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Abstract

HAIOU ZHU: A Loan-level Residential Mortgage Backed Security Pricing Model: are CAP
CRA loans profit-making for the secondary market?
(Under the direction of Mustafa Giiltekin)

This paper develops an industry comparable loan-level residential mortgage-backed
security pricing model. It can be used to design hedging strategies for mortgage portfolio’s
interest rate risk, and price the cost of guaranteeing RMBS default risk. The loan-level
pricing model is designed to address most of the problems with the Government-Sponsored
Enterprises’ (GSEs’) current risk management models that were outlined in the Federal
Housing and Finance Administration’s 2009 report to Congress. The loan-level pricing
model in this paper is able to automatically translate into RMBS prices the slight monthly
changes in individual borrowers' prepayment and default risks due to borrower and loan
characteristics, macroeconomic conditions, house price changes, and term structure
movements. The loan-level model is especially useful for managing low-to-moderate income
(LMI) mortgages, which are highly leveraged assets. Applying the loan-level pricing model
to the Community Advantage Program (CAP) dataset yields the result that most (i.e. 65% of
the purchased CAP loans) of the Community Reinvestment Act (CRA) mortgages in CAP
have been profit-making (i.e. positive Option-Adjusted Spreads OAS) for the secondary
market, given the market prices Fannie Mae paid. Moreover, the results suggest that the
conventional indicators, such as race, income, credit score and loan-to-value at origination,
are not reliable in determinants of the mortgage yield. Therefore, avoiding and discriminating
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against LMI mortgage pools are not rational. The identification of responsible LMI
borrowers or pools and adequate risk based pricing require that the loan-level pricing model
be run on each mortgage portfolio. Finally, the loan-level pricing model can help to address
one challenge in the overhaul of mortgage finance system pointed out by Geithner, namely
pricing the cost of a government guarantee of RMBS default risk. In particular, the expected
cost for guaranteeing the default risk of a loan can be calculated as the difference in the OAS
between 100% recovery and recovery at the current house price. In short, the loan-level
pricing model developed may help the federal government to better meet the financial needs
of responsible LMI borrowers, while maintaining the sustainability and soundness of the

GSEs.

iv



Acknowledgements

I am especially grateful for the help of Janneke Ratcliffe, Sarah Riley, and the Center
for Community Capital. This paper has also benefited tremendously from the fantastic
comments of each of my dissertation committee members. The financial support of the Ford
Foundation, and the support from Self Help Credit Union, Department of Public Policy, and
Kenan-Flagler Business School have been essential in helping me to complete this

dissertation, which I dedicate to my mother.



Table of Contents

LSt Of TabIes. ... v ot viii
37 ) 4 1 ix
LSt Of ADDIEVIAIONS. ... e .utete et e e e X
Chapter 1. Introduction and Policy MOtivations. .........c.cviiiiiiiiiiiiiie i eiieeiie e 1
Section 1- a. Problems for practitioners after the CrisiS............coooeviiiiiiiiiiiiiiiinne., 1
Section 1- b What does the policy literature Say?..........ccovvueeeriieiniieenieeeiee e 16
Chapter 2. Literature ReVIEW..........oiiiiiiii e 23
Section2- a. Summary of the pricing framework..................oooiiiiiiiii 23
Section2- b. Prepayment and default estimation by competing risks models................. 28
Section2- c. Factors that affect mortgage prepayment and default risks...................... 30
Section2- d. Term structure MOdels. ...........o.oiiiiiiii i 32

Section2- e. Justifications for using the one-factor Hull-White model fitted to yield and

L Z0] F21 51 37
Chapter 3. The Data Set and Prepayment & Default Regressions...............ccoovvviienn... 42
Section 3- a. The loan-level mortgage data and term structure data........................... 42
Section 3- b. Regression specifications and interpretation of results........................... 43
Section 3- c. In-sample prediction reSults..........ooviiiiiiiiiiii e 57

vi



Chapter 4. Term Structure Calibration and Cash Flow Discounting.............................. 60

Section 4- a. Continuous-time specifications of the shifted Hull-White model.............. 60
Section 4- b. Cash flow projection using the MNL model.........................oooinn 63
Section 4- c. Z-spread and Option-Adjusted Spread calculations.............................. 65
Chapter 5. Fannie Mae RMBS Pricing Practices and OAS Results Interpretations............ 69
Section 5- a. Fannie Mae RMBS pricing practices............coviuiiiiiiiiiiiiiiiniiinieann. 69
Section 5- b. OAS and Z-spread results interpretation..............oevvieeiiiiinieniieenneann.. 71
Section 5-c. OAS regressions with bundling effects................c.ooo, 77
Chapter 6. Policy Implications and Future EXtensions..............coooeviiiiiiiiiiiniiennnnnn.. 81
PN 0015 114 Qs TSRS PPS 85
APPENAIX B .o ettt 106
RETEIENCES ...ttt ettt et e ees 112

Vil



List of Tables

Table 1. Fannie Mae credit profile by key product features............ccccceeeeveercieencieencieennnn. 88
Table 2. Summary of basic one-factor short rate models. ........cc.coocueiiiiniiiiiniiiiiceee 89
Table 3. Termination events by tranSaction YEAT ........cccueevueerieeiiierienieenieeieeneteeeeesiee e 89
Table 4. Refinance and burnout spline KNnots..........ccceoviiiiiiiiiiiiiiiiiieieeee e 90
Table 5. MINL regression TESULLS. .....ccc.uiiiiiiieiiieieeieeite ettt 91
Table 6. Total loan purchase by purchase QUATTET ..........cccceeviiriiieiiiniieiieieeeeeeeee e 999
Table 7. Summary of OAS and Z-Spread............cooveeeriieeniieeiieeeiee e 100
Table 8. Linear regression of Option-Adjusted Spread ..........ccceeevvieeiiieeiieeniieeeieeeieeeee 101
Table 9. Comparison of OAS and Z-spread regreSsions. ..........oeveeveeriernieenieenieeneennieeneeens 102
Table 10. Percentage of loans bundled by purchase year ...........ccccceevvvieriieeniieencieeeieeeee 103
Table 11. Comparison of OAS regression on unbundled loans............ccccceeveiveercieenneeennee. 104
Table 12. Comparison of OAS regression with bundling effect using dummies ................. 105
Table 13. Summary descriptive statistics of variables in MNL..........cc.ccocceiviiiiniiieniieenee. 106
Table 14. Summary descriptive statistics of variables in linear regression.............cc.c......... 110

viil



List of Figures

Figure 1. One-quarter-ahead SMM prediction based on scheduled and actual balance......... 85
Figure 2. One-month-ahead SMM prediction based on actual and scheduled balance.......... 86
Figure 3. One-quarter-ahead CDR prediction based on actual Size..........cccceeeveevevveenneeennnenn. 87
Figure 4. One-month-ahead CDR prediction based on actual Size...........ccccceeveeverveercreeennnenn. 87

iX



List of Abbreviations

ABS: asset-backed securities

AMI: area median income

ARM: adjustable-rate mortgage

ATS: affine term structure

CAP: Community Advantage Program

CRA: Community Reinvestment Act

CDO: collateralized debt obligations

CMO: collateralized mortgage obligations

CDFIs: Community Development Financial Institutions
CDR: constant default rate

CRPHM: competing risks proportional hazard model
GSEs: government sponsored enterprises

ITA: independence of irrelevant alternatives

LMI: low-to-moderate income

LTV: loan-to-value

MNL: multinomial logit model

OAS: option-adjusted spread

PHM: proportional hazard model

PMMS: Freddie Mac primary mortgage market survey
RMBS: residential mortgage-backed security

SMM: single monthly mortality

UPB: unpaid principal balance



FHFA: Federal Housing Finance Agency
PSM: propensity score matching

ATM: at-the-money

xi



Chapter 1. Introduction and Policy Motivations.
Section 1- a. Problems for practitioners after the Crisis.

The subprime crisis has left unsolved problems for the federal government, the
Government sponsored enterprises (GSEs) and low-to-moderate income borrowers. The
federal government was left with billions of mortgage-backed (both residential and
commercial) CMOs (collateralized mortgage obligations), CDOs (collateralized debt
obligations) and ABS (asset-backed security) portfolios'. These mortgage-backed portfolios
are hard to price and hedge risks using the old copula-based pricing models, which were
proven problematic during the crisis. Copula-based models were used by some rating
agencies to price residential mortgage-backed securities (RMBS) before the subprime crisis,
as discussed in the Fitch Ratings report by Hunt (2007). The evidence of the failure of
announced ratings as a useful guide in evaluating mortgage risks is provided by Ashcraft,
Goldsmith-Pinkham and Vickery (2010), who conduct a study of 3,144 MBS deals.
Specifically, they find that "credit risk estimated by simple model is more informative for
predicting deal performance than the announced ratings." Furthermore, the paper by Brigo,
Pallavicini and Torresetti (2010), a description by industry experts of copula-based CDO
pricing models, points out that the Gaussian copula is "a static model that is little more than a
static multivariate distribution which is used in credit derivatives (and in particular CDOs)

valuation and risk management." Moreover, Brigo et al. mention that some of the

" The financial system was pumped with $200 billion of mortgage- linked CDOs in the months before the
subprime crisis spread. See Bloomberg news "How Wing Chau Helped Neo Default in Merrill CDOs Under
SEC View" available at http://www.bloomberg.com/apps/news?pid=20601109&sid=adplts9scZkg&pos=11.




deficiencies of the copula model have been known for a while as reported by Salmon
(2009).

Furthermore, the GSEs have continued to need huge bailout from the government,
while they own or guarantee 53 percent of the nation’s $10.7 trillion in residential mortgages.
According to Bloomberg news reported on July 2010°, "the cost of fixing Fannie Mae and
Freddie Mac, the mortgage companies that last year bought or guaranteed three-quarters of
all U.S. home loans, will be at least $160 billion and could grow to as much as $1 trillion
after the biggest bailout in American history." Furthermore, according to the same news,
“Fannie and Freddie are deeply wired into the U.S. and global financial systems. Figuring out
how to stanch the losses and turn them into sustainable businesses is the biggest piece of
unfinished business as Congress negotiates a Wall Street overhaul that could reach President
Barack Obama's desk by July."

Currently, most information about the possible reasons underlying the continued
losses of the GSEs is ex-post and static. For this reason, it cannot be used to facilitate ex-ante
decision making and provide methods for reducing losses. For instance, Table 1, which was
generated from Fannie Mae's 2010 1st quarter results, provides confusing and inconsistent
implications about which product features are likely to be driving the largest losses. Using
the third row of Table 1, which presents the percentage of 2009 credit losses relative to the
percentage of loans in the guaranty book of business, as a gauge, one can see that the

traditionally high-risk categories of "FICO<620," "620<FICO<660," and "OLTV>90%"

* See Felix Salmon. "Recipe for disaster: the Formula that killed Wall Street.” Wired Magazine, 2009. 17.03.
Auvailable at http://www.wired.com/techbiz/it/magazine/17-03/wp_quant?currentPage=all

? See Bloomberg news "Fannie-Freddie Fix at $160 Billion With $1 Trillion Worst Case" at
http://preview.bloomberg.com/news/2010-06-13/fannie-freddie-fix-expands-to-160-billion-with-worst-case-at-
1-trillion.html




exhibit very low losses. In contrast, the “Alt-A” and “Subprime” categories with similar
FICO scores and OLTYV ratios are among the groups with very high losses. Furthermore, the
last two rows of Table 1 provide the weighted average FICO scores and percentages of loans
with OLTV>90% for each product feature category. If one considers both the weighted
average FICO scores and the relative contributions of each product category to 2009 credit
losses (i.e. the third row of Table 1), it is clear that the two categories of lower FICO scores,
namely "FICO<620" and "620<FICO<660," exhibit low losses. In contrast, the two
categories "Alt-A" and "Subprime," which correspond to similar or higher FICO scores,
exhibit high losses. Similar conclusions can be obtained by considering both the percentage
of loans with OLTV>90% and the relative contributions of each product category to 2009
credit losses. The three groups with the highest percentages of loans with OLTV>90%,
namely "FICO<620," "620<FIC0O<660," and ""OLTV>90%," are the groups with the lowest
losses. Moreover, the remaining groups, which have a smaller fraction of loans with
OLTV>90%, all exhibit much higher losses. These findings are inconsistent and counter-
intuitive; hence, they cannot be used in ex-ante decision making with the goal of reducing
losses.
[Insert Table 1.Fannie Mae credit profile by key product features]

The testimonies® of assistant secretary Michael Barr and FHFA director Edward

DeMarco provide information about the measures that the government has taken to reduce

losses. The measures include tightening the GSEs’ underwriting guidelines according to

* See testimony by Assistant Secretary for Financial Institutions Michael S. Barr, before Subcommittee on
Capital Markets, Insurance, and Government Sponsored Enterprise of House Committee on Financial Services,
Written Testimony as Prepared for Delivery - 9/15/2010, at http://www.ustreas.gov/press/releases/tg854.htm
And statement of Edward J. DeMarco, Acting Director Federal Housing Finance Agency, at
http://www.fhfa.gov/webfiles/16726/DeMarcoTestimony15Sept2010final.pdf




credit scores, loan-to-value (LTV) ratios, and product features; increasing guarantee fees; and
adopting loss mitigation measures through loan modifications and foreclosure prevention.
However this paper shows that simple indicators, such as product features, and credit score or
LTV at origination, are not reliable indicators of mortgage risks and returns, because
mortgage risks and yields change constantly over time. Furthermore, since “95% of the
mortgages originated in this country are currently financed through either the GSEs or Ginnie
Mae,” tightening underwriting guidelines using these simple indicators may not completely
stem the losses. Nevertheless, this approach could lead to a possible overcorrection via
indiscriminate rejection of profitable LMI mortgages, as demonstrated by the profitable CAP
CRA loans. The loan-level pricing model developed provides a way to identify profitable
mortgages based upon borrower’s historical performance, and will help to encourage
responsible borrower behavior by means of fair market risk-based pricing.

The practical challenge in adopting the approach in underwriting is that many
borrowers have no historical records at origination if they are purchasing houses for the first
time. The problem can be solved by predicting the OAS of borrowers without historical
records using historical records of similar borrowers in the same portfolio or historical
records of similar borrowers constructed using propensity score matching method as in Ding,
Quercia, Lei, Ratcliffe (2008). The propensity score matching (PSM) method used by
Quercia et al. (2008) can account for observable heterogeneity by pairing borrowers who
took out a certain type of loan (who have historical records) with new borrowers (who have
no historical records) on the basis of the conditional probability of taking out the specific
type of loan, given the observable characteristics of the borrowers. The observable

characteristics used by Quercia et al. (2008) include origination variables drawn from the



CAP, McDash and HMDA datasets, including FICO scores, debt-to-income ratios, and
neighborhood market dynamics and credit risk.

In addition, this paper shows that loan age is very important in determining both
prepayment and default risks. In particular, the default risk of CAP loans continuously
increases as a loan seasons. Although the testimonies mentioned above suggests that
currently “less than 1% of the losses have come from loans originated in 2009 and 2010,”
without the adoption of advanced risk management techniques going forward, newly
originated and guaranteed loans may incur significant losses when the loans are more
seasoned and if the property market continues to decline. Finally, the testimonies also
mention that GSE single-family guarantee programs accounted for $166 billion (73%) of the
capital lost over that period. Accordingly, the pricing model developed can be used to more
accurately price the government guarantee of default risk if good mark-to-market house price
indices are provided. Because the expected cost of guaranteeing the default risk of a loan can
be calculated as the difference in the option-adjusted spreads (OAS) between 100% recovery
and a recovery at the current house price. In short, since the GSEs and the government are
practically the “only game in town” in mortgage financing and underwriting, the current
measures by the government may not be able to completely solve the problem of GSEs’
continued losses. Instead, they may lead to possible indiscriminate rejection of profitable
LMI mortgages, as demonstrated by the profitability of CAP loans. Therefore, advanced
pricing model and risk management techniques should be used both in underwriting
selection based on fair market risk-based pricing, and in portfolio risk management to price

default guarantee cost and hedge interest rate risk.



The need for this new methodology is made clear by the Federal Housing Finance
Agency (FHFA) 2009 annual report to Congress, which provides information about the poor
performance of the pricing models and risk management techniques used by the GSEs. The
Report of the Annual Examination of Fannie Mae> concludes that "model risk, the risk that
model output does not match actual performance remains high". Figure 23 of the same report
shows that Fannie Mae had additional $9.1 billion mark-to-market losses in 2008, compared
with 2009, due to interest rate volatility. The report also mentions on page 24 that "derivative
losses were $9.1 billion lower in 2009 at $6.4 billion as interest rates remained relatively
stable in 2009." In particular, "A steep drop in interest rates during the second half of 2008
caused substantial mark-to-market derivative losses in the prior year." Moreover, Figure 31°
in the report shows that Freddie Mac’s derivative losses were $13.1 billion higher in 2008
than in 2009, because "in contrast to the substantial declines in interest rates during the latter
half of 2008, rates remained relatively stable in 2009." Among the private banks using
advanced pricing models and hedging techniques, such losses due to interest rate volatility
can be mostly offset, as shown in the news about the hedging positions on mortgage-
servicing rights (MSR) of Wells Fargo and JP Morgan (see later citation). In contrast, the
GSEs' poor pricing models and lack of interest rate risk hedging techniques have resulted in

continued losses, not only when default risk increases but also when interest rate risk spikes.

> See "FHFA 2009 Annual Report to Congress", Section "Report of the Annual Examination of Fannie Mae"
Available in pp. 15-38 at http://www.fhfa.gov/webfiles/15784/FHFAReportToCongress52510.pdf

% See "Figure 23 Fannie Mae Mark-to-Market Value Gains (Losses)" on pp. 24 and "Figure 31 Freddie Mac
Mark-to-Market Value Gains(Losses)" on pp. 48 in "FHFA 2009 Annual Report to Congress".



The FHFA 2009 report points out the following problems with Fannie Mae's risk
management’. First, according to the report "prepayment models posed significant risk
during the year because of an unusually wide primary secondary spread, house price
volatility, the lack of credit availability, and uncertainty around the impact of MHA
programs.” In particular "Prepayment models have continued to predict faster than actual
speeds across all major products during the year because the timing and magnitude of the
effects of MHA programs are extremely difficult to predict". Second, Fannie Mae has
difficulties in predicting interest rate. "Interest rate risk management remained a challenge in
2009 because of high volatility in rates and the mortgage basis, as well as continuing declines
in home values." Moreover, "external conditions significantly impeded Fannie Mae's ability
to accurately measure and manage interest rate risk exposures." Third, several risk models
used by Fannie Mae are built on different assumptions and measures, and they "represent
different views along risk dimensions and give conflicting signals".

The above problems pointed out in the FHFA report are solved in the following ways
in this paper. First, the poor performance of Fannie Mae's model in predicting prepayment
likely stems from the fact that prepayment and default risks are modeled separately. However,
numerous scholars using competing risks models have found that the two risks are
intertwined, in that an increase in one risk will reduce the other. The Federal Reserve and
Treasury purchase of MBS in 2008, which lowered yields and kept rates down, is exactly a
case in point of when prepayment can be used to mitigate default risk. Therefore, in this
paper, prepayment and default risks are modeled jointly by means of the multinomial logit

model (MNL). Second, the many variables and piece wise regression method used in the

7 See pp- 32-pp.37 of "FHFA 2009 Annual Report to Congress". Section "Report of the Annual Examination of
Fannie Mae" at http://www.fhfa.gov/webfiles/15784/FHFAReportToCongress52510.pdf




prepayment and default MNL regression enable the capture and translation of the slight
monthly changes in prepayment and default risks that result from different deal structures,
different interest rate environment, and different geographical environments. Third, based on
the literature concerning non-arbitrage term structure models, interest rate scenarios are
predicted by calibrating to daily term structure quotes, in order to back out the market
implied interest rate scenarios. Finally, slight monthly changes in prepayment and default
risks are consistently translated into prices using fixed-income pricing techniques.

One major reason for the GSEs' continued losses may be poor risk management
pointed out in the FHFA report to Congress. However, blames have been readily placed on
easy targets, such as low-to-moderate income (LMI) borrowers and Community
Reinvestment Act (CRA). LMI borrowers have been blamed for initiating the current scale
of mortgage delinquencies and foreclosures. They have also experienced decreased access to
credit, due to the more conservative mortgage underwriting recently adopted by the GSEs
and the shrinking private labeled market. In this context, Assistant Secretary for Financial
Institutions, Michael S. Barr needed to refute claims that the GSEs collapsed because of the
government's imposition of affordable housing goalls8 . Moreover, Treasury Secretary
Timothy Geithner mentioned that credit is “still quite tight” for some borrowers while

expressing “basic confidence” in the U.S. economy. The financial needs of LMI borrowers'

’. See Michael S. Barr speech in National Policy Conference 2010 held by the Mortgage Bankers Association in
Washington, DC. See also the news"Treasury Refutes Anti-Reform Rhetoric. Outlines Housing Finance
Proposals" from MND News Wire, at http://www.mortgagenewsdaily.com/04152010 financial reform.asp




financial are being partly satisfied, because the Federal Reserve has kept buying MBS’ , but
such Federal Reserve purchases cannot continue indefinitely.

Furthermore, the CRA, which was intended to bring LMI borrowers into the
mainstream banking system, is under attack. Laderman and Reid (2009) summarize the
attacks that have occurred on the CRA and provide evidences in support of CRA. They use
data from the Home Mortgage Disclosure Act (HMDA) and McDash’s Lender Processing
Services data sets, and they focus on loans originated in California between January 2004
and December 2006 for a total sample of 239,101 observations. They find that loans
originated by lenders regulated under the CRA were generally significantly less likely to be
in foreclosure than those originated by independent mortgage companies. They also find
loans from CRA-regulated institutions certainly performed no worse than loans originated by
independent mortgage companies.

