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ABSTRACT 
 

John Cory Kalvass 
Prediction of Brain Extracellular Fluid Concentrations: Application to Understanding Central 

Nervous System Pharmacokinetics and Pharmacodynamics   
  (Under the direction of Gary M. Pollack, Ph.D.) 

 
This project was pursued to evaluate the applicability of in vivo brain extracellular fluid 

concentrations, obtained via brain-homogenate equilibrium dialysis, to assess extent of CNS 

penetration and provide estimates of CNS biophase concentrations. Parallel experimentation 

was conducted to define the impact of blood-brain barrier (BBB) efflux on opioid 

pharmacokinetics/pharmacodynamics (PK/PD), and to evaluate mathematical approaches for 

assessing efflux transport kinetics. Steady-state unbound plasma-to-unbound brain 

concentration ratios and in vivo P-gp efflux ratios were determined in mice and used to 

evaluate extent of CNS distribution for 34 drugs. PK/PD studies were conducted with seven 

opioids to estimate ED50, serum EC50, and brain EC50; relevant in vitro and clinical 

parameters were used to construct in vitro-to-preclinical and preclinical-to-clinical 

comparisons of opioid potency. PK/PD studies were conducted in P-gp-deficient mice to 

assess the influence of BBB efflux transport on CNS PK/PD for opioid substrates of P-gp. 

Comprehensive mathematical modeling was employed to evaluate the influence of efflux, or 

efflux inhibition, on brain exposure, and to evaluate several potential metrics of efflux. The 

unbound plasma-to-unbound brain concentration ratio proved to be a valuable parameter for 

assessing the CNS distribution of drugs (equivalent to or superior to the in vivo P-gp efflux 

ratio). Opioid PK/PD studies indicated that, for centrally-active agents, unbound brain EC50,u 
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was the best descriptor of in vivo intrinsic potency, resulting in a in vitro-to-in vivo 

correlation of r2~0.8. P-gp-mediated efflux attenuated central activity of fentanyl, methadone, 

and loperamide by decreasing brain-to-plasma ratios, but did not influence brain EC50. BBB 

efflux also decreased fentanyl, methadone, and loperamide brain:plasma equilibration half-

life by ~2-fold, consistent with mathematical predictions.  Mathematical modeling revealed 

that 50% inhibition of BBB efflux results in brain exposure increasing ≤2-fold; conventional 

mathematical treatment of efflux inhibition data overestimates Km and IC50.  New 

mathematical relationships for expressing efflux activity and calculating Km and IC50 

developed in this project overcomes limitations of conventional mathematical treatment. 

Knowledge of unbound brain concentrations and the influence of BBB efflux transport is 

important in developing a comprehensive understanding of CNS PK/PD for individual 

compounds or for members of a compound set. 
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CHAPTER 1 
 

CHALLENGES ASSOCIATED WITH QUANTITATING, OPTIMIZING, AND 

PREDICTING BRAIN EXPOSURE



 

     “Good” brain penetration may be advantageous or detrimental, depending on the site(s) 

of therapeutic activity and toxicity. Despite recent advances in elucidating the structural and 

functional aspects of the blood-brain-barrier (BBB), determining the extent of brain 

penetration of a drug, drug candidate, or new chemical entity remains a formidable challenge. 

Numerous experimental approaches have been developed to facilitate the prediction and 

assessment of the central nervous system (CNS) disposition and action of xenobiotics. The 

factors that govern CNS pharmacokinetics and pharmacodynamics (BBB permeability, active 

transport, metabolism, CSF bulk flow, and binding to proteins in plasma and brain) have 

received significant attention in recent years. However, the inter-relationships between these 

factors, and the ultimate influence of this interplay on brain exposure and consequent 

biologic response, are poorly understood. 

     This introductory chapter has been constructed to review the relevant factors that affect 

brain disposition, as well as the most common experimental approaches used to study or 

predict the brain disposition of drugs. The shortcomings of currently-used experimental 

approaches, as well as gaps in the existing knowledge base relative to CNS pharmacokinetics 

and pharmacodynamics, are discussed. The rationale for development of more sound 

approaches for predicting and assessing CNS drug penetration, with emphasis on integrating the 

influence of BBB efflux transport on brain penetration and evaluating target-organ exposure in 

the context of pharmacologic response, also receives consideration. 

 

The Blood-Brain Interface 

     The BBB is a physical and biochemical barrier, comprised of a continuous layer of 

capillary endothelial cells interconnected by tight junctions and supported by parenchymal 
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(glial) cells, that controls the flux of molecules between blood and brain tissue (Goldstein 

and Betz, 1986). Although its precise role is unknown, the BBB is generally accepted to be a 

protective construct that regulates the chemical microenvironment, including both exogenous 

and endogenous compounds, within the brain. Diffusion of large or hydrophilic molecules 

across the BBB is restricted because the brain microvasculature lacks fenestrations 

(openings), and the endothelial cells that line the microvasculature have low basal 

pinocytotic activity (Goldstein and Betz, 1986). The passive permeability of compounds 

across the BBB is related to a variety of physiochemical properties (size, charge, polar 

surface area, and lipophilicity), with small lipophilic molecules (MW<500) having higher 

passive permeability than large hydrophilic compounds (Habgood et al., 2000). The brain 

microvascular endothelial cells express various uptake and efflux transporters, as well as 

metabolic enzymes (Graff and Pollack, 2004). Uptake transporters allow the passage of 

essential nutrients, such as glucose and amino acids, whereas the efflux transporter proteins 

and metabolic enzymes serve as biochemical barriers to substrate influx (Graff and Pollack, 

2004). Presumably, these active barrier functions play a predominantly protective role, and 

therefore recognize chemical agents that may pose a threat to brain homeostasis. However, 

since activation of inhibition of brain target receptors is a fundamental aspect of CNS 

therapeutics, and such activation or inhibition by necessity changes the “setpoint” 

biochemical or electrophysiologic condition of the brain, the biologic pressure to exclude 

CNS-active agents (even therapeutically beneficial ones) from the brain is high. In order to 

develop effective CNS therapeutic agents, these protective barriers must be understood, 

circumvented, or otherwise overcome.  
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Active Transport Across the Blood-Brain Barrier 

     Active transport at the BBB is recognized as a significant determinant of brain penetration 

for many drugs. This section briefly highlights some of the relevant transporters thought to 

be important for CNS drug disposition. Many of the transporters present at the BBB also are 

expressed at the blood-cerebrospinal fluid barrier (BCSFB). A comprehensive review of 

relevant BBB and BCSFB transporters was recently published by Graff and Pollack (2004). 

P-glycoprotein 

     To date, P-glycoprotein (P-gp; ABCB1) is recognized as the most important drug efflux 

transport protein at the BBB. P-gp-mediated efflux has been shown to elicit larger effects on 

drug distribution into brain (as high as >60-fold attenuation of the brain:blood partition 

coefficient [Kp,brain]) (Kalvass et al., 2004), and P-gp has a larger number of relevant drug 

substrates as compared to any of the other recognized efflux transport systems.  P-gp is a 

170-kD ATP-dependent transport protein coded by the multi-drug resistance gene (mdr1) 

first identified for its ability to confer multi-drug resistance in tumor cells (Juliano, 1976; 

Gros et al., 1986) that restricts brain penetration of a variety of xenobiotics. P-gp mediates 

excretory (e.g., proximal tubular cells of the kidneys; the canalicular membrane of 

hepatocytes in the liver) and barrier (e.g., the apical membrane of intestinal enterocytes; the 

luminal membrane of brain capillary endothelial cells) functions in several tissues, (Thiebaut 

et al., 1987; Cordon-Cardo et al., 1989; Cordon-Cardo et al., 1990). P-gp appears to play a 

protective role in mammals by attenuating absorption, facilitating excretion, and restricting 

distribution of many structurally diverse xenobiotics, including calcium channel blockers, 

HIV protease inhibitors, immunosuppressants, and opioids (Matheny et al., 2001).   

 4



 

     P-gp is expressed on the luminal surface of BBB capillary endothelial cells, allowing it to 

effectively restrict the brain penetration of P-gp substrates.  The availability of mice lacking 

P-gp has been a valuable tool for elucidating the role of P-gp at the BBB (Chen et al., 2003). 

Studies with P-gp-deficient mice indicate that P-gp-mediated efflux restricts the brain 

penetration of P-gp substrates by two processes: attenuating brain uptake and enhancing 

brain efflux (Kusuhara et al., 1997; Dagenais et al., 2001b). While P-gp-mediated efflux has 

been demonstrated to restrict the brain penetration of a wide variety of drugs, less is known 

about the pharmacologic significance of other efflux transporters. 

 

Other BBB Efflux Transport Systems 

     Bcrp. The breast cancer resistance protein (Bcrp) is an apical efflux transporter, expressed 

on the luminal side of brain microvasculature, that has been shown to reduce the brain 

penetration of some drugs (Eisenblatter and Galla, 2002; Aronica et al., 2005). Imatinib 

mesylate (Gleevec), a selective tyrosine kinase inhibitor used to treat some cancers, is a 

substrate of Bcrp at the BBB. Brain concentrations of imatinib mesylate were 1.7-fold higher 

in Bcrp-deficient mice compared to wildtype controls (Breedveld et al., 2005), demonstrating 

the influence of Bcrp on this particular substrate. However, the attenuation of imatinib 

mesylate uptake across the BBB by Bcrp is modest, at least in comparison to the influence of 

P-gp on brain uptake of many substrates. 

     Mrps. Several multidrug resistance-associated proteins (Mrps) also are expressed at the 

BBB (Nies et al., 2004). Mrp1 has been implicated in the efflux of 17β-estradiol-D-

glucuronide (E217βG), as the brain efflux of E217βG is lower in Mrp1-defcient mice than 

wild type controls (Sugiyama et al., 2003). However, a compelling case for pharmacologic 
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significance of this transporter at the BBB has yet to be made. The role of Mrp2 at the BBB 

is more controversial. Several studies have indicated that Mrp2-mediated efflux may reduce 

the brain penetration and effectiveness of some antiepileptic drugs such as phenytoin 

(Potschka et al., 2003b); other studies have indicated no such role (Potschka et al., 2003a). 

Mrp2 is not readily detected in rat brain capillaries with commercially available antibodies. 

However, the protein has been demonstrated in capillary endothelial cells isolated from the 

brains of epileptic rats (Hoffmann et al., 2006).  In some physiologic disease states, the 

expression of Mrp2 at the BBB may be unregulated (Gerk and Vore, 2002). Other Mrp 

isoforms, such as Mrp4, Mrp5 and Mrp6, are thought to be present at the BBB, but their 

functional activity has not been confirmed (Graff and Pollack, 2004).  

     Organic anion transporting polypeptide (Oatp) and organic anion transporter (Oat) 

families of transport proteins are expressed in the brain. Specifically, Oatp1, Oatp2, Oatp3, as 

well as Oat3, have been isolated from brain tissue. There is some evidence that members of 

the Oatp family may act as both uptake and efflux transporters, depending on the 

predominant driving force for flux (Graff and Pollack, 2004; Ho and Kim, 2005). 

Fexofenadine, digoxin, and DPDPE are substrates for Oatps; DPDPE showed saturable brain 

uptake that was only unmasked in mice lacking P-gp, which serves to efficiently efflux 

DPDPE from brain (Dagenais et al., 2001a). Although comprehensive mechanistic studies 

were not performed, competition experiments suggested that DPDPE may be taken up from 

the systemic circulation into brain by an Oatp. Cimetidine and pravastatin appear to be Oat 

substrates (Kusuhara et al., 1999; Takeda et al., 2004).  

     Even though efflux transport proteins other than P-gp may affect CNS drug disposition, 

no transporter other than P-gp has been shown to have more than a 3-fold effect on Kp,brain of 

 6



 

any drug. However, the knowledge base regarding BBB efflux transporters other than P-gp is 

relatively limited. The P-gp-deficient knockout mouse model has been in use for over 10 

years (Schinkel et al., 1996), and is the single experimental model most responsible for the 

rapid identification of significant substrates for BBB P-gp, as well as for elucidating the 

pharmacologic impact of P-gp-mediated efflux transport at the blood-brain interface. Murine 

knockout models for other putative efflux transporters have become available only recently. 

Thus, it is possible that other transporters will be shown to have significant influence on the 

brain distribution of some drugs as the database matures. However, compared to other 

transport proteins P-gp is expressed at high levels in the BBB. It is possible that P-gp is the 

most significant efflux transporter at the BBB from a pharmacologic standpoint.  

 

Blood-CSF Barrier and CSF Bulk Flow 

     Even though cerebrospinal fluid (CSF) is in equilibrium with brain extracellular fluid 

(BECF) and plasma, the blood-CSF interface is not an efficient route for drug delivery to the 

CNS. The surface area of the blood-CSF barrier (BCSFB; choroid plexus) is ~0.02% that of 

the BBB (Kusuhara and Sugiyama, 2001). CSF is formed by the choroid plexus, located 

anatomically in the ventricles of the brain, and maintains a constant bulk flow away from the 

brain towards the spinal subarachnoid space where it is reabsorbed into plasma. The CSF is 

turned over every 5-7 hr or about 4 times a day (Shen et al., 2004). CNS bulk flow and 

constant CSF turnover can be a significant obstacle for movement of molecules from CSF to 

BECF. Furthermore, CSF bulk flow may act as a significant clearing mechanism for polar 

hydrophobic molecules with low BBB permeability (Shen et al., 2004). 
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     Many of the active transporters found in the BBB are also expressed in the BCSFB (Graff 

and Pollack, 2004). One example of a drug that undergoes active transport across the BSCFB 

is the protease inhibitor ritonavir, which has been shown to undergo active uptake in the 

guinea pig choroid plexus (Anthonypillai et al., 2004). In some regards, CSF may be 

considered as an excretory fluid. Thus, transport proteins such as P-gp that are barrier 

transporters at the blood-brain interface (oriented in the brain-to-blood direction) appear to be 

excretory transporters at the blood-CSF interface (oriented in the blood-to-CSF direction) (de 

Lange, 2004). From the standpoint of CNS protection, this directionality may appear 

counterintuitive at first. However, due to the relative small surface area at the CSF-brain 

interface, potential toxicants in the CNS afferent circulation may pose a larger threat, via 

ability to cross the BBB, than compared to toxicants in CSF.  

 

Brain Metabolism 

     Various metabolic enzymes and cytochrome P450s, such as CYP2D, CYP2E and CYP2B, 

are expressed in brain tissue (Graff and Pollack, 2004). Many CNS-active agents, such as 

nicotine and ethanol, are metabolized by these enzymes. As such, brain metabolism may 

represent a significant barrier and clearing mechanism for centrally-acting agents (Miksys 

and Tyndale, 2002; Miksys and Tyndale, 2004). The precise influence of these enzymes on 

CNS pharmacology, and in particular the potential interplay between metabolic enzymes and 

barrier transport proteins, has yet to be elucidated. 
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Protein Binding in Plasma and Brain Tissue 

     Plasma and brain protein binding influence the distribution of drugs between the systemic 

circulation and brain tissue. In situ brain perfusion studies (see below) have demonstrated 

that extensive plasma protein binding may attenuate the net rate of drug uptake into the brain 

by reducing the unbound fraction of the drug available for unrestricted diffusion or 

interaction with uptake transport proteins (Dagenais et al., 2001b; Mandula et al., 2006; 

Parepally et al., 2006). Extensive brain tissue binding also affects brain distribution by 

increasing the apparent distributional volume of the brain (Vd,brain), resulting in a longer brain 

half-life and slower time to complete equilibration between brain tissue and blood (Liu et al., 

2005). Plasma and brain tissue binding also are known to influence steady-state brain-to-

plasma partition coefficients (Kp,brain) of drugs.  In the absence of active processes, the 

steady-state Kp,brain of a drug is entirely a function of unbound fractions in plasma and brain 

(Gillette, 1971; Kurz et al., 1997; Maurer et al., 2004).   

 

METHODS TO ASSESS BBB PERMEABILITY AND ACTIVE TRANSPORT   

Measurement of brain uptake clearance 

     The brain uptake clearance of a compound is an important determinant of its overall brain 

pharmacokinetics. Several factors govern the magnitude of brain uptake clearance, including 

BBB permeability, plasma protein binding, blood flow, and active transport. The in situ brain 

perfusion and the brain uptake index (BUI) are two methods developed to estimate the initial 

rate of brain uptake, best exemplified by the uptake clearance, of compounds in intact 

animals.  
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     Brain uptake index method. For the BUI method, the compound of interest is 

administered intravenously to intact animals, and drug concentrations in brain and plasma are 

determined over a very short time interval at selected time points post-injection (Oldendorf, 

1970). It is necessary for the time interval to be sufficiently short to ensure that brain uptake 

is still under initial linear conditions (i.e., no diffusion from brain back into blood). The brain 

uptake clearance is then calculated according to equation 1: 

p
t0

upbrain,p V
)t](plasma[

AUC
Cl)t(K += →         (1) 

where Kp,brain(t), Clup, [plasma](t), AUC0→t, and Vp represent the brain-to-plasma ratio at 

time t, brain uptake clearance, plasma concentration at time t, plasma AUC0→t, and the 

volume of capillary space, respectively. Blood flow and plasma protein binding are known to 

affect the brain uptake clearance of compounds. The advantage of the BUI method is that the 

brain uptake clearance is measured under physiologic blood flow and plasma binding 

conditions.  The disadvantage of the BUI method is that multiple time points (¥3), with 

several animals examined at each time point, are needed to calculate brain uptake clearance 

for a single compound. Overall, the experiment is relatively animal consumptive (~9 animals 

per experiment). 

     In situ brain perfusion model. The in situ brain perfusion method is an alternative 

approach for determining brain uptake clearance in intact animals (Takasato et al., 1984; 

Smith, 1996). During an in situ brain perfusion experiment, the external carotid artery is 

cannulated, the cardiac ventricles are severed, and one hemisphere of the brain is perfused 

with perfusate containing test agent and a vascular space marker (i.e., inulin, sucrose, or 

mannitol).  Shortly after starting the perfusion, the experiment is stopped by decapitation. 

The duration of the perfusion is short (~0.5 - 2 min), because the method assumes initial 
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linear uptake conditions (i.e., no diffusion from brain back into blood). Brain uptake 

clearance is calculated from the mass of test agent in the brain hemisphere after subtracting 

the drug mass from the brain vascular space (Xbrain), duration of perfusion (t) and perfusate 

concentration ([perfusate]). 

]perfusate[
tX

Cl brain
up =           (2) 

An advantage of the in situ brain perfusion technique is that the perfusate composition 

(plasma versus buffer, with or without inhibitor) and flow rate can be controlled precisely. 

This degree of control allows for the effects of blood flow and plasma binding on brain 

uptake clearance to be studied. The in situ brain perfusion method requires relatively fewer 

animals to determine brain uptake clearance as compared to the BUI method. Potential 

disadvantages of this approach include the fact that experiments are not conducted under 

physiologic conditions (e.g., animals are anesthetized; blood flow is under external control). 

The technique also requires proficiency in animal surgery (carotid artery cannulation) and is 

relatively labor-intensive (0.5 - 1 hr per perfusion). 

  

Measurement of brain efflux clearance 

     The brain efflux index (BEI) is a method developed to study the egress of compounds 

from brain (Kakee et al., 1996). A test-agent and reference compound (impermeable 

reference marker, such as inulin) are microinjected into the brain, and the rate of substrate 

disappearance from brain is determined experimentally by measuring the amount of substrate 

remaining in brain (corrected for the impermeable reference marker) at varying times post-

injection. A pseudo-first-order efflux rate constant (Kel) is determined from the slope of the 

log-transformed % dose remaining versus time relationship. This experimental approach has 
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utility in addressing specific hypotheses regarding brain efflux. For instance, the BEI method 

has been used to demonstrate that para-aminohippuric acid undergoes saturable efflux, and 

BBB efflux clearance of this compound exceeds the BBB uptake clearance (Kakee et al., 

1997). Also, it is possible to estimate the brain efflux clearance if the apparent volume of 

distribution of the brain (Vd,brain) is known (Okura et al., 2003). Similar to the BUI method, 

the BEI method requires relatively large numbers of animals for the experiment (¥9 animals 

per experiment).  

 

Cellular monolayer studies. 

      Various cell-based permeability assays, including Caco-2, MDCK, and brain microvessel 

endothelial cells (BMECs), are used to estimate BBB permeability and to assess the influence 

of transport proteins on BBB membrane permeability (Letrent et al., 1999b; Adachi et al., 

2001; Mahar Doan et al., 2002; Garberg et al., 2005). These cell-based systems may be more 

or less useful depending on the tissue of origin (e.g., colon, brain), the source (primary cell 

versus immortalized cell lines or preclinical versus human), and whether or not the 

permeability characteristics are reflective of the BBB. A comprehensive comparison of nine 

different in vitro cell models of  BBB transport was published recently (Garberg et al., 2005). 

     In the typical approach, cells are plated on Transwell® inserts and cultured until to 

confluency. The cell monolayers form polarized apical and basolateral membranes and tight 

junctions. Apical-to-basolateral (A-to-B) flux studies are then performed to measure apparent 

permeability (Papp) values of test compounds. Cell lines may be transfected with transport 

protein(s) of interest, and the influence of transporters on permeability may be assessed by 

measuring the Papp in the A-to-B and B-to-A direction with and without specific transporter 

 12



 

inhibitor(s) (Mahar Doan et al., 2002). Asymmetric Papp values indicate that a compound of 

interest is a substrate for active transport. Often, the transporter activity and the asymmetry in 

permeability are expressed as the ratio of B-to-A to A-to-B Papp values or as the ratio of A-to-

B with inhibitor to A-to-B without inhibitor Papp values.  

     In vitro cellular monolayer studies provide a high-throughput method for estimating 

compound permeability and identifying transporter substrates and inhibitors. However, care 

must be taken when interpreting results from cellular monolayer studies because the 

expression and functional activity of transport proteins, as well as membrane permeability 

characteristics of the cellular monolayers, may not be the same as those of the intact BBB 

(Garberg et al., 2005). 

 

PAMPA 

     Parallel artificial membrane permeation assay (PAMPA) technology is based on artificial 

lipid membranes formed on porous support material, and is useful for estimating passive 

permeability through biologic membranes (Di et al., 2003). PAMPA is a lower-cost, higher-

throughput alternative to cell based monolayer permeability assays (Kansy et al., 1998). 

However, since the influence of uptake and efflux transport proteins is not accounted for by 

PAMPA, other experimental systems may need to be used in conjunction with this approach. 

 

OTHER METHODS FOR ASSESSING BRAIN DISPOSTION 

Use of the brain-to-plasma ratio in assessing CNS disposition 

    The brain-to-plasma partition coefficient (Kp,brain) is the most widely used in vivo metric 

for assessing the extent of CNS distribution. A common assumption underlying the use of 
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this measure of brain distribution is that compounds with large Kp,brain values have more 

extensive CNS distribution than compounds with small Kp,brain values. For example, a Kp,brain 

ratio ≥1 often is used as an arbitrary cutoff to classify compounds as having “good” CNS 

distribution, while a Kp,brain <1 is used as an indicator of “poor” CNS distribution. While this 

type of classification is common, it may be misleading. It is recognized that tissue partition 

coefficients such as Kp,brain are influenced by the relative binding affinity of a substrate for 

proteins in plasma versus the proteins in the tissue in question (Gillette, 1971; Kurz et al., 

1997). For a compound that distributes solely by passive diffusion, the unbound 

concentration in tissue will equal the unbound concentration in plasma at distribution 

equilibrium, and the steady-state tissue partition coefficient then is simply a function of the 

relative plasma and tissue unbound fractions (i.e., Kp,tissue = fu,plasma / fu,tissue).  

     When brain and plasma unbound fractions are similar, then a Kp,brain value of ~1 would be 

consistent with unrestricted distribution solely by passive processes. However, the Kp,brain 

value by itself provides little mechanistic information in the absence of estimates of brain and 

plasma unbound fractions. A Kp,brain value <1 could be the result of more extensive binding to 

plasma proteins than to proteins in brain tissue. Alternatively, a Kp,brain value <1 could reflect 

significant impairment in CNS distribution due to processes such as efflux transport at the 

BBB. 

 

Imaging techniques 

     Non-invasive imaging techniques, such as positron emission tomography (PET), have 

been used more recently to study brain distribution of drugs both in human and preclinical 

species (Elsinga et al., 2004). The technique requires specialized equipment and facilities to 
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label compounds and conduct the experiment. Since the isotopes typically used in PET 

imaging (i.e., [11C] or [18F]) have relatively short half-lives, the experiments must be 

conducted over short periods of time. PET imaging cannot differentiate between metabolite 

and parent, and only provides estimates of total drug levels. Nevertheless, recent studies with 

the P-gp substrate [11C]verapamil have demonstrated that PET has utility for assessing the 

consequences of P-gp inhibition.  Studies in humans, monkeys, and rats showed that the P-gp 

inhibitor cyclosporin increased the brain concentrations of [11C]verapamil in a concentration-

dependent manner (Lee et al., 2005; Sasongko et al., 2005; Hsiao et al., 2006). These results 

suggest that imaging approaches hold promise for generating brain uptake data in normal 

human subjects, albeit under very limited conditions. Regardless, imaging may be the most 

efficient option for generating clinical data for a variety of purposes, such as evaluating the 

relevance of data acquired from preclinical animal species or in vitro experiments. 

 

Gene knockout model 

     Animals lacking P-gp, Mrp1, Mrp2, Mrp3, Mrp4, or Bcrp have been created (Schinkel et 

al., 1994; Sugiyama et al., 2003; Assem et al., 2004; Breedveld et al., 2005; Zelcer et al., 

2005; Johnson et al., 2006). An animal knockout model is one of the best ways to study the 

physiologic role of a transporter at the BBB. To examine the influence of a specific transport 

protein on CNS distribution, Kp,brain can be determined in animals deficient for a particular 

transporter and compared to that of wild-type control animals. One of the most widely used 

transporter-deficient animal model is the P-gp-deficient mouse model (Chen et al., 2003). It 

is obvious that the limiting factor for application of this models is that it only has relevance 

for assessing the impact of a single transport system (in this case, P-gp) on the CNS 
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disposition of drugs (Schinkel et al., 1994). In addition, it is possible that the activity of other 

systems (transport proteins, metabolic enzymes, receptors, or post-receptor signaling) 

changes in response to loss of the target gene. Thus, careful control experiments must be 

conducted to rule out non-specific changes in substrate pharmacokinetics and 

pharmacodynamics. The generation of animal knockout models is labor- and resource-

intensive.  

 

DETERMINATION OF BRAIN EXTRACELLULAR FLUID CONCENTRATIONS  

     Total drug concentrations in the systemic circulation or in brain tissue do not provide 

adequate information concerning the extent of CNS penetration, nor do they allow estimation 

of BECF concentrations. The ratio between steady-state BECF concentration and unbound 

drug concentration in the systemic circulation is a logical metric for gauging drug CNS 

penetration. Several different methods are used to estimate BECF concentration. To date, 

microdialysis and measurement of substrate concentrations in cerebral spinal fluid (CSF) 

represent the two methods used most commonly to estimate BECF concentrations. Both 

methods have documented utility in addressing specific hypotheses. Microdialysis, for 

example, facilitates continuous sampling of BECF in a discrete brain region (potentially one 

of pharmacologic relevance) (de Lange et al., 1997); CSF concentrations are thought to be 

reflective of BECF concentrations for compounds with high passive permeability across the 

BBB. 

     While both approaches can provide useful data, each is associated with significant 

limitations. Microdialysis is a labor- and animal-intensive technique, requires a number of 

assumptions regarding the efficiency of substrate recovery by the probe, and may disrupt the 
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regional integrity of the BBB (de Lange et al., 1997; Sun et al., 2001; Hutchinson et al., 

2002). While in vivo microdialysis is a powerful tool for obtaining the time course of 

apparent concentrations in BECF, it clearly is not amenable for the efficient characterization 

of brain penetration. CSF concentrations, in contrast, may be obtained fairly readily from a 

variety of animal species. However, substrate concentrations in CSF may not reflect BECF 

concentrations when there is active transport across the BBB or blood-CSF barrier, or when 

there is incomplete equilibration between blood, brain tissue, and CSF (conditions typically 

associated with limited BBB permeability, precisely the characteristic that is most important 

for evaluation of CNS-active agents) (Ooie et al., 1997b; Ooie et al., 1997a; Takasawa et al., 

1997; Shen et al., 2004). Consequently, microdialysis lacks general utility, and CSF 

concentrations often are a poor surrogate for BECF concentration. 

 

Protein binding in brain tissue homogenate 

     Brain unbound fraction (fu,brain) may be estimated from equilibrium dialysis studies 

performed with brain tissue homogenate (analogous to the use of equilibrium dialysis in 

determining the unbound fraction of substrates in serum or plasma). The estimate of fu,brain, in 

combination with total brain concentration determined after substrate administration to the 

intact animal, provides an estimate of the unbound brain tissue (or BECF) concentration. 

Brain tissue homogenate equilibrium dialysis experiments are conducted by adding drug to 

brain tissue homogenate (i.e., diluted brain tissue) and dialyzing the homogenate against 

drug-free buffer. The unbound fraction then is determined from the concentration ratio of 

buffer and homogenate at equilibrium. The effect on fu,brain of diluting the brain tissue in the 
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process of obtaining a homogenate can be corrected mathematically to recover an estimate of 

the unbound fraction in the intact tissue space (Kalvass and Maurer, 2002).  

     Recently, a validated 96-well equilibrium dialysis apparatus has become commercially 

available (Banker et al., 2003). The 96-well format has increased throughput compared to 

more traditional equilibrium dialysis methods. Furthermore, the experimental setup is much 

faster, and reduced sample volumes can be used. The 96-well format is useful for conducting 

parallel studies to determine plasma and brain unbound fractions of different compounds, or 

of the same compound under a variety of conditions. 

      Although the brain tissue homogenate equilibrium dialysis technique is useful and 

relatively high-throughput, for some drugs an aberrant fu,brain may be measured if 

homogenization unmasks binding sites otherwise not accessible to the substrate in the intact 

organ. In addition, determination of binding in brain tissue homogenate cannot account for 

active cellular uptake or efflux, or for substrate sequestration due to pH gradients across 

different cellular organelles.  In theory, other more labor-intensive techniques, such as 

microdialysis or distribution into brain slices in vitro (see below), may provide more accurate 

estimates of fu,brain. 

 

In Vitro Substrate Uptake into Brain Slices 

     Brain slice partitioning studies are useful for determining fu,brain and Vd,brain. Viable brain 

slices can be prepared by relatively straightforward and robust experimental methods (Aitken 

et al., 1995a; Lipton et al., 1995; Kakee et al., 1997; Daniel et al., 2001). Brain slices are 

incubated in oxygenated artificial BECF containing drug; the steady-state drug concentration 

ratio between the slice and BECF can be determined readily. The brain unbound fraction 

 18



 

(fu,brain) is calculated from the [BECF]/[brain] ratio (Becker and Liu, 2006). Brain slices 

retain tissue structure and cellular activity (metabolism, transport, and sequestration) hence, 

brain tissue slices offer advantages over the brain tissue homogenate approach (Aitken et al., 

1995b). For example, brain tissue slices were useful for studying the lysosomal sequestration 

and brain partitioning of psychotropic drugs in gray and white brain matter (Daniel, 2003); 

brain tissue homogenate would have provided an estimate of partitioning due to only the 

binding processes per se.  

     Recently, estimates of fu,brain obtained from brain tissue slices have been compared to 

those determined in brain tissue homogenate equilibrium dialysis. Results suggest both 

methods are useful and in many cases produce similar values for fu,brain  (Becker and Liu, 

2006).  

    

Determination of brain apparent volume of distribution from in vitro brain slice data 

     The apparent volume of distribution of the brain (Vd,brain) may be measured from in vitro 

brain slice experiments and used to characterize the distribution of drug between BECF and 

brain tissue (Kakee et al., 1997; Ooie et al., 1997b). The Vd,brain is calculated from BECF 

concentration ([BECF]) and the mass of drug in the brain (Xbrain) or brain slice according to 

the following equation:  

]BECF[
X

V brain
brain,d =           (3) 

The Vd,brain represents the volume of BECF that contains a mass of drug that is equal to the 

total mass of drug in the brain.  

     Recognizing that Xbrain = [brain]µ Vbrain and that fu,brain = [BECF]/[brain], the equation for 

Vd,brain can be rewritten as:  
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where [brain], Vbrain, and fu,brain represent total brain concentration, actual brain volume, and 

brain unbound fraction, respectively. From eq. 4, it is obvious that Vd,brain is dependent only 

on fu,brain since Vbrain is a fixed quantity representing the actual physical volume of brain 

tissue. 

 

OPIOIDS 

     Seven mu opioid agonists (alfentanil, fentanyl, loperamide, methadone, meperidine, 

morphine, and sufentanil) were selected as model CNS drugs for this dissertation project 

because opioids elicit a readily measurable central effect (antinociception) and the clinical 

pharmacokinetics and pharmacodynamics of these specific compounds are well understood.  

Furthermore, the opioids selected come from several different structural classes, have a large 

range of intrinsic potency values, have varying physiochemical properties, and exhibit 

different brain distributional characteristics including interactions with BBB P-gp (Figure 1.1 

and Table 1.1). 

     Opioids are used clinically as analgesic, anesthetic, and antidiarrheal agents. The 

analgesic and anesthetic properties of opioids are attributed to interactions with opioid 

receptors located predominantly within the CNS, whereas antidiarrheal activity is mediated 

by specific interactions with intestinal opioid receptors. Most opioids have little separation 

between CNS-mediated effects and antidiarrheal effects. Because of this lack of separation 

between biologic responses, constipation is a common side effect of opioids. Conversely, 

most opioids are not useful as antidiarrheal agents because of CNS side effects (Niemegeers 

et al., 1979). Consequentially, different opioids with distinctive pharmacokinetics and brain 

 20



 

distributional characteristics have been developed for specific uses. Alfentanil and sufentanil 

are used primarily as anesthetics, whereas fentanyl, meperidine, methadone, and morphine 

are used primarily as analgesics. Loperamide lacks CNS activity and is used solely as an 

antidiarrheal agent (Niemegeers et al., 1979). The aforementioned opioids come from four 

structural classes: diphenylpropylamines (loperamide and methadone), 4-ax-

Phenylpiperidines (morphine), 4-eq-phenylpiperidines (meperidine), and 4-anilinopiperidine 

(alfentanil. fentanyl, and sufentanil) (Figure 1). The following section provides a brief 

background and rationale for the selection of each of opioid. 

     Loperamide was developed in the 1970s as an antidiarrheal agent with low incidence of 

CNS side effects (Niemegeers et al., 1974b; Niemegeers et al., 1974a). Loperamide is a 

potent mu opioid agonist that generally lacks central activity due to poor brain distributional 

characteristics. The dose required to produce antidiarrheal activity in rats is 88 times lower 

than the dose that produces CNS effects (Niemegeers et al., 1979). When loperamide was 

discovered, it was recognized that it had “poor” brain distribution characteristics, although 

the underlying reason for the “poor” brain distribution was not known. More recent studies 

have indicated that loperamide is a P-gp substrate, and that P-gp-mediated efflux attenuates 

loperamide brain uptake and exposure (Schinkel et al., 1996; Dagenais et al., 2004). Mice 

lacking P-gp exhibit robust CNS effects at low doses of loperamide, whereas P-gp-competent 

mice do not display these effects. Similarly, the brain tissue concentrations in mice lacking P-

gp are about 60-fold higher than in normal mice (Kalvass et al., 2004).  

     Alfentanil is an anesthetic agent with a rapid onset and offset of action. Studies indicate 

that the blood-brain equilibration half-life of alfentanil is very rapid (§ 1 min) (Upton et al., 
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1997). Prior to initiating this dissertation project, alfentanil was not believed to be a P-gp 

substrate (Wandel et al., 2002).   

     Fentanyl is used primarily as an analgesic. There is some evidence suggesting that 

fentanyl is a weak P-gp substrate.  The in situ brain uptake clearance of fentanyl in P-gp-

deficient mice was ~20% higher than in P-gp-competent (Dagenais et al., 2004). In addition, 

fentanyl-associated antinociception (tail flick assay) was ~80% higher in P-gp-deficient mice 

than in P-gp-competent mice based on comparisons of the area under the effect vs. time 

curve (AUEC) in each strain of mouse (Thompson et al., 2000). 

     Methadone is used as an analgesic agent and to treat heroin addiction. The in situ brain 

uptake clearance of methadone is 2.6-fold higher in P-gp-deficient mice than in P-gp-

competent mice. Methadone-associated antinociception (tail flick assay) is 3.6-fold higher in 

P-gp-deficient mice than in P-gp-competent mice based on AUEC comparisons (Thompson 

et al., 2000). Rats pretreated with the P-gp inhibitor PSC833 exhibited substantially more 

antinociception (3.1-fold) and a higher Kp,brain (6-fold) than control rats (Rodriguez et al., 

2004), consistent with a role of P-gp in modulating methadone-associated pharmacologic 

responses. 

     Meperidine is an analgesic opioid with an onset of action that is more rapid than for 

morphine. Meperidine has the lowest intrinsic potency of the seven opioids selected based on 

mu receptor binding affinity. Meperidine also evidences no apparent influence of P-gp on 

brain uptake. 

     Morphine is used clinically as an analgesic. It is the most polar and has the lowest in situ 

brain uptake clearance of the seven selected opioids. Morphine is thought to be a weak P-gp 

substrate. Previous studies demonstrated that morphine produces more antinociception, and 
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has a larger Kp,brain, in P-gp-deficient mice as compared to P-gp-competent animals 

(Thompson et al., 2000; Zong and Pollack, 2000). Rats pretreated with the P-gp inhibitor 

GF120918 also exhibited more antinociception and larger Kp,brain (~3-fold) than control rats 

(Letrent et al., 1999a), providing further evidence that morphine interacts with P-gp to some 

extent. 

     Sufentanil is the most potent of the opioids selected. It is used as an anesthetic agent. 

Transepithelial monolayer studies conducted with MDR1-transfected LLC-PK1 cells suggest 

that sufentanil is not a P-gp substrate (Wandel et al., 2002). 

 

Measurement of opioid activity and pharmacokinetic-pharmacodynamic modeling 

     The central activity of opioids may be measured by several methods, including the 

hotplate latency test, the tail flick assay, electroencephalogram (EEG), and electrical 

vocalization in preclinical species (Chen and Pollack, 1998; Cox et al., 1998; Heinzen and 

Pollack, 2004). Clinically, the cold pressor test, EEG power spectrum analysis, pupilometry, 

and respiratory depression are used to measure the central action of opioids (Tayrouz et al., 

2001; Lotsch, 2005). Because opioids elicit easily measurable responses in humans and 

animal models, pharmacokinetic-pharmacodynamic modeling has been used to gain a 

mechanistic understanding of various aspects of opioid pharmacology.  For example, Cox et 

al. (1998)  established an in vitro-to-in vivo potency correlation between in vitro receptor 

affinity and in vivo pharmacodynamic parameter estimates obtained from pharmacokinetic-

pharmacodynamic modeling of the electroencephalogram effect of three synthetic opioids in 

rats. A recent review on clinical pharmacokinetic-pharmacodynamic modeling of opioids has 
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been published (Lotsch, 2005), and provides an excellent summary of the disposition and 

action of opioids, including the drugs selected for analysis in this project. 

 

Influence of P-gp-mediated efflux on opioid antinociception 

     Few pharmacokinetic-pharmacodynamic modeling studies have been performed to 

provide understanding of the precise mechanism(s) by which P-gp-mediated efflux 

modulates opioid-associated antinociception. One study conducted with morphine in P-gp-

competent and P-gp-deficient mice suggest that P-gp-mediated efflux attenuated morphine-

associated antinociception solely by decreasing Kp,brain. This conclusion was supported by the 

fact that ED50 was higher in P-gp-competent than P-gp-deficient mice, while there was no 

difference in brain EC50 between the P-gp-competent and P-gp-deficient mice (i.e., P-gp 

simply regulated morphine flux between blood and brain, but had no influence on morphine 

once it reached the brain tissue compartment (Zong and Pollack, 2000)). 

     In contrast, a study conducted with the metabolically-stable opioid-peptide DPDPE 

concluded that P-gp-mediated efflux attenuated DPDPE-associated antinociception in two 

ways: by reducing the Kp,brain,ss of DPDPE, necessitating larger doses and higher systemic 

concentrations to achieve similar brain concentrations; and by increasing the brain tissue 

EC50. It was hypothesized that parenchymal expression of P-gp increased the brain EC50 of 

DPDPE by redistributing DPDPE away from the receptor biophase (Chen and Pollack, 

1998).  

     The morphine and DPDPE studies used tail flick and hotplate latency tests, respectively, 

to measure central opioid response. This difference in experimental approach may account 

for the apparent differences in the mechanisms by which P-gp modulates opioid 
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pharmacology. Additional pharmacokinetic-pharmacodynamic studies with other opioids that 

express a range of interactions with P-gp may provide a better understanding of the 

mechanism(s) by which P-gp-mediated efflux attenuates the brain penetration and alters the 

CNS activity of drugs.  

 

IN VITRO-TO-IN VIVO CORRELATION OF POTENCY 

     In drug discovery, in vitro assays and preclinical animal studies are widely used to assess 

compound potency and to identify compound(s) that will have the desired clinical 

pharmacologic response. There is a range of options for assessing compound potency, 

including in vitro binding or receptor functional assays, and in vivo animal studies to 

determine dose-response or concentration-response relationships. In vitro binding and 

functional assays, by nature, are designed to estimate the intrinsic potency at the receptor of 

interest.  

     Ideally, in vitro potency should translate to or predict in vivo potency. Very often this is 

the case, as strong correlations between in vitro potency and in vivo ED50 or EC50 have been 

established for many compounds from diverse therapeutic classes (Leysen et al., 1983; Visser 

et al., 2003). However, when there is no correlation between in vitro and in vivo potency 

measures, the validity of the in vitro assay, the animal model, or the target may be 

questioned. Hence, establishing strong in vitro-to-in vivo correlations is a necessity for drug 

development, because it aids in target validation and boosts confidence in the in vitro and in 

vivo pharmacology models. Historically, in vitro-to-in vivo correlations have been established 

by comparing an in vitro measure of potency, such as Ki or EC50 from a cell-based functional 

assay, with ED50. Although the ED50 is not necessarily the best measure of intrinsic drug 
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potency, it has been widely used for two primary reasons: 1) sensitive bioanalytical assays 

(HPLC or LC-MS/MS) required to determine EC50 were not routinely available until more 

recently (1970s and 1990s, respectively); and 2) dose versus effect studies are relatively 

straightforward. In vitro-to-in vivo correlations with ED50 are most likely to be successful for 

compounds that have large differences in intrinsic potency and relatively similar 

pharmacokinetics.  

