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ABSTRACT 

Travis William LaJoie: Polymer Molecular Wires in Electronic Devices: Synthesis, 

Design, and Characterization  

(Under the direction of Wei You) 

 

 Lack of efficient charge transport is a major factor holding back performance 

of organic electronic devices. For polymer semiconductors, some of the best 

performing devices have significant contributions from intramolecular transport 

mechanism on the process of charge transport as a whole. This is because charge 

transport along conjugated polymer backbones is much faster than transport 

between polymers, but measurements of intramolecular charge transport have only 

ever been done using technique that measure local properties, not device properties. 

Few devices have measured properties like charge carrier mobility as a function of 

polymer chain orientation, but in every case charges are required to hop between 

chains to transport through the film.  

 This work endeavors to make charge transport devices from monolayers of 

poly(3-methylthiophene) (P3MT) in brush conformation grown from an ITO surface 

via Palladium catalyzed surface initiated Kumada catalyst-transfer 

polycondensation and to characterize the charge transport through the polymer 

brush films. Though the polymer synthesis is not new, it was thoroughly 

characterized in order to grow films with the maximum level of control possible. The 
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polymer growth was found to be linear with respect to time and concentration of 

monomer, suggesting that the polymerization follows first order kinetics. 

 The P3MT films were characterized to determine film morphology. As grown, 

films exhibited some degree of vertical orientation, which could be increased with 

thermal annealing. Besides increasing orientation, annealing also increased film 

thickness and chain rigidity making structures ideal for measuring intramolecular 

charge transport.  

 In order to make devices, a new transfer printing method was adapted for 

called kinetically controlled transfer printing (KTP). Gold electrodes were deposited 

on the P3MT brush surface by KTP, and devices were measured by conducting 

atomic force microscopy. The data were modelled with a cubic fit to compare 

transport between films. Before annealing, P3MT films were found to be quite 

conductive as evidenced by their charge transport decay coefficient (β), and SCLC 

charge carrier (hole) mobilities were measured to be similar to other                

poly(3-alkylthiophene) materials. After annealing, the SCLC charge carrier mobility 

increased in every film measured. The enhancement of charge transport properties 

is likely due to the change in the structure of the film.  
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CHAPTER 1 INTRODUCTION TO ORGANIC ELECTRONICS AND MOLECULAR 

ELECTRONICS 

1.1 Background 

 With the advent of the 21st century and the demand for cheap, ubiquitous 

personal electronic devices, research interest in new electronic materials and design 

motifs has skyrocketed. Between 2012 and 2015, the percentage of the world 

population that uses smart phones has increased from 16.0% to 28.0% with 33.8% of 

the world population projected to be using smartphones by 2017.1  The need for 

cheap, energy-efficient, flexible electronics has driven researchers to find 

alternatives to traditional wafer-based technologies. High performance components 

and devices have typically been made using inorganic wafers, but in order to meet 

the demands of next generation electronics, new materials and technologies must be 

developed and integrated into devices. 

  One burgeoning alternative class of materials is organic electronic materials. 

In 2000, the Nobel Prize in Chemistry was awarded to Alan Heeger, Alan 

McDiarmid, and Hideki Shirakawa “for the discovery and development of 

conductive polymers,” and the field has been growing steadily since the modern 

discovery of conducting polymers in the 1970s.2,3 Consisting of either small 

molecules or polymeric materials, organic electronics have proven to be possible 

candidates to replace and/or supplement silicon in applications such as 

photovoltaics (OPVs),4 light emitting diodes (OLEDs),5 and logic devices (OFETs)6 
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due to factors such as lower cost than inorganic counterparts, flexibility, and ease of 

processability7. In fact, many cellular telephones and televisions already use OLED 

displays because of their low power consumption, high field of view, brightness, and 

flexibility.  Revenue from OLED displays alone is projected to increase from $2 

billion annually in 2015 to nearly $20 billion over the next five years, with over half 

of increased revenue going towards flexible displays.8 This projection implies that 

next generation mobile devices will take advantage of the unique properties of 

OLEDs and contain flexible displays (Figure 1-1)9 marking a new age in display 

technology. Though organic materials show promise, only OLEDs are used in 

widespread commercial applications. This is because, despite their low cost, organic 

materials are still outperformed by their silicon counterparts in many applications.  

 There are many difficult hurdles organic materials must overcome in order to 

compete with wafer materials. Wafer technology has matured organically with 

modern electronics, so current industry efforts are already focused on the 

manufacture and integration of wafers into functional devices. Organic materials 

 
Figure 1-1: Prototype Flexible Display 

Mobile displays based on this Samsung prototype are projected to release in 2016. Image 

copyright to its respectful owner. 
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must compete against the head start afforded to inorganic materials including 60 

years of maturation and billions of invested dollars per year.  Practical concerns 

facing organic materials such as reliability, lifetime, and processability must be 

addressed and solved.  

 Though these are all paramount issues, this work will not focus on problems 

of this kind and instead focus on the more fundamental question of measuring 

charge transport through the backbone of polymer semiconductors. Because of their 

chainlike nature, polymers are geometrically anisotropic and therefore should also 

have electron transport properties of interest that depend on the one dimensional 

nature of a polymer chain (Figure 1-2). Charges can transport along the backbone of 

the chain, between adjacent polymer chains, or a combination of the two.10 Though 

this may seem to be a trivial problem, device level measurements of this behavior 

has never been reported. As will be outlined below, the nature of charge transport 

through polymer semiconductors is of prime importance to their function in devices. 

 

Figure 1-2:  Inter- vs. Intra Molecular Charge Transport 

Charge carriers can transport two ways through polymer thin films: either by intramolecular 

charge transport (black arrows) or intermolecular charge transport (red arrows). In polymer thin 

films, intermolecular charge transport dominates the overall transport properties due to its slow 

nature with respect to intramolecular charge transport. 

Intramolecular, Along the Backbone Charge Transport

Intermolecular, 

Between Chain

Charge 

Transport
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In order for polymers to be viable materials for widespread use in devices, the one 

dimensional nature of charge transport through them must be understood so 

functional materials can be designed and synthesized to take full advantage of 

polymer properties.  

1.2 Organic Electronics 

1.2.1 History of Organic Electronics 

 The discovery of the first organic conducting material is attributed to Henry 

Letheby in 1862.11 His self-described “Blue Substance” was later identified as 

poly(aniline). To put this discovery into historical perspective, it would not be until 

60 years later that Hermann Staudinger would first publish on the macromolecule 

concept for which he won the Nobel Prize in 1953.12  

 The first report of an organic electronic device was a small molecule OPV in 

195813 with an active layer consisting of magnesium pthalocyanine and tetramethyl 

p-phenylenediamine. The meteoric rise of conjugated polymers in organic 

electronics can be traced back to the work of Nobel laureates Alan Heeger, Alan 

McDiarmid, and Hideki Shirakawa in the 1970s. Throughout the 1970s, in several 

papers published separately and together,2-3 Heeger, McDiarmid, and Shirakawa 

laid the fundamental groundwork for understanding the mode of charge transport 

in doped conjugated polymers by studying the effects of oxidative doping on the 

conductivity of poly(acetylene). 
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 It was not until 1987 that the first OFET14 and OLED15 were fabricated by 

the Mitsubishi Electric Corporation and Eastman Kodak, respectively. The first 

OFET used poly(thiophene), a conjugated polymer, as the active material while the 

 

 
Figure 1-3: Basic OLED, OFET, and OPV Device Geometries and Function 

(A) Simple OLED devices  consist of an active layer sandwiched between a transparent anode, 

usually ITO and a metallic cathode. An applied voltage causes electrons and holes to inject into 

the active layer and recombine to form excitons, which relax and emit photons. 

(B) OFET devices function similar to other FETs. Charge carriers are generated along a 

conduction channel adjacent to a dielectric layer by applying a bias to a gate electrode. The 

generated charge carriers allow current to flow between source and drain electrodes. 

(C) The most dominant OPV device motif is the BHJ. In a BHJ, a polymer semiconductor is 

blended with a modified fullerene and spuncast on a surface to form an interpenetrating network 

of an electron donating material (polymer) and electron accepting material (PCBM). The light 

absorbing polymer semiconductor absorbs incoming light to excite an electron from the ground 

state to form an electron hole pair, or exciton. The exciton is split at the interface between 

polymer and PCBM with electrons travelling through the PCBM network and holes travelling 

through the polymer network. Charges are collected at electrodes to generate electricity. 

 Images copyright their respective owners. 

A B

C
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original OLED used 8-hydroxyquinilone aluminum (Alq3) as the light emitter. As 

already discussed, OLEDs matured into a commercially viable technology over the 

next 20 years, while OFETs are still a subject of intense academic research. 

Examples of OLED and OFET devices are illustrated in Figure 1-3. 

 The modern era of OPV research began in 1995 with the report of the first 

bulk heterojunction (BHJ)16,17 devices by Heeger and the synthesis of soluble carbon 

fullerene derivatives by Fred Wudl.18 These devices were fabricated by dissolving 

light absorbing conjugated polymers and PC61BM in solution and casting a film to 

create a solution processed active layer (Figure 1-3).5-6, 19 Over the course of the next 

twenty years, significant work in device fabrication and polymer synthesis has 

pushed OPV power conversion efficiencies to over 11%.19,20 

 Nearly 50 years after the foundational work of Shirakawa, McDiarmid, and 

Heeger, researchers are still pushing the limits of conjugated polymers to create 

new materials and better understand their function in electronic devices. This 

dissertation seeks to build on the foundation laid over the course of the last half 

century and expand the fundamental knowledge of charge transport through 

polymer semiconductors. 
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1.2.2 The Molecular Origin of Conductivity in Conjugated Polymers 

 The origin of conductivity in conjugated polymers is due to the regular, 

alternating structure of single and double bonds which delocalize electrons along 

the polymer backbone (Figure 1-4).2  Due to defects and torsional angles in the 

polymer backbone, an entire polymer chain is not conjugated, but can be thought of 

as a series of conjugated segments which delocalized electrons along a conjugation 

length. Though the electrons are spread over a large area, this property alone will 

not make a conjugated polymer a conductor, there must be free charge carriers in 

the material. 

 

 

Figure 1-4:  Molecular Origin of Conductivity in CPs and Classes of Conductive 

Materials 

(Top) In undoped poly(acetylene) there are few to no free charge carriers on the polymer chain so 

the polymer does not allow current to flow through it. When poly(acetylene) is oxidatively doped, 

it loses an electron to form a positive polaron, a free charge carrier.  

(Bottom) Materials can be classified based on their conductivity. Conjugated polymers can be 

insulators, semiconductors, or metals (conductors).  

Images copyright their respective owners. 

Undoped trans poly(acetylene)

Polaron in Oxidatively doped trans poly(acetylene)
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 Materials can be classified grouping them based upon their conductivities. 

Materials with high conductivities are classified as conductors or metals while 

materials with low conductivities are considered insulators, and between these two 

regimes lay semiconductors (Figure 1-4). Typical organic materials do not conduct 

electricity very well, so are classified as insulators, but doped conducting polymers 

have conductivities similar to metals (Table 1-1).21 

Material Conductivity (S/cm) 

Doped Polyacetylene 103-1.7×105 

Undoped Polyacetylene 10-10 

Doped Polyaniline 102-103 

Undoped Polyaniline 10-10 

Teflon 10-18 

Platinum 9.43x106 

Gold 4.1x107 

Table 1-1: Conductivities of Various Materials 

 

 The conductivity of a material is given by  

 

 𝝈 = 𝒏𝒒𝝁 (1) 

 In order for a polymer to be a conductor, it must be doped to generate free 

charge carriers (Figure 1-4). Charges can move along the polymer backbone, 

hopping between conjugated segments via intramolecular charge transport or they 

can hop between adjacent chains via intermolecular charge transport. If a 

conjugated polymer is not doped, it can still transport charges, but due to having 

few charge carriers it will not be a conductor. Undoped conjugated polymers 

typically only have thermally generated charge carriers, so the component of 
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conductivity determined by the number of charge carries is quite low. The doping 

level is something that can be controlled on the device level, for instance in OFETs,6 

where a polymer’s conductivity can be increased by applying a gate bias to control 

device function, and conductivity can also be controlled chemically by chemically 

oxidizing or reducing the material.22 The doping level is important when making a 

material a conductor, but it is something that is independently controlled and not 

an intrinsic property of the material. In devices such as OPVs, OFETs, and OLEDs, 

the active material must be a semiconductor, so doping is not useful to increase 

conductivity. For functional polymer devices, the charge carrier mobility μ is a much 

more useful parameter to increase to improve device performance. 

1.2.3 Mobility in Conjugated Polymers 

1.2.3.1 Theory Behind Charge Mobility in Conjugated Polymers 

 Mobility is the speed at which charges travel through a material. Currently, 

the highest mobility published for an organic material is a hole mobility of 45 

cm2/Vs measured in a single crystal of rubrene.23 Though single crystals perform 

well in devices, they are difficult and expensive to make. Single crystal devices are 

usually made painstakingly by hand and cannot be mass produced. Thus, polymer 

materials which can be printed and processed out of solution are a much more 

realistic alternative. Recently, two record breaking polymer mobilities in OFETs 

were published with hole mobilities is 43 cm2/Vs and 23.7 cm2/Vs achieved by 

aligning polymer chains to enhance effects of intrachain charge transfer.24,25  As 

organized in Table 1-2,24-26 the mobilities of the best polymers are still lower than in 
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commonly used inorganic materials. In order to create new materials and devices 

with better mobilities with a rational approach, the mechanics of charge transport 

in polymer thin films must be understood. By their nature, polymers are one-

dimensional materials and polymer thin films which are used in devices transport 

charges along backbones of polymers and between polymer chains. The canonical 

dogma of the field is that charges transport better along the backbone of a polymer 

(intramolecular) with mobilities several orders of magnitude higher than charges 

that transport between polymer chains (intermolecular transport), and devices with 

high charge carrier mobilities are usually attributed to having higher degrees of 

intramolecular transport. Microwave conductivity can be used to measure local 

intrachain charge carrier mobilities, and hole mobilities up to 600 cm2/Vs are 

measured on rigid polymer chains.27  Despite this incredibly high mobility 

measured for intrachain transport, there are no reports of devices measuring single  

chain length intramolecular mobilities. The current theories of charge transport 

through organic materials and attempts at measuring intramolecular transport 

must be taken into account to understand why this is so and how to design devices 

and materials to make such a measurement. 

Material Mobility (cm2V-1s-1) 

C8-BTBT 25 (43 high) 

PCDTPT 23.7 

P3HT 0.1 

Amorphous Silicon ~1 

Strained Silicon 170,000 (at 4K) 

 1000 (RT) 

  

Table 1-2: Device Mobilities of Organic and Inorganic Materials 
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 In 2006, Kline and McGeehee, published a theory on the morphology and 

charge transport in polymers.28 Their theory, briefly stated, is that a film with high 

degree of crystallinity (usually consisting of polymers with low molecular weight) 

will not have high mobility due to electrical discontinuity between highly 

conductive, crystalline domains. Additionally, films with disorder (usually films 

consisting of polymers with high molecular weight) will have high mobilities due to 

the ability for long chains to bridge connections between semicrystalline domains 

(Figure 1-5).28 This theory implies that the bridging connections both enable and 

limit high charge carrier mobility in polymer thin films. This theory is also used to 

explain why high molecular weight materials seemingly have better charge 

mobilities than low molecular weight materials. 

 
Figure 1-5:  Model of Charge Transport in Spuncast Polymer Films 

(Top) Low molecular weight (3.2kDa) P3HT forms semicrystalline nanorods (gray) which trap 

charge carriers and prohibit movement, causing low charge carrier mobilities in the film. 

(Bottom) High molecular weight P3HT (31.1kDa) form more amorphous films with long 

polymers (gray arrows) interconnecting semicrystalline domains in the film for higher charge 

carrier mobilities. Images copyright their respective owners. 
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 In 2014, Heeney and Salleo published an updated model after investigating 

the role of polydispersity (PDI) of P3HT on the mobility in OFETs.29 Their model 

demonstrates that charge carriers do not discriminate between high and low 

molecular weight chains, and thus crystalline and noncrystalline regions, and that 

charge transport and mobility in polymer thin films are limited by interchain 

hopping.  

 Further work by Salleo and Spakowitz models the charge mobility in 

individual polymer chains at different length scales.30 They calculate high 

mobilities with fast transport for short intrachain charge transport processes and 

low mobilities with slow transport for long interchain charge transport processes. 

This behavior is easily explained by the strong coupling electron coupling along the 

chemically bound backbone of the polymer as compared to the weaker coupling 

between π-stacked chains. Using the macromolecular nature of polymers and the 

inherent order/disorder in polymer chains they are able to provide a better insight 

into the behavior of charges at short intramolecular and long intermolecular charge 

transport distances (Figure 1-6).30 In a typical polymer thin film, both of these 

processes occur, and the slowest transport (lowest mobility) will limit device 

performance. 
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 Current literature on intramolecular transport in devices is sparse. In 

OFETs, several examples were already given of oriented films having high 

mobilities.10, 24-25 In vertical device architectures, traditional P3ATs are induced to 

have vertical structure through both surface treatment and end group modification 

to see a 10-40 times enhancement in mobility.31,32 

1.2.3.2 Outlook on High Mobility Materials 

 High mobilities and conductivities due to enhanced intrachain transport are 

reported in several polymers and devices,10, 24-25, 31-32 and current theories describing 

charge transport through polymer films suggest that this is due to increasing the 

contribution of intrachain charge transport.5, 10, 15 These devices do not measure 

 

 

Figure 1-6:  Theoretical Model of Mobility in Single and adjacent  Polymer 

Chains 

 Different energies and times are calculated for charge transport phenomena between 

polymer chains and along single polymer chains. Due to strong coupling between monomer units 

on a polymer backbone and close proximity of monomers, transport along the chain is faster 

than transport between chains. Image copyright to its respective owner. 
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intrinsic along the backbone charge transport of due to having multiple polymer 

layers in the active device, meaning that carriers must hop between multiple 

polymers in order to transport between electrodes. Using the principles of the above 

theories, and correcting shortcomings of current organic films, a better approach 

would be to make a device with one conjugated polymer layer where each end of the 

polymer is attached to an electrode. This approach is already common using small 

molecules where single molecules and monolayers are integrated into devices. This 

field of study is called molecular electronics. 

1.3  Molecular Electronics  

1.3.1 History and Conception of Molecular Electronics  

  In 1974, Mark Ratner and Arieh Aviram theorized that a functional 

rectifying device can be made using a single molecule to imbue functionality 

between two electrodes.33 This idea revolutionized the way people thought about 

electronics considering it was only three years earlier, in 1971, that a group of 

researchers investigated electron tunneling across monolayers of fatty acid 

molecules as a way to experimentally verify aspects of the length dependence of 

quantum tunneling.34 Only three years after researchers were able to reliable 

measure and model electric currents across layers of single molecules, the idea that 

a molecule can be integrated into a functional device caused a paradigm shift in the 

way people thought about molecules and electronics with the promise that future 

components for applications in memory storage, integrated circuits, and digital logic 

could have a device size on the scale of one or few molecules. Though integrating 
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single molecule components in functional electronics devices remains on a distant 

horizon, the field of molecular electronics presses on studying the electronic 

properties of electronic materials on a molecular level.35 Charge transport in 

molecular devices is dominated by transport across or through a single molecule—or 

a single layer of molecules—which is different than the previously discussed 

examples where charges transport through thin films several layers thick, and the 

limiting processes in charge transport or transporting between polymer or 

molecular units.  

 For the past 40 years, advances in the field of molecular electronics have 

been in two directions: the first is advancing fundamental knowledge about how 

charges transport through molecules, including functional molecules, and the 

second is engineering devices to form molecular junctions and measure new 

properties. These advances are often not always mutually exclusive. A brief survey 

of the kinds of devices and their use are discussed below.   

1.3.2 Molecular Electronic Device Fabrication 

 A common motif in molecular electronics is to sandwich one or more 

molecules between two electrodes to form a metal-molecule-metal junction (Figure 

1-7). A MMM junction has five components: two electrodes, two contacts which link 

the molecule and electrodes, and the molecule. Each of these components can be 

changed to tune the properties of a molecular junction and impart functionality to a 

device. 
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  When Ratner and Avirem first theorized a single molecule rectifier there was  

no way to make and test a single molecule device, but with the invention of the STM 

in 1981, a useful tool to make and test conductances of single molecule devices 

presented itself.35 Single molecule devices measured by STM are analytic in nature, 

forming briefly and only long enough to be measured.36 Another single molecule 

device configuration is a break junction, which forms a device by breaking a gold 

wire in the presence of organic molecules and measuring the current through the 

junction that forms when a molecule or molecules bridges the gap.37 In single 

molecule devices the conformation of a molecule is difficult to control when in 

contact with electrodes. Analyzing these devices is necessarily highly statistical. A 

single molecule with only 15 atoms can have as many as 1060 conformations, each 

with a different conductance.35 Thus, several thousand measurements of single 

 

Figure 1-7: Schematic of Metal Molecule Metal Junction 

 A metal molecule junction has five distinct components. There are two metallic electrodes, 

a molecular unit, and two contacts or linkers to attach the molecule to the electrodes.  Junctions 

can have or many molecules sandwiched between two electrodes. The chemical species of metal 

electrodes and spacers may be identical or different. 

 

Electrode 1

Electrode 2

Contact 1

Molecular Unit

Contact 2
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molecules must be made, and histograms of conductances are analyzed to glean a 

statistical understanding of the conductance and charge transport through a 

molecule (Figure 1-8).36, 38 

 Another approach is to use an ensemble of molecules or SAM to measure 

hundreds to thousands of molecules at a time. One such approach is to use a 

conductive AFM tip to contact molecules analogous to the STM type measurement, 

but instead of measuring the current through a single molecule as with the STM the 

 

 

Figure 1-8: Single Molecule Electronic Devices 

 Measuring conductance through single molecules is a highly statistical endeavor. 

