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ABSTRACT 

HOA VAN LE: Evaluation of the Performance of the High-Dimensional Propensity Score Algorithm to 
Adjust for Confounding of Treatment Effects Estimated in Healthcare Claims Data 

(Under the direction of Professor Til Stürmer) 
 

The aim of the high-dimensional propensity score (hd-PS) algorithm is to select and adjust for 

baseline confounders in pharmacoepidemiologic studies based on healthcare claims data. It is not 

well understood how the performance of the hd-PS is affected by 1) the channelling of drugs at 

specific calendar time periods and differences in administrative claims databases; 2) low outcome 

incidence or exposure prevalence in medium sized or large cohorts; and 3) aggregation of medical 

diagnoses and medications in cohorts with small size, low outcome incidence and low exposure 

prevalence.  

We estimated risk ratios for upper gastrointestinal complication in patients with rheumatoid 

arthritis or osteoarthritis after initiating oral celecoxib versus ibuprofen or diclofenac in two large 

longitudinal healthcare claims databases. We conducted separate analyses for subcohorts before 

and after withdrawal of rofecoxib, a drug in the same class as celecoxib. We applied the hd-PS 

algorithm using a combination of demographic, predefined and hd-PS covariates with either PS 

deciles or 1:1 greedy matching for each cohort. In addition, we conducted pooled analyses for two 

combined databases stratified by data source and adjusted by either deciles of separate PSs or 1:1 

greedy matching within the data source. The different methods of propensity score confounder 

selection inconsistently reduced confounding by indication across calendar time periods and 

administrative data sources. 

To evaluate the effects of aggregation of medical diagnoses and medications on the 

performance of the hd-PS, we resampled studies to assess the influence of size, outcome incidence, 
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and exposure prevalence. For each sample, baseline covariates were identified with and without the 

hd-PS algorithm to estimate the treatment effect using propensity score deciles. In an empirical 

pharmacoepidemiologic study using claims data, aggregations of medications into chemical, 

pharmacological or therapeutic subgroups (level 4) of the Anatomical Therapeutic Chemical 

classification alone or in combination of aggregation of diagnoses into largest groups (level 1) of the 

Clinical Classification Software improved the hd-PS adjustment for confounding in most scenarios 

including ones with small cohort size, rare outcome incidence, and low exposure prevalence. 
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CHAPTER I 

STATEMENT OF SPECIFIC AIMS 

Although early detection and assessment of drug safety signals is important [1-3], post-

marketing drug safety studies often face challenges such as small size, rare incidence of adverse 

outcomes, or low exposure prevalence after a new drug launch. In addition, active surveillance will 

often generate a large number of safety signals, which emphasizes the need for a method that can 

rapidly, yet systematically, refine a signal. Large healthcare claims databases are important sources 

for active surveillance. However, there is potential channelling bias of drugs, different patients, 

different providers, healthcare plans, and payers over time in disparate administrative healthcare 

databases.  

Propensity score methods are an increasingly used approach to control for measured 

potential confounders, especially in pharmacoepidemiologic studies of rare outcomes in the presence 

of many covariates from different data dimensions encountered in administrative healthcare 

databases [4-7]. Methods of selecting variables for propensity score models based on substantive 

knowledge have been proposed [8-12]. However, substantive knowledge may often be lacking, and 

identification of a very large pool of potential confounders for propensity score model is still a major 

challenge. The High-Dimensional Propensity Score (hd-PS) algorithm automatically defines and 

selects variables for inclusion in the propensity score to adjust treatment effect estimates in studies 

using healthcare data [13, 14]. The hd-PS seems interesting as it leads to confounding control that is 

as least as good as the one obtained by adjustment limited to covariates predefined by expert 

knowledge [13-16]. The hd-PS algorithm could reduce programming time and error and run in studies 

pooling multiple claims databases [13, 14] and its performance has been evaluated with few outcome 

events or few exposed subjects in small cohorts [17]. It is a promising algorithm for studies using 
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healthcare claims data. However, it is not known whether different calendar time periods, data 

sources, low outcome incidence or exposure prevalence can degrade hd-PS performance in medium 

sized or large cohorts. Also, no study to date has assessed how hd-PS performance is affected by 

aggregating medical diagnoses and/or medications, especially in cohorts with relatively few patients, 

rare outcome incidence, or low exposure prevalence. Extensive testing of the performance of hd-PS 

should be carried out in multiple settings to provide more confidence and to determine the value of 

this new approach. 

 

This dissertation addresses the following questions: 

1) How do different calendar time periods or administrative data sources affect the performance of 

the hd-PS? 

2) How does low outcome incidence or exposure prevalence degrade hd-PS performance in 

medium sized or large cohorts?  

3) How does aggregating medical diagnoses and/or medications affect the hd-PS performance, 

especially in cohorts with relatively few patients, rare outcome incidence, or low exposure 

prevalence?  

To answer these questions, the following specific aims are addressed in this research: 

Specific aim 1: To evaluate the performance of the hd-PS algorithm to adjust for confounding of 

treatment effects in cohorts with different calendar time periods and administrative data sources. 

Hypothesis for specific aim 1: As we use an established association of upper gastrointestinal 

complications with celecoxib versus traditional non-steroidal anti-inflammatory agents (tNSAIDs) in 

rheumatoid arthritis (RA) or osteoarthritis (OA) patients [18-23] to evaluate the hd-PS performance 

and on 30 September 2004 Merck Inc. announced the voluntary withdrawal of rofecoxib from the US 

market [24]. We hypothesized that channelling of celecoxib, a drug of the same class as rofecoxib, 

would be affected by the withdrawal of rofecoxib. Specifically, we hypothesized that the influence of 
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upper gastrointestinal (UGI) risk on preferential prescribing of coxibs would increase (increased 

confounding by indication). The channelling of celecoxib at different calendar time periods, or 

differences in administrative claims databases will affect the hd-PS performance. 

Rationale for specific aim 1: As an automated procedure, the hd-PS does not have options for users 

to consider specific subtleties of the data. These might include, but are not restricted to, expected 

changes in the channelling of drugs at specific calendar time points (e.g., due to publication of 

landmark trials, black box warnings, ‘Dear Doctor’ letters, marketing activities by drug makers, new 

guidelines or policies, etc.) [25], differences in study periods, and differences in database sources. 

However, it is not known whether the hd-PS performs well in these situations. An assessment of the 

hd-PS performance may provide insight into a guidance of using hd-PS for different calendar time 

periods and disparate data sources. 

   

Specific aim 2: To determine how low outcome incidence or exposure prevalence can degrade hd-

PS performance in medium sized or large cohorts. 

Hypothesis for specific aim 2: The performance of the hd-PS will degrade not only in cohorts with 

small size, but also in cohorts with low outcome incidence or infrequent exposure prevalence. 

Rationale for specific aim 2: The hd-PS algorithm prioritizes variables by their potential for 

confounding control based on their prevalence and on bivariate associations of each covariate with 

the treatment and with the study outcome [13, 26]. In cohorts with either lower outcome incidence or 

exposure prevalence, there is a higher number of baseline confounders (e.g., those with low 

prevalence, missing covariate-exposure association, zero/undefined covariate-outcome association) 

not meeting hd-PS inclusion criteria. The hd-PS performance has been evaluated with few outcome 

events or few exposed subjects in small cohorts only [17]. Updated information will provide evidence 

on the effects of low outcome incidence or exposure prevalence on the hd-PS performance in 

medium sized or large cohorts.  
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Specific aim 3: To evaluate the effects of aggregating medical diagnoses and/or medications on the 

hd-PS performance, especially in cohorts with relatively few patients, rare outcome incidence, or low 

exposure prevalence.  

Hypothesis for specific aim 3: Aggregation may improve control of confounding, by increasing the 

prevalence of rare baseline potential confounders so they would be included in the hd-PS, or may 

worsen control of confounding, by increasing the amount of information bias in control variables. 

Rationale for specific aim 3: The hd-PS algorithm prioritizes variables by their potential for 

confounding control based on their prevalence and on bivariate associations of each covariate with 

the treatment and with the study outcome [13, 26]. Combining medical diagnoses or medications into 

higher-level categories reduces the number of baseline potential confounders (e.g., those with low 

prevalence, missing covariate-exposure association, zero/undefined covariate-outcome association) 

not meeting hd-PS inclusion criteria. No study to date has assessed how hd-PS performance is 

affected by aggregating medical diagnoses and/or medications, especially in cohorts with relatively 

few patients, rare outcome incidence, or low exposure prevalence. Updated information will provide 

evidence on the effects of aggregating medical diagnoses and/or medications on hd-PS performance, 

especially in cohorts with relatively few patients, rare outcome incidence, or low exposure prevalence. 



CHAPTER II 

LITERATURE REVIEW 

A. BACKGROUND 

Significance of the High-Dimensional Propensity Sco re algorithm 

As the passive drug safety surveillance system has well-recognized drawbacks [27-30], 

active safety surveillance such as the Sentinel System, a part of the Food and Drug Administration’s 

Sentinel Initiative, using patient information derived from health insurance claims data [31] is one of 

the basic methods of signal detection that should be developed [32-34]. However, the active 

surveillance will most likely generate a large number of safety signals, which emphasizes the need for 

an approach that can earlier [1-3, 35,36] and more rapidly, yet systematically, refine a signal [36-39]. 

One approach might be to automate the assessment of the relation between a drug exposure and a 

medical condition with an ability to conduct evaluations in disparate electronic healthcare claims or 

medical record databases [40,41]. The hd-PS with an automated process for adjustment of a large 

number of candidate covariates for propensity score model could significantly contribute to the early 

refinement of drug safety signals [13].  

Proxy adjustment for patient health status in longi tudinal health claims data 

Several levels of proxies for the health state of patients are present in the longitudinal 

healthcare claims data through drug dispensing, medical diagnoses, procedures, providers, and 

health insurance plans. Healthcare claims databases have incomplete data on potential confounders 

such as disease severity, over-the-counter medication use, race/ethnicity, smoking status, body mass 

index, laboratory results (and their laboratory specific normal ranges), cognitive and functional status, 

and socio-economic status. These factors are potential confounders of an association between drugs 
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and outcomes in pharmacoepidemiologic studies. Chains of proxies might be surrogates for access to 

care [42], condition severity, physician ability, drug preference [43] or medication co-payment ability 

[43]. Seeger et al. proposed that health care claims may serve as proxies, in hard-to-predict ways, for 

important unmeasured variables [45]. Following this general idea of controlling for a wide variety of 

covariates many of which would not be readily seen as confounders outside of studies based on 

healthcare claims data, Stürmer et al. used propensity score models with over 70 variables 

representing medical codes present during a baseline period [5]. Johannes et al. created a propensity 

score model that considered as candidate variables the 100 most frequently occurring diagnoses, 

procedures, and outpatient medications in healthcare claims [46].  

Variable selection for propensity score model 

Propensity score methods as formalized by Rosenbaum and Rubin [47] are an increasingly 

used approach to control for measured potential confounders, especially in pharmacoepidemiologic 

studies of rare outcomes in the presence of many covariates from different data dimensions 

encountered in administrative healthcare databases [4-7]. Propensity scores can be implemented by 

stratification, matching, weighting, or as a continuous covariate in the outcome model [48-51]. The 

use of propensity score models with many covariates on observational assessment of treatment 

effects was explored in several studies [45,52]. Addition of clinical covariates into propensity score 

models may lead to better control of confounding than models with less covariate information in 

specific settings [53,54] but to identify a very large pool of potential confounders for propensity score 

models is still a major challenge. Methods of selecting variables for propensity score models based 

on substantive knowledge have been proposed [8-12]. Brookhart et al. demonstrated that including 

variables in the propensity score model that are associated with the exposure but not the outcome will 

increase variance of the estimator with no improvement in confounding control, and may introduce 

confounding in some situations [11]. Moreover, substantive knowledge may often be lacking, and the 

meaning of various medical codes may often be unclear [55]. In a nutshell the major challenge is to 

include a sufficient set of confounders and risk factors for the outcome of interest in the model while 
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avoiding the inclusion of instrumental variables [11,56], variables affected by the treatment (or the 

outcome), and colliders in M-structures [12]. 

The high dimensional propensity score algorithm 

A recently-developed strategy for selecting from a large pool of baseline covariates for 

propensity score analyses is the use of a computer-applied algorithm [13,57], such as the High-

Dimensional Propensity Score (hd-PS) algorithm. The hd-PS automatically defines and selects 

variables for inclusion in the propensity score to adjust treatment effect estimates in studies using 

healthcare claims data [13,14]. The hd-PS macro [13] is a multi-step algorithm to implement proxy 

adjustment in claims data. The macro’s steps include: 

1) identify data dimensions: the hd-PS uses the health service records of patients e.g., 5 

common data dimensions: pharmacy claims, outpatient diagnoses, outpatient procedures, inpatient 

diagnoses, and inpatient procedures;  

2) identify candidate covariates: because the prevalence of a binary factor is symmetrical 

around 0.5, the hd-PS subtracts all prevalence estimates larger than 0.5 from 1.0. In addition to basic 

variables e.g. age, gender, race, and calendar time, the hd-PS identifies most prevalent covariates 

from each data dimension (e.g., top n=200); 

3) assess recurrence of same code: each code is assessed for within-patient occurrence 

during a predefined period (e.g., 6 months) and divided into three binary variables: once, sporadic ≥ 

median number of times, or frequent ≥ 75th percentile number of times. A code would have a “true” 

value for all three recurrence variables if it occurred above the 75th percentile number of times. If any 

of the values were equal, the hd-PS dropped the variable with the higher cutpoint; 

4) prioritize covariates: the hd-PS algorithm drops covariates with fewer than 100 patients 

(exposed and unexposed combined) per variable, with missing (“zero/undefined”) covariate-exposure 

association, and with missing (“zero/undefined”) covariate-outcome association from the prioritization. 

The covariate-exposure association is missing when the prevalence of covariate in either exposed 
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group or unexposed group is zero or 1. The covariate-outcome association is missing when the 

prevalence of covariate in cases or noncases is zero or 1. The hd-PS also drops covariate if the 

natural log of its multiplicative bias is missing. For example, covariates with missing covariate-

outcome or covariate-exposure associations, with the same symmetric prevalence in exposed and 

unexposed group, are dropped because they lead the confounding effect equal the null or undefined 

when we insert them into the Bross formula [13, 26]. Remained variables from data dimensions are 

prioritized by their potential for confounding control based on the symmetric prevalence of each 

covariate in the treated and untreated and the bivariate association of the covariate with the study 

outcome based on absolute value of natural log of multiplicative bias derived by Bross formula after 

adjusting for demographic covariates [13, 26].  

5) select covariates for adjustment: by default, the top k=500 indicator variables from step 4 

are selected in addition to age, gender, race and calendar year; 

6) estimate exposure propensity score: a propensity score is estimated for each subject as a 

predicted probability of exposure conditional on all covariates at step 5 using multivariate logistic 

regression; 

7) estimate propensity score-adjusted outcome models: the algorithm groups subjects into 

propensity score deciles and uses multivariate regression analyses to model the study outcome as a 

function of exposure and indicator terms for propensity score deciles. 

The hd-PS led to adjustment for confounding that was at least as good as the one obtained 

from variable selection based on expert knowledge in a few selected examples. There is even some 

very limited evidence that it leads to confounding control that is as least as good as the one obtained 

by adjustment limited to covariates predefined by expert knowledge [13,15,16]. In these studies 

[13,15,16] the estimated risk reduction of UGI complication after adjustment for investigator‐specified 

covariates and the hd‐PS algorithm was 6-21% and 12-22%. Approximately 50% lower risk of UGI 

complication among coxib initiators compared with tNSAID initiators was reported in RCT finding [18-

23]. We therefore assume that a treatment effect estimate closer to 0.5 is less biased by confounding. 



9 
 

The hd-PS algorithm could reduce programming time and error, and run in studies pooling 

multiple claims databases [13,14]. Prior studies demonstrated the hd-PS was potential algorithm 

software for active drug safety monitoring systems using longitudinal healthcare claims databases 

[14]. However, extensive testing of the performance of hd-PS should be carried out in multiple 

settings to provide more confidence and to determine the value of this new approach. Moreover, any 

solutions to improve the hd-PS performance particularly in specific settings will contribute to the 

research community for active drug safety surveillance. 

B. FACTORS AFFECTING PERFORMANCE OF HIGH-DIMENSIONA L PROPENSITY SCORE 
ALGORITHM  

Changes of channelling bias and calendar time perio ds 

Channeling bias (here defined as confounding by indication) is a serious threat to the validity 

of nonexperimental studies of treatment effects [58,59]. Walker et al. defines confounding by 

indication as a resul of differential selection of patients into drug exposure groups [60]. Schneeweiss 

et al. reported patient-, provider-, and system-related factors caused potential bias due to channeling 

of patients to the newly marketed medication [58]. Factors influencing the prescription of drugs by 

physicians can vary by physician, change over time [61], and are often based on patients’ 

characteristics, diagnoses, prognoses, and behaviors. These factors are usually not directly recorded 

in administrative databases [58,59]. A failure to adjust for imbalanced factors that are predictors of the 

outcome of interest leads to biased results. Publications raised the importance of the channeling bias, 

especially for new drugs after market launch [58]. There is still a lack of guidance on how to deal with 

this challenge. It is unknown if strategies exist to separate which of these factors are potential 

confounders or instrumental variables [59].  

On 30 September 2004 Merck Inc. announced the voluntary withdrawal of rofecoxib from the 

US market [24]. As an automated procedure, however, the hd-PS does not consider specific 

subtleties of the data. These might include, but are not restricted to, expected changes in the 

channelling of drugs at specific calendar time points (e.g., due to publication of landmark trials, black 

box warnings, ‘Dear Doctor’ letters, marketing activities by drug makers, new guidelines or policies, 
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etc.) [25,52], and differences in study periods and administrative healthcare databases. Prior 

research studies demonstrated the challenges of channelling bias in nonrandomized studies, but no 

studies addressed how the changes of channelling bias due to the withdrawal of a drug in the same 

class can affect hd-PS performance.  

