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Abstract 

 

Mark Robert Cronan.  MAP3K Regulation of MAPK Activation in vitro and Tumor 
Growth and Metastasis in vivo 

(Under the Direction of Gary L. Johnson, Ph.D.) 
 

Mitogen activated protein kinase (MAPK) signaling is frequently dysregulated in 

cancer and contributes to both tumor growth and metastasis.  These signaling networks 

consist of a three-tiered phospho-relay system in which the upstream MAPK kinase 

kinase (MAP3Ks) control magnitude and duration of downstream MAPK activation.  

MAPK activation drives the subsequent physiological outcomes in the cell based on the 

location, strength and pattern of MAPK activation.  While work to date has focused on 

activation and dysregulation of MAPK signaling in tumors, it has largely ignored the role 

of upstream MAP3Ks, despite the critical role of MAP3Ks in pathogenic MAPK 

signaling.  

Herein, I use multiple screening methods to assess the role of MAP3Ks in MAPK 

network activation in vitro and physiological outcome in cancer in vivo.  Specifically, I 

have devised an immunofluorescent based MAPK activation screen that I use to identify 

MAP3Ks that regulate MAPK network activation in response to seven stimuli.  Screening 

identified novel positive and negative regulators of growth factor, cytokine and stress 

stimulated ERK1/2, JNK and p38 activation.  In vivo, I use an orthotopic xenograft 

system with a library of shRNAs to nine MAP3Ks to screen for novel roles of MAP3Ks 
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in tumor growth and metastasis.  I identified new roles for six MAP3Ks in tumor growth 

and/or metastasis in vivo.  Of these six MAP3Ks, I focus particularly on MEKK2 and 

MLK3 that control both tumor growth and metastasis in vivo.  I demonstrate that MLK3 

regulates cell growth and activation of JNK and p38 in vitro and controls macrophage 

recruitment to tumors in vivo.  By contrast, I find MEKK2 regulates ERK5 activation by 

ERBB family members and I demonstrate that loss of ERK5 activation inhibits metastasis 

in vivo.  Taken together, these results demonstrate the varied modes of MAP3K 

regulation of MAPK network activation and how altered MAPK signaling through 

MAP3Ks contributes to pathogenic signaling in cancer. 
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I.  Introduction 

 

Cancer is the second leading cause of death worldwide, causing the death of about 

seven million people annually (1).  In cancer cells, mutations resulting from genetic insult 

cause uncontrolled cellular proliferation due to changes in the cellular signaling programs 

mediating growth and death.  While many signaling pathways and genes have been 

implicated in cancer, work within this thesis is focused on signaling by the MAPKs, a 

group of signaling proteins that control both oncogenic and tumor suppressive signaling 

pathways in cancer. 

 

Tumor Growth and Metastasis 

Proliferation of cells is tightly regulated in the body by control of both cell growth 

and cell death.  Development of cancer requires the acquisition of a series of mutations 

that not only promote cell growth but also inhibit cell death.  The identification of 

proteins involved in cancer has led to the discovery of many novel oncogenes (such as 

activated forms of Ras, Src, Abl and EGFR) and tumor suppressors (such as p53, p16 and 

PTEN) that are either mutationally activated (oncogenes) or inactivated/deleted (tumor 

suppressors) from the cancer cells to promote growth (2,3).  While mutation of genes 

such as Ras and p53 have been shown to be important in cancer development, it is 

currently estimated that most tumors require ~15 mutations (called driver mutations) to 

initiate and support the tumor (4).  Many of these driver mutations have more modest 
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effects then genes like Ras or p53 and are likely a careful fine-tuning of oncogenic and 

tumor suppressive signaling pathways by the cancer cells. 

Cancer cell growth is driven not only by mutational events, but also by tumor 

milieu.  Cancer cells and surrounding stromal cells secrete many growth factors and 

cytokines that promote tumor growth and tumor cell survival (5-7).  Many of these 

factors drive apoptosis in normal cells but are hijacked by cancer cells to promote cellular 

growth instead of apoptosis (5,7).  These growth factors and cytokines also allow the 

tumor to recruit additional stromal cells from the host such as endothelial cells, 

fibroblasts, macrophages and granulocytes (7,8).  These newly recruited stromal cells 

support the tumor by enhancing cancer cell growth, forming a functional tumor 

vasculature and by locally remodeling the tumor microenvironment.(9,10) 

While unconstrained proliferation is an important characteristic of cancer, most 

cancer related death results from the metastatic spread of cancer cells to vital organs.  In 

metastasis, cancer cells migrate out of the tumor and intravasate into the blood vessels 

where they can circulate throughout the body.   They subsequently extravasate out of the 

blood vessels at a new location and seed at the site where, after a period of adaptation, 

they are able to grow out and form a secondary tumor (11,12).  To metastasize the cancer 

cells must be able to remodel the local tumor environment to permit their escape and then 

migrate out of the primary tumor into the vasculature (11,12).  This requires cancer cells 

to secrete a number of cellular factors including proteases such as the matrix 

metalloproteinases and cathepsins to break down the extracellular matrix (ECM) 

surrounding the tumor, remodeling of cell-cell contacts through changes in expression of 

adhesion molecules (such as switching from E-cadherin to N-cadherin expression and 
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loss of tight junction proteins), adoption of a mesenchymal morphology, and release 

growth factors and cytokines, such as the TGFβ family, EGF family members, and CSF 

family members to promote cancer cell migration and sustain the production of celluar 

factors required for metastasis (11-14).   

It has been proposed that the changes that are required for cancer cells to 

metastasize are due to activation of an epithelial to mesenchymal transition (EMT) 

program in the cancer cells (15,16).  EMT was initially characterized as a developmental 

program that allows epithelial cells at specific times to assume mesenchymal morphology 

which is needed to migrate and colonize distant locations (15).   Similar to metastasis, in 

developmental EMT the sheets of epithelial cells lose cell-cell contacts, secrete proteases 

and ECM proteins and remodel their local enviroment to facilitate cell migration (15).  

Many of the growth factors and cytokines known to be important for tumor metastasis, 

such as the TGFβ family and EGF family induce EMT in many cell types (11,15,16).  

Gene array data has also demonstrated that metastatic cancer cells and cells undergoing 

EMT have similar gene expression profiles (15).  Activation of the EMT program in 

cancer cells enhances metastatic potential (15,16).  Thus the activation of the EMT 

program allows for coordinate activation of a series of pro-metastatic genes within the 

cancer cell and is crucial for cancer cell metastasis. 

While tumor metastasis is one of the most detrimental occurrences with respect to 

clinical outcomes (as noted above, most cancer related death is due to metastasis rather 

than the primary tumor), little has been done in the clinic to identify drugs that inhibit 

metastasis.  In large part, this is due to the fact that metastasis is very hard to study in the 

clinic.  However, drugs that can inhibit tumor growth as well as metastasis may offer a 
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significant survival advantage over drugs that target only tumor growth.  Chapter 3 in this 

dissertation describes our efforts to identify kinases that regulate both tumor growth and 

metastasis in tumor models in vivo that may be potential drug targets. 

 

MAPKs, MAP3Ks and signaling 

Mitogen activated protein kinase (MAPK) pathways have emerged as one of the 

major regulators of tumor growth and metastasis (17).  MAPK pathways are signaling 

cascades that link extracellular stimuli (through their receptors) to intracellular responses.  

Specifically, MAPK pathways consist of three tiered kinase pathways in which a MAP 

kinase kinase kinase (MAP3K) activates a MAP kinase kinase (MAP2K), which 

subsequently activates a MAPK (Figure 1.1) (17).  MAPKs then activate a wide array of 

transcription factors and additional kinases that coordinate cellular responses to the 

stimulus (Figure 1.1).  There are four major families of MAPKs, the ERK1/2 family 

(consisting of ERK1 and ERK2), the JNK family (consisting of JNK1, JNK2 and JNK3), 

the p38 family (consisting of p38α, p38β, p38γ and p38δ) and ERK5 (18,19).  

Additionally, many of these MAPK genes can be alternatively spliced, generating a 

diverse array of MAPK isoforms (20-22).  While there are four families of MAPKs, these 

are activated by seven MAP2Ks.  The MAP2Ks are MEK1 and MEK2 that activate 

ERK1/2, MKK4 and MKK7 that activate JNK, MKK3, MKK4 and MKK6 that activate 

p38 and MEK5 that activates ERK5 (19).  The seven MAP2Ks are in turn regulated by a 

diverse group of ~20 MAP3Ks (Figure 1.2) (21).  The MAP3Ks consist of four major 

families based on sequence homology (21).  The RAF family, originally discovered 

because of their homology to oncogenic v-Raf, consisting of A-Raf, B-Raf and c-Raf, 
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which predominantly activate ERK1/2.  The Ste family, which was originally cloned due 

to their homology to the yeast MAP3K Ste11, consists of MEKK1-4, ASK1 and ASK2, 

TAK1 and Tpl2, that activate ERK1/2, JNK, p38 and ERK5 families.  The TAO kinases, 

which are related to yeast Ste20, consist of TAO1, TAO2 and TAO3 that activate p38.  

Last, the mixed lineage kinase (MLK) family, consisting of MLK1-4, LZK, DLK and 

MLK7, predominantly activate the JNK and p38 families. 

MAPK signaling has been linked to a wide range of cellular outcomes.  ERK1/2 

signaling has been linked canonically to cell growth and cell survival as well as to 

migration, cytokine and growth factor release and expression of proteases (23).  By 

contrast, JNK signaling has been canonically associated with apoptosis, but has also been 

found to promote cell survival, cell proliferation, as well as inflammation, migration, 

protease expression and cytokine release (17).  Similarly, p38 has been associated with 

apoptosis, although it also has been linked to cell survival, proliferation, inflammation, 

proangiogenic signaling, protease expression and cytokine release (17).  The varied and 

frequently conflicting range of responses driven by MAPKs is likely the product of 

variations in signaling intensity and duration of MAPK activation as well as activation of 

specific MAPK genes and splice isoforms.  The end result is a complex panoply of pro-

oncogenic and anti-oncogenic functions the outcome of which likely hinges on upstream 

inputs into the MAPK pathways. 

Given the large number of MAP3Ks and smaller numbers of MAP2Ks and 

MAPKs, it has been suggested that the specificity of MAPK activation is controlled by 

the upstream MAP3Ks (Figure 1.2) (19,21).  Consistent with this hypothesis, it has been 

found that knockdown or knockout of specific MAP3Ks can block activation of specific 
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MAPKs in a stimulus dependent manner.  For instance, knockdown of ZAK (also known 

as MLK7) has been shown to block activation of JNK and p38 by the protein sythesis 

inhibitor anisomycin as well as p38 activation by hyperosmolar stimuli, such as 

hyperosmolar NaCl (24).  Tpl2 has been shown to have a specific role in Thrombin 

stimulated activation of ERK1/2 and JNK signaling pathways, LPS stimulated ERK1/2 

activation, IL-1β stimulated ERK1/2 activation and TNFα ERK1/2 and JNK activation 

using knockout cell lines (25,26).  However, the results with many stimuli have not been 

clear cut and there is controversy regarding which MAP3Ks regulate which MAPKs.  For 

instance, no fewer then four MAP3Ks (MLK3, TAK1, ASK1 and Tpl2) have been found 

to regulate TNFα stimulated JNK signaling (26-29).  The many MAP3Ks required for 

TNFα stimulation of JNK may be due to contributions of multiple MAP3Ks to the 

signaling event or cell type specific expression/signaling by the MAP3Ks.  It may also be 

due to complex formation between different MAP3Ks.  While heterodimeric complex 

formation between MAP3Ks has not been described in TNFα stimulated JNK activation, 

it has been described in other systems.  For instance, MLK3 has been found to associate 

with B-Raf and c-Raf to regulate B-Raf and c-Raf activation of ERK1/2 (30).  Similarly, 

TAK1 has been found to interact with MEKK3 and this interaction is thought to regulate 

the ability of MEKK3 to activate NF-κB (31).  While identification of the specific 

MAP3Ks regulating individual MAPKs has been contentious and may involve non-

kinase mechanisms, the data consistently demonstrates specificity in the signaling 

pathways controlled by the MAP3Ks.  Research described in chapter 2 of this dissertation 

describes our efforts to systematically identify the MAPK responses controlled by a 
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group of MAP3Ks.  I hypothesize that identification and targeting of MAP3K signaling 

will allow for selective inhibition of specific MAPK responses.   

MAPK signaling and cancer in cell culture and animal models 

ERK1/2 pathway 

Of the four families of MAPKs, the ERK1/2 family is the group with the best 

known role in tumor biology.  In cell culture models, ERK1 and ERK2 were originally 

found to be activated by mitogens, and additional work using inhibitors has determined 

that ERK1/2 promotes cell growth by a wide array of growth factors such as serum, EGF, 

LPA, FGFs and HGF.  The effects of ERK1/2 on proliferation are exerted through the 

ability of ERK1/2 to promote cell cycle progression (such as through cyclin D 

expression), nucleotide synthesis (through CPSII) and protein synthesis (through Mnk1) 

(32,33).  Further, the role of ERK1/2 signaling in growth has been confirmed with 

siRNA, where it has been found that the sum total of ERK1 and ERK2 levels controlled 

proliferation (34,35).  In agreement with siRNA experiments, genetic models have also 

implicated sum total levels of ERK1 and ERK2 in embryonic viability (35).  Whereas 

ERK1+/- mice and ERK2+/- mice are viable, mice heterozygous for both ERK1 and ERK2 

knockout were exceedingly rare (constituting 3.4% of live births versus 50% expected for 

the cross) (35).  In crosses of the resulting ERK1+/-ERK2+/- mice, no mice were found to 

have only 1 ERK1 or ERK2 allele (35).   

ERK1/2 has been found to mediate cell survival induced by a wide array of 

growth factors.  This is accomplished through many mechanisms such as ERK1/2 

phosphorylation and sequestration of the proapoptotic proteins BAD and BIM (36).  The 

role of ERK1/2 in cell survival has been demonstrated in ERK2-/- embryos.  Loss of 
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ERK2 was embryonic lethal; ERK2-/- embryos were markedly smaller than WT or 

ERK2+/- littermates and showed increased apoptosis, loss of mesoderm differentiation 

and placental defects (37).  However, embryos showed roughly normal BrdU 

incorporation, indicating that ERK2-/- embryos show defects in survival rather then 

proliferation (37). 

The upstream activators of ERK1/2, MEK1 and MEK2 show similar effects in 

cell survival and proliferation as ERK1/2, consistent with the fact that ERK1 and 2 are 

the only proteins known to be phosphorylated by MEK1/2 (38).  Using animals with 

conditional knockout of MEK1 and MEK2 in skin, it was found that skin from 

MEK1/MEK2 double knockout mice had increased apoptosis and decreased proliferation 

(39).  Furthermore, systemic MEK1-/- knockout mice were not viable, with death 

occurring around E10.5 in MEK1-/- embryos likely due to placental defects (40,41). 

ERK1/2 signaling has been implicated not only in cancer relevant processes like 

cell growth and survival, but has also been directly implicated in cancer.  It has been 

found that ERK1 and ERK2 are constitutively activated in many tumors (42).  

Constitutive ERK1/2 activation through introduction of a constitutively active form of 

MEK1/2 transforms cells and promotes both anchorage independent growth in vitro and 

tumor growth in vivo (43).  Consistent with a role for ERK1/2 signaling in cell growth, 

loss of ERK1/2 signaling by inhibitors or siRNA has been shown to inhibit tumor growth 

in liver cancer cell xenografts (34).  Loss of upstream MEK1 by siRNA also decreases 

liver cancer cell xenograft growth (44).  The importance of ERK1/2 signaling in tumor 

growth has been confirmed in ERK1-/- mice, which show decreased tumor number and 

size in a two stage TPA/DMBA mouse skin cancer model (45).  Similar results are seen 
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upstream of ERK1/2, where conditional knockout of MEK1 (but not MEK2) in skin 

results in reduced tumor number and size using the same TPA/DMBA model (38).  

Knockout of MEK1 and MEK2 in mouse skin has also been demonstrated to block 

epidermal hyperplasia induced by expression of oncogenic c-Raf (39).  These data show 

that ERK1/2 is an important pro-oncogenic pathway for tumors. 

 

JNK pathway 

The JNK family of kinases was originally discovered due to their activation by 

cycloheximide and other cellular stresses.  Compared to ERK1/2 signaling, JNK 

signaling is often considered to be pro-apoptotic and as such, tumor suppressive 

(reviewed in (46)).  Apoptotic roles for JNKs have been demonstrated in JNK1-/-JNK2-/- 

MEFs which were found to be resistant to apoptosis induced by anisomycin, UV, and 

methyl methanesulfonate (47).  Work with JNK inhibitors and JNK siRNA have also 

linked JNK to apoptosis by numerous cellular factors and cell stresses (48-50).  

Apoptosis induction by JNK is known to be mediated by JNK dependent transcription of 

proapoptotic factors such as Fas-L and Bak (51,52).  JNK can also phosphorylate and 

regulate mediators of the mitochondrial apoptotic pathway including Bcl2, Bad and Bim 

(53-56).  While JNK is an important mediator of apoptosis, other studies have 

demonstrated a role for JNK in other pathways such as cell growth and survival.  The 

JNK pathway is activated by many growth stimuli such as serum, EGF and LPA (57,58).  

JNK activation by growth stimuli is frequently necessary for cell growth in response to 

these growth factors (57,59).  Furthermore, downstream targets of JNK such as the 

transcription factor c-Jun, have been found to promote cell proliferation and survival 
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(60,61).  JNK knockout MEFs offer further confirmation of the role of JNK in growth, 

JNK1-/- MEFs show a decreased rate of proliferation (62).  Paradoxically, JNK2-/- MEFs 

show increased proliferation; however, this has been proposed to be due to a 

compensatory increase in JNK1 and c-jun levels in JNK2-/- MEFs (62).  Similarly, using 

inhibitors it has been found that JNK promotes cell growth in many cell types such as 

smooth muscle cells, fibroblasts and leukemia cells (63-65).  Interestingly, it appears that 

the varied roles of JNK signaling in apoptosis, cell growth, and cell survival may be due 

to kinetics of signaling.  MEFs stimulated with TNFα show a biphasic activation of JNK.  