     If compounds possess large differences in pharmacokinetics, improved in vitro-to-in vivo 

correlations may be achieved using EC50. Commonly, EC50 is estimated from the plasma 

concentration vs. effect relationship. Pharmacokinetic-pharmacodynamic modeling often is 

used to obtain estimates of EC50 from in vivo data, and is a powerful tool for exploring 

mechanisms of drug disposition and action.  

     The best in vitro-to-in vivo potency correlations are achieved when the biophase 

concentration-effect relationship is known. Total plasma and unbound plasma concentrations 

are the most widely used surrogates for the biophase concentration. However, these 

surrogates do not always reflect actual biophase concentrations. The divergence between 

biophase and systemic concentrations is especially true for compounds that act on targets 

within the CNS, since the BBB restricts the CNS distribution of many compounds. 

     Given these considerations, it is important to accurately determine CNS biophase 

concentrations in order to make better in vitro to in vivo correlations for centrally active 

compounds. When compounds have “good” BBB permeability and are not substrates for 

transporters, in vitro-to-in vivo correlations can be constructed using unbound plasma or CSF 

concentrations as a surrogate for CNS biophase concentrations. When unbound plasma or 

CSF concentrations are not reflective of CNS biophase concentrations, such as when a 
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compound has “poor” BBB permeability or is subject to active brain uptake or efflux, other 

methods for estimating CNS biophase concentrations may be needed. 

 

THE EXTENT AND RATE OF CNS DISTRIBUTION 

     Depending on whether or not CNS activity is desired, the extent and rate of brain 

penetration of a compound may be important. Predicting or determining the extent and rate 

of brain penetration remains a challenge, despite the development of methodologies to assess 

BBB passive permeability, uptake clearance, efflux clearance, and interaction with 

transporters.  

     The extent of CNS penetration is dependent on the ratio of unbound uptake and efflux 

clearances (Liu and Chen, 2005). When distribution between brain and blood occurs solely 

by passive diffusion, this ratio is unity.  If CNS distribution is impaired by active efflux, 

metabolism, or CSF bulk flow, the ratio will be less than unity, and if CNS distribution is 

enhanced by active uptake the ratio will be greater than unity. 

metabolism flowbulk  CSFefflux  activety permeabili passive
 uptake active ty permeabili passive
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+++
+
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     The rate of equilibration between blood and brain is dependent on the ratio of efflux clearance and 

brain apparent volume of distribution (Liu and Chen, 2005; Liu et al., 2005). Since the brain apparent 

volume of distribution is inversely proportional to fu,brain (equation 4), the rate of equilibration is also 

proportional to the product of efflux clearance and fu,brain. 
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or  
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     The previous equations illustrate that the extent and rate of brain penetration are 

dependent on multiple factors, with no single factor being dominant. Approaches that 

consider only one factor, such as only passive permeability or affinity for a given efflux 

transporter, fail to provide sufficient information for proper prediction and evaluation of CNS 

distributional properties. Low passive permeability or affinity for efflux transport proteins 

per se does not necessarily indicate that a compound will have a poor extent or rate of CNS 

distribution.  If passive permeability is sufficiently large compared to CSF bulk flow, no 

other active processes are present (i.e., metabolism and active transport), and if fu,brain is large, 

then it is possible for a compound with low passive permeability to have unimpaired and 

rapid CNS distribution. Similarly, a compound that undergoes active efflux may have 

unimpaired and rapid CNS distribution if active efflux is counterbalanced by active uptake.  

 

ASSESSMENT OF EFFLUX KINETICS 

     Numerous approaches exist to measure and express efflux kinetics. However, little 

consensus exists for the quantitation and expression of efflux activity. Efflux activity has 

been expressed qualitatively as efflux ratios, permeability surface area products, and in terms 

of flux (Adachi et al., 2001; Gao et al., 2001). Most commonly, parameters associated with 

efflux kinetics (Km or IC50) are obtained by fitting a sigmoidal Emax model to permeability or 

flux data. The resulting EC50 then is used interchangeably as Km or IC50 depending on the 

type of study (saturation or inhibition) (Chen et al., 2002; Troutman and Thakker, 2003a).  

This type of data analysis has been unsatisfactory, for efflux kinetics are poorly understood, 

and unexplained and complex observations are commonly encountered. For example, 

recently it has been reported that: 
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1. The Km and IC50 of a substrate or inhibitor towards an efflux transporter are highly 

dependent on the cell line or experimental model (Taub et al., 2005). 

2. The Km of a substrate increases as a function of transporter expression (Balakrishnam and 

Polli, 2005; Balakrishnan et al., 2005). 

3. Efflux produces non-symmetric effects on the A-to-B and B-to-A permeabilities 

(Troutman and Thakker, 2003a; Troutman and Thakker, 2003b). 

4. Differential inhibition of efflux in different tissues (P-gp inhibition in blood > testes > 

BBB) has been reported (Choo et al., 2006). 

Various models have been proposed to describe efflux kinetics. However, based on current 

understanding of these models, the above noted observations could not have been predicted.  

Different models or approaches are necessary to better predict and understand efflux kinetics.  

 

PROJECT OVERVIEW 

     The primary purposes of this dissertation project were as follows: 1) to explore kinetic 

model(s) of efflux to better understand efflux kinetics with emphasis on risk assessment of 

clinical P-gp inhibition at the BBB, 2) to devise methodology to better assess the extent of 

CNS distribution of drugs, and 3) to use pharmacokinetic-pharmacodynamic modeling with 

opioids to assess the influence of P-gp-mediated efflux on opioid brain penetration and 

antinociception, and to determine the best surrogate of in vivo intrinsic potency for CNS 

active drugs. 

     Unexpected and complex experimental observations related to efflux transport have been 

reported in the literature. Current models and understanding of efflux kinetics do not 

adequately predict or explain these observations. Furthermore, the clinical risk of efflux 
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inhibition at the BBB is not well-defined.  A better understanding of the relationship between 

efflux inhibition and kinetic parameters is critical for appropriate data interpretation, 

standardization in calculating and expressing the influence of efflux transport, and predicting 

the clinical significance of efflux inhibition. The first goal of this dissertation project was to 

develop an alternative mathematical model for expressing and assessing efflux transport 

kinetics. The results of this model were applied to recent unexpected and complex 

experimental observations concerning efflux kinetics (Chapter 2) and towards the assessment 

of clinical risk of P-gp inhibition at the BBB (Chapter 3). 

     A second goal of this project was to evaluate the steady-state unbound plasma-to-unbound 

brain concentration ratio ([plasma],u/[brain],u) as a method for assessing the extent of CNS 

distribution of drugs (Chapter 4). The [plasma],u/[brain],u ratio is expected to be equal to the 

in vivo P-gp efflux if P-gp-mediated efflux is the only active process affecting brain 

disposition. Using this principle, studies were conducted to compare the degree of CNS 

distributional impairment expressed as the [plasma],u/[brain],u ratio to the P-gp efflux ratio 

for 34 marketed drugs. Opioids, triptans, protease inhibitors, and antihistamines (n = 24 total) 

were included in the study because these classes of agents are known to include P-gp 

substrates, and the extent to which these compounds distribute into the CNS may have 

important implications regarding safety and efficacy. In addition, 10 marketed drugs from 

various drug classes with either poor CNS distribution or BBB efflux also were included as 

part of the analysis.  

     The third goal of this project was to define the impact of BBB efflux on opioid 

pharmacokinetics/pharmacodynamics (Chapter 5, 6, and 8) and to evaluate the applicability 

of in vivo brain extracellular fluid concentrations, obtained via brain-homogenate equilibrium 
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dialysis to estimate CNS biophase concentrations (Chapter 7). Pharmacokinetic/ 

pharmacodynamic studies were conducted with seven opioids to estimate ED50, serum EC50, 

and brain EC50; relevant in vitro and clinical parameters were used to construct in vitro-to-

preclinical and preclinical-to-clinical comparisons of opioid potency (Chapter 7). 

     In summary, the overall goal of this research project was to evaluate a brain equilibrium 

dialysis method for predicting in vivo brain extracellular fluid concentrations in order to 

assess CNS penetration, as well as to provide a context for concentration-effect relationships 

for CNS-active drugs. Furthermore, a considerable portion of this project was devoted to 

mathematically and experimentally assessing the impact of BBB efflux on CNS 

pharmacokinetics and pharmacodynamics. 

 

 

 31



 

REFERENCES 

1. Adachi Y, Suzuki H and Sugiyama Y (2001) Comparative studies on in vitro methods 
for evaluating in vivo function of MDR1 P-glycoprotein. Pharm Res 18:1660-1668. 

2. Aitken PG, Breese GR, Dudek FF, Edwards F, Espanol MT, Larkman PM, Lipton P, 
Newman GC, Nowak TS, Jr. and Panizzon KL (1995a) Preparative methods for brain 
slices: a discussion. J Neurosci Methods 59:139-149. 

3. Aitken PG, Breese GR, Dudek FF, Edwards F, Espanol MT, Larkman PM, Lipton P, 
Newman GC, Nowak TS, Jr., Panizzon KL and et al. (1995b) Preparative methods for 
brain slices: a discussion. J Neurosci Methods 59:139-149. 

4. Anthonypillai C, Sanderson RN, Gibbs JE and Thomas SA (2004) The distribution of 
the HIV protease inhibitor, ritonavir, to the brain, cerebrospinal fluid, and choroid 
plexuses of the guinea pig. J Pharmacol Exp Ther 308:912-920. 

5. Aronica E, Gorter JA, Redeker S, van Vliet EA, Ramkema M, Scheffer GL, Scheper RJ, 
van der Valk P, Leenstra S, Baayen JC, Spliet WG and Troost D (2005) Localization of 
breast cancer resistance protein (BCRP) in microvessel endothelium of human control 
and epileptic brain. Epilepsia 46:849-857. 

6. Assem M, Schuetz EG, Leggas M, Sun D, Yasuda K, Reid G, Zelcer N, Adachi M, 
Strom S, Evans RM, Moore DD, Borst P and Schuetz JD (2004) Interactions between 
hepatic Mrp4 and Sult2a as revealed by the constitutive androstane receptor and Mrp4 
knockout mice. J Biol Chem 279:22250-22257. 

7. Balakrishnam A and Polli JE (2005) Bias in estimation of transporter kinetic parameters: 
Interplay of transporter expression level and substrate affinity. J Clin Pharmacol 
45:1087. 

8. Balakrishnan A, Sussman DJ and Polli JE (2005) Development of stably transfected 
monolayer overexpressing the human apical sodium-dependent bile acid transporter 
(hASBT). Pharm Res 22:1269-1280. 

9. Banker MJ, Clark TH and Williams JA (2003) Development and validation of a 96-well 
equilibrium dialysis apparatus for measuring plasma protein binding. J Pharm Sci 
92:967-974. 

 32



 

10. Becker S and Liu X (2006) Evaluation of the utility of brain slice methods to study brain 
penetration. Drug Metab Dispos 34:855-861. 

11. Breedveld P, Pluim D, Cipriani G, Wielinga P, van Tellingen O, Schinkel AH and 
Schellens JHM (2005) The effect of Bcrp1 (Abcg2) on the in vivo pharmacokinetics and 
brain penetration of imatinib mesylate (gleevec): Implications for the use of breast 
cancer resistance protein and P-glycoprotein inhibitors to enable the brain penetration of 
imatinib in patients. Cancer Research 65:2577-2582. 

12. Chen C, Liu X and Smith BJ (2003) Utility of Mdr1-gene deficient mice in assessing the 
impact of P-glyco-protein on pharmacokinetics and pharmacodynamics in drug 
discovery and development. Curr Drug Metab 4:272-291. 

13. Chen C and Pollack GM (1998) Altered disposition and antinociception of [D-
penicillamine(2,5)] enkephalin in mdr1a-gene-deficient mice. J Pharmacol Exp Ther 
287:545-552. 

14. Chen W, Yang JZ, Andersen R, Nielsen LH and Borchardt RT (2002) Evaluation of the 
permeation characteristics of a model opioid peptide, H-Tyr-D-Ala-Gly-Phe-D-Leu-OH 
(DADLE), and its cyclic prodrugs across the blood-brain barrier using an in situ 
perfused rat brain model. J Pharmacol Exp Ther 303:849-857. 

15. Choo EF, Kurnik D, Muszkat M, Ohkubo T, Shay SD, Higginbotham JN, Glaeser H, 
Kim RB, Wood AJ and Wilkinson GR (2006) Differential in Vivo Sensitivity to 
Inhibition of P-Glycoprotein Located in Lymphocytes, Testes, and the Blood-Brain 
Barrier. J Pharmacol Exp Ther. 

16. Cordon-Cardo C, O'Brien JP, Boccia J, Casals D, Bertino JR and Melamed MR (1990) 
Expression of the multidrug resistance gene product (P-glycoprotein) in human normal 
and tumor tissues. J Histochem Cytochem 38:1277-1287. 

17. Cordon-Cardo C, O'Brien JP, Casals D, Rittman-Grauer L, Biedler JL, Melamed MR 
and Bertino JR (1989) Multidrug-resistance gene (P-glycoprotein) is expressed by 
endothelial cells at blood-brain barrier sites. Proc Natl Acad Sci U S A 86:695-698. 

18. Cox EH, Kerbusch T, Van der Graaf PH and Danhof M (1998) Pharmacokinetic-
pharmacodynamic modeling of the electroencephalogram effect of synthetic opioids in 
the rat: correlation with the interaction at the mu-opioid receptor. J Pharmacol Exp Ther 
284:1095-1103. 

 33



 

19. Dagenais C, Ducharme J and Pollack GM (2001a) Uptake and efflux of the peptidic 
delta-opioid receptor agonist. Neurosci Lett 301:155-158. 

20. Dagenais C, Graff CL and Pollack GM (2004) Variable modulation of opioid brain 
uptake by P-glycoprotein in mice. Biochem Pharmacol 67:269-276. 

21. Dagenais C, Zong J, Ducharme J and Pollack GM (2001b) Effect of mdr1a P-
glycoprotein gene disruption, gender, and substrate concentration on brain uptake of 
selected compounds. Pharm Res 18:957-963. 

22. Daniel WA (2003) Mechanisms of cellular distribution of psychotropic drugs. 
Significance for drug action and interactions. Prog Neuropsychopharmacol Biol 
Psychiatry 27:65-73. 

23. Daniel WA, Wojcikowski J and Palucha A (2001) Intracellular distribution of 
psychotropic drugs in the grey and white matter of the brain: the role of lysosomal 
trapping. Br J Pharmacol 134:807-814. 

24. de Lange EC (2004) Potential role of ABC transporters as a detoxification system at the 
blood-CSF barrier. Adv Drug Deliv Rev 56:1793-1809. 

25. de Lange EC, Danhof M, de Boer AG and Breimer DD (1997) Methodological 
considerations of intracerebral microdialysis in pharmacokinetic studies on drug 
transport across the blood-brain barrier. Brain Res Brain Res Rev 25:27-49. 

26. Di L, Kerns EH, Fan K, McConnell OJ and Carter GT (2003) High throughput artificial 
membrane permeability assay for blood-brain barrier. Eur J Med Chem 38:223-232. 

27. Eisenblatter T and Galla HJ (2002) A new multidrug resistance protein at the blood-
brain barrier. Biochem Biophys Res Commun 293:1273-1278. 

28. Elsinga PH, Hendrikse NH, Bart J, Vaalburg W and van Waarde A (2004) PET Studies 
on P-glycoprotein function in the blood-brain barrier: how it affects uptake and binding 
of drugs within the CNS. Curr Pharm Des 10:1493-1503. 

29. Gao J, Murase O, Schowen RL, Aube J and Borchardt RT (2001) A functional assay for 
quantitation of the apparent affinities of ligands of P-glycoprotein in Caco-2 cells. 
Pharm Res 18:171-176. 

 34



 

30. Garberg P, Ball M, Borg N, Cecchelli R, Fenart L, Hurst RD, Lindmark T, Mabondzo 
A, Nilsson JE, Raub TJ, Stanimirovic D, Terasaki T, Oberg JO and Osterberg T (2005) 
In vitro models for the blood-brain barrier. Toxicol In Vitro 19:299-334. 

31. Gerk PM and Vore M (2002) Regulation of expression of the multidrug resistance-
associated protein 2 (MRP2) and its role in drug disposition. J Pharmacol Exp Ther 
302:407-415. 

32. Gillette JR (1971) Factors affecting drug metabolism. Ann NY Acad Sci 179. 

33. Goldstein GW and Betz AL (1986) The blood-brain barrier. Sci Am 255:74-83. 

34. Graff CL and Pollack GM (2004) Drug transport at the blood-brain barrier and the 
choroid plexus. Curr Drug Metab 5:95-108. 

35. Gros P, Ben Neriah YB, Croop JM and Housman DE (1986) Isolation and expression of 
a complementary DNA that confers multidrug resistance. Nature 323:728-731. 

36. Habgood MD, Begley DJ and Abbott NJ (2000) Determinants of passive drug entry into 
the central nervous system. Cell Mol Neurobiol 20:231-253. 

37. Heinzen EL and Pollack GM (2004) Pharmacodynamics of morphine-induced neuronal 
nitric oxide production and antinociceptive tolerance development. Brain Res 1023:175-
184. 

38. Ho RH and Kim RB (2005) Transporters and drug therapy: implications for drug 
disposition and disease. Clin Pharmacol Ther 78:260-277. 

39. Hoffmann K, Gastens AM, Volk HA and Loscher W (2006) Expression of the multidrug 
transporter MRP2 in the blood-brain barrier after pilocarpine-induced seizures in rats. 
Epilepsy Res 69:1-14. 

40. Hsiao P, Sasongko L, Link JM, Mankoff DA, Muzi M, Collier AC and Unadkat JD 
(2006) Verapamil P-glycoprotein transport across the rat blood-brain barrier: 
cyclosporine A concentration-inhibition analysis and comparison with human data. J 
Pharmacol Exp Ther. 

 35



 

41. Hutchinson PJ, O'Connell MT, Kirkpatrick PJ and Pickard JD (2002) How can we 
measure substrate, metabolite and neurotransmitter concentrations in the human brain? 
Physiol Meas 23:R75-109. 

42. Johnson BM, Zhang P, Schuetz JD and Brouwer KL (2006) Characterization of 
transport protein expression in multidrug resistance-associated protein (mrp) 2-deficient 
rats. Drug Metab Dispos 34:556-562. 

43. Juliano R (1976) Drug-resistant mutants of Chinese hamster ovary cells possess an 
altered cell surface carbohydrate component. J Supramol Struct 4:521-526. 

44. Kakee A, Terasaki T and Sugiyama Y (1996) Brain efflux index as a novel method of 
analyzing efflux transport at the blood-brain barrier. J Pharmacol Exp Ther 277:1550-
1559. 

45. Kakee A, Terasaki T and Sugiyama Y (1997) Selective brain to blood efflux transport of 
para-aminohippuric acid across the blood-brain barrier: in vivo evidence by use of the 
brain efflux index method. J Pharmacol Exp Ther 283:1018-1025. 

46. Kalvass JC, Graff CL and Pollack GM (2004) Use of loperamide as a phenotypic probe 
of mdr1a status in CF-1 mice. Pharm Res 21:1867-1870. 

47. Kalvass JC and Maurer TS (2002) Influence of nonspecific brain and plasma binding on 
CNS exposure: implications for rational drug discovery. Biopharm Drug Dispos 23:327-
338. 

48. Kansy M, Senner F and Gubernator K (1998) Physicochemical high throughput 
screening: parallel artificial membrane permeation assay in the description of passive 
absorption processes. J Med Chem 41:1007-1010. 

49. Kurz A, Ikeda T, Sessler DI, Larson MD, Bjorksten AR, Dechert M and Christensen R 
(1997) Meperidine decreases the shivering threshold twice as much as the 
vasoconstriction threshold. Anesthesiology 86:1046-1054. 

50. Kusuhara H, Sekine T, Utsunomiya-Tate N, Tsuda M, Kojima R, Cha SH, Sugiyama Y, 
Kanai Y and Endou H (1999) Molecular cloning and characterization of a new 
multispecific organic anion transporter from rat brain. J Biol Chem 274:13675-13680. 

 36



 

51. Kusuhara H and Sugiyama Y (2001) Efflux transport systems for drugs at the blood-
brain barrier and blood-cerebrospinal fluid barrier (Part 1). Drug Discov Today 6:150-
156. 

52. Kusuhara H, Suzuki H, Terasaki T, Kakee A, Lemaire M and Sugiyama Y (1997) P-
Glycoprotein mediates the efflux of quinidine across the blood-brain barrier. J 
Pharmacol Exp Ther 283:574-580. 

53. Lee YJ, Maeda J, Kusuhara H, Okauchi T, Inaji M, Nagai Y, Obayashi S, Nakao R, 
Suzuki K, Sugiyama Y and Suhara T (2005) In vivo evaluation of P-glycoprotein 
function at the blood-brain barrier in nonhuman primates using [11C]verapamil. J 
Pharmacol Exp Ther. 

54. Letrent SP, Pollack GM, Brouwer KR and Brouwer KL (1999a) Effects of a potent and 
specific P-glycoprotein inhibitor on the blood-brain barrier distribution and 
antinociceptive effect of morphine in the rat. Drug Metab Dispos 27:827-834. 

55. Letrent SP, Polli JW, Humphreys JE, Pollack GM, Brouwer KR and Brouwer KL 
(1999b) P-glycoprotein-mediated transport of morphine in brain capillary endothelial 
cells. Biochem Pharmacol 58:951-957. 

56. Leysen JE, Gommeren W and Niemegeers CJ (1983) [3H]Sufentanil, a superior ligand 
for mu-opiate receptors: binding properties and regional distribution in rat brain and 
spinal cord. Eur J Pharmacol 87:209-225. 

57. Lipton P, Aitken PG, Dudek FE, Eskessen K, Espanol MT, Ferchmin PA, Kelly JB, 
Kreisman NR, Landfield PW and Larkman PM (1995) Making the best of brain slices: 
comparing preparative methods. J Neurosci Methods 59:151-156. 

58. Liu X and Chen C (2005) Strategies to optimize brain penetration in drug discovery. 
Curr Opin Drug Discov Devel 8:505-512. 

59. Liu X, Smith BJ, Chen C, Callegari E, Becker SL, Chen X, Cianfrogna J, Doran AC, 
Doran SD, Gibbs JP, Hosea N, Liu J, Nelson FR, Szewc MA and Van Deusen J (2005) 
Use of a physiologically based pharmacokinetic model to study the time to reach brain 
equilibrium: an experimental analysis of the role of blood-brain barrier permeability, 
plasma protein binding, and brain tissue binding. J Pharmacol Exp Ther 313:1254-1262. 

60. Lotsch J (2005) Pharmacokinetic-pharmacodynamic modeling of opioids. J Pain 
Symptom Manage 29:S90-103. 

 37



 

61. Mahar Doan KM, Humphreys JE, Webster LO, Wring SA, Shampine LJ, Serabjit-Singh 
CJ, Adkison KK and Polli JW (2002) Passive permeability and P-glycoprotein-mediated 
efflux differentiate central nervous system (CNS) and non-CNS marketed drugs. J 
Pharmacol Exp Ther 303:1029-1037. 

62. Mandula H, Parepally JM, Feng R and Smith QR (2006) Role of site-specific binding to 
plasma albumin in drug availability to brain. J Pharmacol Exp Ther 317:667-675. 

63. Matheny CJ, Lamb MW, Brouwer KR and Pollack GM (2001) Pharmacokinetic and 
pharmacodynamic implications of P-glycoprotein modulation. Pharmacotherapy 
21:778-796. 

64. Maurer TS, Debartolo DB, Tess DA and Scott DO (2004) Relationship between 
Exposure and Nonspecific Binding of Thirty-Three Central Nervous System Drugs in 
Mice. Drug Metab Dispos. 

65. Miksys S and Tyndale RF (2004) The unique regulation of brain cytochrome P450 2 
(CYP2) family enzymes by drugs and genetics. Drug Metab Rev 36:313-333. 

66. Miksys SL and Tyndale RF (2002) Drug-metabolizing cytochrome P450s in the brain. J 
Psychiatry Neurosci 27:406-415. 

67. Niemegeers CJ, Lenaerts FM and Janssen PA (1974a) Loperamide (R 18 553), a novel 
type of antidiarrheal agent. Part 1: in vivo oral pharmacology and acute toxicity. 
Comparison with morphine, codeine, diphenoxylate and difenoxine. 
Arzneimittelforschung 24:1633-1636. 

68. Niemegeers CJ, Lenaerts FM and Janssen PA (1974b) Loperamide (R 18 553), a novel 
type of antidiarrheal agent. Part 2: in vivo parenteral pharmacology and acute toxicity in 
mice. Comparison with morphine, codeine and diphenoxylate. Arzneimittelforschung 
24:1636-1641. 

69. Niemegeers CJ, McGuire JL, Heykants JJ and Janssen PA (1979) Dissociation between 
opiate-like and antidiarrheal activities of antidiarrheal drugs. J Pharmacol Exp Ther 
210:327-333. 

70. Nies AT, Jedlitschky G, Konig J, Herold-Mende C, Steiner HH, Schmitt HP and 
Keppler D (2004) Expression and immunolocalization of the multidrug resistance 
proteins, MRP1-MRP6 (ABCC1-ABCC6), in human brain. Neuroscience 129:349-360. 

 38



 

71. Okura T, Saito M, Nakanishi M, Komiyama N, Fujii A, Yamada S and Kimura R (2003) 
Different distribution of morphine and morphine-6 beta-glucuronide after 
intracerebroventricular injection in rats. Br J Pharmacol 140:211-217. 

72. Oldendorf WH (1970) Measurement of brain uptake of radiolabeled substances using a 
tritiated water internal standard. Brain Res 24:372-376. 

73. Ooie T, Terasaki T, Suzuki H and Sugiyama Y (1997a) Kinetic evidence for active 
efflux transport across the blood-brain barrier of quinolone antibiotics. J Pharmacol Exp 
Ther 283:293-304. 

74. Ooie T, Terasaki T, Suzuki H and Sugiyama Y (1997b) Quantitative brain microdialysis 
study on the mechanism of quinolones distribution in the central nervous system. Drug 
Metab Dispos 25:784-789. 

75. Parepally JM, Mandula H and Smith QR (2006) Brain Uptake of Nonsteroidal Anti-
Inflammatory Drugs: Ibuprofen, Flurbiprofen, and Indomethacin. Pharm Res. 

76. Potschka H, Fedrowitz M and Loscher W (2003a) Brain access and anticonvulsant 
efficacy of carbamazepine, lamotrigine, and felbamate in ABCC2/MRP2-deficient TR- 
rats. Epilepsia 44:1479-1486. 

77. Potschka H, Fedrowitz M and Loscher W (2003b) Multidrug resistance protein MRP2 
contributes to blood-brain barrier function and restricts antiepileptic drug activity. J 
Pharmacol Exp Ther 306:124-131. 

78. Rodriguez M, Ortega I, Soengas I, Suarez E, Lukas JC and Calvo R (2004) Effect of P-
glycoprotein inhibition on methadone analgesia and brain distribution in the rat. J 
Pharm Pharmacol 56:367-374. 

79. Sasongko L, Link JM, Muzi M, Mankoff DA, Yang X, Collier AC, Shoner SC and 
Unadkat JD (2005) Imaging P-glycoprotein transport activity at the human blood-brain 
barrier with positron emission tomography. Clin Pharmacol Ther 77:503-514. 

80. Schinkel AH, Smit JJ, van Tellingen O, Beijnen JH, Wagenaar E, van Deemter L, Mol 
CA, van der Valk MA, Robanus-Maandag EC, te Riele HP and et al. (1994) Disruption 
of the mouse mdr1a P-glycoprotein gene leads to a deficiency in the blood-brain barrier 
and to increased sensitivity to drugs. Cell 77:491-502. 

 39



 

81. Schinkel AH, Wagenaar E, Mol CA and van Deemter L (1996) P-glycoprotein in the 
blood-brain barrier of mice influences the brain penetration and pharmacological 
activity of many drugs. J Clin Invest 97:2517-2524. 

82. Shen DD, Artru AA and Adkison KK (2004) Principles and applicability of CSF 
sampling for the assessment of CNS drug delivery and pharmacodynamics. Adv Drug 
Deliv Rev 56:1825-1857. 

83. Smith QR (1996) Brain perfusion systems for studies of drug uptake and metabolism in 
the central nervous system. Pharm Biotechnol 8:285-307. 

84. Sugiyama D, Kusuhara H, Lee YJ and Sugiyama Y (2003) Involvement of multidrug 
resistance associated protein 1 (Mrp1) in the efflux transport of 17beta estradiol-D-
17beta-glucuronide (E217betaG) across the blood-brain barrier. Pharm Res 20:1394-
1400. 

85. Sun H, Bungay PM and Elmquist WF (2001) Effect of capillary efflux transport 
inhibition on the determination of probe recovery during in vivo microdialysis in the 
brain. J Pharmacol Exp Ther 297:991-1000. 

86. Takasato Y, Rapoport SI and Smith QR (1984) An in situ brain perfusion technique to 
study cerebrovascular transport in the rat. Am J Physiol 247:H484-493. 

87. Takasawa K, Terasaki T, Suzuki H, Ooie T and Sugiyama Y (1997) Distributed model 
analysis of 3'-azido-3'-deoxythymidine and 2',3'-dideoxyinosine distribution in brain 
tissue and cerebrospinal fluid. J Pharmacol Exp Ther 282:1509-1517. 

88. Takeda M, Noshiro R, Onozato ML, Tojo A, Hasannejad H, Huang XL, Narikawa S and 
Endou H (2004) Evidence for a role of human organic anion transporters in the muscular 
side effects of HMG-CoA reductase inhibitors. Eur J Pharmacol 483:133-138. 

89. Taub ME, Podila L, Ely D and Almeida I (2005) Functional assessment of multiple P-
glycoprotein (P-gp) probe substrates: Influence of cell line and modulator concentration 
on P-gp activity. Drug Metab Dispos. 

90. Tayrouz Y, Ganssmann B, Ding R, Klingmann A, Aderjan R, Burhenne J, Haefeli WE 
and Mikus G (2001) Ritonavir increases loperamide plasma concentrations without 
evidence for P-glycoprotein involvement. Clin Pharmacol Ther 70:405-414. 

 40



 

91. Terenius L (1975) Comparison between narcotic "receptors" in the guinea-pig ileum and 
the rat brain. Acta Pharmacol Toxicol (Copenh) 37:211-221. 

92. Thiebaut F, Tsuruo T, Hamada H, Gottesman MM, Pastan I and Willingham MC (1987) 
Cellular localization of the multidrug-resistance gene product P-glycoprotein in normal 
human tissues. Proc Natl Acad Sci U S A 84:7735-7738. 

93. Thompson SJ, Koszdin K and Bernards CM (2000) Opiate-induced analgesia is 
increased and prolonged in mice lacking P-glycoprotein. Anesthesiology 92:1392-1399. 

94. Troutman MD and Thakker DR (2003a) Efflux ratio cannot assess P-glycoprotein-
mediated attenuation of absorptive transport: asymmetric effect of P-glycoprotein on 
absorptive and secretory transport across Caco-2 cell monolayers. Pharm Res 20:1200-
1209. 

95. Troutman MD and Thakker DR (2003b) Rhodamine 123 requires carrier-mediated 
influx for its activity as a P-glycoprotein substrate in Caco-2 cells. Pharm Res 20:1192-
1199. 

96. Upton RN, Ludbrook GL, Gray EC and Grant C (1997) The cerebral pharmacokinetics 
of meperidine and alfentanil in conscious sheep. Anesthesiology 86:1317-1325. 

97. Visser SA, Wolters FL, Gubbens-Stibbe JM, Tukker E, Van Der Graaf PH, Peletier LA 
and Danhof M (2003) Mechanism-based pharmacokinetic/pharmacodynamic modeling 
of the electroencephalogram effects of GABAA receptor modulators: in vitro-in vivo 
correlations. J Pharmacol Exp Ther 304:88-101. 

98. Wandel C, Kim R, Wood M and Wood A (2002) Interaction of morphine, fentanyl, 
sufentanil, alfentanil, and loperamide with the efflux drug transporter P-glycoprotein. 
Anesthesiology 96:913-920. 

99. Zelcer N, van de Wetering K, Hillebrand M, Sarton E, Kuil A, Wielinga PR, Tephly T, 
Dahan A, Beijnen JH and Borst P (2005) Mice lacking multidrug resistance protein 3 
show altered morphine pharmacokinetics and morphine-6-glucuronide antinociception. 
Proc Natl Acad Sci U S A 102:7274-7279. 

100. Zong J and Pollack GM (2000) Morphine antinociception is enhanced in mdr1a gene-
deficient mice. Pharm Res 17:749-753. 

 
 

 41



 

Table 1.1 Opioid characteristics  
 MW LogD pH7.4 

Scifinder 
BBB 

permeability c 
Potency 
in vitro 

Ki (nM) a 

P-gp 
substrate 

alfentanil 416.5 1.5 - 7.1 no* 
fentanyl 336.5 2.2 high 1.3 weak 
loperamide 477.0 4.1 moderate 1.1 b strong 
meperidine 247.3 1.6 high 1160 no 
methadone 309.6 2.6 moderate 45 moderate 
morphine 287.3 0.42 low 54 weak 
sufentanil 386.6 2.5 - 0.088 no* 
 a (Leysen et al., 1983)  

b (Terenius, 1975) 
c (Dagenais et al., 2004); Classified based on mdr1a(-/-) in situ brain uptake clearances ( low < 85; moderate 85 
to 170; high >170 ml∏min-1∏100g-1) 
* based on available data at the inception of this dissertation project
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Figure 1.1. Chemical structure of selected mu opioid agonists    
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CHAPTER 2 

KINETIC CONSIDERATIONS FOR THE QUANTITATIVE ASSESSMENT OF 

EFFLUX ACTIVITY AND INHIBITION: IMPLICATIONS FOR UNDERSTANDING 

AND PREDICTING THE EFFECTS OF EFFLUX INHIBITION 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

This chapter has been submitted for publication in Pharmaceutical Research and is presented 
in the style of that journal. 



 

Abbreviations: 

φi: degree of efflux inhibition 

ERα: asymmetry efflux ratio (PSB→A/PSA→B)  or  steady-state (CA / CB) 

ERA: apical efflux ratio  (PS0,B→A/ PSB→A) or steady-state (CA,0 / CA) 

ERB: basolateral efflux ratio  (PSI,A→B / PSA→B ) or  steady-state (CB,I / CB) 

ERC: cellular efflux ratio  (PSI,A→C / PSA→C ) or  steady-state (CC,I, / CC) 

[I]: inhibitor concentration 

IC50: 50% inhibitory concentration 

Ki: inhibitor constant 

Km: Michaelis-Menten constant 

PS: observed permeability-surface area product 

PS0: permeability-surface area product in the absence of efflux inhibition  

PSI: permeability-surface area product when efflux is completely inhibited or saturated; 

       passive permeability-surface area product 

[S]: substrate concentration 

 

Subscripts: 

A: apical 

B: basolateral 

C: cellular 

app: apparent 

max: maximum 

0: absence of efflux inhibition 
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I: efflux is completely inhibited or saturated 

A→B: apical to basolateral; apical compartment dosed 

B→A: basolateral to apical; basolateral compartment dosed 

A→C: apical to cellular; apical compartment dosed 
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Abstract  

Purpose. Unexpected and complex experimental observations related to efflux transport have 

been reported in the literature.  This work was conducted to develop relationships between 

efflux activity (PSefflux) as a function of commonly-studied kinetic parameters [permeability-

surface area product (PS), efflux ratio (ER), degree of efflux inhibition (φi), 50% inhibitory 

concentration (IC50), and Michaelis-Menten constant (Km)]. 

Methods.  A three-compartment model (apical, cellular, and basolateral) was used to derive 

flux equations relating the initial rate of flux and steady-state mass transfer in the presence or 

absence of active efflux.  Various definitions of efflux ratio (ER) were examined in terms of 

permeability-surface area products.  The efflux activity (PSefflux) was expressed in terms of 

ER and PS.  The relationships between PSefflux and PS, ER, φi, IC50, and Km were solved 

mathematically.  Simulations and examples from the literature were used to illustrate the 

resulting mathematical relationships. 

Results.  The relationships derived according to a three-compartment model differed 

fundamentally from commonly-accepted approaches for determining PSefflux, φi, IC50 and Km.  

Based on the model assumptions and mathematical derivations, currently used mathematical 

relationships erroneously imply that efflux activity is proportional to change in PS (i.e., flux 

or Papp) and thus underestimate PSefflux and φi, and overestimate IC50 and Km.  

Conclusions.  An understanding of the relationship between efflux inhibition and kinetic 

parameters is critical for appropriate data interpretation, standardization in calculating and 

expressing the influence of efflux transport, and predicting the clinical significance of efflux 

inhibition. 
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INTRODUCTION 

     Xenobiotic efflux transporters such as P-glycoprotein (P-gp) influence drug disposition, 

efficacy, and safety.  Inhibition of efflux transporters may have beneficial (e.g., increased 

absorption, enhanced presentation to the target site) or adverse (e.g., unexpected or 

dangerous drug interactions) effects (1).  Specific efflux inhibitors are in development to 

increase oral bioavailability, to target therapeutics to the central nervous system (CNS), and 

to reverse multidrug resistance (MDR) in cancer (2-4).  In addition, drug-drug interactions at 

the level of efflux transporters have been identified and represent an area of increasing 

interest (5-7).  

     Various in vitro and in vivo models have been developed to identify substrates and 

inhibitors of efflux transporters and to predict the effects of efflux inhibition on drug 

disposition and action.  These models include cell monolayers (Caco-2 and transfected 

MDCKII cells), perfused organs (brain, liver, kidney, and intestine), and intact animals 

(transporter-deficient animals [e.g. mdr1a/b knockout]; co-administration of efflux inhibitors 

in vivo) (8-11).  The predictive utility of these models depends on accurate determination of 

efflux activity (PSefflux), substrate affinity (Km), inhibitor potency (IC50), and the degree of 

efflux inhibition (φi).  Unfortunately, the relationships between PSefflux and these other 

experimental parameters are poorly understood leading to data misinterpretation and 

inaccurate in vitro-in vivo predictions.  

     Several experimental strategies comprised of different designs and data analysis methods 

have been used to study apical efflux.  Often, observation in one experimental system is used 

to predict behavior in another system.  For example, Caco-2 monolayer flux studies are used 

to make predictions of intestinal drug absorption in humans.  Kinetic, molecular, and 
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computational models are proposed to provide a better understanding of experimental 

observations and to make predictions of system behavior.  Various types of models with 

differing degrees of complexity have been proposed for apical efflux (8, 12-14).  Even 

though the models differ in complexity and details, most share some common elements: 

distinct apical, basolateral, and cellular compartments, with efflux transport located on the 

apical membrane.  A comprehensive understanding of system behavior for the most basic 

model structure, one that incorporates the fewest assumptions, is an important first step in 

critically evaluating the kinetic consequences of efflux transport.   

     In the present work, a simple kinetic model based on the prototypical efflux transporter P-

gp was constructed and used to derive the theoretical relationships between PSefflux and 

experimental parameters (Km, IC50, and φi).  The resulting mathematical relationships were 

compared to commonly-accepted approaches for calculating PSefflux, φi, Km, and IC50.  

Kinetic considerations suggest that commonly-used relationships for determining the 

experimental parameters PSefflux, Km, and IC50 may be confounded by the efflux activity of 

the model system as well as the choice of substrate. 
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THEORETICAL 

     The simplest kinetic model consistent with efflux attenuating initial rate of apical-to-

basolateral (A-to-B) flux is a three-compartment system (Figure 2.1) in which PSA and PSB 

represent the passive permeability-surface area product of the apical and basolateral 

membrane, respectively, and PSefflux represents the permeability-surface area product due to 

efflux transport.  This scheme has been used to represent apical efflux (8, 14) and is capable 

of representing the in vitro and in vivo models used to study the impact of efflux transporters 

(Table 2.1).  The kinetic model associated with this scheme can be described by the 

following set of differential equations:  

AAeffluxAC
A PSC)PSPS(C

dt
dX

−+=        (1-1) 

)PSPSPS(CPSCPSC
dt

dX
effluxBACBBAA

C ++−+=     (1-2) 

BBBC
B PSCPSC

dt
dX

−=         (1-3) 

where dXA/dt, dXB/dt and dXC/dt represent the substrate flux into and out of the apical, 

basolateral, and cellular compartments, respectively; CA, CB, and CC represent substrate 

concentration in each compartment; PSA and PSB represent the passive permeability-surface 

area product of the apical and basolateral membranes; and PSefflux represents the 

permeability-surface area product of efflux activity.  When substrate concentrations approach 

or exceed the Km for the efflux transport protein then: 

mC

max,efflux
efflux KC

PS
PS

+
=          (1-4) 

where PSefflux,max equals maximal efflux activity. 
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Initial Rate of B-to-A Flux in the Presence or Absence of Active Efflux  

     Assuming initial unidirectional flux into the apical compartment (i.e., XA=0) and rapid 

equilibration between the basolateral and cellular compartments (dXC/dt = 0), the flux in the 

B-to-A direction and the concentration in the cellular compartment (CC) can be described by 

equations (2-1) and (2-2), respectively. 

)PSPS(C
dt

dX
effluxAC

A +=         (2-1) 

)PSPSPS(
PSC

C
effluxBA

BB
C ++

=         (2-2) 

Substitution of equation (2-2) into equation (2-1) yields the B-to-A flux equation: 

effluxBA

efffluxABBABA,

PSPSPS
)PSPS(PSC

 
dt

dX
++

+××
=→       (2-3) 

In the absence of efflux (PSefflux = 0), the flux in the B-to-A direction is given by: 

BA

ABBABA,

PSPS
PSPSC

dt
dX

efflux w/o

+
××

=→         (2-4) 

 

Initial Rate of A-to-B Flux in the Presence or Absence of Active Efflux  

     Assuming initial unidirectional flux into the basolateral compartment (i.e., XB=0) and 

rapid equilibration between the apical and cellular compartments (dXC/dt = 0), the flux in the 

A-to-B direction and the concentration in the cellular compartment (CC) can be described by 

equations (3-1) and (3-2), respectively. 

BC
B PSC

dt
dX

=          (3-1) 

)PSPSPS(
PSC

C
effluxBA

AA
C ++

=         (3-2) 
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Substitution of equation (3-2) into equation (3-1) yields the A-to-B flux equation: 

effluxBA

BAABA,B

PSPSPS
PSPSC

dt
dX

++
××

=→        (3-3) 

In the absence of efflux (PSefflux = 0), A-to-B flux is given by equation (3-4). 

BA

BAABAB,

PSPS
PSPSC

dt
dX

efflux w/o

+
××

=→         (3-4) 

 

Initial Rate of Cellular Influx  

     Assuming initial unidirectional uptake into the cellular compartment (i.e., XC=0), flux into 

the cellular compartment (CC) can be described by equations (4-1) and (4-2) following 

administration into the apical and basolateral compartments, respectively. 

