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ABSTRACT 
 

Matthew Cooper: Unravelling the Sikasso Paradox: Agricultural Change, Cotton and 
Malnutrition in Southern Mali 

(Under the direction of Lauren Persha) 
 
 

  
  The cash crop cotton has been suggested as a cause of the unexpectedly high 

malnutrition rates in the Sikasso region of Mali.  This paper tests that hypothesis as well as 

two of the proposed pathways by which cotton has been suggested to cause malnutrition: 

through worsening diets and though reduced ecosystem services from soil degradation and 

agricultural extensification.  Both household surveys and region scale satellite imagery 

combined with Demographic and Health Surveys suggest that there is an association 

between cotton cultivation and malnutrition.  However, there was no evidence that cotton 

cultivation is related to worsened diets or malnutrition at a household level.  Rather, cotton 

cultivation, reduced biodiversity and malnutrition are all associated at a village level, 

indicating that the environmental effects of cotton cultivation may be causing associated 

malnutrition through reduced ecosystem services. 
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INTRODUCTION 

 A generation ago, all of southern Mali grew mainly sorghum and millet with 

organic fertilizer using swidden agriculture, by clearing fields and then leaving them to 

return to a forested state after a few seasons of farming (Laris, Foltz and Voorhees 2015, 

Kidron, Karnieli and Benenson 2010).  Today, it is increasingly common for farmers to use 

synthetic fertilizer to grow cotton and maize on fields permanently dedicated to these 

crops (Moseley and Gray 2008, Laris et al. 2015).  This agricultural change has been 

accompanied by changes in land cover and land use throughout the region: forestlands 

have been degraded and reduced, while farmland has expanded (Ruelland, Levavasseur 

and Tribotté 2010).   

 Accompanying this change in land use and agricultural practices has been a 

phenomenon known as the "Sikasso Paradox" or "Paradoxe de Sikasso" which is known to 

both academics (Guillou and Matheron 2014)  and development practitioners (Swinkels, 

Eozenou and Madani 2013, Delarue 2009), and is often framed in relation to cotton 

(Mesplé-Somps et al. 2008).  Of all the regions of Mali, the southernmost region of Sikasso 

has the most rainfall and therefore the most food diversity, the most productive crops, and, 

crucially, the greatest access to monetary income via the cash crop cotton.  Paradoxically, 

the region also has the highest rates of malnutrition and child mortality in Mali (Swinkels et 

al. 2013, Dury and Bocoum 2012). 

 This study seeks to explore if there is significant correlation between type of 

agricultural systems and rates of malnutrition.  In this case, the type of agricultural system 
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is measured by rates of swidden vs permanent cultivation and percentage of households’ 

total hectarage as cotton, while childhood malnutrition is measured by both DHS 

(Demographic and Health Surveys) variables and child heath variables measured in 

household surveys conducted across three study villages.  In the DHS surveys, child health 

outcomes were height for age percentile, weight for age percentile and anemia level.   In the 

household surveys, child health outcomes are child mortality rate by household and the Z-

score by age of the child's mid-upper arm circumference (MUAC) using reference data from 

the WHO (De Onis, Yip and Mei 1997).  The study furthermore seeks to examine possible 

mechanisms generating this observed correlation, such as changes in the availability of 

ecosystem services or variable diets.  This is explored through household surveys and 

forest surveys conducted in three study villages. 

 The first question is examined using classified Landsat imagery and DHS data.  A 

regression was run linking different measures of malnutrition and rates of swidden vs 

permanent agriculture.  This regression demonstrated a significant positive correlation 

between percent of agriculture practiced as swidden and children’s weight percentile. 

 The second part of the study consisted of household and forest surveys in three 

villages in the different parts of southern Mali.  These villages had varying rates of modern 

vs traditional agricultural practices.  Household surveys were conducted asking about a 

variety of land use and livelihood practices, as well as swidden fields and cotton 

production.  Forest and land cover surveys were conducted in order to examine the extent 

of forest cover and forest diversity, as well as to conduct ground-truthing on the Landsat 

classification conducted.  The purpose of this part of the study was to better understand, at 

both a household level and a village level, the different possible drivers connecting 
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permanent cropping and cotton production with observed rates of malnutrition.  The 

household surveys were also intended to see the extent to which local farmers recognize 

and are aware of trends of malnutrition, agricultural change and land use change. 

Theoretical Framework 

 The central hypothesis of this thesis is that changing agricultural practices from 

swidden fields growing traditional crops to permanent fields growing cotton and maize can 

lead to increased childhood malnutrition via decreased ecosystem services or worsened 

diets or both.  This thesis therefore draws on literature concerning cash cropping, 

agricultural transitions, ecosystem services, diet and nutrition, as well as how each of these 

factors can be measured. 

Ecosystem Services 

 Ecosystem services are goods provided by natural ecosystems that benefit 

humanity (Raudsepp-Hearne, Peterson and Bennett 2010).  They are numerous and 

various, and are often grouped into the three categories of regulating services, provisioning 

services, and cultural/aesthetic services (Wallace 2007). Regulating services include 

processes that maintain soil fertility, atmospheric composition and climate stability, and 

water cleanliness.  Provisioning services, on the other hand, offer humans a tangible object 

such as fruits, nuts and grains for food; fibers and other materials for clothing; wood and 

charcoal for fuel; or plants and fungi for medicine.  Finally, cultural and aesthetic services 

provide intangible but important value to people by providing significance and meaning 

and fulfilling humanity’s spiritual and philosophical needs (Wallace 2007).   

 Both regulating and provisioning services play a clear and significant role in 

nutrition in southern Mali.  Provisioning services are food products themselves, and thus 
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nearly everything eaten by people in southern Mali is a product of the local environment, 

from mangoes, to leaves for sauces to sorghum.  These provisioning services are in turn 

supported by regulating services like pollinators, fertile soil, and rainfall. 

 Often, there are tradeoffs between multiple ecosystem services both within a 

land cover class and between land cover classes.  For example, there can be a tradeoff 

between crop yield and soil quality, where both the harvested crops and the soil fertility 

are ecosystem services (González-Esquivel et al. 2015).  Low-input traditional swidden 

farming practices are much better for the soil than input-intensive modern practices, yet 

have low yields.  Modern farming strategies, on the other hand, can be high yielding, but at 

the cost of strong negative effects on soil quality, water quality and biodiversity (González-

Esquivel et al. 2015). 

 Farmers are quite aware of these tradeoffs, and will manage their landscape in 

ways that optimize the availability of ecosystem services that will suit their needs.   

It has been demonstrated that although ecosystem services with financial benefits are the 

most broadly preferred, preferences for ecosystem services can vary by social-cultural 

conditions such as age, income and cultural background (Tadesse et al. 2014).  This could 

explain why different parts of Mali have seen different approaches to transitioning from 

swidden agriculture to permanent cropping. 

Land Use and Land Cover Change 

 A broad literature exists concerning land use and land cover change (LULCC). 

The drivers of land use change are complex, and are in many ways a manifestation of 

people responding to economic incentives, as mediated by institutions (Lambin et al. 

2001).  Policies around land use in one country can affect economic conditions in another, 
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and this policy “leakage” is often unanticipated (Meyfroidt et al. 2013). Thus, determining 

the precise cause of observed changes in landscape-scale land use or predicting future 

changes in land use is a challenging process. 

 While determining the ultimate cause of land use changes is problematic, land 

use and land cover can be salient indicators of environmental variables such as forest 

cover, sequestered carbon, or water availability.  Land use can even be an indicator of 

ecosystem services.  Many ecosystem services come in “bundles” associated with one land 

cover type (Raudsepp-Hearne et al. 2010).  Thus, some ecosystem service tradeoffs are 

made at that land use level: the tradeoff between forestland and cropland, for example, is 

isomorphic to the tradeoff between timber and agricultural products.  While this is not true 

for all ecosystem services, some critical services are provided by only one land cover class.  

This is especially true for provisioning services, such as forest products or agricultural 

grains, for which there is usually a tradeoff with other ecosystem service types (Raudsepp-

Hearne et al. 2010). 

Land Use and Ecosystem Services 

 In the Sudanian eco-region of southern Mali, there are two broad classes of land 

cover types that provide ecosystem services: agricultural areas and wilderness areas.  

Agricultural areas are those places under direct cultivation, where annual grains, garden 

crops, perennial fruit or timber trees are grown.  They are usually owned by one 

household, and the provisioning ecosystem services that they provide are claimed by that 

household.  Wilderness areas, on the other hand, can vary from open grasslands to dense 

forests, and often consist agricultural areas that have recently been left fallow.  In rural 

Mali, they are regarded as common property, and ecosystem services that they provide, 
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from bushmeat to fertile soil, can be used by anyone.  In these wilderness areas, forests and 

their associated ecosystem services in particular are increasingly recognized as both vital 

and in decline in Sudanian West Africa and in Africa in general.  It has been demonstrated 

that over two-thirds of Africa's 600 million people obtain a major proportion of their 

subsistence and some cash income from a large and diverse set of forest products and 

forest-related activities (Arnold and Townson 1998, Kaimowitz 2003) Forest products like 

trees often serve as ‘famine foods’ providing alternative sources of nutrition during times 

of agricultural failure (Bayala et al. 2010).  In addition, wild food plants are a major source 

of alternative income in West Africa (Assogbadjo et al. 2012), and have played a 

demonstrated role in poverty reduction (Coulibaly-Lingani et al. 2011).  In Mali in 

particular, it was calculated that non-timber forest products provided up to 40% of 

household income (Heubes et al. 2012).  In the face of an uncertain climatological future, 

forests and the useful tree species they provide are more necessary than ever, because they 

contribute very directly to the resilience of communities (Robledo et al. 2012). 

 However, the future of forests in West Africa is uncertain.  A continental survey 

found that African dry forests and woodlands were “the most threatened and least 

protected ecosystem on the continent” (Bodart et al. 2013).  Another study modeling 

ecosystem services in particular found a decrease in biodiversity and some associated 

ecosystem services throughout Ghana and Cote d’Ivoire (Leh et al. 2013), while another 

survey of deforestation and degradation across West African ecoregions found widespread 

degradation from closed woodlands to open woodlands in the Sudanian ecoregion 

(Ruelland et al. 2010).  A model of land use change and climate change in Benin predicts 

that large areas could lose up to 50% of their economic value from Néré, Shea, and Baobab, 
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perhaps the three most important and useful tree species in West Africa (Heubes et al. 

2012). One of the largest drivers of these changes in availability of forest resources has 

been agricultural intensification and expansion.  Different farming systems used by 

communities have been shown to affect tree species diversity (Bayala et al. 2010), and one 

study of local perspectives found that clearing land for cash crops was viewed as the main 

cause of tree loss (Paré et al. 2009).  Thus, decreasing ecosystem services from forests and 

wild areas is linked both theoretically and empirically to agricultural change and land use 

change. 

Cash Cropping and Land Use 

 There is a preponderance of evidence from around world demonstrating how 

the introduction of cash cropping can lead to land use change in the form of agricultural 

expansion and deforestation (Su et al. 2014).  In the Himalayas, it was found that adopting 

cash crops led to the abandonment of 25%-85% of traditional crops, along with significant 

changes in land use (Negi, Maikhuri and Rawat 2012).  In Laos, traditional rotational rice-

based agriculture is being abandoned in favor of cash crops in certain areas, and this is 

leading to divergent pathways of land use and deforestation (Vongvisouk et al. 2014).  

Often an increase in land use devoted to cash cropping leads to a proportional decrease in 

land use dedicated to local food production and forestland.  A study in China found that 

between 1985 and 2009, cash crop cultivation increased at the expense of forestland and 

rice paddies.  A quantitative study in China found that places with "abundant farmland and 

forest cover" were more likely to be converted to cash cropping.  Additionally, distance to 

water bodies, provincial roads and market towns were major determinants of areas that 

came under cash crop cultivation (Xiao et al. 2015). 
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 While conversion of forested areas to agriculture leads to a clear and direct 

decrease in the available provisioning ecosystem services provided by forests, it is less 

clear the impact that forest degradation and biodiversity loss has on regulating ecosystem 

services.  In areas where only a few key species provide the majority of forest products, a 

loss in biodiversity may not represent a significant loss in ecosystem services so long as 

those key species are still present.  However, it is clear that biodiversity is necessary for the 

long-term functioning of the ecosystem itself (Mertz et al. 2007), because more diverse 

ecosystems are more resilient.  In addition, higher species richness means there is a greater 

variety of goods to be used, especially medicinal plants (Mertz et al. 2007).  Indeed, where a 

high diversity of plant species are available, they are almost all utilized: a survey from 

Sudanian savannas of southern Burkina Faso found that 82 unique species of trees 

provided useful non-timber forest products (Paré et al. 2009). 

Ecosystem Services and Human Outcomes 

 While there is a clear theoretical link between ecosystem services and human 

outcomes such as health and income, research on these linkages is only beginning.  Often 

detecting clear linkages is difficult. A 2012 study in Mali looked at linkages between land 

degradation and income, hypothesizing that more degraded areas would see lower levels of 

household income (Liebenow et al. 2012).  However, no significant relationship was found.  

This was theorized to be because of the complexity of the relationship between ecosystem 

services and livelihood strategies: communities are creative and adaptive, and often find 

alternative income sources when traditional ones are no longer available (Liebenow et al. 

2012).  This study also used rainfall-normalized NDVI as an indicator of degradation, 
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although patterns of changes in NDVI, especially in the semi-arid tropics are not well 

understood (Bégué et al. 2011). 

 Researchers are increasingly looking at how losses or changes in those 

ecosystem services that are necessary for food production can have negative human health 

and nutrition outcomes.  Nevertheless, the relationship between ecosystem services and 

human nutrition is clear, especially in parts of the world where livelihoods are still largely 

agrarian and largely based on local resources, such as in sub-Saharan Africa (Agarwala et 

al. 2014).  More than other human outcomes based on ecosystem services, human health 

and nutrition may be especially dependent on biodiversity, as human health is dependent 

on diverse array of food sources (DeClerck et al. 2011).  There have been many calls for 

interdisciplinary research into the linkages between environmental health and human 

health, an emerging field that has been called ‘econutrition’ (DeClerck et al. 2011, Remans 

et al. 2012).  

 Some exploratory work has been done linking various ecosystem services with 

human nutrition in Africa. A global study with a West African component looked at the role 

of pollination in micronutrient availability, and found that many crops that rely on 

pollinators in their life cycle are also among the richest in micronutrients that are essential 

to human health (Chaplin-Kramer et al. 2014).  A recent household based study in Ghana 

found a negative relationship between intensity of cash crop production and various 

measures of food security, such as food availability, access and utilization (Anderman et al. 

2014).  Others have been looking at the nutritional value of wild foods and leafy vegetables 

that still make up a large portion of people’s diets in rural Africa (Uusiku et al. 2010, 

Mavengahama, McLachlan and de Clercq 2013), while a recent study found that more tree 
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cover predicted better diets on a continental scale (Ickowitz et al. 2014).  Nevertheless, 

there is still a lot of work remaining to be done linking specific ecosystem services to 

human health outcomes (Myers et al. 2013). 

Cotton's Effects on Land Use and Ecosystem Services 

 In West Africa and throughout the sub-Saharan Africa, cotton has major impacts 

on land use and biodiversity (Baudron et al. 2009) and subsequently on ecosystem services 

and human health.  In addition to the loss of ecosystem services like timber and forest food 

products through reduced forestland, cotton cultivation can lessen ecosystem services 

through other pathways, as cotton farming is one of the most polluting forms of agriculture 

in the world (Baudron et al. 2009).  For example, many insecticides used in cotton 

cultivation in West Africa are banned in developed countries (Stechert et al. 2014). There 

have even been cases of farmers’ deaths as a direct result of pesticides (Moseley and Gray 

2008), because farmers receive no training in how to properly use these noxious chemicals.  

Aside from direct poisoning, these chemicals have major effects on local ecosystems and 

the services they provide.  A study in Benin found that bats, a significant local pollinator, 

had been exposed to unhealthy levels of pesticides (Stechert et al. 2014). 

 Perhaps the most significant impact of cotton, however, is on the soil.  Cotton 

production is input intensive and can quickly exhaust soil in the absence of sound 

management practices (Moseley and Gray 2008).  Yields have declined since the mid-

1990s, and many postulate that this is clear evidence of cotton’s taxing effect (Benjaminsen, 

Aune and Sidibé 2010), although this is not entirely clear.  One survey of soil health in Mali 

found no clear trends in soil fertility, and concluded that decreasing yields was due to 

cotton being expanded to fields that were marginal to begin with (Benjaminsen et al. 2010).  
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However, another study found that cotton cultivation is leading to decreasing soil fertility 

as measured by Soil Organic Matter (SOM), and that cotton would no longer be economical 

in 25-35 years (Kidron et al. 2010).  While traditional farming methods are probably better 

for long-term soil health, they are impractical for cotton cultivation, and cannot continue to 

feed Mali’s rapidly-growing population (Grinblat et al. 2015). 

