
PRACTICAL ANALYSIS OF ENCRYPTED NETWORK TRAFFIC

Andrew M. White

A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill in
partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department

of Computer Science.

Chapel Hill
2015

Approved by:

Fabian Monrose

Michael Bailey

Kevin Jeffay

Phillip Porras

Michael Reiter

© 2015
Andrew M. White

ALL RIGHTS RESERVED

ii

ABSTRACT

Andrew M. White: PRACTICAL ANALYSIS OF ENCRYPTED NETWORK TRAFFIC
(Under the direction of Fabian Monrose)

The growing use of encryption in network communications is an undoubted boon for user

privacy. However, the limitations of real-world encryption schemes are still not well understood,

and new side-channel attacks against encrypted communications are disclosed every year.

Furthermore, encrypted network communications, by preventing inspection of packet contents,

represent a significant challenge from a network security perspective: our existing infrastructure

relies on such inspection for threat detection. Both problems are exacerbated by the increasing

prevalence of encrypted traffic: recent estimates suggest that 65% or more of downstream

Internet traffic will be encrypted by the end of 2016. This work addresses these problems by

expanding our understanding of the properties and characteristics of encrypted network traffic

and exploring new, specialized techniques for the handling of encrypted traffic by network

monitoring systems.

We first demonstrate that opaque traffic, of which encrypted traffic is a subset, can be

identified in real-time and how this ability can be leveraged to improve the capabilities of existing

IDS systems. To do so, we evaluate and compare multiple methods for rapid identification of

opaque packets, ultimately pinpointing a simple hypothesis test (which can be implemented on

an FPGA) as an efficient and effective detector of such traffic. In our experiments, using this

technique to “winnow”, or filter, opaque packets from the traffic load presented to an IDS system

significantly increased the throughput of the system, allowing the identification of many more

potential threats than the same system without winnowing.

Second, we show that side channels in encrypted VoIP traffic enable the reconstruction of

approximate transcripts of conversations. Our approach leverages techniques from linguistics,

machine learning, natural language processing, and machine translation to accomplish this task

despite the limited information leaked by such side channels. Our ability to do so underscores

iii

both the potential threat to user privacy which such side channels represent and the degree to

which this threat has been underestimated.

Finally, we propose and demonstrate the effectiveness of a new paradigm for identifying

HTTP resources retrieved over encrypted connections. Our experiments demonstrate how the

predominant paradigm from prior work fails to accurately represent real-world situations and

how our proposed approach offers significant advantages, including the ability to infer partial

information, in comparison. We believe these results represent both an enhanced threat to user

privacy and an opportunity for network monitors and analysts to improve their own capabilities

with respect to encrypted traffic.

iv

ACKNOWLEDGEMENTS

I have been fortunate to receive aid and encouragement from a great number of people over

the past seven years. First and foremost, I would like to thank Stephanie Malone, as well as my

parents and family, for their support and understanding. Second, I cannot adequately express my

gratitude to Prof. Fabian Monrose, who has been a mentor and colleague throughout and who

has supported me in too many ways to count since our first days at UNC.

I would also like to thank the remainder of my committee (Prof. Michael Bailey, Prof. Michael

Reiter, Prof. Kevin Jeffay, and Phil Porras) for their advice and their time. Special thanks are also

due to my colleagues and collaborators at UNC (particularly Prof. Jan-Michael Frahm, Srinivas

Krishnan, Austin Matthews, Prof. Elliott Moreton, Nathan Otternes, Rahul Raguram, Katherine

Shaw, Kevin Snow, Teryl Taylor, Jan Werner, and Yi Xu); at SRI International (particularly Vinod

Yegneswaran); and at IBM Research (particularly Reiner Sailer, Mihai Christodorescu, and Marc

Stoecklin). In addition, Murray Anderegg, Jake Czyz, Alex Everett, Jim Gogan, Bil Hays, Jodie

Turnbull, and Missy Wood provided invaluable assistance during the course of this work.

Finally, I would like to express my eternal gratitude to Todd Anderson, Brian Collier, and

David Fortney, for keeping me off the wrong path, and to Prof. Barry Lawson, Prof. Douglas

Szajda, and Prof. Jason Owen, for helping me find the right one.

This work was supported in part by the Department of Homeland Security (DHS) under

contract number D08PC75388, the U.S. Army Research Office (ARO) under Cyber-TA Grant no.

W911NF-06-1-0316, and the National Science Foundation (NSF) under award no. 0831245. Any

opinions, findings, and conclusions or recommendations expressed in this material are those of

the authors and do not necessarily reflect the views of the DHS, NSF, or ARO.

v

TABLE OF CONTENTS

LIST OF TABLES . xii

LIST OF FIGURES . xiii

LIST OF ABBREVIATIONS . xv

CHAPTER 1 INTRODUCTION . 1

Thesis Statement . 4

1.1 Real-time Detection of Opaque Network Traffic . 5

1.2 Reconstructing Transcripts of Encrypted VoIP Conversations . 6

1.3 Identification of Encrypted Web Resources . 7

1.4 Contributions . 8

CHAPTER 2 OPAQUE TRAFFIC . 10

2.1 Introduction . 10

2.2 Approach . 13

Likelihood Ratio Test . 15

Sequential Probability Ratio Test . 15

2.3 Evaluation . 16

2.3.1 Offline Analysis . 17

File Type Identification . 17

Content Type Matching . 18

Operator Analysis . 23

2.3.2 Online Analysis . 25

vi

Operational Impact . 30

2.4 Limitations . 31

2.5 Related Work . 32

2.6 Discussion . 34

2.7 Future Work . 35

Compressed vs Encrypted . 35

Flow-level Analysis . 35

2.8 Broader Implications . 35

CHAPTER 3 PHONOTACTIC RECONSTRUCTION OF ENCRYPTED VOIP CONVERSA-
TIONS . 37

3.1 Introduction . 37

3.2 Background Information . 39

3.2.1 Phonetic Models of Speech . 39

3.2.2 Voice over IP . 41

3.3 Overview of Our Approach . 42

3.3.1 Data and Adversarial Assumptions . 44

3.4 Related Work . 45

3.5 Methodology . 46

3.5.1 Finding Phoneme Boundaries (Stage ➊) . 47

3.5.2 Methodology . 47

3.5.3 Evaluation . 50

3.5.4 Classifying Phonemes (Stage ➋) . 52

3.5.5 Maximum Entropy Discrimination of Phonemes . 53

3.5.6 HMM Modeling of Phonemes . 54

3.5.7 Classification . 55

vii

3.5.8 Enhancing Classification using Language Modeling . 55

3.5.9 Evaluation . 55

3.5.10 Segmenting Phoneme Streams into Words (Stage ➌) . 56

3.5.11 Identifying Words via Phonetic Edit Distance (Stage ➍) . 57

3.5.12 Measuring the Quality of Our Output . 61

3.6 Empirical Evaluation . 64

3.6.1 An Adversarial Point of View (Measuring Confidence) . 66

3.6.2 Discussion & Mitigation . 68

3.7 Conclusion . 69

3.8 Future Work . 70

Skype . 70

Conversational Speech . 70

3.9 Broader Implications . 70

CHAPTER 4 PLAYING HIDE-AND-SEEK . 72

4.1 Introduction . 72

4.2 Background & Related Work . 76

4.2.1 Learning Algorithms . 78

4.2.2 Features . 78

4.3 Assumptions and Threat Model . 79

4.3.1 Networking Model . 79

4.3.2 Encryption Model . 80

HTTPS model . 80

Tunnel Model . 81

DNS Traffic . 81

viii

4.3.3 World Models . 82

Closed-world . 82

Open-world . 82

Binary Open-world . 83

Partial Information . 83

4.4 Approach . 84

4.4.1 Classification Scheme: Multi-label . 84

4.4.2 Classifier Model: Random Forest . 85

Support Vector Machine Classifiers . 85

Naïve Bayes Classifiers . 86

Random Forests . 87

Suitability for Our Approach . 88

4.4.3 Abstention and Thresholding . 89

Post-Classification Thresholding . 90

Validation and Threshold Selection . 91

4.4.4 Hyper-parameter Optimization . 91

4.4.5 Epoch Validation . 93

4.5 Evaluation . 93

4.5.1 Data Collection . 93

URLs . 94

Scripted Retrievals . 95

4.5.2 Evaluation Criteria . 96

Multi-class Metrics . 96

Multi-label Metrics . 97

ix

4.5.3 Experimental Setup . 98

World Models . 98

Datasets . 99

Learning Algorithms . 100

Multi-label Classification . 100

Feature Sets . 101

Validation and Data Selection . 101

Hyper-parameter Optimization . 101

4.5.4 Implementation . 104

4.5.5 Results . 104

Multi-class Comparison with Previous Work . 104

Multiple URLs per Domain Name . 106

Hyper-parameter Optimization . 108

Labeling Traces with URL Components . 110

Abstaining from Classification . 111

Summary of Findings . 112

4.5.6 Limitations and Future Work . 114

4.6 Broader Implications . 115

CHAPTER 5 DISCUSSION & CONCLUSIONS . 116

A OPAQUE TRAFFIC . 117

A.1 Comparison of Methods . 117

A.1.1 Preliminaries . 117

Discrete Kolmogorov-Smirnov Test . 118

A.1.2 Parameter Space Exploration . 119

x

A.1.3 Byte-Entropy Distributions for Small n . 124

Log-likelihoods . 125

A.1.4 Theoretical Efficiency . 125

A.2 HTTP Labeling Rules . 126

B PLAYING HIDE-AND-SEEK . 128

B.1 Scripted Retrieval Details . 128

B.2 Precision and Recall . 129

BIBLIOGRAPHY . 130

xi

LIST OF TABLES

2.1 File Type Analysis . 18

2.2 Experimental Results (log1 and log2) . 21

3.1 Feature templates for phonetic segmentation . 49

3.2 Phonetic segmentation performance for each dialect in the TIMIT corpus. 51

3.3 Feature templates for phoneme classification . 54

3.4 Precision and recall for word break insertion . 57

3.5 Phonetic edit distance examples . 59

3.6 Top scoring hypotheses from the New England dialect. 65

3.7 The five highest scoring hypotheses from the New England dialect under the content-
independent model. 65

4.1 Values for the multi-label metrics applied to a single instance for which the true label
set is {foo, bar, baz} and the predicted label set is {foo, qux}. 99

4.2 Hyper-parameters for the models used, along with the values explored for each, in our
experiments. 103

A.1 Notation . 118

A.2 Parameter space explored for each domain . 119

A.3 Theoretical efficiency . 126

A.4 HTTP Content-Type Filtering Rules . 126

xii

LIST OF FIGURES

2.1 CDF of payload size for the protocols examined in the two campus network logs 20

2.2 HTTP Content-Type Distribution . 21

2.3 CDFs of Packet IDs . 22

2.4 HTTP Mismatched Content-Types . 22

2.5 Byte-value Distributions for Anomalies . 24

2.6 Packet duplication using an Endace Data Acquisition and Generation (DAG) card. 27

2.7 Number of alerts and number of packets processed by Snort with winnowing and Snort
without (in 15-minute windows). 28

2.8 CDF of payload size for both opaque and transparent traffic. 29

3.1 Vowels in American English . 40

3.2 Architecture of approach for encrypted VoIP conversation reconstruction. 43

3.3 Example sequence of Speex frame sizes . 47

3.4 Illustration of classification features for determining segmentation points 50

3.5 Example feature template instantiation . 53

3.6 Comparison of methods for phoneme classification . 56

3.7 Illustration of distance between consonants [f], [T], and [w]. 58

3.8 Parameter space exploration for phonetic edit distance . 60

3.9 Empirical CDF of phonetic edit distance. 61

3.10 Example METEOR scores . 63

3.11 METEOR scores for each dialect in the TIMIT dataset . 64

3.12 METEOR scores under the content-independent assumption . 66

3.13 Scatter plot of METEOR scores against our confidence values . 67

3.14 METEOR scores for confidence-filtered hypotheses . 68

xiii

4.1 The two encryption models considered: HTTPS and web traffic tunneled over encrypted
channels. 80

4.2 Collection process overview. 95

4.3 Data selection for experiments with thresholding and classes of-no-interest 102

4.4 Multi-class classification applied to two datasets from previous work (LL and HWF). 105

4.5 Multiclass classification on datasets comprised of a single URL per domain and multi-
ple URLs per domain . 107

4.6 Difference in accuracy between multiple URLs per domain vs a single URL per domain
(multi-class classification) . 108

4.7 Difference in accuracy due to hyper-parameter optimization (multi-class) 109

4.8 Multi-label classification results . 110

4.9 Multi-label classification results with abstention and search . 113

A.1 Illustration of parameters length (N), offset (T), and block size (n) . 120

A.2 ROC plots for the techniques examined in this work. 121

A.3 Effects on accuracy when varying sample size and byte offset . 122

A.4 Effects on accuracy when varying significance level and alternative hypothesis 123

B.1 Multi-label classification results (precision and recall) . 129

xiv

LIST OF ABBREVIATIONS

AES Advanced Encryption Standard

ARO Army Research Office

ASCII American Standard Code for Information Interchange

BDR Bayesian detection rate

BR Binary relevance

BuFLO Buffered Fixed-Length Obfuscator

CBR Constant bit-rate

CDF Cumulative distribution function

CELP Code-excited linear prediction

CPU Central processing unit

CV Cross-validation

DAG Data Acquisition and Generation

DHS Department of Homeland Security

DMA Direct memory access

DNS Domain name system

DPI Deep packet inspection

DT Decision tree

EFF Electronic Frontier Foundation

EFR Enhanced Full Rate

ELF Executable and Linkable Format

FLLD Fast Levenshtein-like distance

FP False positive

FPGA Field-programmable gate array

GIF Graphics Interchange Format

GPU Graphics processing unit

GSM Global System for Mobile Communications

HMM Hidden Markov model

HTER Human-targeted translation edit rate

xv

HTML Hypertext markup language

HTTP Hypertext transfer protocol

HTTPOS HTTPS with Obfuscation

HTTPS HTTP-Secure (HTTP over SSL/TLS)

IDS Intrusion detection system

IETF Internet Engineering Task Force

IM Instant messenging

IP Internet protocol

IPA International Phonetic Alphabet

IPS Intrusion prevention system

IRB Institutional Review Board

ISRG Internet Security Research Group

JPEG Joint Photographic Experts Group

K-S Kolmogorov-Smirnov

k-NN k-nearest neighbors

k-NN-WL k-nearest neighbors with weight learning

LTE Long Term Evolution

METEOR Metric for Evaluation of Translation with Explicit Ordering

MIME Multipurpose Internet Mail Extensions

MNB Multinomial naïve Bayes

MoU Memorandum of understanding

MTU Maximum transmission unit

NB Naïve Bayes

NIDS Network intrusion detection system

NLTK Natural Language Toolkit

NSF National Science Foundation

OSAD Optimal string alignment distance

OvR One-vs-rest

PBX Private branch exchange

PDF Portable Document Format

xvi

PET Privacy enhancing technology

PMF Probability mass function

PRE Precision

RBF Radial basis function

REC Recall

RF Random forest

RFC Request for Comments

ROC Receiver operating characteristic

RTMP Real Time Messaging Protocol

RTP Real-time transport protocol

SIP Session initiation protocol

SMTP Simple Mail Transfer Protocol

SOCKS Socket secure

SPRT Sequential probability ratio test

SRILM SRI Language Modeling

SRTP Secure RTP

SSH Secure shell

SSL Secure sockets layer

TCP Transport control protocol

TLS Transport layer security

UDP User datagram protocol

URI Uniform resource identifier

URL Uniform resource locator

UTF Unicode Transformation Format

VBR Variable bit-rate

VM Virtual machine

VNG Variable n-gram

VoIP Voice-over-IP

VPN Virtual private network

W3C World Wide Web Consortium

xvii

WER Word error rate

XMPP Extensible messaging and presence protocol

XOR Exclusive-“or”

xviii

CHAPTER 1: INTRODUCTION

Communications privacy is essential to modern society. Our financial infrastructure relies

upon private transactions to operate while protecting our personal data and identities.

Corporations and governments alike rely on the ability to conceal their intentions, while still

transmitting those intentions to their agents, to protect their interests at home and abroad.

Whistle-blowers are, at times, dependent upon such concealment for their very lives; even

otherwise unremarkable people with unpopular beliefs rely on communications privacy to

protect themselves from persecution. Our reliance upon private transactions becomes even more

apparent when we consider the Internet, which has evolved into a omnipresent factor of

everyday life for many people. As such, it is no surprise that a significant portion of Internet

traffic is encrypted to ensure the privacy of the underlying communications: recent estimates

suggest 29% of total downstream Internet traffic is encrypted, a proportion expected to increase

to at least 65% after Netflix’s transition to HTTPS in 2016 [52].

Public awareness of the need for encryption has heightened due to high-profile leaks of

private data (such as the personal information of 70 million users of Sony’s PlayStation Network

in April, 2011 [127]) and the continuing increase in identity theft (see, e.g., [69]). We believe that

the fraction of encrypted traffic on real networks will only continue to rise, as more web services

follow in the footsteps of Google and Facebook in offering encrypted connections (as Netflix

plans to do in 2016 [54, 61]), the movement toward ubiquitous end-to-end encryption (see,

e.g., [14]) gains steam, and efforts to ease adoption for site operators take effect [e.g., 86]. In

particular, private corporate networks, where secure communications are often required,

undoubtedly see significantly higher proportions of encrypted traffic. Tools, such as the

Electronic Frontier Foundation (EFF)’s HTTPS Everywhere [67] and the Internet Security Research

Group (ISRG)’s Let’s Encrypt [86], make securing personal web browsing and communications

easier than ever. File-sharing programs like BitTorrent, which account for large proportions of

1

Internet traffic (16.5% by some estimates [e.g., 50]), offer connections encrypted at various levels

to evade traffic shaping and institutional surveillance. Finally, governments and other

organizations are increasingly mandating the use of encryption to protect the transmission of

personal identifying information and other sensitive data.1 These factors all contribute to altering

the landscape of network traffic by increasing the prevalence of encrypted communications.

At the same time, encrypted traffic presents problems for network administrators and

analysts. Policy, security, and quality-of-service requirements can be difficult to enforce when

traffic is encrypted, since identifying characteristics are often obscured. No surprise, then, that

the current default reaction to encrypted traffic is a defeatist stance, reflecting the prevailing

point of view that encrypted traffic yields little or no information of value to an observer.

We believe this point of view to be misguided: in fact, substantial information regarding the

underlying communications can be extracted from encrypted traffic under the right conditions.

This is an example of a general problem in engineering secure systems: while the underlying

cryptographic primitives may be sound, systems utilizing such primitives face a host of practical

considerations which can result information leakage through side channels, such as the timing of

certain cryptographic operations or the observable length of an encrypted message. This

problem often occurs when security and efficiency requirements conflict, particularly when the

security implications are not well understood—as has been the case with encrypted network

traffic in the past. With respect to network communications, researchers have repeatedly

demonstrated instances of side channels over more than a decade of previous work; for instance,

prior work has shown: (a) that individual keystrokes typed during a secure shell (SSH) session

can be identified [136], potentially leaking passwords and other sensitive information; (b) that the

application protocol (e.g., HTTP) transported over encrypted channels, such as SSH tunnels or

virtual private network (VPN) connections, can often be ascertained [e.g., 159]; and (c) that

individual movies streamed over a wireless connection can be identified [130]. Our own work

shows that encrypted Voice-over-IP (VoIP) calls, under certain conditions, can leak enough

information to enable the reconstruction of conversation transcripts [155]. Prior work, and our

own preliminary investigations, also indicate that web pages browsed over encrypted

1See, e.g., UNC’s Transmission of Protected Health Information and Personal Identifying Information Policy [109]

2

connections can often identified [e.g., 43]. All of these attacks are based on properties (i.e., side

channels, such as the sizes, timing, and direction of individual packets), of network traffic which

are easily observable despite the use of encryption by the system in question.

Further, we believe that the increasing prevalence of encryption on the network necessitates a

paradigm shift in the way we analyze and monitor network traffic. Deep packet inspection (DPI)

engines, on which the prevailing intrusion detection/prevention systems (IDS/IPS) heavily rely,

are of little use when payloads are encrypted. These engines are notorious for requiring extensive

computational resources; encrypted traffic, in particular, imposes a heavy computational burden

on DPI-based systems [22, 39]. In addition, IDS systems often utilize port numbers, both for

filtering and for signature matching; unfortunately, port numbers are known to be unreliable due

to the widespread use of non-standard and randomized ports [95, 105]. Lastly, while DPI systems

may be able to apply signature matching to detect and filter some known encrypted protocols,

some protocols, such as BitTorrent’s Message Stream Encryption, are specifically designed to

avoid signature matching and protocol identification [103]. Furthermore, identifying each new

encrypted protocol requires the construction and deployment of a new signature specific to that

protocol. Therefore, we argue that the resource constraints of DPI engines and the need to apply

fundamentally different analysis techniques to encrypted traffic necessitate encrypted traffic

detection techniques which are both port- and protocol-agnostic, and which can operate on in

real-time on high-speed networks. Such techniques enable the rapid filtering of encrypted traffic,

which can then be discarded or subjected to further analysis if desired. In Chapter 2, we develop

and evaluate techniques for winnowing, or filtering, opaque (i.e., compressed or encrypted) traffic

in real-time, which represent a substantial first step towards this goal.

The usefulness of such techniques is not limited to identifying opaque (or encrypted) traffic

for further analysis and load reduction in DPI systems. Such techniques can enable policy

enforcement on local networks, e.g., by flagging encrypted packets tunneled over unencrypted

connections (an odd practice used by botmasters to hide command-and-control messages in

otherwise mundane HTTP traffic [25]). Similarly, one might wish to flag unencrypted traffic

where encrypted traffic is expected, such as might occur if an SSH connection is subverted [111],

or on institutional networks where end-to-end encryption is a requirement. Identifying opaque

(or encrypted) traffic may also help to discover applications tunneled over other protocols (e.g.,

3

video traffic tunneled over HTTP), or to provide sanity checking for strongly typed

networking [107].

Our investigation into opaque traffic also reveals a startling fact, which underscores the need

for specialized analysis: over a 24-hour weekday period (with peak loads of 1.2Gbps), almost 90%

of payload-carrying TCP packets—and 86% of payload bytes—observed traversing a major

university network were opaque. This staggering figure forces us to consider the challenges

opaque, and particularly encrypted, traffic present for network security and forensics. Ultimately,

there is a need to both improve our understanding of the properties and characteristics of

encrypted network traffic and to explore new, specialized techniques for the handling of

encrypted traffic by network monitoring systems on high-speed networks. Towards these ends,

we examine two additional problems in this area: in Chapter 3, the approximate transcription of

encrypted VoIP calls; and in Chapter 4, the large-scale identification of web resources retrieved

over encrypted connections. These two problems are representative of major contexts in which

encryption is often applied: streaming and request-response protocols. By exploring the practical

limits of reconstructing information from leaks in both contexts, we provide a better

understanding of the extent of the privacy threat these leaks represent, the steps necessary to

mitigate that threat, and the ability of network and forensic analysts to turn that threat to their

advantage.

Thesis Statement

Encrypted network connections can be detected in real-time and side channels exposed by those

connections can be leveraged to provide significantly more useful information than previously

believed, enabling both the reconstruction of approximate transcripts of encrypted VoIP

conversations and the identification of HTTP resources retrieved over encrypted connections.

In support, we first demonstrate (Chapter 2) that opaque traffic, of which encrypted traffic is a

subset, can be identified in real-time and demonstrate how this ability can be leveraged to

improve the capabilities of existing IDS systems. Second, we show that side channels in in

encrypted VoIP traffic enable the reconstruction of approximate transcripts of conversations

(Chapter 3). Finally, we propose and demonstrate the effectiveness of a new paradigm for

4

identifying HTTP resources retrieved over encrypted connections (Chapter 4), which represents

both a greatly enhanced threat to user privacy and an opportunity for network monitors and

analysts to improve their own capabilities with respect to encrypted traffic.

1.1 Real-time Detection of Opaque Network Traffic

The analysis of encrypted traffic requires that we be able to identify and filter encrypted traffic

from the masses of data transmitted across our networks every day. Towards this end, Chapter 2

develops and evaluates methods methods for quickly and accurately determining whether a

packet is opaque, i.e., compressed or encrypted, in a port- and protocol-agnostic manner.

Our techniques are based on the fact that, in general, the processes of compression and

encryption both impose necessarily high degrees of uniformity in the distribution of output

bytes. We leverage this fact by formulating hypothesis tests to identify sequences of bytes which

appear to be drawn from a uniformly random distribution. We focus on sequential analysis and

small-sample fixed-size hypothesis tests to minimize the number of samples, i.e., the number of

bytes, necessary to determine whether a packet is opaque or transparent. By operating on a

minimal number of samples, we in turn minimize the overhead imposed by our techniques.

We evaluated a number of such techniques, including entropy-based tests which might be

described as implementing “common wisdom”. Ultimately, two simple tests, the sequential

probability ratio and (fixed-size) likelihood ratio tests, provide impressive accuracy rates while

examining n = 16 bytes or less per packet payload. In simplest form, both operate by counting

the number of bytes m with value greater than 128, then comparing the likelihood of drawing m

such bytes from a uniform distribution to that when drawn from a non-uniform distribution. The

bytes are deemed uniformly distributed if the ratio between the two likelihoods exceeds a

threshold determined by the desired error rates. The sequential test performs this check on a

byte-by-byte basis, examining a single byte at a time and checking the ratio for the sequence

observed so far, while the fixed-size test examines the full set of samples (e.g., all n bytes) as one

batch. The advantage of the sequential test is that decisions can be made, in many cases, before

examining all n bytes.

We demonstrate that these techniques enable the identification of opaque data with 95%

accuracy through evaluations on both network traffic and static files. In addition, we demonstrate

5

the usefulness of our techniques by identifying anomalous data streams in real-world traffic,

including personal data such as account names and instant messenging (IM) conversations

transmitted over port 443 (ostensibly reserved for HTTP connections over SSL/TLS). Finally, we

show that winnowing opaque packets can increase the packet throughput of the Snort IDS by

147% on our campus network, enabling Snort to handle peak loads of 1.2Gbps with zero percent

packet loss.

1.2 Reconstructing Transcripts of Encrypted VoIP Conversations

Chapter 3 shows how current practices for encrypting VoIP calls are insufficient to ensure

privacy. In particular, the sizes of the transmitted packets, as observed on the network, are

sufficient to reconstruct approximate transcripts of the encrypted conversation. The sizes of the

encrypted packets leak information due to an interaction between two common design decisions

in VoIP schemes: the use of variable bit-rate (VBR) codecs for compression of the voice signal and

of length-preserving stream ciphers for encryption. These two technologies are chosen to

minimize bandwidth consumption and requirements while maintaining call quality; however,

this comes at the price of decreased privacy.

Previous work has shown that this information leak is sufficient to determine the language

spoken in an encrypted call [157], identify the speakers [5, 92], and determine whether known

phrases were spoken [156]. However, the previous work has not been considered a significant

breach of privacy: the identity of the speakers and the language of a call can often be determined

by locating the endpoints of the call (e.g., a call from Mexico to Spain is likely to be in Spanish).

Determining the presence or absence of known phrases requires a priori identification of phrases

of interest, a significantly limiting factor when considering practical breaches of privacy. Our

work surpasses the previous work by constructing approximate transcripts of encrypted

conversations without a priori knowledge of the contents of the conversation.

Our approach consists of four primary stages progressing from the identification of

individual sounds to words and phrases. In the first stage, the sequence of packet sizes is

segmented along the boundaries between individual phonemes, the fundamental sounds of which

speech is comprised. Since each packet represents a single frame of audio, and frames have a

short, fixed duration (e.g., 20ms), phonemes often span multiple packets; this means each

6

phoneme in the input signal corresponds to a sequence of packet sizes. In the second stage, each

sequence is classified, using two different classifiers, according to the phoneme represented. The

third stage splits the resulting sequence of phonemes into smaller sequences, each representing a

single word; the final stage matches those smaller sequences to dictionary words.

1.3 Identification of Encrypted Web Resources

Current network security and forensics platforms have often have little to no access to

information about the communications underlying encrypted connections. In order to mitigate

this weakness, we propose a data-driven approach to deriving information about HTTP traffic

transmitted over encrypted channels. In particular, this information includes the network host to

which the HTTP connection is directed (e.g., www.cs.unc.edu) as well as the path for the specific

resource requested (e.g., ~amw/index.html).

Previous work has examined the problem of identifying the front page of web sites accessed

over encrypted connections (see, e.g., Dyer et al. [43]). However, previous work has primarily

focused on classifying the front pages of a limited number of web sites. Our work examines a

significantly more complex space of labels by including both subdomains and the paths of the

resource(s) requested in the set of labels to be modeled and predicted. In particular, we employ

multi-label classification to predict not only the identity of a previously seen web page retrieved

over an encrypted connection, but also to predict partial information (such as the domain name)

about previously unseen URLs.

We collect a new dataset of traces of web pages retrieved over SSH and HTTPS tunnels which

contains multiple URLs per domain name, enabling more realistic evaluations than in previous

work. In particular, we evaluate the multi-label classification paradigm and the multi-class

classification paradigm (employed by previous work) in scenarios including a single uniform

resource locator (URL) per domain name (as in previous work) and multiple URLs per domain

name. Our evaluation includes experiments under both closed-world (where the traces belong to

a closed set of URLs known a priori) and open-world (with previously unknown, but unrelated,

URLs) models. Furthermore, the multi-label paradigm enables a third experimental model which

incorporates previously unknown but related URLs (e.g., previously unknown URLs belonging

to a domain shared by known data).

7

Our experiments demonstrate that the adversary model used in previous work—that each

page to be identified is unrelated to the every other—is unrealistic. Furthermore, we demonstrate

that the multi-label paradigm is well-suited to the problem at hand as it supports

“out-of-the-box” not only the closed-world and open-world models discussed in prior work, but

also a third model—that of partial information via related URLs—not previously examined.

1.4 Contributions

In summary, the primary contributions of this dissertation are as follows:

1. Chapter 2 introduces the concept of opaque, i.e., compressed or encrypted, data as a distinct

class of network traffic which is particularly difficult (in some cases, impossible) for DPI

systems to analyze, resulting in substantial wasted effort on the part of such systems.

Chapter 2 then develops and evaluates methods for quickly and accurately determining

whether a packet is opaque, and demonstrates the accuracy and utility of these techniques in

experiments on real-world network traffic (including through live experiments on our

campus network). This work was previously published in:

Andrew M. White et al. “Clear and Present Data: Opaque Traffic and its Security

Implications for the Future”. In: ISOC Network and Distributed System Security

Symposium – NDSS 2013. The Internet Society, Feb. 2013.

2. Chapter 3 demonstrates how side channels in encrypted VoIP connections can be leveraged

to reconstruct approximate transcripts of conversations. This work was previously

published in:

Andrew M. White et al. “Phonotactic Reconstruction of Encrypted VoIP

Conversations: Hookt on Fon-iks”. In: 2011 IEEE Symposium on Security and

Privacy. IEEE Computer Society Press, May 2011, pp. 3–18.

3. Chapter 4 presents a novel approach to identifying HTTP resources retrieved over

encrypted connections. In particular, we demonstrate how multi-label classification can be

used to identify modeled resources and to partially identify previously unseen resources.

We collect a new dataset containing multiple URLs per domain name, and use this dataset

8

to demonstrate how the single-URL-per-domain scenario of previous work leads to inflated

results. Furthermore, we evaluate both our own approach and those of previous work in

experiments under both closed-world and open-world models, as well as under a third

model which allows for the inference of partial inference from related, but previously

unseen, URLs.

9

CHAPTER 2: OPAQUE TRAFFIC1

2.1 Introduction

As our society becomes increasingly reliant on computer systems, the potential harms

resulting from their insecure operation are far reaching—from legal, social, and economic to

psychological and even physical (e.g., through cyber-physical systems) harms. Alongside

requirements (e.g., confidentiality) and mechanisms (e.g., authentication), policies that define what

actions are allowed, or disallowed, are a key building block of computer security and an

important factor in minimizing these harms.

The successful monitoring of security policies via intrusion detection systems (IDSs) critically

depends on scalable and accurate techniques for inspecting traffic. Deep packet inspection (DPI)

is a common method for performing such inspection, especially when security policies require

determinations based on information not accurately reflected by network ports, protocols, or

hosts. In fact, the market for DPI appliances alone reached almost $1 billion in 2009, and

continues to grow [161]. Since DPI must deal with huge volumes and significant heterogeneity of

traffic, DPI designers often trade off accuracy of detection with resource demands [135]. DPI

systems cannot generally derive useful information from opaque (i.e., encrypted or compressed)

packets; thus, we propose improving the performance versus quality curve through the quick

and accurate winnowing, i.e., filtering, of opaque traffic, and evaluate a number of techniques for

doing so. Such techniques can improve the performance of DPI engines by quickly and accurately

separating out low-value packets from the data stream they inspect; this is particularly important

in high-performance environments, where the sheer volume of traffic can be staggering.

As previously discussed (Chapter 1), the class of opaque traffic encompasses not only

encrypted connections, but also compressed entities, which, in the modern era of streaming

1The work presented in this chapter was previously published in: Andrew M. White et al. “Clear and Present Data:
Opaque Traffic and its Security Implications for the Future”. In: ISOC Network and Distributed System Security Symposium
– NDSS 2013. The Internet Society, Feb. 2013.

10

video, comprise an even more significant fraction of network traffic: some sources indicate that

streaming video accounts for 63% of peak network usage [51], a proportion which has nearly

doubled over the past three years (from 35% in the fall of 2011 [50]).

In fact, our experiments revealed a surprising preponderance of opaque traffic: in a 24-hour

weekday period, nearly 90% of TCP packets traversing a major university network (with peak

loads of 1.2Gbps) were found to be opaque. This truly staggering figure suggests a broader issue

for the security community moving forward: as more and more payloads become opaque to DPI

engines, how can we detect and prevent obscured threats? While content-based signatures will

continue to be relevant as a detection mechanism for direct attacks (e.g., those exploiting buffer

overflows in networking routines) against networked systems, bypassing current DPI engines can

be as simple as encrypting the relevant exploit code, particularly for indirect attack vectors (e.g.,

exploits embedded in documents). Thus we, as a community, face both an immediate need to

separate the wheat from the chaff—to winnow low-value, i.e., opaque, packets to enable our

existing detection methods to operate in high-speed environments—and a long-term need to

develop methods for coping with attacks embedded in opaque, and particularly encrypted,

traffic. This work represents a first step toward solving both problems: our techniques enable the

fast and accurate identification of opaque packets, either as chaff to be discarded, or as the inputs

to specialized detection engines targeting opaque traffic.

