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ABSTRACT 

Tracy Michelle Raines: Defining the role of the Cytokinin Response Factors (CRFs) 
in Arabidopsis thaliana 

(Under the direction of Joseph Kieber) 

  

 Cytokinin is a phytohormone that plays an integral role in regulating the 

growth, development and physiological responses of a plant. Among the processes 

linked to cytokinin signaling are meristem maintenance, root growth, rosette size, 

seed count, pathogen defense and leaf senescence. The signaling pathway consists 

of a hybrid two-component system consisting of the histidine kinase receptors, 

phosphotransfer proteins and response regulators. Numerous genes are activated or 

repressed downstream of the primary signaling pathway. A large number of these 

genes are characterized as transcription factors and therefore drive appropriate 

downstream gene expression in response to cytokinin. This transcriptional cascade 

is complex and consists of many components and feedback loops, many that have 

yet to be determined 

The Cytokinin Response Factors (CRFs) are a family of genes activated 

downstream of the cytokinin signaling pathway and were first identified by their 

induction in response to cytokinin. The CRFs are members of the AP2/ERF 

transcription factor family, one of the largest found in plants. Through mutant 

analysis, we show that the CRFs negatively regulate several cytokinin related 

processes, dependent on their interaction with the Arabidopsis Histidine 
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Phosphotransfer proteins (AHPs). The CRFs positively regulate meristem size, 

hypocotyl elongation in the dark and the rate of leaf senescence.  

Additionally, through expression analyses and protein binding microarray, we 

were able to uncover some of the downstream processes and targets with which the 

CRFs are involved. We show that CRFs bind the GCC box with high affinity, as is 

common of other AP2/ERF members. Microarray results show the CRFs regulate 

genes involved in many downstream processes and also regulate some of the 

cytokinin signaling components. Combining both phenotypic and expression 

analyses, we are able to elucidate many developmental processes in which the 

CRFs participate, as well as to define them as negative regulators of many cytokinin 

regulated processes. 
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PREFACE 

Chapter 1 is published as Cristiana T Argueso, Tracy Raines and Joseph J 

Kieber, “Cytokinin signaling and transcriptional networks” in Current Opinions in 

Plant Biology, Volume 13, issue 5, pages 533–539 in October of 2010; 

10.1016/j.pbi.2010.08.006.  

In Chapter 2, the NanoString® time course treatment (Figure 2.1B) was 

carried out by Cristiana Argueso, the NanoString® experiment with the type-B arr 

mutants (Supplementary Figure 2.1A) was carried out by Apurva Bhargava, and the 

hybridization and analysis of the PBM11 experiment (Figure 2.4) was done by Jose 

Manuel Franco. 
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CHAPTER 1: BACKGROUND AND SIGNIFICANCE 

While mostly known for their role in the control of cell division in plants, 

cytokinins, N6-substitutedadenine derivatives, regulate diverse aspects of plant 

growth and development, including the function of meristems, chloroplast 

development, vascular differentiation, leaf senescence, the modulation of sink–

source relationships, nutrient acquisition, nodulation, and the response to biotic and 

abiotic stresses [1,2]. Deciphering the mechanisms by which cytokinins and other 

phytohormones regulate such diverse responses remains a central challenge in 

plant biology. Emerging evidence indicates that complex transcriptional cascades 

play an important role in mediating cytokinin responses, including changes in the 

expression of components of the cytokinin signaling, biosynthetic, and metabolic 

pathways, as well as the induction of various transcription factors. Here we review 

the cytokinin response pathway, with a focus on the transcription networks regulated 

by this phytohormone.  

Cytokinin signal transduction  

Cytokinin signaling involves a phosphotransfer cascade comprised of a 

modular system similar to the two- component signal transduction pathways present 

in most bacteria and in fungi [3] (Figure 1.1). Hybrid histidine kinase receptors,
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known as CRE1/WOL/AHK4, AHK3 and AHK2, bind to cytokinin, which induces them to 

autophosphorylate on a conserved His residue within their kinase domain. This 

phosphate group is subsequently transferred to a conserved Asp residue within the 

receiver domain of these AHK proteins, and then transferred to the histidine 

phosphotransferproteins (AHPs). The AHPs actively move in and out of the nucleus in a 

manner that is independent of their phosphorylation status and is not altered by 

exogenous cytokinin [4]. In the nucleus, phosphorylated AHPs transfer the phosphate to 

a set of response regulators (ARRs), which are classified according to their C-terminal 

domains. Type-A and type-C ARRs have short C-termini, while type-B ARRs have 

longer C-termini that function in DNA binding and activation of transcription. Aside from 

the differences in their C-terminal regions, all ARRs share a similar receiver domain with 

conserved residues targeted for phosphorylation. 

The type-B ARRs are encoded by a family of eleven transcription factors 

comprising three subfamilies; seven belonging to subfamily I and two comprising each 

of subfamily II and III. Genes belonging to subfamily I act directly downstream of 

cytokinin perception to initiate the appropriate transcriptional cascades [5–7]. Their C-

termini contain conserved GARP DNA binding and activation domains that function in 

plant-specific processes. Disruption of multiple type-B ARR genes or expression of a 

dominant negative form of ARR1 results in a phenotype strikingly similar to that 

observed in loss-of-function cytokinin receptor mutants [5,6,8,9], implicating type-B 

ARRs as positive elements in cytokinin signaling. The type-A ARRs, which are direct 

targets of the type-B ARR transcription factors [10,11], are negative regulators of 

cytokinin signaling [12]. In addition to their transcriptional up-regulation by type-B ARRs, 



 
 

3 
 

phosphorylation of type-A ARRs on a conserved Asp residue in the receiver domain is 

required for their activation and function, and in most cases decreases their turnover 

[13]. While lacking a DNA binding domain, most type-A ARRs are predominantly 

localized to the nucleus, and may act as transcriptional regulators in conjunction with 

other transcription factors, such as type-B ARRs. 

Other transcription factors involved in cytokinin signaling 

 Microarray analyses of cytokinin-treated seedlings have revealed multiple 

transcription factors regulated by cytokinin [14–16]. Among these, a subset of AP2 

transcription factors, known as the Cytokinin Response Factors (CRFs), are implicated 

in cytokinin signaling. The CRFs consist of six core family members, three of which are 

transcriptionally up-regulated by cytokinin [17]. Microarray analysis of cytokinin-

regulated genes in a multiple crf mutant background revealed that many genes 

regulated by type-B ARRs are also regulated by CRFs [17]. Cytokinin-inducible 

expression of the CRF genes is compromised in an arr1,12 mutant, placing them 

downstream of the type-B ARRs. 

Transcription factors of the non-canonical leucine-zipper GeBP 

(GLABROUS1enhancer-binding protein)/GPL (GLABROUS-LIKE) family also may 

influence cytokinin signaling. Disruption of combinations of four of the GeBP1/GPL 

genes results in reduced sensitivity to exogenous cytokinin, coupled with increased 

expression of type-A ARRs [18]. This, along with overlapping expression patterns with 

type-A ARRs, indicates that a subset of GeBP/GPL genes inhibits the induction of the 
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type-A ARRs and thus may antagonize the negative feedback regulation of cytokinin 

signaling [18]. 

Cytokinin-regulated transcriptional networks in plant development 

Cytokinin-regulated transcriptional cascades involved in shoot development 

 A requirement for cytokinin in shoot development was first suggested decades 

ago from their role in stimulating shoot formation in cultured callus tissue. Further 

evidence for a role of cytokinin in shoot development came from studies that 

demonstrated that reducing cytokinin levels in transgenic plants led to decreased 

activity of the shoot apical meristem (SAM) [19]. Subsequently, a number of 

transcription factors were found to control SAM function by regulating levels of cytokinin 

and cytokinin signaling in different SAM domains. 

The class I KNOTTED1-like homeobox (KNOX) transcription factor, SHOOT 

MERISTEMLESS (STM), is necessary for SAM formation, maintaining cell division and 

preventing cell differentiation within the SAM [20]. Expression of STM is up-regulated by 

cytokinin [21], which in turn, up-regulates the expression of the cytokinin biosynthetic 

gene, IPT7, creating a positive feedback loop that increases cytokinin levels in the SAM 

[22,23]. Exogenous application of cytokinin, as well as expression of IPT7 from the STM 

promoter, can rescue the phenotype of stm mutants, suggesting that the induction of 

cytokinin biosynthesis is a primary function of STM [23]. 

Increased levels of cytokinin in the SAM, due to inducible overexpression of 

STM, resulted in localized increases in the expression of the gibberellin (GA) catabolism 

gene GA2OX, which acts to reduce GA levels [22]. Thus, STM and related KNOX 
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proteins may act by maintaining a hormonal regimen of high cytokinin/low GA required 

for proper SAM formation. 

STM expression in the SAM is positively regulated by transcription factors from 

the CUP-SHAPED COTYLEDONS (CUC) family and negatively regulated by the 

ASYMMETRIC LEAVES 2/LATERAL ORGAN BOUNDERIES (AS2/LOB) family of 

transcription factors [24]. CUC gene products and STM are required for SAM formation 

and cotyledon separation [25]. The CUC2 and CUC3 genes are up-regulated by 

cytokinin in the inflorescence meristem of transgenic plants overexpressing IPT4 under 

the control of the APETALA1 promoter, in a manner dependent on AHK3 and AHK4 

[26]. ASL9, a member of the AS2-LIKE family of transcription factors, is also rapidly and 

specifically regulated by cytokinin, with expression kinetics similar to that of type-A 

ARRs [26,27]. The regulation of CUC and AS2-like genes is likely to be a key regulatory 

output of cytokinin in the regulation of SAM function. 

The control of stem cell fate in the shoot apical meristem (SAM) is regulated by 

the homeodomain transcription factors WUSCHEL (WUS) and CLAVATA3 (CLV3) [20]. 

WUS expression in the organizing center of the meristem induces stem cell fate to the 

overlaying cells. CLV3, a target of WUS, encodes a small, secreted peptide that is 

recognized by the CLV1–CLV2 heteromeric receptors, ultimately leading to suppression 

of WUS expression in a negative feedback loop that regulates the size of the stem cell 

pool. Cytokinin up-regulates WUS through CLV-dependent and CLV-independent 

pathways [28,29]. WUS, in turn, binds to the promoter of a subset of type-A ARR genes, 

repressing their expression and increasing cytokinin signaling in certain SAM domains 

[30]. Computational modeling of the in vivo expression patterns of WUS, CLV3 and 
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AHK4 in the SAM, as revealed by confocal analyses of transgenic plants harboring 

promoter::florescent protein reporter constructs, led to the development of a model in 

which a gradient of cytokinin signaling is created in specific domains of the SAM 

through the regulation of the expression of cytokinin signaling components, thus 

controlling WUS expression [28]. Validation of the model showed that expression of 

WUS is positively correlated with AHK4 expression and cytokinin accumulation, and 

negatively correlated with the expression of type-A ARRs [28]. Furthermore, studies in 

rice indicate that the spatial distribution of gradients of active cytokinin is generated via 

the action of the phosphoribohydrolase LONELY GUY (LOG) [31]. Together, these 

observations indicate that gradients of cytokinin accumulation and signaling are major 

regulators of SAM function and stem cell fate. 

The function of the type-A response regulators seems to be essential for 

appropriate definition of cytokinin signaling domains in the SAM and consequently 

proper stem cell fate. As noted above, WUS represses type-A ARR expression, and 

elevated type-A ARR7 function also leads to reduced WUS expression, suggesting a 

negative feedback loop between type-A ARR expression and WUS [30]. Transgenic 

plants overexpressing a constitutively active form of ARR7 show developmental 

phenotypes, including SAM arrest, and disruption of multiple type-A ARRs leads to 

defects in SAM function, including altered leaf phyllotaxy [30], similar to the effect of 

loss-of-function mutations in the maize type-A RR gene ABPH1 [32]. In addition to 

cytokinin and WUS, auxin also regulates the expression of ARR7 and ARR15 in the 

SAM [33] via the auxin response factor ARF5/MONOPTEROS (MP) [33]. Together, 

these findings suggest a model in which these two type-A ARRs integrate cytokinin and 



 
 

7 
 

auxin signaling in the SAM, and in turn connect these hormonal inputs into the 

WUS/CLV3 regulatory circuit. 

Additional evidence for cytokinin regulation of SAM function comes from the 

WUS-related transcription factor STIMPY (STIP/WOX9), which is required for proper 

establishment of meristematic tissues of the shoot and root [34]. stip loss-of-function 

mutants show reduced sensitivity to cytokinin in the SAM, but wild-type cytokinin 

responses in other parts of the plant, indicating a compartmentalized role in cytokinin 

responsiveness [35]. The expression of STIP is not rapidly regulated by exogenous 

cytokinin treatment, yet there is reduced STIP expression in the SAM of ahk and type-B 

arr mutants. Thus, STIP expression is dependent on cytokinin two-component signaling, 

but it is most likely not a direct transcriptional target of type-B ARRs. STIP is likely 

involved in the transcriptional activation of cytokinin-regulated genes in the SAM, as 

disruption of STIP results in reduced expression of type-A ARRs and CRFs in the SAM 

[35]. 

Cytokinin-regulated transcriptional cascades involved in root development 

Cytokinin negatively regulates the size of the root apical meristem (RAM); 

lowering endogenous cytokinin levels or responsiveness leads to an increase in RAM 

size [19], while increased cytokinin levels or sensitivity causes a reduction in the size of 

the RAM [36]. Expression of cytokinin oxidases in different domains of the RAM 

revealed that cytokinin acts primarily within the root transition zone, where it promotes 

cell differentiation and thus decreases the number of cells in the meristematic zone [36]. 
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Loss-of-function arr1 mutants displayed an increase in RAM size, while elevated 

ARR1 function causes the RAM to become smaller, suggesting that this particular type-

B transcription factor plays a role in regulating RAM function [36,37]. The regulation of 

RAM size by ARR1 likely occurs via a direct induction of the SHY2 gene [37], a negative 

transcriptional regulator of auxin signaling. SHY2 induction leads to decreased PIN 

expression, causing a redistribution of auxin and cell differentiation in the transition 

zone. The interplay between these cytokinin and auxin-regulated transcriptional 

regulators (ARR1 and SHY2) mediates the control of root meristem size and root growth 

[37]. During the meristem growth phase immediately following germination, a distinct 

type-B ARR, ARR12, mediates the regulation of SHY2 expression [38]. 

Cytokinin and auxin play an antagonistic role in root stem cell specification during 

embryo development [39]. In these cells, auxin up-regulates the expression of ARR7 

and ARR15, suppressing cytokinin signaling in the basal daughter cell of the 

hypophysis, ultimately regulating the expression of transcription factors controlling stem 

cell specification, such as SCARECROW (SCR), WUS-RELATEDHOMEOBOX5 

(WOX5) and PLETHORA (PLT1) [39]. This is in contrast to the SAM, in which auxin 

represses expression of ARR7 and ARR15 [33]. This difference in the response of 

these type-A ARRs to auxin in these meristems may explain why auxin and cytokinin 

act antagonistically in the RAM, but have a synergistic effect in the SAM. 

Cytokinin and light 

Growth of etiolated seedlings in the presence of cytokinin results in morphology 

similar to that of light-grown seedlings and induces the expression of many light-
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regulated genes [2]. Furthermore, ARR4 directly interacts with the red light 

photoreceptor, phyB, and stabilizes it in the active, Pfr form [40]. This interaction 

depends on cytokinin-dependent phosphorylation of ARR4 on the canonical Asp residue 

within its receiver domain [41], providing a link between cytokinin signaling and light 

responses. A second potential convergence point of light and cytokinin signaling occurs 

at the basic leucine zipper (bZIP) transcription factor LONG HYPOCOTYL5 (HY5), 

which is involved in the response to blue light, acting downstream of the CRY1 blue light 

photoreceptor [42]. Cytokinin treatment increases HY5 protein levels by decreasing its 

rate of degradation [43]. Loss-of-function hy5 mutants result in partial resistance to 

cytokinin as measured by root elongation and shoot regeneration assays [43,44]. hy5 

mutants also are unable to form callus tissue on regeneration media, a phenotype that 

is partially rescued by exogenous cytokinin [44]. Together, these data suggest that 

cytokinin signaling may affect light responsiveness via effects on HY5 protein stability, 

though the mechanism by which the cytokinin two-component pathway is linked to the 

regulation of HY5 protein turnover is unclear. 

 PIL5 is a basic helix–loop–helix transcription factor that inhibits seed germination 

in the dark by inducing GA catabolism and the expression of ABA anabolic genes 

[45,46]. In response to light, PIL5 directly interacts with phytochromes and is then 

rapidly degraded, which switches the environment to high GA, low ABA content, 

promoting seed germination [47]. Recent ChIP:chip analysis has revealed that PIL5 

binds to the upstream regions of the genes encoding the cytokinin-responsive 

transcription factors CRF1, CRF2 and CRF3. PIL5 directly represses the expression of 

these CRF genes, and also indirectly elevates AHP5 transcript levels [48], suggesting a 
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direct effect of PIL5 on cytokinin responsiveness. Like pil5, cytokinin receptor mutants 

(ahk2, ahk3 and ahk4) also display an increased germination rate [49], suggesting that 

cytokinin may work through PIL5 to restrict seed germination in dark conditions [48]. 

The GATA transcription factor, CGA, provides another link between light and cytokinin 

signaling. CGA1 expression is induced by white and red light in a phyA-dependent and 

phyB-dependent manner, but is also up-regulated in response to cytokinin [50]. The 

induction of CGA1 by cytokinin is independent of phyA and phyB, suggesting that the 

two pathways act in parallel. 

 Cytokinin may also influence chloroplast number via the CRF transcription 

factors [51]. While single crf loss-of-function mutants do not display any obvious 

phenotypes, overexpression of CRF2 causes an increase in the number of chloroplast 

bodies and an increase in the PLASTID DIVISION2 (PVD2) protein level, indicating that 

CRF2 directly regulates the expression of genes involved in plastid division [51]. 

Addition of exogenous cytokinin also leads to increased chloroplast number and 

elevated PVD2 expression, possibly via CRF2 [51]. 

Targets of the cytokinin transcriptional network 

 Some of the target genes of the cytokinin-regulated transcriptional network have 

been identified, primarily through microarray analyses [14, 15, 17]. From these studies, 

it is clear that cytokinin regulates waves of transcriptional effects. The first response 

(<30 min) includes a preponderance of transcription factors, which presumably 

contribute to the regulation of the subsequent waves of transcription in response to 

cytokinin. A second clear signature from the early response genes is a down-regulation 
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of cytokinin signaling (i.e. type-A ARRs) and levels (i.e. genes encoding cytokinin 

oxidases), likely acting as a negative feedback loop. The rapid regulation of multiple 

genes located in the chloroplast genome further suggests that the cytokinin signal is 

rapidly propagated into this organelle by an unknown mechanism to affect transcription 

of the plastid genome [14]. 

