increased heights

above the cilia tips. In this way, a more detailed map of the relationship between velocity,

frequency, and height could be achieved.

6.3.3 Directed transport and the flow profile

In addition to the relationship between flow velocity and cilia beat frequency in vis-

coelastic fluids, the relationship between flow velocity and height, at a given frequency,

is also of interest. When biological cilia come into contact with the mucus layer, what

mechanical interactions occur? The mucus layer is thought to begin at the cilia tips and

extend 15-20 µm above cilia tips in the upper airways (Boucher, 2004). Does the entire

mucus layer move? Must the entire mucus layer translate to clear our lungs of pathogens?

Understanding the fluid dynamics within the lung could result in improvements in drug

targeting and delivery. Before delving into a complex system of layered fluids, however,

it is important to first understand the simpler case with only a viscoelastic fluid filling the

space throughout and above the cilia layer, which is the topic of discussion in this section.

In Section 6.2.2, I discussed our understanding of the fluid dynamics in the vertebrate
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embryonic node, a purely viscous fluid environment. The flow profile (flow velocity as a

function of height) was fit to a model called Poiseuille-Couette flow that averaged over an

entire array of cilia and treated them as a single plane translating in one dimension at a

given velocity. A pressure gradient was included due to the enclosed nature of the node

(and experimental flow cell). Moving forward with that flow profile in mind, I expect in a

viscoelastic flow profile to encounter a faster velocity near the cilia tips, as we encountered

in the viscous fluid, which will decay as the distance from the cilia tips increases. Because

the flow cell is sealed, recirculation of fluid may also occur in the viscoelastic case. How-

ever, depending on the elastic nature of the fluid, the effect of the core-shell cilia may be

short-lived, and a rapid decrease in flow velocity may occur as we move farther from the

cilia tips.

Figure 6.17 is the flow profile in 0.1% agarose with the core-shell cilia beating at

16.3 Hz. Note the sharp decay in velocity as a function of height. In just ten microns

(between z = 20 µm and z = 30 µm, the velocity decreases by 70%. In the viscous flow

profile, the data shows little, if any, decay in velocity from 20 to 30 µm above cilia tips;

the Poiseuille-Couette fit discussed in Section 6.2.2 indicates the velocity falls only 8%.

Again, we utilize our model for viscous flow to draw conclusions concerning driven flow

in a viscoelastic fluid.
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Figure 6.17: The flow profile (velocity as a function of height plotted with height on the
y-axis) for core-shell biomimetic cilia driven at 16.3 Hz has a number of expected charac-
teristics. The cilia tips are located at z = 10 µm, and just above the tips, the flow has the
fastest velocity. Due to the enclosed nature of the flow cell, there does exist a recirculation
as height increases. The total height of the flow cell is approximately 150 µm. In addition,
the flow velocity decays from its maximum fairly quickly, reaching nearly zero velocity
within 20 µm.

To determine whether or not the viscoelastic flow profile was similar in nature to the

purely viscous flow profile, the same fit performed on viscous flow (Equation 6.17) was

applied to this flow profile. The height of the flow cell is taken as 150 µm, and the viscosity

is the zero-shear viscosity of 0.1% agarose (490 cP). Fit parameters include the velocity of

the ’moving plate’ used to represent the cilia layer, u0, and the pressure gradient within the

flow cell, ∇p. As can be seen in Figure 6.18, the fit (indicated by the dashed red line, ‘Fit

1’, with u0 = 1.5 µm/s and ∇p = 194 Pa/m) does not accurately represent the nature of the

flow, and in the algorithm’s attempt to fit both the pressure gradient and velocity at the cilia

tips, neither feature is captured well. The velocity is underestimated near the cilia tips, and

the recirculation does not occur to the extent predicted by the fit. In attempting to correct
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the underestimation of u0, I will set u0 = 3 µm/s and utilize ∇p as the only fit parameter.

Again, as one can see from the figure, the pressure gradient increases to compensate for

the increased velocity, and the fit (‘Fit 2’) is poor. Conversely, I set ∇p = 0.0001 Pa/m,

utilizing u0 as the only fit parameter to capture the low pressure gradient. This third fit (‘Fit

3’) also results in an underestimated u0, and still does not accurately capture the shape of

the velocity profile.

Figure 6.18: The flow profile (velocity as a function of height plotted with height on the
y-axis) for core-shell biomimetic cilia driven at 16.3 Hz is not accurately described by the
PC model. Three fits using the Poiseuille-Couette flow model are illustrated to indicate the
model’s inability to accurately describe both the pressure gradient and velocity at the cilia
tips. Fit 1 utilizes ∇p and u0 as fitting parameters, giving values u0 = 1.5 µm/s and ∇p =

194 Pa/m. Fit 2 holds u0 = 2.7 µm/s, considering ∇p a fitting parameter (∇p = 378 Pa/m).
Fit 3 holds ∇p = 100 Pa/m, fitting u0 = 1.12 µm/s.

Alternatively, solving for the y-intercept (value of height z when u(z) = 0) of the PC

model gives 2u0η/h∇p. By setting the y-intercept equal to the approximate y-intercept im-

plied by the data, we notice that u0 and ∇p are not two independent parameters. Assuming

a constant viscosity and flow cell height, altering one parameter will affect the other, and
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applying a fit to one portion of the data (the pressure gradient or velocity at the cilia tips)

will result in a curve which does not accurately represent the data in its entirety.

The viscous model for cilia-driven flow does not adequately explain viscoelastic cilia-

driven flow, thus a new coarse-grained model must be used for the viscoelastic flow profile

in Figure 6.17. Figure 6.19 illustrates the flow profile when the cilia are driven at a fre-

quency of 0.65 Hz. The lower frequency produces nearly zero flow velocity; however, as z

increases, the flow velocity appears to alternate direction. This figure is similar to the sim-

ulation of Stokes’ modified second problem discussed in Section 6.1.4 where an oscillating

plate drives shear waves through the fluid. As the height increases, the amplitude of a shear

wave originally propagated by the plate decreases. Thus, at lower frequencies which drive

little to no net fluid flow cilia produce a flow profile similar to that of Stokes’ modified 2nd

problem. At higher frequencies, cilia produce a net flow that decays quickly and has some

small amount of recirculation, but does not follow PC flow. The coarse-grained model that

is relevant to explain driven flow in a viscoelastic fluid may be a combination of an oscil-

lating plane that is also driven at some constant velocity and includes a slight recirculatory

flow such as what might be seen with a driven cavity problem that includes an oscillating

lid.
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Figure 6.19: Biomimetic cilia driven at 0.65 Hz produce little net flow. As height increases,
the velocity appears to alternate direction and decrease.

Modeling of this phenomenon to further our understanding of this coarse-grained cilia

model is currently being conducted in collaboration with Dr. Greg Forest and Dr. Paula

Vasquez in the Applied Mathematics Program at the University of North Carolina at Chapel

Hill. To gain a more detailed picture of the flow driven by core-shell cilia in a viscoelastic

fluid, more data must be taken at smaller height intervals above cilia tips and in fluids

which are considered less viscoelastic in order to gain better resolution in the velocity

measurements. I plan to continue with this research after this doctoral thesis.