Unfortunately, the identification of opaque network traffic is very challenging. While

signatures can identify many known opaque protocols (e.g., SSL/TLS, SSH), some protocols (e.g.,

Bittorrent’s Message Stream Encryption [103]) are specifically designed to avoid signature

matching. In addition, signature-based approaches for identifying new opaque protocols require

constructing and deploying new signatures for each new protocol. More importantly, existing

techniques for identifying opaque data often require examination of a large number of bytes,

which can be computationally and memory intensive on high-speed networks [22, 39]. Similarly,

inspecting application-layer content-types to determine opacity requires resource-intensive flow

reassembly. To compound matters, such detectors cannot rely on HTTP content-types as they are

often inaccurate (see Section 2.3).

We take a first step toward addressing these challenges by providing novel methods for

quickly and accurately determining whether a packet is opaque. Our techniques are both port-

11

and protocol-agnostic, allowing for the detection of opaque traffic regardless of the port(s) or

protocol(s) involved. We concentrate on efficient techniques which can operate on limited

portions of packet payload, such as small-sample fixed-size and sequential hypothesis tests, in

order to minimize overhead and allow scarce computational resources to be reserved for

high-value analyses.

In the present work, we necessarily evaluate our techniques in isolation, i.e., without

attempting to fully integrate our approach with a particular system or methodology, in order to

minimize the number of factors potentially biasing our results. That said, we envision the

identification of opaque traffic not as the relatively standalone system portrayed herein — there is

no “silver bullet” for network intrusion detection — but rather as an efficient new tool in the

network analyst’s toolbox. In particular, forensic recording systems, such as Time Machine [97],

often avoid archiving full connections in order to reserve limited storage space for the

higher-value packets at the beginning of a connection. An admitted weakness of this design

decision is that attacks in the discarded portions of these connections go unnoticed. Our

techniques mitigate this concern to an extent by providing a means for such a system to detect

potentially high-value plaintext packets in lengthy connections. Similarly, our tests are simple

and can be implemented on an FPGA, providing a benefit even to systems which make use of a

hardware component, such as those following shunting approach proposed by González, Paxson,

and Weaver [53].

As a final note, opaque traffic identification has value that extends beyond filtering to policy

monitoring and enforcement. For instance, operators may wish to monitor and enforce policies

within their network (e.g., flagging encrypted packets tunneled over unencrypted connections,

an odd practice used by botmasters to hide command-and-control messages in otherwise

mundane HTTP traffic [25]). Similarly, one might wish to flag unencrypted traffic where

encrypted traffic is expected, such as might occur if an SSH connection is subverted [111], or on

institutional networks where end-to-end encryption is required. Identifying opaque traffic may

also help to discover applications tunneled over other protocols (e.g., video traffic tunneled over

HTTP), or to provide sanity checking for strongly typed networking [107].

Our contributions include: 1) the concept of opaque traffic as a distinguishable class of

network traffic; 2) the development, evaluation and comparison of multiple techniques for

12

detecting such traffic (Section 2.2, Section A.1); 3) an operational analysis of modern network

traffic with respect to opacity (Section 2.3.1); and 4) an evaluation, at scale, of the potential of our

techniques for reducing the load on modern intrusion detection systems (Section 2.3.2).

2.2 Approach

An important requirement of ours is to minimize the amount of a packet’s payload that we

must inspect, as doing otherwise is both computationally and memory intensive on high-speed

networks [22, 39]. These overheads severely restrict the numbers of samples available to us for

any of the tests we explore. Therefore, for the remaining discussion, we propose detectors based

on small-sample fixed-size hypothesis tests and sequential hypothesis testing. The latter allows

us to make decisions quickly by examining only as many samples as needed to support a given

hypothesis.

Our detectors are based on determining whether the bytes examined are drawn from a

uniform distribution or some other, unknown, distribution. Our first instinct, when faced with

the problem of measuring the uniformity of a set of samples, was to use entropy-based measures.

However, as we show later, accurate entropy testing requires significantly more samples than is

practical in our setting, and is less efficient than more direct methods based on the samples

themselves rather than on a derived statistic such as entropy.

Both encrypted and compressed traffic will exhibit high entropy, i.e., the distribution of bytes

will be close to uniform. In this paper, we consider these two cases as belonging to the same

equivalence class of “opaque” objects as far as DPI engines are concerned. That is, regardless of

whether the packets that belong to a session are compressed versus encrypted, they will be

forced to go through the slow path wherein the engine must analyze all packets of these sessions,

but will still fail to derive any useful information in the vast majority of cases. Hence, from the

perspective of DPI engines, there is little value in attempting to analyze these packets. As

Cascarano et al. [22] observed in their experimental evaluations, these slow paths incurred CPU

overheads that can be several orders of magnitude higher than the average case for transparent traffic.

In our search for the best performing test for our goals, we examine several fixed sample-size

hypothesis tests. There are a number of standard techniques for testing uniformity; however,

many of these are designed for testing the uniformity of the outputs of a pseudo-random number

13

generator, and thus assume access to millions of samples (e.g., [101]). These tests are unsuitable

in our context because our sample size is extremely limited. We instead evaluate the appropriate

fixed-size tests (the likelihood ratio test and the discrete Kolmogorov-Smirnov (K-S) test) and two

variants of the sequential probability ratio test. We assess the effectiveness of each test in two

scenarios, differentiated by the domain of the underlying distribution. In the first scenario, we

directly test the distribution of byte values in the packet; for the second, we instead test the

distribution of entropy values over n-byte “blocks” in the packet.

For pedagogical reasons, we leave descriptions of the less successful tests, along with the

details of the parameter exploration experiment itself, to Section A.1.2, and discuss only the more

effective tests here. In summary, the closely-related likelihood ratio and sequential probability

ratio tests, operating directly on the byte values instead of on derived entropy values, consistently

outperform the other tests. The poor performance of the entropy tests is related to the birthday

problem, in that the (byte-)entropy of any n bytes is the same unless there is a collision (e.g., there

are two bytes which share the same value). According to the birthday paradox, the a priori

probability of a collision in 8 bytes, even when choosing only from only the 95 printable ASCII

characters, is only about 26%. This means that the entropy of 8 ASCII bytes is indistinguishable

from that of 8 unique bytes 74% of the time. Thus entropy-based tests require substantially more

than the number of samples available in our context to be effective. However, our parameter

exploration experiment (see Section A.1.2) reveals that the the more successful tests require

examining only 16 bytes of payload to be effective.

Since our goal is to discard opaque traffic (albeit encrypted or compressed), we let our null

hypothesis be that the packet is opaque and our general alternative be that the packet is

transparent. Specifically, the null hypothesis is that the values of the bytes in the packet are

approximately uniformly distributed (e.g., the packet is compressed or encrypted); the

alternative is that the distribution is non-uniform (e.g., ASCII text).

When the need arises for a probability density function for the alternative hypothesis, we use

a simple distribution based on the intuition that plaintext packets will have a higher frequency of

bytes whose values are less than 128 (as are the ASCII values). We parameterize this distribution

by setting δ to the cumulative density of those values. For example, at δ = 0.75 the alternative

hypothesis is that 75% of the bytes in the packet have values less than 128.

14

Likelihood Ratio Test

A well-known theorem of hypothesis testing is the Neyman-Pearson lemma, which states that

the most powerful test, i.e., that with the lowest expected false positive rate for a given false negative

rate, of one simple hypothesis against another is the likelihood ratio test [147]. For a single sample,

the likelihood ratio statistic is simply the ratio of the likelihood of the sample under the

alternative hypothesis to the likelihood of the sample under the null hypothesis. For multiple

samples, these likelihoods are replaced with the corresponding joint likelihoods.

Suppose we wish to test the simple null hypothesis H0 : θ = θ0 against the simple alternative

H1 : θ = θ1 given a random sample x. Then the Neyman-Pearson lemma [147, Theorem 10.1]

states that the most powerful test of H0 against H1 is that where one rejects H0 if Λ(x) ≥ q and

accepts H0 if Λ(x) < q, where q is determined by the desired level of statistical significance and

Λ(x) is the ratio of the likelihood of x under the alternative to the likelihood of x under the null

hypothesis.

Sequential Probability Ratio Test

Sequential analysis is often used when there is a desire, such as in our context, to limit the

number of samples examined. In fact, Wald and Wolfowitz have shown that, among all tests of

two simple hypotheses with fixed error probabilities, the sequential probability ratio test (SPRT)

minimizes the expected number of samples required for a decision under either hypothesis [149].

Sequential testing works by examining samples one-by-one, rather than all at once, and

evaluating a decision function at each sample. This allows the test to stop examining samples as

soon as it has found enough “evidence” for one hypothesis or the other.

Specifically, let α = P[acceptH1 | H0] be the probability of a false negative, that is, an erroneous

prediction that the population is not uniformly distributed; similarly, define β = P[acceptH0 | H1]

as the probability of a false positive. In order to perform the test, we iterate through some

sequence of samples x1, x2, . . .; according to Wald’s theory of sequential hypothesis testing [148],

15

we choose at each iteration m one of three actions: acceptH0, acceptH1, or continue, as follows:

acceptH0 if Λm(x1, x2, . . . , xm) ≤ g0(m)

acceptH1 if Λm(x1, x2, . . . , xm) ≥ g1(m)

continue otherwise.

Setting g0(m) = β
1−α and g1(m) = 1−β

α gives the desired probabilities of false positives and false

negatives.

A known drawback of this test is that it may not terminate within an acceptable number of

samples. We alleviate this concern by exploring two variants, which we refer to as the truncated

and restricted SPRTs. For the truncated SPRT, we specify a maximum number of samples which

the test is allowed to examine; if this limit is reached without making a decision, then the

fixed-size likelihood ratio test is applied to the samples examined so far. The restricted SPRT, on

the other hand, works by sloping the decision boundaries such that they intercept the axis after

the given number of samples. For the restricted case, we follow the approach suggested

by Bussgang and Marcus [20].

Based on the results of the parameter exploration experiment (see Section A.1.2), we use the

truncated sequential method (α = 0.005, β = 0.005, δ = 0.85) for the remainder of the

experiments in this work.

2.3 Evaluation

In order to ascertain the effectiveness of our techniques in different scenarios, we perform a

number of experiments in both offline and online settings. First we show, in a controlled, offline

experiment, that our techniques are able to accurately identify the opacity of different file types.

We then verify the accuracy of our techniques under real-world network conditions by evaluating

our detectors on traffic logs and traces collected at two major universities, an analysis which

produced a number of interesting anomalies which we investigated with the help of a network

operator. Finally, we show the utility of winnowing by comparing two otherwise identical Snort

IDS deployments under identical traffic loads.

16

2.3.1 Offline Analysis

File Type Identification

To gain an understanding of how well our techniques were able to label the opacity of various

common data types, we collected a set of files with known ground truth, including compressed

archives and streams, encrypted files, executable binaries, and text files. We also attempted to

cover different sub-types; e.g., we included five different text file encodings. The details of this

set, which we believe to be a reasonable cross-section of common file types, are presented in

Table 2.1.

We gathered a base set of files from multiple sources, then applied standard compression and

encryption algorithms to these files to create the remainder of the dataset. For executables, we

used ELF binaries from the bin directories of a basic Ubuntu Server 10.04.3 installation (that we

used for testing Bro and Snort). The files in each directory, including a number of Perl scripts,

were then individually compressed using tar (which in turn uses gzip and bzip2) to provide gzip

and bz2 files and encrypted using openssl to provide examples of the RC4 and AES ciphers. The

text files are the contents of the man path directory of the same Ubuntu installation, uncompressed

and processed by groff into different encodings (ASCII, UTF-8, -16, and -32, and latin1); the PDF

files are the archive of proceedings from a major computer security conference. Finally, the

images were JPEGs scraped from public websites, including a departmental website and nasa.gov.

To simulate a network environment, we transmitted each object over an individual TCP

connection on the loopback device of an Ubuntu virtual machine. We used nc to both send and

receive, and tcpdump to collect the resulting packets. We report the proportion of opaque and

transparent packets observed for each type of file in Table 2.1.

Our test labeled more than 95% of compressed, encrypted and image file packets as opaque,

as expected. Similarly, even with multiple different encodings, our techniques labeled more than

99.99% of text file packets correctly as transparent. Our test is less consistent on the executables.

Inspection of the binaries revealed a large number of null bytes, suggesting that a more targeted

alternative hypothesis, perhaps counting only the set of printable ASCII bytes rather than simply

those with value less than 128, may improve our results. However, this must be contrasted with

the straightforwardness and efficiency of checking whether the value of a byte is greater than 128

17

Type Objects Size (MB) True Positive Rate

compressed 1410 40 97.8
encrypted 1410 91 98.9
text 5802 176 100.0
images 205 12 94.4
executable 498 43 34.5
pdf 1006 75 13.5

Table 2.1: File Type Analysis

(which amounts to simply checking the high-order bit).

Content Type Matching

To assess the accuracy and performance of the techniques in Section 2.2, we instrumented the

Bro IDS (version 1.6-dev-1491) to log packet-level information (with only coarse-grained payload

information), providing a form of ground truth. Due to privacy restraints, we were unable to

record full packet traces at scale; therefore, the experiments in this section are performed on logs

generated by our instrumented version of Bro. For these experiments, we collected two logs (log1

and log2) from two large university campuses.2 Both logs were collected over several hours

during a weekday. For simplicity, we only consider IPv4 TCP traffic. We labeled each packet by

protocol using Bro’s dynamic protocol detection [38], and restricted our analysis to two

encrypted protocols (SSL and SSH) and two unencrypted protocols (HTTP and SMTP).

For each packet, we log the source and destination ports, the HTTP message type, the HTTP

message encoding, and the payload length; we also store coarse-grained statistics in the form of a

binary value for each byte of the payload (indicating whether the byte’s value is less than 128),

and the byte-value frequencies for each n-byte block of the payload. The latter are needed to

calculate sample entropy at the block level and for the frequency-based tests (i.e., χ2 and discrete

Kolmogorov-Smirnov (K-S); see Section A.1). In all cases, we only log information for the first 256

bytes of the payload.

2The researchers and their respective Technology Service Offices have longstanding memorandums of understanding
(MoUs) in place to collect anonymized network traffic. The MoU covers specific uses and types of networking data,
as well as conditions for securing and accessing such data. To be compliant with our pre-existing Institutional Review
Board (IRB) policies, all computations on payloads were performed in memory. For this specific collection effort, the
Institutional Review Board (IRB) concluded that, as we collect only coarse-grained statistics regarding packet payloads,
the activities in our application “do not meet the regulatory definition of human subjects research under the Common
Rule” and are therefore not regulated.

18

We labeled each packet as “opaque” or “transparent” according to the expected data type for

that packet: SSL and SSH packets are labeled opaque and SMTP packets are labeled transparent.

For HTTP, we labeled packets based on the HTTP Content-Type and Content-Encoding header

fields (as given by the sender) for the corresponding HTTP message (see Section A.2 for details of

the labeling). This allows us to further restrict our attention to only those content-types for which

opacity should be predictable and consistent. For instance, the HTTP 1.1 specification states that

“HTTP entities with no specified Content-Type should be identified by inspection of the

contents” [45]; we remove any such packets from our analysis because we have no way of

determining ground truth. However, as we discovered during the course of this work, the HTTP

Content-Type headers are often inaccurate and misleading (details are given in the following

sections).

Unfortunately, Bro suffers from performance problems (see [39]) on high-speed networks,

especially when port-based analysis is disabled (as is necessary to force Bro to determine protocols

solely by inspection). Therefore, we discard any HTTP packets which belong to flows in which

Bro experienced losses. We do so because the dropped packet(s) could have contained essential

labeling information (e.g., a message header) necessary for determining the Content-Type and

encoding.

After filtering the logs down to only those packets which met the criteria outlined above, over

39 million packets (across ≈ 3.8 million bi-directional flows) remained from log1 and over 24

million (across ≈ 2.3 million bi-directional flows) remained from log2. The traffic makeup for

both logs is shown in Figure 2.1.

The Content-Type distribution (Figure 2.2) for the top content types in both logs reveals some

interesting contrasts between the two. In particular, video types are prevalent in log2 while log1

consists mainly of web-browsing traffic (over 80% of log1 HTTP packets have Content-Type

image/jpeg or text/html, compared to 40% in log2). The Content-Encoding field is only specified

for a small proportion of packets in our logs, and the only significant encoding is gzip, at 4.0% in

log1 and 6.5% in log2. All other encodings combined account for less than a tenth of a percent of

packets in each log. We performed a large-scale analysis on both log1 and log2; the overall

results are given in Table 2.2. Examining only 16 bytes per packet, offset 8 bytes from the start of

each packet, we achieve a match rate, i.e., the percentage of examples for which our techniques

19

0 200 400 600 800 1000 1200 1400

Payload Size

0.0

0.5

1.0

1.5

2.0

2.5

N
u
m
b
e
r
o
f
P
a
ck
e
ts

×107

Overall

SMTP

SSH

SSL

HTTP

0.0

0.2

0.4

0.6

0.8

1.0

P
e
rc
e
n
ta
g
e
o
f
P
a
ck
e
ts

(a) log1

0 200 400 600 800 1000 1200 1400

Payload Size

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

N
u
m
b
e
r
o
f
P
a
ck
e
ts

×107

Overall

SMTP

SSH

SSL

HTTP

0.0

0.2

0.4

0.6

0.8

1.0

P
e
rc
e
n
ta
g
e
o
f
P
a
ck
e
ts

(b) log2

Figure 2.1: CDF of payload size for the protocols examined in the two campus network logs

20

0.0 0.1 0.2 0.3 0.4

Percentage of HTTP Packets

text/html
image/jpeg

app/pdf
video/x-flv
text/plain
image/png
video/mp4
image/gif
app/zip

audio/mp4 trace1

trace2

Figure 2.2: HTTP Content-Type Distribution

log1 log2

Protocol Match Rate Examples Match Rate Examples

SSH 94% 7.3m 97% 157k
SSL/TLS 96% 16.4m 94% 5.5m
SMTP 86% 3.35m 80% 1.4m
HTTP 91% 9.7m 85% 13.8m
Total 94% 36.7m 96% 20.8m

Table 2.2: Experimental Results (log1 and log2)

produced the same label as expected from the content type, of 95.1% on log1 and 96.0% on log2.

We refer to “match” rates here, rather than false-positive or false-negative rates, due to the large

quantity of mislabeled content-types we encountered.

In the case of encrypted traffic (i.e., TLS/SSL) we accurately classified approximately 95% of

the traffic. However, the mismatches are particularly interesting. Figure 2.3 shows the

distribution of packet IDs, where a packet’s ID is its position in the bi-directional flow (i.e., a

packet with ID zero is the first packet sent by the originator of the connection). Notice that 94.8%

of the mismatches for SSL/TLS occur within the first 5 packets, and 95% within the first 6 packets

for SSH. These packets are all in the connection set-up phase and hence are not, in fact,

encrypted. Moreover, these connection set-up packets, particularly any SSL certificates (typically

around ID 2), may be of interest to DPI engines even when the encrypted payload is not.

A closer analysis of our overall results reveals that 50% of the transparent-as-opaque

21

0 2 4 6 8 10

Packet ID

0.0

0.2

0.4

0.6

0.8

1.0

P
e
rc
e
n
ta
g
e
o
f
P
a
ck
e
ts

All
False Negatives

(a) SSL/TLS

0 2 4 6 8 10

Packet ID

0.0

0.2

0.4

0.6

0.8

1.0

P
e
rc
e
n
ta
g
e
o
f
P
a
ck
e
ts

All
False Negatives

(b) SSH

Figure 2.3: CDFs of Packet IDs

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07

Percentage of HTTP Packets

app/pdf
text/plain
image/jpeg

app/x-shk-flash
text/html trace1

trace2

Figure 2.4: HTTP Mismatched Content-Types

22

mismatches for log1, and 15% for log2, are from SMTP traffic, which we surmise includes opaque

attachments for which we do not have accurate labeling information. Of the HTTP

transparent-as-opaque mismatches (Figure 2.4), many are PDF and Flash (both of which can serve

as a container for many other object types), but a surprising proportion are of type text/plain.

We investigated the text/plain mismatches from log1 further and concluded, based on the

observed byte-value distributions, that if these packets are in fact plaintext, the method used for

encoding is non-standard. Figure 2.5a depicts the byte-value distribution for the mismatches and

for the text/plain packets where the encoding was specified explicitly as one of UTF-8, UTF-16,

US-ASCII or ISO-8859-1. As expected, the latter distribution has significant mass around the

ASCII characters ‘A’-‘z’ (values 65− 122 in Figure 2.5) while the former does not. A similar

finding holds for the opaque-as-transparent mismatches in the image/jpeg case: the distribution

(bottom, Figure 2.5b) has striking similarities to that observed for the case of known plaintext

encodings (top, Figure 2.5a), and moreover, is quite different from that of the opaque JPEGs (top,

Figure 2.5b). Unfortunately, without access to actual payloads for these two traces, we cannot say

what was the underlying cause for the peculiar distribution in the content flagged by our

methods, but we believe this underscores the utility of our techniques — i.e., we successfully

identified anomalous instances in both cases. We revisit this issue in the next section.

Finally, we examined the number of iterations needed by the truncated test to make a decision

regarding each packet. With the maximum sample size set at 16 bytes, 45% of the packets can be

classified in 12 bytes or less.

Operator Analysis

To gain deeper insights into the issue of Content-Type mismatches, we performed another

experiment in which a resident network operator was able to manually inspect payload data from

a third dataset, for which we were able to collect full payloads under the supervision of our local

network operator. This trace covers four weekday afternoon hours of traffic from a university

computer science department, and consists of 27 million packets. To enable this inspection, we

instrumented Bro (version 2.0) to save both HTTP entities and the payloads of TCP connections to

disk. We then ran the instrumented Bro against the port 80 (HTTP) and port 443 (SSL) traffic in

the trace.

23

0 50 100 150 200 250

Value

1
2
3
4
5

C
o
u
n
t

×105

0.01

0.02

0.03

0.04

P
e
rc
e
n
ta
g
e

1
2
3
4
5

C
o
u
n
t

×105

0.01
0.02
0.03
0.04

P
e
rc
e
n
ta
g
e

(a) text/plain (top: known encodings (transparent), bottom: opaque)

0 50 100 150 200 250

Value

104

105

106

C
o
u
n
t 10−2

10−3

10−4

10−5

10−6 P
e
rc
e
n
ta
g
e

104

105

106

C
o
u
n
t

10−2

10−3

10−4

10−5

10−6 P
e
rc
e
n
ta
g
e

(b) image/jpeg (log-scaled; top: opaque, bottom: transparent)

Figure 2.5: Byte-value Distributions for Anomalies

24

We determined the opacity of each packet, saving those entities and connection payloads

wherein the first five packets were mismatches. For the HTTP entities, we define a mismatch as

having an opacity different from that implied by the Content-Type or Content-Encoding. For the

streams on port 443, we consider transparent packets to be mismatches. We also captured

relevant metadata, such as the uniform resource identifier (URI), Host, and MIME-type of the

resulting file (determined using Bro’s libmagic interface).

We discovered a number of mismatched HTTP entities in the trace, of both the

transparent-as-opaque and opaque-as-transparent varieties. In the former case, many of these

mismatches were HTTP entities labeled with Content-Type text/plain and no stated encoding; we

determined from the metadata that most of these were either images or compressed bundles.

These compressed bundles included what appear to be updates to Symantec antivirus,

extensions to the Plex media center, and an installer for the DivX video codec (a .cab file). The

images were identified by MIME-type as JPEGs. One interesting mismatch declared a

Content-Type of text/javascript, with no encoding, while the MIME-type reported was

application/octet-stream and the filename .gz.

Of the opaque-as-transparent mismatches, a number of entities were labeled as JPEG and GIF

images by Content- and MIME-type but were flagged as transparent by our techniques. Many of

these contain significant text, which we speculate may be metadata. We also found a large

number of streams on port 443 with predominantly transparent packets. According to our

network operator, these streams comprised: cleartext Yahoo Voice connection information

(including account names), names and email addresses from a social networking chat site, and

what appeared to be instant messenging conversations. As an aside, in looking at flagged

mismatches while testing, one of the authors discovered his AIM contact list transmitted in the

clear over port 443 by Adium!

2.3.2 Online Analysis

To further demonstrate the utility of winnowing opaque traffic in a real-world environment,

we implemented our techniques as a preprocessor to the Snort IDS. Much of Snort’s functionality,

such as stream reassembly and HTTP inspection, is implemented as preprocessors which are

executed after network and transport layer packet decoding but before engaging the

25

rule-matching engine. We positioned our winnowing preprocessor to intercept packets before

reaching the stream reassembly module.3 This allows us to drop opaque packets early enough to

avoid incurring the overhead (over 30% of Snort’s run-time in some experiments) of stream

reassembly and long before reaching the pattern matching engine.

The ruleset used was provided by a major university, which uses Snort primarily for

post-facto forensics, and contains 1606 rules. As a sanity check, and to provide results on a public

dataset which could therefore be easily reproduced, we evaluated both stock Snort and Snort

with our winnowing preprocessor on the (admittedly controversial) DARPA/MITLL 1999

intrusion detection dataset. Both configurations produced exactly the same set of alerts.

For our online experiments, we made use of an Endace 9.2X2 DAG card to run two Snort

(version 2.9.1.2) instances in parallel, one with stock Snort and the other with winnowing

enabled, on live traffic. The DAG uses a packet processor to capture and timestamp packets at

line rate, and employs an on-board direct memory access (DMA) engine to zero-copy packets

into the host’s memory (Figure 2.6). The DMA engine can also be programmed to duplicate

traffic over multiple memory buffers (called “streams”), which enables us to simultaneously run

multiple experiments, thereby comparing different approaches on the same traffic. We use a

10Gbps DAG connected to a 2.53 Ghz Intel Xeon 6 core host with 16GB of memory. As in our

earlier experiments, we only examined traffic on ports 22, 25, 80 and 443; this filtering was

performed on the DAG and therefore CPU resources are used exclusively for payload inspection.

Beyond the winnowing preprocessor, there were no differences between the two configurations:

both used the same ruleset with the default Snort options (including inspection of gzipped HTTP

entities and the bypassing of the detection algorithms by SSL application data packets in

established streams), and each was allocated 2GB of memory on the DAG.

Our primary experiment lasted for 24 hours and encompassed more than 7.6 terabytes of

traffic; the load reached 1.2Gbps at peak. Figure 2.7a shows the number of packets which each

instance of Snort was able to process in 15-minute intervals. Even at peak load, our winnowing

Snort instance is able to handle the full volume with zero percent packet loss. In contrast, the

stock Snort instance dropped nearly 60% of the 98.9 billion packets observed during the 24-hour

3Our preprocessor only drops packets with TCP payloads and therefore does not interfere with connection tracking at
the transport layer.

26

Assign
Color

Drop

CPU
1,2

Snort w/
Winnowing

CPU
3,4

1 2

Match No Match

TCP, Port 80
TCP, Port 22

TCP, Port 443
No Match

Filter Rules

e.g., UDP

Buffers/
Streams

Snort w/o
Winnowing

e.g., HTTP

DMA Engine

Capture Packet

Extract Header Fields Lookup TCAM

Figure 2.6: Packet duplication using an Endace DAG card.

27

20:00 0:00 4:00 8:00 12:00 16:00 20:00

Time

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

A
n
a
ly
ze
d
P
a
ck
et
s

×108

stock snort
winnowing

(a) Packets

20:00 0:00 4:00 8:00 12:00 16:00 20:00

Time

0

200

400

600

800

1000

1200

A
le
r
t
s

stock snort
winnowing

(b) Alerts

Figure 2.7: Number of alerts and number of packets processed by Snort with winnowing and Snort
without (in 15-minute windows).

28

0 200 400 600 800 1000 1200 1400

Payload Size

107

108

109

1010

1011

1012

1013

N
u
m
b
er

o
f
P
a
ck
et
s
(l
o
g
-s
ca
le
)

opaque
transparent
both

Figure 2.8: CDF of payload size for both opaque and transparent traffic.

window. In fact, the winnowing Snort instance processed 147% more packets, resulting in over

33,000 additional alerts (see Figure 2.7b). We note that as the drops suffered by the unmodified

Snort are lost when Snort is unable to copy packets out of the network buffer fast enough to avoid

old packets being overwritten by the kernel (or the DAG, in this case), and therefore Snort has no

control over which packets are dropped [117].

In a second experiment, we partitioned one of the two identical traffic streams at the DAG into

four disjoint streams, each of which was passed to a stock Snort instance running on a dedicated

core. However, due to traffic bursts, the stock Snort instances still dropped significant numbers of

packets despite our attempts to optimize its handling of the traffic. While this underscores the

need for techniques like ours, we remind the reader that the advantages of winnowing traffic are

not limited to situations of overload: the significant throughput increase allows systems to

evaluate more rules than stock configurations under the same traffic conditions.

We stress that, apart from the winnowing preprocessor, the Snort instances in each

experiment were identically configured and saw exactly the same traffic. The substantial

improvement in capacity arises due to the surprisingly high proportion of opaque traffic, which,

29

as discussed in Section 2.2, incurs high CPU overheads (confirmed in our experiments by an

observed 30% increase in average per-packet processing time compared to transparent packets).

In total, an astonishing 89% of the payload-carrying TCP packets observed in our primary

experiment were classified as opaque, representing 86% of the bytes transmitted. We hypothesize

that this is due to the prevalence of streaming video services such as Hulu, Netflix, and YouTube

operating on port 80. Differences in the packet size distributions (see Figure 2.8) indicate that

maximum transmission unit (MTU)-sized packets are far more often opaque than not, which

suggests that large, compressed streams (e.g., the aforementioned streaming video), are

prevalent. These streams may also account for the bursty nature of traffic observed in the

multiple core experiment.

Operational Impact

Since winnowing opaque packets fundamentally changes the mix of traffic which reaches the

rules-matching engine in an IDS, its influence could lead to deeper insights about network

activities. To evaluate this further, we compared the alerts generated by both instances of Snort.

In total, the stock Snort instance generated 25,081 alerts, while the Snort instance augmented with

winnowing produced 58,297 alerts—a 118% increase. Of these, the three most prevalent in both

cases remained the same; two overflow attack detections and a file-type identification alert (for

portable executable binaries). We found the differences between the distributions of rules

triggered by the stock Snort and by Snort with winnowing to be particularly interesting. One

PowerPoint administrator privilege escalation attack rule was triggered 2000% more times by the

winnowing Snort instance, an almost 10-fold increase over what one might expect just from the

increased traffic volume. We also found a 760% increase in alerts for PDFs with embedded

Javascript. While ascertaining whether winnowing induces any false positives is impossible due

to the losses sustained by the stock Snort instance, we argue that intelligently dropping packets,

as we do, is no more likely to induce false positives than dropping random packets due to

overload. The only class of rules which produced fewer alerts when winnowing opaque traffic

were for HTTP connections to blacklisted domains; these are the only clear false negatives. Since

HTTP headers are in plaintext, and hence not dropped by Winnow, we suspect that the missed

alerts are due to Snort failing to recover from missing (opaque) packets in a stream. Since parsing

30

of HTTP headers is possible even in the presence of missing payload packets, we believe such

alerts would be triggered if the IDS was better equipped to recover from such midstream losses.

Alternatively, a more mature implementation of the winnowing preprocessor could inform Snort

of the dropped packets.

Nevertheless, the instantiation of our prototype on a major campus network has already

provided valuable information to its network operators, clearly showing that their network

security exposure differs from what they originally thought.

2.4 Limitations

While our focus on minimizing payload inspection suggests a trivial method for an attacker

to bypass DPI engines using our technique (by padding the beginning of the packet with ASCII

bytes), in current systems an attacker need do nothing more than “encrypt” their exploit code

(e.g., a simple XOR may suffice) to bypass content-based signature matching engines.

Furthermore, our techniques comprise a method for flagging the likely presence of such

encrypted objects based on nothing more than the ciphertext itself.

At first blush, it may appear that binary protocols present an insurmountable problem for our

methodology. However, we point out that the majority of traffic (i.e., 80% on our network) is

HTTP, a text protocol. Furthermore, the high-volume binary protocols (SSL, RTMP, and

Bittorrent) transport primarily, if not exclusively, opaque data. We believe that a different

alternative hypothesis, such as that mentioned earlier in the context of identifying file types,

could provide improved accuracy for binary protocols.

Additionally, while it may seem that the flow level, as opposed to the packet-level, is the

natural vantage point for identifying opaque traffic, our work concentrates on packet-level

analysis. We argue that the presence of tunneled traffic, and container formats such as PDF,

mandates identification of opaque traffic on a per-packet basis. In the specific case of encrypted

connections, many protocols (e.g., SSH and SSL) begin with unencrypted, connection set-up

packets; some protocols (e.g., using STARTTLS) are even designed specifically to enable

upgrading a connection from unencrypted to encrypted mid-stream. Furthermore, packet-level

techniques can be used in situations where flow state is not kept, such as on DAG cards. Finally,

by performing packet-level analysis, we can winnow opaque packets before they reach the

31

stream reassembly engine, significantly reducing overhead. That said, there are benefits to

incorporating flow-level analysis. One interesting direction might be to limit packet-level

misclassifications by utilizing information from prior and subsequent packets.

We remind the reader that our techniques are not intended to be used in isolation, but rather

as components in larger systems. Therefore, the limitations of our techniques can be mitigated by

the strengths of the remainder of the system architecture, such as by coordinating flow-level

analysis with packet-level opacity checking. This would provide a layered defense against, e.g.,

attacks embedded in lengthy streams to evade systems using selective packet discarding [117],

which is discussed in the next section, or approaches similar to the afore-mentioned Time

Machine (see Section 2.1).