Molecules can adopt many conformations which affect charge transport and conductance through 

the molecule.  

(A) Schematic of STM junction of a single oligothiophene molecule. The attachment between 

molecule and STM tip is temporary, and the conformation of the molecule during attachment, 

and the atom of Au the molecule attaches to significantly influence conductance 

(B) Schematic of break junction formed by breaking a thin Au wire in the presence of analyte 

molecule. The MMM junction forms with one or few molecules and is broken when the distance 

between Au wire segments is too large. Images copyright their respective owners. 
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AFM measures many molecules at once.39,40,41,42,43,44,39 Devices formed this way 

measure conductance over several molecules at once, averaging over many 

molecular conformations. Though there is less variance in conductance than seen in 

single molecule measurements, there is still significant variation in the 

measurement due to molecular conformations and imperfect contact with the cAFM 

probe.  

 Though using a cAFM probe to form a top electrode in a molecular junction is 

a reliable way to test molecules, it is a temporary junction that is formed and 

broken to make a measurement. Making permanent contact with single molecule 

and single molecule layers is much more difficult due to the destructive nature of 

traditional metal deposition.45 Evaporation and sputtering penetrate thin organic 

layers causing devices to short, so a more reliable must be used to form a top 

contact. One way to mitigate this is to protect the single molecule layer with an 

organic conductor either transferred or spuncast on top of the molecules.46,47,48 This 

is a reliable method to form devices, but it adds an extra organic layer between 

metal electrodes, which can complicate measurements that require coherence 

between electrodes and molecules. 

 Another motif that has seen recent research interest is transfer printing a 

metal electrode on top of a layer of molecules. In this approach, a metallic layer is 

deposited on a donor material, and a polymeric stamp is used to bring the metal 

into contact with a molecular layer, so that the molecular layer is never subjected to 

the harsh conditions of metal evaporation.49,50 For example, in nanoTranfer printing 
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(nTP), metal is evaporated directly on a patterned PFPE stamp, which is brought 

into contact with SAM. The deposited metal has a greater affinity for the SAM than 

the PFPE, due to a covalent bond that forms between the metal and the SAM and 

the low surface energy of the polymer, so that when the stamp is removed, the 

patterned electrode is left behind.  

 Device schematics of the ensemble devices are summarized in (Figure 1-9).46-

47, 49-51 When measuring molecular electronic transport of a polymer system, an 

 
Figure 1-9: Large-Area Molecular Electronics Device Schematics 
(A) Device made with a temporary cAFM electrode formed by bringing a cAFM tip in contact with 

a SAM 

(B) Device made by evaporating metal contact on top of PEDOT:PSS buffer layer. 

(C) Device made by nTP top contact directly on top of SAM 

Images copyright their respective owners. 
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ensemble device is the best option due to extremely low currents measured in 

devices. Many single molecule oligomer devices push the practical limits of 

measurement, and in the case of oligothiophenes, thiophene chains up to only six 

units can be measured.36 

1.3.3 Measuring Resistance of Molecules 

 One of the most basic properties of molecular electronic devices is the device 

conductance or resistance. Typically, a homologous series of molecules such as 

alkanes, oligo p-phenyls, or other oligo arylenes are put into devices as listed above 

and their conductance as a function of molecular length are measured. In short 

molecules, tunneling is usually the dominate charge transport mechanism, and the 

current through the molecules can be modelled via the Simmons model:52 
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(2) 

 

where I  is the current, q the electron charge, A is the area of the junction, ℏ is the 

reduced Heisenberg constant, d0 is the tunneling distance, 𝛷 is the tunneling 

barrier, V is the applied bias, and m is the carrier mass. The positive exponential 

term corresponds to tunneling in the forward bias direction, and the negative term 
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corresponds to tunneling in the reverse direction which can be neglected when there 

is an applied bias.  

 At low applied biases, the current scales linearly with voltage, so the 

resistance of a molecular device can be calculated using Ohm’s law: 

 𝑽 = 𝑰𝑹 (3) 

 and a simplified version of equation (2): 

 𝑰 = 𝑰𝟎𝑽𝒆−𝜷𝒍 (4) 

where I0  is a prefactor, l is the molecular length, and β is the tunneling decay 

coefficient which describes the efficiency charges tunnel through a material. High  

β-values correspond to large values of 𝜱 in equation (2) and can be interpreted as 

being more difficult to tunnel through than materials with lower β-values. Inserting 

equation (4) into equation (3) and solving for resistance gives: 

 𝑹 = 𝑹𝟎𝒆𝜷𝒍 (5) 

 For a homologous series of molecules, the β-value is a figure of merit which 

describes how charges through a molecular repeat unit (such as a methylene unit or 

a phenyl ring) and is calculated from a semilog plot of resistance vs. molecular 

length (Figure 1-10).40,44 The numerical β value can range from greater than 10 nm-1 

in alkanethiols to as low as 0.1nm-1 in conjugated molecules.53 Changing the 

molecule between electrodes will change the β-value, and therefore the conductance 

of the junction.  
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1.3.4 Outlook for Molecular Electronic Devices 

 Molecular electronics shows great promise in testing new effects and 

properties in organic molecules. In this work, device fabrication, testing, and 

function in molecular electronics will be applied to the polymer semiconductors 

traditionally measured in organic electronics. Though there are superficial 

similarities between traditional polymer semiconductors and molecular electronics 

(both use organic materials as active materials), the two fields differ fundamentally 

in the scope at which these materials are studied. Molecular electronics, by 

definition, focuses on molecular interpretations of charge transport properties in 

devices of molecular dimension.  

 

Figure 1-10: Plotting Beta Values 

 The β value for long molecular wires is determined from linear portions of a semilog plot 

of resistance and molecular length. As the molecular length increases, the β value decreases. This 

is most likely due to a change in the charge transport method at greater molecular lengths.  

Image is copyright its respective owner. 
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 For polymer semiconductors, molecular interpretations are also important, 

but the bulk properties that dominate behavior are due to transport between 

polymer chains despite careful engineering at synthetic and device levels. By taking 

a molecular approach to traditional polymer semiconductors, properties at the 

molecular level can be fully realized at a device level without being inhibited by 

intermolecular transport in polymer thin films. 

1.4 Polymer Brushes 

1.4.1 Definitions and Examples of Polymer Brushes 

 A polymer brush is an architecture consisting of polymer chains packed 

densely together where each polymer is immobilized at one end. Chains can be 

 
Figure 1-11: Examples of Tethered Polymer microstructures 

 Image Copyright its respective owner 
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bound covalently on a surface or polymer backbone, aggregated physically at an 

interface, or in a micelle (Figure 1-11).54 There are many kinds of polymer brush 

frameworks, and the previous list is not exhaustive, but in any case, the fact  

that the polymer is immobilized at one end imbues it with many interesting 

properties. Of interest in this work is the ability for a polymer to stretch into a non-

ideal conformation. Ideal polymers coil in a random walk with no long range order, 

and the polymer radius is given by the equation:55 

 𝑹 = 𝑵
𝟏
𝟐𝒃 

(6) 

However, when a polymer is immobilized on a surface, the conformation can change 

due to interactions between neighboring chains. The polymer conformation becomes 

stretched and the new chain length is described by the equation:54 

 𝑳

𝒃
= 𝑵(

𝒃

𝒅
)

𝟐
𝟑 

(7) 

 

where L is the length of the polymer layer, b is the monomer length, N is the degree 

 
Figure 1-12: Brushlike Conformation of Tethered Polymer Chains 
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of polymerization, and d is the distance between chains (Figure 1-12).54 

 To construct a molecular junction based on an ensemble of polymer 

semiconductors, a polymer brush framework must be assembled such that a 

monolayer of well-ordered polymers can be electrically addressed. Many synthetic 

efforts have driven towards growing conjugated polymer brushes from surfaces, and 

in order to make devices, careful consideration of synthetic methods must be used to 

create the ideal architecture.  

 There are three general strategies to attach polymers to a surface          

(Figure 1-13).56 The grafting to method is not useful to this work due to the low 

grafting density of polymers on the surface and in general is not used to make films 

of polymer semiconductors. The grafting through suffers from similar shortcomings. 

 

Figure 1-13:  Grafting Methods for Polymer Brush Formation 

Only the grafting from method allows for dense brushlike microstructures to form. This is 

because the grafting density is the highest in this regime. In the grafting to and through 

regimes, the grafting density is limited by the size of the macromolecular species being 

attached to the surface rather than by the small initiating species. Image copyright its 

respective owner 
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In order to achieve a brushlike conformation, the “grafting from” approach will be 

employed in this work. As will be discussed later, “grafting from” allows high 

surface density of polymers so they can stand normal from the surface.57 

1.5 Research Overview 

 There is already a large body of research exploring charge transport, carrier 

mobility, thermal transport, and spin transport through conjugated polymers thin 

films. Despite the tireless efforts of researchers across the world, solid device-level 

measurements of intramolecular carrier transport along the backbone of conjugate 

polymers is still absent from the literature. 

 This work strives to take measured steps toward measuring intramolecular, 

along-the-backbone charge transport in polymer semiconductors. To this end, large 

area molecular devices are fabricated by growing poly(3-methylthiophene) wires in 

a brushlike conformation from conducting substrates and depositing electrodes on 

top of the resulting by soft lithographic transfer. In order to ensure high quality 

devices are made, film microstructure is characterized by optical and X-ray 

spectroscopy as well as atomic force microscopy (AFM) and scanning electron 

microscopy (SEM). Charge transport in devices is measured by using a cAFM tip 

and a metal wire as probes to make electrical connection to the device. Measured IV 

curves are modelled to gain an understanding of charge transport in these novel 

devices. 
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Figure 2-1: Polymer Chain Growth Mechanisms 

In Step growth polymers, high molecular weights are only achieved at as the percent conversion 

approaches 100%, but for living chain growth polymerizations, molecular weight increases 

linearly throughout the polymerization. These two behaviors are consequences of the growth 

mechanism of the different polymerization types. 

 

 
 

 

CHAPTER 2 POLYMER BRUSH SYNTHESIS 

2.1 Introduction and Overview of Synthetic procedures 

 With the relatively recent discovery and rise in popularity of metal catalyzed 

cross coupling reactions to form bonds between aromatic rings, new polymers and 

polymerization methods have expanded the scope and applications of conjugated 

polymers.58 The synthesis of polymers in solution is well studied and understood. 

There are two main polymer growth mechanisms in solution: chain growth and step 

growth.59 In a chain growth polymerization, monomers are added to the propagating 
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chain end sequentially to form a polymer. This is in contrast to a step growth 

polymerization where bifunctional monomers are put together two functional 

groups at a time to form dimers, then larger oligomers, and finally polymers (Figure 

2-1).60 In order to grow a polymer thin film as described in chapter 1, the reactive 

chain end must be immobilized to a surface so monomers are added to a 

propagating chain one at a time. The recent discovery of the living cross coupling 

polymerization called Kumada catalyst-transfer polycondensation (KCTP) or 

Grignard metathesis (GRIM) has marshalled several methods to grow and study 

surface bound conjugated polymers.61,62 The fundamental difference between KCTP 

and typical cross coupling mechanism is the ability for a catalyst to stay associated 

with one chain during the  entire course of polymerization by “chain walking” to the 

polymer chain end and inserting oxidatively into the same polymer chain every time 

(Figure 2-2).63 Of particular interest it palladium catalyzed surface initiated KCTP 

(SI-KCTP), which has been demonstrated to produce P3MT films oriented with 

some degree vertically from a conductive substrate.  

 The proposed growth mechanism  for KCTP and SI-KCTP (Figure 2-2) follows 

living, chain growth kinetics.64 Thus, the polymerization kinetics should be 

sensitive to parameters such as monomer concentration and temperature, and the 

growth of polymer films should be linear as a function of reaction extent. In order to 

make brushlike thin films, all of these parameters must be controllable to create 

films with high grafting density, controllable length, and controllable morphology. 

The synthetic methods to achieve these goals are discussed below.  
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2.2  General Polymerization Protocols 

 The general procedure for Pd catalyzed SI-KCTP has been published 

elsewhere,57 but each step of the synthesis is integral to forming high quality 

polymer brush thin films. The parameter space of each step can be tuned to produce 

high quality polymer films. 

 

 

 

 
Figure 2-2: Proposed( SI-)KCTP Mechanism 
 Polymer chains grown by SI-KCTP and KCTP grow by living chain growth kinetics, 

unlike other cross coupling polymerization mechanisms that grow by step growth kinetics. The 

above mechanism is nearly identical to similar cross coupling mechanisms such as Stille and 

Suzuki coupling, but with one fundamental difference. After reductive elimination, the catalyst, 

in this case Pd0P(tBu3) does not dissociate form the growing chain but remains associated with 

the π system of the polymer backbone. The catalyst is either trapped at the growing chain end or 

walks between chain ends to oxidatively insert into an Ar-Br bond to continue propagation. 
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 In Figure 2-3, the SI-KCTP steps are summarized. A cleaned ITO substrate is 

functionalized with a monolayer with free aryl bromine. The functionalized ITO 

slide is soaked in a solution of bis(tri-tert-butylphosphine)palladium(0), which is 

inserted oxidatively into the free aryl bromine bond to form a reactive species on the 

surface. The reactive substrate is then soaked in a solution of monomer to grow the 

 

Figure 2-3: SI-KCTP Protocol 

For and in depth description of the procedure, see section 2.8.  

(A) ITO Slides are first thoroughly cleaned and prepared for monolayer deposition. 

(B) A monolayer is deposited on the ITO slide and annealed to improve film formation. 

(C) A catalyst is inserted into the monolayer to form the initiating species. This is analogous to 

forming an external initiator in a solution polymerization 

(D) The initiated ITO slides are put into a solution containing an active monomer to propagate 

the polymer chain. 

(E-F) Polymer chains are extended by letting the slides sit in solution for a period of time. 

(G) ITO Slides with grown P3MT brushes 

Steps C-F are conducted in a nitrogen glovebox with <1ppm water and oxygen. 

A

FE

C

D

B
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polymer from the surface by the grafting from method. The polymer chain length is 

controlled by varying the reaction time, and the rate of polymerization can be 

controlled by varying the monomer concentration. During the polymerization, some 

reactive species become detached from growth substrate to initiate solution grown 

polymer and contributing to surface roughness and inhomogeneity. In this chapter, 

the parameter space for each step is explored to determine controllable reaction 

conditions to grow P3MT brushes.  

2.3  Initiator Attachment Chemistry 

 The initiating species for SI-KCTP is a Pd(II) catalyst immobilized on an ITO 

surface which propagates with growing chain end. The catalyst complexes are 

initially fixed to the surface by inserting into an aryl-bromine bond on an SAM. 

Several attachment chemistries have been used to attach molecules to ITO surfaces, 

and such two attachment chemistries are explored here:  –COOH and –POOHOH 

(carboxylic and phosphonic acid) functional groups. Phosphonic acids form robust 

linkages that do not strongly couple electronically with metal oxides. Carboxylic 

acids, however, do not form robust linkages to metal oxides but have strong 

 
 

Figure 2-4: Target Initiator Molecules 

The two target molecules for forming surface initiators for SI-KCTP. (4-bromobenzyl)phosphonic 

acid (left) has been used in several literature reports while 5-bromo-4-methylthiophene-2-

carboxylic acid has not been reported for use in SI-KCTP. 
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electronic coupling. Monolayers of 5-bromo-4-methylthiophene-2-carboxylic acid and              

(4-bromobenzyl)phosphonic acid are used here as comparative molecules. 

 Previous reports of SI-KCTP from ITO use phosphonic acid functional 

groups.56,65,66,57,67 In an effort to control the interface through which charge carriers 

inject into the polymer brush, and thus the charge transport properties, two 

anchoring molecules (Figure 2-4) are investigated using different attachment 

chemistries. Several figure of merit are used to evaluate the utility of each molecule 

for use in polymer brush devices. First, the molecule must form a good monolayer on 

an ITO surface. The grafting density of the polymer brush is limited by this factor. 

Second, the monolayer must be reactive to the Pd catalyst used in polymerization. 

Finally, the monolayer must support the growth of P3MT polymer brushes. 

 The monolayer quality is investigated by measuring advancing contact angle 

of water on modified ITO surfaces to measure the hydrophobicity of the surface and 

by atomic concentration via XPS. These measurements provide a zeroth order 

estimation of monolayer quality, with high contact angles correlating with good 

monolayer qualities. The XPS measurements provide information about the relative 

concentrations of atomic species on the ITO surface, but do not give a quantitative 

figure for the number of molecules on the surface. In order to determine the number 

of molecules on the surface, a ferrocene unit is added to the monolayer via surface 

initiated Kumada coupling. The number of ferrocene units on the surface is 

measured via cyclic voltammetry and provides a quantitative assessment of the 

grafting density of polymer on the surface. This may not be equal to the total 
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number of molecules on the surface,66 but it provides a figure for the grafting 

density for the surface grown polymer. Finally, the most important figure of merit 

when determining if a monolayer is suitable for SI-KCTP is measured by 

determining whether or not polymer brushes can be reliably grown from the 

substrate.  

2.3.1 Investigating Monolayer Quality through Contact Angle and XPS 

 Monolayers of 5-bromo-4-methylthiophene-2-carboxylic acid and                                    

(4-bromobenzyl)phosphonic acid are prepared and annealed similar to literature 

reports. For contact angle analysis, advancing contact angles are compared to a 

monolayer of octadecylphosphonic acid on ITO. Contact angles are listed in Table 

2-1. For these monolayers on ITO, high contact anglers are not seen until after the 

monolayers are annealed at 150°C under N2, possibly because the heat drives the 

dehydration reaction that anchors the molecules on the surface to completion to 

Molecule 

Contact Angle 

Before Annealing 

Contact Angle After  

Annealing 

Octadecylphosphonic acid -- 89° 

4-bromobenzyl phosphonic acid 72° 86° 

5-bromo-4-methylthiophene-2-

carboxylic acid 

62° 73° 

Table 2-1: Contact Angles for Initiator Anchoring Groups 

ITO soaked in 5mM solutions of octadecylphosphonic acid, 4-bromobenzyl 

phosphonic acid, and 5-bromothiophene-2-carboxylic acid , respectively. Contact 

angles are averaged over 5 samples. 



34 

 

form well-ordered monolayers. Based on the contact angle measurements, the 

phosphonic acid monolayer is more hydrophobic than the carboxylic acid monolayer, 

implying that the monolayer quality is better for the phosphonic acid than for the 

carboxylic acid linker. Annealed phosphonic acid monolayers are nearly as 

hydrophobic as the octadecylphosphonic acid monolayer, implying that the quality 

of these monolayers is quite good. The data suggest that in the case of both 5-

bromo-4-methylthiophene-2-carboxylic acid and (4-bromobenzyl) phosphonic acid a 

monolayer forms on the ITO surface. 

 The XPS data provide a complementary picture to the monolayer. From XPS 

measurements, atomic ratios and relative atomic abundances for the                          

5-bromo-4-methylthiophene-2-carboxylic acid and (4-bromobenzyl) phosphonic acid 

monolayers are determined for ITO substrates functionalized with each respective 

molecule. Atomic ratios are used to determine if the proper chemical species is 

observed on the ITO surface, while the relative atomic abundances can provide a 

comparative assessment of the surface coverage of the molecules.  

Molecule 

Ratio 

P:Br 

Ratio 

S:Br 

Relative Atomic 

Abundance Br 

(4-bromobenzyl) phosphonic acid 0.93:1 0:1 2.42% 

5-bromo-4-methylthiophene-2-

carboxylic acid 

0:1 1.3:1 0.84% 

Bare ITO 0:0 0:0 0% 

Table 2-2 : XPS Analysis of Monolayers 

XPS measurements verify the atomic ratios of elements of interest on ITO surfaces. The relative 

abundance of Br on the surface provides a relative estimate of the amount of molecule bound to the 

ITO surface. 
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 Based on the 5-bromo-4-methylthiophene-2-carboxylic acid monolayer, the 

ratio between sulfur and bromine should be 1:1 if the correct chemical species is on 

the surface. Likewise, for (4-bromobenzyl) phosphonic acid, the ratio between P:Br 

should also be 1:1. The XPS data are tabulated below in Table 2-2. The ratio for 

each molecule matches the prediction based on the chemical structure. 

Furthermore, bare ITO substrates do not express any of the atomic species of 

interest, so each atomic species present on the surface is attributed to a monolayer 

molecule of interest. Based on the relative atomic abundance of bromine on the 

surface for monolayers of each molecule, the (4-bromobenzyl) phosphonic acid 

monolayer is approximately three times as dense as the                                             

5-bromo-4-methylthiophene-2-carboxylic acid monolayer. These data corroborate 

what was observed with the contact angle measurements, that the phosphonic acid 

linker molecules form better monolayers than the carboxylic acid linker. 

2.3.2  Determining Initiator Grafting Density with Cyclic Voltammetry  

 The grafting density of initiators on ITO surface for monolayers of                 

5-bromo-4-methylthiophene-2-carboxylic acid and (4-bromobenzyl)phosphonic acid 

monolayers is quantitatively determined by using a surface initiated Kumada 

coupling reaction to add a ferrocene molecule to the surface that can be probed by 

cyclic voltammetry (Figure 2-5). The grafting density of initiators on                               

(4-bromobenzyl)phosphonic acid monolayers is in close agreement with literature 

reports, with values measured here approximately 20% greater than literature at 

(1.3±0.2)x1014 molecules/cm2.57 Initiators formed on carboxylate monolayers are one 
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third as dense with at (4.1±1.3)x1013 molecules/cm2. This ratio is in close agreement 

with the difference in surface coverage determined by XPS, and the trend in contact 

angle. The carboxylic acid monolayer is not as dense as the phosphonic acid 

monolayer. 