I also investigated biomimetic cilia-driven fluid flow in 0.25% agarose, a fluid with a

larger viscosity and elasticity. This concentration of agarose is comparable in terms of gross

viscoelasticity to pathological COPD sputum as I discussed in Section 6.3.1. At room tem-

perature, the temperature at which 0.25% agarose is comparable to COPD sputum, core-

shell cilia are incapable of driving a net transport, even in the same plane as the cilia tips,
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though the tracer particles do oscillate in place in response to the cilia motion. To deter-

mine whether this lack of transport was due to the inadequacy of a particular biomimetic

cilia array or due to the effect of the increased viscoelasticity of the fluid, I increased the

temperature of the viscoelastic fluid, investigating cilia-driven flow at both 35◦C and 65◦C.

As temperature increased, the tracer particles experienced a net displacement in response

to the beating cilia. Figure 6.20 is a collection of minimum intensity projections of tracer

particle paths at the cilia tips and 20 µm above the cilia tips as the temperature increases.

The cilia were driven at 16.3 Hz, and to ensure the flow at 65◦C was not caused by drift,

data was taken with the cilia motionless, verifying that the motion was indeed diffusive.

Figure 6.20: Core-shell cilia driven at 16.3 Hz produce no net transport in 0.25% at room
temperature, but as the temperature is increased to 65◦C, tracers begin to move, and a
net flow arises. The onset of driven, directed flow at higher temperatures implies that
the fluid itself prevents the occurrence of cilia-driven flow, and as I discuss in the text,
the viscoelasticity of the fluid causes a diminished cilium amplitude. The three minimum
intensity projections display the paths of fluorescent tracer particles over 30 s at the cilia
tips, z = 10 µm, and 20 µm above the cilia tips, z = 30 µm, for three different temperatures:
(a/d) 25◦C, (b/e) 35◦C, (c/f)∼ 65◦C.
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Imaging the cilia tips in brightfield mode at 25◦C and 65◦C indicates a large increase in

amplitude with the increase in temperature, corresponding with the increased flow velocity.

The amplitude increased by approximately 200% with an increase in temperature of 25◦C

to ∼58◦C. The viscoelasticity of 0.25% agarose is highly dependent on temperature. At

25◦C, 0.25% agarose clearly behaves as a viscoelastic solid (G� > G
��). However, as the

temperature increases, the storage modulus decreases until at 65◦C, G
�� > G

�, as shown in

Figure 6.21.
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Figure 6.21: At lower temperatures, the storage modulus G

� (closed circles) is greater than
the loss modulus G

�� (open circles), indicating that the fluid behaves as a viscoelastic solid.
However, as temperatures near 65◦C, G

� < G
��, and 0.25% agarose exhibits more liquid-like

behavior.

6.3.4 Implications for biology and technology

The development of a fabrication technique for arrays of artificial cilia which are of a

similar size to biological cilia and which are capable of propelling viscoelastic fluids like
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their biological counterpart is a remarkable addition to our current set of experimental tools

for the investigation of cilia-driven flows. Preliminary analysis of these biomimetic cilia-

driven flows in a viscoelastic fluid similar to healthy HBE mucus indicate the effects of

cilia are still felt by the fluid as far as thirty microns above the cilia tips. The density of an

array of biomimetic cilia is two million cilia per square centimeter. Biological cilia are ap-

proximately 200 times more dense than biomimetic cilia; thus the effects of biological cilia

are likely to be further reaching than our biomimetic cilia. Figure 6.22 shows a micrograph

of a human bronchial culture six weeks old from Boucher et al. (2004). Notice the distinct

fluid layers which have been labeled in the image. The mucus layer ranges from approxi-

mately 16−21 µm thick in this culture (Boucher, 2004), well within the thirty micron range

affected by my biomimetic cilia array, perhaps indicating the effects of airway cilia may

be felt throughout the entire mucous layer. Before reaching such a hypothesis definitively,

however, a fluid composition more similar to the layered fluid found in the lung should be

utilized to further explore interactions between cilia and the mucous layer.
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Figure 6.22: Reprinted from Boucher et al. (2004). A light micrograph of a six week old
human bronchial culture indicates the location of the periciliary layer and the mucus layer.
The scale bar is 10 µm (Boucher, 2004).

In addition, our measurements of biomimetic cilia-driven flow in a viscoelastic fluid

similar to pathological COPD sputum indicate that no net transport is present. For patients

who suffer from airway inflammations, the amount of mucins produced by epithelial mu-

cous cells is greatly increased. With COPD specifically, the fourth leading cause of death

in the United States, the development of a chronic cough occurs to assist in clearing the

thicker mucus as the typical cilia-assisted mucociliary clearance method is ineffective in

smaller diameter airways. This lack of clearance causes recurrent infections in the lung,

which are also exhibited by patients who suffer from cystic fibrosis. Individuals with cystic

fibrosis suffer from a nearly complete lack of mucociliary clearance (Williams et al., 2006),

as mucus concentrations reach 8%. This lack of clearance is exhibited by my biomimetic

system, making this system a potential platform to study the effects of pharmaceuticals on
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breaking up highly concentrated mucus and the mucociliary clearance process before uti-

lizing animal models or human patients. In the future, biomimetic cilia arrays could also

be fabricated in small diameter microfluidic channels to represent the geometries of the

human lung, thus providing a more physiologically relevant way to study clearance in both

the larger and smaller airways.

In technology, increasingly viscoelastic fluids, such as biofluids, are being investigated

within microfluidic systems. Nghe et al. recently reported on several behaviors exhibited by

viscous fluids in microfluidic systems, including the breakdown of polymers, how polymer

solutions flow, and shear banding and instabilities (Nghe et al., 2011). For further explo-

ration of viscous and viscoelastic fluids at the micron scale, devices which can be integrated

within a channel to efficiently manipulate such materials must have large dynamic respon-

siveness. Several methods have been devised to accomplish these tasks including silicon

diffuser micropumps which utilize an oscillating diaphragm to move more viscous fluids

(up to 900 cP) through a channel (Andersson et al., 2011), and oscillating bubbles gener-

ated by piezoelectric discs inside a channel to mix glycerol solutions of varying viscosities

(Wang et al., 2011). However, pumping diaphragms require cleanroom microfabrication

techniques such as deep reactive ion etching, and oscillating bubbles are currently capable

of mixing fluids with viscosities only up to 45 cP. Earlier in this chapter, I discussed the

ability of our FFPDMS cilia to both pump and mix fluids simultaneously, and my core-shell

biomimetic cilia are now poised to be applied for this same function in high viscosity and

viscoelastic fluids.

Core-shell cilia are excellent microactuators in highly viscous and viscoelastic fluids
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primarily due to their ability to maintain sufficient amplitude. Figure 6.23 depicts the

change in amplitude as a function of applied magnetic field in PBS (circles), 0.1% agarose

(squares), and 0.25% agarose (triangles) for the frequencies of 0.65 Hz (open symbols) and

16.3 Hz (filled symbols). (Amplitude is measured as half of the major axis of the ellipse

swept out by cilia performing an upright circular beat.) As discussed in Section 4.3.3, the

saturation magnetization of Ni is around 150 mT; this is evident in the figure as the am-

plitude of Ni core-shell cilia does not increase when magnetic fields approaching 100 mT

are applied. For the lower applied fields (< 10 mT), the relationship between amplitude

and magnetic field appears to be linear, but due to Ni’s saturation magnetization, the curve

begins to flatten out. Because of this sharp initial increase in amplitude followed by a very

gradual increase due to magnetic field saturation, I can fit logarithmic curves to each set

of amplitude data to determine the largest possible amplitude at magnetic saturation (based

on material type and frequency) at room temperature. These fits are shown in Figure 6.23.