2.5 Related Work

The related problem of forensic file and data type identification has been extensively explored

over the past decade. Many of these efforts have focused on analyses of byte frequency

distributions, i.e., the frequency of each byte value in the data of interest. For the most part, these

approaches work by creating signatures for known file types (i.e., HTML or PDF) based on byte

frequency distributions, and then comparing unknown files to pre-existing signatures to

determine the file type (see, e.g., Ahmed et al. [3]). Veenman [146] and Hall [56] examined

entropy and compressibility measurements as indicators of file type, while others have explored

techniques for directly modeling the structure of files [55, 60, 87, 128]. The closest work to the

problem at hand is that of Conti et al. [29], who consider distinguishing between random,

encrypted and compressed files using k-nearest-neighbor classification. Shannon entropy and

the χ2 statistic, among other measures, are evaluated as distance metrics over sliding windows of

1KB or more. Similar ideas were explored by Shamir and van Someren [132] for identifying

cryptographic keys on disk. However, as our empirical analyses showed, the forensics scenario is

fundamentally distinct from the setting we explore in this work: for real-time analysis on the

network, the amount of data available is constrained and computational resources are scarce.

Approaches based on byte-frequency [150, 162] and entropy [94, 139, 141, 153] have also been

applied in the context of malware identification and analysis, both on disk and in network traffic.

These approaches are not well suited for our task, as they require large sample sizes for their

32

statistical tests to be valid and/or impose high computational costs.

Most germane to our work is the scheme proposed by Olivain and Goubault-Larrecq, which

uses hypothesis testing of the sample entropy statistic to determine whether packets are

encrypted [111]. Similarly, Dorfinger proposed an approach for detecting encrypted traffic using

entropy estimation, intended as a pre-filtering step for a Skype flow detection engine [17, 35–37,

144]. Their encryption detection scheme shares much in common with that of Olivain and

Goubault-Larrecq, and is based on calculating the sample entropy for the packet payload and

comparing that entropy value to the expected entropy value for a sequence of uniformly

randomly distributed bytes of the same length. However, their entropy estimation approach does

not scale well to situations where the number of samples is small [114–116]. For our

entropy-based tests, we addressed this issue head-on by calculating the exact probability

distribution function (see Section A.1) for the (byte-)entropy of n bytes, for small n. Malhotra

compared a number of standard statistical tests, including the χ2 and Kolmogorov-Smirnov tests,

for identifying encrypted traffic [99]. As with Olivain and Goubault-Larrecq, their approaches

required at least 1KB of data per trial. In any case, our byte-value tests outperformed all of these

approaches.

From a systems perspective, similar notions have been suggested in the context of improving

the ability of network intrusion detection system (NIDS) to weather inevitable traffic spikes by

the selective discarding of packets when the system is under load: similar to Time Machine,

Papadogiannakis, Polychronakis, and Markatos [117] propose discarding packets from lengthy

flows, reasoning that these packets are less likely to trigger alerts. We believe our approach is

more general, both in that we enable new policy decisions, as discussed earlier, and our

techniques can operate on flows of any length. That said, our techniques are certainly ripe to be

employed in a load-dependent fashion, but we focus on the more difficult load-independent

setting in order to explore the limits of our techniques.

Hardware-based approaches for reducing the load on NIDS have also been proposed. That

most closely related to our work is the notion of shunting [53], in which packets are matched in

hardware against a dynamic list of rules which the IDS/IPS updates periodically. For each

packet, the FPGA-based shunt decides, based on these lists, whether to drop, pass, or forward the

packet to the IDS/IPS. Again, we see our techniques for the identification of opaque traffic as

33

complementary to the shunting approach. Since the likelihood-ratio test can be, in the extreme,

simplified to counting high-value bits, it can be easily implemented on an FPGA, allowing the

NIDS to specify opacity-based rules for packet forwarding decisions.

Lastly, the application of sequential hypothesis testing to computer security problems is not

new. For instance: Jung et al. [74] applied sequential hypothesis testing to portscan detection,

Jaber and Barakat [70] proposed an iterative approach that used the size and direction of each

packet to determine the most likely application generating the observed traffic, and Thatte, Mitra,

and Heidemann [142] proposed a distributed denial-of-service detector based on a bivariate

SPRT.

2.6 Discussion

In this chapter, we propose the notion of quick and accurate winnowing of opaque traffic as a

mechanism for reducing the demands upon DPI engines, and introduce a number of statistical

techniques for performing such winnowing. Our techniques are compared against those that

might be considered common wisdom, and through extensive evaluation, we show that our

statistical approaches perform best. Our results demonstrate that we are able to identify opaque

data with 95% accuracy (Section 2.3.1). By implementing our approach with the Snort IDS, we

demonstrate that winnowing vastly improves the rate at which an IDS can process packets

without adversely impacting accuracy. Our experiments show that winnowing enables Snort to

process 147% more packets and generate 135% more alerts over a 24-hour period featuring a peak

traffic volume of 1.2Gbps.

It is our hope that the ability to classify traffic in the ways proposed in this chapter will

provide significant benefits by enabling second-line (e.g., DPI) analysis engines to target each

class with specialized approaches, rather than attempting to apply heavy-weight analyses to a

general mix of traffic. That said, our real-world evaluations offer a cautionary tale; our

experiments indicate that the vast majority—89% of payload-carrying TCP packets on our

network—of modern network traffic is opaque. This finding was certainly a surprising result to

us, and we believe it may have far reaching consequences in its own right. At the least, it calls

into question the long-term viability of DPI techniques, and warrants revived interest in finding

new ways for traffic monitoring and policy enforcement.

34

2.7 Future Work

Compressed vs Encrypted While we have demonstrated the usefulness of the identification and

filtering of opaque traffic, we believe the specific identification of encrypted traffic would provide

a greater benefit. Specifically, one proposal is a two-tiered approach to identifying encrypted

packets: the first tier determining whether a packet is opaque, and the second tier making the

further determination of whether the packet is encrypted. Such an approach allows an increase in

the computational power used to determine compressed from encrypted traffic, since the second

tier is only applied to packets already marked as opaque. Prior work [99] has indicated that

statistics such as auto-correlation and index-of-coincidence can differentiate between compressed

and encrypted files, and we therefore suggest the use of similar methods as the second tier.

Flow-level Analysis While we believe that decisions must fundamentally be made at the packet

level (consider, e.g., STARTTLS), where a connection begins in the clear but switches to using

encryption mid-stream), leveraging flow-level information should improve our decision accuracy

as well as ease anomaly detection, interpretation by network operators, and coordination with

IDS/IPS systems. We intend to evaluate a number of flow-level techniques (including the

incorporation of a prior probability based on decisions made about previous packets) to

determine the optimal approaches for the identification of both opaque and encrypted traffic.

2.8 Broader Implications

Moving forward, we are particularly concerned with the limitations of DPI engines with

respect to encrypted traffic. While compressed traffic is certainly an issue for existing approaches

which utilize DPI, the problem can be mitigated to an extent by increasing the resources available

for capturing, storing, and decompressing such traffic before inspection. Encrypted traffic, on the

other hand, represents a much more fundamental problem for DPI systems. While some see a

solution in using network monitoring systems which intercept, decrypt, scan, and re-encrypt

traffic, we see this approach as unacceptable for two reasons: 1) encryption is no longer

end-to-end and thus user privacy is threatened; and 2) trust decisions (i.e., accepting a presented

TLS certificate) are necessarily delegated to the system. While technical workarounds for the

latter issue are no doubt possible, the former is a fundamental problem.

The previous paragraph notwithstanding, methods do exist for inferring information from

35

encrypted traffic without decryption. However, such inference is not without it’s own limitations:

in particular, the amount of information gained has previously been seen as extremely limited,

and the question of whether such information can be put to practical use has not—to our

knowledge—even been raised. In the next two chapters, we attempt to answer these questions by

exploring the extent to which information can be inferred from encrypted VoIP conversations

(Chapter 3) and from HTTP traffic tunneled over encrypted connections (Chapter 4).

36

CHAPTER 3: PHONOTACTIC RECONSTRUCTION OF ENCRYPTED VOIP
CONVERSATIONS1

If I have seen further, it is by standing on the
shoulders of giants.

Isaac Newton

3.1 Introduction

Over the past decade, VoIP telephony has witnessed spectacular growth. Today, VoIP is being

used everywhere, and is making steady headway as a replacement for traditional telephony in

both the residential and commercial sectors. The popularity of free online services such as Skype,

Fring, and Google Talk is a case in point. Indeed, several analysts predict that VoIP will remain

the fastest growing industry over the next decade, and some forecast that the subscriber base will

top 225 million by 2013.2 Yet, even with this widespread adoption, the security and privacy

implications of VoIP are still not well understood. In fact, even with the attention VoIP security

(or lack thereof) has received in the past, the concerns have mostly centered on the lack of

authenticity in the call setup phases of the signal and session negotiation protocol(s) or

susceptibility to denial of service attacks [79]. Regarding the confidentiality of the data streams

themselves, the prevailing wisdom is that, due to the open nature of traffic traveling over the

Internet, VoIP packets should be encrypted before transmission.

However, current practices for encrypting VoIP packets have been shown to be insufficient for

ensuring privacy. In particular, two common design decisions made in VoIP protocols—namely,

the use of VBR codecs for speech encoding and length-preserving stream ciphers for

encryption—interact to leak substantial information about a given conversation. Specifically,

researchers have shown that this interaction allows one to determine the language spoken in the

1The work presented in this chapter was previously published in: Andrew M. White et al. “Phonotactic Reconstruction
of Encrypted VoIP Conversations: Hookt on Fon-iks”. In: 2011 IEEE Symposium on Security and Privacy. IEEE Computer
Society Press, May 2011, pp. 3–18.
2See, for example, Infonetics Research’s VoIP and UC Services and Subscribers Report at http://www.infonetics.com.

37

http://www.infonetics.com

conversation [157], the identity of the speakers [5, 92], or even the presence of known phrases

within the call [156].

Rightfully so, critics have argued that the aforementioned threats do not represent a

significant breach of privacy. For example, the language of the conversation might easily be

determined using only the endpoints of the call—a call from Mexico to Spain will almost certainly

be in Spanish. While the identification of target phrases is more damning, it still requires the

attacker to know (in advance) what she is looking for within the stream. In this work, we make

no such assumption about a priori knowledge of target phrases. Rather, our ultimate goal is to

reconstruct a hypothesized transcript of the conversation from the bottom up: our approach

segments the observed sequence of packets into subsequences corresponding to individual

phonemes (i.e., the basic units of speech). Each subsequence is then classified as belonging to a

specific phoneme label, after which we apply speech and language models to help construct a

phonetic transcription of parts of the conversation. To assess the quality of our reconstruction, we

apply widely accepted translation scoring metrics that are designed to produce quality scores at

the sentence level that correlate well with those assigned by human judges.

The approach we take has parallels to how infants find words in a speech stream.

As Blanchard, Heinz, and Golinkoff [16] point out, adults effortlessly break up conversational

speech into words without ever realizing that there are no pauses between words in a sentence.

This feat is possible because we have a lexicon of familiar words that we can use to segment the

utterance. Infants have no such luxury. Instead, they must use perceptual, social, and linguistic

cues to segment the stream of sounds. Amazingly, the linguistic cues come from learned

language-specific constraints (or phonotactics) that determine whether a word is well-formed or

not; infants use this knowledge of well-formedness to help segment speech.

The fascinating problem here is that infants must learn these rudimentary, language-specific,

constraints while simultaneously segmenting words. They use familiar words (e.g., their own

names) to identify new words which are subsequently added to their small vocabulary.

Interestingly, the Linguistic and Psychological Sciences literature abounds with studies (e.g., [18,

58]) which show that, as early as six months of age, infants use knowledge of which basic

phonemes occur together, as well as learned knowledge of within-word versus between-word

sounds, to segment perceived utterances into words. As we show later, we apply a similar

38

methodology when tackling the problem of reconstructing words from strings of phonemes.

3.2 Background Information

Before proceeding further, we first present some necessary background that is helpful in

understanding the remainder of this chapter. The background material covers basic notions in

linguistics, pertinent VoIP details, and information about the datasets we use throughout the

chapter.

3.2.1 Phonetic Models of Speech

The ideas in this chapter rely heavily on insights from modern theories of phonology. In

particular, we draw from a vast body of work on phonetics — i.e., the study of linguistic sounds.

From a computational perspective, phonetics involves studying how sound is produced by the

articulators of the vocal tract and how they are realized acoustically [75]. In phonetics, the

pronunciations of words are modeled as strings of symbols representing individual speech units

called phones. While several alphabets exist for representing phones (e.g., ARPAbet for American

English), the de facto standard is the International Phonetic Alphabet (IPA).

For the remainder of the chapter, what is particularly important is that each phone is based on

articulatory processes, and that phones are divided into two main classes: consonants and

vowels. Both kinds of sounds are formed by the motion of air through the mouth, throat and

nose. Consonants, for example, are made by restricting airflow in some way, and can be both

voiced (meaning they involve vibrations of the vocal cords) or unvoiced. By contrast, vowels

usually involve less obstruction of air flow, and are louder and longer lasting than consonants.

Moreover, because all consonants are sounds made by restricting airflow, they can be

distinguished from each other by where the restriction is made (the place of articulation) as well

as how the restriction is made (the manner of articulation). In English, for example, the “hissing”

sound of [f] in “fish” is made by pressing the lower lip against the upper teeth. There are several

major manners (e.g., stops, nasals, and fricatives) used to distinguish consonants.

Likewise, vowels can also be characterized by articulatory processes (see Figure 3.1), the most

important of which are vowel height (i.e., roughly the height of the highest part of the tongue),

backness (i.e., roughly indicating where the tip of the tongue is relative to the vocal track), and

roundness (i.e., whether the shape of the lips is rounded or not). For example, compare how your

39

i u

o

ʌ

e

ɛ

a

ɜ

ɪ ʊ

æ

Backness
H
eight

'heed'
'hid'

'head'
'had'

'hood'
'who'd'

'one''heard'

'go'

'aisle'

'aid'

ɔ 'hawed'

ɑ 'via'
ɒ 'pond'

Figure 3.1: Vowels in American English (IPA format), differentiated by their height and backness.
Left: the relative tongue positions.

mouth feels as you say “beat” and “boot”. If you hold the vowels in these two words, you should

be able to feel a difference in the backness of your tongue. Similarly, if you compare the words

“beat” and “bat”, you should feel your chin moving up and down; this is a difference in height. To

feel a difference in rounding, compare the words “put” and “pool”. As you say “pool”, you

should feel your lips pucker into a round shape; in “put”, your lips should be loose.

Consonants and vowels are combined to make syllables, which are governed by the

phonotactics of the language — that is, language-specific conditions that determine whether a

word is well-formed or not. At a high level, phonotactics are constraints on which phones can

follow which, i.e., rules that govern how phones may be combined to form well-formed words. In

English, for example, there are strong constraints on what kinds of consonants can appear

together: [st] (as in “stop”) is a very common consonant cluster, but some consonant sequences,

like [zdr] (as in “eavesdrop”), are not legal word-initial sequences in English.3

Lastly, in linguistics and speech processing, an abstraction called a phoneme (typically written

between slashes) is used to represent similar phones with a single symbol. For example, the

phoneme /t/ can be pronounced as any of three phones in English; which of these three phones

is uttered depends on the position within a syllable: /t/ is pronounced as [th] at the beginning of

3Of course, [zdr] may exist word-initially in other languages, such as in the Bulgarian word [zdraf], which means
“health”.

40

a syllable (as in “top” = [thop’]), [t] in the middle of a syllable (as in “stop” = [st6p’]), and [t’] at

the end of a syllable (as in “pot” = [phot’]). Phones belonging to the same phoneme are called

allophones: [th], [t], and [t’] are allophones of the phoneme /t/.

In Section 3.5, we leverage such linguistic insights to build a string matching technique based

on phonetic edit distance. In addition, we use phonotactics of English (e.g., what sequences of

phonemes or allophones are allowable within words) to assist with phoneme classification.

3.2.2 Voice over IP

In VoIP, voice data and control messages are typically transmitted through separate channels.

The control channel generally operates using an application-layer protocol, such as the extensible

messaging and presence protocol (XMPP) used by Google Talk or the session initiation protocol

(SIP). The voice channel typically consists of a real-time transport protocol (RTP) stream

transmitted over UDP. We concern ourselves only with the voice channel in this work.

Typically, the audio for VoIP conversations is encoded using an audio codec designed

specifically for speech, such as Skype’s SILK, the Enhanced Full Rate (EFR) codec specified by the

GSM standard, or the open-source Speex used in many VoIP applications (including Google

Talk). Speech codecs differ from general audio codecs since human speech can be represented

much more efficiently than general audio due to the periodic nature of certain speech signals and

the relatively limited number of potential sounds. For speech, sound is usually sampled at

between 8 and 32 kHz (i.e., between 8,000 and 32,000 samples are recorded per second). This

sample stream is then segmented into frames, or blocks, of a certain duration and each frame is

compressed by the speech codec for transmission. The duration is a fixed value generally

between 10 and 100ms; a typical value, and the one used in this work, is 20ms, which

corresponds to 320 samples per frame when sampling at 16kHz.

Many modern speech codecs are based on variants of a well-known speech coding scheme

known as code-excited linear prediction (CELP), which is in turn based on the source-filter model

of speech prediction. The source-filter model separates the audio into two signals: the excitation

or source signal, as produced by the vocal cords, and the shape or filter signal, which models the

shaping of the sound performed by the vocal tract. This allows for differentiation of phonemes;

for instance, vowels have a periodic excitation signal while fricatives (such as the [sh] and [f]

41

sounds) have an excitation signal similar to white noise [145].

In basic code-excited linear prediction (CELP), the excitation signal is modeled as an entry

from a fixed codebook (hence code-excited). In some CELP variants, such as Speex’s VBR mode,

the codewords can be chosen from different codebooks depending on the complexity of the input

frame; each codebook contains entries of a different size. The filter signal is modeled using linear

prediction, i.e., as a so-called adaptive codebook where the codebook entries are linear

combinations of past excitation signals. The “best” entries from each codebook are chosen by

searching the space of possible codewords in order to “perceptually” optimize the output signal

in a process known as analysis-by-synthesis [145]. Thus an encoded frame consists of a fixed

codebook entry and gain (coefficient) for the excitation signal and the linear prediction

coefficients for the filter signal.

Lastly, many VoIP providers (including Skype) use VBR codecs to minimize bandwidth usage

while maintaining call quality. Under VBR, the size of the codebook entry, and thus the size of

the encoded frame, can vary based on the complexity of the input frame. The specification for

secure RTP (SRTP) does not alter the size of the original payload; thus encoded frame sizes are

preserved across the cryptographic layer. The size of the encrypted packet therefore reflects

properties of the input signal; it is exactly this correlation that our approach leverages to model

phonemes as sequences of lengths of encrypted packets.

3.3 Overview of Our Approach

The approach we pursue in this chapter leverages the correlation between voiced sounds and

the size of encrypted packets observed over the wire. Specifically, we show that one can segment

a sequence of packet sizes into subsequences corresponding to individual phonemes and then

classify these subsequences by the specific phonemes they represent. We then show that one can

segment such a phonetic transcript on word boundaries to recover subsequences of phonemes

corresponding to individual words and map those subsequences to words, thereby providing a

hypothesized transcript of the conversation.

Our work draws from advances in several areas of computational science. A simplified view

of our overall process is shown in Figure 3.2. As an example, we use the phrase “rock and roll”,

the dictionary pronunciation for which is represented as [ô6k ænd ôoUl] in IPA. Our basic strategy

42

Phoneme
Classification

Language Model
Correction

Rock and roll!

V
oI

P
C

on
ve

rs
at

io
n

R
ec

on
st

ru
ct

io
n

Pr
oc

es
s

Encrypted VoIP Packets

Word
Classification

Word
Segmentation

➊

➋

➌

➍

r ɒ k

r-ɒ-k

rock

æ-n-d

æ n d

and

r o

r-o-ʊ-l

roll

ʊ l

Phoneme Segments

Corrected Phonemes

Word Segments

Words

r ɒ k æ m d r o i l
Phonemes

Packet Lengths Phoneme
Segmentation

Figure 3.2: Overall architecture of our approach for reconstructing transcripts of VoIP conversa-
tions from sequences of encrypted packet sizes.

is as follows. First, we use a maximum entropy model (Stage ➊) to segment the sequence of packet

sizes into subsequences corresponding to individual phonemes. We then apply (Stage ➋) a

combination of maximum entropy and profile hidden Markov models to classify each subsequence

of packet sizes according to the phoneme the subsequence represents, resulting in an

approximate phonetic transcript of the spoken audio. In our example, this transcript is

[ô6kæmdôoil].

The hypothesized transcript is improved by applying a trigram language model over

phonemes (and phoneme types) which captures contextual information, such as likely phoneme

subsequences, and corrects the transcript to represent the most likely sequence of phonemes

given both the classification results and the language model. In our example, this results in

43

[ô6kændôoUl]. Notice the unlikely phonetic sequence [æmd] has been replaced with the far more

likely [ænd]. Next, we segment (Stage ➌) the resulting transcript into subsequences of phonemes

corresponding to individual words using a phonetic constraint model, resulting in the more

recognizable string [ô6k ænd ôoUl].

Finally, we match each subsequence to the appropriate English word using a phonetic edit

distance metric (Stage ➍), giving us the desired “rock and roll”. In the general case, a trigram

language model over words (and parts-of-speech) is then applied to the resulting transcript to

correct tense and disambiguate between homophones (i.e., words which sound alike) by finding

the most likely sequence of words given both the hypothesized transcript and the language

model.

3.3.1 Data and Adversarial Assumptions

The TIMIT Acoustic-Phonetic Continuous Speech Corpus [48], a collection of recorded speech

with time-aligned word and phonetic transcripts (allowing us to label segments by phoneme),

provides the audio samples used in our experiments. The TIMIT corpus is comprised of 6,300

speech recordings from 630 speakers representing eight major dialects of American English. Each

speaker reads ten pre-determined, phonetically-rich sentences, such as “Alimony harms a

divorced man’s wealth”, “The drunkard is a social outcast”, and “She had your dark suit in

greasy wash water all year”. The transcripts contain labels for 58 distinct phoneme-level4 sounds.

Following the standard approach used in the speech recognition community, we folded the

original TIMIT classes into 45 labels [83] by combining some allophones and combining closures

and silences. ARPAbet, the phonetic alphabet on which the labeling systems of TIMIT is based,

does not map directly to the articulatory features in Section 3.2; therefore, we convert the

phoneme sequences to their IPA representations for the latter stages of our evaluation. In order to

generate sequences of encoded frame lengths from the (16kHz, single-channel) audio samples,

we encode each sample using the reference version of the Speex encoder, instrumented to output

the sizes of the encoded frames, in wideband (i.e., 16kHz) VBR mode. The phonetic labels from

the time-aligned transcripts are then used to identify subsequences corresponding to individual

phonemes for training; this encoding process gives us a number of sequences for each phoneme.

4In addition to phonemes, the corpus contain some labels for sounds, such as pauses and recording errors, unrelated to
human speech.

44

We note that the approach we take assumes that the adversary has access to: 1) the sequence

of packet lengths for an encrypted VoIP call; 2) knowledge of the language spoken in the call;

3) representative example sequences (or models derived therefrom) for each phoneme; and 4) a

phonetic dictionary. The first assumption can be readily met through any number of means,

including the use of a simple packet sniffer. Knowledge of the language of interest can be gleaned

using the ideas in [78, 157] or by simple endpoint analysis. Lastly, obtaining representative

example sequences for each phoneme is fairly straightforward: one can use prerecorded,

phonetically-labeled audio files as input to a speech codec to produce the examples. In fact, using

labeled examples from prerecorded audio is exactly the approach we take in this chapter in order

to model phonemes. Note that our primary goal is to build speaker-independent models and

thus we do not require speaker-specific audio. Finally, phonetic dictionaries (e.g., CELEX, CMUdict

and PRONLEX) are readily available; we use data from TIMIT and from the PRONLEX dictionary

(containing pronunciations from over 90,000 words) as our phonetic dictionary.

3.4 Related Work

Traffic analysis of encrypted network communications has a long and rich history. Much of

that work, however, is focused on identifying the application protocol responsible for a particular

connection (e.g., [12, 30, 42, 77, 98, 102, 159]). It was not until recently that researchers [23, 88, 130,

136, 140] began exploring techniques for inferring sensitive information within encrypted

streams using only those features that remain intact after encryption—namely packet sizes and

timing information. Song, Wagner, and Tian [136], for example, used the inter-arrival time

between packets to infer keystrokes in SSH sessions; Sun et al. [140] and Liberatore and Levine

[88] showed that identification of web sites over HTTPS connections is possible using the sizes of

the HTML objects returned by HTTP requests; and Saponas et al. [130] showed how to identify

the movie being watched over an encrypted connection.

More pertinent to this chapter, however, is the work of Wright et al. [156, 157] that showed

that encrypted VoIP calls are vulnerable to traffic analysis wherein it may be possible to infer the

spoken language of the call or even the presence of certain phrases. In the latter case, the

approach of Wright et al. assumes that the objective is to search an encrypted packet stream for

subsequences matching a target phrase or word, such as “attack at dawn”, and therefore requires

45

that a probabilistic model of likely corresponding packet length sequences (i.e., representing the

target phrase in its entirety) be generated in advance. As discussed earlier, no such a priori

information is necessary under our approach: we construct transcripts from the bottom up rather

than matching phrases from the top down.

Several other approaches for exploring information leakage in encrypted VoIP calls, working

under different environmental assumptions than Wright et al., have also been proposed. For

example, if silence suppression is assumed (i.e., packet transmission is suppressed when a party

is silent), researchers posit that the duration of talk spurts for words spoken in isolation makes

identification of specific “speeches” [85, 92] possible. In a recent study with 20 speakers, Backes

et al. [5] show that speaker-specific pause patterns might be sufficient to undermine the

anonymity of speakers in encrypted VoIP calls. That said, it is well accepted in the speech

community that continuous speech (i.e., everyday communication) lacks identifiable pauses

between words [26]. In fact, speakers generally talk faster (and typically shorten or run sentences

together) as speech becomes more natural and colloquial. This observation is even more

important in our context where there are no within-word pauses. Hence, we make no

assumptions about voice activation detection and/or silence suppression.

Lastly, Dupasquier et al. [40] investigate the extent of information leakage from Skype voice

traffic. The authors conclude that the general concept we pursue here “seems quite difficult”

because classification of phonemes is too challenging. Thus, they revert to the prior setting of

knowing the target phrase in advance and use dynamic time warping to validate the work of

Wright et al. A focus of this chapter is showing that such statements were premature, and that

phoneme-level reconstruction can be successful in undermining the privacy of encrypted VoIP

conversations.

For conciseness, the relevant literature on speech and language models will be presented

elsewhere in this chapter.

3.5 Methodology

We now turn our attention to explaining the details behind the key ideas explored in this

chapter. Wherever possible, we provide the intuition that drives our design decisions.

46

3.5.1 Finding Phoneme Boundaries (Stage➊)

Given the sequence of packet sizes from a VoIP conversation, the first challenge is to identify

which of these packets represent a portion of speech containing a boundary between phonemes.

While automatic segmentation of speech waveforms on phonetic boundaries has received much

attention in the speech recognition community, in our context we have no access to the acoustic

information and must operate on the sequence of packet sizes. However, recall that many speech

codecs, and Speex in particular, are based on CELP, which encodes speech with two different

signals: the excitation signal and the filter signal. As mentioned earlier, the filter signal for a

given frame is modeled as a linear combination of past excitation signals. Thus more information

must be encoded for frames in which the sound changes drastically—such as at the transition

between two phonemes. Similarly, less information is encoded for intra-phoneme frames, where

the sound changes relatively little. Figure 3.3 illustrates how changes in frame size can indicate a

phonetic boundary.

 ɛ n ɪ f ɪ ʃ l d ɛ d l a n

Fr
am

e
Si

ze
 (b

yt
es

)

an official deadline

Figure 3.3: Frame size sequence for the first few words of an utterance of “an official deadline can-
not be postponed”, illustrating how the sizes of frames differ in response to phoneme transitions.
Notice the distinct changes (e.g., a sharp rise) in frame sizes near some phoneme boundaries (e.g.,
[I], [f], and [S] in “official”). Near other phoneme boundaries (e.g., [d], [l], and [a] in “deadline”),
however, frame size remains constant.

3.5.2 Methodology

To perform the segmentation, we apply a probabilistic learning framework known as

maximum entropy modeling5 [9, 71] that simultaneously captures many contextual features in the

5Also known as multinomial logistic regression.

47

sequence of frames, as well as the history of classifications in the sequence, to decide which

frames represent phoneme boundaries. Such models have been successfully applied to problems

like part-of-speech tagging [124] and text segmentation [8].

Maximum entropy modeling consists of finding a model p(y |x), where x is an observation

and y a label, to accurately estimate the posterior probability P[y | x]. Many possible models exist;

to find the best such model, we first impose a set of constraints on the model p in terms of binary

indicator functions fi (known as feature functions), each of which describes an aspect of the data

relevant to classification. From the set of possible models which satisfy these constraints, we then

select the model with the highest entropy.

In the case of phonetic boundary segmentation, we represent a given frame with w. The

labels, i.e., boundary or interior frame, are represented by the binary variable v. An indicator

function f(w, v) then describes a feature of the frame which is relevant to whether that frame

represents a phoneme boundary; for example:

f(w, v) =


1, if v is boundary and w has size n,

0, otherwise.

We now form a set of constraints on the final model with respect to such feature functions. To

do so, we first calculate the empirical distribution p̃(x, y) from the training data as the relative

frequency of examples with value x and label y. Given an indicator function, we can then

compute the expected value of a feature f with respect to the training data as:

p̃(f) =
∑
x,y

p̃(x, y)f(x, y)

We can thus represent any statistical phenomena in the training data with p̃(f). The expected

value of f with respect to the target model, p(y |x), may be represented as:

p(f) =
∑
x,y

p̃(x)p(y |x)f(x, y)

Requiring that p̃(f) = p(f) imposes the constraint that the model agree with the training data

with respect to feature f ; over a set of n features, this yields a set of constraints for the target

model:

C = {p | p(fi) = p̃(fi) for i ∈ {1, 2, . . . , n}}

48

Phoneme Segmentation Feature Templates

1 size of frame wi (i.e., the current frame size)
2 size of frame wi−1 (i.e., the previous frame size)
3 size of frame wi+1 (i.e., the next frame size)
4 bigram of sizes for frames wi−1, wi

5 bigram of sizes for frames wi, wi+1

6 trigram of sizes for frames wi−1, wi, wi+1

7 sequence of frame sizes since the last hypothesized boundary
8 number of frames since since the last hypothesized boundary

Table 3.1: Feature templates for the phonetic segmentation, where wi represents the ith frame.

Many models may satisfy the set of constraints. However, the principle of maximum entropy

states that the model that best represents the data given the current state of knowledge is the one

with the most entropy. This yields a constrained optimization problem of the form:

arg max
p∈C

H(p)

where H(p) is the entropy of y conditioned on x in the model p.

For boundary identification, we define several feature templates which specify features that we

hypothesize correlate with phoneme boundaries. The templates we use are given in Table 3.1,

and some features are illustrated in Figure 3.4 for clarity. Although each frame only gives us one

observable feature (namely, the size of the frame), we leverage the surrounding frames, and the

history of previously classified frames, in the sequence to create a much richer feature set. The

templates are used to automatically generate the full feature set directly from the data.

As per our hypothesis regarding the interaction between linear prediction and frame size,

notice that feature templates 1–6 capture the frame sizes in the proximity of the current frame.

The frame size unigrams, bigrams, and trigrams must be explicitly captured because maximum

entropy models do not model feature interactions, i.e., they only consider individual features in

isolation. Some phonemes may always exhibit a certain frame size sequence; we capture this

behavior with feature template 7. Lastly, because some boundaries are not detectable by frame

size changes (such as the long sequence of same-sized frames in Figure 3.3), we also model

features such as phoneme length (feature template 8).

To efficiently solve the optimization problem posed by maximum entropy modeling, we use

the megam framework with the limited-memory BGFS [89] algorithm to obtain the model p(w|v).

49

wilast boundary

Instantiation of
Feature Template 7

Instantiation of
Feature Template 8

number of

frames

frame
sequence

Instantiation of
Feature Template 6

frame
trigram

Sequence of Frames

Figure 3.4: Illustration of features for frame wi. The label for wi is dependent on a number of
features, including the frame size sequence since the last hypothesized boundary (shown here in
gray). An example feature derived from each of templates 6–8 is depicted on the right-hand side.

Having built a model, we estimate the probability of each frame, in order, being a phoneme

boundary by evaluating the estimated posterior p(w|v). Since feature templates 7 and 8 depend

on previously classified labels, we use a dynamic programming algorithm to maximize the

likelihood of the sequence as a whole rather than greedily selecting the most likely label for each

frame. The algorithm, a beam search, stores a list of the l most likely candidate segmentations up

to the current frame; this list is updated after each frame is evaluated. We choose as our final

segmentation the most likely candidate at the last frame.

3.5.3 Evaluation

In order to provide rigorous assessments of our methodology, we perform cross-validation in

the segmentation and classification stages of our experiments. Cross-validation is a method for

estimating the generalization performance of a classifier by partitioning the available data into

complementary subsets, training with one subset, and testing with the other. In particular, we

50

perform k-fold cross-validation, in which the data is partitioned into k complementary subsets.

For each fold, one subset is selected for testing and the remainder used for training. The training

and testing are performed as many times as there are subsets, with each acting as the testing set

in one fold. The results of all iterations are then averaged to give the expected generalization

performance, which mitigates the possibility of experimental results being unduly influenced by

fortuitous selection of training and testing data.

To evaluate the performance of our phonetic segmentation model, we perform a 5-fold

cross-validation experiment for each dialect in the TIMIT corpus. Using a holdout set of female

speakers from the New England dialect, we experimentally determined an optimal value of 8 for

the beam width l. We report the performance using precision (i.e., the fraction of boundaries in

the transcription that are present in the reference transcription) and recall (i.e., the fraction of

boundaries in the reference that appear in the transcription) as our metrics.

n = 1 n = 2

Dialect Precision Recall Precision Recall

New England 0.8539 0.7233 0.9443 0.8735
Northern 0.8555 0.7332 0.9458 0.8837

North Midland 0.8509 0.7372 0.9402 0.8901
South Midland 0.8452 0.7086 0.9352 0.8627

Southern 0.8525 0.7037 0.9405 0.8586
New York City 0.8530 0.7096 0.9386 0.8628

Western 0.8586 0.7259 0.9439 0.8652
Army Brat 0.8465 0.7540 0.9389 0.8985

Table 3.2: Phonetic segmentation performance for each dialect in the TIMIT corpus.