Different data sources and pooled analyses 

There has been increased interest in using automated healthcare claims databases as a 

useful data source for researchers and regulatory agencies to study the safety of drugs, particularly 

for rare outcomes in post-marketing studies. The administrative data have some advantages e.g., 

longitudinal data, accuracy in recording the date of dispensing and less biased by knowledge of the 

study outcome, representativeness of routine clinical practice in large populations. However, these 

data were generated primarily for administrative purposes and have disadvantages. The claims 

databases do not completely capture all of a patients’ medical history (e.g., incomplete capture of 

healthcare or treatments provided outside of health plan coverage, alcohol use, inpatient drugs, over-

the-counter medications, medications that cost less than co-payments, dispensed medication less 

than consumed medication). Many factors are involved in the data generation process and in the 

creation of quality for a specific database. These factors include coding errors, under-reporting of 

secondary diagnoses, changes in hardware, software, or coding practice over time, and mergers of 

healthcare plans leading to doubling/sharing patient identification. Each database has its own 

“specific way” to generate data, and this is often undocumented or not updated [59]. Hennessy et al. 

reported that descriptive analyses of the population composition over time can help one determine 

the integrity of linked administrative databases [62]. The literature often compared characteristics of 

electronic medical records and claims databases. Each claims database is often promoted with its 

own features and benefits. There is little information to directly compare the quality of “similar” of 

claims databases. 

Pharmacoepidemiologic studies usually need large databases pooled from many 

administrative data sources. Pooled analyses from multiple populations have advantages for rare 
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outcome [1-4]. Recently, Rassen et al. developed a novel method of pooled analyses to use hd-PS 

which delivered similar point estimates for multi-center studies [63]. The PS-based pooling method 

[63] using separate propensity scores estimated from each data source, showed some benefits for 

the study of the same drug-outcome pair in multiple databases. The pooled analyses were stratified 

by the center and adjusted by deciles of separate PSs [63] where the PS distribution without trimming 

of the non-overlap region to create separate PS deciles for which each data source cohort was 

employed [63]. In addition to pooled analyses using deciles of separate PSs, the pooled analyses can 

be carried in the matched cohorts after 1:1 PS greedy matching [64] starting at the eighth decimal 

place [63] and continued to the first within the study center.  

Prior research studied the performance of the hd-PS algorithm with established drug-

outcomes in US healthcare claims and UK electronic medical record databases [13,15,16]. There are 

two large longitudinal administrative US databases: MarketScan® commercial claims and encounters 

of Thomson Reuters healthcare [65] and Optum® Impact® National Managed Care Benchmark 

Database [66]. MarketScan is a longitudinal 10-year healthcare claims database which captures 

patient demographics, inpatient and outpatient diagnoses and procedures, and medications from a 

selection of large private employers, health plans, government agencies and other public 

organizations. Optum is a longitudinal medical claims history for more than 98 million individuals. The 

Optum data come from more than 46 health plans in the US with available information: patient 

demographics such as age and gender, diagnoses, procedures, and medications recorded during 

outpatient visits and hospital admissions. These two large healthcare claims databases are potential 

candidates to evaluate the performance of the hd-PS where proxies for the health state of patients 

are present in the longitudinal health claims data through drug dispensing, medical diagnosis and 

procedure. The chains of proxies can be surrogates for access to care [42] condition severity, 

physician ability, drug preference [43] or medication co-payment ability [44]. There was no study to 

evaluate how the different data sources can affect the hd-PS performance. 

The PS-based pooling method [63] was developed for pooling analyses of multiple studies. 

There was no study to evaluate whether similar benefits of the pooled and individual data analyses 
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with propensity score deciles and greedy matching could be observed in studies using two claims 

data sources, particularly in pre and post-withdrawal subcohorts with potential changes of channelling 

bias due to rofecoxib withdrawal. 

Small samples, rare outcome incidence and low expos ure prevalence 

Because early detection and assessment of drug safety signals is very important [1-3,37] 

there is a possible delay if the hd-PS can perform in a large sample size only. The hd-PS algorithm 

prioritizes variables by their potential for confounding control based on their prevalence and on 

bivariate associations of each covariate with the treatment and with the study outcome [13,26]. 

Rassen et al. reported that hd-PS functioned well in small cohorts with >50 exposed patients with an 

outcome event; and using zero-cell correction or exposure-based covariate selection permitted hd-PS 

to function robustly with 25–50 exposed patients with an outcome event and to yield estimates closer 

to estimates obtained in the full cohort [17]. The prior study concluded that few exposed events and 

few exposed subjects affected the performance of the hd-PS in small samples. In reality, few exposed 

events will tend to be the norm after a new drug is launched to the market (low exposure prevalence) 

or due to rare events (low outcome incidence). There is no study so far that has evaluated how few 

exposed events or few exposed subjects can affect performance of the hd-PS in medium sized and 

large samples. 

The hd-PS algorithm prioritizes variables by their potential for confounding control based on 

their prevalence and on bivariate associations of each covariate with the treatment and with the study 

outcome [13,26]. In cohorts with either lower outcome incidence or exposure prevalence, there will be 

a larger number of baseline potential confounders (e.g., those with low prevalence, missing covariate-

exposure association, zero/undefined covariate-outcome association) not meeting hd-PS inclusion 

criteria.  

C. MEDICAL CODING AND AGGREGATIONS 

Major U.S. administrative databases represent medical diagnoses using International 

Classification of Diseases, 9th Revision, Clinical Modification (ICD-9) codes. ICD-9 does not rely on 
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its hierarchical relationships [67], but the Clinical Classification Software (CCS) developed by the 

Agency for Healthcare Research and Quality (AHRQ) can be used to group diagnoses into clinically 

meaningful categories [68]. Similarly, medications can be grouped into levels of the Anatomical 

Therapeutic Chemical (ATC) classification [69].  

Clinical Classification Software (CCS)  

CCS is a tool [68] for clustering patient diagnoses and procedures into clinically meaningful 

categories. These categories were used as covariates in several studies [70,71]. CCS collapses 

diagnosis codes from ICD-9, which contains more than 13,600 diagnosis codes divided into 18 

categories [68]. CCS is unique as a grouping approach because it does not mix diagnoses with 

treatment. There is available cross-mapping aggregation from ICD-9 medical diagnoses to CCS with 

frequent maintenance and update at AHRQ [68]. There are 18, 134, 355 and 207 categories in CCS 

levels 1, 2, 3 and 4, respectively [68]. Examples of aggregations of ICD-9 diagnosis codes into CCS 

levels are in Figure 2.1 and Appendix A. 
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Figure 2.1. An example of aggregations of ICD-9 diagnosis codes into 4 levels of the Clinical 
Classification Software  

Anatomical Therapeutic Chemical (ATC) classificatio n  

The Anatomical Therapeutic Chemical (ATC) classification of the World Health Organization 

(WHO) [69] classifies active substances into different groups based on their target organ or system 

and their therapeutic, pharmacological and chemical properties. Drugs are classified into fourteen 

main groups (1st level) with pharmacological or therapeutic subgroups (2nd level). The 3rd and 4th 

levels are chemical, pharmacological or therapeutic subgroups, and the 5th level is the chemical 

substance. Several ATC groups are subdivided into both chemical and pharmacological groups. The 

pharmacological group is often chosen if a new substance fits in both a chemical and 

pharmacological 4th level. Substances in the same 4th ATC level are not pharmacotherapeutically 

equivalent, as they may have different modes of action, therapeutic effects, drug interactions and 

adverse drug reaction profiles. New 4th levels are commonly established if at least two approved 

substances fit in the group. A new substance not clearly belonging to any existing group of related 
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substances of ATC 4th level will often be placed in an X group ("other" group) [69]. An example of 

aggregations of medications into ATC levels is in Figure 2.2. 

 

Figure 2.2. An example of aggregations of medications into 5 levels of the Anatomical Therapeutic 
Chemical (ATC) classification 

In general, aggregation of potential covariates into higher-level categories increases the 

number of covariates that are present in at least 100 observations, the default requirement of the hd-

PS, and increases the prevalence of the covariate in exposed and unexposed groups, which 

increases the covariate’s prioritization from the Bross formula if it is associated with treatment [13,26]. 

But aggregation may simultaneously weaken covariate-exposure and/or covariate-outcome relations, 

reducing prioritization in the Bross formula. The latter also has the potential to change the impact of 

control for the aggregated covariate on the adjusted risk ratios. No study to date has assessed how 

the hd-PS performance is affected by aggregating medical diagnoses and/or medications, especially 

in cohorts with relatively few patients, rare outcome incidence, or low exposure prevalence. 

D. SUMMARY 

The hd-PS is a potential algorithm for active drug safety monitoring systems using 

longitudinal healthcare databases. Prior studies showed that the hd-PS leads to confounding control 
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that is as least as good as the one obtained by adjustment limited to covariates predefined by expert 

knowledge [13,15,16]. It could reduce programming time and error, and run in studies pooling multiple 

claims databases [13,14]. The hd-PS performance has been evaluated with few outcome events or 

few exposed subjects in small cohorts only [17]. There was a lack of the literature on the potential 

factors influencing the hd-PS performance.  

To our knowledge, this was the first study to evaluate: 1) potential factors affecting the 

performance of the hd-PS: calendar time periods, data sources, low outcome incidence or exposure 

prevalence in medium sized or large cohorts; and 2) the effects of aggregation of medical diagnoses 

into CCS and/or of medications into ATC on the hd-PS adjustment for confounding in cohorts with 

small size, rare outcome incidence or low exposure prevalence. Our results of this study would add 

great amount of knowledge to the field and determine the value of the hd-PS.  



CHAPTER III 

 METHODS 

This research assesses the factors which can affect the performance of the hd-PS algorithm 

to adjust confounding for treatments effects using claims databases: different calendar time periods 

and administrative data sources (Specific aim 1); low outcome incidence or exposure prevalence in 

medium sized or large cohorts (Specific aim 2); and aggregating medical diagnoses and/or 

medications, especially in cohorts with relatively few patients, rare outcome incidence, or low 

exposure prevalence (Specific aim 3). The methods that are common to the three specific aims 

components will be described, followed by the methods specific to each specific aim. We use a 

retrospective cohort of upper gastrointestinal (GI) complications with celecoxib versus nonsteroidal 

anti-inflammatory drugs (NSAIDs) for osteoarthritis (OA) and rheumatoid arthritis (RA) as an example 

for assessment of the performance of the hd-PS in the cohorts with multiple settings since the upper 

GI complication treatment effect of COX-2 versus NSAIDs is well established based on several 

Randomized Controlled Trials (RCT) [18-23]. We therefore assume that a treatment effect estimate 

closer to 0.5 is less biased by confounding. The current study was exempted by the Institutional 

Review Board of University of North Carolina at Chapel Hill. 

 A. DATA SOURCES 

We identified incident user cohorts of upper gastrointestinal (UGI) complication with celecoxib 

versus traditional non-selective non-steroidal anti-inflammatory drugs (tNSAID), ibuprofen or 

diclofenac, for rheumatoid arthritis (RA) and osteoarthritis (OA) from two large longitudinal 

administrative databases in the United States (US): MarketScan® commercial claims and encounters 

of Thomson Reuters Healthcare [65] and Optum® Impact® National Managed Care Benchmark 

Database [66]. MarketScan is a longitudinal 10-year healthcare claims database which captures 
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patient demographics, inpatient and outpatient diagnoses and procedures, and medications from a 

selection of large private employers, health plans, government agencies and other public 

organizations. Optum is a longitudinal medical claims history for more than 98 million individuals. The 

Optum data come from more than 46 health plans in the US with available information: patient 

demographics such as age and gender, diagnoses, procedures, and medications recorded during 

outpatient visits and hospital admissions.  

During the research process, we encountered the issue of incomplete inpatient diagnoses 

and procedures for years 1999-2002 of the Optum® Impact® National Managed Care Benchmark 

Database [66]. To compensate for this limitation, we added MarketScan® commercial claims and 

encounters of Thomson Reuters healthcare [65]. 

B. METHODS COMMON TO THREE SPECIFIC AIMS 

Study population 

We extracted data for all patients with an index date (date of first dispensing of celecoxib or a 

tNSAID) fell between 1 January 2001 – 30 June 2009 (MarketScan) or 1 July 2003 – 30 June 2008 

(Optum). These dates were chosen because of availability of data including inpatient diagnoses and 

procedure. Additional selection criteria were age 18-65, health insurance plan with full medical and 

pharmacy benefits, at least 6 months of enrollment history at the index date, at least one diagnosis of 

RA [International Classification of Diseases (ICD-9) code 714, 7140, 7141, 7142, 7143x]  or OA (ICD-

9 code 715x, 721x); no NSAID dispensing during the 6 months prior to the index date (wash-out 

period); and no record of any of the following conditions in 6 months prior to the index date: 

gastrointestinal ulcer disorders, gastrointestinal hemorrhage, active renal, hepatic, coagulation 

disorders, allergies, malignancy, esophageal or gastroduodenal ulceration.  

The study outcome of UGI complication was defined as either first peptic ulcer disease 

complications including perforation, UGI hemorrhage (ICD-9 code 531x, 532x, 533x, 534x, 535x, 

5780), or a physician service code for UGI hemorrhage (Current Procedure Terminology (CPT) code 
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43255 or ICD-9 procedure code 4443) during a 60-day follow-up period after the initiation of the study 

drug. These outcome definitions were used in a previous study [13] and validated for 1,762 patients in 

a hospital discharge database with a positive predictive value of 90% validated against medical chart 

review [72].  

Methods for potential confounder selection 

Three different methods were employed to select potential confounders to derive the PS:  

(1) Expert knowledge only. With this frequently used method, confounders are pre-specified based on 

the subject‐matter knowledge. The a priori confounders we selected for this study were age, gender, 

calendar year, hypertension, congestive heart failure, coronary artery disease, inflammatory bowel 

disease, prior dispensing of gastroprotective drugs, warfarin, antiplatelet, and oral steroids [13,15,73-

75];  

(2) Semi‐automated covariate selection. With this method, we used the hd-PS algorithm to select 

confounders to supplement those selected based on expert knowledge.  

(3) Automated covariate selection. This method uses the hd-PS algorithm and a more limited set of a 

priori covariates. We used only age, gender, and calendar year as a priori covariates. 

Below is a Causal Directed Acyclic Graph (DAG) of celecoxib and upper gastrointestinal 

complications. 
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Figure 3.1. A causal Directed Acyclic Graph (DAG) for of celecoxib and Upper Gastrointestinal 
Complications (�: causes)  

Selection of Variables and Parameters for Propensit y Score Balancing 

The computer algorithm used to implement methods 2 and 3 in our study is the multi-step hd-

PS macro [13]. The macro proceeds in these steps: (i) identify data dimensions, e.g., diagnoses, 

procedures, and medications; (ii) define covariates using the codes within each dimension; (iii) 

assess candidate covariates by their recurrence, i.e. multiplicity of the same code, (once, sporadic or 

frequent); (iv) prioritize covariates by their potential for confounding control based on the bivariate 

associations of each covariate with the treatment and with the outcome according to Bross formula 

[13,26]; (v) select a pre‐specified number of covariates for adjustment; and (vi) estimate of the PS 

using the selected covariates plus any predefined covariates. 

We used hd-PS with the following potential confounders: (i) demographic covariates (sex, 

continuous age, calendar year) and other baseline (i.e., during six months prior to the index date) 

pre‐specified covariates; (ii) baseline data items from five data dimensions: inpatient diagnoses, 
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inpatient procedures, outpatient diagnoses, outpatient procedures and outpatient drug use. We 

allowed a maximum of 500 covariates for the PS adjustment in a multiplicative model and a maximum 

of 200 variables from each data dimension, based on 5-digit granularity of ICD-9, CPT or Healthcare 

Common procedure Coding System (HCPCS), and generic drug names.  

C. METHOD FOR SPECIFIC AIM 1 

For each cohort from each data source, we compared the 60-day risk of UGI complication in 

celecoxib initiators to that in tNSAID initiators. We used a log-binomial regression model to estimate 

adjusted risk ratios (RRs) and their 95% confidence intervals (CIs). We estimated RRs instead of 

odds ratios to avoid the non-collapsibility of the odds ratio under exchangeability [76]. Models 

included, in addition to the indicator variable for celecoxib initiation the PS in deciles estimated by 

different sets of covariates identified by the three methods as dummy variables.  

We also conducted pooled analyses, a PS-based pooling method [63], for the two combined 

databases. The pooled analyses were stratified by data source and adjusted by deciles of separate 

PSs [63]. We employed the PS distribution without trimming of the non-overlap region to create 

separate PS deciles for each data source cohort. In addition to the use of the propensity score 

deciles, we applied 1:1 PS greedy matching [64] starting at the eighth decimal place [63] and 

continued to the first within the data source to create a matched cohort from each data source and 

then conducted the pooled analyses for these matched cohorts.  

D. METHOD FOR SPECIFIC AIM 2  

We selected a cohort example of MarketScan, July 2003-September 2004 for resampling to 

investigate specific aims 2 and 3. 

Sampling techniques to generate cohorts with differ ent sizes, outcome incidences and 
exposure prevalences 
 

The full cohort consisted of 18,829 patients (7,197 prescribed celecoxib and 11,632 

prescribed ibuprofen or diclofenac); 117 patients developed a UGI complication. For each 
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aggregation scenario (including no aggregation), we created six categories of 100 cohorts, as follows.  

We created “small” cohorts by drawing 50% (category 1) and 20% (category 2) simple random 

samples, 100 times each, without replacement. We created cohorts with low outcome incidence by 

drawing 50% (category 3) and 20% (category 4) simple random samples, 100 times each, without 

replacement, from the 117 cases and re-coding the remaining cases as noncases. Cohorts in 

categories 3 and 4 consisted of the sampled and recoded cases plus the original 18,712 noncases. 

Finally, we created cohorts with low exposure prevalences by drawing 50% (category 5) and 20% 

(category 6) simple random samples, 100 times each, without replacement, from the 7,197 exposed 

subjects and replacing the unselected exposed subjects with the same number of randomly selected 

unexposed patients. Cohorts in categories 5 and 6 consisted of the sampled exposed subjects, 

replacements for the unselected exposed subjects, plus the original 11,632 unexposed subjects.  

We applied hd-PS to the full study cohort to estimate the treatment effect and used it as the 

reference value for comparison with results from the generated cohorts. For the 100 samples in each 

of the cohort categories, we calculated summary statistics for the estimated risk ratios (geometric 

mean, 25th and 75th percentiles), the mean percentage of covariates selected by hd-PS in the full 

cohort that were also selected by hd-PS in the samples, the median number of exposed and 

unexposed subjects, the median number of exposed and unexposed outcomes.  