AA
C PSC

dt
dX

=          (4-1) 

BB
C PSC

dt
dX

=          (4-2) 

 

Steady-State Concentrations in Compartments A, B, and C 

     The steady-state substrate concentration in compartments A, B, and C can be determined 

by solving differential equations (1-1), (1-2), and (1-3) for concentration at infinite time after 

administration of mass X0 to the system: 

)VVV(PS)VPS(
)PSPS(X

V
X

C
CBAAAefflux

effluxA0

A

)t(A
)t(A +++×

+
== ∞=

∞=     (5-1) 

)VVV(PS)VPS(
PSX

V
X

C
CBAAAefflux

A0

B

)t(B
)t(B +++×

×
== ∞=

∞=     (5-2) 
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)VVV(PS)VPS(
PSX

V
X

C
CBAAAefflux

A0

C

)t(C
)t(C +++×

×
== ∞=

∞=      (5-3) 

In the absence of active efflux, the steady-state concentrations in compartments A, B, and C 

are equivalent, and may be expressed as: 

)VVV(
X

C
CBA

0
)t()t(

efflux w/o

++
=

∞=∞=        (5-4) 

 

Definition of Basolateral Efflux Ratio and Efflux Activity  

     The basolateral efflux ratio (ERB) can be defined as the ratio of the initial rate of flux in 

the A-to-B direction when efflux is inhibited completely [eq. (3-4)] divided by the initial rate 

of flux in the A-to-B direction when efflux is not inhibited [eq. (3-3)]:  

BA

effluxBA

BA,B

BA,B

B PSPS
PSSPSP

 

dt
dX

dt
dX

ER

efflux w/o

+
++

==
→

→

      (6-1) 

Alternatively, ERB can be defined as the steady-state concentration in the basolateral 

compartment when efflux is inhibited completely [eq. (5-4)] divided by the steady-state 

concentration in the basolateral compartment when efflux is not inhibited [eq. (5-2)]: 

)VVV(PS
VPS

1 
C 
C       

ER
CBAA

Aefflux

B

B
)(tB

efflux w/o

++
×

+==∞→     (6-2) 

Efflux activity (PSefflux) can be expressed in terms of ERB by rearrangement of equations (6-

1) and (6-2): 

)1ER)(PSPS(PS BBAefflux −+=        (6-3) 

)1ER(PS
V

)VVV(
PS )t(BA

A

CBA
efflux −

++
= ∞→      (6-4) 
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Definition of Asymmetry Efflux Ratio and Efflux Activity 

Assuming that donor compartment concentrations are identical (CA=CB), the asymmetry 

efflux ratio (ERα) can be defined as the ratio of the initial rate of flux in the B-to-A direction 

[eq. (2-3)] divided by the initial rate of flux in the A-to-B direction [eq. (3-3)]: 

A

effluxA

BA,B

AB,A

PS
SPSP

 

dt
dX

 
dt

dX

ER
+

==
→

→

α        (7-1) 

Alternatively, ERα can be defined as the apical steady-state concentration [eq. (5-1)] divided 

by the steady-state concentration in the basolateral compartment [eq. (5-2)]: 

A

effluxA

B

A
)(t PS

SPSP 
C

 CER +
==∞→α        (7-2) 

Efflux activity (PSefflux) then can be solved in terms of ERα as: 

)1ER(PSPS Aefflux −= α         (7-3) 

)1ER(PSPS )t(Aefflux −= ∞→α         (7-4) 

 

Definition of Cellular Efflux Ratio and Efflux Activity 

     The cellular efflux ratio (ERC) can be defined as the ratio of the initial rate of flux in the 

A-to-C direction when efflux is inhibited completely [eq. (4-1)] divided by the initial rate of 

flux in the A-to-C direction when efflux is not inhibited [eq. (4-1)]: 

1 

dt
dX

dt
dX

ER
CA,C

CA,C

C

efflux w/o

==
→

→

         (8-1) 
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Alternatively, ERC can be defined as the steady-state concentration in the cellular 

compartment when efflux is inhibited completely [eq. (5-4)] divided by the steady-state 

concentration in the cellular compartment when efflux is not inhibited [eq. (5-3)]: 

)VVV(PS
VPS

1 
 C

C     
ER

CBAA

Aefflux

C

C
)t(C

efflux w/o

++
×

+==∞→      (8-2) 

Efflux activity (PSefflux) can be expressed in terms of ERC as: 

)1ER(PS
V

)VVV(
PS )t(CA

A

CBA
efflux −

++
= ∞→      (8-3) 

 

Definition of Apical Efflux Ratio and Efflux Activity 

     The apical efflux ratio (ERA) can be defined as the ratio of the initial rate of flux in the B-

to-A direction when efflux is not inhibited [eq. (2-3)] divided by the initial rate of flux in the 

B-to-A direction when efflux is inhibited completely [eq. (2-4)]: 

A

BA

effluxBAA

effluxABA

AB,A

AB,A

A PS
)PSPS(

)PSPSPS(PS
)PSPS)(PSPS(

 

dt
dX

dt
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ER efflux w/o

+
≤

++
++

==
→

→

   (9-1) 

Alternatively, ERA can be defined as the steady-state concentration in the apical compartment 

when efflux is not inhibited [eq. (5-1)] divided by the observed steady-state concentration in 

the apical compartment when efflux is inhibited completely [eq. (5-4)]: 

A

CBA

CBAAAefflux

CBAeffluxA

A

A
)t(A V

VVV
)VVV(PS)VPS(

)VVV)(PSPS(
 

C      

CER efflux w/o

++
≤

+++×
+++

==∞→  (9-2) 

Efflux activity (PSefflux) then can be expressed in terms of ERA as: 

)ERPS()PSPS(
)1ER(PS)PSPS(PS

AABA

AABA
efflux ×−+

−+
=        (9-3) 
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)ERV()VVV(
)1ER(PS)VVV(PS

AACBA

AACBA
efflux ×−++

−++
=       (9-4) 

 

RESULTS AND DISCUSSION 

Efflux activity is proportional to the quantity ER-1, not to attenuation or enhancement of 

flux 

      The mathematical relationships derived from the three-compartment model in figure 2.1, 

indicate that efflux attenuates flux in the A-to-B direction and enhances flux in the B-to-A 

direction.  However, neither the attenuation of flux in the A-to-B nor the enhancement of flux 

in the B-to-A direction is proportional to the efflux activity (PSefflux) [eq. (2-3) and (3-3); 

illustrated in Figure 2.3].  In contrast, according to the three-compartment model, [Table 2.2; 

illustrated in Figure 2.4; and eq. (6-3), (6-4), (7-3), (7-4), and (8-3)], PSefflux is proportional to 

the ERB-1, ERα-1, and ERC-1.  The fact that PSefflux is not proportional to flux but is 

proportional to ERB-1, ERα-1, and ERC(t∞)-1 has important implications regarding the 

calculation of PSefflux, Km, and IC50. 

     Numerous approaches with little consensus have been proposed to calculate and express 

PSefflux (Table 2.3).  Often, PSefflux is calculated directly from the magnitude of attenuation or 

enhancement in flux caused by efflux.  Since the magnitude of attenuation and enhancement 

in flux is not proportional to PSefflux, and therefore should not be used to calculate PSefflux 

directly, we propose a novel method, consistent with the three-compartment model in figure 

2.1, for calculating and expressing PSefflux. 

     From previous mathematical derivations, PSefflux can be defined in terms of PSA, PSB, and 

efflux ratios (Table 2.2), and is proportional to ERα-1, ERB-1, and ERC(t→∞)-1 (Table 2.2; 

illustrated in Figure 2.4).  However, in most experimental designs, PSA and PSB are not 
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determined, but the passive permeability-surface area product in the A-to-B direction 

(PSI,A→B) is measured.  The PSI,A→B can be expressed in terms of PSA and PSB as follows:  

BA

BA
BA,I PSPS

PSPS
PS

+
×

=→         (10-1) 

If PSA and PSB are assumed to be equal, rearrangement of equation (10-1) indicates that PSA 

and PSB equal 2PSI,A→B.  PSefflux can be expressed in terms of PSI,A→B and ER by substituting 

2PSI,A→B for PSA and PSB into equations (6-3), (7-3), and (8-3), yielding equations (10-2), 

(10-3), and (10-4) respectively: 

)1ER(PS4PS BBA,Iefflux −=
→

           (10-2) 

)1ER(PS2PS
BA,Iefflux −= α→

        (10-3) 

)1ER(
V

)VVV(
PS2PS )t(C

A

CBA
BA,Iefflux −

++
= ∞→→

     (10-4) 

From the preceding equations, the exact value of PSefflux can be calculated from commonly-

obtained experimental parameters, namely efflux ratio and passive permeability.  In 

qualitative terms, PSefflux is proportional to the product of (ER-1) and passive permeability.  

This relationship differs from other commonly-cited approaches for expressing PSefflux; 

however, it is kinetically sound (based on the inherent assumptions of the model in Figure 

2.1), and it is intuitive in that the efflux ratio of a substrate is dependent on both efflux 

activity and the substrate passive permeability.  Expressing PSefflux in terms of PSI,A→B and 

ER also is convenient, and allows for precise quantitation and comparison of PSefflux between 

different substrates, model systems, and laboratories. 

     As in the case for PSefflux, flux should not be used to directly calculate Km or IC50. This is 

true, because, when determining Km or IC50 it is necessary to relate substrate or inhibitor 

concentrations to the value PSefflux and because flux is not proportional to PSefflux. Instead of 
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using flux, Km and IC50 may be calculated directly from the change in ERα-1, ERB-1, or 

ERC(t→∞)-1 since ER-1 is proportional to PSefflux.  The difference between calculating IC50 

directly from the change in Papp versus ER-1 can be illustrated with a recent example from 

the literature.  Although numerous relevant data sets can be found in the literature, a data set 

from Chen et. al. (2002) was chosen due to the high quality of the data and the extensive 

characterization of the Michaelis-Menten profile (Figure 2.2) (15).  The conclusions drawn 

from consideration of this experimental data set are generalizable to other situations.  Briefly, 

the investigators used an in situ rat brain perfusion technique to examine the ability of the P-

gp inhibitor GF-120918 to inhibit the P-gp-mediated efflux of quinidine.  Various 

concentrations of GF-120918 were examined; as concentrations of GF-120918 were 

increased, the Papp value for quinidine increased to a plateau of ~13-fold.  In such 

experiments, the IC50,app of the inhibitor often is calculated by fitting a modified Michaelis-

Menten equation to the Papp vs. inhibitor concentration data.  In order to illustrate why IC50,app 

should not be calculated in this manner, we used a modified Michaelis-Menten equation to 

calculate both the IC50,app (from the Papp and GF-120918 concentration data) and the “true” 

IC50 (from ER and GF-120918 data).  Even though the same experimental data were used in 

calculating IC50,app and IC50, the IC50,app (0.56 µM) was 13-fold higher than the IC50 (0.042 

µM).  It is clear that the IC50,app calculated from Papp data differs fundamentally from the IC50 

calculated from ER data.  Since changes in Papp are not proportional to changes in PSefflux, 

IC50 and Km should not be calculated by fitting a modified Michaelis-Menten equation to Papp 

data.  Mathematical treatment of IC50 and Km will be explored in further detail in a later 

section; at this point, we simply demonstrate that calculating IC50 or Km from flux or Papp 

values is not equivalent to calculations based on ER values.   
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B-to-A flux (secretory flux) is minimally sensitive to efflux activity  

     Apical efflux clearly enhances flux in the B-to-A direction.  However, this enhancement is 

not proportional to either efflux activity (PSefflux) or ERA-1 [eq. (2-3) and (9-1); (illustrated in 

Figures 3 and 4)].  The fold increase in the B-to-A flux is given by the ERA in equation (9-1):   

A

BA

effluxBAA

effluxABA

AB,A

AB,A

A PS
)PSPS(

)PSPSPS(PS
)PSPS)(PSPS(

 

dt
dX

dt
dX

ER efflux w/o

+
≤

++
++

==
→

→

   (9-1) 

Taking into account the model assumptions discussed previously, the maximum value of 

ERA is (PSA + PSB) / PSA (i.e., 2, assuming PSA = PSB).  In other words, if passive 

permeabilities across the apical and basolateral membranes are similar, then the maximum 

increase in B-to-A flux that efflux can cause is 2-fold.  Therefore, measuring the effect of 

efflux on permeability in the B-to-A direction is uninformative, as flux in the B-to-A 

direction is not proportional to, and is in fact minimally sensitive to PSefflux.   

     Experimental evidence is consistent with this predicted behavior.  For example, the B-to-

A flux of loperamide, amprenavir, and eletriptan in MDR1-transfected MDCK cell 

monolayers increased only 1.5- to 2.1-fold despite a 10-, 29-, and 45-fold decrease in A-to-B 

flux, respectively (16).  Another experimental observation consistent with a maximum 2-fold 

increase in B-to-A flux is the influence of P-gp-mediated efflux on the equilibration half-life 

of the fentanyl, alfentanil, methadone, loperamide across the blood-brain barrier (BBB).  

These opioids were used as in vivo probes in P-gp-competent and P-gp-deficient mice to 

assess the influence of P-gp-mediated efflux on brain-to-plasma ratio (Kp,brain) and the 

pseudo-first-order rate constant governing the time-dependent approach of the brain-to-
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plasma ratio to its equilibrium value (Keq,brain).  Based on the principle that Keq,brain is 

influenced only by the rate of egress from the brain, Keq,brain should be directly proportional 

to PSB→A.  Thus, the fold change in Keq,brain can be expressed in terms of ERA.  In contrast, 

the fold change in brain-to-plasma ratio can be expressed in terms ERα.  So by studying the 

effect of P-gp-mediated efflux on Kp,brain and Keq,brain, the influence of efflux on the ERα and  

ERA can be deduced in vivo.  P-gp-mediated efflux had a more pronounced effect on the 

brain-to-plasma ratio (1.9- to 44-fold change) than on the brain equilibration half-life (1.0- to 

2.4-fold change).  Without examining the experimental observations in terms of ERA and 

ERα, the experimental observations in Keq,brain may be difficult to rationalize.  However, the 

results are precisely what would be expected based on the model and associated assumptions 

(Table 2.4).   

     Despite these kinetic considerations, for some substrates apical efflux transporters have 

been reported to increase flux in the B-to-A direction by more than 2-fold.  For example, in 

Caco-2 monolayers the efflux transporter P-gp had a pronounced effect (10-fold) on the B-to-

A flux of rhodamine 123, even though P-gp efflux minimally attenuated rhodamine 123 flux 

in the A-to-B direction (17).  In the same Caco-2 studies, rhodamine 123 had low membrane 

permeability, with A-to-B flux occurring primarily by the paracellular route.  However, the 

B-to-A flux was much higher than the A-to-B flux, and it occurred via the transcellular route, 

because rhodamine 123 was transported across the basolateral membrane by active uptake.  

Active uptake of rhodamine 123 across the basolateral membrane violates the assumptions of 

the basic kinetic model (PSB,inf ≠ PSB,eff ).  Therefore, efflux has a more pronounced effect on 

B-to-A flux than the kinetic scheme would suggest.  This phenomenon has been observed for 

other efflux substrates transported by multiple proteins, such as fexofenadine and digoxin 
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(18, 19).  In cases in which active transport processes are present in addition to efflux, 

estimates of kinetic efflux parameters (IC50, Km, or PSefflux) may be confounded by the action 

of the other transport process(es).  Experimental determination of efflux transporter kinetic 

parameters is difficult when flux is influenced by multiple systems (i.e., active uptake and 

efflux), because inhibitors often are non-selective and the Km(s) of additional active 

process(es) may be less than that of the efflux transporter. 

 

Asymmetry and basolateral efflux ratios are not identical 

     The basolateral and asymmetry efflux ratios (ERB and ERα) are used to characterize the 

influence of efflux on a given model system and to extrapolate observations from one model 

system to another (i.e., in vitro to in vivo predictions).  Thus, it is important to understand the 

relationship between ERB and ERα, which may be best understood by examining the 

relationship between ERα-1 and ERB-1 from rearrangement of equations (7-3) and (6-3): 
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If PSA=PSB, then the ratio of ERα-1 and ERB-1 equals 2 as shown in equation (11-3). 
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Equation (11-3) illustrates that ERα is larger than ERB and that when PSefflux is large 

compared to PSA, ERα will equal twice ERB. 
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     The fact that ERα > ERB may explain why the P-gp efflux ratio determined by in situ 

brain perfusion under-predicts the in vivo brain-to-plasma efflux ratio.  Several studies have 

examined the influence of P-gp on brain uptake of P-gp substrates, and developed 

relationships for the difference in brain uptake clearance (Clup) and brain-to-plasma ratio 

(Kp,brain) between P-gp-deficient and P-gp-competent mice.  The in situ P-gp efflux ratio (9), 

which is analogous to ERB and is determined by dividing Clup in P-gp-deficient mice (Clup
-/-) 

by the brain uptake clearance in P-gp-competent mice (Clup
+/+), has been used to predict the 

in vivo P-gp efflux ratio, which is calculated by dividing the Kp,brain in P-gp-deficient mice 

(Kp,brain
-/-) by the Kp,brain in P-gp-competent mice (Kp,brain

+/+).  In most studies, the in situ 

efflux ratio correlated well with the in vivo efflux ratio, although the in situ efflux ratio 

consistently under-predicted the in vivo efflux ratio [Figure 2.5; data from references (9, 11, 

20, 21) and unpublished observations].  This under-prediction is expected since the in situ P-

gp efflux ratio is analogous to ERB and the in vivo efflux ratio is analogous to ERα.  Direct 

predictions can be made by comparing the in situ efflux ratio minus one to the in vivo efflux 

ratio minus one.  The in situ efflux ratio minus one is expected to equal one-half the in vivo 

efflux ratio minus one.  When the in situ and in vivo efflux ratios are compared in this 

manner, the in situ efflux ratio no longer under-predicts the in vivo efflux ratio (Figure 2.5). 

 

Apparent IC50 and Km are influenced by efflux activity 

     The efflux activity (PSefflux) in the presence of efflux inhibition can be expressed as in 

equation (12-1), where PSefflux,max is the efflux activity in the absence of inhibition, and φi is 

the degree of efflux inhibition: 

)1(PS PS imax,effluxefflux φ−×=         (12-1) 
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As derived previously, the efflux activity (PSefflux) is proportional to ERα-1, ERB-1 and 

ERC(t→∞)-1.  When ER-1 and ERmax-1 are substituted for PSefflux and PSefflux,max respectively, 

then equation (12-1) can be rewritten as follows: 

)1()1(ER 1ER imax φ−×−=−        (12-2) 

Solving equation (12-2) for φi yields:  

1ER
ERER

max

max
i −

−
=φ          (12-3) 

     From this point forward, the symbol PS will represent any experimental variable that is 

attenuated by efflux in a manner consistent with the model in Figure 2.1, such as PSA→B (i.e., 

Papp or A-to-B flux), cellular partition ratio, or brain-to-plasma ratio.  The efflux ratio (ER) 

can be defined as (PSI/PS), where PSI is the value of PS when efflux is inhibited completely 

and PS is the observed value of PS.  When efflux activity is completely inhibited, ER equals 

unity.  In the absence of any efflux inhibition, ER equals ERmax, defined as (PSI/PS0), where 

PS0 is the value of PS in the absence of efflux inhibition.  Equation (12-3) can be expressed 

in terms of PS by substituting (PSI/PS0) and (PSI/PS), for ERmax and ER. 

( )
( )0I

0I
i PSPS

PSPS
PS
PS

−
−

×=φ         (12-4) 

Equation (12-5) represents the standard equation used to calculate φi in the literature and it 

differs from equation (12-4) by a factor of PSI/PS. 

0I

0
app,i PSPS

PSPS
−
−

=φ          (12-5) 

This difference between the kinetically derived equation (12-4) and equation (12-5) has a 

profound impact on calculating IC50, Km, and understanding the relationship between PS and 

φi (see  2.3).  Use of equation (12-5) does not yield true kinetic parameters for the system, but 
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rather apparent parameters.  This can be illustrated by solving equations (12-4) and (12-5) for 

PS, yielding equations (12-6) and (12-7), respectively: 

( ) iI0I

0I

PSPSPS
PSPS

PS
φ×−+

×
=         (12-6) 

app,i0I0 )PSPS(PSPS φ×−+=        (12-7) 

Examination of equation (12-7) reveals that the maximum increase in PS due to inhibition is 

PSI-PS0; when φi,app equals 50%, the increase in PS equals one-half the maximum possible 

increase (i.e., the change in PS is directly proportional to φi,app).   

     The actual fold change in PS due to efflux inhibition may be expressed in terms of efflux 

ratios or permeability-surface area products: 

ER
ER

PSPS
PSPS

PS
PS PS ∆ fold max

I

0I

0

===       (12-8)  

Solving equation (12-3) for ER and substituting into equation (12-8) yields: 

imaxmax

max

 1)-(ER-ER
ER

 PS ∆ fold
φ×

=        (12-9) 

Assuming
50

i IC]I[
]I[

+
=φ , the maximum fold change in PS at any inhibitor concentration ([I]) 

is determined by the upper limits of equation (12-9): 

max
50

ER PS ∆ fold  1
IC

]I[
≤≥+         (12-10) 

According to the theoretically-derived equation (12-10), at 50% inhibition ([I] = IC50) the 

maximum increase in PS is 2-fold.  This is contrary to the relationship in equation (12-7).  

However, it is analogous to the case in which 50% inhibition of a specific clearance pathway 

(i.e., CYP3A4) will result in at most a 2-fold increase in steady-state concentrations (22). 
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     The difference between the theoretically-derived equation (12-6) and the simple equation 

(12-7) can be illustrated further by comparing estimates of IC50 and Km obtained from the 

two equations.  The non-linear relationships between PS and IC50 derived from the kinetic 

model in Figure 2.1 can be expressed as in equation (12-11).  Similarly, the relationship 

between PS and Km can be expressed as in equation (12-12):  

( )
50

I0I

0I

IC]I[
]I[PSPSPS

PSPS
PS

+
×−+

×
=        (12-11) 

( )
m

I0I

0I

K]S[
]S[PSPSPS

PSPS
PS

+
×−+

×
=        (12-12) 

Using the relationship in equation (12-7), PS can be expressed in terms of IC50,app or Km,app by 

substituting {[I]/([I]+IC50,app)} or {[S]/([S]+Km,app)} for φi,app: 

app,50
0I0 IC]I[

]I[)PSPS(PSPS
+

×−+=       (12-13) 

app,m
0I0 K]S[

]S[)PSPS(PSPS
+

×−+=       (12-14) 

Differences in IC50,app and Km,app calculated by standard equations in current use vs. those 

suggested herein can be illustrated by substituting PS from equation (12-11) into equation 

(12-13) and solving for IC50,app and by substituting PS from equation (12-12) into equation 

(12-14) and solving for Km,app: 

max50
0

I
50app,50 ERIC

PS
PS

ICIC ×=×=        (12-15)  

maxm
0

I
mapp,m ERK

PS
PS

KK ×=×=        (12-16) 
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As can be seen from equations (12-15) and (12-16), current methods used for calculating 

Km,app or IC50,app will result in over-estimation of these parameters by a factor of ERmax 

(Figure 2.2).  

     This over-estimation poses a number of potential problems.  The ERmax for a given model 

system is dependent on both the efflux activity of the system and the test substrate.  When 

ERmax is small, the relative error in Km,app or IC50,app calculated from current methods will be 

small.  However, model systems with high efflux activity and substrates with large ERmax are 

precisely the model systems and substrates that are most sensitive for identifying efflux 

substrates and inhibitors. The IC50,app of inhibitors should be properly ranked-ordered if 

testing is conducted with a common probe substrate and in a model system with a consistent 

efflux activity.  However, when inhibitors are tested against dissimilar substrates and in 

different model systems expressing different efflux activity, then IC50,app and rank ordering of 

IC50,app may not correspond to the real IC50 or even the actual rank order.  Lastly, the IC50,app 

of the same inhibitor will differ between different substrates if the substrates have different 

ERmax.  This behavior may confound results or be attributed incorrectly to inhibition at 

different binding sites on the efflux transporter for different substrates.   

     The case that Km,app is affected by ERmax can be demonstrated by a recently reported 

study.  In the study, which examined the flux of taurocholate through MDCK cell 

monolayers transfected with apical sodium-dependent bile acid transporter (hASBT), the 

Km,app of taurocholate increased as a function of hASBT expression.  This unexpected and 

novel observation was attributed to aqueous boundary layer effects (23).  Alternatively, since 

transporter expression and PSefflux are proportional, the observation also is entirely consistent 

with the expected relationship between Km,app and transporter expression [equation (12-16)].  
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If the Km had been calculated in a manner consistent with the kinetic model in figure 2.1 

[equation (12-12)], it is likely that that the “true” Km would have been independent of 

hASBT expression. 

 

Inhibiting active efflux to reverse MDR or increase drug brain penetration 

     Arbitrarily, reversal of multidrug resistance (MDR) can be defined as less than a 2-fold 

difference in intracellular drug concentrations between naïve cells and MDR cells.  The 

change in PS necessary to reverse MDR then can be defined accordingly by: 

2
ER

PS ∆ fold max≥          (13-1) 

From equations (13-1) and (12-9), the degree of inhibition required to reverse MDR can be 

expressed as: 

1ER
2ER

max

max
i −

−
≥φ          (13-2) 

The degree of efflux inhibition needed to reverse MDR therefore is dependent on ERmax.  The 

higher the degree of MDR resistance, the higher the requisite degree of inhibition needed to 

reverse MDR.  The inhibitor concentration necessary to reverse MDR can be determined by 

solving equation (13-2) for [I], assuming
i

i K]I[
]I[

+
=φ . 

imax K)2ER(]I[ −≥          (13-3) 

In equations (13-2) or (13-3), all positive values φi or [I] indicate the degree of inhibition or 

the inhibitor concentration necessary to inhibit efflux such that there is less than a two-fold 

difference in drug resistance between MDR cells and naïve cell lines. 
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     The degree of efflux inhibition necessary to reverse multidrug resistance is not simply a 

function of inhibitor Ki but is also dependent on ERmax.  As cells become more resistant due 

to higher expression of the efflux transporter, the ERmax will increase, which will necessitate 

greater inhibition and consequently higher inhibitor concentrations to reverse MDR.  

Treatment with an efflux inhibitor will not reverse MDR in all cells equally, and will be less 

effective in cells possessing the highest degree of MDR.  This, in turn, will result in tumors 

becoming more resistant because the most resistant cells will have a survival advantage.  The 

relationships in equations (13-2) and (13-3) are also applicable to reversing efflux at the 

blood-brain barrier in order to increase drug delivery of efflux substrates to the brain; 

substrates with larger values of ERmax will require a higher degree of efflux inhibition and 

higher inhibitor concentrations to overcome efflux. 

     A relevant case study to illustrate this point comes from a clinical study in which the 

specific P-gp inhibitor tariquadar was shown to completely inhibit P-gp in T-lymphocytes 

(using the fluorescent dye DiOC2(3) as a probe), but was ineffective at inhibiting P-gp at the 

BBB (using the opioid loperamide as a probe) (24).  On first consideration, such observations 

may seem unexpected, and therefore lead to complex hypotheses to rectify apparently 

anomalous results.  However, these observations are not, in fact, inconsistent.  The ERmax of 

DiOC2(3) in T-lymphocytes is ~4, while the ERmax of loperamide at the BBB has been 

estimated in preclinical experiments to be ~65 (25, 26).  Based on equations (13-2 and 13-3) 

and the difference in ERmax between DiOC2(3) and loperamide, it is not surprising that 

complete inhibition of P-gp was observed in T-lymphocytes but not at the BBB. 
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CONCLUSION 

     A set of equations, based on a simple three-compartment model, was derived to describe 

the theoretical relationships between PSefflux and PS, ER, φi, IC50, and Km.  The resulting 

relationships show that current mathematical treatment of efflux data is inconsistent with this 

model.  In particular, these relationships mistakenly assume that PSefflux is proportional to the 

attenuation or enhancement in PS, and that 50% inhibition of efflux activity will result in 

50% of the maximum possible change in PS.  The theoretical relationships derived herein 

indicate that such an assumption will lead to an overestimate of φi, Km and IC50 in proportion 

to the ERmax of the experimental system.  These relationships also show that PSefflux is 

proportional to the passive permeability multiplied by (ER-1), and that 50% inhibition of 

efflux activity will result in at most a 2-fold increase in PS.  In addition, apical efflux has a 

minimum impact on the B-to-A flux (≤ 2-fold) and consequently B-to-A efflux studies are 

insensitive approaches for estimating efflux kinetic parameters.  Finally, the three-

compartment model and kinetic considerations indicate that a larger degree of efflux 

inhibition is necessary to reverse the effects of efflux when the efflux ratio is large.  Viewing 

efflux activity in terms of efflux ratios rather than change in PS allows for better conceptual 

understanding and more accurate estimation of kinetic parameters; therefore, it is 

recommended that efflux ratio be calculated and used when evaluating efflux activity and 

estimating the degree of efflux inhibition, IC50, or Km. 
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Table 2.1. Apical, cellular, and basolateral compartments of various model systems 
Model system Apical Cellular Basolateral 

Cell monolayer Apical chamber Cell monolayer Basolateral chamber 
Calcein-AM assay Extracellular space Intracellular space n/a 

MDR cell Extracellular space Intracellular space n/a 
MDR cell Extracellular space Cellular membrane Intracellular space 
Intestine GI lumen Epithelial cell Blood 
Kidney Tubule lumen (urine) Tubule epithelial cell Blood 
Liver Canalicular space (bile) Hepatocyte Blood 

Blood brain barrier Capillary lumen (blood) Endothelial cell Brain 

 74



 

 
      2.2. Relationships between efflux ratio, permeability-surface area products, and efflux activity 

Definition of efflux ratio Assumptions Efflux activity 
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 2.3. Comparison of methods for the calculation of experimental parameters  
Parameter Method(s) from literature Method(s) derived from kinetic theory 
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Note: Since flux and Papp are proportional to PS, flux and Papp can be substituted for PS 

ER=ERB,ERC, or ERα 

a rearrangement of equation (12-10) 
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 2.4. Influence of P-gp-efflux on the brain-to-plasma ratio (Kp,brain) and brain equilibration rate 
constant (Kbrain,eq) of P-gp substrates 

 Fold Change in Kp,brain 

(ERα) 
Fold change in Kbrain,eq 

(ERA) 
Expected change in 

Kbrain,eq (ERA)* 

Fentanyl 1.9 1.0 1.3 

Alfentanil 2.8 1.4 1.5 

Methadone 7.2 2.4 1.8 

Loperamide 44 1.9 2 
*The expected change in change in Kbrain,eq was calculated from the fold change in Kp,brain and the theoretical relationship 

between ERα and ERA. 
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Figure 2.1.  Three-compartment model consistent with efflux attenuating the initial rate 

of flux in the A-to-B direction. PSA,inf and PSA,eff, represent the passive permeability-surface 

area product of the apical membrane, whereas, PSB,inf and PSB,eff represent the passive 

permeability-surface area products of the basolateral membrane.  PSefflux represents the 

permeability-surface area product of efflux activity.  It is assumed PSA,inf = PSA,eff = PSA and 

PSB,inf = PSB,eff = PSB.  
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Figure 2.2.  Influence of GF-120918 on the brain uptake of quinidine. Data from Chen et. 

al 2002. (A) In situ brain perfusion Papp and ER values for quinidine were determined in the 

presence of various concentrations of GF-120918.  A modified Michaelis-Menten equation 

was fitted to either the Papp or ER data to obtain estimates of IC50,app and IC50 respectively.  

(B) Inhibition of P-gp mediated efflux was calculated from the Papp data using either equation 

(12-5), a commonly-cited inhibition equation (open symbols), or equation (12-4), a newly 

derived inhibition equation (solid symbols), and the Michaelis-Menten equation was fitted to 

the inhibition data to obtain estimates of IC50,app and IC50, respectively.  Note that in both 

panel A and B, IC50,app overestimated IC50, and that IC50,app = ERmax * IC50. 
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Figure 2.3. Theoretical relationship between efflux activity (PSefflux) and permeability-

surface area product (PS).  Efflux activity was normalized for the A-to-B passive 

permeability-surface area product (PSI,A-B).  PSA and PSB were assumed to be equal, 

therefore PSI,A-B = ½PSA.  Since Papp and flux are proportional to PS, substituting Papp or flux 

for PS will yield the identical relationship. 
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Figure 2.4. Theoretical relationship between efflux activity (PSefflux) and asymmetry 

(ERα), absorptive (ERB), secretory (ERA), or intracellular (ERC) efflux ratio.  Efflux 

activity was normalized for the A-to-B passive permeability-surface area product (PSI,A-B).  

PSA and PSB were assumed to be equal, therefore PSI,A-B = ½PSA. 
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Figure 2.5.  Correlation between in situ and in vivo P-gp efflux ratios.  (A) In situ efflux 

ratio was by defined as the ratio of brain uptake clearance in P-gp-deficient mice divided by 

the brain uptake clearance in P-gp-deficient mice.  In vivo efflux ratio was calculated as the 

brain-to-plasma ratio of P-gp-deficient mice divided by the brain-to-plasma ratio of P-gp 

component animals.  In panel (B), in situ ER* was corrected for differences between ERA 

and ERα (ER* = [(ER-1)x2]+1).  Solid line represents line of unity whereas dashed lines 

represent 2-fold above or below the line of unity.  Compound legend is as follows: 1 

loperamide, 2 quinidine, 3 ritonavir, 4 verapamil, 5 methadone, 6 fentanyl, 7 morphine.  
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CHAPTER 3 
 

CLINICAL INHIBITION OF P-GLYCOPROTEIN AT THE BLOOD-BRAIN 

BARRIER: A PHARMACOKINETIC-PHARMACODYNAMIC ASSESSMENT 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This chapter will be submitted for publication in Clinical Pharmacology and Therapeutics 
and is presented in the style of that journal. 



 

Abstract: 

Assessment of drug interaction potential is a key aspect of contemporary drug discovery and 

development.  Recent advances in this area have highlighted the importance of genetic 

polymorphism and chemical inhibition of drug transporters as mechanisms of adverse drug 

interactions. A principal area of focus has been P-glycoprotein (P-gp) at the blood-brain-

barrier (BBB), as this transporter impairs the CNS distribution of many compounds.  

However, there is little clinical evidence to support the prevalent concern that P-gp substrates 

or inhibitors are associated with a risk of CNS toxicity secondary to pharmacokinetic-based 

drug-drug interactions.  As a result, there is a fundamental debate as to whether compounds 

that are P-gp substrates should be selected as candidates for drug development.  Clearly, 

rational decision-making requires a comprehensive understanding of the factors that lead to 

clinically relevant inhibition of P-gp at the BBB.  In this commentary, fundamental 

pharmacokinetic principles are used to create a framework for the critical evaluation of drug-

drug interaction potential for P-gp substrates and inhibitors.  In this context, data from in 

vitro, preclinical, and clinical studies are utilized to illustrate key concepts. 
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     P-gp is a member of the ATP-binding cassette family of proteins, which function to 

excrete a wide variety of potentially toxic molecules from cells. P-gp is localized to the 

apical plasma membrane domain of cells, where it functions as a key physiologic barrier and 

clearance mechanism for large molecular weight, lipophilic, uncharged or cationic 

compounds in the intestine, testes, brain, kidney and liver 1,2  P-gp in intestinal enterocytes 

transports drugs, as well as certain dietary constituents, back into the gut lumen, thus limiting 

absorption into mesenteric blood 1-4.  P-gp in capillary endothelial cells of the testes, brain 

and tumor tissue attenuates the pharmacodynamic effects of its substrates 2, creates an 

enormous hurdle in chemotherapy 5 , and has been hypothesized to create a sanctuary site for 

the human immunodeficiency virus 6-8.  Lastly, P-gp in the liver and kidney mediates the 

biliary and urinary excretion of substrates 1, serving as a determinant of overall systemic 

exposure.  

 

P-gp inhibition at the BBB 

     Given its role in limiting oral bioavailability and drug exposure in important target organs, 

as well as in mediating systemic drug clearance, inhibition of P-gp has garnered considerable 

attention as a means of enhancing exposure.  Although inhibition of P-gp has proven to be 

successful in improving the oral bioavailability of some substrates 9, attempts at appreciable 

clinical P-gp inhibition at the BBB have met with limited success 5,10.  To some extent, these 

failures are surprising.  Numerous preclinical studies have demonstrated the importance of P-

gp at the BBB 2,11, and large increases in brain penetration of P-gp substrates have been 

produced by P-gp inhibitors in preclinical models such as in situ brain perfusion (Tables 3.1 

and 3.2).  These results have been used in part to support development of P-gp inhibitors as 
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adjuncts to therapeutic agents with otherwise impaired access to brain.  These observations 

also have raised concerns about potential unintended drug-drug interactions.  

     Although several potent P-gp inhibitors have been developed (Table 3.3), appreciable 

enhancement of CNS drug exposure as a result of P-gp inhibition has not been demonstrated 

clinically (Table 3.4 and 3.5) due to an inability to achieve unbound systemic concentrations 

sufficient to elicit appreciable changes in CNS drug disposition.  Furthermore, reports of 

increased CNS exposure due to inhibition of P-gp, inferred from changes in pharmacologic 

activity, may be secondary to increased systemic drug concentrations due to intestinal P-gp 

inhibition or to a direct pharmacologic effect of P-gp inhibitors.  This commentary explores 

rational kinetic relationships between the extent of P-gp inhibition and the resultant change in 

CNS drug exposure.  These relationships serve as a framework through which existing data 

on the consequences of BBB P-gp inhibition may be evaluated.  

 

Theoretical relationship between P-gp inhibition and fold increase in CNS exposure 

     The fold increase in CNS penetration or exposure (fold ∆ CNS) due to P-gp inhibition 

may be expressed in terms of efflux ratios [eq. (1)], where ERmax is the maximum P-gp efflux 

ratio (i.e., CNS exposure after complete inhibition of P-gp efflux divided by CNS exposure 

in the absence of P-gp inhibition) and ERobs is the observed P-gp efflux ratio in the presence 

of a P-gp inhibitor under a specified condition or concentration (i.e., CNS exposure after 

complete inhibition of P-gp efflux divided by CNS exposure observed under the specified 

inhibitor condition).  

obs

max

ER
ER

 CNS ∆ fold =          (1) 

The fractional degree of P-gp inhibition at any inhibitor concentration [I] is given by 
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where Ki is the inhibition constant.  Now, ERobs can be expressed in terms of ERmax and φI as: 

imaxmaxobs  1)-(ER-ER ER φ×=        (3) 

By substitution of eq. (3) into eq. (1), the fold ∆ CNS can be written as a function P-gp 

inhibition and ERmax 

imaxmax

max

 1)-(ER-ER
ER

 CNS ∆ fold
φ×

=       (4) 

Exploring the behavior of eq. (4) at its limits yields the inequality  

1
K

]I[ CNS ∆ foldER
i

max +≤≥        (5) 

The fold increase in exposure due to efflux inhibition is limited by ERmax or ([I]/Ki) + 1, 

whichever is lower.  Thus, when [I]/Ki=1 (i.e., 50% inhibition), the maximum increase in 

CNS exposure is 2-fold irrespective ERmax, which influences the fold increase in CNS 

exposure only when [I]/Ki approaches values in excess of ERmax.  Eq. (4) and (5) are similar 

to the equations describing the relationship between fold increase in AUC and the degree of 

inhibition of a single clearance pathway 12.  

     The degree of inhibition can be determined from experimental data by rearranging eq. (3) 

and solving for φi  

1ER
ERER

max

obsmax
i −

−
=φ          (6) 

When ERmax is unknown, the minimal extent of P-gp inhibition may be calculated from the 

fold ∆ CNS according to eq. (7).  

'CNS ∆ fold
11i −≥φ         (7) 
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Eq. (6) and (7) represent the theoretical relationship between efflux ratio and the degree of 

efflux inhibition.   

     The equations presented herein can be used to predict the magnitude of increase in CNS 

drug exposure as a result of P-gp inhibition from basic pharmacokinetic parameters prior to 

conducting complex and costly clinical studies.  For example, a recent clinical study 

evaluated the effect of P-gp inhibition by cyclosporine on CNS exposure to verapamil 13.  

Based on the in vitro Ki of cyclosporine for inhibition of P-gp (0.2 µM 14), as well as the 

unbound fraction of the inhibitor (~0.06 15,16), total cyclosporine systemic concentrations in 

excess of 3.3 µM would be required to produce an appreciable (>2-fold) increase in 

verapamil CNS exposure. Steady-state cyclosporine concentrations actually attained in the 

study were 2.8 µM. Eq. (5) would predict an ~84% increase in verapamil CNS exposure at 

this concentration of cyclosporine.  In fact, PET imaging indicated an 88% increase in CNS 

exposure to 11C-verapamil 13, consistent with theory as outlined in this commentary. 

     Comprehensive understanding of theory allows application to a variety of experimental 

issues: 

 

Probe substrate selection 

     An ideal probe substrate for evaluating the potential influence of a P-gp inhibitor on CNS 

exposure would have several practical characteristics, including a centrally-mediated 

pharmacologic response that is easily measured and sensitive to small changes in CNS 

exposure, be well tolerated, not be a substrate for other transporters, and be available in a 

formulation for intravenous administration to avoid potential effects of the inhibitor on 

systemic exposure via modulation of gastrointestinal absorption.  The P-gp efflux ratio of an 
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ideal probe substrate would be ≥3, such that 50% inhibition of P-gp would result in at least a 

1.5-fold increase in CNS exposure (eq. 5). Even under such stringent conditions, the 

pharmacologic measure would require a large dynamic range and sufficient sensitivity to 

distinguish differences in central effect resulting from a 50% increase in exposure.  

     One potentially useful substrate for clinical evaluation of BBB P-gp inhibition is the 

opioid methadone, which is a known P-gp substrate with an efflux ratio in excess of 3 17,18.  

Opioids in general exhibit sensitive and readily-measurable central effects (antinociception, 

pupil dilation, respiratory depression, and electroencephalogram effects) with clear 

dose/concentration-effect relationships 19.  Furthermore, methadone is formulated for 

intravenous administration.  One published clinical report was unable to demonstrate 

appreciable alteration in methadone pharmacodynamics during co-administration with 

quinidine 20.  However, the dose of quinidine administered would not be expected to produce 

appreciable enhancement of methadone CNS exposure due to a modest extent of BBB P-gp 

inhibition (Table 3.3).  In addition to methadone, preliminary data from this laboratory 

indicate that the opioids alfentanil and sufentanil also possess the characteristics of an ideal 

probe as outlined above. 