With more data across multiple samples, the fits can become more accurate, especially at

higher fields for the less viscoelastic fluids and lower fields for the more viscoelastic fluids,

and relationships for the coefficients of the applied field (x in the legend in units of mT)

based on fluid type and frequency may emerge. As they currently stand, these fits do supply

me with an experimental limit for my biomimetic system for these particular fluids.
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Figure 6.23: Amplitude as a function of applied magnetic field for DPBS (circles), 0.1%
agarose (squares), and 0.25% agarose (triangles) for the frequencies of 0.65 Hz (open sym-
bols) and 16.3 Hz (filled symbols). All measurements were taken above the same patch
of biomimetic cilia. Plotted for each data set is a logarithmic fit, indicating the maximum
amplitude possible at magnetic field saturation.

By considering only a single magnetic field, 11 mT, and comparing the amplitudes

across fluids (across the different viscoelasticities), it becomes immediately apparent that

the lack of flow produced by cilia in 0.25% may be associated with the diminished ampli-

tude exhibited by the cilia. At 0.65 Hz, the difference in amplitude between PBS and 0.25%

agarose is ∼79%, whereas the difference in amplitude between PBS and 0.1% agarose is

only ∼27%. Our ability to detect and measure these amplitudes even in fluids with high

viscosities or viscoelasticities lend my core-shell cilia to an entirely new application–that

of measuring the rheology of fluids at the microscale. In the next chapter, I discuss the

application of my core-shell cilia as microrheometers, capable of detecting fluid changes

as sensitive as the formation of a blood clot utilizing only ten microliters of whole blood.
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Chapter 7

Core-shell Biomimetic Cilia as a

Rheometer

In addition to the manipulation of fluids at the microscale, biomimetic cilia show po-

tential as a technology for measuring fluid properties such as viscosity and elasticity. The

dynamic response to an applied magnetic field depends on the viscoelasticity of the fluid in

which the cilia beat. As I discussed in Section 6.3.4, for the same applied field, a fluid with

larger viscous and elastic components will cause a decrease in core-shell cilia amplitude.

However, because core-shell cilia are highly responsive, this diminished amplitude is still

easily detected and measured even in viscoelastic fluids, making core-shell cilia an ideal

candidate for microrheometry measurements.

Not only can core-shell cilia be utilized to measure a static fluid or the differences

between the rheology of two fluids, but they can also measure the time evolution of a single

fluid. As the fluid becomes more viscoelastic around a cilium, the amplitude of the cilium

decreases for a constant driving force. More specifically, in a viscoelastic fluid such as a

blood clot, as the clot forms around biomimetic core-shell cilia, the amplitude at the onset

of clot formation is very different from the amplitude after clot formation has occurred.



This difference in amplitude may be due to a number of factors. The fibers surrounding

a cilium may create a higher viscosity fluid due to the large number of no-slip boundary

conditions created by fibrin formation (Spero et al., 2011). A second possibility is that

the fibers create a physical cage surrounding the cilium, restricting its movement through

physical interactions. Understanding blood clot formation and structure is vital as clotting

or bleeding disorders are a leading cause of morbidity in the world (Hess et al., 2008) and

is currently a very active area of research. As core-shell cilia are responsive to changes in

clot formation, I have utilized core-shell arrays to develop a method for the measurement of

blood clot formation. The core-shell system requires only ten microliters of fluid to obtain

clotting times which are traditionally obtaining using coagulation tubes of blood and may

be utilized at the site of injury.

The design and creation of a blood coagulation system utilizing core-shell arrays fulfills

a need in the field of medical diagnostics for a low-cost, hand-held, quantitative measure

of blood clotting times and clot elasticities. Our device development is motivated by both

the far-reaching effects of coagulation disorders and the shortcomings of current medical

diagnostics. I have used core-shell arrays to obtain blood coagulation times for both ani-

mal plasma and whole blood, and I will present this data, comparing and contrasting my

results with current measurement techniques. I have found that because of their highly re-

sponsive nature, core-shell cilia appear more sensitive to the onset of clot formation than

traditional light scattering methods, also known as turbidity measurements, and reproduce

the capabilities of current measurement techniques (thromboelastography) while allowing

point-of-care operation.
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7.1 Core-shell actuators for use as microrheometers

The vibrating cantilever is an ideal candidate for microrheometry measurements, as the

size is easily controlled during the fabrication procedure, the response of the cantilever may

be varied depending on the type of material used in its construction and the fluid in which

it is immersed. For optimum performance, a microcantilever’s stiffness may be matched to

its application. To determine a fluid’s viscosity and elasticity, both the phase between the

driving force and microcantilever and the amplitude (or deflection) of the microcantilever

should be known. Typical rheometers utilize both amplitude and phase to determine the vis-

cous and elastic responses of the fluid. The portion of the actuator’s response in-phase with

the driving force corresponds to the elastic component of the fluid, and the portion of the

actuator’s response out-of-phase with the driving force by π/2 corresponds to the viscous

component of the fluid (Barnes, 2000). Additionally, actuator response (both amplitude

and phase) in air can be measured and compared to actuator response in a specified fluid

to determine dynamic moduli. In 2010, Christopher et al. utilized this method in various

linear viscoelastic materials with a MEMS microrheometer which essentially mimicked

a macroscale cone and plate rheometer. The microrheometer was modeled mechanically

as a mass suspended between two springs, oscillating in a viscoelastic fluid treated as a

spring and dashpot in parallel with a single relaxation time (Christopher et al., 2010). (The

Maxwell model is a spring and dashpot in series.)

For core-shell microactuators, the measurement of amplitude as a function of frequency

is done using brightfield microscopy; however, there is currently no method in place for the
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measurement of phase. Future project instrumentation could include a synced magnetics

element and video capture system such that the rotation of the magnetics is triggered at the

start of the video and is always known at a particular instant, allowing for the calculation

of the phase delay. Additionally, with a synced magnetics and video system, utilizing an

electromagnet to drive core-shell cilia would allow for more control over the sinusoidal in-

put signal. For current analysis of the deflection in a purely viscous fluid, we consider only

the amplitude of the rod and assume the rod is in-phase with the driving force. Following

Brucker’s treatment, the amplitude of a microcantilever exhibiting small deflection is given

as (Brücker et al., 2007)
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(7.1)

Recall that E is the elastic modulus, I is the second moment of inertia, η is the fluid viscos-

ity, and L and D are the length and diameter of the cantilever. Note that the model considers

only small deflections, and the amplitude of core-shell cilia is not small, but on the order

of half the actuator’s length (several microns).