Simulations to validate sampling techniques  

To validate the proposed sampling techniques, we simulated data of 10,000 subjects, 6 

covariates independent of one another. We started with 3 binary covariates, X1, X2, and X3, each with 

a prevalence of 0.2, and 3 continuous covariates, X4, X5, and X6, each with a mean=0 and 

variance=1. We estimated the predicted probability of the binary intended treatment T with prevalence 

~33% based on these 6 covariates and covariate-treatment associations using a logistic model: 

 

p(T|X1-X6)=(1+exp(-(α0 + α1X1 + α2X2 + α3X3 + α4X4 + α5X5 + α6X6) ) )
-1 

The number of outcomes Y was assigned from a Poisson distribution based on this expected value.  
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E(Y|T,X1-X6)=exp(β0 + β1X1 + β2X2 + β3X3 + β4X4 + β5X5 + β6X6 + βTT) ) 

The parameter value for α0 was selected to obtain a prevalence of T of approximately 33%, 

the one for β0 in equation for an incidence of approximately 0.1 per observation over a fixed follow-up 

time in the untreated, a true exposure RR=0.5. We used parameter values: α1=0.69; α2=0; α3=−1.61; 

α4=0.41; α5=0; α6=−0.69; β1=0; β 2=0.69; β3=−1.61; β4=0; β5=0.41; and β6=−0.69. We used the log-

linear outcome model. We simulated 1,000 cohort studies with n =10,000 for each sampling scenario. 

Results of 1,000 runs at 50%, 20%, 10% and 5% sampling rates demonstrated that our proposed 

techniques did not affect the treatment effect estimate while being able to keep total sample size 

constant for outcome incidence or exposure prevalence samplings (Appendix B). 

D. METHOD FOR SPECIFIC AIM 3 

Aggregations of medical diagnoses and medications 

In the basic scenario, we applied the hd-PS with up to 5-digit granularity of ICD-9 for inpatient 

and outpatient diagnoses. Note that 3-digit ICD-9 codes are kept separate from 4- and 5-digit codes 

in the hd-PS despite some hierarchy between these levels. We transformed ICD-9 diagnoses into 

four-level CCS categories via the cross-mapped ICD-9 to CCS multi-level diagnoses table [68]. There 

are 18, 134, 355 and 207 categories in CCS levels 1, 2, 3 and 4, respectively. However, not all ICD-9 

codes have a corresponding CCS code in all four levels. Therefore we created a “universal” CCS by 

using the most granular code available for each ICD-9 diagnosis code. We separately investigated 

different levels of ICD-9 granularity by using the first 3- or 4-digit ICD-9 codes. 

We aggregated medications to five levels of the Anatomical Therapeutic Chemical (ATC) 

classification of the World Health Organization (WHO) [69]. This system classifies active substances 

into different groups based on their target organ or system and their therapeutic, pharmacological and 

chemical properties. Drugs are classified into fourteen main groups (1st level) with pharmacological 

or therapeutic subgroups (2nd level). The 3rd and 4th levels are chemical, pharmacological or 

therapeutic subgroups, and the 5th level is the chemical substance. Several ATC groups are 

subdivided into both chemical and pharmacological groups. The pharmacological group is often 
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chosen if a new substance fits in both a chemical and pharmacological 4th level. Substances in the 

same 4th ATC level are not pharmacotherapeutically equivalent, as they may have different modes of 

action, therapeutic effects, drug interactions and adverse drug reaction profiles. New 4th levels are 

commonly established if at least two approved substances fit in the group. A new substance not 

clearly belonging to any existing group of related substances of ATC 4th level will often be placed in 

an X group ("other" group).  

We evaluated each aggregation scenario by estimating the amount of residual confounding, 

calculated as the difference in the natural logarithms of the estimated risk ratio and the natural 

logarithm of 0.50, representing the RCT findings. To estimate the change in residual confounding 

resulting from each aggregation scenario, we calculated the proportional difference in absolute 

degree of estimated confounding between that scenario and the basic (no aggregation) scenario. For 

example, for the 20% exposure prevalence cohorts (category 6), the unadjusted (confounded but 

otherwise presumptively unbiased) estimate is RRu=0.97, and two confounded (but otherwise 

presumptively unbiased) estimates are RRc1=0.89 (basic, no aggregation) and RRc2=0.81 

(combined diagnostic and medication aggregation). Assuming that the unconfounded (true) value is 

RRt=0.50, estimated confounding in the basic estimate = |ln(0.89) – ln(0.50)| =0.577; estimated 

confounding in the combined aggregation estimate = |ln(0.81) – ln(0.50)| =0.482. Thus, the 

proportional difference in absolute degree of estimated confounding between the two estimates 

=(0.482-0.577)/0.577=-16.3%. Therefore the combined aggregation estimate is 16.3% less 

confounded than the basic estimate.  



CHAPTER IV 

RESULTS: Comparative gastro-intestinal risk of nons teroidal anti-inflammatory drug classes: 
a cautionary tale about “automated” pharmacoepidemi ology 

A. INTRODUCTION 

Non-random assignment of therapy in clinical practice can lead to confounding by indication 

in observational studies of drug effects [77]. Confounding occurs when either clinically assigned or 

self-selected drug therapies with similar indications are prescribed preferentially to patients with 

different baseline prognoses. Propensity score methods have been developed as a strategy for 

controlling confounding in situations with many variables and limited knowledge of how to select from 

among them. 

 Propensity score methods are an increasingly used approach to control for measured 

potential confounders, especially in pharmacoepidemiologic studies of rare outcomes in the presence 

of many covariates from different data dimensions of administrative healthcare databases [5-7]. 

Selecting from a very large pool of potential confounders for PS models in healthcare claims data is 

still a major challenge, however. Methods of selecting variables for PS models based on substantive 

knowledge have been proposed [4, 8-11,78]. In a nutshell the major challenge is to include a sufficient 

set of confounders and risk factors for the outcome of interest in the model while avoiding the 

inclusion of instrumental variables [11,56], variables affected by the treatment or the outcome, and 

colliders in M-structures [12]. Some software packages for automated variable selection for PS 

models from a large pool of baseline potential confounders are available [13,57]. The High-

Dimensional Propensity Score (hd-PS) algorithm for the automated search of variables for PS models 

has been developed to improve effect estimates compared with PS models limited to predefined 

covariates [13]. Improved confounding control using the hd-PS has been reported in selected 

empirical examples, although the gains were very small [13-16].  
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 Moreover, hd-PS has not developed sophisticated options for users to consider specific 

subtleties of the data. These might include, but are not restricted to, expected changes in the 

channelling of drugs at specific calendar time points (e.g., due to publication of landmark trials, black 

box warnings, ‘Dear Doctor’ letters, marketing activities by drug makers, new guidelines or policies, 

etc.) [25,52],  differences in study periods, and differences in administrative healthcare databases.   

 To investigate the effect of different calendar time periods, data sources on the hd-PS 

performance to control for confounding of treatment effects, we created an empirical example based 

on prior research [13,79] that observed elevated crude risk ratios likely due to confounding by 

indication in studies of upper gastrointestinal (UGI) complications in rheumatoid arthritis (RA) or 

osteoarthritis (OA) patients initiating celecoxib compared to traditional non-steroidal anti-inflammatory 

agents (tNSAID). Celecoxib has been shown to decrease risk for UGI complications in several 

randomized clinical trials (RCT) [18-23]. We therefore assume that a treatment effect estimate closer 

to 0.5 is less biased by confounding. We subdivided the MarketScan and Optum cohorts into two 

subcohorts according to whether the study drug was initiated before or after 30 September 2004 

(hereafter referred to as “withdrawal”), and separate analyses for pre and post withdrawal periods 

were conducted.  

B. METHODS 

Data sources 

We identified incident user cohorts of upper gastrointestinal (UGI) complication with celecoxib 

versus tNSAIDs, ibuprofen or diclofenac, for rheumatoid arthritis (RA) and osteoarthritis (OA) from 

two large longitudinal administrative databases in the United States (US): MarketScan® commercial 

claims and encounters of Thomson Reuters Healthcare [65] and Optum® Impact® National Managed 

Care Benchmark Database [66]. MarketScan and Optum capture patient demographics, inpatient 

diagnoses, outpatient diagnoses, outpatient procedures, and medications recorded during outpatient 

visits and hospital admissions from a selection of large private employers, health plans, government 

agencies and other public organizations.   
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Study population 

We extracted data for all patients with an index date (date of first dispensing of celecoxib or a 

tNSAID) between 1 January 2001 – 30 June 2009 (MarketScan) or 1 July 2003 – 30 June 2008 

(Optum). These dates were chosen because of availability of data including inpatient diagnoses and 

procedures. Additional selection criteria were age 18-65 years, membership in a health insurance 

plan with full medical and pharmacy benefits, at least 6 months of enrollment history at the index 

date, at least one diagnosis of RA [International Classification of Diseases (ICD-9) code 714, 7140, 

7141, 7142, 7143x]  or OA (ICD-9 code 715x, 721x); no NSAID (including aspirin) dispensing during 

the 6 months prior to the index date (wash-out period); and no record of any of the following 

conditions in 6 months prior to the index date: gastrointestinal ulcer disorders, gastrointestinal 

hemorrhage, active renal, hepatic, coagulation disorders, allergies, malignancy, esophageal or 

gastroduodenal ulceration.  

 The study outcome of UGI complication was defined as either first peptic ulcer disease 

complications including perforation, UGI hemorrhage (ICD-9 code 531x, 532x, 533x, 534x, 535x, 

5780), or a physician service code for UGI hemorrhage (Current Procedure Terminology [CPT] code 

43255 or ICD-9 procedure code 4443) during a 60-day period after the initiation of the study drug. 

These outcome definitions were used in a previous study [13] and validated in 1,762 patients in a 

hospital discharge database with a positive predictive value of 90% validated against medical chart 

review [72].  

Methods for confounder selection 

 Three different methods were employed to select potential confounders to derive the PS: (1) 

Expert knowledge only. With this frequently used method, confounders are pre-specified based on 

the subject‐matter knowledge. The a priori confounders we selected for this study were age, gender, 

calendar year, hypertension, congestive heart failure, coronary artery disease, inflammatory bowel 

disease, prior dispensing of gastroprotective drugs, warfarin, antiplatelet, and oral steroids based on 

biological rationale and literature review [13, 73-75]; (2) Semi‐automated covariate selection. With this 
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method, we used the hd-PS algorithm to select confounders to supplement those selected based on 

expert knowledge. (3) Automated covariate selection. This method uses the hd-PS algorithm and a 

more limited set of a priori covariates including only age, gender, and calendar year of study drug 

initiation. 

The computer algorithm used to implement methods 2 and 3 in our study is the multi-step hd-

PS macro [13]. The macro proceeds in these steps: (i) identify data dimensions, e.g., diagnoses, 

procedures, and medications; (ii) define covariates using the codes within each dimension; (iii) 

assess candidate covariates by their recurrence, i.e. multiplicity of the same code, (once, sporadic or 

frequent); (iv) prioritize covariates by their potential for confounding control based on the bivariate 

associations of each covariate with the treatment and with the outcome according to Bross formula 

[13,26]; (v) select a pre‐specified number of covariates for adjustment; and (vi) estimate of the PS 

using the selected covariates plus any predefined covariates. 

Statistical analysis 

Because of limited data availability and to mimic as closely as possible the intention-to-treat 

analyses in the trials, we used a prescription reimbursement claim as the treatment measure to 

compare the 60-day risk of UGI complication in celecoxib initiators to that in tNSAID initiators. We 

used log-binomial regression models to estimate adjusted risk ratios (RRs) and their 95% confidence 

intervals (CIs). We estimated RRs instead of odds ratios to avoid the non-collapsibility of the odds 

ratio under exchangeability [76]. Models included, in addition to the indicator variable for celecoxib 

initiation the PS in deciles estimated by different sets of covariates identified by the three methods as 

dummy variables. For 1:1 PS greedy matched cohorts, models included the indicator variable for 

celecoxib initiation. 

We also conducted pooled analyses, a PS-based pooling method [63], for the two combined 

databases. The pooled analyses were stratified by data source and adjusted by deciles of separate 

PSs [63]. We employed the PS distribution without trimming of the non-overlap region to create 

separate PS deciles for each data source cohort. In addition to using the propensity score deciles, we 
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applied 1:1 PS greedy matching [64] starting at the eighth decimal place [63] and continuing to the 

first within the data source to create matched cohorts from each data source, and then conducted the 

pooled analyses for these matched cohorts. The current study was exempt by the Institutional Review 

Board of University of North Carolina at Chapel Hill. 

C. RESULTS 

Individual data source analyses  

In the MarketScan database, compared to the tNSAID group celecoxib users had more 

baseline risk factors, particularly the warfarin use (5% vs. 1%) (Table 4.1); had longer durations of 

study drug use (mean 66 days vs. 31 days), and had a higher incidence of UGI complication (0.7% 

vs. 0.6%). We observed that all three adjusted estimates were reduced from the crude RR of 1.16 in 

the direction of the RCT finding, although they remained greater than 1.0. There was a substantial 

overlap in the PS distribution between the two treatment groups. Unexpectedly, the adjustment using 

greedy matching with the PS created by the semi-automated covariate selection moved the crude RR 

away from the RCT finding.  

In the Optum database, compared to the tNSAID group celecoxib users also had a greater 

prevalence of the above risk factors (Table 4.2), longer durations of drug use (mean 53 days vs. 29 

days), and a higher incidence of UGI complication within 60 days after drug initiation (0.9% vs. 0.8%). 

An analogous trend of adjusted estimates from the three covariate selection strategies was observed 

as with the MarketScan database. The adjustment using greedy matching with the PS based on 

predefined covariates delivered an estimate very slightly closer to the RCT finding than did greedy 

matching with the automated and semi-automated covariate selection methods. 

Overall pooled analyses 

In the overall pooled analysis of both databases, celecoxib initiators were older and had more 

baseline risk factors for UGI complication than did the tNSAID (diclofenac or ibuprofen) initiators 

(Table 4.3). Celecoxib initiators had a higher incidence of UGI complication within 60-day following 
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drug initiation (0.8%) than tNSAID initiators (0.7%) (Table 4.4). We observed similar patterns for 

adjusted estimates using three variable selection methods. There was substantial overlap in the PS 

distribution between the two treatment groups. Interestingly, the pooled RR from the greedy matching 

using the predefined covariate PS delivered an estimate very slightly closer to the RCT finding [18-23] 

than did the other covariate selection methods (Table 4.4). 

Calendar time periods  

On 30 September 2004 Merck Inc. announced the voluntary withdrawal of rofecoxib from the 

US market [24]. We hypothesized that channelling of celecoxib, a drug of the same class as 

rofecoxib, would be affected by the withdrawal of rofecoxib. Specifically, we hypothesized that the 

influence of UGI risk on preferential prescribing of coxibs would increase (increased confounding by 

indication). We therefore subdivided the MarketScan and Optum cohorts into two subcohorts 

according to whether the study drug was initiated before or after 30 September 2004 (hereafter 

referred to as “withdrawal”), and separate analyses for pre and post withdrawal periods were 

conducted.  

We identified a more pronounced positive association between warfarin and celecoxib in the 

post- than in the pre-withdrawal subcohorts in both databases (Tables 4.1-4.3). For the MarketScan 

database, all adjusted estimates for the pre-withdrawal subcohorts were less than 1.0, but estimates 

for the post-withdrawal subcohort were not. Greedy matching with the PS from the semi-automated 

covariate selection produced an adjusted RR (for the post withdrawal subcohort) even greater than 

the corresponding crude RR. For the Optum database, all adjusted RR were above 1.0 for both 

subcohorts before and after the withdrawal, except for the RR using the greedy matching with 

automated covariate selection in the October 2004 - June 2008 subcohort. We created an additional 

MarketScan subcohort with the study drug initiation between July 2003 and September 2004, the 

same calendar time periods as for the Optum pre-withdrawal subcohort. In this additional MarketScan 

subcohort, the semi-automated and automated methods moved the crude RR of 1.05 toward a 

decreased risk of 0.94 and 0.92, respectively.  