Using a chemical genomics approach, it was shown that late phase JNK activation 

promoted cell death whereas early phase JNK activation promoted cell survival (66).  

Thus the varied roles of JNK signaling are likely a product of varying spatial and 

temporal activation of JNK as well as the profile of JNK isoforms activated by the 

stimulus. 

 In vivo, JNK signaling has been found to be both pro- and anti-oncogenic.  

Potential activating mutations have been identified in JNK1, JNK2 and the upstream 

kinase MKK7 in tumor samples, indicating a potential oncogenic role for JNK signaling 

in human tumors (17).  This is corroborated by the identification of a role for JNK1 in 

hepatocellular carcinoma (HCC).  Elevated JNK1 activation has been demonstrated in 

tumor samples from human patients with HCC (67).  The oncogenic role of JNK1 was 

demonstrated by JNK1 knockdown in HCC cell lines which resulted in reduced cell 

proliferation and tumor growth in xenografts in vivo, while JNK2 knockdown had no 

effect (67).  Using both JNK1-/- mice and a peptide based JNK inhibitor, it was also 

demonstrated that JNK1 was necessary for liver tumor proliferation in the 
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diethylnitrosamine (DEN) liver tumor model (67,68).  Oncogenic roles for JNK1 

signaling have been demonstrated in other experimental cancer models such as the N-

methyl-N-nitrosourea induced stomach cancer model (69).  Elevated JNK activation has 

been demonstrated in cohorts of human patients as well.  Elevated JNK phosphorylation 

has been found in malignant effusions from ovarian cancer patients and in basal like and 

triple negative patient breast tumor samples (70,71).  JNK signaling has also been 

implicated in oncogenic ILK signaling in human rhabdomyosarcomas (72).  Downstream 

of JNK, it has been found that blocking JNK phosphorylation of c-jun can inhibit 

intestinal tumors formed in mice engineered to express mutant APC (73).  However, skin 

cancer models demonstrate varied roles of JNK proteins in pro- and anti-oncogenic 

signaling.  Consistent with an oncogenic role for JNK signaling, JNK2-/- mice were found 

to have a decreased rate of papilloma formation in a DMBA/TPA model of skin cancer 

(74).  However, using the same model, JNK1-/- mice were found to have increased 

papilloma formation, implying a role for JNK1 in tumor suppression (75).  JNK1 has also 

been demonstrated to have a tumor suppressive role in intestinal cancer.  Contrary to 

findings in APC mice, in which JNK1 knockout blocked tumor formation by APC 

mutants, JNK1-/- mice are predisposed to develop spontaneous intestinal tumors due to 

increased proliferation and decreased differentiation of intestinal cells.  These results 

demonstrate that JNK signaling has varied roles in tumor outcome that are dependent on 

the upstream activators of JNK signaling, the JNK isoforms involved in the signaling and 

the cell types involved in the cancer. 

 

p38 pathway 
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 Similar to JNK, p38 has been considered a stress activated kinase and is known to 

be activated by many cellular stresses such as hyperosmolarity, UV and γ-irradiation, 

exposure to bacterial products and inflammatory cytokines (19,76).  However, p38 has 

been demonstrated to be activated by mitogens as well including EGF, HGF and lipid 

signals such as lysophosphatidic acid and sphinogosine 1-phosphate (77-80).  Consistent 

with stress induced p38 signaling, p38 has been demonstrated to have tumor suppressive 

functions in vitro through its control of apoptosis and cell cycle regulation (81,82).  This 

tumor suppressive effect of p38 signaling is mediated by p38 regulation of proteins such 

as cyclins, death receptors, Bcl-2 family proteins and p53 (83-86).  p38 signaling has also 

been demonstrated to inhibit cell proliferation through p38 dependent suppression of JNK 

signaling and c-Jun activation (87).  However, a growing body of data has also 

demonstrated that p38 can promote oncogenesis as well.  Inhibitor studies as well as 

siRNA and dominant negative approaches have shown that p38 regulates cell 

proliferation, particularly in p53 null cell lines (88).  p38 has also been demonstrated to 

promote cellular survival through regulation of autophagy and inactivation of GSK3β 

(89,90).  p38 has also been implicated in the release of many cytokines, proteases and 

growth factors such as VEGF, MMPs, IL-6 and IL-8 and that are critical regulators of 

tumor growth, metastasis and vascularization (91-94). 

 Similar to in vitro studies, in vivo studies have demonstrated both oncogenic and 

tumor suppressive roles of p38, although tumor suppressive roles have been most 

extensively documented for p38α.  Disruption of p38α or upstream MKK3/6 has been 

demonstrated to enhance tumor growth of transformed MEFs (95).  Tumor suppressive 

roles of p38 have been corroborated in cancer models.  Conditional knockout of p38α 
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lead to increased tumor size and number in liver tumors induced using a 

DEN/Phenobarbital protocol correlating with increased JNK activation (87).  p38 

signaling has found to be tumor suppressive in lung as well.  Conditional knockout of 

p38α in mouse lung has demonstrated that loss of p38 enhances lung tumorigenesis 

caused by expression of KrasG12V (96).  Specifically, lung tumors in KrasG12Vp38α-/- were 

markedly larger and correlated with much earlier mortality in p38α-/- mice (96).  

Similarly, deletion of the p38 phosphatase Wip1 inhibited tumor growth in mouse 

mammary tumor virus (MMTV)-Her2 and MMTV-Hras driven mammary tumors (97).  

Oncogenic roles for p38 have also been demonstrated, predominantly with p38δ.  Using 

the H-ras driven TPA/DBA skin cancer model and the K-ras driven KrasG12V lung cancer 

model, it was demonstrated that knockout of p38δ resulted in reduced tumor number and 

volume in these Ras driven models (98).  Activation of p38 has also been demonstrated in 

human breast cancer patients with pleural effusions, where p38 phosphorylation is a 

prognostic marker for disease outcome (99). 

 

ERK5 pathway 

 Of the four MAPK pathways, the ERK5 pathway is the least characterized.  In 

cell culture, ERK5 has been shown to promote EGF dependent proliferation in specific 

cell lines (100).  ERK5 has also been demonstrated to promote cellular survival in 

multiple cell types, including neurons and MEFs (101,102).  A role for ERK5 signaling 

in survival was demonstrated in TNFα resistant MCF-7 cells, in which TNFα resistance 

was mediated through the ERK5 pathway by overexpression of the MAP2K MEK5 

(103).  ERK5 has also been demonstrated to be important in survival and transformation 
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mediated by the tyrosine kinase Abl and oncogenic BCR/Abl (104).  A potential role for 

ERK5 signaling in tumor growth and progression has been demonstrated in vivo in 

prostate cancer.  Specifically, it was found that expression of miR-143, a microRNA that 

regulates ERK5 levels, decreased with prostate cancer progression (105).  Expression of 

miR-143 could inhibit cell growth in vitro and tumor growth in vivo and knockdown of 

ERK5 resulted in a similar inhibition of cell growth in vitro as was observed in miR-143 

overexpressing cell lines (105).  

ERK5 has been demonstrated to regulate levels of pro-metastatic factors such as 

the transcription factor Slug, MMP-9 and IL-6 (106-108).  Consistent with a role in 

metastasis, ERK5 signaling has been demonstrated to regulate actin reorganization and 

migration in vitro (106,109).  Metastatic functions of ERK5 have also been demonstrated 

in vivo.  ERK5 was found to be overexpressed in human breast cancer patients.  In these 

patients, overexpression of ERK5 was correlated with decreased survival (110).  

Similarly, overexpression of MEK5 was demonstrated in prostate cancer with MEK5 

expression levels correlating with bony metastases and with decreased survival in 

prostate cancer patients (107).  These results demonstrate that ERK5 signaling may be an 

important mediator of tumor progression and metastasis. 

 

MAP3K Signaling and Cancer 

Raf Family 

Of the MAP3Ks, the Raf family, consisting of A-Raf, B-Raf and c-Raf, has been best 

characterized in cancer.  The Raf family was originally cloned based on its homology to 

the mouse sarcoma virus gene product v-Raf.  Oncogenic mutations of the kinases have 
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been found that result in constitutive activation of ERK1/2 signaling (111).  Of the three 

family members, B-Raf has the strongest transforming potential followed by c-Raf, while 

A-Raf has minimal transforming potential (112).  The variations in transforming potential 

within the Raf family appear to be due to differences in the ability of individual Raf 

family members to activate ERK1/2.  In terms of activation of ERK1/2 signaling by Raf 

isoforms, B-Raf > c-Raf > A-Raf consistent with the relative transforming ability of each 

Raf gene (112).  In agreement with findings on Raf transforming activity in cell lines, 

sequencing of Raf family members in tumor cells have found similar patterns of Raf 

mutations in tumors.  As the most transforming of Raf family members, B-Raf has been 

found to be mutated in many cancers, particularly in melanomas.  Large scale sequencing 

of B-Raf mutations in melanoma has found that up to 60% of melanomas and ~7% of all 

tumors express a B-RafV600E mutation that results in constitutive B-Raf activation (111).  

By contrast c-Raf mutations have been found much more sporadically in cancer.  

Mutations of the final Raf family member, A-Raf are extremely rare in cancer and are not 

thought to be drivers of cancer. 

 Although B-RafV600E mutations are common in melanoma, the role of B-RafV600E 

in melanoma has been questioned, as B-RafV600E mutations have been found in benign 

nevi in human patients (113).  This corroborates with mouse findings in which B-RafV600E 

mutation in the absence of secondary mutations can only promote melanocytic 

hyperplasia (114).    However, when combined with deletion of a tumor suppressor, such 

as PTEN, B-RafV600E can cause rapid formation of metastatic melanomas in mice (114).  

Furthermore, the importance of B-RafV600E mutation has been demonstrated using 

inducible shRNA in melanoma cell lines; induction of B-Raf shRNA in B-RafV600E cell 
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lines inhibited cell growth in vitro and caused rapid tumor regression in vivo 

accompanied with loss of ERK1/2 phosphorylation (115).  PLX4032, a drug that 

specifically targets B-RafV600E has shown impressive efficacy in xenografts as well as in 

phase I clinical trials, in which patients with the B-RafV600E mutation showed an 80% 

response rate to the drug (116-118). 

 

STE Family 

The STE family of MAP3Ks, originally cloned because of their homology to yeast Ste11, 

consists of MEKK1-4, ASK1 and ASK2, TAK1 and Tpl2.  These kinases regulate either 

ERK1/2 and JNK (MEKK1, Tpl2), JNK and p38 (MEKK4, ASK1, ASK2 and TAK1), 

JNK and ERK5 (MEKK2) or p38 and ERK5 (MEKK3).  Many of these kinases have 

been implicated in cancer relevant processes in vitro in processes such as migration, 

invasion and cell growth.  However, data on the roles of these kinases in tumors in vivo 

has been limited.   

MEKK1 has been demonstrated to regulate the expression of the pro-metastatic 

protease uPA.  Mice deficient for MEKK1 displayed reduced metastasis in an MMTV-

polyoma middle T antigen (PyMT) model of breast cancer, a model in which metastasis 

has been demonstrated to be uPA dependent.  While metastasis was reduced in the 

MMTV-PyMT model, tumor growth remained unchanged, demonstrating selective 

decoupling of metastasis from tumor growth (119).   

Imaging mass spectrometry on prostate cancer tissue and surrounding uninvolved 

tissue identified a single MEKK2 peptide as the sole peptide differentiating between 

cancer and normal tissue.  It was further demonstrated that MEKK2 was upregulated in 
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prostate cancer four fold relative to benign tissue, implying a role for MEKK2 in cancer 

progression (120).  However, other work also demonstrates a tumor suppressive role for 

MEKK2.  MEKK2 has been demonstrated to be downregulated by the microRNA miR-

26a, a microRNA that can promote cell transformation (121).  It was further 

demonstrated that MEKK2 knockdown could inhibit JNK dependent apoptosis in 

response to chemotherapeutics, thus implying a pro-apoptotic role MEKK2 at least in 

response to chemotherapeutics. 

MEKK3, which is very closely related to MEKK2, has been found to be 

overexpressed in ovarian cancer relative to surrounding tissue and correlated with 

increased cell survival in vitro upon treatment with chemotherapeutics (122).  However, 

experiments using a teratoma model formed by injection of MEKK3-/- ES cells found that 

MEKK3 deficiency had no effects on teratoma growth (123). 

The closely related ASK1 and ASK2 are two MAP3Ks that regulate cellular 

response to reactive oxygen species (ROS).  ROS signaling has been demonstrated to 

promote and inhibit tumor growth depending on context.  While ROS signaling can have 

both oncogenic and tumor suppressive roles, data using the DBA/TPA induced skin 

cancer model in ASK1-/- and ASK2-/- mice show that both ASK knockout mice have 

elevated tumor formation, demonstrating a tumor suppressive role for ASK1 and ASK2 

(124).  The tumor suppressive role of ASK1 has been further demonstrated with ASK1-/- 

animals using a colitis induced cancer model, in which ASK1-/- mice have increased 

numbers and size of colitis induced colon tumors relative to wild type mice (125).  The 

increased tumor burden in ASK1-/- mice in the colitis induced tumor model is 

accompanied by a decreased survival in tumor bearing ASK1-/- mice relative to wild type. 
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Tpl2 was originally cloned as a tumor progression locus that was truncated by 

Moloney murine leukemia virus (MoMuLV) insertion in MoMuLV dependent lymphoma 

formation in rats (126).  These truncations were found to enhance basal activity of Tpl2 

and promote activation of ERK1/2 and JNK (127).  Furthermore, it was found that 

transgenic mice with thymocyte specific expression of truncated Tpl2, but not full length 

Tpl2, readily developed lymphomas (127).  Consistent with a role for Tpl2 in lymphoma, 

in a small cohort of human patients, elevated Tpl2 expression has been detected in a 

subset of T-cell malignancies (128).  More recently, in a small scale study, Tpl2 has been 

found to be overexpressed in 40% of breast tumors.  Tpl2 mutations were also found at 

elevated rates in basal like breast cancer tumor relative to non-tumor tissue and the 

mutation rate of Tpl2 was further elevated in a metastasis from the tumor. 

 

MLK family 

The mixed lineage kinase, or MLK family, was originally cloned and named based on the 

resemblance of family members to both serine/threonine kinases and tyrosine kinases.  

Subsequent work has demonstrated that all known MLK family members are 

serine/threonine kinases rather then tyrosine kinases.  This family consists of MLK1-4, 

LZK, DLK and MLK7.  However, of the three families of MAP3Ks, the MLK family has 

the least understood role in cancer.  In vitro, the MLK family has been demonstrated to 

mediate apoptosis through both JNK and p38 signaling.  This MLK family role in 

apoptosis conflicts with studies that demonstrated that MLK3 overexpression promoted 

anchorage independent growth in fibroblasts and MLK7 overexpression promoted tumor 

formation by fibroblasts (129,130).  MLK3 has also been demonstrated to mediate 
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transformation by activated Rac isoforms (131).  In human patients, MLK3 mutations 

have been identified as potential driver mutations in mismatch repair deficient 

gastrointestinal tumors (132).  These mutations occurr outside of the kinase domain and 

are hypothesized to alter protein-protein interactions in the mutant (132).  In vivo tumor 

formation in fibroblasts expressing MLK3 mutants was greatly accelerated relative to 

fibroblasts expressing wild type MLK3 (132). 

 

MAPKs as Drug Targets 

 MAPKs have been an active target for drug development for cancer based on their 

roles in many cancer processes and for treatment of other diseases of dysregulated 

MAPK signaling such as inflammatory disease and Alzheimer’s disease.  However, to 

date, none of the MAPK inhibitors developed have made it through clinical trials (17).  

The failure of MAPK inhibitors is due to multiple factors including lack of clinical 

efficacy, lack of inhibitor specificity, and toxicity effects from the inhibitors.  The lack of 

clinical efficacy of MAPK inhibitors may be due to broad inhibition of both oncogenic 

and tumor suppressive functions of the MAPKs.  The toxicity of the drugs has been 

problematic as well; inhibitors of ERK1/2 have had ocular toxicity side effects and p38α 

inhibitors have been frequently plagued by liver toxicity (17).  However, whether these 

effects are specific for ERK1/2 and p38α or represent common off target effects for these 

inhibitors has yet to be confirmed.  These results demonstrate that while MAPKs are high 

priority targets for novel cancer therapeutics, direct targeting of MAPKs may not offer 

either the necessary efficacy or clinical safety required of therapeutics.  Instead, targeting 
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of upstream MAP3Ks may allow us to selectively inhibit oncogenic MAPK signaling 

with fewer side effects. 

 

Untargeted Kinases in the Cancer Kinome 

The multiple mutations required for cancer development mean that many tumors 

show different spectrums of mutation.  This is further complicated by the genetic 

diversity of the individual the tumor is derived from.  The wide spectrum of genetic 

changes in tumors has made individual cancers difficult to treat, as drugs that are 

promising in one patient may be less effective in another.  Furthermore, tumors rapidly 

adapt to drug regimens due to the high mutational frequency within the tumors.  

Therefore, there is a clinical need for novel anticancer drugs to treat non-responding 

tumors and tumors that have become resistant to chemotherapeutic regimens. 

Research on the cancer kinome has focused almost exclusively on the most 

studied 1-5% of genes (133).  However, genetic approaches assessing driver mutations in 

the kinome have demonstrated that the driver mutations required for cancer are spread 

through many kinase genes, and driver mutations are no more common in the most 

studied subset of genes than elsewhere in the kinome (133).  Similarly, siRNA 

experiments measuring cell growth in vitro have demonstrated that many of the kinases 

required for cellular growth are outside of the most studied groups of kinases.  These 

results demonstrate the need for new drugs targeting kinases outside of the widely studied 

kinases (133).   