 Most significantly for this study, cotton cultivation is associated with and 

responsible for a widespread transition from swidden agriculture to permanent agriculture 

(Laris et al. 2015).  In southern Mali, industrial fertilizers are almost exclusively available 

to farmers through the national cotton company, CMDT.  This means that unless farmers 

grow cotton, they must use swidden agricultural techniques to obtain healthy soil (Laris et 

al. 2015).  Only by cultivating cotton, and thus accessing fertilizers, can farmers establish 

permanent fields, even for cultivating other crops like maize.  Laris describes this cotton-

induced shift as follows: 

 "Access to fertilizer and technology has been the catalyst for a shift from 
 rotational agriculture, based on sorghum and millet, to a more intensive 
 farming system where maize and cotton are grown" 
 
Nutrition 

 In sub-Saharan Africa, more than 200 million people are malnourished 

(McMichael et al. 2008).  This burden is most impactful on children, 28% of which are 

underweight in sub-Saharan Africa, and 36% of which are stunted in West Africa (UNICEF 

2009).  The impacts of systemic childhood malnutrition can be long lasting, and its limiting 

mental and physical effects can last the rest of an individual’s life.  Thus, when such large 

proportions of a generation of children are suffering from chronic malnutrition, this can 
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undermine future economic growth and perpetuate poverty (Eozenou, Madani and 

Swinkels 2013). 

 In Mali in particular, the effects of malnutrition are stark: 44% of households 

have a stunted child, with children in the Sikasso region being particularly vulnerable 

(Eozenou et al. 2013).  Household food security in Mali is particularly vulnerable to 

draught, with childhood malnutrition expected to rise in some areas as climate change 

affects rainfall variability (Jankowska et al. 2012).  Fluctuating food cereals prices have 

been shown to decrease food security in households that purchase a significant portion of 

their food (Eozenou et al. 2013), such as urban households or rural household that have 

invested heavily in cash cropping.   

 Perhaps one of the most severe and common forms of malnutrition in sub-

Saharan Africa is protein-energy malnutrition (Schonfeldt and Gibson Hall 2012), which 

can lead to Kwashiorkor, the disease that gives children distended bellies.  However, other 

forms of malnutrition, such as anemia, are also common in rural Africa and are often the 

result of nutrient deficiencies (Remans et al. 2012).  Often, nutrition interventions are 

made targeting these individual nutrient deficiencies (Bhutta et al. 2013).  However, 

programs designed to supplement one or two specific nutrients are often flawed due to an 

overly reductionist approach to human nutrition, which is multifaceted and complex.  For 

example, even with adequate nutritional intake, malnutrition can still occur due to poor 

absorption or excessive loss of nutrients (Remans et al. 2012).   

 Increasingly, good nutrition in agro-environmental settings is seen as a product 

of a diversity of dietary sources (Remans et al. 2012).  While overall dietary diversity is a 

good predictor of good nutrition, dietary functional diversity is now recognized is most 
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critical.  In this paradigm, foods fall into functional groups.  For example, in African farming 

systems, crops like maize, sorghum, millet are all carbohydrate-rich energy sources; beans 

and peanuts are protein-rich; and chili and sweet potatoes provide nutrients like vitamin A.  

Adequate nutrition in these farming systems thus requires food intake from foods that 

capture a wide swath of functional nutritional diversity (Remans et al. 2012). 

Nutrition and Ecosystem Services  

 There are two pathways by which ecosystem services affect human nutrition.  

Most directly, human nutrition is dependent on provisioning services that humans gather 

and eat directly from forests and wild areas, such as bushmeat, fish, wild fruits, and wild 

roots and leaves.  In sub-Saharan Africa, these wild food species are an important source of 

both micronutrients and macronutrients (Myers et al. 2013), and there is an increasing 

awareness that the disappearance of these species will pose a nutritional challenge for 

people who cannot easily replace these food sources (Myers et al. 2013).  One study 

illustrated this clearly by showing that households in Madagascar that were unable to 

harvest bushmeat had children with a 30% higher risk of iron deficiency and anemia 

(Golden et al. 2011).  Often it is the poorest members of communities who are most likely 

to be affected by the loss of these ecosystem services (Agarwala et al. 2014). 

 Aside from provisioning ecosystem services, regulating ecosystem services also 

affect human nutrition by creating the conditions necessary for productive agriculture.  

Healthy forests “contribute to the recycling of nutrients, suppression of agricultural pests, 

detoxification of noxious chemicals, control of hydrological processes and genetic 

resources for future adaptation to climate change” (Parrotta et al. 2015).  In particular, 
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healthy, diverse forests help soil by building up soil organic matter (SOM) when fields are 

fallow (Remans et al. 2012), and by protecting against erosion. 

 Thus, diverse forests affect human nutrition through both provisioning and 

regulating ecosystem services.  However, agricultural expansion and extensification has 

been shown to directly affect this diversity (Laliberte et al. 2010).  Decreased forest 

diversity means a decreased diversity of edible provisioning ecosystem services and 

therefore a reduction in the dietary diversity that is foundational to human nutrition.  

Additionally, forest fragmentation “can result in changes in ecosystem functions that can 

alter the supply and distribution of [regulating] ecosystem services vital for agriculture” 

(Parrotta et al. 2015).  Finally, in addition to the edible provisioning and regulating 

ecosystem services provided by forests, non-edible provisioning services such as clean 

water and fuelwood for cooking are also essential to human nutrition and should not be 

overlooked (Remans et al. 2012). 

Swidden Agriculture and Agricultural Transitions 

 A burgeoning literature is appearing around the practice of swidden agriculture 

by farmers around the word, and the various ways this traditional form of cultivation is 

being affected by globalization and the modern world.  Academics and policymakers have 

historically neglected swidden agriculture.  Because of its opportunistic and dynamic 

nature, swidden agriculture can be difficult to classify and detect, using either remote 

sensing or field survey methods (Van Vliet et al. 2013).  Often it is lumped into categories of 

'other' or as 'degraded' land cover types.  Policymakers usually see swidden agriculture as 

a threat to local forests, and implement strategies to minimize its prevalence (Van Vliet et 

al. 2013). 
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 Nevertheless, swidden landscapes can be quite diverse, because fallow fields can 

go through several phases of recovery and reforestation.  In some cases, an increase in 

swidden agriculture has led to increases in forest cover as well (Robichaud et al. 2001).  In 

addition, some researchers have found severe declines in biodiversity when swidden 

agriculture is replaced with permanent cropping (Rerkasem et al. 2009).  Swidden 

agriculture is most often practiced in marginal or frontier landscapes (Van Vliet et al. 

2013), and the demise of swidden agriculture is often associated with agricultural 

expansion and intensification (Feintrenie, Schwarze and Levang 2010).   In the semi-arid 

tropics, fields left fallow by swidden agriculture will become forested again faster than 

other areas (Laris 2008). 

 The transition away from swidden agriculture has real impacts on people and 

communities. Swidden landscapes are naturally quite diverse, and provide a wide array of 

livelihood strategies and ecosystem services (Rerkasem et al. 2009).  Leaving this farming 

system leads to a less diverse and heterogeneous landscape, and therefore a decrease in 

the diversity of available livelihood opportunities (Castella et al. 2012).  Thus, the 

transition away from swidden agriculture can create new marginalized and vulnerable 

communities (Cramb et al. 2009).  Just as cotton cultivation is perhaps the largest driver of 

the transition away from swidden agriculture in southern Mali, several studies worldwide 

have found cash crops to be a driver of similar agricultural transitions (Van Vliet et al. 

2013).  Still, swidden agriculture persists in the modern world, often in new forms and 

combined with other land uses (Schmook et al. 2013). 
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History of the Region 

Ecological Context 

 The study region is based in southern Mali, and the landscape has been variously 

described as a savanna (Laris and Dembele 2012), a parkland (Bayala et al. 2010), and 

forest-savanna mosaic.  Defining the eco-region can be difficult, as there is a slow decrease 

in rainfall from south to north in West Africa, leaving no clear ecosystem boundaries based 

on species composition (Linder et al. 2012).  Nevertheless, the area of the study is often 

characterized as Sudanian savanna with significant presence of Isoberlinia trees, between 

the Sudano-Sahelian grasslands farther north and Guineo-Sudanian savannas to the south.  

In this ecoregion, open forests and grasslands coexist across the heterogeneous landscape, 

with closed canopy forest occurring in more mesic areas.  The unstable boundary between 

forest and grasslands shifts based on both natural and human impacts.  Humans are well 

aware of how to control whether an area is forested or grassy, and they use a variety of 

mechanisms, such as encouraging or suppressing fire, to produce preferred land cover 

types and encourage biodiversity (Laris 2002, Fairhead and Leach 1996).  They also 

recognize that abandoned agricultural fields and settlements leads to forest, and can even 

estimate how long ago an area was farmed based on the development of the forest in that 

area (Laris 2008). 

Pre-Colonial Agriculture and History 

 While the entire study region is somewhat culturally homogenous, speaking 

mutually-intelligible varieties of Manding languages and practicing an Africanized form of 

Islam, different areas have distinct cultural histories.  The eastern part of the study region 

is inhabited by Bambaraized Fulani in a cultural region known as Wassoulou, while people 
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who were historically Senufo in the cultural regions of Yorobugula and Ganadougou inhabit 

the western part of the study area.  Much of the linguistic and religious homogeneity of the 

area is a result of the entire region being conquered by Samori Touré in the late 19th 

century.  Samori Touré imposed Islam and harshly punished the use of non-Manding 

languages within his empire before it eventually fell to the French. 

 Communities in the area have traditionally grown sorghum, millet and fonio as 

field crops, supplemented with garden plants and root crops such as yams, cassava and 

sweet potatoes.  These crops were grown in swidden systems, with plots of forest cleared 

and farmed for a few years, and then abandoned.  Often organic compost fertilizer was 

applied to increase soil fertility, but farming on one plot couldn’t be sustained indefinitely. 

Thus, after several growing seasons, fields were left to return to a forested state.  By 1991, 

this swidden method was still the most widely practiced form of agriculture (Bationo and 

Mokwunye 1991) and is still widely practiced to this day (Kidron et al. 2010). 

Cotton and Colonialism 

 Before colonialism, families would grow a few cotton plants for the local 

production of blankets, ropes and clothes (Lacy 2008).  However, during colonialism, 

administrators began encouraging intensive field cropping of cotton.  This was to feed an 

insatiable demand for cotton in European mills, and was particularly encouraged by the 

worldwide ‘textile famine’ caused by the American Civil War (Moseley and Gray 2008).  

Cotton production remained a major priority of colonial administrators in Mali, to the point 

that they were spending 70% of their resources on cotton intensification in 1950 (Lacy 

2008).  From the beginning of commercial cotton cultivation in Mali, clear tradeoffs were 

recognized between food production and cotton production. One farmer is recorded as 
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saying: "Before the arrival of cotton cultivation, my harvest was sufficient to nourish my 

family, but with cotton, I don't have time. I want to earn everywhere, and I no longer 

produce the quantity of cereals I need" (Koenig 2008). 

 After independence, Rural Development Organizations (RDOs) were formed to 

encourage cotton production and support farmers in modernizing (Moseley and Gray 

2008).  Many farmers received their first plows through these RDOs (Lacy 2008), and were 

motivated to grow cotton so they could access equipment and inputs (Koenig 2008).  They 

then began to use new farming equipment like plows on other crops (Koenig 2008).  It can 

be said that cotton in Mali has led to the uptake of plowed farming using animal labor, as 

well as abandonment of intercropping and minimum tillage practices (Moseley and Gray 

2008). 

Cotton Cultivation Today 

 Today, cotton in Mali is run by a parastatal company known as the Companie 

Malienne pour le Developpement des Fibres Textiles or CMDT.  CMDT grew out of the original 

postcolonial RDOs (Koenig 2008).  Originally CMDT signed contracts with entire villages: 

loans for inputs like fertilizer and sugarcane were taken out on a village level, as well as the 

risk of debt from crop failure and the fiscal payoff at the end of the season (Lacy 2008).  

However, in 2003, CMDT allowed sub-village organizations to form, giving individual 

farmers greater control over the risks and payoffs of cotton cultivation (Lacy 2008). 

 In spite of declining cotton prices and yields per area since the 1990’s, cotton 

production is still increasing in Mali (Koenig 2008).  Today, cotton is the second-most 

important cash crop produced in Africa (Moseley and Gray 2008).  However, the average 

wealth of African cotton farmers is less than those that focus on other cash crops (Moseley 



19 
 

and Gray 2008).  It is still very controversial whether cotton cultivation leads to poverty 

reduction or poverty production.   Many say that the loans farmers must take out to buy 

cottonseed and cotton inputs are predatory, while others argue that as a primarily 

smallholder-grown crop, cotton can bring income to a broad swath of African farmers. 

METHODS AND DATA 
 
 In examining possible relationships between cotton cultivation and malnutrition, 

two broad approaches were taken to get at the same question.  One involved classifying 

satellite imagery over multiple years and deriving variables from these classified images.  

These variables were then related to Demographic and Health Survey (DHS) data on 

anemia levels, height for age percentile (stunting), and weight for age percentile (wasting) 

in children across 37 DHS sites from 2006 and 2012. 

 The second approach involved data collected on the ground in three villages in 

the study region.  Household surveys were given to collect data on cultivation of cotton and 

other crops, wealth, literacy rates, household size, diet and nutrition, as well as data on 

children’s mid-upper arm circumference (MUAC) and child mortality rate at a household 

level.  In addition to the household surveys, forest surveys were conducted to look at tree 

species richness on a village level.  These variables were collected to look at overall 

relationships between malnutrition and cotton as well as two causal pathways by which 

cotton cultivation could be leading to malnutrition: through reduced ecosystem services at 

a village level or through poorer diets on a household level. 

Land Cover 
 
 The aim of the remote sensing portion of this thesis is to identify areas in 

southern Mali that are under swidden cultivation, areas that are under permanent 
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cultivation and areas that are not under cultivation.  These areas were combined with DHS 

(Demographic and Health Survey) data from 2006 and 2012 to determine if there is a 

significant empirical relationship between agricultural practices and malnutrition. 

 The study area covers 4 different Landsat scenes: path 199 and 198, and rows 53 

and 52.  Theoretically, the best time to detect agricultural land cover in Sudanian West 

Africa is after the rainy season, around December, because crops have been harvested yet 

forests and savannas are not fully senesced.   This means that the two land cover types are 

quite distinct, both spectrally and to the naked eye. This was confirmed by a recent study 

conducted in the same ecoregion in Burkina Faso, which found the greatest classification 

accuracy for images taken in the month of December (Liu et al. 2015).   Landsat images 

were obtained approximately every 7 years because most farmers who practice shifting 

agriculture in Mali abandon their fields after 5 to 7 years.  The years, dates and satellites of 

the images used are given in the following table:   

Path Row Year Date Satellite 
198 52 1990 December 28th Landsat 4 MMS 
198 53 1990 December 28th Landsat 4 MMS 
199 52 1991 January 4th Landsat 4 MMS 
199 53 1991 January 4th Landsat 4 MMS 
198 52 1999 December 5th Landsat 7 ETM+ 
198 53 1999 December 21st Landsat 7 ETM+ 
199 52 1999 December 12th Landsat 7 ETM+ 
199 53 1999 December 12th Landsat 7 ETM+ 
198 52 2006 December 16th Landsat 5 TM 
198 53 2006 December 16th Landsat 5 TM 
199 52 2006 December 23rd Landsat 5 TM 
199 53 2006 December 23rd Landsat 5 TM 
198 52 2014 December 22nd Landsat 8 OLI 
198 53 2014 December 22nd Landsat 8 OLI 
199 52 2014 December 29th Landsat 8 OLI 
199 53 2014 December 29th Landsat 8 OLI 

Table 1: Summary of Landsat images used in analysis 
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 Images in the same path were then mosaicked, taking the average of the values 

for the few pixels that overlapped.  This was done for all images in the same path except for 

those in path 198 from 1999, because two images from the same day could not be found.  

For these images from 1999, each image was classified separately and the images were 

mosaicked after classification.  To extract pixels in the areas of interest, the political areas 

in which the DHS sites would be analyzed were acquired in shapefile form.  This shapefile 

was then buffered by 25 kilometers, and the Landsat images clipped to the buffered area.  

The 2014 images were classified according to 11 different land cover categories, and then 

the classification was generalized to the previous years’ images using an updated version of 

Automatic Adaptive Signature Generalization or AASG (Gray and Song 2013). 

 The images from 2014 were classified according to 11 land cover types: (1) 

hilltop grasslands, or kurukan fuga, (2) forest plantations, mostly consisting of Cashew 

(Anacardium occidentale), or yiri turunen (3) burned savanna or kungo jeninen, (4) rivers 

and shallow water bodies, or kow ani baw, (5) mesic grasslands or folo, (6) agriculture or 

foro, (7) abandoned agricultural fields or gwenye, (8) rural residential areas or duguw, (9) 

bare ground from mines or unpaved roads or cencen, (10) unburned savanna and forest or 

kungo ani tufin, and, (11) for the images in Yanfolila, the deep waters of Selingué Lake.  

Although the analysis was not done across eleven distinct categories, the images were 

initially classified across all of these categories, as this was how many natural groups there 

were in the images.   

 In addition to 6 spectral bands as predictors, altitude from a Digital Elevation 

Model (DEM) and latitude were also used to aid image classification.  The later was used 

because there was a significant gradient of senescence from the northernmost part of the 
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study region to the southernmost part.  Because of this, areas of the same land cover 

category would have quite different spectral signatures across the images.  Thus, adding 

latitude as one of the classification features in addition to elevation and six spectral bands 

significantly improved the classification.    

