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ABSTRACT

Guan Yu: Flexible Supervised Learning Techniques
with Applications in Neuroscience

(Under the direction of Yufeng Liu)

Supervised learning techniques have been widely used in diverse scientific disciplines

such as biology and neuroscience. Among the existing supervised learning techniques, pe-

nalized regression is a very popular one, partly due to its simple formulation and good perfor-

mance in practice. Despite the success of this technique, many challenges remain. The first

challenge is how to develop new methods that could incorporate the structure/correlation

information among predictors efficiently. Moreover, in many practical applications such as

computational neuroscience, we need to predict multiple correlated responses (e.g., class

label and clinical scores). It is very important to study new techniques to predict those

correlated responses jointly, using not only the correlation information among responses

but also the structure/correlation information among predictors. Furthermore, in mod-

ern scientific research, many data sets are collected from different modalities (sources or

types). Since the observations of a certain modality can be missing completely, block-

missing multi-modality data are very common. Flexible and efficient statistical methods

applicable to block-missing multi-modality data require careful study. In this dissertation,

we propose several new supervised learning techniques to overcome the challenges men-

tioned above. Both numerical and theoretical studies are presented to demonstrate the

effectiveness of our proposed methods. Practical applications of these methods using the

Alzheimer’s Disease Neuroimaging Initiative (ADNI) data set are provided as well.
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CHAPTER 1: INTRODUCTION

1.1 Background

Supervised learning techniques play an important role in statistics. Among the existing

supervised learning techniques, penalized regression is a very popular one, partly due to its

simple formulation and good performance in practice. The basic idea of penalized regres-

sion is to perform penalized least squares incorporating some additional constraints on the

regression coefficients. In this section, we first briefly review some fundamental penalized

regression techniques. In Section 1.1.1, some popular penalized univariate linear regression

methods in the literature are reviewed. In Section 1.1.2, we discuss the extension of penal-

ized regression methods from univariate regression to multivariate regression. In Section

1.1.3, we discuss how to use an undirected graph to represent the structure information

among predictors.

1.1.1 Penalized Linear Regression

Linear regression is a typical supervised learning task and it is commonly used in prac-

tice. The model is

Y = Xβ0 + ε, (1.1)

where X ∈ Rn×p is the predictor (design) matrix, Y ∈ Rn is the response vector, n is the

number of observations, p is the number of predictors, β0 = (β0
1 , β

0
2 , . . . , β

0
p)T is a vector of

unknown coefficients, and ε is a vector of independently and identically distributed (i.i.d.)

random variables with mean 0 and finite variance σ2.

Under the standard setting with the sample size n larger than the dimension p, the

commonly used ordinary least squares (OLS) estimator for the p-dimensional regression

coefficient vector β0 often works well. On the other hand, it is also well known that OLS



often leads to complicate models with low prediction accuracy when the predictors are highly

correlated. Furthermore, for the high dimensional data (p� n), OLS is not applicable due

to the rank deficiency of the design matrix. In order to improve OLS, many penalized

methods using regularization in model fitting have been proposed in the literature. The

general form of penalized regression is shown as follows:

β̂ = arg min
β
‖Y −Xβ‖22 + λP (β),

where λ is a tuning parameter and P (β) is a penalty term that can be used to incorporate

all kinds of constraints on the regression coefficients.

Different choices of the penalty term P (β) lead to different penalized regression methods.

For example, classical ridge regression ((Hoerl and Kennard, 1970)) uses the ridge penalty∑p
i=1 |β0

i |2 to possibly achieve better prediction performance through a bias-variance trade-

off. The popular Lasso method ((Tibshirani, 1996)) uses the l1 penalty
∑p

i=1 |β0
i | to perform

continuous shrinkage and automatic variable selection simultaneously. It is known from

the literature that Lasso has many good theoretical properties such as model selection

consistency ((Zhao and Yu, 2006)), estimation consistency ((Knight and Fu, 2000)), and

persistence property ((Greenshtein, 2006)). However, Lasso also has some limitations. For

example, the shrinkage introduced by Lasso results in significant bias towards 0 for large

regression coefficients ((Fan and Li, 2001)). In the presence of some highly correlated

variables, Lasso tends to select only one of those variables ((Zou and Hastie, 2005)).

Besides the Lasso method, a lot of other penalized regression methods have been pro-

posed for simultaneous variable selection and estimation. Some methods are very useful to

reduce the bias of estimation. For example, (Fan and Li, 2001) introduced the smoothly

clipped absolute deviation (SCAD) method using a non-convex penalty. (Zou, 2006) pro-

posed the adaptive Lasso estimator where adaptive weights are used to penalize different

coefficients. (Zhang, 2010) studied the minimax concave penalty (MCP) which is a nearly

unbiased method for penalized variable selection. In addition, there are also some methods

proposed to encourage the strongly correlated predictors to be in or out of the model to-

gether. For example, (Zou and Hastie, 2005) proposed the Elastic net method which uses a

2



convex combination of the l1 and ridge penalty. In the literature, there are also some other

important penalized regression methods. For example, (Wang et al., 2007) utilized the least

absolute deviation Lasso for robust regression. (Witten and Tibshirani, 2009) proposed the

Scout method which includes many penalized methods as special cases.

Although the penalized regression methods introduced above are designed for the uni-

variate regression problem, the corresponding regularization ideas are very general and can

be also used for multivariate regression. In the next section, we will introduce some penal-

ized regression methods for multivariate regression.

1.1.2 Penalized Multivariate Regression

In Section 1.1.1, we have introduced some penalized linear regression methods. In

this section, we focus on penalized multivariate regression, which is also called multi-task

learning in machine learning if we use linear models to predict multiple correlated continuous

response variables. The multivariate regression model is

Y = XB + e, with e = [e1, e1, . . . , en]T , (1.2)

where Y ∈ Rn×q is the response matrix, B ∈ Rp×q is the coefficient matrix, and

ei = (ei1, ei2, . . . , eiq)
T ; i = 1, 2, . . . , n, are i.i.d. q-dimensional random vectors following

a multivariate distribution with mean 0q×1 and covariance matrix ΣY .

For multivariate regression, the simplest method is to regress each response variable

separately on the same set of predictors. All the univariate regression methods including

the above penalized linear regression methods can be applied to each response. However,

this method may not be optimal since it does not incorporate the correlation information

among different response variables. To build an effective model predicting multiple responses

jointly, (Breiman and Friedman, 1997) proposed a method, namely the curd and whey,

which predicts multiple responses by some optimal linear combinations of the ordinary least

squares predictions. Although the curd and whey method could achieve better prediction

performance than the separate univariate regression, it did not address the problem of

variable selection.

3



Besides the curd and whey method, a lot of further developments have been made in the

literature. One popular way to capture the relatedness among multiple response variables

is to constrain all regression models to share a common set of predictors (i.e., elements in

each row of B are constrained to be zero or nonzero simultaneously). To that end, many

existing methods use mixed-norm penalties. Some well known examples of such methods

are the l1/l2 norm ((Obozinski et al., 2010)) and the l1/l∞ norm (Turlach et al., 2005; Zhang

et al., 2008). These methods could have good prediction performance and also deliver sparse

models for variable selection. The statistical properties of these methods are discussed in

(Obozinski et al., 2011b).

Another way to use the correlation information among response variables is to constrain

the coefficient matrix B to have a low-rank structure. However, we can not use the rank

function as the penalty term directly to constrain the rank of B since the corresponding

optimization problem is non-deterministic polynomial-time hard (NP-hard). To solve this

issue, (Yuan et al., 2007) uses a new penalty based on the trace norm (also called nuclear

norm) of the coefficient matrix B. This penalty encourages the sparsity among singular

values and therefore reduces the rank of the estimated coefficient matrix. Moreover, the

reduced-rank regression methods (Reinsel and Velu, 1998; Chen and Huang, 2012) can

be also used to achieve a low-rank estimation of B. Generally, these methods constrain

rank(B) = r for some r ≤ min{p, q}. However, as mentioned in (Yuan et al., 2007), since

the parameter r is often chosen in a separate hypothesis testing or cross validation step, the

reduced-rank regression methods can be unstable. Furthermore, although methods encour-

aging a low-rank structure of B incorporate the correlation information among responses,

most of them do not address the problem of variable selection. In the literature, besides

methods using mixed-norm penalties and methods encouraging a low-rank structure of the

coefficient matrix, there are also some methods proposed to estimate the coefficient matrix

B and the covariance (or precision) matrix of Y jointly. See for example (Rothman et al.,

2010), (Sohn and Kim, 2012), and (Lee and Liu, 2012).
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1.1.3 Graphical Structure among Predictors

Despite the vast literature on penalized methods shown above for univariate regres-

sion or multivariate regression, few methods directly incorporate the structure/correlation

information among predictors efficiently, and at the same time perform simultaneous esti-

mation, prediction, and model selection. Typically, the structure/correlation information

among predictors can be modeled by the connectivity of an undirected graph. It would be

very interesting and useful to study how to use this structure information to improve the

performance of variable selection, estimation and prediction.

In general, we can get the structure information of the predictors from prior information

or estimation. For example, many biological studies have shown that there may exist some

regulatory relationships between genes ((Li and Li, 2008)). An increasing amount of infor-

mation about gene interaction is organized in databases ((Subramanian et al., 2005)). This

biological information can be used to construct the predictor graph where nodes represent

genes and edges indicate regulatory relationships. If the prior information is not available

in some applications, we can construct the predictor graph by sparse estimation of the co-

variance (or precision) matrix of the predictors ((Yuan and Lin, 2007; Friedman et al., 2008;

Cai et al., 2011)). Then, the estimated significant marginal (or partial) correlational rela-

tionships among predictors can be represented by the connectivity of an undirected graph,

where nodes represent predictors and edges indicate significant marginal (or partial) corre-

lation. In Chapter 2, we will propose a new sparse regression method that could efficiently

use the structure/correlation information among predictors. In Chapter 3, as an extension

of the method proposed in Chapter 2, we will propose a new multi-task learning method for

joint classification and regression, which is formulated as a multivariate regression problem.

As a practical application of our new proposed method, a joint prediction of the class label

and clinical scores of the Alzheimer’s disease using the Alzheimer’s Disease Neuroimaging

Initiative (ADNI) data set (www.loni.ucla.edu/ADNI) will be studied in detail.
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1.2 New Contributions and Outline

In this dissertation, we investigate some new penalized regression methods for univariate

regression and multivariate regression. In addition, we propose a new sparse regression

procedure for block-missing multi-modality data. The outline of the dissertation is shown

as follows:

• In Chapter 2, we propose a new penalized regression method incorporating the struc-

ture/correlation information among predictors directly. Typically, such information

can be modeled by the connectivity of an undirected graph using all predictors as

nodes of the graph. Our proposed method incorporates this graph information node-

by-node by a special latent group Lasso penalty. Theoretical study indicates that our

proposed method is very general and it includes adaptive Lasso, group Lasso, and

ridge regression as special cases. Furthermore, it acquires tight finite sample bounds

for both estimation and prediction, and enjoys model selection consistency for the

high dimensional case. Both simulation study and real data analysis demonstrate

the effectiveness of the proposed method for simultaneous estimation, prediction and

model selection.

• In Chapter 3, we extend the idea of incorporating the structure/correlation informa-

tion among predictors to a multi-task learning problem. A new multi-task learning

method using both the structure/correlation information among predictors and the

correlation information among response variables is proposed. Specifically, based on

the undirected predictor graph, our new proposed method encourages the correlated

predictors to be in or out of the model together. Furthermore, this new method also

encourages the correlated response variables to share a common predictor subset. As

a practical application of our new proposed method, a joint prediction of class label

and clinical scores of the Alzheimer’s disease using the ADNI data set will be studied

in detail.

• In Chapter 4, we propose a new sparse regression method for block-missing multi-

modality data without imputing missing data. Our method includes two steps. In
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the first step, we use all available information to estimate the covariance matrix and

the cross-covariance matrix. In the second step, based on the estimated covariance

matrix and the estimated cross-covariance matrix, we use a modified Lasso estimator

to deliver good estimates of the regression coefficients. Both the simulation study and

the real data analysis demonstrate the effectiveness of our proposed method. Since our

method uses all available information efficiently, it could deliver better performance

than many existing methods.
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CHAPTER 2: SPARSE REGRESSION INCORPORATING GRAPHICAL
STRUCTURE AMONG PREDICTORS

2.1 Introduction

During the last few decades, despite the vast literature on sparse regression, few methods

use the structure information of the predictors which can be modeled by the connectivity

of an undirected graph. It would be very interesting and useful to study how to use this

structure information to improve the performance of variable selection, estimation and

prediction. Since the predictor graph can not be represented as some non-overlapping

groups, the traditional group Lasso method ((Yuan and Lin, 2006)) cannot make full use

of this complicate structure information. To use the entire predictor graph information,

most existing methods use the graph edge-by-edge, through adding some penalty terms

to encourage coefficients β0
i and β0

j to be similar for predictors i and j connected by an

edge. One type of methods encourages β0
i and β0

j to be zero or nonzero simultaneously.

For example, OSCAR ((Bondell and Reich, 2008)) uses the l∞ penalty max{|β0
i |, |β0

j |} for

every pair of different predictors. (Yang et al., 2012) generalized OSCAR to graph OSCAR

(GOSCAR) which only uses the l∞ penalty for those pairs of predictors connected by an edge

in the given predictor graph. (Pan et al., 2010) introduced a weighted Lγ-regularization.

(Kim et al., 2013) proposed a new non-convex penalty term based on the truncated lasso

penalty.

Another type of methods uses some penalty terms to encourage β0
i and β0

j have similar

values or absolute values. For example, GRACE ((Li and Li, 2008)) uses the penalty

(β0
i /
√
di − β0

j /
√
dj)

2 to smooth the weighted β0
i over the predictor graph, where di is

the degree of predictor i. (Zhang et al., 2013) proposed the logistic graph Laplacian net.

GFlasso ((Kim and Xing, 2009)) utilizes the penalty |β0
i −sign(ρ̂ij)β

0
j | where ρ̂ij is the sample

correlation coefficient between predictors i and j. Other methods of this type include (Yang

et al., 2012) and (Zhu et al., 2013) which use some non-convex penalty terms to encourage



|β0
i | and |β0

j | to be similar. Although penalized methods using the predictor graph edge-by-

edge are promising in improving regression performance, they also have some drawbacks.

On the one hand, these methods do not directly utilize the neighborhood information of the

graph. For each neighborhood, it can be preferable to use the corresponding edges jointly

rather than separately. On the other hand, the penalty terms in these methods will be more

complicate if there are more edges in the graph.

In order to make use of the structure information among predictors, instead of using

the predictor graph edge-by-edge, we propose a new method, namely Sparse Regression In-

corporating Graphical structure among predictors (SRIG), using the graph node-by-node.

Specifically, according to the predictor graph G, we assume that there is a latent decompo-

sition of β0 into p parts V (1), V (2), . . . , V (p) such that β0 =
∑p

i=1 V
(i) and each V (i) ∈ Rp.

The proposed SRIG imposes a penalty to shrink some V (i) to 0 while the other V (i)’s satisfy

supp(V (i)) = Ni, where Ni is a set including predictor i and its neighbors in graph G. For

SRIG, if one predictor is important for prediction, the other predictors connected to it are

also encouraged to be in the model. Note that our proposed SRIG method is a graph based

penalized regression method with a very different motivation, although the corresponding

optimization problem can be formulated as a special case of the Latent Group Lasso ap-

proach ((Obozinski et al., 2011a)) with each neighborhood Ni as a group. For computation,

besides introducing the predictor duplication method shown in (Obozinski et al., 2011a), we

also propose a new iterative proximal algorithm which is very efficient for high dimensional

data. Our theoretical study shows that SRIG has close connections with several existing

methods: (1) It is the same as the adaptive Lasso method when the predictor graph G

has no edge; (2) It is equivalent to the group Lasso method when G consists of multi-

ple complete subgraphs; (3) It has the same nonzero solution set as the ridge regression

when G is a complete graph. Under some conditions, SRIG enjoys asymptotic normality,

model selection consistency and acquires tight finite sample bounds for both estimation and

prediction. In order to evaluate the performance of SRIG, we compare SRIG with many

existing methods. Simulation examples with different kinds of predictor graphs are studied.

We also analyze a dataset from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)

database (www.loni.ucla.edu/ADNI). The structural magnetic resonance imaging (MRI)
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features are used to predict the mini-mental state examination (MMSE) score ((Folstein

et al., 1975)). Both the simulation results and the real data application indicate that SRIG

has competitive performance in estimation, prediction and model selection.

The rest of the chapter is organized as follows. In Section 2.2, we motivate and intro-

duce our proposed SRIG method. In Section 2.3, we introduce two methods to solve the

optimization problem. In Section 2.4, we show some theoretical properties. In Sections 2.5

and 2.6, we demonstrate the use of SRIG on simulated data and the ADNI dataset. We

conclude this chapter with some discussion in Section 2.7. Technical proofs are provided in

Section 2.8.

2.2 Motivation and Methodology

Consider the following linear regression model:

Y = Xβ0 + ε, (2.1)

where ε = (ε1, ε2, . . . , εn)T is a vector of i.i.d. random variables with mean 0 and variance

σ2. Here, β0 = (β0
1 , β

0
2 , . . . , β

0
p)T is a vector of true coefficients, Y = (y1, y2, . . . , yn)T is an

n× 1 response and X = (X1, X2, . . . , Xp) = (x1, x2, . . . , xn)T is an n× p design matrix.

For motivation, we first consider the random design setting and assume that each xk

follows some multivariate distribution with mean 0p×1 and covariance matrix Σ. The de-

sign matrix X is assumed to be independent of the random error ε. Furthermore, denote

Ω = (ωij)i,j=1,2,...,p = Σ−1 and Σxy = (c1, c2, . . . , cp)
T ∈ Rp as the cross-covariance vector

between xk and yk.

By model (2.1) and the definition of cross-covariance, we have

Σxy = E(XTY/n) = E(XTXβ0/n) + E(XT ε/n) = Σβ0.

Then, we observe that β0 = Σ−1Σxy = ΩΣxy, where Ω measures partial correlations among

predictors, and Σxy reflects the marginal correlations between predictors and the response

variable. From β0 = ΩΣxy, we have
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β0
1 = c1ω11 + c2ω12 + · · ·+ ciω1i + · · ·+ cpω1p

β0
2 = c1ω21 + c2ω22 + · · ·+ ciω2i + · · ·+ cpω2p

...

β0
p = c1ωp1 + c2ωp2 + · · ·+ ciωpi + · · ·+ cpωpp.

As shown in the above equations, β0 is the sum of p parts, {(ciω1i, ciω2i, . . . , ciωpi)
T : 1 ≤

i ≤ p}. For the ith part, (ciω1i, ciω2i, . . . , ciωpi)
T , there is a common factor ci. If the ith

predictor and the response variable are uncorrelated marginally, then ci will be 0 and all

the components in the ith part of β0 will be 0 simultaneously. Furthermore, if ci is not

zero and the predictor graph is defined by Ω, then the support of (ciω1i, ciω2i, . . . , ciωpi)
T

becomes Ni, which is a set including predictor i and its neighbors in the predictor graph.

Thus, instead of focusing on β0 in the model, we consider a latent decomposition of β0

into p parts. After choosing the candidate non-zero components in each part based on

N1,N2, . . . ,Np, we use the group lasso penalty to encourage the selected components in

each part to be zero or nonzero simultaneously.

The above idea can be generalized for an arbitrary predictor graph constructed by

the prior information or estimation from data. Given the predictor graph G, we define a

p × p adjacency matrix E, where Eij = 1 if predictors i and j are connected and Eij = 0

otherwise. For each i, we set Eii = 1 and acquire the neighborhood set Ni = {j : Eij = 1}.

As the previous case, we assume that β0 can be decomposed into

β0
1 = V

(1)
1 E11 + V

(2)
1 E12 + · · ·+ V

(i)
1 E1i + · · ·+ V

(p)
1 E1p

β0
2 = V

(1)
2 E21 + V

(2)
2 E22 + · · ·+ V

(i)
2 E2i + · · ·+ V

(p)
2 E2p

...

β0
p = V (1)

p Ep1 + V (2)
p Ep2 + · · ·+ V (i)

p Epi + · · ·+ V (p)
p Epp.

Here, the ith part is (V
(i)

1 E1i, V
(i)

2 E2i, . . . , V
(i)
p Epi)

T whose candidate nonzero components

are {V (i)
j Eji : j ∈ Ni}. We can view {V (i)

j : j ∈ Ni} as the effect arising from the marginal

correlation between the ith predictor and the response variable. If they are uncorrelated,
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V
(i)
j will be zero for each j ∈ Ni and the components in the set {V (i)

j Eji : j ∈ Ni} will be zero

simultaneously. Therefore, after choosing the candidate non-zero components in each part

based on N1,N2, . . . ,Np, it is reasonable to use the group lasso penalty to encourage the

selected components in each part to be zero or nonzero together. Based on this motivating

idea, given the training data (Y,X) and the predictor graph G, we propose a new method,

Sparse Regression Incorporating Graphical structure among predictors (SRIG), shown as

follows.

SRIG Method

Step 1: Find the neighborhoods N1,N2, . . . ,Np (note that i ∈ Ni for each i).

Step 2: Solve the following optimization problem:

min
β,V (1),...,V (p)

1

2n
‖Y −Xβ‖22 + λ

p∑
i=1

τi‖V (i)‖2, (2.2)

subject to
∑p

i=1 V
(i) = β and supp(V (i)) ⊆ Ni for each i, where supp(V (i)) is the

support of vector V (i) and ‖ · ‖2 is the l2 norm.

Here, τi denotes the positive weight for the i-th group. The choice of τi will be discussed

in Section 2.4.4.

2.3 Computation

In this section, we introduce two methods to solve the problem (2.2). One is the predic-

tor duplication (PD) method proposed in (Obozinski et al., 2011a) and another one is our

proposed iterative proximal (IP) algorithm. The predictor duplication method transforms

(2.2) to a traditional group Lasso problem by duplicating predictors while our proposed

new algorithm solves problem (2.2) directly without duplicating predictors.