Table 4.1:  Characteristics of initiators of celecoxib or NSAIDs (ibuprofen or diclofenac) in cohorts 18-65 years old, before and after 1:1 greedy 
matching based on automated hd-PS covariates, from MarketScan database: age at the date of the first medication use and comorbidities/ use of 
medications as defined during six months prior to the first study medication use 

 

             Before or on  30 September 2004                     After  30 September 2004 

      Original cohort     After PS matching       Original cohort After PS matching       Original cohort     After PS matching

Characteristics Celecoxib Ibuprofen 
or 

Diclofenac

Celecoxib Ibuprofen 
or 

Diclofenac

Celecoxib Ibuprofen 
or 

Diclofenac

Celecoxib Ibuprofen 
or 

Diclofenac

Celecoxib Ibuprofen 
or 

Diclofenac

Celecoxib Ibuprofen or 
Diclofenac

Number of drug initiators (N)   14,939  19, 917 11,463 11,463    39, 406  103, 308 28,633 28,633      54,345  123,225 40,054 40,054    

Age (years)

Median 56.0 52.0 55.0 55.0 55.0 52.0 55.0 55.0 56.0 52.0 55.0 55.0

Mean 54.4 50.6 53.4 53.3 53.7 50.6 53.2 53.4 53.9 50.6 53.5 53.5

Standard Deviation 8.2 9.7 8.5 8.3 8.4 9.7 8.6 8.4 8.3 9.7 8.5 8.4

18-35 (%) 3.1 8.2 3.7 3.5 3.6 8.3 4.1 4.0 3.5 8.3 3.8 3.7

36-45 (%) 10.9 18.7 13.0 13.0 12.0 18.3 13.2 12.4 11.7 18.3 12.8 12.7

46-55 (%) 33.2 37.0 35.8 37.1 34.9 37.2 35.7 36.2 34.4 37.2 35.3 35.7

56-65 (%) 52.9 36.1 47.5 46.4 49.4 36.2 47.0 47.4 50.4 36.2 48.0 47.8

Female (%) 60.9 59.0 60.2 59.5 59.2 58.4 59.1 59.0 59.7 58.5 59.5 59.4

Hypertension (%) 22.6 18.2 20.7 20.4 29.7 25.2 27.0 27.3 27.7 24.1 25.3 25.2

Congestive heart failure (%) 0.4 0.4 0.3 0.4 0.8 0.6 0.6 0.5 0.7 0.5 0.6 0.5

Coronary artery disease (%) 3.3 2.5 2.7 2.7 4.3 3.1 3.7 3.7 4.0 3.0 3.4 3.5

Chronic renal disease (%) 0.5 0.6 0.5 0.6 0.8 0.8 0.8 0.8 0.7 0.7 0.7 0.8

Inflammatory bowel 
disease

(%) 0.3 0.2 0.3 0.3 0.7 0.4 0.7 0.4 0.6 0.3 0.6 0.3

Use of gastroprotective 
drugs

(%) 21.3 19.6 18.5 23.4 22.2 19.0 21.8 24.8 21.9 19.1 21.0 24.8

Use of warfarin (%) 2.8 1.1 1.7 1.4 6.0 1.1 3.7 2.4 5.1 1.1 3.2 2.1

Use of antiplatelet (%) 1.7 0.9 1.4 1.2 2.2 1.4 2.1 2.1 2.1 1.3 1.9 1.9

Use of oral steroids (%) 13.0 11.6 12.6 12.0 15.0 14.6 15.1 16.4 14.5 14.1 14.3 14.8

*:1 January 2001-30 June 2009

                          All

MarketScan*
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Table 4.2:  Characteristics of initiators of celecoxib or NSAIDs (ibuprofen or diclofenac) in cohorts 18-65 years old, before and after 1:1 greedy 
matching based on automated hd-PS covariates, from Optum database: age at the date of the first medication use and comorbidities/ use of 
medications as defined during six months prior to the first study medication use 

             Before or on  30 September 2004                     After  30 September 2004 

      Original cohort     After PS matching       Original cohort After PS matching       Original cohort     After PS matching

Characteristics Celecoxib Ibuprofen 
or 

Diclofenac

Celecoxib Ibuprofen 
or 

Diclofenac

Celecoxib Ibuprofen 
or 

Diclofenac

Celecoxib Ibuprofen 
or 

Diclofenac

Celecoxib Ibuprofen 
or 

Diclofenac

Celecoxib Ibuprofen 
or 

Diclofenac

Number of drug initiators (N)     8,165     12,257 6,916   6,916       36,083  83, 862  34,554 34,554    44,248    96,119 42,041 42,041  

Age (years)

Median 55.0 51.0 54.0 54.0 54.0 51.0 54.0 54.0 54.0 51.0 54.0 54.0

Mean 53.3 49.7 52.5 52.7 52.3 50.0 52.1 52.2 52.5 50.0 52.2 52.3

Standard Deviation 8.4 9.9 8.6 8.4 8.9 9.7 8.9 8.8 8.8 9.8 8.9 8.8

18-35 (%) 3.6 9.4 4.2 3.9 5.2 8.9 5.4 5.2 4.9 8.9 5.1 5.0

36-45 (%) 14.3 20.8 16.1 14.8 15.5 20.2 16.0 15.7 15.3 20.3 15.9 15.4

46-55 (%) 35.2 37.3 36.6 38.2 36.7 37.8 37.0 37.6 36.5 37.8 36.9 38.0

56-65 (%) 46.9 32.5 43.2 43.1 42.6 33.0 41.7 41.5 43.4 33.0 42.1 41.7

Female (%) 60.1 57.6 56.8 56.9 57.9 57.4 58.3 58.5 58.3 57.4 57.9 58.3

Hypertension (%) 30.5 25.2 28.8 29.0 32.6 29.4 32.1 32.2 32.3 28.8 31.6 31.7

Congestive heart failure (%) 1.1 0.6 0.9 0.8 0.9 0.7 0.9 0.9 1.0 0.7 0.9 0.9

Coronary artery disease (%) 4.9 3.0 3.8 3.8 4.2 3.5 4.0 4.1 4.4 3.4 4.1 4.0

Chronic renal disease (%) 1.1 0.8 0.9 0.8 0.9 0.9 0.8 1.0 0.9 0.9 0.9 1.0

Inflammatory bowel disease (%) 0.8 0.4 0.8 0.5 0.8 0.5 0.8 0.6 0.8 0.5 0.8 0.5

Use of gastroprotective 
drugs

(%) 19.9 12.3 16.6 16.2 17.1 11.7 16.5 16.5 17.6 11.7 16.7 16.4

Use of warfarin (%) 3.0 0.7 1.5 1.2 3.5 0.9 2.4 1.8 3.4 0.9 2.2 1.8

Use of antiplatelet (%) 1.7 0.6 1.1 1.0 1.9 1.1 1.8 1.7 1.9 1.0 1.6 1.6

Use of oral steroids (%) 11.6 9.4 10.6 10.7 13.5 11.3 13.3 13.5 13.2 11.1 12.9 13.0

*: 1  July 2003-30 June 2008

                          All

Optum*
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Table 4.3:  Characteristics of initiators of celecoxib or NSAIDs (ibuprofen or diclofenac) in cohorts 18-65 years old, before and after 1:1 greedy 
matching based on automated hd-PS covariates, from MarketScan and Optum databases: age at the date of the first medication use and 
comorbidities/ use of medications as defined during six months prior to the first study medication use 

             Before or on  30 September 2004                     After  30 September 2004 

      Original cohort     After PS matching       Original cohort After PS matching       Original cohort     After PS matching

Characteristics Celecoxib Ibuprofen 
or 

Diclofenac

Celecoxib Ibuprofen 
or 

Diclofenac

Celecoxib Ibuprofen 
or 

Diclofenac

Celecoxib Ibuprofen 
or 

Diclofenac

Celecoxib Ibuprofen 
or 

Diclofenac

Celecoxib Ibuprofen 
or 

Diclofenac

Number of drug initiators (N)   23,104    32,174 18,379 18,379     75,489  187,170 63,187 63,187     98,593  219,344 82,095 82,095    

Age (years)

Median 56.0 52.0 55.0 55.0 55.0 52.0 54.0 54.0 55.0 52.0 54.0 54.0

Mean 54.0 50.3 53.1 53.1 53.1 50.3 52.6 52.7 53.3 50.3 52.8 52.9

Standard Deviation 8.3 9.8 8.3 8.3 8.6 9.7 8.8 8.7 8.6 9.7 8.7 8.6

18-35 (%) 3.3 8.7 3.9 3.7 4.4 8.6 4.8 4.7 4.1 8.6 4.5 4.4

36-45 (%) 12.1 19.5 14.2 13.7 13.7 19.1 14.7 14.2 13.3 19.2 14.4 14.1

46-55 (%) 33.9 37.1 36.1 37.5 35.8 37.5 36.4 37.0 35.3 37.4 36.1 36.9

56-65 (%) 50.8 34.7 45.9 45.2 46.2 34.8 44.1 44.2 47.2 34.8 45.0 44.7

Female (%) 60.6 58.5 58.9 58.5 58.6 57.9 58.7 58.7 59.1 58.0 58.7 58.8

Hypertension (%) 25.4 20.9 23.7 23.6 31.1 27.1 29.8 30.0 29.8 26.2 28.5 28.5

Congestive heart failure (%) 0.7 0.5 0.5 0.6 0.9 0.6 0.8 0.7 0.8 0.6 0.8 0.7

Coronary artery disease (%) 3.9 2.7 3.1 3.1 4.3 3.2 3.9 3.9 4.2 3.2 3.8 3.8

Chronic renal disease (%) 0.7 0.7 0.7 0.7 0.8 0.8 0.8 0.9 0.8 0.8 0.8 0.9

Inflammatory bowel 
disease

(%) 0.5 0.3 0.5 0.4 0.7 0.4 0.8 0.5 0.7 0.4 0.7 0.4

Use of gastroprotective 
drugs

(%) 20.8 16.8 17.8 20.7 19.8 15.7 18.9 20.3 20.0 15.8 18.8 20.5

Use of warfarin (%) 2.8 1.0 1.6 1.3 4.8 1.0 3.0 2.1 4.3 1.0 2.7 1.9

Use of antiplatelet (%) 1.7 0.8 1.3 1.1 2.1 1.3 1.9 1.9 2.0 1.2 1.7 1.7

Use of oral steroids (%) 12.5 3.6 11.8 11.5 14.3 13.1 14.1 14.8 13.9 11.7 13.6 13.9

*:1 January 2001-30 June 2009; †:1 July 2003-30 June 2008

                          All

MarketScan* and Optum †
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Greedy matching using the PS with predefined covariates resulted in the highest percentage 

of exposed patients who were successfully matched (Table 4.4). Greedy matching using the 

automated hd-PS covariates did not always produce adjusted RRs closer to the RCT finding, 

compared with greedy matching using the predefined covariate PS. In some cases for the 

MarketScan database, greedy matching using PS from either automated or semi-automated covariate 

selection moved the crude estimates far away from the expected decreased risk. 

In the pooled analysis of the pre-withdrawal subcohort, all estimates were smaller than the 

crude RR (Table 4.4). The automated covariate selection, with either PS deciles or greedy matching, 

moved the crude RR closest to the RCT finding. In the pooled analysis of the post-withdrawal 

subcohorts, on the contrary, all adjusted RRs were above 1.0. In all pooled and individual analyses, 

greedy matching with hd-PS variables plus predefined covariates resulted in estimates further from 

the RCT result than did greedy matching with only predefined covariates (Table 4.4). 



Table 4.4:  Risk ratios for the upper gastrointestinal complication within 60 days after the study drug initiation for the cohorts from the two 
healthcare claims databases MarketScan and Optum by using the three selection strategies for confounders and PS deciles or 1:1 greedy 
matching 

 Unadjusted  Predefined hd-PS* Predefined + 
hd-PS

Predefined + 
hd-PS

RR RR RR RR RR RR RR 
(95% CI)† (95% CI)† (95% CI)† (95% CI)† (95% CI)† (95% CI)† (95% CI)†

MarketScan

379 123,225   742 1.16 1.12 1.07 1.10 1.07 93    1.10 74  1.24 73     
(0.70) (0.60) (1.02-1.31) (0.99-1.27) (0.94-1.22) (0.96-1.25) (0.92-1.25) (0.92-1.31) (1.04-1.48)

83 19,917     120 0.92 0.91 0.87 0.88 0.80 0.83 0.86
(0.56) (0.60) (0.70-1.22) (0.68-1.20) (0.65-1.17) (0.65-1.19) (0.59-1.09) (0.59-1.17) (0.60-1.21)

46 11,632     71 1.05 0.95 0.92 0.94 0.87 0.75 0.93
(0.64) (0.61)  (0.72-1.52) (0.65-1.38) (0.62-1.37) (0.63-1.40) (0.57-1.32) (0.46-1.23) (0.59-1.56)

296 103,308   622 1.25 1.19 1.13 1.16 1.21 1.30 1.29
(0.75) (0.60)  (1.09-1.43) (1.03-1.37) (0.97-1.30) (1.00-1.34) (1.02-1.45) (1.06-1.60) (1.05-1.59)

Optum

396 96,119     717 1.20 1.10 1.09 1.09 1.03 1.07 1.10 95     
(0.89) (0.75) (1.06-1.36) (0.97-1.25) (0.96-1.24) (0.96-1.24) (0.89-1.19) (0.92-1.23) (0.95-1.28)

68 12,257     78 1.31 1.21 1.20 1.20 1.17 1.10 1.27
(0.83) (0.64)  (0.95-1.81) (0.87-1.69) (0.85-1.70) (0.85-1.70) (0.81-1.69) (0.75-1.63) (0.86-1.87)

328 83,862     639 1.19 1.08 1.07 1.07 1.01 0.99 1.02
(0.91) (0.76) (1.04-1.36) (0.95-1.24) (0.93-1.23) (0.93-1.23) (0.86-1.17) (0.85-1.16) (0.87-1.20)

MarketScan and Optum

Overall 98,593     775 219,344   1,459 1.18 1.11 1.08 1.09 1.05 96    1.08 83  1.16 83     
(0.79) (0.67) (1.08-1.29) (1.01-1.21) (0.98-1.18) (0.99-1.19) (0.95-1.16) (0.96-1.21) (1.03-1.30)

January 2001-September 2004 23,104     151 32,174     198 1.06 1.02 0.97 1.00 0.94 92    0.94 80  1.02 79     
(0.65) (0.62)  (0.86-1.31) (0.82-1.25) (0.76-1.25) (0.80-1.26) (0.74-1.19) (0.73-1.22) (0.79-1.32)

15,362     114 23,889     149 1.18 1.09 1.07 1.09 1.03 95    0.95 82  1.13 81     
(0.74) (0.62) (0.93-1.52) (0.85-1.40) (0.82-1.39) (0.83-1.40) (0.78-1.36) (0.70-1.29) (0.83-1.54)

September 2004-July 2009 75,489     624 187,170   1,261 1.27 1.13 1.10 1.11 1.09 97    1.09 84  1.11 84     
(0.83) (0.67) (1.16-1.35) (1.03-1.25) (0.99-1.21) (1.00-1.23) (0.97-1.27) (0.97-1.24) (0.98-1.26)

*hd-PS: high dimensional propensity score; †: Risk Ratio and 95% Confidence Interval; **:Percent of exposed patients matched

PS deciles

 Initiators 
N 

Celecoxib Ibuprofen or 
Diclofenac

PS matching 
Predefined hd-PS*

 %**  %**  %** 

July 2003-September 2004 

Overall: January 2001-June 2009 54,345     

Outcome 
N (%)

 Initiators 
N 

Outcome 
N (%)

90    77  75     

July 2003-September 2004 7,197      

January 2001-September 2004 14,939     

95    79  77     

October 2004-June 2009 39,406     95    73  72     

98    95  

July 2003-September 2004 8,165      

Overall: July 2003-June 2008 44,248     

96    85  85     

99    96  96     October 2004-June 2008 36,083     
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D. DISCUSSION 

We examined three different variable selection methods for the control of confounding in 

analyses with two large healthcare databases: covariate selection based on expert knowledge only, 

an automated search via the hd-PS algorithm, and the combination of these two approaches. The 

results of the three methods were similar. In particular, we did not observe a uniform improvement of 

confounding control with the hd-PS. Analyses taking into account various calendar time periods and 

data sources led to large differences in estimates.  

Individual and pooled data analyses 

In the separate and pooled data analyses, using semi-automated or automated methods to 

select covariates consistently yielded RRs closer to the RCT finding than the crude RR, but all the 

adjusted RRs were still greater than 1.0. Adjusted RRs above 1.0 were inconsistent with previous 

results from either separate database analysis [13,15,16] or PS-pooling method [63]. Adding the hd-

PS covariates into the predefined covariates produced nearly similar estimates with PS deciles, but 

worse estimates with PS greedy matching. 

Calendar time periods  

For both data sources after the withdrawal, the three strategies for selecting potential 

confounders moved the crude estimate, at least slightly, in the direction of the RCT finding, but all 

adjusted RRs were greater than 1.0. In the pre-withdrawal subcohorts, all adjusted RRs for the 

MarketScan database (in contrast to the Optum database) were less than 1.0. This may be explained 

by little unmeasured confounders prior to the withdrawal followed by stronger, intractable 

unmeasured confounders after the withdrawal. In other words, prior to the withdrawal, there was little 

channelling in the MarketScan database beyond the one that we could measure whereas after the 

withdrawal, the channelling becomes stronger and more difficult to measure. Because of fear of a 

class effect on the cardiovascular side effects, after the withdrawal coxib was more prescribed to 

those patients either with more severe inflammation or at highest risk for upper gastrointestinal 
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complications. Severity of RA/OA and of another risk factors for UGI complication was poorly 

adjusted in this study. 

Data sources  

For both data sources after the withdrawal, three strategies to select potential confounders 

somewhat moved the crude estimate to the direction of RCT finding, but all adjusted RRs were 

greater than 1.0. In the pre-withdrawal subcohorts, in contrast to the Optum, all adjusted RRs of the 

MarketScan were less than 1.0. This may be explained by little unmeasured confounders prior to the 

withdrawal followed by stronger, intractable unmeasured confounders after the withdrawal. In other 

words, prior to the withdrawal, there was little channelling in the MarketScan database beyond the 

one that we could measure whereas after the withdrawal, the channelling becomes stronger and 

more difficult to measure. Because of fear of a class effect on the cardiovascular side effects, after 

the withdrawal coxib was more prescribed to those patients either with more severe inflammation or 

at highest risk for upper gastrointestinal complications. Severity of RA/OA and of another risk factors 

for UGI complication was poorly adjusted in this study. In the MarketScan pre-withdrawal subcohorts, 

the hd-PS led to confounding control that was as least as good as the one obtained by adjustment 

limited to covariates predefined by expert knowledge as previously observed [13,15,16]. In these 

previous studies [13,15,16] the estimated risk reduction of UGI complication after adjustment for 

investigator‐specified covariates and the hd‐PS algorithm was 6-21% and 12-22%. Approximately 

50% lower risk of UGI complication among celecoxib initiators compared with tNSAID initiators was 

reported in RCT finding. 

In the Optum pre-withdrawal subcohort, on the contrary, the use of three methods to select 

the potential confounders budged the crude RR of 1.31 to adjusted RRs ~1.20. It is arguable that the 

three selection strategies still have some benefits to shift the crude estimate into the direction of the 

RCT finding, nevertheless the adjusted RRs were still above 1.0. It is worth noting that the Optum 

pre-withdrawal subcohort had the study drug initiation between July 2003 and September 2004, but 

the MarketScan pre-withdrawal subcohort had the study drug initiation between July 2001 and 
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September 2004. In the MarketScan subcohort with the study drug initiation between July 2003 and 

September 2004, both semi-automated and automated selection methods moved the crude RR 

toward a reduced risk (Table 4.4), regardless of that the latter cohort had 46 UGI events in the 

celecoxib group.  

The higher imbalance of warfarin use in the celecoxib group versus referent group after PS 

matching suggests the difference in channelling bias for warfarin between post and pre-withdrawal 

subcohorts (Tables 4.1-4.3). There were potential changes of channelling bias over time in our 

studies. Different estimates after hd-PS adjustment using the three variable selection methods by 

calendar time periods and databases were in Figures 4.1 - 4.4.  