     Several P-gp substrates are known to undergo active uptake across the BBB in addition to 

P-gp efflux.  Surprisingly, in a few studies, administering a P-gp inhibitor actually decreased 

the CNS exposure of P-gp substrates.  Some P-gp inhibitors are not specific and may inhibit 

other transporters including BBB uptake transporters 21, resulting in a decrease in CNS 

exposure (e.g., paclitaxel during co-administration with the P-gp inhibitors itraconazol and 

cyclosporin A; Table 3.2). 
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Inhibitor selection 

     A useful model inhibitor, or one proposed to enhance clinical response to a CNS-active 

agent, must be well-tolerated at concentrations required to modulate BBB P-gp (unbound 

concentrations at least several fold in excess of the Ki to produce appreciable P-gp 

inhibition).  The inhibitor should be available as an intravenous formulation, such that high 

oral doses are not required to overcome poor intestinal absorption and first-pass elimination, 

and to minimize inter-subject variability in systemic inhibitor concentrations. Ideally, the 

inhibitor should not affect systemic concentrations of probe substrate, so that potential 

enhancements of CNS exposure may be attributed to inhibition of P-gp at the BBB and not 

simply to higher systemic probe concentrations; the experimental problems associated with 

systemic interactions can be overcome by measuring plasma concentrations of the probe 

substrate.  P-gp appears to have multiple binding sites, so for a given inhibitor, the potency 

and extent of inhibition may vary between P-gp substrates 22.  For example, rifampin can 

completely abolish P-gp mediated transport of verapamil at the murine BBB.  However, at 

similar concentrations, rifampin is only able to reduce the transport of quinidine by 50% 23.  

Therefore, P-gp binding sites should be considered when assessing potential drug 

interactions. In addition, the inhibitor should be validated in preclinical species at clinically-

relevant concentrations prior to clinical use and have no pharmacologic activity of its own.  

     Few of the currently-available P-gp inhibitors fit the criteria outlined above (Table 3.3), 

and it is unlikely that inhibition of P-gp at the BBB will exceed ~50%. Of the available 

inhibitors, cyclosporine A and PSC833 (Valspodar) appear to be the most effective, because 

the unbound systemic concentrations of these inhibitors can exceed the Ki, albeit at an [I]/Ki 

ratio that is lower than optimal for extensive BBB P-gp inhibition, they have no central PD 
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effect, are available as an intravenous formulation, and appear to interact with the various P-

gp substrate binding sites (Table 3.3) 13,24.  Quinidine is the third most potent P-gp inhibitor 

in Table 3.3, however quinidine clinical unbound systemic Cmax is only 20% greater than its 

Ki, and it is known to cause respiratory depression, a PD effect that overlaps with opioids 

25,26. 

 

Experimental design 

     A clinical BBB P-gp interaction study employing a pharmacologic measure as a surrogate 

for CNS drug exposure utilizes a probe substrate and inhibitor with the properties outlined in 

the preceding sections.  Systemic pharmacokinetics of the probe, as well as the 

pharmacologic effect, should be examined following intravenous administration of the probe 

substrate alone at a minimum of two different dose levels. The lower dose should elicit a 

response statistically above placebo, and the higher dose(s) should elicit a response below 

maximum, but statistically higher than the response produced by the lower dose.  These 

control experiments establish the systemic concentration-effect relationship.  Many BBB P-

gp interaction studies are confounded by the fact that the inhibitor increases systemic 

concentrations of the probe substrate (Table 3.4 and 3.5); proper control studies (in the 

absence of inhibitor) will allow appropriate correction for inhibitor-associated changes in 

systemic concentrations of the probe.  Whenever possible, the study should be conducted 

under steady-state conditions for the inhibitor.  If the steady-state inhibitor concentration 

approach is not feasible, systemic inhibitor concentrations should be determined throughout 

the course of the study.  Finally, intravenous administration of the inhibitor with probe 
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placebo should be conducted in order to confirm the absence of inhibitor pharmacologic 

effects.  

 

Studies using loperamide as a probe substrate  

     Despite being a potent mu opioid agonist, loperamide does not elicit central opioid 

activity at clinical doses 27 because of limited CNS penetration due to BBB P-gp efflux 28.  

Thus, several studies have been performed with loperamide as a probe substrate to study the 

functional impact of MDR1 genetic polymorphism or chemical inhibition of P-gp at the BBB 

29-32. 

     Clinical and preclinical data suggest that, for most opioids, there is little separation 

between anti-diarrheal activity and central opioid activity.  In studies conducted in rats, 

loperamide had >70-fold separation between anti-diarrheal activity and CNS effects 33.  

Studies in this laboratory have shown that loperamide has an ~60-fold difference in brain 

penetration and antinociception between P-gp competent and P-gp deficient mice, suggesting 

P-gp reduces loperamide CNS penetration by 60-70 fold 34.  In P-gp-deficient animals, 

loperamide is more potent than morphine and methadone at eliciting central opioid effects, 

indicating that the lack of central opioid effects at clinical doses is likely due to P-gp efflux at 

the BBB 34-36. 

     Several reports suggest that the extent of P-gp impairment of CNS exposure is similar 

between humans and preclinical species 37,38.  Clinical studies and case reports of overdoses 

demonstrate that loperamide is devoid of measurable CNS effects up to oral doses of 60 mg 

27.  At the standard dose of 2 mg, loperamide exhibits no measurable central effects in 

humans 27.  CNS effects may be observed at doses higher than 60 mg, indicating that there is 
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at least a 30-fold separation between therapeutic anti-diarrheal effects and central opioid 

effects.  Therefore, for use as a P-gp probe substrate, loperamide must be administered at 

supra-therapeutic doses (16 to 24 mg) in order to elicit a measurable central pharmacologic 

effect when P-gp efflux at the BBB is impaired.  Using this approach, the impact of 

inhibition or MDR1 genetic polymorphisms on P-gp function at the BBB has been 

investigated 29-32.  Two of four studies demonstrated an alteration in the central opioid 

activity of loperamide, but the results from these studies were not entirely consistent 29,32.  

One possible explanation for the inconsistency may be the reliability of central activity of 

loperamide as a surrogate of P-gp function at the BBB. 

     Sadeque et al. were the first to demonstrate the potential for clinical drug interactions via 

P-gp inhibition at the BBB 29.  This study examined the ability of quinidine to increase 

delivery of loperamide to the brain by inhibiting P-gp.  Respiratory response to carbon 

dioxide rebreathing was used as a marker of central mu opioid effects.  In a double-blind 

crossover study, subjects received 600 mg of quinidine or placebo, followed by 16 mg of 

loperamide one hour later.  No respiratory depression was observed for the 

placebo/loperamide group; however, respiratory depression did occur when loperamide was 

co-administered with quinidine.  Despite a 2.5-fold increase in systemic Cmax and AUC in the 

quinidine/loperamide group, the authors ruled out higher systemic concentrations of 

loperamide as a cause of the CNS effect, because at early time points, respiratory depression 

was observed only in the quinidine treatment group even though loperamide concentrations 

were similar to those in the placebo control group. 

     The functional significance of MDR1 gene mutation in determining the disposition and 

CNS effects of loperamide also has been investigated 32.  Subjects received placebo or 800 
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mg of quinidine followed by 24 mg of loperamide one hour later.  The central opioid effect 

of loperamide was monitored by pupilometry.  Loperamide pharmacokinetics and central 

opioid effects were delineated based on MDR1 genotype and whether or not subjects 

received quinidine.  No central opioid effect was observed in either the placebo or quinidine 

group for subjects homozygous for the MDR1 reference allele.  In the other treatment groups 

(non-homozygous for the MDR1 reference allele), CNS effects were observed only when 

loperamide was administered with quinidine.  When compared to the loperamide Cmax and 

AUC of subjects homozygous for the MDR1 reference allele who received placebo, 

loperamide Cmax and AUC were 2- to 3.1-fold higher when administered with quinidine.  

Given that a 24-mg dose of loperamide was administered, a 2- to 3.1-fold increase in Cmax 

and AUC would be comparable to the Cmax and AUC following a 48- to 74-mg dose of 

loperamide in naive homozygous subjects, assuming linear pharmacokinetics and absorption.  

In previous dose-escalation studies conducted to assess central opioid activity of loperamide, 

respiratory depression and pupil diameter were monitored and no central opioid activity was 

observed in subjects who received loperamide doses up to 60 mg 27.  Since the central opioid 

activity of loperamide at doses above of 60 mg is unknown, it is possible that the central 

opioid activity observed in quinidine treated subjects heterozygous for the MDR1 reference 

allele was predominantly due to increased systemic exposure rather than altered P-gp 

function at the BBB.  However, based on unbound quinidine concentrations and the Ki of the 

inhibitor (Table 3.3), partial inhibition (~50%) of P-gp at BBB and increased CNS 

penetration of loperamide (<2-fold) cannot be ruled out.  Studies in which equivalent 

loperamide exposures are achieved need to be conducted in order to determine whether P-gp 
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inhibition or higher systemic concentrations were responsible for the observed alterations in 

CNS effects. 

     Even though higher systemic concentrations in the quinidine-treated group may explain 

some results with loperamide, discrepancies appear to exist between the two studies.  

Although larger doses of quinidine and loperamide were used by Skarke et al. 39, no central 

opioid effects were observed despite higher Cmax and AUC of loperamide in subjects 

homozygous for the MDR1 reference allele.  One difference between the two studies was the 

choice of central pharmacodynamic markers:  respiratory depression vs. pupil dilatation.  

Perhaps respiratory depression is a more sensitive marker for central opioid activity.  

However, this appears not to be the case.  In a study evaluating the central pharmacologic 

effects of morphine, both respiratory depression and pupilometry were equally sensitive at 

detecting a graded pharmacodynamic response 39.  Another possible explanation is 

respiratory depression may be caused by quinidine 25,26.  Furthermore, the estimated 

quinidine Cmax was within the range associated with development of respiratory depression in 

susceptible patient populations and preclinical species40,41.  The effect of 600 mg of quinidine 

on respiratory depression should be determined in order to rule out the possibility that 

respiratory depression was caused by quinidine rather than by increased CNS exposure to 

loperamide to the brain.  In one study using 800 mg of quinidine co-administered with 

morphine, no enhancement in respiratory depression was observed 39, possibly because the 

respiratory depression caused by morphine masked the effects of quinidine.   

     The pharmacodynamic changes in the Sadeque et al. study did not correlate with 

loperamide concentrations 29.  In contrast, in the Skarke et al. study, the time course of miotic 

effects followed loperamide concentrations.  The degree of respiratory depression in the 
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Sadeque et al. (2000) study peaked prior to maximum loperamide concentrations, then 

declined as loperamide concentrations continued to increase, which implies the observed 

respiratory depression may not have been caused by the actions of loperamide. When 

quinidine is co-administered in studies utilizing respiratory depression as a measure of 

central opioid activity, secondary measures of CNS activity, such as pupilometry should be 

used, or a quinidine alone control group should be included to confirm respiratory depression 

is not caused by the pharmacological actions of quinidine.  

     One commonality between these studies is that the central opioid effect of loperamide was 

only observed at doses many multiples (8- to 12-fold) of the standard dose and only after co-

administration of a large dose of quinidine.  Quinidine more than doubled loperamide 

systemic exposures compared to placebo control.  The magnitude of the pharmacologic effect 

of loperamide was modest and cannot be attributed entirely to altered function of P-gp at the 

BBB, because the effect of higher systemic concentrations of loperamide and the effects of 

quinidine on respiratory depression are not known.  In gene-knockout animals lacking P-gp, 

loperamide is a potent opioid eliciting central effects at low doses 28,34.  The clinical studies 

to date suggest that chemical inhibition of P-gp at the BBB by quinidine is at best modest, 

because loperamide elicits only minimal CNS effects at high doses. 

     Additional studies with loperamide as a probe substrate have been conducted using the 

human immunodeficiency virus (HIV) protease inhibitor, ritonavir 30.  In a double-blind 

crossover study, 16 mg of loperamide was co-administered with either placebo or 600 mg 

ritonavir.  Pupilometry, cold pressor test, and transcutaneous PCO2 and PO2 analysis were 

performed to assess the central opioid effect produced by loperamide.  A modest increase in 

Cmax (1.2 fold) was observed in the loperamide/ritonavir group; however, no central opioid 
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effects were observed in any treatment group.  Likewise, other studies produced negative PD 

results, suggesting that loperamide is a poor probe for P-gp inhibiton at the BBB (Table 3.4). 

      It may be that loperamide is a poor probe substrate for accessing BBB P-gp function in 

humans as it cannot be administered at doses that produce some basal level of CNS activity, 

and it cannot be administered intravenously.  Methadone may be an alternate probe choice as 

it has a moderately high P-gp efflux ratio (5- 25 in preclinical species) 17,18, can be given 

intravenously, and low doses produce a detectible centrally-mediated PD effect . 

 

MDR1 genetic polymorphisms 

     No clinical reports of adverse drug interactions due reduction of P-gp function associated 

with genetic polymorphisms have been forthcoming.  Despite identification of numerous 

human SNPs in the MDR1 gene 42, no null alleles of MDR1 have been isolated.  However, a 

naturally-occurring strain of CF-1 mice, and population of collie dogs, lacking the functional 

Mdr1 gene product were identified based on neurotoxicity in response to ivermectin, an anti-

parasitic P-gp substrate 43,44.  As expected, P-gp protein expression and function in mice 

heterozygous for the null P-gp allele were half that in animals homozygous for the P-gp 

reference allele 45.  However, CNS drug penetration to the brain and LD50 of avermectin in 

mice heterozygous of P-gp was similar to mice homozygous for P-gp 45.  If populations of 

humans homozygous for a null allele of MDR1 were present in significant numbers, many 

documented examples of adverse reactions to various CNS-active/toxic P-gp substrates (e.g., 

loperamide, avermectin, ivermectin) would be expected. To date, this has not been 

demonstrated, suggesting that MDR1 polymorphisms do not confer overt CNS sensitivity to 

P-gp substrates.  
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     Whether due to chemical inhibition or genetic polymorphism, the maximum possible 

increase in CNS exposure due to a 50% reduction in P-gp function at the BBB is 2-fold.  

Within the human population at large, there is normally a large degree of individual variation 

in systemic pharmacokinetic parameters and consequently in systemic exposure to drugs.  

Agents that come to market successfully tend to have therapeutic indexes that are sufficiently 

wide to account for the clinical pharmacokinetic variation.  Since systemic exposure to drugs 

often varies by more than 2-fold, and sometimes by more than an order of magnitude, among 

individuals in a defined population, a 2-fold increase in CNS penetration due to genetic 

perturbation or chemical inhibition is unlikely to be the dominant factor in CNS response.  

Thus, a 50% reduction in BBB P-gp function may be clinically significant only for those 

agents with extremely narrow therapeutic indices.  

 

Recommendations and concluding remarks 

     Most clinically-available inhibitors are not sufficiently potent or well-tolerated to achieve 

unbound systemic concentrations necessary to inhibit P-gp at the BBB, even though they 

may inhibit P-gp in the gut, and potentially the liver.  This situation is due to higher 

concentrations of inhibitor present in the intestinal tract and portal vein after oral 

administration as compared to the systemic circulation that delivers substrate to the BBB. At 

the high systemic concentrations of inhibitor required to modulate BBB P-gp, untoward 

effects of the inhibitor are more likely to be clinically significant than the magnitude of 

increase in CNS exposure to a co-administered P-gp substrate.  

     The anti-diarrheal agent loperamide is an example of how CNS-active P-gp substrates can 

be developed safely, and experience with this compound suggests that the incidence of 
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clinically-significant P-gp inhibition at the BBB, as well as genetic polymorphisms affecting 

P-gp expression or function at the BBB, are exceedingly rare. Loperamide is a very potent 

opioid agonist; however , due to its large CNS P-gp effect, there is at least a 30-fold safety 

window between anti-diarrheal and central opioid activity 27.  As detailed above, the large 

loperamide safety window cannot be easily overcome by clinical inhibition of BBB P-gp 

activity.  Since loperamide has been available over the counter for decades, loperamide CNS 

effects in the general population would have been documented and linked to P-gp inhibition 

and/or polymorphisms.  

      Proper understanding and interpretation of the relationship between the in vitro Ki, in 

vivo BBB P-gp inhibition, and the subsequent impact on CNS drug exposure is necessary for 

the proper design of clinical studies.  Using the kinetic concepts presented in this 

commentary, the extent of enhancement in CNS drug exposure by a P-gp inhibitor can be 

predicted prior to conducting clinical experimentation.  The key principle underlying the 

analysis of data and the use of mathematical relationships is that unbound systemic inhibitor 

concentration is the determinant of the extent of P-gp inhibition at the BBB.  Although total 

systemic inhibitor concentrations may exceed the in vitro Ki by many fold, if the unbound 

concentrations are not in adequate excess of the Ki, appreciable BBB P-gp inhibition will not 

be achieved.  Currently-available clinical P-gp inhibitors are not associated with adequate 

systemic unbound concentrations to cause appreciable increases in CNS exposure to drugs 

that are P-gp substrates. 
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Table 3.1. Relationship between P-gp inhibitor perfusate concentration and the degree of  

P-gp inhibition determined by in situ brain perfusion 

Inhibitor 
EC50 (µM) 

Inhibitor 
Concentration 

(µM) 

Probe    
Substrate 

Fold Change in 
Uptake Clearance 

P-gp 
Inhibition* Reference 

GF120918 
IC50 = 0.030 ± 0.009  

0.1 
0.4 
1 
4 

10.5 
 

quinidine 
quinidine 
quinidine 
quinidine 
quinidine 

3.1 
5.1 
11 
14 
11 

73% 
86% 
97% 

≥ 99% 
98% 

46 

      
GF120918 
IC50 not determined 
 

10 
10 
10 

AOA-DADLE 
CA-DADLE 

OMCA-DADLE 

61 
190 
120 

≥ 99% 
≥ 99% 
≥ 99% 

46 

      
PSC833 
IC50 ≤ 3  

3 
3 

vinblastine 
colchicine 

2.0 
2.5 

≥ 50% 
≥ 60% 

 

47 

      
quinidine 
IC50 = 10 ± 0.4 

4 
20 

100 

loperamide 
loperamide 
loperamide 

1.5 
2.8 
9.6 

31% 
64% 
90% 

48 

      
quinidine 
IC50 = 13.5 ± 0.6 

4 
20 

200 

verapamil 
verapamil 
verapamil 

1.1 
2.2 
5.1 

10% 
67% 

≥ 99% 

48 

      
rifampin 
EC50 = 170 ± 20 

500 
1000 

quinidine 
quinidine 

3.0 
3.7 

76% 
83% 

23 

      
rifampin 
IC50 = 21 ± 5 
 

50 
200 
500 

verapamil 
verapamil 
verapamil 

2.3 
3.4 
4.9 

69% 
86% 
97% 

23 

      
verapamil 
IC50 << 50 

50 
200 
1000 

quinidine 
quinidine 
quinidine 

5.9 
6.1 
4.3 

95% 
95% 
87% 

23 

*P-gp inhibition was calculated by equation 5. 
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Table 3.2. Preclinical inhibition of P-gp at the BBB 
Inhibitor 

MED  (mg/kg) 50

Total Dose 
(mg/kg) 

Probe 
Substrate 

Fold Change in 
CNS Exposure 

P-gp 
Inhibition* 

Reference 

amiodarone 25, IP vinblastine none 0% 49 
MED50 > 25, IP      
      

1, IV cyclosporin A 
MED  = 25, IV 50 4, IV 

12.5, IV 
25, IP 
25, IV 
25, IV 
50, IV 
50, IV 
50, PO 
50, IV 
175, IP 
200, IP 

nelfinavir 
nelfinavir 
nelfinavir 

nelfinavir 
[C ]verapamil 11

[C ]verapamil 11

[C ]verapamil 11

nelfinavir 
vinblastine 
vinblastine 

none 
1.3 
1.8 

none 

3.3 
5.3 
5.8 

1.5 ↓ 
2.7 

none 
none 

36% 
30% 
0% 
69% 
73% 
96% 

≥ 83% 

65% 
0% 
0% 

50 
50 

 
49 
50 
51 

 
52 
53 
50 
49 
49 

     
GF120918 
(Elacridar) 
MED  = 10, IV 50

10, IV 
10, IP 
50, PO 

100, PO 
100, PO 
100, IP 
200, PO 

1000, PO 
2000, PO 

DPDPE 
nelfinavir 

mefloquine 
paclitaxel 
paclitaxel 
DPDPE 

paclitaxel 
DPDPE 

amprenavir 
morphine 

1.6 

1.5 
3.1 
4.8 
2.0 

2.7 ↓ 
5.2 
3.0 

2.6 

44% 
≥ 99% 
≥ 33% 
78% 
91% 
71% 
na 

93% 
92% 

≥ 62% 

54 
55 
56 
53

53 
54 
54 

 

3.0% 

50

vinblastine 
3.0 

51

paclitaxel na 

 
5, IV 

100 

 

DPDPE 
5392% 
54

57 
 1000, PO 

6.7 
58 

    
indinavir 
MED  > 50, IV 50

50, IV 1.3 25% 50 

     
itraconazol 50, PO paclitaxel 5.8 ↓ na  
MED  > 50, PO 50     
     
ketoconazole 
MED  = 50, IV 50

nelfinavir 2.0 53% 50

    
LY-335979 
(zosuquidar) 

50

1, IV 
4, IV 

12.5, IV 

20, IV 
25, PO 
25, IV 
50, IV 
80, PO 

nelfinavir 
nelfinavir 
paclitaxel 
paclitaxel 

  
nelfinavir 

 
53

 
 

50, IV  

  
50 nelfinavir 1.4 

4.1 
11 
3.2 
1.3 
2.2 
14 
18 
3.2 

38% 
76% 
91% 

50 
50MED  = 4, IV  
59 20, IV 78% 
59 29% 

paclitaxel 63% 
nelfinavir 92% 
nelfinavir 94% 
paclitaxel 79% 

59 
50 
50 
59 

      
nelfinavir 50, IV nelfinavir none 0% 50 
MED50 > 50, IV      
*P-gp inhibition was calculated by equation 5 or 6. 
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Table 3.2. continued 
Inhibitor 

MED50 (mg/kg) 
Total Dose 

(mg/kg) 
Probe 

Substrate 
Fold Change in 
CNS Exposure 

P-gp 
Inhibition* 

Reference 

PSC833 
(valspodar) 
MED50 = 4, IV 

1, IV 
4, IV 

9.3, IV 
10, IV 
10, IV 
10, IV 
10, IV 
10, IV 
10, IV 

12.5, IV 
25, PO 
25, IV 
50, IV 
75, PO 

nelfinavir 
nelfinavir 

colchicines 
cyclosporin A 
cyclosporin A 

vincristine 
quinidine 

methadone 
methadone 
nelfinavir 
paclitaxel 
nelfinavir 
nelfinavir 
paclitaxel 

1.1 ↓ 
3.1 

> 3.8 
5.0 
5.0 
2.0 
16 
6.0 
4.0 
12 
2.2 
6.9 
4.8 
2.4 

na 
71% 

≥ 74% 
≥ 80% 
≥ 80% 
≥ 50% 
97% 

≥ 83% 
≥ 75% 
92% 
62% 
87% 
79% 
67% 

50 
50 
60 
61 
61 
61 
62 
18 
18 
50 
53 
50 
50 
53 

      
quinidine 
MED50 > 100, IP 

10, IP 
50, IP 
50, IV 
100, IP 

vinblastine 
vinblastine 
nelfinavir 
digoxin 

none 
none 
1.7 ↓ 
none 

0% 
0% 
na 
0% 

49 
49 
50 
63 

      
rifampin 
MED50 = 50, IP 
 
 
 
 
 

50, IP 
50, IP 
75, IP 
75, IP 

100, IP 
100, IP 
150, IP 
150, IP 

verapamil 
quinidine 
verapamil 
quinidine 
verapamil 
quinidine 
verapamil 
quinidine 

1.8 
none 
2.4 

none 
3.0 
1.5 
3.2 
1.8 

53% 
na 

72% 
na 

82% 
40% 
84% 
52% 

23 
23 
23 
23 
23 
23 
23 
23 

      
ritonavir 
MED50 > 1000, PO 
 

25, IV 
1000, PO 

nelfinavir 
amprenavir 

1.3 
2.4 ↓ 

25% 
na 

50 
57 

      
saquinavir 
MED50 > 50, IV 
 

50, IV nelfinavir none 0% 50 

      
trifluoperazine 
MED50 > 175, IP 
 

25, IP 
50, IP 

175, IP 

vinblastine 
vinblastine 
vinblastine 

none 
none 
none 

0% 
0% 
0% 

49 
49 
49 

      
verapamil 
MED50 = 100, IP 

12.5, IV 
25, IP 
50, IP 

100, IP 

nelfinavir 
vinblastine 
vinblastine 

DPDPE 

1.1 ↓ 
none 
none 
4.2 

na 
0% 
0% 
54% 

50 
49 
49 
54 

*P-gp inhibition was calculated by equation 5 or 6. 
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Table 3.3. In vitro potency and Cmax of P-gp inhibitors tested clinically 
Inhibitor Ki or IC50 

(µM) 
fu Cmax 

(µM) 
Total 

Cmax/Ki 
Unbound 
Cmax/Ki 

References 

cyclosporin A 0.2  0.10  3.2  16 1.6 14 16 64 
GF120918 (Elacridar) 0.011  < 0.001  0.77  70 < 0.07 65 66 67 
ketoconazole 0.15  0.01 6.6  44 0.44 65 68 16 
LY335979 (Zosuquidar) 0.001  0.0005*  1.3  130 0.66 65   69 
OC144-093 (ONT-093) 0.032  na 8.9 280 na 70  71 
PSC833 (Valspodar) 0.02 0.022  6.1 150 3.3 65 72 24 
quinidine 2.4  0.16  19  7.7 1.2 65 16 16 
quinine > 2.4  0.063  24  < 11 < 0.69 73 74 75 
rifampin 26†  0.20 50  1.9 0.38 23 16 16 
ritonavir 3.8  0.015  16  4.2 0.063 76 16 16 
R101933 (Laniquidar) ~0.085 < 0.02 6.3 ~74 < 1.5 77 78 
R-verapamil 2.6  0.064  5.1  2.0 0.13 79 80 81 
verapamil 0.55  0.11  0.88  1.6 0.18 65 80 16 
XR9576 (Tariquidar) 0.016  na > 0.31  > 19 na 82   83 
* Unpublished observation 
† unbound IC50 determined from in vivo mouse studies (mouse plasma fu = 0.12, unpublished observation) 
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Table 3.4. Clinical studies evaluating CNS activity of loperamide and altered P-gp function at the 
         blood brain barrier 

Study design Fold ∆ 
Systemic 
Exposure 

Altered CNS 
Activity 

Calculated 
P-gp Inhibition1 

Theoretical Increase 
in CNS Penetration2 

Theoretical CNS 
Equivalent Dose3 

Ref 

loperamide (2mg), PO 
Standard dose none No none none 2  

       
loperamide (16mg), PO 
MDR1 gene phenotyping none No none none 16 31 

       
loperamide (16 mg) , PO 
P-gp inhibition w/ 
ritonavir (600 mg), PO 

1.2 No 12% 1.1 21 30 

       
loperamide (16 mg) , PO 
P-gp inhibition w/ 
quinidine (600 mg), PO 

2.5 Yes 31% 1.4 58 29 

       
loperamide (24 mg) , PO 
MDR1 gene phenotyping 
P-gp inhibition w/ 
quinidine (800 mg), PO 

2.0 to 3.1 Yes/No 51% 2.0 93 to 150 32 

       
loperamide (60 mg) , PO 
Dose escalation none No none none 60 27 

1 P-gp inhibition calculated from inhibitor fu, observed Cmax, and Ki according equation 2.  
2 The theoretical increase in CNS penetration was calculated by equation 1.  
3 Calculated by multiplying the (dose of loperamide) x (∆ systemic exposure) x (theoretical increase in CNS penetration) 
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Table 3.5. Effect of P-gp inhibitor on central activity of suspected P-gp substrates 
Probe substrate Dose Fold ∆ Systemic Exposure Altered CNS Activity Ref 

morphine (0.15 mg/kg/hr ) 
IV infusion over 1 hr 

quinidine 
600 mg, PO not reported No 84 

     

morphine (30 mg/kg), PO quinidine 
600 mg, PO 1.9 minimal; no change in plasma 

concentration effect relationship 
84 

     
morphine (0.11 mg/kg/hr) 
IV infusion over 3 hr 

quinidine 
800 mg, PO none No 39 

     
fentanyl (30 µg/kg/hr) 
IV infusion over 0.083 hr 

quinidine 
600 mg, PO not determined minimal 85 

     

fentanyl (2.5 µg/kg), PO quinidine 
600 mg, PO 2.6 yes 85 

     
methadone (120 mg/kg/hr) 
IV infusion over 0.083 hr 

quinidine 
600 mg, PO not determined no 20 

     

methadone (10 mg/kg), PO quinidine 
600 mg, PO 

increased concentrations 
during absorptive phase 

minimal; no change in plasma 
concentration effect relationship 

20 

     
morphine (0.05 mg/kg/hr) 
IV infusion over 2hr 

PSC833 (1 mg/kg/hr) 
IV infusion over 2hr none No 86 
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CHAPTER 4 
 

USE OF PLASMA AND BRAIN UNBOUND FRACTIONS TO ASSESS THE 

EXTENT OF BRAIN DISTRIBUTION OF THIRTY-FOUR DRUGS:  

COMPARISON OF UNBOUND CONCENTRATION RATIOS TO IN VIVO  

P-GLYCOPROTEIN EFFLUX RATIOS 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This chapter has been submitted for publication in Drug Metabolism and Disposition and 
is presented in the style of that journal. 



 

Abstract 

The P-glycoprotein (P-gp)-deficient mouse model is used to assess the influence of P-gp-

mediated efflux on the central nervous system (CNS) distribution of drugs.  The steady-state 

unbound plasma-to-unbound brain concentration ratio ([plasma],u/[brain],u) is an alternative 

method for assessing CNS distribution of drugs independent of the mechanism(s) involved.  

The objective of this study was to compare the degree of CNS distributional impairment 

determined from the in vivo P-gp efflux ratio to that determined from the [plasma],u/[brain],u 

ratio.  CNS distribution of 34 drugs, including opioids, triptans, protease inhibitors, 

antihistamines, and other clinically-relevant drugs with either poor CNS distribution or 

blood-brain barrier (BBB) efflux, was studied.  Plasma and brain unbound fractions were 

determined by equilibrium dialysis.  Kp,brain and the P-gp efflux ratio were obtained from the 

literature or determined experimentally.  The P-gp efflux ratio and the [plasma],u/[brain],u 

ratio were in concurrence (<3-fold difference) for 21 of the 34 drugs.  However, the 

[plasma],u/[brain],u ratio exceeded the P-gp efflux ratio substantially (>4-fold) for 10 of the 

34 drugs, suggesting that other, non-P-gp-mediated mechanism(s) may limit the CNS 

distribution of these drugs.  The P-gp efflux ratio exceeded the [plasma],u/[brain],u ratio by 

more than 3-fold for 3 drugs, suggesting the presence of active uptake mechanism(s).  These 

observations indicate that when mechanisms other than P-gp affect CNS distribution (non-P-

gp-mediated efflux, poor passive permeability, cerebrospinal fluid (CSF) bulk flow, 

metabolism, or active uptake), the P-gp efflux ratio may under- or over-estimate CNS 

distributional impairment.  The [plasma],u/[brain],u ratio provides a simple mechanism-

independent alternative for assessing the CNS distribution of drugs. 
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Introduction 

     The efflux transporter P-glycoprotein (P-gp) attenuates the CNS distribution of many 

drugs, including opioids, triptans, protease inhibitors, and antihistamines.  One method used 

to assess the influence of P-gp on the CNS distribution of compounds is the P-gp-deficient 

mouse model.  The P-gp efflux ratio, calculated from the ratio of brain-to-plasma partition 

coefficient (Kp,brain) in P-gp-deficient (mdr1a-/-) mice to Kp,brain in P-gp-competent 

(mdr1a+/+) mice, reflects the degree to which P-gp-mediated efflux attenuates CNS 

distribution.  However, when other processes influence CNS distribution, the P-gp efflux 

ratio may be a poor indicator of the degree to which CNS distribution of a compound is 

impaired.   

     Kp,brain is the most widely used in vivo parameter for assessing the extent of CNS 

distribution.  A common assumption is that compounds with large Kp,brain values have more 

extensive CNS distribution than compounds with small Kp,brain values.  For example, a Kp,brain 

≥1 is often used as an arbitrary cutoff to classify compounds as having “good” CNS 

distribution, while a Kp,brain <<1 is used to classify compounds as having “poor” CNS 

distribution.  While this type of classification is common, it may be misleading.  It is 

recognized that tissue partition coefficients such as Kp,brain are influenced by the relative 

binding affinity of a substrate for proteins in plasma versus the proteins in the tissue in 

question (Gillette, 1971; Kurz et al., 1997).  For a compound that distributes solely by 

passive diffusion, at distribution equilibrium the unbound concentration in tissue will equal 

the unbound concentration in plasma, and the steady-state tissue partition coefficient is 

simply a function of the relative plasma and tissue unbound fractions (i.e., Kp,tissue = fu,plasma / 

fu,tissue).  When brain and plasma unbound fractions are similar, than a Kp,brain ~1 would be 
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consistent with unrestricted distribution solely by passive processes.  However, the Kp,brain 

value by itself provides little information without knowledge of brain and plasma unbound 

fractions.  A Kp,brain value <1 could be the result of more extensive binding to plasma proteins 

than to proteins in brain tissue.  Alternatively, a Kp,brain value <1 it could reflect significant 

impairment in CNS distribution due to processes such as efflux transport at the blood-brain 

barrier (BBB). 

     Several recent literature reports have utilized the fu,plasma/fu,brain ratio to predict Kp,brain and 

to assess the CNS distribution of compounds.  In one published account, the utility of the 

fu,plasma/fu,brain ratio to predict the Kp,brain of CNS discovery compounds was assessed (Kalvass 

and Maurer, 2002).  As expected, the fu,plasma/fu,brain ratio predicted the Kp,brain for compounds 

that did not evidence active efflux at the BBB, and over-predicted Kp,brain when active efflux 

at the BBB limited brain uptake.  The degree to which the fu,plasma/fu,brain ratio over-predicted 

Kp,brain was identical to the P-gp efflux ratio for the single member of the  compound set for 

which the P-gp efflux ratio had been determined.  Another study used the fu,plasma/fu,brain ratio 

to predict Kp,brain and to assess the CNS distribution of 33 marketed CNS drugs (Maurer et 

al., 2004).  The fu,plasma/fu,brain ratio predicted the Kp,brain value for the majority of CNS drugs 

(25 of 33), indicating that most CNS drugs do not have impaired CNS distribution.  In those 

cases for which the fu,plasma/fu,brain ratio did not predict Kp,brain, the discrepancy could be 

explained by active efflux or poor BBB permeability.  More recently, for compounds subject 

to active efflux, the fu,plasma/fu,brain ratio combined with in vitro efflux data was shown to 

provide superior estimates of Kp,brain as compared to the fu,plasma/fu,brain ratio alone 

(Summerfield et al., 2005). 
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     When CNS distribution is impaired, the fu,plasma/fu,brain ratio over-predicts Kp,brain.  The 

magnitude of the over-prediction is reflective of the degree to which unbound plasma 

concentrations exceed unbound brain concentrations (eq. 1).   
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As shown in equation 1, the fu,plasma/fu,brain ratio and Kp,brain can be used to calculate the 

unbound plasma-to-unbound brain concentration ratio [plasma],u/[brain],u.  The 

[plasma],u/[brain],u ratio  represents the degree to which unbound plasma concentrations 

exceed unbound brain concentrations and is meaningful expression of the degree of 

impairment in CNS distribution.  A [plasma],u/[brain],u ratio of unity for a given compound, 

is indicative of unimpaired CNS distribution (i.e., distribution consistent with passive 

diffusion; [plasma]u = [brain]u), while a [plasma],u/[brain],u ratio greater than unity indicates 

impairment in CNS distribution (i.e., efflux uptake or poor BBB permeability; [plasma]u  > 

[brain]u).  In contrast, a [plasma],u/[brain],u ratio values less than unity is consistent with 

enhanced CNS distribution (i.e., active uptake; [plasma]u  < [brain]u). 

     The [plasma],u/[brain],u ratio is expected to be equal to the in vivo P-gp efflux if P-gp-

mediated efflux is the only active process affecting brain disposition.  Using this principle, 

the present study was conducted to compare the degree of CNS distributional impairment 

expressed as the [plasma],u/[brain],u ratio to the P-gp efflux ratio for 34 marketed drugs.  

Opioids, triptans, protease inhibitors, and antihistamines (n = 24 total) were included in this 
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analysis because these classes of agents are known to include P-gp substrates, and the extent 

to which these compounds distribute into the CNS may have important implications 

regarding safety and efficacy.  In addition, 10 marketed drugs from various drug classes with 

either poor CNS distribution or BBB efflux also were included as part of the analysis. 

 

Material and Methods 

     Materials. Sufentanil was obtained from Abbott Laboratories (North Chicago, IL).  

Amprenavir, indinavir, nelfinavir, ritonavir, and saquinavir were obtained through the NIH 

AIDS Research and Reference Reagent Program, Division of AIDS, NIAID, NIH (Rockville, 

MD).  Olanzapine was obtained from Pfizer Global Material Management (Groton, CT).  

Eletriptan was extracted from 40-mg tablets obtained from the Roerig Division of Pfizer 

(New York, NY), and the raw extract was used as a stock solution.  Cetirizine, desloratadine, 

rizatriptan, and zolmitriptan were purchased from Sequoia Research (Oxford, UK).  

Alfentanil was obtained from Taylor Pharmaceuticals (Decatur, IL).  Naratriptan and 

sumatriptan were purchased from U.S.  Pharamcopoeia (Rockville, MD).  All other drugs 

were purchased from Sigma-Aldrich (St. Louis, MO).  Solvents and other reagents were 

obtained from common sources and were of reagent grade or better. 

     Drug Selection. Twenty-four marketed drugs from four main drug classes (7 opioids, 5 

triptans, 5 protease inhibitors, and 7 antihistamines) were chosen for this study because drugs 

within each class exhibit varying degrees of interaction with BBB P-gp and because the 

extent of CNS distribution is known to be important to the efficacy and/or toxicity of these 

drug classes.  In addtion, 10 marketed drugs from other drug classes with either poor CNS 
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distribution or BBB efflux also were chosen to assess the general utility of the approach with 

as diverse a dataset as possible. 

     Animals. Male CF-1 mdr1a(+/+) and mdr1a(-/-) mice (30-40 g; Charles River 

Laboratories, Inc., Wilmington, MA) were maintained on a 12-h light/dark cycle in a 

temperature- and humidity-controlled room with access to water and food ad libitum.  All 

procedures involving mice were approved by The Institutional Animal Care and Use 

Committee of the University of North Carolina and were conducted in accordance with 

“Principles of Laboratory Animal Care” (NIH Publication No. 85-23, revised in 1985). 

     Determination of Kp,brain from animal studies. Kp,brain values in mdr1a(-/-) and 

mdr1a(+/+) mice were obtained from the literature or, when published values were not 

available, were determined experimentally.  Separate pharmacokinetic studies were 

conducted in mdr1a(-/-) and mdr1a(+/+) mice to determine the Kp,brain values for alfentanil, 

fentanyl, loperamide, and methadone.  Briefly, mice received a subcutaneous dose of the 

opioid, and at designated time points (9 time points, n=4 animals per time point) mice were 

sacrificed and trunk blood and brain tissue were collected.  Plasma was harvested following 

centrifugation.  Brain and plasma samples were stored at -20°C until analysis by HPLC-

MS/MS (see below).  Kp,brain was determined from the ratio of brain to plasma AUC0-∞.  

Kp,brain values for cimetidine, meperidine, ranitidine, and sufentanil were determined under 

steady-state conditions in mdr1a(-/-) and mdr1a(+/+) mice.  Briefly, osmotic mini pumps 

(Alzet, Cupertino, CA) were implanted subcutaneously per the manufacture’s instructions.  

Mice were sacrificed and trunk blood and brain tissue collected (n=3) 24 hr later.  Plasma 

was harvested following centrifugation, and brain and plasma samples were stored at -20°C 

until analysis by HPLC-MS/MS (see below).  Kp,brain was calculated from the ratio of the 24-
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hr brain and plasma concentrations.  All other Kp,brain values were obtained from the 

literature. 

     Equilibrium dialysis experiments. Plasma and brain unbound fractions were determined 

in a 96-well equilibrium dialysis apparatus (HTDialysis, Gales Ferry, CT) using a previously 

reported method (Kalvass and Maurer, 2002).  Briefly, fresh CF-1 or FVB mouse plasma and 

brain tissue were obtained the day of the study.  Spectra-Por 2 membranes obtained from 

Spectrum Laboratories Inc.  (Rancho Dominguez, CA) were conditioned in HPLC-grade 

water for 15 min, followed by 30% ethanol for 15 min and 100 mM sodium phosphate buffer 

(pH 7.4) for 15 min.  Brain tissue was diluted 3-fold with 100 mM sodium phosphate buffer 

(pH 7.4) and homogenized with a sonic probe.  The drug of interest was added to plasma and 

brain homogenate to achieve a final concentration of 3 and 1 µM, respectively; 150-µl 

aliquots (n=6) were loaded into the 96-well equilibrium dialysis apparatus and dialyzed 

against and equal volume of 100 mM sodium phosphate (pH 7.4) buffer.  The 96-well 

equilibrium dialysis apparatus was incubated for 4.5 hr in a 155 rpm shaking water bath 

maintained at 37˚C.  Prior experience with the equilibrium dialysis apparatus indicated that 

equilibrium would be achieved by 4.5 hr (data not shown).  After 4.5 hr, 10 µl of matrix 

sample (plasma or brain homogenate) and 50 µl of buffer sample were removed from the 

apparatus and added directly to HPLC vials containing 100 µl of methanol containing an 

appropriate internal standard.  A 50-µl aliquot of control buffer was added to the brain 

homogenate and plasma samples, and either a 10-µl aliquot of control brain homogenate or 

control plasma was added to the buffer samples to yield identical sample composition 

between buffer and non-buffer samples.  The samples were vortex-mixed, centrifuged, and 

the supernatant was analyzed by HPLC-MS/MS.  Plasma unbound fraction was calculated 
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from the ratio of concentrations determined from the plasma and buffer samples.  Equation 2, 

a previously described approach to account for the effect of tissue dilution on unbound 

fraction (Kalvass and Maurer, 2002), was used to calculate the brain unbound fraction: 

D/1)1)((1/f
1/D  f Undiluted

measuredu,
u +−

=       (eq. 2) 

where D represents the fold dilution of brain tissue and fu,measured is the ratio of concentrations 

determined from the buffer and brain homogenate samples 

     HPLC-MS/MS Analysis of samples. All samples were quantified using either a PE-Sciex 

API-3000 (Turbo Ionspray source, 500˚C) or an API-4000 (Turbo V Ionspray source, 700˚C, 

PerkinElmerSciex Instruments, Boston, MA) quadruple mass spectrometer as summarized in 

Table 4.1.  Equilibrium dialysis samples were prepared as described in the equilibrium 

dialysis section.  Plasma and brain samples from animal experiments were prepared as 

follows.  Brain samples were homogenized in water (1:2 v/v) with a sonic probe.  An aliquot 

of homogenate or serum (2 to 25 µl) was transferred to a HPLC vial, and protein was 

precipitated with 4- to 125-volumes of methanol containing an appropriate internal standard.  