12



2.3.1 Predictor duplication method

Denote V
(i)
Ni as the |Ni|×1 sub-vector of V (i) with indices in Ni and XNi as the n×|Ni|

sub-matrix of X with column indices in Ni. Denote Ṽ = (V
(1)T

N1
, V

(2)T

N2
, . . . , V

(p)T

Np )T and

X̃ = (XN1 , XN2 , . . . , XNp). Then, we can check that Xβ = X̃Ṽ , and problem (2.2) is

equivalent to the following group Lasso problem:

min
Ṽ

1

2n
‖Y − X̃Ṽ ‖22 + λ

p∑
i=1

τi‖V (i)
Ni ‖2 (2.3)

Many efficient R packages such as grpreg ((Breheny and Huang, 2009)) and gglasso

((Yang and Zou, 2013)) can be used to solve problem (2.3). After setting V̂
(i)
N ci

= 0 for each i,

we have β̂ =
∑p

i=1 V̂
(i). Note that in some cases, some neighborhoods {Ni : i ∈ F} maybe

exactly the same. Then, the vectors {V (i)
Ni : i ∈ F} are indistinguishable and therefore the

decomposition of β (i.e., {V (1), V (2), . . . , V (p)}) is not unique. In this case, although we

can not estimate each vector in {V (i)
Ni : i ∈ F} stably, we can estimate

∑
i∈F V

(i)
Ni directly

and stably using the penalty term (mini∈F τi)‖
∑

i∈F V
(i)
Ni ‖2. Since β̂ =

∑p
i=1 V̂

(i), different

decompositions of β lead to the same estimation of β.

The predictor duplication method shown above is very convenient to use and has good

performance in general. However, when the dimensional is high and at the same time the

predictor graph is not very sparse, there will be a lot of duplicated predictors in (2.3) and

therefore the predictor duplication method can be inefficient ((Obozinski et al., 2011a)). In

the following Section 2.3.2, we will propose a new iterative proximal algorithm which does

not duplicate predictors. It is stable and very efficient for the high dimensional data, espe-

cially when the predictor graph can be decomposed into several disconnected components.

2.3.2 Iterative proximal algorithm

Given the predictor graph G and positive weights τi’s, for β ∈ Rp, define

‖β‖G,τ = min∑p
i=1 V

(i)=β, supp(V (i))⊆Ni

p∑
i=1

τi‖V (i)‖2 (2.4)
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We can show that ‖β‖G,τ is a norm ((Obozinski et al., 2011a)) and (2.2) is equivalent to

min
β∈Rp

1

2n
‖Y −Xβ‖22 + λ‖β‖G,τ (2.5)

In problem (2.5), the squared loss function is strictly convex and differentiable. In addition,

‖β‖G,τ is a norm and therefore convex. Thus, we can use the Fast Iterative Shrinkage

Thresholding Algorithm (FISTA) ((Beck and Teboulle, 2009)) to solve it. For our specific

problem (2.5), we propose the following iterative proximal algorithm.

Iterative Proximal (IP) Algorithm

Input: The initial estimate β(0) and L= the largest eigenvalue of XTX/n.

Step 0: Take Z(1) = β(0) ∈ Rp and t1 = 1.

Step m: (m ≥ 1) Compute

β(m) = arg min
β
λ‖β‖G,τ +

L

2
‖β − (Z(m) − 1

nL
XT (XZ(m) − Y ))‖22, (2.6)

tm+1 =
1 +

√
1 + 4t2m
2

; Z(m+1) = β(m) +
tm − 1

tm+1
(β(m) − β(m−1)).

By Theorem 4.4 in (Beck and Teboulle, 2009), the sequences {β(m)} generated via (2.6)

will converge to the optimal solution with rate O(1/m2). The most time consuming step in

the above IP algorithm is to compute the proximal operator of λ‖β‖G,τ , which is defined as

proxλ‖β‖G,τ (h) = arg min
β
λ‖β‖G,τ +

‖β − h‖22
2

. (2.7)

Follow the same proofs of Lemmas 1 and 2 in (Villa et al., 2014), we can show that

proxλ‖β‖G,τ (h) = h− arg min
β∈SO

‖β − h‖2, (2.8)

where SO = {β ∈ Rp : ‖βNi‖2 ≤ λτi for i ∈ O} and O = {i : ‖hNi‖2 > λτi}.
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In (2.8), we need to solve the following optimization problem

u∗ = arg min
β∈SO

‖β − h‖2

Based on the number of elements in O, denoted as M = |O|, we use different methods

flexibly to find the projection of h onto the convex set SO efficiently. If |O| is small (e.g.,

smaller than p/10 in our simulation study), we calculate the projection by solving the dual

problem via the Bertsekas’s projected Newton method ((Villa et al., 2014)). The solution

is

u∗j =
hj

1 +
∑

i∈O t
∗
i1i,j

, for j = 1, 2, . . . , p,

where t∗ is the solution of

arg max
t∈RM+

f(t), with f(t) =

p∑
j=1

−h2
j

1 +
∑

i∈O ti1i,j
−
∑
i∈O

tiλ
2τ2
i

L2
,

and 1i,j equal to 1 if j belong to Ni and 0 otherwise. The detailed algorithm to solve the

above dual problem is shown in Algorithm 5 in (Villa et al., 2014).

If |O| is large (e.g., larger than p/10), we propose to find the projection by the Parallel

Dykstra-like proximal algorithm ((Combettes and Pesquet, 2011)). The detailed algorithm

is shown as follows.

Parallel Dykstra-like proximal algorithm

Step 0: Set u(0) = h, z1,0 = u(0), z2,0 = u(0), . . . , zM,0 = u(0)
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Step n: (n ≥ 1) Compute

pi,nN ci
= zi,nN ci

for each i ∈ O;

pi,nNi = zi,nNi1(‖zi,nNi ‖ ≤
λτi
L

) +
λτiz

i,n
Ni

L‖zi,nNi ‖2
1(‖zi,nNi ‖ >

λτi
L

) for each i ∈ O;

u(n+1) =
∑
i∈O

p(i,n)

M
;

zi,n+1 = u(n+1) + zi,n − pi,n for each i ∈ O.

The sequence {u(n)} will converge to the projection of h onto SO.

Furthermore, we note that the proposed IP algorithm is scalable to large scale prob-

lems when the predictor graph G can be decomposed into several components (i.e., the

covariance/precision matrix is block diagonal). Denote the disconnected components in G

as G1, G2, . . . , GK with node sets C1, C2, . . . , CK , respectively. In this case, we can compute

the proximal operator (2.7) efficiently by solving the following K subproblems in parallel:

proxλ‖βCk‖Gk,τCk
(hCk) = arg min

βCk

λ‖βCk‖Gk,τCk +
‖βCk − hCk‖22

2
,

where βCk , τCk , hCk are sub-vectors of β, τ , and h, respectively.

The above parallel computation can potentially save a lot of computational cost. In

Section 2.5.3, we will compare the computational costs of the PD method with our IP

algorithm using several simulated examples. In general, the predictor duplication method

is very efficient for small data sets. However, when the dimension is high and the predictor

graph G is not very sparse, our proposed IP algorithm is much faster than the predictor

duplication method. Furthermore, in some cases, the predictor duplication method may

break down since it requires immense working memory.
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2.4 Theoretical Properties

In this section, we study the theoretical properties of our proposed SRIG method. For

theoretical study, it is convenient to consider (2.5) as the objective function. In (2.5),

the optimal decomposition of β minimizing ‖β‖G,τ always exists, but may not be unique

((Obozinski et al., 2011a)). Denote J0 = {i : β0
i 6= 0}, Jc0 = {i : β0

i = 0}, and s0 = |J0| as the

true nonzero coefficient set, the true zero coefficient set, and the number of true nonzero co-

efficients, respectively. For each β ∈ Rp, denote U(β) as the set of all optimal decompositions

of β, and KG,τ (β) as the number of nonzero V (i)’s in the optimal decomposition of β which

has the minimal number of nonzero V (i)’s, i.e., KG,τ (β) = min(V (1),V (2),...,V (p))∈U(β) |{i :

‖V (i)‖2 6= 0}|. Denote KG,τ = supsupp(β)⊆J0 KG,τ (β). We can check that KG,τ = s0 if the

graph G has no edge, KG,τ = K0 if G consists of some disconnected complete subgraphs

and J0 is the union of K0 node sets of those disconnected subgraphs.

2.4.1 Subgradient conditions

The following proposition shows the subgradient conditions for problem (2.5).

Proposition 1. A vector β ∈ Rp is a solution of (2.5) if and only if β can be decomposed

as β =
∑p

i=1 V
(i) where V (i)’s satisfy that, for all 1 ≤ i ≤ p, (a) V

(i)
N ci

= 0; (b) either V
(i)
Ni 6= 0

and XT
Ni(Y −Xβ) = nλτi

V
(i)
Ni

‖V (i)
Ni
‖2

, or V
(i)
Ni = 0 and ‖XT

Ni(Y −Xβ)‖2 ≤ nλτi.

The subgradient conditions shown above are similar to the subgradient conditions for

the latent group Lasso ((Obozinski et al., 2011a)) and group Lasso ((Nardi and Rinaldo,

2008)). According to Proposition 1, if (V̂ (1), V̂ (2), . . . , V̂ (p)) is a solution of problem (2.2),

then for each i, either V̂ (i) = 0p×1 or supp(V̂ (i)) = Ni. Thus, the estimate β̂ =
∑p

i=1 V̂
(i)

acquired by our proposed SRIG method has the same decomposition pattern as we discussed

in Section 2.2.

2.4.2 Connections with some existing methods

The following proposition shows the connections between our proposed SRIG method

and several other existing penalized methods when the given predictor graph has some

special structures.
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Proposition 2. (a) If the predictor graph has no edge, the proposed SRIG method is the

same as the adaptive Lasso method for each tuning parameter λ; (b) If the predictor graph

consists of K disconnected complete subgraphs, our proposed SRIG method is equivalent

to the group Lasso method for each λ; (c) If the predictor graph is a complete graph, our

proposed SRIG method has the same nonzero solution set as the ridge regression, i.e., for

each nonzero solution acquired by ridge regression (or SRIG), SRIG (or ridge regression)

could acquire the same solution using a different tuning parameter.

Proposition 2 indicates that the proposed SRIG method includes adaptive Lasso, group

Lasso, and ridge regression as special cases. It is much more general and can handle any

arbitrary predictor graph structure.

2.4.3 Finite Sample Bounds

In this section, we derive the oracle inequalities for the prediction and estimation loss

of our proposed SRIG method. The design matrix X is treated as fixed in this subsection.

For a given graph G, positive weights τj ’s and subset J ⊂ {1, 2 . . . , p}, denote TG,τ (β, J) as

the set of all optimal decompositions of β such that
∑

j∈Jc τj‖V (j)‖2 ≤ 3
∑

j∈J τj‖V (j)‖2.

For each 1 ≤ i ≤ p, denote di as the number of predictors in the neighborhood Ni, i.e.,

di = |Ni|. The following conditions are considered in this section.

(A1) The errors ε1, ε2, . . . , εn
i.i.d.∼ N(0, σ2).

(A2) The neighborhood Ni ⊆ J0 for each i ∈ J0.

(A3) There exists κ > 0 such that

inf
|J |≤s0,β∈Rp\{0}

inf
(V (1),V (2),...,V (p))∈TG,τ (β,J)

‖Xβ‖2√
n
∑

j∈J τ
2
j ‖V (j)‖22

≥ κ.

Note that condition (A1) is a common condition for linear regression. Condition (A2)

assumes that the given predictor graph G is “consistent” with β0, i.e., predictors connected

to the useful predictor are also useful. Condition (A3) is similar to the restricted eigenvalue

conditions used for the group Lasso ((Nardi and Rinaldo, 2008; Lounici et al., 2011)) and the
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overlapped group Lasso ((Percival, 2012)). It is used to analyze the l2 consistency property

of both estimation and prediction.

Theorem 1. Suppose that conditions (A1), (A2) and (A3) are satisfied. Let τ∗ =

min1≤i≤p τi and denote ηi as the positive square root of the largest eigenvalue of 1
nX

T
NiXNi .

If we choose λτi ≥ 2σηi√
n

(di +Ad
1/2
i log(p))1/2 where A > 8, then, for any optimal solution β̂

of problem (2.5), we have

1

n
‖X(β̂ − β0)‖22 ≤

16λ2KG,τ

κ2
,

‖β̂ − β0‖G,τ ≤
16λKG,τ

κ2
,

‖β̂ − β0‖2 ≤
16λKG,τ

κ2τ∗
,

with probability at least 1− p1−q, where q = 1
8 min{A,A2 log(p)}.

Remark 1. Note that the above results are very general and have close connections with

the results shown in the literature. For example, when the predictor graph G has no edge,

we have KG,τ = s0 and ‖β̂ − β0‖G,τ = ‖β̂ − β0‖1 if τi = 1 for each i. Theorem 1 indicates

that our proposed SRIG method acquires the same rates of prediction and estimation as

the results shown in (Bickel et al., 2009) for the Lasso method. When the given graph G

consists of some disconnected complete subgraphs and J0 is the union of K0 node sets of

those disconnected subgraphs, we have KG,τ = K0. In this case, we can also recover the

results shown in (Nardi and Rinaldo, 2008) and (Lounici et al., 2011) for the group Lasso.

2.4.4 Asymptotic Normality and Model Selection Consistency

In this section, we first study the asymptotic normality for the case with a fixed dimen-

sion p. Then, we study the model selection consistency for the high dimensional case which

allows p to grow with n. Both fixed design and random design are considered in these two

cases. For every β ∈ Rp, denote βJ0 and βJc0 as the sub-vectors of β with indices in J0 and

Jc0 respectively.

For the fixed p case, we use the following two common conditions:
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(A4) As n→∞, XTX/n→M, where M is a positive matrix.

(A5) The errors ε1, . . . , εn are i.i.d. random variables with mean 0 and finite variance σ2.

Theorem 2. Assume conditions (A2), (A4) and (A5) hold. Suppose the tuning parameter

λ and weights τi’s are chosen such that
√
nλ → 0 and n(γ+1)/2λ → ∞ for some γ > 0.

Furthermore, τj = O(1) for each j ∈ J0 and lim infn→∞ n
−γ/2τj > 0 for each j ∈ Jc0 . Then,

with dimension p fixed, as n→∞, we have

√
n(β̂J0 − β0

J0)
d−→ N(0, σ2M−1

J0,J0
), and β̂Jc0

p−→ 0,

whereMJ0,J0 is the sub-matrix ofM consisting of the entries with row and column indices

in J0.

Remark 2. Theorem 2 indicates that our proposed SRIG method is estimation-consistent

for the fixed p case. The estimates of the nonzero coefficients enjoy the asymptotic normality.

Theorem 2 also provides a guideline on how to choose the positive weight τj . When n > p,

similar to the weights used for the Adaptive Lasso ((Zou, 2006)), we can choose τj =√
dj/|β̂γj |, where β̂j is any

√
n-consistent estimate of β0

j . Note that Theorem 2 can be

extended to the random design setting naturally.

Corollary 1. Consider the random design setting where x1, x2, . . . , xn are i.i.d. samples

from a multivariate distribution with mean 0 and covariance matrix Σ. Assume that the

design matrix X and the errors ε are independent. Suppose conditions (A2) and (A5) hold.

The tuning parameter λ and weights τi’s are chosen such that
√
nλ→ 0 and n(γ+1)/2λ→∞

for some γ > 0. Furthermore, τj = O(1) for each j ∈ J0 and lim infn→∞ n
−γ/2τj > 0 for

each j ∈ Jc0 . Then, with p fixed, as n→∞, we have

√
n(β̂J0 − β0

J0)
d−→ N(0, σ2Σ−1

J0,J0
), and β̂Jc0

p−→ 0,

where ΣJ0,J0 is the sub-matrix of Σ consisting of the entries with row and column indices

in J0.
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For the high dimensional case which allows the dimension p to grow with n, if the

design matrix X is considered to be fixed, we need the following conditions for model

selection consistency.

(A6) The number of nonzero coefficients s0 = O(nδ0) for some constant δ0 ∈ (0, 1).

(A7) There exists a constant Q1 > 0 such that maxj∈Jc0 ‖Xj‖2 ≤
√
nQ1 for each n.

(A8) There exists a constant Q2 > 0 such that the smallest eigenvalue of XT
J0
XJ0/n is

larger than Q2 for each n.

(A9) There exists a constant ξ ∈ (0, 1) such that ‖XT
Jc0
XJ0(XT

J0
XJ0)−1‖∞ ≤ 1 − ξ, where

for a k ×m matrix M, ‖M‖∞ is defined as max1≤i≤k
∑m

j=1 |Mij | .

Note that condition (A6) is a common sparsity assumption for the high dimensional

regression problem. Condition (A7) can be satisfied by normalizing each predictor. Condi-

tion (A8) guarantees that the matrix XT
J0
XJ0/n is invertible and its inverse behaves well.

The main condition (A9) is similar to the strong irrepresentable condition used for Lasso

((Zhao and Yu, 2006)).

Theorem 3. Assume conditions (A1), (A2), (A6)-(A9) hold. Suppose the weight τj

is chosen to be
√
djmj for each j, where the mj ’s satisfy that maxj∈J0 mj = Op(1) and

lim infn→∞ n
−γ minj∈Jc0 mj > 0 for some γ > δ0. Furthermore, the selected tuning param-

eter λ and the minimum absolute nonzero coefficient β0
min = minj∈J0 |β0

j | satisfy that, as

n −→∞ and p = p(n) −→∞,

1

λ

√
log (p− s0)

n
max
j∈Jc0

√
dj

τj
−→ 0, and

1

β0
min

(3σ

√
log s0

nQ2
+ λ

√
s0

Q2
max
j∈J0

τj) −→ 0.

Then, as n −→ ∞ and p = p(n) −→ ∞, there exists a solution β̂ to (2.5) such that

sign(β̂)=sign(β0) with probability tending to 1, where sign(·) maps a positive entry to 1, a

negative entry to −1 and zero to zero.

Remark 3. For clarification, we note that many quantities such as p, s0, λ, τj and dj

depend on n. We use simple notation here for convenience. Theorem 3 indicates that our
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proposed SRIG method is model selection consistent for the high dimensional case. For

example, suppose the dimension p = O(en
δ1 ) for some constant δ1 ∈ (0, 1). Furthermore,

for sufficiently large n, the minimum absolute nonzero coefficient β0
min satisfies that β0

min ≥

Q3n
(δ2−1)/2 for some constants Q3 > 0 and δ2 > δ1. If the weights τj ’s are selected as

shown in the theorem and the tuning parameter λ is chosen to be λ = Op(n
(δ1−2δ0−1)/2),

then by Theorem 3 we can show that there exists a solution β̂ such that sign(β̂)=sign(β0)

with probability tending to 1. In the high dimensional case with p � n, our simulation

study suggests that choosing τj =
√
dj/| ˆcov(Xj , Y )|γ works well. The positive parameter

γ can be chosen by cross-validation.

In Theorem 3, as the Lasso method, we use the irrepresentable condition (A9). In fact,

we can also use the following condition (A9′) in order to reflect the use of the weights τj ’s.

Following the same proof of Theorem 3, we can achieve the model selection consistency as

shown in Corollary 2.

(A9′) There exists a constant ξ ∈ (0, 1) such that for each j ∈ Jc0 , we have

‖XT
NjXJ0(XT

J0XJ0)−1‖∞ ≤
τj√
dj

(1− ξ).

Corollary 2. Assume conditions (A1), (A2), (A6)-(A8), (A9′) hold. Suppose the weight

τj ’s satisfy that
√
s0 maxj∈J0 τj = op(1). Furthermore, the selected tuning parameter λ and

the minimum absolute nonzero coefficient β0
min = minj∈J0 |β0

j | satisfy the same conditions

in Theorem 3, then, as n −→ ∞ and p = p(n) −→ ∞, there exists a solution β̂ to (2.5)

such that sign(β̂)=sign(β0) with probability tending to 1.

Theorem 3 considers the fixed design setting. It can be extended to the random design

setting as well. For that setting, the conditions (A6)-(A9) are replaced by the following

conditions.

(A10) Let x1, x2, . . . , xn
i.i.d.∼ N(0,Σ) with Σjj = 1 for each j. Furthermore, assume that

X and ε are independent. The dimension p < en/(4Q
2
3), where Q3 > 4

√
5/3.
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(A11) Restricted eigenvalue assumption:

Λmin(s0) =
16

17
min

J⊆{1,2,...,p}, |J |≤s0
min

θ 6=0, θJc=0

θTΣθ

‖θJ‖22
> 0.

(A12) The number of true nonzero coefficients s0 < (Λmin(s0)/(16Q3))
√
n/ log p.

Note that conditions (A10)-(A12) are common conditions used in the literature for the

random design setting ((Bickel et al., 2009; Zhou et al., 2009)). Under these conditions, we

can show that our proposed SRIG method is also model selection consistent for the high

dimensional case with random design.

Theorem 4. Assume conditions (A1), (A2), (A10)-(A12) hold. Suppose the weight

τj is chosen to be
√
djmj for each j, where s

3/2
0 maxj∈J0 mj = o(

√
Λmin(s0) minj∈Jc0 mj).

Furthermore, the selected tuning parameter λ and the minimum absolute nonzero coefficient

β0
min = minj∈J0 |β0

j | satisfy that, as n −→∞ and p = p(n) −→∞,

1

λ

√
log (p− s0)

n
max
j∈Jc0

√
dj

τj
−→ 0,

1

β0
min

(3σ

√
log s0

nΛmin(s0)
+ λ

√
s0

Λmin(s0)
max
j∈J0

τj) −→ 0.

Then, as n −→ ∞ and p = p(n) −→ ∞, there exists a solution β̂ to (2.5) such that

sign(β̂)=sign(β0) with probability tending to 1, where sign(·) maps a positive entry to 1, a

negative entry to −1 and zero to zero.

Remark 4. Under conditions (A10)-(A12), we can show that condition (A7) is

satisfied with Q1 =
√

3/2, condition (A8) is satisfied with Q2 = Λmin(s0), and

‖XT
Jc0
XJ0(XT

J0
XJ0)−1‖∞ ≤

√
3s0/(2Λmin(s0)), with probability greater than 1−1/p2. Based

on these results, we can use a similar proof of Theorem 3 to prove Theorem 4.

2.5 Simulation Study

In this section, we first compare our proposed SRIG method with many existing meth-

ods. Then, we conduct a sensitivity study of the SRIG method. Finally, we compare

the computational costs of the predictor duplication method and our proposed iterative

proximal algorithm using some examples.
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2.5.1 Performance Comparison

To examine the performance of SRIG, we compare it with many other methods on

three examples. Firstly, we compare SRIG with popular penalized methods such as Lasso,

Ridge regression, Adaptive Lasso (ALasso) and Elastic net (Enet) which do not use the

predictor graph structure information directly. Secondly, we compare SRIG with some

existing methods using the predictor structure information. The competitors are GRACE

((Li and Li, 2008)) and GOSCAR ((Yang et al., 2012)). Thirdly, we compare SRIG with

other latent component approaches such as principal component regression (PCR) and

sparse partial least squares (SPLS) using the R packages pls ((Mevik and Wehrens, 2007))

and spls ((Chung et al., 2012)), respectively. In this simulation study, the predictor graph

is defined by the precision matrix of the predictors. The performance of GRACE, GOSCAR

and SRIG using both the estimated predictor graph and the oracle true predictor graph

are evaluated on all examples. We denote GRACE-O, GOSCAR-O and SRIG-O as the

GRACE, GOSCAR and SRIG methods using the true predictor graph, respectively. For

comparison, we also show the performance of the least square method based on the true

model, which is denoted as LS-O.