 Using training data from visual evaluation on the screen, a random forest 

classifier was created in R and used to classify every pixel in the 2014 images.  This 

classification was then generalized to the 2006, 1999 and 1991 images using an adapted 

version of the AASG method (Gray and Song 2013).  This adapted method used the same 

technique as Gray and Song to select training data for previous years, but a random forest 

classifier was used in this study instead of the maximum-likelihood classifier used by Gray 

and Song.  According to this method, pixels in the Near Infra-Red band were differenced 

between the already-classified 2014 image and the image to be classified.  Then, pixels 

within a 6th of a standard deviation of the median difference were selected.  Assuming that 

the majority of the land cover classes have not changed between 2014 and the year of the 

image being classified, these selected pixels are very likely to be of the same land cover 

class.  Thus, those pixels were used to train the image to be classified based on the land 

cover class that was already determined for 2014.    

 Once the images were classified, images from the same year were all mosaicked 

together, to create one large classified image for each year in the study.   These large 

rasters were then reclassified twice; once to determine areas with swidden agriculture and 

areas with permanent agriculture, and once to determine areas with natural land cover 

types offering public ecosystem services.   
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 For the analysis of land cover types offering ecosystem services, a binary raster 

was created of all areas offering non-agricultural ecosystem services versus areas offering 

only agricultural ecosystem services or those offering effectively no ecosystem services 

(such as bare ground).  This was done for the years 2006 and 2014.  Hilltop grasslands, 

burned savanna, rivers, mesic grasslands and unburned savannas were counted as areas 

offering non-agricultural ecosystem services, while all other areas were excluded. 

 For the analysis of swidden agriculture vs permanent agriculture, these images 

were reclassified with planted trees, currently agricultural areas, recently abandoned 

agriculture and rural residential areas classified as 'agricultural areas' and all other 

categories classified as 'non-agriculture'.   Rural residential areas were classified as 

agriculture because occasionally pixels that were clearly agricultural were misclassified as 

rural residential in the rural areas where the analysis would take place.  Major urban 

centers such as Bougouni, Kolondieba and Yanfolila were far enough from the rural DHS 

clusters that they wouldn't be included in the actual analysis, and thus classifying their 

urban pixels as 'agriculture' was of no consequence.  This time-series approach to detecting 

swidden agriculture has been used before in southeast Asia (Chowdary, Yasuyuki and 

Tateishi 2012, Hurni et al. 2012) and is a methodology that Li, in a review of swidden 

agriculture detection techniques, calls the Landscape Ecology based approach (Li et al. 

2014). 

 Because ground-truthing points were collected in the field in September and 

October 2014, a confusion matrix can be constructed for this year.  Furthermore, because 

the images from previous years were classified from the 2014 classification using AASG, it 

is likely that the accuracy of the 2014 image reflects the accuracy of the previous images.  
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The ground truthing points were collected by walking 3-km transects from the center of 

each study village, and recording the land over class every 200 meters.  Thus, the sampling 

method was not stratified by land cover class.  The confusion matrix for the binary 

agriculture vs non-agricultural classification is as follows: 

  Reference 

  Non-Agriculture Agriculture 

Prediction Non-Agriculture 190 9 

Agriculture 9 82 

Table 2: Classification matrix for agricultural and non-agricultural pixels 

The classification had an overall accuracy of 93.8%, and a kappa score of 0.8559.  Of the 

199 non-agricultural control points collected, 190 were accurately classified and 9 were 

misclassified as agriculture.  For the 91 agricultural control points collected, 82 were 

classified accurately and 9 were misclassified as non-agriculture. 

 The binary rasters for each year were then overlaid to determine which areas 

were practicing permanent agriculture, which were practicing shifting agriculture, and 

which were consistently some form of non-agricultural land use type.  The classified images 

for 1991, 1999 and 2006 were combined to determine agricultural systems in 2006, and 

the images for 1999, 2006 and 2014 were combined to determine agricultural systems in 

2012.  A visual illustration of using multi-temporal classified images to determine areas 

practicing swidden vs permanent agriculture is illustrated in Figure 1: 
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Figure 1: Detecting permanent vs swidden agriculture 

Combining DHS Data with Land Cover Data 

 Demographic and Health Survey (DHS) sites were selected for rural areas in the 

Circles of Yanfolila, Kolondieba and Bougouni for the years 2006 and 2012.  These points 

were buffered by 5 kilometers, 11 kilometers and 25 kilometers.  For both the ecosystem 

services data and the agricultural type data, data was extracted for DHS points at every 

buffer and then summarized.  For available ecosystem services, the percentage of total land 

area as a land cover type offering public ecosystem services was calculated.  For looking at 

swidden versus permanent agriculture, pixels that were classified as agriculture two years 

in a row were counted as permanent.  Pixels that had been agriculture and then were later 

classified as savanna were counted as swidden.  Pixels that were only classified as 

agriculture in the most recent image were discarded.  Then, the percentage of pixels 

classified as swidden out of those classified as either swidden or permanent was calculated.   
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Household Surveys 

 Household surveys were conducted in three different villages in order to better 

understand (1) if there was an association between cotton cultivation and different 

indicators of childhood malnutrition; (2) whether such an association takes place on a 

household scale, a village scale, or both; and (3) different causal pathways by which cotton 

cultivation could be leading to malnutrition. 

 Of the study villages, two are in the Cercle of Yanfolila, and one is in the Cercle of 

Kolondieba.  The village of Kissa, in Kolondieba Cercle was where the author lived during 

the Peace Corps and had many local connections to assist with beginning and conducting 

fieldwork.  The other two villages were recommended by the Mayor of the circle of 

Yanfolila based on criteria such as practicing cotton cultivation, distance from markets and 

hospitals, population density, and receptivity to the presence of researchers. 

 In each village, a list of cotton cultivating households was obtained from local 

cotton growers associations, of which there were two in each village.  Additionally, a list of 

households that did not grow cotton was obtained by either attaining tax documents, or by 

asking the village chief and other prominent members of the community about such 

households.  All three of the study villages were small enough that all households knew 

each other well, and so village chiefs could easily name households not present on the list 

of cotton growers.  The list of households was then randomized by drawing names from a 

hat and recording the order in which they were drawn, until all households had been 

selected.  The surveys were then conducted by visiting households one at a time through 

the list.  Households that did not wish to conduct surveys were to be skipped, although this 

never happened in practice.  Those that were unavailable were returned to at a later time.  
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Usually surveys took about an hour and a half, and about four were conducted a day.  In the 

end, 114 households were surveyed across three villages. 

  The content and format of the surveys were modeled off of various microdata 

surveys collated by the World Bank, such as the 2006 Multiple Indicator Cluster Survey 

(MICS) used in Cote d’Ivoire and the 2010-2011 Integrated Household Survey in Malawi.  

The actual survey instruments used are available in Appendix 2.  The surveys were 

designed to collect data on a variety of variables related to cotton production, land cover, 

wealth, diet and health.  In addition, the mid-upper arms of each child between six month 

and five years of age were measured.  Mid-upper arm circumference adjusted by age is a 

commonly used proxy for malnutrition, as it correlates closely with body mass index and it 

can be easily measured in the field (Jeyakumar, Ghugre and Gadhave 2013, De Onis et al. 

1997).  The surveys were conducted with the help of a research assistant from each village, 

who organized meetings with the household heads.  Surveys were conducted in the local 

language of Bambara and were answered by the household head or by another 

knowledgeable household member.  The survey number was recorded on the datasheets, 

but not the name of the household, to protect informant anonymity. 

Forest Surveys 

 For this study, to empirically test whether or not biodiversity and ecosystem 

service levels could associated with malnutrition, tree diversity data was collected from 36 

different plots in the study region.  During the land cover surveys, when forestland was 

encountered, several other data points were recorded.  A plot center point was designated 

as the exact point that the GPS signaled that it was 200 meters from the previous land 

cover center point.  Then, all trees within 10 meters of the plot were identified with their 
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species in the local name, their diameter at breast height (DBH) and their height.  A tree 

was defined as any woody plant greater than 2 inches at breast height.  A local hunter from 

each village was paid to act as a research assistant and assist in tree identification.  For 

each unknown tree species, photos were taken, and the local name recorded.  These photos 

were used in conjunction with the book Arbres, Arbustes et Lianes du Pays Seches de Afrique 

L'Ouest, the premier tree identification guide for West Africa.  While not all trees could be 

identified, because the same hunter for each village gave them in their local name, it is 

possible to assess forest diversity for each village, although the overall diversity between 

all villages will be impossible to estimate perfectly.  This was done to assess the forest 

diversity and health of the areas within 3 kilometers of a village.  

ANALYTIC APPROACH 

 In investigating the relationship between cotton cultivation and malnutrition, 

my study approached these factors at two different scales: at a landscape scale using DHS 

data and satellite imagery as well as at a village/household scale.  Looking at data at a 

village and household scale allowed me to determine exactly how much cotton a given 

household or village cultivated rather than using just a proxy variable as I had to do at the 

Landscape scale.  It also allowed me to collect data on household diet, forest resource 

availability and forest species richness, to determine if these variables could help to explain 

causal pathways generating the observed co-association between cotton cultivation and 

malnutrition.   Looking at the same data at a landscape scale allowed me to show that my 

findings across the three study villages are generalizable and characteristic of the study 

region.   
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 Collecting household survey data and analyzing it using statistical models is a 

common practice in research around development economics, agriculture, livelihoods and 

international public health.  While the most robust findings from such methods are from 

studies conducted with a randomized controlled trial (RCT) framework, significant 

correlation between different observed variables can be evidence of a causal relationship 

and indicate that further research is justified.  Some examples of works cited in this paper 

that this analytic approach is based off of are: Vongvisouk, who used household surveys to 

demonstrate that cash cropping households have more agricultural land that non cash 

cropping households in Laos (Vongvisouk et al. 2014) and Huebes, who combined 

household surveys on non-timber forest product (NTFP) usage with forest surveys to 

predict future NTFP availability (Heubes et al. 2012). 

 There is also a well-developed literature around environmental effects on public 

health, and many studies have combined satellite-derived areal data at multiple scales with 

point data.  Many authors have looked at how environmental variables affects incidences of 

disease by combining point data with remotely sensed variables, such as Emch, who looked 

at environmental variables’ effect on cholera incidence in South Asia (Emch et al. 2008) or 

Dambach, who looked at malaria incidence in relation to environmental variables in West 

Africa (Dambach et al. 2012).  This study also owes much to a very similar study of 

ecosystem services in Mali, which combined household surveys with environmental 

variables to look at land degradation, ecosystem services and household income (Liebenow 

et al. 2012) 

 This study seeks to see if there is indeed a relationship between cotton 

cultivation and malnutrition as well as to explore possible mechanisms creating this 
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relationship at the household and village level.  In doing so, several variables were often 

used as a proxy for one phenomenon.  For example, the variables mid-upper arm 

circumference, household infant mortality rate, height for age, weight for age and anemia 

level are all use as indicators of malnutrition.  Using multiple variables as an indicator of 

one broad phenomenon is partially due to that fact that different datasets were used at 

different scales, and partially necessitated by the breadth of the phenomena under study.  

Diet, ecosystem services and malnutrition can all be measured across multiple indicator 

variables that are not all necessarily always present: just because children are underweight 

does not mean that they will have stunted heights, and just because one forest resource is 

bountiful does not necessarily mean that an area has high levels of ecosystem services 

overall.  So, this study used multiple variables and sometimes multiple models to explore 

statistical relationships between broad phenomena.  To ensure that variables were not 

“cherry-picked,” the results of all models run are reported here, not just the statistically 

significant models. 

RESULTS 

Verifying the Sikasso Paradox 

 One of the premises upon which the hypothesis was based was that childhood 

malnutrition is surprisingly worse in the Sikasso region of Mali.  To demonstrate 

empirically that this Sikasso paradox actually exists, child health indicators were 

aggregated and compared for both DHS surveys, and Welch's t-tests were done to show 

that children's height for age, weight for age and hemoglobin levels were worse in the 

study area (n=871) compared to the average for all rural areas in Mali (n=16646).  A 

Welch's t-test was used instead of a student’s t-test because the former is more reliable 
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when the two sample populations have unequal sample size.  In tabulating region means 

and country means, sample weights provided by DHS were used. 

 Height per Age 
Percentile 

Weight per Age  
Percentile 

Hemoglobin Levels 
Adjusted for Altitude 

(g/dL) 

All of Mali (mean) 25.1% 
(n = 16646, 

stdev = 31.7%) 

20.6% 
(n = 16646, 

stdev = 27.2%) 

94.12 
(n = 8908, 

stdev = 18.4) 

Study Region  
 (mean) 

21.7% 
(n = 871, 

stdev = 30.2%) 

18.1% 
(n = 871, 

stdev = 25.1%) 

89.54 
(n = 511, 

stdev = 18.5) 

Welch’s T-Test 
p-value 

3.187e-06 *** 0.0003128 *** 1.011e-09 *** 

 Table 3: Difference between Sikasso region and study area across multiple child malnutrition 
indicators 
 
 These summary statistics show that levels of height per age percentile, weight 

per age percentile and anemia are significantly worse in the DHS clusters from the Sikasso 

region of Mali. 

Households Models 

 In addition to searching for region-scale patterns of cotton-driven agricultural 

change and malnutrition across 37 village clusters, household surveys were conducted in 

three villages to test two hypothesized causal pathways by which cotton cultivation could 

be affecting child health; by effecting changes in diet and by effecting changes in ecosystem 

services. 
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Figure 2: Hypothesized causal pathways linking cotton and health.  Every black arrow represents a hypothesized association 
that was tested. 

Cotton and Diet 

 A common narrative concerning the Sikasso paradox is that cotton-producing 

households eat worse food in both quality and quantity than those that only grow food 

crops.  This is because there are necessarily tradeoffs between investment in food crops 

and cotton in terms of time, land area and agricultural inputs.  Thus, it was hypothesized 

that households that dedicate a significant proportion of their farmland to cotton 

production would have significantly different diets from those that do not invest in cotton 

production.  Specifically, it was hypothesized that they would eat less nutritious, protein 

dense and investment-intensive foodstuffs like meat, beans, fresh fish, dairy and eggs, 

which play a more critical role in nutrition (FAO 1997, Schonfeldt and Gibson Hall 2012, 

Remans et al. 2012).   

 Major proteinaceous foods measured in this study were meat, bushmeat, beans, 

peanuts, dry fish, dairy and eggs.  Other foods measured were starchy foods rich in 
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carbohydrates, like fonio, toh, rice and couscous.  Informants were asked how often they 

ate each food on a weekly or monthly basis.  Some foods were reported to be eaten very 

regularly across all households and villages - 94.7% of households said they ate toh twice a 

day, and 95.1% said they ate peanuts at least once a day.  However, high-value 

proteinaceous foods eaten with wide levels of variance across study households were 

aggregated to determine the number of times a month each household in the study had a 

significant protein source. 

 

Figure 3: Frequency of major protein sources per month, by household 

 Although an ANOVA test showed that the three study villages have significantly 

different levels of cotton cultivation with a p-value of 1.85e-07, the villages did not have 

significantly different diets for most food items, especially those that were high in protein 

such as dairy, beans or meat, or even all protein sources combined.  To account for village 
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level fixed effects in exploring the relationship between diet and cotton cultivation, village 

dummy variables were added to the model. 

 A multiple linear regression run for all households between percentage of total 

farming area devoted to cotton and frequency of consumption of various food items 

showed that there was no relationship between cotton cultivation and frequency of 

consumption of high-value proteinaceous foods.  To validate this model, a correlation 

matrix was created, showing that there was no significant multicollinearity between the 

predictor variables (see Appendix 1).  Furthermore, the residuals were found to be 

normally distributed. 

 Estimate Std. Error t value Pr(>|t|) 
(Intercept) 4.257e-01 4.781e-02 8.906 1.86e-14 *** 

MEAT -3.037e-03 4.429e-03 -0.686 0.4944 
BUSHMEAT -5.067e-03 3.692e-03 -1.373 0.1728 

BEANS -2.431e-03 2.846e-03 -0.854 0.3951 
FISHWET -3.138e-05 1.740e-03 -0.018 0.9856 
FISHDRY -1.162e-04 1.506e-03 -0.077 0.9386 

DAIRY 5.306e-05 6.299e-03 0.008 0.9933 
EGGS 5.745e-03 9.460e-03 0.607 0.5450 

VILLAGEKISSA -9.975e-02 4.171e-02 -2.391 0.0186 * 
VILLAGEWASADA -2.299e-01 5.223e-02 -4.401 2.61e-05 *** 
Table 4: Relationship between high value food items (IV) and cotton as a percent of 
households’ total production (DV), with village dummy variables. 
  
 While there was no significant relationship between cotton farming and 

frequency of consumption of major proteinaceous foods, it should be noted that there was 

a very significant relationship between total hectares of cotton farmed and total hectares of 

maize farmed (p= 7.67e-07) yet no relationship between total hectares of cotton farmed 

and total hectares of sorghum or millet farmed.   This is very unsurprising, as much has 

already been said about how cotton cultivation is accompanied by increasing maize 

cultivation (Laris et al. 2015).  However, changing from one field grain to another does not 
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have major nutritional import (Remans et al. 2012).  Furthermore, overall, households 

were not found to have significant differences in consumption rates of major proteinaceous 

foods relative to cotton as a percentage of total crops farmed. 

 Thus, although it has been suggested that cultivating cotton means households 

are unable to grow enough food and their children go hungry, this is not borne out by this 

data.  Either houses that cultivate cotton do manage to grow the same amount of food crops 

as houses that do not invest heavily in cotton, or they use their cotton income to purchase 

the food that they were not able to cultivate.  In either case, whether households invest 

heavily in cotton or not at all, they do not have significantly different diets. 