 

 

 

  



 

Figure 4.1.  Risk Ratios for the upper gastrointestinal complication within 60 days after the study drug initiation for cohorts in the MarketScan and 
Optum databases by using the hd-PS deciles and three selection strategies for confounders  
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Figure 4.2.  Risk Ratios for the upper gastrointestinal complication within 60 days after the study drug initiation for cohorts in the MarketScan and 
Optum databases by using 1:1 PS greedy matching and three selection strategies for confounders 
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Figure 4.3.  Risk Ratios for the upper gastrointestinal complication within 60 days after the study drug initiation for multiple cohorts in the 
MarketScan database by using the hd-PS deciles and three selection strategies for confounders (Note: 01-02 means 2001-2002 year cohort) 
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Figure 4.4.  Risk Ratios for the upper gastrointestinal complication within 60 days after the study drug initiation for multiple cohorts in the Optum 
database by using the hd-PS deciles and three selection strategies for confounders (Note: 03-04 means 2003-2004 year cohort) 
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Propensity score deciles and greedy matching 

Compared with the estimates using hd-PS deciles, the pooled RR’s from PS greedy matching 

using automated covariates were closer to the RCT finding in the pre-withdrawal subcohorts (Table 

4.4). We observed a similar pattern in the MarketScan pre-withdrawal subcohort. Nevertheless 

greedy matching using PS with semi-automated covariates unexpectedly moved the crude RR away 

from the RCT finding in MarketScan post-withdrawal subcohort (Table 4.4). In all pooled and 

individual analyses using greedy matching, adding hd-PS variables to predefined covariates moved 

the estimate away from the RCT finding. We should cautiously generalize and interpret the results as 

the retained study populations were different after matching. 

To our knowledge, this is the first study to evaluate the impact of various calendar time 

periods and disparate data sources on treatment effect estimates derived from different methods of 

selecting confounders. Our evaluation considered various potential influences on hd-PS performance. 

To explore the possibility of potential overfit of the PS where cohort size or number of outcomes was 

small, we conducted supplementary analyses in the MarketScan cohorts. First, we tried using hd-PS 

with only 100 covariates from each data dimension (rather than 200) and a maximum of 200 

covariates included in the PS model (rather than 500). In addition, we tried using quintiles for the PS 

instead of deciles, with both this restricted number of covariates and in the primary analyses. In all 

instances, results were similar to those from the primary analyses (data not shown).  

We also explored other potential influences on treatment effect estimates through channelling 

bias or other factors, by examining interactions between calendar year and warfarin use, interactions 

between age and the use of warfarin or antiplatelet drugs, restriction of patients without prior warfarin 

use, controlling for type of healthcare plan, different numbers of outcomes, truncation of PS 

distributions. None of these factors could explain the observed difference betweem the crude and 

adjusted RRs in the pre-withdrawal subcohorts, in either database (data not shown). Results were 

also similar when we applied the hd-PS with five or three data dimensions for the Optum pre-

withdrawal subcohort with drug initiation in July 1999-September 2004, which had missing inpatient 
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diagnoses and procedures for 1999-2002 (data not shown). We also observed similar results when 

we included pateients older than 65 years (in the Optum database). 

Although the automated covariate selection provided the closest RR in the MarketScan pre-

withdrawal subcohort, and a result consistent with a previous study [13] but not with another [15,16], 

the automated covariate selection should be carefully considered in addition to adjustment for 

covariates predefined by investigators. Although it is recommended that users of hd-PS should 

screen and remove instrumental variables and collider bias candidates [11,12, 56], out study focused 

on the performance of the hd-PS automated covariate selection. Our study can be extended in 

several ways. Addition of manual review to remove instrumental variables and collider bias 

candidates might produce improved effect estimates. Research to find ways to automatically identify 

and remove these kinds of variables would be beneficial to users of the hd-PS. Future studies may 

also explore alternative approaches to combined analyses of multiple databases by investigating 

interactions of PS and data source, using Generalized Estimating Equations (GEE) or hierarchical 

models, or meta-analysis. Using richer information databases such as electronic medical record data 

to minimize unmeasured confounders should be considered in future studies in order to further 

investigate the role of the hd-PS algorithm. 

Our study has several limitations. First, our study used RCT findings [18-23] as expected 

treatment effect estimates. We thus empirically compared estimates from different methods and 

assumed any treatment effect estimates closer to the RCT findings to be less biased by confounding. 

Our comparison relies on assumptions of no measurement errors in baseline potential confounders. 

Fully specified simulations with true risk ratios in diversified scenarios could be explored instead of a 

real-world cohort. Second, it is unclear whether our findings regarding the hd‐PS algorithm apply to 

other treatment‐outcome pairs that may be subject to confounding by different factors. Third, studies 

with few events or small size may have small sample bias or overfit propensity score and outcome 

models [79,80]. Fourth, the small number of UGI complication cases produced imprecise estimates. 

Finally, the Optum data did not record inpatient diagnoses and inpatient procedures which occurred 
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before the year 2003, thus it limited to create a bigger and more comparable cohort with the study 

drug initiation before 30 September 2004. 

In our study, hd-PS added little, if anything, compared with other issues such as channelling 

bias, differences in calendar time periods, data sources, with which users of “automated” 

pharmacoepidemiology in active product safety monitoring systems should be cautious of. Different 

methods of confounder selection by using expert knowledge only, an automated search via the hd-PS 

algorithm, and both with the propensity score deciles or greedy matching inconsistently reduced 

confounding by indication to obtain an appropriate effect estimate for studies with various calendar 

time periods and administrative data sources. The strength of confounding by indication for the effect 

of non‐steroidal anti‐inflammatory drugs on upper gastrointestinal complication varied over time 

before and after the date of voluntary withdrawal of rofecoxib, the same study drug class, from the US 

market. Users of hd-PS for active product safety monitoring systems should be aware of its benefits 

and constraints.  



CHAPTER V 

RESULTS: Effects of Aggregation of Medical Codes on  the Performance of the High-
Dimensional Propensity Score Algorithm: an Empirica l Example 

A. INTRODUCTION 

Although early detection and assessment of drug safety signals are important [1-3], post-

marketing drug safety studies often face challenges such as small size, rare incidence of adverse 

outcomes, or low exposure prevalence after the launch of a new drug.  Nonrandomized studies of 

treatment effects in healthcare data are vulnerable to confounding bias. Propensity score methods 

are an increasingly used approach to control for measured potential confounders, especially in 

pharmacoepidemiologic studies of rare outcomes in the presence of many covariates from different 

data dimensions of administrative healthcare databases [4-7]. Methods of selecting variables for 

propensity score models based on substantive knowledge have been proposed [8-12]. However, 

substantive knowledge may often be lacking, and the meaning of various medical codes may often be 

unclear [55]. Seeger et al. proposed that health care claims may serve as proxies, in hard-to-predict 

ways, for important unmeasured variables [14]. Stürmer et al. used propensity score models with over 

70 variables representing medical codes present during a baseline period [5]. Johannes et al. created 

a propensity score model that considered as candidate variables the 100 most frequently occurring 

diagnoses, procedures, and outpatient medications in healthcare claims [46]. A recently-developed 

strategy for selecting from a large pool of baseline covariates for propensity score analyses is the use 

of a computer-applied algorithm [13, 57], such as the High-Dimensional Propensity Score (hd-PS) 

algorithm. The hd-PS automatically defines and selects variables for inclusion in the propensity score 

to adjust treatment effect estimates in studies using automated healthcare data [13,15,16].  

The hd-PS algorithm prioritizes variables within each data dimension (e.g., inpatient 

diagnoses, inpatient procedures, outpatient diagnoses, outpatient procedures, dispensed prescription 
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drugs) by their potential for confounding control based on their prevalence and on bivariate 

associations of each covariate with the treatment and with the study outcome [13,26]. It excludes 

variables if those have fewer than 100 patients (exposed and unexposed combined), missing 

covariate-exposure association or zero/undefined covariate-outcome association. Once variables 

have been prioritized, a predefined number of variables with the highest potential for confounding per 

dimension is chosen to be included in the PS. 

Combining medical diagnoses or medications into higher-level categories increases the 

prevalence of the aggregated covariate which may increase the chances of a variable to be selected. 

In addition to the selection issue, control for a selected aggregated variable may lead to residual 

confounding. No study to date has assessed how hd-PS performance is affected by aggregating 

medical diagnoses and/or medications, especially in cohorts with relatively few patients, rare outcome 

incidence, or low exposure prevalence. To investigate the performance of hd-PS in the cohorts with 

low outcome incidence or exposure prevalence and the impact of aggregation on hd-PS, we created 

an empirical example based on prior research [13,78] that observed elevated crude risk ratios likely 

due to confounding by indication in studies of upper gastrointestinal (UGI) complications in 

rheumatoid arthritis (RA) or osteoarthritis (OA) patients initiating celecoxib compared to traditional 

non-steroidal anti-inflammatory agents (tNSAIDs). Celecoxib has been shown to decrease risk for 

UGI complications in several randomized clinical trials (RCT) by approximately 50% [18-23]. We 

therefore assume that a treatment effect estimate closer to 0.5 is less biased by confounding.  

 

B. METHODS 

Selection of the study cohort  

We constructed an incident user cohort [81] to examine UGI complication in RA and OA 

patients initiating celecoxib or a tNSAID, specifically ibuprofen or diclofenac. All individuals with a first 

dispensing between 1 July 2003 and 30 September 2004 of celecoxib, ibuprofen, or diclofenac were 

drawn from the MarketScan® commercial claims and encounters of Thomson Reuters Healthcare 

[65]. MarketScan is a longitudinal 10-year healthcare claims database which captures patient 

demographics, inpatient and outpatient diagnoses and procedures, and medications from a selection 
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of large private employers, health plans, government agencies and other public organizations. We 

selected patients who as of the date of first dispensing of a study or referent drug (the “index date”) 

were age 18-65 years, belonged to a health insurance plan with full medical and pharmacy benefits, 

and had at least 6 months of enrollment history. During the 6 months prior to the index date, patients 

must have had a diagnosis of RA (ICD-9 code 714, 7140, 7141, 7142, 7143x) or OA (ICD-9 code 

715x, 721x) but no NSAID dispensing (including aspirin); and no record of gastrointestinal ulcer 

disorders, gastrointestinal hemorrhage, active renal, hepatic, coagulation disorders, allergies, 

malignancy, esophageal or gastroduodenal ulceration.  

 

The study outcome, UGI complication, was defined as either first peptic ulcer disease 

complications including perforation, an UGI hemorrhage (ICD-9 code 531x, 532x, 533x, 534x, 535x, 

5780), or a physician service code for UGI hemorrhage (Current Procedure Terminology (CPT) code 

43255 or ICD-9 procedure code 4443). The complication must have occurred during the 60 days after 

initiation of the study drug. These outcome definitions were validated for 1,762 patients in a hospital 

discharge database with a positive predictive value of 90% against medical chart review [72].  

 

Aggregations of medical diagnoses and medications 

Major U.S. administrative databases represent medical diagnoses with International 

Classification of Diseases, 9th Revision, Clinical Modification (ICD-9) codes. ICD-9 has its limited 

hierarchical relationships [67], but the Clinical Classification Software (CCS) developed by the Agency 

for Healthcare Research and Quality (AHRQ) can be used to aggregate diagnoses into clinically 

meaningful categories [68]. Similarly, medications, represented by non-hierarchical National Drug 

Codes (NDC) and generic drug names, can be aggregated using the hierarchical Anatomical 

Therapeutic Chemical (ATC) drug classification developed by the WHO for drug utilization studies 

[69].  

In the base scenario, we applied the hd-PS with up to 5-digit granularity of ICD-9 for inpatient 

and outpatient diagnoses. Note that 3-digit ICD-9 codes are kept separate from 4- and 5-digit codes 

in the hd-PS despite the limited hierarchy between these levels. We transformed ICD-9 diagnoses 
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into four-level CCS categories via the cross-mapped ICD-9 to CCS multi-level diagnoses table [68]. 

There are 18, 134, 355 and 207 categories in CCS levels 1, 2, 3 and 4, respectively. However, not all 

ICD-9 codes have a corresponding CCS code in all four levels. Therefore we created a “universal” 

CCS by using the most granular code available for each ICD-9 diagnosis code. We separately 

investigated different levels of ICD-9 granularity by using the first 3- or 4-digit ICD-9 codes. 

We aggregated medications to five levels of the Anatomical Therapeutic Chemical (ATC) 

classification of the World Health Organization (WHO) [69]. This system classifies active substances 

into different groups based on their target organ or system and their therapeutic, pharmacological and 

chemical properties. Drugs are classified into fourteen main groups (1st level) with pharmacological 

or therapeutic subgroups (2nd level). The 3rd and 4th levels are chemical, pharmacological or 

therapeutic subgroups, and the 5th level is the chemical substance. Several ATC groups are 

subdivided into both chemical and pharmacological groups. The pharmacological group is often 

chosen if a new substance fits in both a chemical and pharmacological 4th level. Substances in the 

same 4th ATC level are not pharmacotherapeutically equivalent, as they may have different modes of 

action, therapeutic effects, drug interactions and adverse drug reaction profiles. New 4th levels are 

commonly established if at least two approved substances fit in the group. A new substance not 

clearly belonging to any existing group of related substances of ATC 4th level will often be placed in 

an X group ("other" group).  

Sampling techniques to generate cohorts with differ ent sizes, outcome incidences and 
exposure prevalences 
 

The full cohort consisted of 18,829 patients (7,197 prescribed celecoxib and 11,632 

prescribed ibuprofen or diclofenac); 117 patients developed an UGI complication. For each 

aggregation scenario (including no aggregation), we created six categories of 100 cohorts, as follows. 

We created “small” cohorts by drawing 50% (category 1) and 20% (category 2) simple random 

samples, 100 times each, without replacement. We created cohorts with low outcome incidence by 

drawing 50% (category 3) and 20% (category 4) simple random samples, 100 times each, without 

replacement, from the 117 cases and re-coding the remaining cases as noncases. Cohorts in 
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categories 3 and 4 consisted of the sampled and recoded cases plus the original 18,712 noncases. 

Finally, we created cohorts with low exposure prevalences by drawing 50% (category 5) and 20% 

(category 6) simple random samples, 100 times each, without replacement, from the 7,197 exposed 

subjects and replacing the unselected exposed subjects with the same number of randomly selected 

unexposed patients. Cohorts in categories 5 and 6 consisted of the sampled exposed subjects, 

replacements for the unselected exposed subjects, plus the original 11,632 unexposed subjects.  

 

The hd-PS algorithm 

We implemented the hd-PS algorithm with five data dimensions commonly available in 

automated healthcare databases: pharmacy claims, outpatient diagnoses, outpatient procedures, 

inpatient diagnoses, and inpatient procedures. The algorithm identifies the top n most prevalent 

variables within each data dimension by creating binary variables for each diagnosis, procedure and 

medication. The prevalence of each variable depends on the granularity of the coding. Each variable 

is assessed for 3 levels of its within-patient frequency of occurrence: once, sporadic ≥ median 

number of times, or frequent ≥ 75th percentile number of times [13]. With the default setting of 200 

variables for each dimension, 3,000 indicator variables (200 x 3 levels x 5 dimensions) are then 

prioritized according to their potential for confounding control based on their prevalence and their 

bivariate associations with the treatment and with the study outcome, according to the Bross formula 

[13,26]. By default, the top k=500 indicator variables are selected for the propensity score.  

Statistical analysis 

The hd-PS algorithm can combine these automatically selected variables with predefined 

covariates chosen by the investigator. Besides a crude model, with no covariates, we fit four log 

binomial models that adjusted for (1) basic covariates (age [continuous], gender, calendar year of 

drug initiation), (2) basic plus extended variables (hypertension, congestive heart failure, coronary 

artery disease, inflammatory bowel disease, prior dispensing of gastroprotective drugs, warfarin, 

antiplatelet, and oral steroids), selected based on biological rationale and use in the literature [13, 15, 

73-75,78], (3) basic plus variables automatically selected with hdPS, and (4) basic, extended, and 
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automatically selected variables.  In the base scenario, we used up to 5-digit granularity of ICD-9, 

CPT or Healthcare Common Procedure Coding System (HCPCS), and generic drugs. We then re-

fitted all models in eight scenarios for aggregation of diagnoses, six scenarios for aggregation of 

medications, and one scenario that combined the diagnosis and medication aggregations that 

appeared to perform best across the six categories of cohort samples. 

We applied hd-PS to the full study cohort to estimate the treatment effect and used it as the 

reference value for comparison with results from the generated cohorts. For the 100 samples in each 

of the cohort categories, we calculated summary statistics for the estimated risk ratios (geometric 

mean, 25th and 75th percentiles): the mean percentage of covariates selected by hd-PS in the full 

cohort that were also selected by hd-PS in the samples; the median number of exposed and 

unexposed subjects; the median number of exposed and unexposed outcomes. We evaluated each 

aggregation scenario by estimating the amount of residual confounding, calculated as the difference 

in the natural logarithms of the estimated risk ratio and the natural logarithm of 0.50, representing the 

RCT findings. To estimate the change in residual confounding resulting from each aggregation 

scenario, we calculated the proportional difference in absolute degree of estimated confounding 

between that scenario and the base (no aggregation) scenario. For example, for the 20% exposure 

prevalence cohorts (category 6), the unadjusted (confounded but otherwise presumptively unbiased) 

estimate is RRu=0.97, and two confounded (but otherwise presumptively unbiased) estimates are 

RRc1=0.89 (base, no aggregation) and RRc2=0.81 (combined diagnostic and medication 

aggregation). Assuming that the unconfounded (true) value is RRt=0.50, estimated confounding in 

the base estimate = |ln(0.89) – ln(0.50)| =0.577; estimated confounding in the combined aggregation 

estimate = |ln(0.81) – ln(0.50)| =0.482. Thus, the proportional difference in absolute degree of 

estimated confounding between the two estimates =(0.482-0.577)/0.577=–16.3%. We would 

conclude that the combined aggregation estimate is 16.3% less confounded than the base estimate.  

Because of limited data availability, and to mimic as closely as possible the intention-to-treat 

analyses in the trials, we used a prescription reimbursement claim as the treatment measure. The 
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current study was exempt by the Institutional Review Board of University of North Carolina at Chapel 

Hill. 