Figure 2.1: True predictor graphs of three simulation examples.

We generate data from model (2.1) with the errors ε1, ε2, . . . , εn
i.i.d.∼ N(0, σ2). For each

example, our simulated data include a training set, an independent validation set and an

independent test set. All the models are fitted on the training data only. The validation data
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are used to choose the tuning parameter and the test data set is used to evaluate different

methods. We use the notation ./././ to show the sample sizes in the training, validation

and test sets, respectively. For each example, we consider three cases: (I) 40/40/400, (II)

80/80/400 and (III) 120/120/400. For each case, we repeat the simulation 50 times. The

predictor graph is estimated by the graphical Lasso method ((Friedman et al., 2008)) only

using the training data in all cases.

Example 1: (Ω is block diagonal) p = 100, s0 = 15, σ = 5, and the true coefficient

vector β0 = (3, 3, · · · , 3, 0, 0, · · · , 0). The predictors are generated as:

Xj = Z1 + 0.4εxj , Z1 ∼ N(0, 1), 1 ≤ j ≤ 5;

Xj = Z2 + 0.4εxj , Z2 ∼ N(0, 1), 6 ≤ j ≤ 10,

Xj = Z3 + 0.4εxj , Z3 ∼ N(0, 1), 11 ≤ j ≤ 15; Xj
i.i.d∼ N(0, 1), 16 ≤ j ≤ 100,

where εxj
i.i.d∼ N(0, 1), j = 1, 2, . . . , 15.

Example 2: (Ω is banded) p = 100, σ = 10, and β0 is the same as the β0 used in

Example 1. The predictors (X1, X2, . . . , Xp)
T ∼ N(0,Σ) with Σij = 0.5|i−j|. For this

example, we have ωii = 1.333, ωij = −0.667 if |i− j| = 1 and ωij = 0 if |i− j| > 1.

Example 3: (Ω is sparse) p = 100, σ = 5, and the predictors (X1, X2, . . . , Xp)
T ∼

N(0,Ω−1), where Ω = L+δI. Each off-diagonal entry in L is generated independently

and equals to 0.5 with probability 0.05, or 0 with probability 0.95. The diagonal en-

try of L is 0. Here, δ is chosen such that the conditional number of Ω is equal to

p. Finally, Ω is standardized to have unit diagonals. We set β0 = ΩΣxy, where

Σxy = (c1, c2, . . . , cp)
T with ci = 10 for the predictors having the top four largest

degrees and ci = 0 otherwise.

To evaluate different methods, we use the following measures:

• l2 distance ‖β̂ − β0‖2;

• Relative prediction error (RPE) 1
σ2Ntest

(β̂−β0)TXT
testXtest(β̂−β0), where Xtest is the

test samples and Ntest is the number of test samples;
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• False positive rate (FPR) and False negative rate (FNR);

• Nonzero match ratio (NMR) =
|{(i,j): Ωij 6=0, β̂i 6=0, β̂j 6=0}|
|{(i,j): Ωij 6=0, β0

i 6=0, β0
j 6=0}| , which is used to check

whether the estimated coefficients of two connected useful predictors are both nonzero;

Zero match ratio (ZMR) =
|{(i,j): Ωij 6=0, β̂i=0, β̂j=0}|
|{(i,j): Ωij 6=0, β0

i =0, β0
j=0}| , which is used to check whether

the estimated coefficients of two connected useless predictors are both zero. We use

NMR and ZMR when there is at least one edge connecting two useful predictors and

one edge connecting two useless predictors. Thus, these two ratios are well defined

and always between 0 and 1.

Table 2.1: Comparison of estimation and prediction (Example 1).

Methods
l2 distance RPE

(I) (II) (III) (I) (II) (III)

LS-O 8.378 (0.323) 5.014 (0.124) 4.132 (0.142) 0.595 (0.047) 0.212 (0.010) 0.149 (0.010)

Lasso 8.527 (0.199) 5.635 (0.119) 4.328 (0.153) 1.291 (0.087) 0.530 (0.036) 0.274 (0.014)

Ridge 8.166 (0.050) 7.585 (0.039) 4.325 (0.062) 12.336 (0.215) 10.936 (0.144) 0.946 (0.027)

ALasso 8.822 (0.275) 5.570 (0.167) 4.686 (0.147) 1.032 (0.093) 0.351 (0.041) 0.211 (0.012)

Enet 5.120 (0.201) 3.770 (0.110) 3.265 (0.092) 0.969 (0.071) 0.431 (0.031) 0.239 (0.012)

PCR 7.097 (0.104) 5.730 (0.096) 4.846 (0.080) 5.256 (0.253) 2.714 (0.134) 1.670 (0.092)

SPLS 4.147 (0.307) 3.150 (0.234) 2.752 (0.187) 1.046 (0.141) 0.777 (0.105) 0.494 (0.049)

GOSCAR 4.980 (0.273) 3.218 (0.139) 3.038 (0.108) 0.817 (0.070) 0.362 (0.024) 0.252 (0.010)

GOSCAR-O 5.051 (0.270) 3.220 (0.138) 3.027 (0.107) 0.811 (0.069) 0.363 (0.024) 0.255 (0.010)

GRACE 4.551 (0.142) 3.749 (0.091) 3.378 (0.122) 0.632 (0.050) 0.338 (0.021) 0.222 (0.011)

GRACE-O 4.554 (0.140) 3.743 (0.091) 3.371 (0.123) 0.633 (0.051) 0.338 (0.021) 0.222 (0.011)

SRIG 2.403 (0.065) 1.890 (0.064) 1.610 (0.046) 0.324 (0.037) 0.217 (0.015) 0.175 (0.013)

SRIG-O 2.392 (0.065) 1.820 (0.045) 1.564 (0.043) 0.320 (0.037) 0.208 (0.015) 0.171 (0.012)
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Table 2.2: Comparison of model selection (Example 1).

Methods
FPR FNR

(I) (II) (III) (I) (II) (III)

LS-O 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)

Lasso 0.087 (0.009) 0.145 (0.014) 0.123 (0.010) 0.171 (0.012) 0.027 (0.005) 0.003 (0.002)

Ridge 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)

ALasso 0.039 (0.007) 0.027 (0.006) 0.041 (0.005) 0.173 (0.016) 0.021 (0.006) 0.007 (0.003)

Enet 0.131 (0.013) 0.171 (0.012) 0.148 (0.013) 0.032 (0.010) 0.000 (0.000) 0.000 (0.000)

PCR 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)

SPLS 0.140 (0.034) 0.274 (0.043) 0.245 (0.034) 0.043 (0.011) 0.004 (0.002) 0.003 (0.002)

GOSCAR 0.190 (0.025) 0.226 (0.007) 0.307 (0.009) 0.039 (0.011) 0.003 (0.002) 0.000 (0.000)

GOSCAR-O 0.230 (0.032) 0.228 (0.007) 0.310 (0.009) 0.036 (0.011) 0.003 (0.002) 0.000 (0.000)

GRACE 0.136 (0.011) 0.135 (0.009) 0.127 (0.011) 0.005 (0.004) 0.000 (0.000) 0.000 (0.000)

GRACE-O 0.138 (0.011) 0.134 (0.009) 0.127 (0.011) 0.005 (0.004) 0.000 (0.000) 0.000 (0.000)

SRIG 0.001 (0.001) 0.003 (0.001) 0.003 (0.001) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)

SRIG-O 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)

Figure 2.1 shows the true predictor graphs (defined by Ω) of these three examples.

The numbers of edges for these three graphs are 30, 99 and 243, respectively. Such graphs

were also studied in the literature previously ((Yang et al., 2012; Cai et al., 2011)). It is

very interesting to study whether the structure information represented by these predictor

graphs could be used to improve the performance of estimation, prediction and model selec-

tion. Tables 2.1 and 2.2 show the performance comparison for Example 1. The comparison

results indicate that the Elastic net method acquires better estimation and prediction than

Lasso, ridge regression and adaptive Lasso methods by using a linear combination of l1 and

ridge penalty. The GOSCAR and GRACE methods further improve the performance of

estimation and prediction benefiting from using the addtional estimated predictor graph

27



directly. However, Elastic net, GOSCAR and GRACE methods still have relatively high

FPR. Compared with the other methods (not including methods using the true predictor

graph), our proposed SRIG method delivers the best performance of estimation and predic-

tion. Furthermore, SRIG almost always identifies the true model perfectly for this example.

Since the estimated predictor graph for this example is almost the same as the true pre-

dictor graph, the performance of GOSCAR-O, GRACE-O and SRIG-O are similar to those

of GOSCAR, GRACE and SRIG respectively. Due to the strong correlation between dif-

ferent important predictors, the performance of LS-O method on this example is not very

good. Compared with LS-O, our proposed SRIG method still acquires better performance

of estimation and competitive results for prediction.

Table 2.3: Comparison of estimation and prediction (Example 2).

Methods
l2 distance RPE

(I) (II) (III) (I) (II) (III)

LS-O 9.312 (0.322) 6.193 (0.213) 4.926 (0.146) 0.575 (0.036) 0.235 (0.015) 0.149 (0.008)

Lasso 9.896 (0.205) 7.440 (0.159) 5.865 (0.130) 1.146 (0.061) 0.536 (0.022) 0.300 (0.012)

Ridge 9.298 (0.065) 8.571 (0.049) 6.496 (0.079) 2.240 (0.045) 1.914 (0.028) 0.500 (0.015)

ALasso 10.072 (0.192) 7.311 (0.181) 6.238 (0.157) 1.065 (0.056) 0.426 (0.021) 0.275 (0.011)

Enet 8.776 (0.197) 6.668 (0.142) 5.176 (0.103) 1.056 (0.057) 0.514 (0.023) 0.280 (0.011)

PCR 9.782 (0.110) 8.842 (0.125) 8.613 (0.132) 2.318 (0.071) 1.763 (0.074) 1.711 (0.077)

SPLS 8.423 (0.261) 5.480 (0.212) 4.062 (0.172) 0.900 (0.056) 0.321 (0.024) 0.194 (0.017)

GOSCAR 8.844 (0.243) 6.280 (0.173) 4.547 (0.123) 0.974 (0.051) 0.438 (0.023) 0.221 (0.009)

GOSCAR-O 5.662 (0.247) 4.666 (0.121) 4.416 (0.102) 0.566 (0.049) 0.287 (0.016) 0.208 (0.010)

GRACE 8.815 (0.235) 6.562 (0.152) 5.270 (0.112) 1.029 (0.055) 0.475 (0.021) 0.267 (0.011)

GRACE-O 8.238 (0.239) 6.353 (0.151) 5.084 (0.108) 0.972 (0.062) 0.453 (0.022) 0.254 (0.010)

SRIG 8.179 (0.200) 5.890 (0.130) 4.942 (0.104) 0.949 (0.068) 0.396 (0.022) 0.236 (0.009)

SRIG-O 7.354 (0.193) 5.257 (0.133) 4.245 (0.097) 0.718 (0.050) 0.284 (0.016) 0.167 (0.008)
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Table 2.4: Comparison of model selection (Example 2).

Methods
FPR FNR

(I) (II) (III) (I) (II) (III)

LS-O 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)

Lasso 0.154 (0.010) 0.171 (0.014) 0.158 (0.011) 0.304 (0.016) 0.099 (0.010) 0.025 (0.005)

Ridge 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)

ALasso 0.121 (0.012) 0.071 (0.010) 0.081 (0.007) 0.303 (0.018) 0.121 (0.014) 0.052 (0.009)

Enet 0.311 (0.032) 0.273 (0.024) 0.223 (0.016) 0.168 (0.019) 0.051 (0.009) 0.005 (0.003)

PCR 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)

SPLS 0.196 (0.030) 0.050 (0.011) 0.059 (0.021) 0.181 (0.021) 0.096 (0.013) 0.043 (0.007)

GOSCAR 0.271 (0.028) 0.369 (0.030) 0.354 (0.026) 0.164 (0.016) 0.027 (0.007) 0.005 (0.003)

GOSCAR-O 0.500 (0.038) 0.569 (0.020) 0.715 (0.017) 0.023 (0.008) 0.003 (0.002) 0.000 (0.000)

GRACE 0.440 (0.055) 0.203 (0.014) 0.174 (0.011) 0.109 (0.017) 0.055 (0.008) 0.011 (0.003)

GRACE-O 0.328 (0.045) 0.195 (0.013) 0.170 (0.011) 0.113 (0.016) 0.047 (0.008) 0.009 (0.003)

SRIG 0.283 (0.016) 0.275 (0.017) 0.243 (0.014) 0.112 (0.014) 0.028 (0.005) 0.009 (0.004)

SRIG-O 0.170 (0.016) 0.101 (0.013) 0.067 (0.008) 0.099 (0.012) 0.033 (0.006) 0.013 (0.004)

Tables 2.3 and 2.4 display the results for Example 2. As Example 1, the Elastic net

method has better performance of estimation and prediction than Lasso and ridge regres-

sion. For the cases with relative large sample sizes, the adaptive Lasso method acquires

better prediction than the Elastic net method. GOSCAR, GRACE and our proposed SRIG

obtain better estimation and prediction than the methods not incorporating the additional

predictor graph information. Methods using the true predictor graph acquire better esti-

mation and prediction than those methods using estimated predictor graph, especially for

the small sample cases (I and II). Compared with GOSCAR (GOSCAR-O) and GRACE

(GRACE-O), our proposed SRIG (SRIG-O) has competitive performance of estimation and

prediction. Furthermore, the results in Table 2.4 show that our proposed SRIG-O method
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Table 2.5: Comparison of estimation and prediction (Example 3).

Methods
l2 distance RPE

(I) (II) (III) (I) (II) (III)

LS-O 2.668 (0.103) 1.769 (0.055) 1.324 (0.048) 0.401 (0.027) 0.172 (0.010) 0.103 (0.007)

Lasso 11.370 (0.131) 7.096 (0.186) 4.772 (0.106) 3.792 (0.080) 1.850 (0.090) 0.846 (0.035)

Ridge 12.140 (0.008) 12.100 (0.013) 11.026 (0.166) 4.006 (0.035) 3.979 (0.046) 3.779 (0.059)

ALasso 11.339 (0.147) 7.070 (0.184) 4.773 (0.105) 3.786 (0.078) 1.840 (0.088) 0.843 (0.035)

Enet 11.366 (0.129) 7.096 (0.186) 4.772 (0.106) 3.795 (0.076) 1.850 (0.090) 0.846 (0.035)

PCR 12.122 (0.010) 12.140 (0.007) 12.139 (0.008) 4.216 (0.044) 4.072 (0.043) 4.076 (0.049)

SPLS 12.080 (0.124) 11.219 (0.137) 10.858 (0.111) 5.990 (0.165) 5.247 (0.112) 4.664 (0.115)

GOSCAR 8.879 (0.220) 5.677 (0.151) 4.001 (0.090) 2.671 (0.117) 1.175 (0.056) 0.600 (0.025)

GOSCAR-O 8.709 (0.220) 5.454 (0.142) 3.900 (0.085) 2.510 (0.102) 1.094 (0.052) 0.571 (0.023)

GRACE 11.166 (0.140) 7.074 (0.184) 4.788 (0.105) 3.753 (0.088) 1.842 (0.089) 0.850 (0.035)

GRACE-O 10.140 (0.159) 7.085 (0.186) 4.787 (0.104) 3.279 (0.071) 1.822 (0.086) 0.848 (0.035)

SRIG 6.398 (0.223) 3.756 (0.131) 2.691 (0.076) 1.607 (0.093) 0.621 (0.040) 0.322 (0.018)

SRIG-O 4.150 (0.301) 2.344 (0.098) 1.736 (0.066) 0.804 (0.103) 0.254 (0.020) 0.141 (0.009)

acquires much lower FPR than the GOSCAR-O and GRACE-O methods. This indicates

that GRACE and GOSCAR methods using the predictor graph edge-by-edge may lead to

poor model selection results, although they can acquire competitive performance for es-

timation and prediction. Compared with latent component approaches, SRIG has better

performance than PCR while worse performance than SPLS. However, SRIG-O has better

performance than PCR and SPLS in most cases.

The performance comparison for Example 3 is shown in Tables 2.5 and 2.6. Methods not

using the predictor graph have poor performance for both estimation, prediction and model

selection, especially for the cases (I) and (II) with smaller n than p. For this example, the

performance of estimation and prediction of the Elastic net method is similar to Lasso, ridge
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Table 2.6: Comparison of model selection (Example 3).

Methods
FPR FNR

(I) (II) (III) (I) (II) (III)

LS-O 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)

Lasso 0.152 (0.019) 0.467 (0.015) 0.481 (0.013) 0.793 (0.027) 0.129 (0.018) 0.011 (0.005)

Ridge 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)

ALasso 0.155 (0.020) 0.469 (0.014) 0.473 (0.014) 0.776 (0.031) 0.124 (0.017) 0.011 (0.005)

Enet 0.233 (0.031) 0.467 (0.015) 0.481 (0.013) 0.716 (0.034) 0.129 (0.018) 0.011 (0.005)

PCR 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)

SPLS 0.440 (0.050) 0.351 (0.044) 0.305 (0.042) 0.502 (0.053) 0.493 (0.046) 0.476 (0.049)

GOSCAR 0.292 (0.028) 0.378 (0.022) 0.380 (0.011) 0.438 (0.031) 0.060 (0.010) 0.004 (0.003)

GOSCAR-O 0.261 (0.024) 0.349 (0.016) 0.369 (0.012) 0.424 (0.030) 0.049 (0.009) 0.004 (0.003)

GRACE 0.220 (0.030) 0.472 (0.015) 0.481 (0.014) 0.711 (0.036) 0.120 (0.018) 0.011 (0.005)

GRACE-O 0.677 (0.058) 0.531 (0.028) 0.480 (0.014) 0.296 (0.055) 0.085 (0.015) 0.009 (0.004)

SRIG 0.216 (0.012) 0.266 (0.017) 0.245 (0.016) 0.109 (0.014) 0.015 (0.005) 0.000 (0.000)

SRIG-O 0.163 (0.018) 0.127 (0.018) 0.071 (0.015) 0.031 (0.018) 0.000 (0.000) 0.000 (0.000)

regression and adaptive Lasso. When the additional predictor graph information is used,

the GRACE method, which can be considered as a graph version of the Elastic net, still

does not acquire improved performance. However, GOSCAR benefits from the additional

predictor graph information and acquires better performance. Compared with the other

methods (not including SRIG-O), our proposed SRIG method has the best results for both

estimation, prediction and model selection. As the previous two examples, each method

using the true predictor graph performs better than the corresponding method using the

estimated graph. For this example, LS-O acquires the best performance and our proposed

SRIG-O method has similar results to the LS-O method when the sample size is large.
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Table 2.7: Comparison of NMR and ZMR (Sample sizes: 40/40/400).

Methods
NMR ZMR

Example 1 Example 2 Example 3 Example 1 Example 2 Example 3

LS-O 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) − 1.000 (0.000) 1.000 (0.000)

Lasso 0.679 (0.020) 0.480 (0.025) 0.149 (0.025) − 0.717 (0.017) 0.743 (0.031)

Ridge 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) − 0.000 (0.000) 0.000 (0.000)

Alasso 0.681 (0.027) 0.494 (0.026) 0.167 (0.029) − 0.779 (0.021) 0.738 (0.032)

Enet 0.939 (0.019) 0.710 (0.032) 0.215 (0.034) − 0.520 (0.038) 0.642 (0.037)

PCR 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) − 0.000 (0.000) 0.000 (0.000)

SPLS 0.922 (0.020) 0.703 (0.033) 0.445 (0.057) − 0.702 (0.038) 0.441 (0.056)

GOSCAR 0.927 (0.019) 0.717 (0.026) 0.491 (0.032) − 0.593 (0.032) 0.528 (0.029)

GOSCAR-O 0.933 (0.019) 0.966 (0.012) 0.505 (0.032) − 0.405 (0.040) 0.574 (0.028)

GRACE 0.989 (0.008) 0.813 (0.029) 0.227 (0.036) − 0.462 (0.048) 0.658 (0.037)

GRACE-O 0.989 (0.008) 0.809 (0.027) 0.676 (0.059) − 0.552 (0.040) 0.271 (0.052)

SRIG 1.000 (0.000) 0.841 (0.019) 0.864 (0.018) − 0.579 (0.020) 0.627 (0.018)

SRIG-O 1.000 (0.000) 0.844 (0.017) 0.969 (0.018) − 0.780 (0.020) 0.713 (0.030)

[− indicates that value is not available since there are no edges between useless predictors.]

The comparison results of NMR and ZMR for the cases with sample sizes 40/40/400,

80/80/400 and 120/120/400 are shown in Table 2.7, Table 2.8 and Table 2.9, respectively.

Compared with the other methods (except LS-O which uses the underlying true model),

our proposed SRIG-O acquires the best performance in most cases. The NMR’s of SRIG-O

indicate that our proposed SRIG method incorporates most edges between useful predictors

efficiently and therefore chooses those connected useful predictors simultaneously. The

ZMR’s of SRIG-O indicate that our proposed SRIG-O method also makes use of most

edges between useless predictors and therefore excludes those connected useless predictors

jointly. Overall, for our proposed SRIG method, the estimated pattern (zero or nonzero)

among coefficients agrees with the graphical structure very well.
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Table 2.8: Comparison of NMR and ZMR (Sample sizes: 80/80/400).

Methods
NMR ZMR

Example 1 Example 2 Example 3 Example 1 Example 2 Example 3

LS-O 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) − 1.000 (0.000) 1.000 (0.000)

Lasso 0.947 (0.011) 0.820 (0.018) 0.838 (0.023) − 0.693 (0.022) 0.300 (0.017)

Ridge 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) − 0.000 (0.000) 0.000 (0.000)

Alasso 0.958 (0.011) 0.787 (0.024) 0.845 (0.021) − 0.871 (0.017) 0.295 (0.016)

Enet 1.000 (0.000) 0.906 (0.017) 0.838 (0.023) − 0.552 (0.031) 0.300 (0.017)

PCR 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) − 0.000 (0.000) 0.000 (0.000)

SPLS 0.992 (0.005) 0.846 (0.023) 0.447 (0.050) − 0.914 (0.017) 0.519 (0.051)

GOSCAR 0.995 (0.004) 0.954 (0.012) 0.924 (0.014) − 0.492 (0.031) 0.403 (0.020)

GOSCAR-O 0.995 (0.004) 0.996 (0.003) 0.938 (0.012) − 0.341 (0.019) 0.432 (0.018)

GRACE 1.000 (0.000) 0.906 (0.015) 0.849 (0.022) − 0.641 (0.021) 0.294 (0.018)

GRACE-O 1.000 (0.000) 0.920 (0.014) 0.893 (0.019) − 0.652 (0.021) 0.261 (0.020)

SRIG 1.000 (0.000) 0.960 (0.008) 0.976 (0.009) − 0.576 (0.023) 0.559 (0.023)

SRIG-O 1.000 (0.000) 0.949 (0.011) 1.000 (0.000) − 0.870 (0.016) 0.780 (0.029)

[− indicates that value is not available since there are no edges between useless predictors.]