The sample was vortex-mixed, centrifuged, and the supernatant was analyzed by HPLC-

MS/MS.  Samples were injected (2-10 µl; CTC Analytics autosampler, Zwingen, 

Switzerland) onto either a Phenomenex 2.0 × 30 mm, 5 µm Gemini 110A or a Phenomenex 

2.0 ä 30 mm, 4 µm Synergi Max-RP column (Phenomenex, Torrance, CA) maintained at 

room temperature.  The total run time was 3 min.  Analytes were eluted with a linear gradient 

consisting of ammonium acetate (pH 6.8; 10 mM) [“A”], methanol [“B”] and acetonitrile 

[“C”] produced by three Shimadzu LC-10ADVP binary pumps.  An initial condition (80-

95% “A”) was ramped to an intermediate condition (5-25% “A”) over 2 min, held for 0.5 

min at the intermediate condition, and then returned initial conditions in a single step to re-
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equilibrate the column (Table 4.1).  During the run, the flow rate was increased from 750 to 

1500 µl/min over the first 2 min, held at 1500 µl/min for 1 min, and then returned to the 

initial flow rate of 750 µl/min in a single step.  For samples run on the API3000, the flow rate 

was increased from 500 to750 µl/min over the first 2 min, held at 750 µl/min for 1 min, and 

then returned to the initial flow rate of 500 µl/min in a single step.  The entire column 

effluent was diverted from the source of the quadrupole mass spectrometer for the first 0.8 

min and final 0.5 min of the run.  Standards were prepared with either plasma or brain 

homogenate and were identical in final composition to corresponding samples. 

     Data analysis. The in vivo P-gp efflux ratio for each drug was calculated as the ratio of 

mdr1a(-/-) and mdr1a(+/+) Kp,brain values.  The steady-state [plasma],u/[brain],u ratio was 

calculated for each drug according to equation 3, where Kp,brain is the value from P-gp 

competent mice.   
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The P-gp efflux ratio and [plasma],u/[brain],u ratio were used to assess the distributional 

behavior of each drug based on the graphical scheme in Figure 4.1.  The horizontal and 

vertical lines represent the point at which the P-gp efflux ratio and the [plasma],u/[brain],u 

ratio equal 3, respectively, as a ¥ 3-fold impairment in CNS distribution was considered 

meaningful.  The figure was divided into four quadrants (I-IV) based on whether the P-gp 

efflux or [plasma],u/[brain],u ratio values were greater than or less than 3.  The solid line 

passing through the origin represents the line of identity ± 3-fold (dashed lines).  Drugs were 

assessed as follows: quadrant I- impaired CNS distribution due to P-gp-mediated efflux; 

subsections Ia and Ib- impaired CNS distribution due to P-gp with other active process(es) 

present; quadrant II- impaired CNS distribution due to non-P-gp mechanism; quadrant III- no 
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impairment in CNS distribution; quadrant IV- P-gp substrate, but CNS distribution is not 

impaired due to the presence of a compensatory mechanism.  The CNS distribution behavior 

of the protease inhibitors, opioids, antihistamines, and triptans were evaluated separately. 

 

Results 

     The Kp,brain, fu,plasma, and fu,brain values for all drugs included in this study are reported in 

Table 4.2. The Kp,brain and fu,brain values varied by more than 4 orders of magnitude, whereas 

the fu,plasma values varied by more than 3 orders of magnitude, among the drugs studied.  

Vinblastine was unstable in mouse plasma, so the fu,plasma value was reported as equal to or 

greater than the fu,plasma value determined from the buffer concentrations, assuming complete 

mass balance. 

     The P-gp efflux ratio and the [plasma],u/[brain],u ratio were compared within each drug 

class (opioid, antihistamine, triptan, and protease inhibitor; Figure 4.2 A, B, C, and D, 

respectively).  The P-gp efflux ratio and the [plasma],u/[brain],u ratio for all 34 drugs 

examined in this study are compared in Figure 4.3. 

     The P-gp efflux ratios varied between ~1 and 50 for the examined drugs; 18 of the 34 

drugs had a P-gp efflux ratio exceeding 3.  The [plasma],u/[brain],u ratio varied between ~1 

and >1000, with 23 of the 34 drugs having a [plasma],u/[brain],u ratio greater than 3.  The P-

gp efflux ratio and the [plasma],u/[brain],u ratio were in concurrence (<3-fold difference) for 

21 of the 34 drugs (quadrants I and III).  However, the [plasma],u/[brain],u ratio exceeded the 

P-gp efflux ratio substantially (>4-fold) for cetirizine, cimetidine, dexamethasone, digoxin, 

doxorubicin, fexofenadine, ivermectin, ranitidine, sumatriptan and zolmitriptan (quadrants Ib 
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and II).  The P-gp efflux ratio was more than 3-fold higher than the [plasma],u/[brain],u ratio 

for methadone, ritonavir, and saquinavir (quadrant IV). 

 

Discussion 

     The P-gp efflux ratio and the [plasma],u/[brain],u ratio were in concurrence (<3-fold 

difference) for 21 of the 34 drugs studied.  This concurrence indicates, that for most of the 

drugs examined, there was little difference between the P-gp efflux ratio and the 

[plasma],u/[brain],u ratio, and that any impairment in CNS disposition would be consistent 

with P-gp-mediated efflux.  The [plasma],u/[brain],u ratio exceeded the P-gp efflux ratio 

substantially (>4-fold) for 10 of the 34 drugs studied (cetirizine, cimetidine, dexamethasone, 

digoxin, doxorubicin, fexofenadine, ivermectin, ranitidine, sumatriptan, and zolmitriptan), 

suggesting that other non-P-gp-mediated mechanism(s) may limit the CNS distribution of 

these drugs.  The P-gp efflux ratio exceeded the [plasma],u/[brain],u ratio by more than 3-fold 

for three of the drugs examined (methadone, ritonavir, and saquinavir), suggesting the 

presence of active uptake mechanism(s).  The results for the opioids, triptans, protease 

inhibitors, and antihistamines are discussed separately in the following paragraphs. 

     Opioids. Consistent with their clinical use as analgesics, there was minimal impairment in 

CNS distribution (<3-fold as assessed by both the P-gp efflux ratio and the 

[plasma],u/[brain],u ratio) for, sufentanil, fentanyl, morphine, and meperidine.  Alfentanil 

evidenced modest impairment (~3-fold), consistent with P-gp-mediated efflux.  Both 

methadone and loperamide were significant P-gp substrates (P-gp efflux ratios of 7 and 33, 

respectively).  However, only loperamide had substantial impairment in CNS distribution as 

assessed by the [plasma],u/[brain],u ratio.   
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     The discrepancy between the P-gp efflux ratio and the [plasma],u/[brain],u ratio for 

methadone may indicate the presence of one or more compensatory mechanism(s) (e.g., 

active uptake) that may have negated the impact of P-gp-mediated efflux.  Methadone is a 

substrate for active uptake in the lung (Chi and Dixit, 1977), so it is plausible methadone also 

may undergo active uptake across the BBB.  The [plasma],u/[brain],u ratio predicted that 

loperamide alone would have substantially reduced central activity, whereas the P-gp efflux 

ratio predicted that both loperamide and methadone would evidence substantially reduced 

central activity.  Clinically, only loperamide is associated with reduced central activity, so the 

[plasma],u/[brain],u ratio was better able to differentiate between opioids with and without 

reduced central activity than the P-gp efflux ratio. 

     Triptans. The [plasma],u/[brain],u ratio indicated that all triptans examined have impaired 

CNS distribution.  However, only rizatriptan and eletriptan showed significant impairment 

due to P-gp (>3-fold).  Non-P-gp-mediated mechanism(s) may be responsible for impaired 

CNS distribution of sumatriptan and zolmitriptan (quadrant II).  One non-P-gp-mediated 

mechanism that may impair the CNS distribution of sumatriptan and zolmitriptan is CSF 

bulk flow.  When passive permeability and brain uptake clearance are very low, CSF bulk 

flow may represent a significant clearing mechanism from the CNS, ultimately resulting in 

reduced CNS exposure (Shen et al., 2004).  Because sumatriptan and zolmitriptan both have 

very low passive permeability [less than the paracellular marker mannitol; (Mahar Doan et 

al., 2002)], it is plausible that CSF bulk flow may limit sumatriptan and zolmitriptan CNS 

distribution. 

     If triptans possess a degree of CNS distributional impairment in humans similar to that 

indicated by the [plasma],u/[brain],u ratio, the impaired distribution may have important 
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implications regarding mechanism of action and CNS side-effect profile of triptans.  There is 

debate as to whether the anti-migraine action of triptans is solely through vascular-mediated 

events, or whether antinociceptive activity within the brain stem trigeminal nuclei is partially 

responsible (Dodick and Martin, 2004).  In addition, the incidence of CNS side-effects varies 

between the different triptans.  By understanding the inter-relationships between in vivo 

efficacy, incidence of CNS side-effects, and the extent of CNS distribution, the optimal CNS 

distributional characteristics of triptans may be deduced. 

     Protease Inhibitors. All of the protease inhibitors examined undergo significant P-gp 

efflux (P-gp efflux ratio ≥ 7, quadrant I and IV).  However, the [plasma],u/[brain],u ratio 

indicated that ritonavir and saquinavir, despite being P-gp substrates, do not have impaired 

CNS distribution (< 3-fold).  This observation may be explained if a compensatory 

mechanism (i.e., active uptake) negates the impact of P-gp-mediated efflux.  This explanation 

is supported by reports demonstrating that both ritonavir and saquinavir are substrates for 

uptake transporters (Anthonypillai et al., 2004; Su et al., 2004).   

     Even though it has been thought that ritonavir and saquinavir have poor CNS distribution 

because of significant P-gp-mediated efflux (in vivo P-gp efflux ratio > 5) and low Kp,brain 

(0.17 and 0.13, respectively), this may not necessarily be the case.  The [plasma],u/[brain],u 

ratio indicates that steady-state unbound concentrations in plasma and brain are 

approximately equal for these agents.  Compensatory uptake mechanism(s) may overcome 

the efflux by P-gp, and the low Kp,brain values therefore would simply be a function of more 

extensive protein binding in plasma than in brain.  The binding of ritonavir and saquinavir to 

plasma proteins is higher than that in the brain.  Therefore, based on fu,plasma and fu,brain, the 

Kp,brain is expected to be 0.25 and 0.22, respectively, and the [plasma],u/[brain],u ratio 
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indicates the BBB has no net effect on the CNS distribution of ritonavir and saquinavir.  

These observations suggest that compounds that evidence P-gp-mediated efflux together with 

low Kp,brain (Kp,brain << 1) may not have impaired CNS distribution  if active uptake counters 

the effects of P-gp efflux and if the low Kp,brain can be explained by binding in plasma that 

exceeds binding in brain.  Overall, ritonavir and saquinavir may have better CNS 

distribution, and thus may be more effective in combating HIV viral infection in the CNS, 

than previously thought.   

     Antihistamines. Consistent with their central activity, the sedating antihistamines 

triprolidine, diphenhydramine, and hydroxyzine had minimal impairment in CNS distribution 

(quadrant III).  The non-sedating histamines desloratadine and cetirizine fell within quadrants 

I and Ib, respectively, indicating substantial impairment in CNS distribution due to P-gp-

mediated efflux.  However, the P-gp efflux ratio did not indicate impairment in CNS 

distribution of the non-sedating antihistamine fexofenadine, whereas the [plasma],u/[brain],u 

ratio suggested significant impairment (quadrant II).  Non-P-gp-mediated mechanism(s) may 

contribute to the impairment in CNS distribution of cetirizine and fexofenadine (quadrants Ib 

and II).  Assuming that loratadine is a pro-drug of desloratadine, only the [plasma],u/[brain],u 

ratio correctly distinguished between the sedating and non-sedating antihistamines. 

     Other drugs with poor CNS distribution or BBB efflux. Other marketed drugs with poor 

CNS distribution or BBB efflux were examined along with the opioids, triptans, protease 

inhibitors, and antihistamines (Figure 4.3).  As expected, P-gp substrates such as quinidine, 

verapamil, and paclitaxel fell within quadrant I (consistent with P-gp being the only efflux 

mechanism), while efflux substrates for transporters other than P-gp such as ranitidine, 

digoxin, and doxorubicin fell within quadrants Ib and II (Figure 4.3 and Table 4.3). 
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     Discrepancy between P-gp efflux ratio and the [plasma],u/[brain],u ratio. The P-gp efflux 

ratio and the [plasma],u/[brain],u ratio differed by more than 3-fold for 13 of the 34 drugs 

examined.  In most cases, the difference can be explained by the physiochemical properties, 

and/or transport characteristics of the individual drugs (Table 4.3).  Ten of the 13 drugs for 

which discrepancy was noted were located in either quadrant Ib or II, indicating more 

extensive impairment in CNS distribution than predicted by the P-gp efflux ratio.  For these 

10 drugs, six drugs (digoxin, doxorubicin, ivermectin, cimetidine, dexamethasone, and 

ranitidine) are known to be substrates for efflux transporters other than P-gp (Table 4.3), two 

(sumatriptan and zolmitriptan) have very low permeability values (less than mannitol), and 

two (cetirizine and fexofenadine) have reduced central activity relative to other drugs in the 

same class.  The remaining three of the 13 drugs (methadone, ritonavir, and saquinavir) for 

which the P-gp efflux ratio and the [plasma],u/[brain],u ratio differed by more than 3-fold 

were classified in quadrant IV, indicating less impairment in CNS distribution than indicated 

by the P-gp efflux ratio.  One possible explanation for such drugs is the presence of a 

compensatory active uptake mechanism.  Consistent with this explanation, all three of these 

drugs are substrates of active uptake (Table 4.3).  Although not the intent of this work, 

additional detailed studies on individual drugs would be useful to confirm whether the 

discrepancy between the P-gp efflux ratio and the [plasma],u/[brain],u ratio are real and are 

not experimental artifacts.  For future studies examining the influence of non-P-gp-mediated 

mechanisms on CNS distribution, the 13 drugs identified as having discrepancies between 

the P-gp efflux ratio and the [plasma],u/[brain],u ratio would be logical choices. 

     Accurate determination of steady-state Kp,brain is necessary for accurate determination of 

the P-gp efflux ratio and the [plasma],u/[brain],u ratio.  In addition, accurate experimental 
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determination of fu,plasma and fu,brain is required for accurate assessment of the 

[plasma],u/[brain],u ratio.  Any error in determining Kp,brain, fu,plasma, or fu,brain may lead to 

artificial discrepancies between the P-gp efflux ratio and the [plasma],u/[brain],u ratio.  Any 

time Kp,brain is not accurately determined, the P -gp efflux ratio and the [plasma],u/[brain],u 

ratio may lead to incorrect conclusions regarding the CNS distribution. 

     In summary the P-gp efflux ratio and [plasma],u/[brain],u ratio were similar for most of the 

drugs examined, indicating P-gp-mediated efflux is the predominate mechanism limiting the 

CNS distribution of drugs in the selected compound set.  The [plasma],u/[brain],u ratio 

differentiated between sedating and non-sedating antihistamines and between opioids with 

and without reduced central activity, whereas the P-gp efflux ratio did not.  Furthermore, 

when there were differences between the P-gp efflux ratio and the [plasma],u/[brain],u ratio, 

additional supporting evidence was consistent with the [plasma],u/[brain],u ratio.  When 

mechanisms other than P-gp affect CNS distribution (non-P-gp-mediated efflux, poor passive 

permeability, CSF bulk flow, metabolism, or active uptake), the P-gp efflux ratio may under- 

or over-estimate CNS distributional impairment.  The [plasma],u/[brain],u ratio provides a 

simple alternative means for assessing the CNS distribution of drugs independent of the 

mechanism(s) involved. 
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Table 4.1. Conditions used for HPLC-MS/MS analysis for each drug.  Column consisted of either a Phenomenex 2.0 × 30 mm, 5 µm 
Gemini 110A (column 1) or a Phenomenex 2.0 × 30 mm, 4 µm Synergi Max-RP column (column 2).  Mobile phase A, B, C consisted 
of ammonium acetate (pH 6.8; 10 mM), methanol and acetonitrile, respectively.  HPLC gradients with the initial and intermediate 
gradient conditions also well as the flow rates listed below were conducted as described in the material and methods section.  Drugs 
listed with a flow rate of 750 to 1500 were run on PE-Sciex API4000.  All other drugs were run on PE-Sciex API3000. 

Drug MS 
Polarity 

MRM 
Transition Column Initial 

Condition 
Intermediate 

Condition 
Flow Rate 
(µl/min)  Internal Standard 

Alfentanil + 417.3 / 268.3 1 95% A : 5% B; 30 sec 10% A : 90%B 750 to 1500 Loperamide 
Amprenavir + 506.4 / 245.4 2 80% A : 20% B 5% A : 95% B 750 to 1500 Ritonavir 
Cetirizine + 389.1 / 201.1 2 95% A : 5% B 5% A : 95% B 750 to 1500 Fexofenadine 
Cimetidine + 253.1 / 159.3 1 95% A : 5% B; 30 sec 10% A : 90%B 750 to 1500 Fexofenadine 
Desloratadine + 311.0 / 259.3 2 95% A : 5% B 5% A : 95% B 750 to 1500 Fexofenadine 
Dexamethasone - 391.2 / 307.3 2 90% A : 5% B : 5% C 5% A : 47.5% B : 47.5% C 500 to 750 Doxorubicin 
Digoxin - 779.5 / 649.5 2 85% A : 15% B 5% A : 95% B 500 to 750 Ivermectin 
Diphenhydramine + 256.1 / 167.3 2 95% A : 5% B 5% A : 95% B 750 to 1500 Fexofenadine 
Doxorubicin - 542.2 / 395.5 2 90% A : 5% B : 5% C 5% A : 47.5% B : 47.5% C 500 to 750 Dexamethasone 
Eletriptan + 383.3 / 84.6 1 95% A : 5% B; 30 sec 10% A : 90%B 750 to 1500 Rizatriptan 
Fentanyl + 337.2 / 188.2 2 80% A : 20% B 5% A : 95% B 750 to 1500 Loperamide 
Fexofenadine + 502.3 / 466.4 2 80% A : 20% B 5% A : 95% B 750 to 1500 Loperamide 
Hydroxyzine + 375.1 / 201.1 2 95% A : 5% B 5% A : 95% B 750 to 1500 Fexofenadine 
Indinavir + 614.5 / 421.5 2 80% A : 20% B 5% A : 95% B 750 to 1500 Ritonavir 
Ivermectin - 873.6 / 229.3 2 85% A : 15% B 5% A : 95% B 500 to 750 Digoxin 
Loperamide + 477.4 / 266.0 2 95% A : 5% B 5% A : 95% B 750 to 1500 Methadone 
Loratadine + 383.0 / 337.1 2 95% A : 5% B 5% A : 95% B 750 to 1500 Fexofenadine 
Meperidine + 248.3 / 220.3 1 95% A : 5% B 5% A : 95% B 750 to 1500 Loperamide 
Methadone + 310.3 / 265.1 2 80% A : 20% B 5% A : 95% B 750 to 1500 loperamide 
Morphine + 286.1 / 201.1 1 95% A : 5% B; 30 sec 20% A : 80% B 750 to 1500 Oxycodone (316.0 / 298.0) 
Naratriptan + 336.1 / 98.4 1 95% A : 5% B; 30 sec 10% A : 90%B 750 to 1500 Zolmitriptan 
Nelfinavir + 568.3 / 330.4 2 80% A : 20% B 5% A : 95% B 750 to 1500 Saquinavir 
Paclitaxel - 852.3 / 525.3 1 95% A : 5% B 5% A : 95% B 750 to 1500 Fexofenadine 
Quinidine + 325.2 / 307.3 2 85% A : 15% B 5% A : 95% B 500 to 750 Olanzapine (325.2 / 307.3) 
Ranitidine + 315.1 / 176.2 1 95% A : 5% B; 30 sec 10% A : 90%B 750 to 1500 Fexofenadine 
Ritonavir + 721.5 / 296.4 2 80% A : 20% B 5% A : 95% B 750 to 1500 Saquinavir 
Rizatriptan + 270.3 / 158.3 1 95% A : 5% B; 30 sec 10% A : 90%B 750 to 1500 Zolmitriptan 
Saquinavir + 671.5 / 570.5 2 80% A : 20% B 5% A : 95% B 750 to 1500 Ritonavir 
Sufentanil + 387.2 / 238.4 1 95% A : 5% B 5% A : 95% B 750 to 1500 Loperamide 
Sumatriptan + 296.1 / 58.5 1 95% A : 5% B; 30 sec 10% A : 90%B 750 to 1500 Zolmitriptan 
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Table 4.1. continued 

Drug MS 
Polarity 

MRM 
Transition Column Initial 

Condition 
Intermediate 

Condition 
Flow Rate 
(µl/min)  Internal Standard 

 
Triprolidine + 279.1 / 208.3 2 95% A : 5% B 5% A : 95% B 750 to 1500 Fexofenadine 
Verapamil + 455.4 / 164.9 2 90% A : 5% B : 5% C 5% A : 47.5% B : 47.5% C 500 to 750 Vinblastine 
Vinblastine + 811.6 / 224.1 2 90% A : 5% B : 5% C 5% A : 47.5% B : 47.5% C 500 to 750 Verapamil 
Zolmitriptan + 288.3 / 58.5 1 95% A : 5% B; 30 sec 10% A : 90%B 750 to 1500 Rizatriptan 
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Table 4.2. Unbound fractions and Kp,brain values for 34 drugs.  Kp,brain values were determined experimental or obtained from the cited 
reference.  Free fractions are reported as mean ± SD (n=6, unless otherwise indicated by a n=4, b n=5, c n= 16, or d n=18). 

  f  f  K  KDrug fu,plasma u,brain u,plasma/fu,brain p,brain
-/-

p,brain
+/+ P-gp efflux ratio Reference for Kp,brain   

Alfentanil (Al) 0.26 ± 0.04 0.32 ± 0.11 0.81 ± 0.12 0.53 0.19 2.8   

Amprenavir (A) 0.075 ± 0.008 0.091 ± .005 0.82 ± 0.04 1.0 0.072 14 (Polli et al., 1999)  

Cetirizine (C) 0.160 ± 0.009 0.072 ± 0.007 2.20 ± 0.10 0.080 0.020 4 (Chen et al., 2003)  

Cimetidine (Ci) 0.81 ± 0.07 0.53 ± 0.10 1.53 ± 0.12 0.031 0.033 0.94   

Desloratadine (Dl) 0.055 ± 0.002 0.0071 ± 0.0008 7.7 ± 0.4 14 <1.0 >14 (Chen et al., 2003)  

Dexamethasone (Dex) 0.272 ± 0.014 0.098 ± 0.010b 2.77 ± 0.14 0.70 0.30 2.3 (Schinkel et al., 1995b)  

Digoxin (Dg) 0.33 ± 0.02 0.0156 ± 0.0011 21.2 ± 0.8 1.5 0.08 19 (Schinkel et al., 1995b)  

Diphenhydramine (D) 0.33 ± 0.02 0.058 ± 0.003 5,7 ± 0.2 0.70 9.0 1 (Chen et al., 2003)  

Doxorubicin (Dox) 0.22 ± 0.03 0.0014 ± 0.0005 160 ± 20 0.0025 0.00077 3.2 (Kusuhara and Sugiyama, 2001)  

Eletriptan (Ele) 0.28 ± 0.03 0.055 ± 0.004 5.1 ± 0.3 14 0.30 47 (Evans et al., 2003)  

Fentanyl (F) 0.17 ± 0.04 0.07 ± 0.005 2.4 ± 0.2 4.5 2.4 1.7   

Fexofenadine (Fex) 0.35 ± 0.03 0.077 ± 0.014 4.5 ± 0.4 0.30 0.17 1.8 (Cvetkovic et al., 1999)  

Hydroxyzine (H) 0.062 ± 0.008 0.014 ± 0.002 4.4 ± 0.3 4.8 3.8 1.3 (Chen et al., 2003)  

Indinavir (I) 0.058 ± 0.007 0.100 ± 0.008 0.58 ± 0.03 0.81 0.084 9.6 (Kim et al., 1998)  

Ivermectin (Iv) 0.024 ± 0.008b 0.00009 ± 0.00007a 270 ± 110 2.5 0.094 27 (Schinkel et al., 1995a)  

Loperamide (Lop) 0.023 ± 0.005d 0.0046 ± 0.0005c 5.0 ± 0.3 5.7 0.096 33   

Loratadine (L) 0.0045 ± 0.00017 0.00178 ± 0.00015 2.5 ± 0.1 3.3 1.6 2.1 (Chen et al., 2003)  

Meperidine (Me) 0.38 ± 0.03 0.13 ± 0.019 2.9 ± 0.2 7.0 6.8 1.1   

Methadone (M) 0.147 ± 0.007 0.029 ± 0.002 5.07 ± 0.17 20 4.0 7   

Morphine (Mor) 0.50 ± 0.04 0.41 ± 0.11 1.22 ± 0.14 0.72 0.49 1.5 (Schinkel et al., 1995b)  

Naratriptan (N) 0.58 ± 0.03 0.23 ± 0.02 2.52 ± 0.10 1.1 0.42 2.6 (Evans et al., 2003)  

Nelfinavir (Nel) 0.0010 ± 0.0004 0.00053 ± 0.00004 1.9 ± 0.3 2.6 0.086 30 (Kim et al., 1998)  

Paclitaxel (Pax) 0.021 ± 0.002 0.0028 ± 0.0004 8.0 ± 0.5 4.0 0.50 8 (Kemper et al., 2004)  

Quinidine (Q) 0.16 ± 0.03 0.037 ± 0.003 4.3 ± 0.4 4.8 0.20 24 (Kusuhara et al., 1997) 
 

 

Ranitidine (Ra) 0.96 ± 0.05 0.96 ± 0.13 1.00 ± 0.06 0.039   0.022 1.8  

Ritonavir (Rit) 0.0027 ± 0.0005 0.0106 ± 0.0016 0.25 ± 0.02 2.3 0.17 14 (Yamazaki et al., 2001)  

Rizatriptan (Riz) 0.62 ± 0.02 0.348 ± 0.014 1.78 ± 0.04 0.85 0.20 4.3 (Evans et al., 2003)  

Saquinavir (Sq) 0.00043 ± 0.00007 0.00190 ± 0.00016 0.226 ± 0.017 0.88 0.13 6.8 (Kim et al., 1998)  

Sufentanil (Su) 0.054 ± 0.014 0.034 ± 0.010 1.6 ± 0.3 4.8 1.6 3   

Sumatriptan (Sum) 0.63 ± 0.03 0.36 ± 0.03 1.75 ± 0.07 0.22 0.13 1.7 (Evans et al., 2003)  

Triprolidine (T) 0.31 ± 0.02 0.092 ± 0.002 3.37 ± 0.09 3.6 5.9 0.61 (Chen et al., 2003)  

Verapamil (V) 0.11 ± 0.03 0.033 ± 0.02 3.3 ± 0.9 3.3 0.43 7.7 (Hendrikse et al., 1998)  

Vinblastine (Vi) ≥ 0.09 0.0046 ± 0.0004 ≥ 20 19 1.7 11 (Schinkel et al., 1994)  

Zolmitriptan (Z) 0.98 ± 0.11b 0.54 ± 0.08 1.81 ± 0.14 0.085 0.038 2.2 (Evans et al., 2003)  
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Table 4.3. Classification of drugs based on discrepancies between in vivo P-gp efflux ratio 

and [plasma],u/[brain],u ratio.  The classification for each drug was assigned according to the 

scheme in figure 4.1.  Additional evidence from the literature is provided to support of 

classification of each drug.   

 
Class Ib 

P-gp efflux + additional mechanism 
Class II 

Weak or no P-gp efflux + additional 
impairment 

Class IV 
P-gp efflux – compensatory mechanism(s) 

Drug Additional 
Evidence Drug Additional 

Evidence Drug Additional Evidence 

 
Cetirizine (C) 
 

very low 
permeability 
(Mahar Doan et 
al., 2002) 
 

 
Cimetidine (Ci) 
 

 
Non-Pgp efflux 
transporter(s) 
(www.tp-
search.jp) 
 

 
Methadone (M) 
 

active uptake 
(Chi and Dixit, 
1977) 

 
Digoxin (Dg) 
 

 
additional efflux 
transporter(s) 
(www.tp-
search.jp) 
 

 
Dexamethasone 
(Dex) 
 

steroid transporter 
(Pariante et al., 
2001) 
 

 
Ritonavir (Rit) 
 

active uptake 
(Anthonypillai et 
al., 2004) 

 
Doxorubicin 
(Dox) 
 

additional efflux 
transporter(s) 
(www.tp-
search.jp) 

 
Fexofenadine 
(Fex) 
 

reduced CNS 
activity 
(Hindmarch et al., 
2002) 

 
Saquinavir (Sq) 
 

 
active uptake 
(Su et al., 2004) 
 
 

 
Ivermectin (Iv) 
 

 
additional efflux 
transporter(s) 
(Lespine et al., 
2005) 
 

Ranitidine (Ra) 

Non-Pgp efflux 
transporter(s) 
(Bourdet et al., 
2005) 

  

  

Sumatriptan (Sum) 

 
very low 
permeability 
(Mahar Doan et 
al., 2002) 
 

  

  

Zolmitriptan (Z) 

 
very low 
permeability 
(Mahar Doan et 
al., 2002) 
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Figure 4.1. The CNS distributional behavior of each drug based on the plot scheme above.  

The horizontal and vertical lines represent the point at which the P-gp efflux ratio and the 

[plasma],u/[brain],u ratio equal 3, respectively.  3-fold impairment in CNS distribution was 

considered meaningful.  The figure was divided in to four quadrants (I-IV) based on whether 

the P-gp efflux or ([plasma],u/[brain],u) ratio values were greater than or less than 3.  The 

solid line passing through the origin represents the line of unity ± 3-fold (dashed lines).  

Drugs were assessed as follows: (quadrant I) impaired CNS distribution due to P-gp-

mediated efflux, (subsections Ia and Ib) impaired CNS distribution due to P-gp with other 

active process(es) present; (quadrant II) impaired CNS distribution due to non-P-gp 

mechanism; (quadrant III) no impairment in CNS distribution; (quadrant IV) P-gp substrate, 

but CNS distribution is not impaired due to compensatory mechanism. 
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Figure 4.2. Comparison of the P-gp efflux ratio and the [plasma],u/[brain],u ratio of (A) 

opioids, (B) triptans, (C) protease inhibitors and (D) antihistamines.  The CNS distributional 

behavior of each drug was assessed according to the scheme in Figure 4.1.  Symbols for 

drugs are defined in Table 4.2. 
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Figure 4.3. Comparison of the P-gp efflux ratio and the [plasma],u/[brain],u ratio of all 34 

marketed drugs.  The CNS distributional behavior of each drug was assessed according to the 

scheme in Figure 4.1.  As expected, P-gp substrates such as quinidine, verapamil, and 

paclitaxel fell within quadrant I (consistent with P-gp being the only efflux mechanism), 

while drugs subject to transport by other transporters or with poor BBB permeability, such as 

ranitidine, digoxin, and doxorubicin fell within quadrants Ib, II, or IV.  Symbols for drugs are 

defined in Table 4.2. 
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CHAPTER 5 
 

USE OF LOPERAMIDE AS A PHENOTYPIC PROBE OF MDR1A STATUS  

IN CF-1 MICE 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This chapter has been published in Pharmaceutical Research and is presented in the style of 
that journal.  



  

INTRODUCTION 
P-glycoprotein (P-gp) is the prototypical multidrug resistance (MDR) transport protein.  

Originally identified based on an ability to impart drug resistance to cancer cells (1), P-gp is 

by far the most well-characterized of the blood-brain barrier (BBB) efflux transport systems 

(2).  P-gp is a 170-kDa energy-dependent plasma membrane efflux protein and a member of 

the ABC superfamily of transport systems (3, 4).  Experiments performed in mice that lack 

P-gp expression [e.g., mdr1a (-/-) animals] have suggested that the transporter is an important 

determinant of substrate delivery across the BBB.  Although mdr1a(-/-) mice do not display a 

decreased life span and are fertile, they do evidence a marked increase in brain uptake of 

numerous drugs and other xenobiotics, with a concomitant increase in centrally-mediated 

pharmacologic response (2), consistent with the absence of P-gp at the blood-brain interface.   

A subpopulation of the CF-1 mouse strain (approximately 25%) lacks P-gp 

expression. Consequently, increased brain penetration of many substrates is observed in these 

animals.  The genetic level of this mutation has been established, and studies have revealed 

that this inheritance follows a normal Mendelian autosomal pattern (5).  In addition, the 

mutant mice appear to be deficient in P-gp in those tissues that express predominantly the 

mdr1a isoform (i.e., brain and intestine), indicating that this deletion is restricted to the 

mdr1a gene only (6).  There are three genes that encode different isoforms of P-gp in mice: 

mdr1a (also known as mdr3), mdr1b (also known as mdr1), and mdr2 (7).  The multidrug 

resistant phenotype is associated with both mdr1a and mdr1b in mice, while mdr2 is 

necessary for bile production.   Mice lacking the mdr1a gene represent a valuable research 

platform with which to study the potential effects of P-gp on substrate disposition, especially 

with regards to the CNS.  However, while these animals offer the advantage of a lower cost 

than transgenic (knockout) animals, it is imperative that the investigator know which animals 
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are phenotypically P-gp-competent or P-gp-deficient. The two sub-strains of mice are 

virtually identical with regards to gross physiology; spontaneously mutated animals 

(misidentified as P-gp-competent when they are, in fact, P-gp-deficient) typically are 

excluded from post-experimental analysis as statistical outliers.  Therefore, development of 

an efficient method to phenotype mice for P-gp function would provide distinct advantages. 

In this paper we describe a simple approach for phenotyping mice for BBB P-gp function.  

This method is benign for P-gp-competent animals, and relatively innocuous even in P-gp-

deficient mice. 
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MATERIALS AND METHODS 

Chemicals:  Loperamide hydrochloride, (±)-methadone hydrochloride, ribonuclease A 

(RNase A) and proteinase K were obtained from Sigma-Aldrich (St. Louis, MO). All other 

chemicals and reagents were the highest grade available from commercial sources. 

Animals:  Adult CF-1 mice [mdr1a(+/+) and mdr1a(-/-), 25-30 g, 6-8 weeks of age] were 

purchased form Charles River Laboratories (Wilmington, MA) and maintained in a breeding 

colony in the School of Pharmacy, The University of North Carolina.  Male and female mice 

were housed separately (maximum of 4 per cage) in wire-mesh cages in a temperature- and 

humidity-controlled room with a 12-hr-dark/12-hr-light cycle, and had unrestricted access to 

food and water.  The experimental protocol was approved by the Institutional Animal Care 

and Use Committee of the University of North Carolina, and all procedures were conducted 

according to the “Principles of Laboratory Animal Care” (NIH publication #85-23, revised in 

1985). 

Behavioral and Dispositional Phenotyping:  Mice (n=18; with the experimenter blinded to 

purported phenotype) received a 2-mg/kg subcutaneous (s.c.) dose of loperamide prepared as 

a solution in 50% propylene glycol. At 0.25, 2, 4, and 24 hr post-dose, mice were observed 

for signs of opioid intoxication [i.e., Straub reaction (8)] and loperamide-induced 

antinociception was determined by the hotplate latency test as previously described (9). 

Briefly, latency was defined as the time interval between the placement on the hotplate 

(55ºC; Columbus Instruments, Columbus, OH) and the licking of the hind paws or jumping. 

To avoid tissue damage, a maximum test latency of 60 sec was used. Baseline latency was 

determined prior to administration of loperamide.  
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Following a 2-week wash-out period, mice received a second 2-mg/kg s.c. dose of 

loperamide, and signs of opioid intoxication and hotplate latencies were determined as after 

the first dose. The animals were decapitated, and trunk blood and brain tissue were collected 

following the 4-hr observation. Blood was allowed to clot at room temperature for least 30 

min before centrifuging to collect serum. Brain and serum samples were stored at -20ºC until 

analysis by LC-MS/MS. 

Quantitation of Loperamide in Serum and Brain:  Brain samples were homogenized in 

water (1:2 v/v) via sonic probe. A 25-µl aliquot of homogenate or plasma was transferred to 

an HPLC vial, and protein was precipitated with 250 µl methanol containing internal 

standard (methadone, 20 ng/ml). The sample was vortex-mixed, centrifuged, and the 

supernatant was analyzed by LC-MS/MS.  Samples were injected (3 µl; Agilent 1100 

wellplate autosampler) onto a Phenomenex 2.0 x 30 mm 4 µm Synergi Max-RP column 

(Phenomenex, Torrance, CA) maintained at room temperature. Analytes were eluted with a 

linear gradient (750 µl/min) consisting of ammonium acetate (pH 6.8; 10 mM [“A”] and 

methanol [“B”] produced by an Agilent 1100 series binary pump. An initial concentration of 

20% “B” was ramped to a final concentration of 95% over 2 min and held for 1 min. The 

system was returned to the initial condition in a single step and allowed to equilibrate for 1 

min. The entire column effluent was diverted from the Turbo Ionspray of a PE-Sciex API-

4000 triple quadrupole mass spectrometer for the first and last min. Loperamide and 

methadone were measured using multiple reaction monitoring (477.4→266.0 and 

310.3→265.1, respectively). Standard curves were prepared in brain homogenate and 

plasma.  
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Genotyping of CF-1 Mice: After sacrificing, the distal ~1.5 cm of the tail was removed.  

Tail tissue was minced and incubated overnight in 250 µl digestion buffer (50 mM Tris, 100 

mM NaCl, 10 mM EDTA, 1% SDS, 0.5 mg/ml proteinase K; pH 8; 55ºC).  Following 

digestion, 1.5 µl of RNase (10 mg/ml) was added to each sample, which was incubated at 

37°C for 20 min.  For DNA extraction, 160 µl of 5 M ammonium acetate was added, samples 

were mixed by vortex briefly, and centrifuged (16,000 g, 4 min).  The supernatant was 

poured into 600 µl isopropanol (4ºC), gently mixed, and centrifuged (16,000 g, 7 min).  The 

supernatant was discarded and 600 µl ethanol (70%; 4ºC) added.  Following centrifugation 

(16,000 g, 4 min), the supernatant was removed, the pellet was air-dried for ~15 min and 

suspended in TE buffer (20 µl; 10 mM Tris, 1 mM EDTA, pH 8).   

DNA enrichment was conducted with Herculase® Enhanced DNA polymerase kit 

(Stratagene, La Jolla, CA) and dNTP Mix (Amersham Biosciences, Piscataway, NJ) with the 

primers 5’CTTTGACTCGGGAGCAGAAG3’ (forward) and 

5’GAATGAACTGACCTGCCCCA3’ (reverse) (UNC Nucleic Acids Core Facility) (10).  

Following an initial cycle at 94°C for 2 min, PCR was conducted for 35 cycles (94°C for 30 

sec, 60°C for 30 sec, 68°C for 10 min).  The resulting PCR products were extracted and 

precipitated as noted above, except that samples were stored at -80ºC for 20 min following 

isopropanol addition to improve precipitation.  The final pellet was dissolved in TE buffer 

and stored at 4ºC.   

 A second PCR to isolate the mdr1a gene region of interest was conducted using the 

same conditions as above and the primers 5’CCAGAGCTTGCAGATACCAT3’ (forward) 

and 5’CACGTGTGCTTTCTTCATCG3’ (reverse).  The resulting products were run on a 1% 

agarose gel and stained with ethidium bromide.  Products were visualized on a VersaDoc 
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imaging system (Bio-Rad Laboratories, Hercules, CA).  Approximate molecular weights for 

the PCR products were determined using a GeneRuler™ 1kb DNA Ladder (Fermentas Inc., 

Hanover, MD).   

Data Analysis 

Where appropriate, a two-tailed Student’s t-test was used to evaluate the statistical 

significance of differences between experimental groups.  In all cases, P < 0.05 was used as 

the criterion of statistical significance.   
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RESULTS AND DISCUSSION 

Loperamide is an opioid drug used clinically as an anti-diarrheal that normally does 

not cross the BBB (due to P-gp-mediated efflux) and therefore lacks opiate-like effects in the 

CNS of animals or man (11). The large P-gp effect (i.e., dependence of the degree of brain 

uptake on P-gp-mediated efflux) and obvious endpoints for centrally-mediated 

pharmacologic activity indicated that loperamide may be a useful probe substrate for 

phenotyping the CF-1 mice (12).  In addition, the choice of loperamide as a phenotyping 

probe substrate offers many advantages over the previously suggested use of the neurotoxin 

avermectin (5).  Loperamide appears to be harmless to the mice, and the opiate-like behavior 

produced in P-gp-deficient, but not P-gp-competent animals dissipates within 24 hr.  Thus, 

phenotyping with subsequent experimentation can be performed after a minimum washout 

period.  In addition, loperamide is relatively inexpensive and easy to obtain and use. 

The present experiments confirmed the mdr1a phenotype can be determined with a 

single 2-mg/kg s.c. dose of loperamide (Figure 5.1).  All mice with three consecutive effects 

of maximum hotplate latency (60 sec; at 0.25, 2 and 4 hr post-dose) showed considerable 

opioid-like behavior in addition to antinociception, which persisted at least through 4 hr.  

These behaviors included hunched posture, compulsive circling, decreased coordination, and 

the classic Straub tail reaction.  Opioids contract the sacrococcygeus muscle in mice, which 

causes a spinal cord reflex resulting in an intense erection of the tail (Straub tail reaction) (8). 

Although the hot plate assay offers an objective measurement of difference in behavior 

between P-gp-deficient and P-gp-competent mice following the administration of 

loperamide, the visual cues indicated by defined behavioral endpoints provided alternative 

endpoint which was obvious and not dependent upon instrumentation.  On the other hand, 
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mice that did not display 3 consecutive effects of maximum hotplate latency (60 sec) showed 

no opioid-like behavior, and each of these mice displayed a hotplate latency ≤ 30 sec.  No 

opioid-induced behaviors were noticeable 24 hr post-dose in any of the mice. 