The functions of the cytokinin-regulated genes reflects processes known to be 

targets of cytokinin signaling, including genes involved in cell expansion, other 

phytohormone pathways (auxin, ethylene and GA), pathogen-responsive and light-

regulated genes. Other, more directed approaches have identified individual genes 

regulated by cytokinin, including cyclinD3 [52] which provides a mechanistic link 

between cytokinin and the regulation of the cell cycle. Additionally, other clusters of 

genes suggest unsuspected targets of cytokinin, including trehalose-6-phosphate 

metabolism and potential effects on the redox state of the cell. Undoubtedly, there are 

many additional targets that remain to be identified and the transcription factors 

responsible for the regulation of these targets, and how they interact remains to be 

determined. 

Conclusions 

Cytokinin controls many aspects of development and responses to the 

environment. Recent research highlights the importance of cytokinin-regulated 

transcriptional networks in the regulation of these processes. While type-B ARRs play a 

predominant role as master regulators, it is clear that additional classes of transcription 

factors participate in the control of cytokinin-regulated gene expression (Table 1.1), and 
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that cross talk between cytokinin and other plant hormones at the transcriptional level is 

widespread. 

Genetic and genomic analyses have been paramount in the identification of a 

suite of cytokinin-regulated transcription factors; however only a small set of 

transcriptional regulators and their target genes have been analyzed. Because 

transcription factors are generally expressed at low levels and may be poorly detected 

by hybridization to oligonucleotide arrays [53], the emergence of expression profiling 

technologies that overcome the limitations of microarrays, such as large-scale qReal-

Time PCR and RNA:seq will most likely extend the suite of transcription factors 

regulated by cytokinin, shedding light into new transcriptional modules. Furthermore, 

ChIP:chip and ChIP:seq approaches of the master regulators of the cytokinin 

transcriptional network will undoubtedly reveal additional details regarding the 

transcriptional targets regulated by cytokinin and the crosstalk with other hormonal, 

developmental and environmental response pathways. The challenge facing plant 

biologists will be to integrate these large-scale datasets and use them to predict 

interactions among transcriptional networks, using computational modeling and systems 

biology approaches. Ultimately, these approaches should help elucidate how one 

simple signaling molecule, like cytokinin, can mediate such divergent responses.  
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CHAPTER 2: THE CYTOKININ RESPONSE FACTORS ACT DOWNSTREAM OF 
CYTOKININ SIGNALING TO REGULATE LEAF SENESCENCE  

AND OTHER DEVELOPMENTAL PROCESSES 
 

ABSTRACT 

A complex network of transcription factors is necessary to drive the downstream 

processes that cytokinin signaling regulates. Among these, the CRFs are a group of 

AP2/ERF transcription factors whose transcript levels are directly regulated by 

cytokinin. Genetic analysis indicates that the CRFs play an important role in 

promoting leaf senescence and other developmental processes. Specifically, 

disruption of multiple CRFs results in a substantial delay in leaf senescence, while 

overexpression of CRF3 or CRF5 results in premature leaf senescence. In addition 

to senescence, disruption of multiple CRFs results in stunted shoot growth, with the 

crf1/+,2,5,6 mutant showing smaller leaves and inflorescences as compared to wild-

type plants. Further, disruption of the CRFs leads to reduced primary root growth 

and lateral root growth, which are processes previously shown to be inhibited by 

cytokinin. Finally, we show that CRFs interact directly with the AHPs, which are 

phosphotransfer proteins integral to the primary cytokinin signaling pathway. CRF 

function appears to be dependent on the AHPs, as loss-of-function mutations in the 

AHPs suppress the phenotypes resulting from overexpression of CRF3. These 

findings suggest the CRFs are transcription factors directly downstream of the   
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cytokinin signaling pathway that negatively regulate cytokinin-related processes 

through their interaction with the AHPs. 

INTRODUCTION 

Cytokinins are N6-substituted adenine derivatives that were first described by 

their ability to promote cell division in tobacco tissue culture [1]. Cytokinin plays 

pleiotropic roles in plant growth and development, including meristem maintenance, 

germination, the modulation of sink–source relationships, nutrient acquisition, 

nodulation, shoot and root development and the response to biotic and abiotic 

stresses [2, 3]. Cytokinin signaling involves a phosphotransfer cascade comprised of 

a modular system similar to two-component signal transduction pathways present in 

most bacteria and fungi [4, 5]. In Arabidopsis, there are three transmembrane 

histidine kinase cytokinin receptors localized on the membrane of the endoplasmic 

reticulum, known as CRE1/WOL/AHK4, AHK3 and AHK2 [6, 7]. These receptors 

contain a CHASE domain that binds cytokinin, which induces autophosphorylation 

on a conserved histidine residue within their kinase domain [8]. This phosphate 

group is subsequently transferred to a conserved aspartic acid residue within the 

receiver domain of the AHK proteins, and then to the histidine phosphotransfer 

proteins (AHPs), which move between the cytosol and nucleus independent of the 

phosphorylation state [9]. Finally, the AHPs transfer the phosphate to one of twenty-

three response regulators (ARRs), all of which share a common receiver domain, 

but which have variable C-terminal domains. Type-A ARRs have short C-termini that 

do not contain a DNA binding domain while the type-B ARRs have longer C-termini 

that function in DNA binding and act as transcription factors mediating cytokinin 
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regulated gene expression [10, 11, 12, 13]. While the transcription of the type-A 

ARRs is rapidly induced in response to cytokinin, the levels of type-B ARR 

transcripts show little or no change [14]. The type-A ARRs provide a negative 

feedback loop for cytokinin responses, playing a key role in determining the 

responsiveness of a cell to this phytohormone [14].  

While the type-B ARRs are at the top of a transcriptional cascade and are 

induced in response to cytokinin, there are numerous additional transcription factors 

regulated by cytokinin that likely mediate secondary waves of transcription. Multiple 

transcription factors regulated by cytokinin have been identified by transcriptome 

analyses [15, 16, 17, 18]. Among these, a subset of AP2/ERF transcription factors 

known as the Cytokinin Response Factors (CRFs) has been implicated in cytokinin 

signaling. The core CRF family consists of six genes, three of which have been 

previously shown to be transcriptionally induced by cytokinin [19, 20]. The cytokinin 

inducible expression of these CRF genes is compromised in an arr1,12 mutant, 

placing their induction downstream of the type-B ARRs [19]. Recent studies have 

also shown that the CRFs are able to form homo- and heterodimers with each other 

and that they interact with proteins within the primary cytokinin signaling pathway 

[21]. Together, these data suggest the CRFs play a role in regulating the cytokinin-

driven transcriptional response, potentially downstream of their induction by the 

type-B ARRs. 

Here, we show that crf loss of function (LOF) results in reduced sensitivity to 

exogenous cytokinin in the root, while overexpression leads to hypersensitivity to 

cytokinin. We describe various developmental processes in which CRFs play a role, 
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including the positive regulation of leaf senescence. Many of the phenotypes 

observed by CRF overexpression can be suppressed by disruption of the 

Arabidopsis histidine phosphotransfer proteins (AHPs), suggesting the CRFs control 

these processes directly by their interaction with primary members of the cytokinin 

signaling pathway. 

 

RESULTS 

A subset of the CRFs are induced by treatment with cytokinin 

It has been previously shown by northern blot and microarray analysis that 

some of the CRF family members are induced after the addition of cytokinin to 

Arabidopsis seedlings [19]. To further assess cytokinin responsiveness amongst the 

CRFs, we examined transcription levels of the CRFs in Arabidopsis seedlings after 

treatment with cytokinin using the NanoString© nCounter gene expression 

technology [22]. This analysis confirmed that CRF2, CRF5 and CRF6 were induced 

in response to cytokinin in whole seedlings (Figure 2.1A). CRF2 and CRF5 are 

induced in response to cytokinin within 15 minutes of treatment, and induction was 

sustained throughout the duration of treatment (Figure 2.1B). The induction kinetics 

of these CRFs is similar to those of the type-A ARRs, which are cytokinin primary 

response genes [23, 24]. 

When root and shoot tissues were examined separately, all CRFs were 

significantly up-regulated in the shoots in response to cytokinin, with the exception of 

CRF1, which was slightly down-regulated (Figure 2.2A). This suggests that 

regulation by cytokinin is a more general feature of the CRF gene family than 
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previously realized.  In contrast, only CRF6 was induced in roots (Figure 2.2A, 2.2B). 

Thus, the CRFs are generally only induced by cytokinin in shoot tissue, despite the 

somewhat comparable basal levels of expression of each gene in roots and shoots 

in the absence of cytokinin. These data are consistent with the opposing effects of 

cytokinin on root and shoot growth, [25, 26, 27, 28] and suggest unique 

transcriptional responses in root verse shoot tissues. 

 

CRF localization does not change upon addition of cytokinin in intact plants 

The CRFs belong to the B-5 AP2/ERF family of transcription factors and our 

previous analysis, primarily in Arabidopsis mesophyll protoplasts, suggested that 

these proteins move into the nucleus in response to cytokinin [19]. To determine to 

the localization of CRFs in whole plants we analyzed the intracellular localization of 

CRF1, CRF3 and CRF5 as fusions to GFP in stable, transgenic plants expressed 

from the CaMV 35S promoter. In the roots of five-day-old seedlings, the majority of 

the signal is present in the nucleus, consistent with the idea that the CRFs act as 

transcription factors (Figure 2.3). The pattern of localization for both 35S:CRF3-GFP 

and 35S:CRF5-GFP remains unchanged after treatment with cytokinin, both in the 

root and hypocotyl tissues (data not shown). These results demonstrate that in 

planta, the CRFs are present in the nucleus in the absence of treatment with 

exogenous cytokinin, and that their level of nuclear localization does not 

substantially increase in response to elevated cytokinin. 
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CRFs bind the GCC box with high affinity 

 In order to identify the preferred cis acting sequences recognized by the 

CRFs, we expressed CRF5 fused to a maltose binding protein domain in E. coli and 

used this to probe the PBM11 microarray [29]. Similar to other AP2/ERF 

transcription factors [30, 31], CRF5 preferentially bound the GCC box (Figure 2.4A).  

Amongst the different 7mer motifs, CRF5 preferentially bound to a [C/A]GCCGCC 

sequence, with the 6th position somewhat variable since CRF5 bound equally well to 

CGCCGTC and CGCCGAC (Figure 2.4B). To assess the frequency these motifs are 

found in genes potentially regulated by the CRFs, we screened for genes co-

regulated with CRF5 using the “perturbations series” in Genevestigator. Both 

elements [C/A]GCCGCC were over-represented in the promoters of the top 200 of 

these genes (Figure 2.4C) as compared to genes not co-expressed with CRF5. The 

other variants identified (CGCCGTC and CGCCGAC) were also over-represented in 

the 5’ upstream regions of genes co-regulated with CRF5 (Figure 2.4D). These 

results suggest that CRF5 activates genes by binding several variants of the 

canonical GCC-box. 

 

CRF induction by cytokinin is dependent on the type-B ARRs  

The type-B ARRs are involved in mediating the transcriptional response to 

cytokinin, including the induction of the type-A ARRs [23, 24]. We next examined the 

role of the type-B ARRs in the induction of the CRFs. After two hours of cytokinin 

treatment, the induction of CRF2 and CRF5 observed in wild-type seedlings was 

nearly absent in arr1,2,10,12 mutant seedlings (Supplementary Figure 2.1A). 
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Further, the basal level of CRF2 and CRF5 was reduced in the arr1,10,12 mutant 

seedlings, suggesting that these CRFs are regulated by endogenous cytokinin 

(Supplementary Figure 2.1A). The loss of CRF induction in the absence of type-B 

ARRs places the CRFs downstream of these genes in the cytokinin signaling 

pathway. Conversely, disruption of multiple type-A ARRs resulted in a 

hyperinduction of CRF5 in response to cytokinin, as well as an elevated basal level 

(Supplementary Figure 2.1B). 

 

Isolation of Arabidopsis lines with altered CRF function 

To help uncover the specific roles of the CRFs within the plant, we obtained 

loss of function T-DNA lines containing single insertions within the cDNA regions for 

CRF1 (AT4G11140), CRF2 (AT4G23750), CRF3 (AT5G53290), CRF5 (AT2G46310) 

and CRF6 (AT3G61630). Previous work with mutant crf lines also focused on T-DNA 

alleles containing insertions, some of which were not within the coding region of the 

gene [19], and therefore, we selected lines more likely to interrupt CRF function. 

There were no available insertions near the coding region of CRF4 (AT4G27950), 

and as a result, we omitted this gene from the analyses below. 

We next examined the expression of the type-A ARRs in CRF loss-of-function 

lines to determine if the CRFs are involved in the regulation of these cytokinin-

primary response genes (Supplementary Figure 2.1C). In wild-type plants, the type-

A ARRs are rapidly induced after the addition of cytokinin [6] in a manner dependent 

on the type-B ARRs [10]. We quantified type-A ARR transcript levels in both the 

crf1,3,5,6 quadruple loss-of-function mutant and an overexpression line, CRF3OX. 
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The expression levels of the type-A ARRs did not change substantially in either case 

(Supplementary Figure 2.1C), suggesting that the CRFs do not play a role in 

regulating type-A ARR gene expression, consistent with previous results [19]. 

 

Effect of crf mutations on root growth 

Primary and lateral root growth is regulated by cytokinin [25, 26, 27], therefore 

we examined root growth in the various crf mutant lines. We failed to detect 

significant differences in the elongation of the primary root in the overexpression 

lines (Supplementary Figure 2.2A). When the crf1, crf2, crf3, crf5 and crf6 single 

mutant combinations were assayed at 7- and 10- days after germination 

(Supplementary Figure 2.2B), we only saw significant differences in crf1 which 

displayed longer root lengths than wild type. This is interesting in that CRF1 is the 

only CRF down-regulated by cytokinin and has the lowest levels of expression in the 

root. Root lengths in the triple mutants, however, were significantly reduced relative 

to wild type at day 10 (Figure 2.5A, Supplementary Figure 2.2B). Most strikingly, the 

crf1,3,5,6 quadruple mutant had decreased root growth at every time point (Figure 

2.5A) Together, these data suggest that the CRFs play redundant roles as positive 

regulators of root growth. We focused the remaining studies on the CRF3OX or 

CRF5OX overexpression lines and the crf2,5,6 and crf1,3,5,6 mutants as these lines 

generally displayed the strongest phenotypes. 

We also examined lateral root formation in lines altered in CRF function. The 

total number of lateral roots in ten-day-old seedlings was increased in both the 

CRF3OX and CRF5OX lines as compared to the wild type (Figure 2.5B). 
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Conversely, the crf2,5,6 and crf1,3,5,6 multiple mutants had fewer lateral roots than 

wild-type roots. Thus, the CRFs play a positive role in the formation of lateral roots, 

in addition to a positive role in the elongation of the primary root. 

To determine if the CRFs play a role in cytokinin responsiveness in roots, we 

examined root growth in the presence of cytokinin. Consistent with the involvement 

of CRFs in cytokinin responsiveness, overexpression of CRF5 resulted in shorter 

roots in the presence of cytokinin, indicative of increased sensitivity to cytokinin 

(Figure 2.6A, 2.6B). Single and double crf mutants showed no significant difference 

in root elongation inhibition in comparison to wild-type plants (data not shown). 

However, the triple mutant crf2,5,6 showed partial insensitivity to cytokinin treatment 

(Figure 2.6A, 2.6B). On increasing doses of BA, the triple mutants did not show 

reduced root elongation to the same extent as the wild-type control. By contrast, in 

the absence of cytokinin the crf1,3,5,6 root displays a much shorter length than wild-

type seedlings. In fact, the root length of the quadruple mutant showed almost no 

reduction in length in response to cytokinin, (Figure 2.6A, 2.6B). These data suggest 

that the CRFs may play a role in positive regulation of cytokinin signaling outputs 

with respect to root elongation.  

 

CRFs positively regulate hypocotyl elongation in the dark 

 Cytokinin is known to inhibit hypocotyl elongation in the dark [32]. We 

examined the effect of loss of CRF function on cytokinin response of etiolated 

seedlings. The CRF5OX line had longer hypocotyls as compared to the wild type 

when grown in the absence of cytokinin (Figure 2.7A, 2.7B). Consistent with this, the 
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quadruple mutant, crf1,3,5,6 had slightly shorter hypocotyls than wild-type seedlings 

(Figure 2.7A, 2.7B). Likewise, the crf2,5,6 mutant also had slightly shorter 

hypocotyls, though the difference was not statistically significant.  

We examined the response of etiolated seedlings to cytokinin to determine if 

perturbation of CRF function altered this response. As expected, the hypocotyls of 

wild-type plants were shorter when grown in the presence of cytokinin. The CRF3OX 

and CRF5OX lines as well as the multiple crf1,3,5,6 and the crf2,5,6 mutants 

showed a response to cytokinin (fold inhibition) comparable to the wild-type (Figure 

2.7A, 2.7B).  

Cytokinin causes an increased ethylene production in etiolated seedlings 

resulting in shortened hypocotyls [32]. To determine if the differences in hypocotyl 

lengths observed in the CRF mutants were due to changes in ethylene biosynthesis, 

we measured the amount of ethylene produced in four-day-old dark-grown 

seedlings, both in the presence and absence of exogenous cytokinin. The level of 

ethylene made by the crf1,3,5,6 quadruple mutant seedlings was comparable to the 

wild type (Figure 2.7C). However, the level of ethylene produced by CRF5OX 

etiolated seedlings was greater than that of wild type both in the presence and 

absence of cytokinin, despite the fact that this mutant displayed elongated 

hypocotyls in these conditions. Thus the increased hypocotyl elongation is not the 

result of reduced ethylene synthesis, but rather reflects an effect on cell elongation 

independent of ethylene. 
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Effects of altered CRF function on shoot development 

 To determine if CRFs play a role in shoot development, we measured the 

rosette diameter of five-week-old CRF mutants and wild type plants. As shown in 

Figure 2.8, CRF3OX and CRF5OX plants were significantly smaller with smaller 

leaves as compared to wild-type plants. Conversely, various triple crf mutant lines 

had significantly larger rosettes as compared to the wild type (Figure 2.8A, 2.8B, 

data not shown). Surprisingly, the rosette of the quadruple crf1,3,5,6 mutant was 

comparable to the wild type. These results highlight the functional redundancy of the 

CRFs and suggest that alteration of CRF function results in substantial effects on 

shoot growth. 

 Flowering time was also affected by alterations in CRF function. Flowering 

time was accelerated in the CRF3OX and CRF5OX lines, producing fewer rosette 

leaves before bolting of the primary shoot (Figure 2.8C). Conversely, the triple 

crf2,5,6 mutant showed a delay in flowering time, with more rosette leaves than wild 

type (Figure 2.8C). Similar to the effects on rosette size, the quadruple crf1,3,5,6 

mutant was comparable to the wild type in its time of flowering. 