In our work, we screen MAP3Ks for their contribution to tumor growth and 

metastasis.  Outside of B-Raf, the MAP3Ks have been largely ignored by the cancer 
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research community despite the fact that MAP3K signaling controls the oncogenic and 

tumor suppressive effects of MAPKs, a group of proteins that has been extensively 

characterized in cancer research and has been targeted repeatedly (and at high cost) with 

many drugs and by many drug companies.  By determining the roles for MAP3Ks in 

tumor growth and metastasis, we hope to identify MAP3Ks that are required for 

oncogenic MAPK signaling while leaving the tumor suppressive effects of MAPK 

signaling intact.  MAP3Ks that fit these criteria will be high quality therapeutic targets 

for the development of a new generation of drugs that function through MAPK network 

regulation. 
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Figure 1.1.  Generalized MAPK signaling and known MAPK pathways. 
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Figure 1.2.  The Diversity of MAP3K signaling in the MAPK network.  Families of 
MAP3Ks are shown in identical colors.  Raf family is blue, STE family is tan, MLK 
family in red and TAO family in yellow.  Most MAP3Ks regulate multiple MAPK 
pathways. 



 
 

 
 
 

II. Systematic Screening of MAP3Ks to Identify MAP3K Regulated Activation of 
the MAPK Network 

 

Introduction 

 Altered cell signaling through MAPK pathways frequently underlies pathologic 

conditions including neurological and inflammatory diseases and cancer.  MAPK 

pathways are three tiered kinase relays in which a stimulus causes a MAP3K to activate a 

MAP2K that activates a MAPK (18).  The MAPKs, consisting of the ERK1/2, JNK, p38 

and ERK5 families, subsequently coordinate a cellular response to the stimulus by 

phosphorylating and activating additional cellular factors including other kinases and 

transcription factors (18).  Through regulation of downstream targets, MAPKs are able to 

regulate diverse cellular processes such as proliferation, cell death and survival, secretion 

of cytokines and cell migration.  Phosphorylation of these MAPKs is regulated in a 

spatial and temporal manner, with different patterns of MAPK activation leading to 

diverse cellular responses.  This was elegantly demonstrated in mouse embryo fibroblasts 

(MEFs) where using a chemical genomics method it was shown that acute phase JNK 

activation promoted cell survival whereas persistent JNK activation promoted cell death 

(66).   

Given the physiological importance of MAPK pathways, their activation must be 

tightly controlled in vivo.  Control of spatial and temporal MAPK signaling has been 

suggested to occur at the level of the MAP3Ks, due to their position upstream of the 

MAPKs and the large number of MAP3Ks encoded in the genome (19).  While there are 
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~20 MAP3Ks, these signal to only 7 MAP2Ks which regulate only four families of 

MAPKs (19).   Each of the MAPK families is regulated by multiple MAP3Ks; however, 

individual MAP3Ks do not appear to be highly redundant.  Evidence from knockdown 

and knockout experiments have demonstrated that inactivation of an individual MAP3K 

results in unique MAPK signaling defects (25-27).  The lack of redundancy in MAP3K 

signaling has also been demonstrated physiologically; MAP3K knockout mice have been 

made for many MAP3Ks demonstrating phenotypes ranging from minor decreases in 

skin thickness in the MLK3 knockout mice, to neural tube defects and skeletal 

abnormalities in MEKK4 knockout mice (27,134). 

To date, studies on the regulation of MAPK pathways by MAP3Ks have focused 

on relatively small numbers of stimuli in a range of cell types.  Furthermore, although 

recent data has demonstrated that MAP3Ks can act as negative regulators of MAPK 

activation through many mechanisms, such as direct competition for common cellular 

factors and heterodimerization between MAP3Ks, most of the data to date has focused on 

MAP3Ks as positive regulators of MAPK signaling (31).  A more complete 

understanding of these MAPK signaling networks and their regulation by MAP3Ks may 

allow us to selectively decouple the deleterious effects of MAPK signaling from 

beneficial MAPK signaling events.  However, the systematic studies of MAP3Ks and 

their effects on MAPK networks that would allow the targeting of these deleterious 

MAPK effects have not been done.   

We sought a screening method that would allow us to rapidly identify the 

MAP3Ks that control stimulus induced MAPK activation.  Use of double stranded 

siRNA molecules has emerged as a tool that allows for the rapid study of classes of genes 
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(135).  We therefore designed a screen using siRNA to selectively knock down 11 

MAP3Ks and screened for changes in MAPK activation by immunofluorescence in 

response to seven different stimuli.  Using this screen, we were able to identify subsets of 

MAP3Ks that are positive and negative regulators of MAPK signaling.  The effect of 

individual MAP3K knockdowns varied depending on which stimulus was used and 

which MAPK pathway was assayed.  Classification of the seven stimuli used in the 

screen into three broad groups (growth factors, cytokines and cell stresses) demonstrated 

that specific MAP3Ks regulated MAPK activation by multiple stimuli of a group.  These 

results indicate that the cell uses discrete MAP3K-MAPK modules to regulate cellular 

responses of groups of similar stimuli. 

 

Methods 

Cell lines, cell culture, general reagents 

All chemicals, including thrombin, sorbitol and anisomycin were from Sigma-Aldrich 

unless noted.  EGF and HGF were from Peprotech, TNFα was from R&D systems.  

siRNA siGENOME SMART pools against the MAP3Ks were from Dharmacon.  Media 

and fetal calf serum (FCS) were from Invitrogen.  HeLa cell lines stably expressing 

PAR1 were a generous gift from JoAnn Trejo (University of California at San Diego).  

HeLa cell lines were grown in DMEM with 10% FCS, with 100 units/mL of penicillin 

and streptomycin and 250 µg/mL hygromycin (to maintain PAR1 expression).  HeLa 

cells expressing PAR1 and JNK1α1 were obtained by infecting HeLa cells expressing 

PAR1 with retroviruses containing an HA tagged JNK1α1 and selecting on 500 µg/mL 

G418. 
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Western blotting 

Media was removed and cells were washed once with 1 x ice cold PBS.  Cells were lysed 

by adding lysis buffer to the cells (1% Triton X-100, 150 mM NaCl, 10 mM Tris pH 7.5) 

supplemented with complete protease inhibitors (Roche), PMSF and NaVO4.  Lysates 

were clarified by centrifugation and protein concentrations were quantitated using 

Bradford reagent.  Equal quantities were loaded on a polyacrylamide gel, separated and 

transferred.  After blocking in milk, blots were incubated overnight with polyclonal rabbit 

anti-phospho-ERK1/2 antibody (Cell Signaling) or monoclonal mouse anti-γ-tubulin 

antibodies (clone GTU-88, Sigma) to detect loading.  Blots were washed, incubated with 

fluorescent anti-rabbit Cy3 or anti-mouse Cy5 secondary antibodies (GE Healthcare) and 

detected using a Typhoon 9400 variable mode imager (GE Healthcare). 

 

MAP3K screening 

96 well glass imaging bottom plates (Nunc) were coated with fibronectin for 1 hr.  After 

coating, wells were washed once with PBS and 20µL of serum free DMEM containing 

siRNA precomplexed with Dharmafect 1 was added to each well.  Each MAP3K siRNA 

was assayed in triplicate.  A trypsinized cell suspension of 4 x 103 HeLa cells in 80 µL of 

complete media was added to each well.  siRNA was used such that the final 

concentration of siRNA was 50 nM in 100 µL.  After 5 hours of transfection, media was 

changed to fresh complete media and incubated overnight.  The next day, media was 

removed and cells were serum starved overnight in DMEM/0.5% FCS.  Except as noted, 

cells were stimulated with the indicated ligands for either 5 min (thrombin stimulated 
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ERK1/2 activation), 10 min (serum), 20 min (EGF, HGF, TNFα and thrombin stimulated 

JNK activation) or 60 min (anisomycin, sorbitol).  Ligand concentrations were 10 ng/mL 

(EGF and HGF), 20 ng/mL (HGF), 10 nM (thrombin), 10 µg/mL (anisomycin), 0.2 M 

(sorbitol) and 4% (serum).  After stimulation, cells were fixed for 14 min in 3% 

paraformaldehyde/sucrose, washed and permeabilized with 0.2% Triton X-100 for 7 min.  

Cells were blocked in goat serum and stained overnight with either monoclonal phospho-

ERK1/2 antibody (Cell Signaling, clone 197G2), polyclonal phospho-JNK antibody (Cell 

Signaling) or monoclonal phospho-p38 (Cell Signaling, clone 12F8).  After staining, 

wells were washed and incubated for 90 min with DAPI, AlexaFluor 647 conjugated 

wheat germ agglutinin and AlexaFluor488 anti-rabbit secondary antibodies.  Wells were 

washed and subsequently imaged by epifluorescent imaging.  Background subtraction, 

masking and quantitation of phospho-MAPK immunostaining was performed using the 

Slidebook software package (3i). 

 

Real time PCR of siRNA transfected HeLa cells in screening conditions 

Cells were transfected in 96 well glass bottom plates under screening conditions.  For 

each siRNA, 5 wells of siRNA transfected cells were lysed and pooled and total RNA 

was extracted from the cell lines using an RNeasy mini kit (Qiagen).  1 µg of total RNA 

was reverse transcribed using the High Capacity cDNA Reverse Transcription kit 

(Applied Biosystems).  Resulting cDNAs were diluted and Realtime PCR was performed 

with inventoried Taqman gene expression assays (Applied Biosystems) on a Applied 

Biosystems 7500 Fast real-time PCR system using the standard 3 step denaturing, 
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annealing and elongation process.  Results for all targets were normalized using human 

β-actin message as a calibrator. 

 

Results 

Screening Method to Identify MAPK Activation by MAP3Ks 

Stimulus evoked MAPK pathway activation is mediated through activation of 

upstream MAP3Ks.  However, to date, the involvement of MAP3Ks in MAPK pathway 

activation has been poorly studied.  To identify MAP3Ks that regulate the MAPK 

network, we designed a 96 well siRNA based screening approach that enables the rapid 

discovery of MAP3Ks regulating ERK1/2, JNK and p38 signaling in cell culture.   This 

screening approach utilized immunofluorescent staining of activated MAPKs by phospho 

specific antibodies to enable detection of changes in MAPK signaling.  Specifically, 

individual MAP3K siRNA pools were reverse transfected into a HeLa cell line that stably 

expressed the PAR1 receptor, to enable the stimulation of cells with thrombin, and 

JNK1α1 to enhance the very modest JNK activation seen in wild type cells.  Twenty four 

hours after transfection, the cells were serum starved for 24 hours and stimulated, fixed, 

and stained for MAPK activation using phosphorylation specific antibodies for either 

ERK1/2, JNK or p38.  Cells were counterstained to detect the nucleus and whole cell 

volume to identify and mask the nucleus, whole cell volume and the cytoplasm (by 

subtraction of the nuclear mask from the whole cell mask) (Figure 2.1A).  Images were 

background subtracted and MAPK activation was quantified in the masked regions by 

measuring the average phospho-MAPK staining intensity within the mask. 
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Using these methods, activation of all three MAPKs could be determined in 

response to a stimulus.  Interestingly, measurement of all three MAPK responses to a 

stimulus (e.g. anisomycin) demonstrated differing kinetics and magnitude of activation 

between the three pathways, indicating that phosphorylation specific ERK1/2, JNK and 

p38 antibodies do not cross-react with other MAPK species (Figure 2.1B).  Furthermore, 

the relative activation of each MAPK was different in each subcellular location.  ERK1/2 

and p38 activation changes were most pronounced in the nucleus and either modestly 

reduced in the cytoplasm (ERK1/2) or greatly reduced in the cytoplasm (p38).  JNK 

activation by contrast was most pronounced in the cytoplasm and decreased in the 

nucleus.  The differing kinetics, location and strength of activation of individual MAPKs 

was observed in response to multiple stimuli and demonstrated specificity in detecting the 

activation of individual MAPKs.  MAPK activation detected by phospho-specific MAPK 

immunofluorescence showed similar kinetics of activation as was seen by western blot 

with phospho-specific antibodies, further indicating the specificity of the 

immunofluorescent approach (Figure 2.1C).  The slightly more sustained activation of 

ERK1/2 seen in the immunofluorescent staining at 10 minutes is likely due to the 

improved time resolution in immunofluorescence experiments because of the rapidity of 

fixing cells relative to the detergent based lysis used for western blotting. While fold 

changes observed with phospho-specific immunofluorescence were more modest than 

observed by western blot this is likely due to increased signal to noise ratio in western 

blot because the proteins are separated by size, minimizing the detection of other proteins 

bound non-specifically by the antibody.  Furthermore, stimulation induced ERK1/2 
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activation by immunofluorescence could be readily blocked by pretreating the cells with 

the MEK1/2 inhibitor U0126 (Figure 2.1C, bottom panel).   

Our screening approach was predicated on successful knockdown of our target 

MAP3Ks with siRNA.  Thus we sought to determine our siRNA transfection efficiency 

under screening conditions..  Using an optimized transfection protocol, siRNA 

transfection efficiency was determined by transfecting the JNK1α1 containing HeLa 

screening line with JNK1 siRNA and using immunofluorescence to monitor the 

knockdown of the stably expressed HA tagged JNK1α1 isoform.  Using our transfection 

conditions, we were able to knockdown stably expressed JNK1α1 in substantially all 

cells (Figure 2.1D).  A set of siRNA pools targeting 11 MAP3Ks was used for screening.  

Real time PCR verified the knockdown obtained by these siRNA pools under screening 

conditions (Figure 2.1E).  We found that with the exception of MEKK3, MEKK4, Tpl2 

and B-Raf, all siRNA pools inhibited their target MAP3Ks to greater then 80% at the 

RNA level.  By contrast, knockdown of MEKK3, MEKK4 and B-Raf were all greater 

then 60% (67%, 75% and 65% respectively) while Tpl2 knockdown had a modest effect, 

knocking down Tpl2 ~40% at the RNA level.  These siRNAs were used to probe the 

changes in ERK1/2, JNK and p38 signaling in response to three groups of stimuli 

consisting of either growth factors (EGF, HGF, Thrombin and serum), cell stresses 

(anisomycin and hyperosmolar sorbitol) or cytokines (TNFα). 

 

Growth Factor Induced ERK1/2 and JNK activation 

Stimulation of cells with growth factors (EGF, HGF, Thrombin and serum) 

rapidly induced activation of ERK1/2 and JNK in all cases except for serum that induced 
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only minor JNK activation.  However, none of the growth factors induced detectable 

levels of p38 phosphorylation by immunofluorescence.  This was corroborated in western 

blots, where p38 phosphorylation was very modest and likely below the detectable 

threshold for immunofluorescence (data not shown).  Knockdown of Tpl2 inhibited 

ERK1/2 activation by multiple growth factors, demonstrating that Tpl2 was required for 

maximal activation of ERK1/2 by growth factors (Figure 2.2A-C, left panels).  While the 

effects of Tpl2 on ERK1/2 activation were relatively modest (only about 20-40% of the 

stimulated ERK1/2 activation was lost), Tpl2 siRNA achieved only 40% knockdown 

indicating that more complete Tpl2 knockdown would likely have a stronger effect on 

ERK1/2 signaling (Figure 2.1E and 2.2A-C, left panel).  Our finding that Tpl2 is required 

for thrombin induced ERK1/2 activity was corroborated in Tpl2-/- MEFs (25).  c-Raf 

knockdown also modestly diminished ERK1/2 signaling by EGF and HGF consistent 

with the published role of c-Raf in ERK1/2 activation, while thrombin stimulation of 

ERK1/2 activation did not require c-Raf (136).   Interestingly, ERK1/2 activation by 

serum required MEKK2, a kinase without a known role in ERK1/2 activation (Figure 

2.2D).  Screening also identified several MAP3Ks that were negative regulators of 

ERK1/2 activation by growth factors.  Knockdown of the MAP3Ks MEKK1 and 

MEKK4 resulted in increased ERK1/2 signaling in response to HGF, thrombin and serum 

(Figure 2.2A-D).  Interestingly, MEKK1 and MEKK4 knockdown in EGF stimulated 

cells also showed a trend towards increased ERK1/2 activation, although the change was 

not statistically significant.  These results indicate that MEKK1 and MEKK4 are negative 

regulators of ERK1/2 signaling.   
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 Growth factor dependent JNK activation showed similar dependence on a small 

number of genes.  Knockdown of MEKK2 inhibited JNK activation by EGF, HGF and 

thrombin.  In all three cases, stimulus dependent JNK activation was inhibited by 70-80% 

by MEKK2 knockdown while knockdown of other MAP3Ks had little effect on JNK 

activation (Figure 2.2A-D right panel).  These results demonstrate that MEKK2 regulates 

JNK activation by multiple growth factors in HeLa cells.  Consistent with our findings in 

HeLa cells, a role for MEKK2 in growth factor mediated JNK activation has been 

demonstrated in fibroblasts stimulated with FGF-2 as well (108).  We also identified 

MEKK1, TAK1 and B-Raf as negative regulators of EGF induced JNK signaling, TAK1 

and MLK3 as negative regulators of HGF induced JNK signaling and ASK1 and Tpl2 as 

negative regulators of thrombin induced JNK signaling.   

 

Cell Stress Stimulated JNK and p38 activation 

Cell stress induced by either protein synthesis inhibition with anisomycin or 

hyperosmolar stress induced with hyperosmolar sorbitol caused robust activation of JNK 

and p38, while ERK1/2 activation was more difficult to detect.  Using MAP3K siRNAs, 

we found that MLK7 was a major regulator of anisomycin and hyperosmolar sorbitol 

induced JNK and p38 activation, with MLK7 knockdown blocking between 85-95% of 

stimulated p38 and JNK activation depending on the stimulus and MAPK (Figure 2.3A 

and B).  This is consistent with findings in MEFs demonstrating that MLK7 controls JNK 

and p38 activation by anisomycin and p38 activation by hyperosmolar NaCl (24).  

