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ABSTRACT 

Adherens junctions (AJs) connect epithelial cells to one another and connect the plasma 

membrane to the actomyosin cytoskeleton; this organization translates contractility to 

neighboring cells and preserves tissue integrity during morphogenesis. The exact interactions 

among adhesion molecules located at AJs remain unclear. It is currently thought that cadherins 

mediate cell-cell adhesion, while proteins bound to their cytoplasmic tails, known broadly as 

catenins, interact with junction-linker proteins. These linker proteins, in turn, interact with the 

actomyosin cytoskeleton. We examined whether Canoe acts as a junction-linker protein by 

testing its role in maintaining epithelial integrity, which is an indicator of junctional integrity. 

We used immunofluorescence and confocal microscopy to examine Drosophila melanogaster 

embryos during dorsal closure. In wild-type embryos, Canoe is enriched at the leading-edge 

epidermis and at multicellular junctions along the lateral epidermis. This enrichment pattern 

aligns closely with the location of actin filaments and myosin II heavy chain. We used RNA 

interference in conjunction with the UAS-Gal4 system to reduce canoe function. Loss of canoe 

caused cells along the lateral epidermis to become highly variable in shape, suggesting that 

translation of contractility to AJs occurred unevenly among the cell population. Furthermore, the 

number and regularity of puncta of Enabled, an actin assembly and elongation factor usually 

enriched at AJs, decreased along the leading edge. These results support the hypothesis that 

Canoe acts as a linker protein, playing an essential role in regulating epithelial sheet integrity and 

contractility. Understanding these complex interactions can provide insight into the mechanisms 

of wound healing and neural tube closure in humans and guide the creation of embryonic defect 

prevention therapies. 
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INTRODUCTION 

Cell adhesion – the process by which cells attach to a surface, substrate, or other cells – is 

a fundamental cellular property, underlying processes from bacterial colonization to cancer 

metastasis. We explore cell adhesion in epithelia, the most common tissue architecture in 

animals. Epithelial cells form structures as diverse as the skin, kidney, and bronchioles. Given its 

wide distribution in the body, epithelia perform a variety of functions, from protection to 

excretion to gas exchange.  

Cells in an epithelium exhibit a simple morphology with a distinct apical “top” and basal 

“bottom” polarity. The apical surface is usually exposed to fluid or the air, while the basal 

surface is attached to a basement membrane. Cadherin-based cell-cell adherens junctions (AJs) 

reside at the interface between the apical and basal domains. Cadherins mediate cell-cell 

adhesion, while proteins bound to their cytoplasmic tails, known broadly as catenins, interact 

with the actomyosin cytoskeleton (Meng and Takeichi, 2009). Blocking cadherin-catenin 

function disrupts cell adhesion in cultured epithelial cells and developing embryos (Cox et al., 

1996; Gumbiner et al., 1988; Johnson et al., 1986). Defining roles for AJs in maintaining 

epithelial cell adhesion raised a new question: what adhesion molecules are essential for 

maintaining epithelial sheet integrity during embryo development, and how do these molecules 

interact with one another? 

Fruit fly (Drosophila melanogaster) dorsal closure provides an excellent model for 

epithelial integrity. Dorsal closure is driven by dynamic remodeling of the actomyosin 

cytoskeleton at AJs along the leading-edge epidermis. During early closure, the leading-edge 

cells become organized into well-defined rows in which actin and myosin II cables assemble to 

form supracellular “purse strings” (Young et al., 1993; Kierhart et al., 2000). Tension in these 
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actin and myosin cables produces forces that maintain a uniform epithelial advance as the 

adjacent amnioserosal cells apically constrict (Kierhart et al., 2000). Eventually the amnioserosa 

is enclosed within the epidermis, and its molecular components are recycled by apoptosis 

(Kierhart et al., 2000). When the lateral epidermis fails to seal over the amnioserosa, a “dorsal 

open” phenotype is produced (Takahashi et al., 1998). In these “dorsal open” mutants, the 

underlying mesoderm remains exposed, and the embryos die (Takahashi et al., 1998). 

Because AJs play a vital role during embryogenesis, they remain an active field of study. 