For core-shell cilia, 10 µm long and 0.55 µm in diameter, the decay of amplitude as

a function of frequency in PBS (η0 = 1 cP) and 2.5 M sucrose (η0 = 100 cP) is shown

in Figure 7.1. The data is indicated by open (PBS) and filled (sucrose) circles. Fits were

performed on each data set utilizing the model above with fitting parameters F0, E, and

η. The fit of the model to PBS data appears to follow the trend fairly well, and lies within

experimental error. Fitting parameters for the PBS fit are F=0.32 nN, E= 2.0 MPa, and

η=10.3 cP. The viscosity fit parameter is a factor of ten larger than it should be, indicating
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either that the cilium is more damped than the model suggests or that the experimentally

obtained amplitude is underestimated and should be larger than was measured. If the cilia

are more damped than the model suggests, an additional term may be needed to account

for an internal damping or potential effects on the rod from the no-slip boundary condition

at the floor. When performing these experiments, efforts are made to drive the microrods

in an upright conical beat, though often the microactuator tips may drop closer to the floor

during part of a beat. The amplitude is measured experimentally with videos captured at

120 frames per second (8 ms between frames). Cilia tips spend a very short period of time

at maximum amplitude (the period of motion at 16 Hz is ∼60 ms and 7 frames are captured

for each beat), and the motion at higher frequencies can be blurred, making it difficult

to approximate the precise location of a cilium tip. For 2.5 M sucrose, the fit appears to

match the data very well. However, the fit parameter η=36.2 cP, a large difference from

the expected 100 cP measured on a cone and plate rheometer. Also measured on the cone

and plate rheometer was a mixture of 75% 2.5 M sucrose - 25% PBS. The viscosity of

this fluid mixture was ∼24 cP. When exchanging fluids, efforts are made to entirely replace

the previous fluid; however, fluid mixtures do occur during fluid exchange as the fluid

cell size surrounding the array of microactuators is less than 50 µL. Thus, it is reasonable

to assume the fluid surrounding the cilia array was a mixture of PBS and sucrose. The

factor of ten increase in fluid viscosity is not seen in the fit of the model to data taken

in 2.5 M sucrose, though the elastic modulus does increase compared to buffer by 1/4,

implying the rod is stiffer in sucrose than in buffer. Note that the model I fit to both buffer

and sucrose data makes a number of assumptions to obtain the constants in Equation ??,
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including that of a small amplitude deflection, a sinusoidally-varying driving force, and a

uniform, homogeneous microactuator. Thus, the fits I receive based on these assumptions

are reasonable.

Figure 7.1: Data for core-shell rod amplitude dependence on frequency in two fluids of
differing viscosities, PBS (open circles), η0 = 1.05 cP, and 2.5 M sucrose (filled circles),
η0 = 100 cP. The rod geometry is approximately 10 µm long by 0.55 µm diameter, and the
experimentally applied magnetic field ranged from 13-18 mT. The solid and dashed lines
on the plot are a fit of Equation 7.1 to the data with fit parameters magnetic force, elastic
modulus, and fluid viscosity. The parameters for the PBS fit are F=0.32 nN, E= 2.0 MPa,
and η=10.3 cP. The parameters for the fit to sucrose data are F=0.38 nN, E=2.5 MPa, and
η=36.2 cP.

In buffer, the need for a larger viscosity parameter to fit cilia amplitude in the model

implies the model considers the core-shell rods more damped than they are or experimental

measurements underestimate rod amplitude. There is still much work to be done in creating

a better model, one that includes the contributions of elasticity as well, before core-shell

rods can be used as a robust microrheometry technique. The application of core-shell cilia
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to the measurement of coagulation times is unrestricted by the need for future work, as

measurements across blood samples may initially be compared relative to one another.

7.2 Coagulation cascade and coagulopathies

The formation of blood clots, which act to stem the flow of blood from damaged blood

vessels, is known as coagulation. Coagulation ultimately forms fibrin strands that bundle

together and form networks to block blood flow. At least twenty different clotting proteins

work together to create these fibrin networks, some as zymogens which are precursors of

inactive proteolytic enzymes and some as cofactors that accelerate reactions. A detailed

discussion of the clotting cascade can be found in Appendix A, as well as a table, Table

A.1, listing the coagulation proteins in the order of their appearance in the coagulation

process (Jesty, 2008). Figure 7.2 is an overview of the coagulation cascade, illustrating the

primary pathway for blood clot formation.
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Figure 7.2: Schematic depicting the integral coagulation factors and cofactors in the pri-
mary pathway for blood coagulation initiation. A deficiency in factor VIII may cause
hemophilia, and if a variant of factor V is present, then factor Va will not be present, and
an individual may suffer from thrombosis (Jesty, 2008; Mann and Ziedins, 2005).

If certain factors in the coagulation cascade are deficient or defective, the cascade will

be disrupted and coagulopathies, which are clotting or bleeding disorders, can occur. Clot-

ting may occur too slowly as in hypocoagulability where a possible end result, if untreated,

is an increased bleeding or hemorrhaging, or too quickly as in hypercoagulability where

the result, if untreated, is an increased risk of developing blood clots, also known as throm-

bosis. A deficiency or defect in factors VIII or IX, which are responsible for crosslinking

fibrin and activating factor X, respectively, may cause hemophilia in patients (Mann and

Ziedins, 2005). Conversely, if a variant of factor V, called factor V Leiden, is present

in place of factor V, then factor Va will never be inactivated, and a patient will be at a

much higher risk for thrombosis. Coagulation disorders such as these may be hereditary

like hemophilia, acquired like liver disease, or the result of traumatic injury, also known

as trauma induced coagulopathy (TIC). Worldwide, trauma is the leading cause of death
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for people under age 36, and of those individuals, TIC is involved in 25%. One in four

trauma patients is now identified as being admitted to an emergency room or department

with a coagulopathy and a corresponding four fold mortality increase and increased organ

dysfunction and failure (Hess et al., 2008; Niles et al., 2008).

The mechanism for early coagulopathy is unknown, but many potential factors are

thought to contribute including tissue trauma, shock, blood loss, blood dilution, acidemia

(low blood pH levels), hypothermia, and fibrinolysis (Brohi et al., 2007; Hess et al., 2008;

Niles et al., 2008). The presence of tissue damage such as that obtained from a crushing

injury like an automobile accident or explosion, initiates both coagulation and fibrinolysis

as damage to the endothelium releases tissue plasminogen activator (tPA) and exposes col-

lagen type III and tissue factor (TF). Fibrinolysis occurs as tPA is a protein that catalyzes

plasminogen to plasmin, the enzyme that breaks down blood clots. Because of collagen

and TF’s increased presence along with other factors such as VIIa, thrombin and fibrin for-

mation occur, and coagulation becomes an additional result of tissue damage. This tissue

trauma drives not only fibrinolysis and coagulation, but also shock, which in turn dilutes co-

agulation. Attempts to resuscitate patients with intravenous fluids compound the dilution of

coagulation factors, reducing the patient’s blood clotting ability. Additionally, any uncon-

trolled bleeding will lead to acidemia and hypothermia, both of which impair and inhibit

the activity of coagulation factor complexes, further worsening the coagulopathy. While

this area of research is still very active, it is clear that trauma compromises healthy coag-

ulation. Figure 7.3 diagrams several of the potential mechanisms responsible for trauma

induced coagulopathy (Brohi et al., 2007; Hess et al., 2008).
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Figure 7.3: Reprinted from Hess et al. (2008). Diagram of mechanisms responsible for
trauma induced coagulopathy. Tissue damage drives both fibrinolysis and coagulation,
causing hemorrhaging and shock. This is typically met with resuscitation attempts which
dilute the needed coagulation factors. All of this leads to the development of a coagulopathy
(Hess et al., 2008). (ACoTS stands for Acute Coagulopathy of Trauma-Shock.)