However, contrary to earlier findings indicating that hyperosmolar JNK activation is 

MLK7 independent, we found that hyperosmolar JNK activation was MLK7 dependent.  
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Knockdown of MLK3 demonstrated that MLK3 has modest effects on p38 activation by 

anisomycin and sorbitol (reducing p38 activation by ~25%), while MLK3 knockdown 

had modest to no effect on JNK activation (Figure 2.3A and B).  These results 

demonstrate that stress induced MLK3 activation preferentially controls p38 

phosphorylation rather then JNK phosphorylation.  We also found that TAK1 knockdown 

partially inhibited p38 activation by anisomycin but had no effect on sorbitol induced p38 

activation, indicating that multiple kinases are required for full activation of p38 by 

anisomycin.  We identified several MAP3Ks that enhanced JNK and p38 activation when 

knocked down by siRNA.  MEKK1 and MEKK4 knockdown enhanced p38 signaling by 

cell stress stimuli.  We also found that c-Raf knockdown increased JNK activation by 

anisomycin while Tpl2 and TAK1 knockdown enhanced JNK activation by sorbitol.  The 

identification of two kinases, Tpl2 and c-Raf, that were identified as major regulators of 

growth factor induced ERK1/2 activation, implied that crosstalk between ERK1/2 and 

JNK signaling could regulate JNK activation by stress stimuli.   

 

TNFα Stimulated JNK and p38 Activation 

 Stimulation of cells with the cytokine TNFα induced rapid JNK and p38 

activation, but ERK1/2 activation by TNFα was below the threshold of detection.  To 

date, identification of the MAP3K(s) responsible for TNFα induced JNK and p38 

activation have been contentious.  Previous work has identified no less then five 

MAP3Ks that control TNFα induced JNK and/or p38, including MEKK3, ASK1, TAK1, 

Tpl2 and MLK3 (26-29,93).  Our screen found that only TAK1 regulated JNK and p38 

activation by TNFα in HeLa cells while MEKK3, ASK1 and MLK3 knockdown had no 
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effect on TNFα induced JNK and p38 or, in the case of MEKK3 knockdown, enhanced 

TNFα stimulated JNK activation (Figure 2.4).  Thus our results corroborate earlier 

findings demonstrating a role for TAK1 in TNFα stimulated JNK and p38 activation that 

is independent of MEKK3, ASK1 and MLK3.  While MEKK3, ASK1 and MLK3 do not 

appear to be involved in TNFα stimulated JNK and p38 activation in HeLa cells, it is 

possible that they contribute to TNFα stimulated JNK and p38 activation in other cell 

types.  Interestingly, TAK1 knockdown only inhibited TNFα stimulated JNK and p38 

activation by ~55% and ~45% respectively despite ~90% knockdown of TAK1 at the 

RNA level.  It is possible that another, as of yet uncharacterized, MAP3K participates in 

this pathway.  However, the partial loss of JNK and p38 signaling in TAK1 knockdowns 

may also be due to less robust knockdown of TAK1 at the protein level relative to RNA 

or that the remaining pool of TAK1 protein is highly processive in activating JNK and 

p38.  Additionally, we also identify MEKK1 as a negative regulator of JNK and p38 

activation by TNFα.   

 

Discussion 

 The MAPK network is composed of a large group of kinases that signal in 

response to diverse stimuli including cytokines, growth factors, cell stresses, DNA 

damage, heat and cold.  Response to these diverse stimuli is coordinated by MAP3Ks 

which behave as signaling nodes, integrating incoming cellular signals and relaying them 

to the terminal MAPKs that coordinate cellular responses to the stimuli.  While 

downstream MAPKs have been extensively studied in cellular response to stimuli, the 

critical upstream MAP3Ks that regulate MAPK induction are frequently unknown, or 
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contentious.  By more completely understanding the MAPK network, we will be better 

able to target the MAPK network to selectively regulate cellular responses.  To identify 

the MAP3Ks that control MAPK activation in response to an array of stimuli, we 

designed an immunofluorescence based screening approach that enables the rapid 

detection of stimulus induced ERK1/2, JNK and p38 activation.  In comparison to 

previous screens, our screen allows for the direct detection of MAPK activity rather then 

detection of downstream outcomes such as c-Jun phosphorylation by JNK or 

MAPKAPK2 nuclear translocation for p38 (137).  Direct observation of MAPK 

phosphorylation enables the specific quantification of changes in MAPK signaling and 

also eliminates potential complicating effects of measuring downstream effectors such as 

changes in their stability or expression (e.g. c-Jun transcriptional regulation by other 

MAPK families).  This screening approach is amenable to larger scale screening efforts 

as well.  Indeed, two screens using similar approaches in Drosophila cells were 

performed to identify genome wide regulators of ERK1/2 and JNK signaling in response 

to a small group of stimuli (138,139). 

For many stimuli, the MAP3Ks that control MAPK activation are either unknown 

or contentious.  Using our screening method we screened a group of 11 MAP3Ks for 

their roles in growth factor, cell stress and cytokine induced ERK1/2, JNK and p38 

signaling.  We were able to identify known positive regulators of growth factor, cytokine 

and cell stress induced ERK1/2, JNK and p38, including identifying the requirement of c-

Raf for EGF and HGF induced ERK1/2, TAK1 as a positive regulator of TNFα 

stimulated JNK and p38 signaling and the role of MLK7 in anisomycin stimulated JNK 

and p38 and sorbitol stimulated p38 (28,136,140).  We were also able to discover novel 
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positive regulators of growth factor and cell stress induced ERK1/2, JNK and p38 

signaling.  We identified Tpl2 and MEKK2 as positive regulators of growth factor 

induced ERK1/2 and JNK.  MLK3 and TAK1 as positive regulators of anisomycin 

stimulated p38 and MLK3 as a positive regulator of sorbitol induced p38.   

To date, most research on growth factor induced ERK1/2 activation has centered 

on the Raf family of proteins.  However, multiple MAP3Ks outside of the Raf family 

activate ERK1/2.  While we do identify c-Raf as a positive regulator of ERK1/2 

activation by EGF and HGF, we also find that ERK1/2 activation by growth factors 

requires Tpl2.  These results demonstrate that MAP3Ks outside of canonical Raf family 

members are required for ERK1/2 activation by growth factors.  Interestingly Raf was 

required for ERK1/2 activation by EGF and HGF, both of which signal through receptor 

tyrosine kinases.  However, thrombin signaling mediated through the G-protein coupled 

receptor (GPCR) PAR1 did not require c-Raf for maximal ERK1/2 activation.  Therefore, 

c-Raf appears to selectively control tyrosine kinase ERK1/2 activation but not GPCR 

mediated ERK1/2 activation.  Thus, contrary to the established roles of Raf family 

members in ERK1/2 activation, targeting of Tpl2 may be a better method to selectively 

inhibit ERK1/2 activation in response to a wide array of stimuli.  We also identified a 

role for MEKK2 in regulating growth factor induced JNK activation.  JNK activation by 

growth factors has been implicated in many of the physiological outcomes of growth 

factor stimulation, such as cell proliferation, migration, secretion of growth factors and 

proteases and survival (108,141-144).  Thus our results indicate that MEKK2, through 

JNK activation, likely regulates many of the physiological outcomes of growth factor 

stimulation.   
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Previous work has suggested that MAP3Ks can also negatively regulate activation 

of other MAPK pathways.  However, no studies have been undertaken to systematically 

identify MAP3Ks that behave as negative regulators.  Using our screening method, we 

were able to identify MAP3Ks that negatively regulate MAPK activation as well.  The 

negative effects of these MAP3Ks may proceed through many mechanisms including 

MAPK crosstalk, effects on receptors and MAP3K heterodimer formation.  Several of the 

MAP3Ks identified as negative regulators in our screen may fit into these categories.  For 

instance, enhanced thrombin stimulated JNK signaling in Tpl2 knockdown cells may be 

due to diminished ERK1/2 signaling in these cells and loss of ERK1/2 negative feedback 

of JNK activation.  Enhanced JNK signaling in EGF stimulated TAK1 knockdown cell 

lines is consistent with findings demonstrating that TAK1 can inhibit EGFR signaling 

through p38 dependent EGFR internalization (145).  Increased JNK signaling seen in 

HGF stimulated TAK1 knockdown cells may be due to similar mechanisms, with TAK1 

induced p38 mediating internalization of the HGF receptor c-Met.  By contrast, enhanced 

JNK activation in TNFα stimulated MEKK3 siRNA treated cells may be due to complex 

formation between MEKK3 and TAK1.  Unphosphorylated MEKK3 and TAK1 have 

been demonstrated to form a complex, thus knockdown of MEKK3 may block formation 

of the inhibitory complex and promote JNK activation through increased TAK1 activity 

(31).  We also identified MEKK1 as a negative regulator of ERK1/2 activation by growth 

factors.  Enhanced ERK1/2 signaling in MEKK1 siRNA treated cells is consistent with 

findings demonstrating that MEKK1 can promote ERK1/2 turnover through its RING 

domain (146).  Thus MAPK signaling networks are highly dynamic and knockdown of 
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seemingly unrelated MAP3Ks can perturb signaling responses through diverse 

interactions within the MAPK network.   

MAPK signaling and its physiological outcomes are important to many diseases 

including cancer, neurological disease and chronic inflammation.  These MAPK 

networks control cellular responses to many stimuli, with magnitude, duration, and 

location of MAPK signaling as well as cell type and cell environment controlling the 

physiological outcome of MAPK signaling.  Thus targeting of pathogenic MAPK 

signaling requires a high degree of selectivity in targeting the pathogenic MAPK 

signaling in affected cell type(s).  Identification of MAP3Ks that are positive and 

negative regulators of induced MAPK signals and the targeting of these MAP3Ks with 

small molecules will enable us to selectively block pathogenic MAPK signals and enable 

the development of novel therapeutics for diseases in which MAPK signaling is 

dysregulated. 
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Figure 2.1.  Design of a High Throughput MAPK Activation screen for MAP3K 
Screening.  A)  Scheme demonstrating the work flow of the MAPK screen.  B)  
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Phospho-MAPK activation by anisomycin (10 µg/mL) for ERK1/2, JNK and p38 
activation in all three cellular locations showing distinct kinetics and magnitude of 
activation by all three MAPKs.  C)  Comparison of ERK1/2 activation by 10 nM 
Thrombin detected by phospho-ERK1/2 detection by western blot (top panel) or 
immunofluorescence (bottom panel).  Pretreatment of cells with 10 µM U0126 inhibited 
ERK1/2 activation detected by immunofluorescence (bottom panel).  D)  Transfection of 
HeLa cell lines under screening conditions with siRNA.  HeLa cells under screening 
conditions were transfected with JNK1 siRNA pool targeting stability expressed HA 
JNK1α1.  Knockdown of JNK1α1 was detected by anti-HA immunofluorescence, 
demonstrating near complete loss of HA staining in JNK1 siRNA transfected cells.  E)  
Knockdown of MAP3Ks under screening conditions with MAP3K siRNAs.  HeLa cells 
were transfected under screening conditions with siRNAs against MAP3Ks.  MAP3K 
knockdown was detected by real time PCR of MAP3K message and normalized to 
control message, demonstrating knockdown of all 11 MAP3Ks screened with this assay. 
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Figure 2.2.  Tpl2 and MEKK2 regulate ERK1/2 and JNK activation by growth 
factors.  HeLa cells were transfected with MAP3K siRNAs in triplicate, stimulated with 
either A) 10 ng/mL EGF for 20 min, B) 20 ng/mL HGF for 20 min, C) 10 nM Thrombin 
for 5 min (ERK1/2) or 20 min (JNK) or D) 4% serum 10 min, fixed and immunostained 



 43

for phospho-ERK1/2 (left panels) or phospho-JNK (right panels).  Average nuclear 
fluorescence was determined for each MAP3K siRNA line and is graphed as mean ± 
standard deviation.  MAP3K siRNAs that caused a statistically significant increase in 
MAPK activation (as indicated by two-tailed t-tests against control cells) are indicated by 
blue arrows and MAP3K siRNAs that caused a statistically significant decrease in MAPK 
activation are indicated by red arrows. 
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Figure 2.3.  MLK3 and MLK7 regulate stress induced JNK and p38 activation.  
HeLa cells were transfected with MAP3K siRNAs in triplicate, stimulated with either A) 
10 µg/mL anisomycin for 60 min or B) 0.2 M sorbitol for 60 min, fixed and 
immunostained for phospho-JNK (left panels) or phospho-p38 (right panels).  Average 
nuclear fluorescence was determined for each MAP3K siRNA line and is graphed as 
mean ± standard deviation.  MAP3K siRNAs that caused a statistically significant 
increase in MAPK activation (as indicated by two-tailed t-tests against control cells) are 
indicated by blue arrows and MAP3K siRNAs that caused a statistically significant 
decrease in MAPK activation are indicated by red arrows. 
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Figure 2.4.  TAK1 regulates TNFα induced JNK and p38 activation.  HeLa cells 
were transfected with MAP3K siRNAs in triplicate, stimulated with 10 ng/mL TNFα for 
20 min, fixed and immunostained for phospho-JNK (left panels) or phospho-p38 (right 
panels).  Average nuclear fluorescence was determined for each MAP3K siRNA line and 
is graphed as mean ± standard deviation.  MAP3K siRNAs that caused a statistically 
significant increase in MAPK activation (as indicated by two-tailed t-tests against control 
cells) are indicated by blue arrows and MAP3K siRNAs that caused a statistically 
significant decrease in MAPK activation are indicated by red arrows.



 
 
 
 
 

III.  In Vivo RNAi Screen Defines a Cooperative MAP3Kinase Network 
Controlling Tumor Growth and Metastasis 

 

Introduction 

  Within the defined MAPK network there are approximately 50 kinases 

comprising almost 10% of the human kinome. Thus, it is not surprising that members of 

the MAPK signaling network are frequently amplified, overexpressed and activated in 

breast cancer.  For example, components of the MAPK network are overrepresented in 

genomic and proteomic analysis of genes amplified and overexpressed in metaplastic 

breast cancer (147).  In addition, high levels of phosphorylated JNK and p38 correlate 

with highly invasive, poor prognosis breast cancers (99).  Phosphorylated p38 has also 

been proposed as a prognostic marker for patients with breast cancer pleural effusions, 

and proved to be a much more statistically significant marker for disease outcome in 

patients with pleural effusions than phosphorylated ERK1/2 (99). Twenty per cent of 

breast cancer patients have ERK5 overexpression, which correlates with shortened 

disease-free survival times (110). ERK5 is also overexpressed in squamous cell 

carcinoma correlating with metastasis of the disease, and is amplified in hepatocellular 

carcinoma (148,149).  The MAPK network is dysregulated upstream of the MAPKs as 

well.  The MAP3K Tpl2, which activates ERK1/2 and JNK, has been shown to be 

amplified and overexpressed in 40% of human breast cancers (150).  Activating 

mutations of B-Raf are found in ~7% of all tumors and about 60% of melanomas, 
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resulting in constitutive activation of ERK1/2 (111).  In these tumors, activating B-Raf 

mutations correlate with poor survival, recurrence and resistance to chemotherapy 

(36,151,152). Despite the overwhelming evidence from the analysis of patient tumor 

samples that the MAPK signaling network is significantly dysregulated in cancer, there is 

little definitive understanding of the actual in vivo function of the MAPK signaling 

network in regulating tumor growth and metastasis. The exception is activated B-Raf that 

constitutively activates MKK1/2 leading to ERK1/2 activation and increased cell 

proliferation (111).  It could be argued that the focus on activation of ERK1/2-dependent 

cell proliferation by mutant B-Raf has in some ways hindered the conceptual 

understanding of the behavior of the MAPK signaling network in cancer. The control of 

the MAPK signaling network by MAP3Ks other than the Raf family is never restricted to 

a single MAPK pathway.  Most MAP3Ks regulate at least two different MAPKs such as 

JNK and p38 (e.g., MLK3), ERK5 and JNK (e.g., MEKK2) or p38 and ERK5 (e.g., 

MEKK3) (21).  Also, unlike the model of the B-Raf-MKK1/2-ERK1/2 pathway, all 

MAPK pathways are activated by multiple MAP3Ks.  Beyond B-Raf, MAP3Ks including 

c-Raf, Tpl2 and MEKK1 have been shown to regulate ERK1/2 activity in genetically 

engineered mouse models and by RNAi  (26,136,153).  Thus the MAPK signaling 

network should be viewed not simply as multiple pathways but as a cooperative network 

involving many MAP3Ks that dynamically integrate different cellular stimuli to 

coordinately activate ERK1/2, JNK, p38 and ERK5 (21).  Attempts to target these 

cooperative MAPK signaling networks with drugs inhibiting MAPK activation have 

failed due to toxicity and lack of efficacy.  The difficulties in targeting MAPK directly 

are likely due to the physiological importance of MAPKs and because signaling by 
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individual MAPKs has been demonstrated to be oncogenic or tumor suppressive 

depending on cellular context.  By contrast, selective targeting of MAP3Ks within the 

MAPK signaling network may allow for the selective targeting of oncogenic versus 

tumor suppressive MAPK signaling and bypass of toxicity effects due to greater 

selectivity. 

 Our goal was to develop a practical and reasonably rapid in vivo assay to define 

functional roles of the MAP3K signaling network in tumor growth and metastasis. By 

necessity, this required in vivo tumor models because in vitro cell culture systems have 

limited ability to predict in vivo effects on tumor growth and metastasis. The claudin-low 

MDA-MB-231 breast adenomacarcinoma cell line was used for these studies because of 

its high metastatic potential in orthotopic breast xenografts (154). We utilized stable 

shRNA knockdown of nine MAP3Ks as well as ERK5 to define the properties of the 

MAPK signaling network in the control of tumor cell growth and metastasis. The in vivo 

assay proved successful in demonstrating that the MAP3Ks function in a cooperative 

manner to control both tumor growth and metastasis. The findings demonstrate the utility 

of in vivo screens of previously untargeted or poorly characterized protein kinases in 

discovering new cancer relevant regulatory networks and potential new targets for cancer 

therapy. 