 Since we were unable to identify a crf1,2,5,6 homozygous line, we set out to 

test the role of CRFs in embryo development. Self-fertilization of a crf1/+,2,5,6 line 

resulted in only crf1/+,2,5,6 and crf2,5,6 seedlings, suggesting that the homozygous 

quadruple mutant was embryo lethal. Further, the rate of transmission of the 

crf1/+,2,5,6 genotype among the selfed progeny of this line  was substantially less 

than the expected 66% (~42%), suggesting that, in addition to the embryonic 

lethality of the quadruple mutant, a defect in transmission of this allelic combination. 
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We next examined the effect of disruption of CRF function on the development of the 

siliques. The siliques of the triple crf2,5,6 and the quadruple crf1,3,5,6 mutants were 

shorter and contained fewer seeds than wild type (Figure 2.9A through 2.9C). The 

crf1/+,2,5,6 mutant had even shorter siliques than the triple or quadruple mutants 

and contained even fewer seeds. Both the crf1,3,5,6 and the crf1/+,2,5,6 line had a 

large number of missing seeds, which could result from the combination of 

gametophyte abortion and/or embryo lethality (Figure 2.9A, 2.9B, 2.9C). Indeed, 

examination of crf1/+,2,5,6 flowers revealed 14% of defective female gametophytes 

(n=144), suggesting that the CRFs also play a role in their development. 

 

CRFs positively regulate leaf senescence 

We further characterized the phenotype of the crf1/+,2,5,6 line. At five weeks, 

the rosette is much smaller than wild type and the leaves are curled and thin (Figure 

2.10A), while the crf2,5,6 siblings had the larger rosette size also observed in other 

crf mutants (Figure 2.8). The crf1/+,2,5,6 inflorescence is bushy and, at 8 weeks of 

age, the overall height is extremely reduced relative to the wild type (Figure 2.10B). 

The rosette leaves of the mutant remain green at 8 weeks of age, while wild-type 

leaves are withered and yellow, suggesting that the mutant has a delay in 

senescence (Figure 2.10C).  

 We further explored the effect of altered CRF function on the timing of leaf 

senescence. Qualitatively, the various single and double crf mutants had no obvious 

effect on the timing of leaf senescence in either long- or short-day conditions (data 

not shown). In contrast, the crf1,3,5,6 line displayed delayed leaf senescence 
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relative to the wild type (Figure 2.11A, 2.11B). Consistent with this, the CRF5OX line 

displayed substantially earlier leaf senescence. In order to confirm that the visual 

yellowing of the leaves we observed corresponded to senescence, we examined the 

expression of the senescence marker SAG12 (SENESCENCE-ASSOCIATED 

GENE 12), which is highly induced in senescing leaves, as well as the CAB2 

(CHLOROPHYLL A/B-BINDING PROTEIN 2) gene, whose expression decreases in 

senescing leaves as the level of functional chloroplasts decreases.  We examined 

the sixth leaf to emerge from each plant from five-week old plants, which showed no 

visual yellowing at this time in either wild-type, CRF5OX or the crf loss-of-function 

lines, though the CRF3OX line did display slight yellowing at this time. There was a 

large induction of the SAG12 gene and a corresponding reduction in CAB2 

expression in both the CRF3OX and CRF5OX lines, indicating that senescence was 

indeed occurring prematurely in these lines (Figure 2.11C, 2.11D). In contrast, 

SAG12 and CAB2 transcript levels in the various crf loss-of-function lines were 

comparable to wild-type leaves (Figure 2.11C, 2.11D), although crf1,3,5,6 had 

slightly higher CAB2 levels, consistent with delayed senescence.   

 

The AHPs are required for CRF function 

The AHPs are positive regulators of cytokinin signaling, involved in the relay 

of phosphate groups from the AHK receptors to the downstream response regulators 

[33]. It has recently been shown that the CRFs interact with the AHPs using a 

bimolecular fluorescence complementation (BiFC) assay in Arabidopsis mesophyll 

protoplasts [21]. We confirmed the interaction between AHP2 and CRF6 using both 
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yeast two-hybrid and a BiFC assay in Arabidopsis protoplasts (Supplementary 

Figure 2.3). CRF6 also interacted in the BiFC assay with a mutant version of AHP2 

in which the His target of phosphorylation (H82) was altered to a glutamine or to a 

glutamic acid residue (Figure 2.12A, 2.12B), suggesting that the interaction of these 

proteins is not dependent on the phosphorylation state of the AHPs.  

As the CRFs directly interact with the AHPs, we explored the role of the AHPs 

in CRF function. To this end, we introduced the 35S::CRF3:GFP transgene into an 

ahp1,3,4 line by crossing (CRF3OX/ahp). The mutant was grown in long day 

conditions together with wild-type and CRF3OX plants to compare the phenotypes 

observed. The transcript and protein levels of the 35S::CRF3:GFP transgene were 

similarly overexpressed in the WT and ahp mutant background (Supplementary 

Figure 2.4). Upon comparison, the ahp1,3,4 mutations suppressed both the rosette 

size and early leaf senescence phenotype of the CRF3OX (Figure 2.13 A, 2.13B, 

2.13C and 2.13D), indicating that these AHPs are necessary for CRF function.  

 

DISCUSSION 

 Cytokinin controls many important processes in the plant through a complex 

transcriptional network downstream of the signaling pathway. The CRFs have been 

implicated as early response genes downstream of cytokinin signaling [19], but the 

distinct processes they regulate have yet to be described. In this study, we 

extensively characterized the role of the CRF family of transcription factors in plant 

development as well as their role in cytokinin signaling. Consistent with the previous 

report of Rashotte et al. (2006), we observed that CRF2, CRF5 and CRF6 are 
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induced by cytokinin. Moreover, we demonstrated that all six of the core CRF genes 

are regulated by cytokinin in the shoot tissue, but that only CRF6 is regulated in both 

shoots and the roots. All CRFs are up-regulated by cytokinin in the shoot, except for 

CRF1, which is down-regulated by the treatment. This suggests that cytokinin input 

is a general feature of CRF function, but primarily in shoot tissues. Our findings also 

support a mechanism whereby the transcriptional regulation of the CRFs by 

cytokinin is dependent on the type-B ARRs, consistent with the type-B ARRs acting 

at the top of a transcriptional cascade [10]. However, while the CRFs are 

downstream of the type-B ARRs, they do not regulate the induction of the type-A 

ARRs by cytokinin, and thus likely act downstream of the primary signaling pathway.  

Based primarily on results in Arabidopsis mesophyll protoplasts, CRFs were 

previously reported to shift from being localized primarily in the cytosol to being 

localized primarily in the nucleus upon cytokinin treatment [19]. However, here we 

find that in stably transformed plants the CRF protein is localized primarily in the 

nucleus even in the absence of exogenous cytokinin treatment, and there is no 

substantial change in response to added cytokinin. This discrepancy could be the 

result of differences in protoplasts vs. intact plants, or other variables associated 

with the protoplasts used in that study. In any case, it seems clear from the analysis 

of the stable transgenic lines that the CRFs do not require cytokinin for their nuclear 

localization. The interaction with the AHPs occurs in both the cytosol and nucleus, 

confirming the presence of the CRFs with in both of these subcellular locations. 

Many of the observed phenotypes of crf mutants indicate they negatively 

regulate cytokinin related functions within the plant. In the root, cytokinin restricts the 
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rate of cell division at the meristematic zone and promotes cell differentiation in the 

transition zone [26]. Cytokinin also inhibits cell division in the lateral root primordia, 

acting to inhibit the formation of lateral roots [25, 27]. Consistent with the idea that 

CRFs are acting as negative regulators of cytokinin function within roots, crf mutants 

displayed inhibited root growth and decreased number of lateral roots. Furthermore, 

CRF overexpression resulted in increased lateral root formation. However, our 

results showing the CRFs can be positive regulators of the response to cytokinin by 

root elongation are at odds with these findings, suggesting the roles of CRFs in the 

root are complex.  

Cytokinin is also known to promote cell division in the shoot apical meristem, 

young leaves, and throughout embryogenesis [25, 28, 34]. Here we show that in the 

shoot, the rosette sizes of the CRF overexpression lines are much smaller than 

those of wild-type plants and their leaves are not fully expanded; while the loss of 

function lines showed larger rosettes and leaves.  Thus, in addition to their negative 

regulation of cytokinin responses in roots, CRFs may also negatively regulate 

cytokinin signaling in leaves.  

Our findings support a role for CRFs in embryonic development. Cytokinin 

regulated cell division is important in the developing embryo and aberrant cell 

division can result in embryonic defects and lethality. In the embryo, auxin up-

regulates the expression of ARR7 and ARR15, suppressing cytokinin signaling in the 

basal daughter cell of the hypophysis, ultimately regulating the expression of 

transcription factors controlling stem cell specification [28]. MONOPTEROS (MP), 

which directly regulates CRF2 expression, plays an important role in embryo 
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development by regulating the transport of auxin from the apical embryo to the 

hypophysis precursor zone to control specification of these cells [35]. Removal of 

MP from the embryo results ectopic expression of CRF2, but lines overexpressing 

MP showed no change in transcript levels [35]. Higher order crf mutants show a 

reduced seed count, likely as a result of increasing penetrance of female 

gametophyte lethality, potentially combined with embryo lethality. The crf1,2,5,6 

quadruple mutant is clearly inviable as we failed to obtain the homozygous 

quadruple mutant line. It has previously been shown that a crf5,6 double mutant was 

inviable [19]. However, we have utilized distinct insertional alleles for all the CRFs in 

this current study, and we are able to obtain viable crf5,6 double mutants. It is, 

however, likely the CRF5 and CRF6 genes do play a role in embryonic development 

as they are lethal in combination with crf1 and crf2. Further studies are needed to 

elucidate the role of the CRFs in embryo development. 

The CRFs have clear roles in senescence. The addition of cytokinin 

exogenously to a plant or the ectopic expression of cytokinin biosynthetic genes has 

been demonstrated to substantially slow the senescence of leaves [36, 37]. 

Cytokinin signaling elements have been shown to directly control the rate of leaf 

senescence. An AHK3 gain-of-function (GOF) mutation (ore12) resulted in delayed 

leaf senescence as well as reduced expression of senescence markers as 

measured by quantitative qRT-PCR [38]. While AHK2 and AHK3 have been shown 

to play an important role in the delay of senescence [39], the ahk3 mutant is the only 

single cytokinin receptor mutant that displayed a senescence-associated phenotype, 

indicating its importance and specificity in controlling senescence through cytokinin 
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signaling [39]. In addition, ARR2 overexpression resulted in the same delayed 

senescence phenotype, dependent on phosphorylation by AHK3, defining a 

cytokinin signaling pathway by which cytokinin inhibits senescence [39]. The CRFs 

could act downstream of cytokinin signaling to control the rate of senescence. 

Evidence that CRFs are positive regulators of leaf senescence comes from our 

observations that the rate of senescence is increased in the CRF1, CRF3 and CRF5 

overexpression lines, manifesting as a premature yellowing of rosette leaves and 

higher levels of senescence related molecular markers than wild type. Conversely, 

multiple crf mutant lines show a delay in leaf senescence. It has recently been 

suggested that CRFs play a negative role in leaf senescence [40]. However, the 

data presented in that study examines effects of crf mutations on senescence only in 

detached leaf assays using dark-induced senescence, which may not reflect the 

effects in intact plants. The results presented here strongly suggest that the CRFs 

act as positive regulators of leaf senescence, possibly via negatively regulating 

cytokinin signaling and creating a negative feedback loop to tightly control the 

senescence process. 

This study is the first to establish a functional relationship between the CRFs 

and AHPs. Specifically, we showed that AHPs are required for the robust rosette 

and senescence phenotypes resulting from CRF overexpression. Mutation of the 

phospho-accepting site of the AHPs does not disrupt or promote this interaction, 

suggesting the interaction may not be phospho-dependent. More studies are 

required to elucidate the mechanism by which the AHPs regulate CRF function. 

However, these results firmly place the CRFs within the cytokinin response pathway.    
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The exhaustive genetic analysis of CRFs presented here reveals they 

function downstream of the cytokinin signaling pathway to negatively regulate many 

cytokinin responses. These processes include primary and lateral root growth, 

rosette size, embryo development and leaf senescence. In addition, we show for the 

first time that processes regulated by the CRFs are dependent on their interaction 

with the AHPs, thereby suggesting a new role for the AHPs in driving cytokinin 

responses.   

 

MATERIALS AND METHODS 

Plant materials and treatment conditions 

All Arabidopsis lines used in this study are in the Colombia (Col-0) ecotype. 

Insertions in CRF1 (AT4G11140), CRF2 (AT4G23750), CRF3 (AT5G53290), CRF5 

(AT2G46310) and CRF6 (AT3G61630) were obtained from the Salk collection of T-

DNA insertion lines and are named, GABI_068G09, SAIL_371_D04, CS87573, 

SALK_024228 and GABI_541G11, respectively. Primers used for genotyping are 

found in Table 2.1. Multiple mutants were created by crossing homozygous lines to 

create higher order mutants. To generate transgenic plants over-expressing CRFs, 

the cDNA region of the gene was amplified and cloned into the pK7FWG2 vector 

[41]. This places the CRFs under the control of the CaMV 35S promoter and tagged 

C-terminally by the GFP reporter tag. Transgenic plants were generated by the 

previously described floral-dip method [42]. T1 lines were selected by plating surface 

sterilized seeds on 1x MS agar with 1% sucrose containing 50 µg/ml kanamycin. 

Single insertion lines were obtained by observing the segregation ratios of the T2 
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lines and selecting lines exhibiting the Mendelian 3:1 ratio. All PCR products and 

mutations were confirmed by DNA sequencing. The arr1 arr2 arr10 arr12 and ahp1 

ahp2 ahp3 ahp4 mutants were previously described [19, 33]. Seedlings were grown 

as previously described [6] unless otherwise noted. Cytokinin treatment was carried 

out in 1X liquid MS containing 1% sucrose, constant light with mild shaking. Plants 

grown for senescence, rosette size, and flowering time assays were grown at 22ºC 

in 75 µE light under long-day conditions (16-h-light/8-h-dark).  

 

RNA extraction and quantitative RT-PCR  

Plant tissue was collected (5th or 6th leaf for senescence and CRFOX 

expression assays) and total RNA extracted using the RNeasy Plus kit (Qiagen). 

cDNA was prepared from the total RNA with the iScript cDNA Synthesis Kit as 

described by the manufacturer (BioRad). Quantitative RT-PCR was performed using 

2X SYBR Premix ExTaq (TaKaRa) in an Applied Biosystems ViiA-7 real time 

machine. Primers were designed are described in Table 2.1. At least two biological 

samples were each analyzed with three technical replicates and the relative 

expression and standard errors were determined using REST 2009 software 

(Qiagen).  

 

NanoString© nCounter gene expression analysis  

Expression analysis of CRF transcripts was performed using the NanoString© 

nCounter gene expression assay essentially as described [22] by the UNC 

Genomics and Bioinformatics Core Facilities using 20 ng of total RNA extracted 
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using the method above. The probes targeting CRF1, CRF2, CRF3, CRF4, CRF5, 

CRF6, and the control probes for normalization of signal, TUB4 (AT5G44340), 

UBQ10 (AT4G05320) and APT1 (AT1G27450) were designed and synthesized by 

NanoString© Technologies (www.nanostring.com) (Table 2.1). The expression level 

of each gene was normalized to the controls using protocols fund in the 

NanoString© Expression Assay Manual. 

(http://www.nanostring.com/uploads/Manual_Gene_Expression_Assay.pdf/). 

 

Protein binding microarray 

The cDNA for CRF5 was amplified and cloned into pDest-HisMBP obtained 

from Addgene (http://www.addgene.org/11085/) [43] to create CRF5 tagged with an 

N-terminal 6XHisMBP tag. This construct was sequence verified and transformed to 

BL21 E. coli for expression. Single colonies were grown overnight at 37ºC with 

shaking in 5 ml of expression broth (EB) from Zymo Research (catalog # M3011). 

This starter culture was then diluted into 15 ml of overexpression broth (OB) and 

grown at 30ºC overnight, adding 0.25 µM IPTG to induce expression.  

For the identification of DNA sequence recognized by CRF5, a protein binding 

microarray strategy was followed, as in [29]. The design of the microarray covering 

all possible 11-bp sequences, DNA-binding reactions and immunological detection 

were as in [29]. Slides were scanned in a DNA Microarray Scanner (Agilent 

Technologies) at 5 um resolution and quantified with Feature Extraction 9.0 software 

(Agilent Technologies). Normalization of probe intensities and calculation of E-

scores of all the possible 8-mers were carried out with the PBM Analysis Suite [44]. 
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Perl scripts were modified to adapt them to different microarray dimensions and 

different input files generated by Feature Extraction software.  

Lists of co-regulated genes with CRF5 were obtained from Genevestigator, 

and included top 200 genes with positive Pearson coefficient (positively co-

regulated) and top 200 genes with negative Pearson coefficient (negatively co-

regulated). Different lists were obtained from the “Anatomy” and “Perturbations” 

datasets in Genevestigator. 

Identification of DNA motifs in the promoters of co-regulated genes was 

performed with Patmatch (http://www.Arabidopsis.org/cgi-bin/patmatch/nph-

patmatch.pl) in the database TAIR10 Loci Upstream Sequences-1000 bp. We 

searched the same motifs in the promoters of all the genes unambiguously 

represented in the ATH1 microarray. Statistical over-representations of DNA motifs 

were evaluated by comparing the proportion of co-regulated genes containing the 

motif at their promoters relative to the corresponding proportion in the complete 

microarray, following a hypergeometric distribution. 

 

Physiological assays 

Root length was determined by growing seedlings as previously described (To et al., 

2007) and scanning images at the indicated time points. The lengths of at least 30 

roots per time point were measured using the software ImageJ software [45]. Root 

elongation assays were carried out as previously described [6] using increasing 

amounts of BA. Hypocotyl elongation assays were performed by plating seedlings as 

described [6] and placing them in the dark at 22ºC for 4 days. Plates were scanned 
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and hypocotyls were measured using ImageJ. Rosette size was determined by 

measuring the width of the rosettes at the widest point at 5 weeks of age. Flowering 

time was estimated by counting the number of rosette leaves present at the time of 

shoot emergence.   