My purpose in describing factors involved in trauma induced coagulopathy is to illus-

trate the saliency of early and immediate coagulopathy detection with a sensitive point-of-

care (POC) device. Blunt injuries such as those obtained from a non-penetrating trauma or

force like a baseball bat or an auto accident account for 90% of civilian emergency room

admissions (Niles et al., 2008). At or near the site of injury, treatments given immediately

after injuries are sustained, which are intended to resuscitate the patient, contribute to the

development of a coagulopathy by diluting coagulation factors. Intravenous fluids contain-

ing excess ionic chloride reduce the activity of the Xa-Va complex shown in Figure 7.2 by

50-90% at pH levels 7.2-6.8. Reduced activity levels lead to prolonged clotting times as

well as a reduced clot strength (Hess et al., 2008). Statistics such as these indicate that

diagnostic tests with the ability to rapidly assess hemostasis-related parameters immedi-

ately after injuries occur are critical to the treatment and therapy of patients suffering from

TIC. These diagnostic tests also must be at or near the site where injuries are sustained
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to avoid the opportunity for treatment which could aggravate the coagulopathy, such as the

administration of intravenous fluids and inadvertent dilution of coagulation factors. Current

measurement techniques for coagulation are discussed in the following section.

7.2.1 Current measurement techniques

Multiple clinical diagnostics currently exist to investigate the clotting time and/or the

strength of a blood clot: (i) activated partial thromboplastin time (APTT) and prothrom-

bin time (PT), and (ii) Thromboelastography (TEG) and Rotation Thromboelastography

(ROTEM). The APTT and PT tests are coagulation tests that measure the time for citrated

blood or plasma samples to clot and can lead to the diagnosis of a clotting disorder. When

used in combination, the tests assist in determining which pathway to clotting is deficient,

the intrinsic or extrinsic. The intrinsic pathway, or contact activation pathway, is measured

by the APTT test, and the extrinsic pathway, or tissue factor pathway, is measured by the

PT test. Both pathways are discussed in more detail in Appendix A.

These two coagulation tests are both plasma-based assays, requiring much in the way of

blood processing as citrate must be added to avoid clotting before the assay is performed,

and the sample must be spun down to separate the plasma and blood cell components.

In addition, results from these tests are based on only the very small amount of thrombin

generated during the initial coagulation step. Because of this, PT and APTT tests have been

considered insufficient in predicting patient bleeding (Segal and Dzik, 2005).

TEG and ROTEM are in a class of assays known as viscoelastic haemostatic assays

(VHA) and utilize whole blood to provide information about not only clotting time and the
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formation of fibrin, but also clot strength and fibrinolysis. Assays which use whole blood

are preferable because they include not only the plasma contributions to the clot, but also

the contributions from red and white blood cells and platelets. In addition, further pro-

cessing steps are unnecessary. Mechanically, both TEG and ROTEM utilize a pin and cup

system where the relative phase of the pin and cup provides a measurement of the param-

eters previously mentioned. Figure 7.4 depicts this pin and cup along with a schematic of

a TEG/ROTEM output curve (Johansson et al., 2009). For TEG measurements, the pin is

a stationary torsion wire, and whole blood (360 µL) is added directly to the cup. The cup

is rotated through an angle of 4.75◦ over 10s (0.0013 Hz or 6 rotations/min), and as the

clot forms between the cup and pin, the pin begins to rotate with the cup. The amplitude

of this rotation is measured and the trace in Figure 7.4 is generated. For ROTEM, the cup

is initially stationary, and the pin which is attached to an optical detector, rotates through

4.75◦ (Johansson et al., 2009).
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Figure 7.4: Reprinted from Johansson et al. (2009). A schematic of a typical TEG (upper
portion) and ROTEM (lower portion) measurement. The variables indicated on the curve
are reaction time R and clotting time CT , clot formation time K and CFT , alpha angle
α, maximum amplitude MA and maximum clot firmness MCF, and clot lysis Ly and CL

(Johansson et al., 2009).

Because the TEG and ROTEM measurements are very similar in nature, I will restrict

my discussion to TEG. I note here that measurements taken by TEG in the determination

of clotting time are quantitative; however, measurements which parametrize blood clot

strength are qualitative in nature, utilizing relative measurements based on the definition

of a normal blood sample. In Figure 7.4, the R time is the time to initial fibrin formation

and indicated by the point at which the trace’s amplitude begins to increase. Initial fibrin

formation is considered detectable when the amplitude of the pin reaches 2 mm (Johansson

et al., 2009). The K time is the time for a clot to reach a specified level of clot strength (or

a pin amplitude of 20 mm), which is not equal to the time for a clot to reach its maximum

strength (or maximum amplitude MA). The time for a clot to reach MA is called the time to

maximum amplitude, or TMA. Both the R and K times are prolonged with the presence of
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anticoagulants, and shortened with the presence of higher levels of fibrinogen. Finally, the

alpha angle α supplies information on the kinetics of a clot’s development and measures

the rapidity of fibrin build up and cross-linking by measuring the slope of the line formed

by the R and K times; larger α typically indicates more fibrinogen is present. The day-to-

day variation in VHA measurement is approximately 5-15% depending on the parameter

(Johansson et al., 2009).

In addition to clot formation, TEG and ROTEM provide information on clot lysis and

the degradation of the clot over time. Variables such as LY30 and LY60 indicate the percent

lysis after 30 and 60 minutes, respectively, by measuring the reduction of area under the

TEG curve from the time of MA to the amplitude of oscillation at 30 or 60 minutes. Figure

7.5 consists of several different TEG tracing shapes which indicate various coagulation

dysfunctions. Figure 7.5B may be the result of a Factor V variant; Figure 7.5C may be the

result of a deficiency in Factor VIII.
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Figure 7.5: Reprinted from Johansson et al. (2009). (A) Normal. (B) Hypercoagulabil-
ity, the propensity to develop thrombosis (blood clots); could potentially result from the
presence of a variant of Factor 5. (C) Hypocoagulability, the lack of blood clotting; could
potentially result from a deficiency or defect in Factor VIII. (D) Primary hyperfibrinolysis,
enhanced fibrinolytic activity which may lead to bleeding (Johansson et al., 2009).

Viscoelastic haemostatic assays have been shown to be more effective than the PT and

APTT tests in providing relevant diagnostic information and guiding therapy for trauma

cases in more than twenty clinical studies and three randomized clinical trials (Johansson

et al., 2009). When compared to PT/APTT tests, the utilization of VHA has reduced the

number of required transfusions and re-examinations. Johansson et al. in 2009 provided a

thorough review of studies from 1985-2009, evaluating the inefficiency of PT/APTT coag-

ulation test results as compared to TEG and ROTEM results (Johansson et al., 2009).