Diet and Health 

 Although cotton cultivation was not found to be related to diet, some foods were 

found to predict child health, especially child mortality.  The child health variables 

surveyed were mid upper arm circumference (MUAC) adjusted for age, and number of child 

deaths in the last five years adjusted by the household size.  Confounding variables tested 

were the household's overall wealth, the number of literate people in the household, and 

the amount of childcare provided by the household.  The latter variable consisted of an 

index from 0 to 2 calculated as the number of children who had received vaccines only 

available at a hospital, plus the number of children who had received oral anti-parasitic 

medicines, divided by the total number of children.  This was because households are 

variable in the amount of time and money they choose to invest in childcare: some poorer 

households may invest more into childcare and therefore have healthier children than their 

income or diet may reflect.  This variable was meant to explain such variability. 
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 As was mentioned, a MANOVA test showed that there was no inter-village 

variation in diet.  Separate ANOVA tests of the two major health outcome variables showed 

that there was also no inter-village trend in the number of deaths in the past five years, but 

there was a major inter-village trend in MUAC (p= 0.000335), so dummy variables were 

included in the MUAC model to account for village-level effects.  

Table 5: Relationship between consumption of high-value food items and household child 
mortality rate 
  
 Two multivariate linear regressions were run with frequencies of high-value 

food sources and possible confounders as the independent variables, and with child MUAC 

as the dependent variable for one and child mortality as the dependent variable for the 

other.  The child mortality model included all of the possible covariates, but the MUAC 

model only included literacy rates and childcare, because this model had the best scoring 

Akaike Information Criterion (AIC).  For both models, correlation matrices were created to 

verify that there was no significant multicollinearity between the predictor variables.  

Furthermore, tests of normality on the residuals for the models showed that the MUAC 

model, which had significant results, also had residuals that were normally distributed.  

These models showed no correlation between consumption of high-value foods and MUAC.  

However, increasing the frequency of consuming milk and eggs significantly (p < 0.01) 

 Estimate Std. Error t value Pr(>|t|) 
(Intercept) 8.72E-01 2.55E-01 3.421 0.000701 *** 

MEAT 1.67E-02 1.68E-02 0.996 0.31999 
BUSHMEAT 1.15E-01 1.55E-02 7.396 1.11e-12 *** 

BEANS 3.57E-03 1.19E-02 0.299 0.765069 
FISHWET 1.41E-02 6.25E-03 2.262 0.024344 * 

DAIRY -5.49E-02 2.52E-02 -2.176 0.030261 * 
EGGS -1.09E-01 3.22E-02 -3.396 0.000766 *** 

CHILDCARE -4.43E-02 1.30E-01 -0.341 0.733048 
WEALTH 6.01E-08 2.68E-08 2.244 0.025469 * 

LITERACYPERCAP -9.17E-01 4.36E-01 -2.104 0.036112 * 
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reduced the infant mortality rate within a household.  Surprisingly, high rates of bushmeat 

consumption was associated with worse infant mortality rates, suggesting that this is a last 

resort of households that are already marginalized. 

 While diet has a significant effect on child mortality rates, cotton cultivation was 

not found to have any sort of significant relationship with diet.  Thus, if cotton cultivation is 

an explanation for worse-than-expected child health statistics in this part of Mali, it is not 

because cotton cultivating households have significantly worse diets. 

Cotton and Forest Resources 

 Aside from affecting diets at the household level, cotton is also said to impact 

local environments and reduce ecosystems services.  Thus, it was hypothesized that cotton 

production would be inversely correlated with different indicators of forest resource 

availability.  Three variables were used to measure the availability of forest resources: the 

average distance households reported travelling to gather various resources; a binary 

variable for whether or not households reported a resource decreasing in availability; and 

the average number of unique tree species found per forest plot near a village.  A model 

was fit for each variable, to see if cotton cultivation was a significant predictor of the 

variable.  Because the population density of an area can greatly affect that area's 

biodiversity and availability of forest resources, this variable was included in these forest 

resource models. 
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Figure 4: Average distance traveled to collect forest resources, by resource 

 

 For average distance to gather forest resources, a multilevel linear regression 

was run.  This was because one of the predictor variables, population density, was 

measured at the village level and would therefore be linearly dependent on village dummy 

variables and invalidating their use.  So, to account village-level effects without using 

dummy variables, a multilevel model was selected.  In this model, no relationship was 

found between cotton cultivation and distance to gather forest resources at the household 

level, and the model’s residuals were found to be normally distributed.  This was also the 

case for the logit regression run on resource scarcity: cultivating cotton in no way 

predicted a change in the log-odds that a household would report resource scarcity.  

However, cotton cultivation was found to have a significantly negative relationship (p= 

0.000456) with tree species richness, even when taking population density into account in 

a multiple regression run with cotton cultivation and population density predicting 
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biodiversity levels.  In validating the model, however, it was found that residuals were not 

normally distributed.  This is almost certainly because the outcome variable, biodiversity, 

was only one of three possible values.  So, while the findings were significant, the validity of 

the model was somewhat tempered by the fact that only three villages overall could be 

measured for biodiversity levels, and thus the residuals were not normally distributed.   

 Overall, these models offer preliminary evidence that cotton cultivation may 

have a neighborhood effect in reducing the biodiversity of the forest areas surrounding a 

village, possibly through effects like degrading soil (Benjaminsen et al. 2010), reducing 

forest connectivity (Parrotta et al. 2015), or harming pollinators (Stechert et al. 2014).  

Biodiversity is a major indicator of available ecosystem services (Mertz et al. 2007). 

Forest Resources and Health 

 In examining the relationship between forest resources and health outcomes, 

separate models were made for two child health outcomes with the predictor variables 

biodiversity, average distance to gather forest resources and whether scarcity was 

reported for a forest resource.  One model was run with the dependent variable as 

children's MUAC, and one model was run with the dependent variable as the household 

child mortality rate.  Because an ANOVA showed significant inter-village variation for 

MUAC, a multilevel linear model was used to account for village-level effects, although this 

was not necessary for the household child mortality rate as there was not significant inter-

village variation in this variable.  For each model, the possible confounding variables of 

population density, number of literate members in the household, household wealth status, 

household size and childcare investment were included.  These confounding variables were 

removed one-by-one and tested against AIC to determine whether they improved the 
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model.  In the end, childcare investment remained in the model that had MUAC as the 

outcome variable, and population density and literate household members remained in the 

model that had childhood mortality rate as the outcome variable. 

 In validating these models, no multicollinearity was found between predictor 

variables.  For the MUAC model with significant findings (shown in table 6), a Lilliefors test 

showed that the residuals are probably not normally distributed, although they may be (p = 

0.017, see Appendix 1), and they have a mean of 0 and are not bimodal.  The borderline p-

value on the Lilliefors test may be an artifact of the somewhat small sample size (n=114). 

 Estimate Std. Error t value Pr(>|t|) 
(Intercept) -2.87238 0.42211 -6.805 4.66e-11 *** 

BIODIVERSITY 0.39583 0.14104 2.807 0.0053 ** 
DISTANCE -0.01389 0.03239 -0.429 0.6683 
SCARCITY -0.04767 0.09476 -0.503 0.6153 

CHILDCARE 0.14396 0.10644 1.352 0.1771 
Table 6: Relationship between indicators of forest health and child MUAC 
 
 It was found that increases in biodiversity significantly predicted higher MUACs 

for children (p= 0.0053), probably though a greater availability of provisioning and 

regulating ecosystem services.  However, no effect was found for reported distance to 

gather resources or whether a scarcity was reported.  Additionally, no relationship was 

found between forest resource availability variables and child mortality rate.  Nevertheless, 

a significant association between biodiversity as measured by tree species richness and 

MUAC is very interesting given that a relationship was also found between cotton 

cultivation and tree species richness.   
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Summary: Cotton and Health 

 After examining pathways by which cotton cultivation has been theorized to 

affect child health, a final model was run for both child health variables, to determine if a 

direct statistical relationship could be found between cotton as a percent of total farmed 

area and child health outcomes.   

 Again, confounding variables were added to the models and removed serially to 

see if their removal improved the AIC.  For the model that had MUAC as an outcome 

variable, the only confounding variable to improve the model was childcare, whereas for 

the model with child mortality rate as an outcome, several confounding variables were 

included.  Both models were run with village dummy variables and without village dummy 

variables. 

 In validating these models, it was confirmed that there was no multicollinearity 

among predictor variables.  Furthermore, residuals were tested for normality.  Although 

the residuals of the regressions with childhood mortality rate as the outcome variable were 

not normally distributed, the regressions with MUAC as the outcome variable were found 

to be normally distributed.  These were the models for which statistically significant 

relationships were found, and from which conclusions were drawn.  

 While there was no significant relationship between cotton cultivation and 

household infant mortality rate, there was a significant relationship between MUAC and 

cotton cultivation.  This significant relationship went away, however, when controlling for 

village-level effects by adding village dummy variables.  The fact that the effect went away 

when controlling for village level dummy variables suggests that if cotton cultivation is a 
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driver of malnutrition, it is more likely to be a driver at a village level than at as household 

level. 

 

Figure 5: Hypothesized linkages that were proved or disproved, and the degree of significance by which the linkage was 
demonstrated. 

Region Scale Model 

 To see if the findings of the household surveys are generalizable across the 

entire region, an analysis was conducted using region-scale data.  Separate models were 

constructed for the outcome variables of weight for age percentile, height for age percentile 

and for anemia, as measured by hemoglobin levels in grams per deciliter and adjusted for 

altitude. The predictor variables were cotton cultivation and available ecosystem services.  

Cotton cultivation was measured by the percentage of agricultural areas within a certain 

distance of a DHS cluster that were classified as swidden, and available public ecosystem 

services were measured as the percentage of areas within the same distance of a DHS 

cluster classified as hilltop grasslands (kurukan fuga), burned savanna (kungo jeninen), 

rivers and shallow water bodies, (kow ani baw), mesic grasslands (folo), or unburned 
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savanna (kungo ani tufin).  Although land cover types like tree plantations and agricultural 

fields can offer regulating ecosystem services that benefit all, they mostly provide 

provisioning services that belong to only one household.  When looking at what this paper 

calls public ecosystem services, this study is looking at land cover types that offer 

regulating ecosystem services, such as pollinators, watershed protection, or soil 

rejuvenation; as well as provisioning ecosystem services that are publicly available, such as 

bushmeat, forest foods, firewood, medicine, etc. 

 In addition to cotton cultivation and available public ecosystem services, the 

models also included confounding variables.  These were: wealth, a categorical variable 

supplied by the DHS data; household size; population density at the level of the commune, 

the smallest administrative unit above the village; the network distance to a market, 

defined as a town with over 20,000 people; the absolute distance to a Centre de la Santé 

Communitaire, a low-level hospital; and the absolute distance to a Centre de la Santé 

Référence, a higher level hospital.  Finally, all of the variables were grouped at the 

household level or the village level, with the exception of the outcome variables, which 

measured health effects at the individual level. 

 The data extracted from buffers around the DHS sites were extracted at 

multiples scales, and models were constructed for each scale.  This was done to determine 

whether the effects of cotton cultivation on malnutrition occurred at local scales, via 

pathways like household diet patterns, or whether the effects were more present at larger 

neighborhood scales.  The ecosystem processes affected by cotton cultivation, such as 

decreased game because of deforestation, were hypothesized to create a neighborhood 

effect of malnutrition.  Additionally, the scale at which landscape drivers of malnutrition 
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can be detected is affected by that fact the coordinates given for the DHS points have been 

offset by up to 5 kilometers.  Examining possible land cover effects at multiple scales was 

one way to get around this issue. 

 Because the independent variables are at the village level and the outcome 

variables are at the individual level, and because the data came from multiple years, the 

models used were multilevel linear models, with grouping variables as the household level 

(n=184), the village level (n=37), and the year level (n=2).  Because it was not theorized 

that the relationship between cotton cultivation and malnutrition would vary between 

different groups at a level, but only that child health outcomes would already be variable 

between different groups, a random intercept/fixed effects model was used, where 

intercepts can vary but slopes are held constant.  To estimate the p-values of the 

coefficients, the Satterthwaite approximation of the degrees of freedom is used.  In the 

given tables, PERSWID is the percent of agriculture practiced as swidden, COMMONS is the 

percent of surrounded areas providing communal ecosystem services, POPDENS is the 

population density, MARKET, CSCOM and CSREF is the distance to a market, minor hospital 

or major hospital, WEALTH is the households animal wealth in West African Francs, and 

HHSIZE is the size of the household.  Weight and Height are given in percent*100 and 

Anemia is altitude-adjusted hemoglobin level in g/dl with one implied decimal. 

5 Kilometer Neighborhood 

 5 kilometers is the smallest reasonable neighborhood to look at landscape 

effects on DHS clusters, because that is the maximum distance that their GPS coordinates 

are jittered.  Most famers only establish fields within 5 kilometers of their villages, although 
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the distance can vary with population density.  Pathways by which cotton cultivation could 

affect health at this scale would be dietary as well as ecological. 

 Weight Height Anemia 
(Intercept) -2916.936 -2837.932 8.362e+01 

 (0.0343*) (0.29293) (1.74e-05**) 
PERSWID 3193.641 3325.954 -6.823e+00 

 (0.0397*) (0.27208) (0.641) 
COMMONS -43.358 -15.927 1.213e-01 

 (0.9069) (0.97124) (0.966) 
POPDENS 30.724 30.112 5.221e-02 

 (8.50e-05**) (0.03796*) (0.433) 
MARKET 72.610 187.151 -1.880e-01 

 (0.5666) (0.47622) (0.879) 
CSCOM -12.485 -61.601 1.086e-01 

 (0.6961) (0.35749) (0.730) 
CSREF 16.700 23.918 5.571e-02 

 (0.0749.) (0.20908) (0.532) 
WEALTH 130.192 130.734 1.610e+00 

 (2.71e-11**) (2.01e-08**) (1.86e-10**) 
HHSIZE 35.592 20.601 5.597e-01 

 (1.03e-09**) (0.00301**) (7.22e-13**) 
Table 7: Coefficients for predictor variables for outcome variables weight, 
height and anemia, with significance in parenthesis for a 5 km buffer. 

 
 Of the villages sampled, the lowest percent of swidden agriculture within 5 km of 

a village was 47%, whereas the highest rate of swidden agriculture was 98%, with an 

average of 80% of agriculture being swidden.  There was also a slight but clear temporal 

trend away from swidden agriculture: the average percentage of agriculture classified as 

swidden practiced by a village in 2006 was 85%, whereas this had decreased to only 72% 

by 2012.  Thus, while permanent cropping is increasing, swidden agriculture is still the 

dominant form practiced in the region. 

 The percentage of land cover within 5 km of a DHS site offering ecosystem 

services varied from only 41% to 97%, with an average of 82%.  Again, there is a temporal 
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aspect: just as the percentage of agriculture practiced as permanent cropping has 

increased, the average percent of land cover offering public ecosystem services has 

decreased from 87% to 75%. Both of these trends reflect what is called agricultural 

extensification (Laris et al. 2015).  Nevertheless, the high levels of land cover surrounding 

villages providing public ecosystem services shows how most agricultural fields are 

patches in a diverse and heterogeneous landscape. 

 There was a slightly significant (p= 0.039) relationship between percent of 

agriculture as swidden and children's weight for percentile.  An increase of one percent in 

swidden agriculture predicts an increase of 3.1 percentile points for children's weight.  

However, no significant relationship was found between the independent variables of rates 

of swidden agriculture and available ecosystems services and the dependent variables of 

height by percentile or anemia.  The covariates of population density, distance to a city over 

20,000 people, distance to a major hospital, distance to a community hospital, household 

size and household wealth were included in the models.  For child weight by percentile, 

population density and distance to a major hospital were very significant predictors, with 

increases in distance to a hospital and increases in population density predicting increases 

in children's weight.  Child height by percentile had the same significant confounding 

variables that were significant in the same way.  Additionally, household wealth was a 

significant predictor of increased child heights.  No variables out of percent swidden 

agriculture and the confounding variables were found to be significant predictors of child 

anemia. 

11 Kilometer Neighborhood 
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 An 11 kilometer area around a village is farther than most farmers go to 

cultivate fields.  Most forest resources are collected within 11 kilometers of a village, and an 

11 kilometer buffer was selected because this was the maximum distance that respondents 

reported travelling to collect forest resources in the household surveys.  Sometimes 

farmers will have fields this far out and they will build houses (buguda) to stay in while 

they are farming.  Neighboring villages are can be within 11 kilometer of a village, and their 

farming practices can affect ecosystem health and the availability of forest resources. 

 Weight Height Anemia 
(Intercept) -2506.889 -2191.123 8.195e+01 

 (0.08829.) (0.44331) (0.000109**) 
PERSWID 2721.455 2569.043 -4.880e+00 

 (0.11244) (0.43913) (0.759841) 
COMMONS -23.317 -5.662 9.009e-02 

 (0.94985) (0.98977) (0.975106) 
POPDENS 28.199 26.980 5.849e-02 

 (0.00021**) (0.05387.) (0.361651) 
MARKET 80.866 192.291 -1.928e-01 

 (0.54083) (0.47316) (0.877729) 
CSCOM -8.340 -55.070 9.753e-02 

 (0.80089) (0.41584) (0.758026) 
CSREF 15.294 22.479 5.794e-02 

 (0.11299) (0.24254) (0.517835) 
WEALTH 130.242 130.813 1.609e+00 

 (2.68e-11**) (1.98e-08**) (1.88e-10**) 
HHSIZE 35.479 20.559 5.600e-01 

 (1.16e-09**) (0.00307**) (7.15e-13**) 
Table 8: Coefficients for predictor variables for outcome variables 
weight, height and anemia, with significance in parenthesis for an 11 
km buffer. 
 