In conclusion, the simulation results indicate that our proposed SRIG method can

make use of the structure information among predictors efficiently and performs well for

both estimation, prediction and model selection.

2.5.2 Sensitivity Study

An important condition for our proposed SRIG method is the condition (A2) which

requires that the predictor graph G is “consistent” with the true coefficients vector β0, i.e.,

predictors connected to the useful predictor are also useful. Since it is difficult to check

this condition in practice, it is very important to study the performance of SRIG when the

condition (A2) is violated.
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Table 2.9: Comparison of NMR and ZMR (Sample sizes: 120/120/400).

Methods
NMR ZMR

Example 1 Example 2 Example 3 Example 1 Example 2 Example 3

LS-O 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) − 1.000 (0.000) 1.000 (0.000)

Lasso 0.995 (0.004) 0.957 (0.009) 0.985 (0.007) − 0.711 (0.019) 0.275 (0.015)

Ridge 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) − 0.000 (0.000) 0.000 (0.000)

Alasso 0.987 (0.006) 0.906 (0.014) 0.985 (0.007) − 0.845 (0.013) 0.284 (0.016)

Enet 1.000 (0.000) 0.990 (0.005) 0.985 (0.007) − 0.614 (0.023) 0.275 (0.015)

PCR 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) − 0.000 (0.000) 0.000 (0.000)

SPLS 0.995 (0.004) 0.934 (0.013) 0.462 (0.053) − 0.909 (0.028) 0.572 (0.049)

GOSCAR 1.000 (0.000) 0.990 (0.005) 0.995 (0.004) − 0.509 (0.029) 0.373 (0.013)

GOSCAR-O 1.000 (0.000) 1.000 (0.000) 0.995 (0.004) − 0.198 (0.014) 0.393 (0.015)

GRACE 1.000 (0.000) 0.980 (0.007) 0.985 (0.007) − 0.685 (0.018) 0.278 (0.015)

GRACE-O 1.000 (0.000) 0.981 (0.007) 0.987 (0.006) − 0.692 (0.018) 0.277 (0.015)

SRIG 1.000 (0.000) 0.986 (0.006) 1.000 (0.000) − 0.613 (0.019) 0.593 (0.025)

SRIG-O 1.000 (0.000) 0.979 (0.007) 1.000 (0.000) − 0.912 (0.011) 0.870 (0.026)

[− indicates that value is not available since there are no edges between useless predictors.]

To this end, we evaluate the performance of SRIG on a series of data sets with changing

predictor graphs. Fix p = 100, σ = 3, s0 = 20, and β0 = (20, 2, 2, · · · , 2, 0, 0, · · · , 0).

For each p∗ = 0, 1, . . . , 30, we generate the predictor matrix X from N(0,Ω−1), where

Ω = L + 2|λmax(L)|Ip. Here, Lii = 2 for each 1 ≤ i ≤ p, L1i = Li1 = 0.3 for each

1 ≤ i ≤ (s0 + p∗), L(s0+1)i = Li(s0+1) = 0.3 for each (s0 + 1) ≤ i ≤ p, and Lij = 0 otherwise.

Finally, Ω is standardized to have unit diagonals.

For this study, the true precision matrix Ω is used to construct the predictor graph G.

The neighborhoods of the useful predictor X1 and the useless predictor Xs0+1 are N1 =

{1, 2, . . . , s0 +p∗} and Ns0+1 = {s0 +1, s0 +2, . . . , p}, respectively. The number of predictors

shared by these two neighborhood is |N1∩Ns0+1| = |{s0 + 1, s0 + 2, . . . , s0 +p∗}| = p∗. The
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Figure 2.2: Sensitivity study of the SRIG method.

condition (A2) is satisfied when p∗ = 0 and will be violated more and more seriously as p∗

increases. Based on this example, we study the robustness of SRIG as p∗ changes gradually

from 0 to 30. For each p∗, we also evaluate the performance of Lasso method. The sample

sizes are fixed as 80/80/400.

Figure 2.2 shows the performances of SRIG and Lasso method as the number of shared

predictors p∗ increases. It indicates that Lasso method is more robust than our proposed

SRIG method to the intersection between the neighborhood of useful predictors and the

neighborhood of useless predictors. One possible reason is that Lasso does not use the

predictor graph information directly. For our proposed SRIG method, as p∗ increases, the

condition (A2) is more and more violated and the performance of SRIG gets worse. As

shown in Figure 2.2, if the condition (A2) is not violated seriously, our proposed SRIG

method still has better performance than the Lasso method. However, if (A2) is violated

seriously (i.e., p∗ > 25), Lasso method performs better than our proposed SRIG method.

Besides this study, we also compare SRIG with the other methods on the following

example:
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Table 2.10: Comparison of estimation and prediction (Adjusted Example 2).

Methods
l2 distance RPE

(I) (II) (III) (I) (II) (III)

LS-O 8.862 (0.263) 6.061 (0.203) 4.572 (0.123) 0.536 (0.027) 0.242 (0.016) 0.139 (0.006)

Lasso 9.935 (0.181) 7.871 (0.150) 6.076 (0.122) 1.137 (0.051) 0.614 (0.030) 0.327 (0.012)

Ridge 9.549 (0.054) 8.936 (0.048) 6.992 (0.088) 1.912 (0.030) 1.652 (0.026) 0.535 (0.015)

ALasso 10.018 (0.190) 7.819 (0.163) 6.298 (0.144) 1.072 (0.050) 0.521 (0.029) 0.311 (0.013)

Enet 8.981 (0.162) 7.270 (0.156) 5.633 (0.115) 1.047 (0.045) 0.598 (0.027) 0.316 (0.012)

PCR 10.036 (0.090) 10.005 (0.082) 9.443 (0.085) 2.011 (0.051) 1.935 (0.051) 1.640 (0.042)

SPLS 9.491 (0.282) 6.846 (0.218) 4.829 (0.172) 1.038 (0.052) 0.454 (0.027) 0.239 (0.016)

GOSCAR 10.458 (0.244) 6.643 (0.161) 4.850 (0.125) 1.156 (0.059) 0.463 (0.022) 0.244 (0.013)

GOSCAR-O 7.167 (0.281) 5.531 (0.132) 4.907 (0.124) 0.703 (0.052) 0.364 (0.021) 0.248 (0.012)

GRACE 9.952 (0.287) 7.072 (0.171) 5.470 (0.110) 1.107 (0.058) 0.544 (0.029) 0.293 (0.012)

GRACE-O 8.840 (0.203) 7.021 (0.149) 5.450 (0.108) 0.987 (0.051) 0.532 (0.024) 0.292 (0.012)

SRIG 9.024 (0.202) 6.065 (0.131) 4.433 (0.110) 0.969 (0.054) 0.395 (0.025) 0.190 (0.010)

SRIG-O 7.843 (0.192) 5.858 (0.140) 4.422 (0.107) 0.777 (0.049) 0.371 (0.025) 0.189 (0.010)

Adjusted Example 2: This example is almost the same as Example 2. We only change

the true coefficient vector in Example 2 to

β0 = (3, · · · , 3︸ ︷︷ ︸
5

, 0, · · · , 0︸ ︷︷ ︸
5

, 3, · · · , 3︸ ︷︷ ︸
5

, 0, · · · , 0︸ ︷︷ ︸
5

, 3, · · · , 3︸ ︷︷ ︸
5

, 0, · · · , 0︸ ︷︷ ︸
75

).

For the above example, the condition (A2) in Section 2.4.3 is much violated. The

simulation results shown in Tables 2.10 and 2.11 indicate that our proposed SRIG method

still performs as well as the other methods.
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Table 2.11: Comparison of model selection (Adjusted Example 2).

Methods
FPR FNR

(I) (II) (III) (I) (II) (III)

LS-O 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)

Lasso 0.144 (0.009) 0.188 (0.014) 0.184 (0.011) 0.340 (0.017) 0.128 (0.015) 0.029 (0.006)

Ridge 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)

ALasso 0.109 (0.010) 0.114 (0.013) 0.122 (0.010) 0.352 (0.019) 0.144 (0.015) 0.051 (0.008)

Enet 0.362 (0.032) 0.343 (0.028) 0.229 (0.012) 0.151 (0.016) 0.045 (0.008) 0.019 (0.005)

PCR 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)

SPLS 0.198 (0.034) 0.082 (0.015) 0.076 (0.016) 0.277 (0.026) 0.155 (0.019) 0.049 (0.009)

GOSCAR 0.246 (0.018) 0.496 (0.019) 0.651 (0.019) 0.252 (0.018) 0.013 (0.004) 0.001 (0.001)

GOSCAR-O 0.460 (0.036) 0.575 (0.022) 0.739 (0.018) 0.047 (0.011) 0.003 (0.002) 0.001 (0.001)

GRACE 0.242 (0.030) 0.233 (0.020) 0.193 (0.010) 0.248 (0.021) 0.060 (0.009) 0.011 (0.003)

GRACE-O 0.316 (0.039) 0.234 (0.020) 0.193 (0.011) 0.144 (0.016) 0.064 (0.010) 0.011 (0.003)

SRIG 0.131 (0.010) 0.183 (0.014) 0.132 (0.011) 0.293 (0.019) 0.053 (0.010) 0.007 (0.003)

SRIG-O 0.179 (0.013) 0.164 (0.013) 0.119 (0.010) 0.143 (0.014) 0.039 (0.009) 0.008 (0.004)

2.5.3 PD method v.s. IP algorithm

In this subsection, we compare the computational costs of the PD method and our

proposed IP algorithm by some examples. Besides the Examples 1-3 shown in Section

2.5.1, we also consider the following three high dimensional examples:

Example 4: n = 400, p = 1500, s0 = 25, σ = 5, and the true coefficient vector β0 =

(1, 1, · · · , 1, 0, · · · , 0). The predictors are generated as follows.

Xj = Z1 + εxj , Z1 ∼ N(0, 1), 1 ≤ j ≤ 25,

Xj = Z2 + εxj , Z2 ∼ N(0, 1), 26 ≤ j ≤ 50,

(X51, X52, . . . , Xp)
T ∼ N(0,Ω−1

∗ ),
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Table 2.12: Time comparison between PD method and IP algorithm.

Examples n p Nedges pnew/p TimePD (seconds) TimeIP (seconds)

1 40 100 30 1.600 0.083 0.436

2 40 100 99 2.980 0.181 14.850

3 40 100 243 5.860 0.485 44.158

4 400 1500 263229 351.972 277.326 74.701

5 500 2000 475289 476.289 796.735 81.051

6 600 2500 750074 601.059 NA 96.436

[Nedges: the number of edges in the graph G; pnew: the number of predictors in the duplicated
predictor matrix; TimePD: computing time of the PD method; TimeIP: computing time of the IP

algorithm; NA: out of memory.]

where εxj
i.i.d∼ N(0, 1), j = 1, 2, . . . , 50 and Ω∗ = L+δI. Each off-diagonal entry in L is

generated independently and equals to 0.5 with probability 0.25, or 0 with probability

0.75. The diagonal entry of L is 0. Here, δ is chosen such that the conditional number

of Ω∗ is equal to p− 50. Finally, Ω∗ is standardized to have unit diagonals.

Example 5: n = 500, p = 2000 and the other setup is the same as Example 4.

Example 6: n = 600, p = 2500 and the other setup is the same as Example 4.

For these six examples, we use both the PD method (using gglasso R package) and our

proposed IP algorithm to compute the solution path of the SRIG method using the true

predictor graph. To be specific, we set all the weights τi’s to be 1 and compute the set of

solutions corresponding to 100 different values of the tuning parameter λ1 > λ2 > · · · > λ100,

where λ1 = ‖XTY/n‖2 which shrinks all the parameters to be 0 and λ100 = 0.05λ1. The

computational times (in seconds) of PD method and IP algorithm are shown in Table 2.9.

As shown in Table 2.12, both methods require more time to compute the solution path

as the dimension p and the number of edges in the predictor graph increase. When p is small

and at the same time the predictor graph G is sparse (e.g., Examples 1-3), the PD method

is faster than the IP algorithm. However, for high dimensional data sets with complicate

predictor graphs (e.g., Examples 4-6), our proposed IP algorithm is more efficient than the
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PD method. For Example 6, the PD method using gglasso package breaks down due to

out of memory while our proposed IP algorithm still works well. In this case, the proposed

IP algorithm is very desirable.

2.6 Real Data Example

Alzheimer’s disease (AD) is one of the most common forms of dementia characterized

by progressive cognitive and memory deficits. The increasing incidence of AD makes the

disease a very important health issue and a huge financial burden for both patients and

governments ((Hebert et al., 2001)). In the practical diagnosis of AD, the Mini Mental

State Examination (MMSE) ((Folstein et al., 1975)) score is a very important reference.

MMSE is a brief 30-point questionnaire test that is used to screen for cognitive impairment.

It can be used to examine patient’s arithmetic, memory and orientation. Generally, any

score greater than or equal to 27 points (out of 30) indicates a normal cognition. Below this,

MMSE score can indicate severe (≤9 points), moderate (10-18 points) or mild (19-24 points)

cognitive impairment ((Mungas, 1991)). As more and more treatments are being developed

and evaluated, it is very important to develop diagnostic and prognostic biomarkers that

can predict which individuals are relatively more likely to progress clinically. At present,

structural magnetic resonance imaging (MRI) is one of the most popular and powerful

techniques for the diagnosis of AD. It is very interesting to use MRI data to predict MMSE

score which can be used to diagnose the current disease status of AD.

The dataset we used in this analysis is the MRI data and MMSE scores of 51 AD pa-

tients and 52 normal controls from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)

database (www.loni.ucla.edu/ADNI). The image pre-processing steps for the MRI data in-

clude anterior commissure posterior commissure correction, intensity inhomogeneity cor-

rection, skull stripping, cerebellum removal, spatial segmentation, and registration. After

registration, we obtained the subject-labeled image based a template with 93 manually la-

beled regions of interest (ROI) ((Kabani et al., 1998)). For each of the 93 ROI in the labeled

MRI, we computed the volume of GM tissue as a feature. Therefore, the final dataset has
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Figure 2.3: Estimated graph of 93 MRI features.

103 subjects. For each subject, there are one MMSE score and 93 MRI features. We treat

MMSE score as the response variable and MRI features as predictors in our model.
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Figure 2.4: Comparison of MSE for various methods on the ADNI data set.

To evaluate the performance of our proposed SRIG method, we compare it with Lasso,

ridge regression, Adaptive Lasso, Elastic net, GOSCAR, GRACE, PCR and SPLS. The

dataset is first scaled to have mean 0 and variance 1 for the MMSE score and each MRI
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feature. The 10-fold cross validation (CV) is used to evaluate different methods. The

predictor (MRI feature) graph G is estimated by the graphical Lasso ((Friedman et al.,

2008)) only using the training data. Figure 2.3 shows the estimated MRI feature graph

using all the data. There are 93 nodes and 419 edges in this graph. Note that all the models

are fitted using training data and evaluated by the mean squared error (MSE) calculated

from the testing data. To choose the tuning parameters of different methods, an inner

5-fold CV is used. Considering possible bias due to the random splitting, we repeat 10-CV

process ten times. Figure 2.4 shows the box plot of the averaged mean squared errors of

different methods. Compared with the other methods, our proposed SRIG method delivers

the best prediction of MMSE scores. The averaged MSE acquired by our proposed SRIG

method is 0.5822, which is about 4.6% percent lower than the smallest MSE acquired by

the competitors.

Figure 2.5: The multi-slice view of seven brain regions always selected by SRIG method.
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For the ten times of our 10-CV process, we acquires 100 models for each method. For

our proposed SRIG method, the averaged number of selected MRI features (with estimated

coefficients bigger than 0.01) is almost 36. There are seven MRI features always selected

by our proposed SRIG method. The feature indices are 4, 19, 22, 30, 69, 80 and 83.

Figure 2.5 shows the multi-slice view of the brain regions corresponding to these seven

MRI features. The colored areas are the selected regions. Interestingly, the 30th and 69th

features correspond to the hippocampal regions. The 22th and 83th features correspond

to the uncus region and the amygdala region respectively. These regions are known to be

related to AD by many previous studies based on group comparison methods ((Jack et al.,

1999; Misra et al., 2009a; Zhang and Shen, 2012)). Moreover, we notice that the 4th, 19th

and 80th features relate to the insula right, temporal pole right and middle temporal gyrus

right regions respectively. It would be very interesting to check whether these regions are

substantially related to AD by some group comparison studies.

2.7 Conclusion

In this chapter, we propose a new penalized regression method using structure informa-

tion among predictors. Instead of using the predictor graph edge-by-edge as in the existing

literature, our proposed SRIG method uses it node-by-node. Theoretical study shows that

SRIG includes adaptive Lasso, group Lasso and ridge regression as special cases. It is able

to make use of the general structure information among predictors efficiently. Furthermore,

SRIG acquires tight finite sample bounds for both prediction and estimation. It also en-

joys asymptotic normality and model selection consistency. Both simulation study and real

data analysis show that SRIG is a competitive tool for estimation, prediction and model

selection.

2.8 Proofs

Proof of Proposition 1:
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Define L(β) = 1
2n‖Y − Xβ‖22 and denote ∇NiL(β) ∈ R|Ni| as the partial gradient of

L(β) with respect to the predictors in Ni, then we have ∇NiL(β) = − 1
nX

T
Ni(Y − Xβ).

Proposition 1 is immediate from Lemma 11 in (Obozinski et al., 2011a). �

Proof of Proposition 2:

(a) If the predictor graph has no edge, then Ni = {i} for each i and

‖β‖G,τ = min∑p
i=1 V

(i)=β, supp(V (i))⊆Ni

p∑
i=1

τi‖V (i)‖2 =

p∑
i=1

τi|βi|.

Thus, for each given tuning parameter λ, SRIG and adaptive Lasso are equivalent.

(b) Without loss of generality, suppose the nodes in theK disconnected complete subgraphs

are {1, 2, . . . , p1}, {p1 + 1, . . . , p1 + p2}, . . . , {pK−1 + 1, . . . , pK−1 + pK} respectively.

Then, for 1 ≤ k ≤ K and pk−1+1 ≤ j ≤ pk−1+pk, we have Nj = {pk−1+1, . . . , pk−1+

pk}.

Furthermore, for each k, we have

pk−1+pk∑
j=pk−1+1

V
(j)
Nj = β(k), where β(k) = (βpk−1+1, βpk−1+2, . . . , βpk−1+pk)T .

Hence,

‖β‖G,τ =
K∑
k=1

min∑pk−1+pk
j=pk−1+1 V

(j)=β(k)

pk−1+pk∑
j=pk−1+1

τj‖V (j)‖2.

For each k, let τ̃k = minpk−1+1≤j≤pk τj , by the inequality ‖
∑n

i=1 ai‖2 ≤
∑n

i=1 ‖ai‖2,

we have

‖β‖G,τ =

K∑
k=1

min∑pk−1+pk
j=pk−1+1 V

(j)=β(k)

pk−1+pk∑
j=pk−1+1

τj‖V (j)‖2 =

K∑
k=1

τ̃k‖β(k)‖2.

Hence, in this case, SRIG is equivalent to the group lasso method.
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(c) If the predictor graph is a complete graph and let τ̃ = min1≤j≤p τj , by the proof of (b)

with K = 1, our proposed SRIG method is equivalent to the following optimization

problem:

min
β∈Rp

1

2n
‖Y −Xβ‖22 + λτ̃‖β‖2 (2.9)

By the Karush-Kuhn-Tucker conditions, a nonzero β̂λ is a solution of (2.9) if and only

if

−XT (Y −Xβ̂λ) + nλτ̃ β̂λ/‖β̂λ‖2 = 0

Thus, β̂λ is also the solution of ridge regression

min
β∈Rp

1

2n
‖Y −Xβ‖22 + λ∗β

Tβ, (2.10)

where λ∗ = λτ̃
2‖β̂λ‖2

.

Furthermore, if β̃λ∗ is the solution of ridge regression with tuning parameter λ∗, then

β̃λ∗ is also the solution of (2.9) with λ =
2λ∗‖β̃λ∗‖2

τ̃ . Hence, in this case, SRIG and

ridge regression have the same nonzero solution set. �

Lemma 1. Let χ2
D be a chi-squared random variable with D degrees of freedom. Then,

for all x > 0, we have

P (χ2
D > D + x) ≤ exp(−1

8
min{x, x

2

D
}).

Proof of Lemma 1: See Lemma A.1 from (Lounici et al., 2009). �

Lemma 2. For any predictor graph G and positive weights τi’s, suppose V (1), V (2), . . . , V (p)

is an optimal decomposition of β ∈ Rp, then for any S ⊂ {1, 2, . . . , p}, {V (j) : j ∈ S} is also

an optimal decomposition of
∑

j∈S V
(j).

Proof of Lemma 2: We prove this statement by contradiction. Suppose {V (j) : j ∈ S}

is not an optimal decomposition of
∑

j∈S V
(j) and denote the optimal decomposition of
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∑
j∈S V

(j) as M (1),M (2), . . . ,M (p). Then, we have

∑
j∈S

V (j) =

p∑
i=1

M (i) and

p∑
i=1

τi‖M (i)‖2 <
∑
j∈S

τj‖V (j)‖2.

Hence, we have

‖β‖G,τ = ‖
∑
j∈S

V (j) +
∑
j∈Sc

V (j)‖G,τ ≤ ‖
p∑
i=1

M (i)‖G,τ + ‖
∑
j∈Sc

V (j)‖G,τ

=

p∑
i=1

τi‖M (i)‖2 + ‖
∑
j∈Sc

V (j)‖G,τ <
∑
j∈S

τj‖V (j)‖2 + ‖
∑
j∈Sc

V (j)‖G,τ

≤
∑
j∈S

τj‖V (j)‖2 +
∑
j∈Sc
‖V (j)‖G,τ ≤

∑
j∈S

τj‖V (j)‖2 +
∑
j∈Sc

τj‖V (j)‖2 = ‖β‖G,τ .

Contradiction! �

Proof of Theorem 1:

For any β ∈ Rp, we have 1
2n‖Y −Xβ̂‖22 + λ‖β̂‖G,τ ≤ 1

2n‖Y −Xβ‖22 + λ‖β‖G,τ . Since

Y = Xβ0 + ε, by simple calculation, we have

1

n
‖X(β̂ − β0)‖22 ≤

1

n
‖X(β − β0)‖22 +

2

n
εTX(β̂ − β) + 2λ(‖β‖G,τ − ‖β̂‖G,τ ). (2.11)

Furthermore, denote {V (1), V (2), . . . , V (p)} as arbitrary optimal decomposition of β̂ − β.