 In addition to assessing the behavioral effects associated with loperamide 

administration, loperamide brain-to-serum ratios were determined to confirm that mice 

identified as P-gp-deficient [presumably mdr1a(-/-)] based on pharmacologic activity 

evidenced increased brain penetration of loperamide (i.e., were phenotypically P-gp-deficient 

based on transporter function).  The loperamide brain-to-serum ratio in mice identified as P-

gp-deficient was 10.1 ± 1.0 (mean ± S.E.), while the loperamide brain-to-serum ratio in mice 

identified as P-gp-competent was 0.155 ± 0.018 (mean ± S.E.), representing a 65-fold higher 

loperamide brain-to-serum ratio in the absence of P-gp-mediated transport (Figure 5.2).  With 

respect to the identification of P-gp function utilizing a pharmacologic endpoint, no false 

negatives (Region I in Figure 5.2) or false positives (Region IV I Figure 5.2) were 

encountered among the 18 animals phenotyped.  Thus, the approach appears to provide an 

accurate identification of P-gp status. 

 Finally, the mice were genotyped to confirm the presence or absence of the mdr1a 

gene.  The subpopulation of CF-1 mice that evidences P-gp deficiency is due to a truncated 

mRNA with a deleted exon 23 (10).  All animals that were identified as phenotypically P-gp-

competent based on the hotplate assay evidenced the mdr1a(+/+) genotype (Figure 5.3). 

While increased substrate uptake into brain has been shown in the presence of 

chemical inhibitors of P-gp-mediated transport, pharmacokinetic experiments in transport-

deficient mice form the foundation of the current understanding of attenuated BBB 

translocation by P-gp.  Use of these animals is imperative to furthering the development of 
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CNS agents, and an efficient means of phenotyping the mice should prove useful for 

studying the role of P-gp in drug disposition.  The mdr1a(-/-) mice displayed clear signs of 

opioid intoxication (e.g., circling, erect tail, lack of balance) within 15 min of the dose. 

Therefore, this assay offers a rapid and unambiguous measure via a relatively non-invasive, 

simple technique.   
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Figure 5.1:  Results of the hotplate latency test following a 2-mg/kg s.c. dose of loperamide.  

•  indicate mice that were phenotypically mdr1a(+/+) and ο indicate mice that were 

phenotypically mdr1a(-/-). *p< 0.01 vs. pretest 
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Figure 5.2:  Comparison between the hotplate latency results and the loperamide brain-to-

serum ratio following a 2-mg/kg s.c. dose of loperamide (4 hr).  •  indicate mice that were 

phenotypically mdr1a(+/+) and ο indicate mice that were phenotypically mdr1a(-/-). 
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Figure 5.3:  Representative RT-PCR gel indicating the presence of a 1.3 Kb product only in 

those mice that were phenotyped/genotyped mdr1a(+/+). 
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CHAPTER 6 

INFLUENCE OF BLOOD-BRAIN BARRIER P-GLYCOPROTEIN ON BRAIN 

PENETRATION AND ANTINOCICEPTIVE EFFECTS OF MODEL OPIOIDS 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This chapter has been submitted for publication in Journal of Pharmacology and 
Experimental Therapeutics and is presented in the style of that journal. 



  

Abstract 

      This study assessed the pharmacokinetic-pharmacodynamic (PK-PD) implications of 

variable substrate interactions with blood-brain barrier (BBB) P-glycoprotein (P-gp).  

Opioids were selected as model compounds because they elicit a readily-measured central 

effect (antinociception) and evidence a range of interactions with P-gp (loperamide: high; 

methadone: intermediate; fentanyl: low).  P-gp-competent [mdr1a(+/+)] and P-gp-deficient 

[mdr1a(-/-)] CF-1 mice received equipotent subcutaneous doses of loperamide, methadone, 

or fentanyl.  FVB [mdr1a/b(+/+)] and [mdr1a/b(-/-)] mice also received equipotent 

subcutaneous doses of loperamide in order to assess the potential influence of mdr1b on 

opioid brain penetration and antinociception.  The time courses of antinociception and 

brain/serum concentrations were determined.  Brain-to-plasma concentration ratios (Kp,brain), 

brain equilibration half-life (t1/2eq,brain), and pharmacokinetic/pharmacodynamic parameters 

were estimated by fitting appropriate kinetic or kinetic/dynamic models to the data.  

Mdr1a(+/+) mice required 50- and 5-fold higher doses of loperamide and methadone, 

respectively, to produce antinociceptive activity similar to mdr1a(-/-) mice.  P-gp efflux 

reduced the Kp,brain of loperamide, methadone, and fentanyl by ~40-, ~7-, and ~2-fold, 

respectively.  However, P-gp efflux had no effect on brain EC50, indicating that the only 

influence of P-gp on loperamide-, methadone-, and fentanyl-associated antinociception was 

through limiting CNS exposure across the BBB.  P-gp efflux decreased brain uptake 

clearance, Kp,brain, and t1/2eq,brain.  The ~2-fold decrease in the time to brain/plasma 

equilibration for loperamide and methadone is consistent with theoretical considerations for 

BBB efflux transport, assuming that the egress rate from brain determines brain/plasma 

equilibration half-life. 
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Introduction 

     Several opioids, including fentanyl, methadone, and loperamide, are substrates for the 

efflux transporter P-glycoprotein (P-gp) (Dagenais et al., 2004).  P-gp was first identified in 

tumor cells for its ability to confer multi-drug resistance against chemotherapy agents 

(Juliano, 1976; Gros et al., 1986).  P-gp is also expressed in several normal organs and 

tissues, such as the intestine, liver, kidneys, testes, and brain.  P-gp expression at these sites 

appears to serve a protective role by limiting absorption, facilitating excretion, and reducing 

tissue distribution of potentially harmful xenobiotics, including calcium channel blockers, 

HIV protease inhibitors, immunosuppressants, and opioids to sensitive tissues, including the 

brain (Matheny et al., 2001).   

     While human P-gp is encoded by the MDR1 gene, rodents encode the transporter through 

two distinct genes, mdr1a and mdr1b.  Two strains of P-gp-deficient mice have been used in 

a variety of experimental protocols to study the influence of P-gp on the pharmacokinetic and 

pharmacodynamics of drugs: the CF-1 mouse strain, which naturally lacks the mdr1a gene 

product, and mdr1a/b double knockouts, which were developed in the FVB murine line 

(Schinkel et al., 1994; Chen et al., 2003).  The mdr1a isoform is expressed on the apical 

membrane of capillary endothelial cells comprising the BBB, and is thought to be the 

prominent isoform restricting the entry of P-gp substrates into the brain (Schinkel et al., 

1994).  In contrast, the mdr1b isoform has been reported to be expressed in brain parenchyma 

(Golden and Pardridge, 2000); the role of mdr1b P-gp in attenuating opioid-associated 

antinociception is unknown.  Studies with P-gp-competent and P-gp-deficient mice of both 

strains have shown that P-gp is responsible for attenuating brain uptake, decreasing brain 
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tissue concentrations, and reducing the antinociceptive action of some opioids (Schinkel et 

al., 1996; Chen and Pollack, 1998; Thompson et al., 2000; Dagenais et al., 2004). 

     It has been proposed that P-gp expression within brain parenchyma may serve as a tertiary 

barrier to substrate approach to pharmacologic targets such as opioid receptors (Golden and 

Pollack, 2003).  Some experimental evidence supports this hypothesis.  For example, the 

brain tissue EC50 of the metabolically stable cyclic opioid peptide [D-penicillamine2,5]-

enkephalin (DPDPE) was 10-fold lower in P-gp-deficient as compared to P-gp-competent 

mice (Chen and Pollack, 1998).  It was proposed that the difference in brain tissue EC50 was 

due to P-gp within the brain parenchyma effluxing drug away from the receptor site.  

However, this explanation remains speculative. 

     The anti-diarrheal agent loperamide is devoid of central activity at therapeutic doses, 

despite being a potent mu opioid agonist, due to substantial P-gp-mediated efflux (Schinkel et 

al., 1996).  Efflux by BBB P-gp decreases the loperamide brain-to-plasma ratio (Kp,brain) by 

~60-fold (Kalvass et al., 2004).  P-gp-mediated efflux also has been reported to decrease the 

Kp,brain for methadone and to attenuate fentanyl-associated antinociception in mice 

(Thompson et al., 2000; Wang et al., 2004).  The effect of P-gp on opioid flux is in the order 

loperamide > methadone > fentanyl, making this a useful compound set for comprehensive 

evaluation of the role of P-gp in modulating central opioid response.  A side-by-side 

comparison of the pharmacokinetics and pharmacodynamics of these compounds will allow a 

better understanding of the effect of P-gp-mediated efflux on brain penetration and 

antinociception of opioids.  The specific goal of the present study was to use a PK-PD 

modeling approach to assess the influence of P-gp-mediated BBB efflux on the 
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pharmacokinetics, brain disposition, and antinociception of fentanyl, methadone, and 

loperamide. 

 
Material and Methods 

     Materials. Fentanyl, methadone, and loperamide were purchased from Sigma-Aldrich (St. 

Louis, MO).  All other reagents were obtained from common sources and were of reagent 

grade or better. 

      

     Animals. Male CF-1 [mdr1a(+/+) and mdr1a(-/-)] and FVB [mdr1a/b(+/+) and mdr1a/b(-

/-)] mice (30-40 g; Charles River Laboratories, Inc. Wilmington, MA; and Taconic, 

Germantown, NY, respectively) were maintained on a 12-h light/dark cycle in a temperature- 

and humidity-controlled room with access to water and food ad libitum.  All procedures 

involving mice were approved by The Institutional Animal Care and Use Committee of the 

University of North Carolina and were conducted in accordance with “Principles of 

Laboratory Animal Care” (NIH Publication No. 85-23, revised in 1985).  

      

     Opioid Pharmacokinetics and Pharmacodynamics. Based on the results of pilot studies, 

36 mdr1a(-/-) and 36 mdr1a(+/+) CF-1 mice received equipotent subcutaneous doses of 

loperamide (1 or 50 mg/kg, respectively), methadone (0.2 or 0.6 mg/kg, respectively), or 

fentanyl (0.09 mg/kg, respectively).  The loperamide and fentanyl doses were prepared in 

50/50 propylene glycol/water, whereas the methadone dose was prepared in 0.9% saline.  In 

a separate experiment designed to assess the significance of mdr1b on opioid brain 

penetration and antinociception, 36 mdr1a/b(-/-) and 36 mdr1a/b(+/+) FVB mice received 

equipotent subcutaneous doses of loperamide (1 or 25 mg/kg, respectively).  For both sets of 
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experiments, antinociception was assessed; 4 mdr1a(-/-) and 4 mdr1a(+/+) mice were 

sacrificed by decapitation for collection of brain tissue and trunk blood at selected time 

points.  Trunk blood was collected in 1.5-ml microcentrifuge tubes and was allowed to clot 

for ≥ 30 min at room temperature.  Serum was harvested following centrifugation.  Brain and 

serum samples were stored at -20°C until analysis by HPLC-MS/MS.   

      

     Assessment of Antinociception. Antinociception was assessed with the hot plate latency 

test as described elsewhere (Chen and Pollack, 1997).  Prior to administration of opioids, 

baseline hotplate latency was determined for each animal in triplicate.  Hotplate latency was 

defined as the time interval between placement on the hot plate (55°C; Columbus 

Instruments, Columbus, OH) and first observation of a jump or lick of the hind limb(s).  

Animals with an average baseline latency <25 sec were used in the study.  A cut-off latency 

of 60 sec was used to avoid tissue damage.  The degree of antinociception was calculated as: 

%100
latency control - 60

latency control -latency  test MPR% ×=      (1) 

      

     Quantitation of Opioids in Serum and Brain Tissue Samples. Brain samples were 

homogenized in water (1:2 v/v) via sonic probe.  A 25-µl aliquot of homogenate or serum 

was transferred to a HPLC vial, and protein was precipitated with 100 µl methanol 

containing internal standard (5 ng/ml loperamide for fentanyl and methadone; 20 ng/ml 

methadone for loperamide).  The sample was vortex-mixed, centrifuged, and the supernatant 

was analyzed by HPLC-MS/MS.  Samples were injected (3 µl; CTC Analytics autosampler, 

Zwingen, Switzerland) onto a Phenomenex 2.0 x 30 mm, 5 µm Gemini 110A column 

(Phenomenex, Torrance, CA) maintained at room temperature.  The total run time was 3 min.  
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Analytes were eluted with a linear gradient consisting of ammonium acetate (pH 6.8; 10 

mM) [“A”] and methanol [“B”] produced by two Shimadzu LC-10ADVP binary pumps.  An 

initial condition of 5% “B” was ramped to 95% “B” over 2 min, held for 0.5 min, and then 

returned initial condition of 5% “B” in a single step to re-equilibrate the column.  During the 

run, the flow rate was increased from 750 to 1500 µl/min over the first 2 min, held at 1500 

µl/min for 1 min, and then returned the initial flow rate of 750 µl/min in a single step.  The 

entire column effluent was diverted from the source of the PE-Sciex API-4000 quadrupole 

mass spectrometer (Turbo V Ionspray source, 700˚C, PerkinElmerSciex Instruments, Boston, 

MA ) for the first 1 min and last 0.5 min of the run.  Fentanyl, loperamide, and methadone 

were measured in positive ionization mode using multiple reaction monitoring 

(337.1→188.3, 477.4→266.0 and 310.3→265.1, respectively).  Standard curves were 

prepared in brain homogenate or serum and were identical in composition to corresponding 

samples. 

      

     Pharmacokinetic-Pharmacodynamic Analysis. A compartmental modeling approach 

with distribution between serum and brain tissue was used to describe fentanyl, loperamide, 

and methadone pharmacokinetics.  The pharmacokinetic model in Figure 6.1 was fit 

simultaneously to the serum and brain tissue concentration-time data using nonlinear least-

squares regression analysis (WinNonlin 4.1; Pharsight Corporation, Mountain View, CA).  

The brain volume (Vb) was determined experimentally (13.4 ml/kg) assuming a specific 

gravity of 1.0 g/ml.  All other pharmacokinetic parameters were obtained from fitting the 

kinetic model to the data.  The pharmacodynamic parameters, EC50 and γ, were determined 
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from fitting a sigmoidal Emax model to the antinociception versus brain concentration (C) 

data. 

γγ

γ

+

⋅
=

CEC
CE

MPR%
50

max         (2) 

Emax was defined as 100%, and γ was constrained to the same value for P-gp-competent and 

P-gp-deficient mice.  The time course of brain-to-serum ratio (Kp,brain) was used to estimate 

the brain equilibration rate constant (keq) and steady-state brain-to-serum ratio (Kp,brain,ss) 

according to: 

( )tk
ss,brain,pbrain,p

eqe1KK ⋅−−=        (3) 

The brain equilibration half-life (t1/2eq,brain) was obtained from keq: 

eq
brain,eq2/1 K

)2ln(t =       (4) 

 
 
Results 

     In order to achieve similar antinociception between mdr1a(+/+) and mdr1a(-/-) mice, 

mdr1a(+/+) animals received 5- and 50-fold larger doses of methadone and loperamide, 

respectively.  Consistent with receiving a larger dose, the serum concentrations of methadone 

and loperamide in mdr1a(+/+) mice exceeded those in mdr1a(-/-) mice.  However, brain 

tissue concentrations were similar between the two strains of mice.  The time course of serum 

and brain tissue concentrations in the mdr1a(-/-) and mdr1a(+/+) mice following 

subcutaneous dose of loperamide, methadone, and fentanyl are reported in Figure 6.2.  In 

general, the brain concentrations for each opioid were similar between the two mouse strains, 

consistent with the fact that equipotent doses were administered.  However, because larger 

doses were administered to P-gp-competent mice, opioid concentrations in the systemic 
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circulation were higher in these animals as compared to their P-gp-deficient counterparts, and 

were approximately dose-proportional.  Again consistent with the administration of 

equipotent doses in the two mouse strains, the magnitude and duration of fentanyl-, 

methadone-, and loperamide-associated antinociception were similar between mdr1a(-/-) and 

mdr1a(+/+) mice (Figure 6.3).  The fit of the PK/PD model to the concentration vs. time and 

antinociception vs. time data is shown in Figures 2 and 3, respectively.  Corresponding 

estimates of pharmacokinetic and pharmacodynamic parameters obtained from the model are 

reported in Table 6.1.   

     The systemic pharmacokinetics of fentanyl and methadone did not differ substantially 

between mdr1a(-/-) and mdr1a(+/+) mice, so in the implementation of modeling estimates of 

systemic pharmacokinetic parameters were constrained to the same values for both mdr1a(-/-

) and mdr1a(+/+) mice.  However, differences in loperamide systemic pharmacokinetics 

between P-gp-deficient [mdr1a(-/-) and mdr1a/b(-/-)] and P-gp-competent [mdr1a(+/+) and 

mdr1a/b(+/+)] mice were apparent.  Hence, independent estimates of pharmacokinetic 

parameters were obtained for P-gp-deficient and P-gp-competent mice for this agent.  The 

systemic pharmacokinetics of fentanyl were most consistent with a two-compartment model, 

whereas a one-compartment model best described the systemic pharmacokinetics of 

methadone and loperamide (Table 6.1 and 6.2). 

     The antinociception versus opioid serum and brain concentration relationships are shown 

in Figures 4 and 5, respectively.  For each of the opioids, the antinociception versus serum 

concentration relationship evidenced a counterclockwise hysteresis, consistent with delayed 

distribution between serum and the biophase.  Compared to mdr1a(-/-) mice, the 

antinociception versus serum concentration relationship in mdr1a(+/+) mice was shifted 
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rightward 1.9-, 7-, and 44-fold for fentanyl, methadone, and loperamide, respectively.  In 

contrast, no hysteresis or rightward shift was observed in the antinociception versus brain 

concentration relationships.  A sigmoidal Emax model was capable of adequately describing 

the relationship between antinociception and brain concentrations.  There was no difference 

in brain EC50 between mdr1a(-/-) and mdr1a(+/+) mice for any of the opioids examined.  The 

brain EC50 estimates for loperamide in mdr1a/b(-/-) and mdr1a/b(+/+) mice were consistent 

with the brain EC50 from mdr1a(-/-) and mdr1a(+/+) mice (Table 6.1 and 6.2).  The time 

course of Kp,brain, as well as the antinociception versus serum and brain tissue concentration 

relationships (Figure 6.7, panels C, D, and E, respectively), were similar between the P-gp-

competent CF-1 mdr1a(+/+) and FVB mdr1a/b(+/+) mice, and between the P-gp-deficient 

CF-1 mdr1a(-/-) and FVB mdr1a/b(-/-) mice.   

     P-gp-mediated efflux reduced the Kp,brain of fentanyl, methadone, and loperamide by 1.9-, 

7.2-, and 44-fold, respectively (Figure 6.6 and Table 6.1).  P-gp efflux did not prolong the 

brain equilibrium half-life.  To the contrary, P-gp efflux decreased the time to brain/plasma 

equilibration of loperamide and methadone by ~2-fold. 

 

Discussion 

     Previous studies have indicated that P-gp-mediated efflux attenuates the brain uptake and 

antinociception of fentanyl, methadone, and loperamide.  In this study, a PK/PD modeling 

approach was used to more fully elucidate the mechanism(s) by which P-gp attenuates brain 

penetration and antinociception.  Multiple mechanisms may be involved, including alteration 

in systemic pharmacokinetics (e.g., decreased bioavailability or increased clearance), 
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reduction in brain penetration (e.g., decreased brain uptake and/or increased brain efflux), 

and alteration of drug distribution within the brain (e.g., increased brain EC50). 

     Estimates of systemic pharmacokinetic parameters for fentanyl and methadone were 

similar between mdr1a(-/-) and mdr1a(+/+) mice, indicating no change in systemic 

pharmacokinetics due to P-gp-mediated efflux.  However, different pharmacokinetic 

parameters were necessary to fit the model to the loperamide serum concentration vs. time 

data from the mdr1a(-/-), mdr1a(+/+), mdr1a/b(-/-), and mdr1a/b(+/+) mice.  This difference 

in loperamide pharmacokinetics between the different groups of mice may not be due to P-

gp-mediated efflux, but rather to non-linear pharmacokinetics.   

     The loperamide serum concentrations in mdr1a(-/-) mice were poorly described by the 

pharmacokinetic model in 6.1, regardless of whether the one- or two-compartment system 

was used.  The estimate for Ka from the model consistently converged to the maximum value 

allowed, and had a large associated variance.  Since the Ka was large and could not be 

estimated with reasonable accuracy, the data set was treated as an i.v. bolus and Ka was 

removed as a fitted parameter.  A two-compartment model with bolus input, consistent with 

this approximation, yielded parameter estimates with the lowest variance, and was best able 

to fit the serum concentration-time data in mdr1a(-/-) mice.   

     In order to avoid acute toxicity in the P-gp-competent FVB mice, it was necessary to 

reduce the dose of loperamide by half compared to the P-gp-competent CF-1 mice (25 vs. 50 

mg/kg).  The increased sensitivity towards loperamide toxicity in the FVB P-gp-competent 

mice is attributed to lower systemic clearance (28 vs 58 ml·min-1·kg-1), not to any innate 

difference in pharmacology or P-gp activity.  Serum and brain tissue concentrations, as well 
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as antinociception, were similar between the FVB mdr1a/b(+/+) and CF-1 mdr1a(+/+) mice 

at one-half the dose.   

     A counterclockwise hysteresis in the antinociceptive effect versus serum concentration 

relationship was observed for both mdr1a(+/+) and mdr1a(-/-) mouse strains, consistent with 

delayed distribution between the serum and the biophase.  The antinociception versus serum 

concentration relationship shifted rightward in P-gp-competent animals, in proportion to the 

fold change in Kp,brain.  Similarly, the ED50 of loperamide and methadone in P-gp-competent 

mice shifted rightward ~30-fold and ~5-fold compared to P-gp-deficient mice (data not 

shown).  No hysteresis was observed in the antinociceptive effect versus brain concentration 

relationship.  The brain EC50 was identical between P-gp-deficient and P-gp-competent mice.  

These results are consistent with the brain being the site of opioid action.  The loperamide 

brain EC50 estimates for the mdr1a(+/+), mdr1a(-/-), mdr1a/b(+/+), and mdr1a/b(-/-) mice 

were similar suggesting that P-gp (neither the mdr1a nor the mdr1b gene product) had no 

effect on brain EC50 and that brain EC50s were similar between CF-1 and FVB mouse strains. 

     Previously, this laboratory demonstrated a 10-fold difference in brain tissue EC50 between 

mdr1a/b(-/-) and mdr1a/b(+/+) mice for the cyclic opioid peptide DPDPE (Chen and Pollack, 

1998).  This observation has been used to support the hypothesis that P-gp efflux not only 

limits access to the brain via the BBB, but parenchymal expression of P-gp may also limit 

access of P-gp substrates to biophase once the P-gp substrates have crossed the BBB.  

Another study conducted with morphine indicated that P-gp-mediated efflux had no effect in 

brain tissue EC50 between mdr1a(-/-) and mdr1a(+/+), even though P-gp efflux increased the 

ED50 by reducing the Kp,brain,ss (Zong and Pollack, 2000).  Results from this study are 

consistent with the previous observations for morphine, as there was no difference in brain 
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EC50 of fentanyl, methadone, and loperamide between mdr1a(-/-) and mdr1a(+/+) mice.  

However, it should be noted that DPDPE is specific agonist for the delta opioid receptor, 

whereas fentanyl, methadone, and loperamide are mu opioid agonists.  Whether this 

difference has any bearing on P-gp related difference in brain EC50 requires further 

investigation. 

      P-gp-mediated efflux reduced the Kp,brain of fentanyl, methadone, and loperamide by 1.9-, 

7.2-, and 44-fold, respectively.  These results are consistent with previously reported values 

for methadone and loperamide (16- and 65-fold, respectively) (Kalvass et al., 2004; Wang et 

al., 2004).  The Kp,brain was reduced through the attenuation of brain uptake and the 

enhancement of brain efflux.  This is evident by the fact that the Clup was smaller, and the 

Clefflux was larger, in the P-gp-competent mice compared to P-gp-deficient mice.  The effect 

of P-gp-mediated efflux on brain uptake was generally more significant than on brain efflux.  

The location of P-gp on the apical membrane of capillary endothelial cells allows it to more 

effectively attenuate brain uptake than enhance brain efflux (Thiebaut et al., 1989).  This is 

consistent with the present observation that P-gp-mediated efflux attenuated the brain uptake 

clearance of loperamide by ~20-fold (0.8 vs 0.04 ml·min-1·kg-1) and enhanced brain efflux of 

loperamide only by ~1.5-fold (0.2 vs 0.3 ml·min-1·kg-1).  Furthermore, the brain equilibration 

rate constant was about 2-fold higher, and the brain equilibrium half-life was shorter, in P-

gp-competent as compared to P-gp-deficient animals.  Consistent with P-gp attenuating brain 

uptake and enhancing brain efflux, P-gp-mediated efflux reduced the extent (Kp,brain) but not 

the rate (Keq,brain) of brain distribution.   

     An explanation for why P-gp efflux affects uptake to a larger extent than efflux can be 

achieved by considering the orientation of P-gp in the BBB, and by taking into account the 
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diffusional barriers a molecule must transverse to cross the BBB.  In order for a molecule to 

transverse the BBB, it must cross both the apical and basolateral membranes of the 

endothelial cell.  P-gp is present on the apical membrane and pumps in the direction of the 

capillary lumen (Tsuji et al., 1992).  During brain uptake, a drug first encounters the apical 

membrane followed by the basolateral membrane.  The presence of P-gp on the apical 

membrane allows it to severely limit brain uptake.  However, during egress from the brain 

the drug first encounters the basolateral membrane followed by the apical membrane.  In the 

complete absence of P-gp, the basolateral and apical membranes equally dictate the rate of 

drug egress from the brain.  When P-gp-mediated efflux is present and is sufficiently large, 

P-gp efflux reduces the resistance of the apical membrane to the point that it is no longer a 

diffusional barrier, and only the basolateral membrane is a barrier to movement out of the 

brain.  In the absence of efflux, two barriers restrict drug egress from the brain.  However, 

with efflux these two barriers can be effectively reduced to one barrier, resulting in an 

increase in drug efflux.  If the membrane permeability is similar between the apical and 

basolateral membranes, then P-gp would be expected to increase efflux from the brain by no 

more than 2-fold.  Further evidence supporting this hypothesis is that the brain equilibration 

half-life, which is inversely proportional to the rate of efflux from the brain, was about 2-fold 

shorter in the P-gp-competent animals.  Other studies indicate a similar effect of BBB efflux 

on  brain equilibration half-life (Letrent et al., 1999; Sugiyama et al., 2003). 

     In summary this study demonstrated that P-gp-mediated efflux reduced antinociception of 

fentanyl, methadone, and loperamide by attenuating Kp,brain.  This was evident by rightward-

shifts in the antinociception versus serum concentration relationship, identical brain tissue 

EC50 between P-gp-competent and P-gp-deficient mice, and that brain Clup was increased 
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while brain Clefflux was decreased in P-gp-competent mice.  Although the extent of brain 

penetration (Kp,brain) was reduced by P-gp efflux, the rate of equilibration (Keq,brain) of drug 

between serum and brain was increased by P-gp efflux.  The effects of P-gp-mediated efflux 

on opioid brain penetration and antinociception appear to be due to the mdr1a isoform of P-

gp.   
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Table 6.1. Parameter estimates from PK-PD modeling. 
Parameter fentanyl methadone loperamide 
 mdr1a(+/+) mdr1a(-/-) mdr1a(+/+) mdr1a(-/-) mdr1a(+/+) mdr1a(-/-) 
Ka (min-1) 0.07 ± 0.07 0.55 ± 0.13 0.063 ± 0.015  - 
Cl (ml·min-1·kg-1) 90 ± 40 127 ± 12 58 ± 7 34 ± 8 
Vc (ml·kg-1) 2900 ± 2800 8800 ± 600 32000 ± 3000 3000 ± 2000 
Cld (ml·min-1·kg-1) 40 ± 30 - - 130 ± 140 
Vp (ml·kg-1) 5000 ± 13000 - - 4300 ± 1600 
Clup (ml·min-1·kg-1) 8 ± 3 10 ± 2 27 ± 4 43 ± 5 0.04 ± 0.06 0.8 ± 0.5 
Clefflux (ml·min-1·kg-1) 3.4 ± 1.4 2.2 ± 0.7 5.1 ± 0.9 1.8 ± 0.2 0.3 ± 0.5 0.20 ± 0.11 
       
EC50 (ng/g) 6.4 ± 1.1 8.7 ± 1.8 510 ± 60 480 ± 30 104 ± 6 73 ± 12 
γ 1.4 ± 0.3 3.7 ± 1.1 2.7 ± 0.5 1.2 ± 0.2 
       
Kp,brain 2.3 ± 0.2 4.5 ± 0.2 3.3 ± 0.2 24 ± 3 0.115 ± 0.014 5.1 ± 0.9 
Keq (min-1) 0.14 ± 0.04 0.13 ± 0.02 0.073 ± 0.014 0.029 ± 0.008 0.025 ± 0.010 0.015 ± 0.008 
t1/2eq,brain (min) 4.9 ± 1.3 5.2 ± 0.0 9.6 ± 1.8 26 ± 6 27 ± 11 50 ± 20 

Parameter estimate ± S.E. from non-linear regression analysis of pooled mouse data.  
t1/2eq,brain were calculated from 0.693/Keq,brain. 

 173



  

Table 6.2. Parameter estimates for loperamide in FVB mice 
Parameter loperamide (FVB mice) 
 mdr1a/b(+/+) mdr1a/b(-/-) 
Ka (min-1) 0.12±0.04 0.24±0.11 
Cl (ml·min-1·kg-1) 28±4 100±20 
Vc (ml·kg-1) 13000±1000 15000±3000 
Cld (ml·min-1·kg-1) - - 
Vp (ml·kg-1) - - 
Clup (ml·min-1·kg-1) 0.02±0.05 0.88±0.19 
Clefflux (ml·min-1·kg-1) 0.2±0.7 0.27±0.06 
   
EC50 (ng/g) 82±6 61±5 
γ 2.9±0.6 
   
Kp,brain 0.13±0.02 18±3 
Keq (min-1) 0.009±0.003 0.0028±0.0008 
t1/2eq,brain (min) 77±20 250±70 
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Figure 6.1. Pharmacokinetic-pharmacodynamic model for opioid disposition and antinociception 

in mice.  Pharmacokinetic parameters were obtained by fitting the above model to the time course 

of serum and brain concentrations of mdr1a(-/-) and mdr1a(+/+) mice following subcutaneous 

administration of opioid.  Except for loperamide, the absorption rate constant (Ka), central volume 

(Vc), and systemic clearance (Cl), peripheral volume (Vp), and distributional clearance (Cld) were 

held constant between mdr1a(-/-) and mdr1a(+/+) mice; whereas, the brain uptake (Clup) and 

brain efflux clearances (Clefflux) were allowed to vary between mdr1a(-/-) and mdr1a(+/+) mice.  

The brain volume (Vb) was fixed.  The effect parameters, EC50 and γ, were obtained by fitting a 

sigmoidal Emax model to the brain concentration versus antinociception data.  Emax was defined as 

100%. 
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Figure 6.2. Time course of serum ( ) and brain ( ) concentrations following s.c. administration of opioids (from left to right: fentanyl [0.09-

mg/kg], methadone [0.2- and 0.6-mg/kg], and [1- and 50-mg/kg]) in mdr1a(-/-) and mdr1a(+/+) mice (open and solid symbols, respectively).  Data 

are presented as mean ± S.E. (n ≥ 3).  Note: At the given doses, nearly equivalent brain concentrations where achieved in  mdr1a(-/-) and 

mdr1a(+/+) mice, however methadone and loperamide serum concentrations in the mdr1a(+/+) mice were much higher than in mdr1a(-/-) mice. 
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Figure 6.3. Time course of antinociception following s.c. administration of opioids (from left to right: fentanyl, methadone, and loperamide) in 

mdr1a(-/-) and mdr1a(+/+) mice (open and solid symbols, respectively).  Data are presented as mean ± S.E. (n = 4 to 36).  
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Figure 6.4. Relationship between antinociception and opioid serum concentration (from left to right: fentanyl, methadone, and loperamide) in 

mdr1a(-/-) and mdr1a(+/+) mice (open and solid symbols, respectively).  Data are presented as mean ± S.E. (n = 4 to 36).  
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Figure 6.5. Relationship between antinociception and opioid brain concentration (from left to right: fentanyl, methadone, and loperamide) in 

mdr1a(-/-) and mdr1a(+/+) mice (open and solid symbols, respectively).  Dashed and solid lines represent the fit of a kinetic model to the 

mdr1a(+/+) and  mdr1a(-/-) data, respectively Data are presented as mean ± S.E. (n = 4 to 36).   
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Figure 6.6. Time course of opioid (from left to right: fentanyl, methadone, and loperamide) K  in mdr1a(-/-) and mdr1a(+/+) mice (open and 

solid symbols, respectively).  Dashed and solid lines represent the fit of a kinetic model to the mdr1a(+/+) and  mdr1a(-/-) data, respectively.   
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Figure 6.7. Pharmacokinetics/pharmacodynamics of loperamide in FVB mice.  Time course of (A) serum (circle) and brain (triangle) 

concentrations, (B) antinociception, and (C) K  following s.c. administration of 1- and 25-mg/kg dose of loperamide in FVB mdr1a/b(-/-) and 

mdr1a/b(+/+) mice, respectively.  Antinociception versus serum and brain concentrations are depicted in panels D and E, respectively.  Solid and 

open symbols represent mean data ± S.E. (n = 4 to 36) from P-gp-competent and P-gp-deficient mice, respectively.  Solid and dashed lines 

represent the fit of a PK/PD model to the FVB mdr1a/b(+/+) and  mdr1a/b(-/-) mouse data, respectively.  For comparison, squares symbols in 

panel C, D, and E represent the mean loperamide data obtained from CF-1 mice.  
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CHAPTER 7 
 

PHARMACOKINETICS AND PHARMACODYNAMICS OF SEVEN OPIOIDS IN 

P-GP-COMPETENT MICE: ASSESSMENT OF UNBOUND BRAIN EC50 AND 

CORRELATION OF IN VITRO, PRECLINICAL, AND CLINICAL DATA 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This chapter will be submitted for publication in Journal of Pharmacology and Experimental 
Therapeutics and is presented in the style of that journal. 



 

Abstract 

     This study was conducted to assess the utility of unbound brain EC50 (EC50,u) as a measure of 

in vivo potency for centrally-active drugs.  Seven mu opioid agonists (alfentanil, fentanyl, 

loperamide, methadone, meperidine, morphine, and sufentanil) were selected as model CNS 

drugs because they elicit a readily measurable central effect (antinociception) and their clinical 

pharmacokinetics/pharmacodynamics are well understood.  Mice received an equipotent 

subcutaneous dose of one of the model opioids.  The time course of antinociception, serum and 

brain concentrations was determined.  A pharmacokinetic-pharmacodynamic model was used to 

estimate relevant parameters. In vitro potency (Ki) and relevant clinical parameters were 

obtained from the literature for in vitro-to-preclinical and preclinical-to-clinical comparisons.  

The strongest in vitro-to-in-vivo correlation was observed between Ki and brain EC50,u (r2~0.8).  

A strong correlation between mouse serum and human plasma EC50 was observed (r2=0.949); the 

correlation was improved when corrected for protein binding (r2=0.995). Clinical equipotent i.v. 

dose was only moderately related to Ki. However, estimates of ED50 and EC50 (total serum, 

unbound serum, total brain, and unbound brain) were significant predictors of clinical equipotent 

i.v. dose; the best correlation was observed for brain EC50,u (r2=0.982).  For each opioid, brain 

equilibration half-life in mice was almost identical to the plasma effect-site equilibration half-life 

measured clinically.  These results indicate that the mouse is a good model for opioid human 

brain disposition and clinical pharmacology, and that superior in vitro-to-preclinical and 

preclinical-to-clinical correlations can be achieved with relevant unbound concentrations. 
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Introduction 

     In drug discovery, in vitro assays and preclinical animal studies are widely used to assess 

compound potency and to identify compound(s) that may have a desirable clinical response. 

Several options for assessing compound potency are available, including in vitro (receptor 

binding or functional assays) and in vivo (animal studies to determine dose-response or 

concentration-response relationships) protocols.  In vitro binding and functional assays, by 

nature, are designed to estimate the intrinsic potency at the receptor of interest, while in vivo 

experiments take into account the full spectrum of pharmacokinetic and pharmacodynamic 

processes that ultimately determine biologic response.  

     Ideally, in vitro potency would translate to or predict in vivo potency. Often this is the case, 

and significant correlations between in vivo ED50 or EC50 and in vitro potency have been 

established for a variety of therapeutic targets (Leysen et al., 1983; Visser et al., 2003).  

However, when there is no correlation between in vivo and in vitro potency measures, the 

validity of the in vitro assay, the animal model, and the target may be questioned. Therefore, 

establishing strong in vitro-to-in vivo relationships is a necessity for drug development, because 

it aids in target validation and boosts confidence in the in vitro and in vivo pharmacology 

models.  Historically, in vitro-to-in vivo correlations have been established by comparing an in 

vitro measure of potency, such as Ki or EC50 from a receptor binding or a cell-based functional 

assay, with ED50.  Although the ED50 is not necessarily the best measure of intrinsic drug 

potency, it has been widely used because it is a straightforward, robust, and readily attainable 

metric.  In vitro-to-in vivo correlations with ED50 are most likely to be successful for a 

compound set, within a discrete pharmacologic class, that consists of members with large 

differences in intrinsic potency and relatively similar pharmacokinetics.  
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     For compounds that evidence large differences in pharmacokinetics, improved vitro-to-in vivo 

correlations may be obtained by using EC50 as opposed to ED50.  Commonly, EC50 is estimated 

from the effect vs. plasma concentration relationship.  Pharmacokinetic-pharmacodynamic (PK-

PD) modeling often is used to obtain estimates of EC50 from in vivo data, and is a powerful tool 

for enhancing mechanistic understanding of drug disposition and action.  

     In vitro-to-in vivo potency relationships have maximum predictability when the relationship 

between biologic response and biophase concentration is known.  Total plasma and unbound 

plasma concentrations are most widely used surrogates for biophase concentrations. However, 

systemic concentrations do not always reflect biophase concentrations, regardless of whether or 

not protein binding is taken into account.  This is especially for true for compounds that act on 

targets within the central nervous system (CNS). The blood-brain barrier (BBB) restricts the 

CNS distribution of many compounds, and in many cases results in temporal dissociation 

between biophase and systemic concentrations. Therefore, it is important to accurately determine 

CNS biophase concentrations, or a closely-related surrogate, in order to make better in vitro-to-in 

vivo correlations for centrally-active compounds.  When compounds have “good” BBB 

permeability and are not substrates for transporters, in vitro-to-in vivo correlations can be 

constructed using unbound plasma or CSF concentrations as a surrogate for CNS biophase 

concentrations.  When unbound plasma or CSF concentrations are not reflective of CNS 

biophase concentrations, such as when a compound has “poor” BBB permeability or is subject to 

active brain uptake or efflux, other means for estimating CNS biophase concentrations may be 

needed.  One method for estimating CNS biophase concentrations is simply to multiply total 

brain concentrations by brain unbound fraction (fu,brain). 
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          The present study was conducted to test the hypothesis that the brain EC50,u is the best in 

vivo measure of CNS intrinsic potency.  Seven mu opioid agonists (alfentanil, fentanyl, 

loperamide, methadone, meperidine, morphine, and sufentanil) were selected as probe CNS 

drugs.  These agents were selected on the bases of having pronounced differences in potency 

towards the mu opioid receptor (Terenius, 1975; Leysen et al., 1983), differing physiochemical 

properties (i.e. lipophilicity, unbound fractions, and permeability), and differing extent of CNS 

distribution (i.e. P-gp or non-P-gp substrate) (Dagenais et al., 2004).  PK/PD studies were 

conducted in mice to determine five measures of in vivo potency (ED50; total and unbound EC50 

for both serum and brain) for each opioid.  Estimates of in vitro potency (Ki) and relevant 

clinical parameters were obtained from the literature and used to construct in vitro-to-preclinical 

and preclinical-to-clinical comparisons.  The most useful measure of in vivo of potency was 

determined by correlation analysis with the in vitro and clinical potency data. 

 

Material and Methods 

     Materials. Alfentanil was purchased from Taylor Pharmaceuticals (Decatur, IL).  Fentanyl, 

loperamide, methadone, morphine, and oxycodone were purchased from Sigma-Aldrich (St. 

Louis, MO).  Meperidine was obtained from Spectrum Chemicals and Laboratory Products 

(Gardena, CA).  Sufentanil was purchased from Abbott Laboratories (North Chicago, IL).  All 

other reagents were obtained from common sources and were of reagent grade or better. 

      

     Animals. Male CF-1 mdr1a(+/+) mice (30-40 g; Charles River Laboratories, Inc. 

Wilmington, MA) were maintained on a 12-h light/dark cycle in a temperature- and humidity-

controlled room with access to water and food ad libitum.  All procedures involving mice were 
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approved by The Institutional Animal Care and Use Committee of the University of North 

Carolina and were conducted in accordance with “Principles of Laboratory Animal Care” (NIH 

Publication No. 85-23, revised in 1985).  

     

      Pharmacokinetic-Pharmacodynamic Study. Based on the results of pilot experiments, a 

total of 36 mdr1a(+/+) CF-1 mice received a single equipotent subcutaneous dose of alfentanil 

(0.2 mg/kg), fentanyl (0.09 mg/kg), loperamide (50 mg/kg), methadone (0.6 mg/kg), meperidine 

(25 mg/kg), morphine (3.6 mg/kg), or sufentanil (0.001 mg/kg). Fentanyl and loperamide were 

prepared in 50/50 propylene glycol/water, whereas the remaining opioids were prepared in 0.9% 

saline. Antinociception was assessed at selected time points, and 4 mice per opioid were 

sacrificed by decapitation for collection of brain tissue and blood samples.  Trunk blood was 

collected in 1.5-ml microcentrifuge tubes and was allowed to clot for ≥ 30 min at room 

temperature.  Serum was harvested following centrifugation.  Brain and serum samples were 

stored at -20°C until analysis by HPLC-MS/MS.  