Testimony by Michael Stegman before the House Financial Services Committee'
also details reasons to support the CRA. He argues that it is in the national interest for low
and moderate income populations to fully participate in the American economy. Congress
and the Federal Housing Finance Agency have imposed a duty to serve the mortgage finance
needs of underserved markets. This duty pertains in addition to the GSEs' affordable housing
goal purchase requirements. According to the same testimony, a counter argument against
CRA is that if the CRA forced covered institutions to offer financial services or credit

products that are unprofitable over the long term, then no community reinvestment mandate

? According to Bloomberg news "Mortgage-Bond Yields Fall to Low on Fed's Treasury-Buying Plan". Aug 10
2010, at http://www.bloomberg.com/news/2010-08-10/mortgage-bond-yields-that-guide-home-loans-fall-to-
lows-on-fed-debt-plans.html

' See testimony by Michael A. Stegman. "Remarks before the House Financial Services Committee: 'Proposals
to Enhance the Community Reinvestment Act'. September 16, 2009. Available at
http://www.house.gov/apps/list/hearing/financialsves_dem/stegman.pdf
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should impair an institution's safety and soundness. Hence the GSEs may reduce the
purchase and underwriting of CRA portfolios.

The fact is mortgage portfolios are one of the most difficult asset categories to
manage. The difficulty is due to the competing prepayment and default risks that constantly
vary according to different borrowers, different loan terms, different house price expectations,
different interest rate expectations and different time periods. Moreover, the pricing of
mortgages affects the performance and risks, while the changed performance and risks affect
pricing in return. Therefore the solutions used by the private industry in predicting and
mitigating losses, in an effect to offset volatility and price declines, are the more advanced
and fully automated pricing system and hedging techniques used by Wall Street investment
firms, such as Lehman Brothers. The fully automated pricing system facilitates ex-ante
decision making in loan origination, in designing hedging strategies, as well as in making
modification decisions when loans are in distress.

To calculate the precise price for each loan in any time period, a fully automated
pricing framework should be used to analyze the continuous flow of market data including
monthly loan-level historical records, daily term structure quotes implying interest rate
expectations, and monthly or quarterly systematic macroeconomic and geographical factors.
Such a pricing system can translate the ever changing information into prices to facilitate ex-
ante decision making, both in normal situations and when loans are in distress. Thus portfolio
hedging strategies and loss mitigation measures can be designed accordingly.

An advanced pricing and hedging techniques are essential for underwriters during the
market downturns and times of high market volatility, as they are designed to offset volatility

and price declines in mortgage portfolios. The hedging results on mortgage- servicing rights
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(MSR) achieved by private banks in 2009'' demonstrate the importance of advanced risk
management and hedging techniques, given that private banks normally have higher cost of
funds than the GSEs. According to Bloomberg news (2009), “Wells Fargo & Co. earned
almost a third of its pretax quarterly profit by hedging mortgage- servicing rights, producing
gains similar to those that have helped some of the biggest U.S. banks offset weaker
consumer- lending businesses.” In particular, “Wells Fargo’s hedges outperformed write
downs it took on the so-called MSRs by $1.5 billion and JPMorgan Chase & Co. came out
ahead by $435 million. The two banks, as well as Bank of America Corp. and Citigroup Inc.,
wrote down MSRs by at least $5 billion in the third quarter as mortgage rates fell by about
0.26 percentage point."

This paper develops a loan-level RMBS pricing model that is industry comparable if
not more advanced, and that can be used to better predict and price cost of guarantee of
RMBS default risk, and to design hedging strategies for interest rate risk. The loan-level
pricing model in this paper addresses most of the problems in the GSEs' current risk
management models that were highlighted in the FHFA 2009 report to Congress. Moreover,
this model improves upon the copula-based pricing models by automatically translating into
RMBS prices the slight monthly changes that occur in individual borrowers' prepayment and
default risks, which are due to borrower and loan characteristics, macroeconomic conditions,
house price changes, and term structure movements.

Daily term structure quotes used are obtained from Bloomberg financial services. The
yield curve data used are swap rates, and the volatility smile data used are at-the-money

(ATM) swaption quotes in black volatility. The yield curve and volatility data are sampled

' See Bloomberg news "Wells Fargo, JP Morgan Benefit from Servicing Hedging" Oct 22. 2009. Available at
http://noir.bloomberg.com/apps/news ?pid=newsarchive&sid=azZrwvOuRzpo
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for each day in which Fannie Mae purchased mortgage loans from Self Help prior to June
2007. Hence yield and volatility quotes on a total of 687 days are sampled from Bloomberg
in total.

The monthly loan-level data come from the loans in the Community Advantage
Program (CAP), which is a secondary market program initiated in 1998 by the Ford
Foundation, Fannie Mae, and Self-Help. With a Ford Foundation grant of $50 million to
Self-Help to fully underwrite each borrower's ability to repay, Self-Help purchases existing
portfolios of CRA mortgages from participating lenders that otherwise could not be readily
sold in the secondary market. Although the underwriting guidelines are non-traditional, the
loans themselves are traditional, as they are prime-priced, 30-year, fixed-rate, lender-
originated purchase-money mortgages that are fully underwritten for each borrower's ability
to repay. To qualify for the CAP program, borrowers must meet at least of one of the follow
requirements: (1)the borrower's income is no more than 80% of the area median income
(AMI); (2) the borrower is a minority with an income less than 120% of AMI; (3)the
borrower is purchasing a home in a high-minority (>30%) or low-income (<80% of AMI)
census tract, in which case income may not exceed 115% of AMI. As of September 2006,
Self-Help had purchased 42,694 loans totaling $3.79 billion. With an average loan amount of
$88,773, participating lenders appear to be successfully serving the affordable market.

The default risk of CAP loans is completely guaranteed by the Ford Foundation grant,
if default occurs within 12 months of loan origination (not 12 months from Self Help’s loan
purchase date). If a loan goes into serious delinquency or default, Self Help has lender's
recourse to return the loan to the originator. After 12 months, any losses due to default are

guaranteed by the Ford Foundation grant. The Ford grant allows the CAP loans to be offered

12



at roughly 75 basis points (including all the benefits such as no mortgage insurance needed
for loans with LTV above 80%) below the offering rate of a normal Fannie Mae loan with
the same characteristics. Hence for any loan that goes into default after the RMBS purchase,
investors receive a full refund of their capital and only face the risk of losing advance
interest. Hence, from an investor's point of view, defaulted loans are no different than prepaid
loans. Nevertheless, modeling the default and prepayment risks of these loans using a
competing risks model has significant implications for pricing methodology and for applying
the pricing model to other MBS deals that do not bear full default guarantee.

The loan-level pricing model developed in this paper is applied to the whole CAP
portfolio of around 46,080 loans that was purchased prior to July 2008 with monthly records
ever since origination. The option-adjusted spread (OAS) is calculated using rarely available
loan-level Fannie Mae pricing data for the 7,168 loans without missing data by letting the
model price equal the market price. Although the pricing model can easily allow a different
recovery rate for each loan in the case of default, the full guarantee of default risk in the CAP
deal structure makes default the same as prepayment. The unique CAP loan-level data set
contain borrower income and race information that is not available in other public data sets,
such as McDash and Loan Performance. Hence, regression is used to test whether traditional
indicators, such as borrower income and race, reflect mortgage yields in CAP. For more
information on demographic characteristics of CAP, see Riley, Ru and Quercia (2009). The
default rate in CAP remains low in 2009 after the sample period used, as discussed by Riley
and Quercia (2011) about CAP default rate in 2009 comparative to prime ARM and Prime
fixed rate loans. In short, there is no significant surge of default risk in CAP after the sample

period used in this paper.
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The results applying the pricing model suggest that the CRA mortgages in the CAP
program are mostly profit-making for the GSEs. Hence CRA mortgages are not necessarily
so unprofitable as to impair an institution's financial safety. This finding is consistent with
the earlier findings of Michael Stegman concerning CRA loans that he mentioned in his
testimony. Furthermore, the results suggest that conventional indicators of mortgage risks,
such as borrower race, borrower income and OLTYV, either are not important in determining
mortgage option- adjusted spreads or have counter-intuitive signs for predicting mortgage
yield. Hence the results demonstrate that mortgage risks and yields are much more
complicated than are traditionally recognized. In particular, simple indicators such as race,
income, and OLTYV are not reliable predictors of yields and risks. Therefore, a blanket
avoidance of LMI mortgages is not rational. Accordingly, tightening the GSEs underwriting
guidelines using these simple indicators may not completely stem their losses, but may
instead lead to the indiscriminate rejection of profitable LMI mortgages, as demonstrated by
the CAP CRA loans. In addition, the results indicate that loan age is a very important factor
in determining both prepayment and default risks. Regressions of prepayment and default
risks using all CAP loans show that (1) prepayment risk significantly increases until 2 years
after origination; and (2) default risk has intermittently significant increases throughout the
life of a loan. Therefore, without the adoption of advanced pricing model to accurately price
and warn mortgages risks, newly originated and guaranteed loans by the GSEs may incur
significant losses as they become more seasoned and if housing market continues to decline.
This concern remains despite the fact that currently “less than 1% of the losses have come

from loans originated in 2009 and 201072,

2 See pp2. in testimony by Assistant Secretary for Financial Institutions Michael S. Barr, Written Testimony as
Prepared for Delivery - 9/15/2010 . At http://www.ustreas.gov/press/releases/tg854.htm
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In addition, the results suggest that state-specific characteristics dominate the legal
environment in determining mortgage yields, because no consistent conclusions can be
drawn about whether loans in states with stricter anti-predatory lending laws have higher or
lower OAS. Finally, the results indicate that the information contained in private data sets,
such as race and income and some neighborhood variables, is important for predicting
prepayment and default risks. These effects cannot be explained away regardless of how
many additional independent variables are added. Hence, the information collected in private
data sets may help to improve pricing and mitigate portfolio losses. Such information may
include that collected in longitudinal surveys concerning trigger events, mobility, and
neighborhood quality. In short, the identification of responsible LMI borrowers and
profitable loans requires that the loan-level model be run on each mortgage portfolio.

The pricing model and hedging techniques are especially important for underwriting
LMI mortgages, because they are highly leveraged products that tend to amplify both losses
and gains. The loan-level design of the pricing model developed in this paper can identify
profit-making LMI mortgages by translating into prices the slight monthly changes of risks
associated with each mortgage loan. Moreover, the pricing framework developed here
provides a way to incorporate various scholars' research and to translate related results into
prices. Such research may concern additional factors that affect prepayment and default risks,
advances in term structure theories, and findings that may improve the design of hedge
strategies. The loan-level pricing model can be used to estimate the cost of a government
guarantee of RMBS default risk if good mark-to-market house price indices (HPI), such as
the Case-Shiller Indices, are available. Specifically the expected cost for guaranteeing the

default risk of a loan is the difference in the OAS between 100% recovery and a recovery at
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the current house price. Therefore the cost of a government guarantee should constantly vary
with factors that affect mortgage risks and prices, including seasoning, term structure quotes,
and house price indices. The accurate pricing of a government guaranteeing cost is important,
because “losses in this segment of the Enterprises’ (the GSEs’ single family credit guarantee
business) activities account for $166 Billion of the total $226 billion in losses since year-end
2007, representing 73% of the charges against capital over that period.”13 Therefore the loan-
level pricing model developed in this paper, through advanced pricing model and hedging
techniques, could help the federal government and the GSEs to better meet the financial
needs of responsible LMI borrowers, while maintaining the sustainability and soundness of

financial institutions.

Section 1- b What does the policy literature say?

The arguments that have been advanced in the literature by pioneering policy
scholars to promote affordable housing and mortgages are still valid in current economic
context. Pioneering policy scholar Michael Stegman's earlier studies provide reasons why it
is in the national interest for LMI population to fully participate in the American economy. ,
In his speech for the World Bank Conference in 2004, he pointed out that wealth disparities
are greater than income disparities, and that homeownership can help to solve the problem,
given that homeownership has historically been a wealth building avenue for low-to-

moderate-income households. The paper by Stegman, Freeman and Paik (2007) further

" See pp. 3 in statement of Edward J. DeMarco, Acting Director Federal Housing Finance Agency - 9/15/2010.
At http://www.fhfa.gov/webfiles/16726/DeMarcoTestimony15Sept2010final.pdf

'* See "Evolution of Banking & Access to Financial Services in the U.S." by Michael Stegman, for World Bank
Conference April 2004, available at
http://www]1.worldbank.org/finance/assets/images/Michael Stegman _April 21 .pdf
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examines the effect of homeownership on wealth building by exploring wealth differences
across a sample of LMI homeowners and renters in the CAP survey panel. They find that
homeownership not only affects the likelihood that CAP borrowers' hold assets and debt, but
also affects their overall levels of wealth. Other things equal, owning a home increases one’s
adjusted net worth by almost $37,000. Furthermore, Michael Stegman's speech at 2004
Federal Reserve Bank of Cleveland summit'’ argues that affordable credits can help to
prevent LMI borrowers from becoming chronically dependent upon high cost credits, such as
payday lending. Making more Affordable credits available can have the effect of bringing
millions of LMI Americans into the mainstream banking system and can expand economic
literacy. Mortgages and other forms of credits to LMI borrowers have helped banks and other
credit institutions (such as CDFIs) to generate tremendous amount of revenues such as fees,
besides interest income. In addition, Michael Stegman's speech in the General Accounting
Office Planning Conference 2001'® argues that the nation as a whole benefits as well: since
more than 90% of anticipated population growth over the next 50 years is expected to be
among minority groups, and narrowing income gap between whites and minorities means a
dramatic increase in minority spending power. It is increased consumption that has fueled
the prior decades of economic expansion.

A series of research papers by Eric Belsky further details the role that homeownership
plays in wealth creation and its impact on consumption. Belsky (2008) studies the importance

of housing wealth to the balance sheets of more than two thirds of American households, the

' See "A Personal Perspective on the Recapitalization of Communities.” by Michael Stegman, for 2004
Community Development Policy Summit Federal Reserve Bank of Cleveland. May 2004. Available at
http://www.ccc.unc.edu/research.php

'® See General Accounting Office planning conference: emerging issues in financial markets & community
investment. Community assets panel presentation by Michael A. Stegman, February 2001. Available at
http://www.ccc.unc.edu/research.php.
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connection between housing wealth and consumption, and the substitution of mortgage debt
for consumer debt. He also explains the possible impacts that house price declines can have
on consumer spending.

Recent research papers by the UNC Center for Community Capital provide new
evidences that homeownership continues to be a viable means of creating wealth in some
well managed portfolio, the subprime crisis notwithstanding. For instance, Riley, Freeman
and Quercia (2009) examine the wealth creation effects of house price appreciation for
borrowers whose loans were purchased under CAP. The period of their analysis, which
extends from loan origination to April 2009, spans the periods before and after the subprime
crisis. Their results indicate that these low-income borrowers have experienced considerable
home price appreciation since they purchased their homes, and that they have also
accumulated and retained considerable equity, despite the subprime crisis.

Nevertheless, the benefits of the affordable mortgage advocated by policy scholars
are only sustainable if the higher risks associated with affordable mortgages are properly
priced. That is mispricing, and especially the underestimation of the higher risks of LMI
borrowers can result in an excessive supply of credits at prices that are not sufficient to cover
the risks associated with these highly leveraged assets. Moreover, it may lead to
indiscriminate lending practices, which could impair the safety and soundness of financial
institutions. Such concerns form the basis of the opposing arguments against GSEs'
continuation in the LMI mortgage market. The challenges and difficulties associate with
managing LMI assets were recognized fairly early by Michael Stegman. He pointed out

that'”:

' See "Creating Community Wealth." Net Inpact Conference November 3, 2001, available at
www.ccc.unc.edu/documents/CC_commWealth 011103.ppt
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"we have learned that whether for real estate, development venture capital or micro finance -
- placing and recovering capital in low-income communities requires high level of skills,
discipline, internal management systems, and development services to find the deals, put
them together, and help them succeed".

Therefore, accurate pricing of the LMI mortgages using the model developed in the paper is
especially important if the Federal government is to meet the financial needs of responsible
LMI borrowers, while also maintaining the sustainability and soundness of GSEs.

The importance of the accurate pricing and risk management of LMI mortgages has
been mentioned in recent speeches by Treasury officials in the context of the government
policy concerning housing and finance. Treasury Secretary Timothy F. Geithner reiterated
the importance of homeownership for LMI borrowers and discussed the challenges facing the
secondary market and housing policy in his comments on GSE structure'®,

"mortgage products should be standardized and support a liquid secondary market with a
broad base of investors and 'accurate and transparent pricing'. Government housing
policy should aim to promote widely available mortgage credit, financial stability and
affordable housing options for lower-income households. "
In addition, Michael S. Barr further stipulated, "the system should distribute the credit and
interest rate risk in an efficient and transparent manner that minimizes risk to the broader
economic system and does not generate excess volatility or instabilitylg".

Nevertheless, the old risk-based pricing models used by rating agencies have failed

to measure, predict and correctly price mortgage risks. Ashcraft, Goldsmith-Pinkham and

Vickery (2010) study the credit rating of subprime and Alt-A RMBS deals issued between

2001 and 2007. They find strong evidence that ratings become progressively less

'® See Bloomberg news "Geithner Urges Ending Fannie, Freddie ‘Ambiguity’ (Update3)", available at
http://www.bloomberg.com/apps/news?pid=20601087 &sid=aOUI4zkc 97c&pos=5

' See news "Treasury Refutes Anti-Reform Rhetoric. Outlines Housing Finance Proposals", according to MND
News Wire. Available at http://www.mortgagenewsdaily.com/04152010 financial reform.asp
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conservative around the RMBS market peak during 2005-07. They find the credit ratings
perform especially poorly among high-risk mortgages (subprime and LMI mortgages),
regardless of whether the performance is measured by mortgage default rates, losses or rating
downgrades. They also point out that good credit rating should incorporate all relevant
information about risk that is available in the information set of credit rating agencies at the
time of rating. However their modeling results show that credit rating agencies failed to
achieve this goal.

The failure of the rating agencies to predict and price subprime mortgage risks may
be partly due to the time varying nature of mortgage prepayment and default risks and the
complicated interactions of the two risks on mortgage returns. It is well known that subprime
and CRA borrowers have slower prepayment risk but higher default risk. Slower prepayment
risk increases the mortgage return in a falling-rate environment, but higher default risk
decreases that return. Most importantly, mortgage prepayment and default risks vary
constantly. Prepayment risk varies frequently with the interest rate movement expectations,
as implied in current market term structure quotes. Similarly, default risk varies with the
house price movement expectations and has been shown to be highly correlated in economic
downturn and in distressed neighborhoods. Hence, prime loans may not provide as high a
return as conventionally believed, due to their high prepayment risk. Moreover, if managed
well, subprime or CRA loans may not provide as low a return as usually believed, due to
their low prepayment risk. The constant variations of mortgage risks over time and across
geographic areas require fully automated pricing model be used to capture monthly changes

in risks and translate them into prices.
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In short, it is time for a RMBS pricing model to be adopted that can price mortgage
risks at the level of the individual borrower and also meet the following principles that have
been agreed upon in the literature. First, the pricing model should incorporate all relevant
information about risk at the time of purchase. Second, compared to older models, the new
pricing model should achieve increasing degrees of granularity, and be able to identify and
separate responsible LMI borrowers from irresponsible ones. Finally, the pricing model
should provide a way to translate into prices the ever-changing monthly prepayment and
default risks of each loan. The loan-level pricing model developed in this paper satisfies all
these principles.

The rest of the paper is organized as follows. Chapter 2 reviews the literature on each
component of this loan-level pricing model, including general fixed-income pricing
frameworks, various term structure models, and modeling prepayment and default risks
using competing risks models. Various factors discussed in the literature that affect mortgage
prepayment and default risks are also summarized, including geographic factors, borrower
characteristics and idiosyncratic loan features. Chapter 3 presents regression results for
prepayment and default risks estimations using the whole CAP portfolio. The predictive
power of the prepayment and default risks regression is also studied. Chapter 4 details the
term structure model of choice, namely one-factor Hull-White model fitted to yield and
volatility, and the cash flow discounting method of fixed income pricing. Chapter 5 studies
Fannie Mae’s pricing practices and the CAP deal structure. Specifically, the OAS results
estimated using loan-level Fannie Mae pricing data for 7,168 loans (without missing data)

that were purchased on 687 days are presented. Moreover, linear regression is used to study
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which factors affect the OAS. Chapter 6 summarizes the policy implications of the analysis

and provides possible directions for future research.
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Chapter 2. Literature Review.
Section2- a. Summary of the pricing framework

It is widely known that copula-based models has been used to price CDOs. Hull and
White (2004) develop a factor copula model to price CDOs, and the Fitch Ratings report
Hunt (2007) shows that copula-based models were used by some rating agencies to price
RMBS before the subprime crisis. Moreover, the extensive criticisms of copula models that
were voiced after the subprime crisis® simply reflect how popular copula models were for
pricing CDOs before the crisis. However, the composition of the underlying assets in the
CDOs was not very transparent until the after the start of the subprime crisis. According to
recent Bloomberg news, Citigroup issued many mortgage-backed CDOs before the subprime
crisis, which offered an implicit guarantee of default risk through the "Liquidity Puts" clause
21 Recent news has also disclosed that some CDO deals issued by Goldman Sachs were also
backed by residential MBS**. However, using the same pricing models to price underlying
assets with very different risk characteristics, such as corporate loans or mortgages, just
because they are all in CDO tranches, is a dangerous practice.