Then,

‖ 2

n
εTX(β̂ − β)‖2 = ‖ 2

n
εT

p∑
i=1

XNiV
(i)
Ni ‖2 = ‖ 2

n
εT

p∑
i=1

XNi
1

τi
τiV

(i)
Ni ‖2

≤ 2

n

KG,τ∑
i=1

‖εTXNi/τi‖2‖τiV
(i)
Ni ‖2.

Define event A = {‖εTXNi‖2 ≤ nλτi/2, for each i}. We have

Ac = ∪KG,τi=1 {
∑
j∈Ni

(
1√
n

n∑
i=1

Xijεi)
2 >

nλ2τ2
i

4
}.

45



For the random variables in the set { 1√
n

∑n
i=1Xijεi : j ∈ Ni}, their joint distribution is a

multivariate normal distribution with mean 0 and covariance matrix σ2

n X
T
NiXNi . Then, we

have

P (Ac) ≤
KG,τ∑
i=1

P (
∑
j∈Ni

(
1√
n

n∑
i=1

Xijεi)
2 >

nλ2τ2
i

4
) ≤

KG,τ∑
i=1

P (η2
i χ

2
di
>
nλ2τ2

i

4σ2
)

If λτi ≥ 2σηi√
n

(di +Ad
1/2
i log(KG,τ ))1/2 for each i, then

P (Ac) ≤
KG,τ∑
i=1

P (χ2
di
> di +Ad

1/2
i log(KG,τ ))

By Lemma 1, we have

P (Ac) ≤
KG,τ∑
i=1

exp{−1

8
min{Ad1/2

i log(KG,τ ), A2(log(KG,τ ))2}} ≤ K1−q
G,τ ,

where q = 1
8 min{A,A2 log(KG,τ )}.

Let β = β0 in (2.11). When event A holds, we have

1

n
‖X(β̂ − β0)‖22 ≤ λ‖β̂ − β0‖G,τ + 2λ(‖β0‖G,τ − ‖β̂‖G,τ ).

Thus,

1

n
‖X(β̂ − β0)‖22 + λ‖β̂ − β0‖G,τ ≤ 2λ(‖β̂ − β0‖G,τ + ‖β0‖G,τ − ‖β̂‖G,τ ). (2.12)

Denote S(1), S(2), . . . , S(p) as arbitrary optimal decomposition of β0 and T (1), T (2), . . . , T (p)

as arbitrary optimal decomposition of β̂ − β0. Then, by assumption (A2), we get

‖β̂ − β0‖G,τ + ‖β0‖G,τ − ‖β̂‖G,τ = ‖
∑
j∈J0

T (j)‖G,τ + ‖
∑
j∈Jc0

T (j)‖G,τ + ‖
∑
j∈J0

S(j)‖G,τ − ‖β̂‖G,τ .
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Furthermore, we have

‖β̂‖G,τ = ‖
∑
j∈J0

T (j) +
∑
j∈Jc0

T (j) +
∑
j∈J0

S(j)‖G,τ ≥ ‖
∑
j∈Jc0

T (j) +
∑
j∈J0

S(j)‖G,τ − ‖
∑
j∈J0

T (j)‖G,τ

= ‖
∑
j∈Jc0

T (j)‖G,τ + ‖
∑
j∈J0

S(j)‖G,τ − ‖
∑
j∈J0

T (j)‖G,τ .

Hence, ‖β̂ − β0‖G,τ + ‖β0‖G,τ − ‖β̂‖G,τ ≤ 2‖
∑

j∈J0 T
(j)‖G,τ and by (2.12), we get

‖β̂ − β0‖G,τ ≤ 2(‖β̂ − β0‖G,τ + ‖β0‖G,τ − ‖β̂‖G,τ ) ≤ 4‖
∑
j∈J0

T (j)‖G,τ .

By Lemma 2, we have ‖
∑

j∈J0 T
(j)‖G,τ =

∑
j∈J0 τj‖T

(j)‖2. Furthermore, by definition,

‖β̂ − β0‖G,τ =
∑

j∈J0 τj‖T
(j)‖2 +

∑
j∈Jc0

τj‖T (j)‖2. Thus, we have
∑

j∈Jc0
τj‖T (j)‖2 ≤

3
∑

j∈J0 τj‖T
(j)‖2.

By Assumption (A3), we get

‖X(β̂ − β0)‖2 ≥
√
nκ

√∑
j∈J0

τ2
j ‖T (j)‖22 (2.13)

Furthermore, by (2.12), we have

1

n
‖X(β̂ − β0)‖22 ≤ 2λ(‖β̂ − β0‖G,τ + ‖β0‖G,τ − ‖β̂‖G,τ ) ≤ 4λ

∑
j∈J0

τj‖T (j)‖2 (2.14)

By (2.13), (2.14) and the fact that there is at most KG,τ nonzero T (j)’s where j ∈ J0, we

have

1

n
‖X(β̂ − β0)‖22 ≤ 4λK

1/2
G,τ

√∑
j∈J0

τ2
j ‖T (j)‖22 ≤

4λK
1/2
G,τ√
nκ
‖X(β̂ − β0)‖2

Hence,

1

n
‖X(β̂ − β0)‖22 ≤

16λ2KG,τ

κ2
.
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Furthermore,

‖β̂ − β0‖2 = ‖
p∑
j=1

1

τj
τjT

(j)‖2 ≤
‖β̂ − β0‖G,τ

τ∗
≤

4‖
∑

j∈J0 T
(j)‖G,τ

τ∗
=

4
∑

j∈J0 τj‖T
(j)‖2

τ∗

≤
4K

1/2
G,τ√
nκτ∗

‖X(β̂ − β0)‖2 ≤
16λKG,τ

κ2τ∗
.

Thus,

‖β̂ − β0‖G,τ ≤ 4‖
∑
j∈J0

T (j)‖G,τ ≤
16λKG,τ

κ2
.�

Proof of Theorem 2:

For each u ∈ Rp, define Qn(u) = 1
2‖

1√
n
Xu− ε‖22 + nλ‖β0 + u√

n
‖G,τ . It’s easy to check

that

û =
√
n(β̂ − β0) = arg min

u∈Rp
Qn(u).

Furthermore, we have

Qn(u)−Qn(0) =
1

2
‖ 1√

n
Xu− ε‖22 + nλ‖β0 +

u√
n
‖G,τ −

1

2
‖ε‖22 − nλ‖β0‖G,τ

=
1

2n
uTXTXu− 1√

n
uTXT ε︸ ︷︷ ︸

I1

+nλ(‖β0 +
u√
n
‖G,τ − ‖β0‖G,τ )︸ ︷︷ ︸
I2

.

By assumptions (A4) and (A5), we get

I1
d−→ 1

2
uTMu− uTW,

where W ∼ Np(0, σ
2M).
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Without loss of generality, assume that the first |J0| elements of β0 are nonzero and the

other p− |J0| elements are zero, i.e., β0 = ((β0
J0

)T , 0). Hence,

I2 = nλ(

∥∥∥∥∥∥∥
 β0

J0
+ 1√

n
uJ0

1√
n
uJc0


∥∥∥∥∥∥∥
G,τ

−

∥∥∥∥∥∥∥
 β0

J0

0


∥∥∥∥∥∥∥
G,τ

)

= nλ(

∥∥∥∥∥∥∥
 β0

J0
+ 1√

n
uJ0

0


∥∥∥∥∥∥∥
G,τ

−

∥∥∥∥∥∥∥
 β0

J0

0


∥∥∥∥∥∥∥
G,τ

)

︸ ︷︷ ︸
I3

+
√
nλ

∥∥∥∥∥∥∥
 0

uJc0


∥∥∥∥∥∥∥
G,τ︸ ︷︷ ︸

I4

.

Denote V (1), V (2), . . . , V (p) as arbitrary optimal decomposition of u. Then, by the triangle

inequality, we have

|I3| ≤ nλ

∥∥∥∥∥∥∥
 1√

n
uJ0

0


∥∥∥∥∥∥∥
G,τ

=
√
nλ
∑
j∈J0

τj‖V (j)‖2.

If
√
nλ → 0 and τj = O(1) for each j ∈ J0, then for each fixed u, we have |I3| → 0 as

n→∞.

Furthermore, we observe that

|I4| =
√
nλ
∑
j∈Jc0

τj‖V (j)‖2 = (n(γ+1)/2λ)(n−γ/2
∑
j∈Jc0

τj‖V (j)‖2).

If n(γ+1)/2λ → ∞ and lim infn→∞ n
−γ/2τj > 0 for each j ∈ Jc0 , then |I4| → ∞ as

n→∞.

Hence, we get Qn(u)−Qn(0)
d−→ D(u), where

D(u) =


1
2u

TMu− uTW if supp(u) ⊆ J0

∞ else

Since û = arg minu∈Rp Qn(u) = arg minu∈Rp(Qn(u) − Qn(0)) and u∗ = (M−1
J0
WJ0 , 0)T =

arg minu∈Rp D(u), by the argmax theorem ((Van Der Vaart and Wellner, 1996), Corollary
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3.2.3), we have û
d−→ (M−1

J0
WJ0 , 0)T . Thus,

√
n(β̂J0 − β0

J0)
d−→ N(0, σ2M−1

J0
),

√
nβ̂Jc0

d−→ 0 and therefore β̂Jc0
p−→ 0. �

Proof of Corollary 1:

Since uTXTXu/(2n)→ uTΣu a.s. for each fixed u and

XT ε√
n

=
1√
n

n∑
i=1

xiεi
d−→ N(0,Σ),

we can derive the results shown in Corollary 1 by the same proof of Theorem 2.

Proof of Theorem 3:

By Proposition 1, we know that β̂ is a solution if and only if β̂ can be decomposed as

β̂ =
∑p

i=1 V
(i) where V (i)’s satisfy that, for all 1 ≤ i ≤ p, (a) V

(i)
N ci

= 0; (b) either V
(i)
Ni 6= 0

and XT
Ni(Y −Xβ̂) = nλτi

V
(i)
Ni

‖V (i)
Ni
‖2

, or V
(i)
Ni = 0 and ‖XT

Ni(Y −Xβ̂)‖2 ≤ nλτi.

Denote Ĥ = {i : ‖V (i)
Ni ‖2 6= 0}. Then, we have XT

Ni(Y − Xβ̂) = nλτiV
(i)
Ni /‖V

(i)
Ni ‖2 for

each i ∈ Ĥ and XT
Ni(Y − Xβ̂) = nλτiZ

(i)
Ni for each i /∈ Ĥ, where Z(i) is a p × 1 random

vector with ‖Z(i)
Ni‖2 ≤ 1. Since some predictors may belong to multiple neighborhoods, the

following conditions need to be satisfied:

(i) τi1V
(i1)
j /‖V (i1)

Ni1
‖2 = τi2V

(i2)
j /‖V (i2)

Ni2
‖2 for each i1 ∈ Ĥ, i2 ∈ Ĥ and j ∈ Ni1 ∩Ni2 ;

(ii) τi1V
(i1)
j /‖V (i1)

Ni1
‖2 = τi2Z

(i2)
j for each i1 ∈ Ĥ, i2 /∈ Ĥ and j ∈ Ni1 ∩Ni2 ;

(iii) τi1Z
(i1)
j = τi2Z

(i2)
j for each i1 /∈ Ĥ, i2 /∈ Ĥ and j ∈ Ni1 ∩Ni2 .

For each 1 ≤ i ≤ p, define f̂i = τiV
(i)
i /‖V (i)

Ni ‖2 if i ∈ Ĥ and f̂i = τiZ
(i)
i if i /∈ Ĥ. Then,

any solution β̂ satisfies the following equation

XT (Y −Xβ̂) = nλf̂ , where f̂ = (f̂1, f̂2, . . . , f̂p)
T . (2.15)
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Define events

A1 = {‖β̂J0 − β0
J0‖∞ < β0

min};

A2 = {‖f̂Nj‖2 < τj for each j ∈ Jc0}.

When event A1 occurs, we have sign(β̂j)=sign(β0
j ) for each j ∈ J0. When event A2 occurs,

we have V
(j)
Nj = 0 for each j ∈ Jc0 . Furthermore, we know that V

(j)
N cj

= 0 for each j. Then, by

condition (A2), we have β̂Jc0 =
∑

j∈Jc0
V

(j)
Jc0

= 0. Thus, if we can show that P (A1∩A2) −→ 1,

then we have P (sign(β̂)=sign(β0))−→ 1 as n −→∞.

Note that if events A1 and A2 occur, from equation (2.15), we have

XT
J0(XJ0β

0
J0 + ε−XJ0 β̂J0) = nλf̂J0 ;

XT
Nj (XJ0β

0
J0 + ε−XJ0 β̂J0) = nλf̂Nj for each j ∈ Jc0 .

Thus,

β̂J0 − β0
J0 = (XT

J0XJ0)−1XT
J0ε− nλ(XT

J0XJ0)−1f̂J0 ; (2.16)

f̂Nj
τj

=
1

nλτj
XT
Nj (In −XJ0(XT

J0XJ0)−1XT
J0)ε+

1

τj
XT
NjXJ0(XT

J0XJ0)−1f̂J0 . (2.17)

From (2.16) and condition (A8), we have

‖β̂J0 − β0
J0‖∞ ≤ ‖(X

T
J0XJ0)−1XT

J0ε‖∞ + λ‖(XT
J0XJ0/n)−1f̂J0‖∞

≤ ‖(XT
J0XJ0)−1XT

J0ε‖∞ + λ‖(XT
J0XJ0/n)−1‖∞‖f̂J0‖∞

≤ ‖(XT
J0XJ0)−1XT

J0ε‖∞ +
λ
√
s0

Q2
‖f̂J0‖∞

≤ ‖(XT
J0XJ0)−1XT

J0ε‖∞ + λ

√
s0

Q2
max
j∈J0

τj ,

where we use the fact that |f̂j | ≤ τj for each j in the last inequality.
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Then, by Markov inequality, we have

P (‖β̂J0 − β0
J0‖∞ ≥ β

0
min) ≤

E(‖β̂J0 − β0
J0
‖∞)

β0
min

≤ 1

β0
min

[E(‖(XT
J0XJ0)−1XT

J0ε‖∞) + λ

√
s0

Q2
max
j∈J0

τj ].

Since (XT
J0
XJ0)−1XT

J0
ε follows the multivariate normal distribution with mean 0 and co-

variance matrix σ2(XT
J0
XJ0)−1. Using standard results on the maximum of this Gaussian

vector ((Ledoux and Talagrand, 1991)), we have

E(‖(XT
J0XJ0)−1XT

J0ε‖∞) ≤ 3σ

√
log s0

nQ2
.

Hence,

P (‖β̂J0 − β0
J0‖∞ ≥ β

0
min) ≤ 1

β0
min

[3σ

√
log s0

nQ2
+ λ

√
s0

Q2
max
j∈J0

τj ] −→ 0 as n −→∞.

Therefore,

P (A1) = 1− P (‖β̂J0 − β0
J0‖∞ ≥ β

0
min) −→ 1, as n −→∞. (2.18)

Furthermore, from (2.17), for each j ∈ Jc0 ,

‖f̂Nj‖2
τj

≤ 1

nλτj
‖XT
Nj (In −XJ0(XT

J0XJ0)−1XT
J0)ε‖2 +

1

τj
‖XT
NjXJ0(XT

J0XJ0)−1f̂J0‖2

≤
√
dj

nλτj
‖XT
Nj (In −XJ0(XT

J0XJ0)−1XT
J0)ε‖∞ +

‖f̂J0‖2
τj
‖XT
NjXJ0(XT

J0XJ0)−1‖2

≤
√
dj

nλτj
‖XT
Nj (In −XJ0(XT

J0XJ0)−1XT
J0)ε‖∞ +

√
dj‖XT

NjXJ0(XT
J0
XJ0)−1‖∞

τj

√
s0 max

j∈J0
τj .

By condition (A9), for each j ∈ Jc0 , we have

‖f̂Nj‖2
τj

≤
√
dj

nλτj
‖XT
Nj (In −XJ0(XT

J0XJ0)−1XT
J0)ε‖∞ +

(1− ξ)
√
dj
√
s0 maxj∈J0 τj

τj
.
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Thus,

max
j∈Jc0

‖f̂Nj‖2
τj

≤ ‖XT
Jc0

(In −XJ0(XT
J0XJ0)−1XT

J0)ε‖∞max
j∈Jc0

√
dj

nλτj
+

(1− ξ)√s0 maxj∈J0 τj
minj∈Jc0 mj

.

We observe that XT
Jc0

(In−XJ0(XT
J0
XJ0)−1XT

J0
)ε follows the multivariate normal distribution

with mean 0 and covariance matrix XT
Jc0

(In − XJ0(XT
J0
XJ0)−1XT

J0
)XJc0

. Furthermore, by

condition (A7), the variance of each component is bounded by nQ2
1σ

2. Thus, by the Markov

inequality and the result on the maximum of this Gaussian vector,

P (‖XT
Jc0

(In −XJ0(XT
J0XJ0)−1XT

J0)ε‖∞max
j∈Jc0

√
dj

nλτj
> ξ) ≤ 3σQ1

λξ

√
log(p− s0)

n
max
j∈Jc0

√
dj

τj

−→ 0 as n −→∞.

By condition (A6), if mj ’s satisfy that maxj∈J0 mj = Op(1) and

lim infn→∞ n
−γ minj∈Jc0 mj > 0 for some γ > δ0, we have

√
s0 maxj∈J0 τj
minj∈Jc0 mj

≤
s0 maxj∈J0 mj

minj∈Jc0 mj
=
s0

nγ
maxj∈J0 mj

n−γ minj∈Jc0 mj
−→ 0, as n −→∞.

Hence,

P (A2) = P (max
j∈Jc0

‖f̂Nj‖2
τj

< 1) −→ 1, as n −→∞. (2.19)

By (2.18) and (2.19), we conclude that P (A1 ∩A2) −→ 1 and P (sign(β̂)=sign(β0))−→ 1 as

n −→∞.

Proof of Theorem 4:

For each n, define ∆ = XTX/n−Σ and Bn = {maxj,k |∆jk| < Q3

√
log p
n }. By condition

(A10) and Lemma 9.3 ((Zhou et al., 2009)), we have P (Bn) ≥ 1− 1/p2.

Assume event Bn holds, then

|
XT
j Xj

n
− Σjj | ≤ max

jk
|∆jk| < Q3

√
log p

n
≤ 1/2, for j = 1, 2, . . . , p.
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Thus, ‖Xj‖22/n ≤ 3/2 and therefore maxj∈Jc0 ‖Xj‖2 ≤
√

3n/2. Furthermore, by conditions

(A11), (A12), and Lemmas 11.1 and 11.2 ((Zhou et al., 2009)), we have

λmin(
XT
J0
XJ0

n
) ≥ Λmin(s0) > 0, and ‖XT

Jc0
XJ0(XT

J0XJ0)−1‖∞ ≤

√
3s0

2Λmin(s0)
.

In addition, by condition (A1), the standard results on the maximum of Gaussian vector

((Ledoux and Talagrand, 1991)), and the assumption that X is independent of ε, we have

E(‖(XT
J0XJ0)−1XT

J0ε‖∞|X) ≤ 3σ

√
log s0

nΛmin(s0)
, and therefore

E(‖(XT
J0XJ0)−1XT

J0ε‖∞) ≤ 3σ

√
log s0

nΛmin(s0)

Similarly, we can prove that

E(‖XT
Jc0

(In −XJ0(XT
J0XJ0)−1XT

J0)ε‖∞) ≤ 3σ

√
3n log(p− s0)

2
.

Thus, follow the proof of Theorem 3, based on the above results, we can prove that

P (A1 ∩ A2 ∩ Bn) −→ 1 as n→∞.

Hence, for the random design, we also have P (sign(β̂)=sign(β0))−→ 1 as n −→∞.

54



CHAPTER 3: GRAPH GUIDED MULTI-TASK LEARNING WITH
APPLICATIONS IN NEUROSCIENCE

3.1 Introduction

Alzheimer’s disease (AD) is one of the most common forms of dementia characterized

by progressive cognitive and memory deficits. It has been reported that one in every 85

persons in year 2050 will be likely affected by this disease ((Brookmeyer et al., 2007)). The

increasing incidence of AD makes this disease a very important health issue and also huge

financial burden for both patients and governments (Hebert et al., 2001; Bain et al., 2008).

Thus, it is very important to develop methods for timely diagnosis of AD and its predromal

stage, i.e., mild cognitive impairment (MCI). Over the last decade, many machine learning

methods have been used for early diagnosis of AD and MCI based on different modalities

of biomarkers, e.g., structural brain atrophy delineated by structural magnetic resonance

imaging (MRI) (Du et al., 2007; McEvoy et al., 2009; Fjell et al., 2010; Yu et al., 2014),

metabolic alterations characterized by fluorodeoxyglucose positron emission tomography

(FDG-PET) (De Santi et al., 2001; Morris et al., 2001), and pathological amyloid deposi-

tions measured by CerebroSpinal Fluid (CSF) (Bouwman et al., 2007; Fjell et al., 2010).

Typically, these methods learn a binary classification model from training data and use this

model to predict disease status (i.e., class label) of the testing subjects.

Besides classification of disease status, accurate prediction of clinical scores such as

Mini Mental State Examination (MMSE) score and Alzheimer’s Disease Assessment Scale-

Cognitive Subscale (ADAS-Cog) is also important and useful since they can help evaluate

the stage of AD pathology and predict future progression. Specifically, as a brief 30-point

questionnaire test, MMSE is commonly used to screen for cognitive impairment. It can be

used to examine a patient’s arithmetic, memory and orientation ((Folstein et al., 1975)).

As another important clinical score of AD, ADAS-Cog is a cognitive testing instrument

widely used in clinical trials. It is designed to measure the severity of the most important



symptoms of AD ((Rosen et al., 1984)). Several studies based on regression methods have

been conducted to estimate MMSE and ADAS-Cog using the extracted features from MRI

and FDG-PET. For example, (Duchesne et al., 2005) used linear regression models, (Wang

et al., 2010) developed a high-dimensional kernel-based regression method, and (Cheng

et al., 2013) proposed a semi-supervised multi-modal relevance vector regression method.

However, almost all of these regression methods model different clinical scores separately

and do not use the class label information which is often available in practice.

Although the classification of disease status and the prediction of clinical scores are

different tasks, there exists inherent correlation among them since the underlying pathol-

ogy is the same (Fan et al., 2010; Stonnington et al., 2010). In the literature, (Zhang and

Shen, 2012) proposed multi-modal multi-task (M3T) learning to predict both class label

and clinical scores jointly. M3T formulates the estimations of class label and clinical scores

as different tasks. The l2,1 penalty is used to deliver sparse models with a common feature

subset for each task. Their experimental results indicate that selecting a common feature

subset for different correlated tasks could achieve better prediction of both class label and

clinical scores than choosing the feature subset for each task separately. Although benefit-

ing from using the commonality among different correlated tasks, M3T method does not

incorporate the correlation information among features. Actually, many features extracted

from brain images such as structural MRI are statistically correlated significantly. In this

case, feature selection combined with the additional correlation information among features

can improve classification/regression performance ((Yang et al., 2012)).