While interpreting these results, we note that Raymond et al. [125] have shown that phoneme

boundaries are inexact even at the frame level—in fact, in their study, human transcribers agreed

(within 20ms) on less than 80% of the boundaries. For this reason, a frame classified as a

boundary is considered as correct if it occurs within n frames of an actual boundary; likewise, it

is incorrect if there are no actual boundaries within n frames. Table 3.2 summarizes, for each

dialect, our segmentation performance for n = 1 and n = 2. For the sake of comparison, we also

note that state-of-the-art classifiers (operating on the raw acoustic signal) are able to recall

approximately 80% (again, within 20ms) of phoneme boundaries in TIMIT [44, 106] with error

rates similar to our own. Unfortunately, the comparison is not direct: our labels are necessarily at

51

the granularity of frames (each 20ms), rather than samples, which means that the within-n-frame

requirement for agreement is looser than the within-20ms requirement.

The results in Table 3.2show that our performance is on par with these other techniques.

More importantly, the imprecision in the transcription boundaries does not negatively impact the

performance of the next stage of our approach since the frames in question, i.e., the beginning

and ending frames of each phoneme, are precisely those that will contribute the most variance to

a phoneme model. In other words, the transition frames are likely to incorporate a significant

amount of noise, due to their proximity to surrounding phonemes, and are therefore unlikely to

be useful for classifying phonemes. It is for exactly this reason that we explicitly exclude the

transition frames in the phoneme classification stage that follows. Finally, for the remainder of

this chapter we make the simplifying assumption that phoneme boundaries can be recognized

correctly; this assumption is revisited in Section 3.6.

3.5.4 Classifying Phonemes (Stage➋)

We remind the reader that our overall approach requires that we segment a sequence of

encrypted packet lengths into subsequences corresponding to individual phonemes, and then

classify these subsequences based on empirical models derived from labeled training data. We

therefore have a classification problem where the classes of interest are the various phonemes.

For classification, we employ a combination of two systems: one context-dependent, wherein

the labeling of a segment is dependent on the labelings of its neighbors, and another

context-independent, wherein a single segment is considered in isolation. We combine these two

approaches in order to leverage the strengths of each. Our context-dependent classifier is also

based on maximum entropy modeling, while the context-independent classifier is based on

hidden Markov models (HMMs). Profile HMMs have been used widely in both the biological

sequence analysis [41] and speech recognition communities [72].

Aside from the ability to incorporate contextual information, maximum entropy modeling is

discriminative. Discriminative models are often used for classification tasks because they model

only the parameters of interest for classification and thus can often encode more information.

HMMs, on the other hand, are generative models. Generative models are sometimes preferable to

discriminative models because they model the entire distribution over examples for a given class

52

rather than just the information necessary to discriminate one class from another.

To combine the two models, we utilize a form of Bayesian inference to update the posterior

given by the maximum entropy classifier with the “evidence” given by the HMM classifier. The

updated posterior is then passed to a language model, as described below. By utilizing both

types of models we enjoy increased classification accuracy while providing input to the language

model with a valid statistical interpretation. Next, we discuss each stage in turn.

3.5.5 Maximum Entropy Discrimination of Phonemes

We discriminate between phonemes in a manner similar to the segmentation process

described in Section 3.5.1. Specifically, we define a new set of feature templates over sequences of

phonemes (which are themselves composed of sequences of frame sizes). For pedagogical

reasons, the specifics are given in Table 3.3 and an example feature is illustrated in Figure 3.5.

qi

Most Frequently Observed Trigrams
in Training Corpus

Sequence of Phonemes

containscontains

Figure 3.5: An example instantiation of feature template 10 which illustrates how the template
models the presence of common trigrams.

Feature templates 1–3 capture the exact frame sequence of the current and surrounding

phonemes to identify phonemes that frequently encode as exactly the same frame sequence.

Feature templates 4 and 5 encode similar information, but drop the first and last frames in the

sequence in accordance with our earlier hypothesis (see Section 3.5.1) that the beginning and

ending frames of the phoneme are the most variable. Feature templates 6 and 7 explicitly encode

53

Template Description

1 qi (i.e., the current phoneme’s frame size sequence)
2 qi−1 (i.e., the previous phoneme’s frame size sequence)
3 qi+1 (i.e., the next phoneme’s frame size sequence)
4 qi, excluding the first and the last frames
5 qi−1, excluding the first and the last frames
6 length of qi (in frames)
7 length of qi−1 (in frames)
8 frequency of frame size n in qi
9 bigram b of frame sizes is in qi, for top 100 bigrams

10 trigram t of frame sizes is in qi, for top 100 trigrams
11 bigram b of frame sizes is in qi−1, for top 100 bigrams
12 trigram t of frame sizes is in qi−1, for top 100 trigrams
13 bigram b of frame sizes is in qi+1, for top 100 bigrams
14 trigram t of frame sizes is in qi+1, for top 100 trigrams

Table 3.3: Feature templates for the maximum entropy phoneme classifier. We denote as qi the se-
quence of frame sizes for the ith phoneme. We limit the number of n-grams to 100 for performance
reasons.

the length of the current and previous phonemes since some types of phonemes are frequently

shorter (e.g., glides) or longer (e.g., vowels) than others. Feature template 8 captures the

frequency of each possible frame size in the current sequence. Feature templates 9–14 encode the

presence of each of the 100 most frequent frame size bigrams or trigrams observed in the training

data; we limit the number of bigrams and trigrams to maintain manageable run-time

performance. Finally, since we later incorporate high-level contextual information (such as

neighboring phonemes) explicitly with a language model, we do not attempt to leverage that

information in the classification model.

3.5.6 HMM Modeling of Phonemes

To provide generative models of the various phonemes, we train a profile HMM for each. A

profile HMM is a HMM with a specific topology that encodes a probability distribution over

finite sequences of symbols drawn from some discrete alphabet. In our case, the alphabet is the

different sizes at which a speech frame may be encoded; in Speex’s wideband VBR mode, there

are 19 such possibilities. Given the topology of a HMM, we need to estimate the parameters of

the model for each set of sequences. Towards this end, we utilize a well-known algorithm due

to Baum et al. [7] that iteratively improves the model parameters to better represent the example

54

sequences.

3.5.7 Classification

To label an observed sequence of packet sizes, we find the posterior probability P[r | q], where

q represents the observed sequence of frame sizes, for each class label r. For the standalone

maximum entropy classifier, the output for a given observation and label is an estimate of the

desired quantity. For the HMM classifier, we calculate, using Bayesian inference, the posterior

P[r | q] = P[r]P[q | r] using the likelihood6 P[q | r], given by the HMM. This “updates” a prior

probability P[r] with the new “evidence” from the HMM. For the stand-alone classifier

evaluation, we estimate the prior P[r] as the proportion of examples belonging to the class in our

training data. When using both the HMM and maximum entropy classifiers in conjunction, we

use the estimated P[r | q] from the maximum entropy model as the prior P[r]. In all cases, we

choose the label whose model has the maximum posterior probability as the predicted label for a

given sequence. These posterior probabilities also give a probability distribution over candidate

labels for each phoneme in an utterance; these serve as the language model input.

3.5.8 Enhancing Classification using Language Modeling

Lastly, in order to incorporate contextual information on surrounding phonemes, we apply a

trigram language model using the SRI Language Modeling (SRILM) toolkit. In particular, we

train a trigram language model over both phonemes and phoneme types (e.g., vowels and stops).

We disambiguate between candidate labels by finding the maximum likelihood sequence of

labels given both the estimated distributions output by the classifier and the phonetic language

model.

3.5.9 Evaluation

Our preliminary results show that we can correctly classify 45% of phonemes in a 10-fold

cross-validation experiment on the New England dialect.7 For this experiment, we operate on

input with perfectly segmented phonetic boundaries so as to provide a baseline for our classifiers

when evaluated independently from the other stages in our method. As can be seen from

Figure 3.6, the combination of the HMM and maximum entropy classifiers with the language

6The likelihood given by an HMM is scaled by the marginal P[q].
7For brevity, we omit the other dialects as the results do not differ significantly.

55

Figure 3.6: Phoneme classification accuracy on the New England dialect for the HMM and maxi-
mum entropy classifiers alone, in combination, and with the language model applied.

model outperforms the individual classifiers.

While this classification performance might sound lackluster, these results are quite

surprising given the limited context we operate under (i.e., packet sizes only). For instance, recent

approaches working directly on the acoustic signal report 77% accuracy on the TIMIT dataset in

the context-dependent case (which corresponds roughly to our approach after application of the

language model). In the context-independent case (analogous to our HMM classification

approach without the language model), accuracy rates as high as 67% have been achieved [64] on

the TIMIT dataset. Similarly, expert human transcribers achieve rates only as high as 69% [83].

3.5.10 Segmenting Phoneme Streams into Words (Stage➌)

In this stage, our task is to identify likely word boundaries from the stream of classified

phonemes. To do so, we follow the methodology suggested by Harrington, Watson, and Cooper

[59] that, until very recently, was among the best approaches for word boundary identification.

We also extend their approach to incorporate an additional step that makes use of a

pronunciation dictionary.

Harrington, Watson, and Cooper identify word breaks with a two-step process. The first step

consists of inserting potential word breaks into the sequence of phonemes in positions that

would otherwise produce invalid phonemic triples, i.e., triples that do not occur within valid

56

Dialect Precision Recall

New England 0.7251 0.8512
Northern 0.7503 0.8522

North Midland 0.7653 0.8569
South Midland 0.7234 0.8512

Southern 0.7272 0.8455
New York City 0.7441 0.8650

Western 0.7298 0.8419
Army Brat 0.7277 0.8461

Table 3.4: Word Break Insertion Precision and Recall

words in English. Each such identified triple then causes the insertion of a pair of potential word

breaks, one between each pair of phonemes in the triple. To resolve which of the potential word

breaks are actual boundaries, we match the surrounding phonemes with all possible phonemes

and pairs of phonemes which can begin or end words, and remove potential word breaks which

would result in invalid word beginnings or endings.

We then perform an additional step whereby we use a pronunciation dictionary to find valid

word matches for all contiguous subsequences of phonemes. For each such subsequence, we

insert word breaks at the positions that are consistent across all the matches. For example,

suppose the sequence [InOIliôæg] (“an oily rag”) has the following three possible segmentations:

[In OIli ôæg] (“an oily rag”), [In OIl i ôæg] (“an oil E. rag”), and [In O Il i ôæg] (“an awe ill E. rag”).

Since these choices have two words in common, we segment the phrase as [In OIli ôæg].

The results of a 10-fold cross-validation experiment are given in Table 3.4. Overall, we achieve

average precision and recall of 73% and 85%, respectively. Very recent results, however, by

Blanchard, Heinz, and Golinkoff [16] and Hayes and Wilson [62] suggest that accuracy above 96%

can be achieved using more advanced techniques than implemented here. Due to time and

resource constraints, we make the simplifying assumption that word breaks can be correctly

recognized. We revisit this assumption in Section 3.6.

3.5.11 Identifying Words via Phonetic Edit Distance (Stage➍)

The final task is to convert the subsequences of phonemes into English words. To do so, we

must identify words that best match the pronunciation dictated by the recovered phonemes.

Towards this end, we design a novel metric of phonetic distance based on the difference in

57

Stop

Fricative

Approximant

Place

M
an
ne
r

Labiodental Velar GlottalInterdental

f θ

w

0.32
0.27

0.05

Sibilant

Figure 3.7: Illustration of distance between consonants [f], [T], and [w].

articulatory features (i.e., the associated physiological interactions discussed in Section 3.2)

between pairs of phonemes. Our approach has some similarities to ideas put forth by Oakes

[110], which itself builds upon the work of Gildea and Jurasky [49] and Zobel and Dart [163, 164].

Oakes [110] proposes a phonetically-based alignment algorithm, though there is no notion of

relative distance between various places or manners of articulation. In Zobel and Dart [164], the

distances between phonemes are handcrafted, and their matching algorithm considers only the

single most likely pronunciation.

In our approach, we define the distance between a vowel and a consonant as one unit, with a

few exceptions: we assign a cost of 0 for converting an [i] to a [j] (or vice-versa) as well as for

converting a [u] to a [w]. We do so because [w] and [j] are what are known as semi-vowels, and are

essentially very short realizations of their corresponding vowels. Moreover, we assign a cost of 0

for [R] (i.e., flap “r”) and [t], as well as for [R] and [d]. This is because [R] is an allophone of [t] and

[d]. Hence, we would like such minor phonetic alterations to have little effect on the distance

between two pronunciations.

To measure the distance between two vowels or two consonants, we use three different

articulatory features as axes and calculate the Euclidean distance (see Figure 3.7) between the

points corresponding to the two phonemes (scaled to a maximum of one unit). For consonants

58

Word 1 Word 2
Spoken Written Spoken Written Phonetic Distance Primary Difference

bæt bat mæt mat 0.0722 manner
bit beat bæt bat 0.1042 height
did deed bid bead 0.1050 place
b2t but bOt bought 0.1250 rounding
b2t but bæt bat 0.1267 backness
bid bead bit beat 0.5774 voicing
f6D3~ father m2D3~ mother 0.7292 n/a
hUkt hooked f6nIks phonics 2.9573 n/a
hEloU hello w3~ld world 3.1811 n/a

Table 3.5: Examples of our phonetic edit distance between pairs of example words. The last column
lists the primary difference (in terms of articulatory processes).

these features are voice, manner, and place of articulation. For vowels they are rounding, backness

and height. Thus we differentiate between substitution of a phonetically similar segment, such as

replacement of [s] (as in “see”) by [S] (as in “she”), or of a completely different segment, such as of

[s] (as in “seen”) with [k] (as in “keen”).

To compare two sequences of phonemes, we use the Levenshtein distance with insertions and

deletions weighted at one unit and edits weighted according to their phonetic distance as defined

above. Table 3.5 gives example word comparisons along with their primary differences (in terms

of articulatory processes).

In order to determine the optimal values for the insertion and deletion weights for our

phonetic edit distance metric, we performed a simple parameter space exploration. We

hypothesized that the absolute insertion and deletion costs were less significant than the

difference between them. As such we tuned based on two parameters, base cost and offset. Each

insertion costs the base cost plus half the offset and each deletion costs the base cost minus half

the offset. The effectiveness of each set of parameters is shown in Figure 3.8. Somewhat

surprisingly, a base cost of 1.0 and offset of 0.0 (corresponding to insertion and deletion weights

of 1.0) provided the highest average word accuracy.

To match a sequence of phonemes to an English word, we compute the phonetic distance

between the sequence and each pronunciation in our dictionary in order to obtain a list of the

closest pronunciations to the sequence. However, the existence of homophones means that, even

59

Bas
e

1.0

1.2

1.4

1.6

1.8

2.0

Offset

0.0

0.2

0.4

0.6

0.8

1.0

W
o
rd

 A
ccu

racy

16.8

16.9

17.0

17.1

17.2

Figure 3.8: Parameter space exploration, in terms of average word accuracy, for our phonetic edit
distance.

if the pronunciation is correct, we may have many choices for the word spoken. For example,

“ate” and “eight” are indistinguishable phonetically: both are pronounced [eIt].

In order to disambiguate between homophones, we incorporate a word and part-of-speech

based language model to choose between the candidate words using contextual information from

the sentence as a whole. Thus we can disambiguate between “ate” and “eight” by finding the

most likely part of speech (e.g., noun, verb, pronoun, or adverb) for that position in the sentence.

Using the SRILM toolkit, we train a trigram language model over both words and parts-of-speech

on the well-known Brown corpus [47]. The part of speech tags used are those currently

implemented in Natural Language Toolkit (NLTK). To improve the ability of the language model

to disambiguate between candidate words, we assign each word a weight which estimates the

conditional probability of the observed pronunciation given the candidate word.

To find these weights, we need a measure of how likely an observed pronunciation is given

the phonetic distance to the actual pronunciation of the given word; therefore, we estimate the

60

0 1 2 3 4 5 6
Phonetic Edit Distance

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
til

e

Figure 3.9: Empirical CDF of phonetic edit distance.

cumulative distribution function (CDF) over phonetic distances by deriving an empirical CDF

(see Figure 3.9) from the distances of a large number of pronunciation pairs. We then transform

the given distance between pronunciations into a probability estimate by evaluating the empirical

CDF at that distance. For each pronunciation in the candidate list for an observed word, we

weight the associated words with the probability estimate for that pronunciation.8 Thus we have,

for each word in an utterance, a list of candidate words with associated conditional probability

estimates. Disambiguation is performed by finding the maximum likelihood sequence of words

given the candidates, their probability estimates, and the language model.

At this point, the observant reader will have surely noted that the overall process is

fundamentally inexact because, in the end, some sort of human judgement is required to evaluate

the hypothesized output. That is, we need some way to measure the quality of our guesses, say,

as assessed by a human judge who compares them to the actual transcript. Thankfully, the

closely related problem of scoring machine translations has been extensively studied. In what

follows, we discuss how we measure the accuracy of our guesses.

3.5.12 Measuring the Quality of Our Output

Since the early 1990s, much work has gone into finding appropriate metrics for scoring

machine transcriptions from automatic speech recognition and transcription systems. In that

context, the main task is to generate a literal transcription of every word that is spoken. The

8A word which is associated with multiple pronunciations is weighted according to the closest pronunciation, i.e., we
take the maximum weight of all associated weights for the given word.

61

closer the machine transcription is to a human translation, the better it is. Early approaches for

automatically measuring such performance simply relied on examining the proportion of word

errors between the actual and transcribed conversations (i.e., the word error rate (WER)), but

WER has been shown to be a poor indicator of the quality of a transcript since good performance

in this context depends not only on the amount of errors, but also on the types of errors being

made. For example, from the perspective of human interpretation, it often does not matter if the

transcribed word is “governed” instead of “governing”.

Hence, modern automatic scoring systems reward candidate text based on the transcription’s

adequacy (i.e., how well the meaning conveyed by the reference transcription is also conveyed by

the evaluated text) and fluency (i.e., the lengths of contiguous subsequences of matching words).

To date, many such scoring systems have been designed, with entire conferences and programs

dedicated solely to this topic. For instance, NIST has coordinated evaluations under the Global

Autonomous Language Exploitation (GALE) program since the mid-nineties. While the search

for better metrics for translation evaluation remains an ongoing challenge, one widely accepted

scoring system is the METEOR Automatic Metric for Machine Translation by Lavie and Denkowski

[81]. METEOR was designed to produce quality scores at the sentence level which correlate well

with those assigned by human judges. We evaluate the quality of our guesses using METEOR;

for concreteness, we now review pertinent details of that scoring system.

Lavie and Denkowski’s method evaluates a hypothesized transcription by comparison with a

reference transcription. The two transcripts are compared by aligning first exact word matches,

followed by stemmed word matches, and finally synonymous word matches. The alignment is

performed by matching each unigram string in the reference transcription to at most one word in

the hypothesis transcription. To compute the score from such an alignment, let m be the number

of matched unigrams, h the number of unigrams in the hypothesis, and r the number of

unigrams in the reference. The standard metrics of unigram precision (P = m/h) and recall

(R = m/r) are then computed.

Next, the parameterized f -score, i.e., the harmonic mean of P and R given a relative weight

(α) on precision, is computed:

Fmean =
P ∗R

α ∗ P + (1− α) ∗R
.

62

it's
not
easy
•

to
create
illuminating
examples

is
not

except
to

create
illuminated

examples

•
•
◦
•

cliff
was
soothed

•
•
•

by
the
luxurious
massage

cliff
was

soothed
by

a
luxurious
massage

•

•
•

that's
your
headache

◦

•

that
you

headache

METEOR Score:
0.53

METEOR Score:
0.18

METEOR Score:
0.78

A B C

Figure 3.10: Example scoring of three hypothesized guesses. For each, the hypothesized guess is
on the left, with the reference on the right. Filled circles represent exact matches. Hollow circles
show matches based on stemming.

To penalize hypotheses which have relatively long sequences of incorrect words, Lavie and

Denkowski count the number c of “chunk” sequences of matched unigrams which are adjacent,

and in the correct order in the hypothesis. A fragmentation penalty is then computed as

Pfrag = γ ∗ (c/m)β , where γ and β are parameters determining the maximum penalty and

relative impact of fragmentation, respectively. The final METEOR score is then calculated as

Sm = (1− Pfrag) ∗ Fmean for each hypothesis.

Denkowski and Lavie [33] performed extensive analysis to determine appropriate values for

the parameters α, β, and γ which optimize the correlation between METEOR score and human

judgments. In our experiments, we use the parameter set that is optimized to correlate with the

human-targeted translation edit rate (HTER) metric for human judgement on the GALE-P2

dataset [32]. We disable synonym matching as our system does no semantic analysis, and thus

any such matches would be entirely coincidental. Some examples are shown in Figure 3.10.

Notice that even a single error can result in scores below 0.8 (e.g., in part (a)). Moreover, in some

cases, a low score does not necessarily imply that the translation would be judged as poor by a

human (e.g., one can argue that the translation in part (c) is in fact quite decent). Finally, Lavie

indicates that scores over 0.5 “generally reflect understandable translations” and that scores over

0.7 “generally reflect good and fluent translations” in the context of machine translation [80].

63

New England Northern North Midland South Midland Southern New York City Western Army Brat
0.0

0.2

0.4

0.6

0.8

1.0
M

E
T

E
O

R
Sc

or
e

(a) SA1: “She had your dark suit in greasy wash water all year.”

New England Northern North Midland South Midland Southern New York City Western Army Brat
0.0

0.2

0.4

0.6

0.8

1.0

M
E

T
E

O
R

Sc
or

e

(b) SA2: “Don’t ask me to carry an oily rag like that.”

Figure 3.11: METEOR scores for all hypothesized transcripts of sentences SA1 and SA2 for each
dialect in the TIMIT dataset.

3.6 Empirical Evaluation

In the analysis that follows, we explore both content-dependent and content-independent

evaluations. In both cases, we assume a speaker-independent model wherein we have no access

to recordings of speech by the individual(s) involved in the conversation. In the

content-dependent case, we perform two experiments, each incorporating multiple different

utterances of a particular sentence. We use TIMIT’s SA1 and SA2 sentences for these experiments

because each is spoken exactly once by each of the 630 speakers, providing a rare instance of

sufficient examples for evaluation. In the content-independent case, we incorporate all TIMIT

utterances.9 Except where explicitly specified, all experiments are 10-fold cross-validation

experiments and are performed independently on each dialect. As discussed in Section 3.5, for

these experiments we assume that the segmentation of phonemes is correct to within human

transcriber tolerances. However, the effects of this assumption are specifically examined in a

small experiment described separately below.

Figure 3.11 shows the distributions of METEOR scores under each of the dialects for the two

content-dependent experiments. For SA1, the results are fairly tightly grouped around a score of

0.6. The SA2 scores show significantly more variance; while some hypotheses in this case were

9We follow the standard practice in the speech recognition community and use the SA1 and SA2 sentences for training
only.

64

Hypothesis Score

She had year dark suit a greasy wash water all year. 0.67
She had a dark suit a greasy wash water all year. 0.67
She had a dark suit and greasy wash water all year. 0.67

(a) SA1: “She had your dark suit in greasy wash water all year.”

Hypothesis Score

Don’t asked me to carry an oily rag like that. 0.98
Don’t ask me to carry an oily rag like dark. 0.82
Don’t asked me to carry an oily rag like dark. 0.80

(b) SA2: “Don’t ask me to carry an oily rag like that.”

Table 3.6: Top scoring hypotheses from the New England dialect.

Hypothesis Reference Sentence Score

Codes involves the displacement of aim. Change involves the displacement of form. 0.57
The two artists instance attendants. The two artists exchanged autographs. 0.49
Artificial intelligence is carry all. Artificial intelligence is for real. 0.49
Bitter unreasoning dignity. Bitter unreasoning jealousy. 0.47
Jar, he whispered. Honey, he whispered. 0.47

Table 3.7: The five highest scoring hypotheses from the New England dialect under the content-
independent model.

relatively poor, others attained perfect scores. To ease interpretation of the scores, we provide the

three highest-scoring hypotheses for each sentence, along with their scores, in Table 3.6. In

addition, recall that sentences with scores over 0.5 are generally considered understandable in

the machine translation context; 91% of our SA1 reconstructions and 98% of our SA2

reconstructions exceed this mark.

The independent case, on the other hand, proves to be a more challenging test for our

methodology. However, we are still able to reconstruct a number of sentences that are easily

interpretable by humans. For instance, Table 3.7 shows the five highest-scoring hypotheses for

this test on the New England dialect. In addition, a number of phrases within the sentences are

exactly correct (e.g., “the two artists”). For completeness, we note that only 2.3% of our

reconstructions score above 0.5. However, the average score for the top 10% (see Figure 3.12) is

above 0.45. That said, we remind the reader that no reconstruction, even a partial one, should be

possible; indeed, any cryptographic system that leaked as much information as shown here

65

New England Northern North Midland South Midland Southern New York City Western Army Brat
0.0

0.2

0.4

0.6

0.8

1.0
M

E
T

E
O

R
Sc

or
e

Figure 3.12: The top 10% of METEOR scores for hypothesized transcripts under the content-
independent assumption.

would immediately be deemed insecure.

To mitigate any concern regarding our two previous simplifying assumptions, namely, the

accurate segmentation of frame size sequences on phoneme boundaries and of (noisy) phoneme

sequences on word boundaries, we perform one final experiment. We believe sufficient evidence

has been given to show that we can accomplish these tasks in isolation; however, one possible

critique stems from the potential effects, when these assumptions are lifted, on the efficacy of the

methodology as a whole. Thus we remove these assumptions in a small, content-independent

experiment comprised of the audio samples spoken by female speakers in the “Army Brat”

dialect of the TIMIT corpus. The average score for the top 10%, in this case, is 0.19, with a high

score of 0.27. We remind the reader that even such low scoring hypotheses can be interpretable

(see Figure 3.10), and we stress that these results are preliminary and that there is much room for

improvement—in particular, recently proposed techniques can be directly applied in our setting

(see Section 3.5.10). Moreover, there are opportunities for extensions and optimizations at every

stage of our approach, including, but not limited to, weighting the influence of the different

classification and language models. In addition, other scoring systems for machine translation

exist (e.g., NIST and BLEU), which may be appropriate in our context. We plan to explore these

new techniques, optimizations and metrics in the future.

3.6.1 An Adversarial Point of View (Measuring Confidence)

Due to the difficult nature of our task (i.e., numerous factors influencing phonetic variation

and the fact that we operate on encrypted data), an adversary is unlikely to be able to construct an

accurate transcript of every sentence uttered during a conversation. Therefore, she must have

some way to measure her confidence in the output generated, and only examine output with

confidence greater than some threshold. To show this can be done, we define one such

66

0.76 0.78 0.80 0.82 0.84 0.86 0.88 0.90 0.92 0.94
Confidence Value

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

M
E

T
E

O
R

Sc
or

e

Figure 3.13: Scatter plot of METEOR scores against our confidence values (Pearson’s r-value of
0.43).

confidence measure, based on our phonetic edit distance, which indicates the likelihood that a

given transcript is approximately correct.

Our confidence measure is based on the notion that close pronunciation matches are more

likely to be correct than distant matches. We use the mean of the probability estimates for each

word in a given hypothesized transcript as our confidence value for that hypothesis. Analysis

indicates that this confidence measure correlates (see Figure 3.13) with the maximum METEOR

score obtained from the 10 best hypotheses output by the word-level language model (Stage ➍).

This implies that, given a set of training data such as the TIMIT dataset, an adversary can

determine an appropriate threshold for the calculated confidence values to suit her preference as

to the balance between precision and recall in the hypothesized transcripts. The results in

Figure 3.14provide one such analysis under the content-dependent model. We note that the

threshold reduces the set of hypotheses to a subset with improved METEOR scores.

Unfortunately, the correlation of this particular confidence metric does not extend well to the

content-independent model. However, we note that there are many other methods to measure

confidence which an adversary could leverage, including those based on the posteriors output by

67

New England
(37/49)

Northern
(73/102)

North Midland
(85/102)

South Midland
(70/100)

Southern
(65/98)

New York City
(39/46)

Western
(81/100)

Army Brat
(24/33)

0.0

0.2

0.4

0.6

0.8

1.0
M

E
T

E
O

R
Sc

or
e

Figure 3.14: METEOR scores for hypothesized transcripts for sentence SA2 with confidence values
above the threshold of .90 for each dialect in the TIMIT dataset. The number of transcripts with
confidence values above the threshold compared to the total for each dialect is shown in parenthe-
ses.

the classification stage, the likelihoods given by the language models, and ex post facto analysis

of the well-formedness (in terms of syntax, i.e., grammar) of the hypotheses. We hope to explore

these strategies in the near future.

In closing, we note that one could also apply the notion of confidence values to interpreting

the results at the word, rather than the sentence, level. In particular, we could filter our

hypotheses at the word-level by only outputting those words for which we have high confidence.

Preliminary results indicate that such “masking” may provide benefits to interpretation, for

example, outputting “nonprofit ⋆ all ⋆ ⋆ raisers” instead of “nonprofit organizations all swiftly

fairy raisers” as the hypothesis for “nonprofit organizations have frequent fund raisers”. We

forego such analysis at this time since the METEOR metric does not allow for unknown

words—an automated method of evaluating such hypotheses is necessary before we can make

any claims.

3.6.2 Discussion & Mitigation

We note, like other work in this area (e.g., [5, 85, 92, 156, 157]), that we assume each packet

contains a single frame. However, some recently designed codecs, such as Skype’s new codec

(dubbed SILK), can vary the number of frames per packet based on network conditions. It

therefore remains to be seen if the approach outlined herein can be adapted to that setting;

exploring that, however, requires a substantial data collection effort that is beyond the scope of

this work.

Further, our experiments assume that packets are observed in correct order and are not

fragmented or combined, i.e., the adversary can observe packets at the level of the local network

68

(e.g., between VoIP endpoint and hub or PBX) or can perform IP defragmentation or TCP stream

reassembly. The inherently limited fidelity of the channel, however, suggests that our technique

would be robust to reasonable noise in the form of packet reordering and fragmentation.

Lastly, a knee-jerk reaction to thwarting this and other aforementioned threats to VoIP is to

simply use constant bit-rate codecs or block ciphers. However, VBR-encoded audio encrypted

under a block cipher with a small block size is theoretically vulnerable to our attack. Packet sizes

in that scenario still correlate with input signals, albeit at a reduced fidelity; thus relatively large

block sizes are necessary to ensure privacy. For this reason, the use of constant bit-rate codecs is

important to consider as an alternative to simple block ciphers for VoIP, since such codecs might

improve call quality given a relatively large fixed packet size. Another alternative might even be

to drop or pad packets [46, 68, 158], though, in that case, the effect on perceived call quality is

unclear. We note, however, that VoIP providers have made no move to employ any such

measures: Skype’s SILK, for instance, is a VBR codec. Similarly, one of the leading proposals for

4G, the Long Term Evolution (LTE) Advanced standard, specifies a VBR codec for audio [1] and

the use of SRTP to secure voice data channels.

3.7 Conclusion

In this chapter, we explore the ability of an adversary to reconstruct parts of encrypted VoIP

conversations. Specifically, we propose an approach for outputting a hypothesized transcript of a

conversation, based on segmenting the sequence of observed packets sizes into subsequences

corresponding to the likely phonemes they encode. These phoneme sequences are then mapped

to candidate words, after which we incorporate word and part-of-speech based language models

to choose the best candidates using contextual information from the hypothesized sentence as a

whole. Our results show that the quality of the recovered transcripts is far better in many cases

than one would expect. While the generalized performance is not as strong as we would have

liked, we believe the results still raise cause for concern: in particular, one would hope that such

recovery would not be at all possible since VoIP audio is encrypted precisely to prevent such

breaches of privacy. It is our belief that with advances in computational linguistics,

reconstructions of the type presented here will only improve. Our hope is that this work

stimulates discussion within the broader community on ways to design more secure, yet efficient,

69

techniques for preserving the confidentiality of VoIP conversations.

In fact, since our original publication in May, 2011 [155], the Internet Engineering Task Force

(IETF) released RFC 6562 (titled Guidelines for the Use of Variable Bit Rate Audio with Secure RTP),

which recommends against the use of VBR codecs when conveying sensitive information [119].

3.8 Future Work

Skype Our evaluation in this work consists of reconstructing conversation transcripts using the

open-source speech codec Speex. We feel that an evaluation using a second codec would

corroborate the generality of our approach. In particular, Skype’s speech codec (SILK) suggests

itself due to it’s popularity. However, SILK is significantly different from Speex; for our purposes,

the primary difference is in the range of output packet sizes: SILK effectively can output packets

of any size up to about 150 bytes, while Speex is restricted to 21 particular sizes in that range.

This difference necessitates changes to our methodology; in particular, the phoneme classifiers

must be replaced or adapted to consider the relative difference between packet sizes, rather than

considering the possible packet sizes as an unordered set of symbols.

Conversational Speech Our analyses are based on a corpus of pre-recorded speech where the

content of each utterance is known to the speaker in advance. An enhancement would be the

application of our techniques to conversational speech samples, which more closely resemble

real-world exchanges. Unfortunately, finding a dataset of conversational speech labeled at the

granularity (i.e., at the phonetic level) required for our evaluations may present a problem.10

3.9 Broader Implications

In the broader context of inference from encrypted network traffic, this chapter demonstrates

the potential magnitude of information which can be ascertained from a source as limited as a

sequence of packet sizes. Furthermore, this work stands as an example (along with, e.g., the work

of Saponas et al. [130]) of inference from streaming traffic—a class of traffic which comprised over

63% of Internet traffic in the fall of 2014 [51]. In Chapter 4, we explore another major class of

network traffic (request-response) in the form of webpage visits (i.e., HTTP resource retrievals).

10One collection of conversational speech samples [122] contained numerous transcription errors; correction necessitates
substantial effort on the part of a trained linguist.

70

The work presented in this chapter also demonstrates how the appropriate combination of

methods from multiple disciplines can lead to results which surpass expectations. In particular,

we stress that the development of the approach presented herein would not have been possible

without significant contributions from the following disciplines (amongst others): linguistics

(e.g., Section 3.5.10 and Section 3.5.11), natural language processing (Section 3.5.11), biological

sequence analysis (Section 3.5.4), machine translation (Section 3.5.12), and machine learning (e.g.,

Section 3.5.1).

71

CHAPTER 4: PLAYING HIDE-AND-SEEK

4.1 Introduction

A network-security monitoring system such as an IDS, malware detector, content filter, or

network forensic tool, is generally blind to the contents of encrypted traffic. This problem is

amplified due to the multitude of options available for communicating into and out of an

organization’s network while hiding the contents of said communication from network

monitoring systems. These options include HTTPS (often aided by browser extensions such as

HTTPS Everywhere [67]), tunnels over SSH or similar protocols, and VPN or VPN-like

mechanisms (e.g., Tor [34]). Currently, the only feasible way to make the contents of such traffic

visible to a network monitoring system is through decryption (using, e.g., an escrowed key),

throwing away any confidentiality guarantees.