Various tranche-level RMBS pricing models were developed some time ago. In his
literature review, Sundaresan (2000) mentions that in the MBS market, "complex models of

term structure are integrated with fairly intricate models of prepayments to produce valuation

20 See Sam Jones "The formula that felled Wall Street", Financial Times, April 24, 2009. Available at
http://www.ft.com/cms/s/2/912d85e8-2d75-11de-9eba-00144feabdc0.html

*! See Bloomberg news "Citigroup 'Liquidity Puts' Draws Scrutiny from Crisis Inquiry", available at
http://www.bloomberg.com/apps/news?pid=20601087 &sid=aZELabu4NRel&pos=1

2 See Bloomberg news "Goldman Sachs Sued by SEC for Fraud Tied to CDOs" , available at
http://www.bloomberg.com/apps/news?pid=20601087 &sid=agT 1 H2ffyJCA




results and risk management inputs for MBS portfolios." Moreover "this is also an area
where industry is arguably ahead of the academics in many issues." More recently, Brigo,
Pallavicini and Torresetti (2010) summarize the popular CDO tranche-level pricing methods
that were used to price corporate loans in the industry before the subprime crisis. According
to these industry experts, the various CDO tranche-level models summarized are all based on
copula models with small variations in how the default correlations among loans are treated
within a tranche and between tranches. However, the copula-based CDO pricing models have
been proven to be problematic by the subprime crisis as reported by the somewhat colorful
expressions used by the news media to describe these models, such as "the formula that
felled Wall Street." Although it is not clear whether the copula-based tranche pricing models
have been used by organizations other than Fitch Ratings to price RMBS backed CDO loans,
these models should not be used to price RMBS backed CDO loans in the future.

The copula-based tranche-level pricing models have the following problems in
comparison with the loan-level pricing model developed in this paper. First, the interest rate
is assumed to be deterministic (not stochastic) in CDO tranche-based pricing models. It
means there is no model to predict interest rate; hence mortgage interest rate risk is not
adequately priced. Second, the default risk and default correlations are mainly captured
through a series of systemic state-level factors as in Hunt (2007), which do not take into
account the borrower and loan-level factors that have been widely observed in the literature
as affecting default risk, for instance, mark-to-market LTVs. Third, the copula-based tranche-
level models cannot price the effect of default risk mitigated by prepayment. Such instances
were commonly observed in the falling-interest-rate environment that followed the subprime

crisis, due to government interventions, such as the Federal Reserve purchase of MBS in
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2008 that lowered yields. Finally, mortgage default risk is well known to be highly
correlated, that is the most common observations are either concentrated defaults during an
economic downturn and distressed neighborhoods, or very few defaults in economic boom.
Therefore, if a mortgage pricing model only models default risk like copula-based model, it
may produce a wide range of unrealistic prices since tail events are highly likely.

In summary, the tranche-level RMBS pricing models conduct pricing at the aggregate
tranche-level and are overly dependent on reduced-form models. These models isolate the
performance of underlying assets from prices. As a result, small changes in default risk are
not translated into prices, and thus default risk is covered until massive defaults are detected
and several subprime mortgage originators went bankrupt, such as Countrywide. In contrast,
the loan-level pricing model developed here solves this problem by incorporating all the
information that is available at the time of purchase. This information includes the interest
rate scenarios implied in current term structure market quotes, prepayment and default
behaviors from historical loan-level records that vary due to borrower and loan
characteristics, and local macroeconomic conditions and house price movements. Therefore
this loan-level RMBS model should be applied not only to CMO, but also to CDO and ABS
portfolios whenever the underlying assets are RMBS. To obtain individual tranche price, this
loan-level model can be applied to calculate the aggregate price of a portfolio; then tranche
prices can be calculated according to tranche waterfall arrangements and deal structures.

According to section 21.1.2. of the book by Brigo and Mercurio (2006), the price of
any loan, either mortgage or corporate, is essentially the discounted expected cash flows until

the loan terminates. Hence the fundamental pricing equation is:

maturity
Pricey = E [exp <— j rtdt> * Payof f (maturity)| .
0

25



In mortgage loan, the payoff depends on both prepayment and default risks. Because the
termination risk, due to either prepayment or default, determines when the principal can be
returned and how long the interest can be collected. If termination is due to default, then the
recovery rate also determines how much principal and interest can be recovered. The interest
rate is the most important driver of prepayment risk. The interest rate curve can also predict
default risk, since the slope of the yield curve is one indicator of general economic
conditions, as well as of the direction of interest rate changes in the future. Moreover, interest
rate models generate discount factors that are used to discount predicted cash flows. Hence
the interest rate is the first variable that should be modeled in pricing a loan. The interest rate
model adopted here is under risk-neutral pricing framework. Hence the whole RMBS pricing
accordingly assumes risk-neutrality. That is the physical measure and market prices of risk
are not studied here.

The interest rate model is calibrated according to standard term structure theory to the
currently observed market term structure level and volatility. This approach is adopted
because the current market quotes imply the market expectations of term structure
movements. The non-arbitrage feature of the term structure model adopted in this paper
means the model is calibrated by taking the observed yield curve and volatility quotes as
given. This approach is consistent with the practice of Dunsky and Ho (2007). Hence the
interest rate movements do not allow possible arbitrage opportunities in holding a portfolio
of bonds at any time. Following the practice of Dunsky and Ho (2007), the one-month rate,
2-year rate and 10-year rate are generated for each node point in the interest rate tree
calibration. The 10-year rate is used in calculating the refinance spread variables. The 2-year

and 10-year rates are used to generate yield curve spread variables.
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Once the interest rate model is calibrated, the prepayment and default risks are
calculated for each node point on the tree, which represents the predicted interest rate
scenarios backed out from market quotes. The prepayment and default predictions depend
not only on simulated interest rate scenarios, but also on many other factors such as borrower
and loan characteristics. The regression using multinomial logit (MNL) model is intended to
filter out factors that affect the prepayment and default risks, and thus to generate good
predictions of termination risks. The predicted prepayment and default risks are calculated
from regression predictions based on both historical data (i.e. such as borrower and loan
characteristics) and simulated data (i.e. interest rate scenarios). Given the predicted
prepayment and default risks, the cash flow can be calculated for each interest rate path based
on industry-standard formulas for mortgage cash flow. Finally, the discounted cash flow
based on all the interest rate paths is obtained as the model price.

To compare the model price with the market price in a meaningful way, a pricing
model that is consistent with the Wall Street firms practice is adopted and emphasized. The
ultimate goal of the pricing model presented here is the identification of responsible LMI
borrowers whose loans are profit-making for the secondary market via a model that is
consistent with Wall Street's prevailing pricing practices. Therefore, the Lehman Brothers
option-adjusted spread pricing model for corporate bonds described in Pedersen (2006) is
used as an essential reference in developing the loan-level RMBS pricing model. The loan-
level pricing model and OAS definition used here are also consistent with the earlier industry
reports by Hayre (1999) from Salomon Smith Barney, Beardsell and Liu (2005) from
Citigroup, and Breeden (1997) from Smith Breeden with regard to the general pricing

framework and RMBS interest rate risk features.
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Section2- b. Prepayment and default estimation by competing risks models.

The literature contains several modeling alternatives for estimating prepayment and
default risks by competing risks models. These alternative include the Cox proportional
hazard model (PHM), the competing risks proportional hazard model (CRPHM), and the
multinomial logit model (MNL).

Clapp, Deng and An (2005) provide a detailed comparison of the econometric
efficiency, likelihood functions, and technical details of the PHM, CRPHM, and MNL
models. The PHM by Cox (1972) is a continuous-time duration model that allows only one
termination event. However mortgage risks involve two events, prepayment and default, and
these are competing risks in that a loan in default cannot be prepaid, and vice versa. The
CRPHM used by Deng Quigley and Van Order (2000) is designed to allow multiple
termination events and competing risk features. However, the multinomial logit model has
comparable econometric efficiency to CRPHM according to Clapp, Deng and An (2005).
Moreover, it can be readily estimated using most publicly available statistical software
packages. For this reason, multinomial logit models are widely used. For instance, Dunsky
and Ho (2007), Dunsky and Pennington-Cross (2004), and Pennington-Cross (2010) use the
MNL to model competing risks features of mortgage loans.

The multinomial logit (MNL) model is adopted here in estimating the prepayment
and default risks for a longitudinal mortgage loan data set. The MNL model is a discrete-
time> duration model that allows multiple termination events with competing risks feature.

The competing risks feature is incorporated in MNL because the total probability of multiple

3 The difference between discrete-time and continuous-time models depends on whether the dependent variable
is a continuous or discrete categorical variable.
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events (prepayment, default, remaining current) must sum to one. Therefore, an increase in
one risk must be offset by decreases elsewhere. Another feature of the MNL is the
assumption of the independence of irrelevant alternatives (IIA). This assumption requires
that given the event history of a loan from origination to termination, each monthly
observation be treated as though it were independent from the prior observation. In other
words, adding or removing one of the available choices should not change the ratios of
probabilities for the remaining choices. Furthermore a borrower's prior choices at any point
in time are independent of those at any other point in time. Specifically, the monthly
conditional prepayment and monthly conditional default rate are defined, respectively, for the

i"™ loan in the t" month. Moreover, the log-likelihood function is given by:

lnL(lB]ylrep’leylef) = Z Z alnPr(Yit = prep) + (l_a)lnPr(Ylt = def),

exXP(B,)Z yrep)
L+exp(B,,,,Zi) +exp(B.;Z,,)

exp(ﬁdefz i)
1+exp(B,,.,Z,) +exp(B.;Z,,)

Pr(Y, = pre) = )]

Pr(Y, =def) =

where Y;; denotes the i borrower’s decision at time t,and Z, are the observed variables,

and (5

e » By ) are the vectors of estimation parameters that are presented in the estimation
result section, and a is the indicator of whether the event is default or prepayment. The MNL
is estimated using maximume-likelihood method by treating restructured discrete-time

information for each loan as taken from identical and independent distributions. The log-

likelihood function is estimated based on the loan-level longitudinal data set.
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Section2- c. Factors that affect mortgage prepayment and default risks.

Various research papers show that the prepayment and default risks of mortgages are
not static but instead vary across different income groups (e.g. prime, subprime, and CRA),
across various geographic areas, and across different time periods.

In the pioneering literature review, Quercia and Stegman (1992) summarize the
factors affecting default risks from the lender's perspective, the borrower's perspective and
the institutional perspective. The importance of many of the variables summarized in the
literature review is still being confirmed by later scholars who are using updated data sets
and new regression methods. However many factors affecting default risk listed in the paper
are not available in any public loan-level dataset. For instance, trigger events, such as
borrower employment status, family health problems, or unexpected debts can all trigger
default. Moreover, divorce, changes in family size, the presence of school-age children, and
environmental problems in the house or neighborhood may trigger borrowers to move and
thus prepay a loan. This type of information is generally not available in public data sets but
may be found in scattered survey data sets. The private information contained in scattered
survey data sets can be used to better predict prepayment and default risks. Furthermore,
although the various factors summarized by Quercia and Stegman(1992) have been shown by
scholars to affect mortgage default risk, the results of such research cannot be translated into
mortgage prices without using a formal loan-level pricing model. The model developed in
this paper provides a framework that can solve the problem, and it allows the research of
various scholars to be used for mortgage portfolio risk management.

More recent papers identify additional factors that affect default behavior or find
different effects for the same factors. For instance, Ding, Quercia, Lei, Ratcliffe (2008)

compare the default behavior of borrowers who received Self Help CAP loans to that of
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similar borrowers who received normal subprime mortgage loans during the subprime crisis.
They find that the different loan characteristics imposed on borrowers of similar types appear
to be the main driver of the different default behavior. In addition, Ding, Quercia and White
(2009) find a lower default rate in neighborhoods in anti-predatory-lending laws states, in
states requiring verification of borrowers' repayment ability, in states having broader
coverage of subprime loans with high points and fees, and in states having more restrictive
regulation on prepayment penalties. Cotterman (2001) studies the effects of neighborhood
characteristics on mortgage default, and finds that lower Census-tract median income and
higher Census-tract Black composition are associated with higher rates of default, whereas
individual borrower race or income are unrelated to default. Dunsky and Pennington-Cross
(2004) use multinomial logit model and find that delinquency and default are sensitive to
current economic conditions and the state of housing markets. Moreover, credit scores and
loan characteristics also play important roles. Danis and Pennington-Cross (2005) study the
distressed-pay-in-full phenomenon in a falling rate environment; and find that during their
sample period, delinquency predominately leads loan to termination through prepayment
while negative equity leads to termination through default.

The loan-level pricing model developed in this paper can also be used to price
adjustable-rate mortgages in the future; thus it is interesting to consider the literature findings
concerning differences in default behavior between adjustable-rate mortgages and fixed-rate
mortgages. Foote, Gerardi, Goette, Willen (2008) use a private data set for the New England
area and find that, for ARM loans, most subprime borrowers who defaulted did so well in
advance of their reset dates. Their results also show that defaults on subprime ARM loans are

more sensitive to declining housing prices than are defaults on fixed-rate loans, and that
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many borrowers with good credit scores took out subprime loans as the housing boom
continued. They find it hard to prove that these borrowers were inappropriately steered into
the subprime market, since the loans these borrowers took out were too risky for prime
treatment. Finally they also find that 70% of Massachusetts homes recently lost to
foreclosure were originally purchased with prime mortgages, and that subprime refinancing
has been common for owners with positive equity.

Overall, the literature on prepayment and default risks indicate that many
idiosyncratic loan and borrower factors affect mortgages risks, and the impacts of these
factors vary constantly depending on different portfolio deal structures, different time periods
and different geographical areas. These findings clearly demonstrate the complicated and
dynamic nature of mortgage risks. In particular, prepayment depends on a borrower's
expectation of refinance opportunities, and default depends on a borrower's expectation of
house price trends compared with his unpaid mortgage balance. Moreover, trigger events
may force borrowers to prepay or default, even if their expectations are unchanged. In other
words, using credit scores or ratings as the only gauge of mortgage risks provides unreliable
inference, and prime borrowers may not be as low risk as they are traditionally thought to be.
Thus, these literature findings provide additional support for the need for a pricing model on
a loan-by-loan and month-by-month basis that can incorporate various scholar findings in the

literature to be used in mortgage portfolio risk management.

Section2- d. Term structure models.

Aside from default risk, interest rate risk is one of the key risks of mortgage for
underwriters and investors. According to the FHFA's report (page 24) "derivative losses were

$9.1 billion lower in 2009 at $6.4 billion as interest rate remained relatively stable in 2009".

32



In particular, "a steep drop in interest rate during the second half of 2008 caused substantial
mark-to-market derivative losses in the prior year." Moreover, the same report shows that
Freddie Mac’s derivative losses were $13.1 billion higher in 2008 compared with 2009,
because "in contrast to the substantial declines in interest rates during the latter half of 2008,
rates remained relatively stable in 2009."

Interest rate risk results from the refinancing (prepayment) behavior of borrowers in
response to interest rate volatility. In a falling rate environment, MBS investors collect
decreasing interest income due to mortgage prepayment, while the cost of capital is normally
fixed. Nevertheless, in a rising rate environment, MBS investors collect fixed interest income
since borrowers do not prepay, but they probably face rising borrowing costs. In short, the
underwriters or investors may suffer enormous losses as long as the interest rate is volatile.
Hence, the term structure model used to predict interest rate scenarios is the key to predicting
prepayment risk, because it allows the interest rate risk of mortgages to be priced and
hedging strategies to be designed accordingly. Therefore, the interest rate is the first element
that needs to be modeled in the pricing framework. The interest rate model not only generates
the refinancing scenarios, which are among the key factors for predicting prepayment and
default, but it also generates the monthly discount factor. Thus, small changes in the interest
rate result in big changes in prices.

In his literature review, Sundaresan (2000) summarizes the theories and
methodologies used in default-free term structure models. The major types of models include
affine term structure (ATS) models and LIBOR market models. As explained by Sundaresan
(2000), the LIBOR market models use discretely compounded forward rates as the

numeraire, and this approach has led to theoretically consistent models for valuing caps,
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options on swaps, and so on. However LIBOR market models requires time-consuming
Monte Carlo simulation techniques because of the non-Markovian property of the forward
rate process, which may limit the feasibility when applying the loan-level model to mortgage
portfolios that may easily have millions of observations in a single month. Furthermore,
according to the Lehman Brothers report by Pedersen (2006), the impact of modeling a
borrower's prepayment and default sensitivity to the interest rate outweighs the impact of
improving the interest rate modeling. Hence, the focus in this paper is on affine term
structure models.

According to Sundaresan (2000), in affine term structure models the equilibrium (or
arbitrage-free) short rate is an affine function of some underlying state variables of the
economy, where the state variables follow an affine diffusion process. The short rate is
linearly related to the underlying state variables under both the risk-neutral measure and
physical measure. These assumptions allow the derivation of closed-form solutions for a
wide variety of fixed-income securities, which greatly simplifies the empirical
implementations of ATS models. Egorov, Hong and Li (2006) provide an empirical analysis
of the out-of-sample performance of ATS models versus random walk in forecasting the joint
conditional probability density of bond yields. Nevertheless, some scholars, such as Dai and
Singleton (2000), argue that at least three factors are required to properly describe the
dynamics of the interest rate curve. Egorov, Hong and Li (2006) argue that, first of all, the
extensive search for more complicated models using the same data sets may suffer from a so-
called “data snooping bias,” as pointed out by Lo and MacKinlay (1989) and White (2000).
While more complicated models fit a given dataset better than simpler models, they may over

fit some idiosyncratic features of the data without capturing the true data-generating-process.
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Second, an over-parameterized model contains a large number of estimated parameters and
inevitably exhibits excessive sampling variation in parameter estimation. The excessive
parameter estimation uncertainty may adversely affect the out-of-sample forecast
performance. Third, a model that fits in-sample data well may not forecast the future well
because of unforeseen structural changes of regime shifts in the data-generating process. A
few studies that consider the out-of-sample performance of ATS models have shown that
some of these models fail miserably in forecasting the conditional mean of future bond
yields. For example, Duffee (2002) shows that the complete ATS model of Dai and Singleton
(2000) have worse forecasts of the conditional mean of bond yields than a simple random
walk model in which expected future yields are equal to current yields. Nevertheless, Egorov,
Hong and Li (2006) suggest that ATS models may provide good forecasts for the higher
order moments, or even for the whole conditional density of bond yields, although they have
poor forecasts of the conditional mean dynamics.

Sundaresan (2000) mentions that one solution to the poor in-sample fit of one-factor
ATS models is the growth of non-arbitrage pricing models, which can be calibrated to the
market data using the shift extension technique. The shift extension technique involves
including "time-varying" parameters in these models to allow fitting to the observed initial
forward curve and volatility. Shifted Hull-White (HW++>%), shifted Cox—Ingersoll-Ross
model (CIR++), and shifted Black-Karasinski (BK++) models are all popular choices among
practitioners. However, the stability of the parameters may be an issue.

Gupta and Subrahmanyam (2005) provide a very comprehensive examination of the

pricing and hedging performance of non-arbitrage short rate models, Heath-Jarrow-Morton

2" +" means "shifted" in order to differentiate the HW model with shift extension technique from the original

HW model.
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(HIM) models and the LIBOR market Brace-Gatarek-Musiela (BGM) model. The one-factor
models analyzed by Gupta and Subrahmanyam (2005) consist of two non-arbitrage short rate
models, namely the Hull-White and the Black-Karasinski models, the HIM general class with
five forward rate specifications, and the BGM LIBOR market model. For two-factor models,
two alternative forward rate specifications are implemented within the HIM framework. In
their paper, the pricing accuracy refers to the ability of a model to price options accurately,
conditional on the term structure. It is useful in picking out deviations from arbitrage-free
pricing. Hedging performance refers to the ability of the model to capture the underlying
movements in the term structure in the future after being initially calibrated to fit current
market observables. It is useful for studying whether the interest rate dynamics embedded in
the model are similar to those driving the actual economic environment that the model is
intended to represent. Gupta and Subrahmanyam (2005) show that one-factor lognormal
model (for instance BK) outperforms other competing one-factor models in terms of out-of-
sample pricing accuracy. In addition, the estimated parameters of this model are stable. The
one-factor BGM model outperforms other models in pricing tests, while two-factor HIM
models improve pricing accuracy only marginally. They conclude that, for the accurate
pricing of caps and floors, it is more important for the model to fit the skew in the underlying
interest rate distribution than to have two stochastic factors in the model. However, they find
the hedging performance improves significantly with the introduction of a second stochastic
factor in the term structure models, because two-factor models allow a better representation
of the dynamic evolution of the yield curve, which is more important for hedging
performance than for pricing. However, their results mostly refer to pricing and hedging

interest rate caps and floors. For this reason, their results need to be applied with caution
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when it comes to the RMBS market, because RMBS have much more complicated dynamics,

even only with respect to mortgage portfolio interest rate risk.

Section2- e. Justifications for using the one-factor Hull-White model fitted to yield and
volatility.

The term structure model used is the one-factor Hull-White model fitted to yield and
volatility. The volatility curve fitted here is based on the market ATM swaption quotes in
black volatility, which is not the instantaneous volatility that appears in the continuous-time
stochastic differential equation (SDE) of the Hull-White model. Volatility fitting is important
because of the growing importance in the literature and in industry practice for modeling the
volatility smile. Models not fitted to volatility will be problematic for designing the Vega
hedge and thus may not completely hedge the volatility risk.

According to Pedersen (2006) one-factor models fitted to yield and volatility are still
widely used in the industry to price corporate loans. One-factor models are especially
suitable for pricing mortgage loans, since most public mortgage data sets are huge and easily
contain millions of loans for any given month. The tree structure in one-factor models allows
fast calibration of the loan-level model, while time-consuming Monte Carlo simulation may
limit a model's feasibility in practice. The Hull-White model is chosen in particular, since the
refinance rate is simulated in the term structure model and is used as key factors in
generating prepayment and default predictions. The refinance rate used is 10 year rate, and
this choice is consistent with the practice of Beardsell and Liu (2005) from Citigroup then.
Hence the availability of a close form solution is essential for pricing RMBS. Therefore,
lognormal models are not suitable for RMBS pricing, and the Hull-While model is the most

popular choice among the normal models in practice.
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Further discussions of the potential pricing and hedging implications of short rate
one-factor models require understanding of the basic features and parametric forms of the
one-factor models. The continuous-time presentations of one-factor models under risk-
neutral measure are summarized in Table 2. In Table 2, r(t) is the instantaneous short rate at
time t, 6(t) can be considered as time-varying means, a is mean reversion parameter, o is the
volatility parameter, and W (t) is one dimensional Brownian motion.