 

Transient expression in Arabidopsis protoplasts and immunoblot assay 

  For bimolecular fluorescence complementation (BiFC) assays, full-length 

AHP2 and CRF6 cDNAs were fused to plant expression vectors containing either 

amino- or carboxy-terminal fragments of YFP (YFPN and YFPC) [46]. Arabidopsis 

mesophyll protoplasts were transformed as described [47] and incubated overnight 

at 22°C under dim light (5 Em-2
s-1) and examined with an Axioplan2 fluorescent 

microscope (Carl Zeiss). To examine the protein levels, transfected cells were 

harvested and lysed with lysis buffer (50 mM Tris-HCl pH 7.5, 150 mM NaCl, 10 mM 

EDTA, 0.1% Nonidet P-40, and protease inhibitor cocktail). The protein extracts 

were heated at 95°C for 5 min in SDS-PAGE sample loading buffer and separated 

on 10 % SDS-PAGE gels, and transferred to PVDF membranes [48]. The blot was 

probed with polyclonal anti-GFP antibody and horseradish peroxidase-conjugated 

anti-rabbit secondary antibody.  

 

Yeast two-hybrid assays 

The DupLEX-ATM system (OriGene Technologies) was used for yeast two-

hybrid analysis of protein interactions. AHP2 cDNA was cloned into the pGilda bait 

vector, which produces an in-frame fusion with the LexA DNA-binding domain. CRF2 
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and CRF6 coding sequences were cloned into the pJG4-5 prey vector, which 

produces a B42 activation domain. The yeast strain EGY48 (MATa, trp1, his3, ura3, 

leu2::6 LexAop-LEU2) that contains the lacZ reporter plasmid pSH18-34 was 

transformed with the appropriate “bait” and “prey” plasmids. Interactions were tested 

on 5-bromo-4-chloro-3-indolyl--D-galactopyranoside (X-gal) medium [49]. 
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CHAPTER 3: THE CRFs REGULATE ROOT APICAL MERISTEM SIZE 

ABSTRACT 

Cytokinin plays a role in maintaining the root apical meristem by promoting 

cell differentiation above the transition zone. Through members of the two-

component signaling pathway, cytokinin function is restricted to the transition zone, 

which allows auxin to promote cell division. This results in a pool of cells that is 

available for new root growth. Plants harboring mutations in multiple CRFs have 

stunted root growth and a smaller root meristem. Conversely, overexpression of 

CRF5 results in plants with a larger meristem compared to wild type. Analysis of 

gene expression in both CRF overexpression and loss-of-function lines revealed 

altered expression of several genes involved in regulated root apical meristem 

function. These results indicate that the CRFs are positive regulators of root 

meristem size in Arabidopsis, likely by negatively regulating cytokinin 

responsiveness which leads to alterations in the altering expression of genes 

involved in meristem function. 
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INTRODUCTION 

 The root apical meristem (RAM) is the source of all postembryonic root 

growth. The meristem must balance the rate of cell division with the rate of cell 

differentiation for proper root development. The maintenance of the root meristem 

requires tight control of cytokinin and auxin signaling, which play antagonistic roles 

within the root tip [1, 2]. Cytokinin negatively regulates the size of the RAM. 

Lowering endogenous cytokinin levels leads to an increase in RAM size [2], while 

increased cytokinin levels or sensitivity causes a reduction in the size of the RAM 

[3]. Expression analyses of cytokinin oxidases in different domains of the RAM 

revealed that cytokinin acts primarily within the root transition zone, where it 

promotes cell differentiation and thus decreases the number of cells in the 

meristematic zone [3]. An auxin signaling repressor, SHY2/IAA3, controls the rate of 

cell division versus cell differentiation by regulating the balance between cytokinin 

and auxin function [3]. SHY2 expression is induced by cytokinin through the type-B 

response regulators, ARR12 (during the meristem growth phase) and ARR1 (five 

days after germination to maintain the meristem size). The elevated SHY2 levels in 

the transition zone of the meristem results in reduced expression of the PIN auxin 

transporters and a reduced amount of cell differentiation [2, 4]. Chromatin 

immunoprecipitation experiments show that SHY2 is a direct target of ARR1. The 

expression of an ARR1 protein with an inactive phospho-accepting domain does not 

enhance the large meristem size of shy2, indicating that SHY2 acts downstream of 

ARR1 [2]. Similarly, ARR12 is required to activate SHY2 during early meristem 
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growth, which was determined by the lack of SHY2:GUS expression for the first five 

days after germination in an arr12 mutant line [4].  

Here, we show that the CRFs are involved in regulating meristem size and 

maintenance. CRF overexpression lines have a larger meristem than wild type. 

Conversely, crf mutants have a smaller meristem and shorter roots. These data and 

the evidence that genes involved in regulating meristem size and function are 

altered within the root tip of crf mutants, suggest that the CRFs act to promote cell 

division and meristem size in the root tip. 

RESULTS 

CRFs regulate the size of the RAM 

As shown in Chapter 2, the roots of crf mutants are shorter than wild type 

(Chapter 2, Figure 2.5A). The triple mutant crf2,5,6 as well as the quadruple mutant 

crf1,3,5,6 both displayed reduced primary root growth. In the case of the crf1,3,5,6 

mutant, the root length is severely stunted at 10 days-past-germination and the total 

length is merely 30% of wild type at the same stage (Chapter 2, Figure 2.5A). To 

assess whether the reduced length is attributed to a defect in meristem function, we 

measured the size of the meristematic zone at 5 days post-germination. To analyze 

the size, we counted the number of cortical cells in a file from the quiescent center to 

the first elongated cell in the transition zone [5]. In the quadruple crf1,3,5,6 mutant, 

the meristem size was smaller than wild type at day five, as expected by the shorter 

root length. The CRF5 overexpression line has a larger meristem (Figure 3.1A and 

B), but no significant difference was observed in the CRF3 overexpression line. 
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Although not as severe as the quadruple crf mutant, the crf2,5,6 mutant also had a 

reduced meristem size at day five (Figure 3.1 B).  

 Cytokinin treatment inhibits cell division, resulting in a smaller RAM size. We 

evaluated the root length of the crf LOF mutant and overexpression lines in 

response to exogenous cytokinin. As expected, wild-type roots were substantially 

shorter and had a smaller RAM when grown on cytokinin (Figure 3.1B). Interestingly, 

meristem size in the CRF5 overexpression mutant line had the highest percentage 

decrease in response to cytokinin. Although the meristem was larger in the absence 

of exogenous cytokinin, the size of CRF5OX treated with cytokinin was 49% in 

comparison to the control, which was a larger reduction than observed in wild type 

(~40% reduction), suggesting CRFs are more sensitive to cytokinin treatment 

(Figure 3.1B and C). Conversely, the quadruple crf mutant was partially insensitive 

to cytokinin, showing a 30% reduction in RAM in response to cytokinin. This 

suggests that the CRFs are redundant positive regulators of cell division or negative 

regulators of cell differentiation in the meristem.  

Gene expression changes in crf mutant root tips 

 Many genes that are important for controlling RAM function and maintenance 

have previously been identified.  The CRFs play a role in this process, thus we 

analyzed gene expression changes for many of these genes in the root tips of crf 

mutants to assess if their expression levels are altered in response to changes in 

CRF function. As previously described in Chapter 2, we used NanoString® 

technology to determine transcript levels for a subset of RAM-associated genes in 
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the root tip. Specifically, members of the CYCD3 family of genes showed expression 

changes in the crf mutants. In plants, the CYCD genes play an important role in the 

decision of mitotic cells to enter the cell cycle [6]. In late G1 phase, the CYCDs 

interact with CDKs which phosphorylate the retinoblastoma-related protein (pRBR). 

This phosphorylation inactivates it, releasing the E2F transcription factors and 

allowing transcription of genes required for entry to the S-phase [7].  In the crf 

mutants, the levels of CYCD3;2 and CYCD6;1 were surprisingly induced in 

comparison to wild-type root tips (Figure 3.2). There was no change in the 

expression of the CYCD3;2 in the CRF5 overexpression line. However, there was a 

correlative reduction of CYCD6;1 transcript levels.  

The expression of WOX5, a major regulator of stem cell activity, is known to 

be restricted to the quiescent center of the RAM. WOX5 is responsible for 

maintaining the pluripotency of the surrounding cells. Auxin is also important in 

repressing WOX5 expression outside of the QC [8]. In the crf1,3,5,6 mutant, WOX5 

transcript levels were elevated more than 2-fold in comparison to wild type (Figure 

3.3). Conversely, WOX5 expression was lower in the CRF5 overexpression line. 

WOX5 represses cell division through the regulation of the PLETHORA (PLT) family 

of genes in a cell non-autonomous manner. Among the PLT genes analyzed, PLT3 

was elevated 2.6-fold in the crf quadruple mutant line. By contrast, PLT3 transcript 

levels were not increased (< 1.5-fold) in the CRF5OX line.  

We examined SHY2 expression in the root tips of crf mutants as it is known to 

play an important role in the regulation of auxin and cytokinin function in the root tip. 

In the quadruple crf1,3,5,6 mutant, the transcript level of SHY2 was decreased in 
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comparison to wild type. SHY2 levels were also decreased in the CRF5 

overexpression line, but to a lesser extent as compared to the crf1,3,5,6 mutant 

(Figure 3.3). 

Proper root patterning depends upon the distribution of auxin within the 

appropriate root tissues. The polar auxin transport genes (PINs) along with the auxin 

influx carriers, AUX1 and LAX2, are primarily responsible for generating auxin 

gradients within the root tissues [9]. The PINOID (PID) genes are serine/threonine 

kinases that regulate subcellular distribution of PIN proteins [13]. We examined the 

expression levels of genes involved in auxin transport in the root tips in response to 

altered CRF function. No substantial change (> 1.5-fold) was seen in the expression 

level of the PIN transporters in either the mutant or overexpressing CRF plants 

(Figure 3.3). However, the levels of PID were reduced in the overexpression line and 

the level of PID2 increased in the quadruple mutant (Figure 3.4). The LAX2 gene 

also had altered expression, which was increased 1.7 fold over wild type in 

crf1,3,5,6. 

DISCUSSION 

Control of the root apical meristem (RAM) size is dependent on the tight 

control of auxin and cytokinin signaling in the appropriate zones of the root tip [2]. 

Cytokinin promotes cell differentiation while auxin promotes cell division [3]. 

Therefore, genes that control hormone signaling and transport must be highly 

regulated to maintain this balance. Cytokinin regulates the size of the meristem, at 

least in part, through induction of the Aux/IAA genes (known to be negative 
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regulators of auxin signaling) and SHY2. This induction occurs through the positive 

cytokinin signaling elements, ARR1 and ARR12 and subsequently causes reduced 

auxin transport in the transition zone [2]. Therefore, meristem size is altered by 

changes in gene expression that leads to altered auxin and cytokinin signaling.  

Another hormone that plays a role in root meristem size and maintenance is 

giberellic acid (GA). Early in root development, high levels of gibberellin repress the 

type-B response regulator, ARR1, through repression of REPRESSOR OF GA 

(RGA), but have no effect on the expression of ARR12 [3]. This repression results in 

a lower cytokinin function in the root tip during early development, allowing the 

meristem to grow to the appropriate size. ARR12 induces SHY2 in early root 

development to promote meristem growth resulting in a higher high cell division to 

differentiation ratio [3]. Five days after germination, GA levels decrease and releases 

ARR1 repression. This event allows for the appropriate ratio of cell division to cell 

differentiation during root growth. CRF1 and CRF2 both directly interact with ARR12 

and weakly with ARR1, via yeast two hybrid and Bimolecular Fluorescent 

Complementation (BiFC) assays [10]. The interaction of the CRFs with ARR1 and 

ARR12, along with the altered meristem size, suggests that the CRFs also play a 

role in meristem size determination.  

To analyze the effect of the CRFs on cell division, we examined expression of 

a subset of cyclin genes that are known to be responsive to cytokinin. In the 

crf1,3,5,6 mutant, there were changes in the expression of CYCD family of cyclins 

(consisting of CYCD1 to CYCD4). This family of cyclins is responsible for mediating 

cell division in response to external stimuli, along with the CYCD3 genes that are 
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regulated by cytokinin [11]. Given the fact that the crf1,3,5,6 mutant has a smaller 

meristem and reduced root length, it is surprising to find a subset of these cyclin 

genes up-regulated in the root tip. These results suggest either the levels of CYCD 

do not significantly impact cell division in the root tip, or the effects of the elevated 

CYCD levels are offset by other processes.  

Loss of WOX5, a homeobox domain transcription factor that is a master 

regulator of stem cell function, causes differentiation of stem cells in the distal stem 

cell niche [12]. WOX5 is repressed by the auxin response factors, ARF10 and 

ARF16, which restrict WOX5 expression to the distal stem cells (DSC) [8]. The AP2 

transcription factor family of PLETHORA (PLT) genes is also involved in stem cell 

maintenance and is regulated by WOX5 to inhibit differentiation of DSC [8]. WOX5 is 

also induced by cytokinin. In the crf1,3,5,6 mutant, WOX5 and PLT3 levels were 

increased, suggesting that crf  LOF represses the expression of these genes either 

directly, or through altered auxin or cytokinin function. 

SHY2 is a transcription factor that inhibits auxin response in the transition 

zone of the root. Cytokinin induces SHY2 through the type-B ARRs, ARR1 and 

ARR12 [2]. It is probable that the CRFs promote SHY2 expression by interacting 

with type-B ARRs. Therefore, removing the CRFs from the plant may release this 

repression of auxin signaling. The crf1,3,5,6 mutant results in lower expression of 

SHY2 in the root tip, which suggests that CRFs positively regulate SHY2. However, 

these results are contradictory given the short root phenotype of the quadruple 

mutant does not correlate with the lower SHY2 expression observed. Additionally, 

we see a slight reduction in SHY2 expression in the CRF5 overexpression line. This 
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suggests that the effects on SHY2 expression are secondary and downstream of 

CRF function.  

Similarly, we looked at expression of auxin influx and efflux transport genes. 

The expression domains and levels of the PINs directly correlate with auxin function 

within the plant tissues [9, 32]. We did not observe significant change in the 

expression of PIN efflux carriers in either a gain or loss-of-function CRF lines. 

However, we saw a decrease in the amount of PID expression in the CRF5 

overexpression line. PID and PID2 promote apical recycling and endocytosis of the 

PINs [13]. Overexpression of PID increases PIN apicalization within the cells and 

results in frequent instances of root meristem collapse [14]. The decrease in PID 

expression observed in the CRF5OX line may also cause less apicalization of auxin 

efflux and higher auxin maximum in the root tip. This may explain the larger 

meristem observed in the CRF5OX lines. Similarly, the higher levels of PID2 in the 

crf1,3,5,6 root tip may result in more apically localized PINs and increase the rate of 

PIN recycling. This would result in a decreased auxin maxima and increased cell 

differentiation. To confirm this hypothesis, we will need to visualize GFP tagged 

PINs and/or the DR5:GFP reporter in the crf1,3,5,6 line to identify changes in 

localization within the root tip.  

The AUX1/LAX gene family is important for proper auxin influx and has 

distinct expression and regulatory patterns [15]. LAX1 and LAX3 are induced by 

auxin, while LAX2 is induced by cytokinin in the root tip [8]. LAX1 is not expressed 

within the root meristem zone. LAX2 is expressed primarily in the meristematic zone 

of the RAM while LAX3 is found in the QC and above the meristematic tissue in the 
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root [15]. LAX2 and LAX3 have complementary expression patterns surrounding the 

root primordia, and LAX3 promotes lateral root development [16]. In crf1,3,5,6, we 

observed a subtle increase in the levels of LAX2 but a decrease in LAX3. As 

expected, we observed fewer lateral roots in the crf1,3,5,6 line (Chapter 2, Figure 

2.5A) which could be due to the reduction of LAX3. 

Because many of the genes that are regulated by cytokinin in the root tip are 

highly induced in the crf1,3,5,6 mutant, results from the gene expression studies 

suggest the CRFs may negatively regulate cytokinin function in the root tip. 

Additionally, auxin-related genes are reduced in loss-of-function crf lines. In many 

instances, the gene expression changes do not directly correlate with the meristem 

phenotype observed in the crf LOF mutants, for instance, higher CYCD expression, 

but smaller meristem size. However, the network controlling gene expression and 

hormonal balance in the root apical meristem is complex and therefore, alterations of 

CRFs may lead to complex changes. More studies will be needed to identify the 

direct targets of the CRFs that control meristem maintenance and whether they play 

a role in mediating the effects of cytokinin signaling.  

MATERIALS AND METHODS 

Plant growth 

 Seeds were sterilized as previously described in Chapter 2. All lines were grown on 

1X MS agar with 1% sucrose, supplemented with the indicated level of the synthetic 

cytokinin, benzyladenine (BA) or a DMSO vehicle for control. Plates were grown 

vertically in 24-hour light regime at 22ºC.  
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Meristem size analysis 

Seedlings were cleared by fixing in Carnoy’s solution for 15 minutes, washed in 70% 

ethanol for 10 minutes, rinsed with water/ 0.1% Tween-20 for 10 minutes, then fixed 

on microscope slide with chloral hydrate solution (2g/750ul dissolved in water). 

Meristem size was calculated as described in [5].  

Gene expression analysis 

The 0.5 mm root tips from 20 plants were collected by dissection under a dissecting 

microscope. Total RNA was extracted using an RNeasy Plus kit (Qiagen, 

http://www.qiagen.com/) and was analyzed using NanoString® technology 

previously described in Chapter 2.  
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CHAPTER 4: IDENTIFYING DOWNSTREAM TARGETS AND BINDING SITES OF 
THE CRF FAMILY OF TRANSCRIPTION FACTORS 

 

ABSTRACT 

The CRFs are a family of transcription factors, of which a subset is induced in 

response to cytokinin. However, the direct targets of the CRFs and the specific 

processes which they regulate remain unknown. To help uncover possible targets 

and identify cis- elements preferentially bound by CRF5, we carried out a protein 

binding microarray. Additionally, we performed a microarray analysis on 

cytokinin−treated crf1,3,5,6 seedlings and identified changes in gene regulation 

compared to wild-type seedlings. By surveying groups of regulated genes based on 

their gene ontology, we gained insight into the downstream responses that the CRFs 

influence both directly and indirectly.  

INTRODUCTION 

 Transcription factors are responsible for the regulation of gene expression. 

Cytokinin plays a major role in regulating proper development by activating 

downstream genes and altering the function of transcription factors.  While the type-

B ARRs act as the primary response factors in the cytokinin signaling pathway, there 
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are also numerous genes induced by cytokinin which are classified as transcription 

factors. This suggests that the downstream response of cytokinin signaling consists 

of a complex network of gene activation and repression events. Several labs, 

including our own, have conducted microarray analyses of cytokinin-treated 

seedlings and identified multiple transcription factors that are regulated by cytokinin 

[1, 2, 3]. Among these, a subset of AP2 transcription factors known as the Cytokinin 

Response Factors (CRFs) is implicated in gene regulation through cytokinin 

signaling. AP2/ERF proteins comprise one of the largest families of transcription 

factors in plants and are defined by the presence of an AP2 DNA binding domain of 

approximately 68 amino acids [4,6]. Members possessing two AP2 domains are 

often involved in plant development. This includes APETALA2, which is involved in 

floral meristem maintenance, and AINTEGUMENTA, which plays a role in ovule 

development [4]. The ERF- like family of genes, which include the CRFs, contains 

only one AP2 domain, and is linked to biotic stress. The CRFs consist of six core 

family genes, three of which are transcriptionally induced by cytokinin [5]. 