In the conventional model, cadherins link directly to actin via α- and β-catenin (Pokutta et al., 

2002; Rimm et al., 1995; Drees et al., 2005). Later work revealed that this linkage is mediated by 

a far more sophisticated set of interactions (Yamada et al., 2005). This discovery prompted the 

search for so-called junction-linker proteins that regulate epithelial cell adhesion and 

AJ/cytoskeletal linkage.  

One candidate junction-linker protein is Canoe. Canoe is homologous to the mammalian 

PDZ protein Afadin (AF-6), which plays critical roles in regulating intracellular signaling and 

organizing cell junctions throughout development (Brody 1998). Canoe’s own multidomain 

structure allows it to interact directly with the cytoskeleton via its F-actin-binding domain and to 

bind AJ proteins, including E-cadherin and α-catenin, via its PDZ and proline-rich domains 

(Mandai et al., 2013). 

Early studies of Drosophila Canoe suggest that it is not essential for maintaining cell-cell 

adhesion, but it is required for many processes driven by AJ/cytoskeletal linkage (Sawyer et al., 

2009). Studies examining zygotic canoe mutants in flies have demonstrated that loss of canoe 

leads to abnormal cell shape changes, asymmetric divisions, and aberrant cell fate choice in the 

nervous system and mesoderm (Jürgens et al., 1984; Takahashi et al., 1998; Boettner et al., 2003; 
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Carmena et al., 2006; Speicher et al., 2008). In Drosophila, loss of canoe hampers actomyosin-

driven processes, such as apical constriction during gastrulation, convergent elongation during 

germband extension, and epithelial sheet migration during dorsal closure (Boettner et al., 2003; 

Boettner and Van Aelst, 2007; Sawyer et al., 2009; Choi et al., 2011; Sawyer et al., 2011).  

These observations suggest that Canoe plays a pivotal role in regulating AJ/cytoskeletal 

linkage during Drosophila embryogenesis; however, the exact mechanisms and interactions by 

which Canoe exerts its effects remain unclear. In this study, we examine whether Canoe acts as a 

junction-linker protein by testing its role in maintaining epithelial integrity, which is an indicator 

of junctional integrity. We use immunofluorescence and confocal microscopy to examine 

Drosophila melanogaster embryos during dorsal closure. We use RNA interference in 

conjunction with the UAS-Gal4 system to reduce canoe function. We investigate the interactions 

between Canoe and AJ-associated molecules to examine how Canoe acts as a linker protein. 

Understanding these complex interactions can provide insight into the mechanisms of wound 

healing and neural tube development in humans – two processes that closely resemble 

Drosophila dorsal closure. This information, in turn, can assist in the creation of embryonic 

defect prevention therapies. 
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METHODS 

Fly stocks 

Fly stocks are listed in Table 1. Mutations are described at http://flybase.org. Wild-type 

included yellow-white, Histone-GFP, E-cadherin-GFP, and Zipper-GFP (II). Various-strength 

canoe knockdown mutants were generated by crossing female virgins from the UAS-Gal4 canoe 

shRNA lines to males from the maternal driver lines as described in Blair (2003). The UAS-Gal4 

canoe shRNA lines were the weaker UAS.cno RNAi Valium 20 (III) line and the stronger 

UAS.cno RNAi Valium 22 (II) line. The two maternal driver lines were the weaker triple 

maternal driver, abbreviated MTD-Gal4 (I,II,III), and the stronger double maternal driver, 

denoted Mat-Gal4 (II,III). The progeny from these crosses are described in Table 1. Previous 

work in the Peifer lab involved the cnoR2, cnoMZ, and VP16:nos-Gal4 lines (Manning and 

Sewell, unpublished). All experiments were performed at 25 °C unless noted otherwise. Fly 

stocks were obtained from the Bloomington Drosophila Stock Center.  