[Insert Table 2. Summary of basic one-factor short rate models]

Although the availability of a close form solution makes the normal model the only
feasible choice, the fact remains that compared with the popular log-normal model for
interest rate, the normal model will produce better pricing results due to the higher
probability assigned to lower rates. This is discussed by Brigo and Mercurio (2006) in their
appendix concerning the hedging and pricing performance of various short-rate models. One
reason why prepayment risk is so important in RMBS pricing is that the long-term rates have
been quite low due to the cheap credits before subprime crisis and the interventions by the
Federal Reserve after the subprime crisis. Hence the lognormal model, by giving higher
probability to higher rates than does the normal model, will underestimate prepayment risk
and thus may lead to persistent bias in pricing.

The comprehensive comparisons by Gupta and Subrahmanyam (2005) provide
additional reasons for the popularity of the one-factor models fitted to both yield and
volatility in industry practice. Their findings show that for the accurate pricing of caps and
floors, it is more important for the model to fit the skew in the underlying interest rate
distribution than to have two stochastic factors in the model. Hence one-factor models can be

sufficient for pricing purposes. Furthermore, as cited in Gupta and Subrahmanyam (2005),
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Collin-Dufresne and Goldstein (2002) show the importance of fitting volatility in term
structure modeling. Collin-Dufresne and Goldstein (2002) argue that there is a missing
stochastic volatility factor that affects the prices of interest rate options, but does not affect
the underlying LIBOR or swap rates. They propose models with explicit factors driving
volatility, and suggest that cap prices may not be explained well by term structure models
that only include yield curve factors.

In terms of hedging performance in real market practice, the discussion by Brigo
and Mercurio (2006) in their appendix provides intuitive explanations of how model
parametric specifications affect hedging, consistent with the findings of Gupta and
Subrahmanyam (2005). According to Brigo and Mercurio (2006), the standard hedging is
calculated by shifting the market observable of interest, recalibrating, and computing the
difference in prices, divided by the shift amount for the sensitivity of price to the market
observable. However if the influence of a local shift in a market observable is distributed
globally on the parameters by the calibration, then hedging will be a problem when shifting
single points, since the effect is probably lost or confused with other possible causes. For
instance, Brigo and Mercurio (2006) mention that a short-rate model with only one time-
dependent function, which is to be exactly calibrated to yield curve, has too few parameters
to appreciate the influence of local changes in the input volatility structure. Shifting two
rather different points may cause the same change in the parameters, due to the flattening of
the information implied by the low number of parameters. The problem may be potentially
alleviated by introducing additional time-dependent coefficients in the short-rate dynamics
(used in fitting to both yield and volatility) or by adding a second stochastic factor (following

Gupta and Subrahmanyam 2005). However, the ultimate solution may require LIBOR market
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models that allow much more sophisticated and flexible forms of forward rates. The intuitive
explanations by Brigo and Mercurio (2006) are consistent with the findings of Gupta and
Subrahmanyam (2005) that hedging performance improves significantly with the
introduction of a second stochastic factor in term structure models, since two-factor models
allow a better representation of the dynamic evolution of the yield curve. The intuitive
explanations also support the importance of volatility fitting in term structure calibration,
when volatility smile modeling becomes more and more emphasized in the literature and in
practice. Without a time-dependent parameter just to appreciate the influence of local
changes in input volatility structure (the case in two-factor models), the sensitivity with
respect to the volatility shift may be miscalculated in designing Vega-hedging, since the
effect is probably lost or confused with other possible causes. In other words, if Delta and
Gamma hedges are used to completely hedge the yield curve risk, two-factor models will
outperform the one-factor shifted HW model used here. However, if Delta and Vega hedges
are used to hedge the yield curve risk and volatility risk, then the one-factor model fitted to
yield and volatility will outperform two-factor models fitted to yield curve.

Finally, according to Pedersen (2006) the impact of modeling a borrower's
prepayment and default sensitivity to the interest rate outweighs the impact of improving the
interest rate modeling. Compared with corporate loans or interest rate products, the
complication in RMBS pricing is that a different borrower’s prepayment and default
sensitivity to the interest rate may vary constantly, due to the information asymmetry that the
borrower has, different deal structures and macro-economic and neighborhood conditions.
For instance, in the CAP program, mortgage insurance is not needed for loans with an LTV

exceeding 80%, and there is no prepayment penalty. Hence, a borrower may not prepay even

40



if he can get slightly better rates by refinancing. Furthermore, it is quite common for a
borrower to have a second lien mortgage in addition to the first lien; thus, the actual
combined LTV of a borrower may be greater than the observable LTV, which limits the
borrower's ability to refinance. Finally, as Foote, Gerardi, Goette, Willen (2008) point out,
ARM borrowers with little equity may default when they expect that the rate will be much
higher on the next reset date. Hence, modeling the prepayment and default sensitivity of each
borrower on each simulated refinance rate path will outweigh the efficiency gain from

allowing a non-perfect correlation of interest rates in multifactor short rate models.
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Chapter 3. The Data Set and Prepayment & Default Regressions
Section 3- a. The loan-level mortgage data and term structure data.

As explained before, the data used come from the Community Advantage Program
(CAP), which is a secondary market program initiated in 1998 by the Ford Foundation,
Fannie Mae, and Self-Help, a leading Community Development Financial Institution. With a
Ford Foundation $50 million grant to underwrite a significant portion of the credit risk, Self-
Help purchases existing portfolios of CRA mortgages from participating lenders that
otherwise could not be readily sold in the secondary market. These loans feature flexible
underwriting and typically include low or no down-payment, higher debt-to-income ratios,
approval of borrowers with varied credit records or no established credit, or waiver of the
usual requirement that a borrower have at least two months of loan payment available as a
cash reserve at the time of closing. As of September 2006, Self-Help had purchased 42,694
loans totaling $3.79 billion. With an average loan of $88,773, participating lenders appear to
be successfully serving the affordable market. Ninety-one percent of borrowers earned 80%
of AMI or less; 45% are minority; 71% of the loans had an original loan-to-value ratio above
95%, and more than 41% of the borrowers had FICO scores below 660 at the time of
origination.

To avoid an arbitrary deletion of loans that could produce bias, all the loans in the
CAP program as of the 2nd quarter 2008 are used, along with all of their available monthly
records. The total number of loans ever presented in the CAP dataset by June 2008 was

46,080. The earliest monthly record is for November 1983, and the latest monthly record is



for June 2008. There are a total of 1,781,650 monthly observations, and a total of 1,483,289
observations are used in the prepayment and default modeling due to missing information.
Term structure data are obtained from Bloomberg financial services, and they are
used to calculate the OAS by equating the model price with the market price. Fannie Mae
had purchased a total of 8,308 loans by May 2007. However, due to missing data mostly in
neighborhood variables, the prices of only 7,168 loans are studied. The 7,168 loans were
purchased during the course of 687 days, so the yield and volatility quotes are sampled from
each of the 687 days from Bloomberg. The yield curve used is the swap rate, and the
volatility smile used are the ATM swaption quote in black volatility, and both choices are

consistent with the practice by Dunsky and Ho (2007).

Section 3- b. Regression specifications and interpretation of results.

The MNL regressions include the following factors that affect prepayment and
default risks: seasoning, seasonality, origination cohort, borrower loan and neighborhood
characteristics, yield curve slope, refinance ratio and burnout factors. Since the goal of the
regression is not to test causality, but to exhaust all the information available so as to have a
good prediction of the prepayment and default rates, the explanatory variable selection and
formats are a bit different from those used in the traditional regression. The default model
does not fit well, since there are too few default observations in the CAP data. As shown in
Table 3 there are 1.38% of prepayment observations but only 0.27% of default observations.

[Insert Table 3. Termination events by transaction year]

The modeling results are presented in Table 5. The pseudo R-squares in all the

models are relatively low because default and prepayment observations only account for

1.65% of all the observations in the CAP portfolio. Model 3 is the final model includes all
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the explanatory variables, and Model 1 (referred to as partial model) is similar to Model 3
except that it excludes the additional borrower, loan, and neighborhood characteristics.
Hence the differences between these models speak to the effects of these characteristics in
risk modeling. Model 2 include all the factors that are included in Model 3, except that the
refinance and burnout spreads are entered in simple form rather than in linear spline
transformation; hence the differences demonstrate the effect of the linear spline
transformation in modeling. The meaning of the linear spline transformation will be
explained below. Judging from the consistent significance and signs of the parameter
estimates that are common to models, the models are more or less stable. The full model's
predictive power is discussed later on. In the following sections, the parameter estimation
results for the full model are explained in detail.
[Insert Table 5. MNL regression results]

Seasoning

The seasoning effect is captured by describing the prepayment and default rates as a
function of the age (in number of months) of the loan. The seasoning variables are agel
through age 12, and they are spline variables, that is a piecewise linear function.
Transforming these continuous age variables into spline knots allows a better fit to the
categorical dependent variable by allowing a different slope within each piece. A linear
function is a function composed of linear segments, i.e. straight lines. One linear segment
represents the function for values of x below xo. Another linear segment handles values
between X( and x;, and so on. The linear segments are arranged so that they join at xg, xj,.....
which are called the knots. The piece-wise linear function technique is used to improve the

model fitting. The coefficients of the spline knots can be interpreted as:
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alif age <3

dy a2if 3<age<6

dage -

a3if 6 <age<9
adif 9<age <12

The majority of the age spline parameters are significant in both the prepayment and default
modeling. In the prepayment modeling, it is shown that the CAP loan prepayment risk
significantly increases until 2 years after origination, and it becomes insignificant between
the 2nd and 3rd year. When a loan is seasoned for more than 5 years, it has a significantly
lower prepayment risk, which may be because the borrowers holding these loans stayed in
CAP long enough that they will not easily refinance. In the default modeling, it is shown that
default risk exhibits intermittently but significant increase throughout a loan’s life. In short,
the results show that loan age is very important in determining both prepayment and default
risks. As a loan seasons, prepayment risk increases until some maximum and then decreases
or stays constant; however default risk may increase continuously throughout a loan’s life.
The importance of loan age in determining mortgage risks and thus returns is confirmed by
the OAS regressions presented later.
Seasonality

Seasonality effect is represented by the transaction month dummy variables, which
capture seasonal effects for instance prepayment due to moving. The baseline omitted
category is January. The seasonality parameters are all statistically significant in the
prepayment modeling. In particular, relative to January, the prepayment rate starts to pick up
in February, reaches its peak in July and August, and slides back to its February level in
December. In the default model, relative to January, loans are significantly less likely to

default throughout the year except in October and December.
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Origination Cohort

The origination year indicator variables are intended to capture the effects associated
with origination year that are not considered in the model, because they are unavailable or
unobservable. These effects may result from macroeconomic variables, such as consumer
incomes and the unemployment rate, that are unavailable in the dataset. Furthermore, they
may result from local economic conditions driving housing prices, as these are rarely directly
observed and are time varying. In addition, omitted structural changes in the primary
mortgage are also captured by the origination year indicators, which are known to impact
prepayment and default behavior. The origination year parameters are mostly statistically
significant, the omitted baseline category is loans originated in 2006. Unfortunately, the
dummy variables for 2007 and 2008 are automatically dropped due to multicollinearity when
additional borrower loan and neighborhood variables are added. In the prepayment model,
compared to the 2006 cohort, earlier origination cohorts all prepay significantly faster. In
particular, the prepayment rate is highest in the 1995 cohort, mostly because the older
origination involves more seasoned loan, hence faster prepayment. In the default case,
compared to the 2006 cohort, earlier origination cohorts have significantly lower default risk.
The low default rate, which was observed even during the subprime crisis, is an important
feature of CAP, as it can be seen in the CDR prediction presented later.
Refinance Burnout Factors

The refinance burnout factors are intended to capture a borrower's sensitivity to the
refinance spread (i.e. the difference between the current market rate and the market rate at
origination) in prepayment and default decisions. When the current market rate is

significantly lower than the origination rate, the gains from refinancing at the current market
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rate will cause a borrower to prepay a loan. The burnout factor, defined as cumulatively
mixed refinance opportunities, can help to extract information from a borrower's previous
behavior. The burnout factor is designed to back out a borrower's missed refinancing
opportunities from the borrower’s historical behavior. The burnout variables will help to
compensate for the efficiency loss when important information like race and income are
missing in most publicly available datasets, since race and income variables are significant in
all the MNL regressions. Moreover, according to Sundaresan (2000), MBS prepayment risk
is path dependent. For instance, a borrower who persistently missed refinance opportunities
in the past is less likely to refinance than the baseline group, given another refinance
opportunity. The burn out factors can help to capture the path dependent nature of MBS
prepayment risk.

One difference between CAP loans and standard subprime loans is the lack of
prepayment penalties, which are present in most subprime loans. The favorable terms of CAP
loans to low-to-moderate income borrowers make prepayment penalties unnecessary, which
is confirmed by the significantly lower prepayment rate of CAP loans compared with
standard subprime loans. Nevertheless, in the prepayment penalty case, the regression can be
easily modified by interacting the refinance spread with a dummy variable indicating whether
the time period is within the penalty period, following Beardsell and Liu (2005).

The refinance spread and burnout are defined as follows. The refinance and burnout

factors are created by simply turning refinance spread and burnout into spline knots.
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The refinance spread definition is straight-forward. The refinance spread is the ratio of the
market rate for the ith loan at origination to the current period market rate. The market rate is
the commonly used Freddie Mac Primary Mortgage Market Survey (PMMS) rate. The
refinance spread is intended to capture the opportunity cost of refinancing at the current
market rate relative to paying the old fixed mortgage note rate on the existing loan. Using the
difference between the origination market rate and the current market rate allows isolation of
a borrower's response to changes in the market rate, without mixing with the borrower's
credit risk and loan features that are correlated with the mortgage note rate.

The burnout factor is designed to capture the missed refinance opportunities, and it is
measured by the sum of the significant refinance spread accumulated over the age of the
mortgage. The 1.20 threshold is related to the refinance transaction costs, which means that
when the refinance spread exceeds 1.20 a significant refinance opportunity occurs. The 1.20
threshold is chosen based on statistical concerns after trial and error. Since the transaction
costs of refinancing vary depending on the loan and borrower characteristics, it is hard to
come up with a meaningful threshold from reality. The threshold is chosen based on the
criterion that the residual of the refinance spread net of 1.20 should follow roughly a normal
distribution in the histogram. The 1.20 threshold is a higher than the 1.10 threshold used by
Dunsky and Ho (2007) for the LP data set, because LMI borrowers value the luck of getting
into the targeted CAP and do not refinance like typical subprime borrowers. Both the refi-
spread and the burnout are transformed into linear splines as described in Table 4. The knot
points are consistent with those used by Dunsky and Ho (2007).

[Insert Table 4. Refinance and burnout spline knots]
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In the regressions analysis presented in Table 5, both the simple refinance spread and
the burnout (as in Model 2) and linear spline transformation of the refinance spread and the
burnout (as in Model 3) are tested. Both the simple refinance spread and the burnout are
significant and have the expected signs, indicating that a higher market rate at origination
relative to the current market rate corresponds to faster prepayment, and that a greater
cumulative number of missed refinance opportunities corresponds to slower prepayment. In
Model 3, when the linear spline transformation of the refinance spread and the burnout are
used, the refinance spline knots are still consistent, in that most of them are significant and
have positive signs; however, the burnout spline knots look different. When the burnout
spread is less than 0.2, it seems counter-intuitive that a higher burnout spread is associated
with faster prepayment. However, when burnout spread is above 0.2, the result is again
intuitive, in that a higher burnout spread slows prepayment. This effect is marginally
significant at the 5% level when the burnout spread is between 0.2 and 0.7. The reason is
probably because in the longitudinal regression, most observations have a burnout spread
between 0 and 0.2. In other words, as a loan's monthly records grow, the loan will have an
increasing burnout spread and prepayment probability. Hence, when the burnout spread is
very small (say below 0.2), the regressions just capture the correlation of the burnout spread
and prepayment risk. Only when the burnout spread is big enough (borrowers have a
significant habit of missing refinance opportunities), does this wood-headed behavior begin
to decrease the prepayment rate. Nevertheless, the most important purpose of the regression
is to generate a model that fits well, so that the predicted cash flow calculations based on
predicted risks calculated later will be more accurate. Model 3 is thus chosen for use in cash

flow predictions because of its higher Pseudo R-squared and log-likelihood ratio.
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Default behavior is not likely to be affected by the refinance spread and burnout
factors. The negative sign and significance of the spline knot when burnout is less than 0.2
are probably again due to the correlation between the growing burnout spread in most
observations and decreased default probability. Moreover, they result from both the
exceptionally small number of default observation in CAP (0.27%) and the increased
prepayment risk, which decreases default risk in the MNL setting.

FICO Score Effect

The impact of credit score on prepayment and default is self-evident. Borrowers with
low credit scores are more likely to be constrained in their ability to refinance (and thus
prepay), and credit score is designed to be an index for a borrower's default risk. Based on
existing literature, we expect a positive correlation between credit score and the probability
of prepayment and an inverse correlation with probability of default. The credit scores used
are updated FICO scores, including both the FICO scores at origination and updated FICO
scores that were recorded in January 2005, January 2006, May 2007 and January 2008, the
only updated scores available at the time of analysis. Interpolation is used when credit score
is missing to reduce the number of missing observations. The potential bias caused by the
interpolation is minimized after transforming the continuous credit score variable into spline
knots. The credit score spline knots are chosen at 580, 620, 660, and 720, because these
categories are widely used in the mortgage industry. A borrower with a credit score above
660 typically would qualify for a prime, conventional loan.

The credit score spline knots are most statistically significant at the 10% level in the
prepayment models except for the knot between 6.2 and 6.6. Moreover, it is confirmed that a

higher credit score results in faster prepayment and a lower likelihood of default. However it
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is interesting that when credit score is above 720, borrowers tend to prepay more slowly,
which goes against conventional wisdom. This counter-intuitive result may indicate the
benefits of the CAP program in improving borrower's credit score. In particular, the group of
borrowers who stay in CAP and do not refinance may see improvements in their credit scores
as a result of their good payment records. Hence it is observed that when credit score is high
prepayment is slow. In the default model, the results are consistent with the intuition that in
the first two significant knots, a higher credit score corresponds to lower default risk.
Unpaid Balance (UPB) Effect

Homeowners with a larger unpaid balance are more likely to refinance (prepay) and
default. Because given a positive option value (default and prepayment options), a greater
UPB provides a larger dollar incentive to exercise these options than a smaller one.
Furthermore, the fixed costs of refinancing disproportionately reduce the option value for
refinancing smaller loans. The continuous unpaid balance variable is transformed into spline
knots, and the knots are chosen at 50k, 75k, 100k, 150k. In the prepayment model, the UPB
spline knots are mostly statistically significant, except for the knot below 50k, and their signs
are consistent with the expectation that a larger UPB should be associated with faster
prepayment. In the default model, the knot below 50K and the knot between 75k and 100k
are significant at the 5% level. Their signs are consistent with the intuition that a larger UPB
corresponds to higher default risk, because of the higher benefits that accrue if the default

option is exercised.

51



Mark-to-market Loan-to-Value Ratio Effect

The MTMLTYV ratio, as a measure of the borrower’s equity in the property, is
constructed as the unpaid balance divided by the current house value®. Borrowers with high
MTMLTYV ratio are expected to be more likely to default but to be constrained in moving and
refinancing. In fact, if the MTMLTYV ratio exceeds 80%, a higher note rate or mortgage
insurance premium will reduce the benefits of prepayment. This effect is expected to be
particularly apparent in the CAP portfolio, since most borrowers received loans with LTV
ratios above 80% at origination without mortgage insurance but may incur mortgage
insurance costs if they refinance. Furthermore, since tapping home equity is a refinancing
benefit not captured in the option value, loans with more built-up equity could also see more
cash-out refinance activity. In the default case, a higher MTMLTYV ratio means less home
equity; hence borrowers have less to lose once they default. Therefore, the MTMLTYV is
expected to be negatively correlated with prepayment risk and positively correlated with
default risk. The MTMLTYV data used include original LTV and the mark-to-market value
obtained from Fannie Mae every quarter from the beginning of 2003 to the second quarter of
2008. The continuous MTMLTYV variable is used in modeling, and the significance and sign
of MTMLTYV in both models confirm the expectations.
Yield Curve Slope Effect

The yield curve slope variable is defined as the 10-year Treasury bill (TB) rate (in
percentage term) net of the 2-year TB rate. The yield curve slope is expected to be positively

correlated with prepayment risk, in that a steeper yield curve will result in faster prepayment

2 Current market-value estimate are from Fannie Mae’s automated valuation model (AVM). Fannie Mae’s
AVM model consists of three individual models that independently estimate property values based on repeat
sales data, property characteristics, and tax assessments, respectively. Fannie Mae then uses a value
reconciliation model to compute a best value estimate in the case of multiple model predictions where
valuations vary.
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of fixed-rate 30-year loans. The intuition is that the relative cost of long-term financing to
short-term financing will make borrowers favor short-term financing and thus prepay from
30-year fixed-rate loans. The parameter estimates in the prepayment model confirm the
expectation. However, it is interesting that the yield curve slope is also significantly
positively correlated with the default rate. This result probably obtains because the two
periods during which the default rate spikes, as shown in Figure 3&4, namely the one from
Sept 2001 to early 2001 and the other from early 2007 to mid-2008, are both associated with
positive yield curve slopes.
Borrower, Neighborhood, and Loan Characteristics

One advantage of the CAP dataset is it contains a lot of information that is not
available in most publicly available data set, such as Loan Performance (LP) and McDash. In
particular the CAP data include borrowers-race, income, and neighborhood information.
Hence, the CAP data set can be used to demonstrate how important these factors are for risk
modeling and how much predictive power is lost when the information is missing. A
comparison between Model 1 (without borrower and neighborhood variables) and Model 2
and Model 3 (with the complete set of variables) illustrates the problem. As shown in Table
5, including the borrower, neighborhood, and loan characteristics greatly improves the
goodness-of-fit of the model: the pseudo R2 has greatly improved. Furthermore, borrower
race is important for determining both prepayment and default risks, and sex is an important
factor in prepayment. It is expected that minority borrowers (African American or Hispanic)
will have slower prepayment risk, since they may have fewer opportunities to refinance.
However, it goes against conventional perceptions that minority borrowers in CAP are also

associated with lower default risk. It may be that the minority borrowers in the sample
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greatly value the opportunity to be qualified for the targeted CAP and hence do not easily
default or refinance. A borrower's debt-to-income ratio (i.e. the back-end ratio) turns out not
to be important for either default or prepayment. Interestingly, a borrower’s relative status in
the census area, measured as the borrower's annual income as percentage of AMI, is an
important factor in determining default risk. Moreover, the sign of this effect is consistent
with the expectation that a borrower with a higher the income as percentage of AMI will be
less likely to default.