Additionally, the cytokinin inducible expression of the CRF genes is compromised in 

an arr1,12 mutant, placing this induction downstream of the type-B ARRs [5]. 

Together, these data suggest the CRFs play a role in controlling the transcriptional 

response through their interaction with the type-B ARRs. To unravel the complex 

network by which cytokinin regulates growth and development, we sought to 

uncover direct targets of the CRFs using transcriptome analyses and protein binding 

microarray technologies. 
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The regulation of transcription depends on the ability of transcription factors to 

recognize and bind to specific sequences in the regulatory regions of their target 

genes. These target genes commonly share 5-6 bp cis-regulatory sequences, 

making it possible to predict binding by scanning upstream regions of genes. Protein 

binding microarray 11 (PBM11) is a tool used to probe the binding sites for 

transcription factors. The array contains all possible 11-mer combinations, resulting 

in the occurrence of every palindromic 6-mer in 2000 oligonucleotide probes and 

every non-palindromic 6-mer in approximately 4000 probes [8]. Every palindromic 8-

mer is found in 120 probes and non-palindromic 8-mers in 250 probes, thus allowing 

for greater statistical power by testing binding repetitively throughout the array.  

 Here we analyzed gene expression in a crf mutant using the Affymetrix 

microarray technology. We also defined the cis-regulatory elements associated with 

CRF binding, including both high and low affinity sequences. Together, these data 

shed light on CRF target genes. 

RESULTS 

Protein binding microarray analysis to determine CRF binding site 

 As discussed in Chapter 2, in order to identify the preferred promoter-binding 

motif recognized by the CRFs, we cloned the coding regions of CRF5 into an E. coli 

expression construct with a C-terminal maltose binding protein tag. The protein was 

visualized on a 12% SDS/PAGE gel for expression level and correct size (Figure 

4.1). To find the preferred binding elements, the pelleted cell culture was used for 

the analysis of binding to the PBM11 array. Similar to other AP2/ERF transcription 
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factors, CRF5 was found to bind the GCC box with high affinity (Chapter 2, Figure 

2.4). 

Microarray analysis of gene expression changes in crf1,3,5,6 

To assess global changes of gene expression in response to lower levels of 

CRF proteins, we treated ten-day-old wild type and crf1,3,5,6 seedlings with either 

BA (cytokinin) or DMSO (mock) in duplicate. The cDNA from the treated tissues was 

hybridized to an Affymetrix chip containing the most complete set of gene specific 

oligonucleotides available for the Arabidopsis genome. The chips were visualized 

using a scanning laser to excite the immobilized fluorescently labeled oligos and the 

intensity of the fluorescence directly correlated to the expression level. Using 

GeneSpring software, we analyzed the expression levels of genes from the 

microarray to identify genes whose expression was altered in the crf mutant. 

We first compared gene expression in wild-type and crf1,3,5,6 seedlings in 

the absence of cytokinin (Table 4.1 A and B). We found 111 genes that were 

differentially expressed in 10-day-old mutant seedlings compared to wild-type 

seedlings (p-value ≤ 0.05).  We scanned the upstream regions of these uniquely 

regulated genes for the presence of the GCC motifs that are preferentially bound by 

CRF5. Compared to the expected frequency of the motifs in the entire genome by 

chance, we found an enrichment of the 6-mers, GCCGCC and GCCGGC, as well as 

the 7-mer, AGCCGCC (Figure 4.2).  

In this list of basally regulated genes, we did not observe an overabundance 

of cytokinin responsive genes or genes encoding members of the cytokinin signaling 
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pathway. Using the TAIR Gene Ontology (GO) tool, we categorized the CRF-

regulated genes into groups based upon their biological function. The percentage of 

genes in a group was compared to the percentage of the whole genome that 

appears in a particular group, to determine if a process is overrepresented in the crf 

mutant (Figure 4.3).  Several biological processes differed in their representation in 

the mutant line. Perhaps most notable was the mis-regulation of defense and stress 

related response genes. There is also a reduction in the number of genes affiliated 

with transcription, suggesting the transcriptional cascade initiated by the CRFs might 

be interrupted in the mutant. 

We also assessed gene expression of crf mutant seedlings treated with 

cytokinin compared with wild type. Out of the 295 genes found to be regulated by 

cytokinin in crf1,3,5,6, only 138 overlapped with those also regulated in wild type 

(Figure 4.4A). Of the 157 genes found to be uniquely induced or repressed by 

cytokinin in the crf1,3,5,6, we did not observe an overrepresentation of cytokinin-

related genes (Table 4.2 A and B). However, there was a large fraction of genes 

found to be differentially expressed in wild type that were not found in crf1,3,5,6, 

suggesting the CRFs play a role in the regulation of these genes (Figure 4.4A). 

Similar to basally regulated genes in  crf1,3,5,6 seedlings (Figure 4.2), we also found 

an enrichment of the 6-mer, GCCGCC, as well as the 7-mer, AGCCGCC (Figure 4.4 

B). By grouping the genes according to their biological function, we see the 

percentage of crf1,3,5,6 regulated genes correlated to a particular biological process 

(Figure 4.5). However, in this case, we don’t see an overrepresentation of genes 

belonging to a particular function mis-regulated in the crf1,3,5,6. There is a large 
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increase in the number of genes belonging to the “other biological processes” group, 

but further investigation revealed that these genes do not belong to one related 

group and therefore most likely do not represent a single particular process changed 

in the mutant line. The “response to stress” group remains higher in representation 

than in the whole genome, similar to the basal levels in crf1,3,5,6, further confirming 

the CRFs play a role in this process. 

There were 144 genes regulated by cytokinin in the wild-type seedlings and 

not regulated in the mutant line (Figure 4.4A, Table 4.3 A and B). The fact that these 

genes are regulated in the wild-type plant but the regulation is absent in the crf 

mutant suggests that the CRFs may directly regulate the transcription of some of 

these genes in response to cytokinin. We scanned the upstream regions of these 

genes for GCC-box motifs and found high enrichment in many of the preferred CRF5 

binding sites (Figure 4.6). These genes were also grouped according to their 

biological functions and once again, we saw a significant change in the number of 

genes related to response to stress (Figure 4.7).   

Finally, we looked at expression level changes in genes that are regulated in 

both wild type and crf1,3,5,6 seedlings in order to identify any changes in the degree 

of expression in the absence of CRFs. The majority of the shared genes were 

regulated to similar degrees in both wild-type and mutant lines compared to their 

DMSO treated tissues. The most highly induced genes are the type-A ARR genes. 

Several of these genes were induced to a slightly higher extent in the crf1,3,5,6 

mutant as compared to wild type, though the difference was subtle (Figure 4.8). 
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CRF5 induction was significantly compromised in the crf1,3,5,6 mutant, confirming 

the presence of the T-DNA insertion at this locus (Figure 4.8).  

Type-B ARR binding sites are located upstream of CRF genes 

As it is known that cytokinin induces the expression of some of the CRF 

genes and that this induction is dependent on the presence of the type-B ARRs [5], 

we scanned the upstream regions of the CRFs to locate the presence of type-B ARR 

binding sites (Figure 4.9). We also used the AuxRE binding site (TGTCTC) as a 

negative control and the TATA box binding site (TTATTT), which is known to occur 

frequently in the upstream regions of genes, as a positive control. The CRFs which 

are most highly induced by cytokinin are CRF2, CRF5 and CRF6 (Chapter 2, Figure 

2.1). These three genes have an overrepresentation of the type-B binding site 

upstream, confirming their regulation by the type-B response regulators. As 

expected, none of the genes have an overrepresentation of the AuxRE elements 

and most have an increased number of TATA box sites. 

DISCUSSION 

Using microarray data from cytokinin-treated crf1,3,5,6 seedlings as well as 

results obtained by PBM11 identifying the preferential binding sites of CRF5, we 

obtained complementary datasets to identify potential genes regulated by the CRFs. 

The results of the PBM11 array for CRF5 show a preference for the classic GCC-

box, GCCGCC. This is not surprising as the CRFs are members of the AP2/ERF 

transcription factor family of which several have been shown to bind the GCC-box 
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within the promoters of their targets [9,10]. CRF5 also binds with high affinity other 

variations of the GCC-box, both 6- and 7-mers.  

 Microarray analysis revealed the CRFs do not regulate the phosphorelay 

components of the cytokinin signaling pathway. In the absence of cytokinin, the 

CRFs show an abundance of stress-related genes altered in expression relative to 

wild-type seedlings, indicating that the CRFs play a role in the response to stress. 

Many of these genes also contained the GCC-box motifs within their upstream 

regions, indicating the CRFs may be directly regulating a subset of these mis-

regulated genes. Because it has been shown that cytokinin is involved in responses 

to drought, salt stress, and pathogen infection [12, 13], it is not surprising to see the 

CRFs controlling gene expression related to stress response. The AP2/ERF family 

of transcription factors is also known to be closely involved in the response to many 

environmental stresses, including pathogen infection, salt stress, osmotic stress, 

wounding, drought, hypoxia, temperature stress and the stress-related hormones 

such as ethylene, jasmonic acid (JA) and abscisic acid (ABA) [9,10]. The CRFs have 

also been shown to be induced by salt treatment and are involved in leaf 

senescence (Chapter 2, Figure 2.11), further implicating their role in abiotic stress 

response [14, 15]. 

 Treatment of the crf mutants with cytokinin results in regulation of three sets 

of genes: i) regulated by cytokinin only in the crf mutant, ii) regulated by cytokinin in 

both wild type and mutant and iii) genes not regulated in the crf mutant in response 

to cytokinin. The genes that were found to be regulated in the crf1,3,5,6 contained 

an enrichment of the GCC-box motifs in their promoters, suggesting that CRFs 



 
 

91 
 

directly regulate their induction. The genes that are not regulated in crf1,3,5,6 also 

contained an overrepresentation of the various GCC-box motifs bound by CRF5. As 

the induction of these genes is dependent on the CRFs, they are potential direct 

targets of the cytokinin-induced CRFs and when the CRFs are absent, their 

expression remains low.  

There was some overlap in the number of genes regulated by cytokinin in the 

crf1,3,5,6 mutant and wild-type seedlings and the fold-change in response to 

cytokinin of these shared genes was similar. All ten of the type-A ARRs, which are 

among the most highly induced genes by cytokinin [11], were induced in both wild 

type and mutant lines, but to a slightly higher degree in the crf1,3,5,6 mutant line, 

suggesting the CRFs may suppress expression of the type-A ARRs. Moreover, we 

observed a significant increase in the induction of ARR5 and decrease in the 

induction of ARR16 compared with wild type. Interestingly, the induction of the AHK4 

receptor in crf1,3,5,6 is increased. The CRFs could play a negative feedback role in 

cytokinin signaling by inhibiting the action of AHK4, and removal of the CRFs could 

allow AHK4 to become more active (Figure 4.10). The research presented here 

suggests that the CRFs are acting downstream of cytokinin perception to regulate 

the response to biotic and abiotic stress. They may also play a role in a negative 

feedback of the signaling pathway through suppression of AHK4 in response to 

cytokinin, thus creating a negative feedback loop similar to the type-A ARRs. 
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MATERIALS AND METHODS 

Microarray analysis 

Ten-day-old seedlings of wild type and crf1,3,5,6 were treated in liquid 1X MS 

with 1% sucrose containing DMSO or 5 µM BA. The seedlings were frozen in liquid 

nitrogen and RNA was extracted using the Qiagen RNAeasy kit (www.qiagen.com). 

RNA at a concentration of 83.7 ng/µl was sent to the Genomics Core Facility at UNC 

along with ATH1 expression chips from Affymetrix. Two replicates were carried out 

on each genotype and treatment. 

Data analysis 

 Using GeneSpring software, we imported the raw CEL files and parsed data 

lists with p values of less than 0.05. Using the TOUCAN 2 regulatory sequence 

analysis software we were able to search regulated genes for upstream CRF5 

binding cis-elements (http://homes.esat.kuleuven.be/~saerts/software/toucan.php). 

Gene lists compiled by GeneSpring were then grouped by biological function using 

the TAIR website tool to retrieve bulk gene functions. The percent of genes 

belonging to a category was compared to the percent of genes in the whole genome 

belonging to the category.  
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TABLE 4.1A – Genes differentially up-regulated between crf1,3,5,6 and wild-type seedlings 

 
AGI 

 
Gene Name 

 
Gene Description 

Fold Change 
relative to WT 

AT4G33720 - CAP (Cysteine-rich secretory proteins, Antigen 5, and 
Pathogenesis-related 1 protein)  

6.52 

AT5G42600 MRN1 oxidosqualene synthase, crucial for growth and 
development.  

5.40 

AT3G59930 - defensin-like (DEFL) family protein. 5.26 

AT1G64590 - NAD(P)-binding Rossmann-fold superfamily with 
oxidoreductase activity 

4.65 

AT5G47990 THAD CYP705A family of cytochrome P450 enzymes, 
thalianol metabolism 

4.40 

AT5G48010 THAS oxidosqualene cyclase involved in the biosynthesis of 
thalianol 

4.28 

AT5G47450 ATTIP2;3 transports ammonium (NH3) and methylammonium 
across the tonoplast membrane 

3.35 

AT5G23840 - MD-2-related lipid recognition domain-containing 
protein 

3.24 

AT1G66800 - similar to alcohol dehydrogenase of unknown 
physiological function  

3.15 

AT5G48000 THAH CYP705A family of cytochrome P450 enzymes, 
thalianol metabolism 

3.03 

AT2G16460 - protein of unknown function 2.99 

AT4G12550 AIR1 activated by auxin treatment, lateral root 
development 

2.94 

AT5G42580 CYP705A12 member of the cytochrome P450 family 2.78 

AT1G14120 - 2-oxoglutarate (2OG) and Fe(II)-dependent 
oxygenase superfamily protein 

2.65 

AT5G12030 HSP17.6A heat shock protein with chaperone activity that is 
induced by heat and osmotic stress  

2.63 

AT5G38020 - encodes a protein whose sequence is similar to 
SAM:salicylic acid carboxyl methyltransferase  

2.53 

AT2G16005 - MD-2-related lipid recognition domain-containing 
protein 

2.50 

AT1G34510 - peroxidase superfamily protein 2.49 

AT3G25820 ATTPS-CIN monoterpene 1,8-cineole synthase, atTPS-Cin 2.48 

AT3G01420 DIOX1 alpha-dioxygenase involved in protection against 
oxidative stress and cell death, induced by SA and 
oxidative stress 

2.46 

AT5G38030 - MATE efflux family protein, response to nematode 2.45 

AT4G14060 - polyketide cyclase/dehydrase and lipid transport 
superfamily protein 

2.42 

AT3G45680 - major facilitator superfamily protein, response to 
nematode 

2.41 

AT1G01190 CYP78A8 member of CYP78A 2.41 

AT3G06390 - uncharacterized protein family  2.39 

AT3G26330 CYP71B37 putative cytochrome P450 2.38 

AT5G09520 PELPK2 hydroxyproline-rich glycoprotein family protein, 
unknown function 

2.33 

AT3G26460 - polyketide cyclase/dehydrase and lipid transport 
superfamily protein 

2.30 

AT5G47980 - HXXXD-type acyl-transferase family protein 2.30 

AT4G11310 CP1 cysteine proteinase precursor-like protein 2.30 
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AT3G44540 FAR4 generates the fatty alcohols found in root, seed coat, 
and wound-induced leaf tissue 

2.28 

AT2G01880 PAP7 protein serine/threonine phosphatase activity 2.26 

AT3G09220 LAC7 putative laccase, unknown function 2.24 

AT1G47480 
/// 
AT2G05440 
/// 
AT2G05510 

- alpha/beta-Hydrolases superfamily protein 2.23 

AT2G14610 PR1 PR1 gene expression is induced in response to a 
variety of pathogens 

2.22 

AT1G14960 - polyketide cyclase/dehydrase and lipid transport 
superfamily protein,, defense response 

2.20 

AT4G22212 - encodes a defensin-like (DEFL) family protein 2.19 

AT5G59090 ATSBT4.12 serine-type endopeptidase activity; proteolysis, 
negative regulation of catalytic activity 

2.18 

AT5G43520 - cysteine/Histidine-rich C1 domain family protein 2.18 

AT1G17190 ATGSTU26 glutathione transferase belonging to the tau class of 
GSTs 

2.16 

AT4G11210 - disease resistance-responsive (dirigent-like protein) 
family protein 

2.13 

AT1G73330 DR4 plant-specific protease inhibitor-like protein, 
repressed by drought 

2.12 

AT4G23700 ATCHX17 member of Putative Na+/H+ antiporter family 2.12 

AT2G24850 TAT3 tyrosine aminotransferase that is responsive to 
treatment with jasmonic acid 

2.11 

AT4G37410 CYP81F4 member of CYP81F 2.11 

AT5G63560 FACT HXXXD-type acyl-transferase family protein 2.09 

AT3G45710 - major facilitator superfamily protein, oligonucleotide 
transport 

2.09 

AT5G48570 ATFKBP65 carboxylate clamp (CC)-tetratricopeptide repeat 
(TPR) proteins with potential to interact with 
Hsp90/Hsp70 as co-chaperones. 

2.08 

AT3G25830 TPS-CIN monoterpene 1,8-cineole synthase, atTPS-Cin 2.08 

AT3G57010 - calcium-dependent phosphotriesterase superfamily 
protein 

2.08 

AT5G37990 - S-adenosyl-L-methionine-dependent 
methyltransferases superfamily protein 

2.07 

AT3G22570 - bifunctional inhibitor/lipid-transfer protein/seed 
storage 2S albumin superfamily protein 

2.05 

AT4G13280 ATTPS12 catalyzes the conversion of farnesyl diphosphate to 
(Z)-gamma-bisabolene and the additional minor 
products E-nerolidol and alpha-bisabolol. 