 

Methods 

Reagents and Cell culture 

Recombinant TGF-β1 and EGF were purchased from peprotech.  U0126, SP600125, 

SB203580, Dasatinib and Lapatinib were purchased from LC Labs.  Other chemicals 
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were purchased from Sigma unless noted.  Cell culture media was purchased from Sigma 

and Invitrogen.  BT474 and HEK293 cells were from ATCC.  MDA-MB-231 cells were 

from Patrick Casey’s lab (Duke University).  For bioluminescent imaging, cells were 

transfected with retroviruses containing the luciferase gene and selected on 800 µg/mL 

G418.  MDA-MB-231 cells were maintained in DMEM/10% FBS with 100 units/mL of 

penicillin and streptomycin.  BT474 cells were maintained in DMEM:F12 (1:1) 

containing 10% FBS and 100 units/mL of penicillin and streptomycin. 

Knockdown of MAP3Ks in cell lines 

shRNA constructs from the Open Biosystems TRCN collection were cotransfected into 

HEK293 cells along with pMD2.G and psPAX2 (Addgene, Addgene plasmid 12259 and 

12260, originally from Trono lab) to produce lentiviral shRNA particles.  Lentiviruses 

containing shRNAs were infected into target cells, and 3 days post infection, cells 

positive for shRNA expression were selected with 2 µg/mL puromycin (Clontech).  

Individual TRCN clone numbers used for mouse injection experiments are indicated in 

Figure S1. 

Tumor Xenografts 

Mouse experiments were performed in accordance with the UNC Institutional Care and 

Use Committee (IACUC) and national guidelines.  shRNA knockdown of target proteins 

was confirmed in all cell lines before injection into mice.  Cell lines were split 

immediately prior to injection to ensure that cell lines were healthy and actively growing.  

Tumor xenografts were established by injecting either 2 x 106 MDA-MB-231 cells or 4 x 

106 BT474 cells in a 50:50 mix of SFM:matrigel into the inguinal fat pad or flank of 8 

week old SCID mice as indicated.  For BT474 cells estrogen pellets were implanted in 
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the mice to facilitate growth.  Estrogen pellets were made as in (155).  Tumor size was 

measured by either calipers or ultrasound imaging using a Vevo 770 (Visualsonics) every 

week from week four on.  Tumor length and width were converted to tumor volume using 

the equation Volume = Length x (Width2/2).  Metastasis was measured by injecting mice 

intraperitoneally with 100 µL of luciferin (50 mg/mL, Gold Biosciences) and imaging the 

mice using a Xenogen IVIS 100 (Caliper Lifesciences).  Photon flux from bioluminescent 

images was quantitated by drawing a region of interest around the tumor and quantitating 

photons using Living Image software (Caliper Lifesciences).  Depending on tumor 

burden, mice were sacrificed at 7 or 8 weeks post injection (MDA-MB-231 cells) or 12 

weeks post injection (BT474 cells) and the primary tumor and lymph node metastases 

were removed.  Primary tumors were fixed in 4% paraformaldehyde/sucrose for 

subsequent histology studies and metastases were placed in RNAlater (Qiagen) and 

frozen for subsequent extraction of RNA. 

Cell Viability Assays 

For each shRNA/condition 1 x 103 MDA-231 cells were plated in quadruplicate in five 

96 well plates.  Cells were allowed to adhere overnight.  If cells were treated with drugs, 

drugs were added 18 hours after plating.  On each day, one 96 well plate was assayed 

using CellTiter-Glo assay reagents (Promega) according to the manufacturer’s protocol.  

Briefly, resuspended CellTiter-Glo reagent was added 1:1 to each well, plate was rocked 

and luminescence was measured on a Pherastar microplate reader (BMG Labtech).  All 

luminescent readings were normalized to day 0 luminescent measurements. 
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Western Blotting 

Media was removed and cells were washed once with 1 x ice cold PBS.  Cells were lysed 

by adding lysis buffer to the cells (1% Triton X-100, 150 mM NaCl, 10 mM Tris pH 7.5) 

supplemented with complete protease inhibitors (Roche), PMSF, NaVO4 and NaF.  

Insoluble debris were removed from the lysate by centrifugation and the protein 

concentration of the resulting lysates was quantified using Bradford reagent.  Equal 

quantities of protein were separated on polyacrylamide gels, transferred to nitrocellulose 

and were probed with antibodies as noted.  Antibodies against MEKK1, B-raf, c-raf and 

Tpl2 were from Santa Cruz Biotech.  The antibody against MEKK2 has been previously 

published (108).  The MEKK3 antibody was from BD Transduction labs.  The TAK1, 

Src family phospho-Y416, EGFR phospho-Y1068 (clone D7A5), phospho-ERK1/2, 

phospho-JNK1/2 and phospho-p38 antibodies were from Cell Signaling.  The ERK5, γ-

Tubulin (GTU-88) and actin (AC-40) antibodies were from Sigma. 

Realtime PCR of cell line RNA 

Total RNA from cell lines was extracted using an RNeasy kit (Qiagen).  3µg total RNA 

was reverse transcribed using the High Capacity cDNA Reverse Transcription kit 

(Applied Biosystems).  Resulting cDNAs were diluted and Realtime PCR was performed 

with inventoried Taqman gene expression assays (Applied Biosystems) on a Applied 

Biosystems 7500 Fast real-time PCR system using the standard 3 step denaturing, 

annealing and elongation process.  Results for all targets were normalized using human 

β-actin message as a calibrator. 
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Immunofluorescent Staining of Tissue Sections 

Tumors were removed from animals and fixed overnight in 4% 

paraformaldehyde/sucrose.  After fixing, tumors were equilibrated in sucrose, frozen in 

OCT and 10 µM tissue sections were cut using a microtome.  Sections were 

permeabilized with 0.2% Triton X-100, blocked in 10% goat serum and stained with 

antibodies against F4/80 (clone BM8, Santa Cruz Biotechnology) for 1 hr.  Primary 

antibodies were detected using biotinylated secondary antibodies and Cy3 streptavidin 

(Jackson Immunoresearch). 

Immunofluorescent Analysis of Cells 

MDA-MB-231 cells were plated in 96 well imaging plates (Grenier) and serum starved 

overnight.  After overnight starvation, cells were fixed with 3% 

paraformaldehyde/sucrose, permeablized with 0.2% Triton X-100 and blocked with 10% 

goat serum.  After blocking, cells were incubated overnight with phospho-ERK1/2 

antibodies (clone D13.D14.4E, Cell Signaling).  Cells were washed and incubated with 

Alexa 555 secondary (Invitrogen), DAPI and Alexa 488-phalloidin (Invitrogen) for 1 hr.  

Cells were imaged using a 20x objective on a BD Pathway microscope. 

Analysis of Secreted Proteins 

8 x 104 MDA-MB-231 cells were plated in 6 well plates and allowed to attach overnight.  

After attachment, media was changed to serum free DMEM and cells were incubated for 

3 days.  Media was removed and spun to remove cellular debris and frozen at -80°C.  

Supernatant samples were sent to Rules Based Medicine (Austin, TX) for multiplex 

cytokine analysis using the HumanMAP array. 
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Real time PCR of lymph nodes for presence of tumor cells and MAP3K knockdown 

Total RNA was isolated from RNALater-stabilized murine lymph nodes using the Micro 

RNeasy Kit (Qiagen).  cDNA from each knockdown (lymph nodes containing MAP3K 

shRNA MDA-MB-231 cells) and its corresponding control samples (lymph nodes 

containing control MDA-MB-231) were generated using the High Capacity Reverse 

Transcription Kit (Applied Biosystems).  Real-time quantitative PCR was done in 

triplicate for each lymph node sample to determine message levels of the human MAP3K 

and B-actin.  A standard curve was generated from the control samples by graphing the 

average threshold values (CT) for the human MAP3K versus those for human b-actin.  

The corresponding knockdown samples were graphed similarly; continued knockdown of 

the MAP3K in the lymph nodes containing MAP3K shRNA MDA-MB-231 cells was 

indicated if these data points fell above the control lymph node standard curve.  All 

TaqMan assays (Applied Biosystems) used in these experiments were determined 

empirically to detect only human and not murine cDNA.   

 

Results 

An in vivo Screen of MAP3K function in Tumor Growth and Metastasis 

Previously, we have determined that expression of MEKK1 is required for 

efficient metastasis in an MMTV-PyMT transgene model of breast cancer through the 

ability of MEKK1 to control uPA activity (119).  We sought a method by which we could 

determine the contribution of other MAP3Ks to tumor growth and metastasis in an 

unbiased way.  Genetic models were not amenable to a screening approach as knockouts 

for a number of the MAP3Ks are embryonic lethal.  Additionally, use of genetic mouse 
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models of cancer with MAP3K knockout mice does not allow the dissection of the 

contributions of MAP3K signaling in the stroma from those of MAP3K signaling in the 

tumor.  To screen multiple MAP3Ks, it was necessary that the model be both amenable to 

genetic manipulation to ablate targeted MAP3Ks and enable us to directly observe the 

contributions of the MAP3K to tumor growth and metastasis.  To these ends, an 

orthotopic xenograft model with injection of tumor cells into the inguinal fat pad was 

amenable to screening and resulted in tumors in their native milieu.  Stable expression of 

MAP3K shRNAs from the RNAi consortium library enabled efficient silencing of target 

MAP3Ks in this model.  For xenografts, we used MDA-MB-231 cells because, unlike 

many cell lines, they are readily metastatic in vivo.  MDA-MB-231 cells carry B-

RafG464V, KrasG13V and have a mutationally inactivated p53 gene (88,156).  Further, we 

stably expressed luciferase in our screening MDA-MB-231 line to enable in vivo tracking 

of the cells, thus allowing us to longitudinally track tumor growth by ultrasound imaging 

and spontaneous metastasis from the fat pad by bioluminescent imaging (Figure 3.1B). 

 To confirm the validity of our screening approach, we used shRNAs to knock 

down MEKK1 in our MDA-MB-231 screening line.  We reasoned that we should 

observe a loss of metastasis, but no change in tumor growth in our xenografts, consistent 

with our previous observations in MMTV-PyMT mouse models.  We injected the 

resulting cell lines into the inguinal fat pad of SCID mice.  We found that while shRNA 

targeting MEKK1 blocked tumor metastasis, tumor growth was the same in tumors 

formed from either MEKK1 shRNA expressing cells or control cells (Figure 3.1C-E).  

These results indicate that our xenograft model could recapitulate the results of a 

genetically engineered mouse cancer model. 
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Having confirmed the veracity of our xenograft model for MEKK1, we sought to 

identify potential MAP3Ks to target in our screen.  Using our screening cell lines we 

found that, consistent with previous findings, inhibitors of ERK1/2, JNK and p38 

MAPKs all reduced cell growth in vitro (Figure 3.1F).  Based on literature and our cell 

growth findings in vitro, we determined that it was important to target MAP3Ks that 

regulate all four MAPK pathways.  To parse the contribution of each MAPK pathway to 

tumor outcome, we chose MAP3Ks that can signal through either ERK1/2 (B-Raf, c-Raf, 

Tpl2), JNK and p38 (TAK1, MLK3 and MLK7) or JNK and ERK5 (MEKK2) and p38 

and ERK5 (MEKK3) (Figure 3.1A).  For each target MAP3K, the cell lines containing 

the two shRNAs with the best knockdown of the MAP3K were injected into separate sets 

of mice and tumor growth and metastasis were compared against a control vector 

containing cell line to determine the effect of MAP3K knockdown (Figure 3.1B).  For 

each MAP3K, the phenotypes of the two shRNAs were compared to determine the effect 

of knocking down the target MAP3K.  Cases in which the two shRNAs had divergent 

effects were considered to be due to off-target effects of one of the shRNAs and as the 

true phenotype was ambiguous we considered knockdown of the MAP3K to have a 

discordant phenotype.   

 

MAP3Ks Controlling ERK1/2 Signaling Regulate Tumor Growth but not 

Metastasis 

 Of the four MAPK families in humans, the ERK1/2 family is perhaps the pathway 

best linked to cancer.  We screened three MAP3Ks that control the ERK1/2 pathway, B-

Raf, c-Raf and Tpl2.  While B-Raf and the constitutively activated B-RafV600E mutant 
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forms have been extensively characterized in melanoma tumor growth, we decided to 

study the role of B-Raf in our breast cancer model system for several reasons: i) the role 

of B-Raf in metastasis in vivo has not been well characterized; ii) while B-RafV600E has 

been studied in cancers such as melanoma and papillary thyroid carcinoma, less is known 

about B-Raf in breast cancer; iii) MDA-MB-231 cells express a rare B-RafG464V mutant 

rather then B-RafV600E in combination with a rare KrasG13V mutation (156).  Of the library 

shRNAs, the two best shRNAs resulted in 60% and 90% knockdown of B-Raf for 

shRNA 1 and shRNA 2 respectively (Figure 3.2A).  We found that cell lines expressing 

B-Raf shRNAs developed tumors that were 20% and 15% of control tumor size 

respectively (Figures 3.3A and 3.3C).  Diminished tumor size in B-Raf shRNA cell lines 

correlated with decreased growth of B-Raf knockdown lines in vitro.  Since mutationally 

activated B-Raf regulates cell growth through constitutive ERK1/2 activation, we sought 

to determine whether B-Raf knockdown inhibited ERK1/2 activation in the background 

of KRAS mutation.  Using B-Raf shRNA 1 and shRNA 2 cell lines, we were able to 

confirm that that B-RafG464V could promote ERK1/2 activation in the background of a 

KRASG13V mutation (Figure 3.3F-3.3H) by both western blot and immunofluorescence.  

Despite diminished ERK1/2 activation in culture and the greatly reduced tumor size in B-

Raf knockdown tumors, we find that B-Raf knockdown tumors metastasize to the lymph 

node at near normal rates (Figures 3.3B and 3.3D).  Lymph node metastases were 

removed and real time PCR was used to analyze knockdown of B-Raf in the lymph node.  

Real time PCR confirmed the continued knockdown of B-Raf in lymph node metastases 

(Figure 3.10A). 
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 While c-Raf was originally cloned as the cellular homolog of oncogenic viral v-

Raf, mutation of c-Raf is much less common than B-Raf and is not thought to be a major 

driver of tumors (112).  Using shRNAs targeting c-Raf, we were able to knockdown c-

Raf by 99% at the protein level with either shRNA 1 or shRNA 2 (Figure 3.2B).  

Subsequent mammary fat pad injection of these shRNA containing cell lines gave rise to 

tumors of discordant size.  Cell lines containing c-Raf shRNA 1 gave rise to tumors that 

were roughly 30% control size while cell lines containing c-Raf shRNA 2 gave rise to 

tumors that were nearly identical in size to control cell lines (Figure 3.3I).  As each 

shRNA had similar levels of knockdown, the phenotype was considered to be a 

discordant phenotype.  While the shRNAs gave rise to tumors of different size, both 

shRNAs had wild type levels of metastasis indicating that c-Raf did not regulate tumor 

cell metastasis (Figure 3.3J). 

 Tpl2 targeting shRNAs gave knockdown of 91% and 96% for Tpl2 shRNA 1 and 

shRNA 2 respectively (Figure 3.2C).  Relative to the p52 form of Tpl2, the p58 form 

proved to be somewhat refractory to shRNA.  Cell lines expressing either Tpl2 shRNA 1 

or shRNA2 both showed decreased tumor growth, giving rise to tumors that were 30% 

and 50% of control tumor size (Figures 3.3K and 3.3L).  While truncated versions of 

Tpl2 have been shown to behave as oncogenes, this demonstrates that full length Tpl2 is 

necessary for efficient tumor growth in vivo.  Metastasis data for Tpl2 was discordant, 

potentially indicating off target effects of one of the shRNAs, with shRNA 1 showing 

diminished metastasis and shRNA 2 showing control levels of metastasis despite similar 

levels of knockdown between the two shRNAs (Figure 3.3M).  Real time PCR of the 

lymph node metastases demonstrated continued knockdown of Tpl2 in these metastases, 
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confirming that the differences in metastasis between cell lines were not due to selective 

loss of expression of one shRNA in metastatic cells (Figure 3.10C). 

 

MAP3Ks targeting JNK and p38 Regulate Tumor Growth and Metastasis 

 While ERK1/2 signaling has been characterized extensively in tumor growth, the 

contributions of JNK and p38 signaling to tumor growth and metastasis have remained 

much more ambiguous.  We targeted three MAP3Ks that activate JNK and p38 signaling, 

TAK1, MLK3 and MLK7.  Using MLK3 shRNAs, we were able to knockdown MLK3 

with two MLK3 shRNAs by 90% at the RNA level (Figure 3.2E).  Both shRNAs 

markedly inhibited tumor growth as assessed by ultrasound volume measurements or 

final tumor weight (Figures 3.4A and 3.4C).  Furthermore, both of these shRNAs 

strongly inhibited tumor metastasis (Figures 3.4B and 3.4E).  Only a single mouse out of 

14 mice injected with MLK3 shRNAs developed a lymph node metastasis, while 9 of 14 

control mice were positive for metastasis.  Real time PCR of the single lymph node 

metastasis from MLK3 shRNA expressing cells demonstrated that MLK3 was still 

knocked down in the lymph node metastasis, indicating that cells deficient for MLK3 can 

undergo low level metastasis (Figure 3.10E).  The effects of MLK3 knockdown on tumor 

growth were recapitulated in a second experiment with either MLK3 shRNA 1 or a third 

shRNA against MLK3 showing an identical decrease in tumor growth and metastasis 

(Figure 3.5A and 3.5B). 

The simplest explanation for diminished tumor growth in MLK3 knockdown 

tumors was decreased proliferation of MLK3 knockdown cell lines in vitro.  We therefore 

measured cell growth of MLK3 knockdown cells in vitro.  Cell growth assays 
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demonstrated that MLK3 knockdown resulted in decreased proliferation of MLK3 

knockdown cells (Figure 3.4E).  We sought to identify changes in signaling that may 

account for the loss of tumor growth and metastasis in MLK3 knockdown cell lines.  