 

Preparation of cuticles and hatch rates 

 Cuticle preparations were made as described in Wieschaus and Nüsslein-Volhard 

(1986).  Mutant canoe embryos from a single cross were collected and arranged into columns on 

an apple juice agar plate. The embryos were incubated for 48 hours at 25 °C, after which the 

number of hatched and unhatched embryos were recorded. Unhatched embryos were 

dechorionated in 50 % bleach, washed in 0.1 % Triton X-100(Sigma Aldrich cat. T9284), and 

incubated on microscope slide in Hoyer’s:lactic acid overnight at 65 °C. The unhatched embryos 

were visualized via light microscopy to confirm the hatch rate predictions and classify the 

severity of embryonic defects. 

http://flybase.org/
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Immunofluorescence 

The staining protocol was adapted from Müller and Wieschaus (1996). Embryos were 

bleach dechorionated and fixed for 20 minutes in 1:1 4 % formaldehyde(Electron Microscopy 

Sciences cat. 15686)/PBS/0.5M EGTA:heptane(Sigma Aldrich cat. 34873). Embryos for hand-

peeling were fixed for 30 minutes in 1:1 18 % formaldehyde/PBS/0.5M EGTA:heptane. 

Embryos that were not hand-peeled were devitellinized with methanol(Macron Fine Chemicals 

cat. UN1230). All embryos were blocked and stained in PBS/1 % normal goat serum(Fisher 

Scientific cat. NC9270494)/0.1 % Triton X-100(Sigma Aldrich cat. T9284). Primary and 

secondary antibodies were diluted in PBS containing 1 % normal goat serum and 0.1 % Triton 

X-100 and incubated overnight at 4 °C. Antibodies and probes are listed in Table 1.  

 

Image Acquisition and Manipulation 

Fixed embryos were mounted in Aqua-Poly/Mount (Polysciences) and imaged on a 

confocal laser-scanning microscope (LSM 710, 40x/NA 1.3 Plan-Apochromat oil objective, Carl 

Zeiss). ZEN 2009 software (Carl Zeiss) was used to process images and render z-stacks in 3-D. 

Maximum intensity projections (MIPs) were generated by acquiring z-stacks through the embryo 

with a 0.13 μm step size and digital zoom of 0.6 or 2.0. Photoshop CS6 (Adobe) and ImageJ 

(NIH) were used to adjust input levels so that the signal spanned the entire output grayscale and 

to adjust brightness and contrast. 
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RESULTS 

Organization of epithelial AJs during wild-type dorsal closure 

Our goal was to define the mechanisms mediating AJ/cytoskeletal linkage with a focus 

on how Canoe interacts with AJ-associated molecules. Our investigation was accomplished by 

using dorsal closure as a model system. We began our study with a question: where is Canoe 

typically enriched in wild-type embryos in relation to known adhesion molecules?   

At the onset of dorsal closure, Canoe is positioned apically in lateral epidermal (LE) 

cells. While Canoe is visible around the entire apical perimeter of these cells, Canoe’s 

distribution is not completely uniform. Canoe appears enriched at AJs along the leading edge, 

where LE meets the amnioserosa (AS) (Fig. 1A’, yellow arrows). Canoe also appears enriched at 

tri- and multicellular junctions in LE cells that are not part of the leading edge (Fig. 1A’, blue 

and red arrows). Since multicellular junctions are known to be regions of elevated contractility in 

other contexts, this enrichment pattern suggests that Canoe is recruited to areas of high tension to 

help modulate cell adhesion (Choi et al., 2016).  

Early in dorsal closure, Armadillo [the β-catenin homolog] appears enriched along the 

leading-edge epidermis. Unlike Canoe, which is enriched at LE-LE bicellular junctions along the 

leading edge, Armadillo appears enriched in between these junctions during early dorsal closure 

(Fig. 1B’, yellow arrows). As dorsal closure progresses, Armadillo appears to relocalize from the 

LE-AS cell borders to LE-LE cell borders (Fig. 1C’, yellow arrows). This pattern is also 

consistent at the canthi, where the two lateral epidermal sheets meet the dorsal midline 

(Gorfinkiel and Arias, 2007). The bright spots that occur where the LE-LE cell borders meet the 

leading edge correspond to actin-nucleating centers (Fig. 1C’, red arrows; Gorfinkiel and Arias, 

2007).  
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To visualize actin, we stained hand-peeled embryos with phalloidin, which binds to F-

actin. The enrichment pattern of actin closely mirrors that of Canoe. Actin is visible at the apical 

perimeters of LE cell borders (Fig. 2A’, red arrows). Actin also appears significantly enriched at 

LE-LE bicellular junctions along the leading edge and slightly enriched at multicellular borders 

in the LE (Fig. 2A’, yellow and blue arrows). These results raised the question, to what extent do 

Canoe and actin localize together? 