 

 

 
 

Figure 2-5: Electrochemically Determining Initiator Grafting Density 
 A ferrocene labeled thiopehene unit is attached to both monolayers (Inset) and the 

oxidation peak area for the Fc/Fc+ redox cycle is used to determine the amount of charge, and thus 

the number of electrons for the reaction. Each Fc/Fc+ redox reaction is a one electron process, so 

the number of electrons making up the charge in the peak is equal to the number of initiators.  
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2.3.3  Growing Poly(3-methylthiophene) Brushes from Carboxylic and Phosphonic 
 Acid Based Monolayers 
 

 Despite the relatively poor surface coverage of 5-bromo-4-methylthiophene-2-

carboxylic acid compared to (4-bromobenzyl)phosphonic acid based on the above 

metrics, polymers are attempted to be grown from 5-bromo-4-methylthiophene-2-

carboxylic acid initiators. This is the ultimate test to the utility of a monolayer for 

use in SI-KCTP is how well polymers can be grown from the surface. The efficacy of 

the carboxylic acid monolayer is tested by subjecting ITO slides with Pd loaded into 

the thiophene-Br bond, to SI-KCTP conditions as reported in literature. The 

resulting polymer film is compared to a substrate prepared at the same time with a                                         

(4-bromobenzyl)phosphonic acid monolayer instead of the carboxylic acid based 
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Figure 2-6: P3MT Films Grown from Different Monolayers 

Polymer films grown from phosphonic acid monolayers (black) grow to appreciable 

lengths (approx. 15nm) and demonstrate evidence of densely packed polymer chains. 

Polymers grown from carboxylic acid monolayers grow unreliably to thin film lengths 

and do not exhibit optical properties typical to P3MT films. 
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monolayer. The UV/Vis spectra of the resulting organic thin films are compared in 

Figure 2-6.  

 Though there is some residue that grows on the film after subjecting the 

carboxylic acid modified slides to SI-KCTP conditions, the resulting film is 

significantly different from that grown from the phosphonic acid monolayer. Thin 

films of P3MT normally absorb strongest between 400-650nm, and in this range 

there is little to no absorption for films from carboxylic acids. Vials that films are 

grown in show significant signs of solution polymerization. This is most likely due 

to carboxylic acid molecules falling off the surface during polymerization.  The poor 

initiator coverage relative to the amount of molecules on the surface combined with 

the poor polymerization results suggest that carboxylic acid monolayer is not a good 

candidate to support an initiating species for SI-KCTP. 

2.4  Polymer Film Quality and Thickness Dependence on Reaction Temperature 

 In many polymerizations, the temperature can be a factor that is used to 

control reaction rate. Literature reports of Pd catalyzed SI-KCTP are only 

conducted at 40 °C,57 so the effects of temperature on the reaction rate are not 

documented. Here, the polymerization temperature is varied over 20 °C between    

30 °C-50 °C, and the polymer thickness and absorption spectra after 16 h reaction 

time are compared. The polymer thickness film thickness and the shape of the 

absorption spectra provide insight to the polymerization kinetics as well as the 

quality of the grown film (Figure 2-7). 
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Figure 2-7: Temperature Dependence of SI-KCTP 
[Top] The P3MT film thicknesses after 16 h reaction time are compared here. For reaction 

temperatures below 40 °C, polymer films are thin, but little solution polymerization is observed. At 

reaction temperatures above 40 °C, the thin films are also observed, but after only three hours, the 

monomer stock which feeds the surface polymerization is an opaque red, implying many initiators 

fall off the surface. There is a small window at 40 °C where thick films can be grown.  

[Bottom] The film quality can be assessed by the absorption spectrum. For polymerization 

temperatures at and below 40 °C peaks at 400 nm combined with the absorption onset at 650 nm 

give evidence of P3MT films with H-aggregation, meaning that the films are densely packed. For 

films grown at temperatures above 40 °C, there are no such peaks, which combined with the 

experimental observation of increased solution polymerization and literature interpretation of 

broad absorption spectra similar to these imply these films lack high grafting density. 
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 As reported in literature, 40 °C is the ideal temperature for polymerization 

with Pd catalyzed SI-KCTP. For polymerizations conducted at 40°C, some solution 

polymerization is observed after six or more hours reaction time, but final film 

thickness after 16 h reaction time under these conditions are consistently thicker 

than other temperatures, reaching thicknesses up to 30 nm under these reaction 

conditions. For reaction temperatures below 40 °C, there is less solution 

polymerization than observed at 40 °C—that is the monomer solution does not turn 

opaque red during the polymerization—but some solid polymer is observed in 

solution. The polymer thickness is determined from the absorption maximum, and 

at either temperature below 40 °C, the thickness is much thinner than the polymer  

grown at 40 °C reaching less than 10 nm. At temperatures above 40 °C, solution 

polymerization is observed after only three hours of reaction time and the reaction 

solution turns opaque red. The polymer film thickness for reaction temperatures at 

45 °C and 50 °C are nearly identical to those at 30 °C and 35 °C.  At temperatures 

below 40 °C, the system has enough energy to polymerize, but the rate of reaction is 

quite slow. Though some catalysts fall off the surface during the polymerization, 

most of the reactive species stay on the surface yielding a densely packed, high 

quality, short film as evidenced by the UV/Vis absorption spectra in Figure 2-7.  

 This is in contrast to reactions above 40 °C. The rate of reaction is most likely 

faster—direct experimental evidence of this is difficult to acquire—but there is 

sufficient energy to overcome the intramolecular oxidative addition during the 

polymerization process. This excess energy causes reactive species to fall off the 
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surface, thereby lowering the grafting density of the polymer on the surface. These 

films have longer chains, but because the grafting density is lower, the film 

thickness is lower, too. This is evidenced by the broad absorption peak in the 

absorption spectra signifying a lack of H-aggregation for films grown with 

polymerization temperatures above 40 °C in Figure 2-7. The H-aggregate peak at 

400 nm is observed in P3MT films with high grafting densities due to the 

confinement of chains in close proximity. Films with low grafting densities do not 

exhibit the same behavior because the chains do not form aggregates on the ITO 

surface in the same way films with higher grafting densities can. For the films 

grown at low temperatures, this peak is observed as one of two local maxima in the 

absorption spectrum.  

 Films grown at 40 °C occupy an intermediate regime where there is sufficient 

energy for polymerization to occur at a reasonable rate, but there is not excess 

thermal energy for a large number of reactive species to leave the ITO surface and 

polymerize in solution. Thus, these films grow thickest and exhibit evidence of H-

aggregation, implying strong interchain interactions due to close confinement of 

polymer chains on the surface. 

2.5  Polymer Film Thickness on Reaction Time 

 Possibly the most facile way to systematically control polymer chain length is 

by varying the polymerization’s is the reaction time. In solution polymerizations, as 

the extent of reaction for a living or pseudo living polymerization tends towards 

100%, the molecular weight of the polymers increase linearly. By taking aliquots of 
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a single living polymerization throughout the reaction, several different molecular 

weight polymer samples can be easily acquired. When polymerizing from a surface, 

where the monomer in solution is typically not used up completely, the molecular 

weight of the surface bound chains increases linearly with time because the 

concentration of the monomer does not change appreciably. In literature reports for 

SI-KCTP catalyzed by of bis(tri-tert-butylphosphine)palladium(0), increase in 

absorbance of grown polymer brush films is recorded with respect to polymerization 

time (Figure 2-8),57 but no correlation of polymer thickness with absorbance is 

reported.  

 The experiment to test the polymer film thickness with respect to time is 

simple: ITO substrates with surface bound initiators are placed into a solution of 

 
 
Figure 2-8: Integrated Absorbance from Experiment and Literature 

Integrated absorbance increases linearly with time in experiment and literature reports. 

Integrated absorbance is often used to compare the total amount of material on a surface rather 

than using the absorption maximum. This is especially good when the maximum absorption 

wavelength shifts between samples. Image copyright its respective owner. 
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monomer and are taken out at regular intervals and cleaned. The UV/Vis 

absorption spectrum of each film is taken (Figure 2-8). As observed in literature, the 

polymer integrated absorbance grows linearly with respect to time. In order to 

confirm that the film thickness increases with respect to time, the thickness of each 

film was characterized by AFM profilometry (described in detail in Chapter 3). The 

calibration plot between absorbance maximum and P3MT film thickness (Figure 

2-9) shows a linear relationship between the two, and when the measured 

thicknesses are plotted against time the linear growth of the polymer thin films is 

verified, something not before reported in the literature. 

 

 
 

Figure 2-9: Polymer Thickness Calibration plot and Film Thickness Growth 
  

(A) Polymer film thickness measured by AFM is plotted against the maximum absorbance of 

similar H-aggregated P3MT films. A linear relationship between the length of the polymer thin 

film (L) and Absorbance (A) relates the two parameters.  

(B) The polymer film thickness with respect to time increases linearly based on this method of 

measuring film thickness. This relationship has not been reported before for films made by     

SI-KCTP. 
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 The linear growth of the polymer thin film with respect to time is not a 

hallmark of a living polymerization because the film thickness is not necessarily 

correlated with the molecular weight of the polymer. 

2.6  Concentration Dependence on Polymer Film Thickness 

 Another useful parameter for controlling a polymerization is the monomer 

concentration. In solution based living polymerizations, the rate of propagation and 

kinetic chain length are determined by the concentration of monomer. For classic 

ionic polymerizations, the rate of propagation is given by:59 

 𝒓𝒂𝒕𝒆 = 𝒌𝒑[𝑰][𝑴] (8) 

In a typical solution polymerization, the concentration of monomer decreases as it is 

used up in the polymerization, but in the surface initiated case, the amount of 

monomer used up is small relative to the total amount of monomer, so the monomer 

concentration (minus parasitic solution polymerization) is constant. Also, since the 

number of initiators is fixed on the surface, the concentration of initiators is not 

able to be changed. Using these assumptions, the rate of the polymerization should 

be constant throughout the polymerization (which is observed in the linear growth 

with respect to time discussed in the previous section) and the rate should depend 

linearly on the initial concentration of monomer. 
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 Several monomer concentrations are surveyed and the rate of polymerization 

for each is calculated. The polymerization rate increases linearly with respect to 

concentration for concentrations below 0.1M, but for concentrations higher than 

0.1M, the polymerization rate levels out (Figure 2-10). This is most likely due to 

high concentrations of Grignard monomer etching the initiators off the surface. For 

0.2M monomer concentrations, the solution turns red and opaque indicating that for 

these surface initiated polymerizations solution polymerization is occurring similar 

to what is observed for polymerizations at elevated temperature. For surface 

initiated polymerizations with lower monomer concentrations the solution only has 

a small amount of red solids, indicating that solution polymerization does still 

 

Figure 2-10: Determining Polymerization Rate Constant 

 There is a linear increase in polymerization rate with an increase monomer concentration 

up to a point of at least 0.1 M. Above 0.1 M, the polymerization rate decreases, most likely due to 

the harsh polymerization conditions etching the ITO substrate. This behavior further suggests 

that SI-KCTP polymerizations follow first order kinetics. 

 

kp’=24.7 ± 2.9 𝑛𝑚 ∙ ℎ−1 ∙ 𝑀−1 
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occur, but not as much as in higher concentration solutions. The slope of the linear 

portion of the graph in Figure 2-10 gives a parameter similar to kp in equation (8). 

Modifying equation (8), to make physical sense to for SI-KCTP simply gives: 

 𝒓𝒂𝒕𝒆 = 𝒌𝒑′[𝑴]𝟎 (9) 

In the new equation, the rate of polymerization depends only on the initial 

concentration of monomer, and the concentration of initiators on the surface is a 

constant absorbed into kpˊ. The rate constant 𝟐𝟒. 𝟕 ± 𝟐. 𝟗 𝒏𝒎 ∙ 𝒉−𝟏 ∙ 𝑴−𝟏 is the only 

one of its kind, but can be used to compare different catalyst and monomer systems 

investigated in the future. The existence of the linear region of the graph in Figure 

2-10 gives more evidence that the polymerization is controlled under ideal 

conditions. 

2.7  Discussion 

 The growth of P3MT polymer brushes via Pd catalyzed SI-KCTP can be 

controlled under narrow conditions of temperature, and concentration. The 

polymerization is remarkably sensitive to temperature. Polymerization will only 

occur at a reasonable rate under very narrow temperature range. The film thickness 

increases linearly with respect to time demonstrating linear growth under all tested 

conditions. The rate of polymerization also increases linearly with respect to film 

thickness, more evidence that that the reaction kinetics are first order and 

controlled. Though the polymerization may be called controlled given the evidence 

established by control over film thickness, the molecular weight of the polymers on 

the surface cannot be accurately estimated even with knowledge the film 
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morphology. For these reasons, it would not be accurate to call these 

polymerizations living. Film characterization will be discussed more extensively in 

Chapter 3, but grown films are not completely uniform and the polymer chains are 

not oriented completely vertically, so SI-KCTP cannot be accurately depicted as 

controlled as solution based KCTP. Two of the key components of living 

polymerizations, low PDI and chain ends that do not terminate, have not been 

adequately demonstrated in SI-KCTP. 

   Despite the control exercised over the polymerization, the chemical attaching 

species for the monolayer used to generate the initiating species was not able to be 

changed. The conditions in SI-KCTP are too harsh for carboxylic acid linking 

groups. Though different attachment groups have been used on other surfaces for 

SI-KCTP such as thiols on gold and siloxanes on silicon,56, 65-66 still only phosphonic 

acid linkers have been shown to be useful for SI-KCTP from ITO substrates.57, 66-67  

 Though sufficient control can be exercised over films in ideal cases, there is 

significant batch to batch variation between films most likely due to polymer chains 

initiating over a long period of time (up to 3 hours), initiators falling off the surface 

due to etching, and catalysts disassociating with growing chain ends. Even under 

optimized conditions, these factors contribute to irregularities in the film. 
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2.8  Experimental Procedures 

 All chemicals and reagents are purchased from commercial sources unless 

otherwise noted (Acros, Strem, Aldrich, etc.) and used without further purification. 

Solvents were purified by distillation (THF) and solvent system (toluene) when 

necessary. Air free reactions are done on a Schlenk line using standard techniques 

and in an MBraun UNILab glovebox. UV/Vis absorption spectra were taken with a 

Shimadzu UV-2600 Spectrophotometer. AFM Measurements were taken on an 

Asylum MFP3D Atomic Force Microscope. Cyclic voltammetry measurements were 

taken with a BASI Epsilon potentiostat. 

 

 

 

(1) Synthesis of 2-bromo-3-methyl-5-iodothiophene 

 

To a 250 mL round bottom flask, 21.0555g (214 mmol) 3-methylthiophene and 

23.8168 g (214 mmol) NBS are dissolved in 120 mL THF at 0C. The reaction is 

stirred overnight, poured over water, extracted with diethyl ether, dried over 

MgSO4, filtered, and concentrated to yield 32.2 g (85%) pure 2-bromo-3-

methylthiophene 
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To a 250 mL round bottom flask with 70mL CHCl3 are added 6.7797 g (38.3 mmol) 

2-bromo-3-methylthiophene, 4.8641 g (19.15 mmol) iodine, 6.1663 g (19.15 mmol) 

iodobenzene diacetate. This is let stir overnight. The reaction is dumped into a 

solution of NaSO3, washed with above solution twice, washed with brine, dried over 

MgSO4, filtered, concentrated, and distilled. In the second fraction, 9.2839 g (80%) 

2-bromo-3-methyl-5-iodothiophene is collected as a faint yellow oil. 1H NMR (CDCl3, 

40 MHz) δ (ppm): 6.900 (s, 1H) , 2.191 (s, 3H) 

 

 

 (2) Synthesis of 2-ferrocenyl-5-bromothiophene 

 

To a 100mL round bottom flask, 40 mL THF, 3.45 g (41.33 mmol) thiophene and 

15.45 g (86.8 mmol) NBS are added and let stir overnight. The reaction mixture is 

dumped into cold water and extracted three times with diethyl ether and dried over 

MgSO4. The solvent is removed, the oil is redissolved in hexanes and flashed 

through a plug of hexanes to yield 7.0099 g of Pure 2,5-dibromothiophene. 1H NMR 

(CDCl3, 40 MHz) δ (ppm): 7.176 (d, 1H J=5.6Hz), 6.909 (d, 1H J=4.8Hz) , 2.200 (s, 

3H). 
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To a 250 mL two neck round bottom flask in an ice bath, 5.0 g (20.66 mmol) 2,5-

dibromothiophene and 60 mL dry THF are added at 0C. To this solution, 10.33 mL 

(20.66  mmol) isopropyl magnesium chloride is added dropwise and let stir for one 

hour. Carbon dioxide is then bubbled through the reaction mixture for one hour, 

then the reaction is stirred for 1.5 hours. The solvent is removed and the residue 

was dissolved in 10% KOH and reacidified with conc. HCl to form white crystals. 

The crystals are filetered yielding 2.9812g 5-bromothiophene-2-carboxylic acid as 

white crystals (70%) 1H NMR (CDCl3, 40 MHz) δ (ppm): 7.644 (d, 1H J=4Hz), 7.122 

(d, 1H J=4Hz). 

 

 

To a dry 250 mL 2 neck flask, 6.4735 g ( 31 mmol) and 27 mL (375 mmol) are added 

and refluxed overnight. A condenser is added to the flask and excess SOCl2 is 

distilled off leaving a faint yellow liquid. This is dissolved in 10mL DCM, then 

transferred into a dry 250 mL flask containing 100 mL DCM 8.6490 g (46.5 mmol) 

ferrocene and 4.1230 g (31 mmol) AlCl3 and let stir for 3h at 0C. The solution is 

warmed up to room temperature, neutralized with water, extracted with DCM, 
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dried over MgSO4, concentrated, and flashed through a column of 1:4 Hex:EtOAc to 

yield 4.0362 g ferrocene-2-yl-(5-bromothiophen-2-yl)methanone as dark red powdery 

crystals (35%).1H NMR (CDCl3, 40 MHz) δ (ppm):7.660 (d, 1H, J=4 Hz), 7.115 (d, 

1H, J=4 Hz), 4.982 (t, 2H, J=1.8 Hz), 4.606 (t, 2H, J=1.8 Hz), 4.225 (s, 5H) 

 

To a 100 mL 2 neck flask with a reflux condenser, 1.2550 g (3.1 mmol) ferrocene-2-

yl-(5-bromothiophen-2-yl)methanone, 0.47 g (12 mmol) NaBH4, 0.6 g (45 mmol) 

AlCl3, and 40 mL dry THF are added. The solution is refluxed for 2h then turns 

orange. The solution is cooled, neutralized with water, extracted with DCM, dried 

with MgSO4, concentrated, then flashed through a hexane column to yield 0.5002 g 

(43%) 2-ferrocenyl-5-bromothiophene. 1H NMR (CDCl3, 40 MHz) δ (ppm): 6.758 (d, 

1H, J=3.7 Hz), 6.451 (d, 1H, J=3.7 Hz), 4.063 (s, 5H), 4.041 (s, 2H), 3.734 (s, 2H). 

 

(3) Synthesis of 5-bromo-4-methylthiophene-2-carboxylic acid 

 

To a 100mL 2 neck flask at 0C are added 50mL dry THF and 5.0603 g (16.7 mmol) 

2-bromo-3-methyl-5-iodothiophene, and 7.5 mL (15 mmol) isopropylmagnesium 

chloride is added dropwise and let stir for 1h. After 1h stirring, carbon dioxide is 
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bubbled through the reaction for 1.5h. The solvent is removed, residue dissolved in 

10% KOH, then reacidified in conc. HCl, and filtered to yield 2.0301 g 5-bromo-4-

methylthiophene-2-carboxylic acid as white powder (55%). 1H NMR (CDCl3, 40 MHz) 

δ (ppm): 7.556 (s, 1H), 2.224 (s, 3H). 

(4) Synthesis of (4-bromobenzyl)phosphonic acid 

 

To a 100 mL round bottom flask with a condenser are added 11.98 g (46 mmol) and 

50 mL (300 mmol) triethyl phosphite. This is refluxed overnight. The triethyl 

phosphite is distilled off, and TMS-Br 19mL (150 mmol) is added and let stir 

overnight. TMS-Br is  distilled off, 50mL MeOH is added under Ar and refluxed for 

4h. The solvent was removed to yield whitish powder that was dissolved in 10% 

KOH and reacidified with conc. HCl. to yield 8.79 g (76%) (4-bromobenzyl) 

phosphonic acid. 1H NMR (MeOD, 40 MHz) δ (ppm): 7.440 (d, 2H, J=8 Hz), 7.233 (d, 

2H, J=8 Hz), 3.099 (d, 2H, J=17.6). 

 

Preparation of SI-KCTP initiators of (4) and (6) on ITO 

ITO slides are cut and sonicated for 15 min in water, acetone, and IPA. Slides are 

then dried and soaked for 1h in 5:1:1: water: hydrogen peroxide: ammonium 

hydroxide, washed with water and EtOH, dried under N2, and cleaned with ozone 

for 15 mins. Slides are then soaked in a solution of either (4) or (6) (1-5 mM) for 24h, 
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dried under Nitrogen, and annealed on a hotplate overnight at 150C. Slides are 

washed with chloroform and ethanol. 

 

Inserting palladium catalysts into initiator monolayers 

In a glovebox, functionalized ITO Slides are placed in a solution of 10mL Toluene 

50mg PdP(t-Bu3)2 and heated at 70C for 3h. The Slides are taken and washed with 

toluene and THF.  