As shown in Chapter 2, we extract effective correlation information among features by

constructing a sparse undirected feature graph. This undirected graph uses all features as

nodes. Also, two features are connected by an edge in the graph if there is statistically

significant partial correlation between them. In practice, we can use many existing high-

dimensional precision matrix estimation methods (Friedman et al., 2008; Cai et al., 2011)

to construct this undirected graph. Based on this undirected feature graph, we propose a

new Graph Guided Multi-task Learning (GGML) method to predict both class label and

clinical scores simultaneously. Specifically, we utilize a new latent group Lasso penalty to

encourage the significantly-correlated features to be in or out of the models together. This
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new penalty also encourages the intrinsic correlated tasks to share a common feature subset.

It is very useful for us to acquire robust and accurate feature selection. Computationally,

the optimization problem for our proposed GGML method can be solved by the traditional

group Lasso algorithm very efficiently ((Yuan and Lin, 2006)). Theoretically, our proposed

GGML method includes M3T method as a special case. To validate our proposed GGML

method, we have conducted many experiments on the Alzheimer’s Disease Neuroimaging

Initiative (ADNI) (www.loni.ucla.edu/ADNI) data set. Compared with the other methods,

our proposed GGML method acquires very promising results.

The remainder of this chapter is organized as follows. In the Materials section, we

introduce the ADNI dataset used in this study. In the Method section, we show how

to extract useful correlation information among features and describe our proposed new

method. In Sections 3.4 and 3.5, we compare our method with the other methods by

simulation study and also the analysis of the ADNI dataset. In the Discussion section, we

discuss some possible extensions of our proposed method. Finally, we conclude this chapter

in the Conclusion section.

3.2 Materials

3.2.1 Data

Data used in this chapter were obtained from the ADNI database

(http://adni.loni.ucla.edu/). As a $60 million, 5-year public-private partnership, the

ADNI was launched in 2003 by the National Institute on Aging (NIA), the National

Institute of Biomedical Imaging and Bioengineering (NIBIB), the Food and Drug Adminis-

tration (FDA), private pharmaceutical companies and non-profit organizations. The main

goal of ADNI is to test whether serial MRI, PET, other biological markers, and clinical

and neuropsychological assessments can be combined to measure the progression of MCI

and early AD. To that end, 800 adults with age between 55 and 90 were recruited from

over 50 sites across the U.S. and Canada. Approximately, 200 cognitively normal controls

and 400 MCI individuals were followed for 3 years and 200 individuals with early AD were

followed for 2 years (see www.adni-info.org for up-to-date information).
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The general inclusion/exclusion criteria are: 1) each mild AD individual has an MMSE

score between 20 and 26, a Clinical Dementia Rating (CDR) of 0.5 or 1.0, and meets

the National Institute of Neurological and Communicative Disorders and Stroke and the

Alzheimer’s Disease and Related Disorders Association (NINCDS/ADRDA) criteria for

probable AD; 2) each MCI individual has an MMSE score between 24 and 30, a CDR of

0.5, with a memory complaint, objective memory loss measured by education adjusted scores

on Wechsler Memory Scale Logical Memory II, absence of significant levels of impairment

in other cognitive domains, essentially preserved activities of daily living, and an absence

of dementia; 3) Each Normal Control (NC) individual is non-depressed, non-MCI, non-

demented, and has a CDR of 0. The MMSE score of each NC individual is between 24 and

30.

We use data from 199 subjects who have complete baseline MRI, FDG-PET, and CSF

data. These 199 subjects include 50 AD subjects, 97 MCI subjects, and 52 NC subjects.

The detailed demographic information about these 199 subjects is summarized in Table 3.1.

Table 3.1: Demographic information of the 199 subjects used in this study.

Characteristics AD (50 subjects) MCI (97 subjects) NC (52 subjects)

Gender (F/M) 17/33 32/65 18/34

Age (mean±sd) 75.2±7.6 75.3±7.0 75.1±5.1

Education (mean±sd) 14.7±3.7 15.9±2.9 15.8±3.2

MMSE (mean±sd) 23.7±1.9 27.1±1.7 29.0±1.2

ADAS (mean±sd) 18.5±5.9 11.4±4.4 7.36±3.2

3.2.2 Data Preprocessing

Imaging preprocessing is performed for MRI and PET. For MRI, the preprocessing

steps include anterior commissure (AC) -posterior commissure (PC) correction, intensity

inhomogeneity correction ((Sled et al., 1998)), skull stripping ((Wang et al., 2011)), cere-

bellum removal based on registration with atlas, spatial segmentation ((Zhang et al., 2001))
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and registration ((Shen and Davatzikos, 2002)). After registration, we obtained the subject-

labeled image based on the Jacob template ((Kabani et al., 1998)) with 93 manually labeled

ROIs. For each of the 93 ROI regions in the labeled MRI, we computed the volume of gray

matter as a feature. For each PET image, we first aligned the PET image to its respective

MRI using affine registration. Then, we got the skull-stripping image using the correspond-

ing brain mask of MRI and computed the average intensity of every ROI region in the PET

image as a feature.

Besides MRI and PET, the CSF data were collected in the morning after an overnight

fast using a 20- or 24-gauge spinal needle, frozen within 1 hour of collection, and transported

on dry ice to the ADNI Biomarker Core laboratory at the University of Pennsylvania Medical

Center. In this study, we use CSF Aβ42, CSF t-tau and CSF p-tau as features.

Therefore, for each subject, we finally obtained 93 features from MRI, 93 features from

PET, and three features from CSF. We also have the class label, MMSE and ADAS-Cog

scores for each subject.

3.3 Method

In this section, after introducing some notations, we will first discuss how to extract

the correlation information among features. Next, as an extension of the SRIG method

introduced in Chapter 2, our proposed graph guided multi-task learning method will be

described.

3.3.1 Notation

For a set A, we denote |A| as the number of elements in A. For a matrix B, we denote

BT and B−1 as the transpose and the inverse of matrix B, respectively. We also denote

‖B‖F =
√∑

i

∑
j B2

ij as the Frobenius norm.

Suppose we have n samples and p features. Let X = (X1, X2, . . . , Xp) =

(x1, x2, . . . , xn)T denote the n × p training data matrix of features, where x1, x2, . . . , xn

are i.i.d. samples generated from a p-dimensional multivariate distribution with mean

vector 0p×1 and covariance matrix Σ = (σij)
p
i,j=1. Also, let Ω = (ωij)

p
i,j=1 = Σ−1
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denote the precision matrix. Furthermore, suppose we have q response variables. Let

Y = (Y1, Y2, . . . , Yq) = (y1, y2, . . . , yn)T denote the n × q training data matrix of response

variables, where the response variables can be binary (for classification) or continuous (for

regression). Note that, for the ADNI dataset used in our study, we have three response

variables, which are class label, MMSE score, and ADAS-Cog score. The class labels are

coded as +1 and −1 for the binary classification problem considered in this chapter.

3.3.2 Extract the correlation information among features

The correlation information is often measured by the Pearson correlation between each

pair of features. We can use sample Pearson correlation coefficients to identify the statis-

tically significant correlated features. One issue with this method is that it only estimates

the marginal linear dependence between a pair of features without considering the influence

of other features and common driving influences. Such issue can be overcome by using par-

tial correlation which measures the linear dependence between each pair of features after

eliminating the linear effect of the other features. In practice, we can compute the sample

partial correlation coefficient between features i and j, denoted as ρ̂∗ij , which is defined as

the sample Pearson correlation coefficient between the residuals Ri and Rj resulting from

the linear regression of feature Xi with features {Xk : k 6= i, j} and of feature Xj with

features {Xk : k 6= i, j}, respectively. The resulting ρ̂∗ij ’s can be further thresholded to

identify features which are partially correlated statistically significantly.

When the number of features p is small and the sample size n is big enough (bigger

than p), it is easy to get good estimates of partial correlation coefficients. In this case, many

previous studies (Hampson et al., 2002; Lee et al., 2011) have used partial correlations to

identify the statistically significant correlated features. However, in the high dimensional

case with the number of features p bigger than the sample size n, the conventional methods

for estimating partial correlation may result in over-fitting of the data ((Ryali et al., 2012)).

In this case, it is difficult to get accurate estimates of partial correlation coefficients.

For our proposed method introduced in the next section, in order to incorporate the

correlation information among features, instead of requiring accurate estimation of ρ∗ij ’s, we

only need to estimate which pairs of features are partially correlated, i.e., estimate the set
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Figure 3.1: Transforming a precision matrix Ω̂ into an undirected graph G.

E = {(i, j) : i < j and ρ∗ij 6= 0}. It is well known that the partial correlation coefficients

are proportional to the off-diagonal entries of the precision matrix Ω ((Meinshausen and

Bühlmann, 2006)). Thus, estimating E is equivalent to estimating the set {(i, j) : i <

j and ωij 6= 0}. In this way, many existing methods (Meinshausen and Bühlmann, 2006;

Friedman et al., 2008; Cai et al., 2011) can be used to estimate E effectively.

To extract the correlation information among features, we will use the graphical

Lasso ((Friedman et al., 2008)) or the neighborhood selection method ((Meinshausen and

Bühlmann, 2006)) to estimate E and denote its estimate as Ê . Furthermore, we represent Ê

as a sparse undirected graph G with p nodes and |Ê | edges, where each node represents one

feature and each edge indicates that two involved features are partially correlated signifi-

cantly. Figure 3.1 shows an example on how to transform the estimated precision matrix Ω̂

into the estimated undirected graph G. In graph G, features i and j are connected if and

only if ω̂ij 6= 0.

3.3.3 Graph Guided Multi-task Learning (GGML) method

In this section, we assume that the sparse undirected feature graph G has been con-

structed. For each i = 1, 2, . . . , p, denote Ni as the set including the i-th feature and its

neighbors in the feature graph G, i.e, Ni = {j : ω̂ji 6= 0}.

To use the correlation information represented by G, we generalize the idea of SRIG

shown in Chapter 2 to multi-task learning. Without loss of generality, considering the t-th
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task, we want to use the following linear model to predict the response variable Yt,

Yt = XBt + εt, (3.1)

where Bt = (b1t, . . . , bpt)
T ∈ Rp is the coefficient vector of interest and εt = (ε1t, . . . , εnt) ∈

Rn is the error vector with E(εst) = 0 and Var(εst) = σ2
t for each 1 ≤ s ≤ n.

Suppose the feature matrix X is independent of the error vector εt. To use the correla-

tion information among features, the SRIG method proposed in Chapter 2 estimates Bt by

solving the following optimization problem:

min
Bt,V 1t,V 2t,...,V pt∈Rp

‖Yt −XBt‖22 + λ

p∑
i=1

τit‖V it‖2, (3.2)

subject to Bt =
∑p

i=1 V
it and supp(V it) ⊆ Ni for each 1 ≤ i ≤ p, where supp(V it) is the

index set of nonzero components of the vector V it.

In the optimization problem (3.2), τit is a positive weight for the i-th part and t-th

task. Similar with the methods for adaptive Lasso ((Zou, 2006)) and group Lasso ((Yuan

and Lin, 2006)), we can set τit =

√
|Ni|
|b̃it|γ

where γ is a positive parameter and b̃it is an

initial estimate of bit. In our experiments, we choose b̃it as the sample correlation coefficient

between Xi and Yt. Both the positive parameter γ and the tuning parameter λ are chosen

by cross validation. Our experimental results indicate that this method could acquire good

performance in general.

Theoretically, the SRIG method is very general and covers many popular methods

as special cases. For example, if we ignore the correlation information among features,

we can set the undirected graph G as an empty graph with no edge. In this case, if

setting constant weights τit’s, we can show that
∑p

i=1 τit‖V it‖2 ∝ |Bt|1, and the SRIG

method is the same as the Lasso method ((Tibshirani, 1996)). In general, we can estimate

a sparse undirected graph G for modeling the significant partial correlation information

among features. The SRIG method can utilize this correlation information effectively and

acquires good prediction performance. More theoretical properties of SRIG method are

shown in Chapter 2.

62



For the multi-task learning, we aim at estimating q response variables simultaneously.

The multivariate regression model (1.2) shown in Chapter 1 is considered here. Similar to

the SRIG method discussed in Chapter 2, for each task, we assume that the coefficient vector

Bt can be decomposed as Bt =
∑p

i=1 V
it, where each V it is a p-dimensional latent vector

satisfying supp(V it) ⊆ Ni. Furthermore, in order to make use of the intrinsic correlation

among these q tasks (response variables), we also assume that the decompositions of q

coefficient vectors B1, B2, . . . , Bq have the same pattern, i.e., supp(V i1) = supp(V i2) =

· · · = supp(V iq) for each 1 ≤ i ≤ p. That is, for each i = 1, 2, . . . , p, we assume that, if

both the i-th feature and its partially-correlated features are useful for the prediction of one

response variable, they are also useful for the prediction of the other response variables.

Based on the above assumption, denote B = (B1, B2, . . . , Bq) ∈ Rp×q and Vi =

(V i1, V i2, . . . , V iq) ∈ Rp×q for each 1 ≤ i ≤ p, we generalize the SRIG method to the

following Graph Guided Multi-task Learning (GGML) method:

min
B,V1,V2,...,Vp∈Rp×q

‖Y−XB‖2F + λ

p∑
i=1

τi‖Vi‖F , (3.3)

subject to B =
∑p

i=1 Vi and {j : ‖Vi
j·‖2 6= 0} ⊆ Ni for each 1 ≤ i ≤ p, where Vi

j· is the jth

row of matrix Vi.

Similar to the SRIG method, we can set the weight τi =

√
|Ni|

max1≤t≤q |b̃it|γ
. The cross

validation method can be used to choose the best γ and the best tuning parameter λ for

different tasks separately. Note that the penalty term in (3.3) along with the additional

constraints not only encourage the significantly partially-correlated features to be in or out

of the model jointly, but also choose a common feature subset for different tasks. Due to

the use of both the correlation information among features and the intrinsic commonality

among different related tasks, our proposed GGML method could acquire better prediction

performance than the methods not using or only using part of these two kinds of information.

As an interesting remark, we note that the M3T method ((Zhang and Shen, 2012)) is a

special case of our proposed GGML method. In particular, when we ignore the correlation

information among features, we can set the undirected graph G as an empty graph with

no edge. In this case, if setting constant weights τi’s, we can show that
∑p

i=1 τi‖Vi‖F ∝
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Figure 3.2: Binary maps of the true precision matrices corresponding to these three simulated
examples: Left (Example 1), Middle (Example 2), and Right (Example 3).

∑p
i=1 ‖Bi·‖2, where Bi· is the i-th row of the coefficient matrix B. Thus, our proposed

GGML method is exactly the same as the M3T method using the l2,1 penalty.

3.3.4 Computation

For our proposed GGML method, we need to solve the optimization problem (3.3). We

can transform this constrained optimization problem into a simple unconstrained optimiza-

tion problem by feature duplication.

Denote X·Ni as the sub-matrix of X with column indices in Ni, and denote Vi
Ni· as the

sub-matrix of Vi with row indices inNi. Furthermore, denote X̃ = (X·N1 ,X·N2 , . . . ,X·Np) ∈

Rn×(
∑p
i=1 |Ni|) as the duplicated feature matrix and Ṽ = ((V1

N1·)
T , (V2

N2·)
T , . . . , (Vp

Np·)
T )T

as the (
∑p

i=1 |Ni|)× q coefficient matrix. Then, we can check that XB = X̃Ṽ and (3.3) is

equivalent to the following unconstrained optimization problem:

min
Ṽ
‖Y− X̃Ṽ‖2F + λ

p∑
i=1

τi‖Vi
Ni·‖F , (3.4)

The above problem (3.4) is a traditional group Lasso problem which can be solved

efficiently by the blockwise majorization decent algorithm ((Yang and Zou, 2013)). Denote

the estimate of B as B̂. In the application stage, given a testing subject x∗, for the t-th

task, we can estimate Y ∗t by Ŷ ∗t = sign(B̂T
t x
∗) if Y ∗t is a class label and by Ŷ ∗t = B̂T

t x
∗ if

Y ∗t is a continuous response variable.
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3.4 Simulation Study

In this section, we perform numerical studies using simulated examples. For each ex-

ample, we compare our proposed GGML method with 1) the Lasso method which learns

different tasks separately, 2) the SRIG method which uses the correlation information among

features and learns different tasks separately, and 3) M3T method which learns different

tasks jointly while ignoring the correlation information among features. We implement

Lasso, SRIG, and M3T methods as shown in Section 3.3 to predict the response variables.

Similar to the measures used in (Zhang and Shen, 2012), the classification accuracy and

the Pearson’s correlation coefficient (CC) are also used here to evaluate the classification

and regression performances, respectively. In addition, we also use the root-mean-square

error (RMSE) to evaluate the regression performance.

3.4.1 Simulated examples

We study three simulated examples. Each example has one classification task and

two regression tasks. We set p = 100, B1 = (2, . . . , 2, 0, 0, . . . , 0)T , B2 = B3 =

(1, . . . , 1, 0, 0, . . . , 0)T , where only the first 15 elements of each Bt (t = 1, 2, 3) are nonzero.

For each t, the errors ε1t, ε2t, . . . , εnt
i.i.d.∼ N(0, 9). For s = 1, 2, . . . , n, the feature vector

(xs1, xs2, . . . , xsp)
T is generated as follows.

Example 1: For 1 ≤ j ≤ 5, xsj = z1+0.4εxj . For 6 ≤ j ≤ 10, xsj = z2+0.4εxj . For 11 ≤ j ≤

15, xsj = z3 + 0.4εxj . For 16 ≤ j ≤ p, xsj
i.i.d∼ N(0, 1). Here, z1, z2, z3, ε

x
1 , ε

x
2 , . . . , ε

x
15

i.i.d∼

N(0, 1).

Example 2: The features (xs1, xs2, . . . , xsp)
T ∼ N(0,Σ) with σij = 0.5|i−j|. For this

example, we have ωii = 1.333, ωij = −0.667 if |i− j| = 1 and ωij = 0 if |i− j| > 1.

Example 3: The features {xsj : 1 ≤ j ≤ 15} are generated from the same model as

shown in Example 1. In addition, the features (xs16, xs17, . . . , xsp) ∼ N(0, Ω̃−1),

where Ω̃ = M + δI. Each off-diagonal entry in M is generated independently and

equals 0.5 with probability 0.05 or 0 with probability 0.95. The diagonal entry of
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Figure 3.3: True feature graphs corresponding to these three simulated examples: Left (Example
1), Middle (Example 2), and Right (Example 3). Each blue dot indicates a feature.

M is 0. Here, δ is chosen such that the conditional number of Ω̃ is equal to p − 15.

Finally, Ω̃ is standardized to have unit diagonals.

After generating each column of the response matrix Y by model (1.2), we replace the

elements in the first column of Y by their signs (positive or negative) to simulate class

labels. For all examples, we generate 40 training samples, 40 validation samples, and 400

testing samples. All the models are fitted on the training data. The validation data are

used to choose the tuning parameters and the testing data are used to evaluate different

methods. For each example, we repeat the simulation 30 times.

Figure 3.2 shows the binary maps of the true precision matrices and Figure 3.3 shows

the corresponding feature graphs of these three examples. All these three graphs are sparse.

For Examples 1 and 3, useful features (i.e., features with nonzero regression coefficients)

are only connected with useful features. For Example 2, one useful feature is connected

with one useless feature. In addition, for each example, different tasks are highly correlated

since they share the same useful features. It is very interesting to study whether correlation

information among features represented by the feature graph and the correlation information

among tasks can be incorporated to improve the prediction performance.

3.4.2 Simulation results

Table 3.2 shows the comparison of different methods using these three simulated exam-

ples. As shown in Table 3.2, for all these three examples, the SRIG method and GGML
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Figure 3.4: Binary maps of the estimated precision matrices. First row: AD/NC data; Second
row: MCI/NC data. First column: use only MRI features; Second column: use only PET features;
Third column: use both MRI and PET features.

method acquire better performance than the Lasso method and the M3T method, respec-

tively. This indicates that the extracted partial correlation information from features can be

utilized to improve the prediction performance. In addition, the GGML method and M3T

method also acquire better performance than the SRIG method and the Lasso method,

respectively. It indicates that learning different correlated tasks jointly can also improve

the prediction performance. For these three simulated examples, since our proposed GGML

method incorporates both the partial correlation information among features and the intrin-

sic correlation information among different related tasks, it delivers the best performance in

all cases. In the next section, we will further compare these four methods using the ADNI

dataset.

3.5 Analysis of the ADNI dataset

For the ADNI dataset, we estimate one class label and two clinical scores (i.e., MMSE

and ADAS-Cog) using the MRI, FDG-PET and/or CSF features. Since there are two

binary classification problems (AD vs. NC, and MCI vs. NC), we perform two sets of

67



Figure 3.5: Feature graphs corresponding to the estimated precision matrices. First row: AD/NC
data; Second row: MCI/NC data. First column: use only MRI features; Second column: use only
PET features; Third column: use both MRI and PET features. Each blue dot represents a MRI
feature and each green dot represents a PET feature.

experiments. The first set of experiments uses the AD/NC dataset including only AD and

NC subjects. The second set of experiments uses the MCI/NC dataset including only MCI

and NC subjects. For each set of experiments, we consider four cases: (I) use only MRI

features; (II) use only PET features; (III) use both MRI and PET features (denoted as

MRI+PET); (IV) use all MRI, PET and CSF features (denoted as MRI+PET+CSF).

To evaluate the performance of different methods, we used the 10-fold cross validation

(CV) strategy. Specifically, the whole samples were partitioned randomly into ten subsets.

Each time only nine subsets were chosen for training and the remaining one was used for

testing. We repeated this process ten times with each of the 10 subsets used exactly once as

the testing data. Furthermore, in consideration of possible bias due to the random partition

in the 10-fold CV, we repeated the whole 10-CV process 30 times. In the training process,

each column of the training data was normalized to have mean 0 and standard deviation 1.

For all methods, we performed another inner 5-fold CV on the training data to choose the

tuning parameters.
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3.5.1 Partial correlation among different features

In the first step of the SRIG and GGML methods, we need to extract the effective

correlation information from features. Note that, only the training data matrix of features

were used to estimate the sparse undirected graph G representing the significant partial

correlation among features. Figure 3.4 shows the binary maps of the estimated precision

matrices. Binary maps in the first two columns indicate that many features within the same

modality (e.g., MRI or PET) are partially correlated statistically significantly. However,

as shown by the binary maps in the third column, the partial correlation between MRI

features and PET features are not statistically significantly in most cases. Furthermore, the

comparison between the binary maps in the first row and the second row indicates that the

partial correlation information extracted from AD/NC data is similar to that of MCI/NC

data. Similar to the example shown in Figure 3.1, we can transform the estimated precision

matrices to some undirected graphs. The feature graphs corresponding to the estimated

precision matrices are shown in Figure 3.5. This graph information will be used in the

GGML and SRIG methods.