Ideally, however, one should strike a balance between the visibility into network traffic

needed by network monitoring and the confidentiality required by modern communication. As

monitoring systems do not always require access to the complete content of network traffic, it

might be sufficient to trade-off confidentiality for increased security by inferring any necessary

information. One avenue for making such inferences is to leverage statistical characteristics of

encrypted traffic. Previous work, concerned with the privacy implications of such inferences, has

demonstrated that such statistical characteristics are sufficient to determine the web page being

accessed in encrypted connections. Unfortunately, the vast majority of previous work only

considers discriminating between pages from different domains, e.g., the homepages of distinct web

sites, which is insufficient for network security and forensic applications.

The characteristics of the contemporary World Wide Web pose significant challenges to

identifying web communication in encrypted traffic. One of these challenges is the sheer number

of web pages: any practical approach to inference must be scalable. For instance, contrary to

comments made in previous work [43], classification based solely on the size of pages does not

72

scale—the range of likely page sizes is simply too small in comparison with the number of extant

web pages to avoid collisions. Similarly, previous work has disregarded the question of

scalability in terms of efficiency and run-time, in cases employing models which require hours to

classify even small datasets. A second challenge is that HTTP connections are often persistent,

with multiple HTTP requests and responses communicated over a single connection, obsoleting

any techniques which assume that individual HTTP requests or responses are easy to isolate. In

the same vein, many encryption technologies multiplex different application protocols over the

same tunnel, further obscuring the picture. This challenge extends beyond just HTTP

connections: for example, domain name system (DNS) traffic—which has seemingly been

ignored by previous work—may be included in the traffic sent through a tunnel, peppering what

might be seen as an orderly collection of TCP streams with occasional UDP packets.

Due in part to these difficulties, previous work has been restricted to classifying distinct pages

from different domains. In contrast, the work presented in this paper examines a significantly

more complex space of labels by including both the host name (domain) and the path

components of requested pages in the set of labels to be modeled and predicted. In doing so, we

are able to not only identify individual web pages for which we have training data (the extent of

previous work), but also provide information about previously unseen pages. For example, having

trained our system on data representing multiple domains and multiple pages for each domain,

our model allows the system to predict the domain for new data representing a previously

unseen page. Moreover, our model is not limited to domain names but also incorporates other

components (e.g., the containing folder) of the page URL.

Our ability to infer additional information opens up new avenues for practical application of

this line of research. In particular, we believe our model provides value to forensics and analytics

platforms, which can use domain and path information to trace infection vectors, identify

potentially dangerous connections, and generally gain insights into encrypted traffic which

would otherwise be unavailable. Thus our efforts differ from previous work not only in

methodology, but in motivation: our interest is in leveraging these techniques to provide security

and forensics applications with a view into encrypted traffic, rather than further demonstrating

the privacy threat such classification represents.

The problem we face in this work is to overcome the aforementioned challenges and enable

73

network monitoring of encrypted web traffic without destroying confidentiality. Our approach is

to employ a multi-label classification scheme, a paradigm shift away from the standard multi-class

classification schemes explored in previous work, which allows our system to model and predict

labels even for previously unseen pages. Our ultimate goal is enabling scalable, real-time forensic

identification of web pages in encrypted traffic at the enterprise level. In designing our approach,

we were guided in part by this goal of providing scalability; in particular, many of the classifiers

explored in previous work (such as support vector machines, particularly those using

edit-distance–based kernels) are not scalable in this context. Therefore, we chose to employ a

classifier model which is novel to this domain: the random forest (RF). RFs, as ensembles of

decision trees (DTs) provide us with inherent parallelization (and thus with scalability to

real-world traffic volumes) and a proven ability to operate with a large number of classes.

Additionally, the RF algorithm can be adapted to provide multi-label output at the classifier level;

in contrast, most of the classifiers used in previous work are limited to multi-class classification,

requiring problem transformation (Section 4.4.1) for multi-label classification.

Finally, we believe much of the prior work in this area suffers from a lack of scientific rigor.

We are not the first to point out many of these issues (see, e.g., [120]), but we hope that

enumerating these considerations in one place aids others in designing their evaluations. We

stress that we do not mean to imply that all of the previous work in this area suffers from all of

these issues, however, we were struck by the fact that some prior work does not even

acknowledge the existence of many of these issues. In particular, we have identified the treatment

of the following as deficient in least one prior publication each:

Heterogeneity of targeted pages Prior work has primarily considered scenarios where each

page is distinct, overlooking the ramifications of multiple pages belonging to the same site.

We address this issue head-on by collecting a new dataset with multiple URLs per domain

name (Section 4.5.1).

Handling of DNS traffic The presence or absence of DNS traffic in an encrypted tunnel

undoubtably affects observations; unfortunately, prior work has often failed to explicitly

state whether or not such traffic is included in their datasets. We explicitly include DNS

traffic when collecting our tunneled traffic dataset.

74

Problem definitions Prior work has emphasized the need for so-called open-world evaluations,

wherein the set of possible pages is not known a priori; however, we found the definitions of

the open-world model to be inconsistent across prior work. In Section 4.3.3, we present a

taxonomy of different world models to aid in the disambiguation of this situation.

Suitability of accuracy measures Classification accuracy has consistently been used as the

measure of performance for evaluations in prior work seemingly without regard to the

suitability of this measure with regard to the specific task under evaluation. More recently,

Bayesian detection rate (BDR) has supplanted accuracy (due in part to previous

criticism [e.g., 120]) with the same disregard for context. We provide an overview of

accuracy measures in Section 4.5.2, and discuss the scenarios under which each is

appropriate.

Statistical validation of results The machine learning community has long recognized the need

for validation (e.g., via cross-validation (CV)) of experimental results as a means of

controlling the variance in classification error across experiments. At best, prior work has

paid lip-service to this issue. In Section 4.4.5, we consider and reject the naïve use of CV in

this context, instead designing an alternative scheme (“epoch validation”) to overcome the

problem of dependencies in time between samples.

Fairness of comparisons between algorithms Classification performance can vary significantly

depending on the specific values used for the hyper-parameters on which most learning

algorithms rely; one concern when comparing the results of different learning algorithms is

that hyper-parameters values which result in good performance for a specific algorithm on

one task and dataset may result in poor performance on another task or dataset. We

address this issue through a disciplined search (Section 4.4.4) for optimal values for each

hyper-parameter in each experiment we perform.

In summary, we make the following contributions in this work:

• A novel adaptation of multi-label classification to the problem of identifying encrypted web

traffic, enabling inferences regarding, e.g., previously unseen URLs.

75

• The basic design for a scalable (both in terms of traffic volume, i.e., total number of web

pages, and traffic diversity, i.e., number of distinct web pages) system for identifying web

resources in encrypted traffic, independent of the encryption mechanism.

• A taxonomy of the various “world models”, i.e., sets of assumptions defining specific tasks

in experimental evaluations, used in prior work and the definition of a new, general class of

world models designed to evaluate partial information scenarios.

• A novel form of statistical validation (“epoch validation”) for scenarios in which a time

dependency exists between samples.

• Empirical evidence indicating that the incorporation of multiple URLs per domain has a

significant effect on classification performance.

• A rigorous and extensive evaluation covering multiple world models, classification

paradigms, datasets (including two from prior work), learning algorithms, and feature sets.

4.2 Background & Related Work

Most germane to the work presented in this paper is the area of so-called website

fingerprinting [13, 43, 63, 88, 113, 133, 152]. However, this designation is a misnomer; work in this

category is instead generally concerned with web page classification. To avoid ambiguity in our

own work, we define a web page as the collection of resources associated with a single URL and

intended for simultaneous download and display. A resource is a single file, such as an image, text

file, or HTML file, in isolation and located at a particular URL. A web site is the collection of web

pages and resources which, linked together, form the content associated with a particular domain

name. In general, we follow the World Wide Web Consortium (W3C)’s terminology [82]. The

distinction between web page and web site in previous work has been unnecessary, however, as the

collections of URLs on which these works base their experiments include only a single web page

per web site. Due to the fact that web pages from the same web site are likely to share many

characteristics, we hypothesize that discriminating between such pages is significantly more

difficult than between web sites.

A surprisingly large body of work has examined the privacy threat posed by “website

fingerprinting” when traffic is encrypted using various privacy enhancing technologys (PETs).

76

These technologies include tunneling proxies (e.g., those established by SSH’s “dynamic

forwarding”) [13, 21, 43, 63, 88, 91], VPNs [63, 91], and anonymity networks (such as Tor) [21, 63,

65, 113, 133, 152]. Relatively little work has addressed HTTPS or similar measures (e.g., the

non-proxying tunnels of SSH’s “static forwarding”) [24, 31, 65, 104, 140].

As far as we are able to ascertain from published sources, all prior work on classifying

individual pages in tunneled connections has used datasets in which each web page is isolated

from the others, i.e., no two pages belong to the same site. These isolated pages are unlikely to

share many characteristics; we believe that this has lead to inflated estimates of one’s ability to

successfully identify web pages visited in encrypted tunnels. We pay particular attention to this

issue in our analyis. Related, though unpublished, work has considered classifying pages in

HTTPS connections (a model distinct from tunneling; see Section 4.3) where the domain is

known [24, 31, 104].Conversely, Cai et al. [21] proposed an HMM-based system which identifies

the domain corresponding to a series of linked page visits given a priori knowledge of the link

structure of the domain’s pages. Ultimately, however, no prior work considers, as we do, the joint

identification of page and domain nor the inference of partial information.

Various countermeasures have been proposed to mitigate the privacy threat posed by

previous work, including padding schemes [6, 43, 88, 90, 100, 104], traffic morphing [43, 158],

buffering (e.g., Buffered Fixed-Length Obfuscator (BuFLO), Tamaraw), fragmentation (e.g.,

HTTPS with Obfuscation (HTTPOS)), randomized pipelining (Tor) [21, 121, 152] and randomized

cover traffic [21, 93]. However, Dyer et al. [43] concluded that many of these defenses were

ineffective. We return to the issue of defenses in Section 4.5.6.

In addition to identifying visited web sites, post-encryption features such as packet sizes and

timing have been exploited to infer information about a wide variety of encrypted

communications. In particular, these features have been leveraged to determine the application

protocol underlying encrypted communications (e.g., [159]), search queries typed over HTTPS

(e.g., [23]), keystrokes in interactive SSH sessions [136], and the content of encrypted VoIP calls

(e.g., [155]), to name just a few. Relatively little prior work (save, e.g., [76]) has studied these

features outside the context of assessing potential privacy leaks, however.

The remainder of this section summarizes the various learning algorithms and features

explored in previous work.

77

4.2.1 Learning Algorithms

To provide a comparison with previous work, we evaluate various classifiers suggested by

previous work in addition to the RF classifier which we suggest the use of herein. In addition, we

use each classifier in conjunction with various feature sets proposed by previous work.

Specifically, related work has considered the following classifiers:

• Jaccard index [88]

• naïve Bayes (NB) [43, 88]

• multinomial naïve Bayes (MNB) [63]

• support vector machine (SVM), by kernel:

– radial basis function (RBF) [113]

– optimal string alignment distance (OSAD) [21]

– Damerau-Levenshtein distance [152]

• k-nearest neighbors (k-NN), by distance metric:

– Levenshtein distance [91]

– weighted Manhattan distance (weights learned using the algorithm given by Wang

et al. [151])

• decision tree (DT) [73]

In this work, we propose the use of a random forest (RF) classifier (see Section 4.4.2).

4.2.2 Features

A wide range of potential features has been considered by previous work for classifiers which

are formulated in the standard feature-vector representation. Features and sets of features

considered in previous work include:

BurstLengthDistribution (BLD) Distribution of burst lengths in each direction.

BurstSizeDistribution (BSD) Distribution of burst sizes in each direction; referred to

as variable n-gram (VNG) by Dyer et al. [43].

78

NumBytes Total number of bytes transmitted in each direction;

referred to as “bandwidth” in prior work.

PacketSizeDistribution (PSD) Distribution of observed packet sizes in each direction.

Panchenko Combines: NumBytes, BurstSizeDistribution,

BurstLengthDistribution, PercentPacketsUpstream, NumPackets,

NumUniquePackets, and HTMLResponseSize.

Time Total connection time.

variable n-gram Another name for BurstSizeDistribution.

VNG++ Combines: BurstSizeDistribution, Time, and NumBytes.

An alternative view of how to tackle this problem is to view the traces purely as sequences of

packet sizes (or of paired packet size and inter-arrival time observations). Certain prior works

therefore utilize learning algorithms which eschew the feature-vector representation in favor of

edit-distance–based comparisons between these sequences. Specifically,: Lu, Chang, and Chan

employ a k-nearest neighbors (k-NN) with the Levenshtein distance between sequences of

inferred HTTP request and response sizes [91], Cai et al. use an support vector machine (SVM)

with a kernel function based on the optimal string alignment distance (OSAD) [21], and Wang

and Goldberg evaluate SVMs with kernel functions based on the OSAD, Damerau-Levenshtein

distance, and fast Levenshtein-like distance [152]. While this is certainly a valid viewpoint, two

issues spring to mind: 1) calculating edit-distance–based measures generally imposes runtime

overhead of O(st), where s and t are the lengths of the two sequences, for each distance calculation

required; and 2) the feature-vector representation allows for the inclusion of summary statistics,

such as NumBytes, which may provide enhanced discriminatory power. In fact, the former issue

turns out to be damning in practice (see Section 4.5.3).

4.3 Assumptions and Threat Model

4.3.1 Networking Model

In general, we assume a model wherein a network-security monitor attempts to identify web

pages visited by a client through an encrypted connection (or connections) which traverse part of

79

HTTPS

H
T

T
P
S

M
o
d
e
l

Public web  
server

Public web  
server

Encrypted Tunnel

Tu
n
n
e
l
M

o
d
e
l

Tunnel  
endpoint

HTTP(S)
DNS

Figure 4.1: The two encryption models considered: HTTPS and web traffic tunneled over en-
crypted channels.

the monitor’s network. The monitor is able to observe all encrypted packets at the network layer.

4.3.2 Encryption Model

In terms of the encryption scheme employed, there are two specific scenarios under which we

believe our approach is applicable (Figure 4.1). The simpler of the two mimics HTTPS, and hence

we will refer to it as the HTTPS Model; the other is that of a typical SSH tunnel, and hence we will

refer to it as the Tunnel Model.

HTTPS model The HTTPS model is similar to that employed by Sun et al. in one of the earliest

papers on the subject [140], and comprises the following assumptions governing the knowledge

and abilities of the monitor: 1) IP addresses and DNS traffic are visible; 2) IP addresses can be

mapped to DNS requests and hence domain names [11]; and 3) individual HTTPS connections

are distinguishable. Under the HTTPS model, the labels of interest are primarily those derived

from the path of the page requested. However, we note that an accurate model of a high-value

website, e.g., bankofamerica.com, could be used to detect phishing websites attempting to

80

bankofamerica.com

masquerade as the original but served from rogue IPs or improper domains (e.g., typo-squatted

domains like bankifamerica.com). By the same token, SSL hijacking attempts may be detectable,

depending on the similarity between the actual website and the forgery.

Tunnel Model The tunnel model is similar to that explored by the majority of previous efforts

in this area (e.g., [13, 21, 43, 88, 91]) and encompasses various tunneling technologies, including

many VPN configurations and SSH’s “dynamic” port forwarding (where an SSH client acts as a

socket secure (SOCKS) proxy server, multiplexing connections over the encrypted channel). The

tunnel model is significantly more restrictive than the HTTPS model, allowing the monitor access

to much less information; in particular, all of the HTTP connections associated with accessing a

web page are multiplexed through a single encrypted channel. We do make two simplifying

assumptions: 1) the traffic through the tunnel is entirely DNS, HTTP, or tunnel control traffic

(e.g., SOCKS control packets); and 2) the user does not simultaneously request multiple websites,

i.e., we assume a reasonable delay between successive retrievals. We believe these assumptions to

be sensible, particularly in the context of an SSH client used to proxy connections to a home or

private network for unmonitored surfing or access to private resources.

DNS Traffic

An additional concern, which has not, to our knowledge, been explicitly discussed in prior

work, is whether DNS traffic is tunneled or otherwise concealed from the monitor. We highlight

this issue in order to clarify the model used herein and underscore one difference between our

model and that used in previous work. In particular, we assume that DNS information is carried

within encrypted connections and therefore inaccessible to the monitor.

DNS traffic may or may not be covered by the privacy-enhancing technologies discussed

above; in many cases, configuring a PET to cover DNS requests is non-trivial and the difference is

often undetectable without inspecting network traffic. This is a particular concern when using a

proxy to secure connections (e.g., by tunneling over SSH). With the SOCKS protocol, for instance,

DNS handling varies by version.1 However, even if a suitable SOCKS version is used, DNS

1SOCKS v4 and earlier do not support UDP packets and require requests to specify a destination IP, forcing resolution
to be done either on the client side or over TCP. SOCKS v4a added the ability to send requests by hostname, enabling
DNS requests to take place on the server-side [134]. SOCKS v5 supports tunneling UDP connections, enabling DNS

81

bankifamerica.com

requests may still be sent directly from the client. For instance, when Firefox is configured to use

a SOCKS proxy server (as in the dynamic SSH tunnel scenario), an additional, hidden parameter

must be set to force Firefox to use the proxy for DNS [108]. Even if a browser is configured to

send DNS traffic through the proxy, extensions and plugins may ignore these settings [27, 143].

In particular, the DNS prefetching implemented in Chrome contacts DNS servers directly [27].

These nuances of proxy configuration are rarely disclosed openly to users. Similarly, VPN

handling of DNS traffic varies by vendor, version and configuration.

Due to these issues of configuration, and the lack of relevant information in previous work,

we believe that the impact of encrypted DNS on one’s ability to identify web pages visited over

encrypted connections is an open question. We attempt to remedy this oversight by explicitly

including DNS traffic in our data collection and analysis.

4.3.3 World Models

One issue which is particularly pertinent to the ecological validity of any study in this area is

the definition of the task to be accomplished, particularly with respect to the inputs (i.e., training

data) and outputs (i.e., the set of possible labels for a test example) of the predictor. Previous

work has focused on two distinct sets of assumptions governing the task of the predictor: the

so-called closed-world and open-world models. This work defines a general class of partial

information models which, as the name suggests, allow for the inference of partial information.

We discuss each class of models in turn.

Closed-world Under the closed-world model, the task is to label a previously unseen trace as

generated by one of N “web pages” (the classes), where the N classes are known a priori and the

trace must belong to one of the known classes. For this model, the input is a set samples for each

of the N classes; the output is single class label (identifying one of the N known pages). The

closed-world model has been the subject of criticism [e.g., 120] on the grounds that having

concrete knowledge of the entire set of pages likely to be visited is unrealistic.

Open-world An open-world model allows for the possibility that the new trace does not belong

to any of the known classes: the task is to determine which, if any, of a set of N web pages

requests to be made through the proxy server [84].

82

of-interest generated a previously unseen trace (where the of-interest pages are known a priori).

Under this model, the inputs are: 1) a set of samples for each of the N known classes; and

2) (optionally) a set of samples generated by none of the known classes. The output is either a

single class label (identifying one of the N known pages) or ⊥ (i.e., an indication that the test

sample does not belong to one of the N known pages).

Binary Open-world A variant of the open-world model (seemingly confused, at times, for

the open-world model as defined above) defines the task as a binary problem, rather than a

multi-class problem: the task is to predict whether or not a trace was generated by one of N web

pages (known a priori), without attempting to predict the specific page. This definition makes the

task superficially easier; however, we argue that the application of standard classification

techniques to this variant of the problem is unsound when N > 1 and the N pages are unrelated

(as has been the case in previous work). Specifically, by grouping N unrelated classes into a

single super-class, one implicitly assumes that the classes share some distinguishing

characteristics.2 However, there is no reason to believe a priori that the N pages of-interest share

any characteristics which distinguish them from any page outside the set.

Partial Information An alternative class of models arises naturally from considering the

problem as one of multi-label classification (as opposed to multi-class or binary classification).

These models, which we refer to as partial information models, differ from the closed-world and

open-world models in that the expected output of classifying a single trace is zero or more labels,

each of which represents one piece of information about the trace. For instance, one such model

considers two labels for each sample: the domain name of the page and the resource path, under

that domain, at which the page is located. Then a fully correct labeling of a trace would consist of

the domain and the resource path, while a partially correct labeling would consist of either the

domain or the resource path. In our experiments, however, we explore a more complex space of

possible labels: we treat each unique prefix of a URL in the data as a possible label (see

Section 4.5.3). An important aspect of partial information models is that we define the expected

2This assumption may be reasonable when the grouping takes effect only in one of the two classes of a binary classifi-
cation problem, as in anomaly detection: in such cases, the shared characteristic is that each of the grouped sub-classes
is individually distinguishable from the other class. This is the situation when N = 1: the implicit assumption is that
the single website of-interest is distinguishable from every other website.

83

output as zero or more labels: this definition makes the partial information models inherently

“open-world” in that the set of possible page labels need not be fully defined a priori (in which

case the classifier can simply return an empty set of labels to indicate that the trace does not

represent any known labels).

4.4 Approach

The key hypotheses underlying our approach are: 1) assigning multiple labels (namely,

domain and path components) to each connection enables finer-grained and more accurate

classification than prior efforts; and 2) the performance aspects—both in terms of accuracy and

scalability—and underlying theory of the classification model employed must meet the

requirements of the problem at hand. We reiterate that, unlike previous work, we are not merely

suggesting that such a model for disclosing information about web pages visited through

encrypted channels is a threat to user privacy; instead, we are explicitly using this tactic to

provide network operators with additional information which would otherwise be unavailable.

It is our belief that such an approach provides a reasonable balance between preserving user

privacy and informing network monitoring systems. In what follows, we describe our approach

and the reasoning behind our design decisions.

4.4.1 Classification Scheme: Multi-label

A primary contribution of this work is the application of a multi-class classification scheme in

the context of classifying encrypted web traffic. In a multi-label scheme, each example is assigned

a set of labels and the objective is to predict the correct set of labels for each new example.

Multi-label classification should not be confused with multi-class classification, the paradigm

employed by previous work, where each example is assigned a single label from a set of class

labels and the objective is to predict the single correct class label for each new example. While

multi-label classification is not a new concept, the application to identifying encrypted web traffic

is novel and enables far more interesting and in-depth analyses than in previous work.

One such type of analysis can be seen in cases where multiple websites use the same design

template, and therefore have similar feature representations (e.g., packet size sequences). For the

moment, we will use subdomains as our labels (we return to this scenario briefly in Section 4.5.6).

Consider two departmental websites belonging to the same university (e.g., cs.example.edu and

84

math.example.edu) which use the same template. Applying the traditional classification approach

of previous work to this new scenario would imply the creation of a distinct class for each of the

two subdomains. If the two classes are separable, then the traditional approach may well be able

to accurately classify examples according to which subdomain was visited; if not separable, then

many examples will be misclassified. In both cases, however, the traditional approach misses an

important fact by treating these classes as distinct: both websites belong to example.edu. Our

multi-label approach mitigates this concern: by including a third class corresponding to

example.edu, we may be able to extract the additional information that would otherwise have

been missed.

Furthermore, the multi-label approach enables us to garner information about pages for

which we have no specific training data. In the university scenario, suppose an example is

encountered for bio.example.edu. While we have no specific class for this subdomain—there were

no examples of such in the training data—we may still be able to infer that the primary domain is

example.edu. The same logic applies to the paths which, combined with domains, make up URLs.

4.4.2 Classifier Model: Random Forest

Previous work has primarily used either SVM or naïve Bayes (NB) classifiers. Unfortunately,

both SVM and NB classifiers suffer from problems which limit their usefulness for tasks of the

scale and complexity we face.

Support Vector Machine Classifiers

In particular, support vector machine (SVM) classifiers are notoriously difficult to parallelize,

not well-suited to online formulations, and require numerous non-trivial design decisions

(including choosing an appropriate kernel function along with its parameters) before use.

Additionally, many of the SVM classifiers used in previous work employ an edit distance as the

kernel function [21, 152]. In general, such an approach requires the computation of pair-wise

distances between each pair of sequences, i.e., each trace. Each pairwise computation requires

O(mn) time (for m and n the lengths of the sequences). In our analyses, the lengths of the packet

size sequences can extend into the thousands. The computational burden of N2 such calculations

(where N is the number of examples) is simply too much for any realistic scenario; in fact, the

85

running time of these algorithms in our experiments has been excessive enough to prevent timely

completion of even small-scale, offline experiments.

Prior work [113] has also explored using SVMs with the traditional feature-vector

representation of data. A well-known concern in such cases, however, is that the feature values

be scaled appropriately [66]. The primary reason for normalization of features is that SVMs are

not invariant to scale in the input space, i.e., the objective function at the heart of an SVM

classifier will more heavily weight features with higher mean values (thereby affecting the

optimal decision boundary) [66, 137]. The question of feature normalization is of particular

concern for many of the features proposed in previous work, since the scales on which the feature

values are naturally distributed vary considerably. Consider the use of the total number of bytes

transmitted as one feature and the number of packets of size 52 as another: by definition, these

two features differ by a factor of 52 at the very least. However, to our knowledge, the issue of

per-feature normalization has not been specifically addressed in prior work in this area. This

oversight has serious practical implications, and so we return to the issue in the presentation of

our results (Section 4.5.5).

Naïve Bayes Classifiers

While naïve Bayes (NB) classifiers are well suited both for parallelization and online tasks,

these classifiers suffer from a different, though no less damning, set of drawbacks. In particular,

NB classifiers are biased toward classes with more training examples [126]. Secondly, the NB

paradigm achieves high classification accuracy and its parallelization ability through assuming

that the features used are independent; in fact, NB classifiers are biased toward those classes which

most violate this independence assumption. Since the features previously used in our

context—packet size, direction, and timing—are hardly independent, this latter point may be a

significant issue in practice.

Additionally, there is an informal argument to be made in favor of using random forests

instead of NB classifiers, based on one of underlying assumptions made in the NB model. The

NB classifier, like many classification algorithms, is based on modeling the conditional

distribution p(C|F1, . . . , Fn), where C is a random variable representing the classes and the Fi

(for 0 < i < n) are the feature variables. Classification is a matter of finding the class which

86

maximizes the conditional given the values of the feature variables for a particular example.

Calculating the conditional directly is generally computationally infeasible; NB is one of

numerous methods for estimating this conditional which have been proposed. By applying

Bayes’s Theorem and assuming conditional independence between features (given the class), one

can show that the conditional probability has the property p(C|F1, . . . , Fn) ∝ p(C)
∏n

i=1 p(Fi|C),

which enables the conditional to be maximized in a computationally efficient way. Together, the

application of Bayes’ theorem and the assumption of conditional independence are the source of

the name “naïve Bayes” (“naïve ” referring to the independence assumption).

As discussed in Section 4.2, previous work has chosen scenarios in which the classes are

relatively distinct (e.g., the front pages of google.com, microsoft.com, and yahoo.com). In this work,

we have chosen to concentrate on scenarios in which examples from different classes may be very

similar (e.g., Wikipedia pages for different topics). In the NB classifier, the individual

conditionals p(Fi|C) for each feature variable are generally assumed to have Gaussian

distributions (for continuous data), as in Dyer et al. [43] and Liberatore and Levine [88], or

multinomial distributions (for discrete data), as in Herrmann, Wendolsky, and Federrath [63].

When classes are distinct, this assumption poses no problem. However, when classes are similar

(consider, e.g., different Wikipedia topics), these conditionals may easily overlap, potentially

leading to a significant number of errors. The RF model does not assume any particular

distribution for each feature variable, and therefore does not suffer from the same problem.

Random Forests

To mitigate these concerns, we turn to a different classification algorithm: random forests. A

random forest (RF) is a collection, or ensemble, of decision trees. When classifying a new example,

each decision tree (DT) assigns the example to a single class; the output of the RF is the mode of

the outputs of the DTs [19].

Training a decision tree is an example of recursive partitioning. The tree starts with a root node

to which is assigned the full set of training examples. This set is ‘split’ into two subsets based on

a simple test (such as a threshold) of one particular feature. The feature used is chosen according

to a criterion (commonly information gain [123] or Gini impurity [19]) which measures the ability of

each feature to separate the node’s examples into relatively homogeneous (in terms of label)

87

subsets. Each subset forms the training set for a descendant node of the root note. This splitting

is performed recursively for each node in the tree, stopping when the example sets for individual

nodes are completely homogeneous, i.e., each leaf node has examples which all belong to a single

class. The algorithm for training a decision tree for multi-label classification is the same, except

that the splitting criterion used is averaged over the set of labels.

Training a RF classifier is a matter of training the individual decision trees, with a couple

additional twists: 1) each tree is assigned a different training set; and 2) each node is assigned a

randomly selected subset of features. If we have N examples in the training set, and given a value

m << M , where M is the number of input variables (i.e., features), each decision tree is formed

as follows:

• use a bootstrap sample from the full training set (i.e., sample N examples with replacement)

for training

• for each node of the tree, choose m variables (features) at random from the set of input

features; determine the split using this subset of features

The set of decision trees resulting from repeating this process is collectively the random forest.

Suitability for Our Approach

The RF algorithm thus has a number of nice features which are important in our context:

• inherent parallelizability: each (sub-)tree can be evaluated independently

• native multi-class classification (i.e., without binary classifier aggregation techniques like

the one-vs-all or one-vs-one approaches generally used with, e.g., SVMs)

• adaptation to multi-label classification at the classifier level [2], i.e., without problem

transformation (Section 4.4.1)

• availability of demonstrably effective on-line formulation, i.e., one which is designed to be

iteratively updated over time [129]

88

4.4.3 Abstention and Thresholding

Given that our target deployment scenario is one in which we cannot model all possible

labels, due in part to the infeasible amounts of training data and compute power which would be

required to model the whole of the Internet, a method for identifying samples which do not

match our models is important. With such a method, we can effectively refrain from classifying

such an sample rather than simply assigning the most likely label (even if the most likely label is

not significantly more likely than any other) as would otherwise be the case. Such a procedure,

often referred to as abstaining classification, can significantly reduce error rates when classifying

samples which do not match any of the labels in the training data.

Abstaining classification methods have previously been employed in the context of website

fingerprinting. In particular, Juárez et al. [73] utilized a thresholding mechanism, similar to that

we propose in Section 4.4.3, in order to combat the issue of false positives (FPs) and a low BDR in

their work. Similarly, Wang et al. [151] modified the standard k-NN classifier methodology to

abstain in cases where not all k neighbors agreed on which label to assign.

With respect to abstention, however, the multi-label paradigm again provides advantages

over the multi-class paradigm employed by previous work. By it’s very nature, a multi-label

classifier is designed to assign to each sample not a single label but a (possibly empty) set of

labels. In other words, a multi-label classifier can assign zero labels to a sample by

definition—abstention is gained for free.

That said, for scenarios such as ours, in which many labels are over-represented in the

training data relative to the test data (and the real world), some adjustment is required. To see

why, consider a (multi-label) classification algorithm A which, when applied to a training data

set T , produces an estimator PA[w | x; T] of the conditional probability P[w | x] that sample x has

label w. The classifier then assigns w to x if and only if PA[w | x; T] > 1
2 , i.e., if and only if the

likelihood of x having label w is greater than random chance. However, for most common

learning algorithms, if the label w is over-represented in T , then PA[w | x; T] will over-estimate

P[w | x]. One could correct for this bias by incorporating the prior probability of w either during

classification or by adjusting the estimator post-classification. However, estimating priors for all

the labels to be modeled is likely to be difficult and error prone. For this reason, we instead turn

89

to a simple threshold optimization technique, which our experiments indicate is sufficient to

achieve good classification performance (Section 4.5.5).

Post-Classification Thresholding

To reduce false positive rates, we employ a simple thresholding technique to discard any

labels assigned with low likelihoods. A thresholding or like mechanism is particularly important

in our experiments, where the classification models themselves are trained without reference to

any samples with labels which are outside the interest set. We specifically exclude these labels

from the training data in order to: 1) allow tuning of the false positive and false negative rates

without relearning the models; and 2) reduce the amount of data which the classification

algorithms must process.

This procedure is similar to the Classify-Verify [138] technique employed by Juárez et al. [73].

To determine a threshold for verification over n classes, Classify-Verify trains n multi-class

classifiers (with n− 1 classes each). For each training example, two closed-world predictions are

made: one using a classifier trained with the example’s class (in-set) and one without (not-in-set).

Two confusion matrices (one in-set and one out-of-set) are tabulated across all the training

examples and these matrices combined in an average weighted by the expected proportion of

in-set examples. The threshold is then found by optimizing with respect to the Fβ score

calculated from this aggregate confusion matrix. However, Classify-Verify is designed for

small-scale multi-class classification. Training an additional classifier for each class (label) does is

prohibitively expensive in scenarios, such as ours, with a large number of classes (labels).

Instead, we form a threshold training set by withholding from the training of the classifier a

number of examples for each label to be modeled. To this set we add examples of other labels

which are not represented in the training data. The trained classifier then assigns a set of

likelihoods (one for each modeled label) to each example in the threshold training set. The

optimal threshold is then the value which, when used as a cut-off to determine whether each

particular label is predicted or withheld, maximizes some accuracy measure (e.g., Fβ) across the

examples in the threshold training set.

Formally, for a set of examples indexed by i, let xi ∈ X denote the feature vector. Each

classifier estimates the likelihood of a label w given an example (i.e., P[W = w | X = xi]). For each

90

example i, we define the set of predicted labels (given some threshold value t) as:

Zi(t) = {w ∈ W | P[W = w | X = xi] ≥ t}

In other words, a label w is assigned to example i if and only if the likelihood of w given the

feature values is greater than or equal to the threshold value t.

The threshold value t can be set manually or determined automatically by optimizing with

respect to an accuracy measure or, equivalently, a loss function. For the latter approach, let

Yi ⊆ W denote the set of ground-truth labels for example i and Y the vector of all such sets for the

given examples (i.e., Y = ⟨Y0,Y1, . . .⟩). Similarly, let Z(t) denote the vector of predicted label sets

for all examples with respect to threshold t, i.e., Z(t) = ⟨Z0(t),Z1(t), . . .⟩. Then the optimal

threshold for classification with respect to a loss function λ(Y ,Z) (where lower values indicate

less costly classification mistakes) is given by the expression:

arg min
t

λ(Y ,Z(t))

Note that the same procedure can be used to determine an optimal threshold separately for each

label, rather than globally.