C. RESULTS 

In the full cohort, there were 7,197 (38%) celecoxib and 11,632 (62%) ibuprofen or diclofenac 

initiators with 46 and 71 UGI events, respectively. Celecoxib users were older and had more risk 

factors for UGI complications than did the tNSAIDs users (Table 5.1). The RR for UGI complication 

associated with celecoxib versus tNSAIDs was 1.05 in the crude model, compared to 0.92 in the 

model that used hd-PS automated variable selection (along with the basic covariates) (Table 5.2). 

Consistent with the sampling procedures described above, the median numbers of patients in cohorts 

in categories 1 and 2 were about 3,594 and 1,441, respectively, the median outcome incidence 

proportions in categories 3 and 4 were about 0.32% and 0.14%, respectively, and the median 

exposure prevalences in categories 5 and 6 were about 19% and 8%, respectively. 

 

In all cohort categories except category 2, where the total study size was only about 3,790, 

the geometric means of the hd-PS adjusted risk ratios were similar to the full cohort risk ratios. This 

similarity held even in cohort categories 4 and 6, where the number of exposed patients with an 

outcome event was approximately 10. In all categories except category 6, where the exposure 

prevalence was only 8%, the geometric means of the hd-PS adjusted risk ratios were at least slightly 

closer to the RCT finding than the geometric means of the risk ratios adjusted for only the basic and 

extended covariates. A majority of the covariates that hd-PS identified in the full cohort  were also 

selected by hd-PS in the samples in categories 1,3, and 5, where the number of exposed outcomes 

was at least 20, but also in category 6, where there were only 10 exposed outcomes but a large total 

number of outcomes. 

A scenario with combined aggregations of medications into ATC level 4 and of diagnoses into 

CCS level 1 consistently performed best, reducing residual confounding from 8.9% to 19.3% 

compared to the base scenario (Table 5.3). When we experimented with different aggregations for 
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diagnoses, without any aggregation for medications, aggregating ICD-9 diagnosis codes into different 

CCS levels inconsistently changed the adjusted risk ratios. Note that in our empirical setting not 

controlling for any measure of co-morbidity resulted in the estimate closest to the RCT finding (Table 

5.3). When we aggregated ICD-9 diagnosis codes into CCS levels 1 or 2, the adjusted risk ratios in 

the samples were generally closer to the RCT finding. In contrast, aggregations of ICD-9 codes into 

CCS universal, CCS level 3, CCS level 4, or 3- or 4-digit ICD-9 categories did not improve the 

adjusted point estimates.  

Aggregating medications into chemical, pharmacological or therapeutic subgroups of ATC 

level 4, slightly improved adjusted estimates in all cohort categories except category 4, the 20% 

outcome incidence samples. In contrast, aggregations of medications into categories of the other 

ATC levels produced nearly the same or even worse adjusted risk ratios in all cohort categories.  

 

Table 5.1.  Characteristics of Initiators of Celecoxib or NSAIDs (ibuprofen or diclofenac) in a Cohort 
18-65 Years Old Between 1 July 2003 and 30 September 2004 of MarketScan Database: Age at the 
Date of the First Medication Use and Comorbidities/ Use of Medications as Defined During Six 
Months Prior to the First Medication Use 

 
 

Characteristics

N % N %

Age (years)
Median             56.0                      52.0 
Mean             54.1                      50.4 

Standard Deviation               8.2                        9.7 
18-35              235    3.3                       996     8.6 
36-45              854  11.9                    2,164    18.6 
46-55           2,373  33.0                    4,339    37.3 
56-65           3,735  51.9                    4,133    35.5 

Female           4,387  61.0                    6,869    59.1 
Hypertension           1,748  24.3                    2,191    18.8 
Congestive heart failure                36    0.5                         56     0.5 
Coronary artery disease              270    3.8                       297     2.6 
Chronic renal disease                44    0.6                         59     0.5 
Inflammatory bowel disease                26    0.4                         30     0.3 

Use of gastroprotective drugs           1,567  21.8                    2,111    18.1 

Use of warfarin              220    3.1                       128     1.1 
Use of antiplatelet              143    2.0                       108     0.9 
Use of oral steroids              963  13.4                    1,356    11.7 

Ibuprofen or Diclofenac 
N=11,632 (62%)

Celecoxib           
N=7,197 (38%)
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Table 5.2.  Geometric Mean of Risk Ratios and a Summary Analysis for Different Cohort Size, 
Outcome Incidence and Exposure Prevalence of Initiators of Celecoxib or NSAIDs (ibuprofen or 
diclofenac) in a Cohort 18-65 Years Old Between 1 July 2003 and 30 September 2004 of MarketScan 
Database 

Median of 
exposed 
subjects

Median of 
exposed 

outcomes

Median of 
unexposed 
subjects

Median of 
unexposed 
outcomes

Geometric 
mean of 

RR

25th-75th 
percentiles of 

RR of samples

Mean 
variable 

coverage %

N (%) N (%) N (%) N (%) (a) (b)  (c) 

Full Cohort d 7197 (38) 46 (0.64) 11632 (62) 71 (0.61)
Unadjusted 1.05
Basic covariates 0.98
Basic and extended covariates 0.95
Basic and hd-PS covariates 0.92 100
Basic, extended and hd-PS covariates 0.94 100

Category 1: 50% Size Sample 3594 (38) 23 (0.64) 5821 (62) 36 (0.62)
Unadjusted 1.02 0.89, 1.20
Basic covariates 0.96 0.84, 1.11
Basic and extended covariates 0.92 0.80, 1.09
Basic and hd-PS covariates 0.88 0.74, 1.07 65
Basic, extended and hd-PS covariates 0.89 0.74, 1.11 65

Category 2: 20% Size Sample 1441 (38) 10 (0.66) 2325 (62) 14 (0.60)
Unadjusted 1.10 0.89, 1.37
Basic covariates 1.03 0.82, 1.29
Basic and extended covariates 0.99 0.79, 1.24
Basic and hd-PS covariates 0.94 0.71, 1.21 41
Basic, extended and hd-PS covariates 0.95 0.70, 1.25 41

Category 3: 50% Outcome Incidence Sample 7220 (38) 23 (0.32) 11667 (62) 36 (0.31)
Unadjusted 1.02 0.89, 1.19
Basic covariates 0.96 0.84, 1.13
Basic and extended covariates 0.93 0.81, 1.09
Basic and hd-PS covariates 0.90 0.78, 1.08 65
Basic, extended and hd-PS covariates 0.91 0.78, 1.08 65

Category 4: 20% Outcome Incidence Sample 7233 (38) 10 (0.14) 11689 (62) 14 (0.12)
Unadjusted 1.00 0.81, 1.37
Basic covariates 0.94 0.73, 1.25
Basic and extended covariates 0.91 0.69, 1.19
Basic and hd-PS covariates 0.85 0.69, 1.17 42
Basic, extended and hd-PS covariates 0.86 0.70, 1.14 42

Category 5: 50% Exposure Prevalence Sample 3599 (19) 22 (0.61) 15230 (81) 95 (0.62)
Unadjusted 1.02 0.93, 1.13
Basic covariates 0.94 0.86, 1.05
Basic and extended covariates 0.91 0.83, 1.02
Basic and hd-PS covariates 0.88 0.79, 0.98 81
Basic, extended and hd-PS covariates 0.88 0.79, 1.00 81

Category 6: 20% Exposure Prevalence Sample 1440 (8) 9 (0.63) 17389 (96) 108 (0.62)
Unadjusted 0.97 0.77, 1.24
Basic covariates 0.89 0.72, 1.15
Basic and extended covariates 0.86 0.70, 1.08
Basic and hd-PS covariates 0.89 0.73, 1.13 73
Basic, extended and hd-PS covariates 0.89 0.72, 1.14 73

Abbreviations: basic covariates included continuous age, gender and calendar year; hd-PS, high-dimensional propenisty score; extended, clinically 
pre-specified covariates; hd-PS covariates, variables automatically selected by hd-PS; RR, risk ratio.
a  Geometric mean of the risk ratio observed in 100 samples at this sampling rate.
b  25th and 75th percentiles of the risk ratios observed in 100 samples at this sampling rate.
c  Mean percentage of hd-PS variables in the full cohort also identified in samples.
d  For the full cohort, all values are the numbers, not mean.

Cohort and Variable Selection Method



Table 5.3.  Geometric Mean of Risk Ratios for Different Cohort Size, Outcome Incidence and Exposure Prevalence of Initiators of Celecoxib or 
NSAIDs (ibuprofen or diclofenac) in a Cohort 18-65 Years Old Between 1 July 2003 and 30 September 2004 of MarketScan Database by Using 
the High-Dimensional Propensity Score (hd-PS) Adjustment with Different Aggregation Methods 

Cohort and Medical Diagnoses Medications Combined

Variable Selection Method ATCcLevel CCS 1st +

Base 1st 2nd 3rd 4th Universal 3-digit 4-digit 1st 2nd 3rd 4th 5th ATC 4th 

Full Cohort

Unadjusted 1.05
Basic covariates 0.98
Basic and extended covariates 0.95
Basic and hd-PS covariates 0.92 0.88 0.90 0.89 0.92 0.92 0.94 0.95 0.94 0.94 0.93 0.92 0.92 0.90 0.91 0.85

%d -7.0 -3.7 -4.4 0.1 1.0 3.6 5.1 4.1 3.9 2.6 0.0 0.8 -2.9 -1.4 -12.1

Basic, extended and hd-PS covariates 0.94 0.91 0.91 0.92 0.95 0.94 0.96 0.96 0.95 0.91 0.96 0.94 0.94 0.90 0.93 0.88

%d -5.0 -4.4 -2.5 1.0 0.6 3.6 4.0 2.1 -5.0 3.7 -0.5 -0.7 -6.0 -1.3 -10.9
Indicator Variables (k=500)

Outpatient Diagnoses (N) 136 0 32 90 97 54 123 133 139 224 198 177 154 144 133 34
Inpatient Diagnoses (N) 9 0 22 18 19 5 16 14 11 12 11 11 9 9 7 23

Medications (N) 167 247 216 186 181 213 171 166 163 0 36 76 122 148 177 194
Outpatient Procedures (N) 152 210 188 166 163 187 153 151 151 220 211 194 174 161 148 206

Inpatient Procedures (N) 36 43 42 40 40 41 37 36 36 44 44 42 41 38 35 43

Category 1: 50% Size Sample
Unadjusted 1.02
Basic covariates 0.96
Basic and extended covariates 0.92
Basic and hd-PS covariates 0.88 0.85 0.83 0.85 0.88 0.85 0.89 0.88 0.91 0.90 0.89 0.88 0.88 0.87 0.88 0.83

%d -5.4 -9.2 -5.8 0.0 -5.5 2.2 1.2 6.7 4.8 3.0 1.5 1.0 -1.5 1.7 -9.9

Basic, extended and hd-PS covariates 0.89 0.87 0.85 0.86 0.89 0.87 0.90 0.90 0.92 0.89 0.90 0.89 0.89 0.88 0.90 0.84
%d -3.5 -7.4 -5.0 0.0 -3.4 2.4 1.5 5.8 0.5 3.0 1.0 1.5 -0.9 1.8 -8.9

Category 2: 20% Size Sample
Unadjusted 1.10
Basic covariates 1.03
Basic and extended covariates 0.99
Basic and hd-PS covariates 0.94 0.92 0.89 0.90 0.94 0.92 0.96 0.94 0.99 0.97 0.98 0.96 0.95 0.93 0.95 0.87

%d -3.8 -9.1 -7.5 0.0 -3.0 2.3 -0.6 8.0 4.5 5.7 2.3 1.5 -1.4 0.8 -12.0

Basic, extended and hd-PS covariates 0.95 0.94 0.89 0.91 0.95 0.94 0.96 0.95 1.00 0.98 0.99 0.96 0.96 0.94 0.95 0.88
%d -1.4 -9.5 -6.3 0.0 -1.4 1.8 -0.3 7.5 5.1 6.6 1.3 1.6 -1.8 -0.1 -11.9

ICD-9bCCSa  Level No RxNo Dx
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Category 3: 50% Outcome Incidence Sample
Unadjusted 1.02
Basic covariates 0.96
Basic and extended covariates 0.93
Basic and hd-PS covariates 0.90 0.85 0.84 0.87 0.90 0.86 0.91 0.92 0.85 0.92   0.90 0.89 0.89 0.88 0.91 0.84

%d -8.8 -10.5 -5.8 0.0 -7.6 3.6 4.5 -8.1 3.9 1.3 -0.9 -1.0 -2.4 2.0 -11.9

Basic, extended and hd-PS covariates 0.91 0.87 0.85 0.87 0.91 0.87 0.92 0.92 0.86    0.90   0.91 0.89 0.90 0.89 0.91 0.85
%d -6.5 -10.2 -6.3 0.0 -6.1 3.2 3.4 -8.9 -1.6 0.8 -2.2 -1.3 -3.2 0.5 -11.3

Category 4: 20% Outcome Incidence Sample
Unadjusted 1.00
Basic covariates 0.94
Basic and extended covariates 0.91
Basic and hd-PS covariates 0.85 0.85 0.82 0.84 0.85 0.85 0.89 0.88 0.85 0.87   0.88 0.86 0.86 0.86 0.87 0.81

%d -1.5 -7.8 -3.2 0.0 -0.7 6.7 6.3 0.0 3.6 4.8 1.1 1.1 0.9 2.9 -10.4

Basic, extended and hd-PS covariates 0.86 0.86 0.83 0.84 0.86 0.87 0.89 0.89 0.86 0.87   0.89 0.87 0.87 0.87 0.86 0.82
%d 0.0 -7.5 -4.2 0.0 1.4 6.5 5.5 0.0 2.1 5.8 2.5 2.0 2.0 1.0 -9.8

Category 5: 50% Exposure Prevalence Sample
Unadjusted 1.02
Basic covariates 0.94
Basic and extended covariates 0.91
Basic and hd-PS covariates 0.88 0.86 0.86 0.88 0.90 0.88 0.90 0.89 0.90 0.90 0.90 0.89 0.87 0.84 0.88 0.81

%d -5.5 -5.0 -0.7 3.3 -0.8 4.2 2.0 4.3 2.9 3.9 1.4 -2.1 -8.0 -1.5 -14.4

Basic, extended and hd-PS covariates 0.88 0.87 0.86 0.88 0.90 0.89 0.91 0.89 0.90 0.89 0.91 0.90 0.89 0.86 0.88 0.82

%d -2.5 -4.1 -0.3 4.2 0.7 5.5 1.8 3.7 2.3 6.3 3.4 0.7 -4.8 -0.6 -12.7
Category 6: 20% Exposure Prevalence Sample
Unadjusted 0.97
Basic covariates 0.89
Basic and extended covariates 0.86
Basic and hd-PS covariates 0.89 0.83 0.83 0.87 0.88 0.85 0.88 0.88 0.89 0.87 0.87 0.87 0.85 0.83 0.88 0.79

%d -10.8 -10.5 -4.0 -1.2 -6.5 -0.4 -1.6 1.6 -3.1 -3.3 -2.8 -8.0 -10.5 -1.9 -19.3

Basic, extended and hd-PS covariates 0.89 0.84 0.84 0.86 0.88 0.86 0.89 0.88 0.89 0.87 0.88 0.87 0.85 0.85 0.88 0.81
%d -9.8 -10.0 -4.8 -1.3 -5.6 0.6 -1.4 1.3 -2.8 -1.4 -2.9 -6.5 -7.0 -1.6 -16.3

Abbreviations: basic covariates included continuous age, gender and calendar year; extended, clinically pre-specified covariates ; hd-PS, high-dimensional propenisty score; hd-PS covariates, variables 
automatically selected by the hd-PS algorithm.

Base: the scenario using up to 5-digit ICD-9, procedures, generic drugs for five data dimensions of the hd-PS.
No Dx: the scenario using procedures and generic drugs for three data dimensions of the hd-PS.
No Rx: the scenario using 5-digit ICD-9 and procedures for 4 data dimensions of the hd-PS.
a CCS: Four levels of the Clinical Classification Software; Universal, the most granular CCS code available for each ICD-9 code.
b ICD-9: International Classification of Diseases, 9th Revision, Clinical Modification.
c ATC: 5 levels of the Anatomical Therapeutic Chemical classification.
d % change of the residual confounding of aggregation method versus the base scenario at the same variable selection method on the natural log scale with RCT finding of 0.5. The presumptive amount of 
confounding  in the base scenario A = |ln(adjusted RR) – ln(RCT finding)|; in each aggregation method B = |ln(adjusted RR) – ln(RCT finding)|; and C = (B – A)/A
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Figure 5.1.  Geometric Mean of Risk Ratios for Different Cohort Size, Outcome Incidence and Exposure Prevalence of Initiators of Celecoxib or 
NSAIDs (ibuprofen or diclofenac) in Cohorts 18-65 Years Old Between 1 July 2003 and 30 September 2004 Using the High-Dimensional 
Propensity Score Adjustment for Basic and hd-PS Covariates (left) or hd-PS, Basic and Extended Predefined Covariates (right) with Different 
Aggregation Methods 
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D. DISCUSSION 

We hypothesized that aggregations of medical diagnoses and/or medications into appropriate 

levels of CCS or ATC would help the performance of the hd-PS, especially with smaller cohort size, 

rarer outcome incidence or lower exposure prevalence. To explore these hypotheses, we selected a 

retrospective cohort as the full cohort where, as has been previously observed, the hd-PS adjustment 

for confounding yielded an adjusted RR substantially  close to the RCT findings [18-23] as did 

propensity score adjustment using a limited number of investigator predefined covariates [13,15,16].  

Of the 500 variables identified by hd-PS in the full cohort, most were also identified by hd-PS 

in the random samples with fewer observations, rarer outcomes, or lower prevalences of treatments. 

To our knowledge, this is the first study to evaluate the effect of aggregation of medical diagnoses 

into CCS and/or of medications into ATC on the hd-PS adjustment for confounding in cohorts with 

small size, rare outcome incidence or low exposure prevalence. Aggregations of medications into 

ATC level 4 alone or in combination with aggregation of diagnoses into CCS level 1 improved the hd-

PS adjustment for confounding in the full cohort and most of the samples. Our results on the effect of 

aggregating diagnoses is limited, however, by the fact that we did not observe much confounding by 

co-morbidity in our empirical setting and the little confounding by co-morbidities was in the wrong 

direction, i.e., away from what we would expect from RCT results. 