Though TEG and ROTEM results provide more relevant diagnostic information than

traditional coagulation tests, neither technology is capable of being applied to the field

where need is greatest. Diagnostic tests are critical for rapid evaluation of hemostasis-

related parameters, especially in events of trauma, and thus should be near the scene of
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trauma, prior to and during patient movement. TEG and ROTEM instruments can be ac-

cessible near the point of care in a hospital, but must be leveled on a firm table for accurate

measurement, and thus are incapable of becoming true point-of-care (POC) devices.

This need for a quantitative POC technology can be addressed by creating a handheld

device consisting of a core-shell biomimetic cilia array onto which a drop of whole blood

may be deposited. Such an array with rods 2 µm in diameter and 25 µm tall can be fabri-

cated to any specificied area, limited at the lower end to 0.5 mm and at the higher end by

the size of the polycarbonate track-etched template and electrodeposition system used in

the fabrication process (described in Chapter 4). This handheld device would consist of an

array of core-shell rods situated within a well, a small magnetics system to drive the rods,

an LED for light transmission through the array, a photodiode for light and rod amplitude

detection, and an input port for the addition of whole blood. Figure 7.6 is a schematic of the

potential handheld device. Measurements of coagulation times have been taken with core-

shell arrays utilizing the standard magnetic set-up described in Section 5.2.1 and employing

a planar beat shape. These measurements are discussed in the following section.
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Figure 7.6: A low-cost disposable test strip containing the core-shell rod array and input
port for whole blood. The handheld base into which the strip is inserted would not be
disposable and would contain an LED, photodiode, and magnetics system.

7.3 Measuring clotting times with core-shell cilia

For testing, citrated animal plasmas were obtained from Haemoscope, a company which

manufactures the TEG Hemostasis System discussed in the previous section. The animal

plasmas, Level 1 and Level 2 (Lot # 070-0901 and 0930-0802, respectively), are standard-

ized control samples routinely used for TEG calibration testing. A citrated plasma is one

that has lost its ability to clot on its own; much, if not all, of the calcium, which plays a part

in the clotting cascade, has been chelated by sodium citrate. To release it and restore clot-

ting abilities, calcium chloride (CaCl2) is added to the citrated plasma, binding the citrate

and increasing calcium levels (Walser, 1961). The two different levels of plasma represent

two different clotting abilities. Level 1 plasma is considered a normal plasma, such that
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the clotting time and strength is consistent with that of a normal plasma sample. Level 2

plasma is considered abnormal, such that the onset of clotting time is prolonged and the

clotting strength is less than that of normal plasma.

Before any clotting can occur on a core-shell array, the array is prepared as described in

the Materials and Fabrication chapter by Figure 4.13. The core-shell rods utilized here are

much larger (2 µm diameter by 25 µm long) than the core-shell rods used as biomimetic

cilia (0.5 µm diameter by 10 µm long), though the aspect ratio is similar. For this applica-

tion, rods are larger in order to both detect small changes in amplitude through the clot’s

slight opacity and utilize a 10x or 20x microscope objective to obtain amplitudes over a

wider field of view.

After the last step in the fabrication process – dissolution of the polycarbonate tem-

plate with dichloromethane (Figure 4.13E) – the array is rinsed with ethanol, deionized

water, and finally PBS. Approximately 8-10 µL of PBS remains to cover the array, keeping

it wet and preventing rod collapse. The array is placed onto a heated microscope stage

(Bioscience Tools, model TC-E50x30) and warmed to approximately 37◦C, the optimal

temperature for clotting. Similar to the set-up we use to achieve the tilted conical beat pat-

tern, a permanent neodymium magnet (K&J Magnetics, cat. no. BX084-N52) is affixed to a

rotating motor, such that the edge of the magnet passes over the core-shell array. The mag-

netic field is approximately 45 mT, applying enough torque on the rods to detect changes

in the rod amplitude with a 10x microscope objective. If the magnetic field is too strong,

the longer core-shell rods will bend such that they become physically near enough to be

attracted to one another. This attraction does not occur only at magnetic saturation, but can
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become evident around fields of 80 mT or greater. Such contact should be avoided to main-

tain that the change in rod amplitude is due only to the changing environment around the

rods. Figure 7.7 shows brightfield images of an array with Level 1 plasma when the rods

are upright and when they are tilted due to the applied magnetic field. Less light intensity

is detected by the camera when the array is tilted, as the nickel portion of the rod blocks

the light.

Figure 7.7: Brightfield images show the arrays ability to change the brightness of a frame
by tilting in response to an applied magnetic field such that the nickel tube portion of the
rod blocks transmitted light. The modulation of intensity is due to this period motion of the
rods.

Data presented here are from three experiments with three different core-shell arrays.

Once a clot has been formed over an array, the array is no longer usable for other exper-

iments as it is impossible to remove the formed clot. For the three arrays, two Level 1

plasmas and one Level 2 plasma were used to illustrate reproducibility and sensitivity in

the measurement of clotting times.

Before adding Level 1 and Level 2 plasmas to a core-shell array, CaCl2 (8 µL) is added

to the 8-10 µL PBS previously covering the array. The appropriate plasma (68 µL) follows
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and is mixed gently by pipetting with the CaCl2. Immediately after plasma addition, core-

shell rods are driven at a frequency of 2 Hz, and video data of their motion is captured at

30 frames per second for at least thirty minutes using a Pulnix camera, model TM-6710CL

(JAI, Inc.). To process these videos, I use open source software ImageJ and measure the

average light intensity of each frame, producing the raw data shown in Figure 7.8, which

has been normalized to unity.

Figure 7.8: Average intensity versus time data indicate the time to the onset of clotting for
two Level 1 (black, blue curves) and one Level 2 (red curve) plasma samples added to core-
shell rod arrays. Level 2 plasma begins clotting approximately 30 seconds after both Level
1 plasmas. Time zero for the black and blue Level 1 curves is 13 s and 15 s, respectively,
prior to the start of the video. For the red Level 2 curve, time zero is 25 s prior to the start
of the video.

Due to the time delay between adding the plasma to the core-shell arrays and starting

the video capture, the time prior to time zero varies for each clot from 13-25 seconds. Note

that the time at which clotting commences is similar for the two Level 1 plasma samples and

prolonged for the Level 2 plasma sample by at least 30 s. From the raw data shown in Figure

7.8, we observe intensity changes in two different ways: (i) a decrease in rod amplitude as

the clot forms provides a mechanical measurement of coagulation, and (ii) a decrease in
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global intensity as the clot forms provides a light scattering (turbidity) measurement of

coagulation. The global change in intensity is reminiscent of a traditional clotting time

measurement called turbidity, which utilizes the amount of scattered and absorbed light as

measured by a spectrophotometer to define the onset of clot polymerization (Gabriel et al.,

1992). We can write the average transmitted intensity detected by the camera as

Iavg(t) = A(t)T (t) (7.2)

where A(t) is the transmitted light intensity due to the rod motion and T (t) is the transmitted

light intensity due to the scattering and absorption by the clot itself. We can further write

the rod modulated intensity as a function of the intensity A0 when rods are upright, blocking

minimal light, and the intensity Am when rods are tilted at some angle θ, blocking maximum

light,

Iavg(t) = [A0 + Amsin(θ(t))] T (t). (7.3)

The two different measures of clot formation can be separated by utilizing a moving

average to determine the global intensity change, and as light intensities are multiplicative,

dividing by this average to obtain the amplitude change as a function of time. Figure 7.9

illustrates how the raw data is separated into the two types of measurements (mechani-

cal and light scattering) for Level 1 and Level 2 clotting data. The mechanical amplitude

measurement appears to be more sensitive to the onset of clotting than the turbidity mea-

surement as the rod amplitude begins to decrease at least ten seconds before the turbidity

191



measurement indicates a global decrease in intensity. Typical turbidity measurements are

performed with large sample volumes on highly expensive and accurate spectrophotome-

ters (Wolberg et al., 2002). Core-shell cilia arrays provide an accurate and inexpensive way

to analyze clot structure which is shown to be more sensitive to the onset of fibrin formation

than a measure of change in intensity.