Loan characteristics are shown to be important in predicting prepayment and default
risks. The credit spread of a loan, specifically the difference between the mortgage note rate
and the market PMMS rate at origination, contains information that the mortgage originator
knows about borrowers; therefore it should help to predict prepayment and default risks. The
results confirm the expectation that a higher mortgage note rate relative to market PMMS
rate increases both default and prepayment risks. This result is intuitive because higher credit
spread is associated with higher perceived default risk; at the same time, higher credit spread
provides greater incentive to refinance into a lower rate loan. The importance of the loan
credit spread to both default and prepayment risks also explains the success of the CAP
program. The guarantee by the Ford foundation allows Self Help to offer a lower rate to CAP
borrowers, which substantially lower prepayment and default risks of CAP loans compared
with conventional subprime loans even during the subprime crisis. Hence, lender pricing
practices have an important impact on borrower prepayment and default behavior. The
effects of the two variables measuring past loan performance are straight-forward: a history
of delinquency (30 days) or serious delinquency (60-90 days) greatly limits a borrower's

refinance opportunities, and the case of distressed paid-in-full loans, which is observed for
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other subprime loans, does not seem relevant for CAP loans. Interestingly, a 30 day
delinquency does not reveal anything about the default risk of a loan; while the significance
and positive sign of serious delinquency in the default model just reflects the correlation
between default and serious delinquency.

Neighborhood characteristics greatly affect the prepayment risk as well. Being
located in a low-to-moderate income census tract (defined as tract median income less than
80% of the AMI), a minority census tract (defined as a tract with non-Hispanic White less
than 50% of the population), or an underserved census tract’ greatly reduces the prepayment
risk, probably because the borrower has fewer opportunities to refinance. However, contrary
to conventional wisdom, being in a less favorable neighborhood does not seem to be
associated with higher default risk in CAP.

Geography also matters, since loans made in NC and OH and OK have significantly
slower prepayment rates, while loans made in CA and FL do not prepay that differently from
loans in other states, controlling for all the other factors. With respect to default risk, loans
made in NC have significantly lower default risk, while loans made in CA and FL have
significantly higher default risk. Overall, loans made in NC have great performance, since
both lower prepayment and lower default risks increase a loan's return. The good
performance of NC loans is further confirmed and explained in the option-adjusted spread
regressions presented later;.

Default Estimation
As mentioned earlier according to Table 3, by June 2008, default observations only

accounted for 0.27% of the whole sample, while prepayment accounted for 1.38%. Hence,

?6 The "underserved" variable is provided to Self-Help by Fannie Mae, and the definition of underserved
follows Fannie Mae's standard definition.
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the default modeling does not fit well. Furthermore, defaults are likely to be highly correlated
in the sense that either very few defaults are observed in the economic boom or concentrated
defaults are observed in the recession. For instance, in two periods defaults are observed to
spike, one from September 2001 till early 2001, and the other from early 2007 to mid-2008.
Hence, the macroeconomic environment may play an important role in addition to individual
loan and borrower characteristics. In other words, default is more likely to be triggered by
system-wide risk rather than by individual borrower risk. Hence, the complete pricing of
default risk may require the use of counter-party risk pricing framework which assumes that
default is not triggered by basic market observables but has an exogenous part that is
independent of all the default-free market information. Because it is assumed in counter-
party risk pricing that monitoring the default-free market (interest rates, historical loan
records, and borrower characteristics) does not give complete information about the default
process, and there is no economic rationale behind default concentration. The solution is to
back out the market-implied default probability of the default risk guarantor from forward-
looking market CDS quotes, and to use it to conduct pricing under a defaultable term
structure that is based on the framework developed as by Duffie and Singleton (1999), and
more recently by Pan and Singleton (2008).

However, in this paper, the pricing is conducted under the default-free term structure,
and the counter-party risk pricing is not studied. Furthermore, the default risk estimation is
important from the methodological point of view and when the model is applied to other data
sets. However, it has a small impact on the OAS calculation for CAP loans, because the
default risk is fully guaranteed by the Ford Foundation grant in the CAP deal structure, and

the few defaulted loans represent only 0.27% of observations. Therefore, whether default is
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modeled under a default-free term structure or a defaultable term structure has a small impact
on the OAS of CAP loans. In this paper, the impact of macroeconomic shocks on default risk
is captured by a series of macroeconomic variables. Unfortunately, the neighborhood
variables seem not to be very important in predicting default in CAP. Nevertheless, even
with these concerns, the models used still somewhat track the default pattern, as shown in
Figure 3&4. The significance of the individual loan-level and borrower and neighborhood
characteristics in the default model indicates that a simple reduced-form model like copula is
not sufficient to determine the termination of a mortgage, because such a model assumes that

the event of the termination of a mortgage is isolated from other individual specific effects.

Section 3- c. In-sample prediction results.

Hereinafter, the in-sample predictive power of the models for both default and
prepayment risks is analyzed. Figure 1&2 show one-quarter-ahead and one-month-ahead
single monthly mortality (SMM) predictions based on scheduled and actual balances. The

SMM is defined as’’:

Scheduled balance—Actual Balance
SMM = Scheduled Balance '

4

The scheduled balance is the expected balance given the amortization schedule, last month's
balance, and no prepayment or default. Actual balance is the remaining balance after the

scheduled balance is adjusted for prepayments.

27 See pp.199, The Handbook of Mortgage Backed Securities.
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In Figure 1&2, the actual SMM is calculated using the actual balance from the
dataset. The variable "qrschSMM" is the one-quarter-ahead prediction based on the
scheduled balance, meaning the last quarter’s scheduled balance is combined with the
predicted prepayment probability over the quarter to calculate the monthly SMM. The
"qractSMM" is created using last quarter’s actual balance combined with the predicted
prepayment probability over the quarter to calculate the monthly SMM. The "monschSMM"
is created using the last month’s scheduled balance combined with the predicted prepayment
probability over the month to calculate the monthly SMM. The "monactSMM" is created
using the last month’s scheduled balance combined with the predicted prepayment
probability over the month to calculate the monthly SMM. The results show that prediction
utilizing information about the last period's (month’s or quarter’s) actual balance can capture
all spikes in the prepayment rate, while prediction using the last period’s scheduled balance
does not fit the data perfectly but still captures the trend in prepayment quite well. The
finding is important because information about the last period's actual balance is often
unavailable at the time the pricing are conducted. Therefore prediction based on scheduled
balance may be more feasible.

In the default risk prediction presented in Figure 3&4, the variable "qrCDRpred" is
the one-quarter-ahead prediction of the constant default rate (CDR) based on the number of
loans existing at the end of last quarter. The variable "mCDRpred" is the one-month-ahead
prediction based on the number of loans existing at the end of last month. In the CDR
prediction, the last-period information about the number of loans existing is always utilized,
and the prediction results capture the actual CDR trend pretty well. The definition of CDR is

as follows:
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CDR — #of loans defaulted in period t 5
~ # of loans outstanding at the beginning of period t'( )

Overall, the prediction results capture the actual prepayment and default trends pretty
well, especially in the one-month-ahead prediction. The result is important because it
demonstrates the predictive power of the model in generating monthly cash flow projections
in the pricing model with a monthly step size.

[Insert Figure 1. One-quarter-ahead SMM prediction based on scheduled and actual balance]
[Insert Figure 2. One-month-ahead SMM prediction based on scheduled and actual balance]
[Insert Figure 3. One-quarter-ahead CDR prediction based on actual size]

[Insert Figure 4. One-month-ahead CDR prediction based on actual size]
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Chapter 4. Term Structure Calibration and Cash Flow Discounting.
Section 4- a. Continuous-time specifications of the shifted Hull-White model.

One important goal of the loan-level pricing model is to incorporate all the
information available at the time of purchase when evaluating whether LMI mortgages
provide a positive return to the secondary market. It is widely agreed that current market term
structure quotes contain information about future yields and volatility and the state of the
economy. Therefore, it is important to use non-arbitrage term structure models so that the
RMBS are consistently priced and marked-to-market, so as to prevent arbitrage
opportunities. Hence, the non-arbitrage term structure model used is the one-factor Hull &
White (HW++) model fitted to the yield curve and volatility, because close form solution is
required for generating long term rate as explained before. The basic strategy used to fit the
initial yield and volatility curves is the inclusion of "time-varying" parameters in the model.

As summarized by Gupta and Subrahmanyam (2005), the generalized one-factor spot
rate assumes that the instantaneous short-rate process evolves under the risk-neutral measure
according to:

df (r) = [6(t) — af (M]dt + cdW (t),  (6)
where f(r) is some function of the short rate r, 0(t) is a function of time chosen so that the
model provides an exact fit to the initial term structure, usually interpreted as a time-varying
mean, o is mean reversion parameter, and ¢ is volatility parameter. When f(r)= r(t), the
resulting model is the basic HW model fitted to the yield curve which is also the extended

Vasicek Model:



dr(t) = [0(t) — ar(t)]dt + cdW (t). (7)
When f(r)=In r(t) , the resulting model is BK fitted to the yield curve:
dinr(t) = [6(t) — alnr(t)]dt + adW (t). (8)
The HW one-factor model fitted to both yield and volatility has the form:
dr(t) = [0(t) — a(®)r(t)]dt + cdW(t), (9)
where 0(t) and a(t) are deterministic functions of time that can be chosen so as to exactly fit
both the observed yield curve and the volatility structure.

Hull and White (1990-1994) solved the stochastic differential equation (SDE) in (9)
by the explicit finite difference method. This method solves for the parameters by equating
the moment conditions of the trinomial tree with the continuous-time process and requiring
that the transition probabilities sum to one. According to Hull and White (1994a), the
instantaneous short rate r(t) conditional on F; ( i.e. the information available up to time t ) is
normally distributed with mean and variance given by:

E{r(®)|F} =r(s)e ) 4 q(t) — a(s)e 2t~ (10)

Var{r(t)|F.} = % [1-—e72a=9],  (11)

where

a(t) = fM(0,¢t) + —2[1 —e ]2, (12)

o
2a?

The advantage of the normally distributed interest rate model is that there exists a close-form

solution for the pure discount bond (zero-coupon bond), which follows a lognormal

distribution. Future bond prices, at time T, dependent on the current term structure, the level

of the short rate at time T, and the constant parameters of the short-rate process are given by:

P(t, T) = A(t, T)e BEDT®
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where
1
B(t,T) =~ (1— e T-D)

P(0,T) dlnP(0,T) o2

= — _ _ ,—a(T-t)\2(1 _ p,—2at
InA(t, T) lnP(O,t) B(t,T) 3T 4a3(1 e )*(1—e ). (13)

Fitted to volatility (as well as yield) is important because modeling volatility smile
has been increasingly emphasized in practice, according to both Brigo and Mercurio (2006;
section 3.6) and Pedersen (2006). Hence using a term structure model not fitted to volatility
will not be able to produce satisfactory hedges in the future, when the volatility term
structure is a key input in the industry practice. Moreover, according to Pedersen (2006),
one-factor models fitted to yield and volatility are still widely used in the industry to price
corporate loans. Therefore, it is important to study the volatility skew features of one-factor
models. According to Brigo and Mercurio (2006; section 3.6), one important criterion of a
satisfactory interest rate model is that it should allow for a humped shape in the term
structure of volatility, the shape of the volatility skew typically observed in the market. The
"term structure of volatility" mentioned above refers to the model-implied volatility. The
model-implied T volatility v°?¢'means the deterministic solution of volatility that makes
the model price equal to the observed market price, where T is the maturity date. The term
structure of the volatility implied by the short rate model is the graph of the model-implied T
volatility against the time T, which is observed to be humped shape most of the time in the
market. However there is a relationship between the model-implied volatility and the related
absolute instantaneous volatility. When the zero coupon curve is increasing or slightly
inverted, the term structure can feature large humps if the related absolute instantaneous

volatilities of instantaneous forward rates that expressed as follows:
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_— \/Var(df(t, T)) — o6, T), (14)

dt

allows for a hump themselves. In short, the relationships between humps of term structure of
volatilities and the humps in the instantaneous forward rates are as follows:
* nohumps in T — o;(t,T), imply that only small humps for T — v}°?¢! are possible;
* humpsin T — o;(¢t, T), imply that large humps for T — vj*°?¢! are possible.

Brigo and Mercurio (2006) examine the ability of various popular one-factor models
to produce a humped shape in the term structure of volatility. They find that the HW model
gives rise to a more pronounced volatility skew than is usually observed. They also examine
the CIR++ model and calculate the absolute volatility of instantaneous forward rates. They
find that T — o7(¢, T) is monotonically decreasing, thus the model-implied cap volatility
calibrated to cap data displays a slightly humped shape. The cap volatility implied by the
BK++ model is monotonically decreasing most of the time except when the forward yield
curve is decreasing. Finally, they find that models with extra parameters in a suitable time-
dependent function help to better recover the humped shape of the market cap-volatility
curve. However, including additional time-dependent parameters will cause a parameter
stability problem and affect the hedging results, as studied in Gupta and Subrahmanyam

(2005). Therefore, there essentially exists a trade-off between better fitting the initial yield

and volatility on the one hand and parameter stability on the other.

Section 4- b. Cash flow projection using the MNL model.

The prepayment and defaults risks are estimated using the MNL model. In the

discrete-time duration setting on MNL, the probability is calculated as follows. Consistent
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with the notations in equation (1), let Y; , denote outcome observed for individual i at time t,
where:
0if current
Y. =4 1if prepay
2if default

Hence for individual i

1
T 1+ X2 exp(ZiB)

'prob(Yi,t = O)

€xp (Zi,tﬁm)

prob(Ye = m|Yey = 0) = 1+ Y2, exp(Z; ;)
j=1 Wl

,m=1,2. (15)

Combining all the observations across time and across individuals, the likelihood function in
equation (1) is obtained.

For every node on the trinomial tree, the prepayment and default risks are calculated
according to the MNL model results. The predicted values are the monthly conditional
prepayment and default rates. Using the predicted prepayment and default risks, the cash
flows are generated according to industry standard formulas. The scheduled balance
remaining at the end of month n is:

B[+ O -1 +0)"]
SBr = [(1+ C)N —1] ’

(16)

The monthly payment at month n is:

By 1%C
.
(1+C)N(T-n)

M, =

(17)

where B,_1is actual balance at the end of month n — 1; C is monthly coupon rate;
T is original term in months, i.e. 360.

The interest payment at month n is:
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I, = C* By, (18)
The scheduled principal pay down at month n is:
SP, =M, -1, (19)
The unscheduled principal pay down at month n is
UPB, = [SMM(n) + CDR(n) * y|B,_1 (20)
where SMM(n) is the monthly conditional prepayment rate, CDR(n) is the monthly
conditional default rate, and v is the recovery rate in the event of default. The cash flow at
month n is:
CE,=1,+SP, +UP, (21)
The actual balance at the end of month n is:
B, =B,_1 —SB, —UP, (22)
The cash flows are discounted using the one-month discount rate according to the standard

option pricing method.

Section 4- c. Z-spread and Option-Adjusted Spread calculations.

The OAS and Z-spread calculations in what follows are consistent with those in
conducted in Lehman Brothers' report by Pedersen (2006). According to Pedersen (2006), it
is standard in the industry that a positive Z-spread or OAS indicates that the security is cheap
for the buyers, and a negative Z-spread or OAS indicates that the security is expensive.
Furthermore, according to Dunsky and Ho (2007), "the OAS can be interpreted as the gross
profit of funding a mortgage loan". To be more specific, "it is the interest income net of the
combined prepayment and default options sold to the mortgagors". Hence a positive OAS
indicates that the buyer is making a profit on the security by paying the purchase price, and a

negative OAS means that the buyer encounters a loss by paying the purchase price. This
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OAS interpretation is also consistent with earlier industry reports by Hayre (1999) from
Salomon Smith Barney and Beardsell and Liu (2005) from Citigroup concerning the general
pricing framework and RMBS interest rate risk features.

The Z-spread (i.e. zero-volatility-spread) is the constant spread added to the initial
yield curve such that the model price equals the market price paid. The Z-spread is the

constant spread Z that satisfies the following equation:

N
P=> _ N a3
L1+ RE+7Z
where P is the price, CF; is the predicted cash flow at time i based on the prepayment and
default predictions, and R is the initial yield for maturity i. Moreover, N is the mortgage
term in months.

The Z-spread is a relative measure, such that a positive Z-spread indicates that the
security is cheap while a negative Z-spread indicates that the security is relatively expensive.
For bonds with credit risks, the Z-spread to the initial yield curve should be positive to reflect
the credit premium required. The higher the credit risk, the higher the Z-spread to the risk-
free bond. The Z-spread is designed to solve the problem of the yield spread whereby all cash
flows of different periods are discounted at the same rate. Hence, the yield curve is not
detailed enough to allow a proper comparison of two bonds with different coupons even if
the maturities are similar. The more the yield curve deviates from a flat curve, the more
important it becomes to use the Z-spread instead of yield spread. The Z-spread is the excess
return that can be earned from buying the bond and holding it to maturity, assuming that the
issuer does not default and that coupons can be reinvested at the risk-free rate plus the Z-

spread.
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However, for bonds with embedded options the Z-spread is often not meaningful,
since stochastic term structure model is used, and the OAS is the measure of spread used
under the stochastic term structure. The OAS is simply the constant spread added to all the
spot rates on all interest rate paths, and it makes the average present value of the paths equal
the market price. The OAS is the constant spread that satisfies the following equation:

J N
P=Ywy 24
! 1+R0A5+0AS - (24)

j=1 i=1

where W; is the probability of rate path j, CF; ; is the predicted cash flow in period i along

R O0AS

rate path j based on the prepayment and default predictions, and is the zero coupon rate

in period i along rate path j.

The OAS can be thought of as a Z-spread that has been adjusted for any option
embedded in the bond, and for a bond without an embedded option the OAS is equal to the
continuously compounded Z-spread. It is useful to compare a callable bond to a portfolio
with positions in two hypothetical securities. One such security is the identical bond stripped
of its embedded call option, called a stripped bond; the other security is the option on the
stripped bond with the same call schedule as the option-embedded bond. Under the above
assumption the value of the bond becomes:

Market price of bond with options = value of striped bond + value of options.

If the value of the option is known, it can be subtracted from the market price of the callable
bond to arrive at a market-implied value of the stripped bond. Base on this, the Z-spread of
the stripped bond can be calculated and reported as the OAS of the bond with embedded
options. This is essentially the approach used to calculate the OAS when a stochastic term

structure model is used. Overall, the OAS is the shift of all interest rates in all scenarios

67



generated in the stochastic term structure model to correctly price the underlying stripped
bond. The OAS is positive when the model price is greater than the market price, and vice
versa.

Finally, the pricing model can be used to calculate the cost of guaranteeing default
risk for RMBS loan underwriters, if good mark-to-market HPIs are provided. For an investor,
the difference between purchasing a loan with default risk guarantee and purchasing one
without is whether the recovery rate is 100% or the current house price in the case of default.
Hence the expected cost of guaranteeing the default risk of a loan is the difference in the
OAS between 100% recovery and a recovery at the current house price. According to
Dunsky and Ho (2007), the guarantee cost for the default risk guarantor can be calculated as:

GC = 0AS(100% recovery) — OAS(recovery at current house price), (25)

68



Chapter 5. Fannie Mae RMBS Pricing Practices and OAS Results
Interpretations.

Section 5- a. Fannie Mae RMBS pricing practices.

This section describes the secondary market pricing practices of Fannie Mae, and the
typical deal structure of the GSEs RMBS in securitization. Understanding these practices is
helpful for future modeling recovery risk in a counter-party risk framework.

The market prices considered are those that Fannie Mae paid to purchase mortgages
in the CAP program from Self Help for securitization into RMBS. Fannie Mae has purchased
a total of 8,308 loans in total as of May 2007, and hence all the 8,308 loan-level price data
are studied in this section. The full guarantee of default risk in the CAP deal structure
translates into a 100% recovery rate in pricing, which means the purchase prices should not
be too far from par. The market price data confirm the expectation.