 

SI-KCTP Reaction protocol 

For a typical reaction, 0.1M solutions of monomer are made by dissolving 0.673 (2.2 

mmol) g 2-bromo-3-methyl-5-iodothiophene in 20mL dry THF at 0C. To this 

solution, 1 mL (2 mmol) isopropylmagnesium chloride is added and the solution is 

stirred for 2h and let warm to RT. In a glovebox, the monomer solution is poured 

over prepared slides and the reaction is left without stirringfor the desired amount 

of time. 

 

 

Measuring initiator coverage by cyclic voltammetry 

For a typical reaction, 0.01M solutions of monomer are made by dissolving 0.08400 

(2.3 mmol) g 2-ferrocenyl-5-bromothiophene in 20mL dry THF at 0C. To this 

solution, 0.09 mL (0.2 mmol) isopropylmagnesium chloride is added and the solution 
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is stirred for 2h and let warm to RT. In a glovebox, the solution is poured over 

prepared slides and the reaction is left to react overnight without stirring. 

Cyclic voltammograms are measured using a BASI Epsilon potentiostat. Supporting 

electrolyte of 0.1 M tetrabutylammonium hexaflouorophospate in DCM is used. The 

working electrode is the ITO substrate, counter electrode platinum wire, and a 

silver pseudoreference is used with a 100 mV/s scan rate. 
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2.9  Supporting Spectra 

2.9.1 NMR Spectra 
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2.9.2 XPS Spectra 

Blank ITO 
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Blank ITO 
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Blank ITO 
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5-bromo-4-methylthiophene-2-carboxylic acid on ITO 
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5-bromo-4-methylthiophene-2-carboxylic acid on ITO 

 

 



66 

 

5-bromo-4-methylthiophene-2-carboxylic acid on ITO 
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(4-bromobenzyl)phosphonic acid on ITO 
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(4-bromobenzyl)phosphonic acid on ITO 
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(4-bromobenzyl)phosphonic acid on ITO 
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2.9.3 Cyclic Voltammograms 
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CHAPTER 3 CHARACTERIZATION OF POLYMER BRUSH THIN FILMS 

3.1  Introduction to Characterization techniques 

 Though SI-KCTP was thoroughly characterized in Chapter 2, the synthesis of 

P3MT brushes in a controlled manner does not necessarily guarantee controlled 

film morphology. For SAMs used in a molecular electronic device described in 

Chapter 1, film morphologies are homogeneous and smooth due to all molecules 

being the same chemical species and anchored to the substrate at the same time. In 

the case of grown P3MT brushes, the morphology is not as straightforward. The 

dispersity of polymer chain lengths on the surface makes surfaces rough, and 

though the density of initiators on the surface is known, the regularity of the 

placement of reactive species is not. It is not expected that polymer chains will be 

ordered on a surface as regularly as alkane thiols on (111) Au surfaces. The key 

components of the film morphology for this work are the density of polymer chains 

on the surface, their orientation to the surface, and the surface roughness. Ideally, 

polymer chains would be densely packed, placed at regular intervals, oriented 

vertically from the substrate, and form a smooth surface in a well ordered film. 

Films such as these would ensure intramolecular charge transport pathways exist 

in a vertical device.  

 A number of techniques were employed to characterize these films. UV/Vis 

spectroscopy is used to measure film absorbance. Film thickness can be estimated 
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from absorbance using the calibration plot constructed in section 2.5. The optical 

HOMO-LUMO bandgap can be calculated from the absorption spectrum. Film 

absorption also contains signatures from film aggregation characterize the local 

environment around chains. Polarized, variable angle UV/Vis absorption is used to 

probe aggregation orientation to measure components of film order in and out of the 

plane of the substrate giving evidence of film orientation in the vertical plane.  

Besides polarized UV/Vis, NEXAFS is used to measure the ensemble average 

orientation of polymer chains on the surface to give the most quantitative picture of 

film orientation. Cyclic voltammetry is used to measure the HOMO level of polymer 

brush thin films which is combined with the optical bandgap to estimate the LUMO 

of the polymer film. Atomic force microscopy (AFM) is used to measure surface 

roughness and film thickness. Ellipsometry is used as a noninvasive method for 

measuring film thickness, and its ability to provide accurate measurements of film 

thickness are compared with estimation by UV/Vis spectroscopy and AFM 

profilometry.  

 In an effort to enhance the film morphology to create films with the desired 

microstructure, polymer films are annealed at high temperature and are 

characterized after annealing to measure the effects of annealing on conjugated 

polymer brushes. 

3.2  UV/Vis Absorption Spectroscopy 

 The most versatile tool used to characterize the polymer brushes is UV/Vis 

spectroscopy. This technique is used to estimate the HOMO-LUMO bandgap, probe 
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the aggregation and vibronic structure between polymer chains, and measure the 

orientation of polymer chains in the films. Poly(3-alkylthiophene) and conjugated 

polymers UV/Vis absorption spectra are extensively studied in the 

literature.32,68,69,70 The properties listed above can be easily extracted from UV/Vis 

absorption spectra to characterize the morphology and quality of grown polymer 

films.  

3.2.1 Measuring the Optical Bandgap 

 The bandgap of a conjugated polymer is defined by the HOMO-LUMO  

bandgap. A material’s bandgap corresponds to the lowest energy transition in a 

material. For materials with bandgaps corresponding to energies in the visible and 

ultraviolet spectra, the onset of absorption in the UV/Vis spectra corresponds to the 

HOMO-LUMO bandgap (Figure 3-1). For P3MT polymer brushes, the onset of 

absorption at 640nm corresponds to an optical bandgap of 1.94 eV. This is similar to 

the measured optical bandgap for P3HT of 1.88 eV. For conjugated polymers, the 

relationship between bandgap and conjugation is well understood. Due to orbital 

mixing between conjugated monomers and the delocalization of energy levels over 

many repeat units, as the conjugation length of a polymer increases, the bandgap 

decreases to a minimum. The similar optical bandgaps in P3MT and P3HT indicate 

that the conjugation length is also similar, with P3HT having a longer conjugation 

length than P3MT due to the lower bandgap. 
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 The optical bandgap is relatively consistent with respect to polymer film 

thickness. For example, the onset of absorption for polymer brush films with 

thickness 1.7nm is similar to that of 80nm polymer brushes, suggesting that the 

conjugation length is reached at low film thicknesses. An oligothiophene with a 

contour length of 1.7nm corresponds to a short chain of only 4 to 5 repeat units long, 

which would correspond to an onset of absorption of 2.8 eV (440 nm).71 This obvious 

paradox suggests that the polymer chains cannot be standing perfectly vertically 

from the surface, and a significant portion of the polymers chain is in the plane of 

 

Figure 3-1: Optical Bandgap of P3MT from UV/Vis Absorption Spectra 

 The onset of absorption is the point used to calculate the optical bandgap. This point 

corresponds to the lowest energy optical excitation in the material. It is calculated by linearly 

extrapolating the baseline and polymer absorption spectrum. The intersection of these two lines 

is the onset of absorption. This value in nm is converted to eV to calculate the optical bandgap. 

For P3MT brushes, the optical bandgap is 1.94 eV, which is very similar to spuncast P3HT which 

has an onset of absorption of 660nm and an optical bandgap of 1.88 eV. 
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the substrate. If brushes ideally oriented,  the absorption onset would 

systematically red shift to the maximum conjugation length of the polymer brush. 

3.2.2 Aggregation in P3MT Brush Films  

 Aggregation occurs when molecules or polymers come together in solution or 

solid state due to intermolecular interactions. In conjugated organic molecules, 

these interactions are divided based on how transition dipole moments in 

neighboring molecules interact and the subsequent change in photophysical 

properties into two types of aggregates: H-aggregation (hypsochromatic, blue 

shifting interactions) and J-aggregation (bathochromic, red shifting 

 

Figure 3-2: H and J Aggregates 

(Left) In J-aggregates, head-to-tail interactions lead to negative coupling between nearest 

neighbors (J0 not to be confused with current density) which causes a red shift in absorbance. 

(Middle) In H-aggregates, side-to-side interactions cause positive nearest neighbor coupling 

interactions which leads to a blue shift in absorbance.  

(Right) In polymeric HJ-Aggregates, coupling between monomers is negative as in J-aggregates 

due to through bond interactions, and coupling between chains is positive, as in H-aggregates. 

Polymer semiconductors such as P3HT have been shown to have both J and H like properties.  

Image copyright its respective owner. 
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interactions).69,72 In small molecules, the angle between monomer units is what 

determines the interaction (Figure 3-2).69 For “head-to-tail” type interactions, J 

aggregation occurs, and for “side-to-side” type interactions, H aggregation occurs.69 

The strength of the interaction between molecules determines the magnitude of the 

effect observed in the photophysical properties of the aggregates. Polymer 

semiconductors often express both H and J like properties, and have been said to 

form HJ-aggregates. These aggregates have properties of both H and J aggregates, 

but only the H-aggregation will be discussed. 

 For polymer samples, H-aggregation manifests itself in a blue shift of the 

absorption maximum in the spectrum of an aggregated sample compared to that of 

a sample with no aggregation, and has been reported in P3MT brushes grown with 

 

Figure 3-3: Comparing H-Aggregation in P3AT films 

(Left) P3MT films grown here have a strong signature of H-aggregation as evidenced by the blue 

shifted maximum absorbance. Regardless of the film thickness, the maximum is at 

approximately 400 nm.  

(Right) Spuncast P3HT films have a similar absorption band to P3MT brush films, but the 

spectra are shaped completely differently. This is due to the much higher strength of H-

aggregation in P3MT films. 
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Pd catalyzed SI-KCTP in literature.57,73  

 Films grown here often exhibit the signatures of H-aggregation (Figure 3-3). 

There are many physical interpretations as to why there are H-aggregates in these 

films. From literature reports, the spectra of P3MT films grown by SI-KCTP using 

Pd and Ni as catalysts show different signs of aggregation. For Pd catalyzed 

reactions, there is a signature of strong H-aggregation, but there is no such sign for 

films made with Ni catalysts.57, 66 The authors attribute this to the increased 

grafting density measured in films grown with Pd catalysts. Confined chains may 

have stronger interchain interactions, and thus larger signatures of H-aggregation. 

Many polymer properties affect the strength of H-aggregates besides distance 

between chains including molecular weight, conjugation length, and the strength of 

the physical interaction between molecules.69,73 Here, as in literature, the presence 

of H-aggregation in P3MT films is used to qualitatively affirm that the films have 

high grafting density. Unpolarized, normal-incident UV/Vis absorption spectroscopy 

measures the film characteristics in the plane of the substrate, so the H-aggregates 

here have a significant component in the plane of the substrate. 

3.2.3 Measuring Orientation with Polarized Variable Angle UV/Vis Absorption  

 Polarized variable angle UV/Vis spectroscopy has been used to measure the 

orientation of small molecule and polymer films.32,74 The incident polarized light 

will have a projection on the transition dipole moments of the chromophores 

(molecules) depending on the angle of incidence of the light and the orientation of 

the molecule on the surface. If molecules are highly oriented, the optical response of 
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the film will be different depending on the angle of incident light. Polarized variable 

angle UV/Vis can be used to measure orientation in polymer films that exhibit H-

aggregation. If the polymer chains are oriented then the aggregates will exist 

primarily in one plane of the film and the signature of the aggregation will be 

dependent on the polarization and incidence of the light (Figure 3-4).   

  

 
Figure 3-4: Measuring Orientation with Polarized Variable Angle UV/Vis 

Absorption 

(A,B) Both S and P polarized light at normal incidence should have identical absorption spectra 

based on the overlap of the electric field of incident light (black arrows) and transition dipole in 

oriented molecules (red ellipse with black arrow). 

(C) In the P polarization, at angles away from normal, the overlap between transition dipoles 

and electric field of incoming light is greater, and if present, the light can excite H-aggregates. 

(D) In the S polarization, there is no appreciable change in the overlap between transition 

dipoles and electric field of incident light, so spectra should not change significantly. 
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 In the example from literature, absorption spectra of unoriented P3BT films 

do not have any dependence on either angle of incidence or polarization of light. For 

films with oriented chains, there is a distinct shift in the p-polarization spectrum at 

angles away from normal, characteristic of the presence of H-aggregates oriented 

vertical to the substrate (Figure 3-5 ). There should only be a change in the p-

polarized spectrum for oriented films due to the change in projection of the electric 

field of the incident light on the transition dipole moment of the polymer chain. The 

 

Figure 3-5:  Vertical Orientation in Short P3MT Brushes 

(A) Variable angle polarized UV/Vis spectrum of P3BT films with aligned chains from 

literature. There is a signature from H-aggregation in the p-polarization spectrum only, 

indicating that chains are aligned vertically. (Image copyright its respective owner) 

(B) In a thin (<10 nm) film, S polarized light does not show signs of H-aggregation at any angle 

of incidence. 

(C) P-polarized light shows signatures of H-aggregation in a thin (<10 nm) film only at angles 

away from normal, indicating chains in this film are highly oriented. 
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projection of s-polarized light on transition dipole moments does not change with 

angle of incidence, so the signature of vertical orientation only exists in the p-

polarized spectrum.  

 Some films exhibit significant vertical orientation as grown, particularly 

shorter films (Figure 3-5 B and C). The lack of spectral signature of                         

H-aggregation in the normal incident absorption spectrum may suggest that there 

is no order in shorter films, but normal incident absorbance only measures H-

aggregation in the plane of the film. The polarized angle dependent spectra provide 

evidence that there is significant order out of the plane of the substrate. This order 

cannot be observed with normal incident light, demonstrating the importance for 

angle dependent measurements.   

 For P3MT brush films that exhibit H-aggregation in normal incident 

unpolarized UV/Vis spectra, the characteristic shift is not readily apparent (Figure 

3-6), and visually inspecting spectra is not a quantitative method for characterizing 

the orientation of polymer chains in a film. Thus, a different method of analysis is 

employed besides visually comparing spectra. The centers of mass (COM) of 

absorption spectra are calculated as a function of angle of incident light and 

polarization of light to determine subtle shifts in the spectra. The center of mass is 

given by: 

 𝑪𝒆𝒏𝒕𝒆𝒓 𝒐𝒇 𝑴𝒂𝒔𝒔 =
∫ 𝑨(𝝀)𝝀𝒅𝝀

𝒃

𝒂

∫ 𝑨(𝝀)𝒅𝝀
𝒃

𝒂

 

 

(10) 

where “a” and “b” are the lower and upper limits of the absorption band. 
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 Applying equation (10) to polarized angle dependent absorption spectra 

reveals a trend that otherwise may be missed. There is a clear, systematic blue shift 

in the p-polarized absorption spectra as the incident light deviates from normal ( 

Figure 3-6). This indicates that there is some degree of orientation out of the plane 

of the film, but there is still significant H-aggregation in the plane of the film for 

longer samples. 

 Applying this technique to films reveals that there is significant variation in 

the orientation in films as grown. Nearly identical unpolarized normal incident 

UV/Vis absorption spectra exhibit significant differences in the change in center of 

 

Figure 3-6:  Measuring Orientation in Films with in plane H-Aggregates 

(Left) S and P polarization at normal incident (0 degrees) are identical, but the spectrum exhibits 

a large signature of H-aggregation. At angles 60 degrees from normal, Both P and S polarizations 

appear different, but the peak foes not shift in the same characteristic was as in Figure 3-5. 

(Right) By plotting the center of mass of the absorption spectrum, a systematic blue shift is made 

clear in the P-polarized spectrum, indicating the presence of H-aggregates in the vertical plane. 

The presence of H-aggregates in the horizontal plane, as indicated by the spectra (left) signifies 

that the film has significant order in the horizontal plane, as well, implying films are not 

perfectly oriented vertically.  
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mass as a function of incident angle. This is likely from the inconsistencies and 

variation in the growth of the films, where catalysts disassociate from growing 

chain ends and anchoring groups are etched from ITO surfaces.  

3.3  Cyclic Voltammetry 

 Poly(3-methylthiophene) brush films are electrochemically probed by cyclic 

voltammetry. The ITO substrate the films are grown from is used as the working 

electrode with a platinum counter electrode and silver pseudoreference electrode 

used as supporting electrodes in dichloromethane tetra(n-butylammonium 

hexaflouorophospate) as the electrolyte. Cyclic voltammograms are taken by 

positively biasing the working electrode to reversibly oxidize the P3MT film. The 

onset of the oxidation wave corresponds to removing  electrons from the film and is 

associated with the HOMO of the polymer brush thin film. The HOMO level is 

calculated by using a ferrocene standard, and the HOMO for the P3MT Brush is 

calculated to be -5.02 eV, corresponding closely to the HOMO level of dropcast films 

of P3HT at -5.1 eV. There were no observable peaks when applying a negative bias 

to the film, so the LUMO cannot be measured in this way. This is not uncommon for 

polymer films, where often only the electrochemical HOMO is reported.  

 

3.4  Near Edge X-Ray Absorption Fine Structure Spectroscopy (NEXAFS) 

 Though there are many x-ray techniques to characterize thin films, NEXAFS 

is the one measurement that directly measures the orientation of molecules on a 

surface. The principles underlying the measurement are simple: at different 
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incident angles, x-rays are used to excite an analyte molecule in the solid state, and 

emitted, soft x-ray photons are detected. Depending on the transition excited, and 

the orientation of that transitions dipole, different behavior with respect to incident 

angle should be observed. This behavior is known for oligothiophenes oriented 

vertically to the substrate (Figure 3-7).75 The coreσ* transition for an 

oligothiophene is in the plane of conjugation of the molecule, and the coreπ* 

transition is out of the plane of the molecule, so the two transitions should trace 

each other out of phase by 90 degrees for a perfectly vertically oriented poly or 

 
Figure 3-7: NEXAFS in Oriented Oligothiophenes 
(A) Schematic depicting overlap between polarized x-rays and coreexcited state transitions. 

The ratios of the intensities of the transitions are used to determine the orientation of molecules 

in a film. 

(B) Plot of data from literature illustrating change in resonance between  coreσ* transition and 

coreσ* transition as a function of angle of incident x-rays. 

(C) Graphical depiction of the change represented in (B). This trend is consistent with molecules 

that are both “edge-on” and “standing” 

A B

C



84 

 

oligothiophene film, that is the σ* transition should be greatest at low incident 

angles (grazing angles) and the π* should be greatest near normal incidence. 

 Due to measurement restrictions, only two samples could be tested using the 

NEXAFS technique, one sample of physisorbed P3MT and one sample of a short 

P3MT brush (Figure 3-8). The spectra of the two samples demonstrate opposite 

trends. For the physisorbed polymer, the coreσ*
 transition signal is greatest at 

 
 

 

Figure 3-8: NEXAFS Orientation in P3MT Brushes 

(A) (Top) NEXAFS spectra of physisorbed P3MT traces the opposite trend of edge on standing 

oligothiophenes. This spectrum is consistent with thiophene lying flat on a surface. (Bottom) the 

π* intensity trace gives clear evidence that chains are not standing in the physisorbed case. 

(B) (Top) The NEXAFS Spectra of P3MT Brushes have followed the same trend as that of 

vertically oriented oligothiophenes. (Bottom) The π* intensity trace is consistent with 

oligothiophenes standing up.  
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angles closest to normal and monotonically decreases as the angle approaches 

grazing incidence while the coreπ* transition signal follows an opposite trend. 

This is consistent with molecules laying face on to the ITO surface with little 

vertical orientation. For the polymer brush film, the coreσ*
 transition signal is 

greatest at angles away from normal and decreases monotonically as the angle of 

incident x-rays approaches normal. The coreπ* transition signal in the polymer 

brush film increases as the angle of incident x-rays approaches normal. These data 

suggest that the brush polymer is significantly oriented vertically from the surface. 

Comparing the trends observed in the physisorbed and brush films demonstrates 

that P3MT on a surface can have multiple orientations, but only in the grafted 

polymer brush case do the NEXAFS data suggest that the polymer chains are 

oriented normal to the surface. The “α parameter” can be interpreted as an 

ensemble average orientation angle from the substrate. For the physisorbed film, 

the α parameter suggests that the average dipole orientation is 38±2, while the 

orientation for the polymer brush film is 63.7±1.1. The NEXAFS data demonstrate 

that the short polymer brush thin films are somewhat vertically oriented as grown. 

3.5  Ellipsometry 

 Ellipsometry measures the change in the polarization of polarized that is 

reflected from a surface. The phase and amplitude differences of the light after it is 

reflected can be modelled to calculate film thickness and optical constants n and k. 

Here, ellipsometry is used to calculate film thickness. All fitting and modelling is 

done as directed in the J.A. Woollam ellipsometry handbook.76 For multilayered 
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sampled like those analyzed here, each layer must be modelled and fit to obtain the 

thickness. Here a three layer model is used to calculate film thickness with glass 

being the bottom layer, ITO as the middle layer, and the polymer brush layer being 

the top. The modelling of each layer is important, because changes in one layer will 

affect the modelled thickness of the other layers.  

 Glass is the substrate layer and was modelled from experimental data using 

a Cauchy fit. The Cauchy fit is primarily used for materials that do not absorb light 

in the visible region, and are not conductive. ITO is the next layer, and is modelled 

using the graded Lorentz model. The graded Lorentz model is used for ITO because 

ITO is vertically inhomogeneous, and the graded Lorentz model allows for fit 

variables to change. The polymer layer uses a Cauchy model, which is typically used 
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Figure 3-9: Model of P3MT Brush for determining Polymer Film Thickness 

 The raw data from ellipsometry measurements of P3MT brushes is modelled using three 

layers, a glass substrate, an ITO film , and a polymer film. The model can be fit to the 

experimental data (shown above) to determine the polymer film thickness. 
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for organic semiconductors. The whole spectrum was measured, but only  

wavelengths after 700 nm are used because the Cauchy model works best when the 

material does not absorb light. Each sample is modelled using these three layers to 

build up the complete film (Figure 3-9). Film thicknesses determined by 

ellipsometry are in close agreement with AFM profilometry, and will be discussed at 

the end of the chapter. 