      

     Assessment of Antinociception. Antinociception was assessed with the hot plate latency test 

as described elsewhere (Chen and Pollack, 1997).  Prior to opioid administration, baseline 

hotplate latency was determined for each animal in triplicate.  Hotplate latency was defined as 

the time interval between placement on the hot plate (55°C; Columbus Instruments, Columbus, 

OH) and the first observation of a jump or lick of a hind limb.  Only animals with an average 

baseline latency < 25 sec were used in this study.  A cut-off latency of 60 sec was established to 

avoid tissue damage.  The degree of antinociception was calculated as: 
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%100
latency control - 60

latency control -latency  test 
MPR% ×=      (eq. 1) 

     

      Evaluation of Protein Binding. Plasma and brain unbound fractions were determined in a 

96-well equilibrium dialysis apparatus (HTDialysis, Gales Ferry, CT) using a previously 

reported method (Kalvass and Maurer, 2002).  Briefly, fresh mouse plasma and brain tissue were 

obtained the day of the study.  Spectra-Por 2 membranes obtained from Spectrum Laboratories 

Inc. (Rancho Dominguez, CA) were conditioned in HPLC water for 15 min, followed by 30% 

ethanol for 15 min and 100 mM sodium phosphate pH 7.4 buffer for 15 min.  Brain tissue was 

diluted with 3-fold with 100 mM sodium phosphate (pH 7.4) buffer and homogenized with a 

sonic probe. The drug  of interest was added to samples of plasma and brain tissue homogenate 

(3 and 1 µM, respectively), and 150-µl aliquots (n=6) were loaded into the 96-well equilibrium 

dialysis apparatus and dialyzed against an equal volume of 100 mM sodium phosphate (pH 7.4) 

buffer for 4.5 hr in a 155 rpm shaking water bath maintained at 37˚C.  Prior experience with the 

equilibrium dialysis apparatus indicated that equilibrium would be achieved by  the end of the 

specified incubation period (data not shown). Following incubation, 10 µl of matrix (plasma or 

brain homogenate) and 50 µl of buffer were removed from the apparatus and added directly to 

HPLC vials containing 100 µl of an appropriate internal standard in methanol.  A 50-µl aliquot 

of control buffer was added to the brain homogenate and plasma samples, and 10 µl aliquot of 

either control brain homogenate or control plasma was added to the buffer samples, to yield 

identical matrix composition for all samples prior to analysis.  The samples were vortex-mixed, 

centrifuged, and the supernatant was analyzed by the HPLC-MS/MS as described below.  Plasma 

unbound fraction was calculated from the ratio of concentrations determined in buffer vs. plasma 
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samples.  Equation 2, which accounts for the effect of tissue dilution on unbound fraction 

(Kalvass and Maurer, 2002), was used to calculate the brain unbound fraction:  

1/D1))((1/f
1/D  f Undiluted

measuredu,
u +−

=       (eq. 2) 

D represents the fold dilution of brain tissue, and fu,measured is the ratio of concentrations 

determined in buffer vs. brain homogenate samples. 

 

     Quantitation of Serum and Brain Concentrations. Brain samples were homogenized in 

water (1:2 v/v) via sonic probe.  An aliquot (2 to 25 µl) of homogenate or serum was transferred 

to a HPLC vial, and protein was precipitated with 4- to 125-volumes of methanol containing 

internal standard (5 ng/ml loperamide for alfentanil, fentanyl, meperidine, methadone, and 

sufentanil; 20 ng/ml methadone for loperamide; and 100 ng/ml oxycodone for morphine).  The 

sample was vortex-mixed, centrifuged, and the supernatant was analyzed by HPLC-MS/MS.  

Samples were injected (2-10 µl; CTC Analytics autosampler, Zwingen, Switzerland) onto a 

Phenomenex 2.0 × 30 mm, 5 µm Gemini 110A column (Phenomenex, Torrance, CA) maintained 

at room temperature.  The total run time was 3 min.  Analytes were eluted with a linear gradient 

consisting of ammonium acetate (pH 6.8; 10 mM) [“A”] and methanol [“B”] produced by two 

Shimadzu LC-10ADVP binary pumps.  An initial condition of 5% “B” was ramped to 95% “B” 

over 2 min, held for 0.5 min, and then returned initial condition of 5% “B” in a single step to re-

equilibrate the column.  During the run, the flow rate was increased from 750 to 1500 µl/min 

over the first 2 min, held at 1500 µl/min for 1 min, and then returned the initial flow rate of 750 

µl/min in a single step.  For the morphine samples, the initial conditions were held for 0.5 

minutes before ramping the gradient and flow rate.  The entire column effluent was diverted 
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from the source of the PE-Sciex API-4000 quadrupole mass spectrometer (Turbo V Ionspray 

source, 700˚C, PerkinElmerSciex Instruments, Boston, MA ) for the first 0.8 min and last 0.5 

min of the run.  Alfentanil, fentanyl, loperamide, methadone, meperidine, morphine, oxycodone, 

and sufentanil were measured in positive ionization mode using multiple reaction monitoring 

(417.3→268.3, 337.1→188.3, 477.4→266.0, 248.3→220.3, 310.3→265.2, 286.1→201.1, 

316.0→298.0 and 387.2→238.4, respectively).  Standard curves were prepared in brain 

homogenate, serum, plasma, or buffer and were identical in composition to corresponding 

samples. 

 

     Pharmacokinetic-Pharmacodynamic Analysis. A compartmental modeling approach with 

distribution between serum and brain tissue was used to describe opioid pharmacokinetics.  The 

pharmacokinetic model in Figure 7.1 was fit simultaneously to the serum and brain 

concentration-time data using nonlinear least-squares regression (WinNonlin 4.1; Pharsight 

Corporation, Mountain View, CA).  The brain volume (Vb) was determined experimentally as 

13.4 ml/kg, assuming a specific gravity of 1.0 g/ml.  All other pharmacokinetic parameters were 

obtained from fitting the kinetic model to the data.  The pharmacodynamic parameters, EC50 and 

γ, were determined from fitting a sigmoidal Emax model to the antinociception versus brain 

concentration (C) data. 

γγ

γ

+

⋅
=

CEC
CE

MPR%
50

max         (eq. 3) 

Emax was defined as 100%.  Serum EC50 was calculated from the following equation:  

ssbrain,p,

50
 50 K

ECbrain 
EC serum =         (eq. 4) 
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The ED50 was calculated, assuming linear pharmacokinetics, from the maximum brain 

concentration predicted by the PK model (brain Cmax), the opioid dose (X0), and the brain EC50.  

0
max

50
50 X

Cbrain 
ECbrain ED ×=         (eq. 5) 

The time course of the brain-to-serum ratio (Kp,brain) for each opioid was used to estimate the 

brain equilibration rate constant (keq) and steady-state brain-to-serum ratio (Kp,brain,ss) for that 

compound according to: 

( )tk
ss,brain,pbrain,p

eqe1KK ⋅−−=       (eq. 6) 

The brain equilibration half-life (t1/2eq,brain) was obtained from keq: 

eq
brain,eq2/1 K

)2ln(t =       (eq. 7) 

 

Results  

     The dose administered to produce equivalent antinociception in mice varied by more than 

four orders of magnitude between the most and least potent opioid (0.001 vs. 50 mg/kg for 

sufentanil and loperamide, respectively).  Similarly, the calculated mouse ED50 varied by nearly 

five orders of magnitude (Table 7.2).  The large range of effective doses was advantageous for 

subsequent construction of relationships between various in vitro and in vivo metrics of response. 

     The pharmacokinetic-pharmacodynamic model adequately described the time course of 

antinociception, as well as the brain tissue concentration vs. time and serum concentration vs. 

time relationships, for each of the opioids studied (Figure 7.2). With the exception of fentanyl, 

the systemic pharmacokinetics of all of the opioids were most effectively modeled with a single 

compartment system and first-order absorption from the site of administration (Table 7.1 and 
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Figure 7.2).  The disposition of fentanyl required addition of a peripheral distributional 

compartment with associated parameters (apparent peripheral distributional space [Vp]; 

distributional clearance [Cld]).  Estimates of relevant pharmacokinetic parameters for each of the 

opioids are reported in Table 7.1.  

     Pharmacokinetic/pharmacodynamic modeling revealed counter-clockwise hysteresis in the 

antinociception versus serum concentration relationship for each opioid (Figure 7.3). In contrast, 

all of the opioids exhibited a sigmoidal relationship between antinociception and brain tissue 

concentration, with no evidence of significant hysteresis behavior associated with temporal 

dissociation between CNS pharmacokinetics and pharmacodynamics (Figure 7.4).  Brain EC50 

and γ are reported in Table 7.2.  Brain EC50 estimates differed by more than 3000-fold between 

the most (sufentanil) and the least (meperidine) potent opioid.  Similarly the serum, unbound 

serum, and unbound brain EC50 estimates evidenced a wide range among the seven opioids.  

Depending on the particular EC50 value used as a metric (total brain, unbound brain, total serum, 

or unbound serum), the rank order of opioid potency differed considerably as a consequence of 

large differences in fu,plasma and fu,brain among the opioids.   

     Kp,brain,ss values differed by more than 50-fold among the opioids (Table 7.1 and Figure 7.5).  

The lowest Kp,brain,ss was observed for alfentanil (0.19), and the highest for meperidine  (6.8).  

The t1/2eq,brain ranged from 1 to 74 min, with alfentanil and morphine having the shortest and 

longest t1/2eq,brain, respectively (Table 7.1).  

     In vitro-to-in vivo relationships (Figure 7.6) revealed that mouse serum EC50 and brain EC50 

correlated poorly with in vitro Ki (r2<0.5).  A modest improvement was observed for the 

correlation between unbound serum EC50,u and Ki (r2=0.583). The strongest relationship was 

observed between unbound brain EC50,u and Ki (r2 < 0.799).  
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     Preclinical-to-clinical relationships indicated that mouse serum and human plasma EC50 

estimates were well-correlated (r2=0.949).  Despite the strength of this relationship, the 

correlation was improved when the EC50 values were corrected for binding to plasma proteins 

(r2=0.995) (Figure 7.7). Correlations also were explored between human equipotent clinical i.v. 

dose of the opioids and various estimates of in vitro and in vivo potency (Figure 7.8).  The 

relationship between equipotent clinical dose and Ki was relatively poor (r2=0.677).  Equipotent 

clinical i.v. dose correlated more strongly with mouse ED50 (r2=0.932).  Equipotent clinical i.v. 

dose also correlated equally well with total and unbound mouse serum EC50 (r2=0.922 and 

r2=0.937, respectively). Somewhat surprisingly, equipotent clinical i.v. dose did not correlate as 

well with total brain EC50 (r2=0.878) compared to the relationships with metrics obtained from 

plasma. However, the equipotent clinical i.v. dose correlated most strongly with unbound brain 

EC50,u values in the mouse (r2=0.982).  

     The brain equilibration half-life in mouse determined in the present study (t1/2eq,brain) was 

compared to the apparent plasma-biophase equilibration half-life in humans (t1/2,Ke0), obtained 

from the literature, among the opioids examined in this study.  The correlation between clinical 

t1/2,Ke0 and mouse t1/2eq,brain was excellent (r2=0.988).  With the exception of morphine, all of the 

opioids fell within  a factor of 1.4-fold relative to the line of identity (Figure 7.9).  

  
 

Discussion  

     An integrated pharmacokinetic/pharmacodynamic modeling strategy yielded an adequate 

description of the time course of antinociception, serum concentrations, and brain tissue 

concentrations, for each of the opioids examined in this study.  Systemic clearance of these 
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opioids differed by ~10-fold within the compound set.  In contrast, the in vivo potency 

measurements differed up to 30,000-fold. The differences in the range of behavior within the 

compound set between systemic pharmacokinetics (exemplified by clearance) and 

pharmacodynamics (as indicated by potency metrics) indicated that factors other than systemic 

disposition are the primary determinants of the magnitude and time course of antinociceptive 

response.  Among these non-systemic factors, are distribution into the CNS (as indicated by the 

equilibration half-life), distribution within the CNS (reflected by the brain tissue unbound 

concentration), and intrinsic potency of the opioid. 

     Pharmacokinetic/pharmacodynamic modeling revealed counter-clockwise hysteresis in the 

antinociception versus serum concentration relationship for each opioid (Figure 7.3).  The 

hysteresis behavior was consistent with delayed distribution between the serum and the biophase. 

In contrast, all of the opioids exhibited a sigmoidal relationship between antinociception and 

brain tissue concentration, with no evidence of significant hysteresis behavior associated with 

temporal dissociation between CNS pharmacokinetics and pharmacodynamics (Figure 7.4).  

Brain EC50 and γ are reported in Table 7.2.  Brain EC50 estimates differed by more than 3000-

fold between the most (sufentanil) and the least (meperidine) potent opioid.  Similarly the serum, 

unbound serum, and unbound brain EC50 estimates evidenced a wide range among the seven 

opioids.  Depending on the particular EC50 value used as a metric (total brain, unbound brain, 

total serum, or unbound serum), the rank order of opioid potency differed considerably as a 

consequence of large differences in fu,plasma and fu,brain among the opioids. For instance, 

loperamide was the least potent of the seven opioid based on total serum EC50 values; however, 

it was the 5th, 4th, and 2nd most potent opioid based on the total brain EC50, unbound serum 

EC50,u, and unbound brain EC50u, values respectively. 
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     In vitro-to-preclinical correlations. Previous studies have established in vitro-to-preclinical 

correlations for opioid potency.  Leysen et al. (1983) reported a correlation (r2= 0.81) between in 

vitro Ki (displacement of sufentanil in rat forebrain membranes) and ED50 (rat tail withdrawal 

reflex) for 35 opioids from 5 structural classes, with more >100,000-fold difference in receptor 

affinity.  However, no correlation existed between Ki and ED50 if only alfentanil, fentanyl, 

loperamide, methadone, meperidine, morphine, and sufentanil were included in the analysis      

(r2 < 0.15) (Niemegeers et al., 1979; Leysen et al., 1983).  In the present study, there was a 

similarly poor correlation (r2 = 0.167) between in vitro Ki and mouse ED50 for alfentanil, 

fentanyl, loperamide, methadone, meperidine, morphine, and sufentanil.  This lack of correlation 

can be attributed to differences in pharmacokinetics and biophase distribution characteristics for 

the seven opioids.  The opioids selected for this study came from four different structural classes: 

diphenyproplamines (loperamide and methadone), 4-ax-phenylpiperidines (morphine), 4-eq-

phenylpiperidines (meperidine), and 4-anilinopiperidines (alfentanil, fentanyl, and sufentanil).  

At least three (fentanyl, methadone, and methadone) are P-gp substrates (Dagenais et al., 2004).  

Consequently, the opioids examined have different physiochemical properties and CNS 

(biophase) distribution characteristics. One would anticipate that Ki would be a better predictor 

of biophase EC50 because the confounding influences of pharmacokinetics and biophase 

distribution are removed. 

     Total plasma, unbound plasma, and cerebrospinal fluid (CSF) concentrations been used to 

estimate CNS biophase concentration for in vitro-to-in vivo correlations. Visser et al. (2003) 

demonstrated that, for nine GABAA modulators, in vitro-to-in vivo correlations could be made 

between Ki and either total or unbound plasma EC50; however, the unbound plasma EC50 
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correlated better with Ki than total plasma EC50.  Another study demonstrated the in vitro Ki of 

alfentanil, fentanyl, and sufentanil correlated well with the in vivo EC50 determined from CSF 

concentrations (Cox et al., 1998).  

     In this study, total plasma, total brain, unbound plasma, and unbound brain EC50 estimates 

were used to express opioid potency and were evaluated as potential surrogates for biophase 

EC50. The total serum and total brain EC50 were weakly related to in vitro Ki (r2<0.5).  A modest 

improvement was observed with unbound serum EC50,u (r2=0.583). However, the strongest 

relationship was observed between unbound brain EC50,u and Ki (r2=0.799).  These results are 

consistent with unbound brain concentrations serving as the best surrogate for CNS biophase. 

      

     Preclinical-to-clinical correlations. Predicting human efficacious plasma concentrations is an 

important part of drug discovery, since this information is needed for dose selection and 

assessing relative safety margin.  For example, it may be desirable to have more than a 10-fold 

safety window between projected efficacious and toxic concentrations (e.g., QT prolongation).  

Often, human efficacious plasma concentrations are predicted from total plasma concentrations 

in preclinical efficacy models (Danhof et al., 1993; Ito et al., 1993).  Assuming the drug has 

similar pharmacology and plasma protein binding in humans and preclinical models, this 

prediction should be valid.  In the present study, mouse total serum EC50 correlated well with 

human total plasma EC50 (r2=0.949), consistent with similarities between mouse and human 

opioid pharmacology and plasma protein binding. However, the correlation improved when the 

EC50 values were corrected for protein binding (r2=0.995).  On average, mouse unbound serum 

EC50,u over-predicted human unbound human plasma EC50,u by 2.8-fold (data not shown), 

although the correlation per se was very strong. Thus, it may not be possible to use mouse serum 
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EC50,u as a predictor of human efficacious serum concentrations for a single opioid in isolation.  

However, the murine model appears to be a remarkably effective predictor of relative human 

efficacious serum concentrations among a set of mu opioids, even when those compounds are 

derived from different chemical classes.  

     The ability to predict human dose from in vitro and preclinical data also is important.  Clinical 

dose often correlates with ED50 obtained from animal models.  For example, Niemegeers et al. 

(1979) demonstrated that rat ED50 determined for antidiarrheal and analgesic activity strongly 

correlated with clinical dose for 12 opioids.  In the present study, the equipotent clinical i.v. dose 

and mouse ED50 correlated well for the 7 opioids examined (r2=0.932).  Although efficacious 

dose is dependent on many factors, including systemic disposition, target-site pharmacokinetics, 

and intrinsic potency, the observed differences in efficacious dose appear to be dominated by 

intrinsic potency.  Therefore, any reliable measure of opioid in vivo intrinsic potency should 

correlate well with the clinical equipotent i.v. dose for these opioids.  

     Various in vitro and in vivo measures of opioid potency were correlated with clinical 

equipotent i.v. dose to evaluate predictive potential.  The in vitro Ki was a weak predictor of 

equipotent clinical i.v. dose (r2=0.677).  Equipotent clinical dose correlated better with in vivo 

measures, including mouse ED50 (r2=0.932) and total or unbound mouse serum EC50 (r2=0.922 

and r2=0.937, respectively). It was surprising that equipotent clinical dose did not correlate as 

well with total brain EC50s (r2=0.879) as with either serum concentration measure or murine 

effective dose, suggesting that non-specific opioid binding in brain is substantial. As expected, 

the equipotent clinical dose correlated best with unbound brain EC50,u (r2=0.982), consistent 

unbound brain EC50,u being the best measure of in vivo intrinsic opioid potency.  
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     It is interesting to note that the t1/2eq,brain determined in mice, derived from the kinetics of drug 

equilibration between brain tissue and serum, was almost identical to the clinical t1/2,Ke0, an 

inferred value from the kinetics of pharmacologic response in the context of kinetics of systemic 

disposition (Figure 7.9).  Morphine evidenced the largest discrepancy between these metrics, 

with t1/2,Ke0 being 2.4-fold larger than mouse t1/2eq,brain. Morphine-6-gluronide, an active 

metabolite of morphine in humans have (Glare and Walsh, 1991) that is not formed extensively 

in rodents, possesses a long t1/2,Ke0 (> 3600 min (Lotsch, 2005)).  Because morphine and its 

active metabolite exist in combination after morphine administration in humans, the t1/2,Ke0 

estimate obtained will reflect the contribution of both parent drug and metabolite. The 

remarkable relationship between t1/2,Ke0 and t1/2eq,brain, together with the strong interspecies 

correlation between unbound serum/plasma EC50, suggests that the brain distribution 

characteristics are similar between humans and mice. 

      

     Relative potency and Kp,brain.  Even though all seven opioids examined are mu agonists, they 

do not have the same primary indication.  The primary indication of a given opioid appears not to 

be related to intrinsic opioid potency, but rather to differences in brain distribution characteristics 

and systemic pharmacokinetics.  For example, the two anesthetic opioids, alfentanil and 

sufentanil, have the shortest mouse systemic half-life (8 and 14 min, respectively) and t1/2eq,brain (1 

and 4 min, respectively) of the opioids examined.  The short systemic half-life, combined with 

the short t1/2eq,brain, results in a rapid onset and offset of action, allowing for rapid adjustment of 

response during i.v. infusion. Fentanyl, methadone, meperidine, and morphine, on the other 

hand, have longer half-lives and t1/2eq,brain, rendering them more suitable as analgesics. The brain 

distribution of loperamide is limited due to P-gp-mediated efflux (Schinkel et al., 1996) allowing 
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it to act selectively on mu opioid receptors in the intestinal tract versus the CNS and conferring 

ideal antidiarrheal properties.  These relationships indicate that systemic pharmacokinetics and 

biophase distribution characteristics are more important than intrinsic potency for optimizing an 

opioid action towards a given indication (anesthetic, analgesic, or antidiarrheal).  Undoubtedly, 

potency and biophase distribution characteristics must to be balanced with other properties and 

considerations (i.e., solubility, permeability, bioavailability, systemic clearance and half-life) to 

achieve compounds that will be useful clinical agents.  However, the current data clearly indicate 

the importance of target-site pharmacokinetics and activity in determining qualitative, as well as 

quantitative, clinical response. 

     Kp,brain often is used as a measure of CNS exposure, under the assumption that larger values of 

Kp,brain equate with higher CNS exposure. CNS drug discovery programs have devoted much 

effort and resources to predicting and maximizing the Kp,brain of drug candidates.  Although not 

the main intent of this work, the results presented herein can be used to illustrate the fallacy of 

pursing this strategy.  As previously demonstrated, Ki, ED50, EC50, and equipotent i.v. clinical 

doses are appropriate parameters for constructing in vitro-to-in vivo and preclinical-to-clinical 

correlations. The same cannot be said for Kp,brain.  Even though Kp,brain values differed by more 

than 50-fold among the opioids examined, there was no correlation between Kp,brain and any 

relevant pharmacodynamic parameter (r2<0.2) for Ki, EC50, EC50,u, ED50, equipotent i.v. clinical 

dose, fu,plasma, fu,brain, t1/2eq,brain and t1/2,Ke0).  With the exception of loperamide, all of the opioids 

examined are marketed CNS-active drugs exhibiting Kp,brain values ranging between 0.19 and 6.8.  

This large range of Kp,brain values, which was not meaningfully correlated with any relevant 

measure of opioid action, indicates that Kp,brain is not a useful parameter.  In contrast to Kp,brain, 

the unbound brain and unbound plasma concentrations were useful for in vitro-to-in vivo and 
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preclinical-to-clinical predictions, and the ratio of unbound brain to unbound plasma 

concentrations better reflects pharmacologically relevant brain exposure.  

     In summary, these results suggest that the mouse is a good model for opioid brain disposition 

and pharmacology, and that superior in vitro-to-preclinical and preclinical-to-clinical correlations 

can be established when making comparisons between relevant unbound concentrations.   
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Table 7.1. Parameter estimates from PK-PD modeling. 

  Parameter alfentanil fentanyl loperamide meperidine methadone morphine sufentanil
Ka (min-1) 0.35 ± 0.03 0.07 ± 0.07 0.063 ± 0.015 0.39 ± 0.18 0.55 ± 0.13 0.27 ± 0.04 0.32 ± 0.12 
Cl (ml·min-1·kg-1) 82 ± 3 90 ± 40 58 ± 7 190 ± 40 127 ± 12 95 ± 5 19 ± 3 
Vc (ml·kg-1) 1000 ± 60 3000 ± 3000 32000 ± 3000 6100 ± 1200 8800 ± 600 2900 ± 180 400 ± 80 
Cld (ml·min-1·kg-1) - 40 ± 30 - - - - - 
Vp (ml·kg-1) - 5000 ± 13000 - - - - - 
Clup (ml·min-1·kg-1) 4 ± 3 8 ± 3 0.04 ± 0.06 100 ± 40 27 ± 4 9.5 ±0.5 37 ± 14 
Clefflux (ml·min-1·kg-1) 22 ± 17 3.4 ± 1.4 0.3 ± 0.5 8 ± 4 5.1 ± 0.9 1.9 ± 1.4 12 ± 5 
        
EC50 (ng/g) 9.2 ± 1.7 6.4 ± 1.1 100 ± 6 2200 ± 110 510 ± 60 38 ± 4 1.0 ± 0.2 
γ 1.8 ± 0.4 1.4 ± 0.3 2.7 ± 0.5 7.8 ± 4.2 3.7 ± 1.1 2.3 ± 0.5 2.5 ± 1.3 

Kp,brain 0.195 ± 0.0087 2.3 ± 0.2 0.115 ± 0.014 6.8 ± 0.5 3.3 ± 0.2 1.1 ± 0.6 2.1 ± 0.3 
Keq (min-1) 0.64 ± 0.09 0.14 ± 0.04 0.025 ± 0.010 0.13 ± 0.03 0.073 ± 0.014 0.009 ± 0.006 0.16 ± 0.06 
t1/2eq,brain (min) 1.08 ± 0.16 4.9 ± 1.3 27 ± 11 5.4 ± 1.1 9.6 ± 1.8 74 ± 45 4.3 ± 1.6 

        

 Parameter estimate ± S.E. from non-linear regression analysis of pooled mdr1a(+/+) mouse data.  
 t1/2eq,brain were calculated from 0.693/Keq,brain. 

 



 

        Table 7.2. Additional parameters used for correlation of in vitro, preclinical, and clinical data. 
 Parameter alfentanil fentanyl loperamide meperidine methadone morphine sufentanil

In Vitro Ki (nM) a      19 1.6 0.50 b 193 2.2 5.7 0.10

Mouse ED50 (mg/kg) 0.079 0.020 36 3.2    2.2 0.94 0.00041
Mouse fu,plasma c  0.26 0.17 0.029 0.36 0.15 0.50 0.054
Mouse fu,brain c  0.33 0.070 0.0047 0.13 0.029 0.41 0.034

Human Plasma EC50 (nM) d         1337 24 n.a. 6034 e 1151 195 1.8
Human Equipotent IV dose (mg) f 0.75       0.10 n.a. 90 8.75 10 0.015
Human t1/2,Ke0 (min) d 1.0 5.8 n.a.    - 12 178 6.2
Human fu,plasma  0.079 g         0.156 g - 0.35 e 0.125 h  0.75 i 0.75 g 

        

        

            a (Leysen et al., 1983) 
             b (Terenius, 1975) 
             c (Kalvass and Pollack, 2006) 

            d Average from EEG power spectrum analysis, analgesia (cancer pain), pain tolerance, and/or post operative analgesia; (Lotsch, 2005) 

            e Unbound potency of meperidine is 20 time less than alfentanil; (Kurz et al., 1997) 

            f (Wood and Alastair, 1990) 204             g, h, and  i  (Meuldermans et al., 1982), (Inturrisi et al., 1987), and (Glare and Walsh, 1991), respectively 
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Figure 7.1. Pharmacokinetic-pharmacodynamic model for opioid disposition and 

antinociception in mice.  Pharmacokinetic parameters were obtained by fitting the model to 

the time course of serum and brain concentrations in mdr1a(+/+) mice following 

subcutaneous administration.  The absorption rate constant (Ka), central volume (Vc), 

systemic clearance (Cl), peripheral volume (Vp), distributional clearance (Cld), brain uptake 

clearance (Clup), and brain efflux clearance (Clefflux) were estimated for each opioid.  The 

brain volume (Vb) was fixed.  The effect parameters, EC50 and γ, were obtained by fitting a 

sigmoidal Emax model to the brain concentration versus antinociception data.  Emax was 

defined as 100%. 

 
 



 

 Time (min)
0 10 20 30 40 50 60

C
on

ce
nt

ra
tio

n 
(n

g/
m

l o
r n

g/
g)

0.1

1

10

100

1000

An
tin

oc
ic

ep
tio

n 
(%

M
P

R
)

-20

0

20

40

60

80

100A

  Time (min)
0 60 120 180 240

C
on

ce
nt

ra
tio

n 
(n

g/
m

l o
r n

g/
g)

1

10

100

An
tin

oc
ic

ep
tio

n 
(%

M
P

R
)

0

20

40

60

80

100
B

 

 Time (min)
0 100 200 300 400 500 600

C
on

ce
nt

ra
tio

n 
(n

g/
m

l o
r n

g/
g)

0.3

3

30

300

3000

A
nt

in
oc

ic
ep

tio
n 

(%
M

P
R

)

0

20

40

60

80

100C

  Time (min)
0 5 10 15 30 60 90 120 150

C
on

ce
nt

ra
tio

n 
(n

g/
m

l o
r n

g/
g)

30

300

3000

30000

A
nt

in
oc

ic
ep

tio
n 

(%
M

P
R

)

-20

0

20

40

60

80

100D

  

 Time (min)
0 30 60 90 120 150 180

C
on

ce
nt

ra
tio

n 
(n

g/
m

l o
r n

g/
g)

10

100

1000

An
tin

oc
ic

ep
tio

n 
(%

M
P

R
)

-20

0

20

40

60

80

100E

        Time (min)
15 30 45 600 15 30 45 600

C
on

ce
nt

ra
tio

n 
(n

g/
m

l o
r n

g/
g)

5

50

500

5000

A
nt

in
oc

ic
ep

tio
n 

(%
M

P
R

)

0

20

40

60

80

100F

 

 Time (min)
0 10 20 30 40 50 60

C
on

ce
nt

ra
tio

n 
(n

g/
m

l o
r n

g/
g)

0.1

1

10

An
tin

oc
ic

ep
tio

n 
(%

M
PR

)

0

20

40

60

80

100
G

 
 
Figure 7.2.  Time course of antinociception ( ), serum ( ) and brain ( ) concentrations 

following (A) 0.2-mg/kg s.c. dose of alfentanil; (B) 0.9-mg/kg s.c. dose of fentanyl; (C) 50-

mg/kg s.c. dose of loperamide; (D) 25-mg/kg s.c. dose of meperidine; (E) 2-mg/kg s.c. dose 

of methadone; (F) 3.6-mg/kg s.c. dose of morphine; or (G) 0.001-mg/kg s.c. dose of 

sufentanil in CF-1 mdr1a(+/+) mice.  Data are presented as mean ± S.E. [concentration data 

(n ≥ 3); antinociception (n = 4 to 36)].  Lines represent the fit of the PK-PD model to the 

antinociception and concentration data. 
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Figure 7.3. Relationship between plasma concentration and antinociception for mu opioid 

agonists.  Symbols represent data from mdr1a(+/+) mice.  Lines represent the fit of the 

PK/PD model to the antinociception-serum concentration data.  Symbols are as follows:  

sufentanil,  fentanyl,  alfentanil,  methadone,  meperidine, morphine, and  

loperamide.  All opioids exhibited a counter-clockwise hysteresis in the antinociception 

versus serum concentration relationship.  Data are presented as means [serum concentration 

(n = 2 to 4); antinociception (n = 4 to 36)].  
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Figure 7.4.  Relationship between brain concentration and antinociception for mu opioid 

agonists.  Symbols represent data from mdr1a(+/+) mice.  Lines represent the fit of a 

sigmoidal Emax model to the antinociception-brain concentration data.  Data are presented as 

means [brain concentration (n = 2 to 4); antinociception (n = 4 to 36)].  
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Figure 7.5.  Time course of opioid Kp,brain in CF-1 mice.  Solid lines represent the fit of a 

kinetic model to the data.  Data are presented as mean ± S.E. (n ≥ 3). 
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Figure 7.6. Correlation analysis for various in vivo measures relative to in vitro potency.  

The dashed line represents the line from log-log orthogonal regression analysis. 
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Figure 7.7. Correlation between mouse serum and human plasma EC50s.  The dashed line 

represents the line from log-log orthogonal regression analysis.  
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Figure 7.8. Correlation of equipotent clinical dose with in vitro Kis, mouse ED50s, and 

mouse EC50s.  The dashed line represents the line from log-log orthogonal regression 

analysis. 
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Figure 7.9. The correlation between human plasma-biophase equilibration half-life (t1/2,Ke0) 

and mouse brain equilibration half-life (t1/2eq,brain).  The solid line represents the line of unity; 

the dashed line represents the line from log-log orthogonal regression analysis.  With the 

exception of morphine, all of the opioids fell within 1.4-fold of the line of unity.  
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CHAPTER 8 
 

PHARMACOKINETICS AND PHARMACODYNAMICS OF ALFENTANIL IN P-

GLYCOPROTEIN-COMPETENT AND P-GLYCOPROTEIN-DEFICIENT MICE: 

P-GLYCOPROTEIN EFFLUX ALTERS  ALFENTANIL BRAIN DISPOSITION AND 

ANTINOCICEPTION 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This chapter has been submitted for publication in Drug Metabolism and Disposition and is 
presented in the style of that journal. 



 

Abstract  

     Previous studies have indicated that P-glycoprotein (P-gp) attenuates the CNS penetration 

and central activity of some opioids.  The impact of P-gp-mediated efflux on the disposition 

and efficacy of the synthetic opioid alfentanil currently is unknown.  In this study, P-gp-

competent [mdr1a(+/+)] and P-gp-deficient [mdr1a(-/-)] mice were used to investigate the 

impact of P-gp-mediated efflux on the systemic pharmacokinetics, brain disposition, and 

central activity of alfentanil.  Equipotent doses of alfentanil were administered to mdr1a(+/+) 

and mdr1a(-/-) mice (0.2 and 0.067 mg/kg, respectively), and the time course of brain and 

serum concentrations, as well as antinociception, were determined.  A pharmacokinetic-

pharmacodynamic (PK-PD) model was fit to the data and used to assess the impact of P-gp 

on parameters associated with alfentanil disposition and action.  The mdr1a(+/+) mice were 

less sensitive to alfentanil than mdr1a(-/-) mice, requiring a 3-fold higher dose to produce 

similar antinociception.  PK-PD modeling revealed no differences in alfentanil systemic 

pharmacokinetics between P-gp expressers and nonexpressers.  However, the steady-state 

brain-to-serum concentration ratio (Kp,brain,ss) was ~3-fold lower in mdr1a(+/+) mice 

compared to mdr1a(-/-) mice (0.19±0.01 versus 0.54±0.04, respectively).  Consistent with 

the ~3-fold lower Kp,brain,ss, the antinociception versus serum concentration relationship in 

mdr1a(+/+) mice was shifted ~3-fold rightward compared to mdr1a(-/-) mice.  However, 

there was no difference in the antinociception versus brain concentration relationship, or in 

the brain tissue EC50 (11±1.8 versus 9.2±1.7 ng/g), between mdr1a(+/+) and mdr1a(-/-) mice.  

These results indicate that alfentanil is an in vivo P-gp substrate, and are consistent with the 

hypothesis that P-gp-mediated efflux attenuates antinociception by reducing alfentanil 

Kp,brain,ss. 
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Introduction 

     P-glycoprotein (P-gp) is the 170-kD protein product of the multi-drug resistance gene 

(mdr1) first identified for its ability to confer multi-drug resistance in tumor cells (Juliano, 

1976; Gros et al., 1986).  P-gp mediates excretory and barrier functions in several tissue (e.g., 

proximal tubular cells of the kidneys, the canalicular membrane of hepatocytes in the liver, 

the apical membrane of intestinal enterocytes, and the luminal membrane of brain capillary 

endothelial cells) (Thiebaut et al., 1987; Cordon-Cardo et al., 1989; Cordon-Cardo et al., 

1990).  P-gp appears to play a protective role in intact mammals by attenuating absorption, 

facilitating excretion, and restricting distribution to several tissue sites, including the central 

nervous system (CNS), of many structurally diverse xenobiotics, including calcium channel 

blockers, HIV protease inhibitors, immunosuppressants, and opioids (Matheny et al., 2001). 

     Concomitant administration of P-gp inhibitors with P-gp substrates may lead to clinically 

significant drug interactions (Ho and Kim, 2005).  For example, although the anti-diarrheal 

agent loperamide is a potent opioid agonist, it is not centrally active due, in part, to P-gp-

mediated efflux at the blood-brain barrier (BBB) (Schinkel et al., 1996).  However, when 

loperamide and the P-gp inhibitor quinidine were co-administered to subjects, respiratory 

depression was observed, which was attributed to an increase in loperamide brain 

concentration caused by P-gp inhibition (Sadeque et al., 2000).  While the precise mechanism 

of this interaction has not been verified, the potential for enhanced central effects of P-gp 

substrates due to P-gp inhibition is nonetheless clear.   

     Studies have demonstrated that P-gp attenuates the brain distribution and central activity 

of several opioids.  For example, (Thompson et al., 2000) showed that fentanyl, morphine, 

and methadone resulted in increased and prolonged antinociception in mdr1a(-/-) mice 
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compared to mdr1a(+/+) mice.  Similarly, the cyclic peptide opioid DPDPE produced 

increased antinociception in mdr1a(-/-) mice as opposed to their P-gp-expressing 

counterparts (Chen and Pollack, 1998).  The P-gp inhibitor GF120918 was able to restore 

DPDPE-mediated antinociception in mdr1a(+/+) mice to levels observed in the mdr1a(-/-) 

mice (Chen and Pollack, 1999).  The P-gp inhibitor verapamil also was capable of increasing 

morphine brain concentrations and morphine-associated antinociception in mdr1a(+/+) mice 

(Zong and Pollack, 2000).   

     Alfentanil is a synthetic opioid used for the induction of surgical anaesthesia and the 

management of post-surgical pain.  The alfentanil dose needs to be individualized based on 

numerous factors, including pathological condition, use of other medicines, and the type and 

duration of the surgical procedure (Scholz et al., 1996).  Because alfentanil is a CYP3A4 

substrate, CYP3A4 activity is another important determinant of the required alfentanil dose 

(Kharasch and Thummel, 1993).  Many compounds are substrates of both CYP3A4 and P-gp.  

If alfentanil is a P-gp substrate, P-gp may be a determinant of the required alfentanil dose, a 

possible a source of inter-patient variability, and a potential locus of drug-drug interactions. 

     The impact of P-gp-mediated efflux on the pharmacokinetics and central 

pharmacodynamics of the alfentanil is unknown.  Initial pilot experiments in this laboratory 

indicated P-gp-mediated efflux reduces alfentanil-associated antinociception.  To investigate 

these observations further, and to evaluate whether P-gp efflux activity may contribute to 

inter-patient variability in alfentanil response or serve as a locus of drug-drug interactions, 

the present study was undertaken to determine the impact of P-gp-mediated efflux on the 

systemic pharmacokinetics, brain disposition, and central activity of alfentanil.  A PK-PD 
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modeling approach was employed to assess the mechanism(s) by which P-gp-mediated efflux 

influences alfentanil-associated antinociception.   
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Material and Methods 

     Materials. Alfentanil was obtained from Taylor Pharmaceuticals (Decatur, IL) and 

loperamide was purchased from Sigma-Aldrich (St. Louis, MO).  All other reagents were 

obtained from common sources and were of reagent grade or better. 

     Animals. Male CF-1 mdr1a(+/+) and mdr1a(-/-) mice (30-40 g; Charles River 

Laboratories, Inc. Wilmington, MA) were maintained on a 12-h light/dark cycle in a 

temperature- and humidity-controlled room with access to water and food ad libitum.  All 

procedures involving mice were approved by The Institutional Animal Care and Use 

Committee of the University of North Carolina and were conducted in accordance with 

“Principles of Laboratory Animal Care” (NIH Publication No. 85-23, revised in 1985).   

     PK/PD Study. Based on the results of pilot studies, 36 mdr1a(-/-) and 36 mdr1a(+/+) mice 

received equipotent subcutaneous doses of alfentanil in physiological saline (0.067 and 0.2 

mg/kg, respectively).  At 0.5, 1, 2, 4, 8, 15, 30, 45 and 60 min post-administration, 

antinociception was assessed, and 4 mdr1a(-/-) and 4 mdr1a(+/+) mice were sacrificed by 

decapitation for collection of brain tissue and trunk blood.  Trunk blood was collected in 1.5-

ml microcentrifuge tubes and was allowed to clot for ≥ 30 min at room temperature.  Serum 

was harvested following centrifugation.  Brain and serum samples were stored at -20°C until 

analysis by HPLC-MS/MS.   

     Assessment of Antinociception. Antinociception was assessed with the hot plate latency 

test as described elsewhere (Chen and Pollack, 1997).  Prior to administration of alfentanil, 

baseline hotplate latency was determined for each animal in triplicate.  Hotplate latency was 

defined as the time interval between placement on the hot plate (55°C; Columbus 

Instruments, Columbus, OH) and first observation of a jump or lick of the hind limb(s). 
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Animals with an average baseline latency < 25 sec were used in the study.  A cut-off latency 

of 60 sec was used to avoid tissue damage.  The degree of antinociception was calculated as: 

%100
latency control - 60

latency control -latency  test MPR% ×=      (1) 

     Quantitation of Alfentanil in Serum and Brain. Brain samples were homogenized in 

water (1:2 v/v) with a sonic probe.  A 25-µl aliquot of homogenate or serum was transferred 

to a HPLC vial, and protein was precipitated with 100 µl methanol containing internal 

standard (loperamide, 5 ng/ml).  The sample was vortex-mixed, centrifuged, and the 

supernatant was analyzed by HPLC-MS/MS.  Samples were injected (3 µl; CTC Analytics 

autosampler, Zwingen, Switzerland) onto a Phenomenex 2.0 ä 30 mm, 5 µm Gemini 110A 

column (Phenomenex, Torrance, CA) maintained at room temperature.  The total run time 

was 3 min.  Analytes were eluted with a linear gradient consisting of ammonium acetate (pH 

6.8; 10 mM) [“A”] and methanol [“B”] produced by two Shimadzu LC-10ADVP binary 

pumps.  An initial condition of 5% “B” was ramped to 95% “B” over 2 min, held for 0.5 min, 

and then returned initial condition of 5% “B” in a single step to re-equilibrate the column.  