3.5.2 Classification results

The classification accuracies of different methods are shown in Table 3.3. All methods

deliver higher classification accuracy for the AD/NC dataset than the corresponding classi-

fication accuracy for the MCI/NC dataset. For the AD/NC dataset, when we use only MRI

features or PET features, the SRIG method and GGML method acquire better classification

performance than the Lasso method and the M3T method, respectively. This indicates that

the extracted partial correlation information from features can be utilized to improve the

classification performance. In addition, when we use both MRI and PET features or all the

MRI, PET, and CSF features, since it is relatively easy to discriminate AD subjects from

NC subjects in this case, all four methods acquire similar high classification accuracies.

For the MCI/NC dataset, on the one hand, the comparison between SRIG and Lasso

(or GGML and M3T) indicates that using the extracted partial correlation information
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among features improve the classification performance significantly. On the other hand,

the comparison between GGML and SRIG (or M3T and Lasso) shows that the joint clas-

sification and regression could provide better classification performance than the separate

classification. Since our proposed GGML method incorporates both the partial correla-

tion information among features and the intrinsic correlation information among different

related tasks, it delivers the best classification performance.

3.5.3 Regression results

For regression tasks, we need to predict both the MMSE score and the ADAS-Cog score.

Tables 3.4 and 3.5 show the comparison of regression performance on the AD/NC data and

the MCI/NC data, respectively. As shown in Tables 3.4 and 3.5, our proposed GGML

method acquires promising performance in most cases. For example, when we use all the

features to predict the MMSE score, for the AD/NC data, our proposed GGML method

achieves the highest correlation coefficient 0.745 while the corresponding correlation coeffi-

cients for Lasso, SRIG, and M3T are 0.709, 0.723 and 0.724, respectively. For the MCI/NC

data, GGML also has the best performance with correlation coefficient 0.382 while the cor-

responding correlation coefficients for Lasso, SRIG, and M3T are 0.303, 0.325 and 0.364,

respectively. In addition, when we use all the features to predict the ADAS-Cog scores, for

the AD/NC data, our proposed GGML method achieves the highest correlation coefficient

0.740 while the corresponding correlation coefficients for Lasso, SRIG, and M3T are 0.664,

0.719 and 0.718, respectively. For the MCI/NC data, GGML also has the best performance

with correlation coefficient 0.472 while the corresponding correlation coefficients for Lasso,

SRIG, and M3T are 0.336, 0.464 and 0.426, respectively.

It is interesting to note that for the MCI/NC dataset, the PET and CSF data seem to

be not useful for the prediction of MMSE score. All four methods acquire poor prediction of

the MMSE scores when only the PET data are used. In addition, compared with the cases

only using MRI data, both M3T and GGML methods acquire worse performance when the

additional PET/CSF data are used. Similar to the previous discussion about classification
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Figure 3.6: Selection frequency of 93 ROIs for the AD/NC classification task.

performance, the comparison between SRIG and Lasso (or GGML and M3T) indicates that

using the extracted partial correlation information among features improves the prediction

of MMSE and ADAS-Cog scores significantly. In addition, the comparison between GGML

and SRIG (or M3T and Lasso) shows that joint classification and regression could deliver

better prediction performance than the separate regression of MMSE (or ADAS-Cog) on the

features. Since our GGML method incorporates both the partial correlation information

among features and the intrinsic correlation information among different tasks, it delivers

the best prediction of the MMSE and ADAS-Cog scores.

3.5.4 Most discriminative brain regions

In this subsection, we investigate the most discriminative brain regions for the diagnosis

of disease status and the prediction of the MMSE and ADAS-Cog scores. For each method,

we repeated the whole 10-CV process 30 times and acquired 300 different models using

different training datasets. Figure 3.6 shows the selection frequency of each of 93 ROIs for

the AD/NC classification task using only MRI features, where the selection frequency for
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each ROI is defined as

Frequency = 100× The times of being selected in the 300 models

300
.

For each method, some ROIs are always selected while some ROIs are seldom selected. Com-

pared with Lasso and M3T, the SRIG and GGML methods tend to select more ROIs since

they use the feature graph information and encourage the significantly partially-correlated

features to be selected jointly. According to the selection frequency, we compare the top ten

selected ROIs of different methods for different tasks. Tables 3.6-3.8 show the indices of the

top ten selected ROIs of the four methods for different tasks (classification or regression),

different datasets (AD/NC or MCI/NC) and different modalities (MRI or PET). Table 3.9

contains the full names of the ROIs.

As shown in Tables 3.6-3.8, for different tasks, the top ten selected ROIs of the single

task learning methods such as Lasso and SRIG are different while the top ten selected ROIs

of the multi-task learning methods such as M3T and GGML are the same. We can also

observe that the top ten selected ROIs for the cases using MRI features are not very similar

to the top ten selected ROIs for the cases using PET features. One possible reason is that

MRI features and PET features provide complementary information for the diagnosis of

AD. However, for each case, the top ten selected ROIs of the four methods are similar. For

example, for the AD/NC classification task using MRI features, Table 3.6 indicates that

the ROIs with indices 18, 80, 83, 84, and 90 are frequently selected by all four methods.

It is interesting to point out that both GGML and M3T methods also select the 48-th

ROI frequently for the AD/NC classification task while this ROI is not one of the top ten

selected ROIs of Lasso and SRIG for this task. However, as shown in Table 3.8, the 48-th

ROI is frequently selected by Lasso and SRIG for the regression task (ADAS-Cog) using

AD/NC data. This indicates that the multi-task learning methods such as GGML and M3T

incorporate the clinical score information for the classification task. On the other hand, as

shown in Table 3.8, both GGML and M3T methods select the 22-th ROI frequently for the

regression task (ADAS-Cog) using AD/NC data while this ROI is not one of the top ten

72



(a) MRI (b) PET

Figure 3.7: Top ten most discriminative brain regions (AD/NC dataset).

selected ROIs of Lasso and SRIG for this task. However, as shown in Table 3.6, the 22-th

ROI is frequently selected by Lasso and SRIG for the classification task (AD vs NC). This

indicates that the multi-task learning methods such as GGML and M3T incorporate the

class label information for the regression task.

Furthermore, as shown in Tables 3.6-3.8, for the study using AD/NC data and MRI

features, the common top ten selected ROIs of Lasso for different tasks are the ROIs with

indices 18, 80, 83, 84 and 90. The common top ten selected ROIs of the SRIG method for

different tasks are the ROIs with indices 58, 80, 83, and 84. Most of these ROIs are the

top ten selected ROIs of our proposed GGML method. In Figures 3.7-3.8, we visualize the

top ten selected ROIs of our proposed GGML method when different datasets (AD/NC or

MCI/NC) and different modalities (MRI or PET) are used. Most of the selected regions,

e.g., uncus right (22), hippocampal formation right (30), uncus left (46), middle temporal

gyrus left (48), hippocampus formation left (69), middle temporal gyrus right (80) and

amygdale right (83), are known to be highly correlated with AD and MCI by many studies

using group comparison methods (Jack et al., 1999; Misra et al., 2009b; Zhang and Shen,

2012).
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(a) MRI (b) PET

Figure 3.8: Top ten most discriminative brain regions (MCI/NC dataset).

3.6 Discussion

In this section, we first discuss some issues about constructing the undirected feature

graph G. Then, some possible extensions of our proposed method will be discussed.

3.6.1 Construction of the undirected feature graph G

Before performing our proposed GGML method, we need to construct an undirected

feature graph G representing the significant correlation information among features. In

Section 3.3.2, we proposed to use the graphical Lasso method to construct this graph. For

some datasets, the constructed graph G may include many edges corresponding to weak or

even wrong partial correlation due to bad estimation of the precision matrix. In this case,

by thresholding of the estimated precision matrix, we can construct a sparse undirected

graph for representing only the most reliable partial correlation.

Furthermore, besides partial correlation information among features, we can also com-

bine other useful information (e.g., some prior information about features) to construct this

graph G. Our proposed GGML method can be used for any given undirected feature graph

G representing the relationships among different features.
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3.6.2 Use the structure information among different subjects

Our proposed GGML method utilizes both the correlation information among features

and the intrinsic correlation information among different response variables. Actually, we

can also generalize GGML method to incorporate the structure information among different

subjects. Similar to the locality preserving projection (LPP) method ((He and Niyogi,

2004)), we can model the structure information among different training subjects as another

sparse undirected graph S. Here, S has n nodes and each node represents one subject. The

connectivity of the graph S can be defined by the k nearest neighbors, i.e., subjects xs and

xl are connected by an edge if xs is among the k nearest neighbors of xl, or xl is among

the k nearest neighbors of xs. In order to use the structure information among different

training subjects represented by S, we can preserve the neighborhood structure of subjects,

i.e., encouraging the predicted response variables ŷs = BTxs and ŷl = BTxl to be close if

the s-th and the l-th subjects are connected in the undirected graph S.

3.7 Conclusion

In summary, we propose a new graph guided multi-task learning method to incorporate

the correlation information among features and the intrinsic correlation information among

different tasks. To use the correlation information among features, our proposed GGML

method encourages the partially-correlated features to be in or out of the model jointly.

Furthermore, in order to acquire more robust and accurate feature selection, our proposed

GGML method encourages different tasks to share a common useful feature subset. The-

oretically, our proposed GGML method is very general and includes the M3T method as

a special case. The experimental results on the simulated examples and the ADNI dataset

also show the advantage of the proposed GGML method over some existing methods.
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Table 3.2: Comparison of different methods using the simulated examples

Example Method Accuracy CC1 CC2 RMSE1 RMSE2

1

Lasso 0.828 (0.007) 0.909 (0.004) 0.910 (0.003) 4.091 (0.070) 4.106 (0.064)

SRIG 0.848 (0.009) 0.932 (0.003) 0.933 (0.002) 3.548 (0.062) 3.620 (0.057)

M3T 0.840 (0.006) 0.918 (0.002) 0.917 (0.002) 3.916 (0.059) 4.005 (0.059)

GGML 0.872 (0.006) 0.938 (0.002) 0.936 (0.001) 3.402 (0.043) 3.488 (0.039)

2

Lasso 0.765 (0.008) 0.781 (0.010) 0.767 (0.012) 4.567 (0.084) 4.596 (0.089)

SRIG 0.800 (0.008) 0.823 (0.008) 0.810 (0.010) 4.134 (0.075) 4.213 (0.089)

M3T 0.796 (0.008) 0.814 (0.008) 0.807 (0.008) 4.261 (0.075) 4.290 (0.075)

GGML 0.816 (0.008) 0.839 (0.007) 0.838 (0.007) 3.966 (0.069) 3.981 (0.073)

3

Lasso 0.821 (0.005) 0.910 (0.004) 0.903 (0.005) 3.995 (0.066) 4.163 (0.096)

SRIG 0.846 (0.008) 0.932 (0.003) 0.927 (0.004) 3.506 (0.063) 3.633 (0.084)

M3T 0.843 (0.006) 0.918 (0.003) 0.913 (0.004) 3.907 (0.049) 3.992 (0.073)

GGML 0.872 (0.006) 0.938 (0.002) 0.934 (0.002) 3.388 (0.045) 3.464 (0.050)

[CC1 (CC2) is the Pearson’s correlation coefficient of the first (second) regression task; RMSE1
(RMSE2) is the root-mean-square error of the first (second) regression task. The values in the

parenthesis are standard deviations.]
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Table 3.3: Comparison of the classification performance on the ADNI dataset.

Data Method MRI PET MRI+PET MRSRIGI+PET+CSF

AD/NC

Lasso 0.878 (0.003) 0.823 (0.003) 0.903 (0.003) 0.917 (0.003)

SRIG 0.896 (0.003) 0.830 (0.003) 0.911 (0.002) 0.915 (0.002)

M3T 0.884 (0.002) 0.821 (0.002) 0.914 (0.002) 0.918 (0.002)

GGML 0.906 (0.003) 0.832 (0.003) 0.919 (0.002) 0.926 (0.002)

MCI/NC

Lasso 0.722 (0.003) 0.677 (0.003) 0.737 (0.004) 0.750 (0.004)

SRIG 0.737 (0.004) 0.688 (0.004) 0.755 (0.005) 0.769 (0.003)

M3T 0.738 (0.003) 0.655 (0.003) 0.775 (0.003) 0.776 (0.003)

GGML 0.751 (0.003) 0.696 (0.003) 0.784 (0.003) 0.800 (0.003)

[The reported values are the averaged classification accuracy with standard deviation.]

Table 3.4: Comparison of the regression performance on the AD/NC dataset.

Response Method MRI PET MRI+PET MRI+PET+CSF

MMSE

Lasso 0.601 (0.005) 0.601 (0.004) 0.688 (0.003) 0.709 (0.003)

SRIG 0.656 (0.003) 0.611 (0.003) 0.698 (0.003) 0.723 (0.003)

M3T 0.651 (0.004) 0.585 (0.003) 0.693 (0.002) 0.724 (0.002)

GGML 0.671 (0.002) 0.598 (0.003) 0.712 (0.002) 0.745 (0.002)

ADAS-Cog

Lasso 0.695 (0.003) 0.611 (0.004) 0.652 (0.004) 0.664 (0.004)

SRIG 0.703 (0.002) 0.632 (0.004) 0.708 (0.003) 0.719 (0.002)

M3T 0.703 (0.002) 0.635 (0.003) 0.709 (0.003) 0.718 (0.002)

GGML 0.705 (0.002) 0.644 (0.003) 0.721 (0.002) 0.740 (0.002)

[The reported values are the averaged correlation coefficient with standard deviation.]
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Table 3.5: Comparison of the regression performance on the MCI/NC dataset.

Response Method MRI PET MRI+PET MRI+PET+CSF

MMSE

Lasso 0.326 (0.006) 0.168 (0.010) 0.303 (0.007) 0.303 (0.007)

SRIG 0.313 (0.007) 0.181 (0.004) 0.323 (0.005) 0.325 (0.005)

M3T 0.382 (0.004) 0.182 (0.007) 0.379 (0.004) 0.364 (0.004)

GGML 0.394 (0.004) 0.213 (0.005) 0.392 (0.005) 0.382 (0.004)

ADAS-Cog

Lasso 0.355 (0.006) 0.427 (0.006) 0.343 (0.006) 0.336 (0.006)

SRIG 0.378 (0.005) 0.451 (0.005) 0.462 (0.004) 0.464 (0.003)

M3T 0.354 (0.004) 0.406 (0.006) 0.429 (0.003) 0.426 (0.003)

GGML 0.391 (0.004) 0.469 (0.005) 0.462 (0.003) 0.472 (0.003)

[The reported values are the averaged correlation coefficient with standard deviation.]

Table 3.6: Comparison of the top ten selected ROIs for the classification task.

MRI PET

AD/NC

Lasso 18, 22, 38, 44, 46, 69, 80, 83, 84, 90 12, 18, 23, 26, 41, 68, 69, 73, 81, 87

SRIG 18, 22, 30, 44, 58, 69, 80, 83, 84, 90 12, 18, 26, 35, 41, 68, 69, 73, 79, 87

M3T 9, 18, 22, 46, 48, 69, 80, 83, 84, 90 12, 23, 26, 35, 62, 68, 69, 73, 81, 87

GGML 18, 22, 30, 44, 48, 67, 80, 83, 84, 90 7, 12, 23, 26, 35, 62, 68, 69, 73, 87

MCI/NC

Lasso 17, 28, 40, 48, 63, 64, 69, 83, 86, 92 2, 37, 39, 41, 54, 55, 63, 68, 81, 87

SRIG 17, 22, 30, 40, 46, 64, 69, 76, 83, 92 11, 12, 23, 26, 28, 29, 38, 40, 41, 87

M3T 17, 40, 46, 48, 53, 63, 64, 69, 83, 86 12, 35, 41, 62, 64, 68, 73, 79, 81, 87

GGML 22, 40, 45, 46, 61, 64, 69, 76, 83, 86 11, 12, 26, 29, 38, 40, 41, 47, 79, 87
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Table 3.7: Comparison of the top ten selected ROIs for the prediction of MMSE.

MRI PET

AD/NC

Lasso 9, 15, 18, 19, 22, 40, 80, 83, 84, 90 12, 18, 23, 26, 62, 63, 68, 69, 73, 79

SRIG 19, 22, 48, 58, 62, 67, 80, 83, 84, 85 7, 12, 23, 26, 35, 41, 62, 68, 69, 73

M3T 9, 18, 22, 46, 48, 69, 80, 83, 84, 90 12, 23, 26, 35, 62, 68, 69, 73, 81, 87

GGML 18, 22, 30, 44, 48, 67, 80, 83, 84, 90 7, 12, 23, 26, 35, 62, 68, 69, 73, 87

MCI/NC

Lasso 17, 33, 40, 44, 48, 53, 62, 64, 69, 86 4, 23, 24, 33, 41, 61, 62, 68, 84, 87

SRIG 22, 45, 46, 48, 61, 64, 69, 76, 83, 86 11, 12, 23, 26, 28, 29, 38, 40, 41, 87

M3T 17, 40, 46, 48, 53, 63, 64, 69, 83, 86 12, 35, 41, 62, 64, 68, 73, 79, 81, 87

GGML 22, 40, 45, 46, 61, 64, 69, 76, 83, 86 11, 12, 26, 29, 38, 40, 41, 47, 79, 87

Table 3.8: Comparison of the top ten selected ROIs for the prediction of ADAS.

MRI PET

AD/NC

Lasso 9, 18, 46, 48, 61, 62, 80, 83, 84, 90 12, 23, 26, 30, 35, 62, 73, 76, 81, 92

SRIG 18, 30, 48, 58, 62, 67, 80, 83, 84, 85 7, 12, 23, 26, 30, 35, 62, 69, 73, 92

M3T 9, 18, 22, 46, 48, 69, 80, 83, 84, 90 12, 23, 26, 35, 62, 68, 69, 73, 81, 87

GGML 18, 22, 30, 44, 48, 67, 80, 83, 84, 90 7, 12, 23, 26, 35, 62, 68, 69, 73, 87

MCI/NC

Lasso 10, 17, 18, 38, 45, 46, 69, 72, 83, 87 10, 12, 14, 19, 35, 39, 41, 62, 64, 88

SRIG 17, 45, 46, 61, 62, 69, 72, 76, 83, 87 11, 12, 28, 29, 35, 38, 41, 71, 79, 87

M3T 17, 40, 46, 48, 53, 63, 64, 69, 83, 86 12, 35, 41, 62, 64, 68, 73, 79, 81, 87

GGML 22, 40, 45, 46, 61, 64, 69, 76, 83, 86 11, 12, 26, 29, 38, 40, 41, 47, 79, 87
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Table 3.9: Names of the selected ROIs in this study.

ROI Index ROI Name ROI Index ROI Name

2 middle frontal gyrus right 47 middle occipital gyrus right

4 insula right 48 middle temporal gyrus left

7 cingulate region right 53 postcentral gyrus left

9 medial frontal gyrus left 54 inferior frontal gyrus right

10 superior frontal gyrus right 55 precentral gyrus left

11 globus palladus right 58 perirhinal cortex right

12 globus palladus left 61 perirhinal cortex left

14 inferior frontal gyrus left 62 inferior temporal gyrus left

15 putamen right 63 temporal pole left

17 parahippocampal gyrus left 64 entorhinal cortex left

18 angular gyrus right 67 lateral occipitotemporal gyrus right

19 temporal pole right 68 entorhinal cortex right

22 uncus right 69 hippocampal formation left

23 cingulate region left 71 parietal lobe WM right

24 fornix left 72 insula left

26 precuneus right 73 postcentral gyrus right

28 cerebral peduncle left 76 amygdala left

29 cerebral peduncle right 79 anterior limb of internal capsule right

30 hippocampal formation right 80 middle temporal gyrus right

33 caudate nucleus left 81 occipital pole right

35 anterior limb of internal capsule left 83 amygdala right

37 middle frontal gyrus left 84 inferior temporal gyrus right

38 superior parietal lobule left 85 superior temporal gyrus right

39 caudate nucleus right 86 middle occipital gyrus left

40 cuneus left 87 angular gyrus left

41 precuneus left 88 medial occipitotemporal gyrus right

44 supramarginal gyrus right 90 lateral occipitotemporal gyrus left

45 superior temporal gyrus left 92 occipital pole left

46 uncus left
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CHAPTER 4: SPARSE REGRESSION FOR BLOCK-MISSING
MULTI-MODALITY DATA

4.1 Introduction

In modern scientific research, many data are collected from multiple modalities (sources

or types). Since different modalities could provide complementary information, sparse re-

gression methods using multi-modality data could deliver better prediction performance.

However, one special challenge for using multi-modality data is related to missing data,

which is unavoidable due to some reasons such as the high cost of measures or the patients’

dropout. Generally, the observations of a certain modality can be missing completely, i.e.,

a complete block of the data is missing. One example of block-missing multi-modality data

is shown in Figure 4.1. In this example, there are n samples (each row is one sample),

three modalities and one response variable. The blank regions with question mark indicate

missing data.

In regard to the problem of sparse regression for block-missing multi-modality data,

the simplest method is to remove all samples with missing observations. However, this

approach can greatly reduce the sample size and waste a lot of useful information in the

samples with missing observations. Another strategy is to impute the missing data first

by some imputation methods such as (Hastie et al., 1999), (Schott et al., 2010), and (Cai

et al., 2010). These methods can be effective when the missing locations are random, but

they can be ineffective when a complete block of the data is missing.

In the literature, one important recent technique for block-missing multi-modality

data is the incomplete Multi-Source Feature learning (iMSF) method proposed by (Yuan

et al., 2012). The iMSF method performs classification/regression on block-missing multi-

modality data without the need of missing data imputation. It formulates the prediction

problem as a multi-task learning problem by first decomposing the prediction problem into

a set of tasks (classification or regression), one for each combination of available modalities



Figure 4.1: An illustration of a block-missing multi-modality data set with three modalities.

(e.g., modality 1, modalities 1 and 2, modalities 1 and 3, modalities 1, 2, and 3 for the ex-

ample shown in Figure 4.1), and then building the models for all tasks simultaneously. The

important assumption in the iMSF method is that all models involving a specific modality

share the common set of predictors for that particular modality. However, when different

modalities are highly correlated, this assumption could be too strong. In that case, for some

modalities, it is more reasonable to choose different predictor subsets for different involved

tasks. Therefore, it is desirable to develop flexible and efficient sparse regression methods

applicable to block-missing multi-modality data.