In addition to higher sensitivity to clot formation than turbidity measurements, core-

shell arrays can provide at the minimum a qualitative measure of clot structure similar to

that provided by turbidity and TEG. From the change in turbidity as a function of wave-

length, the mass-length ratio µ, mass per unit length of fibrin fibers which form a clot, can

be obtained (Carr and Hermans, 1978). This mass-length ratio is an important parameter

in the characterization of clot structure as it may be used to monitor fibrin diameter and

mass density changes, both of which alter clot structure (Gabriel et al., 1992). Changes

in the fibrin mass-length ratio (and therefore clot structure) can occur with disease or drug

treatments and are thus clinically of interest. Turbidity can detect the effect of increased

thrombin levels by measuring a decreased mass-length ratio (Gabriel et al., 1992). Anal-

ogously in TEG, a decreased mass-length ratio and increased thrombin concentration may

be determined by the alpha angle, which measures the rapidity of fibrin build up. A larger

alpha angle typically corresponds to higher levels of the fibrin monomer fibrinogen (shown

as a TEG tracing in Figure 7.5B) (Johansson et al., 2009), which may be the result of an

increased thrombin concentration and smaller mass-length ratio. This alpha angle may be

measured with a core-shell array as I discuss below.

Comparing this mechanical measurement which stems from the post amplitude to the
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TEG tracing in Figure 7.4, we see the R time (the time to initial clot formation indicated

in the TEG tracing by a sudden widening of the curve is indicated in our mechanical mea-

surement by a sudden narrowing of the curve. This narrowing occurs after a longer time

frame in the Level 2 sample, as this control sample is representative of a hypocoagulable

sample (as shown by the TEG tracing in Figure 7.5C).

With TEG measurements, the time for a clot to reach its maximum strength, or maxi-

mum amplitude, is called T MA, time to maximum amplitude; this time is indicated on the

tracing in Figure 7.4 by the time for the curve to reach its widest point. With the mechanical

post measurements, T MA is analogous to the time for the curve to reach its narrowest point,

which I could label as the time to minimum amplitude. At this point, the clot is considered

fully formed and the amplitude of a core-shell rod is highly restricted by its surroundings.

The K time illustrated on the TEG tracing is the time for a clot to reach a specified

strength, which is also the time for the pin in the TEG set-up to reach a given amplitude.

This specified amplitude is another method for the comparison of blood clot kinetics across

multiple samples. In the future we may or may not choose to set an amplitude to monitor

for the core-shell system, though the K time amplitude will be smaller than the time zero

amplitude of the rods.

The final variable TEG utilizes to parametrize results is the alpha angle, measuring

the rapidity of fibrin build up once clotting has initiated. The alpha angle is the slope of

the line connecting the R and K times (Johansson et al., 2009). With our data in Figure

7.9, a measurement of the angle at which the amplitude decreases, beginning at initial clot

formation, would give us information similar to that obtained by the TEG tracing.
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Figure 7.9: Intensity due to rod amplitude and turbidity (light scattering) versus time during
clot formation. The left axes apply to the blue curves, which show rod amplitude versus
time measured in arbitrary units, and the right axes apply to the green curves, which are
similar to a turbidity measurement, or how the global intensity changes over time due to
light scattering and absorption.

The approximate onset of clotting times (R times) indicated by the two different in-

tensity measurements (adjusted for the time zero offsets mentioned previously) and those

indicated by Haemoscope, the company from which the Level 1 and Level 2 control plas-

mas were obtained, are listed in Table 7.1. The range of the onset of clotting times are

provided by Haemoscope readily. However, in order to compare all parameters gathered
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with my measurement system to TEG data, I would need to utilize a pin-and-cup TEG

system to collect such data for the same plasma levels.

Table 7.1: Onset of plasma clotting times

Haemoscope Amplitude Turbidity
(TEG) (core-shell arrays) (core-shell arrays)

Level 1, Sample 1 0−180 s 39 s 49 s
Level 1, Sample 2 0−180 s 42 s 54 s
Level 2, Sample 1 60−180 s 80 s 91 s

Note that the long time mechanical measurement of coagulation remains well above

noise, as shown in Figure 7.10, and that the drive frequency can still be extracted from the

intensity as measured by the rod amplitude.

Figure 7.10: After full formation of the Level 1 plasma clot, the drive frequency of the core-
shell rods can still be detected from the intensity as modulated by the mechanical change
in amplitude.

Core-shell cilia have also been used to successfully measure the clot formation within

whole blood. Figure 7.11 shows the change in amplitude as a function of time for a whole
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blood sample. Future experiments should improve on imaging techniques, as obtaining a

brightfield image of the core-shell cilia through red blood cells is difficult, and to obtain

such an image, the sample thickness must be less than ∼0.5 mm and the sample volume

less than ∼10 µL.

Figure 7.11: The change in amplitude of core-shell cilia during the formation of a clot in
whole blood. The decrease in amplitude may be due to an increase in local viscosity or an
increase in elasticity, both of which I see in Section 6.3.4 with varying agarose concentra-
tions.

7.4 Future work

Before core-shell cilia can become a robust and reliable method for the measurement of

clot formation and lysis, more work on both the determination of viscoelastic parameters

from amplitude and phase measurements and the normalization of measurements across
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multiple core-shell arrays must be performed. Currently, normalizing all core-shell arrays

such that each array responds identically has not been done. The applied magnetic field

for each array is different, typically because the magnet setup is broken down and removed

from the microscope between experiments. Evaluating whether the response of individ-

ual arrays is identical with an identically applied magnetic field is an important step to

take in the characterization of these arrays as POC devices capable of measuring absolute

viscoelastic parameters. Without a guarantee that this is so, quantitatively accurate mea-

surements of clotting strengths are not attainable, though the ability to measure clotting

times remains unaffected. The relationship between the amplitude data and Equation 7.3

should be further explored. The variation in tilt angle θ across different blood samples for

a constant applied magnetic field could become an important variable in understanding the

contributions of viscosity and elasticity. If normalization across all core-shell arrays is not

an option, though I think it will be, the difference in initial tilt angles (θ) could serve as a

calibration method such that quantitative values could be obtained across different arrays.