 Although the area examined increased by a factor of nearly 5, the variables 

extracted at this scale were very similar.  The variation in percentage of agriculture as 

swidden ranged from 49% to 98%, with a mean of 81%.  Again, there was a trend of 

decreasing swidden agriculture over time.  The distribution of available ecosystem services 
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changed somewhat across all of the study villages.   The minimum percentage of land cover 

within an 11 km buffer providing public ecosystem services was somewhat higher: even 

the most agriculturalized village has 55% of its land cover providing public ecosystem 

services.  At an 11 kilometer scale, the relationship found between percent of agriculture as 

swidden and child weight is no longer very significant, but the coefficient is about the same.  

The regressions for child height and anemia have similar coefficients as they did at the 5 

kilometer scale.  

25 Kilometer Neighborhood 

 The largest neighborhood examined was all areas within 25 kilometers of a 

village.  This creates an area 50 kilometer in diameter, so these models are testing for 

effects at fairly large spatial scales.  There are often several neighboring villages within an 

area this size.  This is about the farthest farmers will go to look for pasture for cows.  

Traditionally, hunters would travel 25 kilometers and farther to look for game, although 

this is less common today.  If there are significant water bodies within this distance, people 

from multiple villages may travel up to 25 kilometer to fish.  Because Bamanan society is 

patrilocal, women will usually be from villages within 25 kilometers of their husbands' 

village, and thus extended family networks exist at about this scale.  So, there are many 

social-ecological processes existing at this scale that could affect child health outcomes. 

 At 25 kilometers, the standard deviations for percentage of agriculture as 

swidden and percentage of land cover providing public ecosystem services have decreased, 

meaning that values are beginning to converge on the overall value for the region.  

Interestingly, the percent of agriculture practiced as swidden is once again significantly 

related to children’s weight, with an increase in 1 percent in the percent of agriculture 
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practiced as swidden within a 25 kilometer radius circle around a village predicting an 

increase in 3.8 percentile points in a child’s weight for age.  Again, household wealth and 

household size are both significant predictors of positive health outcomes. 

 Weight Height Anemia 
(Intercept) -3456.923 -4027.367 8.295e+01 

 (0.03775*) (0.21139) (0.000554**) 
PERSWID 3851.622 4813.100 -5.944e+00 

 (0.04710*) (0.19906) (0.747805) 
COMMONS -20.010 -12.275 6.155e-02 

 (0.95683) (0.97781) (0.982960) 
POPDENS 26.473 26.127 6.270e-02 

 (0.00017**) (0.04463*) (0.301647) 
MARKET 136.191 274.453 -2.717e-01 

 (0.31434) (0.31942) (0.835797) 
CSCOM -4.340 -55.457 8.296e-02 

 (0.88955) (0.38851) (0.786540) 
CSREF 13.052 19.232 6.192e-02 

 (0.16838) (0.31253) (0.495332) 
WEALTH 129.719 130.543 1.611e+00 

 (3.21e-11**) (2.11e-08**) (1.83e-10**) 
HHSIZE 35.427 20.530 5.602e-01 

 (1.23e-09**) (0.00311**) (7.08e-13**) 
Table 9: Coefficients for predictor variables for outcome variables weight, 
height and anemia, with significance in parenthesis for a 25 kilometer buffer. 
 

Validating Models 

 These hierarchical models were validated by checking the distribution of the 

conditional residuals and the marginal residuals, assuring that the means of both types of 

residuals were 0 and that distributions were either normally distributed or at least not 

bimodal.  Furthermore, the random effects and conditional residuals were tested to make 

sure there was no collinearity at any level.  The raw results of these tests can be seen in 

Appendix 1. 

 Neither the conditional nor the marginal residuals for these models were 

perfectly normally distributed according to Lilliefors tests.  They often had kurtosis on the 
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right side of the distribution, suggesting that the relationship between the predictor 

variables and the outcome variable is non-linear, and therefore a non-linear statistical 

model might better fit these data.  However, all of the residuals had a mean of 0, indicating 

that the models were fit as best as they could be given that they were linear models.  There 

was also no collinearity between the random effects and the residuals for any of the 

models, suggesting that the model sufficiently accounted for random effects for each group 

at every level.  Overall, the models were well fit given that they were linear models.  

However, better models would have captured some of the non-linearities possibly present 

in the data.  Therefore, the limits of these models should be taken into account when 

interpreting their results. 

DISCUSSION 

Diet Pathway from Household Surveys 

 A very common narrative in the discussion of the impacts of cotton cultivation is 

that cotton farmers cannot invest as much in food production, and therefore have worse 

diets compared to before they took up cotton production, or compared to their neighbors 

who do not grow cotton (Koenig 2008, Mesplé-Somps et al. 2008, Dury and Bocoum 2012).   

 While it is said but not demonstrated that cotton farmers grow less food, it is 

very clear and empirically evident that they grow different grains. Increasing cultivation of 

cotton and permanent cropping is highly associated with the cultivation of maize (Laris et 

al. 2015).  Researchers have written much about this phenomenon already and it is borne 

out by my own data.  This is because many of the higher-impact tools and inputs necessary 

for cotton cultivation, such as ox-drawn plows and artificial fertilizers, produce much 

greater gains for maize production than they do for the production of more traditional 
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crops, like sorghum or millet (Laris et al. 2015).  Thus, while toh is still the staple food of all 

households, consumed twice daily by 94.7% of surveyed households, cotton farming 

households are eating more toh from maize flour and non-cotton farming households are 

eating more toh from millet or sorghum flour.   

 Nevertheless, the nutritional differences between maize and traditional grains 

are marginal.  All of these crops provide mostly carbohydrate energy, some protein and 

some minerals (FAO 1997), and would not be said to be significantly different functionally 

(Remans et al. 2012).  Thus, cultivating and consuming these crops at different rates would 

have little impact on childhood health.  What really matters for child health is protein rich 

foods: meat, fish, beans, peanuts, dairy, and eggs (FAO 1997, Remans et al. 2012).    

 The household surveys that were conducted support these findings from the 

childhood health literature.  Frequency of dairy and egg consumption in particular 

predicted fewer child deaths within a household in the past five years, even when taking 

into account a household’s total livestock wealth, literacy rates, and how much the 

household has invested in childcare.  It is somewhat surprising that frequency of 

consumption of other proteinaceous foods did not predict better health statistics.  This 

could be because the household surveys were based on informant recall and not direct 

observation.  For every proteinaceous food except eggs and diary, informants were asked 

to tell how many times in the past month they ate it, and they usually had difficulty 

assigning a precise number to the frequency. For milk and eggs, however, they were asked 

to give the frequency in the past week, and it was these two dietary items in particular that 

had a significant relationship with a child health outcome.  The exact relationship between 
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health and other proteinaceous foods might have been better illuminated if the household 

survey questions had been framed differently. 

 Interestingly, higher rates of bushmeat consumption predicted increases in child 

mortality rates.  This is probably indicative that bushmeat is a major resource of poorer 

households that would not otherwise have any meat or protein sources, especially because 

bushmeat is one of the least nutritious and least desirable forms of meat available.  In the 

past, larger animals were more common, and bushmeat consisted of animals like antelope 

(sigi).  Today, bushmeat consists of smaller animals like lizards (kooro), bush rats (joro) 

and even small birds: hardly ample sources of protein or nutrition.  This is a result of 

deforestation and agricultural extensification, and a clear illustration of how diminished 

ecosystem services associated with cotton cultivation could have a neighborhood effect 

leading to worse child health outcomes, especially for households that were already poorer 

and more dependent on forest resources. 

 Overall, however, for the households in the villages from this study, 

proteinaceous foods were found to be eaten by cotton farming and non-cotton farming 

households with the same frequency, with no major variation between villages and no 

major relationship with cotton cultivation.  This is true for all proteinaceous foods 

surveyed as well as for those that were asked across shorter recall windows and therefore 

reflect more accurate responses. So, since there is no relationship between cotton 

cultivation and consumption of these high-value proteinaceous foods, diet is might not be a 

pathway by which cotton cultivation is leading to worse child health outcomes. 

 

 



53 
 

Ecosystem Services Pathway From Household Surveys 

 Based on the evidence from this study, it seems that village level effects of cotton 

cultivation could be a driver of unexpectedly poor health statistics in the Sikasso region of 

Mali.  Cotton cultivation was found to be associated with lower tree species richness, and 

lower tree species richness was in turn a predictor of smaller mid upper arm 

circumference (MUAC) of children between six months and five years old. 

 Three different metrics were used to look at forest resources: average distance 

households reported travelling to gather resources, whether or not households reported 

scarcity of a resource, and overall tree species richness of the forests around a village, in 

terms of average number of unique tree species in a 30 foot radius forest plot.  There was 

no relationship between the percentage of a household's crops that were cotton and the 

distance households travelled to collect resources or whether houses reported scarcity.  

This is probably because resource scarcity and the distance households must travel to 

gather resources are based on agricultural and resources harvesting practices at the entire 

village level, not on a household-by-household level.  It is even possible that households 

that cultivate less cotton have less income from cotton, and therefore must base more of 

their livelihood on forest resources.  These households would be more likely to notice 

scarcity, and may have to travel farther to gather resources, as they are more dependent on 

them.  So, while growing more cotton would theoretically lead to fewer resources at the 

village level, growing more cotton may not accurately represent this at the household level 

based on the indicators used. 

 However, there was a relationship between village-level biodiversity and 

household cotton production.  While the indicator of biodiversity used was average 
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number of trees per sample plot, this is indicative of much more.  Greater tree diversity can 

mean more vegetation for grazing animals.  More vegetation for grazing animals in turn 

means greater production of eggs and milk, which were demonstrated to be linked to child 

health.  Higher levels of biodiversity is also indicative healthier soils, which means that 

crops will be more productive if that patch of forest has been cleared.  Biodiversity is often 

proportional to of the availability of ecosystem services that directly affect human health, 

especially in developing countries (Mertz et al. 2007). 

 Much work has been done on how natural regimes supplant fallow fields in 

swidden systems, even in southern Mali.  Laris has demonstrated how abandoned fields 

can quickly lead to dense and healthy wooded areas, but only when they are farmed in 

traditional, low-impact ways (Laris 2008).  Practices like using ox-drawn plows instead of 

hand-tilling the soil; farming soil-depleting crops like cotton instead of nitrogen-fixing 

legumes; and using synthetic fertilizer instead of organic fertilizer can all lead to fallow 

fields that are slow to return to a forested state, and remain marginal or degraded for a 

long time.  Thus, it is clear how cotton farming and the new agricultural methods that come 

with it could reduce biodiversity. 

 It is undeniable that ecosystem services are foundational to human health and 

well-being.  This is especially true in places like rural Mali, where almost the entirety of 

peoples' livelihoods come from their immediately surrounding environments. Although 

even rural Malians are getting increasingly more of their material possessions from 

markets and cash purchases, their diets are still overwhelmingly locally sourced.  

Nevertheless, ecosystems services can be difficult to measure and quantify.  Sometimes 

ecosystem services are the direct quantity of a good, such as shea fruits.  However, some of 
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the most vitally important ecosystem services, such as pollinators or healthy soil, cannot be 

easily reduced to one measure.  Researchers must therefore use somewhat indirect 

measures, like biodiversity.  So, there are theoretical reasons why more unique tree species 

in an area are correlated with children's arm sizes may seem specious. 

Landscape Scale and Household Surveys 

 Child health is multifaceted and complex.  This study had to use many different 

indicators of child health to get at possible effects cotton cultivation could have on 

children's health overall.  Anemia levels, child mortality rates, and various biometrics like 

weight percentile, height percentile and mid upper arm circumference are usually but not 

necessarily correlated.  While the consumption of certain foods was found to be correlated 

with lower child mortality rates, the majority of the findings showed that cotton cultivation 

was associated with biometrics, like MUAC and weight percentile, and almost no 

relationship was found between anemia and cotton cultivation, diet or forest resources. 

 Although diet predicted lower child mortality rates, this variable was not 

correlated with any forest resource indicators or with cotton production overall.  This 

could be because there are other drivers of child mortality rates than just malnutrition.  

Non-nutritional diseases and households’ abilities to prevent and treat these diseases could 

be greater drivers of child mortality rates than nutrition alone.  There could also be more 

uncertainty behind mortality statistics than biometric statistics because deaths are an 

overall rare occurrence.  The true probability of a child dying can be hard to gauge without 

a large sample size, whereas wasting or stunting can be relatively directly assessed using 

biometrics.  So, biometrics are more reliable indicators of child malnutrition and this is 
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probably why they were the more often found to be statistically significant than anemia 

levels or child mortality rates. 

 The household surveys showed that cotton cultivation affects local ecosystem 

services and forest biodiversity, and the landscape scale surveys showed that this effect 

does not go beyond the immediate vicinity of a village.  Both surveys showed that cotton 

cultivation may affect child health through a neighborhood effect, and but there was no 

evidence of a direct effect within a household.  This suggests that the effect may be 

ecological.  Cotton cultivation and the agricultural changes that come with it have been 

shown to affect the myriad ecosystem services upon which human well-being depends 

(Benjaminsen et al. 2010, Stechert et al. 2014, Kidron et al. 2010), and human nutrition in 

turn has been shown to be very much dependent on ecosystem services (Remans et al. 

2012, DeClerck et al. 2011, Golden et al. 2011).  This study offers some evidence in this 

vein, showing that cotton cultivation is associated with lowered biodiversity and 

malnutrition. 

Issues 

 One major issue that this study faces was with the independent variables in the 

landscape scale analysis.  The study used classified Landsat imagery over time to detect 

areas practicing swidden agriculture in comparison to those practicing permanent 

agriculture, and used that statistic to approximate the prevalence and intensity of cotton 

cultivation.  There is significant evidence that permanent cropping is increasingly common 

due to the fertilizers and agricultural inputs that are only available to cotton farmers (Laris 

et al. 2015), and many researchers have written about how agricultural change, specifically 

in relation to swidden agriculture, is a direct result of cotton cultivation (Koenig 2008).  
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Nevertheless, farmers do leave old cotton fields fallow, especially when empty forest 

abounds for starting new fields.  Thus, while it very likely that areas with permanently 

farmed fields are growing cotton somewhere, it is not certain that those permanent fields 

themselves are growing cotton.  It could be that nearby swidden fields are being used for 

cotton production, while the permanent fields are actually used for growing maize or other 

crops.  So, while the percentage of agriculture classified as swidden is a useful measure for 

understanding the prevalence of cotton cultivation and the use of modern agricultural 

methods, it is not a direct measure.  Further research around the role of cash crops in the 

transition towards permanent cropping should focus on quantifying this change. 

 Another major issue with the methodology utilized was that agricultural areas 

that only appeared in the last satellite image in the series could not be classified.  In order 

for a field to be classified as permanent or swidden agriculture, it had appear twice, either 

as agriculture both times (permanent) or agriculture the first time and savanna at a later 

time (swidden).  So, when looking at the relationship between malnutrition and swidden 

agriculture rates, one is actually looking at the relationship between malnutrition and rates 

of swidden agriculture a few years prior. 

 The findings presented in this paper certainly suggest that cotton may play a role 

in the unexpectedly poor child health statistics in the Sikasso region of Mali.  Nevertheless, 

the region scale examination of agricultural change and child health outcomes from 2006 

and 2012 conducted here found an only slight affect.  Thus, it is likely that there are other 

drivers of child malnutrition and anemia beyond simply agricultural change.  Two 

frequently significant confounding variables in the models run were population density 

and distance to a major hospital.  Thus, these demographic and infrastructural factors seem 
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to be playing a role in child health statistics.  Further analysis should also look more at 

farmers’ income and debt in relation to health and cotton farming. 

 

CONCLUSION 

 This study gives empirical evidence that high cotton-cultivating areas have 

worse nutrition compared to those with less cultivation during the same year.  It 

investigated this relationship using both in-depth surveys from three villages and at the 

landscape scale from 37 villages.  These findings suggest that this effect may be because of 

environmental degradation and not because cotton producing households have worse diets 

than their neighbors that produce less or no cotton.  This study is meant to contribute to 

the debate around the problems and benefits of cotton and cash crops in general for 

subsistence farmers. 