Validation and Threshold Selection

We set the threshold value t as above using a separate validation step in which we inject

examples of labels on which the classifier has not been trained. Specifically, for each fold in each

experiment, a threshold training set is held-back from the normal training procedure. This set,

denoted Rr, consists of Rr examples each of Nh labels on which the classifier has not been

trained. The classifier then assigns predictions to each example in both the original training set Tr

and in the threshold training set Rr. An optimal value of t is determined as described above

using the union Tr ∪Rr.

4.4.4 Hyper-parameter Optimization

Nearly all supervised learning algorithms rely on hyper-parameters, such as the number of

trees in a random forest, for which values must be set prior to training the final model. Often, the

values used for these parameters are determined by a best guess at the optimal value or through

ad-hoc exploration of the parameter space via experimentation. In this work, we employ a

91

disciplined search methodology which combines the standard grid search with an extension

known as randomized search [10]. By optimizing the set of hyper-parameter values within each

experiment in a disciplined manner, we aim to provide a fair and reproducible comparison

between algorithms.

A standard grid search takes as input a set of possible values for each hyper-parameter. An

experimental trial is performed for each combination of hyper-parameter values; an accuracy

value is calculated for each trial, and the highest accuracy value determines the “optimal” values

for the hyper-parameters.

Unfortunately, this results in a number of trials equal to the product of the cardinalities of the

sets of possible values for the hyper-parameters. Performing this many trials can easily be

prohibitively expensive when a model has more than one or two hyper-parameters and/or a

significant number of possible values for one or more hyper-parameters. For instance, for SVM

learning with a radial basis function (RBF) kernel, a common suggestion for the regularization

penalty parameter C and RBF kernel parameter γ is to use sets of logarithmically-spaced values

such as C ∈ C = {2−5, 2−3, . . . , 215} and γ ∈ Γ = {2−15, 2−13, . . . , 23} (see, e.g., [66]). A grid search

over just these two hyper-parameter value sets would require 110 trials (|Γ| = 10, |C| = 11).

Another issue with the standard grid search is that the points in the hyper-parameter space

defined by the combinations of possible values are spaced on a regular grid. For

hyper-parameters defined over continuous ranges (or over discrete ranges of significant

cardinality), using a small set of fixed values may easily miss optima located between points on

the grid [10, Figure 1]. Furthermore, a user-chosen subset of hyper-parameter values for a

continuous range can result in effectively arbitrary values, or, at best, values based on

rules-of-thumb (consider the example of the SVM parameters, above).

Randomized search is designed to address these and other shortcomings of grid search and

manual optimization. In a randomized search, the combination of values for a particular trial is

created by drawing values independently at random according to distributions defined a priori

for each hyper-parameter. Thus, the number of trials in the search can also be specified a priori,

allowing the computation budget to be specified in terms of the number of trials rather than by

the product of the sets of parameter values.

92

4.4.5 Epoch Validation

Robust methods for estimating the generalization error of a classifier, such as k-fold

cross-validation, are important for preventing over-fitting and ensuring the repeatability and

ecological validity of experiments. This is particularly true when the amount of data available,

relative to the size and complexity of the problem space, is limited. We observe, however, that

our problem scenario imposes a linear time dependency between samples, i.e., the content

located at a particular URL may change over time. In modeling a URL, we must limit our training

data to that collected at a point in time prior to the data used to test our models.

Unfortunately, such a linear dependency makes standard k-fold cross-validation

inappropriate. In k-fold cross-validation, k trials are performed, each using a different subset of

the data as the test set. Specifically, the full data set T is partitioned into k disjoint subsets

(“folds”) Ti (for i ∈ {1, . . . , k}). For trial i, fold Ti is used as the test data while the remainder of

the data (T − Ti) is used for the training set. However, since each fold is used to test models

trained on data from every other fold, experiments formed using this method necessarily involve

testing using data collected before at least some of the data used to train the models was collected.

Our solution, which we call epoch validation, adapts a technique known as forecast evaluation

with a rolling origin from time-series analysis for use in estimating the generalization error of

classifiers when such a dependency exists between samples. First, we partition the set of

examples T into p disjoint subsets (“epochs”) Ti such that a sample in Ti precedes a sample in Tj

if and only if i < j (for all i, j ∈ {1, . . . , p}). Then we perform k trials in which, as with k-fold

cross-validation, each trial uses a different subset as the test set. Specifically, for trial i, we use

epoch Tp−k+i as the test set while the preceding p− k epochs (i.e.,
∪p−k+i

j=i Tj−1) form the training

set.

4.5 Evaluation

4.5.1 Data Collection

As mentioned in Section 4.2, previous work in this area has focused on datasets limited to

distinct pages from different domains, e.g., the homepages of distinct websites. In this work, we

address this shortcoming by collecting a new dataset.

93

URLs

In order to collect a reasonably realistic set of traces which includes both multiple domains as

well as multiple distinct URLs per domain, we extracted URLs from HTTP traffic generated by

real users. As part of a different study, and under long-standing memorandums of understanding

with a major university, HTTP headers were collected from a university department’s network.

Collection began at 2pm on a Tuesday and ended at 9pm the following day (a period of 31 hours);

the traffic examined consisted of 141 million packets across more than 5 million flows.

From these records, we extracted the requested resource path, hostname, and returned

content-type for each HTTP request-response pair, resulting in 2.2 million distinct URLs. After

removing URLs corresponding to content-types other than text/html, 65,000 unique URLs

remained across 3,768 domains. For reasons as follows, we then applied various filters to the list

of URLs. First, to avoid excessive bias toward locally-oriented content, we applied Alexa’s top

1-million domain list [4] as a white-list. Second, in order to abide by our university’s acceptable

use policy (which forbids knowingly downloading adult content) we applied a well-known

blacklist [15]. Additional filters removed URLs with extensions corresponding to non-HTML

content (e.g., .exe and .tar.gz) and URLs with invalid characters, non-ASCII encodings,

non-standard delimiter schemes, or path components in excess of 255 characters. After applying

these filters, 30,243 unique URLs across 2,225 domains remained, representing 215,000 distinct

site-visits.

To reduce this list to a manageable size, we restricted our attention to those subdomains with

at least 10 unique URLs remaining in the set, then selected the top 10 most-visited URLs for the

top subdomain of each remaining domain, leaving 900 URLs across 90 distinct domains. This

final list of URLs contains many unsurprising domains, including wikipedia.org, google.com,

craigslist.org, and various ad networks, as well as domains oriented toward computer scientists

(e.g., stackoverflow.com, sourceforge.net) and those of broader interest (e.g., espn.go.com,

nbcnews.com, instagram.com).

94

Control (SSH)

Manager

Simulated Client
(Tunnel Model)

Simulated Client
(HTTPS Model)

SSH Server
(’tunnel’)

Firefox Browser

URLS

SOCKS5Virtual Machine
(Ubuntu 12.04)

Virtual Network

tcpdump port 3000
tcpdump port 22
tcpdump port 443,53

I
n
t
e
r
n
e
t

SOCKS5SSH Tunnel

Figure 4.2: Collection process overview.

Scripted Retrievals

To gather the necessary data for our experiments, we performed a series of scripted retrievals.

These retrievals were orchestrated by a collection of shell and Python scripts. At a high level, the

primary script reads in the list of URLs, retrieves each URL in sequence, and repeats. To ‘retrieve’

each URL, the script first sets up an encrypted tunnel, if necessary. After waiting for the

encrypted connection to initialize, the script begins recording network traffic. A browser is then

launched and programmatically directed to the given URL. Once the page has loaded (or a

timeout of 30s is reached), the browser takes a screenshot, then closes. Next the recording

process(es) are stopped; finally, the encrypted tunnel is torn down. This process is then repeated

for the next URL. A detailed description of the process is given in Section B.1.

To perform the retrievals, we created a small, isolated network (Figure 4.2) consisting of four

virtual machines: a ‘manager’, two ‘clients’, and a ‘server’. The ‘manager’ machine hosted a

shared drive and provided the sole entry point into the network. One client virtual machine

(VM) performed scripted retrievals over HTTPS connections and the other over ‘dynamic’ SSH

tunnels (i.e., in the tunnel model). The ‘server’ VM acted as the SSH server for the second client.

95

All of the VMs were configured with Ubuntu 12.04LTS Server and ran on the same physical

machine (with 12 cores and 64GB RAM, running VMware ESX 5.0).

Each retrieval iteration of 900 URLs took approximately 3.5 hours to complete. Between 2/13

and 2/14, we attempted to collect 20 instances of each URL. 884 URLs were successfully retrieved

at least once; 785 were successfully retrieved all 20 times.

4.5.2 Evaluation Criteria

Multi-class Metrics

Previous work has almost exclusively used accuracy (defined as the number of correctly

labeled examples divided by the total number of examples) as the metric for classification

performance. In their experiments, the classes are balanced (i.e., each website is represented by

the same number of traces), and so accuracy is a perfectly valid metric. For the sake of

comparison, we follow the same philosophy in our multi-class experiments.

However, we remind the reader that when classes are unbalanced (i.e., the number of

instances for each class varies greatly), the use of more sophisticated metrics becomes necessary.

This would be the case in practice, since relatively few websites are responsible for the majority of

network traffic. More importantly for the present work, the multi-label scheme produces an

unbalanced distribution of labels (domains are represented many more times than individual

pages, as each instance of a particular page is also an instance of its domain), necessitating the

use of metrics designed to account for this non-uniformity. We describe the relevant multi-class

metrics now both to prepare the reader for the multi-label metrics discussed next and to stress

the importance of such real-world considerations.

To illustrate the need for different metrics when classes are unbalanced, consider a binary

classification task where the majority class consists of 8 testing examples and the minority only 2

testing examples. Then a classifier which simply outputs the majority label for every example

would have an accuracy of 80%, obviously misrepresenting the ability of the classifier. If we

consider the same example on a per-class basis, the accuracy for the majority class would be

100% but the accuracy for the minority class would be 0%, highlighting the discrepancy.

Therefore, when class sizes are unbalanced, we turn to per-class precision and recall. Precision

measures how often examples labeled as the given class actually belong to that class

96

(disregarding the prevalence of the class), while recall measures how often examples from the

given class are correctly labeled (disregarding how often examples from other classes are

mislabeled as the given class). Precision for a class can be calculated as tp/(tp+fp), where tp refers to

the number of true positives (those examples from the class which were labeled correctly) and fp

refers to false positives (those examples incorrectly labeled as belonging to the class). Recall is

calculated as tp/(tp+fn), where fn refers to false negatives (those examples belonging to the class

which are incorrectly labeled). In the example above, the majority class would have a precision of

80% and a recall of 100%, while recall for the minority class would be 0% (precision for the

minority class is undefined, as the classifier never labels examples as belonging to the minority

class). The harmonic mean of precision and recall, known as the F -score, is often used to provide

a single-value summary.

A second consideration, and one that is particularly important in practice, is the effects of

false positives (e.g., labeling a user visit as to a censored website when the site is, in fact, benign)

and false negatives (e.g., labeling a user visit to a malicious website as benign). Perry [120]’s

recent critique of previous work emphasized this issue, which is exacerbated by, e.g., the massive

discrepancy between the number of visits to benign websites versus that to censored or malicious

websites. When the ratio between these quantities is high, as it is in practice, the accuracy metric

is insufficient, as it gives little indication as to the rate of incidence of false-positives (and

false-negatives). In the example above, the classifier achieves an accuracy rate of 80% despite

never accurately labeling an example belonging to the minority class, further demonstrating the

need for more sophisticated metrics.

Multi-label Metrics

Standard evaluation measures, such as precision and recall or accuracy, must be reconsidered

in the multi-label case: since each prediction is a set of labels, we must account for partially

correct predictions where the intersection of the predicted label set and the true label set is

non-empty but the two sets are not equal. This is demonstrated in Table 4.1, which gives values

for the multi-label metrics we consider when applied to a simple example. Multi-label

classification accuracy measures can generally be grouped into two types, example-based and

label-based [96].

97

Example-based measures examine the differences between predicted and true label sets

averaged on a per-example basis. Similar considerations as for the multi-class case apply, however,

necessitating multi-label analogs to the metrics discussed above. We define the precision for a

single example as the ratio of the number of correct labels assigned by the classifier to the total

number of labels assigned by the classifier (equivalent to the standard definition of precision as

tp/(tp+fp)). Similarly, we define recall for an example as the ratio of the number of correct labels

assigned by the classifier to the true number of labels for the example (equivalent to tp/(tp+fn)).

These metrics are calculated for each example (Table 4.1) then averaged over the total number of

examples to provide the per-example precision and recall.

As in the multi-class case, per-label metrics provide a potentially more accurate view of

classification performance when the distribution of labels is non-uniform (per-example metrics

are biased toward labels with more instances). To mitigate this bias, we turn to multi-label

analogs of measures (i.e., precision, recall, and F -score) used in the multi-class case. For a given

label, we define a true positive as an example whose true and predicted label sets both include the

label. A false positive is an example whose true label set does not included the label but whose

predicted label set does include the label; similarly, a false negative is an example whose true label

set does include the label but whose predicted label set does not. Then the standard definitions

in terms of these counts are used to define the precision and recall for a given label.

In terms of aggregate per-label measures, we consider both micro− and macro− averages of

the measures described above. For macro-averaging, the value of a measure is calculated for each

label and averaged over the total number of labels. For micro-averaging, the counts (i.e., of true

positives, etc.) are summed over all labels and the totals used to calculate the value of each

measure. The former gives equal weight to each label in the aggregation, whereas the latter

weights the more numerous labels more heavily.

4.5.3 Experimental Setup

World Models Our first experiments are under the closed-world model for comparison with

prior work; the remaining experiments are performed under a partial information model

(Section 4.3.3). In the latter case, each experiment defines a set of of-interest URLs (or domains)

and a set of of-no-interest URLs (or domains), as in the open-world model. We define the space of

98

Label TP FP FN Precision Recall

foo 1 1/1 = 1.0 1/1 = 1.0
bar 1 0/1 = 0.0
baz 1 0/1 = 0.0
qux 1 0/1 = 0.0

Per-example 1 1 2 1/2 = 0.5 1/3 = 0.3
Per-label (micro) 1/2 = 0.5 1/3 = 0.3
Per-label (macro) 1/4 = 0.25 1/4 = 0.25

Table 4.1: Values for the multi-label metrics applied to a single instance for which the true label set
is {foo, bar, baz} and the predicted label set is {foo, qux}.

labels as comprising each unique prefix of a URL in the of-interest labels; the task for these

experiments is to predict zero or more of these labels for each test sample. The inputs for the

classifiers are labeled training data for each of-interest URL, and, where mentioned, labeled

training data for a set of of-no-interest URLs. Classification performance is then evaluated using a

separate set of examples of both of-interest and of-no-interest URLs.

Datasets We use three datasets in our analysis. The first two, due to Liberatore and Levine [88]

and Herrmann, Wendolsky, and Federrath [63], were generously made available by their owners.

The third is our newly-collected dataset (see Section 4.5.1).

We refer to the dataset of Liberatore and Levine [88] as LL. The domain names used for LL

were derived from DNS traffic within the authors’ department. The most-visited 2,000 names

were selected for retrieval, and the authors collected a total of 240,000 samples over two months.

The authors used Firefox 1.5 with OpenSSH 4.2p1 to perform the retrievals. As SOCKS v5

support was added in OpenSSH 3.73, it is possible that this data includes DNS traffic; however,

the authors make no mention of the settings change required to force Firefox 1.5 to use the proxy

for DNS traffic (see Section 4.3.2).

Our second dataset from previous work (denoted HWF) consists of the OpenSSH traces

collected by Herrmann, Wendolsky, and Federrath [63]. The 775 domain names used by

Herrmann, Wendolsky, and Federrath were derived from requests to a “medium-range proxy

server used by approximately 50 schools”. Over a period of two months, the authors collected

3http://www.openssh.com/txt/release-3.7

99

http://www.openssh.com/txt/release-3.7

approximately 132,000 instances of OpenSSH retrievals (along with retrievals under other PETs,

including OpenVPN and Tor); the authors performed the retrievals using Firefox 2.0 and

“adjusted the proxy settings to relay all web traffic”. However, no specifics regarding DNS traffic

are included in [63]; furthermore, [63] refers to the collected traces as “HTTP traffic”.

Our first set of experiments (Section 4.5.5) makes use of the LL and HWF datasets. Our

remaining experiments are performed using only our own datasets as the datasets from previous

work include only a single URL per domain.

Learning Algorithms In the following sections, we report the results of our experiments with

the following classifiers (see Section 4.2.1): naïve Bayes (NB), multinomial naïve Bayes (MNB),

support vector machine (SVM) with the radial basis function (RBF) kernel (denoted simply SVM),

k-nearest neighbors (k-NN) with the Manhattan distance (denoted k-NN), k-nearest neighbors

(k-NN) with Wang et al. [151]’s weight learning (denoted k-NN-WL), decision tree (DT), and

random forest (RF). Note that our use of the RF classifier is novel, and that results for the k-NN

classifier without weight learning have not, to our knowledge, been reported in previous work.In

initial experiments, we also evaluated the Jaccard index classifier; we do not report those results

due to uniformly poor performance (in terms of classification accuracy). Similarly, we do not

report results of our preliminary experiments with the edit-distance–based classifiers (see

Section 4.2.1) due to exceedingly long runtimes (orders of magnitude longer than the other

classifiers) and poor performance.

Multi-label Classification As previously discussed (Section 4.4.1), most learning algorithms

do not natively support the notion of multi-label classification. Specifically, the SVM, NB, and

multinomial naïve Bayes (MNB) classifiers do not natively support multi-label classification. We

employ a problem transform approach known as the binary relevance (BR) method to adapt these

classifiers to the multi-label paradigm. In this approach, a multi-label classifier is built by training

a binary classifier for each label which attempts to determine whether that label is present or

absent for a given sample. Each binary classifier is trained using all the samples in the training

data with the given label as the positive class and the remainder of the samples as the negative

class. We implement this approach using scikit-learn’s one-vs-rest (OvR) meta-classifier.

100

Specifically, the implementations of the RF, DT, and k-NN algorithms in the machine learning

toolkit we employ (scikit-learn) support multi-label classification [118] As our implementation

of Wang et al. [151]’s k-nearest neighbors with weight learning (k-NN-WL) classifier is based

upon scikit-learn’s k-NN implementation, the k-NN-WL classifier also natively supports

multi-label.

Feature Sets We evaluate each classifier with two of the more effective feature sets from prior

work (see Section 4.2.2): PacketSizeDistribution and VNG++.

Validation and Data Selection Each experiment (i.e., data point) consists of at least 5 trials with

training and test data selected according to our epoch validation methodology. Where noted, an

experiment may instead consist of n sub-experiments, each with a different set of URLs or

domains and each consisting of 5 trials with training and test data selected according to our

epoch validation methodology (for a total of 5n trials). Without the thresholding mechanism, 16

samples (per class, for each trial) are used for training and 4 for evaluation.

The selection methodology becomes complicated when thresholding and classes of-no-interest

are included (see Figure 4.3). First, the data for each trial is selected using (stratified) epoch

validation. Second, the classes are separated into of-interest and of-no-interest sets. Third, the data

for each class is split into training, threshold training, and testing sets in linear-time order.

Finally, the set of of-no-interest classes is split into (threshold) training and testing subsets. For

experiments with thresholding, or when a comparison is made to an experiment with

thresholding, 12 samples (per class, for each trial) are used for training, 4 for the threshold search,

and 4 for evaluation.

Hyper-parameter Optimization Since classification performance can vary wildly with

hyper-parameter values, each of our experiments incorporates a search for “optimal” values for

the hyper-parameters of the classifiers in use. Our search methodology (Section 4.4.4) uses a

predefined set of values (or distribution) for each hyper-parameter (given in Table 4.2).

101

Examples

Cl
as

se
s

O
f I

nt
er

es
t

O
f N

o
In

te
re

st

Training Testing

Testing (ONI)

Threshold
Training

(Validation)

Threshold
Training

(ONI)

Figure 4.3: Data selection for experiments with thresholding and classes of-no-interest

102

Model(s) Hyper-parameter Value(s) Description

RF, DT criterion Gini impurity, information gain Criterion used in determining whether and how to
split the samples at each node.

RF, DT max_features F,
√
F , log2 F Number of features examined at each node (where F

is the number of features given in the data).
RF, DT min_samples_split 2, 4 Minimum number of samples required in prospective

parent to split a node.
RF, DT min_samples_leaf 1, 2, 4 Minimum number of samples required in each

prospective leaf to split a node.
DT splitter best, random Strategy used to choose the split at each node.

RF num_trees 8, 16, 32 Number of trees in the forest.

MNB α 0.00, 0.01, 0.10, 1.00 Smoothing parameter.

MNB learn_priors true, false Whether or not to learn and use per-class priors.

k-NN, k-NN-WL k 1, 3, 5 Number of nearest neighbors to use in classification.

k-NN-WL kreco k Number of nearest neighbors to use in weight learning.

k-NN-WL num_rounds 1, 5 Number of rounds of weight learning to perform (one
round corresponds to iterating through each sample
once; note that this definition differs from that of Wang
et al. [151]).

k-NN metric manhattan, euclidean Distance metric.

SVM (RBF) C ∼ Exponential(λ = 0.01) Regularization penalty parameter.

SVM (RBF) γ ∼ Exponential(λ = 10) RBF kernel parameter.

SVM (RBF) class_weight weighted, unweighted Whether or not to weight the regularization parame-
ter C differently for each class (with weights inversely
proportional to class frequency).

Table 4.2: Hyper-parameters for the models used, along with the values explored for each, in our experiments.

103

4.5.4 Implementation

We are indebted to Dyer et al. [43] for releasing the analysis framework used in their work,

upon which we based our own. Our additions include new classifiers (the RF, k-NN, k-NN-WL,

DT and edit-distance–based SVMs), the multi-label scheme, epoch validation, hyper-parameter

optimization, and many other improvements totaling some 10,000 new lines of Python and Bash

code (not including the retrieval scripts themselves). Our implementation is available upon

request.

4.5.5 Results

In the analysis that follows, the term “classes” refers either to the set of distinct URLs or the

set of distinct domains for each trial—which should be clear from the context. Error bars, when

present, indicate the standard deviation of the presented metric’s value across all trials for the

given experiment.

For our multi-label experiments, the term “classes” refers to the set of distinct URLs used for

each trial. Note that the terms “class” and “label” are not interchangeable in this context: the

former refers to a URL, while the latter refers to a URL prefix.

Multi-class Comparison with Previous Work

Our first two experiments are equivalent to many performed in previous work (e.g., those of

Dyer et al. [43]), and provide an “apples-to-apples” comparison. In particular: the paradigm is

multi-class classification, the datasets are LL and HWF, and the metric used is accuracy.

Our results (Figure 4.4) are generally on-par with those observed in previous work [43]. In

particular, we achieve accuracies higher than 90% for most of the classifiers tested on the HWF

dataset and lower accuracy rates for the LL dataset.

One difference, however, does stand out: results for the NB classifier with both

PacketSizeDistribution and VNG++ on both the LL and HWF datasets are substantially lower than those

reported by Dyer et al. [43] (and Liberatore and Levine [88], to a lesser degree). We see two

possible explanations for this discrepancy: 1) our implementation uses the NB classifier from

scikit-learn, while Dyer et al. use that from Weka [57]; and 2) Dyer et al. perform no

cross-validation in their experiments (i.e., their single trial might have an abnormally high

104

10 40 80 150 300 600

Number of Classes

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

u
ra

cy

Packet Size Distribution

10 40 80 150 300 600

Number of Classes

VNG++

Classifier

kNN

DT

SVM

MNB

RF

kNN-WL

NB

(a) LL

10 40 80 150 300 600

Number of Classes

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

u
ra

cy

Packet Size Distribution

10 40 80 150 300 600

Number of Classes

VNG++

Classifier

kNN

DT

SVM

MNB

RF

kNN-WL

NB

(b) HWF

Figure 4.4: Multi-class classification applied to two datasets from previous work, LL (top) and HWF
(bottom), each with the PacketSizeDistribution feature set (left) and the VNG++ feature set (right). Re-
ported values are for the accuracy metric.

105

accuracy rate compared to the mean across multiple trials).

Another point of interest is that the accuracy for the SVM classifier is substantially lower with

the VNG++ feature set than with the PacketSizeDistribution feature set. We view this as aptly

demonstrating the feature scaling issue often encountered with SVM classifiers (previously

discussed in Section 4.4.2), as the VNG++ feature set includes BurstSizeDistribution, Time, and

NumBytes, each of which is on a different scale than the others.

A similar problem occurs when attempting to apply the MNB classifier in combination with

the VNG++ feature set (relative to PacketSizeDistribution). In particular, the assumption with the

MNB classifier is that element i of a feature vector is the probability or frequency with which a

particular event i occurs for the represented sample. Each class is then modeled as a multinomial

distribution. For instance, in the bag-of-words model for document classification, each element is

the number of occurrences of a particular word in the document being represented. The situation

with the PacketSizeDistribution feature set is analogous to the bag-of-words model (using a unique

packet size instead of a unique word for each position in the feature vector). However, the Time

and NumBytes elements of the VNG++ feature set invalidate this assumption, and the difference in

the achieved accuracy rates reflects this.

Multiple URLs per Domain Name

To illustrate the effects of including multiple pages per site in the data to be analyzed, we

performed a pair of multi-class experiments using our newly collected SSH model dataset

(described in Section 4.5.1) where the goal is to identify the domain to which a particular

retrieval corresponds. The difference between the two experiments is that for the first

experiment, each domain is represented (in both training and testing) using different instances of

the same URL; in the second experiment, each domain is represented using 10 distinct URLs. The

former experiment is the same scenario as has been used in the majority of previous work.

For these experiments, each reported value is the mean of 25 trials: each experiment (itself

consisting of 5 trials configured via epoch validation) is repeated 5 times with a different

randomly-selected subset of domains from our SSH dataset. We use this procedure to eliminate

any potential bias due to the particular subset of domains selected in any one experiment.

Our results (Figure 4.5 and Figure 4.6) clearly demonstrate the problem with considering only

106

10 20 40 60 80

Number of Classes

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

u
ra

cy

Domains (a single URL each)

10 20 40 60 80

Number of Classes

Domains (multiple URLs each)

Classifier

kNN

DT

SVM

MNB

RF

kNN-WL

NB

(a) PacketSizeDistribution

10 20 40 60 80

Number of Classes

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

u
ra

cy

Domains (a single URL each)

10 20 40 60 80

Number of Classes

Domains (multiple URLs each)

Classifier

kNN

DT

SVM

MNB

RF

kNN-WL

NB

(b) VNG++
Figure 4.5: Multi-class classification applied to data which includes only a single URL per domain
(left) vs data including multiple URLs per domain (right). Each is shown with the PacketSizeDistri-
bution feature set (top) and the VNG++ feature set (bottom). Reported values are for the accuracy
metric. See also Figure 4.6.

107

10 20 40 60 80

Number of Classes

0.5

0.4

0.3

0.2

0.1

0.0

0.1

0.2

0.3
A

cc
u
ra

cy
Packet Size Distribution

10 20 40 60 80

Number of Classes

VNG++

Classifier

kNN

DT

SVM

MNB

RF

kNN-WL

NB

Figure 4.6: Multi-class classification: difference in accuracy between multiple URLs per domain vs
a single URL per domain. See also Figure 4.5.

a single URL per domain. For both the PacketSizeDistribution and VNG++ feature sets, all but two

classifiers (k-NN and SVM) suffered a decrease in accuracy of between 5% and 50% across the

board. The highest-scoring classifier with each feature set (the RF in both cases) suffered

decreases in accuracy of between 8% and 16.5%. The k-NN and SVM classifiers with the

PacketSizeDistribution feature set suffered decreases similar to the others; however, with the VNG++

feature set, these two classifiers actually achieve higher accuracies in the

multiple-URLs-per-domain scenario. We hypothesize that the cause of these anomalies is that the

additional NumBytes feature in the VNG++ feature set provides extra discriminatory power between

domains compared to between individual URLs; if this is the case, however, it remains unclear

why the other classifiers suffered similar decreases as with the PacketSizeDistribution feature set.

Hyper-parameter Optimization We take this opportunity to comment on the effectiveness of

automated hyper-parameter optimization via randomized search. The results from the optimized

experiments (Figure 4.5) are, on the whole, quite similar to those from the unoptimized

experiments (not shown); however, some classifiers show clear benefits from the optimization

procedure (Figure 4.7).

In particular, the SVM classifier with the PacketSizeDistribution feature set and the k-NN-WL

classifier with the VNG++ feature set show marked improvements in the

108

10 20 40 60 80

Number of Classes

0.10

0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

A
cc

u
ra

cy

Domains (a single URL each)

10 20 40 60 80

Number of Classes

Domains (multiple URLs each)

Classifier

kNN

DT

SVM

MNB

RF

kNN-WL

NB

(a) PacketSizeDistribution

10 20 40 60 80

Number of Classes

0.10

0.05

0.00

0.05

0.10

0.15

0.20

0.25

A
cc

u
ra

cy

Domains (a single URL each)

10 20 40 60 80

Number of Classes

Domains (multiple URLs each)

Classifier

kNN

DT

SVM

MNB

RF

kNN-WL

NB

(b) VNG++

Figure 4.7: Difference in accuracy due to hyper-parameter optimization via randomized search
(multi-class; SSH model).

109

10 40 80 150 300 600

Number of Classes

0.0

0.2

0.4

0.6

0.8

1.0
P
e
r-

E
x
a
m

p
le

 F
0.

5
Packet Size Distribution

10 40 80 150 300 600

Number of Classes

VNG++

Classifier

kNN

DT

SVM (BR)

RF

kNN-WL

NB (BR)

MNB (BR)

Figure 4.8: Multi-label classification applied to our SSH dataset with PacketSizeDistribution feature set
(left) and the VNG++ feature set (right). Values shown are for the F0.5 score (averaged per-example).
Missing points indicate that the process exceeded our memory limit of 32GB. See also Figure B.1.

multiple-URLs-per-domain scenario. For the k-NN-WL classifier, the optimization procedure

identified the combination of k = 1 and num_rounds = 5 as optimal in 21 of the 25 trials with 80

domains (instead of k = 5 with num_rounds = 1, which we originally selected based on results

presented by Wang et al. [151]). For the SVM classifier, the optimization procedure identified

different values for each trial for the C and γ parameters since these parameters are drawn from

continuous distributions (see Section 4.4.4).3 The final SVM parameter (class_weight) seemed to

make little difference, with 13 trials weighted and 12 trials unweighted. Note that the NB classifier

shows no changes as there are no parameters to optimize.

Labeling Traces with URL Components

Our first multi-label experiments demonstrate the feasibility of labeling traces with URL

prefixes rather than attempting to each URL independently (as would be the naïve extension

from prior work).

Our results (Figure 4.8) show that the proposed multi-label paradigm is not only feasible, but

can be quite accurate when the proper classifiers are used. In particular, note that the classifiers

3For the trials with 80 domains, the means and standard deviations of the values identified as optimal in each trial are:
143.36 and 190.92, respectively, for C, and 0.0013 and 0.0012, respectively, for γ.

110

which natively support the multi-label paradigm (RF, DT, k-NN, and k-NN-WL) vastly

out-perform those for which the BR method was used. Furthermore, for the experiments with

more than 200 initial URLs, the SVM (BR) classifier vastly exceeded our memory limit (32GB). In

this case, the macro- and micro-averaged results are similar to the per-example values depicted in

Figure 4.8, and so we defer the presentation of those results to the appendix.

Abstaining from Classification

Our second set of multi-label experiments explore the benefits of abstaining from labeling an

example if the classifier’s confidence in it’s prediction is low. In particular, we employ our

abstention (Section 4.4.3) and threshold search (Section 4.4.3) mechanisms. For these

experiments, we allow test examples with label sets where the classification model has not been

trained on any of the labels. In other words, the label set for a test example may be completely

disjoint from the set of labels on which the classifiers have been trained. This is analogous to the

open-world scenario discussed in previous work (where URLs on which the classifier has not

been trained are used for testing).

Since our dataset consists of traces from multiple URLs per domain, we isolate the training

domains from those used for testing. Specifically, for each experiment, we select a set of domains

which are of-interest for the experiment and a larger set of domains which are of-no-interest. For

each such domain, we select one URL at random from our set of URLs for that domain to use for

the experiment.

For the of-interest domains, we first use our epoch validation approach to determine which

examples to use for training and testing for each trial. For each trial, we then set aside a portion of

the training set to use for threshold determination. For the of-no-interest domains, we have no

need of a training set because no models will be trained on examples from those domains.

However, we do set aside a subset of those domains to use for threshold determination. The

examples set aside for threshold determination (both of-interest and of-no-interest) are used neither

for training the classifier models nor as part of the test data on which our final results are

computed.

Due to the potential for bias in the selection of of-interest vs of-no-interest domains, each

reported value is the mean of 25 trials: each experiment (itself consisting of 5 trials configured as

111

above) is repeated 5 times with a different randomly-selected partitioning of the domains from

the SSH dataset.

Our results (Figure 4.9a) in this scenario clearly demonstrate the ability of our approach to

accurately label examples from domains of-interest and to ignore domains of-no-interest. This

experiment also demonstrates (Figure 4.9b) the improvements in classification performance

which our simple threshold-search mechanism (Section 4.4.3) delivers.

Summary of Findings

Our results also demonstrate several important lessons not only for the problem we examine

herein, but for any application of machine learning:

1. The classifiers for which the theory behind the classifier matches the problem at hand (RF,

DT, k-NN, and k-NN-WL; see Section 4.4.2) consistently exhibit the best classification

performance.

2. Our results indicate that choosing either feature set or classification algorithm in isolation

leads to suboptimal results (see, e.g., Section 4.5.5); in particular, the underlying

assumptions of classifiers should be considered before use in conjunction with a particular

feature set.

3. Different hyper-parameter values can yield significant differences in classification

performance (see Section 4.5.5), particularly when attempting to apply the same parameter

values to two different datasets.

We note that these lessons would not be news to the general machine learning community;

rather, these are issues which have been overlooked by previous work in this particular area of

research. In demonstrating the effects of these issues in this particular domain, we hope to

educate security-focused audiences as to these considerations and improve the standard of

practice for future work.