In general, aggregation of potential covariates into higher-level categories increases the 

number of covariates that are present in at least 100 observations, the default requirement of the hd-

PS, and increases the prevalence of the covariate in exposed and unexposed groups, which 

increases the covariate’s prioritization from the Bross formula if it is associated with treatment [13,26]. 

But aggregation may simultaneously weaken covariate-exposure and/or covariate-outcome relations, 

reducing prioritization in the Bross formula. The latter also has the potential to change the impact of 

control for the aggregated covariate on the adjusted risk ratios.  

For example, ICD-9 code 5301 includes 53011 (reflux esophagitis) and the additional codes 

53010 (esophagitis unspecified), 53012 (acute esophagitis) and 53019 (other esophagitis). The latter 
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three codes each occurred in fewer than the 100 observation minimum that hd-PS requires by default 

and so would not be eligible for inclusion in the propensity score adjustment. With 5-digit granularity 

for diagnoses, the hd-PS selected ICD-9 code 53011 (frequency 165, covariate-exposure RR=1.3, 

covariate-outcome RR=5.0 – see Table 5.4). Using 4-digit granularity for diagnoses, the hd-PS 

selected ICD-9 code 5301 (esophagitis) which had a higher frequency (217) but slightly weaker 

covariate-exposure (RR=1.2) and covariate-outcome (RR=4.6) associations. Situations like this could 

account for the slight worsening of confounding control in the 4-digit ICD-9 aggregation compared 

with the base case (up to 5-digit ICD-9). Additional examples to illustrate the changes in prevalence, 

covariate-exposure and covariate-outcome relations when we aggregated potential confounders, 

ICD-9 codes 53011 (reflux esophagitis) and 53081 (esophageal reflux) from 5-digit ICD-9 into 4-, 3-

digit ICD-9, and CCS levels 4, 3, 2 and 1 are in Table 5.4. It is worth noting that not all ICD-9 

diagnosis codes have their equivalent CCS codes in all 4 levels [68]. This issue was more 

pronounced in CCS levels 3 and 4. Using the most granular CCS code available for each ICD-9 code 

in the universal CCS did not improve results in most samples and the full cohort. We also did not 

observe any benefit while aggregating ICD-9 codes into first 3- or 4-digit categories [67].   

Grouping medications into ATC level 4 helped the hd-PS to robustly function in the samples, 

except for the 20% outcome incidence (category 4). The use of other ATC levels for aggregating 

medications did not provide benefit and even resulted in some harm. For example, ATC level 4 code 

B01AC (platelet aggregation inhibitors excluding heparin) includes the following level 5 codes: 

B01AC04 (clopidrogel), B01AC05 (ticlopidine), B01AC07 (dipyridamole), B01AC23 (cilostazol), and 

B01AC30 (combined drugs). The latter four codes each occurred in fewer than the 100 observation 

minimum that hd-PS requires by default and so would not be eligible for inclusion in the propensity 

score adjustment. With ATC level 5 for medications, the hd-PS selected code B01AC04 (frequency 

218, covariate-exposure RR=1.5, covariate-outcome RR=3.8 – Table 5.5). Using ATC level 4 for 

medications, the hd-PS selected ATC level 4 code B01AC which had a slightly higher frequency 

(253), the same covariate-exposure (RR=1.5) but slightly weaker covariate-outcome (RR=3.3) 

associations. Situations like this may account for the observed improvement  in confounding control in 

the ATC level 4 aggregation (e.g., RR of 0.83 in 20% exposure prevalence scenario) compared with 
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scenarios that used ATC level 5 (e.g., RR of 0.88). Additional examples to illustrate the changes in 

prevalence, covariate-exposure and covariate-outcome relations from aggregation of clopidrogel and 

warfarin from level 5 to ATC levels 4, 3, 2 and 1 are in Table 5.5. The ATC level 4 with 

pharmacological subgroups seems the most appropriate level for aggregation of medications in this 

study.  

It may be argued that our full cohort had relatively low outcome incidence (~0.6%) and only 

46 exposed patients with events, so that net benefits even of appropriate aggregation may become 

smaller in the studies with more common outcomes. Nevertheless, pharmacoepidemiologic studies 

often have low outcome incidence.  

Since CCS has only 18 categories for level 1 and 134 categories for level 2, it could be 

argued that the benefit from aggregation comes about by enabling more variables from the other data 

dimensions (medications, inpatient and outpatient procedures) to fit within the 500 variable maximum 

in the hd-PS default. To address this concern, we also experimented with a maximum of k=3,000 

variables and consistently observed the benefit of aggregation of ICD-9 into CCS levels 1 or 2. 

Similarly, ATC level 1 has 14 groups, whereas level 4 has over 800 categories, but aggregation of 

medications into ATC level 4 outperformed aggregation into level 1.  

Our study has several limitations. Our study used RCT findings [18-23] as expected 

treatment effect estimates. We thus empirically compared estimates from different aggregations and 

assumed any treatment effect estimates closer to the RCT findings to be less biased by confounding. 

Our comparison relies on the assumption that the codes in the original database are accurate. Also, 

our study is based in a single cohort in which hd-PS performed reasonably well. Fully specified 

simulations with true risk ratios in diversified scenarios could be used to prove the advantage of 

aggregation under certain conditions but would be unable to answer the important question of 

magnitude under realistic assumptions. It is nevertheless unclear whether our findings regarding the 

effects of aggregation of diagnostic codes and medications on the performance of the hd‐PS 

algorithm apply to other treatment‐outcome pairs that may be subject to confounding by different 
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factors. Studies with few events or small size may have small sample bias or overfit propensity score 

models and outcome models using propensity score deciles to estimate adjusted risk ratios [79,80] 

and the small number of UGI complication cases produced imprecise estimates. Finally, the computer 

time requirements of the hd-PS algorithm constrained our ability to increase the size of our samples 

beyond 100 for each cohort category. However, each aggregation scenario had six cohort categories 

(600 samples). Thus, consistent patterns (the combined ATC level 4 plus CCS level 1) are supported 

by a large number of samples. Users of the hd-PS methodology should screen and remove 

instrumental variables and collider bias candidates [10-12]. This topic is out of the scope of this study.  

Further studies may explore examples of null drug-outcome association, increased drug-

outcome risk, more common outcome incidence, to compare the aggregation approaches with the 

zero-cell correction or exposure-based association selection for the hd-PS [17], to develop 

appropriate methods to replace missing codes in CCS levels, appropriate aggregations for 

procedures, simultaneous aggregation of diagnoses, medications and procedures, to evaluate the hd-

PS functions in cohorts with different cohort size, outcome incidence and exposure prevalence.  

In an empirical pharmacoepidemiologic study using claims data, aggregations of medications 

into level 4 of the Anatomical Therapeutic Chemical alone or in combination with aggregation of 

diagnoses into level 1 of the Clinical Classification Software improved the hd-PS adjustment for 

confounding in most scenarios assessed in an empirical pharmacoepidemiologic example with strong 

confounding by indication. 
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Table 5.4. Changes of Prevalences, Covariate-Exposure and Covariate-Outcome Relations When we 
Aggregated Potential Confounders, ICD-9 Codes 53011 (reflux esophagitis) and 53081 (esophageal 
reflux) From 5-digit ICD-9 into 4-, 3-digit ICD-9, and Levels 4, 3, 2 and 1 of the Clinical Classification 
Software (CCS)  

Dictionary / 
Level

Code Description Frequency Frequency 
Type

 Covariate 
Exposure 

Risk Ratio 

 Covariate-
Outcome 

Risk Ratio 

 Prevalence 
in both 
groups 

Included in 
lower level

5-digit ICD-9 53011 REFLUX ESOPHAGITIS 165 once             1.3              5.0            0.01 
5-digit ICD-9 53081 ESOPHAGEAL REFLUX 619 once             1.2              3.4            0.03 

4-digit ICD-9 5301 ESOPHAGITIS 217 once             1.2              4.6            0.01 
53010 ESOPHAGITIS UNSPECIFIED <100 No
53011 REFLUX ESOPHAGITIS 165 Yes
53012 ACUTE ESOPHAGITIS <100 No
53019 OTHER ESOPHAGITIS <100 No

4-digit ICD-9 5308 OTHER DISORDERS OF ESOPHAGUS 634 once             1.2              3.3            0.03 
53081 ESOPHAGEAL REFLUX 619 Yes
53085 BARRETT'S ESOPHAGUS <100 No
53089 OTHER DISEASES OF ESOPHAGUS <100 No

3-digit ICD-9 530 DISEASES OF ESOPHAGUS 827 frequent             1.3              2.4            0.04 
3-digit ICD-9 530 DISEASES OF ESOPHAGUS 827 once             1.2              4.0            0.04 

5300 ACHALASIA AND CARDIOSPASM <100 No
53010 ESOPHAGITIS UNSPECIFIED <100 Yes
53011 REFLUX ESOPHAGITIS 165 Yes
53012 ACUTE ESOPHAGITIS <100 Yes
53019 OTHER ESOPHAGITIS <100 Yes
5302 ULCER OF ESOPHAGUS <100 No
53020 ULCER OF ESOPHAGUS WITHOUT BLEEDING <100 No

5303 STRICTURE AND STENOSIS OF ESOPHAGUS <100 No

5305 DYSKINESIA OF ESOPHAGUS <100 No
5306 DIVERTICULUM OF ESOPHAGUS ACQUIRED <100 No

5307 GASTROESOPHAGEAL LACERATION-
HEMORRHAGE SYNDROME

<100 No

53081 ESOPHAGEAL REFLUX 619 Yes
53085 BARRETT'S ESOPHAGUS <100 Yes
53089 OTHER DISEASES OF ESOPHAGUS <100 Yes
5309 UNSPECIFIED DISORDER OF ESOPHAGUS <100 No

CCS Level 4 9.4.1.1 ESOPHAGITIS 217 once             1.2              4.6            0.01 
CCS Level 4 9.4.1.2 OTHER ESOPHAGEAL DISORDERS 673 once             1.2              3.4            0.04 

CCS Level 3 9.4.1 ESOPHAGEAL DISORDERS 828 frequent             1.2              2.4            0.04 
CCS Level 3 9.4.1 ESOPHAGEAL DISORDERS 828 once             1.2              4.0            0.04 

CCS Level 2 9.4 UPPER GASTROINTESTINAL DISORDERS 909 frequent             1.2              2.6            0.05 
CCS Level 2 9.4 UPPER GASTROINTESTINAL DISORDERS 909 once             1.2              4.3            0.05 

CCS Level 1 9 DISEASES OF THE DIGESTIVE SYSTEM 696 frequent             1.1              2.7            0.15 
CCS Level 1 9 DISEASES OF THE DIGESTIVE SYSTEM 2783 once             1.1              2.8            0.15 
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Table 5.5. Changes of Prevalences, Covariate-Exposure and Covariate-Outcome Relations When we 
Aggregated Potential Confounders, Clopidrogel and Warfarin From Level 5 to Levels 4, 3, 2 and 1 of 
the Anatomical Therapeutic Chemical (ATC) Classification 

 

 

 

Dictionary/ 
Level

Code Description Frequency Frequency 
Type

Covariate 
Exposure 

Risk Ratio

Covariate-
Outcome 

Risk Ratio

 Prevalence 
in both 
groups 

Included in 
lower level

Generic drug CLOPIDOGREL     218 once            1.5             3.8           0.012 

Generic drug CLOPIDOGREL     218 sporadic            1.4             2.9           0.012 

Generic drug WARFARIN 319 once            1.6             2.0           0.017 

Generic drug WARFARIN 319 sporadic            1.7             1.3           0.017 

ATC Level 5 B01AC04 CLOPIDOGREL     218 once            1.5             3.8           0.012 

ATC Level 5 B01AC04 CLOPIDOGREL     218 sporadic            1.4             2.9           0.012 

ATC Level 5 B01AA03 WARFARIN 319 once            1.6             2.0           0.017 

ATC Level 5 B01AA03 WARFARIN 319 sporadic            1.7             1.3           0.017 

ATC Level 4 B01AC PLATELET AGGREGATION INHIBITORS 
EXCLUDING HEPARIN

253 once            1.5             3.3           0.013 

ATC Level 4 B01AC PLATELET AGGREGATION INHIBITORS 
EXCLUDING HEPARIN

253 sporadic            1.5             2.5           0.013 

B01AC04 CLOPIDOGREL     218  Yes 

B01AC05 TICLOPIDINE 1           0.000  No 

B01AC07 DIPYRIDAMOLE  6           0.000  No 

B01AC23 CILOSTAZOL  25           0.001  No 

B01AC30 COMBINATIONS 11           0.001  No 

ATC Level 4 B01AA VITAMIN K ANTAGONISTS 319 once            1.6             2.0           0.017 

ATC Level 4 B01AA VITAMIN K ANTAGONISTS 319 sporadic            1.7             1.3           0.017 

B01AA03 WARFARIN 319  Yes 

ATC Level 3 B01A ANTITHROMBOTIC AGENTS 637 once            1.5             1.5           0.034 

ATC Level 3 B01A ANTITHROMBOTIC AGENTS 637 sporadic            1.6             2.0           0.034 

ATC Level 2 B01 ANTITHROMBOTIC AGENTS 637 once            1.5             1.5           0.034 

ATC Level 2 B01 ANTITHROMBOTIC AGENTS 637 sporadic            1.6             2.0           0.034 

ATC Level 1 B BLOOD AND BLOOD FORMING ORGANS 1049 once            1.4             1.4           0.056 

ATC Level 1 B BLOOD AND BLOOD FORMING ORGANS 1049 sporadic            1.4             1.9           0.056 

ATC Level 1 B BLOOD AND BLOOD FORMING ORGANS 1049 frequent            1.5             2.0           0.025 



CHAPTER VI 

DISCUSSION 

A.SUMMARY OF FINDINGS 

This dissertation examined some of the factors which can affect the performance of the hd-

PS algorithm to adjust confounding for treatment effects using claims databases. The research had 

three objectives: 1) To evaluate the performance of the hd-PS algorithm to adjust for confounding of 

treatment effects in cohorts with different calendar time periods and administrative data sources; 2) 

To determine how low outcome incidence or exposure prevalence can degrade hd-PS performance in 

medium sized or large cohorts; and 3) To evaluate the effects of aggregating medical diagnoses 

and/or medications on the hd-PS performance, especially in cohorts with relatively few patients, rare 

outcome incidence, or low exposure prevalence.  

To address the first objective, we used a retrospective cohort of upper gastrointestinal (GI) 

complications with celecoxib versus nonsteroidal anti-inflammatory drugs (NSAIDs) for osteoarthritis 

(OA) and rheumatoid arthritis (RA) as an example for assessment of the performance of the hd-PS in 

the cohorts with multiple settings, since the upper GI complication treatment effect of COX-2 versus 

NSAIDs is well established based on several Randomized Controlled Trials (RCT) [18-23]. We 

therefore assumed that a treatment effect estimate closer to 0.5 is less biased by confounding. We 

used two large claims databases MarketScan and Optum, and created subcohorts before and after 

30 September 2004, the date of rofecoxib withdrawal, a drug in the same class of celecoxib, from the 

US market. Analyses were conducted for individual data sources, subcohorts and the combined two 

databases. We found that different methods of confounder selection by using expert knowledge only, 

an automated search via the hd-PS algorithm, and both with the propensity score deciles or greedy 



65 
 

matching inconsistently reduced confounding by indication to estimate the treatment effect for studies 

with various study periods and administrative data sources.  

We did not observe a uniform improvement of confounding control with the hd-PS. In fact we 

found some settings, especially with propensity score matching, in which the hd-PS performed worse 

than propensity scores based on predefined covariates. Analyses taking into account various 

calendar time periods and disparate administrative data sources led to large differences in estimates. 

The strength of confounding by indication for the effect of non‐steroidal anti‐inflammatory drugs on 

upper gastrointestinal complication varied over time before and after the date of voluntary withdrawal 

of rofecoxib, the same study drug class, from the US market. The hd-PS helped to detect incomplete 

data of inpatient diagnoses and procedures of certain years of the Optum database as well as 

programming errors via a very high c-statistics. The hd-PS added little, if anything in our study, 

compared with the other issues which users of “automated” pharmacoepidemiology in active product 

safety monitoring systems should be aware of.  

To address the second objective, we selected a cohort example of MarketScan, July 2003-

September 2004 for resampling. We applied hd-PS to the full study cohort to estimate the treatment 

effect and used it as the reference value for comparison with results from the generated cohorts. For 

the 100 samples in each of the cohort categories, we calculated summary statistics for the estimated 

risk ratios (geometric mean, 25th and 75th percentiles), the mean percentage of covariates selected by 

hd-PS in the full cohort that were also selected by hd-PS in the samples, the median number of 

exposed and unexposed subjects, and the median number of exposed and unexposed outcomes. A 

majority of the covariates that hd-PS identified in the full cohort were also selected by hd-PS in the 

samples. We found that with >20 exposed outcome events, hd-PS adjusted RRs in the samples 

were similar to the full cohort values; with ~10 exposed outcome events, the hd-PS functions with less 

stability; and of the 500 variables identified by hd-PS in the full cohort, most were also identified by 

hd-PS in the random samples.  
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To address the third objective, we selected a cohort example of MarketScan, July 2003-

September 2004 for resampling studies. In the basic scenario, we applied the hd-PS with up to 5-digit 

granularity of ICD-9 for inpatient and outpatient diagnoses. We transformed ICD-9 diagnoses into 

four-level CCS categories via the cross-mapped ICD-9 to CCS multi-level diagnoses table [68]. We 

separately investigated different levels of ICD-9 granularity by using the first 3- or 4-digit ICD-9 codes. 

We aggregated medications to five levels of the Anatomical Therapeutic Chemical (ATC) 

classification of the World Health Organization (WHO) [69]. We found that aggregations of 

medications into chemical, pharmacological or therapeutic subgroups (level 4) of the Anatomical 

Therapeutic Chemical classification alone or in combination of aggregation of diagnoses into largest 

groups (level 1) of the Clinical Classification Software improved the hd-PS adjustment for 

confounding in studies of treatment effect with small size, rare outcome incidence or infrequent 

exposure prevalence. 

B. PUBLIC HEALTH IMPLICATIONS 

To obtain unbiased estimates of drug benefits and harms is important for public health. 