 While cotton production is associated with worse nutrition in one year, over 

time there has been a trend of increasing cotton production as well as major gains in child 

health outcomes.  Both of these trends are the result of complex processes involved in 

globalization, and it is impossible to say that the gains over time in diminishing 

malnutrition would have happened without increasing production of cotton. Furthermore, 

most farmers in southern Mali are enthusiastic about cotton production, as well as the 

agricultural technologies it makes available to them and the cash income they can earn 

from it.  So, rather than demonizing the crop itself, efforts to reduce rates of malnutrition 

should aim to lessen cotton’s impact on ecosystem services or to supplant these services 

that have been lost.   
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APPENDIX 1: SUMMARY STATISTICS OF ALL MODELS 

Village-scale Models: 
 
Variable Summaries: 
COTTON: Percentage of agricultural hectarage cultivated devoted to Cotton in 2013 
(n=114, household level). 
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
 0.0000  0.1818  0.2857  0.2841  0.3933  0.8889 
 
Lilliefors (Kolmogorov-Smirnov) normality test: 
D = 0.1119, p-value = 0.001307 

 
MEAT: Number of times in a normal month that a household eats meat from livestock 
animals (n=114, household level). 
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
  0.000   1.500   2.750   3.658   4.000  25.000  
 
Lilliefors (Kolmogorov-Smirnov) normality test: 
D = 0.2455, p-value < 2.2e-16 
 
BUSHMEAT: Number of times in a normal month that a household eats meat from animals 
hunted or trapped in public areas (forests, grasslands, rivers) (n=114, household level). 
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
  0.000   0.000   0.000   1.753   1.500  31.000 
 
Lilliefors (Kolmogorov-Smirnov) normality test: 
D = 0.3503, p-value < 2.2e-16 
 
BEANS: Number of times in a normal month that a household eats beans (n=114, 
household level). 
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
  0.000   1.000   2.250   4.033   4.000  31.000 
 
Lilliefors (Kolmogorov-Smirnov) normality test: 
D = 0.2678, p-value < 2.2e-16 
 
FISHWET: Number of times in a normal month that a household eats fresh fish (n=114, 
household level). 
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
  0.000   3.000   4.500   8.447   7.000  31.000 
 
Lilliefors (Kolmogorov-Smirnov) normality test: 
D = 0.3276, p-value < 2.2e-16 
 
FISHDRY: Number of times in a normal month that a household eats dried fish (n=114, 
household level). 
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
   0.00    6.25   31.00   22.60   31.00   31.00 
 
Lilliefors (Kolmogorov-Smirnov) normality test: 
D = 0.4197, p-value < 2.2e-16 
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DAIRY: Number of times in a normal month that a household eats dairy products (n=114, 
household level). 
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
  0.000   1.000   2.250   3.149   5.375  10.000 
 
Lilliefors (Kolmogorov-Smirnov) normality test: 
D = 0.1878, p-value = 1.211e-10 

 
EGGS: Number of times in a normal month that a household eats eggs (n=114, household 
level). 
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
   0.00    0.00    0.50    1.44    2.00    9.00 
 
Lilliefors (Kolmogorov-Smirnov) normality test: 
D = 0.245, p-value < 2.2e-16 
 

DEATHS: Number of children under five years old who died in the past five years, divided 
by the total number of people in the house (n=108, household level). 
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
0.00000 0.00000 0.00000 0.05413 0.07095 0.66670 
 
Lilliefors (Kolmogorov-Smirnov) normality test: 
D = 0.3081, p-value < 2.2e-16 
 
MUAC: The Z-score of the Mid-Upper Arm Circumference of Children between 6 months 
and 5 years in the household. The Z-score of the circumference was calculated for the age 
based on WHO reference data (n=364, individual level). 
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
 -5.124  -1.912  -1.304  -1.334  -0.804   2.414 
 
Lilliefors (Kolmogorov-Smirnov) normality test: 
D = 0.0356, p-value = 0.3167 
 
DISTANCE: Average distance reported travelling to gather the forest resources shea, néré, 
timber, firewood, fruits, medicine and sauce-leaves (n=104, household level). 
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.   
 0.8438  2.0710  2.7680  3.2920  4.2500 10.2500   
 
Lilliefors (Kolmogorov-Smirnov) normality test: 
D = 0.136, p-value = 6.407e-05 
 
SCARCITY: A binary variable, reporting whether or not a forest resource was perceived as 
increasing in scarcity.  Resources were shea, néré, timber, firewood, fruits, medicine and 
sauce-leaves (n=104, household level). 
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    
 0.0000  0.0000  1.0000  0.5962  1.0000  1.0000    
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BIODIVERSITY: Average number of individual tree species on forest plots around a village.  
While this is an indicator of biodiversity, a more accurate descriptor would be ‘species 
richness’ (n=3, village level). 
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
  2.938   2.938   3.444   3.389   3.818   3.818 

 
LITERACYPERCAP: Percentage of individuals in a household who were reported as being 
literate, in French or Bambara (n=114, household level). 
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
0.00000 0.09022 0.22140 0.20930 0.29790 1.00000 
 
Lilliefors (Kolmogorov-Smirnov) normality test: 
D = 0.0994, p-value = 0.007526 
 
WEALTH: Total livestock wealth of a household, in West African Francs, based on local 
market rates for livestock. 
   Min.  1st Qu.   Median     Mean  3rd Qu.     Max.  
      0   400000   882500  1565000  1838000 12300000 
 
Lilliefors (Kolmogorov-Smirnov) normality test: 
D = 0.2289, p-value = 3.656e-16 
 
POPDENS: People per square kilometer at each commune, from the 2006 national census. 
(n=3, village level). 
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
  7.073   7.073  31.390  24.990  32.540  32.540 
 
CHILDCARE: An index of how much effort the household has put into caring for the child's 
health.  The number of children who have received vaccinations, plus the number of 
children who have received antiparasitic medicine divided by the total number of children 
(n=106, household level) 
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    
  0.000   1.500   2.000   1.693   2.000   2.000    
 
Lilliefors (Kolmogorov-Smirnov) normality test: 
D = 0.3995, p-value < 2.2e-16    

 
VILLAGE: The village a given record is from.  Can be a grouping variable in multilevel 
models or a categorical/dummy variable in simple linear regression. 
 
 
Model Summaries: 
 
Cotton and Diet - Multiple regression: 
Call: 
lm(formula = COTTON ~ MEAT + BUSHMEAT + BEANS + FISHWET + FISHDRY +  
    DAIRY + EGGS + VILLAGE, data = survey) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-0.40865 -0.12082 -0.00207  0.10143  0.47696  
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Coefficients: 
                Estimate Std. Error t value Pr(>|t|)     
(Intercept)    4.257e-01  4.781e-02   8.906 1.86e-14 *** 
MEAT          -3.037e-03  4.429e-03  -0.686   0.4944     
BUSHMEAT      -5.067e-03  3.692e-03  -1.373   0.1728     
BEANS         -2.431e-03  2.846e-03  -0.854   0.3951     
FISHWET       -3.138e-05  1.740e-03  -0.018   0.9856     
FISHDRY       -1.162e-04  1.506e-03  -0.077   0.9386     
DAIRY          5.306e-05  6.299e-03   0.008   0.9933     
EGGS           5.745e-03  9.460e-03   0.607   0.5450     
VILLAGEKISSA  -9.975e-02  4.171e-02  -2.391   0.0186 *   
VILLAGEWASADA -2.299e-01  5.223e-02  -4.401 2.61e-05 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.1663 on 104 degrees of freedom 
Multiple R-squared:  0.266, Adjusted R-squared:  0.2025  
F-statistic: 4.188 on 9 and 104 DF,  p-value: 0.0001227 
 
Lilliefors (Kolmogorov-Smirnov) normality test of residuals: 
D = 0.0494, p-value = 0.7072 
 
Correlation Matrix of Predictor Variables: 
           MEAT BUSHMEAT  BEANS FISHWET  DAIRY   EGGS 
MEAT      1.000   -0.034  0.123  -0.031  0.234  0.328 
BUSHMEAT -0.034    1.000 -0.104   0.043 -0.089  0.050 
BEANS     0.123   -0.104  1.000   0.108  0.195  0.153 
FISHWET  -0.031    0.043  0.108   1.000  0.010 -0.115 
DAIRY     0.234   -0.089  0.195   0.010  1.000  0.090 
EGGS      0.328    0.050  0.153  -0.115  0.090  1.000 
 
 
Diet and Health - Multiple regression with DEATHS as outcome: 
Call: 
lm(formula = DEATHS ~ MEAT + BUSHMEAT + BEANS + FISHWET + DAIRY +  
    EGGS + CHILDCARE + WEALTH + LITERACYPERCAP, data = health) 
 
Residuals: 
    Min      1Q  Median      3Q     Max  
-2.3907 -0.6859 -0.2909  0.4412  3.0658  
 
Coefficients: 
                 Estimate Std. Error t value Pr(>|t|)     
(Intercept)     8.723e-01  2.550e-01   3.421 0.000701 *** 
MEAT            1.672e-02  1.678e-02   0.996 0.319990     
BUSHMEAT        1.148e-01  1.552e-02   7.396 1.11e-12 *** 
BEANS           3.569e-03  1.193e-02   0.299 0.765069     
FISHWET         1.413e-02  6.247e-03   2.262 0.024344 *   
DAIRY          -5.491e-02  2.524e-02  -2.176 0.030261 *   
EGGS           -1.093e-01  3.218e-02  -3.396 0.000766 *** 
CHILDCARE      -4.430e-02  1.298e-01  -0.341 0.733048     
WEALTH          6.005e-08  2.676e-08   2.244 0.025469 *   
LITERACYPERCAP -9.166e-01  4.356e-01  -2.104 0.036112 *   
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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Residual standard error: 1.032 on 339 degrees of freedom 
  (15 observations deleted due to missingness) 
Multiple R-squared:  0.234, Adjusted R-squared:  0.2137  
F-statistic: 11.51 on 9 and 339 DF,  p-value: 8.983e-16 
 
Lilliefors (Kolmogorov-Smirnov) normality test of residuals: 
D = 0.1263, p-value = 1.172e-14 
 
Correlation Matrix of Predictor Variables: 
                 MEAT BUSHMEAT  BEANS FISHWET  DAIRY   EGGS CHILDCARE WEALTH LITERACY 
MEAT        1.000   -0.032  0.114  -0.037  0.224  0.348     0.062  0.330     -0.019 
BUSHMEAT   -0.032    1.000 -0.096   0.046 -0.096  0.072     0.031 -0.103     -0.154 
BEANS       0.114   -0.096  1.000   0.113  0.227  0.150    -0.164 -0.057     -0.141 
FISHWET    -0.037    0.046  0.113   1.000  0.020 -0.136     0.094 -0.024      0.153 
DAIRY       0.224   -0.096  0.227   0.020  1.000  0.106     0.032  0.425      0.104 
EGGS        0.348    0.072  0.150  -0.136  0.106  1.000     0.030  0.182     -0.063 
CHILDCARE   0.062    0.031 -0.164   0.094  0.032  0.030     1.000  0.110      0.193 
WEALTH      0.330   -0.103 -0.057  -0.024  0.425  0.182     0.110  1.000      0.068 
LITERACY   -0.019   -0.154 -0.141   0.153  0.104 -0.063     0.193  0.068      1.000 
 

Diet and Health - Multiple regression with MUAC as outcome: 
Call: 
lm(formula = MUAC ~ MEAT + BUSHMEAT + BEANS + FISHWET + DAIRY +  
    EGGS + LITERACYPERCAP + CHILDCARE, data = health) 
 
Residuals: 
    Min      1Q  Median      3Q     Max  
-3.4256 -0.5775 -0.0433  0.5168  3.6865  
 
Coefficients: 
                 Estimate Std. Error t value Pr(>|t|)     
(Intercept)    -1.7381678  0.2019949  -8.605 2.62e-16 *** 
MEAT           -0.0280220  0.0129439  -2.165   0.0311 *   
BUSHMEAT       -0.0152665  0.0123557  -1.236   0.2174     
BEANS           0.0004231  0.0093016   0.045   0.9637     
FISHWET         0.0035944  0.0048826   0.736   0.4621     
DAIRY          -0.0007839  0.0183167  -0.043   0.9659     
EGGS            0.0113395  0.0257676   0.440   0.6602     
LITERACYPERCAP  0.2386307  0.3469212   0.688   0.4920     
CHILDCARE       0.2530507  0.1021841   2.476   0.0137 *   
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.8358 on 350 degrees of freedom 
  (5 observations deleted due to missingness) 
Multiple R-squared:  0.04323, Adjusted R-squared:  0.02136  
F-statistic: 1.977 on 8 and 350 DF,  p-value: 0.0485 
 
Lilliefors (Kolmogorov-Smirnov) normality test of residuals: 
D = 0.0377, p-value = 0.2462 
 
Correlation Matrix of Predictor Variables: 
             MEAT BUSHMEAT  BEANS FISHWET  DAIRY   EGGS CHILDCARE   LITERACY 
MEAT        1.000    0.016  0.157   0.009  0.229  0.376    -0.023     -0.028 
BUSHMEAT    0.016    1.000 -0.059   0.204 -0.143  0.088     0.073     -0.149 
BEANS       0.157   -0.059  1.000   0.078  0.206  0.169    -0.287     -0.145 
FISHWET     0.009    0.204  0.078   1.000 -0.054 -0.169     0.097      0.117 
DAIRY       0.229   -0.143  0.206  -0.054  1.000  0.076    -0.047      0.079 
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EGGS        0.376    0.088  0.169  -0.169  0.076  1.000    -0.045     -0.083 
CHILDCARE  -0.023    0.073 -0.287   0.097 -0.047 -0.045     1.000      0.222 
LITERACY   -0.028   -0.149 -0.145   0.117  0.079 -0.083     0.222      1.000 
 
Cotton and Forest Resources – Multilevel regression with DISTANCE as outcome: 
Linear mixed model fit by REML t-tests use Satterthwaite approximations to 
degrees of freedom [ 
merModLmerTest] 
Formula: DISTANCE ~ COTTON + POPDENS + (1 | VILLAGE) 
   Data: survey 
 
REML criterion at convergence: 396.6 
 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-1.8784 -0.7303 -0.0603  0.4703  3.9414  
 
Random effects: 
 Groups   Name        Variance Std.Dev. 
 VILLAGE  (Intercept) 1.045    1.022    
 Residual             2.492    1.578    
Number of obs: 104, groups: VILLAGE, 3 
 
Fixed effects: 
             Estimate Std. Error        df t value Pr(>|t|) 
(Intercept) 3.309e+00  1.454e+00 1.260e+00   2.275    0.221 
COTTON      7.272e-03  1.025e+00 1.010e+02   0.007    0.994 
POPDENS     1.055e-04  5.267e-02 1.060e+00   0.002    0.999 
 
Correlation of Fixed Effects: 
        (Intr) COTTON 
COTTON  -0.291        
POPDENS -0.886  0.107 
 
Lilliefors (Kolmogorov-Smirnov) normality test of residuals: 
D = 0.0884, p-value = 0.04386 
 
Cotton and Forest Resources – Logit regression with SCARCITY as outcome: 
Call: 
glm(formula = SCARCITY ~ COTTON + VILLAGE, family = "binomial",  
    data = survey) 
 
Deviance Residuals:  
    Min       1Q   Median       3Q      Max   
-1.5895  -1.1543   0.8356   0.9455   1.2515   
 
Coefficients: 
              Estimate Std. Error z value Pr(>|z|) 
(Intercept)     0.7433     0.6771   1.098    0.272 
COTTON          0.3836     1.3559   0.283    0.777 
VILLAGEKISSA   -0.2689     0.5632  -0.478    0.633 
VILLAGEWASADA  -0.9159     0.6162  -1.486    0.137 
 
(Dispersion parameter for binomial family taken to be 1) 
 
    Null deviance: 140.30  on 103  degrees of freedom 
Residual deviance: 136.22  on 100  degrees of freedom 
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  (10 observations deleted due to missingness) 
AIC: 144.22 
 
Number of Fisher Scoring iterations: 4 
 
Lilliefors (Kolmogorov-Smirnov) normality test of residuals: 
D = 0.3352, p-value < 2.2e-16 
 
Cotton and Forest Resources – Simple regression with BIODIVERSITY as outcome: 
Call: 
lm(formula = BIODIVERSITY ~ COTTON + POPDENS, data = survey) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-0.58302 -0.33728 -0.03567  0.28713  0.60134  
 
Coefficients: 
             Estimate Std. Error t value Pr(>|t|)     
(Intercept)  3.818385   0.119539  31.943  < 2e-16 *** 
COTTON      -0.706975   0.195657  -3.613 0.000456 *** 
POPDENS     -0.009153   0.003238  -2.827 0.005582 **  
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.3561 on 111 degrees of freedom 
Multiple R-squared:  0.1218, Adjusted R-squared:  0.106  
F-statistic: 7.696 on 2 and 111 DF,  p-value: 0.0007414 
 
Lilliefors (Kolmogorov-Smirnov) normality test of residuals: 
D = 0.1517, p-value = 8.717e-07 
 
Forest Resources and Health – Multilevel regression with DEATHS as outcome: 
Linear mixed model fit by REML t-tests use Satterthwaite approximations to 
degrees of freedom [ 
merModLmerTest] 
Formula: DEATHS ~ BIODIVERSITY + DISTANCE + SCARCITY + POPDENS + 
LITERACYPERCAP +      (1 | VILLAGE) 
   Data: survey 
 
REML criterion at convergence: -121.2 
 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-0.7745 -0.5582 -0.2888  0.0886  5.4458  
 
Random effects: 
 Groups   Name        Variance  Std.Dev. 
 VILLAGE  (Intercept) 1.369e-06 0.00117  
 Residual             1.242e-02 0.11143  
Number of obs: 101, groups: VILLAGE, 3 
 
Fixed effects: 
                 Estimate Std. Error         df t value Pr(>|t|) 
(Intercept)    -0.0100597  0.1147252  0.0000000  -0.088    1.000 
BIODIVERSITY    0.0133250  0.0331437  0.0000000   0.402    1.000 
DISTANCE       -0.0037664  0.0072583 95.0000000  -0.519    0.605 
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SCARCITY       -0.0003843  0.0232469 95.0000000  -0.017    0.987 
POPDENS         0.0018679  0.0011357  0.0000000   1.645    1.000 
LITERACYPERCAP -0.0746754  0.0722611 95.0000000  -1.033    0.304 
 
Correlation of Fixed Effects: 
            (Intr) BIODIV DISTAN SCARCI POPDEN 
BIODIVERSIT -0.920                             
DISTANCE     0.143 -0.377                      
SCARCITY    -0.293  0.124  0.106               
POPDENS     -0.451  0.201 -0.026  0.148        
LITERACYPER  0.236 -0.337  0.075 -0.075 -0.173 
 