In this chapter, we propose a new sparse regression method for block-missing multi-

modality data. Our method has two steps. In the first step, we use all available information

to estimate the covariance matrix of the predictors and the cross-covariance matrix be-

tween the predictors and the response variable. In the second step, based on the estimated

covariance matrix and the estimated cross-covariance matrix, we use a modified Lasso es-

timator to deliver good estimates of the regression coefficients. Both the simulation study

and the real data analysis demonstrate the effectiveness of our proposed method. Since our

method uses all available information efficiently, it could deliver better performance than

many existing methods.

The rest of this chapter is organized as follows. In Section 4.2, we motivate and introduce

our proposed method. In Sections 4.3 and 4.4, we demonstrate the use of our method on
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simulated data and the ADNI dataset with block-missing entries. We conclude this chapter

in Section 4.5.

4.2 Motivation and Methodology

Suppose there are K modalities with p1, p2, . . . , pK predictors, respectively. Consider

the following linear regression model:

Y = X(1)β(1) + X(2)β(2) + · · ·+ X(K)β(K) + ε, (4.1)

where Y = (y1, y2, . . . , yn)T is an n× 1 response vector and ε = (ε1, ε2, . . . , εn)T is a vector

of i.i.d. random variables with mean 0 and variance σ2. For the k-th modality, we use

X(k) ∈ Rn×pk and β(k) ∈ Rpk to denote the observations of the pk predictors and the vector

of the true coefficients, respectively. In addition, we use X = (X(1),X(2), . . . ,X(K)) =

(x1, x2, . . . , xn)T to denote the n × p design matrix, where p = p1 + p2 + · · · + pK . We

assume that each xi follows some multivariate distribution with mean 0p×1 and covariance

matrix Σ. The design matrix X is assumed to be independent of the random error ε. We

use Σxy = (c1, c2, . . . , cp)
T ∈ Rp to denote the cross-covariance vector between xi and yi.

For complete data with no missing entries, the classical Lasso method estimates β0 =

(β(1)T , β(2)T , . . . , β(K)T )T by solving the following optimization problem:

min
β

1

2n
‖Y −Xβ‖22 + λ‖β‖1,

where ‖Y −Xβ‖2 denotes the `2 norm of Y −Xβ, ‖β‖1 denotes the `1 norm of β, and λ is

a tuning parameter.

For the block-missing multi-modality data, the above Lasso method is not applicable

since there are many block-missing entries in the design matrix X. However, we can estimate

β0 by solving the following optimization problem

min
β

1

2n
E(‖Y −Xβ‖22) + λ‖β‖1,

83



which is equivalent to

min
β

1

2
βTΣβ −ΣT

xyβ + λ‖β‖1. (4.2)

Motivated by the formula (4.2), we propose a new two-step sparse regression procedure

for block-missing multi-modality data. In the first step, we use all available data to estimate

the covariance matrix Σ and the cross-covariance vector Σxy. The estimates of Σ and Σxy

are denoted as Σ̂ and Σ̂xy, respectively. In the second step, we estimate β0 by solving the

following optimization problem:

min
β

1

2
βT Σ̂β − Σ̂T

xyβ +

K∑
k=1

λk‖β(k)‖1, (4.3)

where we can use different tuning parameters λk’s for different modalities.

Next, we discuss how to estimate Σ and Σxy using the block-missing multi-modality

data. For each predictor j, we denote Sj as the set {i : xij is not missing}. For predictors

j and t, we denote Sjt as the set {i : both xij and xit are not missing}. The number of

elements in Sj and Sjt are denoted as |Sj | and |Sjt|, respectively.

A natural initial estimate of Σ using all available data is

Σ̃ = (σ̃jt)j,t=1,2,...,p, where σ̃jt =
1

|Sjt|
∑
i∈Sjt

xijxit.

For block-missing multi-modality data, the above initial estimate Σ̃ can be ill-conditioned

and have negative eigenvalues. Therefore, it may not be a good estimate of Σ and can not

be used in (4.3) directly. We will introduce an estimator that is both well-conditioned and

more accurate than the initial estimate Σ̃. Denote Σ̃B as the block-diagonal matrix with

K blocks where the k-th block is the sample covariance matrix of the predictors from the

k-th modality. Let Σ̃O = Σ̃− Σ̃B. We propose to use the following estimate

Σ̂ = α1Σ̃B + α2Σ̃O + α3Ip,
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where α1, α2 and α3 are three nonrandom weights. Our goal is to find the optimal linear

combination Σ̃∗ = α∗1Σ̃B + α∗2Σ̃O + α∗3Ip whose expected quadratic loss E[‖Σ̃∗ −Σ‖2F ] is

minimum. The optimal weights α∗1, α
∗
2 and α∗3 are shown in the following Theorem 4.1.

Theorem 4.1. Consider the following optimization problem:

min
α1,α2,α3

E[‖Σ̂−Σ‖2F ]

s.t. Σ̂ = α1Σ̃B + α2Σ̃O + α3Ip,

where the weights α1, α2 and α3 are nonrandom. Denote γ∗ = tr(Σ)/p, δ2
B = E[‖Σ̃B −

ΣB‖2F ], δ2
O = E[‖Σ̃O −ΣO‖2F ], and θ2 = ‖γ∗Ip −ΣB‖2F . The optimal weights are

α∗1 =
θ2

θ2 + δ2
B

, α∗2 =
‖ΣO‖2F

‖ΣO‖2F + δ2
O

, α∗3 = γ∗(1− α∗1) =
γ∗δ2

B

θ2 + δ2
B

.

In addition, we have

E[‖Σ̃∗ −Σ‖2F ] =
δ2
Bθ

2

δ2
B + θ2

+
δ2
O‖ΣO‖2F

δ2
O + ‖ΣO‖2F

≤ δ2
B + δ2

O = E[‖Σ̃−Σ‖2F ].

Proof. By changing variables, the optimization problem can be rewritten as

min
α1,α2,γ

E[‖Σ̂−Σ‖2F ]

s.t. Σ̂ = α1Σ̃B + α2Σ̃O + (1− α1)γIp.

Denote ΣB as the block-diagonal matrix with K blocks where the k-th block is the covari-

ance matrix of the predictors from the k-th modality. Let ΣO = Σ−ΣB. Using the facts

that Σ = ΣB + ΣO and E(Σ̃B) = ΣB, we can rewrite the objective function as

E[‖Σ̂−Σ‖2F ] =E[‖α1Σ̃B + α2Σ̃O + (1− α1)γIp −Σ‖2F ]

=E[‖α1Σ̃B + α2Σ̃O + (1− α1)γIp − α1ΣB − (1− α1)ΣB −ΣO‖2F ]

=E[‖α1(Σ̃B −ΣB) + (1− α1)(γIp −ΣB)‖2F ] + E[‖α2Σ̃O −ΣO‖2F ]

=α2
1E[‖Σ̃B −ΣB‖2F ] + (1− α1)2‖γIp −ΣB‖2F + E[‖α2Σ̃O −ΣO‖2F ].
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Therefore, the optimal value of γ can be obtained by minimizing ‖γIp − ΣB‖2F . Thus,

the optimal value is γ∗ = tr(ΣB)/p = tr(Σ)/p. The optimal value of α2 can be obtained

by minimizing E[‖α2Σ̃O −ΣO‖2F ]. The optimal value is α∗2 =
‖ΣO‖2F
‖ΣO‖2F+δ2O

. Replacing γ by

its optimal value γ∗ in the objective function and taking the derivative of the objective

function with respect to α1, we can find that the optimal value of α1 is α∗1 = θ2

θ2+δ2B
. Thus,

the optimal value of α3 is α∗3 = γ∗(1− α∗1) =
γ∗δ2B
θ2+δ2B

.

At the optimum, the objective function is equal to
δ2Bθ

2

δ2B+θ2
+

δ2O‖ΣO‖2F
δ2O+‖ΣO‖2F

, which is less than

δ2
B + δ2

O. Since E[‖Σ̃−Σ‖2F ] = δ2
B + δ2

O, we know that E[‖Σ̃∗ −Σ‖2F ] ≤ E[‖Σ̃−Σ‖2F ]. �

Theorem 4.1 indicates that γ∗Ip can be viewed as a shrinkage target and the weight

1 − α∗1 is the shrinkage intensity. Moreover, it shows that Σ∗ is more accurate than the

sample covariance matrix. The relative improvement in expected quadratic loss over the

sample covariance matrix is equal to

E[‖Σ̃−Σ‖2F ]− E[‖Σ̃∗ −Σ‖2F ]

E[‖Σ̃−Σ‖2F ]
=

δ2
B

δ2
B + δ2

O

· (1− α∗1) +
δ2
O

δ2
B + δ2

O

· (1− α∗2).

Therefore, if Σ̃B is relatively accurate (δ2
B is small), then the optimal weight α∗1 = θ2

θ2+δ2B

should be large and the percentage relative improvement tends to be small. If Σ̃B is

relatively inaccurate (δ2
B is large), then the optimal weight α∗1 = θ2

θ2+δ2B
should be small and

the percentage relative improvement tends to be large. We can also make similar conclusions

about Σ̃O. In addition, for the block-missing multi-modality data, due to the imbalanced

sample sizes, the initial estimate Σ̃B can be relatively accurate while the estimate Σ̃O is

relatively inaccurate. In that case, we may need to use different weights for Σ̃B and Σ̃O.

As a remark, Theorem 4.1 has some interesting connections with the Theorem 2.1 shown

in (Ledoit and Wolf, 2004), where they study the optimal linear combination of the sample

covariance matrix and the identity matrix to estimate the covariance matrix using data

without missing entries.

Regarding Σxy, we choose the following estimate

Σ̂xy = (ĉ1, ĉ2, · · · , ĉp)T , where ĉj =
1

|Sj |
∑
i∈Sj

yixij .
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After estimating Σ and Σxy, our proposed sparse regression procedure for block-missing

multi-modality data estimates β0 by solving the following optimization problem:

min
β

1

2
βT [α1Σ̃B + α2Σ̃O + (1− α1)

tr(Σ̃)

p
Ip]β − Σ̂T

xyβ +
K∑
k=1

λk‖β(k)‖1. (4.4)

Here, we use tr(Σ̃)/p to estimate γ∗. Both α1 ∈ [0, 1], α2 ∈ [0, 1], and λk’s can be chosen

by cross validation or an additional tuning dataset. In practice, we can choose reasonable

α1 and α2 so that the estimated covariance matrix α1Σ̃B + α2Σ̃O + (1 − α1) tr(Σ̃)
p Ip is

nonnegative and well-conditioned. Our flexible procedure uses the block-missing multi-

modality data information efficiently without imputing missing data. It’s also easy to solve

the quadratic programming problem (4.4). For example, we can use the scout ((Witten

and Tibshirani, 2011)) R package.

4.3 Simulation Study

In this section, we perform numerical studies using simulated examples. For each ex-

ample, we compare our proposed method with 1) Lasso: Lasso method which only uses the

samples with complete observations; 2) Imputed Lasso: Lasso method which uses all sam-

ples with missing values imputed by the Soft-thresholded SVD method ((Mazumder et al.,

2010)); 3) Ridge: Ridge regression method which only uses the samples with complete ob-

servations; 4) Imputed Ridge: Ridge regression method which uses all samples with missing

values imputed by the Soft-thresholded SVD method; and 5) iMSF: the iMSF method which

uses all available data without imputing the missing data.

4.3.1 Simulated examples

We study three simulated examples. Data are generated from three modalities and

each modality has 100 features. All these examples have the same missing pattern as

shown in Figure 4.1. For each example, the training data set is composed of 100 samples

with complete observations, 100 samples with observations from the first and the second

modalities, 100 samples with observations from the first and the third modalities, and 100

samples with observations only from the first modality. The tuning data set contains 200
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samples with complete observations and the testing data set contains 400 samples with

complete observations. All methods use the tuning data set to choose the best tuning

parameters. Samples with complete observations are generated as follows.

Example 1: The features (xi1, xi2, . . . , xip)
T ∼ N(0,Σ) with σjt = 0.6|j−t|. The true

coefficient vector

β0 = (0.5, 0.5, 0.5, 0, · · · , 0︸ ︷︷ ︸
97

, 0.5, 0.5, 0.5, 0, · · · , 0︸ ︷︷ ︸
97

, 0.5, 0.5, 0.5, 0, · · · , 0︸ ︷︷ ︸
97

).

The response variables are generated by Model (4.1) with the errors ε1, ε2, . . . , εn
i.i.d∼

N(0, 1).

Example 2: The features (xi1, xi2, . . . , xip)
T ∼ N(0,Σ), where Σ is a block diagonal

matrix with p/5 blocks. Each block is a 5 × 5 square matrix with ones on the main

diagonal and 0.15 else where. The true coefficient vector

β0 = (0.5, · · · , 0.5︸ ︷︷ ︸
5

, 0, · · · , 0︸ ︷︷ ︸
95

, 0.5, · · · , 0.5︸ ︷︷ ︸
5

, 0, · · · , 0︸ ︷︷ ︸
95

, 0.5, · · · , 0.5︸ ︷︷ ︸
5

, 0, · · · , 0︸ ︷︷ ︸
95

).

The response variables are generated by Model (4.1) with the errors ε1, ε2, . . . , εn
i.i.d∼

N(0, 1).

Example 3: The features (xi1, xi2, . . . , xip)
T ∼ N(0,A⊗B), where

A =


1 0.4 0.6

0.4 1 0.2

0.6 0.2 1

 ,

and B = (bjt)j,t=1,2,...,p/3 with bjt = 0.3|j−t|.

The true coefficient vector

β0 = (0.5, 0.5, 0.5, 0, · · · , 0︸ ︷︷ ︸
97

, 0.5, 0.5, 0.5, 0, · · · , 0︸ ︷︷ ︸
97

, 0.5, 0.5, 0.5, 0, · · · , 0︸ ︷︷ ︸
97

).
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The response variables are generated by Model (4.1) with the errors ε1, ε2, . . . , εn
i.i.d∼

N(0, 1).

For each example, we repeated the simulation 30 times. To evaluate different methods,

we use the following measures:

• `2 distance ‖β̂ − β0‖2;

• Mean squared error (MSE);

• False positive rate (FPR) and False negative rate (FNR).

4.3.2 Simulated results

The means and the corresponding standard errors of the above four measures are shown

in Tables 4.1, 4.2, and 4.3. These results indicate that our proposed method has the best

performance of estimation, prediction, and model selection for all three examples. For the

Lasso method, using the imputed data can improve performance in most cases. However,

as shown in Table 4.1 and Table 4.3, the Lasso method using the imputed data may deliver

worse estimate of the true coefficient vector β0. For the Ridge regression method, our

simulated results indicate that using the imputed data can always improve the performance

of estimation and prediction.

Compared with the Lasso and Ridge regression methods using the imputed data set or

only the samples with complete observations, the iMSF method delivers better estimation

and prediction in most cases. However, iMSF method has high false positive rate for these

three simulated examples. In addition, the comparison between iMSF and our method

shows that our proposed method could use all available data more efficiently and therefore

acquires better performance.

4.4 Real Data Analysis

To evaluate our proposed method, we also studied the ADNI dataset with block-missing

data. The main goal of ADNI is to test whether serial magnetic resonance imaging (MRI),
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Table 4.1: Performance comparison of Example 1.

Methods `2 distance MSE FPR FNR

Lasso 0.661 (0.029) 1.436 (0.046) 0.072 (0.004) 0.015 (0.009)

Imputed Lasso 0.668 (0.017) 1.326 (0.019) 0.073 (0.006) 0.000 (0.000)

Ridge 1.268 (0.004) 3.932 (0.058) 1.000 (0.000) 0.000 (0.000)

Imputed Ridge 1.084 (0.012) 2.274 (0.037) 1.000 (0.000) 0.000 (0.000)

iMSF 0.572 (0.020) 1.337 (0.035) 0.179 (0.010) 0.000 (0.000)

Proposed Method 0.414 (0.013) 1.134 (0.014) 0.028 (0.003) 0.000 (0.000)

positron emission tomography (PET), other biological markers, and clinical and neuropsy-

chological assessments can be combined to measure the progression of mild cognitive im-

pairment (MCI) and early Alzheimer’s disease (AD). In our study, we extracted features

from three modalities: structural MRI, fluorodeoxyglucose PET, and CerebroSpinal Fluid

(CSF). After data processing, we got 93 features from MRI, 93 features from PET, and 5

features from CSF. There are 805 subjects in total, including 1) 199 subjects with complete

MRI, PET, and CSF features, 2) 197 subjects with only MRI and PET features, 3) 201

subjects with only MRI and CSF features, and 4) 208 subjects with only MRI features. The

response variables used in our study are the Mini Mental State Examination (MMSE) score

and the Alzheimer’s Disease Assessment Scale-Cognitive Subscale (ADAS-Cog) score that

are very useful to help evaluate the stage of AD pathology and predict future progression.

We will use all available observations collected from MRI, PET, and CSF to predict these

two clinical scores separately.

In our analysis, we divided the data into three parts: training data set, tuning data

set, and testing data set. The training data set consists of all subjects with incomplete

observations and 40 randomly selected subjects with complete MRI, PET, and CSF features.

The tuning data set consists of another 40 randomly selected subjects (different from the

training data set) with complete observations. The testing data set contains the other 119
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Table 4.2: Performance comparison of Example 2.

Methods `2 distance MSE FPR FNR

Lasso 0.920 (0.025) 1.988 (0.059) 0.133 (0.007) 0.002 (0.002)

Imputed Lasso 0.690 (0.013) 1.546 (0.030) 0.122 (0.007) 0.000 (0.000)

Ridge 1.662 (0.006) 5.262 (0.066) 1.000 (0.000) 0.000 (0.000)

Imputed Ridge 1.332 (0.009) 3.130 (0.048) 1.000 (0.000) 0.000 (0.000)

iMSF 0.777 (0.016) 1.730 (0.040) 0.291 (0.012) 0.000 (0.000)

Proposed Method 0.597 (0.019) 1.373 (0.033) 0.083 (0.007) 0.000 (0.000)

subjects with complete observations. The tuning data set was used to choose the best

tuning parameters for all methods and the testing data set was used to evaluate different

methods. We used different methods as shown in the simulation study to predict MMSE

score and ADAS-Cog score using all available MRI, PET, and CSF features. The analysis

was repeated 30 times using different partitions of the data.

The results are shown in Tables 4.4 and 4.5. Compared with the other methods, our

proposed method acquires the best performance on the prediction of both MMSE score and

ADAS-Cog score. The iMSF method has better prediction performance than the Lasso

and ridge regression using only samples with complete observations. However, iMSF may

not perform as good as Lasso and ridge regression using the imputed data. In addition,

the comparison between Lasso and Imputed Lasso (and also the comparison between Ridge

and Imputed Ridge) indicates that imputing the missing data could improve the prediction

performance.

Regarding the model selection, as shown in Tables 4.4 and 4.5, the Lasso method using

the imputed data selected many more features than the method using only samples with

complete observations. Both iMSF and our proposed method could deliver a model with

relatively small number of features. Figures 4.2 and 4.3 show the selection frequency of all

the 191 features for the prediction of MMSE score and ADAS-Cog score, respectively. The
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Figure 4.2: Selection frequency of 191 features for the prediction of MMSE score. The 93 blue
bars represent 93 MRI features, the 93 green bars represent 93 PET features, and the 5 purple bars
represent 5 CSF features.
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Figure 4.3: Selection frequency of 191 features for the prediction of ADAS-Cog score. The 93 blue
bars represent 93 MRI features, the 93 green bars represent 93 PET features, and the 5 purple bars
represent 5 CSF features.
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Table 4.3: Performance comparison of Example 3.

Methods `2 distance MSE FPR FNR

Lasso 0.582 (0.028) 1.358 (0.038) 0.071 (0.005) 0.000 (0.000)

Imputed Lasso 0.713 (0.018) 1.288 (0.022) 0.067 (0.005) 0.000 (0.000)

Ridge 1.227 (0.004) 4.760 (0.071) 1.000 (0.000) 0.000 (0.000)

Imputed Ridge 0.948 (0.011) 1.959 (0.030) 1.000 (0.000) 0.000 (0.000)

iMSF 0.475 (0.017) 1.237 (0.028) 0.137 (0.012) 0.000 (0.000)

Proposed Method 0.396 (0.011) 1.117 (0.015) 0.001 (0.001) 0.000 (0.000)

selection frequency for each feature is defined as

Selection Frequency = 100× The times of being selected in the 30 times simulations

30

As shown in Figures 4.2 and 4.3, for our proposed method, in the 30 times simulation,

some features were always selected and a lot of features were never selected. This means

that our method could deliver relatively robust performance on model selection. However,

for some other methods such as the Imputed Lasso method, since the majority of features

have nonzero selection frequencies, these methods selected very different features in dif-

ferent repetitions. For the Imputed Lasso method, one possible reason for the unstable

performance on model selection is due to the randomness involved in the imputation of a

lot of block-missing data.

Overall, this real data analysis indicates that our proposed method could make use of all

available information efficiently, and therefore deliver good prediction performance. Since

our method does not require to impute the block-missing data, the performance of model

selection is relatively robust.
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Table 4.4: Prediction Performance of MMSE score.

Methods
Mean Squared Error Number of Selected Features

Mean SD Mean SD

Lasso 5.711 0.341 11.733 1.638

Imputed Lasso 4.711 0.082 86.700 8.559

Ridge 5.273 0.204 191.000 0.000

Imputed Ridge 4.478 0.055 191.000 0.000

iMSF 4.630 0.079 28.400 3.025

Proposed Method 4.178 0.058 27.633 0.908

4.5 Conclusion

In this chapter, we propose a new two-step sparse regression method for block-missing

multi-modality data. In the first step, we estimate the covariance matrix of the predictors

using a linear combination of the sample covariance matrix and the identity matrix. The

proposed estimator of the covariance matrix can be well-conditioned and more accurate

than the sample covariance matrix. We also use all available information to estimate the

cross covariance vector between the predictors and the response variable. In the second

step, based on the estimated covariance matrix and the cross-covariance vector, a modified

Lasso estimator is used to deliver a sparse estimate of the regression coefficients in the

linear regression model. The effectiveness of the proposed method is demonstrated by both

simulated examples and the real data example from the Alzheimer’s Disease Neuroimaging

Initiative. The comparison between our proposed method and several existing methods also

indicates that our method has promising performance on estimation, prediction, and model

selection.
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Table 4.5: Prediction Performance of ADAS-Cog score.

Methods
Mean Squared Error Number of Selected Features

Mean SD Mean SD

Lasso 31.636 1.647 17.267 1.681

Imputed Lasso 25.332 0.423 65.200 6.626

Ridge 25.692 0.899 191.000 0.000

Imputed Ridge 23.595 0.352 191.000 0.000

iMSF 25.425 0.628 38.567 4.372

Proposed Method 22.399 0.379 27.967 1.744
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