2.05 

AT3G58550 - bifunctional inhibitor/lipid-transfer protein/seed 
storage 2S albumin superfamily protein 

2.05 

AT2G35380 - peroxidase superfamily protein, response to oxidative 
stress 

2.03 

AT5G04120 - cofactor-dependent phosphoglycerate mutase 
(dPGM) - like protein with phosphoserine 
phosphatase activity that may be responsible for 
serine anabolism 

2.03 

AT4G29270 - HAD superfamily, subfamily IIIB acid phosphatase 2.02 

AT2G47180 ATGOLS1 galactinol synthase that catalyzes the formation of 
galactinol from UDP-galactose and myo-inositol, 

2.02 
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promotes increased tolerance to salt, chilling, and 
high-light stress 

AT5G23830 - MD-2-related lipid recognition domain-containing 
protein 

2.00 

AT1G31710 - copper amine oxidase family protein; oxidation 
reduction, amine metabolic process 

2.00 
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TABLE 4.1B – Genes differentially down-regulated between crf1,3,5,6 and wild-type seedlings 

AGI Gene Name Gene Description Fold change 
relative to WT 

AT5G53290 CRF3 AP2/ERF superfamily of the transcriptional 
factors; cytokinin responsive 

-10.67 

AT2G21640 - protein of unknown function that is a marker for 
oxidative stress response. 

-10.09 

AT5G09570 - Cox19-like CHCH family protein -10.06 

AT2G04050 - MATE efflux family protein; transmembrane 
transporter activity 

-6.09 

AT2G41730 - unknown protein -5.82 

AT2G29870 - aquaporin-like superfamily protein -5.62 

AT4G33070 ATPDC1 thiamine pyrophosphate dependent pyruvate 
decarboxylase family protein 

-5.14 

AT1G77120 ADH1 catalyzes the reduction of acetaldehyde using 
NADH as reductant 

-4.72 

AT1G17180 GSTU25 glutathione transferase belonging to the tau 
class of GSTs 

-4.47 

AT3G61630 CRF6 AP2/ERF superfamily of the transcriptional 
factors; cytokinin responsive 

-4.46 

AT5G10040 - unknown protein -4.35 

AT4G10270 - wound-responsive family protein -4.25 

AT3G43190 ATSUS4 sucrose synthase activity  -4.21 

AT1G33055 - unknown protein -4.13 

AT5G62520 SRO5 role for the protein in ADP ribosylation.; up-
regulated by NaCl 

-3.90 

AT2G03760 ATSOT1 brassinosteroid sulfotransferase; response to 
salicylic acid and methyl jasmonate and 
bacterial pathogens 

-3.48 

AT1G05680 UGT74E2 UDP-glucosyltransferase, UGT74E2, that acts 
on IBA (indole-3-butyric acid) and affects auxin 
homeostasis 

-3.32 

AT3G02550 LBD41 lateral organ boundaries -3.21 

AT3G10040 - sequence-specific DNA binding transcription 
factors 

-3.15 

AT2G32020 - acyl-CoA N-acyltransferases (NAT) superfamily 
protein; response to abscisic acid stimulus 

-3.12 

AT2G47520 ATERF71 ERF (ethylene response factor) subfamily B-2 
of ERF/AP2 transcription factor family 

-3.09 

AT5G15120 - protein of unknown function (DUF1637); 
cysteamine dioxygenase activity 

-3.01 

AT5G44120 CRU1 12S seed storage protein; phosphorylation 
state is modulated in response to ABA  

-2.92 

AT3G02480 - late embryogenesis abundant protein (LEA) 
family protein 

-2.80 

AT4G39675 - unknown protein -2.78 

AT5G39890 - unknown function (DUF1637); cysteamine 
dioxygenase activity 

-2.66 

AT1G19530 - unknown protein; N-terminal protein 
myristoylation 

-2.59 

AT2G07671 - ATP synthase subunit C family protein; 
hydrogen ion transmembrane transporter 
activity 

-2.56 
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AT1G43800 FTM1 stearoyl-acyl-carrier-protein desaturase family 
protein 

-2.51 

AT2G19970 - CAP (Cysteine-rich secretory proteins, Antigen 
5, and Pathogenesis-related 1 protein) 
superfamily protein 

-2.43 

AT2G16060 ARATH GLB1 class 1 nonsymbiotic hemoglobin induced by 
low oxygen levels with very high oxygen affinity 

-2.43 

AT2G19990 PR-1-LIKE PR-1-like protein homolog that is differentially 
expressed in resistant cultivars by powdery 
mildew infection 

-2.41 

AT1G52070 - mannose-binding lectin superfamily protein -2.39 

AT1G48130 ATPER1 encodes a protein similar to the 1-cysteine (1-
Cys) peroxiredoxin family of antioxidants; seed 
only 

-2.38 

AT1G52690 LEA7 late embryogenesis abundant protein (LEA) 
family protein 

-2.32 

AT4G33560 - wound-responsive family protein -2.31 

AT3G23170 - unknown protein -2.27 

AT2G29330 TRI tropinone reductase (TRI); oxidoreductase 
activity, 

-2.21 

AT1G02520 
/// 

AT1G02530 

ABCB11 encodes an ATP-binding cassette (ABC) 
transporter 

-2.21 

AT4G24110 - unknown protein -2.17 

AT3G27220 - galactose oxidase/kelch repeat superfamily 
protein 

-2.17 

AT5G40420 OLE2 oleosin2, a protein found in oil bodies, involved 
in seed lipid accumulation 

-2.16 

AT5G42800 DFR dihydroflavonol reductase; biosynthesis of 
anthocyanin 

-2.16 

AT4G28520 CRU3 12S seed storage protein; phosphorylation 
state is modulated in response to ABA 

-2.15 

AT5G44730 - haloacid dehalogenase-like hydrolase (HAD) 
superfamily protein 

-2.15 

AT1G72360 ERF73 member of the ERF (ethylene response factor) 
subfamily B-2 of ERF/AP2 transcription factor 
family 

-2.14 

AT5G39110 - RmlC-like cupins superfamily protein; 
manganese ion binding, nutrient reservoir 
activity 

-2.08 

AT1G76650 CML38 calcium ion binding; response to wounding -2.06 

AT4G17260 - lactate/malate dehydrogenase family protein; 
responds to ABA 

-2.05 

AT1G52050 - mannose-binding lectin superfamily protein -2.04 

AT2G43610 - chitinase family protein; carbohydrate metabolic 
process, cell wall macromolecule catabolic 
process 

-2.02 
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TABLE 4.2A – Genes up-regulated by cytokinin in the crf1,3,5,6 mutant 

 
AGI 

 
Gene Name 

 
Gene Description 

Fold change 
relative to 

non-treated 

AT5G47990 THAD member of the CYP705A family of cytochrome P450; 
mutants have longer roots and altered gravitropism 

4.01 

AT1G64590 - NAD(P)-binding Rossmann-fold superfamily protein; 
oxidation reduction, metabolic process 

3.97 

AT3G45700 - major facilitator superfamily protein; xylan biosynthesis 3.19 

AT3G45710 - major facilitator superfamily protein; xylan biosynthesis 2.96 

AT4G27970 SLAH2 protein with ten predicted transmembrane helices; 
transmembrane transport 

2.72 

AT3G13790 ATBFRUCT1 protein with invertase activity 2.48 

AT5G19260 FAF3 member of the FANTASTIC FOUR (FAF) family that 
have the potential to regulate shoot meristem size in 
Arabidopsis thaliana 

2.43 

AT4G02850 - phenazine biosynthesis PhzC/PhzF family protein; 
cytokinin signaling related 

2.43 

AT1G73300 
/// 

AT5G36180 

SCPL2 serine carboxypeptidase-like 2 (scpl2) 2.43 

AT1G28130 GH3.17 encodes an IAA-amido synthase that conjugates Asp 
and other amino acids to auxin in vitro 

2.43 

AT4G11210 - disease resistance-responsive (dirigent-like protein) 
family protein 

2.39 

AT1G14960 - polyketide cyclase/dehydrase and lipid transport 
superfamily protein; biotic stimulus, defense response 

2.39 

AT4G19030 NLM1 an aquaporin whose expression level is reduced by 
ABA, NaCl, dark, and dessication; involved in arsenite 
transport and tolerance 

2.28 

AT3G29250 ATSDR4 NAD(P)-binding Rossmann-fold superfamily protein; 
oxidoreductase activity, copper ion binding 

2.25 

AT2G29490 ATGSTU1 glutathione transferase belonging to the tau class of 
GSTs. 

2.19 

AT1G03850 ATGRXS13 glutaredoxin required to facilitate Botrytis cinerea 
infection of Arabidopsis thaliana plants 

2.17 

AT3G50700 AtIDD2 zinc finger protein, similar to maize Indeterminate1 
(ID1) 

2.12 

AT5G46230 - protein of unknown function, DUF538 2.10 

AT1G79460 GA2 ent-kaurene synthase B activity which catalyzes the 
second step in the gibberellins biosynthetic pathway 

2.09 

AT2G32680 AtRLP23 receptor like protein 23 (RLP23); defense response, 
JA signaling related 

2.08 

AT4G29700 - alkaline-phosphatase-like family protein; metabolism 2.05 

AT1G21120 IGMT2 O-methyltransferase family protein 2.00 

AT1G04360 - RING/U-box superfamily protein;  zinc ion binding 2.00 

AT3G06020 FAF4 member of the FANTASTIC FOUR (FAF) family that 
have the potential to regulate shoot meristem size in 
Arabidopsis thaliana 

1.90 

AT5G26260 - TRAF-like family protein 1.89 

AT5G14230 - ankyrin repeat-containing domain 1.87 

AT3G16870 GATA17 GATA factor family of zinc finger transcription factors 1.87 

AT3G13360 WIP3 outer nuclear membrane protein that anchors 1.85 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT5G47990
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT1G64590
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT3G45700
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT3G45710
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT4G27970
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT3G13790
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT5G19260
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT4G02850
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT1G73300
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT1G73300
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT1G73300
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT1G28130
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT4G11210
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT1G14960
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT4G19030
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT3G29250
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT2G29490
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT1G03850
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT3G50700
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT5G46230
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT1G79460
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT2G32680
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT4G29700
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT1G04360
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT3G06020
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT5G26260
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT5G14230
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT3G16870
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT3G13360
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RanGAP1 to the nuclear envelope; required for 
maintaining the nuclear shape of epidermal cells 

AT4G15290 ATCSLB05 gene similar to cellulose synthase; root hair elongation 1.82 

AT2G29970 SMXL7 member of an eight-gene family (SMAX1 and SMAX1-
like) that has weak similarity to a ClpB chaperonin 
required for thermotolerance 

1.80 

AT5G61010 ATEXO70E2 member of EXO70 gene family, putative exocyst 
subunits, conserved in land plants; salacylic acid 
biosynthesis 

1.79 

AT3G17120 - unknown protein; response to brassinosteroid stimulus 1.76 

AT3G19270 CYP707A4 protein with ABA 8'-hydroxylase activity, involved in 
ABA catabolism 

1.75 

AT3G26960 - Pollen Ole e 1 allergen and extensin family protein 1.72 

AT2G38180 - SGNH hydrolase-type esterase superfamily protein 1.71 

AT1G75620 - glyoxal oxidase-related protein 1.70 

AT3G54950 PLA IIIA member of the Group 3 patatin-related phospholipases 1.70 

AT4G35510 - unknown protein 1.69 

AT2G39220 PLP6 PATATIN-like protein 6 (PLP6); nutrient reservoir 
activity 

1.69 

AT1G65510 - unknown protein; N-terminal protein myristoylation;  1.66 

AT1G75450 CKX5 similar to cytokinin oxidase/dehydrogenase, which 
catalyzes the degradation of cytokinins 

1.66 

AT3G54720 ATAMP1 glutamate carboxypeptidase; mutants show increased 
cytokinin biosynthesis; involved with ethylene 
mediated hypocotyl elongation in light 

1.65 

AT5G63380  peroxisomal protein involved in the activation of fatty 
acids through esterification with CoA; JA biosynthesis 

1.65 

AT3G44320 NIT3 catalyzes the hydrolysis of indole-3-acetonitrile (IAN) 
to indole-3-acetic acid (IAA) and IAN to indole-3-
acetamide (IAM) at lower levels 

1.64 

AT5G55050 - GDSL-like Lipase/Acylhydrolase superfamily protein; 
proline transport 

1.62 

AT5G10970 - C2H2 and C2HC zinc fingers superfamily protein; 
transcription 

1.62 

AT5G24990 
/// 

AT5G25020 

MEB2 vacuolar iron transporter (VIT) family protein 1.61 

AT2G24570 ATWRKY17 WRKY Transcription Factor; Group II-d; negative 
regulator of basal resistance to Pseudomonas 
syringae 

1.61 

AT5G07450 CYCP4;3 cyclin p4;3 (CYCP4;3); cyclin-like  1.61 

AT5G22980 scpl47 serine-type carboxypeptidase activity 1.60 

AT1G76410 ATL8 zinc ion binding 1.60 

AT1G56430 NAS4 encodes a protein with nicotianamine synthase 
activity. 

1.59 

AT2G03730 ACR5 member of a small family of ACT domain containing 
proteins thought to be involved in amino acid binding. 

1.59 

AT5G54510 DFL1 DWARF IN LIGHT 1; IAA-amido synthase that 
conjugates Ala, Asp, Phe, and Trp to auxin; 
overexpression leads to auxin hypersensitivity 

1.58 

AT2G28250 NCRK erine/threonine-protein kinase 1.58 

AT4G12440 APT4 adenine phosphoribosyl transferase 4 1.57 

AT1G74790 - membrane bound; catalytic activity 1.56 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT4G15290
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT2G29970
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT5G61010
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT3G17120
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT3G19270
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT3G26960
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT2G38180
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT1G75620
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT3G54950
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT4G35510
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT2G39220
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT1G65510
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT1G75450
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT3G54720
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT5G63380
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT3G44320
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT5G55050
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT5G10970
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT5G25020
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT5G25020
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT5G25020
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT2G24570
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT5G07450
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT5G22980
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT1G76410
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT1G56430
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT2G03730
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT5G54510
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT2G28250
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT4G12440
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT1G74790
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AT5G39785 - structural constituent of ribosome 1.56 

AT1G77740 PIP5K2 phosphatidylinositol-4-phosphate 5-kinase (PtdIns(4)P 
5-kinase 2 involved in regulating lateral root formation 
and root gravity response 

1.56 

AT2G35990 - putative lysine decarboxylase family protein 1.55 

AT1G22880 CEL5 cellulase 5 (CEL5); carbohydrate metabolic process 1.55 

AT5G13330 RAP2.6L encodes a member of the ERF (ethylene response 
factor) subfamily B-3 of ERF/AP2 transcription factor 
family 

1.54 

AT1G60560 - SWIM zinc finger family protein; FUNCTIONS IN: zinc 
ion binding 

1.54 

AT2G37980 - O-fucosyltransferase family protein 1.54 

AT3G21230 4CL5 encodes a 4-coumarate coenzyme A ligase being able 
to use sinapate as substrate 

1.53 

AT1G30690 - Sec14p-like phosphatidylinositol transfer family protein 1.53 

AT1G24150 FH4 encodes a group I formin. Localized to cell junctions. 
Polymerizes actin. Binds profilin. 

1.53 

AT1G72840 - disease resistance protein (TIR-NBS-LRR class) 1.53 

AT2G35000 - E3 ligase-like protein induced by chitin oligomers 1.53 

AT1G80870 -  protein serine/threonine kinase activity 1.53 

AT1G19450 - carbohydrate transmembrane transporter activity, 
sugar:hydrogen symporter activity 

1.53 

AT3G45010 scpl48 serine carboxypeptidase-like 48 (scpl48); proteolysis 1.53 

AT4G05410 YAOZHE nucleolar protein with seven WD40-repeats that plays 
a role in embryo sac development and is critical for the 
correct positioning of the division plane of zygote and 
the apical cell lineage in Arabidopsis 

1.52 

AT2G39130 - transmembrane amino acid transporter family protein 1.52 

AT1G35330 - RING/U-box superfamily protein; zinc ion binding 1.52 

AT2G26980 CIPK3 serine-threonine protein kinase whose expression 
increases in response to abscisic acid, cold, drought, 
high salt, and wounding conditions 

1.52 

AT5G38210 - protein serine/threonine kinase activity 1.51 

AT5G19110 - eukaryotic aspartyl protease family protein; N-terminal 
myristolation 

1.51 

AT3G20860 ATNEK5 member of the NIMA-related serine/threonine kinases 
(Neks) that have been linked to cell-cycle regulation  

1.50 

 

 

 

 

 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT5G39785
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT1G77740
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT2G35990
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT1G22880
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT5G13330
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT1G60560
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT2G37980
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT3G21230
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT1G30690
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT1G24150
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT1G72840
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT2G35000
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT1G80870
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT1G19450
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT3G45010
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT4G05410
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT2G39130
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT1G35330
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT2G26980
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT5G38210
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT5G19110
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT3G20860
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TABLE 4.2B – Genes down-regulated by cytokinin in the crf1,3,5,6 mutant 

 
AGI 

 
Gene 
Name 

 
Gene Description 

Fold change 
relative to 

non-treated 

AT1G43160 RAP2.6 encodes a member of the ERF (ethylene response 
factor) subfamily B-4 of ERF/AP2 transcription factor 
family 

-2.73 

AT2G36690 - 2-oxoglutarate (2OG) and Fe(II)-dependent 
oxygenase superfamily protein 

-2.24 

AT5G01210 - HXXXD-type acyl-transferase family protein -2.19 

AT5G47220 ERF2 a member of the ERF (ethylene response factor) 
subfamily B-3 of ERF/AP2 transcription factor family 
(ATERF-2); positive regulator of JA defense 

-2.14 

AT1G09090 ATRBOHB NADPH-oxidase plays a role in seed after-ripening; 
major producer of superoxide in germinating seeds. 