However, sometimes this information is not available from RCTs. Non-experimental studies try to 

answer all the questions that remain unanswered by RCTs. Post-marketing drug safety studies often 

face challenges such as small size, rare incidence of adverse events, or low exposure prevalence 

after a new drug launch. In addition, active surveillance often generates a large number of safety 

signals, which emphasizes the need for a method that can rapidly refine a signal. The hd-PS 

algorithm automatically defines and selects variables for inclusion in the propensity score to adjust 

treatment effect estimates in studies using healthcare data [13,15,16]. The hd-PS algorithm could 

reduce programming time and error, and run in studies pooling multiple claims databases [13,14]. 

The hd-PS performance has been evaluated with few outcome events or few exposed subjects in 

small cohorts only [17]. Prior studies demonstrated the hd-PS was the potential algorithm software for 

active drug safety monitoring systems using longitudinal healthcare claims databases [14]. It is a 

promising algorithm for studies using healthcare claims data. However, it is not known whether 

different calendar time periods, data sources, low outcome incidence or exposure prevalence can 
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degrade hd-PS performance in medium sized or large cohorts. Also, no study to date has assessed 

how hd-PS performance is affected by aggregating medical diagnoses and/or medications, especially 

in cohorts with relatively few patients, rare outcome incidence, or low exposure prevalence. Extensive 

testing of the performance of hd-PS in multiple settings will provide information on factors affecting 

the hd-PS performance and to determine the value of this new approach. Finally, solutions to improve 

the hd-PS performance particularly in specific settings will contribute to the research community for 

active drug safety surveillance. 

The results of this dissertation research have several implications for public health and 

clinical practice. First, the finding provides a more accurate picture of potential factors that can affect 

the performance of the hd-PS algorithm to adjust for confounding of treatment effects in healthcare 

claims data. Users of the hd-PS should be aware of these potential factors such as calendar time 

periods, administrative data sources, cohort size, low outcome incidence and exposure prevalence. 

Three different methods of confounder selection by using expert knowledge only, an automated 

search via the hd-PS algorithm, and both, inconsistently reduced confounding by indication. No 

method proved better than others in cohorts with different calendar time periods, administrative data 

sources or using propensity score deciles or 1:1 greedy matching. During the study implementation, 

another potential benefit of the hd-PS is to help to detect incomplete data of inpatient diagnoses and 

procedures of certain years of the Optum database as well as programming errors via very high c-

statistics. Second, the finding of our study provides evidence that not only small size, but low 

outcome incidence or exposure prevalence also degrade hd-PS performance in medium sized or 

large cohorts.   

Lastly, this is the first study to evaluate the effect of aggregation of medical diagnoses into 

CCS and/or of medications into ATC on the hd-PS adjustment for confounding in cohorts with small 

size, rare outcome incidence or low exposure prevalence. Aggregations of medications into chemical, 

pharmacological or therapeutic subgroups (level 4) of the Anatomical Therapeutic Chemical 

classification alone or in combination of aggregation of diagnoses into systemic groups (level 1) of the 

Clinical Classification Software improved the hd-PS adjustment for confounding in studies of 
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treatment effect with small size, rare outcome incidence or infrequent exposure prevalence. These 

findings will provide alternative solutions to improve hd-PS performance in cohorts with small size, 

rare outcome incidence or low exposure prevalence. It is important to select appropriate levels of 

ATC and CCS for aggregations. In general, aggregation of potential covariates into higher-level 

categories increases the number of covariates that are present in at least 100 observations, the 

default requirement of the hd-PS, and increases the prevalence of the covariate in exposed and 

unexposed groups, which increases the covariate’s prioritization from the Bross formula if it is 

associated with treatment. But aggregation may simultaneously weaken covariate-exposure and/or 

covariate-outcome relations, reducing prioritization in the Bross formula. The latter also has the 

potential to change the impact of control for the aggregated covariate on the adjusted risk ratios.  

C. STRENGTHS 

First, as per our best knowledge, this is the first study to evaluate the effect of aggregation of 

medical diagnoses into CCS and/or of medications into ATC on the hd-PS adjustment for 

confounding in cohorts with small sizes, rare outcome incidence or infrequent exposure prevalence. 

In an empirical pharmacoepidemiologic study using claims data, aggregations of medications into 

level 4 of the Anatomical Therapeutic Chemical alone or in combination with aggregation of 

diagnoses into level 1 of the Clinical Classification Software improved the hd-PS adjustment for 

confounding in most scenarios assessed in studies of treatment effect with small size, rare outcome 

incidence or infrequent exposure prevalence. This can be explained by the fact that aggregations of 

medical diagnoses or medications into their certain levels of ATC or CCS increased their respective 

prevalence, minimized the missing covariate-exposure or covariate-outcome associations for the hd-

PS adjustment.  

 

Second, our research was the first to address the low outcome incidence or exposure 

prevalence can degrade hd-PS performance in medium sized or large cohorts. When sampling 

smaller studies, rarer outcomes, or lower prevalences of treatments, the mean average percentage of 

the hd-PS covariates used in the full cohort, also identified in the samples decreased. Its frequency 
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was not only dependent on cohort size, numbers of exposed subjects or outcomes [17], but also 

outcome incidence or exposure prevalence. In other words, even with the same cohort size and 

nearly the same number of exposed outcomes, frequency of hd-PS variables identified in the samples 

was lower in samples with rare outcome incidence than in samples with less frequent exposure. This 

is explicitly demonstrated by the fact that the hd-PS at default setting requires a variable with at least 

100 frequencies in combined exposed and unexposed groups, and nonmissing covariate-exposure or 

covariate-outcome associations to be eligible to retain in the variable selection for hd-PS adjustment 

[13, 26]. 

 

Third, our sampling techniques which did not affect the treatment effect estimate while being 

able to keep total sample size constant for outcome incidence or exposure prevalence samplings, 

were validated in 1,000 simulations (Appendix B). 

 

Finally, we used two large longitudinal healthcare claims databases to explore the impact of 

calendar time periods and disparate administrative data sources on the performance of the hd-PS to 

estimate treatment effect. There were a large number of patients available to study with the potential 

to look at longer periods of pre-diagnosis times that would be found in other databases. This large 

sample also allowed sufficient power to examine low frequency of upper GI complications.  

D. LIMITATIONS  

Our study has several limitations. First, we used randomized clinical trial findings [18-23] as 

the expected treatment effect estimates. We thus empirically compared estimates from different 

aggregations and assumed any treatment effect estimates closer to the randomized clinical trial 

findings to be less biased by confounding. Fully specified simulations with true risk ratios in diversified 

scenarios could be explored instead of resampling of the real-world cohort. Second, it is unclear 

whether our findings regarding the hd‐PS algorithm apply to other treatment‐outcome pairs that may 

be subject to confounding by different factors. Third, studies with few events or small size may have 

small sample bias or overfit propensity score and outcome models [79, 80]. Fourth, the small number 
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of upper gastrointestinal complication cases produced a wide 95% confidence interval. Fifth, the 

Optum database did not record inpatient diagnoses and inpatient procedures which occurred before 

the year 2003, thus it was limited to creating a bigger and more comparable cohort with the study 

drug initiation before 30 September 2004. Finally, there were the potential confounding by severity of 

RA or OA, confounding by indication and healthcare factors; the lack of validation of exposure and 

outcome measurement; and the potential for information bias resulting from varying records and 

approaches of specialists, emergency room or hospitalization visits. 

 E. FUTURE RESEARCH 

Further studies may explore examples of null drug-outcome association, increased drug-

outcome risk, more common outcome incidence, to compare the aggregation approaches with the 

zero-cell correction or exposure-based association selection for the hd-PS [17], to develop 

appropriate methods to replace missing codes in CCS levels, appropriate aggregations for 

procedures, simultaneous aggregation of diagnoses, medications and procedures into the 

Systematized Nomenclature of Medicine-Clinical Terms (SNOMED CT) to evaluate the hd-PS 

functions in cohorts with different cohort size, outcome incidence and exposure prevalence. In this 

example, we only used the outcome model without trimming of the PS distribution to maintain the 

cohort size relatively constant at each sampling rate for size sampling and for outcome incidence and 

exposure prevalence samplings. Notwithstanding, future study on the performance of the hd-PS with 

propensity score matching, one-sided or two-sided trimming or different trimming levels of propensity 

score distribution may be carried out. Using richer information databases such as electronic medical 

record data to minimize unmeasured confounders should be also considered in future studies in order 

to further investigate the role of aggregation methods for the hd-PS algorithm and automated 

confounding control [17]. Finally, future studies should validate internal assumptions of sufficient for 

controlling confounding with identified measured covariates of the hd-PS algorithm [82] or alternative 

variable selection strategy based on disease risk scores for multiple settings [83]. 
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F. CONCLUSIONS 

Different methods of confounder selection by using expert knowledge only, an automated 

search via the hd-PS algorithm, and both with the propensity score deciles or greedy matching 

inconsistently reduced confounding by indication to estimate the treatment effect  for studies with 

various calendar time periods and administrative data sources. Users should be aware of potential 

factors affecting the hd-PS performance such as calendar time periods, data sources, small cohort 

low size, outcome incidence and low exposure prevalence. Users should also be aware that the 

confounding control achieved by the hdPS is not always at least as good as the one obtained by 

selecting covariates based on expert knowledge. In an example of pharmacoepidemiologic studies 

using claims data, aggregations of medications into chemical, pharmacological or therapeutic 

subgroups (level 4) of the Anatomical Therapeutic Chemical classification alone or in combination of 

aggregation of diagnoses into largest groups (level 1) of the Clinical Classification Software improved 

the hd-PS adjustment for confounding in most scenarios including ones with small cohort size, rare 

outcome incidence, and low exposure prevalence. 

  

 



Table A.1.  Examples of mappings from ICD-9 diagnoses into the multi-level Clinical Classification Software (CCS) 

 

ICD-9 

 

ICD-9 _TERM 

 

LEVEL 

1 

 

LEVEL 1 

LABEL 

 

LEVEL  

2 

 

LEVEL 2 

LABEL 

 

LEVEL 

3 

 

LEVEL 3 

LABEL 

 

LEVEL 

4 

 

LEVEL 4 

LABEL 

535 Gastritis and 
duodenitis 9 Diseases of the 

digestive system 9.4 
Upper 
gastrointestinal 
disorders 

9.4.3 
Gastritis and 
duodenitis    

5350 Acute gastritis 9 Diseases of the 
digestive system 9.4 

Upper 
gastrointestinal 
disorders 

9.4.3 
Gastritis and 
duodenitis  

9.4.3.1 Acute gastritis 

53500 
Acute gastritis, 
without mention 
of hemorrhage 

9 Diseases of the 
digestive system 9.4 

Upper 
gastrointestinal 
disorders 

9.4.3 
Gastritis and 
duodenitis  

9.4.3.1 Acute gastritis 

53501 Acute gastritis, 
with hemorrhage 9 Diseases of the 

digestive system 9.4 
Upper 
gastrointestinal 
disorders 

9.4.3 
Gastritis and 
duodenitis  

9.4.3.1 Acute gastritis 

5351 Atrophic gastritis 9 
Diseases of the 
digestive system 9.4 

Upper 
gastrointestinal 
disorders 

9.4.3 
Gastritis and 
duodenitis  

9.4.3.2 
Other specified 
gastritis 

53510 
Atrophic gastritis, 
without mention 
of hemorrhage 

9 Diseases of the 
digestive system 

9.4 
Upper 
gastrointestinal 
disorders 

9.4.3 
Gastritis and 
duodenitis  

9.4.3.2 
Other specified 
gastritis 

53511 Atrophic gastritis, 
with hemorrhage 9 Diseases of the 

digestive system 9.4 
Upper 
gastrointestinal 
disorders 

9.4.3 Gastritis and 
duodenitis  

9.4.3.2 Other specified 
gastritis 
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        APPENDIX B. SIMULATION RESULTS OF OUTCOME AND EXPOSURE SAMPLINGS 

 
Table B.1. Simulation Results of Outcome Sampling With Recoded Cases: Constant Adjusted 
Treatment Effect Estimates (True Treatment Effect =0.5) and Cohort Sizes 

 

Note:  50, 20, 10 and 5 mean 50%, 20%, 10% and 5% sampling rate 
N  = number of subjects in the full cohort 
pe = exposure prevalence in the full cohort 
iy = outcome incidence in the full cohort 
RRect = crude risk ratio (RR) in the full cohort 
RReat = adjusted RR in the full cohort 
 
N50  = number of subjects in 50% samples 
pey50 = exposure prevalence in 50% samples 
iyy50 = outcome incidence in 50% samples 
RRecy50= crude RR in 50% samples 
RReay50= adjusted RR in 50% samples 

 

  

Variable     N            Mean         Std Dev          Median         Minimum         Maximum 

------------------------------------------------------------------------------------------------ 

N          1000        10000.00               0        10000.00        10000.00        10000.00 

pe         1000      33.1584500       0.4738969      33.1500000      31.3400000      34.7500000 

iy         1000       9.5184200       0.2950972       9.5300000       8.6800000      10.4200000 

RRect      1000       0.8961194       0.0633242       0.8959158       0.7027671       1.1072531 

RReat      1000       0.5019544       0.0367811       0.5013105       0.3893997       0.6357730 

 

N50        1000        10000.00               0        10000.00        10000.00        10000.00 

N20        1000        10000.00               0        10000.00        10000.00        10000.00 

N10        1000        10000.00               0        10000.00        10000.00        10000.00 

N5         1000        10000.00               0        10000.00        10000.00        10000.00 

 

pey50      1000      33.1584500       0.4738969      33.1500000      31.3400000      34.7500000 

iyy50      1000       4.7617000       0.1476405       4.7700000       4.3400000       5.2100000 

pey20      1000      33.1584500       0.4738969      33.1500000      31.3400000      34.7500000 

iyy20      1000       1.9078600       0.0590110       1.9100000       1.7400000       2.0900000 

pey10      1000      33.1584500       0.4738969      33.1500000      31.3400000      34.7500000 

iyy10      1000       0.9564800       0.0295886       0.9600000       0.8700000       1.0500000 

pey5       1000      33.1584500       0.4738969      33.1500000      31.3400000      34.7500000 

iyy5       1000       0.4806500       0.0149633       0.4800000       0.4400000       0.5300000 

 

RRecy50    1000       0.9014638       0.0921339       0.8980028       0.6697348       1.1971396 

RReay50    1000       0.5054475       0.0545001       0.5041009       0.3488935       0.6935752 

RRecy20    1000       0.9043103       0.1507262       0.8985488       0.5032395       1.5996958 

RReay20    1000       0.5081023       0.0889443       0.5050795       0.2569943       0.9364096 

RRecy10    1000       0.9053591       0.2126796       0.8786616       0.4125483       1.6620532 

RReay10    1000       0.5083839       0.1257661       0.4952604       0.2229691       1.0053211 

RRecy5     1000       0.9129616       0.3122159       0.8722794       0.3164708       2.4314710 

RReay5     1000       0.5159485       0.1904948       0.4885627       0.1530384       1.4216319 

------------------------------------------------------------------------------------------------ 
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Table B.2.  Simulation Results of Exposure Sampling With Replacement of Unexposed: Constant 
Adjusted Treatment Effect Estimates (True Treatment Effect =0.5) and Cohort Sizes 

 

 

Note:  50, 20, 10 and 5 mean 50%, 20%, 10% and 5% sampling rate 
N  = number of subjects in the full cohort 
pe = exposure prevalence in the full cohort 
iy = outcome incidence in the full cohort 
RRect = crude risk ratio (RR) in the full cohort 
RReat = adjusted RR in the full cohort 
 
N50  = number of subjects in 50% samples 
pe50 = exposure prevalence in 50% samples 
iy50 = outcome incidence in 50% samples 
RRect50= crude RR in 50% samples 
RReat50= adjusted RR in 50% samples 

 Variable    N            Mean         Std Dev          Median         Minimum         Maximum 

 ---------------------------------------------------------------------------------------------- 

 N         1000        10000.00               0        10000.00        10000.00        10000.00 

 pe        1000      33.1584500       0.4738969      33.1500000      31.3400000      34.7500000 

 iy        1000       9.5184200       0.2950972       9.5300000       8.6800000      10.4200000 

 RRect     1000       0.8961194       0.0633242       0.8959158       0.7027671       1.1072531 

 RReat     1000       0.5019544       0.0367811       0.5013105       0.3893997       0.6357730 

 

 NRe50     1000        10000.00               0        10000.00        10000.00        10000.00 

 NRe20     1000        10000.00               0        10000.00        10000.00        10000.00 

 NRe10     1000        10000.00               0        10000.00        10000.00        10000.00 

 NRe5      1000        10000.00               0        10000.00        10000.00        10000.00 

 

 pe50      1000      16.5816100       0.2368814      16.5800000      15.6700000      17.3800000 

 iy50      1000       9.6494500       0.3373354       9.6500000       8.6500000      10.6300000 

 pe20      1000       6.6356600       0.0947520       6.6300000       6.2700000       6.9500000 

 iy20      1000       9.7432500       0.3600978       9.7500000       8.5300000      10.8500000 

 pe10      1000       3.3202800       0.0473853       3.3200000       3.1400000       3.4800000 

 iy10      1000       9.7587400       0.3621499       9.7600000       8.5600000      10.8700000 

 pe5       1000       1.6627000       0.0237671       1.6600000       1.5700000       1.7400000 

 iy5       1000       9.7794000       0.3765286       9.7800000       8.6500000      11.0800000 

 

 RRec50    1000       0.8951330       0.0808613       0.8947324       0.6571889       1.1515775 

 RRea50    1000       0.5014691       0.0465928       0.5001284       0.3600029       0.6620642 

 RRec20    1000       0.8962348       0.1269376       0.8888930       0.5581104       1.2629862 

 RRea20    1000       0.5022340       0.0701844       0.5001651       0.3035006       0.7344370 

 RRec10    1000       0.9003910       0.1653225       0.8989558       0.4405790       1.4197919 

 RRea10    1000       0.5039989       0.0896516       0.5029586       0.2638169       0.8039307 

 RRec5     1000       0.8894906       0.2336480       0.8790189       0.2562333       1.8299925 

 RRea5     1000       0.4983340       0.1283653       0.4903760       0.1507900       0.9313329 

 ---------------------------------------------------------------------------------------------- 
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