3.6 Atomic Force Microscopy 

 Atomic force microscopy (AFM) is a useful tool to characterize surface grafted 

P3MT films as it is the only tool used to directly measure the thickness of 

conjugated polymer brush films in literature. It can also be used to measure the 

surface roughness of the film, which can be used to estimate the local surface 

coverage and as a stand-in for the polydispersity of the film.  

 Film thickness is directly measured by scratching the P3MT brush film with 

a needle and using the AFM tip to measure the step height between the exposed 

ITO surface and the surface of the polymer brush film (Figure 3-10). Though this is 

a good measure of absolute film thickness, it is a destructive method. After the film 

has been scratched, the quality of the film is compromised, and measurements 

requiring pristine films can no longer be made. Also, scratching the film so that only 

polymer is removed and trenches are not dug into the ITO substrate is difficult to 

control. In order to verify that only polymer is removed, the roughness of the 

exposed ITO is compared to the roughness of pristine ITO, and the phase of the 

AFM tip between the scratched and unscratched regions are compared. When the 
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AFM tip is over the softer polymer material, the phase of the AFM tip is different 

than when it is over the hard ITO material. Choosing the step height accordingly 

gives an accurate depiction of the film thickness.  

 As described in Chapter 2, the film thickness can be plotted against film 

absorption to make a calibration plot (Figure 2-9) to estimate film thickness from 

absorbance. Though the trend is generally good, differences in absorption spectra 

 

Figure 3-10: Measuring film thickness with AFM Profilometry 

(Top) Scratching P3MT brushes introduces defects onto the surface, but a step height 

can be measured between the ITO surface (left) and polymer film (right). The relatively 

pristine ITO (left) indicates that polymer was completely removed by scratching, and 

the smoothness indicates that the needle does not dig a trench into the ITO. 

(Bottom) The change in phase between ITO (left) and P3MT (right) gives further 

evidence that all polymer is removed by scratching.  
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between films makes this useful only as a gross estimation of film thickness, 

because the absorption maxima correspond to different features in the spectrum. 

 The RMS surface roughness of films grown in this work is generally quite low 

compared to those reported in literature.57 Physically interpreting RMS film 

roughness is difficult without knowing the chemical identity of the surface—that  is 

whether the surface of the polymer brush film is composed of end groups or 

repeating units on the polymer chains (Figure 3-11). If the chains are terminated at 

the surface, and the chain ends are exposed, that would mean the RMS roughness 

 

 

Figure 3-11: Possible Surface Configurations of P3MT Chains 

(A) In this case, the surface polymer brush film consists entirely of end groups. If the 

assumption is made that films will generally have the same amount of coiling, the dispersity of 

end groups can be used as a stand-in for PDI that is typically used in solution polymerizations. 

(B) In this case, the surface is composed entirely of monomers internal to the chain. In this case, 

roughness is still important to know, as in (A), because significantly rough films are not good for 

devices due to large differences in distances charges must transport through films. 

 

A B
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could be used as a gross stand in for the PDI of the polymer, despite evidence that 

the chains are not oriented vertically and somewhat coiled. The RMS roughness is 

also an indicator for inhomogeneity of the distances charges must transport through 

films in a device. If the surface is not composed of chain ends, but internal 

fragments of the polymer and the chain end is buried beneath the film surface, the 

surface roughness would not represent the dispersity of polymer chains, but it still 

gives an indication to the inhomogeneity between the path lengths for charges to 

transport through the film. 

 Two typical AFM micrographs for thin and thick P3MT brush (Figure 3-12) 

show that the surface is covered uniformly and is relatively smooth for thick         

(30 nm) and thin (10 nm) films with RMS roughness of 8.3 nm and 4.2 nm, 

respectively. The roughness does significantly increase with respect to length, but 

adjusting the roughness for the thickness of the films shows that the relative 

roughness of the films decreases as the length of the film increases. If the film 

surface represents chain ends, that would mean that the polymer chains vary by 

less as thickness increases. Though this cannot be converted directly to PDI, and it 

may not be a good indicator of polydispersity the RMS roughness corresponds to a 

difference of 8-16 3-methylthiophene repeat units. This number does not necessarily 

make physical sense, but as a quick comparison to polydispersity in solution 

polymerizations, that represents a quite monodisperse sample.77 Even if the surface 

does not represent chain ends, typical alkanedithiol monolayers measured have 

RMS roughnesses on the order of 0.5-1nm RMS,50 or approximately 50% of the 
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molecular length, so these brushes do not present a surface that is significantly 

rougher, comparatively. Thus, consideration of surface roughness should be taken 

only in the cases of extreme roughness, but in general the corrected roughnesses are 

 

Figure 3-12: AFM Surface Roughness 

(A) Short (10 nm) P3MT brush films present a surface free of large defects, with some small 

features.  

(B) Long (30 nm) P3MT Brushes present a relatively smooth film with fewer defects. Although 

the absolute RMS roughness is greater than in the thin film in (A), its relative roughness is 

lower. 

(C) This plot of roughness vs. length shows that roughness does increase as films get longer, but 

the relative roughness decreases.  This makes sense for films that have a long induction period 

to being reacting. If shorter films and longer films have the same absolute difference in chain 

length, then the relative roughness will decrease as chains become longer. 
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comparable to molecular electronic devices. Smooth films should be selected when 

choosing films for charge transport measurements.  

3.7 Characterizing Annealed Films 

3.7.1 Annealing Polymer Brush Thin Films 

 As grown, P3MT brushes are good candidates for accomplishing the goals of 

this work of measuring charge transport across a single layer of polymer chains. In 

an effort to create films with more ideal morphology, several methods are used to 

alter the morphology of films after they are grown to enhance vertical orientation, 

especially in thicker films. To do this, films are annealed under several conditions 

and differences in the absorption spectrum of each film are tracked before and after 

annealing. Films that show significant changes in absorbance are further 

characterized by variable angle polarized UV/Vis, ellipsometry, and AFM to track 

changes in thickness and surface morphology.  

 Two approaches are chosen to anneal films: annealing with solvent and with 

heat. Solvent annealing could break up interactions between polymer chains to 

allow chains to relax from semioriented, semicoiled morphologies to brushlike 

morphologies, which should have lower global energy. Annealing with heat should 

do the same thing, but instead of solvent causing chains to swell and relax, heat is 

used to overcome the interactions locking the grafted polymer chains in place to 

erase the thermal history of the film.  

 Films are solvent annealed in chlorobenzene at room temperature and at 

elevated temperature (85 °C), and thermally annealed at 150 °C, 200 °C, and        
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250 °C. Solvent annealing normally refers to annealing spuncast films in the 

solvent they are spun in, but in this case solvent annealing refers to soaking in a 

bath of chlorobenzene. Solvent annealing at room temperature and thermally 

annealing at and below 200°C did not significantly change the absorption spectrum 

of the film. Only solvent annealing at 85°C and above and thermally annealing at 

250°C caused changes in the absorption spectra of P3MT bush films. Films solvent 

 

Figure 3-13:  Thermally Annealing P3MT Brushes 

(A) Films annealed at 250 °C show the most drastic change in absorption. The absorption 

increases by a factor of  1.7 and the maximum shifts by 80 nm The integrated absorbance 

increases by a factor of 2.3. 

(B) Films annealed at 85 °C in chlorobenzene do not have as significant a change. After 

annealing, the absorption maximum does not change and the total absorbance decreases (C and 

D) The color of P3MT Films changes before and after annealing at 250 °C. Annealed films 

appear purple, similar to spuncast P3HT. 

400 500 600 700 800

0.00

0.03

0.06

0.09

0.12

0.15

0.18

0.21

0.24

0.27

0.30
 

 

A
b

s
o

rb
a

n
c

e
 (

A
U

)

Wavelength (nm)

 Unannealed

 Annealed

P3MT Brush Film Annealed at 250 
o
C under Nitrogen

Unannealed P3MT Brush Film Annealed P3MT Brush Film

400 500 600 700

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

 

 

A
b

s
o

rb
a

n
c

e
 (

A
U

)

Wavelength (nm)

 Annealed

 Unannealed

 P3MT Brush Film Solvent Annealed at 85
 o
C

A

DC

B



94 

 

annealed at 85 °C do not change in shape, but the absorption max decreases 

slightly. The most drastic change observed was in films annealed at 250°C, with the 

absorption maximum shifting by 80 nm (from 40 nm and 80 nm) and losing the 

strong signature of H-aggregation. There is some difference in the film annealed at 

85°C, but the absorption maximum does not change. There is still significant 

evidence of H-aggregation in the plane of the film evidenced by the strong 

absorbance near 400nm. This is unlike the film annealed at 250°C. Films annealed 

at 250°C are further characterized with closer analysis of UV/Vis absorption 

spectra, polarized UV/Vis, AFM, and ellipsometry to determine the effects 

annealing has on film morphology.  

3.7.2 UV/Vis Absorption of Annealed Films  

 The changes in the UV/Vis absorption spectrum of films annealed at 250°C 

indicate that there are significant differences in the morphology of the film after 

annealing (Figure 3-13). The onset of absorption does not change, meaning that the 

lowest energy excitation does not change either. This means that the conjugation 

length does not change significantly before and after annealing. The overall 

absorption increases after annealing, corresponding to an increase in the maximum 

absorbance by a factor of 1.7 and a 2.3 times increase in the integrated absorption of 

the entire spectrum. This is anecdotally attributed to stronger interaction between 

polymer chains, and is often observed after annealing.70 The spacing between local 

maxima in the absorbance spectra is similar, suggesting that similar transitions are 

being observed in the spectrum before and after annealing, but the difference in the 
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shape of the spectrum as evidenced by the relative intensities of absorption peaks is 

consistent with a shift in the strength of the H-aggregation of the chromophores 

being excited by incident light.73 This shift is consistent with the strength of H-

aggregates decreasing significantly or the amount of H-aggregated material that 

can be observed in the plane of the film decreasing. Normal incident light cannot 

excite H-aggregates vertical to the plane of the film, so ordered segments in that 

plane are not observable by this technique. This means that the polymer chains 

being excited after annealing are in a different environment and have different 

morphologies than before annealing. 

3.7.3 Polarized UV/Vis of Annealed Films  

 Polarized UV/Vis is used as it was previously: to measure the aggregation in 

the plane vertical to the growth substrate. The disappearance of the signature of H-

 

Figure 3-14:  Variable Angle Polarized UV/Vis of Annealed P3MT Films 

Annealed films have the same photophysical properties of oriented films reported in literature 

(Figure 3-5). There is a clear signature of H-aggregation in only the p-polarized spectra at angles 

away from normal, and the COM systematically decrease (blue shifts) indicating that the films 

are highly oriented. the COM shift is 2-3 times large for annealed films than it is to identical 

unannealed films. 
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aggregation in films in the plane of the substrate signifies a lack of interchain 

interaction in the plane of the film, and this technique can be used to probe the 

existence of H-aggregates vertical to the plane of the substrate that cannot be 

observed with normal incident, unpolarized light.  

 When long (20-30nm), annealed P3MT brush films are measured using this 

polarized UV/Vis technique, they exhibit a clear signature of H-aggregation in the 

vertical plane with a lack of H-aggregation in the plane parallel to the substrate, 

indicating that films have a high degree of vertical orientation after annealing (

 

Figure 3-14). This signature does not appear as dramatic as that observed in the 

thinner films, but the change in the COM of the absorption spectra of polymer 

brush films are significantly greater in films after they are annealed. 

3.7.4 Ellipsometry of Annealed Films 

 Several films were analyzed by ellipsometry before and after annealing to 

track the change in film thickness due to thermally annealing samples. Films are 

modelled using the same fits, though the parameters obtained are slightly different. 
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In every sample measured, film thickness increases after annealing. Since the 

amount of material is not changing on the surface, the change in thickness must be 

due to a change in the film morphology and chain conformation. This change is 

interpreted as chains becoming uncoiled and becoming more linear and brushlike. 

This is consistent with the interpretations of polarized UV/Vis. The ramifications 

this may have on film morphology are discussed at the end of this chapter, and the 

changes in film thickness are tabulated in Table 3-1. 

 The ratio for the change in polymer thickness decreases as a function of the 

initial length of the polymer brush. This may be because short brushes do not have 

the ability to induce standing behavior below 5-7 nm (Figure 3-15).  

Polymer Film 

Thickness Before 

Annealing 

(nm) 

Polymer Film 

Thickness After 

Annealing 

(nm) 

Change in 

Film 

Thickness 

(nm) Ratio Change 

3.5±0.9 13.7±0.7 10.2±1.1 3.9±1.0 

7.1±0.5 22.1±0.9 15.0±1.0 3.1±0.3 

9.39±0.05 21.3±2.3 11.9±2.3 2.3±0.2 

10.2±0.5 17.5±2.9 7.3±2.9 1.7±0.3 
 

Table 3-1: Polymer Film Thicknesses Before and After Annealing 
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3.7.5 AFM of Annealed Films 

 Surface roughness scans after annealing films indicate that the RMS 

roughness of films may slightly increase, however the roughness relative to the 

thickness of the polymer decreases. For a short film (7.1 nm), the RMS roughness 

was measured to be 3.1 nm before annealing. After annealing, the film was 

measured to be 22.1 nm, but the RMS roughness only increased to 4.5 nm. The 

relative roughness decreases from 0.43 before annealing to 0.20 after annealing. If 

the surface is comprised of chain ends, this decrease in roughness gives further 

evidence that the polymerization is controlled if the relative RMS is taken as a 

stand in for PDI. If the P3MT brush film surface is comprised of chain ends or not, 
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Figure 3-15:  Ratio of P3MT Chain Extension After Annealing 

Thicker initial polymer thicknesses have smaller increases in length after annealing. This is likely 

due to chains growing first as mushrooms before chains are able to repel each other and induce 

vertical orientation. The initial blob near the ITO surface, if it exists, will untie after annealing.  
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the relative roughness of the surface is much lower, meaning that annealed films 

have a more ideal surface for measuring charge transport through polymer chains. 

3.8  Discussion 

 Before film morphology is discussed, the merits of the three techniques to 

determine film thickness must be compared. Two films were characterized side by 

side using AFM profilometry, the UV/Vis absorbance calibration plot, and 

ellipsometry. The lengths determined by each of these measurements for these films 

are tabulated in Table 3-2. The three methods are in generally good agreement. The 

calibration plot is just an estimate based on the maximum absorbance peak, which 

can shift up to 80 nm, so it is not the ideal method for determining thickness. 

Nonetheless, all three methods agree within error. Depending on the purpose of the 

film, one technique may be more useful than another. If the film needs to be 

pristine, ellipsometry is the best choice for measuring film thickness. If the film has 

no more use or does not need to be pristine for any reason, the destructive AFM 

profilometry may prove the better method. 

 

Film 

AFM Profilometry 

Thickness 

(nm) 

Calibration Plot 

Thickness from 

UV/Vis (Estimate) 

(nm) 

Ellipsometry 

Thickness 

(nm) 

Film 1 (Not Annealed) 29.0±3.0 30.1 31.5±1.5 

Film 2 (Annealed) 22.0±1.0 25.0 23.9±2.3 
 

Table 3-2:  Comparing Methods for Calculating Film Thickness 
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 Interpreting the results from the characterization techniques as a whole may 

provide a depiction of polymer film morphology and what happens to the polymer 

film when it is annealed. The most quantitative and conclusive piece of evidence to 

characterize film morphology comes from NEXAFS measurements on unannealed 

films, which suggest that X-ray chromophores in polymer brush films have an 

average orientation of 60 degrees from normal. This average orientation is 

consistent with literature reports.57 This is in contrast to  films that are not 

chemically grafted and only physisorbed to the surface, which do not show signs of 

vertical orientation. Though only two films were measured with NEXAFS, these 

results can be used as a baseline for interpreting the rest of the measurements.  

 The rest of the characterization techniques can be interpreted together to 

provide a picture of P3MT brush film morphology. AFM data suggest that films are 

locally dense and defect free, as well as relatively smooth compared to films 

reported in literature.57, 66-67 After annealing, film roughness does not change 

significantly, though the roughness of the film relative to the thickness does. 

Polarized and unpolarized UV/Vis absorption spectra indicate that the optical 

bandgap does not significantly change from film to film regardless if it is annealed, 

and that H-aggregation in the plane of the film mostly disappears after annealing. 

Also, the signature of H-aggregation in polarized spectra as a function of angle of 

incidence increases after annealing as evidenced in the COM, suggesting that 

annealing polymer brush thin films increases the degree of vertical orientation and 

order of polymer chains. Roughness measured by AFM suggests film surfaces do not 
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appreciably change. Finally, ellipsometry, UV/Vis absorption, and AFM 

profilometry all suggest that film thickness increases after annealing polymer films. 

Taking these changes into account with respect to each other, several conditions can 

be made that models of P3MT brush morphology must follow. These are described 

below.  

 Analyzing the changes in the P3MT brush due to annealing may be the best 

way to construct a model of film morphology and chain conformation. The discussion 

of film morphology begins with the increase in thickness of films after annealing. 

Put in context of the polarized UV/Vis result indicating that chains become more 

vertically oriented after annealing, the increase in thickness is most likely due to 

polymer chains becoming more ordered in the vertical direction. In Figure 3-16, the 

effect of having polymers with significant intermolecular interaction in the horizontal 

direction reorienting towards vertical to both increase length and increase the chain order 

in the vertical direction. Chains do not uncoil or become rigid in this model. This cartoon 

satisfies these two conditions are met, but does not add any more assumptions. This will be 

called condition one. 
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  The change in film thickness can be more thoroughly explained by reverse 

engineering an ideal film using three parameters at boundary conditions: the angle 

between the substrate and polymer chain, the polymer chain rigidity, and the 

distance between monomers on adjacent chains. A perfect film would have all three 

parameters at their upper limits which would correspond to the upper bound for 

film thickness. A change in each of these parameters will necessarily affect the 

others. The upper bound for film thickness is equal to the contour length of the 

polymer chains in the film and occurs when the angle between the growth substrate 

and polymer chains of exactly 90° and polymers are perfectly rigid and spaced. Any 

deviation in the angle between polymer chains and substrate would cause the film 

thickness to decrease. Likewise, if the end to end distance of the polymer is any less 

 
 

Figure 3-16:  Shift in H-Aggregation from Horizontal to Vertical Plane Causing 

Film Thickness Increase 
 This sketch of the polymer film accomplishes two things: it demonstrates a film with 

intermolecular order (depicted by chains aligning with each other) in the horizontal direction 

changing as it is annealed to a film with chains with vertical order (chains aligning in the 

vertical direction). In this case, the film thickness increases only because chains are changing 

their average angle of orientation. There is no uncoiling or straightening. 

Before Annealing                                After Annealing
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than the contour length, then the film thickness would decrease accordingly at a 

given angle of orientation. This is similar to the cartoon sketched in Figure 3-16. 

Decreases in the end to end distance are due to deviations from planarity and 

imperfect torsional order between 3-methylthiophene monomers making the 

polymer less rigid. This would cause polymer chains to have kinks and bends which 

would necessarily cause monomer units on adjacent chains to become closer. The 

upper bound for average distance between monomer units is the grafting density of 

polymer chains on the surface. The polymer end to end distance and average 

distance between monomer units on adjacent chains are necessarily related as 

described above. The evidence of increased vertical orientation of chains from 

UV/Vis suggests that annealing does increase the angle between chains and 

substrate towards the optimum angle, as described by condition one. The change in 

thickness after annealing indicates that the initial state of the polymer is not in the 

ideal conformation. An increase in thickness could be due to changing the angle 

between polymer chains and the growth substrate, increasing the planarity of 

polymer chains, increasing the distance between polymer chains, or some 

combination of the all three. However, using the NEXAFS result that films are 

oriented at an average angle of 60°, the large increases in thicknesses as reported in 

Table 3-1 Annealing cannot be accounted for by only increasing the orientation angle 

by 30°, which would only increase film thickness by a factor of about 15%. This 

means that chains must be uncoiling as well as becoming more vertically oriented. 

This will be called condition two. Combining condition one and two gives a new 
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depiction of polymer film morphology after annealing (Figure 3-17). Since films are 

uncoiling and becoming vertically oriented, all three parameters are approaching 

their upper bounds as described above, but it cannot be conclusively determined to 

what extent with the given information.  

 Another explanation of the increase in film thickness that is consistent with 

the results but not dependent on the above model starting from an average 

orientation of 60° is that the volume of the polymer brush film necessarily increases 

after annealing because of the increase in film thickness while the cross sectional 

area remains constant. Thus, the density of polymer chains must decrease as well. 

Therefore, the average distance between monomer units must increase as well. 

Using the same three parameters (orientation angle, chain rigidity, and distance 

 

Figure 3-17: P3MT Chains Uncoil and Orient Vertically upon Annealing 

In order to meet conditions one and two described above, polymer chains must uncoil and orient 

vertically when annealed. When polymer chains do this, they necessarily become, on average, more 

distant from each other. 

Before Annealing                                After Annealing
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between chains) and upper bounds as before, but different reasoning, the same 

conclusion can be drawn. The decrease in film density suggests the average distance 

between monomer units in the film is larger after annealing. Therefore, the distance 

between monomers on the same chain and adjacent chains is increasing. For both of 

these things to occur, polymer chains must adopt a strained, rodlike conformation. 