-2.07 

AT4G14130 XTR7 xyloglucan endotransglycosylase-related protein 
(XTR7) 

-2.06 

AT2G01900 - DNAse I-like superfamily protein -1.98 

AT2G22880 - VQ motif-containing protein; response to UV-B -1.96 

AT1G13670 - unknown protein -1.96 

AT2G27690 CYP94C1 CYTOCHROME P450,  induced in response to 
wounding and jasmonic acid treatment 

-1.93 

AT4G21410 CRK29 cysteine-rich receptor-like protein kinase; response to 
ABA 

-1.88 

AT1G14780 - MAC/Perforin domain-containing protein; immunity 
related 

-1.88 

AT2G28960 - protein serine/threonine kinase -1.88 

AT2G41180 SIB2 VQ motif-containing protein;  regulation of defense 
response, systemic acquired resistance 

-1.83 

AT5G57760 - unknown protein -1.81 

AT5G09440 EXL4 EXORDIUM like 4 (EXL4); defense response to 
fungus 

-1.80 

AT1G63840 - RING/U-box superfamily protein; zinc ion binding; 
response to abscisic acid stimulus 

-1.78 

AT5G61160 AACT1 anthocyanin 5-aromatic acyltransferase 1 (AACT1) -1.78 

AT1G31885 
/// 

AT2G21020 

NIP3;1 NOD26-like intrinsic protein 3;1; transporter activity -1.77 

AT5G47240 atnudt8 nudix hydrolase homolog 8 (NUDT8); response to 
wounding 

-1.76 

AT5G58940 CRCK1 calmodulin-binding receptor-like kinase -1.76 

AT1G11450 
/// 

AT1G11460 

UMAMIT27 nodulin MtN21-like transporter family protein -1.74 

AT5G57785 - unknown protein -1.74 

AT1G33800 ATGXMT1 glucuronoxylan(GX)-specific 4-O-methyltransferase 
responsible for methylating GlcA residues in GX 

-1.74 

AT3G26510 - octicosapeptide/Phox/Bem1p family protein -1.72 

AT1G70230 TBL27 member of the TBL (TRICHOME BIREFRINGENCE-
LIKE); involved in the synthesis and deposition of 
secondary wall cellulose 

-1.71 

AT5G38540 
/// 

- mannose-binding lectin superfamily protein -1.69 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT1G43160
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT2G36690
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT5G01210
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT5G47220
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT1G09090
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT4G14130
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT2G01900
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT2G22880
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT1G13670
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT2G27690
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT4G21410
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT1G14780
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT2G28960
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT2G41180
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT5G57760
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT5G09440
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT1G63840
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT5G61160
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT1G31885
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT1G31885
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT1G31885
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT5G47240
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT5G58940
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT1G11450
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT1G11450
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT1G11450
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT5G57785
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT1G33800
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT3G26510
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT1G70230
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT5G38540
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT5G38540


 
 

102 
 

AT5G38550 

AT5G22890 - C2H2 and C2HC zinc fingers superfamily protein; 
response to iron starvation 

-1.69 

AT4G39780 - member of the DREB subfamily A-6 of ERF/AP2 
transcription factor family 

-1.68 

AT5G24210 - alpha/beta-Hydrolases superfamily protein; SA 
biosynthesis 

-1.68 

AT5G59780 MYB59 putative transcription factor -1.68 

AT4G20460 - NAD(P)-binding Rossmann-fold superfamily 
protein;  galactose metabolic process 

-1.68 

AT5G62360 - plant invertase/pectin methylesterase inhibitor 
superfamily protein 

-1.67 

AT5G22460 - alpha/beta-Hydrolases superfamily protein -1.64 

AT4G25810 XTR6 xyloglucan endotransglycosylase-related protein; 
carbohydrate metabolism 

-1.63 

AT5G07580 - member of the ERF (ethylene response factor) 
subfamily B-3 of ERF/AP2 transcription factor family 

-1.63 

AT2G27660 - cysteine/Histidine-rich C1 domain family protein -1.63 

AT5G01740 - nuclear transport factor 2 (NTF2) family protein; 
wound induced 

-1.63 

AT1G08180 - unknown protein -1.62 

AT3G46280 - protein kinase-related;  ER to Golgi vesicle-mediated 
transport 

-1.62 

AT3G29410 - terpenoid cyclases/Protein prenyltransferases 
superfamily protein;  cytokinin signaling related 

-1.62 

AT5G46710 - PLATZ transcription factor family protein -1.61 

AT1G13430  ATST4C sulfotransferase; transcript levels rise in response to 
cytokinin treatment 

-1.61 

AT1G77920 TGA7 bZIP transcription factor family protein -1.61 

AT1G53510 ATMPK18 MAP Kinase -1.60 

AT3G22540 - unknown function (DUF1677) -1.58 

AT3G54380 ATSAC3C SAC3/GANP/Nin1/mts3/eIF-3 p25 family;  
photoperiodism, flowering 

-1.58 

AT5G14090 ATLAZY1 unknown protein involved in gravitropsim -1.58 

AT5G22500 FAR1 member of the eight-member gene family encoding 
alcohol-forming fatty acyl-CoA reductases (FARs)  

-1.57 

AT2G40000 HSPRO2 ortholog of sugar beet HS1 PRO-1 2; response to 
biotic stimuli 

-1.57 

AT2G20670 - unknown protein -1.57 

AT1G19530 - unknown protein -1.57 

AT4G29190 ATOZF2 zinc finger C-x8-C-x5-C-x3-H type family protein; 
transcription 

-1.56 

AT1G27290 - unknown protein -1.56 

AT3G52480 - unknown protein; response to fructose and sucrose -1.56 

AT5G44480 DUR mutant has altered lateral root; UDP Glucose 
Epimerase 

-1.56 

AT3G61060 AtPP2-A13 phloem protein 2-A13; response to fructose and 
sucrose 

-1.55 

AT2G32030 - Acyl-CoA N-acyltransferases (NAT) superfamily 
protein; response to ethylene 

-1.54 

AT2G31750 UGT74D1 UDP-GLUCOSYL TRANSFERASE 74D1 -1.54 

AT2G15320 - leucine-rich repeat (LRR) family protein -1.54 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT5G38540
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT5G22890
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT4G39780
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT5G24210
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT5G59780
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT4G20460
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT5G62360
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT5G22460
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT4G25810
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT5G07580
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT2G27660
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT5G01740
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT1G08180
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT3G46280
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT3G29410
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT5G46710
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT1G13430
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT1G77920
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT1G53510
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT3G22540
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT3G54380
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT5G14090
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT5G22500
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT2G40000
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT2G20670
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT1G19530
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT4G29190
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT1G27290
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT3G52480
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT5G44480
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT3G61060
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT2G32030
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT2G31750
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AT5G24990 
/// 

AT5G25020 

- leucine-rich repeat (LRR) family protein -1.54 

AT5G58900 - homeodomain-like transcriptional regulator -1.53 

AT5G25350 EBF2 EIN3-binding F-box protein 2 (EBF2); part of the SCF 
complex, it is located in the nucleus and is involved in 
the ethylene-response pathway. 

-1.53 

AT5G07460 PMSR2 ubiquitous enzyme that repairs oxidatively damaged 
proteins 

-1.53 

AT1G75170 
/// 

AT5G04780 

- Sec14p-like phosphatidylinositol transfer family 
protein 

-1.53 

AT2G04790 - unknown protein -1.53 

AT1G51850 - leucine-rich repeat protein kinase family protein;  
kinase activity 

-1.52 

AT5G54980 - uncharacterised protein family (UPF0497) -1.52 

AT2G22800 HAT9 homeobox protein HAT9. -1.52 

AT5G44210 ERF9 member of the ERF (ethylene response factor) 
subfamily B-1 of ERF/AP2 transcription factor family 

-1.52 

AT1G21910 DREB26 DREB subfamily A-5 of ERF/AP2 transcription factor 
family 

-1.52 

AT1G08430 ALMT1 Al-activated malate efflux transporter essential for 
aluminum tolerance 

-1.52 

AT5G53880 - unknown protein -1.51 

AT5G53830 - VQ motif-containing protein -1.51 

AT3G20340 - gene is downregulated in the presence of paraquat, 
an inducer of photoxidative stress 

-1.51 

AT5G13750 ZIFL1 zinc induced facilitator-like 1;  basipetal auxin 
transport 

-1.51 

AT4G24340 
/// 

AT4G24350 

- phosphorylase superfamily protein; nucleoside 
metabolism 

-1.51 

AT1G05650 
/// 

AT1G05660 

- pectin lyase-like superfamily protein; 
polygalacturonase activity 

-1.50 

 

 

 

 

 

 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT2G15320
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT2G15320
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT2G15320
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT5G58900
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT5G25350
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT5G07460
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT1G75170
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT1G75170
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT1G75170
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT2G04790
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT1G51850
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT5G54980
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT2G22800
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT5G44210
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT1G21910
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT1G08430
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT5G53880
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT5G53830
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT3G20340
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT5G13750
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT4G24340
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT4G24340
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT4G24340
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT1G05650
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT1G05650
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT1G05650
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TABLE 4.3A – Genes up-regulated by cytokinin in wild type but not the crf1,3,5,6 mutant 

 
AGI 

 
Gene Name 

 
Gene Description 

Fold change 
relative to 

non-treated 

AT4G26150 CGA1 member of the GATA zinc finger transcription 
factors; modulates chlorophyll biosynthesis and 
glutamate synthase (GLU1/Fd-GOGAT) expression 

3.41 

AT4G28520 CRU3 12S seed storage protein that is tyrosine-
phosphorylated and its phosphorylation state is 
modulated in response to ABA in seeds 

2.91 

AT1G69040 ACR4 ACT-domain containing protein involved in feedback 
regulation of amino acid metabolism 

2.62 

AT4G25410 - basic helix-loop-helix (bHLH) DNA-binding 
superfamily protein 

2.43 

AT4G39070 BBX20 BZS1 is a putative zinc finger transcription factor; 
brassinosteroids-regulated BZR1 target (BRBT) 
gene 

2.35 

AT2G38750 ANNAT4 calcium dependent membrane binding protein 
thought to be involved in Golgi mediated secretion 

2.30 

AT3G02610 - stearoyl-acyl-carrier-protein desaturase family 
protein; fatty acid metabolism 

2.20 

AT2G47260 ATWRKY23 WRKY Transcription Factor; Group I involved in 
nematode feeding site establishment 

2.15 

AT4G39770 TPPH haloacid dehalogenase-like hydrolase (HAD) 
superfamily protein 

2.13 

AT5G40390 RS5 a protein which might be involved in the formation of 
verbascose 

2.12 

AT5G04770 ATCAT6 a member of the cationic amino acid transporter 
(CAT) subfamily of amino acid polyamine choline 
transporters 

2.00 

AT1G31320 LBD4 LOB domain-containing protein 4; polarity and 
bilateral symmetry 

1.99 

AT2G36870 ATXTH32 xyloglucan endotransglycosylase/hydrolase 1.93 

AT3G62930 - thioredoxin superfamily protein; cell redox 
homeostasis 

1.93 

AT5G28640 AN3 protein with similarity to mammalian transcriptional 
coactivator that is involved in cell proliferation during 
leaf and flower development 

1.91 

AT5G11590 TINY2 member of the DREB subfamily A-4 of ERF/AP2 
transcription factor family 

1.88 

AT1G78580 ATTPS1 enzyme putatively involved in trehalose 
biosynthesis; modulates cell growth but not 
differentiation by determining cell wall deposition 
and cell division 

1.87 

AT1G10480 ZFP5 zinc finger protein regulating trichome development 
by integrating GA and cytokinin signaling 

1.87 

AT2G46660 CYP78A6 CYP78A cytochrome P450 monooxygenase protein 
family that is required in the sporophytic tissue of 
the mother plant to promote seed growth 

1.84 

AT2G32930 ZFN2 zinc finger protein; transcription 1.84 

AT2G36590 ATPROT3 proline transporter with affinity for gly betaine, 
proline, and GABA 

1.81 

AT3G51660 - Tautomerase/MIF superfamily protein; IAA 
biosynthesis 

1.80 
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AT1G48130 ATPER1 encodes a protein similar to the 1-cysteine (1-Cys) 
peroxiredoxin family of antioxidants 

1.80 

AT1G30040 ATGA2OX2 gibberellin 2-oxidase that is responsive to cytokinin 
and KNOX activities 

1.78 

AT3G13620 PUT4 POLYAMINE UPTAKE TRANSPORTER 4, an 
amino acid permease family protein 

1.77 

AT4G16000 - unknown protein 1.77 

AT1G68360 - C2H2 and C2HC zinc fingers superfamily protein; 
transcription 

1.72 

AT3G45680 - major facilitator superfamily protein; 1.70 

AT1G21110 /// 
AT1G21120 

IGMT3 O-methyltransferase family protein 1.70 

AT1G64390 ATGH9C2 glycosyl hydrolase 9C2 ; carbohydrate binding, 
hydrolase activity 

1.69 

AT2G22930 - UDP-Glycosyltransferase superfamily protein 1.68 

AT5G59480 - haloacid dehalogenase-like hydrolase (HAD) 
superfamily protein 

1.68 

AT3G56080 - S-adenosyl-L-methionine-dependent 
methyltransferases superfamily protein 

1.67 

AT5G65860  ankyrin repeat family protein; methyltransferase 
activity 

1.66 

AT5G66985 - unknown protein 1.66 

AT5G65860 - ankyrin repeat family protein 1.66 

AT5G57150 - basic helix-loop-helix (bHLH) DNA-binding 
superfamily protein 

1.65 

AT4G15500 UGT84A4 protein that might have sinapic acid:UDP-glucose 
glucosyltransferase activity. 

1.65 

AT3G60390 HAT3 homeobox protein HAT3 1.64 

AT4G38840 - SAUR-like auxin-responsive protein family 1.64 

AT1G04250 AXR3 transcription regulator acting as repressor of auxin-
inducible gene expression 

1.63 

AT2G35300 LEA18 Late embryogenesis abundant 18 family protein;  
accumulate in response to low water availability 
conditions  

1.62 

AT1G49510 EMB1273 embryo defective 1273  1.60 

AT5G06000 ATEIF3G2 one of the 2 genes that code for the G subunit of 
eukaryotic initiation factor 3 (EIF3) 

1.59 

AT3G44940 - protein of unknown function (DUF1635) 1.57 

AT5G56970 CKX3 protein whose sequence is similar to cytokinin 
oxidase/dehydrogenase, which catalyzes the 
degradation of cytokinins 

1.57 

AT4G27590 - heavy metal transport/detoxification superfamily 
protein 

1.56 

AT3G21270 DOF2 Dof zinc finger protein 1.55 

AT5G64620 C/VIF2 Plant cell wall (CWI) and vacuolar invertases (VI) 
play important roles in carbohydrate metabolism, 
stress responses and sugar signaling. 

1.55 

AT2G34510 - unknown membrane bound protein 1.54 

AT5G04330 CYP84A4 cytochrome P450 superfamily protein 1.53 

AT3G26410 ATTRM11 protein involved in modification of nucleosides in 
tRNA 

1.52 

AT1G31770 ABCG14 ATP-binding cassette 14; coupled to 
transmembrane movement of substances 

1.52 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT5G65860
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AT3G15810 - protein of unknown function (DUF567) 1.51 

AT1G44160 - HSP40/DnaJ peptide-binding protein; protein folding 1.51 

AT1G78120 TPR12 one of the 36 carboxylate clamp (CC)-
tetratricopeptide repeat (TPR) proteins with potential 
to interact with Hsp90/Hsp70 as co-chaperones 

1.51 

AT2G03760 ATSOT1 brassinosteroid sulfotransferase 1.50 

AT2G25930 ELF3 nuclear protein that is expressed rhythmically and 
interacts with phytochrome B to control plant 
development and flowering 

1.50 

AT5G62630 HIPL2 hipl2 protein precursor (HIPL2) 1.50 
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TABLE 4.3B– Genes down-regulated by cytokinin in wild type but not the crf1,3,5,6 mutant 

 
AGI 

 
Gene Name 

 
Gene Description 

Fold change 
relative to 

non-treated 

AT1G21360 - adenine nucleotide alpha hydrolases-like 
superfamily protein; response to iron starvation 

-2.91 

AT3G60520 ATSDI1 homologous to the wheat sulphate deficiency-
induced gene sdi1; induced by sulfur starvation 

-2.78 

AT5G59540 - protein of unknown function, DUF599 -2.44 

AT2G45920 ATPP2-A8 phloem protein 2-A8 (PP2-A8); innate immune 
response 

-2.34 

AT5G59530 - cysteine/Histidine-rich C1 domain family protein -2.26 

AT3G56710 - uncharacterized protein family; ER to Golgi vesicle-
mediated transport 

-2.16 

AT1G35670 ATTPPB homologous to the C-terminal part of microbial 
trehalose-6-phosphate phosphatases 

-2.14 

AT1G23390 - bifunctional inhibitor/lipid-transfer protein/seed 
storage 2S albumin superfamily protein; 

-2.13 

AT1G80760 PRX37 putative apoplastic peroxidase Prx37 -2.05 

AT5G63660 - HCO3- transporter family -2.04 

AT4G33666 PROPEP2 elicitor peptide 2 precursor (PROPEP2) -2.02 

AT3G52340 - unknown protein -2.00 

AT1G55850 - calcium-binding EF-hand family protein -1.99 

AT1G24440 - membrane bound hydroxyproline-rich glycoprotein 
family protein 

-1.96 

AT3G09020 ATBZIP basic leucine-zipper 8 (bZIP); transcription -1.96 

AT1G03660 - protein serine/threonine kinase  -1.95 

AT5G57530 SCL-3 scarecrow-like protein (SCL3); responsive to GA -1.90 

AT1G80840 - unknown protein -1.90 

AT3G23800 CRK12 CYSTEINE-RICH RLK (RECEPTOR-LIKE 
PROTEIN KINASE) 12 

-1.88 

AT5G43350 UGT76B1 glucosyltransferase that conjugates isoleucic acid 
and modulates plant defense and senescence 

-1.86 

AT5G20400 ATPRR2 a pinoresinol reductase involved in lignan 
biosynthesis 

-1.86 

AT5G26731 - UDP-Glycosyltransferase superfamily protein -1.84 

AT5G14760 UMAMIT33 nodulin MtN21-like transporter family protein -1.81 

AT3G15450 UMAMIT31 nodulin MtN21-like transporter family protein -1.81 

AT1G71960 - basic helix-loop-helix (bHLH) DNA-binding 
superfamily protein; lateral root and root hair 
development 

-1.80 

AT3G08860 - unknown protein -1.79 

AT2G28270 MIOX2 myo-inositol oxygenase family gene -1.79 

AT5G04340 - curculin-like (mannose-binding) lectin family protein -1.77 

AT1G72360 - SAUR-like auxin-responsive protein family; auxin 
responsive 

-1.77 

AT3G23200 IOS1 putative member of the LRR-RLK protein family; 
contributes to interaction between Arabidopsis and 
Hyaloperonospora arabidopsidis 

-1.76 

AT3G49960 ATBZIP3 basic leucine-zipper 3 (bZIP3); DNA binding, 
sequence-specific DNA binding transcription factor 
activity 

-1.74 
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AT4G28270 ATLEA3 Late embryogenesis abundant 3 (LEA3) family 
protein; accumulate in response to low water 
availability conditions  

-1.74 

AT5G12030 ATMYB56 member of the R2R3 factor gene family -1.74 

AT2G15390 ATC protein that acts non-cell autonomously to inhibit 
floral initiation 

-1.74 

AT1G74940 CIPK25 member of AtCIPKs -1.74 

AT2G19570 EARLI1 putative lipid transfer protein, vernalization-
responsive and cold-induced 

-1.73 

AT5G44420 ATGSTU24 glutathione transferase belonging to the tau class 
of GSTs 

-1.73 

AT1G29400 WAG1 PsPK3-type kinase; suppressors of root waving; 
root development 

-1.72 

AT3G47210 UMAMIT30 nodulin MtN21-like transporter family protein -1.72 

AT3G43190 FRA8 glycosyltransferase family 47 that is involved in 
secondary cell wall biosynthesis 

-1.72 

AT5G48430 - peroxidase superfamily protein -1.71 

AT5G03380 ATSERAT2;
1 

chloroplast/cytosol localized serine O-
acetyltransferase involved in sulfur assimilation and 
cysteine biosynthesis 

-1.69 

AT4G30170 -  metal transport/detoxification superfamily protein  -1.69 

AT4G00700 - C2 calcium/lipid-binding plant 
phosphoribosyltransferase family protein 

-1.69 

AT2G36950 - peroxidase family protein -1.69 

AT1G55920 - heavy metal transport/detoxification superfamily 
protein 

-1.66 

AT5G58390 - eukaryotic aspartyl protease family protein; -1.66 

AT2G28110 ATSUS4 protein with sucrose synthase activity (SUS4) -1.66 

AT4G01450 - plant protein of unknown function (DUF247) -1.65 

AT1G53700 AML5 mei2-like gene family; positive regulation of meiosis -1.64 

AT1G17170 PDF1.2A an ethylene- and jasmonate-responsive plant 
defensin 

-1.64 

AT4G12480 CDA1 cytidine deaminase -1.64 

AT5G25110 - protein of unknown function (DUF581) -1.64 

AT2G27550 ATFUT4 predicted fucosyltransferase, based on similarity to 
FUT1, but not functionally redundant with FUT1. 