In addition to the general lessons described above, we can draw several conclusions from our

results which are specific to the problem at hand:

112

2 4 8 16 32 64

Number of Classes

0.0

0.2

0.4

0.6

0.8

1.0

P
e
r-

E
x
a
m

p
le

 F
0.

5

Packet Size Distribution

2 4 8 16 32 64

Number of Classes

VNG++

Classifier

kNN

DT

SVM (BR)

RF

kNN-WL

NB (BR)

MNB (BR)

(a) F0.5 score (averaged per-example).

2 4 8 16 32 64

Number of Classes

0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

P
e
r-

E
x
a
m

p
le

 F
0.

5

Packet Size Distribution

2 4 8 16 32 64

Number of Classes

VNG++

Classifier

kNN

DT

SVM (BR)

RF

kNN-WL

NB (BR)

MNB (BR)

(b) Improvement in F0.5 score (averaged per-example) with the threshold search.

Figure 4.9: Multi-label classification with abstention and threshold search for 8 domains of-interest
with a varying number (on the x-axis) of domains of-no-interest. The dataset used is our SSH dataset
with a single URL per domain and using the PacketSizeDistribution feature set (left) and the VNG++
feature set (right).

113

1. Assuming only a single URL per domain significantly overestimates the ability of a

classifier to distinguish between traces representing different URLs.

2. The multi-label paradigm enables accurate labeling of traces even under the assumption of

multiple URLs per domain.

3. When related URLs are included in the problem scope, significant partial information can

be inferred even from traces of previously unseen URLs.

4. Incorporating an abstention mechanism can significantly decrease false positive rates.

In short, our findings validate our proposed paradigm and classifier combination in scenarios

more complex and realistic than those considered in previous work.

4.5.6 Limitations and Future Work

Unfortunately, no study is perfect, and questions remain related to the internal validity of our

study and those of previous work. These include a possible (in)sufficiency in the number of

samples evaluated: the sample sizes in our experiments, which are comparable to those used in

prior work, may not be sufficient to statistically validate whether over-fitting or under-fitting has

occurred. It is difficult to determine whether enough examples are included to rightfully draw

any strong general conclusions. One issue which we have not so far considered in this work is

that of defenses. Preventing the type of analysis we propose in this work is an important goal

given the unfortunate realities of internet monitoring and censorship. We remind the reader that

our aim is not to prevent users from defending themselves against such monitoring; rather, our

aim is to enable network administrators to better protect the networks—and, ultimately, the

users—for which they are responsible. Unfortunately, properly ascertaining the impact on

previously proposed defenses of the paradigm shift we outline in this work would require a

separate study in and of itself. That said, we can make some informed predictions. In particular,

while we propose the inference of additional information (e.g., subdomains and paths), the data

from which these inferences are drawn (i.e., packet sizes, timing, and direction) remain the same.

Therefore, techniques—such as the padding, buffering, fragmentation and camouflage

techniques proposed in prior work [6, 21, 43, 88, 90, 93, 100, 104, 121, 152, 158]—which

significantly reduce the fidelity of the signal represented by this data should also be effective

114

against this new paradigm. Furthermore, we suggest that such defenses be evaluated not only on

datasets such as those used in prior work, but also on datasets including multiple pages per

domain, since we believe the latter to be the more realistic scenario.

A second issue which we have not directly considered in this work is that of the prior

probabilities of visits to the URLs in question. In scenarios in which the prior probability of a

“positive” example is low, FP rates calculated from experiments in which the priors are equal can

significantly overestimate real-world accuracy. The security community has called for accuracy

metrics, such as the Bayesian detection rate (BDR), which take these prior probabilities into

account. Unfortunately, the Bayesian detection rate (BDR) and similar metrics are an

over-simplification which are highly dependent on the specific values used for the priors. Since

these priors are inherently a factor of the specific environment, we question the wisdom of

reporting such summary statistics. Instead, we present various metrics (e.g., precision and recall)

under various averaging mechanisms (e.g., per-example and per-label) along with the

corresponding standard deviations to enable a nuanced interpretation on the part of the reader.

Finally, as future work we intend to explore the extent to which the multi-label approach

allows for cross-domain identification of websites. As an example, both stackoverflow.com and

superuser.com are part of the stackexchange.com network and use the same server-side software,

though the templates are (slightly) different. Even if the classifier has never before seen

stackoverflow.com/questions, the similarities between that page and stackexchange.com/questions

may well allow the classifier to correctly label the page with /questions if we dissociate paths from

domains.

4.6 Broader Implications

In the broader context of inference from encrypted network traffic, this work represents a

substantial step towards the ability to ascertain useful, actionable information about tunneled

HTTP connections. In particular, we demonstrate how a new paradigm (multi-label

classification) can be leveraged to allow the inference of significantly more information than was

previously believed, including partial information about URLs previously unseen by the system.

We believe these new capabilities will allow future network monitoring and intrusion detection

systems to make useful determinations with regard to encrypted connections.

115

CHAPTER 5: DISCUSSION & CONCLUSIONS

In Chapter 2, we demonstrated that a large and increasing proportion of network traffic is

opaque, i.e., compressed or encrypted, rendering traditional IDS systems unable to detect and

prevent security incidents in such traffic. Unfortunately, such increasingly ineffective systems are

a major part of our network security infrastructure, particularly at the institutional level. As such,

we believe that new, specialized techniques for analyzing opaque, and particularly encrypted,

traffic are necessary to enable our network security infrastructure to cope with the threats we face

now and in the future.

Also in Chapter 2, we presented techniques for identifying opaque traffic in real-time on

high-speed networks and demonstrated how simply ignoring such traffic can significantly

increase the throughput of IDS systems. The corollary to this increase in throughput is that IDS

systems can more thoroughly examine other traffic. While this is a step in the right direction, it

remains fundamentally a stopgap measure.

The remainder of this dissertation focused on encrypted traffic, in particular, and explored

the extent to which one can extract information about the underlying contents of such traffic from

side channels: in Chapter 3, we demonstrated how approximate transcripts of encrypted VoIP

conversations can be reconstructed from packet sizes alone, and in Chapter 4, we showed how

packet size and timing information can be leveraged to identify resources downloaded over

encrypted tunnels (e.g., by visiting a webpage over a VPN connection). In both cases, our work

represents a double-edged sword: such techniques can be used to provide information for

security and forensic analysis and misused as methods for violating user privacy or censoring

user activities. In Chapter 3, we focused on the threat to user privacy, but Chapter 4 focused on

providing useful information about encrypted traffic for security and forensics.

116

APPENDIX A: OPAQUE TRAFFIC

This appendix presents various methods for opaque traffic identification, an extensive

parameter space exploration experiment to compare these methods and provide optimal values

for their parameters, the asymptotic efficiency of each method, and a description of the HTTP

content-type labeling rules we used to determine ground truth in our experiments.

A.1 Comparison of Methods

A.1.1 Preliminaries

For all tests, let H0 be the hypothesis that the vi are approximately uniformly distributed (e.g.,

the packet is compressed or encrypted), and let H1 be the alternative hypothesis, i.e., that the vi

are distributed according to some distribution that is not uniform (e.g., corresponding to a

transparent packet).

In what follows, we examine approaches that can be broadly classified under two different

models, which we refer to as operating on the entropy or byte-value domains. For the entropy

domain, the basic unit is the (byte-) entropy of a block of bytes, where the number of bytes n in a

block is parameterized. In other words, if X is a random variable in the entropy domain, then the

support of X is the set of all possible values for the byte-entropy of n bytes. If X is a random

variable in the byte-value domain, then the support of X is the set of integers 0 through 255. That

is, for the byte-value domain, the basic unit is simply the byte.

Before delving into details of the various tests we explore, we first present necessary notation,

summarized in Table A.1. To represent the packet payload, let v = {v1, v2, . . . , vN} be a sequence

of observations (e.g., payload bytes), such that vi ∈ {0, 1, . . . , k − 1} ∀ i ∈ {1, . . . , N}. That is, for a

sequence v of bytes, k = 256. In the entropy domain, we operate on a sequence w of blocks of

bytes w = {v1,v2, . . . , vN/n}.

Notice that while the density function for the byte-value domain is well-known and easy to

compute, the entropy domain is more complicated. For many of the tests we examine, we need to

evaluate the probability mass function (PMF) over possible values for the sample entropy of n

bytes for each hypothesis. Simple threshold checking of the sample entropy fails to leverage the

distribution of sample entropy values, missing important information about the relative

117

Symbol Meaning

n size (in bytes) of a block
k size of domain (e.g., 256 for bytes)
N (maximum) number of payload bytes
M (maximum) number of samples
vi observation (byte)
wi observation (block)
v sequence of observations (bytes)
w sequence of observations (blocks)
α expected false negative rate
β expected false positive rate
δ alternative hypothesis weight
T offset (in bytes)

Table A.1: Notation

likelihood of the values observed. For pedagogical reasons, we present the formal derivation of

this mass function, for small n and a particular class of alternatives, in Section A.1.3. The

essential idea is that the sample entropy of n bytes is the same regardless of the arrangement of

those bytes. We can then enumerate the possible ways of arranging n bytes, for small n, to

calculate the corresponding PMF. We implemented such an enumeration using NVIDIA’s CUDA

graphics processing unit (GPU) parallel programming toolkit, yielding a PMF for n = 8.

Discrete Kolmogorov-Smirnov Test

Another appropriate test for determining whether a sample is drawn from a particular

distribution is the Kolmogorov-Smirnov (K-S) test. The K-S test is often used because of its

generality and lack of restricting assumptions. The test is based on quantifying the difference

between the cumulative distribution functions of the distributions of interest. However, we note

that the traditional Kolmogorov-Smirnov test is only valid for continuous distributions, and

Conover has already shown that the p-values for the continuous K-S test applied to discrete or

discontinuous distributions can differ substantially from those of the discrete analog. Therefore,

we apply the discrete version as described by Conover [28].

Lastly, we note that Pearson’s χ2 test also seems appropriate in this setting. However,

Pearson’s χ2 test assumes that samples are independent, the sample size is large, and the

expected cell counts are non-zero — but, the latter two assumptions do not necessarily hold in

118

Domain
Parameter Entropy Bytevalue∗

α 0.001, 0.005, 0.01, 0.05
β† 0.001, 0.005, 0.01, 0.05
δ‡ 0.65, 0.75, 0.85
N 8, 16, 24, 32, 48, 64, 80, 128 4, 12, 20, 28, 32, 40
T 0, 8, 16, 24 4, 12, 20

∗ In addition to those for the entropy tests.
† Applicable only for sequential tests.
‡ Not applicable for χ2 or discrete K-S tests.

Table A.2: Parameter space explored for each domain

our setting as the goal is to examine as few bytes as possible. Nevertheless, we include such

analyses for the sake of comparison to prior work [99], but omit the derivation since the test is in

common usage and our application is no different.

A.1.2 Parameter Space Exploration

We now present the results of a parameter space exploration experiment examining all of the

hypothesis tests with varying parameter values. We present receiver operating characteristic

(ROC) plots that simultaneously examine the true positive rate and false positive rate as a

parameter (e.g., a threshold) varies. A set of ROC plots, one for each classifier, can then be used to

compare classifiers across a range of parameter values, allowing one to judge the relative

performance of classifiers.

There are several knobs we can turn. For the sequential tests we explore the desired

maximum false positive rate α, the desired maximum false negative rate β, and the maximum

number of payload bytes N . The parameter values we examined for fixed tests included the

desired significance level α and number of payload bytes N . In all experiments, the maximum

number of samples for the sequential tests equals the sample size for the fixed tests.

We consider different alternative hypotheses by changing the relative weight, δ, of the lower

128 byte values versus the higher 128 byte values. The δ parameter takes values in (0.5, 1.0], and

indicates the expected percentage of byte values less than 128. By changing the value, we alter

our model of transparent traffic. In addition to measuring uniformity, this class of alternative

hypotheses has the advantages of being extremely efficient to implement (as determining

119

whether a byte value is less than 128 is a simple bit mask operation) and of accounting for the

prevalence of ASCII characters in network traffic.

Offset (T)

0 ... T-1 ...Packet i Block 0 Block 1 Block 0
Block

Sample(s){Block Size (n)

Entropy

Test

0 ... T-1 v
0

v
1

v
2

v
3 ...Packet i

Sequence Size (N)

v
i

Byte-Value

Test

Offset (T)

Figure A.1: Illustration of parameters length (N), offset (T), and block size (n)

Finally, we explore starting our analysis at different points within the packet, represented by

the offset value T (in bytes). As shown pictorially in Figure A.1, T indicates how many bytes into

the payload, i.e., past the end of the TCP header, our analysis begins. The specific values explored

for each parameter are given in Table A.2. Our dataset for the exploration experiment consists of

the first 100,000 packets from trace1, and we consider only encrypted data as positive examples.

Figure A.2shows a single point for each unique set of parameter values (over 10,000) in our

experiments. Superior classifiers should evidence a high true positive rate and a low false

positive rate, represented on a ROC plot by a predominance of points in the upper-left corner of

the plot. Since the byte-value tests evidence the points closest to the upper-left corner, the plots

indicate that the sequential tests and the likelihood-ratio test in the byte-value domain are able to

more accurately classify packets than the other tests. We can also compare our techniques based

on their theoretical computational efficiency (see Section A.1.4); again, the byte-value sequential

tests are the clear winners.

We also determine which specific values for the various parameters provide the optimal

performance. In order to do so, we make use of the so-called F -score, which is a weighted

harmonic mean of the precision and recall metrics.1 Precision is defined as the ratio of the number

of packets correctly classified as opaque, i.e., true positives, to the total number of packets

1More precisely, we use the F1-score, where recall and precision are evenly weighted.

120

0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru
e
P
o
si
ti
v
e
R
a
te

Bytevalue - Chisquare

0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru
e
P
o
si
ti
v
e
R
a
te

Bytevalue - Truncated

0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru
e
P
o
si
ti
v
e
R
a
te

Bytevalue - Restricted

0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru
e
P
o
si
ti
v
e
R
a
te

Bytevalue - Likelihood Ratio

0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru
e
P
o
si
ti
v
e
R
a
te

Bytevalue - Discrete K-S

0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru
e
P
o
si
ti
v
e
R
a
te

Entropy - Truncated

0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru
e
P
o
si
ti
v
e
R
a
te

Entropy - Restricted

0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru
e
P
o
si
ti
v
e
R
a
te

Entropy - Likelihood Ratio

Figure A.2: ROC plots for the techniques examined in this work.

classified as opaque. Recall is defined as the ratio of the number of true positives to the number

of packets which are opaque according to our ground truth. Said another way, precision can be

seen as measuring how often packets labeled as opaque are actually opaque (but says nothing

about how often opaque packets are correctly identified), while recall indicates how often the

method correctly identifies opaque packets (but says nothing about how often transparent

packets are mislabeled).

We now examine each parameter in isolation by varying the parameter of interest while fixing

the other parameters at default values (δ = 0.85, α = β = 0.005, N = 32, and T = 8). As might be

expected, the number of bytes examined has a substantial effect on the performance of the

detectors (Figure A.3a); this effect drops off over time, suggesting that less than 32 bytes are

needed in the general case to make a decision and less than 16 bytes are needed by the truncated

test in the byte-value domain. The byte-value tests are the clear winners; all three sequential

methods and the likelihood-ratio method performed equally well, each attaining precision over

90%. The entropy tests performed unexpectedly poorly, in few cases obtaining scores close to

those of the other tests. In addition, we found that the restricted entropy test did not behave as

121

22 23 24 25 26 27

Length

0.0

0.2

0.4

0.6

0.8

1.0
F
-S
c
o
re

Bytevalue

Restricted
Likelihood Ratio
Truncated

22 23 24 25 26 27

Length

0.0

0.2

0.4

0.6

0.8

1.0

F
-S
c
o
re

Bytevalue

Discrete K-S
Chisquare

22 23 24 25 26 27

Length

0.0

0.2

0.4

0.6

0.8

1.0

F
-S
c
o
re

Entropy

Restricted
Likelihood Ratio
Truncated

(a) F1-Score for sample size

22 23 24 25

Offset

0.0

0.2

0.4

0.6

0.8

1.0

F
-S
c
o
re

Bytevalue

Restricted
Likelihood Ratio
Truncated

22 23 24 25

Offset

0.0

0.2

0.4

0.6

0.8

1.0
F
-S
c
o
re

Bytevalue

Discrete K-S
Chisquare

22 23 24 25

Offset

0.0

0.2

0.4

0.6

0.8

1.0

F
-S
c
o
re

Entropy

Restricted
Likelihood Ratio
Truncated

(b) F1-Score for offset

Figure A.3: Effects on accuracy when varying sample size and byte offset

we expected with regard to increasing the number of samples involved; an investigation revealed

no underlying patterns in labels of the misclassified examples. We suspect that the particular

decision boundaries (Section 2.2) used are simply poorly suited for the tests between entropy

distributions.

With regard to changes in offset (Figure A.3b), we see no clear improvement in classification

for offset values larger than 8 bytes. Changes to the desired false positive and negative rates

similarly had limit impact on the performance of the detectors, and so we omit those figures for

brevity. Performance when varying the δ parameter, which controls the alternative hypothesis,

peaks at δ = 0.85.

Changes to the desired false positive rate (Figure A.4a), similarly, have little impact on the

performance of the detectors (the case for the false negative rate β is the same; we omit the figure

for brevity). In either case, the parameters have little effect on the entropy tests (due to the small

number of samples for the entropy tests, e.g., 4 samples at N = 32 bytes).

We also examine changes to the δ parameter, which controls the alternative hypothesis.

122

10−3 10−2 10−1

Alpha

0.0

0.2

0.4

0.6

0.8

1.0

F
-S
co
re

Bytevalue

Restricted
Likelihood Ratio
Truncated

10−3 10−2 10−1

Alpha

0.0

0.2

0.4

0.6

0.8

1.0

F
-S
co
re

Bytevalue

Discrete K-S
Chisquare

(a) F1-Score for significance level

0.65 0.70 0.75 0.80 0.85

Delta

0.0

0.2

0.4

0.6

0.8

1.0
F
-S
c
o
re

Bytevalue

Restricted

Likelihood Ratio

Truncated

(b) F1-Score for alternative hypothesis

Figure A.4: Effects on accuracy when varying significance level and alternative hypothesis

Notice that in Figure A.4b, the sequential tests appear to fail most often when the byte value

distribution under H1 is assumed to be close to uniform; this is due to a large number of trials

failing to make a decision, or forcibly making the wrong decision, when faced with too few

samples to effectively choose between two similar distributions.

Summary of Findings: Our analysis shows that we can narrow the field to the

likelihood-ratio and sequential tests in the byte-value domain based on accuracy rates alone.

Perhaps surprisingly, the entropy-based methods do not perform as accurately as those in the

byte-value domain; we believe that this indicates that accurate entropy tests require more

samples than are available in our context. In addition, examining more than 16 bytes provided

little benefit in terms of accuracy. Interestingly, the offset and desired error rate parameters had

little effect in our tests. Changes to the parameter (δ) controlling the alternative hypothesis did

have a significant effect on the sequential tests; as the difference between the null and alternative

hypothesis narrowed, the error rates for the sequential tests increased, suggesting that (as is to be

expected) more samples are required for discrimination when the two classes to be distinguished

123

are very similar. In summary, we found the truncated sequential test to one of the most accuracy

and efficient tests, and therefore made use of this technique for the experiments in the body of

the text.

A.1.3 Byte-Entropy Distributions for Small n

Formally, let Sn be the set of all possible values for the sample entropy of n bytes and let H be

a random variable taking values in Sn. We need to find the probability P[H = H(x | Hi)] that the

sample entropy H(v) of a sequence of bytes v equals some value H under each hypothesis (i.e.,

each of {H0,H1}).

More formally, define x = {x0, x1, . . . , xk−1} via

xi =

n∑
j=0

I(vj = i),

where I(·) is the indicator function, for all i ∈ {0, 1, . . . , k − 1}. Note that xi is the count of the

number of elements in v that are equal to i, i.e., the multiplicity of i. Then the sample entropy (in

bits) is calculated as:

H(v) = h(x) =
k−1∑
i=0

xi
n

log2

xi
n

We can express our desired probability as the sum over all possible x which map to the same

sample entropy:

P[H = H(v) | Hi] =
∑

x s.t. H(v)=h(x)

P[X = x | Hi] (A.1)

Since X is a vector-valued random variable with a multinomial distribution of length n and

probabilities p = {p0, p2, . . . , pk−1}, the corresponding probability mass function [147] is:

P[X = x | n,p] =
(

n

x0, x1, . . . , xk−1

)
px0
0 px1

1 · · · pxk−1

k−1

In the equiprobable case where pi = 1/k for all i,

P[X = x | n, k] =
(

n

x0, x1, . . . , xk−1

)(
1

k

)n

(A.2)

since X is a length-n multinomial and hence
∑k−1

i=0 xk = n. Note that Equation A.2 does not

depend on the order of elements in x (i.e., x can be viewed as a multiset). We note also that the

entropy of v is the same regardless of the arrangement of the values in v; therefore, the number of

124

possible values of v for a given x is the number of ways of arranging the k elements of x. Define

y = {y0, y1, . . . , yn} as

yj =
k−1∑
i=0

I(xi = j)

for all j ∈ {0, 1, . . . , n} analogously to x above. Again, yj is the count of the number of values in x

that are equal to j, i.e., the multiplicity of j. Then the multinomial coefficient(
k

y0, y1, . . . , yn

)
is the number of possible ways to arrange the k elements of x. Combining this with Equation A.2,

we have (in the equiprobable case):

P[H = H(v) | H0] =

(
k

y0, y1, . . . , yn

)
P[X = x | n, k]

=

(
k

y0, y1, . . . , yn

)(
n

x0, x1, . . . , xk−1

)(
1

k

)n

Log-likelihoods In their original forms, the probability mass functions are difficult to compute

due to the extremely large values involved. However, we can calculate in log-space to mitigate

the issue:

log(P[H = H(v) | n, k,H0]) = log
[(

k

y0, y1, . . . , yn

)(
n

x0, x1, . . . , xk−1

)(
1

k

)n]
= log

[(
k!

y0!y1! · · · yn!

)(
n!

x1!x2! · · ·xk!

)(
1

k

)n]
= log

(
k!n!

kn

)
− log (x1!x2! · · ·xk!y0!y1! · · · yn!)

= log
(
k!n!

kn

)
−

[
n∑

i=0

log(yi!) +
k∑

i=1

log(xi!)
]

= log(k!) + log(n!)− n log(k)−
n∑

i=0

log(yi!)−
k∑

i=1

log(xi!)

A.1.4 Theoretical Efficiency

We can also compare our techniques based on their theoretical computational efficiency

(Table A.3), in terms of the number of online floating-point operations required for each case. In

the following, any operations which can be precomputed are omitted. In the byte-value domain,

the sequential tests each require only a single multiplication and comparison per iteration, so the

125

Test Type Floating-Point Operations

Sequential ≤ 2M
Likelihood Ratio 2M

Pearson’s χ2 M + 3k
Discrete K-S O(M2)

Table A.3: Theoretical efficiency

Base Type Sub-type Action/Label

image, video, audio * opaque
text * transparent

application pdf, xml, flash transparent
application gzip, zip opaque
application * omit

* * omit

Table A.4: HTTP Content-Type Filtering Rules

number of standard floating-point operations is no more than 2M for M samples (in the

byte-value domain, samples are bytes, so M = N); the likelihood ratio test is the same, but with

equality in the relation. Working in the entropy domain introduces the overhead both of binning

the samples (M = N/n operations) and of computing the sample entropy (3k standard

operations plus k logarithms). Pearson’s χ2 test requires M operations to bin the samples and 3k

operations, where k is the size of the domain (e.g., k = 256 for the byte-value domain), to sum the

squared difference between the observed count and expected count over all bins. Finally, the

discrete K-S test is O(M2). Obviously, from a performance standpoint, neither the K-S test nor the

entropy tests are a good choice.

A.2 HTTP Labeling Rules

To determine ground truth for HTTP packets, we first examine the content-encoding: if the

strings gzip or deflate appear in the content-encoding, the packet is labeled opaque; otherwise,

the label is determined by content type. HTTP content-type fields contain a base type, such as

text or video, a sub-type, such as html or mp4, and optional parameters, such as charset=us-ascii.

For our filtering, if the base type is image, video, or audio, the traffic is labeled opaque; if the base

type is text, the traffic is labeled transparent. For the application base type, we also consider the

sub-type: zip and x-gzip are considered opaque, while xml, pdf, and x-shockwave-flash are

126

considered transparent. While some of these sub-types (e.g., PDF) can be containers for many

other formats, we choose to be conservative and simply classify them as transparent since we

have no clear cut way of drawing the line between semi-structured and more opaque formats. All

other sub-types are dropped, since hand-labeling of all potential content-types is infeasible and

error-prone. Our HTTP filtering and labeling rules are summarized in Table A.4 (given in order

of application).

127

APPENDIX B: PLAYING HIDE-AND-SEEK

B.1 Scripted Retrieval Details

For the case of a dynamic SSH tunnel, our detailed process for retrieving a set of URLs is as

follows. For each URL, the script establishes an SSH connection to a server using dynamic

application-level port forwarding (OpenSSH [112]’s -D flag). This means that SSH acts as a

SOCKS proxy server and forwards connections directed to a specified local port through the

tunnel to the SSH server and from there on to the final destination. The script waits 2 seconds to

ensure connection setup has completed, then starts to record the network traffic corresponding to

the retrieval. The recording is done with three separate tcpdump processes (Figure 4.2):

1. on the loopback interface, monitoring the local proxy port, to collect the plaintext traffic

2. on the internal (intranet) interface, monitoring the SSH connection, to collect the encrypted

traffic

3. on the external (internet) interface, monitoring ports 53, 80, and 443, as a sanity check to

ensure that no traffic bypassed the tunnel

The script waits another 2 seconds to ensure that the capture processes have initialized

appropriately, then launches a Python script which, using the Selenium browser automation

framework [131], opens a Firefox browser process (configured to use the SOCKS proxy provided

by the SSH process for both HTTP and DNS traffic) and directs the browser to visit the specified

URL. A clean Firefox profile and temporary directory are used for each URL, ensuring that no

detritus (e.g., cached files or cookies) remain from the previous retrieval. The browser is opened

in a virtual framebuffer (i.e., an X server which does not require a screen) using Xvfb [160],

avoiding the overhead of a full-blown window-manager. Once the requested page’s JavaScript

onload event is fired, Firefox takes and stores a screenshot, then closes (if the onload event does

not fire within 30 seconds of starting Firefox, then the process is killed). Control is returned to the

outer shell script, which waits 2 seconds, then terminates the tcpdump processes; once these have

exited, the SSH connection is terminated. The script waits another 2 seconds, then begins again

with the next URL.

128

10 40 80 150 300 600

Number of Classes

0.0

0.2

0.4

0.6

0.8

1.0
P
e
r-

E
x
a
m

p
le

 P
re

ci
si

o
n

Packet Size Distribution

10 40 80 150 300 600

Number of Classes

VNG++

Classifier

kNN

DT

SVM (BR)

RF

kNN-WL

NB (BR)

MNB (BR)

(a) Precision

10 40 80 150 300 600

Number of Classes

0.0

0.2

0.4

0.6

0.8

1.0

P
e
r-

E
x
a
m

p
le

 R
e
ca

ll
(T

P
R

)

Packet Size Distribution

10 40 80 150 300 600

Number of Classes

VNG++

Classifier

kNN

DT

SVM (BR)

RF

kNN-WL

NB (BR)

MNB (BR)

(b) Recall

Figure B.1: Multi-label classification applied to our SSH dataset with the PacketSizeDistribution fea-
ture set (left) and the VNG++ feature set (right). Missing points indicate that the process exceeded
our memory limit of 32GB. See also Figure 4.8.

B.2 Precision and Recall

The precision and recall values for the multi-label experiment of Section 4.5.5 are shown in

Figure B.1.

129

BIBLIOGRAPHY

[1] 3GPP. Extended Adaptive Multi-Rate Wideband (AMR-WB+) Codec. Tech. rep. 26.290. 3rd
Generation Partnership Project (3GPP), 2009.

[2] Rahul Agrawal, Archit Gupta, Yashoteja Prabhu, and Manik Varma. “Multi-label Learning
with Millions of Labels: Recommending Advertiser Bid Phrases for Web Pages”. In: Proc.
22nd International Conference on World Wide Web (WWW). 2013.

[3] Irfan Ahmed, Kyung-suk Lhee, Hyunjung Shin, and ManPyo Hong. “Fast file-type
identification”. In: Proceedings of the Symposium on Applied Computing. 2010, pp. 1601–1602.

[4] Alexa - The Web Information Company. url: http://www.alexa.com (visited on 05/30/2013).

[5] Michael Backes, Goran Doychev, Markus Dürmuth, and Boris Köpf. “Speaker Recognition
in Encrypted Voice Streams”. In: ESORICS 2010: 15th European Symposium on Research in
Computer Security. Ed. by Dimitris Gritzalis, Bart Preneel, and Marianthi Theoharidou.
Vol. 6345. Lecture Notes in Computer Science. Springer, Sept. 2010, pp. 508–523.

[6] Michael Backes, Goran Doychev, and Boris Köpf. “Preventing Side-Channel Leaks in Web
Traffic: A Formal Approach”. In: ISOC Network and Distributed System Security Symposium –
NDSS 2013. The Internet Society, Feb. 2013.

[7] Leonard E. Baum, Ted Petrie, George Soules, and Normal Weiss. “A Maximization
Technique Occurring in the Statistical Analysis of Probabilistic Functions of Markov
Chains”. In: The Annals of Mathematical Statistics 41.1 (1970), pp. 164–171.

[8] Doug Beeferman, Adam Berger, and John Lafferty. “Statistical Models for Text
Segmentation”. In: Mach. Learn. 34.1-3 (1999).

[9] Adam L. Berger, Stephen A. Della Pietra, and Vincent J. Della Pietra. “A Maximum
Entropy approach to Natural Language Processing”. In: Computational Linguistics 22
(1996), pp. 39–71.

[10] James Bergstra and Yoshua Bengio. “Random Search for Hyper-Parameter Optimization”.
In: Journal of Machine Learning Research (2012), pp. 281–305.

[11] Ignacio N Bermudez, Marco Mellia, Maurizio M Munafo, Ram Keralapura, and
Antonio Nucci. “DNS to the rescue: discerning content and services in a tangled web”. In:
ACM Internet Measurement Conference (IMC). 2012.

[12] Laurent Bernaille and Renata Teixeira. “Early Recognition of Encrypted Applications”. In:
Passive and Active Measurement Conference. 2007.

[13] George Dean Bissias, Marc Liberatore, David Jensen, and Brian Neil Levine. “Privacy
vulnerabilities in encrypted HTTP streams”. In: Proc. 5th International Workshop on Privacy
Enhancing Technologies. 2006.

[14] Andrea Bittau, Michael Hamburg, Mark Handley, David Mazières, and Dan Boneh. “The
Case for Ubiquitous Transport-Level Encryption”. In: USENIX Security Symposium. 2010.

130

http://www.alexa.com

[15] Blacklists UT1. Université Toulouse 1 Capitole. url:
http://dsi.ut-capitole.fr/blacklists/index_en.php (visited on 02/11/2014).

[16] Daniel Blanchard, Jeffrey Heinz, and Roberta Golinkoff. “Modeling the Contribution of
Phonotactic Cues to the Problem of Word Segmentation”. In: The Journal of Child Language
37.3 (2010), pp. 487–511.

[17] Dario Bonfiglio, Marco Mellia, Michela Meo, Dario Rossi, and Paolo Tofanelli. “Revealing
Skype traffic: when randomness plays with you”. In: Comp. Commun. Review. SIGCOMM
(2007), pp. 37–48.

[18] H. Bortfeld, J. Morgan, R. Golinkoff, and K. Rathbun. “Mommy and Me: Familiar names
help launch babies into speech-stream segmentation”. In: Psychological Science 16 (2005),
pp. 298–304.

[19] Leo Breiman. “Random Forests”. In: Machine Learning 45.1 (2001), pp. 5–32.

[20] Julian J. Bussgang and Michael B. Marcus. “Truncated Sequential Hypothesis Tests”. In:
IEEE Transactions on Information Theory 13.3 (July 1967).

[21] Xiang Cai, Xin Cheng Zhang, Brijesh Joshi, and Rob Johnson. “Touching from a distance:
website fingerprinting attacks and defenses”. In: ACM CCS 12: 19th Conference on Computer
and Communications Security. Ed. by Ting Yu, George Danezis, and Virgil D. Gligor. ACM
Press, Oct. 2012, pp. 605–616.

[22] N. Cascarano, A. Este, F. Gringoli, F. Risso, and L. Salgarelli. “An Experimental Evaluation
of the Computational Cost of a DPI Traffic Classifier”. In: Global Telecommunications
Conference. 2009, pp. 1–8.

[23] Shuo Chen, Rui Wang, XiaoFeng Wang, and Kehuan Zhang. “Side-Channel Leaks in Web
Applications: A Reality Today, a Challenge Tomorrow”. In: 2010 IEEE Symposium on
Security and Privacy. IEEE Computer Society Press, May 2010, pp. 191–206.

[24] Heyning Cheng and Ron Avnur. Traffic Analysis of SSL Encrypted Web Browsing. 1998.

[25] Ken Chiang and Levi Lloyd. “A case study of the Rustock rootkit and spam bot”. In:
HotBots’07: Proceedings of the First Workshop on Hot Topics in Understanding Botnets. Berkeley,
CA, USA: USENIX Association, 2007.

[26] Ronald A. Cole and Jola Jakimik. “A Model of Speech Perception”. In: Perception and
production of fluent speech. Lawrence Erlbaum Associates, 1980. Chap. 6, pp. 133–163.

[27] Configuring a SOCKS proxy server in Chrome. url:
http://www.chromium.org/developers/design-documents/network-stack/socks-proxy (visited on
02/19/2014).

[28] W. J. Conover. “A Kolmogorov Goodness-of-Fit Test for Discontinuous Distributions”. In:
Journal of the American Statistical Association 67 (1972), pp. 591–596.

131

http://dsi.ut-capitole.fr/blacklists/index_en.php
http://www.chromium.org/developers/design-documents/network-stack/socks-proxy

[29] Gregory Conti, Sergey Bratus, Anna Shubina, Benjamin Sangster, Roy Ragsdale,
Matthew Supan, Andrew Lichtenberg, and Robert Perez-Alemany. “Automated mapping
of large binary objects using primitive fragment type classification”. In: Digital
Investigation 7.Supplement 1 (2010), S3–S12.