That is, for monomers on a single chain to become on average less dense in the film, 

the chain must uncoil. For monomers on adjacent chains to become more distant, 

adjacent chains must become more distant as well. The deviation between monomer 

units from a point immediately above the graft must decrease. In essence, the 

volume occupied by the chain must increase by increasing the rigidity of the chain 

with a larger repulsive volume. This will be called condition three. Conditions one 

and three necessitate condition two be met as well, so the exceptionally large 

increase in film thickness vs. the assumed oriented film is not necessary to 

determine that polymers are uncoiling.  Nevertheless, a model of polymer film 

morphology with conditions one, two, and three is sketched in fFigure 3-18. When 

conditions one, two, and three are met, which they are after annealing, the polymer 

film becomes more ideal. 
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 Using either line of reasoning to explain the global change in film morphology 

and chain conformation toward the ideal case, fine changes in the chain can be 

added to the model using the observation that the conjugation length does not 

change after annealing to create a final condition. The onset of absorption in UV/Vis 

absorption spectra is used to estimate the optical bandgap P3MT brushes. For 

P3HT, the onset of absorption for a solution samples is blue shifted approximately 

100nm from that of the solid state, implying that films planarize and extend 

conjugation in the solid state.68a In P3MT brushes, the onset of absorption is 

approximately equal to the extended conjugation onset for P3HT, and after 

annealing P3MT brushes, onset of absorbance, and therefore the conjugation length 

 

Figure 3-18: P3MT Chains Orienting Vertically, Uncoiling, and Becoming Less 

Dense 

Polymer chains adopt conditions one through three. They are oriented vertically, uncoiled, and 

less dense. Parameters a and b are used to signify distance between monomer units on the same 

and adjacent chains, respectively. After annealing, new parameters  a’ and b’ measure the same 

thing as a and b, but the magnitude of the parameters after annealing is increased. 

Before Annealing After Annealing 
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b’
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does not significantly change. This suggests that chains as grown have achieved a 

maximum conjugation length. 

  Polymer chains are modelled as having rigid segments representing 

conjugation lengths that are free to rotate at kinked segments at points of 

connection between conjugated segments. Before annealing, segments are severely 

kinked consistent with coiled polymers attached to the surface, though the actual 

chain conformation and morphology is likely not initially so extreme. After 

annealing, the kinks still exist as evidenced by the unchanging conjugation length, 

but the angle between segments must decrease. The increase in thickness suggests 

 

Figure 3-19: P3MT Chains Orienting Vertically, Uncoiling, Becoming Less Dense, 

and Maintaining Conjugation Length 

The chain conformation and morphology is identical when all four conditions are met as it was 

when the first three were met. The difference achieved by adding the fourth condition is that the 

increased rodlike structure of the polymer chains after annealing are attributed to planar 

segments of the conjugated backbone separated by kinks. After annealing, the kinks decrease in 

severity, along with the changes outlined in the first 3 conditions. 

Before Annealing After Annealing 
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that the polymer chain length is being expressed in the vertical direction to a 

greater degree after annealing between 60-90° from the surface as outlined by 

conditions one and two. At this extreme, the angle between conjugated segments 

approaches zero, but the conjugation length does not increase as evidence by the 

onset of absorbance. This could be due to the persistence length of the polymer 

already being reached (keeping the polymer from planarizing) or the kinks between 

conjugated segments never disappearing. Either way, the final condition of the 

model is the same: the conjugation length does not increase and the polymer chain 

does not completely planarize. This means that the ideal film is not made, though 

all conditions suggest the morphology is approaching that case. The final model of 

all conditions is sketched in Figure 3-19.  
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3.9 Experimental Procedures 

AFM Profilometry 

 AFM scans are done with an Asylum MFP3d Atomic Force Microscope. AFM 

profilometry is accomplished by gently pulling a 20 gauge steel needle across the 

P3MT brush surface to scratch to the bottom of the ITO. Several scratches are made 

at different areas of the substrate. Step heights at each area are made and averaged 

to determine the thickness of the sample.  

Polarized Variable Angle UV/Vis Spectroscopy 

 An Ocean Optics 2000 spectrophotometer is used to analyze spectra. A blank 

ITO slide is mounted in the sample mount, and reference spectra at 0, 30 ,45, and 

60 degree angles from normal are taken at S and P polarizations. Each sample is 

measured in the same way. Four measurements of each polarization and angle are 

done for each sample so an average and standard deviation in center of mass can be 

calculated. 

 

 

Output of Lamp Polarizer DetectorSample Mount
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Ellipsometry 

 Ellipsometry measurements are taken with a J.A. Woollam Variable Angle 

Spectroscopic Ellipsometer. Spectra are measured from 400nm-1600nm at an angle of 

incidence 70 degrees. Spectra are analyzed and fit  with J.A. Woollam WVASE software as 

described in the body of the text. Fitting for P3MT brushes is done between 700-100 nm so 

optical absorbance does not interfere with the measurement.  
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3.10 Supporting Spectra  

3.10.1 Normal Incident UV/Vis Absorption 
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3.10.2 Cyclic Voltammograms 
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3.10.3 Ellipsometry Models 
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3.10.4 AFM Step Profilometry Measurements 
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3.11 SEM Micrograph of P3MT Surface 
 

                     

 

 

 

 

  



118 

 

 

 

 

 

 

CHAPTER 4 DEVICE FABRICATION AND ELECTRICAL MEASUREMENTS OF 

POLYMER BRUSH THIN FILMS 

4.1 Introduction to Device Design, Electronic Measurements, and Modelling  

 The goal of this work is to measure intramolecular charge transport along 

P3MT backbones. To accomplish this, P3MT brush films we synthesized in a 

controlled manner (Chapter 2) and characterized to understand the film morphology 

(Chapter 3). Polymers can be grown to a controlled height, and in general there is 

some vertical orientation and order observed in the films. Annealing the film 

enhances the vertical orientation to make a more ideal film to measure 

intramolecular transport. Other reports have made devices with vertically oriented 

polymers,31-32 but in each case there were polymer buffer layers between electrodes 

and vertically oriented polymer, making intermolecular pathways a significant part 

of the total charge transport pathway. Nonetheless, recent record breaking reports 

of hole mobility in polymer films are attributed to enhanced intrachain transport.24-

25 In measuring charge transport through P3MT brush films, the goal is not to 

break an efficiency record but rather to observe an effect on charge transport that 

can be attributed to charges transporting through chains rather than between 

them. 
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4.1.1  Integrating Conjugated Polymer Brushes into Electronic Devices 

 As described in the introduction, a typical molecular electronic device is a 

metal-molecule-metal (MMM) junction that can be formed with permanent or 

temporary contacts. The goal in this work is to create in high yield that can be 

easily accessed to measure charge transport properties. Five approaches to fabricate 

devices are explored using three different methods of electrode deposition: 

nanoTranfer printing (nTP), kinetically controlled transfer printing (KTP), and 

direct evaporation. 

  Among these five device designs, there are two methods of testing devices. 

The first, cAFM, has been used to take measurements of MMM junctions by forming 

direct contact with molecules to form a device in situ (as described in chapter 1)39-43 

and to make contact to already formed MMM devices where the top contact is 

transferred on a surface.49-50 The cAFM will be used in the latter mode, to probe 

devices made by transfer printing electrodes on to the P3MT brush film. The second 

method of testing devices involves using a probe station to make a four-terminal or 

four-point measurement. This method has a distinct advantage over measuring 

devices with cAFM because the four-point measurement removes the contact 

resistance and any resistance due to wires and leads. For practical purposes, the 

four-point measurement requires large, macroscopically addressable contacts that 

will not short through the P3MT brush film if a probe is pressed onto it. This makes 

device fabrication exceptionally difficult compared to transfer printing devices to 

test with cAFM.  
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4.1.2 Introduction to Measurements, Modelling, and Properties of Interest 

 All experimental electronic data in this work used to characterize charge 

transport is taken from measuring IV curves. The IV curves are modelled to 

determine the conductance and resistance of junctions as well as to compare the 

charge transport mechanism in films. In molecular electronics, which is the study of 

transport through single molecular layers, resistance or conductance is usually 

plotted against molecule length to determine the charge carrier transport efficiency 

through the film, which is a characteristic property of a material.40-41, 43, 45-47, 49-50, 78

 Tunneling in molecular junctions is often modelled at low bias using the 

Simmons model (2),52 but in this case Simmons may not be useful. Polymers tested 

here are quite long, out of the length regime typically associated with tunneling.79 

The shape of the IV curve is an odd function similar to a third order polynomial, so 

curves are modelled using a cubic fit to determine three fitting parameters: 

 𝑰 = 𝒂(𝑽 + 𝒃𝑽𝟐 + 𝒄𝑽𝟑) + 𝒅 (11) 

The cubic fit is used in the BDR model, another model used to model tunneling in 

thin films.80 For the same reasons the Simmons model is not useful, the BDR model 

is also not used, so the terms a, b, and c do not have the same physical meaning as 

they do in the case of BDR. If the charge transport mechanism is known, the fitting 

parameters a, b, and c can be given physical meaning, but if it is not, then the 

values of the fitting parameters can be used mathematically to track changes in the 

charge transport properties of the film, even if the particular mechanism is not 

known. 
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 The first order or linear term corresponds to the slope of the IV-curve near 

zero and is directly related to the conductance of the junction regardless of the 

transport mechanism. The larger the slope of the first ordered term, the greater the 

conductance and the smaller the resistance. This is consistent both physically and 

mathematically for small voltages near zero. Mathematically, a cubic polynomial 

will be close to linear near zero, and when voltage and current have a linear 

relationship, the factor relating them is the resistance or conductance. No matter 

what the transport mechanism is, the region around zero bias will be linear. 

 The second order or quadratic term corresponds to the asymmetry of an IV 

curve. Mathematically, a large second order term corresponds to larger asymmetry 

in the fit, with positive fitting parameters corresponding to curves that have higher 

currents for positive voltages and negative fitting parameters corresponding to 

curves that have higher currents when biased negatively. A second order fitting 

parameter of zero corresponds to a symmetric IV curve. Physically, asymmetry in 

IV curves for a molecular device can be interpreted as the efficiency of transport 

through the interfaces. If an IV curve is symmetrical, then charges transport 

equally well across both of the interfaces. 

 The third order or cubic fit parameter is determined by the shape of the IV 

curve, which is dominated by the shape of the curve at high biases. The larger this 

fit parameter is, the more the curve deviates from linearity. The deviation from 

linearity of an IV curve for a device is determined by the charge transport 
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mechanism. At the very least, this term can be used to determine if one IV curve is 

representing one type of transport or another. 

 Besides modelling IV curves with a cubic function, the power law relationship 

between voltage and current can be used to resolve changes in transport as a 

function of voltage. This has been used in literature to identify different regimes of 

transport in a given junction using an IV curve,40, 42 and in conjugated polymer thin 

films, the power law relationship of several transport mechanisms is known.81 

Using the Mott-Gurney law and the region of an IV curve where the power law is 

two, the SCLC mobility can be calculated using that region of the IV curve.82  

4.2  Creating Polymer Brush Devices: Principles and Characterization 

 As stated in the introduction, five device types are discussed in more detail 

here. Devices are evaluated using working device yield after fabrication, consistency 

and reproducibility of fabrication, and throughput of device fabrication. Ideally, 

devices should be made in high volume with a consistent fabrication method that 

yields a high percentage of working devices. 

4.2.1 Types of Transfer Printing 

 Transfer printing is a technique that has been used to efficiently deposit 

electrodes on to thin molecular layers using conditions more mild than evaporation 

or sputtering.49-50 The main advantage of transfer printing is that receiving 

substrates, in this case organic thin films, are not subjected to the harsh conditions 

that films are normally subjected to during metal evaporation. Instead an 
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intermediate substrate is used to deposit metals on under harsh conditions so that 

it can be transferred to a more fragile layer.  

 Two transfer printing techniques are employed in this study: nTP and KTP.  

Previous work using nTP has proven it as an efficient technique to create MMM 

junctions using alkyne thiols, but KTP has not been used to create molecular 

junctions and has been adapted from transferring etched semiconductor films to 

transfer metallic electrodes.83 The principles behind each technique are described 

below. 

4.2.1.1  NanoTransfer Printing 

 NanoTransfer printing has been used to create small area molecular 

electronic devices, and the technique has been sufficiently described and 

characterized elsewhere. Metal films (Au, Ni, and Co have been reported) are 

deposited on a patterned elastomeric (PFPE) stamp, and the metallated stamp is 

brought into contact with a thiol terminated SAM (Figure 4-1).49-50 The stamp is 

 
Figure 4-1: Making Electronic Devices by nTP 
A patterned PFPE stamp is metallated and brought into contact with a SAM functionalized with 

a terminal thiol. The thiol bonds to the metal on the raised patterned portions of the stamp, and 

the stamp is removed, leaving behind a pattern of metallic electrodes. Image copyright its 

respective owner 



124 

 

removed and the patterned metal film is left behind. The terminal thiol group 

serves to bind the metal to the surface so the features on the stamp can be 

completely transferred. For this application, there are no thiol binding groups on 

the surface, so nTP may not be the optimal technique to use.  

4.2.1.2  Kinetically Controlled Transfer Printing 

 This application of KTP is modified from a procedure reported in literature 

used to transfer etched inorganic semiconductors.83 Kinetically controlled transfer 

 
Figure 4-2: Patterning a Donor Substrate for KTP 
(A) SiOx wafer patterned with photoresist with a thin (150 nm) layer of Au sputtered to define 

electrodes. 

(B) Cross-section of (A). Despite the undercut in the photoresist, the Au coats the sides of the 

well. 

(C) Tilted SEM of patterned SiOx wafer with removed photoresist. Some Au features fall off 

during this process. 

(D) Tilted SEM of features transferred to a P3MT Brush thin film shows that features make good 

contact with surface after transfer 

(E) SEM Micrograph of a single KTP transferred feature. There are small frills around the edge 

of the feature. This is an artifact from the Au coating the undercut of the well used to  define the 

feature area. 

A

D

CB
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printing uses the elastic properties of PDMS to induce the transfer of patterned 

metal thin films from a donor substrate (SiOx) to a receiving substrate (polymer 

brush surface). To create a donor substrate, a silicon oxide substrate is patterned 

with photoresist, and Au is evaporated onto the patterned substrate. The 

photoresist is removed with acetone in a sonication bath, and the wafer is briefly 

etched with hydrofluoric acid to help detach the gold film from the wafer (Figure 

4-2).  

 The transfer printing process (Figure 4-3) occurs when a PDMS stamp is 

brought into contact with the etched Au and SiOx surface. The stamp is wetted to 

 

Figure 4-3:  Schematic of KTP Transfer 

The patterned Au film is lifted off by a flat PDMS stamp by peeling it off quickly to increase the 

adhesion between stamp and Au. The metallated stamp is brought into contact with the receiving 

substrate, and peeled slowly to lower the surface energy of the PDMS, leaving the patterned Au 

film on the receiving substrate.  

PDMS Stamp 

Pulled Quickly 

To Remove Features

Pulled Slowly

To Leave Features

Patterned Au

on SiOx

Transferred Au

on P3MT Brush
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the surface, and removed quickly. Removing the stamp quickly increases the 

surface energy of the stamp, inducing transfer of the Au features to the stamp. The 

metallated stamp is then brought into contact with the polymer brush thin film to 

wet the surface. The stamp is then removed slowly to reduce the surface energy of 

the PDMS stamp, to induce transfer from the stamp to the receiving surface. 

Because of the kinetic component of this transfer,84 it is not necessary to have a 

thiolated surface to induce transfer. Also, the Au that is transferred from SiOx to 

polymer is templated from a SiOx wafer, so the transferred film is quite smooth 

compared to films transferred with nTP. In contrast, the surface transferred with 

nTP is defined by the growing surface of an evaporated thin film, so it is not as 

smooth as the surface used to transfer with KTP. This makes KTP an ideal 

candidate for transfer printing top electrodes on to fragile organic thin films. 

4.2.2  Device Architectures 

4.2.2.1 Devices Created by Transfer printing 200 nm Au electrodes via PFPE         
 Assisted nTP 
 

 NanoTranfer printed electrodes like this have been used to create MMM 

junctions on top of alkanedithiol SAMs on Au.49-50 Out of all of the transfer printing 

methods, this is the only one that has been proven to work to create devices in 

literature.49-50 Unfortunately, no electrodes were able to be transferred using this 

technique. This is likely because there are no thiol acceptor groups on the polymer 

chain ends to induce transfer from the PFPE film and the polymer brush surface.   
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4.2.2.2 Devices Made with Large (50μm) Electrodes Transferred by KTP and Tested 
 by cAFM 
 

 Large Area KTP electrodes do not suffer from the disadvantages exhibited by 

large are nTP electrodes, so are ideal candidates for devices. Electrodes are thick, 

cohesive units ten times thicker (150-200 nm) than nTP pads (between 15-20 nm), 

and do not show any signs of cracking, (Figure 4-3). 

 Electrical measurements are taken by bringing a gold plated cAFM tip into 

contact with the transfer printed electrode and biasing the tip to drive a current 

through the junction. Measurements made in this way are slow due to limitations 

with the AFM, only two to three devices can be measured with one scan. Despite the 

low throughput, the yield of working devices is high. Approximately 94% of tested 

devices yield measurable IV curves, with the other 6% being shorted. Shorting most 

likely occurs due to printed electrodes puckering and penetrating through the 

polymer film and touching the bottom ITO electrode. 

4.2.2.3 Devices made with Large (50 μm) Electrodes Transferred by KTP and   
 Macroscopically Addressed via Fabricated Permanent Contacts 
 

 The active junctions in these devices are identical to the previous devices, but 

instead of measuring the devices with AFM, macroscopic contacts are fabricated on 

the top of printed devices that can be measured in a probe station. Devices made in 

this way are even less numerically dense on a substrate. Only four to 6 devices can 

be made on a single substrate. Furthermore, the device yield is quite low, with less 

than 20% of devices working after seven continuous days of fabrication. In this case, 
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Figure 4-4: Schematic of Large area KTP device with Macroscopically Addressable 

Contacts 
To make this device, photoresist is spuncast on top of a P3MT brush film, then wells are opened 

over printed electrodes. The photoresist is developed, and Au contacts are sputtered to make 

contacts for a four-terminal measurement. 

AV

ITO

P3MT 
Brush

KTP Electrode

Sputtered Top Contact

Photoresist

most devices are not shorted or working, but open, indicating that the fabricated top 

electrodes are not making good contact with the printed electrode.  

 

 

4.2.2.4 Devices Made with Small (7μm) Electrodes Transferred by KTP and Tested 
 by cAFM 
 

 Devices made in this way combine the advantages of high working device 

yields of large KTP transferred pads and the numerically dense device transfer of 

the small 200 nm PFPE devices that could not be transferred on to polymer brush 

thin films. More than 20 devices can be measured on a single AFM scan, and device 

yields of 90% working devices, 8% open devices, and 2% shorted devices.  
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4.2.2.5 Device Made by Directly Evaporating on Top of Polymer Brush Films 

 Large area devices (0.13 cm2) are attempted by direct evaporation of metal 

films on top of polymer brush thin films. Polymer films up to 90 nm are grown, and 

various metals and oxides including Au, Al, Ag, and MoO3 are thermally evaporated 

on top of the thin film. Various rates and powers are used to evaporate the metals, 

but in every case the top electrode deposition penetrates through the polymer film 

to the bottom ITO, yielding 0% working devices. 

4.2.3 Moving Forward with Devices 

 Of all device types tested, the best performing, highest throughput motif is 

printing 7 μm circles via KTP as a top contact and testing by cAFM. Though the 

larger 50 μm squares have a higher percentage yield of working devices, the 7 μm 

devices are more numerous on a surface by an order of magnitude, and ten times as 

many 7 μm circle devices can be measured as 50 μm square devices in a given 

amount of time. Though the lithography techniques used to create permanent 

devices on top of 50 μm square devices cannot be used to create devices on 7 μm 

devices, the yield of devices using photolithography is so low that meaningful data 

sets would be difficult and time consuming to acquire. Therefore, out of the working 

device types, only 7 μm KTP printed electrode devices are used to characterize the 

charge transport in polymer brush thin films.  

4.3  Charge Transport through P3MT Brushes 

 Measuring and analyzing IV curves of P3MT (Figure 4-5) brushes can 

identify several key charge transport properties and characteristics. The change in 
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Figure 4-5: Measuring IV-Curves with KTP 

(A) Transferred KTP electrodes imaged by AFM during data acquisition. 

(B) Current map of KTP taken indicating that current is only measured through transferred 

electrodes. 

(C) Representative IV-curves for good unannealed P3MT films. 

(D) Representative IV-curves for annealed P3MT films. 
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cubic fitting parameters as a function of polymer brush film thickness determines 

properties of thin films such as the β value, which describes how easily charges 

transport through a material, and identify changes in charge transport mechanism 

at different lengths. Furthermore, the power law dependence of current and voltage 

can also describe the transport of charges through films and is used to determine 

the charge carrier mobility.  
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Figure 4-6: Modelling IV Curves with Cubic Fits 
Curves are fit with a cubic polynomial between -0.5 V and 0.5 V. The fitted curve agrees with the 

experimental curve in this range. Typically, there is some deviation in the curves at higher bias.  
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4.3.1 Modelling IV Curves with Cubic Fits 

 Data are modelled (Figure 4-6) using WaveMetrics IGOR software. Curves 

are fit to a cubic function between -0.5 V and 0.5 V yielding three polynomial fit 

parameters and a constant for each IV curve. The constant fit parameter is ignored, 

and the remaining fit parameters are averaged for each device substrate, yielding 

fit three parameters per P3MT brush length that are used to describe charge 

transport.  Normalized quadratic and cubic terms are used for analysis by diving 

the raw terms by the linear term.   

4.3.1.1 Linear Term: Resistance/Conductance 

 As discussed earlier, the linear term corresponds with the conductance of the 

device. The reciprocal of this term is the resistance, and is used in all further 
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analysis. The resistance is used in two separate pieces of analysis: calculating the 

relative effective area distribution and the transport decay parameter or β value.  