-1.63 

AT5G17800 HSP17.6A cytosolic small heat shock protein with chaperone 
activity that is induced by heat and osmotic stress 
and is also expressed late in seed development. 

-1.63 

AT1G02820 ATRMA2 RING finger E3 ubiquitin ligase -1.63 

AT5G15830 - enriched in root hair cells (compared to non-root 
hair cells)  

-1.62 

AT1G51800 - uncharacterized protein family (UPF0497) -1.62 

AT2G46690 ATERF73 member of the ERF (ethylene response factor) 
subfamily B-2 of ERF/AP2 transcription factor 
family 

-1.61 

AT5G18470 CZF2 putative c2h2 zinc finger transcription factor mRNA -1.61 

AT2G19800 - Cysteine/Histidine-rich C1 domain family protein; 
oxidation reduction 

-1.60 

AT4G33960 PYD4 predicted to have beta-alanine aminotransferase 
activity 

-1.60 

AT1G31050 ABCG25 plasma membrane localized ABC transporter 
involved in abscisic acid transport and responses 

-1.60 
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AT4G01440 - aluminum induced protein with YGL and LRDR 
motifs 

-1.60 

AT4G28040 FIN4 encodes for L-aspartate oxidase involved in the 
early steps of NAD biosynthesis 

-1.59 

AT2G36970 - unknown protein -1.59 

AT4G13660 - protein whose sequence is similar to flavanone 3 
hydroxylase from Malus 

-1.58 

AT3G11340 ATPT1 an inorganic phosphate transporter Pht1;1 -1.58 

AT4G23200 SBP3 selenium-binding protein 3 (SBP3) -1.58 

AT5G66985 ATWRKY40 pathogen-induced transcription factor -1.58 

AT1G50420 XTH12 xyloglucan endotransglucosylase/hydrolase 12 
(XTH12) 

-1.58 

AT1G61590 - ankyrin-repeat containing protein; transcription 
factor import into the nucleus 

-1.57 

AT1G68880 - alpha 1,4-glycosyltransferase family protein -1.57 

AT1G23040 - RING/U-box superfamily protein; zinc binding -1.56 

AT1G29020 ATCSLE1 similar to cellulose synthase -1.56 

AT3G14280 ATSPP2 sucrose-phosphatase (SPP2) -1.56 

AT5G64890 - unknown protein -1.55 

AT3G62270 LCR74 predicted to encode a PR (pathogenesis-related) 
protein 

-1.54 

AT4G08770 NIP6 protein with boron transporter activity; directs boron 
to young developing tissues in the shoot 

-1.54 

AT4G12490 - kelch repeat-containing F-box family protein; cyclin 
like 

-1.53 

AT1G78090 ATCDPK2 Ca(2+)-dependent, calmodulin-independent protein 
kinase; positive regulator of ABA signaling 

-1.52 

AT2G39530 SIB1 Sig1 binding protein; interacts with Sig1R4. As well 
as Sig1, SibI is imported into chloroplasts and its 
expression is light-dependent in mature 
chloroplasts. 

-1.52 

AT5G43520 - 2-oxoglutarate (2OG) and Fe(II)-dependent 
oxygenase superfamily protein 

-1.52 

AT5G45070 - ubiquitin-protein ligase  -1.51 

AT5G43180 - 2-oxoglutarate (2OG) and Fe(II)-dependent 
oxygenase superfamily protein 

-1.51 

AT5G48850 - unknown protein -1.50 

AT3G25930 GLTP2 glycolipid transfer protein 2  -1.50 

 

 

 

 

 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AT5G66985
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CHAPTER 5: FUTURE DIRECTIONS 

OVERVIEW 

 This body of work shows that the CRFs are a family of transcription factors 

that are regulated by cytokinin and are a part of the complex transcriptional cascade 

occurring downstream of cytokinin perception in plants. The processes that are 

regulated by the CRFs include senescence, meristem size, primary and lateral root 

growth, flowering time and rosette size. More studies are needed to uncover the 

mechanisms by which the CRFs regulate these processes. Below, we highlight the 

future work that will need to be done to better understand the role of the CRFs in 

these developmental processes and in cytokinin signaling. 

Identify direct targets that are activated or repressed by the CRFs 

Chromatin immunoprecipitation combined with sequencing (ChIP:seq) is 

useful to identify in vivo targets of transcription factors [1, 2]. The primary goal of 

ChIP:seq of the CRFs is to determine their direct targets and the upstream 

sequences to which they bind. By identifying genes regulated by the CRFs, we can 

begin to build a more complete transcriptional network downstream of cytokinin 

signaling. Secondly, we can compare targets of the individual CRFs to see if there is 

an overlap or specificity among these genes. As well as uncovering direct targets, 
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we can look at the effects of cytokinin on binding of CRFs to these targets. If, after 

addition of cytokinin, we see enrichment of a particular gene compared to untreated 

samples, we can conclude cytokinin drives the response through CRF activation.   

These analyses, together with the previous expression profiling of crf LOF 

mutants and CRF overexpressing lines as well as the previous phenotypic analysis 

of these mutants, will help us to develop a model that describes the regulatory 

circuits controlled by CRFs. As we also know that CRFs interact with a subset of 

type-B ARRs [3], we can also look at the overlap seen in CRF targets compared with 

known type-B ARR targets to further what roles the CRFs play in the transcriptional 

cascade downstream of cytokinin signaling. 

Further determine the role of the CRFs in root meristem maintenance 

Regulation of root apical meristem (RAM) size is dependent on the tight 

control of auxin and cytokinin signaling in the appropriate zones of the root tip [4]. 

The meristems of the CRF overexpression lines are larger while the crf LOF mutants 

are smaller (Chapter 3, Figure 3.1), indicating the CRFs play a role in the control of 

cell division and differentiation in the root tip. Phenotypic analyses as well as 

preliminary gene expression studies of the CRFs have suggested they may play a 

negative role in some of the processes controlled by cytokinin signaling. Removing 

this putative negative regulation, as in the crf LOF lines, may result in elevated 

cytokinin function, producing a smaller meristem [5] Cytokinin regulates the size of 

the meristem, at least in part, through the induction of the Aux/IAA gene (known to 

be negative regulators of auxin signaling), SHY2, through ARR1 and ARR12, 
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causing inhibition of auxin transport in the transition zone [4]. Yeast two hybrid and 

BiFC experiments have shown that CRF1 and CRF2 directly interact with the ARR12 

protein [3]. Perturbation of this interaction may possibly cause changes in auxin and 

cytokinin function and thus alteration of meristem size. It would be interesting to 

determine if the type-B response regulators are directly regulating the CRFs in the 

meristematic zone to repress SHY2, and subsequently restricting cytokinin signaling 

in order to promote cell division.   

Visualize the localization of auxin and cytokinin signaling in the meristem of crf LOF 

lines 

Because the crf LOF and CRF overexpression lines show altered meristem 

size, we could determine if this regulation is primarily through auxin signaling, 

cytokinin signaling or both in the root tip. The proper function of the root apical 

meristem depends on the appropriate balance of auxin and cytokinin function as well 

as the appropriate expression of genes controlling appropriate root development. 

There are several reporters for cytokinin and auxin function that use fluorescent tags 

in specific tissues. PINs are efflux carriers responsible for creating and controlling 

auxin gradients within plant tissues [6]. Mutant lines containing GFP tagged PIN 

proteins driven by their endogenous promoters were used to estimate auxin 

transport within specific tissues and treating these tissues with auxin or cytokinin 

affects and redistributes these gradients [6, 7, 8]. Localization of PIN proteins is 

altered in type-A ARR mutants as well as in shy2 loss and gain-of-function lines [4, 

8] and PINs are found more broadly distributed in the type-B arr12 loss-of-function 

line [7]. Therefore, we can compare PIN:GFP, DR5:GFP (synthetic auxin reporter) 
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and TCS:GFP (synthetic cytokinin reporter) in crf LOF backgrounds with previously 

reported results in other cytokinin signaling mutants as well as with wild-type plants. 

To determine if the CRFs control division or differentiation in the RAM, we can look 

at markers of cell division in the root tip, such as pCYCD6;1::CYCD6;1::GUS. In the 

same manner, we will look at the expression levels and patterns of other genes 

previously shown to play a role in meristem development and maintenance, such as 

WOX5, PLT, ARR1 and ARR12, by creating GFP tagged fusions of these genes in 

the crf mutant background. These genes play pivotal roles in meristem formation 

and maintenance and we have seen expression changes in several of the genes by 

NanoString® analysis of the crf1,3,5,6 mutant and CRF5 overexpression lines 

(Chapter 3, Figure 3.2, 3.3 and 3.4). Looking at alterations in the patterns of 

expression of these genes in a crf LOF line will allow us to develop hypotheses of 

how the CRFs are acting in the control of meristem growth.   

By using visual markers, we can examine not only the level of expression of 

these genes, but any ectopic patterns of expression in crf1,3,5,6. Comparing the 

expression patterns of these genes in crf1,3,5,6 to the expression seen in wild-type 

plants will help us better understand the processes and pathways in which the CRFs 

are involved in the root apical meristem. If the CRFs are acting as negative 

regulators of cytokinin signaling in the meristem, in a crf multiple LOF mutant 

carrying pPIN::PIN:GFP proteins driven by their endogenous promoters, we would 

expect the areas of PIN expression, as well as DR5:GFP, to be reduced and more 

restricted, similar to what is observed when cytokinin is added exogenously [4]. 

Conversely, the patterns of expression of pARR1::ARR1:GFP, 
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pARR12::ARR12:GFP and pSHY2::SHY2:GFP would be expected to be broader, 

extending further toward the root tip, if the inhibition of cytokinin signaling has been 

removed in the LOF mutant. Cytokinin induces SHY2 through ARR1, but removal of 

a putative negative regulation of this induction, and perhaps direct repression by the 

CRFs on ARR1, would result in a larger area of expression and thus a larger area of 

cell differentiation. Alternatively, the CRFs may be acting as negative regulators of 

auxin signaling in the root, independent of cytokinin signaling. If this is the case, we 

may see the expression patterns of ARR1, ARR2 and SHY2 to be restricted, and 

areas of TCS expression broader throughout the meristem. It is also possible that 

the CRFs are acting independently of the two hormone pathways. If this is the case, 

we may or may not observe changes in hormone signaling related gene expression 

and patterns.   

Our preliminary results show that the expression levels of WOX5, PLT1 and 

CYCD6;1 are higher in the crf1,3,5,6 than in wild-type root tips (Chapter 3, Figure 

3.2 and 3.3). WOX5 activity is repressed by auxin signaling and restricted to the 

quiescent center cells; expression of PLT1 is reliant on WOX5 and thus also 

restricted to the quiescent center [9]. If auxin signaling is restricted and reduced in 

crf1,3,5,6, we would expect the spatial pattern of expression of WOX5 and CYCD6;1 

to be larger in the meristem. However, if the CRFs are negatively regulating auxin 

signaling, the areas of expression would be more restricted and at levels lower than 

in wild type. Because their expression is so low and distinct, it will be more reliable to 

analyze the effects of crf mutation using reporter GFP than by qPCR or NanoString 

analysis. Again, it is possible that the CRFs are acting independently of these genes 
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in the control of meristem size. If this is the case then we may see no change in 

gene expression or patterns for these genes.   

Analyze meristem size and architecture in crf LOF lines crossed to known meristem 

related LOF lines   

To determine the genetic interaction of the CRFs with other players in the 

control of meristem size, we will construct and analyze crf LOF lines and CRF 

overexpression lines combined with mutations in other genes that affect RAM size 

and function. If crf LOF mutants, which display a small root apical meristem, are 

crossed to a mutant also with an enlarged RAM, such as arr1,12 [7], the meristem 

will be larger than wild type if ARR1 is acting epistatically to CRF5 and will be 

smaller than wild type if CRF5 is acting epistatically to ARR1. Likewise, if the CRF 

overexpression lines are crossed to a mutant with a small meristem, such as shy2, 

the meristem size phenotype will be that of the gene that is acting epistatically to the 

other.   

The distal end of the root containing the quiescent center and stem cell pool 

is known as the stem cell niche. The maintenance and organization of this area is 

controlled by the expression of several genes and by the correct balance of 

hormones in these tissues. WOX5, a homeobox domain transcription factor, is a 

master regulator of stem cell function. Expressed in the mitotically inactive quiescent 

center, WOX5 acts non-cell autonomously to maintain the stem cell pool and restrict 

their differentiation. Removal of WOX5 from the system causes premature 

differentiation of the columella stem cells [9]. WOX5 is repressed by auxin through 
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the action of ARF10 and ARF16 to restrict its expression specifically to the distal 

stem cells (DSC) [9]. The AP2 transcription factor family of PLETHORA genes also 

plays a crucial role in stem cell maintenance and is regulated by WOX5 to inhibit 

differentiation of DSC [9]. In the crf1,3,5,6 mutant, there was an increase in the 

expression of WOX5 and several PLT genes (Chapter 3, Figure 3.3). This suggests 

that the organization of the DSC in crf mutants, as well as mutants crossed to wox5 

and plt1 LOF lines should be further analyzed.    

Analyze the embryo lethality phenotype of crf1,2,5,6  

In early embryonic development, auxin and cytokinin play antagonistic roles in 

cell patterning; ectopic expression of cytokinin signaling results in embryonic arrest 

[10]. Disruption of the genes encoding the cytokinin receptors results in a larger 

embryo size than wild type, but no gross defects in cellular organization, indicating 

that cytokinin is not essential for proper embryo development [11]. The TCS:GFP 

(indicative of cytokinin function) reporter is not detected in the embryo until the 16 

cell stage, when it is localized in the area of the founder cells [10]. After the 

hypophysis has undergone division in the transition stage, TCS:GFP is repressed in 

the basal cell and its descendants, but is still present in the apical lens shaped cell 

[10]. At the heart stage of embryogenesis, a second area of TCS:GFP is then 

initiated at the shoot stem cell primordium [10]. Additionally, the expression patterns 

of ARR7 and ARR15, negative regulators of cytokinin signaling, as well as auxin 

signaling are conversely related to that of cytokinin signaling, suggesting that ARR7 

and ARR15 repress cytokinin signaling in the area that is to become the quiescent 

center and root stem cell niche [10]. Disruption of both ARR7 and ARR15 by an 
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inducible amiRNA results in defective morphology [10] and the loss of expression of 

WOX5, PLT1, and SCARECROW (SCR), all known to be key transcription factors 

driving the root stem cell specification [9, 12]. These data indicate that the restriction 

of cytokinin signaling in early embryogenesis is important for proper cell division and 

differentiation. It is possible that the CRFs play a part in restricting cytokinin function 

to specific tissues in the embryo through their transcriptional regulation by the auxin 

response factor, MONOPTEROS (MP), and the subsequent activation of type-A 

ARRs [13]. The role of the CRFs in embryo development may be tightly related to 

cytokinin and auxin signaling or may be independent of both and it will be important 

to analyze their relationship to these pathways.   

Determine the stage of embryonic arrest in the crf1,2,5,6 mutant  

We were unable to obtain a homozygous crf1,2,5,6, mutant, which suggests 

that this combination results in embryonic arrest. By observing the embryo at 

different developmental stages, we can determine the earliest point at which the 

development of the crf1,2,5,6 mutant deviates from the wild type. From our 

knowledge of cytokinin signaling within the embryo, we can posit whether the CRFs 

regulate embryo development through cytokinin signaling or a separate pathway. As 

this mutant contains mutations in the CRFs known to be induced by cytokinin, we 

hypothesize that they may play a role in the control of cytokinin signaling in the 

embryo. Another crf quadruple mutant, crf1,3,5,6, does not show embryonic lethality, 

suggesting that crf1,2,5,6 contains the CRFs that play the most important role in 

embryo development. Because both CRF1 and CRF2 have been shown to interact 
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directly with ARR7 [3], these two CRFs may play an important role in proper 

cytokinin function within specific cells for appropriate embryo development.  

If CRFs restrict cytokinin function in specific tissues of the embryo, loss-of-

function mutants could result in ectopic cytokinin action and disruption of embryo 

organization. Cytokinin signaling, as revealed by the pattern of the TCS reporter [9], 

is first detected at the 16 cell embryonic stage and is then restricted from specific 

cells forming the future root stem cell niche by ARR7 and ARR15 [10]. The CRFs 

could also be acting to restrict signaling either in this early stage through their 

interaction with ARR7, or later when the second area of cytokinin function appears at 

the future shoot meristem zone [10]. If the CRFs are only involved in restriction of 

cytokinin at the later stage, we may see altered embryonic cell patterns at the heart 

stage, or possibly earlier. If CRFs are involved at the early stage of patterning, the 

embryos would show serious patterning defects and failed differentiation. It is 

possible that the CRFs are working to restrict cytokinin function throughout 

embryogenesis, but this result would be indistinguishable from the previous 

phenotype as it would terminate at a very early stage as well.  

Evaluate patterns of expression of cytokinin and auxin reporters within the 

developing crf1,2,5,6 embryo 

Cytokinin and auxin play important roles in the developing embryo. To 

determine if the CRFs are altering cytokinin signaling or auxin signaling in the 

embryo, we will examine expression patterns of DR5:GFP and TCS:GFP in 

crf1,2,5,6. Comparing the expression patterns to the triple mutant siblings in this line, 
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as well as to wild type, we can see if LOF of these four CRFs alter the spatial pattern 

of expression of cytokinin and auxin function. 
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