[30] Manuel Crotti, Maurizio Dusi, Francesco Gringoli, and Luca Salgarelli. “Traffic
classification through simple statistical fingerprinting”. In: SIGCOMM Comput. Commun.
Rev. 37.1 (2007), pp. 5–16.

[31] George Danezis. Traffic Analysis of the HTTP Protocol over TLS.

[32] Michael Denkowski, Abhaya Agarwal, Satanjeev Banerjee, and Alon Lavie. The METEOR
MT Evaluation System, Version 1.2. Carnegie Mellon University. Pittsburgh, PA, 2010.

[33] Michael Denkowski and Alon Lavie. “Choosing the Right Evaluation for Machine
Translation: an Examination of Annotator and Automatic Metric Performance on Human
Judgment Tasks”. In: Proceedings of AMTA. 2010.

[34] Roger Dingledine, Nick Mathewson, and Paul Syverson. “Tor: The Second-Generation
Onion Router”. In: Proceedings of the 13th USENIX Security Symposium. 2004, pp. 303–320.

[35] Peter Dorfinger. “Real-Time Detection of Encrypted Traffic based on Entropy Estimation”.
MA thesis. Salzburg University of Applied Sciences, 2010.

[36] Peter Dorfinger, Georg Panholzer, and Wolfgang John. “Entropy Estimation for Real-Time
Encrypted Traffic Identification”. In: Traffic Monitoring and Analysis. Vol. 6613. Lecture
Notes in Computer Science. 2011.

[37] Peter Dorfinger, Georg Panholzer, Brian Trammell, and Teresa Pepe. “Entropy-based traffic
filtering to support real-time Skype detection”. In: Proceedings of the 6th International
Wireless Communications and Mobile Computing Conference. 2010, pp. 747–751.

[38] Holger Dreger, Anja Feldmann, Michael Mai, Vern Paxson, and Robin Sommer. “Dynamic
application-layer protocol analysis for network intrusion detection”. In: Proceedings of the
15th USENIX Security Symposium. 2006.

[39] Holger Dreger, Anja Feldmann, Vern Paxson, and Robin Sommer. “Operational
experiences with high-volume network intrusion detection”. In: Proceedings of the 11th
ACM conference on Computer and Communications Security. 2004.

[40] Benoît Dupasquier Dupasquier, Stefan Burschka, Kieran McLaughlin, and Sakir Sezer.
“Analysis of information leakage from encrypted Skype conversations”. In: International
Journal of Information Security (2010), pp. 1–13.

[41] Richard Durbin, Sean Eddy, Anders Grogh, and Graeme Mitchison. Biological Sequence
Analysis: Probabilistic Models of Proteins and Nucleic Acids. Cambridge University Press,
1998.

[42] Maurizio Dusi, Manuel Crotti, Francesco Gringoli, and Luca Salgarelli. “Detection of
Encrypted Tunnels Across Network Boundaries”. In: ICC. 2008, pp. 1738–1744.

132

[43] Kevin P. Dyer, Scott E. Coull, Thomas Ristenpart, and Thomas Shrimpton. “Peek-a-Boo, I
Still See You: Why Efficient Traffic Analysis Countermeasures Fail”. In: 2012 IEEE
Symposium on Security and Privacy. IEEE Computer Society Press, May 2012, pp. 332–346.

[44] Anna Esposito and Guido Aversano. “Text Independent Methods for Speech
Segmentation”. In: Nonlinear Speech Modeling and Applications. Vol. 3445. Lecture Notes in
Computer Science. Springer, 2005, pp. 261–290.

[45] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-Lee.
Hypertext Transfer Protocol – HTTP/1.1. RFC 2616 (Draft Standard). Obsoleted by RFCs
7230, 7231, 7232, 7233, 7234, 7235, updated by RFCs 2817, 5785, 6266, 6585. Internet
Engineering Task Force, June 1999. url: http://www.ietf.org/rfc/rfc2616.txt.

[46] Prahlad Fogla, Monirul Sharif, Roberto Perdisci, Oleg Kolesnikov, and Wenke Lee.
“Polymorphic blending attacks”. In: Proceedings of the USENIX Security Symposium. 2006,
pp. 241–256.

[47] W. N. Francis and H. Kucera. Brown Corpus Manual. Tech. rep. Department of Linguistics,
Brown University, 1979.

[48] John S. Garofolo, Lori F. Lamel, William M. Fisher, Jonathan G. Fiscus, David S. Pallett,
Nancy L. Dahlgren, and Victor Zue. TIMIT Acoustic-Phonetic Continuous Speech Corpus.
1993.

[49] D. Gildea and D. Jurasky. “Learning Bias and Phonological-Rule Induction”. In:
Computational Linguistics 22.4 (1996), pp. 497–530.

[50] Global Internet Phenomena Report: Fall 2011. Sandvine, Oct. 27, 2011.

[51] Global Internet Phenomena Report: Fall 2014. Sandvine, 2014.

[52] Global Internet Phenomena Spotlight: Encrypted Internet Traffic. Sandvine, May 8, 2015.

[53] José M. González, Vern Paxson, and Nicholas Weaver. “Shunting: a hardware/software
architecture for flexible, high-performance network intrusion prevention”. In: ACM CCS
07: 14th Conference on Computer and Communications Security. Ed. by Peng Ning,
Sabrina De Capitani di Vimercati, and Paul F. Syverson. ACM Press, Oct. 2007,
pp. 139–149.

[54] Dan Goodin. “It wasn’t easy, but Netflix will soon use HTTPS to secure video streams”. In:
Ars Technica (Apr. 16, 2015). url: http://arstechnica.com/security/2015/04/it-wasnt-easy-but-
netflix-will-soon-use-https-to-secure-video-streams/ (visited on 08/27/2015).

[55] John Haggerty and Mark Taylor. “FORSIGS: Forensic Signature Analysis of the Hard
Drive for Multimedia File Fingerprints”. In: Proceedings of IFIP International Information
Security Conference. 2006.

[56] Gregory A. Hall. Sliding Window Measurement for File Type Identification. ManTech Security
and Mission Assurance. 2006.

133

http://www.ietf.org/rfc/rfc2616.txt
http://arstechnica.com/security/2015/04/it-wasnt-easy-but-netflix-will-soon-use-https-to-secure-video-streams/
http://arstechnica.com/security/2015/04/it-wasnt-easy-but-netflix-will-soon-use-https-to-secure-video-streams/

[57] Mark A. Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann, and
Ian H. Witten. “The WEKA data mining software: an update”. In: SIGKDD Explorations
11.1 (2009), pp. 10–18. doi: 10.1145/1656274.1656278.

[58] M. Halle. “Knowledge unlearned and untaught: What speakers know about the sounds of
their language”. In: Linguistic Theory and Psychological Reality (1978), pp. 294–303.

[59] Jonathan Harrington, Gordon Watson, and Maggie Cooper. “Word boundary
identification from phoneme sequence constraints in automatic continuous speech
recognition”. In: Computational linguistics - Volume 1. 1988, pp. 225–230.

[60] Ryan M. Harris. “Using Artificial Neural Networks for Forensic File Type Identification”.
MA thesis. Purdue University, 2007.

[61] Reed Hastings and David Wells. April 2015 Investor Letter. Apr. 15, 2015.

[62] Bruce Hayes and Colin Wilson. “A maximum entropy model of phonotactics and
phonotactic learning”. In: Linguistic Inquiry 39.3 (2008), pp. 379–440.

[63] Dominik Herrmann, Rolf Wendolsky, and Hannes Federrath. “Website fingerprinting:
attacking popular privacy enhancing technologies with the multinomial naïve-bayes
classifier”. In: Proc. ACM Workshop on Cloud Computing Security. 2009.

[64] Y. Hifny and S. Renals. “Speech Recognition Using Augmented Conditional Random
Fields”. In: IEEE Transactions on Audio, Speech, and Language Processing 17.2 (2009),
pp. 354–365.

[65] Andrew Hintz. “Fingerprinting websites using traffic analysis”. In: Proc. 2nd International
Workshop on Privacy Enhancing Technologies. Apr. 2002.

[66] Chih-wei Hsu, Chih-chung Chang, and Chih-jen Lin. “A practical guide to support vector
classification”. 2010. url: http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf (visited on
08/12/2015).

[67] HTTPS Everywhere. url: https://www.eff.org/https-everywhere (visited on 02/16/2014).

[68] A. Iacovazzi and A. Baiocchi. “Optimum packet length masking”. In: 22nd International
Teletraffic Congress (ITC). 2010, pp. 1–8.

[69] Identity Fraud Survey Report. Javelin Strategy & Research, 2010.

[70] Mohamad Jaber and Chadi Barakat. “Enhancing Application Identification by Means of
Sequential Testing”. In: Proceedings of the 8th International IFIP-TC 6 Networking Conference.
2009.

[71] E. T. Jaynes. “Information Theory and Statistical Mechanics”. In: Phys. Rev. 106.4 (May
1957), pp. 620–630.

[72] Frederick Jelinek. Statistical Methods for Speech Recognition. Massachusetts Institute of
Technology, 1997.

134

http://dx.doi.org/10.1145/1656274.1656278
http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf
https://www.eff.org/https-everywhere

[73] Marc Juárez, Sadia Afroz, Gunes Acar, Claudia Dı́az, and Rachel Greenstadt. “A Critical
Evaluation of Website Fingerprinting Attacks”. In: ACM CCS 14: 21st Conference on
Computer and Communications Security. Ed. by Gail-Joon Ahn, Moti Yung, and Ninghui Li.
ACM Press, Nov. 2014, pp. 263–274.

[74] Jaeyeon Jung, Vern Paxson, Arthur W. Berger, and Hari Balakrishnan. “Fast Portscan
Detection Using Sequential Hypothesis Testing”. In: 2004 IEEE Symposium on Security and
Privacy. IEEE Computer Society Press, May 2004, pp. 211–225.

[75] Daniel Jurafsky and James H. Martin. Speech and Language Processing: An Introduction to
Natural Language Processing, Computational Linguistics, and Speech Recognition. Prentice Hall,
2008.

[76] Thomas Karagiannis, Andre Broido, Michalis Faloutsos, and Kc claffy. “Transport layer
identification of P2P traffic”. In: IMC ’04: Proc. 4th ACM SIGCOMM conference on Internet
measurement. Oct. 2004.

[77] Thomas Karagiannis, Konstantina Papagiannaki, and Michalis Faloutsos. “BLINC:
multilevel traffic classification in the dark”. In: SIGCOMM Comput. Commun. Rev. 35.4
(2005), pp. 229–240.

[78] Timothy Kempton and Roger K. Moore. “Language Identification: Insights from the
Classification of Hand Annotated Phone Transcripts”. In: Speaker and Language Recognition
Workshop. Jan. 2008.

[79] Angelos D. Keromytis. “A Survey of Voice over IP Security Research”. In: Proceedings of the
5th International Conference on Information Systems Security. 2009, pp. 1–18.

[80] Alon Lavie. Evaluating the Output of Machine Translation Systems. AMTA Tutorial. 2010.

[81] Alon Lavie and Michael J. Denkowski. “The METEOR metric for automatic evaluation of
machine translation”. In: Machine Translation 23 (Sept. 2009), pp. 105–115.

[82] Brian Lavoie and Henrik Frystyk Nielsen, eds. Web Characterization Terminology &
Definitions Sheet. 1999. url: http://www.w3.org/1999/05/WCA-terms (visited on 12/12/2013).

[83] Kai-Fu Lee and Hsiao-Wuen Hon. “Speaker-independent phoneme recognition using
Hidden Markov Models”. In: The Journal of the Acoustical Society of America 84.S1 (1988),
p. 62.

[84] M. Leech, M. Ganis, Y. Lee, R. Kuris, D. Koblas, and L. Jones. SOCKS Protocol Version 5.
RFC 1928 (Proposed Standard). Internet Engineering Task Force, Mar. 1996. url:
http://www.ietf.org/rfc/rfc1928.txt.

[85] T. Leila and R. Bettati. “Privacy of encrypted Voice-over-IP”. In: Proceedings of the IEEE
International Conference on Systems, Man and Cybernetics. 2007, pp. 3063–3068.

[86] Let’s Encrypt. url: https://letsencrypt.org (visited on 08/27/2015).

135

http://www.w3.org/1999/05/WCA-terms
http://www.ietf.org/rfc/rfc1928.txt
https://letsencrypt.org

[87] Binglong Li, Qingxian Wang, and Junyong Luo. “Forensic Analysis of Document
Fragment Based on SVM”. In: International Conference on Intelligent Information Hiding and
Multimedia Signal Processing. Dec. 2006.

[88] Marc Liberatore and Brian Neil Levine. “Inferring the source of encrypted HTTP
connections”. In: ACM CCS 06: 13th Conference on Computer and Communications Security.
Ed. by Ari Juels, Rebecca N. Wright, and Sabrina De Capitani di Vimercati. ACM Press,
Oct. 2006, pp. 255–263.

[89] Dong C. Liu, Jorge Nocedal, and Dong C. “On the Limited Memory BFGS Method for
Large Scale Optimization”. In: Mathematical Programming 45 (1989), pp. 503–528.

[90] Wen Ming Liu, Lingyu Wang, Kui Ren, Pengsu Cheng, and Mourad Debbabi.
“k-Indistinguishable traffic padding in web applications”. In: International Conference on
Privacy Enhancing Technologies. 2012.

[91] Liming Lu, Ee-Chien Chang, and Mun Choon Chan. “Website Fingerprinting and
Identification Using Ordered Feature Sequences”. In: ESORICS 2010: 15th European
Symposium on Research in Computer Security. Ed. by Dimitris Gritzalis, Bart Preneel, and
Marianthi Theoharidou. Vol. 6345. Lecture Notes in Computer Science. Springer, Sept.
2010, pp. 199–214.

[92] Yuanchao Lu. “On Traffic Analysis Attacks To Encrypted VoIP Calls”. MA thesis.
Cleveland State University, Fenn College of Engineering, 2009.

[93] Xiapu Luo, Peng Zhou, Edmond W. W. Chan, Wenke Lee, Rocky K. C. Chang, and
Roberto Perdisci. “HTTPOS: Sealing Information Leaks with Browser-side Obfuscation of
Encrypted Flows”. In: ISOC Network and Distributed System Security Symposium –
NDSS 2011. The Internet Society, Feb. 2011.

[94] Robert Lyda and James Hamrock. “Using Entropy Analysis to Find Encrypted and Packed
Malware”. In: IEEE Security and Privacy 5 (Mar. 2007), pp. 40–45.

[95] Alok Madhukar and Carey Williamson. “A Longitudinal Study of P2P Traffic
Classification”. In: Proceedings of the 14th IEEE International Symposium on Modeling,
Analysis, and Simulation (MASCOTS). 2006, pp. 179–188.

[96] Gjorgji Madjarov, Dragi Kocev, Dejan Gjorgjevikj, and Sašo Džeroski. “An extensive
experimental comparison of methods for multi-label learning”. In: Pattern Recognition 45.9
(2012), pp. 3084–3104.

[97] Gregor Maier, Robin Sommer, Holger Dreger, Anja Feldmann, Vern Paxson, and
Fabian Schneider. “Enriching network security analysis with time travel”. In: Proceedings of
the ACM SIGCOMM 2008 Conference on Applications, Technologies, Architectures, and
Protocols for Computer Communications. 2008, pp. 183–194.

[98] Gianluca Maiolini, Andrea Baiocchi, Alfonso Iacovazzi, and Antonello Rizzi. “Real Time
Identification of SSH Encrypted Application Flows by Using Cluster Analysis
Techniques”. In: Proceedings of the International IFIP-TC 6 Networking Conference. 2009,
pp. 182–194.

136

[99] Paras Malhotra. “Detection of Encrypted Streams for Egress Monitoring”. MA thesis. Iowa
State University, 2007.

[100] Suhas Mathur and Wade Trappe. “BIT-TRAPS: Building Information-Theoretic Traffic
Privacy Into Packet Streams”. In: IEEE Transactions on Information Forensics and Security 6.3
(2011), pp. 752–762.

[101] Ueli M. Maurer. “A Universal Statistical Test for Random Bit Generators”. In: Journal of
Cryptology 5.2 (1992), pp. 89–105.

[102] Anthony McGregor, Mark Hall, Perry Lorier, and James Brunskill. “Flow Clustering Using
Machine Learning Techniques”. In: PAM. 2004, pp. 205–214.

[103] Message Stream Encryption. url: http://wiki.vuze.com/w/Message_Stream_Encryption (visited
on 08/20/2015).

[104] Brad Miller, Ling Huang, Anthony D. Joseph, and J. Doug Tygar. “I Know Why You Went
to the Clinic: Risks and Realization of HTTPS Traffic Analysis”. In: CoRR abs/1403.0297
(2014). arXiv: 1403.0297 [cs.CR].

[105] Andrew W. Moore and Konstantina Papagiannaki. “Toward the Accurate Identification of
Network Applications”. In: Proceedings of the 6th International Passive and Active Network
Measurement Workshop (PAM). Vol. 3431. Lecture Notes in Computer Science. Springer,
2005, pp. 41–54.

[106] Iosif Mporas, Todor Ganchev, and Nikos Fakotakis. “Speech segmentation using
regression fusion of boundary predictions”. In: Computer Speech & Language 24.2 (2010),
pp. 273–288.

[107] Chitra Muthukrishnan, Vern Paxson, Mark Allman, and Aditya Akella. “Using strongly
typed networking to architect for tussle”. In: Proceedings of the 9th ACM SIGCOMM
Workshop on Hot Topics in Networks. 2010.

[108] Network.proxy.socks remote DNS. url:
http://kb.mozillazine.org/Network.proxy.socks_remote_dns (visited on 02/19/2014).

[109] University of North Carolina Information Technology Services. Transmission of Protected
Health Information and Personal Identifying Information Policy. June 30, 2010. url:
https://its.unc.edu/files/2014/08/Transmission-of-Protected-Health-Information-and-Personal-
Identifying-Information-Policy.pdf (visited on 08/20/2015).

[110] M.P. Oakes. “Computer Estimation of Vocabulary in Protolanguage from Word Lists in
Four Daughter Languages”. In: Journal of Quantitative Linguistics 7.3 (2000), pp. 233–243.

[111] Julien Olivain and Jean Goubault-Larrecq. Detecting Subverted Cryptographic Protocols by
Entropy Checking. Research Report LSV-06-13. Laboratoire Spécification et Vérification,
ENS Cachan, France, June 2006.

[112] OpenSSH. url: http://www.openssh.com (visited on 08/07/2015).

137

http://wiki.vuze.com/w/Message_Stream_Encryption
http://arxiv.org/abs/1403.0297
http://kb.mozillazine.org/Network.proxy.socks_remote_dns
https://its.unc.edu/files/2014/08/Transmission-of-Protected-Health-Information-and-Personal-Identifying-Information-Policy.pdf
https://its.unc.edu/files/2014/08/Transmission-of-Protected-Health-Information-and-Personal-Identifying-Information-Policy.pdf
http://www.openssh.com

[113] Andriy Panchenko, Lukas Niessen, Andreas Zinnen, and Thomas Engel. “Website
fingerprinting in onion routing based anonymization networks”. In: Proc. 10th ACM
Workshop on Privacy in the Electronic Society. 2011.

[114] Liam Paninski. “Estimating Entropy on m Bins Given Fewer than m Samples”. In: IEEE
Transactions on Information Theory 50.9 (2004), pp. 2200–2203.

[115] Liam Paninski. “Estimation of Entropy and Mutual Information”. In: Neural Computation
15.6 (2003), pp. 1191–1253.

[116] Liam Paninski and Masanao Yajima. “Undersmoothed Kernel Entropy Estimators”. In:
IEEE Transactions on Information Theory 54.9 (2008), pp. 4384–4388.

[117] Antonis Papadogiannakis, Michalis Polychronakis, and Evangelos P. Markatos.
“Improving the accuracy of network intrusion detection systems under load using
selective packet discarding”. In: Proceedings of the Third European Workshop on System
Security. EUROSEC. 2010.

[118] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. “Scikit-learn: Machine Learning in Python”. In:
Journal of Machine Learning Research 12 (2011), pp. 2825–2830.

[119] C. Perkins and JM. Valin. Guidelines for the Use of Variable Bit Rate Audio with Secure RTP.
RFC 6562 (Proposed Standard). Internet Engineering Task Force, Mar. 2012. url:
http://www.ietf.org/rfc/rfc6562.txt.

[120] Mike Perry. A Critique of Website Traffic Fingerprinting Attacks. Nov. 7, 2013. url:
https://blog.torproject.org/blog/critique-website-traffic-fingerprinting-attacks (visited on
12/11/2013).

[121] Mike Perry. Experimental defense for website traffic fingerprinting. Sept. 4, 2011. url:
https://blog.torproject.org/blog/experimental-defense-website-traffic-fingerprinting (visited on
02/16/2014).

[122] M.A. Pitt, L. Dilley, K. Johnson, S. Kiesling, W. Raymond, E. Hume, and E. Fosler-Lussier.
Buckeye Corpus of Conversational Speech (2nd release). www.buckeyecorpus.osu.edu,
Columbus, OH: Department of Psychology, Ohio State University (Distributor). 2007.

[123] J Ross Quinlan. C4.5: Programs for Machine Learning. 1993.

[124] Adwait Ratnaparkhi. “A Maximum Entropy Model for Part-Of-Speech Tagging”. In:
Proceedings of the Conference on Empirical Methods in Natural Language Processing. 1996,
pp. 133–142.

[125] William D. Raymond, Mark Pitt, Keith Johnson, Elizabeth Hume, Matthew Makashay,
Robin Dautricourt, and Craig Hilts. “An analysis of transcription consistency in
spontaneous speech from the Buckeye corpus”. In: Proceedings of the International
Conference on Spoken Language Processing. 2002.

138

http://www.ietf.org/rfc/rfc6562.txt
https://blog.torproject.org/blog/critique-website-traffic-fingerprinting-attacks
https://blog.torproject.org/blog/experimental-defense-website-traffic-fingerprinting
www.buckeyecorpus.osu.edu

[126] J D Rennie, L Shih, J Teevan, and D R Karger. “Tackling the poor assumptions of naive
Bayes text classifiers”. In: ICML (2003).

[127] Shane Richmond and Christopher Williams. “Millions of internet users hit by massive
Sony PlayStation data theft”. In: The Telegraph (Apr. 26, 2011). url:
http://www.telegraph.co.uk/technology/news/8475728/Millions-of-internet-users-hit-by-
massive-Sony-PlayStation-data-theft.html (visited on 08/20/2015).

[128] Vassil Roussev and Simson L. Garfinkel. “File Fragment Classification - The Case for
Specialized Approaches”. In: IEEE International Workshop on Systematic Approaches to
Digital Forensic Engineering (2009), pp. 3–14.

[129] A Saffari, C Leistner, J Santner, M Godec, and H Bischof. “On-line Random Forests”. In:
IEEE ICCV Workshop on On-line Learning for Computer Vision. 2009.

[130] T. Scott Saponas, Jonathan Lester, Carl Hartung, Sameer Agarwal, and Tadayoshi Kohno.
“Devices that tell on you: privacy trends in consumer ubiquitous computing”. In:
Proceedings of the USENIX Security Symposium. 2007, pp. 1–16.

[131] Selenium. url: http://seleniumhq.org.

[132] Adi Shamir and Nicko van Someren. “Playing “Hide and Seek” with Stored Keys”. In:
FC’99: 3rd International Conference on Financial Cryptography. Ed. by Matthew Franklin.
Vol. 1648. Lecture Notes in Computer Science. Springer, Feb. 1999, pp. 118–124.

[133] Yi Shi and Kanta Matsuura. “Fingerprinting Attack on the Tor Anonymity System”. In:
ICICS 09: 11th International Conference on Information and Communication Security. Ed. by
Sihan Qing, Chris J. Mitchell, and Guilin Wang. Vol. 5927. Lecture Notes in Computer
Science. Springer, Dec. 2009, pp. 425–438.

[134] SOCKS 4A: A Simple Extension to SOCKS 4 Protocol. url:
http://www.openssh.org/txt/socks4a.protocol (visited on 02/19/2014).

[135] Robin Sommer. “Viable Network Intrusion Detection in High-Performance
Environments”. Doktorarbeit. Technische Universität München, Munich, Germany, 2005.

[136] Dawn Xiaodong Song, David Wagner, and Xuqing Tian. “Timing analysis of keystrokes
and timing attacks on SSH”. In: Proceedings of the USENIX Security Symposium. 2001,
pp. 25–25.

[137] Andreas Stolcke, Sachin S Kajarekar, and Luciana Ferrer. “Nonparametric feature
normalization for SVM-based speaker verification”. In: IEEE International Conference on
Acoustics, Speech and Signal Processing. IEEE, 2008.

[138] A Stolerman, R Overdorf, and S Afroz. “Classify, but verify: Breaking the closed-world
assumption in stylometric authorship attribution”. In: IFIP Working Group 11.9 on Digital
Forensics (2013).

[139] Salvatore J. Stolfo, Ke Wang, and Wei-jen Li. Fileprint analysis for Malware Detection.
Tech. rep. Columbia University, 2005.

139

http://www.telegraph.co.uk/technology/news/8475728/Millions-of-internet-users-hit-by-massive-Sony-PlayStation-data-theft.html
http://www.telegraph.co.uk/technology/news/8475728/Millions-of-internet-users-hit-by-massive-Sony-PlayStation-data-theft.html
http://seleniumhq.org
http://www.openssh.org/txt/socks4a.protocol

[140] Qixiang Sun, Daniel R. Simon, Yi-Min Wang, Wilf Russell, Venkata N. Padmanabhan, and
Lili Qiu. “Statistical Identification of Encrypted Web Browsing Traffic”. In: 2002 IEEE
Symposium on Security and Privacy. IEEE Computer Society Press, May 2002, pp. 19–30.

[141] S. Momina Tabish, M. Zubair Shafiq, and Muddassar Farooq. “Malware detection using
statistical analysis of byte-level file content”. In: KDD Workshop on CyberSecurity and
Intelligence Informatics. 2009, pp. 23–31.

[142] Gautam Thatte, Urbashi Mitra, and John Heidemann. “Parametric Methods for Anomaly
Detection in Aggregate Traffic”. In: ACM Transactions on Networking (2011).

[143] Tor Project: FAQ. url: https://www.torproject.org/docs/faq.html.en (visited on 02/19/2014).

[144] Brian Trammell, Elisa Boschi, Gregorio Procissi, Christian Callegari, Peter Dorfinger, and
Dominik Schatzmann. “Identifying Skype Traffic in a Large-Scale Flow Data Repository”.
In: Traffic Monitoring and Analysis. Vol. 6613. Lecture Notes in Computer Science. 2011,
pp. 72–85.

[145] Jean-Marc Valin. The Speex Codec Manual. 2007.

[146] Cor J. Veenman. “Statistical Disk Cluster Classification for File Carving”. In: Proceedings of
the Third International Symposium on Information Assurance and Security. 2007, pp. 393–398.

[147] Dennis D. Wackerly, William Mendenhall III, and Richard L. Scheaffer. Mathematical
Statistics with Applications. Sixth. Pacific Grove, CA: Duxbury Press, 2002, pp. 371, 467–473.

[148] A. Wald. “Sequential Tests of Statistical Hypotheses”. In: The Annals of Mathematical
Statistics 16.2 (June 1945), pp. 117–186.

[149] A. Wald and J. Wolfowitz. “Optimum Character of the Sequential Probability Ratio Test”.
In: Annals of Mathematical Statistics 19.3 (1948), pp. 326–339.

[150] Ke Wang and Salvatore J. Stolfo. “Anomalous Payload-Based Network Intrusion
Detection”. In: Recent Advances in Intrusion Detection. 2004, pp. 203–222.

[151] Tao Wang, Xiang Cai, Rishab Nithyanand, Rob Johnson, and Ian Goldberg. “Effective
Attacks and Provable Defenses for Website Fingerprinting”. In: Proceedings of the USENIX
Security Symposium. San Diego, CA, Aug. 2014.

[152] Tao Wang and Ian Goldberg. “Improved Website Fingerprinting on Tor”. In: Proc. ACM
Workshop on Privacy in the Electronic Society (WPES). 2013.

[153] Michael Weber, Matthew Schmid, David Geyer, and Michael Schatz. “PEAT - A toolkit for
detecting and analyzing malicious software”. In: Proceedings of the 18th Annual Computer
Security Applications Conference. 2002, pp. 423–431.

[154] Andrew M. White, Srinivas Krishnan, Michael Bailey, Fabian Monrose, and
Phillip A. Porras. “Clear and Present Data: Opaque Traffic and its Security Implications
for the Future”. In: ISOC Network and Distributed System Security Symposium – NDSS 2013.
The Internet Society, Feb. 2013.

140

https://www.torproject.org/docs/faq.html.en

[155] Andrew M. White, Austin R. Matthews, Kevin Z. Snow, and Fabian Monrose. “Phonotactic
Reconstruction of Encrypted VoIP Conversations: Hookt on Fon-iks”. In: 2011 IEEE
Symposium on Security and Privacy. IEEE Computer Society Press, May 2011, pp. 3–18.

[156] Charles V. Wright, Lucas Ballard, Scott E. Coull, Fabian Monrose, and Gerald M. Masson.
“Spot Me if You Can: Uncovering Spoken Phrases in Encrypted VoIP Conversations”. In:
2008 IEEE Symposium on Security and Privacy. IEEE Computer Society Press, May 2008,
pp. 35–49.

[157] Charles V. Wright, Lucas Ballard, Fabian Monrose, and Gerald M. Masson. “Language
Identification of Encrypted VoIP Traffic: Alejandra y Roberto or Alice and Bob?” In:
Proceedings of the USENIX Security Symposium. 2007.

[158] Charles V. Wright, Scott E. Coull, and Fabian Monrose. “Traffic Morphing: An Efficient
Defense Against Statistical Traffic Analysis”. In: ISOC Network and Distributed System
Security Symposium – NDSS 2009. The Internet Society, Feb. 2009.

[159] Charles V Wright, Fabian Monrose, and Gerald M Masson. “On inferring application
protocol behaviors in encrypted network traffic”. In: The Journal of Machine Learning
Research 7 (2006), pp. 2745–2769.

[160] XVFB. url: http://www.x.org/releases/X11R7.6/doc/man/man1/Xvfb.1.xhtml.

[161] Greg Young and John Pescatore. Magic Quadrant for Network Intrusion Prevention Systems.
market research report. Gartner, Inc., Dec. 6, 2010.

[162] Like Zhang and Gregory B. White. “An Approach to Detect Executable Content for
Anomaly Based Network Intrusion Detection”. In: IEEE International Parallel and
Distributed Processing Symposium. 2007, pp. 1–8.

[163] J. Zobel and P. Dart. “Finding Approximate Matches in Large Lexicons”. In:
Software—Practice and Experience 25.3 (1995), pp. 331–345.

[164] J. Zobel and P. Dart. Fnetik: An Integrated System for Phonetic Matching. RMIT, Technical
Report 96-6. 1996.

141

http://www.x.org/releases/X11R7.6/doc/man/man1/Xvfb.1.xhtml

	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	INTRODUCTION
	Thesis Statement
	Real-time Detection of Opaque Network Traffic
	Reconstructing Transcripts of Encrypted VoIP Conversations
	Identification of Encrypted Web Resources
	Contributions

	OPAQUE TRAFFIC
	Introduction
	Approach
	Likelihood Ratio Test
	Sequential Probability Ratio Test

	Evaluation
	Offline Analysis
	File Type Identification
	Content Type Matching
	Operator Analysis

	Online Analysis
	Operational Impact

	Limitations
	Related Work
	Discussion
	Future Work
	Compressed vs Encrypted
	Flow-level Analysis

	Broader Implications

	PHONOTACTIC RECONSTRUCTION OF ENCRYPTED VOIP CONVERSATIONS
	Introduction
	Background Information
	Phonetic Models of Speech
	Voice over IP

	Overview of Our Approach
	Data and Adversarial Assumptions

	Related Work
	Methodology
	Finding Phoneme Boundaries (Stage 1)
	Methodology
	Evaluation
	Classifying Phonemes (Stage 2)
	Maximum Entropy Discrimination of Phonemes
	HMM Modeling of Phonemes
	Classification
	Enhancing Classification using Language Modeling
	Evaluation
	Segmenting Phoneme Streams into Words (Stage 3)
	Identifying Words via Phonetic Edit Distance (Stage 4)
	Measuring the Quality of Our Output

	Empirical Evaluation
	An Adversarial Point of View (Measuring Confidence)
	Discussion & Mitigation

	Conclusion
	Future Work
	Skype
	Conversational Speech

	Broader Implications

	PLAYING HIDE-AND-SEEK
	Introduction
	Background & Related Work
	Learning Algorithms
	Features

	Assumptions and Threat Model
	Networking Model
	Encryption Model
	HTTPS model
	Tunnel Model
	DNS Traffic

	World Models
	cw
	ow
	Binary ow

	Partial Information

	Approach
	Classification Scheme: Multi-label
	Classifier Model: Random Forest
	Support Vector Machine Classifiers
	Naive Bayes Classifiers
	Random Forests
	Suitability for Our Approach

	Abstention and Thresholding
	Post-Classification Thresholding
	Validation and Threshold Selection

	Hyper-parameter Optimization
	Epoch Validation

	Evaluation
	Data Collection
	URLs
	Scripted Retrievals

	Evaluation Criteria
	Multi-class Metrics
	Multi-label Metrics

	Experimental Setup
	World Models
	Datasets
	Learning Algorithms
	Multi-label Classification

	Feature Sets
	Validation and Data Selection
	Hyper-parameter Optimization

	Implementation
	Results
	Multi-class Comparison with Previous Work
	Multiple URLs per Domain Name
	Hyper-parameter Optimization

	Labeling Traces with URL Components
	Abstaining from Classification
	Summary of Findings

	Limitations and Future Work

	Broader Implications

	DISCUSSION & CONCLUSIONS
	OPAQUE TRAFFIC
	Comparison of Methods
	Preliminaries
	Discrete Kolmogorov-Smirnov Test

	Parameter Space Exploration
	Byte-Entropy Distributions for Small n
	Log-likelihoods

	Theoretical Efficiency

	HTTP Labeling Rules

	PLAYING HIDE-AND-SEEK
	Scripted Retrieval Details
	Precision and Recall

	BIBLIOGRAPHY