4.3.1.1.1 Effective Area Distribution of Printed Devices  

 All samples tested had a similar distribution in linear fitting parameter 

(Figure 4-7). From a histogram of the linear term for each device tested, the relative 

area is calculated by normalizing the average to one, and expressing the bins as a 

multiple of the average. A relative area of one on the graph in Figure 4-7 

corresponds to the average area. If the maximum device area (100% effective area) 

is taken to be the extreme right of the curve, then that means that on average, 

approximately 33% of the electrode area is contributing to charge transport. This is 

the upper bound of effective area, because it is unlikely that the extreme right tail 

 

Figure 4-7: Effective Area Distribution of Printed Devices 

This distribution is a superposition of relative areas calculations using the distribution of 

conductances in all samples. Across all samples, the data are similarly distributed, suggesting the 

quality of prints are similar in all of the samples. 
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corresponds to 100% effective area. Though this distribution is not ideal, it is very 

similar for every sample, so films should be equally affected. This is could be due to 

nanocracking on the underside of the electrode or incomplete contact  of the bottom 

of KTP pads with polymer films. Either way, the distribution of identically shaped 

IV curves suggests that the other fitting parameters and properties will be affected 

accordingly. 

4.3.1.1.2 Resistance-Length Dependence: Transport/Current Decay Parameter (β      

     Value) 
 

 The resistance is the most sensitive parameter in the fit. To gain an 

understanding of the relationship between resistance and P3MT brush thickness, 

only “high quality” devices and IV-curves are used and were chosen based on having 

smooth surfaces and UV/Vis absorption spectra that suggest films are vertically 

ordered. As thickness increases, there are two distinct trends in the resistance 

increase (Figure 4-8). The values calculated for β are both incredibly low, indicating 

that charge transport does not decay quickly through the brushes. High β values are 

associated with processes transport processes that have resistances that have large 

exponential dependences on length, like tunneling through large tunneling barriers. 

Processes that have little or no exponential dependence, like charge hopping, 

usually have low β values. The magnitude of β cannot be used to diagnose the 

charge transport mechanism, but taken with no physical context it can be used to 

describe transport as being conductive or resistive. To put these β values in 

perspective, one of the lowest β values reported, observed in highly conjugated, 
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Figure 4-8: Resistance-Thickness Relationship in P3MT Brushes 
(Left) Raw plot of resistance verse P3MT film shows what looks like geometric growth in the 

resistance as film thickness increases. This is possibly either an exponential growth followed by 

linear growth or two or more regimes of linear growth. 

(Right) Semilog plot of resistance vs film thickness implies there are two separate regimes for 

increase in the logarithm of resistance. This behavior has been attributed to a change from a 

hopping regime to a tunneling regime, but can also represent a change in the number of hops to 

cross a junction. 
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conductive organometallic wires, ranges between 0.28-0.01 nm-1 depending on 

electrodes.78c These β values (Figure 4-8) are on par with the lowest reported. 

4.3.1.2 Normalized Quadratic Term: Asymmetry 

 The quadratic term in the cubic fit is determined by the asymmetry of an IV-

curve, with positive and negative terms corresponding to higher currents in positive 

and negative bias directions, respectively. A value of zero for this term indicates 

that the transport is perfectly symmetrical. Since the modelling is done close to zero 

bias, this term only captures the behavior within that range. 

 In nearly every device tested at every length, the quadratic term is a near 

zero and positive (Figure 4-9). In fact, nearly every normalized quadratic term is 

within one standard deviation from zero, indicating that the transport through 
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Figure 4-9:  Asymmetry in Charge Transport Through P3MT Brushes 

The normalized quadratic term is used as a measure of asymmetry of charge transport through 

devices. The values of the quadratic term are unchanging with length. Values are nearly all 

small, and positive, indicating currents are slightly higher in the positive bias. For the values 

that are less than zero, the standard deviations are quite large, overlapping with zero in each 

case. This term corresponds to “b” in equation 11. 

 these devices is quite symmetrical at low bias. This is neither trivial nor intuitive. 

The electrodes are two different materials, ITO and Au, and the contact between 

electrodes is different, covalently attached with phosphonic acid to ITO and 

physically adsorbed to Au. Measuring the work function of phosphonic acid 

monolayers on ITO by UPS show that the work function of this surface is 4.9 eV, 

which is quite close to the literature value of Au in vacuum of 5.1 eV.85 A measured 

work function for Au near the P3MT surface could not be obtained due to the 

surface being obscured beneath 200 nm of Au. Nonetheless, this estimate can be 

used to propose that the difference in Fermi level of the two electrodes will not 

cause asymmetry in the IV curve. This also means that the phosphonic acid 
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monolayer used to graft polymers to the ITO surface is not preferentially 

transporting charges across the ITO-polymer interface compared to the physical 

polymer-Au interface. There is no length dependence on the normalized quadratic 

term, suggesting that this behavior is true for all lengths of polymer.  

 

4.3.1.3 Cubic Term: Deviation from Linearity 

 The normalized cubic term would be expected to deviate significantly 

between samples if the mode of charge transport were to change. This is not 

observed, however, and the normalized cubic term of devices of all length is the 

same within error (Figure 4-10). This suggests that charges are transported by 

identical methods regardless of length. This is in contrast to the behavior observed 

with the linear fit parameter in the charge transport decay plot. Without knowing 

the charge transport method through the film, it is difficult to interpret this 

difference, but for similar organic molecules, temperature activated charge hopping 

has been proposed as the charge transport mechanism. If this is the case, increasing 

the number of discreet hops to get across the junction will cause a decrease in the β 

value, but it will not change the charge transport mechanism. The deviation of the β 

value at longer lengths coupled with the constant value of the normalized cubic fit 

suggests that this could be occurring.  It is also important to note, that as in the 

case with the quadratic term, the cubic term is modelled only around zero bias, so 

this does not take into account deviations at larger voltages.  
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Figure 4-10: Cubic Fit Parameter in P3MT Brush Charge Transport 

 Cubic fit parameters (term c in equation 11), are nearly identical within error in all 

P3MT thicknesses. This is most likely due to charges transporting by identical mechanism 

regardless of film thickness. 

4.3.2 Power Laws of Charge Transport in P3MT Brush Films 

 Rather than using polynomial fits to determine characteristic parameters of 

IV curves, log-log plots can be used to determine the power law relationship 

between current and voltage. This relationship between current and voltage can be 

used to determine changes in the charge transport mechanism in a single device at 

different applied biases. This analysis has been done in several literature reports to 

determine transitions between charge transport types in molecular junctions.40, 42, 

 Transport in polymer brush junctions as grown follow very similar power law 

progressions regardless of film thickness (Figure 4-11). The similar power law 

progression for all film thicknesses is in agreement with the trend observed in the 
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Figure 4-11: Log-Log IV Curves  

Regardless of polymer thickness, the slopes of the log-log plots are the same at the same points on 

the IV-curve. This suggests that transport in the brushes is similar. 

3 nm P3MT Brush
5 nm P3MT Brush
10 nm P3MT Brush
11 nm P3MT Brush

normalized cubic fitting parameter that the charge transport mechanism is the 

same in films regardless of the thickness. The cubic fitting parameter comes from 

only a small region near zero bias, so the log-log plot provides better evidence that 

charge transport is similar between samples. Though these two pieces of evidence 

come from the same source, the IV curve, it is significant because the analyses are 

sensitive to different behaviors. The IV curve best approximates a cubic function 

near zero, so changes in that cubic behavior due to differences in the charge 

transport mechanism would show up in the fitting parameters. Changes in the 

behavior at higher behavior, when the IV curve is not as well represented by a cubic 

fit, is well represented by the log-log plot. 
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4.3.2.1 SCLC Mobility from Mott-Gurney Law 

 The Mott-Gurney law is used to calculate the mobility in P3MT thin films. 

The Mott-Gurney Law: 

 
𝑱 =

𝟗𝝐𝝁𝑽𝒂
𝟐

𝟖𝑳𝟑
 (12) 

The region of the IV curve with a power law equal to two can be extracted from the 

log-log plot by finding the portion of the graph with slope of two. This region is 

known to correspond to space charge limited transport in polymer thin films, and 

the SCLC mobility is calculated from this portion of the IV curve.81 Dividing the 

current by the area to obtain current density and plotting against the square of 

voltage should yield a linear plot of which the slope can be used to calculate mobility 

μ. Nonetheless, the average mobility observed in unannealed P3MT brush films is 

 
Figure 4-12: SCLC Mobility in Unannealed P3MT Brushes 

SCLC Mobilities in unannealed P3MT Brushes are similar to those reported in 

literature. There may be a thickness dependence on mobility. 
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on the same order of magnitude as other films of P3MT, indicating that this is most 

likely a good measure of SCLC (Figure 4-12).  

4.3.3  Charge Transport through annealed P3MT Brushes 

 Annealed P3MT brushes are characterized in electronic devices using the 

same methods as unannealed brushes.  

4.3.3.1 Film Thickness-Resistance Relationship for Annealed Brushes 

 In films measured previously, the logarithm of resistance increased linearly 

with device thickness in two regimes representing a clear relationship between the 

resistance and film thickness. However, in this set of films, no such relationship is 

observed. This is due to careful selection of films used in the previous study. Only 

high quality films were used in the previous study. In this study, however, four 

 

Figure 4-13:  P3MT Thickness-Resistance Plots for Annealed Films 

Before annealing, the polymer brushes have no trend in resistance with regards to length. After 

annealing, however, a clear trend emerges and the β value from the carefully selected P3MT 

films is recovered. This implies that annealing films may recover “good” charge transport 

behavior in films with poor morphology. 
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films were chosen regardless of quality and electrodes were printed on top. IV 

curves were measured and the films were annealed (Figure 4-13).  New electrodes 

were put on top of the films after annealing to achieve the known distribution in 

active device areas. After annealing, the film may make better contact with printed 

electrodes, causing artificially high currents through devices. After the new 

electrodes were printed, IV curves were measured for the newly annealed films. 

After annealing, a linear increase in the resistance with respect to film thickness is 

observed. The β value is approximately the same as that observed in the first 

portion of the slope in the previous graph, suggesting that annealing is able to 

recover electronic properties of films of poor quality. The β value of 0.15 nm-1 in the 

annealed films is observed for much longer brushes than in the pristine films. 

4.3.3.2 Normalized Quadratic and Cubic Fitting Parameters in Annealed P3MT 
Brush Devices 
 

 In addition to the linear fitting terms of annealed films being in agreement 

with trends observed in unannealed films, the normalized quadratic and cubic 

terms fit into the distribution of normalized higher order terms for unannealed 

films (Figure 4-14). These terms suggest that the nature of the contacts and charge 

transport mechanism does not change after annealing, Though this can only be 

concluded for the region near zero bias. 
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4.3.3.3 Power Law of Charge Transport and SCLC Mobility in Annealed P3MT Thin 
 Films 
 

 The log-log IV curve plot reveals behavior that is not observed by comparing 

the fitting parameters (Figure 4-15). The slope of the power law at low bias is less 

than one at biases below 100 mV, indicating that there is a different mode of 

transport at low bias. Since the cubic fitting term is not as sensitive to behavior at 

lower biases as higher biases, this change would not show up using cubic fitting.  

 The charge carrier mobility increases after annealing in every case tested 

(Figure 4-15). The greatest increase was seen in the initially thinnest film and the 

smallest increase in the initially thickest film, though there is no systematic 

dependence on initial film thickness or change in film thickness on the change in 

mobility. The mobility values are still within reason for good P3AT films and are 

within one order of magnitude of reports of films with oriented P3AT chains.32 

 

Figure 4-14:  Normalized Quadratic and Cubic Fitting Parameters in Annealed 

P3MT Brushes 

Normalized Quadratic and Cubic fitting parameters fit do not change after annealing. 

This implies that the charge transport mode does not change, either. 
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Figure 4-16:  Power Law IV Curves for Annealed P3MT Brushes 

(Left) For a single sample, the power law behavior before and after annealing is significantly 

different at low bias, but the same behavior is retained at high bias. This implies that transport is 

changing at low bias but remains the same at higher biases. 

(Right) All annealed samples show similar behavior to the annealed power law curve on the left. 

This implies that there is some universal change in charge transport after annealing. 
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Figure 4-15: Charge Carrier Mobility in Annealed P3MT Films 

After annealing, mobility universally increases. The largest and smallest increase in mobility are 

for the shortest and longest initial polymer length respectively. In the extreme case, a 100x 

increase in mobility is observed.  
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4.4  Modelling the Junction with Measured HOMO Levels and Bandgaps 

 The relevant energy levels of the P3MT brush junction are diagrammed in 

Figure 4-17. The HOMO level of P3MT is nearly aligned with both the ITO 

electrode and Au electrode. This corresponds to a very low barrier of injection for 

holes into P3MT brushes, but a high barrier for electron injection.  This means that 

charge carriers in these systems are most likely holes. 

  

 
 

Figure 4-17:  Band Level Diagram of P3MT Charge Transport Junction 
The Fermi level is taken to be the work function of the ITO measured by UPS (-4.9 eV). The 

literature work function for Au approximately -5.1 eV, but the Fermi level is likely to change 

somewhat based on interaction with the P3MT and ITO. The injection barrier for holes is much 

smaller than that of electrons. It is likely that the primary charge carrier in these devices is holes 

rather than electrons. 

ITO

P3MT

Au

HOMO: -5.02 eV

LUMO: -3.08 eV

Fermi Level -4.9eV
Φh=0.12 eV

Φe=1.82 eV
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4.5 Discussion 

 A novel method for creating molecular electronic devices utilizing KTP was 

developed to test charge transport properties through P3MT polymer brushes. Out 

of all device types attempted, KTP was the only one that could be used to test 

devices in high volume to create data sets that can be statistically analyzed to 

characterize charge transport through P3MT brushes.  

 High quality P3MT brush films exhibit very low β values when put into 

devices, indicating that charges transport very efficiently through the conjugated 

polymer. The β values for P3MT brushes is among the lowest ever reported, similar 

to other conjugated molecular systems.78c The low β values of the as grown films 

could be due to several factors. First, the barrier to inject holes into the HOMO from 

either direction is quite low. The difference in energy is approximately 0.1 eV in 

either case. In tunneling devices, small tunneling barriers are associated with low β 

values. The mechanism of transport here is likely not tunneling due to the thickness 

of the P3MT films, but the barrier could still play an important role in transporting 

charges. Furthermore, the normalized cubic and quadratic terms are constant with 

regard to polymer film thickness. The quadratic term implies that transport is 

nearly symmetric at low bias, and that it is consistently, slightly favored in the 

forward bias direction as evidenced by the positive sign of the fitting parameter. 

The cubic term is more difficult to interpret. This term also does not change, 

implying charges transport the same way no matter the thickness of the P3MT 

layer, but no physical meaning can be extracted.   
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 More evidence regarding how charges are transported is taken from the log-

log plot. At every tested length, the power law between current and voltage is the 

same in unannealed films. This is better evidence that the transport is not changing 

because the log-log plot is sensitive to the whole IV curve, not just a portion near 

zero. The SCLC charge carrier mobility is calculated using the Mott-Gurney law in 

P3MT films as grown by modelling portions of the IV curve where the power law is 

two, and values  are similar to those reported in literature for other P3MT films.81 

Mobility and resistance are the only terms to depend explicitly on device area. 

Resistance is assumed to decrease with larger top electrode size (assuming constant 

current density, increasing the electrode size should increase the current), but 

mobility is calculated from the current density. Since it is known that the effective 

device area is much less than the printed device in many cases, the actual mobility 

is likely much higher than that which is calculated by as much as a factor of 3 based 

on the effective area.  

 As discussed in chapter 3, P3MT brush films can be annealed to enhance 

chain conformation and film morphology towards a more ideal system. Charge 

transport properties also seemed to change in some ways after annealing. 

Unannealed films used to calculate the β value were carefully chosen so only the 

highest quality films were included in the study, but to study annealing four films 

were chosen without prejudice. Before annealing, the films’ resistance did not 

exhibit any systematic dependence on length, but after annealing the behavior 

observed in good films was recovered. The unannealed β value of 0.14 nm-1 for short 
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chains was reproduced in annealed films exhibiting a β value of 0.15 nm-1. Though 

these numbers are nearly the same magnitude, the P3MT film thickness used to 

calculate the β value for annealed films are much longer than those in unannealed 

films.  The same film thicknesses for unannealed films yield a β value of 0.034 nm-1. 

In literature reports, this has been attributed to a change in the charge transport 

mechanism from tunneling to charge hopping.40,44 The charge transport mechanism 

here is likely not tunneling due to the low β value of 0.14 nm-1 corresponding to a 

marginal resistance that is very weakly exponential. This β value  is also 

reproduced in annealed films with charge transport distances too long for tunneling 

to make physical sense. Furthermore, all attempts at modelling the IV-curves with 

tunneling models failed.  

  There is another possible explanation for this occurrence. Though β is 

directly physically interpreted as a current decay or marginal resistance, even if the 

charge transport mechanism is not tunneling, the physical mechanism giving rise to 

different β values can be interpreted in many ways. If the charge transport 

mechanism is tunneling, β directly corresponds to the exponential term in the 

Simmons equation (2). For charge hopping, which is a series of activated tunneling 

events,86 the β value can be related to the number of “hops” through a junction. For 

a single hop which is identical to tunneling, the effective decay would be β. As the 

number of hops increases, the length of each hop decreases, and the expression for 

resistance needs (5) to be adjusted accordingly. For an n step hopping process, the 

expression for resistance would be: 
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𝑹 = 𝒏𝑹𝟎𝒆
𝜷𝒍
𝒏  

(13) 

The new effective decay factor is β/n. For n=1, the original behavior in equation (5) 

is recovered. Using charge hopping as the mechanism to interpret the β values 

observed in unannealed films suggests that after a certain point (approximately 10 

nm) the number of hops must increase for charges to transport across the film. The  

transition in β is not observed at this transport length for annealed films, though a 

similar transition could be present at greater thicknesses. Interpreting β as an 

effective value based on the number of hops an electron must make, it follows that 

fewer hopping events must occur for charge carriers to transfer across a film. This 

interpretation is consistent with the model for polymer morphology described in 

chapter 3, which stated after annealing, the vertical orientation of polymer chains 

and average spacing between monomers in adjacent chains increases. The larger 

distance between monomers on adjacent chains decreases the probability that 

charge carriers will transport between chains.  

 The log-log current-voltage relationship also suggests changes in charge 

transport after annealing films, but only at low bias (e.g  less than 100 mV). At high 

bias, the power laws in annealed and unannealed films are identical, but at low bias 

annealed films behave significantly differently. For annealed films, the power law 

decreases, suggesting that at low bias there is a difference in the charge transport 

in thin films. Current-Voltage dependences less than one are sometimes associated 

with diffusion currents in organic semiconductors.87 In order to determine if this is 

indeed the case, more experiments must be conducted to determine the nature of 
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Figure 4-18: Possible Charge Transport Pathways in P3MT Brush Films 

In the model developed in chapter 3, the annealed films are comparatively more uncoiled, further 

apart, and vertically oriented. These are all important features of the model when describing the 

possible difference between charges transporting through the films. When chains orient vertically 

and become uncoiled, the charges that transport exclusively along the backbone will travel a 

longer distance in few hops. Furthermore, when chains are further apart, the likelihood of 

interchain hopping is reduced.  

Before Annealing After Annealing 

Au

Au

the device contacts (ohmic vs nonohmic) and more fitting must be done to verify this 

model makes physical sense.  

 Using the morphological model of P3MT films from chapter 3, the effects 

being measured due to annealing are from increasing orientation of polymer chains 

with lower chances of charges hopping between polymer chains. The conditions used 

to model the change in film morphology and chain conformation necessitate chains 

elongate, orient vertically, and occupy more volume. As a result, charges that 

transfer along the backbone of two identical chains will travel different distances for 

the same number of hops, with charges in annealed films traversing a larger 

distance. Furthermore, since the chains are farther apart after annealing, the 
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likelihood of charges transferring between chains is larger, as well. In Figure 4-18, 

this is represented diagrammatically. In reality, the situation is likely much more 

complicated, but using the model made in chapter 3, it is reasonable to conclude 

that the enhancement in mobility and recovery of good charge transport properties 

after annealing is due to charges transferring primarily along the backbones of 

P3MT chains.   
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4.6 Experimental Procedures 

Kinetically Controlled Transfer Printing 

 Silicon Oxide wafers are cut to size and cleaned in RCA solution (1:2:2 Water: 

H2O2: Ammonium Hydroxide) for 30 minutes, washed with copious water and 

ethanol, then cleaned with ozone for 30 minutes, then the surface is modified with 

HMDS.  In a cleanroom, the following steps are taken: substrates are spuncast with 

JSR-NFR negative resist at 3000RPM for 30 s and prebaked at 95 °C for 90s on a 

hotplate, exposed for 10s, postbaked at 95 °C for 90 s, then developed for 3 minutes. 

Slides are rinsed with water and dried with nitrogen. A thin film of Au (200nm) is 

sputtered at 2Å/s using a KJL PVD 75. Outside the cleanroom, the photoresist is 

lifted by washing with acetone, sonicating to help if necessary. Inside the 

cleanroom, substrates are etched with 5% HF for 5s, washed with copious amounts 

of water, and dried. (Warning: HF is a major health hazard. Do not use this unless 

you are wearing the proper PPE, taking proper precautions, and using the proper 

procedures.) Outside the cleanroom, thick (1 cm) PDMS stamps are prepared by 

mixing 1:3.5 crosslinker:polymer (Sylgard), removing bubbles by vacuum, and 

curing at 70 °C overnight. Stamps are cut to size, mounted glass slides with double 

sided tape, brought into contact with etched surfaces, and ripped off quickly by 

flipping the glass slide. The metallated stamp is removed from the slide, and 

brought into contact with a cleaned (MeOH wash, dried with nitrogen) P3MT brush 

film and the stamp is left to wet the surface for ~1-2 minutes. After the stamp has 
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thoroughly wet the surface, it is slowly peeled back to transfer the metal to the 

P3MT surface. 