Lilliefors (Kolmogorov-Smirnov) normality test of residuals: 
D = 0.2317, p-value = 1.239e-14 
 
Forest Resources and Health – Multilevel regression with MUAC as outcome: 
Linear mixed model fit by REML t-tests use Satterthwaite approximations to 
degrees of freedom [ 
merModLmerTest] 
Formula: MUAC ~ BIODIVERSITY + DISTANCE + SCARCITY + CHILDCARE + (1 |      
VILLAGE) 
   Data: health 
 
REML criterion at convergence: 861.8 
 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-4.3280 -0.6486 -0.0133  0.5976  4.6619  
 
Random effects: 
 Groups   Name        Variance  Std.Dev.  
 VILLAGE  (Intercept) 9.534e-15 9.764e-08 
 Residual             7.069e-01 8.408e-01 
Number of obs: 341, groups: VILLAGE, 3 
 
Fixed effects: 
              Estimate Std. Error        df t value Pr(>|t|)     
(Intercept)   -2.87238    0.42211 336.00000  -6.805 4.66e-11 *** 
BIODIVERSITY   0.39583    0.14104 336.00000   2.807   0.0053 **  
DISTANCE      -0.01389    0.03239 336.00000  -0.429   0.6683     
SCARCITY      -0.04767    0.09476 336.00000  -0.503   0.6153     
CHILDCARE      0.14396    0.10644 336.00000   1.352   0.1771     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Correlation of Fixed Effects: 
            (Intr) BIODIV DISTAN SCARCI 
BIODIVERSIT -0.866                      
DISTANCE     0.132 -0.419               
SCARCITY    -0.179  0.023  0.159        
CHILDCARE   -0.010 -0.404  0.163 -0.053 
 
Lilliefors (Kolmogorov-Smirnov) normality test of residuals: 
D = 0.0542, p-value = 0.01743 
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Cotton and Health – Simple linear regression with DEATHS as outcome: 
Call: 
lm(formula = DEATHS ~ COTTON + LITERACYPERCAP + POPDENS, data = survey) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-0.08731 -0.06215 -0.02853  0.01038  0.61447  
 
Coefficients: 
                Estimate Std. Error t value Pr(>|t|)   
(Intercept)     0.026686   0.041787   0.639   0.5245   
COTTON         -0.021939   0.065954  -0.333   0.7401   
LITERACYPERCAP -0.070726   0.066407  -1.065   0.2893   
POPDENS         0.001863   0.001023   1.822   0.0714 . 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.1071 on 104 degrees of freedom 
  (6 observations deleted due to missingness) 
Multiple R-squared:  0.04454, Adjusted R-squared:  0.01698  
F-statistic: 1.616 on 3 and 104 DF,  p-value: 0.1902 
 
Lilliefors (Kolmogorov-Smirnov) normality test of residuals: 
D = 0.239, p-value < 2.2e-16 
 
Cotton and Health – Simple linear regression with MUAC as outcome: 
Call: 
lm(formula = MUAC ~ COTTON + CHILDCARE, data = health) 
 
Residuals: 
    Min      1Q  Median      3Q     Max  
-3.4502 -0.5540  0.0224  0.5030  3.6566  
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept) -1.55921    0.19799  -7.875 4.15e-14 *** 
COTTON      -0.64979    0.26982  -2.408   0.0165 *   
CHILDCARE    0.23694    0.09572   2.475   0.0138 *   
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.8313 on 356 degrees of freedom 
  (5 observations deleted due to missingness) 
Multiple R-squared:  0.03742, Adjusted R-squared:  0.03201  
F-statistic: 6.919 on 2 and 356 DF,  p-value: 0.001127 
 
Lilliefors (Kolmogorov-Smirnov) normality test of residuals: 
D = 0.0296, p-value = 0.6207 
 
Cotton and Health – Simple linear regression with VILLAGE dummy variable: 
Call: 
lm(formula = MUAC ~ COTTON + CHILDCARE + VILLAGE, data = health) 
 
Residuals: 
    Min      1Q  Median      3Q     Max  
-3.5632 -0.5186  0.0082  0.4883  3.8428  
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Coefficients: 
              Estimate Std. Error t value Pr(>|t|)     
(Intercept)    -1.5147     0.2308  -6.564 1.87e-10 *** 
COTTON         -0.3731     0.3179  -1.174    0.241     
CHILDCARE       0.1559     0.1011   1.542    0.124     
VILLAGEKISSA   -0.1357     0.1199  -1.131    0.259     
VILLAGEWASADA   0.1466     0.1308   1.121    0.263     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.827 on 354 degrees of freedom 
  (5 observations deleted due to missingness) 
Multiple R-squared:  0.05267, Adjusted R-squared:  0.04197  
F-statistic: 4.921 on 4 and 354 DF,  p-value: 0.0007148 
 
Lilliefors (Kolmogorov-Smirnov) normality test of residuals: 
D = 0.039, p-value = 0.2038 
 
 
Landscape-scale Models: 
 
Variable Summaries: 
WEIGHT: Weight for Age percentile * 100 (n=21775, individual level). 
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    
      0      75     568    1787    2622    9980    
 
Lilliefors (Kolmogorov-Smirnov) normality test: 
D = 0.2385, p-value < 2.2e-16 
 
HEIGHT: Height for Age percentile * 100 (n=21775, individual level). 
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    
      0      24     413    2069    2937    9980     
 
Lilliefors (Kolmogorov-Smirnov) normality test: 
D = 0.2512, p-value < 2.2e-16 

 
ANEMIA: Anemia level of individual in grams per deciliter, adjusted for altitude (n=12775, 
individual level). 
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    
  24.00   80.00   91.00   89.54  101.00  178.00     
 
Lilliefors (Kolmogorov-Smirnov) normality test: 
D = 0.064, p-value < 2.2e-16 
 
PERSWID: Percent of agricultural pixels within a given buffer of a village that were 
classified as swidden (n=37, village level). 
5-km 
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
 0.4101  0.7706  0.8298  0.8191  0.8989  0.9977   
 
Lilliefors (Kolmogorov-Smirnov) normality test: 
D = 0.1204, p-value < 2.2e-16    
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11-km 
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
 0.4988  0.7204  0.8290  0.8119  0.9194  0.9821   
 
Lilliefors (Kolmogorov-Smirnov) normality test: 
D = 0.0972, p-value < 2.2e-16   
 
25-km 
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
 0.4737  0.7650  0.8232  0.8083  0.8782  0.9838   
 
Lilliefors (Kolmogorov-Smirnov) normality test: 
D = 0.1105, p-value < 2.2e-16    

 
COMMONS: Percent of pixels within a given buffer of a village that were classified as 
neither agriculture nor village land cover types (ie, land cover types providing public 
ecosystem services) (n=37, village level). 
5-km 
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
 0.3434  0.7733  0.8470  0.8291  0.8938  0.9911  
 
Lilliefors (Kolmogorov-Smirnov) normality test: 
D = 0.0881, p-value < 2.2e-16    
 
11-km 
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
 0.3434  0.7733  0.8470  0.8291  0.8938  0.9911  
 
Lilliefors (Kolmogorov-Smirnov) normality test: 
D = 0.0881, p-value < 2.2e-16    

 
25-km 
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
 0.3434  0.7733  0.8470  0.8291  0.8938  0.9911  
 
Lilliefors (Kolmogorov-Smirnov) normality test: 
D = 0.0881, p-value < 2.2e-16    
 
POPDENS: People per square kilometer at each commune, from the 2006 national census. 
(n=37, village level). 
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
  6.216  18.500  21.530  25.600  31.390 201.600  
 
Lilliefors (Kolmogorov-Smirnov) normality test: 
D = 0.2391, p-value < 2.2e-16    

 
MARKET: Network distance in kilometers to a city with over 20,000 people, from a Harvest 
Choice dataset (n=37, village level). 
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
  1.336   2.631   3.221   3.347   3.731   8.848  
 
Lilliefors (Kolmogorov-Smirnov) normality test: 
D = 0.1562, p-value < 2.2e-16    
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CSCOM: Absolute distance in km to a Centre de la Santé Communitaire - a lower level 
hospital (n=37, village level). 
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
  2.613   5.399   8.754  10.020  14.020  35.780  
 
Lilliefors (Kolmogorov-Smirnov) normality test: 
D = 0.1221, p-value < 2.2e-16    

 
CSREF: Absolute distance in km to a Centre de la Santé Référence - a higher level hospital 
(n=37, village level). 
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
  4.015  24.450  40.320  43.740  50.680 110.000  
 
Lilliefors (Kolmogorov-Smirnov) normality test: 
D = 0.1486, p-value < 2.2e-16    
 
WEALTH: Ordinal Categorical variable index of household wealth, from the DHS surveys: 1  
Poorest; 2 Poorer; 3 Middle; 4 Richer; 5 Richest. (n=186, household level). 
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
  1.000   1.000   2.000   2.296   3.000   5.000  
 
Lilliefors (Kolmogorov-Smirnov) normality test: 
D = 0.2002, p-value < 2.2e-16    
 
HHSIZE: Number of people living in the household, from the DHS surveys (n=186, 
household level). 
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
  2.000   5.000   7.000   7.694  10.000  22.000  
 
Lilliefors (Kolmogorov-Smirnov) normality test: 
D = 0.128, p-value < 2.2e-16   

 
HOUSEHOLD: Grouping variable (n=186). 
 
VILLAGE: Grouping variable (n=37). 
 
YEAR: Grouping variable, to capture year level fixed effects between the 2006 and 2012 
DHS surveys (n=2). 
 
Model Summaries: 
 
5-km Buffer with WEIGHT as outcome variable: 
Linear mixed model fit by REML  
t-tests use  Satterthwaite approximations to degrees of freedom 
['merModLmerTest'] 
Formula: WEIGHT ~ PERSWID + COMMONS + POPDENS + MARKET + CSCOM + CSREF +      
WEALTH + HHSIZE + (1 | HOUSEHOLD) + (1 | VILLAGE) + (1 |   
    YEAR) 
   Data: landscape[landscape$BUFFER == 5000, ] 
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REML criterion at convergence: 395999.6 
 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-2.2741 -0.6440 -0.1794  0.2807  3.8675  
 
Random effects: 
 Groups    Name        Variance Std.Dev. 
 HOUSEHOLD (Intercept) 4287753  2071     
 VILLAGE   (Intercept)  889319   943     
 YEAR      (Intercept)       0     0     
 Residual              4462460  2112     
Number of obs: 21775, groups: HOUSEHOLD, 184; VILLAGE, 37; YEAR, 2 
 
Fixed effects: 
             Estimate Std. Error        df t value Pr(>|t|)     
(Intercept) -2916.936   1322.303    34.000  -2.206   0.0343 *   
PERSWID      3193.641   1494.433    35.000   2.137   0.0397 *   
COMMONS       -43.358    370.594 20767.000  -0.117   0.9069     
POPDENS        30.724      6.742    29.000   4.557 8.50e-05 *** 
MARKET         72.610    125.212    28.000   0.580   0.5666     
CSCOM         -12.485     31.628    27.000  -0.395   0.6961     
CSREF          16.700      9.035    29.000   1.848   0.0749 .   
WEALTH        130.192     19.533 21527.000   6.665 2.71e-11 *** 
HHSIZE         35.592      5.827 21644.000   6.108 1.03e-09 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Correlation of Fixed Effects: 
        (Intr) PERSWI SAVANN POPDEN MARKET CSCOM  CSREF  WEALTH 
PERSWID -0.873                                                  
COMMONS -0.127 -0.112                                           
POPDENS -0.597  0.442  0.026                                    
MARKET  -0.286  0.100 -0.005 -0.031                             
CSCOM    0.164 -0.297 -0.017 -0.188  0.050                      
CSREF   -0.147  0.015  0.012  0.378 -0.429 -0.391               
WEALTH  -0.034 -0.002  0.000 -0.020  0.011  0.006 -0.012        
HHSIZE  -0.046  0.001 -0.001  0.009  0.015  0.006  0.002  0.133 
 
Lilliefors (Kolmogorov-Smirnov) normality test of residuals: 
D = 0.167, p-value < 2.2e-16 
 
The correlation coefficient between conditional residuals and level 1 random 
effects: 0.0273727756415379 
 
The correlation coefficient between conditional residuals and level 2 random 
effects: 0.00227826458322065 
 
5-km Buffer with HEIGHT as outcome variable 
Linear mixed model fit by REML  
t-tests use  Satterthwaite approximations to degrees of freedom 
['merModLmerTest'] 
Formula: HEIGHT ~ PERSWID + COMMONS + POPDENS + MARKET + CSCOM + CSREF +      
WEALTH + HHSIZE + (1 | HOUSEHOLD) + (1 | VILLAGE) + (1 |   
    YEAR) 
   Data: landscape[landscape$BUFFER == 5000, ] 
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REML criterion at convergence: 403601.4 
 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-2.1757 -0.6084 -0.1347  0.2745  3.4941  
 
Random effects: 
 Groups    Name        Variance Std.Dev. 
 HOUSEHOLD (Intercept) 8622239  2936     
 VILLAGE   (Intercept) 3926871  1982     
 YEAR      (Intercept)       0     0     
 Residual              6300154  2510     
Number of obs: 21775, groups: HOUSEHOLD, 184; VILLAGE, 37; YEAR, 2 
 
Fixed effects: 
             Estimate Std. Error        df t value Pr(>|t|)     
(Intercept) -2837.932   2653.874    32.000  -1.069  0.29293     
PERSWID      3325.954   2977.987    33.000   1.117  0.27208     
COMMONS       -15.927    441.756 21526.000  -0.036  0.97124     
POPDENS        30.112     13.845    29.000   2.175  0.03796 *   
MARKET        187.151    259.221    28.000   0.722  0.47622     
CSCOM         -61.601     65.843    28.000  -0.936  0.35749     
CSREF          23.918     18.618    29.000   1.285  0.20908     
WEALTH        130.734     23.292 21754.000   5.613 2.01e-08 *** 
HHSIZE         20.601      6.944 21743.000   2.967  0.00301 **  
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Correlation of Fixed Effects: 
        (Intr) PERSWI SAVANN POPDEN MARKET CSCOM  CSREF  WEALTH 
PERSWID -0.891                                                  
COMMONS -0.074 -0.070                                           
POPDENS -0.607  0.455  0.015                                    
MARKET  -0.292  0.101 -0.003 -0.035                             
CSCOM    0.172 -0.316 -0.010 -0.193  0.049                      
CSREF   -0.160  0.031  0.008  0.381 -0.432 -0.389               
WEALTH  -0.019 -0.003  0.000 -0.012  0.007  0.004 -0.008        
HHSIZE  -0.028  0.001  0.000  0.006  0.009  0.003  0.002  0.134 
 
Lilliefors (Kolmogorov-Smirnov) normality test of residuals: 
D = 0.167, p-value < 2.2e-16 
 
The correlation coefficient between conditional residuals and level 1 random 
effects: -0.0206892588768401 
 
The correlation coefficient between conditional residuals and level 2 random 
effects: 0.00397709107311646 
 
5-km Buffer with ANEMIA as outcome variable 
Linear mixed model fit by REML  
t-tests use  Satterthwaite approximations to degrees of freedom 
['merModLmerTest'] 
Formula: ANEMIA ~ PERSWID + COMMONS + POPDENS + MARKET + CSCOM + CSREF +      
WEALTH + HHSIZE + (1 | HOUSEHOLD) + (1 | VILLAGE) + (1 |   
    YEAR) 
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   Data: landscape[landscape$BUFFER == 5000, ] 
 
REML criterion at convergence: 104467.5 
 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-4.2225 -0.4986 -0.0026  0.5429  6.1745  
 
Random effects: 
 Groups    Name        Variance Std.Dev. 
 HOUSEHOLD (Intercept) 216.818  14.725   
 VILLAGE   (Intercept)  87.441   9.351   
 YEAR      (Intercept)   1.481   1.217   
 Residual              194.514  13.947   
Number of obs: 12775, groups: HOUSEHOLD, 185; VILLAGE, 37; YEAR, 2 
 
Fixed effects: 
              Estimate Std. Error         df t value Pr(>|t|)     
(Intercept)  8.362e+01  1.288e+01  1.300e+01   6.493 1.74e-05 *** 
PERSWID     -6.823e+00  1.440e+01  1.800e+01  -0.474    0.641     
COMMONS      1.213e-01  2.887e+00  1.250e+04   0.042    0.966     
POPDENS      5.221e-02  6.569e-02  3.100e+01   0.795    0.433     
MARKET      -1.880e-01  1.229e+00  3.000e+01  -0.153    0.879     
CSCOM        1.086e-01  3.123e-01  3.000e+01   0.348    0.730     
CSREF        5.571e-02  8.823e-02  3.100e+01   0.631    0.532     
WEALTH       1.610e+00  2.524e-01  1.165e+04   6.378 1.86e-10 *** 
HHSIZE       5.597e-01  7.791e-02  1.091e+04   7.184 7.22e-13 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Correlation of Fixed Effects: 
        (Intr) PERSWI SAVANN POPDEN MARKET CSCOM  CSREF  WEALTH 
PERSWID -0.882                                                  
COMMONS -0.101 -0.093                                           
POPDENS -0.598  0.451  0.021                                    
MARKET  -0.289  0.103 -0.004 -0.034                             
CSCOM    0.166 -0.307 -0.013 -0.192  0.048                      
CSREF   -0.152  0.026  0.011  0.380 -0.432 -0.388               
WEALTH  -0.047 -0.002  0.000 -0.023  0.005 -0.010 -0.003        
HHSIZE  -0.050 -0.010  0.000  0.003  0.007  0.014  0.001  0.217 
 