Although the full guarantee of default in CAP eliminates the need to allow a different
recovery rate for each loan, it is worth mentioning how the recovery rate could be modeled.
If good mark-to-market HPIs are available, a different recovery rate for each loan can be
easily allowed in the loan-level model to translate the recovery rate into prices. Accordingly,
the loan-level pricing model can be used to calculate the costs of guaranteeing the default
risk of RMBS loans. In particular, in the recent heated discussion of how to overhaul the U.S.

mortgage finance system, Treasury Secretary Geithner commented that®®: “The challenge is

*¥ See Bloomberg news "U.S. Treasury, Mortgage-Lenders Seek to Keep Government Role in Housing Fix".
Aug 18, 2010, available at http://www.bloomberg.com/news/2010-08-18/u-s-treasury-morgage-lenders-seek-
to-keep-government-role-in-housing-fix.html




to make sure that any government guarantee is priced to cover the risk of losses and
structured to minimize taxpayer exposure”. As explained previously, given good mark-to-
market HPIs, such as Case-Shiller indices, the cost of a government guarantee of RMBS
default risk can be easily calculated using the loan-level pricing model as:

GC = 0AS(100% recovery) — OAS(recovery at current house price).
With time-varying mortgage risks, the cost of a government guarantee should change
constantly with factors that affect mortgage risks and prices, such as loan seasoning, term
structure quotes, and house price indices.

Another way to price the recovery risk is to model it in a counter-party risk
framework. In a typical Fannie Mae deal structure (not CAP loans), the recovery risk is
guaranteed by Fannie Mae and mortgage insurers. In practice, mortgage insurance is required
for loans with an LTV above 80%, for which losses are most likely in the case of foreclosure.
For these loans, the mortgage insurer guarantees 75% of the house value that is reflected in
the principal balance; hence the difference between the unpaid principal balance and 75% of
the house value is guaranteed by Fannie Mae. Therefore, as became clear during the
subprime crisis, recovery risk can be viewed as a form of counter-party risk, which is
reflected in the probability that the guarantor of the recovery risk (i.e. mortgage insurers or
broker dealers) will default from their responsibilities. Hence, one way to model recovery
risk is to treat it as a counter-party risk and to model the likelihood that a guarantor of
mortgage recovery risk will default using the CDS quote.

Table 6 provides a summary of the prices Fannie Mae paid. Fannie Mae’s pricing
practice is to pay roughly the same price for loans that it purchases on a given purchase date.

As shown in the Table 6, the standard deviation of prices does not increase with number of
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loans purchased. For instance, the standard deviation of prices is not especially high in
quarter 2 of 2001 when 1,921 loans are purchased, in quarter 2 of 2003 when 715 loans are
purchased, and in quarter 4 of 2005 when 1,670 loans were purchased.

[Insert Table 6. Total loan purchase by purchase quarter]

A possible reason behind Fannie Mae's pricing practice of offering roughly the same
price for loans purchased on the same date is that these loans are packaged as a pool, and for
this reason are sold at the same price as a pool in the secondary market. Furthermore, the
term structure of interest rate is roughly the same within a given day or month, except during
the subprime crisis in 2008-09. It is true that small variations in term structure will result in
big variations in prices, not only due to variations in discount rate but also because of
changes in market expectation of prepayment risk as a result of shifts in the term structure.
Hereinafter, an analysis is provided of the OAS and Z-spread of purchased CAP loans
obtained using the loan-level model.

Section 5- b. OAS and Z-spread results interpretation.

As discussed in definitions of the OAS and the Z-spread in Section 4.c, a positive
OAS (or Z-spread) indicates that the model price is higher than the market price, and vice
versa. Intuitively, a positive OAS means that the yield of the mortgage is still undervalued by
the market price according to the pricing model. In particular, the higher the OAS the more
the loan is undervalued. Due to missing information in the loan-level dataset especially in the
neighborhood variables, the OAS is calculated for 7,168 loans out of the 8,308 loans with
loan-level purchase prices. Table 7 summarizes the distribution of the OAS and the Z-spread
for the 7,168 loans. According to Table 7, 35% of the 7,168 loans have a negative OAS,
meaning that the model prices are less than the market prices and thus, the market prices

overestimate the yields according to the pricing model. In addition, 65% of the 7,168 loans
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have a positive OAS and yields that are underestimated by market prices, while18% have an
especially high OAS above 100 bps. In short, considering all the information available at the
time of purchase, by the purchase prices the 7,168 loans have quite good profit-making
performance for the underwriter and investors. The Z-spread is shown to be much higher
than the OAS for a given loan, and this result is consistent with Z-spread and OAS quotes
that are commonly observed in the market.

[Insert Table 7. Summary of OAS and Z-spread]

Table 8 and Table 9 present the tests using simple linear regression of whether CRA
borrower characteristics, such as race, income, low credit score and high LTV at origination,
are significantly correlated with a lower OAS and Z-spread, at least for issued RMBS
composed of CAP loans. The adjusted R-squareds are quite low in all the OAS regressions,
because the linear regressions mix a high-frequency dependent variable (the OAS) with
independent categorical dummy variables. The low goodness-of-fit should not be a problem
because the linear regressions are not intended to identify factors that capture variations in
the OAS. All the variables that can possibly affect the OAS and the Z-spread are already
included in the MNL regression and term structure calibration. Hence, the linear regressions
are mostly intended to test whether CRA features and conventional wisdoms are reliable for
predicting mortgage yields. In addition, the coding developed by Ding, Quercia and White
(2009) and Ding and Quercia (2009) is used to test whether the state legal environment and
the share of subprime origination are important for determining mortgage yields. Since
several different coding methods are used by Ding, Quercia and White (2009), the
regressions are run separately. The dummy variables for state market coding are generated

from Table 1 of the paper by Ding and Quercia(2009). The market coding scales take on
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values from 1 to 4, and states with a market code of 4 are those having the smallest share of
subprime loans among all originations. Dummy variables for states with prepayment penalty,
repayment ability and in effect coding are generated from Table 1 of the paper by Ding,
Quercia and White (2009). The prepayment penalty scales ranges from O to 4, and the states
with a prepayment penalty code of 4 are those having strongest laws against prepayment
penalty. The repayment ability variable is binary, and a value of 0 indicates states with laws
that impose repayment ability standards but only on loans above HOEPA triggers, or states
that do not regulate mortgage repayment ability. Dummy variables for ineffect, ineffecttb and
Pennington's ineffect” are coded slightly different but are all intended to identify states with
a mortgage status that could plausibly have an impact on high-cost or subprime mortgage
lending.

The OAS regressions in Table 8 show that the factors affecting OAS are quite
different from those predicted by conventional wisdom, and indicators at origination are not
entirely reliable in predicting mortgage yield. The parameter estimation results are explained
in detail below.

[Insert Table 8. Linear regression of Option-Adjusted Spread]
Panel A: Borrower and loan characteristics

Loan age (in months) at the time of purchase turns out to be very important in
predicting OAS, since more seasoned loans have lower prepayment and default risks due to
their smaller UPB and LTV. A loan with a higher UPB (in thousand $) at time of purchase
has a lower OAS, since a higher UPB will make a borrower more likely to prepay due to the

larger absolute savings, net of transaction costs of refinancing.

» Pennington's ineffect variable is defined by Pennington_Cross, Bostic, Chomsisengphet, Engel, McCoy, and
Wachter (2008).
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However, many of the race, income, and variables at origination indicating CRA
borrower characteristics turn out to have signs that are contrary to conventional expectations.
For instance a loan with a higher LTV at origination has a significantly higher OAS. A loan
to a borrower with FICO score at origination missing or less than or equal to 620 has a
significantly higher OAS, while a loan to a borrower with FICO score at origination greater
than or equal to 720 has a significantly lower OAS. A loan for which the borrower's income
exceeds 50% of AMI has a significantly lower OAS. In particular, a loan made to an African
American has a significantly higher OAS. In short, the results consistently show that in CAP,
the traditionally perceived high risk loans have higher OAS instead. The counter-intuitive
results come mainly from the fact that CAP provides a full guarantee of recovery risk, as this
guarantee makes default the same as prepayment. Hence prepayment risk is somewhat the
major risk here. Therefore, the CAP deal structure makes traditionally considered high risk
loans no longer high risk. On the contrary the lower prepayment risk of CAP borrowers
causes their loans to provide investors with higher returns. The loan-level model, by design,
correctly captures this phenomenon. In summary, the results show that CRA features are not
necessarily significantly correlated with lower mortgage yields, but can be associated with
higher yields in CAP due to this type of loan’s lower prepayment risk. Furthermore,
indicators at origination, such as LTV and credit score at origination, are not entirely reliable
in predicting OAS, because the risks and yields of mortgage loan change constantly over
time. Identifying profitable LMI mortgage requires the loan-level model be run on each

mortgage portfolio.
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Panel B: Purchase year cohort

The cohort effect of purchase year is proven to be important. Compared with a
baseline of loans purchased in the year 2005, the cohorts of loans purchased in 2002, 2003,
2004 and 2006 have a significantly higher OAS; and loans purchased in 2001 have a
significantly lower OAS. This result obtains because term structure quotes do not vary much
within a cohort of loans purchased in the same year, and the term structure quotes not only
generate the discount factor but also generate simulated refinance scenarios that drive
prepayment risk. This cohort effect simply confirms the importance of term structure
modeling in RMBS pricing.
Panel C: State legal environment

In addition, the signs and significance of the state legal environment variables in
Table 8 show that state idiosyncratic characteristics dominate the legal environment in
determining the OAS, since there is no universal answer to the question of whether stricter
anti-predatory lending laws lead to a higher OAS. Variables for the share of subprime
origination are mostly significant except in Model 2 where the "St ineffect” variable is used.
Compared with the baseline of states having an above-average share of subprime
originations, the states with the most subprime originations have the highest OAS, and states
with the least subprime originations have the lowest OAS. This result suggests that the OAS
may be largely driven by property market performance in CAP, since states with the most
subprime originations are mostly those states having booming property markets. The
variables for prepayment penalty restrictions are insignificant. Laws governing repayment
ability turn out not to be important in determining the OAS. States with a mortgage status

that could plausibly have an impact on high-cost or subprime mortgage lending turn out to
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have significantly lower OAS except in Model 2, which means that "ineffect" is probably a
less consistent measure than the other two. After controlling for the state legal environment
and the borrower and loan characteristics, loans in NC turn out to have a significantly higher
OAS. Probably because Self Help is headquartered in NC and, therefore, acquire better
information about local borrowers and can better service local loans. The findings on the
effects of state laws are somewhat different from those of Ding, Quercia and White (2009).
Mostly because state anti-predatory lending laws govern default and foreclosure risks but the
full guarantee of default risk in the CAP deal structure and the very small number of defaults
in the CAP make default and foreclosure risks less important in determining the OAS. Hence
the research design of Ding, Quercia and White (2009) is more suitable for studying the
impact of the state anti-predatory lending laws. Nevertheless, the above results show that
idiosyncratic state characteristics seem to dominate in the determination of the OAS.
Therefore, states should be given more autonomy in enacting and enforcing consumer
protection laws based on their idiosyncratic situations.

For the sake of completeness, Table 9 provides comparison of regression results of
the Z-spread using identical independent variables with OAS regression of Model 1 in Table
8. Since Z-spread is highly correlated with the OAS, the signs and significance of mostly of
the variables in the Z-spread regression is consistent with the OAS regression. The most
important difference in the Z-spread regression compared with the OAS regression is the
high goodness of fit indicated by the high adjusted R-squared. The high goodness of fit is
probably because the Z-spread is much less volatile than the OAS, as the Z-spread is
calculated assuming the interest rate is non-stochastic.

[Insert Table 9. Comparison of OAS and Z-spread regressions]
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Section 5-c. OAS regressions with bundling effects.

Table 11 and Table 12 provide linear regression results for the OAS with tests of
bundling effects. These regressions are intended to test whether the bundling effect in the
market price data, i.e. the prices being exactly the same for loans bundled in the same
tranche, have biased the previous arguments about the profitability of CAP CRA loans.
Table 11 compares the results of the original regression, with repeating the linear regression
of Model 1 (in Table 8) using only unbundled loans, and with repeating the regression using
only bundled loans. Table 12 tests the bundling effect for the whole sample in another way
by adding dummy variables for bundling using Model 1, and comparing the results with
those for the original Model 1 in Table 8. A bundled loan is defined as a loan that has exactly
the same price and the same purchase date as at least one other loan. Due to the importance
of time variation in determining the mortgage yield, a dummy variable is created to identify
whether the loan is bundled in each year with a bulk purchase of more than 100 loans. Hence
in Table 12 in the regression using dummy variables for bundling on each bulk purchase
year, the dummy variables for purchase year are removed due to redundancy. Table 10
provides a summary of the percentage of loans that were bundled in each purchase year, and
a total of 5,917 (83%) of the 7,168 loans are bundled loans. Most variables become
insignificant in the regression based on only unbundled loans, because the sample of 1,252
unbundled loans is very small. Despite that most variables are insignificant in Table 11, a
few variables, i.e. age at purchase, the dummies for credit score at origination missing and
less than or equal to 620, the dummy for African-American, and the dummies for purchase
year cohort of 2006, 2003 and 2002, are still significant and have the same signs for the small

unbundled sample as in the whole sample. Hence the effects of loan age, credit score at
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origination, African American and purchase year cohort on OAS that were found in the
model on whole sample are still quite strong even for the small unbundled sample. For the
regression based on only bundled loans, most variables have the same signs and significance
as in the original regression for the whole sample. Therefore, the tests in Table 11 are not
inconsistent with the previous arguments, but are not conclusive, because the very small size
of the sample of unbundled loans makes most variables insignificant.
[Insert Table 10. Percentage of loans bundled by purchase year]
[Insert Table 11. Comparison of OAS regression on unbundled loans]
[Insert Table 12. Comparison of OAS regression with bundling effect using dummies]
The alternative test of the bundling effect presented in Table 12 shows that previous
arguments about CAP loan profitability are still valid based on the effects of dummy
variables controlling for the bundling effect. Table 12 compares the OAS regression of
Model 1 with dummy variables for bundling with the original Model 1 in Table 8. The signs
and significance of most of the variables remain unchanged in the new regression, except the
dummies for bundling year. The signs of bundling year dummies are different mostly
because different baselines are used. Moreover, if a dummy variable on bundling has a
significantly positive sign, it means that being bundled in that particular year correlates with
a significantly higher OAS compared with the baseline of the purchased CAP loans that are
not bundled in that year, even after controlling for borrower and loan characteristics, and
state legal environment. The dummy variables for bundling in 2002 and 2006 have
significantly positive signs, and those for bundling in 2001 and 2005 have significantly
negative signs. These results may be explained by noting that the good performance of CAP

loans made the whole CRA tranches bundled in 2002 and 2006 profit-making, and bundling
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these CRA CAP loans together facilitated the sales of these tranches to investors. Because
one of the important principles of bundling adopted by underwriters is to bundle loans in a
way that make them the easiest to sell to investors.

Hence, whole tranches composed of CRA CAP loans do not necessarily have
significantly lower yields, and the yields of whole tranches of CAP loans vary from year to
year. Therefore, using the loan-level model is essential for identifying profitable loans, and
for appropriately managing and hedging risks accordingly.

Overall, the above tests do not provide conclusive evidence concerning the
profitability of the bundled CAP CRA loans relative to that of then unbundled loans. Testing
and interpreting the relative profitability of bundled loans versus unbundled loans is difficult
for the following reasons. First, the sample of CAP-issued MBS is limited to 8,308 loans and
does not contain sufficient information about the unbundled loans. Most importantly, a loan
that is not observed to be bundled with other loans in CAP is not necessarily priced and sold
individually, because the loans may be bundled by Fannie Mae with other loans that do not
come from CAP. Table 10 shows that unbundled loans were concentrated in years when a
small number of CAP loans were purchased. In contrast, in years 2001, 2003 and 2005 when
bulk purchases of CAP loans occurred, most purchased loans were bundled. It is possible
that, in years when a few CAP loans were purchased, some CAP loans were bundled with
loans in other portfolios because there was insufficient volume to bundle the CAP loans by
themselves. Hence the fact that a loan is not bundled with other CAP loans does not
necessarily mean that it did not end up bundled with loans from any other portfolio. Second,
the limited CAP data set does not allow the construction of a comparable sample of

unbundled loans that would allow the OAS for these loans to be compared with the OAS of
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the bundled loans in CAP. If a public loan-level data set, such as Loan Performance, is made
available to us, then the propensity score matching method (PSM) as used by Quercia et al.
(2008), can be easily applied to construct a comparable sample of similar borrowers
receiving the same type of loans. Then, the OAS for this sample could be compared with the
OAS of the bundled loans in CAP. Obtaining a good comparable sample using the PSM
method used by Quercia et al. (2008) requires a public loan-level dataset, such as Loan
Performance or McDash, which contains a wide choice of loans and records since
origination. Therefore, drawing a definitive conclusion requires more data and more
information about GSEs bundling guidelines.

If a public dataset, such as Loan Performance, is made available to us, the PSM
method can also be used in secondary market underwriting to predict the OAS of borrowers
without historical records by constructing a sample of similar borrowers receiving the same
type of loans. For underwriting purpose, the OAS prediction can be obtained quickly and
directly using linear regression as presented in Table 8. However this approach requires a
linear model with high goodness of fit. The linear regression with high goodness-of-fit can be
achieved by using continuous independent variables rather than categorical variables in Table
8, and by running the linear regression on a public data set with sufficiently many
observations. Therefore, in order to facilitate underwriting selection, the availability of a
public loan-level data set is essential for generating good predictions of the OAS for

borrowers without historical records.
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Chapter 6. Policy Implications and Future Extensions

The policy implications of this paper are summarized as follows.

The results provide strong evidence that CAP CRA mortgages can be quite profitable
for the secondary market and for investors. Specifically, 65% of the 7,168 issued
MBS from CAP that are studied in this paper have a positive OAS and 18% have an
especially high OAS in excess of 100 basis points. The good result mostly can be
attributed to good servicing and to the joint efforts of the Ford foundation, Self Help
and Fannie Mae. In particular, the significantly higher OAS of NC loans is probably
attributed to Self Help, being headquartered in NC, acquiring better information about
local borrowers and better servicing local loans.

The OAS and Z-spread regressions show that conventional perceptions of LMI
borrower risks and returns, which are based largely on simple indicators like income,
race, credit score and loan-to-value at origination, are not reliable for identifying
profitable LMI mortgages. Furthermore, CRA tranches composed mostly of CAP
loans do not necessarily have significantly lower yields, as shown by the results that
tranches bundled in 2002 and 2006 exhibit a higher OAS after borrower
characteristics, loan characteristics and the state legal environment are controlled for.
Therefore, avoiding or discriminating against LMI mortgage pools is not rational.
Since the risks of mortgage loans changes constantly, accurate pricing and effective

risk management require adoption of the loan-level model developed here that can



automatically analyze the continuous flow of market data, including daily term
structure quotes, monthly loan-level data, and monthly state macroeconomic
environments. On the basis of accurate pricing model developed here, the cost of
government guarantee of RMBS default risk can be precisely estimated, and
strategies for hedging interest rate risk can be designed accordingly. Therefore, the
model developed can be used by the federal government to better meet the financial
needs of LMI borrowers while also maintaining the sustainability and soundness of
the GSEs.

The loan-level pricing model developed here provides a way to identify profitable
mortgages for underwriting based on historical borrower performance. This approach
can help to avoid the indiscriminate rejection of profitable LMI loans. For borrowers
with no historical records in underwriting, the historical records of similar borrowers
can instead be used and the “similar borrowers” sample can be constructed using
propensity score matching (PSM) method by Ding, Quercia, Lei, Ratcliffe (2008).
The PSM method is able to pair borrowers having historical records with new
borrowers having no historical records on the basis of the conditional probability of
getting a certain type of loan, given the observable characteristics.

The pricing model developed in this paper can be used to estimate the cost of
government guarantee of RMBS default risk if good mark-to-market HPIs, such as
the Case-Shiller indices, are available. Moreover, this model can help to address one
challenge outlined by Treasury Secretary Geithner in the discussion of how to
overhaul the U.S. mortgage finance system—pricing of government guarantee of

RMBS default risk, because the GSEs single-family MBS guarantee programs
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accounted for $166 billion (73%) of the capital lost over the period, according to
FHFA report.

Idiosyncratic state-level factors seem to be the primary drivers of mortgage OAS.
Therefore, states should be given more autonomy in enacting and enforcing consumer

protection laws based on their idiosyncratic situations.

The proposed future extensions of this pricing framework are as follows.

Effective strategies for hedging interest rate risk are currently under development
using the loan-level model. Both the multifactor LIBOR market model and various
one-factor short-rate models will be used in designing hedging strategies.
Specifically, the multifactor LIBOR market model may have significant value for
improving hedging efficiency as discussed in the term structure literature review.
More data sets are essential to fully demonstrate the benefits of the loan-level pricing
model developed. Moreover, PSM method adopted by Ding, Quercia, Lei, Ratcliffe
(2008) can be used to construct samples of similar borrowers for the purpose of OAS
prediction or comparison. For precise estimation of the cost of government guarantee
of RMBS default risk, good mark-to-market house price indices are necessary.
Furthermore, the precise and fast prediction of OAS for borrowers without historical
records, for secondary-market underwriting purpose, requires construction of a
sample of similar borrowers matched by PSM method and a linear OAS regression
with high goodness of fit. A public loan-level dataset, like Loan Performance, is

essential for both PSM method and linear regression with high goodness of fit.
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The private information contained in scattered survey data sets may facilitate better
prediction of prices and the hedging of risks associated with LMI mortgage
portfolios. As discussed previously, some factors summarized by Quercia and
Stegman (1992) as affecting default risk are not available in any public loan-level
dataset. For example, such factors include trigger events, such as borrower
employment status, family health problems, or unexpected debts. Furthermore,
divorce, changes in family size, or the addition of school-age children, as well as
residential or neighborhood-level environmental problems may trigger borrowers to
move and thus prepay their loans. The private information contained in scattered

survey data sets can be used to improve pricing and hedging.
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Appendix A

Figure 1. One-quarter-ahead SMM prediction based on scheduled and actual balance

This figure shows one-quarter-ahead single monthly mortality (SMM) prediction based on
scheduled and actual balance using all loans in the CAP portfolio till July 2008. The variable
"qrschSMM" is the one-quarter-ahead prediction based on the scheduled balance, meaning
the last quarter’s scheduled balance is combined with the predicted prepayment probability
over the quarter to calculate the monthly SMM. The "qractSMM" is created using last
quarter’s actual balance combined with the predicted prepayment probability over the quarter
to calculate the monthly SMM.