Additionally, it would be beneficial to incorporate the measurement of phase in exper-

iments to understand in greater detail the ultimate strength of a blood clot and the time

evolution of the viscoelastic parameters of a clot, such as viscosity and elasticity. TEG

measurements utilize the amplitude A of the cup to determine the strength of a clot by

defining the shear elastic modulus as

G =

�
5000×A

100−A

�

1000
(7.4)

in units of dynes/cm2. A TEG cup with a normal blood sample typically has an amplitude
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of 50 mm, for which G = 500 Pa. This equation is not a quantitative measure of elasticity,

but is qualitative, utilizing a normal sample as a standard. A smaller amplitude may be

the result of hypocoagulability, or the lack of blood clotting capability (see Figure 7.5C).

The shear modulus of pure plasma was measured by Shih et al. in 2010 as approximately

585±127 Pa. Humans typically have a concentration of 40% red blood cells; this increase

in red blood cells decreases the shear modulus by a factor of three, to 168±26 Pa (Shih

et al., 2010).

Before viscosity and elasticity can be found for plasma or whole blood, it is important

to gain a deeper understanding of the effects on core-shell cilia amplitude of a changing

viscosity or elasticity within purely viscous and viscoelastic fluids. To achieve this under-

standing in purely viscous fluids, the amplitude of core-shell cilia should be evaluated in

a wider variety of fluid viscosities. The model discussed in Section 7.1 is sufficient for

understanding the qualitative effect of viscosity on core-shell cilia, but overestimates fluid

viscosity of buffer by a factor of ten, indicating either that cilia are more damped and the

model requires an additional term to account for this extra damping or that the cilium am-

plitude is not sufficiently visualized with 120 frames per second video capture. The second

possibility can be explored by utilizing a camera with a frame rate greater than 200 frames

per second to decrease the time between frames to less than 5 ms. The first possibility

could be determined by evaluating whether or not PDMS rods exhibit internal damping or

the sample floor (less than 10 µm from the cilium tip) affects the motion of the cilium tip.

Cilia amplitude in fluids of differing viscoelasticities was discussed in Section 6.3, but this

understanding is not yet robust and does not translate to data obtained in clotting blood or
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plasma, neither of which are homogeneous fluids in the linear regime. Nonlinear rheolog-

ical behavior as measured by a given probe cannot be used to predict the response of the

fluid to a second probe such as core-shell cilia (Macosko, 1994); thus, an average of plasma

and whole blood response to core-shell cilia of a specific size and shear rate over a number

of experiments should be determined before an analytical relationship between amplitude

and clot viscoelasticity (or clot strength) can be formulated. Additionally, a sinusoidal

driving force should be utilized to extract in-phase and out of phase actuator response as

in future experiments, depending on whether or not the mechanism causing amplitude re-

duction is an increased local viscosity or an increased elasticity, a portion of the actuator’s

response will be in-phase with the driving force. The in-phase response will correlate with

the storage modulus of the clot; an increase in stiffness is often associated with an increase

in fiber thickness (Collet et al., 2005). Utilizing core-shell cilia as a microscale probe may

provide us with an understanding of the microscale properties of blood clot and how those

properties affect clot formation.
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Appendix A

Blood coagulation

Coagulation is the formation of blood clots, which stem the flow of blood from damaged

blood vessels. Coagulation ultimately forms fibrin strands that bundle together and form

networks to block blood flow. At least twenty different clotting proteins work together to

create these fibrin networks, some as zymogens which are precursors of inactive proteolytic

enzymes and some as cofactors that accelerate reactions. A number of them are listed in

Table A.1 in Appendix A, in the order of their appearance in the coagulation process (Jesty,

2008). Two highly important proteins are tissue factor and thrombomodulin, which are

responsible for the initiation and shut down of the entire clotting process.



Table A.1: Coagulation factors and cofactors (Jesty, 2008)

Common name Alternate names Function
Tissue factor (TF) Thromboplastin initiator; with factor VIIa, activates

Factor III factors IX and X
Factor XII Hageman factor protease zymogen
Factor XI Plasma thromboplastin protease zymogen

antecedent
Factor X Stuart-Prower factor protease zymogen
Factor IX Christmas factor protease zymogen

Factor VIII Antihemophilic factor with factor IXa, activates
factor X

Factor VII Proaccelerin activates factors IX and X
Factor V Labile factor with factor Xa, activates

prothrombin
Prothrombin Factor II protease zymogen
Fibrinogen Factor I clot formation, fibrin precursor
Factor XIII Fibrin-stabilizing factor zymogen of transglutaminase

Thrombomodulin with thrombin, activates protein C
Protein C protease zymogen
Protein S with protein C, activates

factors Va and VIIIa
Antithrombin III Antithrombin protease inhibitor

Heparin cofactor
Tissue factor pathway Extrinsic pathway inhibitor protease inhibitor

inhibitor

Injury to a blood vessel’s inner lining, or endothelium, exposes the protein von Wille-

brand factor which is responsible for recruiting collagen and other coagulation factors.

Additionally, platelets aggregate at the site of injury and are activated, releasing a number

of platelet factors, factor Va, and ADP. (Lowercase a indicates the active form.) The pres-

ence of these factors activates other platelets, serving to increase calcium levels, a higher

concentration of which activates protein kinase C. Phospholipase A2 is activated by protein

kinase C and in turn increases the binding affinity of membrane glycoproteins IIb and IIIa

to fibrinogen. This phase is known as primary hemostasis.
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In the phase of secondary hemostasis the coagulation cascade occurs, of which there are

two potential pathways called the intrinsic and extrinsic pathways. The intrinsic pathway

is also known as the contact activation pathway and is the pathway responsible for blood or

plasma’s ability to clot when contacting a surface. The main factors involved include XII,

prekallikrein, and high molecular weight kininogen. These generate factor XIIa which ac-

tivates factor XI. Factor XIa activates factor IX, and with factor VIIIa, factor X is activated.

The clotting pathway follows the final common pathway (starting with factor X), which is

shared by the extrinsic pathway.

The extrinsic pathway is also called the tissue factor (TF) pathway, and is the primary

and “normal” pathway for blood coagulation initiation. TF is a protein in the tissue beneath

the endothelium, and following injury, TF comes into contact with proteins present in the

plasma including factor VII. TF and factor VII form a complex (TF:VII) which is catalyzed

by factor Xa in a positive feedback reaction. Complex TF:VIIa then activates factors IX and

X into IXa and Xa. Factors Va, which comes primarily from platelets, and Xa also form a

complex called the prothrombinase complex and are responsible for activating prothrombin

to thrombin. Thrombin is responsible for both the activation of platelets and factor XIII

and conversion of fibrinogen to fibrin. The final step in the coagulation cascade is the

crosslinking of fibrin which occurs by factor XIIIa.

If certain factors are deficient or defective, the coagulation cascade will be disrupted

and coagulopathies, which are clotting or bleeding disorders, can occur. Clotting may

occur too slowly as in hypocoagulability where a possible end result, if untreated, is an

increased bleeding or hemorrhaging, or too quickly as in hypercoagulability where the
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result, if untreated, is an increased risk of developing blood clots, also known as thrombosis.

A deficiency or defect in factors VIII or IX, which are responsible for crosslinking fibrin

and activating factor X, respectively, may cause hemophilia in patients. If a variant of

factor V, called factor V Leiden, is present in place of factor V, then factor Va will never be

inactivated, and a patient will be at a much higher risk for thrombosis.
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