Previous reports had determined that MLK3 was responsible for JNK phosphorylation in 

response to free fatty acids in MEFs (157).  We reasoned that high local levels of free 

fatty acids in the mammary fat pad may signal through MLK3, contributing to the defects 

in tumor growth and metastasis observed in MLK3 deficient cell lines.  We tested 

whether MLK3 is required for free fatty acid stimulated JNK in MDA-MB-231 cells by 

assessing JNK activation in control and MLK3 knockdown cells treated with palmitate.  

In agreement with studies in mouse embryonic fibroblasts, we found that MLK3 

knockdown abrogated JNK activation by palmitate (Figure 3.4F).  To test whether the 

milieu of the fat pad was affecting MLK3 tumor growth and metastasis, we assayed 

MLK3 shRNA cell line growth and metastasis in the flank rather then the fat pad.  We 

injected control cells and three cell lines each expressing a different shRNA against 

MLK3 into the flanks of SCID mice.  However, all three MLK3 shRNA containing cell 

lines showed the same phenotype (diminished tumor growth and metastasis) in the flank 

as we observed in the fat pad (Figure 3.5C and 3.5D).  These results indicate that while 

MLK3 knockdown regulates free fatty acid induced JNK activation, the diminished 

tumor growth and metastasis of MLK3 knockdown cell lines in vivo is not due to altered 

free fatty acid signaling in the mammary fat pad. 

Recent data has demonstrated that p38 signaling promotes proliferation of p53 

mutant cell lines such as MDA-MB-231 cells (88).  As MLK3 cells have decreased 

proliferation and MLK3 is known to activate p38, we determined whether p38 signaling 
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was inhibited in MLK3 knockdown cells.  We assessed activation of p38 in serum 

starved, TGFβ stimulated control and MLK3 knockdown cells.  We found that MLK3 

knockdown cells expressing two different MLK3 shRNAs showed a loss of basal and 

TGFβ stimulated p38 signaling (Figure 3.4G).  This loss of p38 signaling in the absence 

of MLK3 may contribute to the decreased proliferation phenotype seen in MLK3 

knockdown cells. 

Secreted proteins such as growth factors, proteases, cytokines and chemokines 

control many cancer related processes such as tumor growth and metastasis.  We sought 

to determine whether the reduced tumor size and metastasis of MLK3 knockdown cells is 

due to alterations in secreted proteins in MLK3 knockdown cells.  To further characterize 

MLK3 knockdown cell lines, cell culture supernatants from MLK3 knockdown lines 

were analyzed for levels of 88 secreted factors using multiplex bead assays.  Increased 

secretion of the macrophage stimulatory factor RANTES was found in cell culture 

supernatants from MLK3 knockdown cells (data not shown).  We therefore probed 

MLK3 knockdown tumors for the presence of macrophages by immunofluorescent 

staining of F4/80.  While macrophages were detected only intermittently in control 

tumors, MLK3 knockdown tumors were permeated throughout with macrophages (Figure 

3.6).  Furthermore, this increase was specific for MLK3 knockdown and not due to 

diminished tumor growth in MLK3 knockdown tumors.  Other MAP3K knockdown 

tumors such as MEKK2 and B-Raf with diminished tumor growth showed normal levels 

of macrophage infiltration into the tumor (Figure 3.6 and not shown).  This increase may 

be due to recognition of MLK3 knockdown tumors by the innate immune system and the 

resulting phagocytosis of tumor cells.    In total, these results demonstrate a role for 
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MLK3 in tumor growth and metastasis in vivo, independent of local fat levels.  We find 

that MLK3 knockdown inhibits tumor growth in vivo and cell proliferation in vitro.  

MLK3 knockdown cells show loss of basal and simulated p38, which is known to 

promote proliferation in p53 mutant lines and MLK3 knockdown tumors have increased 

recognition by the innate immune system. 

 Knockdown of MLK7 was achieved with two shRNAs with ~95% and 85% 

knockdown for shRNA 1 and shRNA 2 by RNA levels (Figure 3.2F).  Injection of cell 

lines containing the two MLK7 shRNAs gave strikingly discordant phenotypes in tumor 

growth, with MLK7 shRNA 1 containing cell lines resulting in barely detectable tumors 

and MLK7 shRNA 2 containing cell lines resulting in tumors that were ~4 fold larger 

than control tumors (Figures 3.4H and 3.4J).  The large tumors formed by cells 

containing MLK7 shRNA 2 are more consistent with previous results that find MLK7 

controls cell stress induced death.  Despite the discordance in tumor size, both of the 

MLK7 shRNAs blocked metastasis, this was particularly striking for MLK7 shRNA 2 

where despite markedly increased tumor size there was no evidence of metastasis 

(Figures 3.4I and 3.4K).  We assayed MLK7 knockdown cell lines for cell signaling 

deficiencies and found the MLK7 cell lines had defects in JNK and p38 activation by 

both anisomycin and hyperosmolar sorbitol, in agreement with previous findings with 

MEFs (Figure 3.4L and 3.4M) (24).   

Knockdown of TAK1 was readily achieved, with two shRNAs each giving 99% 

knockdown at the protein level (Figure 3.2D).  Tumors formed from cell lines containing 

either TAK1 shRNA showed either no defect in tumor growth or modestly increased 

tumor growth (Figures 3.4N).  Similarly, neither TAK1 shRNA had any effect on 
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spontaneous metastasis from the fat pad (Figures 3.4O).  Real time PCR confirmed that 

metastases from TAK1 shRNA containing cell lines still retained TAK1 knockdown 

(Figure 3.10D), indicating that TAK1 does not control either tumor growth or metastasis. 

 

MAP3Ks that Control JNK and ERK5 or p38 and ERK5 Regulate Tumor Growth 

and Metastasis 

 ERK5 has recently emerged as an important MAPK controlling cell proliferation 

and has also been linked to survival and metastasis in human patient samples 

(100,107,110).  Only two MAP3Ks are predicted to activate ERK5, MEKK2 and 

MEKK3 which both contain N-terminal PB1 domains that mediate their interaction with 

MEK5, the MAP2K for ERK5.  Both MEKK2 and MEKK3 activate additional MAPK 

pathways, MEKK2 has been shown to activate JNK pathways, while MEKK3 has been 

demonstrated to activate p38 signaling.  Two shRNAs for MEKK3 were identified that 

resulted in cell lines with MEKK3 knockdown of 98% and 99% (Figure 3.2H).  When 

injected into mice, these cell lines resulted in diminished tumor growth; MEKK3 shRNA 

1 and shRNA 2 tumors were ~50% and 5% of control tumor size (Figures 3.7A and 

3.7C).  Despite reduced tumor growth, MEKK3 knockdown cell lines showed near 

normal metastasis rates (Figures 3.7B and 3.7D).  Real time PCR of metastases 

demonstrated continued MEKK3 knockdown in the population of cells that metastasized, 

indicating that loss of shRNA expression was not responsible for normal levels of 

metastasis (Figure 3.10G).  These results demonstrate that while MEKK3 knockdown 

inhibits tumor growth, metastasis does not require MEKK3. 
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Testing the available MEKK2 shRNAs identified two shRNAs that knocked down 

MEKK2 by either 99% or 77% at the protein level (Figure 3.2G).  Injection of the 

resulting MEKK2  knockdown cell lines showed diminished tumor growth, resulting in 

tumors that were ~33% and 10% the size of control tumors respectively (Figures 3.7E 

and 3.7G).  Furthermore, cell lines knocked down for MEKK2 showed a decreased 

propensity for metastasis, with metastasis detected in only one of 12 mice injected with 

MEKK2 shRNAs while metastasis was detected in 7 of 13 mice injected with control 

cells (Figures 3.7F and 3.7H).  MEKK2 knockdown tumors were allowed to grow until 

the tumors metastasized.  We found that metastasis in MEKK2 knockdown tumors was 

delayed five weeks relative to controls (7 weeks in controls vs. 12 weeks in MEKK2 

shRNA).  While metastasis was much delayed, metastases from MEKK2 shRNA tumors 

still retained knockdown of MEKK2 indicating that MEKK2 delayed but did not 

completely abrogate metastasis (Figure 3.10F).  These effects of MEKK2 on tumor 

growth and metastasis were verified with a second independent set of injections (Figure 

3.8A and 3.8B).  These results verify that MEKK2 is required for tumor growth and 

metastasis. 

As MEKK2 has been found to regulate ERK5, we assessed whether loss of 

MEKK2 expression inhibited ERK5 activation in response to the potent metastatic 

stimulus EGF.  We and others have observed that the currently available phospho-ERK5 

antibodies have poor sensitivity (158).  Therefore, we assessed ERK5 activation by 

supershift, detecting the slower moving phosphorylated ERK5 band using total ERK5 

antibodies.  We found both MEKK2 shRNAs block activation of ERK5 by EGF in 

MDA-MB-231 cells (Figures 3.7I and 3.8C).  In contrast to ERK5 signaling, ERK1/2 and 
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JNK1 activation was unchanged while there was a decrease in JNK2 signaling (Figure 

3.7I).  Similar results were seen with the second shRNA against MEKK2, with loss of 

ERK5 activation, unchanged ERK1/2 and JNK1 signaling while JNK2 activation was 

increased (Figure 3.8C).  While ERK5 has been implicated in proliferation, we found no 

difference between control and MEKK2 shRNA cell line proliferation in vitro (Figure 

3.8D). 

As MEKK2-ERK5 signaling may be an important regulator of metastasis, we 

sought to characterize upstream cellular factors required to activate MEKK2.  Previous 

experiments have determined that MEKK2 activates ERK5 in a Src dependent fashion in 

mink lung endothelial cell lines (159).  We therefore tested whether Src was required for 

EGF stimulated ERK5 activation in MDA-MB-231 cells, using the Src family inhibitors 

PP2 and Dasatinib, the inactive inhibitor PP3 and the EGFR/Her2 inhibitor Lapatinib.  As 

expected, EGF induced ERK5 activation was inhibited by EGFR inhibition with 

Lapatinib (Figure 3.7J).  However, we found that while ERK5 activation by EGF was 

sensitive to PP2, it was insensitive to Dasatinib (Figure 3.7J).  Differences in the activity 

of the two inhibitors could be explained by a more modest inhibitory effect of Dasatinib 

or by differences in the Src family kinases inhibited by the two drugs.  However, western 

blots detecting Src family autophosphorylation at Y416, found that Dasatinib had a much 

more profound effect of Src family autophosphorylation than PP2 (Figure 3.7J).  PP2 has 

also been found to inhibit EGFR with a modest KD, however, blotting for the EGFR 

autophosphorylation site Y840 found that while EGFR autophosphorylation was readily 

inhibited by Lapatinib, PP2 did not affect EGFR autophosphorylation (Figure 3.7J).  

However, given the ability of Dasatinib to inhibit Src activity without altering ERK5 
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phosphorylation, it seems likely that the effects of PP2 on ERK5 activation are due to off-

target effects of the drug.  Thus, MEKK2 activation is Src independent but requires 

EGFR receptor activation.   

We sought to identify potential downstream targets of MEKK2-ERK5 signaling.  

As cancer cells secrete many factors that promote tumor growth and metastasis, we used 

a luminex bead based assay to identify proteins that were differentially secreted between 

control and MEKK2 knockdown cell lines.  Profiling of 88 secreted proteins in the 

MEKK2 shRNA cell lines demonstrated selective loss of tissue factor (TF) expression in 

MEKK2 shRNA cell lines (Figure 3.8E).  TF has been demonstrated to promote tumor 

growth and metastasis through interactions with factor VII and activation of the PAR2 

receptor (160,161).  Using TF specific real time PCR primers we found that tissue factor 

expression was lost at RNA level as well as at the protein level (Figure 3.8F).  

Interestingly, at the level of both protein and RNA, the effect of MEKK2 shRNA 2 is 

more modest then shRNA 1, consistent with the relative levels of knockdown achieved 

with MEKK2 shRNA 1 and MEKK2 shRNA 2.  These results identify a target of 

MEKK2, TF, which may be an important mediator of MEKK2 oncogenic and metastatic 

signaling. 

The EGFR family member Her2/ERBB2 is frequently overexpressed in breast 

cancer and is associated with poor prognosis.  Overexpressed Her2 is known to result in 

constitutive activation of ERK5, which promotes cell proliferation.  As MEKK2 was 

required for ERK5 activation by MEKK2, we investigated whether MEKK2 mediated 

ERK5 activation in HER2 overexpressing breast cancer cell lines.  We expressed 

MEKK2 shRNA in the HER2 overexpressing cell line BT474 and found that MEKK2 
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knockdown blocked constitutive activation of ERK5 in BT474 cells.  While ERK5 was 

almost completely in the phosphorylated active form in control cells, ERK5 was almost 

completely in the inactive dephosphorylated form in MEKK2 shRNA cells (Figure 3.7K).  

This was accompanied by an increase in JNK phosphorylation, perhaps because of loss of 

ERK5 prosurvival effects, but ERK1/2 activation remained unchanged (Figure 3.7K).  As 

ERK5 has been implicated in proliferation in HER2 overexpressing cells, we injected the 

control and MEKK2 shRNA cell lines into the flanks of SCID mice and measured tumor 

growth. By bioluminescent imaging, we found that control vector containing tumors were 

markedly larger then tumors formed from MEKK2 shRNA containing BT474 cells 

(Figure 3.7L).  Quantitation of the resulting luciferase signal demonstrated a 12 fold 

decrease in photon flux in MEKK2 shRNA tumors relative to control vector expressing 

tumors (Figure 3.7M).  These results implicate MEKK2 in tumor growth and metastasis 

and demonstrate the existence of an ERBB family member-MEKK2-ERK5 signaling axis 

that contributes to tumor signaling.  Furthermore, our results identify tissue factor as a 

potential target by which MEKK2 may regulate tumor growth and metastasis. 

 

Knockdown of ERK5 blocks metastasis in MDA-MB-231 cells 

We find that MEKK2 regulates ERK5 and controls tumor growth and metastasis.  

Previous work has demonstrated roles for ERK5 in proliferation in vitro and in regulation 

of metastasis and survival in human breast cancer patients (107,110).  We wanted to 

assess directly whether knockdown of ERK5 in MDA-MB-231 cells would show similar 

tumor growth and metastasis phenotypes as we saw in MEKK2 knockdown cells.  Two 

different shRNAs against ERK5 resulted in knockdown of ERK5 levels (Figure 3.9A).  
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Cell lines expressing control vector and ERK5 shRNAs were xenografted into the 

mammary fat pad and tumor growth and metastasis of the two knockdown cell lines was 

compared to control cell lines.  While neither of these cell lines had altered tumor growth 

relative to control cells, ERK5 knockdown correlated with reduced metastasis (Figures 

3.9B-D).  In our experiments, only one of 10 animals injected with ERK5 shRNA cell 

lines had lymph node metastasis.  Thus while tumor growth in MDA-MB-231 cells is 

ERK5 independent, efficient metastasis of MDA-MB-231 cells requires ERK5 

expression.  These results demonstrate the requirement of MEKK2-ERK5 signaling in 

tumor metastasis. 

 

Discussion 

Our goal in this study was to use shRNA screens to define the function of the 

MAPK signaling network in controlling breast cancer tumor growth and metastasis. 

Rationale for the screen was based on the overwhelming evidence that the MAPK 

signaling network is significantly amplified, overexpressed and activated in breast cancer, 

suggesting the signaling network has a major influence on driving the breast cancer 

phenotype. Numerous studies have characterized loss of function and chemical inhibition 

of MAPK network proteins in cancer cells in vitro (55,84,88,106). Also, MAPK network 

proteins such as B-Raf, JNK, ERK1/2 and ERK5 have been studied in vivo in xenograft 

models as individual targets (67,115,162). A more comprehensive screen to define the 

cooperative behavior of the MAPK network had not been completed.  MAP3Ks were 

targeted for shRNA knockdown for the screen, because it is the diversity of MAP3Ks and 

their different protein-protein interactions and modifications that integrate the MAPK 
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network in the cellular response to different stimuli involving GTPases, additional 

kinases and receptors (108,131,134,153). Thus, MAP3Ks function as signaling hubs for 

integration of the MAPK network with the physiological response of cells to their 

environment.       

The MAP3Ks we targeted differentially regulate ERK1/2, JNK, p38 and ERK5. 

Seven of the nine targeted MAP3Ks had a pronounced inhibition of either tumor growth 

and/or metastasis. The findings demonstrate that MAP3Ks and their selective and 

differential activation of the four primary MAPK families have significant regulatory 

functions in controlling in vivo tumor growth and metastasis. Based on the literature, our 

data enables us to parse the roles played by different MAPK pathways in tumor growth in 

vivo (Figure 3.9E).  We find, consistent with the known role of ERK1/2 in cell 

proliferation, two MAP3Ks, B-Raf and Tpl2, that regulate ERK1/2 activation control 

tumor growth in vivo.  Interestingly, despite their effects on tumor growth, neither B-Raf 

nor Tpl2 has reproducible effects on metastasis, indicating that ERK1/2 signaling 

regulates tumor growth but not metastasis.  By contrast, MEKK1, MEKK2, MEKK3, 

MLK3 and MLK7, MAP3Ks regulating JNK and/or p38 variously inhibit tumor growth 

and metastasis, demonstrating that JNK and p38 signaling are critical to both tumor 

growth and metastatic spread.  MEKK2 and MEKK3 also regulate ERK5, thus we 

knocked down ERK5 directly to assess its role in tumor outcome.  Knocking down ERK5 

demonstrated that ERK5 was required for metastasis.  The array of MAP3Ks whose loss 

of expression had a measureable phenotype mapped to the control of ERK1/2, JNK, p38 

and ERK5. Thus, the collective family of MAP3Ks, MAP2Ks MAPKs, functions to drive 

the tumor phenotype.  Interestingly, ERK1/2, JNK, p38 and ERK5 signaling pathways 
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were all required for tumor growth and metastasis in the background of a cell line 

containing activating mutations of B-Raf and Ras.  This is particularly interesting given 

the central role accorded to Ras, B-Raf-MKK1/2-ERK1/2 signaling and more generally, 

ERK1/2 signaling in tumor outcome.  The findings demonstrate the importance of the 

entire MAPK network, not simply specific drivers such as mutant B-Raf, in contributing 

to tumor phenotype and explain why so many members of the MAPK network are 

overexpressed and/or activated in breast cancer. The screen results show loss of 

individual MAP3Ks by shRNA knockdown can significantly compromise the network 

such that tumor growth and/or metastasis are inhibited.  Only loss of TAK1 and c-Raf 

expression failed to have a measurable and reproducible inhibition of either tumor growth 

or metastasis by two independent shRNAs. For c-Raf there was discordance in the two 

shRNAs in regards to tumor growth. The fact that one c-Raf shRNA did not inhibit tumor 

growth, and the presence of an activating B-Raf mutation to drive constitutive ERK1/2 

activation and proliferation in the MDA-MB-231 cells, suggests the second shRNA for c-

Raf had an off-target response in its inhibition of tumor growth.  TAK1 knockdown, if 

anything, enhanced tumor growth.     