0.45
0.4 I
0.35
0.3
s
«»n 0.25 1
=
<
€ 02 | |
o
=
0.15
0.1 H \
0.05 /. Y
/“"‘-/’
~h i
0
0 O OO0 O d O &N & &N O M S S T NNV O NN N ®©
QPP QP Q Q@ Q@ Q@ Q Q Q@ O Q9 Q Q 9 Q@ Q 0 Q Q Q@ Q Q
o O = O > = = w > = O O =5 O > = = W > =
® ¢ 2 0 8 © 8 ¥ § 5 3 &2 9 9@ 3 o 8 8 &8 3G S5 3 o
P4 L R3% 233z Tew 2239223332 z2¢%
- - L R e U R T T T o U

actSMM =~ == == qrschSMM === . gqractSMM

85



Figure 2. One-month-ahead SMM prediction based on actual and scheduled balance

This figure shows one- month-ahead single monthly mortality (SMM) prediction based on

scheduled and actual balance using all loans in the CAP portfolio till July 2008. The

"monschSMM" is created using the last month’s scheduled balance combined with the

predicted prepayment probability over the month to calculate the monthly SMM. The

"monactSMM" is created using the last month’s scheduled balance combined with the
redicted prepayment probability over the month to calculate the monthly SMM.
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Figure 3. One-quarter-ahead CDR prediction based on actual size

Figure 3 shows one-quarter-ahead prediction of constant default rate (CDR) based on number
of loans existing at the end of last quarter. It is generated using all loans in the CAP till July
2008.
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Figure 4. One-month-ahead CDR prediction based on actual size

Figure 3 shows one-month-ahead prediction of constant default rate (CDR) based on number
of loans existing at the end of last month. It is generated using all loans in the CAP till July

2008.
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Table 1. Fannie Mae credit profile by key product features™

The table shows each product feature’s contribution to the normalized credit losses during
2007-2009. The rows titled “Single Family conventional guaranty book™, “2009 credit loss”,
“2008 credit loss”, “2007 credit loss™ exhibit each product feature’s share in respective
categories. The rows titled “weighted average FICO”, “Original LTV>90%" exhibit average
FICO and percentage with Original LTV>90% for each product feature. Above data are
obtained directly from Fannie Mae's 2010 1st quarter results. The rows titled
“%2009creditloss/%guarantybook™, “%2008creditloss/%guarantybook”,
“%2007creditloss/guarantybook’ are intended to normalize the credit loss by the product’s
share of single family conventional guaranty book. They represent the percentage of credit
losses in that year relative to the percentage of loans in the guaranty book of business.

Neg 620< FICO<620
As of March 31 Amrt  Interest FICO FICO OLTV &OLTV Sub-
2010 Loans only <620 <660 >90% >90% Alt_A  prime
Single Family
conventional
guaranty book 0.5% 6.3% 3.8% 8.0% 9.4% 0.8% 8.5% 0.3%
2009
credit loss 2.0% 32.6% 8.8% 15.5% 19.2% 34% 39.6% 1.5%
2009creditloss
/guarantybook 4.0x 5.2x 2.3x 1.9x 2.0x 4.3x 4.7x  5.0x
2008
credit loss 29% 342% 11.8% 17.4% 21.3% 54% 45.6% 2.0%
2008creditloss
/guarantybook 5.8x 5.4x 3.1x 2.2 2.3x 6.8x 5.4x  6.7x
2007
credit loss 0.9% 15.0% 18.8% 21.9% 17.4% 6.4% 27.8% 1.0%
2007creditloss
/guarantybook 1.8x 2.4x 4.9x 2.7x 1.9x 8.0x 3.3x  3.3x
weighted
average FICO 706 725 588 641 700 592 717 622
Original
LTV>90% 0.3% 9.1% 21.9% 20.7% 100% 100% 54% 6.8%

0 See pp-6 of the Fannie Mae's 2010 Ist quarter result is available at
http://www.fanniemae.com/ir/pdf/sec/2010/q1credit summary.pdf
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Table 2. Summary of basic one-factor short rate models.

This table summarizes the continuous-time presentations of one-factor models under risk-
neutral measure. In the table, r(t) is the instantaneous short rate at time t, 6(t) can be
considered as time-varying means, o is mean reversion parameter, ¢ is the volatility
parameter, and W(t) is one dimensional Brownian motion.

Model Continuous time Distribution | Analytical
solution

HW dr(t) = [6(t) — ar(t)]dt + adW (t) Normal Yes

BK dinr(t) = [6(t) — alnr(t)]dt + acdW (t) Lognormal | No

CIR dr(t) = [0(t) — ar(t)]dt + o /r(t)dW(t) | Normal yes

Table 3. Termination events by transaction year

This table shows the percentage of current, prepayment, and default observations of the
whole CAP portfolio (including those with some missing observations) by transaction year
from 1998 till July 2008. In total, there are 1.38% (of all observations) prepayment
observations and 0.27% default observations.

Transaction
Year Current(%) Prepaid(%) Default(%) Total(#)
1998 97.84 2.01 0.15 16211
1999 99.20 0.65 0.15 58590
2000 99.27 0.56 0.17 94282
2001 98.37 1.36 0.28 185405
2002 98.13 1.57 0.30 204422
2003 96.85 2.86 0.30 217689
2004 97.88 1.83 0.29 190893
2005 98.37 1.35 0.29 189933
2006 98.86 0.91 0.22 222785
2007 98.98 0.74 0.29 226790
2008 98.98 0.73 0.29 108179
Total 98.35 1.38 0.27 1715179
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Table 4. Refinance and burnout spline knots

This table summarizes the transformation of the refi-spread and burnout into linear spline as
described in equations below. Transforming the continuous refinance spread and burnout
variables into spline knots allows a better fit to the categorical dependent variable in MNL
regression by allowing a different slope within each piece. The spline knot explanations and
knot point choices are discussed in Section 3- b.

Burn, = I{L(k — 1) < burnout;; < L(k)} * (burnouti,t — L(k — 1))
+ I{burnouti,t > L(k)} * (L(k) — L(k - 1)) ,(fork =1,..,4).

Burn,, = 1{L(4) < burnouti,t} * (burnouti,t — L(4)) ,(for k =5).

k 0 1 2 3 4

L(k) 0 0.2 0.7 1.2 1.7

Refin = I{L(h — 1) < refispd;; < L(h)} * (refispdl-,,t —L(h— 1))
+ I{refispdl-,t > L(h)} * (L(h) —L(h— 1)), (for h =1, ...,5).

Refin = I{L(5) < refispd,} * (refispdl-,t - L(S)) ,(for h = 6).

h 0 1 2 3 4 5

L(h) 0 1 11 1.2 13 1.4
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Table 5. MNL regression results

This table provides multinomial logit regressions of prepayment and default risks modeling
of all loans in the CAP portfolio from 1998 until July 2008 using explanatory variables
grouped into panels. The panels of explanatory variables include seasoning, seasonality,
origination cohort, FICO score effect, UPB effect, yield curve slope, MTMLTYV, refinance
burnout factor, and borrower, neighborhood and loan characteristics. Interpretations of these
panels are provided in Section 3- b.

Seasoning
Age1 in (0,3]
Age2 in (3,6]
Age3in (6,9]
Aged in (9,12]
Agebin (12,18]
Ageb in (18,24]
Age7 in (24,30]
Age8 in (30,40]
Age9 in (40,50]
Age10 in (50,60]
Age11in (60,90]
Age12in (90, 290]

Model 1 Model 2 Model 3
(partial) (simple refi-spread) (Final )
obs 1589836 obs 1483289 obs 1483289
PseudoR? 0.1305 | PseudoR®  0.1368 PseudoR®  0.1382
LR » 38766.09 LR 38317.06 LR 4 38711.20
DF 126 DF 126 DF 150
Log Log Log
likelihood -129116 | likelihood -120867 | likelihood -120669
Coef. P>|z| Coef. P>|z| Coef. P>|z|
Prepay Prepay Prepay
1.75210 0.010 1.70407 0.012 1.72800 0.010
0.23771 0.014 0.25106 0.011 0.25861 0.009
0.18407 0.001 0.18133 0.002 0.18677 0.001
0.19330 0.000 0.19956 0.000 0.20512 0.000
0.03895 0.000 0.05560 0.000 0.04819 0.000
0.01706 0.040 0.02410 0.004 0.01780 0.036
0.00658 0.355 0.01406 0.050 0.00887 0.223
-0.00046 0.907 0.00285 0.475 0.00043 0.915
-0.00184 0.639 -0.00222 0.572 -0.00233 0.561
-0.00809 0.027 0.00208 0.572 -0.00804 0.032
-0.01725 0.000 -0.00837 0.000 -0.01367 0.000
-0.00695 0.000 -0.00391 0.001 -0.00737 0.000
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Seasonality
Feb
March
April
May
June
July
Aug
Sept
Oct
Nov
Dec

Origination Cohort
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2007
2008

Table 5. MNL regression results (cont’d)

Coef.

0.14362
0.36397
0.38953
0.39554
0.43093
0.47876
0.51260
0.36892
0.32688
0.34676
0.18862

1.37192
1.24395
1.05069
1.05188
0.74153
0.85989
0.70591
0.59483
0.58863
0.61818
0.34171
-0.61702

P>|z|

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.001
0.029
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Coef.

0.12486
0.34212
0.41358
0.40029
0.42174
0.52848
0.58967
0.42241
0.38303
0.39771
0.21491

1.26076
1.18512
1.12620
1.13484
0.90178
0.91181
0.93157
0.84160
0.63399
0.53063
0.23723

P>|z|

0.001
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.032

Coef.

0.13655
0.36058
0.40354
0.40087
0.43094
0.49563
0.53182
0.37784
0.34522
0.36072
0.19220

1.55193
1.38505
1.26459
1.22222
0.92664
0.92083
0.84374
0.78062
0.78490
0.68155
0.37488

P>|z|

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.001




FICO Score Effect
Cscore/100 in

(' min, 5.8]
(5.8, 6.2]
(6.2, 6.6]
(6.6, 7.2]
(7.2, max]
UPB Effect
upb/1000
(0, 50]
(50, 75]
(75, 100]
(100, 150]

(150, 407.666]

Yield Curve Slope
Tbill10yr-- 2 yr
Mark-to-market LTV
MTMLTV

Table 5. MNL regression results (cont’d)

Coef.

0.10617
1.37884
-0.06829
0.08183
-0.64885

-0.00061
0.01584
0.00994
0.00686
0.00236

0.26380

-0.01038

P>|z|

0.004
0.000
0.414
0.071
0.000

0.640
0.000
0.000
0.000
0.001

0.000

0.000
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Coef.

0.07714
1.28244
-0.11430
0.08029
-0.55380

-0.00088
0.01603
0.00892
0.00449
0.00251

0.24186

-0.01009

P>|z|

0.037
0.000
0.183
0.086
0.000

0.524
0.000
0.000
0.000
0.001

0.000

0.000

Coef.

0.07895
1.29309
-0.11205
0.08359
-0.53624

-0.00128
0.01594
0.00944
0.00466
0.00261

0.22965

-0.00941

P>|z|

0.033
0.000
0.192
0.074
0.000

0.350
0.000
0.000
0.000
0.001

0.000

0.000




Table 5. MNL regression results (cont’d)

Refi Burnout factor
Refispread spline
refi1 in (0,1]

refi2in (1,1.1]
refi3in (1.1, 1.2]
refi4 in (1.2, 1.3]
refi5 in (1.3, 1.4]
refi6 in (1.4, max]

Burnout spread spline
burnt in (0, 0.2]
burn2in (0.2, 0.7]
burn3in (0.7, 1.2]
burn4 in (1.2, 1.7]

(

burn5in (1.7, max]

Borrower, Neighborhood
and Loan characteristics

is low_to_mod inc track
is minority track
is underserved area

is worst ever delin 30 days
is worst ever delin above
30 days

is african american

is hispanic

is female

is rural

back end ratio

annual inc as %AMI
median track inc as %AMI
is NC

is CA

is FL

is OH

is OK

orig coupon- market PMMS

constant

Coef.

3.51127
1.51818
1.77834
0.16991
0.25322
1.37810

2.31735
-0.16586
0.17084
-0.09488
-0.01916

-0.03087
-0.14689
-0.09347
-0.44781

-1.67211

-17.08240

P>|z|

0.000
0.000
0.000
0.632
0.555
0.000

0.000
0.039
0.110
0.325
0.005

0.116
0.000
0.000
0.000

0.000

0.000

Coef. P>|z|
Refi_spread
2.44699 0.000

Burn_out spread
-0.02571

-0.05178
-0.05478
-0.05633
-0.44451

-1.71760
-0.54375
-0.14920
-0.08273
-0.07161
0.01524
0.00010
0.08565
-0.11399
0.00706
-0.07926
-0.05951
-0.33488
0.44919
-16.04867

0.000

0.025
0.015
0.005
0.000

0.000
0.000
0.000
0.000
0.001
0.153
0.217
0.037
0.000
0.822
0.065
0.156
0.000
0.000
0.000

Coef.

4.57086
2.03636
1.92868
0.31423
0.58825
1.99551

2.28482
-0.16093
0.16279
-0.01965
-0.01126

-0.04779
-0.04389
-0.05666
-0.45406

-1.72191
-0.55345
-0.17715
-0.08330
-0.07212
0.01339
0.00010
0.08021
-0.12991
0.01735
-0.02867
-0.07567
-0.40697
0.43775
-18.25059

P>|z|

0.000
0.000
0.000
0.392
0.194
0.000

0.000
0.052
0.139
0.845
0.128

0.039
0.052
0.005
0.000

0.000
0.000
0.000
0.000
0.001
0.232
0.235
0.051
0.000
0.583
0.506
0.071
0.000
0.000
0.000
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Table 5. MNL regression results (cont’d)

Coef. P>|z| Coef. P>|z| Coef. P>|z|
Default Default Default

Seasoning

Age1 in (0,3] 1.14186 0.087 0.72134  0.267 0.73184 0.260
Age2 in (3,6] 0.76892 0.000 0.78834  0.000 0.78985 0.000
Age3in (6,9] 0.01600 0.780 0.05393 0.434 0.05010 0.467
Age4 in (9,12] 0.15702 0.000 0.16839  0.001 0.16665 0.001
Age5in (12,18] 0.05216 0.004 0.04724  0.012 0.05190 0.006
Ageb in (18,24] 0.02012 0.222 0.01861 0.264 0.02156 0.200
Age7 in (24,30] 0.05757 0.000 0.05035  0.001 0.05977 0.000
Age8 in (30,40] 0.01780 0.045 0.01335  0.133 0.01533 0.090
Age9 in (40,50] 0.02220 0.014 0.02493  0.006 0.02722 0.003
Age10in (50,60] 0.01765 0.040 0.01133  0.184 0.01587 0.068
Age11 in (60,90] 0.01700 0.000 0.01300  0.000 0.01666 0.000
Age12in (90, 290] 0.02076 0.000 0.01782  0.000 0.02079 0.000
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Table 5. MNL regression results (cont’d)

Coef. P>|z| Coef. P>|z| Coef. P>|z|
Seasonality
Feb -0.50960 0.000 -0.51129  0.000 -0.51279 0.000
March -0.69172 0.000 -0.67882  0.000 -0.68035 0.000
April -0.50464 0.000 -0.52960  0.000 -0.51495 0.000
May -0.54486 0.000 -0.55852  0.000 -0.54146 0.000
June -0.32664 0.000 -0.34746  0.000 -0.32099 0.000
July -0.32387 0.000 -0.36504  0.000 -0.32157 0.000
Aug -0.20900 0.002 -0.26819  0.000 -0.22358 0.001
Sept -0.41208 0.000 -0.42630  0.000 -0.40185 0.000
Oct 0.04519 0.468 0.03275  0.607 0.05430 0.396
Nov -0.17720 0.007 -0.20426  0.002 -0.18428 0.006
Dec -0.03173 0.612 -0.06030  0.349 -0.04151 0.520
Origination Cohort
1995 -3.61356 0.000 -3.01054  0.000 -3.21735 0.000
1996 -3.24941 0.000 -2.90022  0.000 -3.02903 0.000
1997 -3.00127 0.000 -2.66583  0.000 -2.74983 0.000
1998 -2.81250 0.000 -2.56679  0.000 -2.59835 0.000
1999 -2.44327 0.000 -2.20256  0.000 -2.20583 0.000
2000 -1.73909 0.000 -1.71315  0.000 -1.67313 0.000
2001 -1.89041 0.000 -1.95081 0.000 -1.85669 0.000
2002 -1.78867 0.000 -1.76957  0.000 -1.71722 0.000
2003 -1.88786 0.000 -1.68203  0.000 -1.72730 0.000
2004 -1.24456 0.000 -1.20094  0.000 -1.22604 0.000
2005 -0.75965 0.000 -0.81164  0.000 -0.78950 0.000
2007 0.81862 0.000
2008
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FICO Score Effect
Cscore/100 in

(' min, 5.8]
(5.8, 6.2]
(6.2, 6.6]
(6.6, 7.2]
(7.2, max]
UPB Effect
upb/1000
(0, 50]
(50, 75]
(75, 100]
(100, 150]
(150, 407.666]

Yield Curve Slope
Tbill10yr- 2 yr
Mark-to-market LTV
MTMLTV

Table 5. MNL regression results (cont’d)

Coef.

-0.25104
-0.41645
-0.29557
0.27347
0.20906

0.00401
0.00001
0.00392
0.00058
0.00027

0.17118

0.00591

P>|z|

0.000
0.005
0.194
0.181
0.456

0.135
0.997
0.141
0.769
0.856

0.000

0.000
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Coef.

-0.24568
-0.34891
-0.26926
0.21651
0.43457

0.00624
0.00217
0.00688
-0.00083
-0.00144

0.20112

0.00861

P>|z|

0.000
0.022
0.245
0.295
0.125

0.028
0.345
0.014
0.712
0.504

0.000

0.000

Coef.

-0.24882
-0.36542
-0.25784
0.21010
0.42497

0.00610
0.00218
0.00671
-0.00069
-0.00147

0.17578

0.00772

P>|z|

0.000
0.017
0.265
0.310
0.134

0.031
0.341
0.016
0.758
0.495

0.000

0.000




Table 5. MNL regression results (cont’d)

Coef. P>|z| Coef. P>|z| Coef. P>|z|
Refi Burnout factor
Refispread spline
refi1 in (0,1] -0.29391 0.641 0.16213 0.803
refi2 in (1,1.1] -2.27692 0.002 | Refi_spread -2.17929 0.005
refi3 in (1.1, 1.2] 0.73038 0.311 -1.18409  0.000 0.76448 0.299
refi4 in (1.2, 1.3] 1.68989 0.050 1.42261 0.106
refi5 in (1.3, 1.4] -2.49698 0.009 -2.71518 0.006
refié in (1.4, max] -1.27261 0.210 0.35341 0.752
Burnout spread spline

Burn_out

burniin (0, 0.2] -1.93257 0.000 spread -1.74333 0.000
burn2in (0.2, 0.7] -0.29053 0.157 0.00419  0.668 -0.20709 0.318
burn3in (0.7, 1.2] 0.14230 0.586 0.14937 0.568
burn4in (1.2, 1.7] -0.21259 0.345 -0.30368 0.19
burn5in (1.7, max] -0.01548 0.143 0.00229 0.852
Borrower, Neighborhood
and Loan characteristics
is low_to_mod inc track 0.04796 0.212 0.00632  0.897 0.00544 0.911
is minority track -0.05664 0.138 0.01958  0.660 0.01818 0.683
is underserved area 0.05576 0.146 0.05333 0.232 0.05136 0.249
is worst ever delin 30 days | -25.80673 1.000 -8.20772 1.000 -15.72557 1.000
is worst ever delin above
30 days (60-90days) 23.36588 0.000 26.96790  0.000 29.45130 0.000
is african american -0.14863 0.000 -0.14621 0.000
is hispanic -0.19696  0.001 -0.19670 0.001
is female -0.03379  0.283 -0.03334 0.290
is rural 0.03792  0.374 0.03678 0.388
back end ratio 0.15029 0.324 0.17296 0.255
annual inc as %AMI -0.00310  0.001 -0.00298 0.002
median track inc as %AMI -0.11655 0.292 -0.11647 0.291
is NC -0.15265  0.000 -0.14666 0.000
is CA 0.40187  0.002 0.37614 0.003
is FL 0.30765  0.003 0.25816 0.014
is OH -0.06120  0.302 -0.05979 0.314
is OK 0.00327  0.962 0.02846 0.684
orig coupon- market
PMMS 0.23111 0.000 0.23765 0.000
constant -30.88015 . -32.90117 . -36.63604
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Table 6. Total loan purchase by purchase quarter

This table provides a summary of the frequency, mean and standard deviation of the prices
Fannie Mae paid for securitized CAP loans by purchase quarters. The price is per $100
unpaid principal balance.