Lilliefors (Kolmogorov-Smirnov) normality test of residuals: 
D = 0.0712, p-value < 2.2e-16 
 
The correlation coefficient between conditional residuals and level 1 random 
effects: -0.00722941685425745 
 
The correlation coefficient between conditional residuals and level 2 random 
effects: 0.00403526720101505 
 
 
11-km Buffer with WEIGHT as outcome variable 
Linear mixed model fit by REML  
t-tests use  Satterthwaite approximations to degrees of freedom 
['merModLmerTest'] 
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Formula: WEIGHT ~ PERSWID + COMMONS + POPDENS + MARKET + CSCOM + CSREF +      
WEALTH + HHSIZE + (1 | HOUSEHOLD) + (1 | VILLAGE) + (1 |      YEAR) 
   Data: landscape[landscape$BUFFER == 11000, ] 
 
REML criterion at convergence: 396001.1 
 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-2.2697 -0.6434 -0.1796  0.2809  3.8668  
 
Random effects: 
 Groups    Name        Variance Std.Dev. 
 HOUSEHOLD (Intercept) 4289484  2071.1   
 VILLAGE   (Intercept)  954275   976.9   
 YEAR      (Intercept)       0     0.0   
 Residual              4462380  2112.4   
Number of obs: 21775, groups: HOUSEHOLD, 184; VILLAGE, 37; YEAR, 2 
 
Fixed effects: 
             Estimate Std. Error        df t value Pr(>|t|)     
(Intercept) -2506.889   1427.060    33.000  -1.757  0.08829 .   
PERSWID      2721.455   1670.117    34.000   1.629  0.11244     
COMMONS       -23.317    370.719 21007.000  -0.063  0.94985     
POPDENS        28.199      6.683    30.000   4.219  0.00021 *** 
MARKET         80.866    130.634    28.000   0.619  0.54083     
CSCOM          -8.340     32.751    28.000  -0.255  0.80089     
CSREF          15.294      9.362    29.000   1.634  0.11299     
WEALTH        130.242     19.536 21557.000   6.667 2.68e-11 *** 
HHSIZE         35.479      5.828 21648.000   6.088 1.16e-09 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Correlation of Fixed Effects: 
        (Intr) PERSWI SAVANN POPDEN MARKET CSCOM  CSREF  WEALTH 
PERSWID -0.886                                                  
COMMONS -0.112 -0.110                                           
POPDENS -0.525  0.356  0.038                                    
MARKET  -0.333  0.164 -0.012 -0.020                             
CSCOM    0.174 -0.300 -0.016 -0.165  0.030                      
CSREF   -0.066 -0.070  0.021  0.361 -0.438 -0.364               
WEALTH  -0.034  0.001 -0.001 -0.019  0.011  0.004 -0.012        
HHSIZE  -0.035 -0.008  0.001  0.006  0.013  0.009  0.002  0.133 
 
Lilliefors (Kolmogorov-Smirnov) normality test of residuals: 
D = 0.1662, p-value < 2.2e-16 
 
The correlation coefficient between conditional residuals and level 1 random 
effects: -0.0199824878154021 
 
The correlation coefficient between conditional residuals and level 2 random 
effects: 0.00384584462043112 
 
 
11-km Buffer with HEIGHT as outcome variable 
Linear mixed model fit by REML  
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t-tests use  Satterthwaite approximations to degrees of freedom 
['merModLmerTest'] 
Formula: HEIGHT ~ PERSWID + COMMONS + POPDENS + MARKET + CSCOM + CSREF +      
WEALTH + HHSIZE + (1 | HOUSEHOLD) + (1 | VILLAGE) + (1 |      YEAR) 
   Data: landscape[landscape$BUFFER == 11000, ] 
 
REML criterion at convergence: 403601.8 
 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-2.1757 -0.6082 -0.1345  0.2753  3.4939  
 
Random effects: 
 Groups    Name        Variance Std.Dev. 
 HOUSEHOLD (Intercept) 8628952  2938     
 VILLAGE   (Intercept) 4018929  2005     
 YEAR      (Intercept)       0     0     
 Residual              6300092  2510     
Number of obs: 21775, groups: HOUSEHOLD, 184; VILLAGE, 37; YEAR, 2 
 
Fixed effects: 
             Estimate Std. Error        df t value Pr(>|t|)     
(Intercept) -2191.123   2822.513    32.000  -0.776  0.44331     
PERSWID      2569.043   3280.457    33.000   0.783  0.43913     
COMMONS        -5.662    441.760 21535.000  -0.013  0.98977     
POPDENS        26.980     13.427    29.000   2.009  0.05387 .   
MARKET        192.291    264.503    29.000   0.727  0.47316     
CSCOM         -55.070     66.684    28.000  -0.826  0.41584     
CSREF          22.479     18.846    29.000   1.193  0.24254     
WEALTH        130.813     23.292 21754.000   5.616 1.98e-08 *** 
HHSIZE         20.559      6.944 21743.000   2.961  0.00307 **  
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Correlation of Fixed Effects: 
        (Intr) PERSWI SAVANN POPDEN MARKET CSCOM  CSREF  WEALTH 
PERSWID -0.902                                                  
COMMONS -0.066 -0.069                                           
POPDENS -0.534  0.372  0.023                                    
MARKET  -0.340  0.166 -0.008 -0.022                             
CSCOM    0.184 -0.320 -0.010 -0.170  0.027                      
CSREF   -0.077 -0.053  0.014  0.362 -0.439 -0.361               
WEALTH  -0.020  0.000  0.000 -0.011  0.007  0.003 -0.008        
HHSIZE  -0.021 -0.005  0.000  0.004  0.008  0.005  0.002  0.134 
 
Lilliefors (Kolmogorov-Smirnov) normality test of residuals: 
D = 0.167, p-value < 2.2e-16 
 
The correlation coefficient between conditional residuals and level 1 random 
effects: 0.0278275918670557 
 
The correlation coefficient between conditional residuals and level 2 random 
effects: 0.00226070338740844 
 
11-km Buffer with ANEMIA as outcome variable 
Linear mixed model fit by REML  
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t-tests use  Satterthwaite approximations to degrees of freedom 
['merModLmerTest'] 
Formula: ANEMIA ~ PERSWID + COMMONS + POPDENS + MARKET + CSCOM + CSREF +      
WEALTH + HHSIZE + (1 | HOUSEHOLD) + (1 | VILLAGE) + (1 |      YEAR) 
   Data: landscape[landscape$BUFFER == 11000, ] 
 
REML criterion at convergence: 104467.5 
 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-4.2226 -0.4985 -0.0025  0.5428  6.1743  
 
Random effects: 
 Groups    Name        Variance Std.Dev. 
 HOUSEHOLD (Intercept) 216.6702 14.7197  
 VILLAGE   (Intercept)  87.9671  9.3791  
 YEAR      (Intercept)   0.6177  0.7859  
 Residual              194.5154 13.9469  
Number of obs: 12775, groups: HOUSEHOLD, 185; VILLAGE, 37; YEAR, 2 
 
Fixed effects: 
              Estimate Std. Error         df t value Pr(>|t|)     
(Intercept)  8.195e+01  1.346e+01  1.000e+01   6.090 0.000109 *** 
PERSWID     -4.880e+00  1.564e+01  1.300e+01  -0.312 0.759841     
COMMONS      9.009e-02  2.887e+00  1.252e+04   0.031 0.975106     
POPDENS      5.849e-02  6.317e-02  3.100e+01   0.926 0.361651     
MARKET      -1.928e-01  1.243e+00  3.000e+01  -0.155 0.877729     
CSCOM        9.753e-02  3.137e-01  3.000e+01   0.311 0.758026     
CSREF        5.794e-02  8.858e-02  3.100e+01   0.654 0.517835     
WEALTH       1.609e+00  2.524e-01  1.165e+04   6.376 1.88e-10 *** 
HHSIZE       5.600e-01  7.794e-02  1.092e+04   7.185 7.15e-13 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Correlation of Fixed Effects: 
        (Intr) PERSWI SAVANN POPDEN MARKET CSCOM  CSREF  WEALTH 
PERSWID -0.894                                                  
COMMONS -0.091 -0.093                                           
POPDENS -0.529  0.367  0.031                                    
MARKET  -0.337  0.167 -0.010 -0.022                             
CSCOM    0.182 -0.315 -0.013 -0.169  0.026                      
CSREF   -0.074 -0.057  0.019  0.362 -0.440 -0.361               
WEALTH  -0.048  0.002  0.000 -0.022  0.006 -0.011 -0.003        
HHSIZE  -0.032 -0.028  0.001 -0.003  0.003  0.020  0.003  0.217 
 
Lilliefors (Kolmogorov-Smirnov) normality test of residuals: 
D = 0.0712, p-value < 2.2e-16 
 
The correlation coefficient between conditional residuals and level 1 random 
effects: -0.00716815990409958 
 
The correlation coefficient between conditional residuals and level 2 random 
effects: 0.00403649976282376 
 
25-km Buffer with WEIGHT as outcome variable 
Linear mixed model fit by REML  
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t-tests use  Satterthwaite approximations to degrees of freedom 
['merModLmerTest'] 
Formula: WEIGHT ~ PERSWID + COMMONS + POPDENS + MARKET + CSCOM + CSREF +      
WEALTH + HHSIZE + (1 | HOUSEHOLD) + (1 | VILLAGE) + (1 |      YEAR) 
   Data: landscape[landscape$BUFFER == 25000, ] 
 
REML criterion at convergence: 395999.4 
 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-2.2715 -0.6440 -0.1803  0.2812  3.8664  
 
Random effects: 
 Groups    Name        Variance Std.Dev. 
 HOUSEHOLD (Intercept) 4287715  2070.7   
 VILLAGE   (Intercept)  902773   950.1   
 YEAR      (Intercept)       0     0.0   
 Residual              4462429  2112.4   
Number of obs: 21775, groups: HOUSEHOLD, 184; VILLAGE, 37; YEAR, 2 
 
Fixed effects: 
             Estimate Std. Error        df t value Pr(>|t|)     
(Intercept) -3456.923   1599.233    34.000  -2.162  0.03775 *   
PERSWID      3851.622   1872.190    35.000   2.057  0.04710 *   
COMMONS       -20.010    369.651 19807.000  -0.054  0.95683     
POPDENS        26.473      6.175    30.000   4.287  0.00017 *** 
MARKET        136.191    132.954    28.000   1.024  0.31434     
CSCOM          -4.340     30.969    28.000  -0.140  0.88955     
CSREF          13.052      9.242    29.000   1.412  0.16838     
WEALTH        129.719     19.535 21552.000   6.640 3.21e-11 *** 
HHSIZE         35.427      5.828 21648.000   6.079 1.23e-09 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Correlation of Fixed Effects: 
        (Intr) PERSWI SAVANN POPDEN MARKET CSCOM  CSREF  WEALTH 
PERSWID -0.914                                                  
COMMONS -0.108 -0.086                                           
POPDENS -0.346  0.168  0.069                                    
MARKET  -0.459  0.331 -0.023 -0.024                             
CSCOM    0.090 -0.187 -0.035 -0.095  0.016                      
CSREF    0.051 -0.176  0.028  0.372 -0.460 -0.358               
WEALTH  -0.017 -0.014  0.001 -0.023  0.006  0.008 -0.009        
HHSIZE  -0.026 -0.012  0.001  0.007  0.010  0.009  0.004  0.133 
 
Lilliefors (Kolmogorov-Smirnov) normality test of residuals: 
D = 0.166, p-value < 2.2e-16 
 
The correlation coefficient between conditional residuals and level 1 random 
effects: -0.0195293469814163 
 
The correlation coefficient between conditional residuals and level 2 random 
effects: 0.00383163240007301 
 
25-km Buffer with HEIGHT as outcome variable 
Linear mixed model fit by REML  
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t-tests use  Satterthwaite approximations to degrees of freedom 
['merModLmerTest'] 
Formula: HEIGHT ~ PERSWID + COMMONS + POPDENS + MARKET + CSCOM + CSREF +      
WEALTH + HHSIZE + (1 | HOUSEHOLD) + (1 | VILLAGE) + (1 |      YEAR) 
   Data: landscape[landscape$BUFFER == 25000, ] 
 
REML criterion at convergence: 403600.5 
 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-2.1756 -0.6081 -0.1348  0.2747  3.4937  
 
Random effects: 
 Groups    Name        Variance Std.Dev. 
 HOUSEHOLD (Intercept) 8619289  2936     
 VILLAGE   (Intercept) 3862116  1965     
 YEAR      (Intercept)       0     0     
 Residual              6300186  2510     
Number of obs: 21775, groups: HOUSEHOLD, 184; VILLAGE, 37; YEAR, 2 
 
Fixed effects: 
             Estimate Std. Error        df t value Pr(>|t|)     
(Intercept) -4027.367   3159.557    33.000  -1.275  0.21139     
PERSWID      4813.100   3674.864    34.000   1.310  0.19906     
COMMONS       -12.275    441.291 21407.000  -0.028  0.97781     
POPDENS        26.127     12.448    29.000   2.099  0.04463 *   
MARKET        274.453    270.852    29.000   1.013  0.31942     
CSCOM         -55.457     63.322    28.000  -0.876  0.38851     
CSREF          19.232     18.714    29.000   1.028  0.31253     
WEALTH        130.543     23.292 21755.000   5.605 2.11e-08 *** 
HHSIZE         20.530      6.944 21743.000   2.957  0.00311 **  
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Correlation of Fixed Effects: 
        (Intr) PERSWI SAVANN POPDEN MARKET CSCOM  CSREF  WEALTH 
PERSWID -0.926                                                  
COMMONS -0.065 -0.054                                           
POPDENS -0.358  0.188  0.042                                    
MARKET  -0.464  0.329 -0.014 -0.023                             
CSCOM    0.097 -0.207 -0.022 -0.094  0.011                      
CSREF    0.044 -0.165  0.019  0.368 -0.461 -0.352               
WEALTH  -0.010 -0.008  0.000 -0.014  0.004  0.005 -0.006        
HHSIZE  -0.016 -0.007  0.000  0.005  0.006  0.005  0.003  0.134 
 
Lilliefors (Kolmogorov-Smirnov) normality test of residuals: 
D = 0.167, p-value < 2.2e-16 
 
The correlation coefficient between conditional residuals and level 1 random 
effects: 0.027801953390623 
 
The correlation coefficient between conditional residuals and level 2 random 
effects: 0.00226198261061631 
 
25-km Buffer with ANEMIA as outcome variable 
Linear mixed model fit by REML  
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t-tests use  Satterthwaite approximations to degrees of freedom 
['merModLmerTest'] 
Formula: ANEMIA ~ PERSWID + COMMONS + POPDENS + MARKET + CSCOM + CSREF +      
WEALTH + HHSIZE + (1 | HOUSEHOLD) + (1 | VILLAGE) + (1 |      YEAR) 
   Data: landscape[landscape$BUFFER == 25000, ] 
 
REML criterion at convergence: 104467.2 
 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-4.2228 -0.4986 -0.0025  0.5429  6.1740  
 
Random effects: 
 Groups    Name        Variance Std.Dev. 
 HOUSEHOLD (Intercept) 216.710  14.721   
 VILLAGE   (Intercept)  87.815   9.371   
 YEAR      (Intercept)   1.436   1.198   
 Residual              194.515  13.947   
Number of obs: 12775, groups: HOUSEHOLD, 185; VILLAGE, 37; YEAR, 2 
 
Fixed effects: 
              Estimate Std. Error         df t value Pr(>|t|)     
(Intercept)  8.295e+01  1.551e+01  9.000e+00   5.347 0.000554 *** 
PERSWID     -5.944e+00  1.801e+01  1.100e+01  -0.330 0.747805     
COMMONS      6.155e-02  2.882e+00  1.232e+04   0.021 0.982960     
POPDENS      6.270e-02  5.970e-02  3.100e+01   1.050 0.301647     
MARKET      -2.717e-01  1.300e+00  3.100e+01  -0.209 0.835797     
CSCOM        8.296e-02  3.036e-01  3.000e+01   0.273 0.786540     
CSREF        6.192e-02  8.976e-02  3.200e+01   0.690 0.495332     
WEALTH       1.611e+00  2.524e-01  1.166e+04   6.381 1.83e-10 *** 
HHSIZE       5.602e-01  7.795e-02  1.092e+04   7.187 7.08e-13 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Correlation of Fixed Effects: 
        (Intr) PERSWI SAVANN POPDEN MARKET CSCOM  CSREF  WEALTH 
PERSWID -0.920                                                  
COMMONS -0.088 -0.070                                           
POPDENS -0.347  0.177  0.057                                    
MARKET  -0.464  0.335 -0.018 -0.025                             
CSCOM    0.089 -0.195 -0.030 -0.095  0.012                      
CSREF    0.054 -0.174  0.025  0.369 -0.464 -0.352               
WEALTH  -0.027 -0.014  0.001 -0.027  0.001 -0.008  0.000        
HHSIZE  -0.019 -0.032  0.001  0.002 -0.004  0.018  0.007  0.218 
 
Lilliefors (Kolmogorov-Smirnov) normality test of residuals: 
D = 0.0712, p-value < 2.2e-16 
 
The correlation coefficient between conditional residuals and level 1 random 
effects: -0.00708978711959713 
 
The correlation coefficient between conditional residuals and level 2 random 
effects: 0.0040442759067882 
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