During the run, the flow rate was increased from 750 to 1500 µl/min over the first 2 min, 

held at 1500 µl/min for 1 min, and then returned the initial flow rate of 750 µl/min in a single 

step.  The entire column effluent was diverted from the source of the PE-Sciex API-4000 

"quadrupole mass spectrometer (Turbo V Ionspray source, 700˚C, PerkinElmerSciex 

Instruments, Boston, MA) for the first 1 min and last 0.5 min of the run.  Alfentanil and 

loperamide were measured in positive ionization mode using multiple reaction monitoring 

(417.3→268.3 and 477.4→266.0, respectively).  Standards were prepared in brain 

homogenate and serum and fitted with a quadratic equation with 1/y weighting (0.1-500 

ng/ml).  Accuracy of standards was within ≤ 15%. 
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     Pharmacokinetic-Pharmacodynamic Analysis. A compartmental modeling approach 

with distribution between serum and brain tissue was used to describe alfentanil 

pharmacokinetics.  The pharmacokinetic model shown schematically in Figure 8.1 was fit 

simultaneously to the serum and brain concentration data from both mdr1a(-/-) and 

mdr1a(+/+) mice using nonlinear least-squares regression (WinNonlin 4.1; Pharsight 

Corporation, Mountain View, CA).  The absorption rate constant (ka), central volume (Vc), 

and systemic clearance (Cl) did not differ between mdr1a(-/-) and mdr1a +/+ mice, and 

therefore were assumed to be identical when fitting the model to the data from both mouse 

strains simultaneously; the brain uptake (Clup) and brain efflux (Clefflux) clearances were 

allowed to vary between mdr1a(-/-) and mdr1a(+/+) mice.  The brain volume (Vb) was 

determined experimentally as 13.4 ml·kg-1, assuming a specific gravity of 1.0 g/ml.  The 

pharmacodynamic parameters, EC50 and γ, were determined directly from fitting a sigmoidal 

Emax model to the antinociception versus brain concentration (C) data: 

γγ

γ

+

⋅
=

CEC
CE

MPR%
50

max         (2) 

Emax was defined as 100%, and γ was constrained to the same value for mdr1a(-/-) and 

mdr1a(+/+) mice.  The time course of the brain-to-serum concentration ratio (Kp,brain) was 

used to estimate the brain equilibration rate constant (keq) and steady-state brain-to-serum 

ratio (Kp,brain,ss) according to: 

( )tk
ss,brain,pbrain,p

eqe1KK ⋅−−=        (3) 

The brain equilibration half-life (t1/2eq,brain) was obtained from keq: 

eq
brain,eq2/1 K

)2ln(t =       (4) 
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Results 

     Alfentanil Pharmacokinetics. Alfentanil was absorbed rapidly following subcutaneous 

administration, with peak serum and brain concentrations achieved in less than 10 minutes 

(Figure 8.2).  Alfentanil clearance was high (~equivalent to hepatic blood flow), assuming 

complete absorption from the subcutaneous site,  and half-life was short (t1/2 < 15 min).  

Alfentanil serum concentrations were 3-fold lower in the mdr1a(-/-) mice, consistent with 

those animals receiving a 3-fold lower dose than their transporter-competent counterparts.  

However, the time course of brain concentrations in the mdr1a(-/-) and mdr1a(+/+) mice 

were nearly superimposable (Figure 8.2).  Both the systemic and brain tissue 

pharmacokinetics were capable of being described by the pharmacokinetic model (Figure 8.2 

and Table 8.1).  Pharmacokinetic-parameter estimates obtained from the pharmacokinetic 

model are reported in Table 8.1.   

     Alfentanil Pharmacodynamics. Pilot experiments indicated that, at equivalent doses, 

antinociceptive activity was lower in mdr1a(+/+) mice than in mdr1a(-/-) mice (data not 

shown).  However, at a 3-fold higher dose (0.20 mg/kg vs 0.067 mg/kg), the magnitude and 

duration of antinociception in mdr1a(+/+) were identical to those in  mdr1a(-/-) mice (Figure 

8.3).  In both mdr1a(+/+) and mdr1a(-/-) mice, alfentanil had a rapid onset of 

antinociception, a peak effect of ~85% MPR, and a rapid offset of action with nociceptive 

response returning to baseline within 60 min of administration.  Consistent with a lower 

alfentanil potency in mdr1a(+/+) mice (due to P-gp-mediated efflux from the brain) , there 

was a 3-fold rightward shift in the serum concentration-effect relationship in transporter-

competent versus transporter-deficient mice (Figure 8.4).  There was no difference in the 

brain concentration effect relationship, nor brain EC50s, between the mdr1a(+/+) and  
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mdr1a(-/-) mice (Figure 8.5; Table 8.1).  The PK-PD model adequately described the time 

course of antinociception, the serum concentration-effect relationships, and the brain 

concentration-effect relationships in both mouse strains (Figures 3, 4, and 5, respectively).  

The PK-PD model indicated the presence of a slight counterclockwise hysteresis in the 

antinociceptive effect versus serum concentration relationship (Figure 8.4).  However, there 

was no hysteresis in the antinociceptive effect versus brain concentration relationship (Figure 

8.5).  Pharmacodynamic parameter estimates obtained from the PK-PD model are reported in 

Table 8.1. 

     Alfentanil Brain Disposition. Equilibration of alfentanil between brain and serum 

occurred rapidly, with state-steady Kp,brain reached within approximately 4 min.  The time 

course of alfentanil Kp,brain is shown in Figure 8.6.  The Kp,brain,ss was less than unity for both 

mdr1a(+/+) and mdr1a(-/-) mice, and the Kp,brain,ss in mdr1a(-/-) mice was 3-fold higher than 

in mdr1a(+/+) mice (Table 8.1; Figure 8.6).  Estimates of Clup and Clefflux differed between 

mdr1a(+/+) and mdr1a(-/-) mice, with Clup increased (1.6-fold) and Clefflux decreased (1.6-

fold) in mdr1a(-/-) mice.  The t1/2eq,brain was short (≤ 1.5 min) in both mdr1a(+/+) and  

mdr1a(-/-) mice.  However, t1/2eq,brain was ~1.5-fold longer in mdr1a(-/-) mice (Table 8.1).  

Consistent with implicit assumptions of the PK model, the ratios of Clup/Clefflux (0.18 and 

0.47 in mdr1a(+/+) and mdr1a(-/-) mice, respectively) were comparable to the respective 

Kp,brain,ss values (Table 8.1). 
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Discussion 

     The ATP-dependent efflux transporter P-gp is the protein product of the mdr1 gene, and is 

expressed in variety of tissues including the luminal membrane of the BBB (Cordon-Cardo et 

al., 1989; Cordon-Cardo et al., 1990).  Several studies have indicated that some opioids have 

reduced brain penetration and attenuated central activity due to P-gp-mediated efflux (Chen 

and Pollack, 1998; Thompson et al., 2000; Zong and Pollack, 2000; Dagenais et al., 2004).  

The influence of P-gp on the pharmacokinetics and central pharmacodynamics of the 

synthetic opioid alfentanil had not been explored previously.  Pilot experiments in this 

laboratory indicated that alfentanil produced less antinociception in mdr1a(+/+) mice than in 

mdr1a(-/-) mice, consistent with P-gp-mediated efflux at the BBB.  In this study, the time 

course of antinociception, as well as serum and brain concentrations of alfentanil, were 

evaluated in mdr1a(+/+) and mdr1a(-/-) mice in order to investigate the impact of P-gp-

mediated efflux on the systemic pharmacokinetics, brain disposition, and central activity of 

alfentanil. 

     In order to achieve a similar degree of antinociception in both mdr1a(+/+) and mdr1a(-/-) 

mice, the dose administered to mdr1a(+/+) mice was three-fold higher than that in 

transporter-deficient animals.  Even though the doses were different, pharmacokinetic 

modeling indicated no difference in systemic pharmacokinetics between mdr1a(+/+) and 

mdr1a(-/-) mice (Table 8.1).  This result was not unexpected since P-gp often has minimal 

impact on systemic pharmacokinetics following subcutaneous or intravenous administration. 

     In contrast to the serum pharmacokinetics, P-gp had a pronounced effect on alfentanil 

brain pharmacokinetics.  The Kp,brain,ss of mdr1a(+/+) mice was ~3-fold lower compared to 

mdr1a(-/-) mice (0.19 vs. 0.54).  The decrease in Kp,brain,ss was accompanied by a ~1.6-fold 
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decrease in Clup and ~1.6-fold increase in Clefflux.  These observations are consistent with the 

hypothesis that P-gp decreases Kp,brain,ss by both attenuating brain uptake and enhancing brain 

efflux.  Similar observations have been reported for other P-gp substrates (Kusuhara et al., 

1997).  The brain and serum concentrations of alfentanil equilibrated rapidly, with a t1/2,eq,,brain 

≤ 1.5 min.  This value is similar to previously reported estimates from humans (Lotsch, 

2005).  Unexpectedly, the t1/2,eq,,brain was shorter in the mdr1a(+/+) mice (Table 8.1).  This 

observation may be explained by the fact that t1/2,eq,,brain is inversely proportional to Clefflux, 

and that P-gp increased Clefflux (~1.6-fold) thereby causing a proportional decrease in the 

t1/2,eq,,brain in mdr1a(+/+) mice (~1.4-fold).  Interestingly, this result implies that P-gp-

mediated efflux may reduce equilibration time between brain and systemic concentrations.  

Previously, the short t1/2,eq,,brain of alfentanil had been attributed in part to a small Kp,brain,ss 

(Upton et al., 1997).  In this study, the Kp,brain,ss of alfentanil was less than unity for both 

mdr1a(+/+) and mdr1a(-/-) mice, indicating two important points: first, that a small Kp,brain,ss 

may indeed facilitate rapid equilibrium between systemic and brain concentration, and 

second, that a Kp,brain,ss greater than unity may not be needed, or even desirable, for CNS drug 

with rapid onset and offset of action. 

     PK-PD modeling indicated a ~3-fold rightward shift in the antinociception versus serum 

concentration relationship for mdr1a(+/+) mice compared to mdr1a(-/-) mice.  PK-PD 

modeling also revealed a slight counterclockwise hysteresis in the antinociception versus 

serum concentration relationship for both mdr1a(+/+) and mdr1a(-/-) mice.  However, there 

was no hysteresis in the antinociception versus brain concentration relationship, and the brain 

tissue EC50s between mdr1a(+/+) and mdr1a(-/-) mice were not different.  These 

observations are consistent with brain concentrations driving antinociception, and provide 
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compelling evidence that P-gp efflux attenuates alfentanil antinociception by reducing 

Kp,brain,ss. 

          This study is the first to show that alfentanil is a P-gp substrate.  In contrast, an earlier 

study that examined the transcellular flux of alfentanil across L-MDR1 (expressing P-gp) and 

LLC-PK1 cell monolayers concluded alfentanil was not a P-gp substrate and had low affinity 

towards P-gp (IC50 > 50 µM) (Wandel et al., 2002).  There are at least three possible 

explanations for the difference in results between these two studies.  First, there might be 

species differences in the P-gp-mediated transport of alfentanil.  This study evaluated the in 

vivo effects of murine P-gp (mdr1a), whereas the previous work studied the human form of 

P-gp (MDR1) in vitro.  However, species differences in P-gp are unlikely, since human and 

murine P-gp share 80% sequence homology, and they are known to have similar substrate 

specificity (Chen et al., 2003).  Secondly, basal activity of endogenous efflux transporter(s) 

in the LLC-PK1 and L-MDR1 cell lines may have masked P-gp-mediated transport of 

alfentanil, for flux was higher in the basolateral-to-apical direction in both the P-gp-

expressing L-MDR1 and control LLC-PK1 cell monolayers.  Thirdly, in vitro systems often 

are less sensitive than intact animal models for identifying weak P-gp substrates. 

     Alfentanil is a CYP3A4 substrate in humans, and has been used as a noninvasive clinical 

probe to evaluate CYP3A4 activity (Kharasch et al., 2005).  The degree of miosis produced 

by alfentanil has been shown to correlate well with alfentanil plasma concentrations, and as 

such alfentanil-pupilometry studies have been used to evaluate CYP3A4 activity and to 

conduct drug-drug interaction studies.  An assumption of such studies is that any increase or 

decrease in alfentanil-induced miosis is due primarily to changes in CYP3A4 activity 

(inhibition or induction).  The present results showing that alfentanil is P-gp substrate 
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indicate that alfentanil-pupilometry studies may have the potential to detect alterations in P-

gp activity.  Previous pupilometry studies conducted with the P-gp substrates morphine, 

fentanyl, methadone, and loperamide have shown that inhibition of P-gp at the BBB by the 

P-gp inhibitor quinidine is modest (Kharasch et al., 2003; Skarke et al., 2003; Kharasch et al., 

2004a; Kharasch et al., 2004b).  Since quinidine is one of the most potent compounds 

capable of inhibiting P-gp that is in clinical use, the likelihood of significant inhibition of P-

gp at the BBB appears remote.  However, future drug-drug interaction studies conducted 

with alfentanil should be assessed carefully to ensure that any observed drug-drug interaction 

is not caused by P-gp inhibition. 

     In summary, the present study indicated that alfentanil is a P-gp substrate, and that P-gp-

mediated efflux attenuates alfentanil antinociception by reducing Kp,brain,ss.  These 

observations may have important implications regarding inter-individual differences in 

alfentanil pharmacodynamics and for the risk of drug-drug interactions.  Additional studies 

may be warranted to assess the clinical relevance of P-gp efflux as a determinant of alfentanil 

pharmacotherapy. 
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Table 8.1. PK-PD parameters for alfentanil in mdr1a(-/-) and mdr1a(+/+) mice 
Parameter weighting mdr1a(-/-) mdr1a(+/+) 
Ka (min-1)  0.35 ± 0.03 
Cl (ml·min-1·kg-1) 1/y 82 ± 3 
Vc (ml·kg-1) 1/y 1000 ± 60 
t1/2 (min) - 12 ± 0.6 a 
Clup (ml·min-1·kg-1) 1/y 7 ± 5 4 ± 3 
Clefflux (ml·min-1·kg-1) 1/y 13 ± 12 22 ± 17 
Vb (ml·kg-1) - 13.4 (fixed) 
    
EC50 (ng/g) uniformed 9.2 ± 1.7 11 ± 1.8 
γ uniformed 1.8 ± 0.4 
    
Kp,brain 1/y 0.54 ± 0.04 0.195 ± 0.008 
Keq (min-1) 1/y 0.46 ± 0.10  0.64 ± 0.09 
t1/2eq,brain (min) - 1.5 ± 0.3 1.08 ± 0.16 
Parameter estimate ± S.E. from nonlinear least-squares regression analysis of pooled mdr1a(-/-) or mdr1a(+/+) 
mouse data.  
Ka, Cl, Vc, Vb, and γ were constrained to the same value for mdr1a(-/-) or mdr1a(+/+) mice. 
t1/2 and t1/2eq,brain were calculated from 0.693/(Vc/Cl) and 0.693/Keq,brain, respectively. 
a Propagation of error was used to calculated SE. 
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Figure 8.1. Pharmacokinetic-pharmacodynamic model for alfentanil disposition and 

antinociception in mice. Pharmacokinetic parameter were obtained by fitting the above 

model to the time course of serum and brain concentrations of mdr1a(-/-) and mdr1a(+/+) 

mice following subcutaneous administration of alfentanil.  The absorption rate constant (Ka), 

central volume (Vc), and systemic clearance (Cl) were held constant between mdr1a(-/-) and 

mdr1a(+/+) mice; whereas, the brain uptake (Clup) and brain efflux clearances (Clefflux) were 

allowed to vary between mdr1a(-/-) and mdr1a(+/+) mice.  The brain volume (Vb) was fixed.  

The effect parameters, EC50 and γ, were obtained by fitting a sigmoidal Emax model to the 

brain concentration versus antinociception data.  Emax was defined as 100%, and γ was 

constrained to the same value for mdr1a(-/-) and mdr1a(+/+) mice.   
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Figure 8.2. Time course of serum ( ) and brain ( ) concentrations following a 0.067- or 

0.2-mg/kg s.c. dose of alfentanil in mdr1a(-/-) (open symbols) or mdr1a(+/+) (solid symbols) 

mice, respectively. Data are presented as mean ± S.E. (n ≥ 3).  Dashed and solid lines 

represent the fit of the PK model to the concentration data for mdr1a(-/-) and mdr1a(+/+) 

mice, respectively. 
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Figure 8.3. Time course of antinociception following a 0.067- or 0.2-mg/kg s.c. dose of 

alfentanil in mdr1a(-/-) (open symbols) or mdr1a(+/+) (solid symbols) mice, respectively.  

Data are presented as mean ± S.E. (n ≥ 3).  Dashed and solid lines represent the fit of the PK-

PD model to the antinociception data for mdr1a(-/-) and mdr1a(+/+) mice, respectively. 
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Figure 8.4. Relationship between antinociception and serum concentration of alfentanil 

following a 0.067- [mdr1a(-/-); ] or 0.2- [mdr1a(+/+); ] mg/kg s.c. dose.  Data are 

presented as mean ± S.E. [concentration data (n ≥ 3); antinociception (n = 4 to 33)].  Dashed 

and solid lines represent the fit of the PK-PD model to the antinociception and serum 

concentration data for mdr1a(-/-) and mdr1a(+/+) mice, respectively.  A slight 

counterclockwise hysteresis is present for both mdr1a(-/-) and mdr1a(+/+) mouse strains. 
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Figure 8.5. Relationship between antinociception and brain concentration of alfentanil 

following a 0.067- [mdr1a(-/-); ] or 0.2- [mdr1a(+/+); ] mg/kg s.c. dose.  Data are 

presented as mean ± S.E. [concentration data (n ≥ 3); antinociception (n = 4 to 33)].  Dashed 

and solid lines represent the fit of a sigmoidal Emax model to the effect data obtained from 

mdr1a(-/-) and mdr1a(+/+) mice, respectively.  Gamma was constrained to the same value 

for both mouse strains.   
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Figure 8.6. Time course of alfentanil Kp,brain in mice following a 0.067- [mdr1a(-/-); ] or 

0.2- [mdr1a(+/+); ] mg/kg s.c. dose.  Data are presented as mean ± S.E. (n ≥ 3).  Dashed 

and solid lines represent the fit of a kinetic model to the mdr1a(-/-) and mdr1a(+/+) data, 

respectively.   

 

 237



CHAPTER 9 

PERSPECTIVES ON THE ROLE OF BRAIN TISSUE EXPOSURE IN CENTRAL 

NERVOUS SYSTEM PHARMACODYNAMICS: 

PHENOMENOLOGY, PREDICTABILITY, AND A ROADMAP FOR DRUG 

DISCOVERY 

 
 
 
 



 

     The exposure of brain tissue to a pharmacologic agent, together with the intrinsic ability 

of that agent to elicit a biologic effect mediated by a central nervous system (CNS) target, are 

the primary determinates of in vivo CNS activity for the agent. Depending on the particular 

disease state, target, mechanism of action, and overt effect, CNS activity may be beneficial or 

detrimental; in many cases, a single agent will have the capacity to produce both therapeutic 

and toxic effects in the CNS, mediated by either the same or different target receptors. 

Evaluating intrinsic activity is a straightforward process in contemporary drug discovery, and 

typically relies on the ability of a compound to interact (activate or inhibit) with a single 

target receptor (typically a protein). However, CNS exposure is more complex, as it is 

influenced by numerous physicochemical, biochemical, and physiologic factors. These 

factors typically include blood-brain barrier (BBB) passive permeability, active transport in 

the uptake and/or efflux directions, biotransformation in CNS tissues, cerebrospinal fluid 

(CSF) bulk flow, and binding to proteins in blood and brain tissue. 

     Although this dissertation project was multifaceted, the central theme was exposure of 

brain tissue to pharmacologic agents that mediate therapeutic and/or toxic effects via CNS 

targets. Specifically, it was recognized that two particular categories of pharmacokinetic 

phenomena, protein binding and membrane transport, are often important determinants of net 

brain uptake and, ultimately, in vivo exposure. A comprehensive understanding of the factors 

that determine brain exposure, and in particular translating that understanding into methods 

for predicting exposure, must include these important processes. In addition to considering 

the mechanistic determinants of brain exposure, it also is important to develop an appropriate 

mathematical framework for the quantitative expression of the influence of individual 

processes on exposure. Consequently, significant effort was invested in exploring metrics of 
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efflux transport, an important barrier function that limits brain exposure for many 

compounds, and in considering relatively straightforward experimental approaches that might 

indicate the predominant mechanisms of limited brain exposure for an individual compound 

such that further experimentation may proceed in a directed manner. The intent of this 

chapter is to draw together the various elements of this dissertation, to place those elements 

in the context of contemporary literature, and to extend those elements to suggest potential 

directions for future investigation.  

 

Apical efflux kinetics and clinical risk associated with efflux inhibition at the BBB 

    Apical efflux transporters at the BBB attenuate brain exposure for many compounds. 

Although efflux transport is a well-documented phenomenon that occurs in a variety of 

tissues, and can be viewed as either limiting substrate distribution into a protected space or 

facilitating removal from an excretory organ, the kinetics of efflux transport often are 

misunderstood. For example, unexpected, apparently contradictory, and seemingly complex 

experimental observations related to efflux transport have been reported in the literature (see 

Chapters 1 and 2). Commonly used experimental models, together with the mathematical 

framework for expressing efflux transport in a quantitative manner, often do not satisfactorily 

explain these observations or predict in vivo behavior. Consequently, new mathematical 

relationships for efflux transport were derived, and their utility is explored in Chapter 2. 

These relationships were based on a simple kinetic scheme, and provided a mathematical 

scaffolding to improved understanding, prediction, and communication of the effects of 

efflux transport on brain tissue exposure to substrates. Importantly, the mathematical 
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relationships that were derived in this effort showed that several apparently unexpected 

experimental observations were entirely predictable based on standard kinetic theory.  

     It must be noted that the mathematical relationships derived as a significant component of 

this dissertation project differ fundamentally from many commonly used relationships. 

Current approaches for the treatment of efflux transport data mistakenly assume that the Km 

and the IC50 for a particular efflux transport protein are identical to the EC50 of a substrate or 

inhibitor for that transporter. Conventional treatment of efflux transport data also over-

estimates Km and IC50, improperly expresses efflux activity, and imply that 50% inhibition of 

efflux transport activity will result in 50% of the maximum effect on substrate flux. The 

newly derived relationships express Km, IC50, and efflux transport activity in a manner 

consistent with a standard and parsimonious kinetic model, and predict a maximum 2-fold 

change in substrate flux (or ultimately brain tissue exposure) when efflux transport is 

inhibited 50%. The discrepancy between the currently accepted relationships and the newly 

derived mathematical approaches has important implications for appropriate selection of 

substrates and inhibitors, experimental design, data interpretation, standardizing expression 

of efflux transport activity, and predicting the clinical significance of efflux transport 

inhibition (Chapters 2 and 3). 

     Since inhibition of efflux transport at the BBB could potentially increase brain tissue 

exposure to a pharmacologic agent, thereby modulating biologic activity, the clinical risk of 

P-gp inhibition at the BBB was assessed in context of the newly-derived mathematical 

relationships (Chapter 3). Based on these relationships, the fold increase in brain tissue 

exposure will be less than or equal to the quantity 1 + ([I]u / Ki), where Ki and [I]u represent 

the inhibitory constant and unbound inhibitor concentration, respectively. Analysis of 
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currently available P-gp inhibitors indicated that despite the potential for drug-drug 

interactions (DDI) at the locus of BBB P-gp-mediated transport, current inhibitors do not 

achieve sufficiently high unbound concentrations in the systemic circulation to appreciably 

increase brain exposure of substrate molecules (Table 3.3). Only one out of the fourteen 

inhibitors examined was capable of achieving clinical unbound concentrations more than 2-

fold above the respective Ki (Valspodar, [I]u/Ki=3.3). However, since Valspodar is not an 

FDA approved agent, one must conclude that the risk of clinically significant P-gp inhibition 

at the BBB mediated by currently-approved drugs is small. This conclusion is substantiated 

further by the fact that loperamide, an opioid P-gp substrate with a higher intrinsic potency 

than morphine (based on intrinsic mu receptor affinity) that is excluded from the brain due to 

P-gp-mediated efflux at the BBB (Schinkel et al., 1996), has no appreciable CNS activity 

even when co-administered with potent P-gp inhibitors (Sadeque et al., 2000; Tayrouz et al., 

2001; Skarke et al., 2003). Thus, it appears unlikely that drug-drug interactions will result in 

untoward effects in the CNS unless such interactions also change the circulating 

concentrations of the substrate (due to inhibition of clearance, for example) or the therapeutic 

window is extremely narrow. 

     When BBB efflux transport is inhibited significantly, it is logical to speculate that the 

expected change in BBB uptake clearance, efflux clearance, and brain exposure of a substrate 

for that efflux transporter can be predicted. Indeed, for a given substrate the efflux ratio, 

unbound inhibitor concentration, and Ki can be used, in the context of the mathematical 

relationships derived in Chapter 2, to predict the outcome of a transport-mediated drug-drug 

interaction on brain exposure. However, it must be pointed out that to date no comprehensive 

preclinical pharmacokinetic-pharmacodynamic studies have been conducted to determine 
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whether the concentration-effect relationships for efflux inhibitors behaves in a manner 

consistent with the relationships proposed in Chapter 2. This limitation could be overcome by 

selecting P-gp inhibitors and substrates from different structural classes, with experimental 

determination of dose-effect, concentration-effect, and time-effect relationships for each 

combination of substrate and inhibitor. If the in vitro Ki is determined accurately and the time 

course of brain and plasma concentrations for both substrate and inhibitor are measured, the 

resulting data would be amendable to comprehensive pharmacokinetic-pharmacodynamic 

analysis. Pharmacokinetic-pharmacodynamic modeling could be used to test specific 

hypotheses, such as the hypothesis that unbound plasma inhibitor concentration serves as the 

driving force for BBB P-gp inhibition, and that P-gp inhibition at the BBB occurs in a 

manner consistent with mathematical relationships derived in Chapter 2. In addition, in vitro-

to-in vivo potency correlations for various inhibitors could be constructed. Such correlations 

would allow a better mechanistic understanding of BBB efflux transport inhibition and 

therefore provide better predictions and risk assessment for clinical efflux inhibition at the 

BBB. 

     Since brain tissue exposure is influenced by BBB efflux transport, it would be 

advantageous to identify efflux transport substrates and inhibitors quickly and efficiently. 

One method for identifying substrates and inhibitors is through the establishment of 

quantitative structure-activity relationships (QSAR) and in silico models (Wang et al., 2003; 

Wang et al., 2005; Srinivas et al., 2006). QSAR models have the potential to reduce the costs 

and time needed to identify substrates and inhibitors of interest (Ekins et al., 2000). One 

limitation of QSAR and in silico models is that the models are only as good as the data set 

used to generate them. Current QSAR models for identifying P-gp substrates and inhibitors 
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have been created with data sets consisting primarily of kinetic parameters (Km, IC50, or 

Vmax) that were calculated using conventional mathematical approaches (Ekins et al., 2002). 

Since conventional mathematical treatment of efflux data may overestimate the values of 

these kinetic parameters, it is reasonable to speculate that the QSAR relationships may be 

biased based on these results. Appropriate kinetic analysis of transport data may result in 

more reliable QSAR relationships. 

 

     P-gp is the predominant efflux transporter that attenuates the brain exposure of drugs. The 

role of other mechanisms and transporters that affect brain exposure to various drugs is not 

well documented (Graff and Pollack, 2004). To assess the role of P-gp- and non-P-gp-

mediated mechanisms on brain exposure, the [plasma]u/[brain]u ratio and the in vivo P-gp 

efflux ratio were evaluated for a total of 34 drugs. Using these simple metrics, a classification 

system for evaluating brain exposure was developed. This classification system was capable 

of assessing whether a compound was excluded from the brain entirely by P-gp, partially by 

P-gp, or only by non-P-gp-mediated mechanisms. In addition, the classification system was 

able to identify compounds with active brain uptake.  Of the 34 drugs examined, 21 were 

classified as having P-gp-mediated efflux as the sole mechanism limiting brain exposure.  

Three drugs (methadone, ritonavir, and saquinavir) had [plasma]u/[brain]u and in vivo P-gp 

efflux ratios consistent with active uptake. Ten drugs (digoxin, doxorubicin, ivermectin, 

cimetidine, dexamethasone, ranitidine sumatriptan, zolmitriptan, cetirizine, and 

fexofenadine) were classified as having non-P-gp-mediated mechanism(s) that limited brain 

exposure. The compounds identified as having either active uptake or non-P-gp-mediated 

mechanisms limiting brain exposure would make an ideal compound set for additional study, 
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because the potential influence of active uptake and non-P-gp-mediated efflux on brain 

exposure could be further elucidated.  

     Total brain exposure is dependent on plasma and brain tissue protein binding, as plasma 

and brain unbound fraction influences the brain-to-plasma partition coefficient (Kp,brain).  This 

concept has been demonstrated in several key reports (Kalvass and Maurer, 2002; Maurer et 

al., 2004; Summerfield et al., 2005). Over the last several years, the fu,brain and fu,plasma values 

obtained from equilibrium dialysis experiments have been determined and reported in the 

literature for over 100 drugs and discovery compounds (Kalvass and Maurer, 2002; Maurer 

et al., 2004; Summerfield et al., 2005; Becker and Liu, 2006). The fu,brain and fu,plasma values 

for 34 additional compounds were added as a result of this dissertation project. With the 

available fu,brain and fu,plasma data, it may be possible to a create an in silico model to predict 

fu,brain and fu,plasma for diverse compounds. In silico estimates of fu,brain and fu,plasma may reduce 

the need to determine protein binding experimentally, and may provide a useful context for 

predicting and assessing in vivo Kp,brain.  

 

     At the inception of this dissertation project, many opioids, including DPDPE, fentanyl, 

morphine, loperamide and methadone, were known to be P-gp substrates to some (varying) 

extent (Schinkel et al., 1996; Chen and Pollack, 1998; Dagenais et al., 2004). At the time, 

alfentanil and sufentanil were not believed to be P-gp substrates (Wandel et al., 2002). 

Studies conducted as part of this dissertation project identify alfentanil and sufentanil as P-gp 

substrates (Chapters 4 and 8). Both alfentanil and sufentanil had a higher Kp,brain (~3-fold), 

and alfentanil had an increased antinociceptive response, in P-gp-deficient mice as compared 

to P-gp-competent animals. The clinical significance of the observation that these compounds 
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are P-gp substrates is not known. However, based on the relatively small P-gp effect (~3-

fold) and for the reasons outlined in Chapter 3, the clinical significance is likely to be small. 

 

    Previous pharmacokinetic-pharmacodynamic studies indicated that P-gp-mediated efflux 

attenuates antinociception and brain penetration of some opioids. However, the precise 

mechanism(s) by which P-gp attenuates antinociception and brain penetration are not clear 

(Chen and Pollack, 1998; Thompson et al., 2000; Zong and Pollack, 2000). One 

pharmacokinetic-pharmacodynamic study conducted with morphine in P-gp-competent and 

P-gp-deficient mice showed that P-gp-mediated efflux reduced morphine-associated 

antinociception solely by lowering Kp,brain (Zong and Pollack, 2000). Another study (Chen 

and Pollack, 1998) conducted with the metabolically-stable opioid-peptide DPDPE in P-gp-

competent and P-gp-deficient mice showed P-gp-mediated efflux reduced DPDPE-associated 

antinociception by two apparent mechanisms: by decreasing Kp,brain (i.e., by impeding net 

brain uptake) and by increasing the brain tissue EC50. (i.e., by impeding the approach of 

DPDPE to the pharmacologic receptor). One question raised by the discrepancy between the 

morphine and DPDPE studies is whether P-gp-mediated efflux attenuates the antinociception 

of other opioids in a manner more consistent with that of morphine or that of DPDPE.  

     This important question was answered through comprehensive pharmacokinetic-

pharmacodynamic studies conducted with four opioids (alfentanil, fentanyl, loperamide, and 

methadone) in P-gp-competent and P-gp-deficient mice [CF-1 mdr1a(+/+) and mdr1a(-/-)] 

(Chapter 6). One additional study with loperamide was conducted in FVB mdr1a/b(+/+) and 

mdr1a/b(-/-) mice to evaluate the possible influence of mdr1b on opioid disposition and 

response. Alfentanil, fentanyl, loperamide, and methadone were selected as model opioid P-
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gp substrates because they exhibit a range of interaction with P-gp (Dagenais et al., 2004). 

Pharmacokinetic-pharmacodynamic modeling revealed identical brain tissue EC50 values in 

P-gp-competent and P-gp-deficient mice for each of the opioids, and that P-gp-mediated 

efflux attenuated opioid-associated antinociception only by decreasing Kp,brain.  Mdr1b had no 

noticeable effect on loperamide brain penetration or antinociception. The lower Kp,brain values 

observed in P-gp-competent mice were accompanied by a decrease in brain uptake clearance 

and an increase in brain efflux clearance, consistent with the known influence of BBB P-gp 

on substrate flux between brain tissue and the systemic circulation. The enhancement in brain 

efflux (~2-fold or less) was less than the decrease in brain uptake (up to 20-fold for 

loperamide). Consistent with the ~2-fold increase in efflux clearance, brain equilibration 

half-life was ~2-fold shorter in P-gp-competent mice. The relative changes in uptake and 

efflux clearances were entirely consistent with predictions based on the theoretical 

considerations for BBB efflux presented in Chapter 2. 

 

In vitro prediction of brain equilibration half-life  

     The rate and extent of brain equilibration are important aspects of CNS pharmacokinetics. 

The rate of CNS distribution can be characterized by the brain equilibration half-life 

(t1/2brain,eq). The parameter t1/2brain,eq influences the onset and offset of CNS activity. In some 

cases, such as for a rapidly-acting anesthetic agent, a short t1/2brain,eq is desired; in other cases, 

a long t1/2brain,eq may be preferable.  

    The ability to predict t1/2brain,eq from in vitro data would aid in the selection drug candidates 

with desirable CNS pharmacokinetics. The t1/2brain,eq is dependent on fu,brain and unbound brain 

efflux clearance (Liu et al., 2005; Syvanen et al., 2006). In the absence of active processes 
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(metabolism or active transport), unbound efflux clearance is dependent solely on the passive 

permeability of a given compound through the BBB. Even in the presence of active apical 

efflux, unbound efflux clearance still is predominately dependent on BBB passive 

permeability, because, as outlined in Chapter 2, brain efflux clearance is minimally affected 

by apical active efflux (§2-fold increase efflux clearance). Because efflux clearance is 

predominately dependent on BBB passive permeability, the in vivo t1/2brain,eq should be 

amenable to estimation from fu,brain and in vitro estimates of BBB passive permeability.  

     In the present project, high-quality in vivo measures of t1/2brain,eq were obtained for seven 

opioids. The t1/2brain,eq differed by more than 70-fold among these opioids. Although it was 

clearly beyond the scope of this project, this data set would be ideal for testing the predictive 

value of various BBB passive permeability assays (in vitro cell monolayers, PAMPA, in situ 

brain uptake clearance) in combination with fu,brain to estimate in vivo t1/2brain,eq. Correlations 

between observed and predicted t1/2brain,eq could be constructed to determine the best 

surrogate for brain efflux clearance or BBB passive permeability. 

 

In vitro-to-preclinical and preclinical-to-clinical correlations  

      Understanding relevant brain exposure is a requisite step in understanding the CNS 

pharmacokinetics and pharmacodynamics for any compound for which equilibration between 

brain tissue and the systemic circulation is not rapid. Whereas total brain tissue 

concentrations and Kp,brain  are relatively easy to determine in a discovery setting, unbound 

brain concentrations are more informative.  This dissertation project was conducted in part to 

assess the utility of unbound brain EC50,u as a measure of in vivo potency for centrally acting 

drugs.  Seven mu opioid receptor agonists (alfentanil, fentanyl, loperamide, methadone, 
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meperidine, morphine, and sufentanil) were selected as model CNS drugs. In separate 

groups, mice received a single equipotent subcutaneous dose of one opioid. The time course 

of antinociception, as well as serum and brain concentrations, were determined, and a 

pharmacokinetic-pharmacodynamic model was fit to the concentration and effect data to 

estimate relevant parameters associated with opioid disposition and action. Estimates of in 

vitro potency (Ki) and relevant clinical parameters were obtained from the literature and used 

to construct in vitro-to-preclinical and preclinical-to-clinical relationships. The strongest in 

vitro-to-in-vivo correlation was observed between Ki and unbound brain EC50,u (r2=0.799). A 

strong correlation between mouse serum and human plasma EC50 estimates was observed 

(r2=0.949). However, the correlation was improved when the data were corrected for plasma 

protein binding (r2=0.995). Ki correlated only moderately with clinical equipotent i.v. dose 

among these opioids (r2=0.677). However, estimates of ED50 and various EC50 metrics (total 

serum, unbound serum, total brain, and unbound brain) correlated strongly with clinical 

equipotent i.v. dose, with the strongest correlation observed for unbound brain EC50,u. These 

results indicate that superior in vitro-to-preclinical and preclinical-to-clinical correlations can 

be achieved when comparisons are based on relevant unbound concentrations. 

 

Does CSF sampling, microdialysis, brain slice partitioning, or equilibrium dialysis 

provide the “best” estimate of unbound brain concentration? 

     Determination of the brain extracellular fluid concentrations (BECF) of compounds of 

interest has utility in assessing the extent of CNS penetration and estimating CNS biophase 

concentrations. This dissertation project relied on a brain homogenate equilibrium dialysis 

method to measure brain unbound fraction (fu,brain) of various drugs. The fu,brain of each 
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compound was then multiplied by the corresponding total brain concentrations to estimate 

unbound brain (or BEFC) concentrations. The unbound concentrations proved useful in 

assessing the extent of CNS penetration and estimating CNS biophase concentrations of the 

compounds examined (Chapters 4 and 7).  

     Other methods obviously have been used to estimate brain unbound concentrations, such 

as measurement of CSF concentration, use of microdialysis for direct assessment of unbound 

concentration, or examination of substrate partitioning in brain slices (Hutchinson et al., 

2002; Shen et al., 2004; Becker and Liu, 2006). Even though brain homogenate equilibrium 

dialysis studies are relatively high-throughput, easy to perform, and provide reasonable 

estimates of brain unbound concentration, it is unknown whether brain homogenate 

equilibrium dialysis studies provide the most optimal and accurate estimate of brain unbound 

concentrations. A side-by-side comparison of each of the four methods would allow for 

determination of the “best” method for estimating brain unbound concentrations. While such 

a comparison was envisioned at the beginning of this dissertation project, it was de-

prioritized as the utility of other aspects of the project became increasingly clear. 

     In determining the “best” method, considerations for the relative accuracy, as well as the 

assay throughput, is necessary. It is possible that one method may be the most accurate in all 

circumstances, but also may be the most labor- and resource-intensive. If very little 

difference in estimated brain unbound concentrations exists among the different methods, 

then the least labor- and animal-intensive (and highest throughput) method would have a 

clear advantage.  
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Use of other drug classes to correlate unbound brain concentration with CNS effects 

     Opioids were used as model CNS drugs to evaluate the utility of unbound brain 

concentrations for assessing the extent of CNS distribution and estimating CNS biophase 

concentrations. The approach used for opioids in this body of work could easily be extended 

to other relevant drug classes, such as antihistamines.  Antihistamines generally are used for 

the treatment or prevention of symptoms related to allergic reactions. However, some first-

generation antihistamines have sedation as a major CNS side effect, and even have been used 

as sleep aids (Welch et al., 2002). Second- and third-generation antihistamines have low 

BBB permeability and/or undergo active efflux, thus avoiding the CNS side effects 

associated with earlier antihistamines (Chen et al., 2003; Uhr et al., 2003). Because 

antihistamines have diverse brain distributional characteristics and varying propensity to 

cause CNS effects, examination of the CNS pharmacokinetics/pharmacodynamics 

(preclinical and clinical), as well as the relationship between in vitro and in vivo potency, 

would contribute to the understanding of central action of drugs, and ultimately allow for 

better in vitro-to-in vivo predictions. 

Optimal CNS distributional characteristics  

     The optimal CNS distributional characteristics of a drug are dependent on whether CNS 

activity is desired or not, and whether a drug has intrinsic CNS or systemic activity. If CNS 

activity is not desired and a compound has no intrinsic CNS activity, then the CNS 

distributional characteristics of a compound are irrelevant. In contrast, if a compound possess 

both systemic and CNS activity, such as some opioids and antihistamines, then the CNS 

distributional characteristics should be optimized, if possible, for the intended indication 

(CNS or systemic). Figure 9.1 illustrates a proposed flow chart for optimization of CNS 
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distributional characteristics of drug candidates that incorporates many of the issues 

examined in this dissertation project. 

     If the intended indication for a drug is a systemic target, brain exposure should be 

minimized; however, if the intended indication is a CNS target, brain exposure (relative to 

systemic exposure) should be maximized, with brain concentrations then regulated by the 

kinetics of drug administration. The [plasma]u/[brain]u ratio is one approach for assessing 

relative brain exposure irrespective of the specific mechanisms that determine flux between 

the systemic circulation and brain, as well as within the various compartments of the CNS 

(BBB passive permeability, active transport, metabolism, and CSF bulk flow). CNS-active 

compounds generally possess low values of [plasma]u/[brain]u [i.e.,1 to 3; (Maurer et al., 

2004)] whereas non-CNS active compounds generally are characterized by high values of 

[plasma]u/[brain]u (i.e., >3; Chapter 4). Another important determinant of CNS activity for a 

given compound is the brain equilibration half-life. This parameter is of particular 

importance when considered relative to the frequency of drug administration. If a compound 

is administered acutely, a long brain equilibration half-life will result in a slower onset of 

CNS action and attenuated CNS activity. A short brain equilibration half-life will result in 

more rapid onset action and, possibly, a more robust pharmacologic effect, as a larger 

fraction of the administered dose will accumulate in brain prior to removal from the systemic 

circulation. If a drug is administered chronically, brain equilibration half-life is not as 

important, because steady-state brain concentrations eventually will be achieved regardless 

of the brain equilibration half-life.  

     Both the extent and rate of brain exposure are dependent on multiple factors, with no 

single process being dominant. Approaches that consider only one factor, such as passive 
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permeability or affinity for a given efflux transport protein, fail to provide sufficient 

information for proper prediction and evaluation of CNS distributional properties. Low 

passive permeability, or high intrinsic efflux clearance mediated by a transport protein such 

as P-glycoprotein, is not necessarily an indicator that a given compound will have either a 

low extent or a slow rate of CNS distribution.  If passive permeability is sufficiently large 

compared to CSF bulk flow, no other active processes are present (i.e., metabolism and 

active transport), and fu,brain is large, then it is possible for a compound with low passive 

permeability to have unimpaired and rapid CNS distribution. Similarly, a compound that 

undergoes active efflux may have unimpaired and rapid CNS distribution if the efflux 

mechanism is counterbalanced by an active uptake process.   

 

Conclusions 

     This dissertation project demonstrated the utility of unbound brain concentrations, 

estimated with equilibrium dialysis, in assessing the extent of CNS penetration. In addition, 

unbound brain concentrations appeared to represent an optimal surrogate measure for 

biophase concentrations, at least in the context of opioid pharmacokinetics-

pharmacodynamics across a relatively wide range of mu opioid agonists. Comprehensive 

pharmacokinetic-pharmacodynamic experiments and associated mathematical modeling 

demonstrated the influence of BBB efflux on opioid disposition and action in the CNS. The 

results of this project provide important new information for improved understanding of CNS 

pharmacokinetic-pharmacodynamic relationships; for correlating in vitro, preclinical, and 

clinical data; and for exploring the impact of efflux transport on drug disposition and action. 

Finally, novel approaches to expressing transport kinetics, and the impact of transport 
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inhibition on target-site exposure, provide a means for obtaining more physiologically- and 

pharmacologically-relevant estimates of important kinetic parameters. 
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Figure 9.1. Proposed flow chart for optimal CNS distributional characteristics for drug candidates. PS, F,  fu,brain, [plasma]u, and 

[brain]u represent passive permeability surface area product, bioavailability, unbound brain fraction, and plasma and brain unbound 

fractions, respectively. 
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