Purchase

quarter Frequency Mean(price) SD(price)
1996Q4 1 98.6966

1998Q3 2 100 0
1999Q2 5 100 0
2000Q3 8 100.7600 0.54994
2000Q4 17 100.5959 0.58931
2001Q1 4 101.4084 0.65203
2001Q2 1921 100.0992 0.94910
2001Q3 62 101.1622 0.62246
2001Q4 447 100.7286 0.60018
2002Q1 26 101.5192 0.90931
2002Q2 42 101.3217 0.77097
2002Q3 30 101.4407 0.57816
2002Q4 203 101.2111 1.35878
2003Q1 57 101.3399 0.61367
2003Q2 715 101.9637 0.76258
2003Q3 106 99.4671 2.79799
2003Q4 500 100.0898 1.20027
2004Q1 131 101.6689 0.87679
2004Q2 177 100.4401 1.74237
2004Q3 129 101.5938 1.26628
2004Q4 163 101.3971 1.28593
2005Q1 122 100.9179 0.87333
2005Q2 398 100.5026 0.71966
2005Q3 142 100.8089 0.99461
2005Q4 1670 101.7239 0.49844
2006Q1 128 100.7226 0.81870
2006Q2 206 100.5360 1.13967
2006Q3 245 100.8273 0.93031
2006Q4 371 100.7255 0.83117
2007Q1 196 100.8469 0.88929
2007Q2 84 100.7776 0.68229
total 8308 100.8911 1.17313
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Table 7. Summary of OAS and Z-spread

This table summarizes the distribution of the OAS and the Z-spread in basis points for the
7,168 loans Fannie Mae purchased and without missing information from 1999 quarter 2
until 2007 quarter 2. The Z-spread is shown to be much higher than the OAS for a given
loan, which is consistent with the Z-spread and OAS quotes that are commonly observed in
the market.

Value in OAS Z-spread

bps Freq Percentage Freq. Percentage
<0 2499 34.86 352 4.91
0-50 1995 27.83 632 8.82
50-100 1412 19.70 1355 18.90
100-max 1262 17.61 4829 67.37
Total 7168 100 7168 100
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This table tests if CRA features are significantly correlated with lower OAS in cross sectional sample

Table 8. Linear regression of Option-Adjusted Spread

of issued RMBS of CAP loans by simple linear regressions, using cross sectional purchased loan
data. Interpretations of independent variables in panels A, B, and C are provided in Section 5-b.

Model 1 Model 2 Model 3
Finaimodel | Modeluse | Peninglon'
# obs 7168 # obs 7168 # obs 7168
Adi-R*  0.1102 Adi-R* 0.1048 | Adi-R* 0.1073
RMSE 89.419 RMSE g89.687 RMSE  89.561
Coeff P>|t| Coeff P>|t| Coeff P>|t|
age_at_purchase 0.16928 0.001 0.15683 0.003 0.17063 0.001
P OrigLTV 80.20307 0.000 7412736 0.000 | 74.66801 0.000
a OrigFICO_missing 9.46382 0.053 11.75022 0.016 | 10.10587 0.039
n OrigFICO<=620 19.97848 0.000 20.34418 0.000 | 20.07853 0.000
e OrigFICO>=720 -11.32277 0.000 | -11.05831 0.000 | -11.10977 0.000
I income>50%AMI -4.69713 0.050 -5.19671 0.031 -4.94811 0.039
A Borrower AfriAmer 9.12455 0.001 10.61787 0.000 10.15939 0.000
Borrower Hispanic 493078 0.225 4.43456 0.283 3.90922 0.337
Borrower OthMinor -4.61957 0.219 -4.69156 0.213 -4.51188 0.230
UPB in thousand -0.17520  0.000 -0.15939 0.000 -0.16291  0.000
purchase in2007 10.77801 0.634 15.97662 0.481 13.02351 0.565
P purchase in2006 49.67040 0.000 51.18404 0.000 | 49.83857 0.000
a purchase in2004 15.34754 0.004 16.81652 0.002 | 16.36130 0.002
n purchase in2003 25.76140 0.000 24.77559 0.000 | 24.35734 0.000
e purchase in2002 63.82826  0.000 67.35736 0.000 | 65.71283 0.000
I purchase in2001 -28.33827 0.000 | -23.07306 0.000 | -26.61027 0.000
B purchase in2000 7.57017 0.703 8.45095 0.671 8.27975 0.677
purchase in1999 -8.94456  0.842 -5.89270 0.896 -7.40986 0.869
St wt market codef 31.27844 0.003 24.85475 0.018 | 31.21196 0.003
P St wt market code2 9.23873 0.124 2.25524 0.711 10.30582 0.094
a St wt market code4 -13.73483 0.051 | -14.72863 0.038 | -20.58189 0.004
n St wt preppenal0 -12.40584 0.172 -2.73806 0.763 | -12.59870 0.172
e St wt preppenall 6.27979 0.325 10.98734 0.119 2.82948 0.665
I Stwtpreppanal3 2.76517 0.658 8.42948 0.179 -1.92440 0.772
C St wt preppenald -3.18298 0.436 -3.53873 0.409 -3.64465 0.373
St repayabil 2.48394 0.521 -5.00654 0.379 -1.67429 0.660
St ineffecttb -38.68450 0.000
St ineffect 3.06549 0.623
Penningtonineffect -24.49457 0.000
NC 26.06751 0.000 23.92746 0.001 | 32.51978 0.000
CA -8.66175 0.460 | -15.62976 0.212 -8.42900 0.474
constant -6.97040 0.554 | -38.27624 0.001 | -14.16332 0.238
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Table 9. Comparison of OAS and Z-spread regressions

This table provides comparison of regression results of the Z-spread using identical
independent variables with OAS regression of Model 1 in Table 8.

Model 1 Model 1

OAS dependent Var Z-spread Dependent Var

# obs 7168 # obs 7168

Adj- R® 0.1102 Adj- R® 0.3777

RMSE 89.419 RMSE 76.34

Coeff P>|t| Coeff P>|t|

age_at_purchase 0.16928 0.001 0.17245 0.000
OrigLTV 80.20307 0.000 | 97.92960 0.000

P  OrigFICO_missing 9.46382 0.0583 6.57893 0.115
a OrigFICO<=620 19.97848 0.000 | 14.58129 0.000
n  OrigFICO>=720 -11.32277 0.000 | -6.12147 0.005
e income>50%AMI -4.69713 0.050 | -5.41552 0.008
| borrower AfriAmer 9.12455 0.001 5.53149 0.024
A Borrower Hispanic 4.93078 0.225 2.42556 0.484
Borrower OthMinor -4.61957 0.219 -3.89916 0.224

UPB in thousand -0.17520 0.000 | -0.13618 0.000
purchase in2007 10.77801 0.634 | -19.26858 0.318

P  purchase in2006 49.67040 0.000 0.06969 0.986
a purchase in2004 15.34754 0.004 | 108.40670 0.000
n  purchase in2003 25.76140 0.000 | 118.55620 0.000
e purchase in2002 63.82826 0.000 | 148.57910 0.000
I purchase in2001 -28.33827 0.000 | 66.49767 0.000
B  purchase in2000 7.57017 0.703 | -10.23635 0.546
purchase in1999 -8.94456 0.842 3.37294 0.930

St wt market code1 31.27844 0.003 | 13.21634 0.138

St wt market code2 9.23873 0.124 | 10.67207 0.037

P St wt market code4 -13.73483 0.051 | 14.78508 0.014
a  Stwtpreppenal0 -12.40584 0.172 | -11.09236 0.153
n St wtpreppenall 6.27979 0.325 -0.91417 0.867
e  Stwtpreppanal3d 2.76517 0.658 3.39930 0.524
I St wt preppenal4 -3.18298 0.436 4.86943 0.162
C  Strepayabil 2.48394 0.521 | -23.16562 0.000
St ineffecttb -38.68450 0.000 | -7.66110 0.128

NC 26.06751 0.000 | -7.71423 0.214
CA -8.66175 0.460 | -10.25965 0.305
constant -6.97040 0.554 8.81482 0.380
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Table 10. Percentage of loans bundled by purchase year

This table provides a summary of the percentage of loans that were bundled in each purchase
year. A total of 5,917 (82.54%) of the 7,168 loans are bundled loans.

Purchase # bundled #total % bundled
year

1999 4 4 100.00%
2000 3 21 14.29%
2001 2334 2373 98.36%
2002 164 257 63.81%
2003 1086 1283 84.65%
2004 159 437 36.38%
2005 1794 2069 86.71%
2006 366 709 51.62%
2007 7 16 43.75%
total 5917 7169 82.54%
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Table 11. Comparison of OAS regression on unbundled loans

This table compares the result of the original OAS regression with repeating the linear
regression of model 1 (in Table 8) on only unbundled loans, and only bundled loans.
Interpretations of the results are provided in Section 5-c.

Model 1 Model 1_Unbundled | Model 1_bundled

Final model Unbundied 1,252 Bundled 5,916
# obs 7168 # obs 1252 # obs 5916
Adi-R* 01102 | Adj-R® 0.0576 | Adj-R? 0.1080
RMSE 89.419 RMSE 74.131 RMSE 92.106

Coeff P>|t| Coeff P>|t| Coeff P>|t|
age_at_purchase 0.16928  0.001 2.22991 0.000 | 0.18719  0.001
OrigLTV 80.20307 0.000 | 32.56610 0.328 | 84.83821 0.000
P OrigFICO_missing 9.46382  0.053 | 19.25725 0.071 6.33346  0.251
a OrigFICO<=620 19.97848  0.000 | 14.78869 0.021 | 21.44905  0.000
n OrigFICO>=720 -11.32277  0.000 | -6.73292 0.189 | -11.98447  0.000
e income>50%AMI -4.69713  0.050 | 2.35613 0.633 | -6.03545 0.026
I  Borrower AfriAmer 9.12455 0.001 | 11.96354 0.056 | 8.12851 0.012
A Borrower Hispanic 493078 0.225 | 7.51358 0.456 | 3.64484  0.420
Borrower OthMinor -461957 0.219 | -9.15828 0.345 | -2.49044 0.548
UPB in thousand -0.17520  0.000 | -0.02609 0.720 | -0.21172  0.000
purchase in2007 10.77801 0.634 | 18.02840 0.475 | -11.30019  0.748
P purchase in2006 49.67040  0.000 | 33.39985 0.000 | 58.37655  0.000
a purchase in2004 15.34754 0.004 | 5.66478 0.382 | 22.43933  0.007
n purchase in2003 2576140  0.000 | 19.57205 0.006 | 28.11463  0.000
e purchase in2002 63.82826  0.000 | 40.90469 0.000 | 76.54004  0.000
I purchase in 2001 -28.33827 0.000 | 2.71130 0.834 | -27.49074  0.000
B purchase in 2000 757017 0.703 | 7.93048 0.663 | -18.88057  0.724
purchase in 1999 -8.94456  0.842 -6.88647  0.882
St wt market codet 31.27844  0.003 | -28.38463 0.545 | 32.01796  0.007
St wt market code2 9.23873 0.124 6.27297 0.587 8.58437 0.239
P St wtmarketcode4 | -13.73483  0.051 9.21166 0.595 | -15.40021 0.052
a St wt preppenal0 -12.40584 0.172 | -2.51130 0.886 | -15.10474  0.158
n St wt preppenall 6.27979 0.325 | 2.60303 0.837 | 7.06430  0.395
e Stwtpreppanal3 2.76517 0.658 | 3.99883 0.771 1.43189  0.843
| St wtpreppenal4 -3.18298  0.436 | 11.31081 0.307 | -5.25317  0.266
C St repayabil 2.48394 0.521 | -15.25242 0.186 | 2.50638  0.569
St ineffecttb -38.68450  0.000 | -11.98559 0.402 | -40.20777  0.000
NC 26.06751  0.000 | -18.75757 0.423 | 26.00976  0.002
CA -8.66175  0.460 -6.02563  0.656
constant -6.97040 0.554 | 7.92250 0.819 | -7.04345  0.585
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Table 12. Comparison of OAS regression with bundling effect using dummies

This table tests the bundling effect on the whole sample by adding dummy variables on
bundling using model 1, and compares the results with the original model 1 in Table 8.

Variables in Penal B (bundling year) are interpreted in Section 5-c.
Model 1_original Model 1_dummy on bundling

# obs 7168 # obs 7168
Adj-R® 0.1102 Adj-R® 0.1089
RMSE 89.419 RMSE 89.481

Coeff P>|t| Coeff P>|t|
Panel A Panel A
age_at_purchase 0.16928 0.001 | age_at purchase 0.20539 0.000
OrigL TV 80.20307 0.000 | OrigLTV 78.60672 0.000
OrigFICO_missing 9.46382 0.053 | OrigFICO_missing 9.04366 0.065
OrigFICO<=620 19.97848 0.000 | OrigFICO<=620 21.01714 0.000
OrigFICO>=720 -11.32277 0.000 | OrigFICO>=720 -11.17579 0.000
income>50%AMI -4.69713 0.050 | income>50%AMI -4.29025 0.074
Borrower AfriAmer 9.12455 0.001 | Borrower AfriAmer 9.22269 0.001
Borrower Hispanic 4.93078 0.225 | Borrower Hispanic 3.84146 0.347
Borrower OthMinor -4.61957 0.219 | Borrower OthMino -2.83178 0.454
UPB in thousand -0.17520 0.000 | UPB in thousand -0.17593 0.000
Panel B Panel B (Bundling year)
purchase in2007 10.77801 0.634
purchase in2006 49.67040 0.000 | is bundled in 2006 29.89418 0.000
purchase in2004 15.34754 0.004 | is bundled in 2005  -29.83227 0.000
purchase in2003 25.76140 0.000 | is bundled in 2004 -5.13506 0.500
purchase in2002 63.82826 0.000 | is bundled in 2003 -0.94741 0.841
purchase in2001 -28.33827 0.000 | is bundled in 2002 48.29923 0.000
purchase in2000 7.57017 0.703 | is bundled in 2001 -55.39627 0.000
purchase in1999 -8.94456 0.842
Panel C Panel C
St wt market code1 31.27844 0.003 | St wt market code1 30.76564 0.003
St wt market code2 9.23873 0.124 | St wt market code2 8.58737 0.156
St wt market code4  -13.73483 0.051 | St wt market code4  -12.00328 0.091
St wt preppenal0 -12.40584 0.172 | St wt preppenal0 -12.77882 0.160
St wt preppenali 6.27979 0.325 | St wt preppenali 6.38422 0.329
St wt preppanal3 2.76517 0.658 | St wt preppanal3 1.44142 0.818
St wt preppenal4 -3.18298 0.436 | St wt preppenal4 -2.95820 0.474
St repayabil 2.48394 0.521 | St repayabil 2.53612 0.516
St ineffecttb -38.68450 0.000 | Stineffecttb -38.12976 0.000
NC 26.06751 0.000 | NC 22.99158 0.002
CA -8.66175 0.460 | CA -6.10920 0.603
constant -6.97040 0.554 | constant 19.47696 0.118
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Appendix B

Table 13. Summary descriptive statistics of variables in MNL

This table provides summary descriptive statistics®' of variables used in MNL regressions in
Table 5. These MNL regressions use all loans in the CAP portfolio from 1998 until July
2008.

Variable Freq Mean Std. Dev Min Max
Seasoning

Age1in[0,3] 62501 0.91847  1.20408 0 3
Age2in (3,6] 41164 5.04778  0.81565 4 6
Age3 in (6,9] 51388 8.05036  0.81587 7 9
Age4 in (9,12] 61412 11.02959 0.81562 10 12
Ages5in (12,18] 135515 15.53056  1.70814 13 18
Ageb in (18,24] 144244 2153112  1.70709 19 24
Age7 in (24,30] 145147  27.47694  1.70678 25 30
Age8 in (30,40] 220333 3540597 2.87244 31 40
Age9 in (40,50] 192796  45.35701 2.86418 41 50
Age10in (50,60] 153695 55.27799  2.85974 51 60
Age11in (60,90] 279923  73.48826  8.46875 61 90
Age12in (90, 290] 193924 116.28840 22.05668 91 290
Fico Score Effect

creditscore/100

(,5.8] 253594 524219  0.62659 0.04 5.80
(5.8,6.2] 190321 6.01422  0.11653 5.80 6.20
(6.2, 6.6] 271401 6.40781  0.11473 6.20 6.60
(6.6,7.2] 422138 6.89406  0.17159 6.60 7.20
(7.2, 8.5] 500724 7.62121  0.25817 7.20 8.50
UPB Effect

upb/1000

(0, 30] 419933 37.11486  9.91361 0.01 50.00
(50, 79] 547771  62.41088  7.15953 50.00 75.00
(75,100] 362405 85.85227 6.97727 75.00  100.00
(100, 150] 253950 118.85700 13.15955  100.00  150.00
(150, 407.666] 64201 183.58540 33.85787 150.00 407.33
Yield Curve Slope

Thill10yr-- 2 yr 1715864 1.05913  0.94791 -0.41 2.59
Mark-to-market LTV

mtmitv 1714374  82.95535 17.98869 1.90 187.44

*! The some of the variables are transformed into spline knot format in the MNL regression.
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Table 13. Summary descriptive statistics of variables in MNL (Cont’d)

Variable Freq Mean
Refi Burnout factor

refi_spread 1715864 1.11091
burn_out spread 1715864 0.84232
refi1 in (0,1] 471690 0.93696
refi2 in (1,1.1] 381122 1.04986
refi3 in (1.1, 1.2] 399667 1.14883
refi4 in (1.2, 1.3] 260426 1.24315
refi5 in (1.3, 1.4] 134796 1.34441
refi6 in (1.4, max] 68163 1.46659
burni in (0, 0.2] 1150654 0.01506
burn2in (0.2, 0.7] 205311 0.40815
burn3in (0.7, 1.2] 89597 0.90472
burn4 in (1.2, 1.7] 49212 1.41497
burn5 in (1.7, max] 221090 5.39821
Borrower, Neighborhood and Loan characteristics
back end ratio 1600117 1.18016
annual inc as %AMI 1627255  62.93549
median track inc as %eAMI 1711390 0.91887
orig coupon- market PMMS 1715788 0.27563
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Std. Dev

0.15125
2.19670
0.05018
0.02897
0.02828
0.02826
0.02785
0.06837
0.03943
0.14169
0.13762
0.14322
3.58384

32.27178
52.12175
0.26562
0.66435

Min

0.77
0.00
0.77
1.00
1.10
1.20
1.30
1.40
0.00
0.20
0.70
1.20
1.70

-7.13

Max

2.58
46.11
1.00
1.10
1.20
1.30
1.40
2.58
0.20
0.70
1.20
1.70
46.11

2317
5504
3.65
3.41




Table 13. Summary descriptive statistics of variables in MNL (Cont’d)

Categorical Variables Freq % of sample
Seasonality

Jan 145138 8.45860
Feb 144421 8.41681
March 144397 8.41541
April 148762 8.66980
May 150023 8.74329
June 152367 8.87990
July 135132 7.87545
Aug 136624  7.96240
Sept 138247  8.05699
Oct 137126 7.99166
Nov 135842 7.91683
Dec 147785 8.61286
Origination Cohort

1995 143760 8.37829
1996 72901 4.24865
1997 163414 9.52372
1998 211468  12.32429
1999 132070 7.69700
2000 194759  11.35049
2001 233222 13.59210
2002 174778  10.18601
2003 121278 7.06804
2004 107738 6.27894
2005 71054 4.14100
2006 38516 2.24470
2007 15679 0.91377
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Table 13. Summary descriptive statistics of variables in MNL (Cont’d)

Categorical Variables Freq % of sample
Borrower, Neighborhood and Loan characteristics

is low_to_mod inc track 549741 32.03873
is minority track 518096  30.19447
is underserved area 1047828 61.06708
is worst ever delin 30 days 328104 19.12180
is worst ever delin above 30 days 256846  14.96890
is african american 419533 24.45025
is hispanic 196389  11.44549
is female 759842  44.28335
is rural 293481 17.10398
is NC 733859  42.76907
is CA 98226 5.72458
is FL 71674 417714
is OH 113885 6.63718
is OK 106797 6.22409
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Table 14. Summary descriptive statistics of variables in linear regression

This table provides summary descriptive statistics of variables used in linear regressions in
Table 8-12. These linear regressions use cross sectional sample of loans with prices that
Fannie Mae paid for securitized CAP loans from 1999 quarter 2 until 2007 quarter 2.

Variable Freq Mean Std.Dev. Min Max
Panel A

age_at_purchase 7169 22.01479 28.44360 0 190
OrigLTV 7169 0.93547  0.12280 0.12 1.24
UPB in thousand 7169 80.70805 42.68700 3.21  403.01
Categorical variables Freq % of sample

Panel A

OrigFICO_missing 477 6.65365

OrigFICO<=620 1192 16.62714

OrigFICO>=720 2048 28.56744

income>50%AMI 4720 65.83903

Borrower AfriAmer 1700 23.71321

Borrower Hispanic 651 9.08076

Borrower OthMinori 928 12.94462

Panel B

purchase in2007 16 0.22318

purchase in2006 709 9.88980

purchase in2004 437 6.09569

purchase in2003 1283 17.89650

purchase in2002 257 3.58488

purchase in2001 2373 33.10085

purchase in2000 21 0.29293

purchase in1999 4 0.05580
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Table 14. Summary descriptive statistics of variables in linear regression (Cont’d)

Categorical variables Freq % of sample
Panel C

St wt market code1 723 10.08509
St wt market code2 1655 23.08551
St wt market code4 1877 26.18217
St wt preppenal0 282 3.93360
St wt preppenalt 1249 17.42223
St wt preppanal3 989 13.79551
St wt preppenal4 1970 27.47943
St repayabil 3326 46.39420
Pennington's ineffect 6675 93.10922
St ineffecttb 6868 95.80137
St ineffect 4182 58.33450
is NC 1497 20.88157
is CA 526 7.33715
Bundling year

is bundled in 2006 366 5.10531
is bundled in 2005 1794 25.02441
is bundled in 2004 159 2.21788
is bundled in 2003 1086 15.14856
is bundled in 2002 164 2.28763
is bundled in 2001 2334 32.55684
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