SEM and AFM Micrographs of Au films transferred via KTP Indicating No 

Micro/Nanocracking and High Volume Transfer 
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7 μm Au electrode transferred by nTP 

 

7 μm Au electrode transferred by KTP 
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Measuring IV-Curves with cAFM 

 A wire is attached between the ITO surface and the electronics inside of an 

Asylum MFP3D AFM. A large area (90μm) tapping mode surface scan is taken of a 

region of the polymer brush thin film to find the printed features using a gold plated 

AFM probe. The AFM is then turned to contact mode and the probe is located over 

the features and feedback is turned on. The set point is increased from 0.2 V to 

make contact between the tip and the printed electrode at lowest set point potential. 

The tip is then biased to drive current through the device and the IV curve is 

measured in WaveMetrics IGOR software provided by Asylum.  
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4.7 Supporting IV-Curves and Distributions 
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CHAPTER 5 CONCLUSION AND FUTURE DIRECTION 

5.1  Summary and Conclusions 

5.1.1 Summary of Work 

 As more new organic semiconducting materials and organic electronic devices 

are made in laboratories, conjugated semiconductors get closer to widespread 

application in commercial OLEDs, OPVs, and OFETs.4-5, 19 Even with current 

technology, utilization of organic materials is projected to increase by a factor of 10 

within the next five years.8 Typical conjugated polymer devices form active layers 

by spincasting, bladecoating, or printing films on a bottom electrode with the top 

electrode being deposited by thermal evaporation. Unlike device active layers made 

from inorganic wafers which are highly crystalline, polymer materials are at best 

semicrystalline and have little to no long range order. Device properties are 

determined by charge transport through active layers, which is one of the reasons 

inorganic materials outperform organic materials in many applications.  

 For a charge carrier to transport through a polymer thin film, it must 

transport between chains, across grain boundaries, and inject through barriers at 

each electrode.28-29 Theoretical studies predict that the best way for charge carriers 

to transport in conjugated polymers is through the backbone along short distances 

so it does not hop between polymer chains or chain segments.17 Though local charge 
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transport along backbones of conjugated polymers has been measured using 

analytic techniques, devices that specifically exploit this one-dimensional aspect of 

charge transport in conjugated polymers transport are few, and in every case the 

active layer in such devices feature a large component of unoriented polymer 

necessitating that charges transfer through a typical polymer film at some point in 

the device.31-32, 45 This work endeavored and succeeded in creating P3MT brush  

films of controllable length consisting of a single layer of polymer chains oriented 

vertically from the growth substrate. These films are ideal for measuring 

intramolecular, or along the backbone, charge transport in polymer chains. Polymer 

brush thin films are integrated into devices, and the charge transport properties are 

measured through vertically oriented conjugated polymers. 

5.1.2 Controlled Growth of Conjugated Polymer Brushes 

 Though controlled synthesis of P3MT brushes has been reported in 

literature,57, 67 the polymerization parameter space has not been explored to the 

extent that films of controllable thickness can be made repeatedly from different 

surface attachment groups. Film growth in literature is linear with respect to time, 

which is expected for first order polymerization kinetics with constant monomer 

concentration. However, fine control over film thickness was not reported, only an 

increase in absorption of films with respect to time. Also missing from literature 

reports is a thorough report of the effects of temperature and concentration on 

polymer film growth. Furthermore, only the relatively poorly conducting phosphonic 

acid anchoring group has been used to graft chains from surfaces. For electronic 
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devices, fine control must be exercised over film thickness to make films of desired 

length. Also, the anchoring group should be tunable to optimize charge injection 

into polymer films. 

 Carboxylic acid anchoring groups were investigated as a new candidate for 

grafting polymer brushes from ITO surfaces. The model compound,                          

5-bromo-4-methylthiophene-2-carboxylic acid was synthesized to test the efficacy of 

carboxylic acids for SI-KCTP. Contact angle and XPS measurements suggest that 

the carboxylic acid functionalized molecules form monolayers of slightly lower 

quality than phosphonic acids. Measuring the electrochemical oxidation from a 

ferrocene labelled molecule attached to surface bound molecules by Kumada 

coupling indicated that the active catalyst coverage on the surface is also lower than 

that of phosphonic acids. Despite performing lower in all tested metrics, polymer 

brush films were attempted to be grafted from carboxylic acid monolayers. Under no 

growth conditions were P3MT brushes able to be grown from carboxylic acid 

anchored molecules using SI-KCTP. 

 Polymerization reaction conditions are also investigated in order to grow high 

quality films. In literature, only a single temperature and monomer concentration 

are reported to describe Pd catalyzed SI-KCTP, though these conditions yield a 

linear increase in grown polymer film with respect to reaction time as evidenced by 

increase in absorbance. Here, the actual polymer thickness is measured as a 

function of reaction time, and optimal monomer concentrations and reaction 

temperatures are determined by systematically varying parameters. Polymer film 
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thickness, just like absorption, was shown to increases linearly with reaction time, 

providing further evidence that the polymerization is first order in monomer 

concentration. 

 Additionally, polymer growth temperature is varied between 30-50 °C to test 

the temperature dependence of polymer growth rate. The previously reported 

temperature of 40 °C is the optimum temperature for Pd catalyzed SI-KCTP,27 with 

different behavior observed above and below this temperature. Above the optimum 

temperature, catalyst detaches from the growing polymer chain and causes solution 

polymerization, with only thin films growing on the surface. Grown films show 

UV/Vis absorption spectra without signatures of H-aggregation, giving evidence of 

having lower surface density than optimized films. Below the optimum 

temperature, films grow slowly, with little solution polymerization observed. Films 

do have signatures of H-aggregation, suggesting that the surface density is still 

quite high. 

 Using the optimum growth temperature, and knowing that polymer films 

grow linearly with respect to time, the monomer concentration was varied and the 

rate of polymer film growth with respect to monomer concentration gives further 

evidence of first order kinetics. At every concentration, linear growth in polymer 

film thickness with respect to time was observed. At low concentrations, the change 

in reaction rate (measured by increase in film thickness per hour) increases linearly 

with monomer concentration, but above 0.1 M, increasing the monomer 

concentration becomes self-limiting, with the increase in reaction rate diminishing. 
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This is most likely due to the harsh polymerization conditions from KCTP Grignard 

monomers etching phosphonic acids off the surface. Nonetheless, a linear region in 

the plot of reaction rate vs. concentration suggests that film thicknesses should be 

controllable and reproducible in that range of concentrations. Despite the control 

that can be exercised over film growth under ideal conditions, films often do not 

grow or deviate greatly from this behavior. This is a sign that the SI-KCTP reaction 

is extremely sensitive to some uncontrolled conditions. 

5.1.3 Characterizing and Controlling Morphology of Conjugated Polymer Brushes 

 Several characterization techniques were applied to P3MT films to 

characterize the morphological and electronic properties of P3MT brush thin films 

before and after annealing.  

 Absorption spectra of films (as grown) indicate that polymer chains strongly 

associate with each and form H-aggregates in the plane of the substrate, but after 

annealing the planar structure largely disappears from absorption spectra. 

Furthermore, after annealing, the wavelength of maximum absorbance red shifts by 

nearly 100 nm and the integrated absorbance more than doubles, but the onset of 

absorption does not change. The shift in absorption max is due to the signature of 

H-aggregates disappearing, and the increase in absorbance is attributed to better 

interaction between chains. The unchanging onset of absorption is a sign that the 

conjugation length of the P3MT brush does not change after annealing, meaning 

that the conjugation length is achieved early in the reaction. Polarized variable 
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angle UV/Vis absorption spectra indicate that films have some vertical orientation 

as grown, but after annealing it significantly increases. 

 Surface characterization using AFM indicate that film roughness is in 

general less than 50% of the film thickness, which is quite high, but smaller than 

roughnesses reported in literature P3MT brushes.57, 66-67 The P3MT surfaces are not 

as smooth as SAMs used in molecular electronics, though. Thicker P3MT films have 

higher surface roughness, but the roughness relative to the thickness decreases for 

thicker films. Annealing films does slightly increase surface roughness, but due to 

films increasing in length after annealing  this causes the relative roughness to 

decrease. 

 The average transition dipole orientation is calculated from NEXAFS for 

P3MT brushes and physisorbed P3MT, but not annealed films. Analysis indicates 

that on average, grafted chains as grown are oriented 60° out of the plane of the 

substrate. This is in contrast for physisorbed P3MT chains which are shown to be 

laying on the surface. Combining this initial state with the increase in vertical 

orientation observed after annealing as measured by polarized UV/Vis suggests that 

annealed films are quite oriented.  

 Polymer film thicknesses are measured using three methods, all yielding 

similar results. Atomic force microscopy profilometry is the only direct method of 

measuring film thickness, but this is the most destructive, so it is not an ideal 

method. A calibration plot using polymer film absorbance and polymer film 

thickness was made as a countermeasure against the destructive AFM technique, 
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but small inconsistencies in the absorption spectra cast doubt on the validity of such 

a plot. Ellipsometry is the ideal technique used to measure film thickness. Though 

it does not directly measure film thickness like AFM, films are individually 

modelled and fit to ensure inconsistencies in films are accounted for. Nonetheless, 

films characterized by all techniques yield three film thicknesses that are similar to 

one another within the error of each measurement. 

 When the thickness of a film is measured before and after annealing, an 

unexpected but desirable trend appears. Polymer film thickness increases after 

annealing in all measured films. This result can be interpreted in many ways, but 

in the context of the results from the other characterization techniques, the increase 

in length is the key piece of evidence needed to affirm that annealed films are 

changing morphology such that chains adopt ideal conformation. Combining the 

interpretations and conditions that each characterization technique introduces for 

annealed films, the final model of polymer film morphology is approaching the ideal 

case for chain conformation and overall microstructure with chains becoming more 

vertically oriented and rigid. Simply stated, P3MT brushes become more brushlike 

after annealing.  

5.1.4 Measuring Charge Transport through Conjugated Polymer Brushes 

 A new protocol for forming molecular electronic devices using KTP to transfer 

print small and large Au electrodes on top of molecular layers was developed to 

conduct this work. 
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 Though the exact mechanism of charge transport through P3MT brush films 

was not able to be determined by experimental evidence, the mechanism is most 

likely charge hopping due to behavior observed in similar films.40, 43 Charge carriers 

transport across the film by hopping between conjugated segments on the polymer 

backbones. Transport in annealed and unannealed films appears to be similar at 

intermediate biases as evidenced by similar β values in annealed films and short, 

well made films. Similar normalized quadratic and cubic fitting terms also suggest 

that the mechanism for charge transport at high voltages is the same in all films. 

Furthermore, annealing has been shown to recover “good” β values in poorly made 

films and correct abnormalities in the relationship between resistance and polymer 

film thickness. For unannealed films, a change in the β value for thick films 

suggested that charges must hope more in order to cross the junction.  

 Power law plots show that at low biases less than 100 mV, annealed films 

and unannealed films have different IV behavior. This could possibly be due to 

diffusion current at low biases.87 

 The SCLC mobility of charge carriers through P3MT films was universally 

enhanced after annealing, in many cases by several orders of magnitude. The 

increase in mobility is attributed to structural changes in the P3MT brush film 

towards more ideal morphologies for transporting charges through the polymer 

backbone. Due to effective device areas being lower than total area of the electrode, 

the magnitude of the mobility may be more than three times greater than what is 

measured. 
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 Based on electrochemical measurements of the HOMO level of P3MT and 

UPS measurements of the work function of functionalized ITO,  a band structure of 

a P3MT device was constructed. The small difference between the measured HOMO 

and work function for P3MT and ITO, respectively, and the literature value of the 

work function of Au,85 suggests that holes are most likely the primary charge 

carrier in these devices. The injection barrier for holes is approximately 0.1 eV, but 

that of electrons is approximately 1.8 eV.  

 Though the actual charge transport pathway may be impossible to measure, 

P3MT brushes made for this work approach ideal morphologies for transporting 

primarily along polymer backbones. Increases in vertical orientation, planarity of 

polymer chains, and distance between polymer chains accompanied by systematic 

increases in charge carrier mobility by up to three orders of magnitude provide 

evidence that intramolecular transport pathways play a significant role in charge 

transport in these devices.   

5.2  Suggested Future Work 

5.2.1 Determining The Charge Transport Mechanism in P3MT Films 

 Determining the charge transport mechanism should be a top priority in 

future studies involving P3MT Brush films. In similar studies, the charge transport 

mechanism was determined by measuring IV-curves at reduced temperature.44 

Large area contacts should be printed on to P3MT brush films, and devices should 

be cooled down. The temperature dependence of the IV measurements will give 
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more evidence of how charges transport through the films. Further evidence should 

also be gathered to determine if annealed films have diffusion limited current.87 

5.2.2 New Surface Chemistry 

 Several preexisting solution based chemistries can be applied to the surface 

to make new active layers for implementation in devices. Some of these ideas have 

been tried to some extent, but none of them significantly impacted the course of this 

work. 

5.2.2.1  New Polymer Backbones 

 This work focused solely on P3MT to study intramolecular charge transport. 

The choice of using P3MT was wise due to the fact that P3ATs are one of the best 

studied classes of conjugated polymers in literature. Using P3MT was more out of 

 

Figure 5-1: Future SI-KCTP Polymer Backbones 

 Poly(selenophene) has been made using SI-KCTP as diagrammed above. Other 

possible monomers for SI-KCTP are triazole, pyrrole, and dithienylbenzothiadiazole, 

(DTBT). DTBT is of particular interest because it is a donor-acceptor polymer which are 

useful in OPV applications. 
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necessity than wisdom because the best reports of conjugated polymer brushes use 

P3MT. Several molecules are compatible with solution based KCTP, though the 

only other polymer backbone besides poly(thiophene) to be reported in literature 

using SI-KCTP is poly(p-phenylene).56 Besides 3-methylthiophene, two other 

molecules were attempted to be polymerized: 3-hexylthiophene and selenophene. 

Out of these two molecules, only selenophene was successfully polymerized, but due 

to the lack of alkyl group, polymer films were of low quality (Figure 5-1). It is 

documented in literature that an alkyl chain on the 3 position is important to direct 

SI-KCTP and KCTP. The likely reason 3-hexylthiophene did not polymerize is due 

to the relatively bulky hexyl sidechain. Out of other non-questionable reports of SI-

KCTP, only short sidechains of methyl or ethyl are reported.  

 With this information in mind, 3-methylselenophene is an ideal candidate for 

SI-KCTP. Other ideal candidates are listed in (Figure 5-1).88,63, 89   

5.2.2.2  Different Polymerization Chemistry 

 One of the major drawbacks of SI-KCTP is the harsh reaction conditions 

created by the Grignard monomer. The phosphonic acid anchor group is not 

completely stable in these conditions and can etch off of the surface and monomers 

susceptible to nucleophilic attack are not stable either, severely limiting the scope of 

the reaction. Surface initiated Stille coupling was briefly investigate using the same 

Pd catalyst as used in SI-KCTP, but this approach was summarily abandoned after 

initial success was unable to be reproduced (Figure 5-2). Several P3MT films were 

created using Stille coupling without any trace of solution polymerization. Recent 
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literature reports of successful Stille catalyst-transfer polycondensations using a 

different catalyst may have promise for a surface initiated polymerization.77  

 

5.2.2.3  New Attachment Chemistry 

 If Stille coupling can be used to grow conjugated polymer brushes from 

surfaces, then it is possible to use weaker attachment chemistry to anchor initiators 

on surfaces. Carboxylic acids on oxides such as ITO as described in chapter 2. 

 

 

Figure 5-2: Surface Initiated Stille Catalyst-Transfer Polycondensation 

(Top) This is a representative schematic of  a surface initiated Stille polymerization. Stille 

coupling is less harsh than Kumada coupling, and a great variety of functional groups are 

compatible with the Stille reaction. 

(Left) Two absorption spectra from films grown with SI-SCTP show significant H-aggregation, 

similar to SI-KCTP. 

(Right) This is a single experiment on a time study to understand the rate of Stille 

coupling on the surface. Reactions were completed at 70 °C and 90 °C in toluene, but the 

reaction is quite slow, and systematic data were only collected for this experiment. 
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5.2.2.4 End Group Modification 

 Briefly, end group modification was used to attempt to support electrodes 

transferred by nTP, but ultimately it was left out of the discussion because this 

reaction was done using P3MT brushes made with Ni catalysts which were not 

characterized to the same extent as current brushes. Protected thiols were 

introduced at the end of reactions, and deprotected after end capping was complete    

(Figure 5-3). Though there is evidence that the reaction works, and does enhance 

 

 

Figure 5-3: End Group Modification of P3MT Brushes 

(Left) In P3MT films grown with Ni catalyzed SI-KCTP, end capping films with a 

protective thiol and subsequent deprotection (See atomic ratios from XPS located below 

chemical structures) enable ntP of large Au squares. After attempted removal with Scotch 

tape, features came off only on samples with no thiol on the surface. 

(Right) Attempts at putting electron acceptors on P3MT surfaces have so far been 

fruitless, but this planned structure is currently being investigated.  
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nTP, the reaction is not reproducible yielding inconsistent results. Perhaps other 

end groups, such as electron acceptors (Figure 5-3) can be used to measure other 

properties of these brushes. 

5.2.3  New Device Types 

 Only charge transport devices were fabricated and tested in this work. 

Polymer brushes can be integrated into many other kinds of devices  

5.2.3.1 Thermoelectric Devices 

 One exciting application of molecular electronics is in thermoelectrics.90,91 

Thermoelectrics is the production of electricity from a heat gradient, or creating a 

heat gradient from electric power. For molecular junctions, it has been measured in 

short molecules, and predicted in longer molecules, that long aromatic chains will 

 

Figure 5-4: Extended Aromatic Molecules Show Great Promise for Molecular 

Thermoelectrics 

An experimental and theoretical literature report of oligophenyl molecules suggests that the 

Seebeck effect will increase greatly as the number of aromatic rings increase in a molecular 

junction. Conjugated polymer brushes can be used to test this prediction. Image copyright is 

respective owner. 



187 

 

have high thermoelectric responses as evidenced by measured Seebeck coefficients 

(Figure 5-4) and calculated thermopowers.91, 92 Conjugated polymer brushes are a 

perfect candidate to use as a vehicle to explore this untapped area of 

thermoelectrics. Conjugated polymers consisting of 10s of aromatic rings could have 

very high thermoelectric response in this regime.  

5.2.3.2 Spintronic Devices 

 Another exciting application for conjugated polymer brushes is in molecular 

spintronics. To date, large area molecular spintronic devices have proven elusive 

and difficult to make, but two recent papers documenting the formation of SAMs on 

La0.7Sr0.3MnO4 (LSMO) and put into spin architecture revitalized the conversation 

on molecular electronics.93,94
 Furthermore, spintronic properties of P3ATs have been 

studied in traditional organic semiconductor devices consisting of LSMO bottom 

contacts with spuncast P3HT films and evaporated Co top contacts.95 Spin valve 

devices with P3HT interlayers that are strongly chemically associated with the 

bottom LSMO electrode have enhanced magnetoresistance. Association between 

covalent grafts and conjugated polymers is quite high, so the conjugated polymer 

brush (molecular) approach is a very attractive platform to study charge injection 

from a ferromagnetic material into an organic semiconductor. To this end, P3MT 

brushes have been grown from LSMO surfaces using the same procedures described 

in chapter 2 (Figure 5-5), and preliminary devices have been made and tested. 

Films grown on patterned LSMO substrates exhibit magnetoresistance at low 

temperature. The magnetoresistance, defined as: 
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𝑴𝑹 =

𝑹↑↑ − 𝑹↑↓

𝑹↑↑
 

(14) 

 is determined by the ability for a current of spin polarized electrons from one 

ferromagnetic electrode to be detected by a separate ferromagnetic electrode. The 

polarizations of the electrodes are controlled by an external magnetic field and can 

be switched at fields stronger than the coercive field of the electrode. Though this is 

a promising initial result, a thorough investigation of this phenomenon including 

investigating length dependent effects, must be conducted to better understand the 

transport of spin through polymer backbones. At first approximation, film surfaces 

 

Figure 5-5: P3MT Films Grown on LSMO in Spin Valve Devices 

Magnetoresistance is observed in spin valve devices made with P3MT brushes as an organic 

spacing layer. Magnetoresistance is defined as the difference between the resistance of the device 

when the electrodes are aligned and antiligned divided by the resistance when the electrodes are 

aligned.  Devices are made by evaporating narrow bands of Co on top of thin films of P3MT. In 

this device, a 15nm P3MT film acts as a spin transport layer. 
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appear high quality when measured with AFM. Surfaces are relatively smooth and 

there are no defects over short ranges. Unlike ITO, LSMO substrates are not 

transparent, so characterization will be much more difficult. 

5.3  Broad Scientific Impact 

 It is impossible to know what a work’s impact, if any, will have on a larger 

field of science. Few device level studies have come close to achieving the goal 

achieved in here of transporting charges across single layers of vertically oriented 

polymers. Though the active layers in made in this work are among the best suited 

for this application, the high difficulty in synthesizing the polymer brush makes 

them unideal for use in commercial devices. Nonetheless, many theoretical studies 

have predicted that properties such as magnetoresistance, thermopower, and 

mobility increase to unprecedented levels when charges can be primarily 

transported through polymer backbones. Already mobility has been shown to 

increase by several orders of magnitude in this work by just surveying charge 

transport properties. Though the actual magnitude of mobility is quite low 

compared to the highest performing polymers, device engineering will likely 

increase the mobility another several orders of magnitude to amplify the affect 

already observed.96 This effect will hopefully spur interest in measuring 

magnetoresistance and thermopower to verify theoretical predictions, generate 

interest in creating devices to test one dimensional transport in next generation 

polymers, and develop new syntheses that create similar structures with higher 

degrees of reproducibility.   
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