Other studies in the Peifer lab are using super-resolution microscopy to investigate the 

localization of Canoe and actin at AJs along the leading edge. While Canoe is visible at the LE-

LE bicellular junctions, actin fibers end just prior to these junctions (Manning, unpublished). 

These results suggest that Canoe is positioned at the AJ and may interact with the ends of actin 

fibers (Manning, unpublished).  

These confocal and super-resolution studies of Canoe and actin support the hypothesis 

that multicellular junctions in the LE and bicellular junctions along the leading edge represent 

areas of increased tension and contractility. If Canoe and actin do indeed localize close to one 

another, Canoe could interact with actin filaments to regulate AJ/cytoskeletal linkage. This 

modulation would be especially important for maintaining epithelial integrity in the LE as these 

cells undergo shape changes and collective migration. 

During dorsal closure, F-actin colocalizes with myosin II at the leading-edge epidermis to 

form the supracellular purse strings that cinch to seal the dorsal hole (Franke et al., 2005). To 

visualize myosin, we examined Zipper-GFP (II) embryos, a line that carries myosin II heavy 

chain tagged with green fluorescent protein. Similar to Armadillo, the myosin II fibers are 

predominantly located between LE-LE bicellular junctions along the leading edge (Fig. 2B’, 

yellow arrows). As dorsal closure progresses, the myosin II enrichment pattern increases in 
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intensity. This phenomenon likely occurs because the myosin II fibers are pulled closer together 

as the dorsal hole shrinks rather than reflecting a greater number of myosin II fibers being 

recruited to the leading edge.  

Interestingly, myosin II fibers form an alternating sequence with puncta of Enabled 

across the leading edge (Fig. 2B’’’, green and red arrows). Enabled is an actin-associated 

molecule that localizes to the plus ends of actin filaments to regulate the assembly of contractile 

cables and cell protrusions (Scott et al., 2006). Whereas myosin II fibers are located primarily 

between LE-LE bicellular junctions along the leading edge, puncta of Enabled are located at the 

junctions (Fig. 2C’, blue arrows). This difference in enrichment produces an alternating myosin 

II - Enabled pattern across the leading edge.  

Enabled also surrounds the borders of LE cells that are not part of the leading edge. 

Enabled is particularly noticeable among the groove cells that mark the boundary of each ventral 

segment (Fig. 2C’, yellow arrows). Actin also appears enriched the segmental groove cells (Fig. 

2D’, yellow arrows). This enrichment becomes more noticeable at groove cells located farther 

away from the leading edge (Fig. 2D’, red arrows). Thus, the enrichment pattern of Enabled 

aligns more closely with F-actin and Canoe than it does with myosin II. These results are 

consistent with the hypothesis that Enabled binds to the tips of F-actin cables and interacts with 

Canoe at AJs.  

 

Strength of canoe knockdown affects the severity of embryonic defects 

 Examining adhesion molecules in wild-type embryos provided a baseline for typical 

enrichment levels. We continued our investigation by asking what changes in these enrichment 

patterns would occur when zygotic canoe levels are significantly reduced. We utilized RNA 
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interference in conjunction with the UAS-Gal4 system to generate canoe knockdown lines (Fig. 

3A). Expression in the female germline knocks down maternal mRNA, and maternally-expressed 

Gal4 persists zygotically, driving zygotic shRNA expression, often leading to knockdown 

mimicking maternal/zygotic mutants (Staller et al., 2013). 

The first attempts at knocking-down canoe involved the creation of maternal-zygotic 

canoe mutant lines. While these lines successfully knocked-down canoe, fertility issues and low 

embryo yields posed significant obstacles. The second attempts at knocking-down canoe 

involved the examination of zygotic canoe mutant lines. Finally, different degrees of canoe 

knockdown were obtained by crossing males from three different maternal driver lines to 

UAS.cno RNAi Valium 20 (III) virgin females and examining their progeny (Manning and 

Sewell, unpublished). The maternal drivers included the weak VP16:nos-Ga14 driver, the 

intermediate MTD-Gal4 driver, and the strong Mat-Gal4 driver. These results indicated that this 

method of knocking-down canoe could successfully produce canoe mutant phenotypes of a 

range of severities.  