Of the MAP3Ks studied in our experiments, most have been linked to cancer in a 

relatively limited fashion.  Despite their limited provenance in cancer, we find that many 

of these MAP3Ks that have potent effects on tumor growth and/or metastasis. Two of the 

top-scoring MAP3Ks were MLK3 and MEKK2, which both have potent effects on both 

tumor growth and metastasis.  MLK3 is activated by the small GTPases Rac and Cdc42  

and has been extensively studied for its role in mediating neuronal apoptosis (131,163). 

As MLK3 was required for growth in our experiments, apoptosis is clearly not the 
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function of MLK3 in the MDA-MB-231 tumor system. Instead, knockdown of MLK3 in 

MDA-MB-231 cells resulted in loss of JNK activation in response to fatty acids and p38 

activation in response to TGFβ. In vitro, loss of MLK3 expression resulted in an 

inhibition of cell growth, potentially due to loss of the p38 dependent cell proliferation 

that has been demonstrated in p53 null cell lines.  Based on our data, it would be 

expected that MLK3 overexpression would promote proliferation of p53 mutant cell 

lines.  Interestingly, searches of a public database of gene expression data 

(www.oncomine.org) demonstrated that MLK3 was found to be overexpressed in 

multiple studies on Barrett’s esophagus and esophageal adenocarcinoma samples from 

human patients.  p53 mutations are common in esophageal adenocarcinoma and 

progression of normal esophagus to Barrett’s esophagus to esophageal adenocarcinoma is 

dependent on p53 mutation in many cases.  Furthermore, MLK3 knockdown tumors were 

extensively infiltrated with macrophages while we saw little evidence of increased 

macrophage infiltration in MEKK2 knockdown tumors that also showed reduced growth.  

The altered immune response in MLK3 knockdown tumors may result in scavenging of 

MLK3 knockdown tumor cells contributing to the diminished tumor growth in MLK3 

knockdown tumors.  

The role of MEKK2 in tumor growth and metastasis has not been systematically 

studied but there is the beginning of a linkage for its role in cancer.  In one study linking 

MEKK2 to cancer, 11 prostate cancer tissue samples were compared to uninvolved 

prostate tissue using imaging mass spectrometry (120).  One peptide was found to 

discriminate cancer from uninvolved tissue and this peptide was a fragment of MEKK2.  

In confirmation of the MS data, MEKK2 was expressed at 4.4-fold higher level in 
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prostate cancer tissue versus benign tissue using western blotting.  Even higher levels of 

MEKK2 expression were observed in LNCaP, Du145 and PC3 prostate cell lines (120). 

Our current study shows that MEKK2 is required for activation of ERK5 by ERBB 

family members.  Specifically, we find that MEKK2 mediates ERK5 activation by EGF 

stimulated EGFR activity in MDA-MB-231 cells and by constitutive ERK5 activation 

induced by Her2 overexpression in BT474 cells. MEKK2 is also in a complex that can be 

co-immunoprecipitated with the EGFR (our unpublished observation). ERK5 knockdown 

experiments demonstrated that MEKK2 regulates tumor growth in an ERK5 independent 

manner, consistent with MEKK2 regulation of JNK signaling.  This regulation of tumor 

growth by MEKK2 occurs in multiple breast cancer subtypes as MEKK2 knockdown 

inhibits growth of Her2 positive BT474 xenografts as well.  While regulation of tumor 

growth in MDA-MB-231 cells by MEKK2 is ERK5 independent, both MEKK2 and 

ERK5 shRNA-mediated knockdown inhibited metastasis of MDA-MB-231 cells 

demonstrating a role for MEKK2 mediated ERK5 activation in metastasis. This finding 

corroborates with the recent finding that ERK5 expression levels correlate with disease 

free survival time in human breast cancer patients (110).  Further, our findings 

implicating a MEKK2-ERK5 signaling axis in breast cancer suggest that overexpression 

of MEKK2 in prostate cancer may promote prostate cancer progression through ERK5 

activation.  Recent findings have demonstrated a role for ERK5 activation in prostate 

cancer.  In a study done in prostate cancer, ERK5 expression was significantly increased 

in high-grade prostate cancer compared to benign prostatic hyperplasia (162).  Analysis 

of ERK5 expression in samples taken before and after hormone relapse showed a 

correlation with ERK5 nuclear localization (indicating ERK5 activation) and hormone-
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insensitive disease (162).  ERK5 overexpression in PC3 cells resulted in more efficient 

tumor formation in mice (162).  In a recent study, miR-143 was shown to be a tumor 

suppressor in prostate cancer using a mouse model (105).  One of the mechanisms of 

miR-143 appears to be suppression of ERK5 protein expression (105).  The MAP2K of 

the ERK5 pathway, MKK5 has also been implicated in tumor development.  It was found 

that overexpression of MKK5 correlated with bone metastasis and poor prognosis in a 

cohort of 127 cases of prostate cancer and 20 cases of benign prostatic hypertrophy (107).  

Thus the MEKK2-MKK5-ERK5 signaling pathway we identified in breast cancer may be 

conserved in multiple tumor types and suggest that targeting of the MEKK2-MKK5-

ERK5 pathway is of therapeutic value in both breast and prostate cancer.   

Kinases are probably the most important target class today for oncology drug 

discovery, with nine inhibitors currently approved for different cancers (133).   

Identification of multiple MAP3Ks that are required for proper function and dynamics of 

the MAPK network has revealed several kinases within the untargeted cancer kinome 

required for tumor growth and metastasis (133). Our shRNA screens have shown it is 

possible to target a signaling network commonly activated in cancer and identify kinases 

whose loss of expression inhibits the cancer phenotype. Similar RNAi screens for other 

commonly activated signaling networks will undoubtedly define kinases whose function 

in tumor progression has not been recognized. Such studies will define the cooperative 

nature of kinase networks and identify previously unrecognized kinases involved in 

cancer and other human diseases that can be therapeutically targeted. 
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Figure 3.1.  Methodology for RNAi Screening of MAP3K Function in Tumor 
Growth and Metastasis and Validation in vivo 
(A) Model illustrating the MAPK signaling networks regulated by each of the MAP3Ks 
screened in this paper.  (B) Schematic demonstrating the workflow of the screen and 
readouts of tumor growth and metastasis by ultrasound and bioluminescent imaging.  (C) 
MEKK1 does not inhibit tumor growth.  Tumor mass of tumors formed from control cells 
and MEKK1 shRNA cells.  Data is presented as mean ± standard error of the mean 
(SEM).  (D) Loss of metastasis in tumors with MEKK1 knockdown.  Bioluminescent 
imaging of metastases from tumors formed from either control cells or MEKK1 shRNA 
cells demonstrating reduced metastasis from MEKK1 knockdown tumors.  (E) 
Quantitation of results from bioluminescent imaging.  Metastasis expressed as percent of 
animals metastasis positive in control and MEKK1 knockdown tumors. (F) Inhibition of 
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multiple MAPK pathways reduces cell proliferation.  MDA-MB-231 cells were grown in 
the presence of either DMSO (control) 10 µM U0126 (MEK1/2 inhibitor), 50 µM 
SP600125 (JNK inhibitor), or 10 µM SB203580 (p38 inhibitor) for the times indicated.  
Data at each time point is presented as mean ± SEM for each condition assayed in 
quadruplicate.  Tumor experiments were done in collaboration with Nancy Johnson and 
Bruce Cuevas. 
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Figure 3.2.  Knockdown of MAP3Ks by TRCN shRNAs. 
(A, B, C, D, G and H) Western blots demonstrating knockdown of specific MAP3Ks by 
TRCN shRNAs.  γ-Tubulin was used as a loading control.  For each MAP3K shRNA, the 
TRCN sequence number is listed and the percentage knockdown as determined by 
densitometry of the MAP3K relative to control is indicated below the blots.  MAP3Ks 
targeted are (A) B-Raf.  (B) c-Raf. (C) Tpl2.  (D) TAK1.  (G) MEKK2.  (H) MEKK3.  (E 
and F)  Real time PCR demonstrating knockdown of MLK3 and MLK7 by TRCN 
shRNAs.  For each shRNA, RNA levels were normalized to β-actin signal as an 
endogenous calibrator and MAP3K RNA levels were quantitated relative to control cells.  
MAP3Ks analyzed are (E) MLK3 and (F) MLK7.  These experiments were done in 
collaboration with Jing Yang. 
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Figure 3.3.  Knockdown of MAP3Ks Regulating ERK1/2 Signaling Results in 
Defects in Tumor Growth 
(A) B-Raf knockdown inhibits tumor growth.  Representative ultrasound images of 
control and B-Raf knockdown tumors at 45 days post injection.  Extent of tumors is 
denoted in yellow.  (B) B-Raf knockdown has modest effects on metastasis.  
Representative bioluminescent images of control and B-Raf tumors at time of sacrifice 
demonstrating that metastasis is largely unchanged in B-Raf knockdown tumors.  (C) 
Quantitation of tumor volume in control and multiple B-Raf shRNA tumors 
demonstrating inhibition of tumor growth with multiple B-Raf shRNAs.  For each time 
point, data is presented as mean ± SEM, n = 6 (Control and B-Raf shRNA 1) or n = 8 
(Control and B-raf shRNA 2), * p < 0.05, ** p < 0.01.  (D) Quantitation of mice 
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determined to be metastasis positive at time of sacrifice in mice with control and multiple 
B-Raf knockdown tumors.  (E) B-Raf knockdown inhibits cell growth in vitro.  B-Raf 
knockdown cell lines were grown for 4 days post plating and viability was assessed in 
quadruplicate on each day using an ATP based viability assay.  Data is presented as mean 
± SEM for each time point. (F) Loss of ERK1/2 signaling by western blot in B-Raf 
shRNA 1 containing cells.  Cells were blotted for either phospho-ERK1/2 or gamma 
tubulin as a loading control.  Densitometry was used to quantitate phospho-ERK1/2 
levels relative to control. (G) Loss of ERK1/2 signaling by immunofluorescence in B-Raf 
shRNA 2 containing cells.  Control and B-Raf shRNA cells were stained for either 
phospho-ERK1/2 (Red), actin (green) or nuclei (blue).  (H) Quantitation of phospho-
ERK1/2 staining in control and B-Raf shRNA cells.  Whole cells were masked using 
actin staining to denote the cells.  Phospho-ERK1/2 staining within the mask was 
quantitated for control and B-Raf shRNA cells.  (I) c-Raf knockdown has discordant 
effects on tumor growth.  Tumor volume of tumors formed from control and c-Raf 
knockdown cells determined by ultrasound.  Volumes are expressed as mean ± SEM for 
each point, n = 7 and 6 (Control and c-Raf shRNA 1) or n = 6 and 5 (Control and c-Raf 
shRNA 2).  (J) c-Raf knockdown has no effect on metastasis.  Metastasis positive mice 
were quantitated at time of sacrifice and expressed as percentage of mice metastasis 
positive in mice with control or c-Raf knockdown tumors.  (K) Tpl2 knockdown inhibits 
tumor growth.  Representative ultrasound images of control and Tpl2 knockdown tumors, 
tumor area is denoted with yellow lines.  (L) Quantitation of tumor volume in control and 
Tpl2 knockdown cell lines demonstrating decreased tumor growth in multiple Tpl2 
knockdown cell lines.  For each time point, data is presented as mean ± SEM, n = 8 
(Control and Tpl2 shRNA 1) or n = 7 (Tpl2 shRNA 2), * p < 0.05.  (M) Knockdown of 
Tpl2 has discordant effects on metastasis with two Tpl2 shRNAs.  Quantitation of 
metastasis positive mice at time of sacrifice in mice with control and Tpl2 knockdown 
tumors.  Tumor experiments were done in collaboration with Nancy Johnson. 
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Figure 3.4.  Knockdown of MAP3Ks Regulating JNK and p38 Signaling Results in 
Defects in Tumor Growth 
(A) MLK3 knockdown inhibits tumor growth.  Ultrasound images of control and MLK3 
knockdown tumors 63 days post injection.  Margins of tumor are indicated by yellow 
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line.  (B) MLK3 knockdown inhibits metastasis.  Representative bioluminescent images 
at time of sacrifice to detect metastases from control and MLK3 knockdown tumors.  (C) 
Quantitation of differences in tumor size by either final tumor weight for MLK3 shRNA 
1 or tumor volume over time for MLK3 shRNA 2.  Each data point is presented as mean 
± SEM, n = 6 (MLK3 shRNA 1) or n = 5 (MLK3 shRNA 2).  (D) Quantitation of 
percentage of mice metastasis positive at time of sacrifice in mice injected with control 
and MLK3 knockdown cell lines.  (E) MLK3 knockdown inhibits cell growth.  Control 
and MLK3 knockdown cell lines were plated in 96 well plates and allowed to grow for 4 
days.  At each day, viable cells were measured using an ATP based viability assay and 
normalized to day 0 signal.  (F) MLK3 knockdown inhibits JNK activation by free fatty 
acid.  Control, MLK3 shRNA 1 and MLK3 shRNA 2 cell lines were treated with either 
0.5% fatty acid free BSA or 0.5 mM palmitate in 0.5% fatty acid free BSA for 18 hrs and 
lysates were blotted for either phospho-JNK or actin.  (G) MLK3 knockdown inhibits 
TGFβ stimulated p38 activation.  Control, MLK3 shRNA 1 and MLK3 shRNA 2 cell 
lines were serum starved and treated with 5 ng/mL TGFβ for the times indicated and 
blotted for either phospho-p38 or total ERK5 as a loading control.  (H)  MLK7 
knockdown enhances tumor growth.  Representative ultrasound images of control and 
MLK7 shRNA 2 tumors.  Extent of tumors is indicated in yellow.  (I) MLK7 knockdown 
inhibits metastasis.  Representative bioluminescent images of control and MLK7 
knockdown injected mice.  (J) MLK7 knockdown results in discordant tumor growth 
phenotype.  Quantitation of tumor size of control and MLK7 knockdown tumors 
measured by ultrasound or tumor mass.  For each data point, tumor size is indicated as 
mean ± SEM for n = 7 and 8 (Control and MLK7 shRNA 1 or Control and MLK7 
shRNA 2).  (K) Quantitation of metastasis in control and MLK7 knockdown cell lines 
expressed as percentage of mice positive for metastasis at time of sacrifice.  (L and M) 
Knockdown of MLK7 inhibits JNK and p38 in response to anisomycin and hyperosmolar 
sorbitol.  Cells were serum starved and treated with 10 µg/mL anisomycin or 0.2 M 
sorbitol for the indicated times.  Lysates were blotted for phospho-JNK, phospho-p38, 
phospho-ERK1/2 and actin as a loading control.  (N) TAK1 knockdown has no effect on 
tumor growth.  Quantitation of tumor growth in control and TAK1 shRNA tumors.  For 
each time point, data is presented as mean ± SEM, n = 6 (Control and TAK1 shRNA 1) 
or n = 8 (Control and TAK1 shRNA 2).  (O) Quantitation of metastases from control and 
TAK1 knockdown tumors demonstrating similar levels of metastasis in control and 
multiple TAK1 shRNA cell lines.  Tumor experiments were done in collaboration with 
Nancy Johnson. 
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Figure 3.5.  MLK3 knockdown by multiple shRNAs Regulates Tumor Growth and 
Metastasis at Multiple Sites of Implantation. 
(A and B)  Cell lines expressing either an MLK3 shRNA used in the screen (MLK3 
shRNA 1) or a third independent shRNA against MLK3 (MLK3 shRNA 3) have 
decreased tumor growth and metastasis in vivo.  (A) Tumor growth assessed by tumor 
weight at time of sacrifice in control and MLK3 shRNA cell lines.  Data represent mean 
± SEM of n = 7 (Control and MLK3 shRNA 3) or n = 8 (MLK3 shRNA 1).  (B) 
Metastasis assessed as percentage of animals metastasis positive in control and MLK3 
knockdown tumors.  (C and D) Cell lines with MLK3 knockdown have similarly 
decreased tumor growth and metastasis when implanted in the flank.  Control cell lines or 
cell lines expressing three different MLK3 shRNAs were injected into the flanks of SCID 
animals.  (C) Tumor growth was assessed by tumor weight at time of sacrifice in control 
and MLK3 shRNA cell lines.  Mice injected with MLK3 shRNA cell lines show similar 
decreases in tumor growth as was seen in the mammary fat pad.  Bars represent mean ± 
SEM, n = 6 (Control, MLK3 shRNA 2 and MLK3 shRNA 3) or n = 5 (MLK3 shRNA 1).  
(D) Metastasis quantitated as percentage of mice metastasis positive at time of sacrifice.  
MLK3 knockdown lines show a similar loss of metastasis to what is seen in mammary fat 
pad injections of MLK3 knockdown cells.  Tumor experiments were done in 
collaboration with Nancy Johnson. 
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Figure 3.6.  Increased macrophage infiltration of MLK3 knockdown tumors.  
Control, MLK3 and MEKK2 knockdown tumors were fixed and stained for the 
macrophage marker F4/80 (red) and nuclei (DAPI, blue).  This experiment was done in 
collaboration with Nancy Johnson
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Figure 3.7.  Knockdown of MAP3Ks regulating either ERK5 and JNK or ERK5 and 
p38 inhibit tumor growth and metastasis. 
(A)  MEKK3 knockdown inhibits tumor growth.  Representative ultrasound images of 
control and MEKK3 knockdown tumors.  Extent of tumors is indicated by the yellow 
lines.  (B)  MEKK3 knockdown does not affect tumor metastasis.  Representative 
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bioluminescent images of metastases from control and MEKK3 knockdown tumors at 
time of sacrifice.  (C)  Quantitation of control and MEKK3 knockdown tumor volume as 
determined by ultrasound imaging.  For each point, data is presented as mean ± SEM for 
n = 7 (Control and MEKK3 shRNA 1) or n = 8 (MEKK3 shRNA 2), * p < 0.05, ** p < 
0.01.  (D) Quantitation of metastasis in control and MEKK3 knockdown tumors as 
determined by bioluminescent imaging expressed as percentage of mice metastasis 
positive at time of sacrifice.  (E)  MEKK2 knockdown inhibits tumor growth.  Ultrasound 
images of control and MEKK2 knockdown tumors 55 days post injection.  Extent of 
tumors is denoted in yellow.  (F)  MEKK2 knockdown inhibits tumor metastasis.  
Bioluminescent images detecting presence or absence of metastases from control and 
MEKK2 knockdown tumors at time of sacrifice.  (G) Quantitation of tumor volume in 
control and MEKK2 knockdown determined by ultrasound imaging.  For each data point, 
data is presented as mean ± SEM for n = 7 and 6 (Control and MEKK2 shRNA 1) or n = 
6 (Control and MEKK2 shRNA 2), * p < 0.05, * p < 0.01.  (H) Quantitation of metastases 
from control and MEKK2 knockdown tumors as determined by bioluminescent imaging 
and expressed as percentage of mice positive for metastasis at time of sacrifice.  (I) 
MEKK2 knockdown inhibits ERK5 activation by EGF stimulation.  Cells were 
stimulated with 10 ng/mL EGF for the indicated times and blotted for ERK5, phospho-
ERK1/2 and phospho-JNK.  For ERK5 blots, long exposures were performed to identify 
the supershifted phosphorylated active form of ERK5 indicated with arrows, while 
shorter exposures were performed to demonstrate equal loading of samples.  (J) ERK5 
activation by EGF is Src independent and EGFR dependent.  Cells were serum starved 
and treated with DMSO control, PP2, PP3, Dasatinib or Lapatinib for 15 minutes prior to 
stimulation with 10 ng/mL EGF for 15 minutes.  Cells were lysed and blotted for either 
total ERK5, Src family Y416-phospho, EGFR Y1068-phospho or actin as a loading 
control.  (K) Knockdown of MEKK2 inhibits constitutive ERK5 activation in BT474 
cells.  Control BT474 cells or BT474 cells expressing MEKK2 shRNA were lysed and 
blotted for either ERK5, MEKK2, phospho-ERK1/2, phospho JNK or γ-tubulin as a 
loading control.  MEKK2 knockdown was accompanied by a marked loss of the 
supershifted phosphorylated form of ERK5.  (L)  MEKK2 knockdown inhibits tumor 
growth in BT474 cells.  Bioluminescent images of tumors from mice flank injected with 
either control or MEKK2 knockdown BT474 cells 6 weeks post injection.  (M) Regions 
of interest were drawn around bioluminescent tumor images of BT474 control and 
MEKK2 knockdown tumors and tumor photon flux was measured.  Bars represent mean 
± SEM for each cell type, n = 12 (control) n = 10 (MEKK2 shRNA 1), * p < 0.05.  
Tumor experiments were done in collaboration with Nancy Johnson. 
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Figure 3.8.  MEKK2 knockdown has reproducible effects in a second set of 
injections and on ERK5 activation and tissue factor expression. 
(A and B)  Effects of MEKK2 knockdown on tumor growth and metastasis recapitulate in 
a second independent set of injections.  Control cell lines and cell lines expressing 
MEKK2 shRNA 1 and shRNA 2 were injected into the mammary fat pad of SCID mice.  
(A) Mice injected with MEKK2 shRNAs show decreased tumor size relative to control. 
Quantitation of tumor size by weight at time of sacrifice.  Bars represent mean ± SEM of 
n = 8 (Control and MEKK2 shRNA 2) or n = 7 (MEKK2 shRNA 1).   (B) Tumors 
formed from a second set of MEKK2 shRNA cell line injections had diminished 
metastasis.  Quantitation of metastasis as percentage of mice metastasis positive by 
bioluminescent imaging in control and MEKK2 shRNA cell line injected mice.  (C) 
Knockdown of MEKK2 with a second shRNA results in reduced ERK5 activation in 
response to EGF.  Lysates from EGF stimulated control and MEKK2 shRNA 2 
knockdown cell lines were blotted for ERK5, phospho-ERK1/2, phospho-JNK or for γ-
Tubulin as a loading control.  (D) MEKK2 knockdown does not alter cell growth in vitro.  
Control and MEKK2 knockdown cell lines were plated in 96 well plates and viability was 
assessed by ATP viability assay.  (E) MEKK2 knockdown decreases tissue factor 
secretion.  Control and MEKK2 knockdown cell lines were grown in serum free media 
for three days and tissue factor secretion in the supernatant was assessed using a bead 
based cytokine assay.  (F) MEKK2 knockdown decreases tissue factor mRNA levels in 
cells.  mRNA was isolated from control and MEKK2 shRNA cell lines and tissue factor 
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message level in MEKK2 knockdown cell lines was quantitated relative to tissue factor 
levels in control cell lines.  RNA levels were normalized using β-actin levels as a 
calibrator.  Tumor experiments were done in collaboration with Nancy Johnson. 
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Figure 3.9.  ERK5 Knockdown Inhibits Metastasis but not Tumor Growth. 
(A)  ERK5 knockdown with ERK5 shRNAs.  Control and ERK5 shRNA MDA-MB-231 
stable cell lines were lysed and blotted for ERK5 levels and actin levels as a loading 
control.  (B) ERK5 knockdown does not alter tumor growth.  Control and ERK5 shRNA 
cell lines were injected into SCID mice and mice were sacrificed 8 weeks post injection.  
Tumor size was measured by weight.  Bars represent mean ± SEM, n = 5 for each cell 
line.  (C) Representative bioluminescent images showing the presence and absence of 
metastasis in control and ERK5 shRNA cell lines.  (D) Quantitation of percentage of 
mice that were found to be metastasis positive in control and ERK5 knockdown lines at 
time of sacrifice.  (E) Model of MAP3K signaling network members identified as 
regulating either tumor growth or metastasis, downstream MAPK pathways and tumor 
outcomes determined from MAP3K knockdown experiments.  Tumor experiments were 
done in collaboration with Nancy Johnson. 
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Figure 3.10.  Knockdown of MAP3Ks in lymph node metastases from MAP3K 
knockdown cell lines. 
MAP3K knockdown was assessed in lymph node metastases from MAP3K knockdown 
cell lines.  For each MAP3K target, knockdown was assessed relative to MAP3K levels 
in lymph node metastases from control tumors.  Deflection of samples from MAP3K 
knockdown cell lines above the standard curve created by control lymph node metastases 
indicated continued knockdown of the MAP3K in the metastasized cells.  Knockdown 
was assessed in metastases from cell lines knocked down for either (A) B-Raf.  (B) c-Raf.  
(C) Tpl2.  (D) TAK1.  (E) MLK3.  (F) MEKK2.  (G) MEKK3.  These experiments were 
done with Debbie Granger. 
 