In this study, we examined two new ways of reducing Canoe levels in embryos: (1) 

crossing the intermediate MTD-Gal4 driver to UAS.cno RNAi Valium 22 (II) females, and (2) 

crossing the strong Mat-Gal4 driver to UAS.cno RNAi Valium 22 (II) females. Based on 

previous work with the Valium 22 RNAi line, we expected that this RNAi line would produce a 

stronger knockdown compared to the Valium 20 RNAi line (Bonello et al., 2018).  

RNAi severely reduced Canoe levels. The Valium 22 RNAi line reduced Canoe below 

levels detectable by immunoblotting, and only small amount of Canoe was visible from the 

Valium 20 RNAi line (Fig. 3B; Bonello et al., 2018). To determine how zygotic loss of canoe 

affects embryo viability, we analyzed the hatch rate of canoe knockdown lines. The unhatched 
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embryos were later visualized via light microscopy because cuticle phenotypes represent a read-

out of the severity of epidermal defects (Fig. 3C-H).  

Interestingly, our new MTD-Gal4; UAS.cno RNAi Valium 22 (II) mutants displayed a 

wide range of phenotypes, from embryos with no observable defects to those with severe 

morphogenetic defects (Fig. 3I). These results were unexpected because our new canoe mutants 

displayed mild defects more frequently than the milder MTD-Gal4; UAS.cno RNAi Valium 20 

(III) mutants. Furthermore, our new canoe mutants also displayed cuticle fragments – the most 

severe phenotype – more frequently than the more severe Mat-Gal4; UAS.cno RNAi Valium 20 

(III) mutants.  

 

Loss of canoe produces large-scale morphological defects 

 Reduction or loss of canoe produces several unique phenotypes that are not observed in 

wild-type embryos. Severe head defects are common, and head involution is often disrupted (Fig. 

4A-D, yellow arrows). Head involution begins during germband retraction and continues 

throughout dorsal closure (VanHook and Letsou, 2007). During head involution, the three 

preoral and three gnathal tissues that compose the head segments rearrange and migrate 

internally to form the mouthparts and the anterior end of the digestive system (VanHook and 

Letsou, 2007). These head tissues remain internal until metamorphosis; at this point, the six 

tissues come together to form the adult head, which is pushed out of the body cavity to assume 

its position as the most anterior part of the animal (VanHook and Letsou, 2007).  

Defects in head involution are not the only large-scale changes produced when canoe is 

knocked-down; dorsal closure is also disrupted by the loss of canoe. The lateral epidermis 

frequently tears away from the amnioserosa, producing gaps in the leading edge (Fig. 4E’, red 
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arrows). Other times, the lateral epidermis does not separate completely from the amnioserosa. 

At first glance, these instances appear to resemble holes in the leading edge; however, scanning 

several micrometers below the surface of the lateral epidermis reveals that the leading edge has 

curled downwards (Fig. 4E’, blue arrows). Thus, the leading edge remains continuous, despite 

spanning more z-planes than typically observed in wild-type embryos. 

Loss of canoe also produces defects at regions other than the leading edge. Two types of 

defects are commonly observed in the segmental grooves: segmental groove fusion and 

abnormally deep segmental grooves. Segmental groove fusion occurs when one segment 

stretches across the groove and fuses with one or more neighboring segments (Fig. 4F’, green 

arrows). This phenomenon results in the partial or complete disappearance of the groove, 

depending on where the bridging between neighboring grooves occurs. Segmental grooves in 

canoe mutants are also unusually deep (Fig. 4A-D, purple arrows). The grooves in canoe 

mutants extend closer to the leading edge and deeper into the underlying tissue of the embryo 

compared to grooves in wild-type flies.  