 



 
 
 
 
 

IV.  Conclusion 

 MAPK networks are dysregulated in many diseases resulting in pathological 

signaling events.  Upstream MAP3Ks control the magnitude, duration and location of 

MAPK activation which regulate the physiological outcome of MAPK signaling.  MAPK 

signaling has been extensively studied in cancer, a disease in which MAPK signaling is 

frequently dysregulated and promotes tumor growth and metastasis.  However, with the 

exception of B-Raf, the upstream MAP3Ks that control the pathogenic MAPK signaling 

have been scarcely studied.  I have used screening methods to identify the MAPK 

pathways activated by MAP3Ks in response to an array of stimuli.  I also screened a 

group of nine MAP3Ks in an in vivo tumor xenograft assay to identify MAP3Ks that 

functionally control tumor growth and/or metastasis in vivo.   

 

Regulation of MAPK Signaling by MAP3Ks in Cell Culture 

 The individual MAPKs are organized into dynamic networks.  These networks are 

controlled through the actions of their upstream MAP2Ks and MAP3Ks.  MAP2Ks have 

been well characterized and with the exception of MKK4, appear to regulate only one 

MAPK family, by contrast, the MAP3Ks can regulate multiple families of MAPKs but 

their roles in signaling have been poorly characterized.  While MAP3Ks are traditionally 

positive regulators of MAPK signaling, emerging data has demonstrated that MAP3Ks 

can also behave as negative regulators of MAPK signaling through cross-talk between 

individual MAP3Ks as well as between MAPKs and MAP3Ks (31,145).   
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To explore how MAP3K activation can regulate spatial and temporal activation of 

MAPKs by a diverse array of stimuli, I created an immunofluorescent screening method 

that can rapidly detect activation of ERK1/2, JNK and p38 activation in multiple regions 

of the cell.  This screen was combined with a MAP3K siRNA library to determine how 

knockdown of individual MAP3Ks can alter the dynamics of the MAPK network.  My 

screen identified MAP3Ks that were positive and negative regulators of MAPK signaling, 

demonstrating that disruption of MAP3Ks can perturb the MAPK network in a multitude 

of ways.  Many of these MAP3Ks that positively and negatively regulate MAPK 

signaling are novel regulatory interactions.  Furthermore, even in well established 

pathways such as growth factor stimulated ERK1/2 activation, we are able to identify 

novel MAP3Ks that regulate ERK1/2 activation, demonstrating that our current 

knowledge of the MAPK network is still very incomplete.  While downstream MAPK 

activation and physiological outcome is frequently known for a given stimulus, my 

screening approach allows for the rapid characterization of proteins that lie upstream of 

the MAPK, including MAP2Ks, MAP3Ks, adapter proteins and receptors.  Selective 

targeting of these upstream regulators will enable the prevention of undesired or 

pathological MAPK signaling events. 

This siRNA screening method is readily adaptable to whole genome screens as 

has been done in Drosophila cells or to selectively target groups of genes that have few 

characterized roles in MAPK signaling (138,139).  For instance, given the known role of 

ubiquitination in the MAPK network, this screen could be used to screen siRNA libraries 

of E3 ubiquitinating enzymes and deubiquitinating enzymes to identify novel components 

of the ubiquitination machinery that alter MAPK signaling (146,164,165).  Similarly, 
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crosstalk has been described between some members of the cell cycle and checkpoint 

machinery and MAPK pathways, thus my screen could be used to rapidly identify novel 

mechanisms of crosstalk between the cell cycle and checkpoint kinase pathways and 

MAPKs and the proteins involved in it (166,167).  

Interestingly, kinase mediated effects have been demonstrated to be highly cell 

type specific.  Data from siRNA screens has demonstrated that kinases required for 

specific cell lines are highly varied with well over half of all kinases predicted to be 

essential in at least one cancer cell line (168,169).  While work in this dissertation 

focused on only HeLa cells, similar immunofluorescence techniques could be used to 

rapidly characterize the MAPK network in a range of cell types.  Limited efforts by 

myself and others in the lab have been able to measure activation ERK1/2, JNK and p38 

activation in other cell types including MEFs and MDA-MB-231 cells.  Interestingly, 

preliminary results using MDA-MB-231 cells expressing MAP3K shRNAs indicated that 

contrary to our results in HeLa cells, MDA-MB-231 cells required TAK1 in addition to 

MLK7 for JNK and p38 activation by sorbitol (data not shown).  Thus the screening 

techniques in this dissertation allow for rapid characterization of the MAPK network, 

allowing us to identify cell type specific signaling differences.  A large number of the 

essential kinases found by siRNA are either MAPK network components or upstream 

kinases known to activate the MAPK pathways (168,169).  Using immunofluorescent 

MAPK activation detection, it would be interesting to determine whether knockdown of 

these essential kinases result in reproducible changes in MAPK activation and whether 

these signaling differences lead to different physiological outcomes. 
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MAP3K regulation of Tumor Growth and Metastasis in vivo 

 MAPK networks are frequently dysregulated in cancer, wherein dysregulated 

MAPK signaling can promote tumor growth and metastasis by a wide array of 

mechanisms.  While companies have made many efforts at great cost to directly target the 

MAPKs, to date, these efforts have not made it through clinical trials.  MAPK inhibitors 

have disappointed in the clinic because of either lack of efficacy or side effects.  As an 

alternative to direct inhibition of MAPKs, targeting the MAP3Ks may enable selective 

targeting of oncogenic MAPK responses with high specificity.  To identify specific roles 

for individual MAP3Ks in the tumor program, we used an shRNA screening approach 

coupled to orthotopic xenografts to assess the function of MAP3Ks in breast cancer in 

vivo. 

As we enter this era of personalized medicine, in which array based detection of 

gene amplification in tumors and sequencing of tumor transcriptomes and genomes are 

medically feasible, we need to identify the genes that are required for tumor growth and 

metastasis to interpret data gleaned from these sources.  While functional genomics has 

recently bloomed and has significantly contributed to our knowledge of cancer, in vitro 

and in vivo data are needed to guide genomic findings and drug target selection; 

genomics can identify the driver genes that are mutated in a given cancer, but they do not 

identify why that mutation contributes to cancer.  The absence of knowledge about why a 

mutation drives cancer is one of the limitations of genomic efforts.  Proteins that are 

required for function of the cancer driver but are not mutated remain, from a cancer 

genetics standpoint, invisible.  For instance, it has been demonstrated that mutational 

activation of B-Raf predicts sensitivity of cancer cells to MEK1/2 inhibitors (170).  Based 



 92

on established data demonstrating that B-Raf activates ERK1/2 through MEK1/2, we can 

readily predict the role of MEK1/2 inhibition in B-Raf mutant cells, however, these 

conclusions would be impossible if we were studying this system de novo based solely on 

the genetic data about B-Raf mutations.  Furthermore, due to the role of MAP3Ks in 

transmitting oncogenic signals, MAP3Ks may be required for tumor growth and 

metastasis but are likely not to be mutated or overexpressed, consistent with large scale 

sequencing results that have identified many driver mutations in B-Raf but few driver 

mutations in other MAP3Ks (111,171,172).  Thus the cancer specific roles of MAP3Ks 

may be refractory to genomic approaches, requiring screening efforts such as mine to 

determine their function.  My data provides answers to which of these MAP3Ks are 

important for tumor growth and metastasis and may serve as a blueprint for further 

studies seeking to understand the roles of proteins that are similarly refractory to genomic 

studies.  Similar techniques could also be used to screen genes with driver mutations 

found by genomic efforts.  It seems unlikely that all driver mutations were created equal, 

and xenograft studies such as these will allow us to compare the relative strength of 

different driver mutations.   

Based on my work, I was able to identify two MAP3Ks, MLK3 and MEKK2 that 

have pronounced effects on tumor growth and metastasis.  Interestingly, despite the 

potent effects of MLK3 and MEKK2 knockdown on tumors, neither MLK3 nor MEKK2 

are essential in mice; both MLK3 and MEKK2 knockout mice are viable and result in 

normal, fertile adults.  Thus drugs targeting MLK3 and MEKK2 may have potent tumor 

effects, but, based on mouse data, are unlikely to have the toxicity effects that have 

plagued other inhibitors of MAPK signaling, making them excellent potential drug 
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targets (27,173).  I also identify several other kinases (Tpl2, MEKK3, potentially MLK7) 

that may be successful drug targets based on their effects on tumor growth. 

Based on the previously reported specificity of these MAP3Ks I was able to 

broadly identify tumor outcomes associated with specific MAPK pathways.  I 

demonstrate that all four MAPK pathways can potentially alter either tumor growth or 

metastasis.  While clinical testing on tumor samples has focused on measuring specific 

prognostic proteins and tumor markers such as estrogen receptor status, HER2 

expression, EGFR expression and uPA/PAI-1 levels, my results suggest that detection of 

MAPK pathway activation may be an important diagnostic guideline in cancer, consistent 

with published results (70,71,99,110).  My data suggests that JNK, p38 and ERK5 

activation, rather than canonical ERK1/2 activation will be important markers of long 

term survival based on the roles of these pathways in metastasis.  Furthermore, as this age 

of personalized medicine dawns, it is interesting (although perhaps rash) to speculate 

whether further prognostic and diagnostic gains could be made by isolating primary 

tumor cells and profiling the activation of primary tumor cell MAPK networks by a range 

of stimuli using screening approaches such as the immunofluorescent MAPK activation 

screen characterized here. 

 

Concluding Remarks 

In this dissertation, I have used screening approaches targeting the MAP3Ks to 

determine where and when they activate MAPK pathways.  Using an in vivo screening 

approach, I have also characterized the role of a diverse group of MAP3Ks in tumor 

growth and metastasis.  Importantly, these screening efforts use either in vitro or in vivo 
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phenotype to guide our work rather then expectation; to date, screening and genomic 

efforts have demonstrated that, in large part, cancer relevant signaling is mediated by 

previously uncharacterized kinases (133,168).  Discovering these kinases demands that 

phenotype drive target selection.  Using these screening approaches, I was able to 

identify novel regulators of well characterized pathways (such as growth factor induced 

signaling) and identify five MAP3Ks with limited provenance in cancer as regulators of 

tumor growth and metastasis in vivo.  Targeting of these MAP3Ks involved in cancer 

may allow the development of novel cancer therapeutics with better efficacy and fewer 

side effects.  While these screening efforts widen our understanding of MAP3K function 

in vitro and in vivo, MAP3K signaling is all too often considered a “black box” and 

remains considerably understudied.  The methods I design in this dissertation and the 

results I obtain with them give researchers better tools to study MAP3Ks and more reason 

to study them which I hope will promote further study of the MAP3Ks.  
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