Loss of canoe also dramatically impacts epidermal cell shape. Wild-type epidermal cells 

have a similar columnar shape across the leading edge (Fig 4G’, yellow outlines). Additionally, 

the leading edge typically forms a straight border between the lateral epidermis and amnioserosa 

(Fig 4G’). These characteristics are strikingly different in canoe mutants: epidermal cell shape 

becomes more variable and more cuboidal, and the leading edge is less continuous (Fig 4H’, 

yellow outlines). These results support the hypothesis that Canoe is an important modulator of 

AJ/cytoskeletal integrity. In the absence of canoe, epithelial cells are unable to maintain proper 

size and shape when exposed to increased tension and contractile forces. 
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Loss of canoe disrupts wild-type enrichment patterns of adhesion molecules 

After examining the large-scale morphological defects produced when canoe is knocked-

down, we were left with a new question: how does loss of canoe affect the enrichment patterns 

of adhesion molecules?  

We began our investigation by examining the localization of E-cadherin, which sits at the 

core of the AJ. Previous work with canoe mutants suggested that Canoe is not essential to 

maintain adherens junctions or wild-type E-cadherin enrichment (Sawyer et al., 2011; Choi et al., 

2016; Cox et al. 1996; Tepass et al., 1996). Therefore, we did not expect canoe knockdown to 

disrupt the localization of E-cadherin. While morphological defects did occur in canoe mutants, 

we observed only slight changes in the enrichment pattern of E-cadherin (Fig. 5A’-B’). In canoe 

knockdown mutants, E-cadherin appears less enriched at the LE-AS border along the leading 

edge (Fig. 5B’, yellow arrows). E-cadherin also appears less enriched at LE-LE cell borders (Fig. 

5B’, red arrows). These results are consistent with previous conclusions.  

Next, we examined whether loss of canoe disrupts the localization of actin and the actin-

associated molecule, Enabled. The enrichment pattern of actin fibers appears similar in moderate 

canoe mutants and in wild-type embryos during early dorsal closure (Fig. 5C’-D’). During early 

dorsal closure, actin appears subtly enriched along the leading edge compared to other locations 

in the embryo (Fig. 5C’-D’, yellow arrows). In some instances, canoe knockdown mutants show 

small gaps where actin appears to be absent from the leading edge (Fig. 5D’, red arrows). 

Despite these slight differences, the enrichment pattern of actin fibers remains largely unchanged 

in canoe knockdown mutants. These results suggest that Canoe is not essential to recruit actin 

fibers to the leading edge; however, the cell shape changes we observed in the lateral epidermis 

suggest that Canoe does play a role in connecting the actin cytoskeleton to the core AJ 
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molecules. This organization allows Canoe to translate contractility across the lateral epidermis 

by regulating AJ/cytoskeletal linkage.  

In moderate canoe mutants, there is an overall reduction of Enabled at the leading edge 

(Fig 5E’-F’). Furthermore, the spacing between puncta becomes more variable compared to the 

regular pattern observed in wild-type embryos (Fig 5E’-F’, yellow arrows). These data suggest 

that Canoe may recruit Enabled to bicellular junctions at the leading edge (Fig. 6). In the absence 

of Canoe, Enabled does not localize properly to these LE-LE bicellular junctions.  
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DISCUSSION 

Cell adhesion is a fundamental property in animal development, allowing individual 

epithelial cells to engage in collective migration and enabling the translation of contractile forces 

across a sheet of epithelial tissue. AJs are the sites where the actomyosin cytoskeleton is linked 

across the plasma membrane to connect to the cytoskeleton of a neighboring cell. The structure 

of the AJ enables the junction to perform multiple functions, including the initiation and 

stabilization of cell-cell adhesion, modulation of the actomyosin cytoskeleton, intracellular 

signaling, and transcriptional regulation; however, the exact interactions among adhesion 

molecules located at AJs remain unclear. 

Given the broad importance of AJs in animals, we wanted to elucidate the mechanisms 

by which adhesion molecules regulate AJ/cytoskeletal linkage. Work from many labs has 

suggested that proteins other than the transmembrane cadherin and cadherin-binding catenins are 

involved in these interactions. We focused our study on Canoe, one proposed cytoskeletal-

junction linker protein.  

We began our investigations by examining the enrichment patterns of Canoe and other 

adhesion molecules during dorsal closure in wild-type Drosophila embryos. Dorsal closure 

serves as an excellent model for collective cell migration and can provide insight into how cell-

cell adhesion is modulated at the AJs during embryogenesis. Furthermore, dorsal closure closely 

resembles epithelial wound healing and neural tube development in higher vertebrates (Agnès 

and Noselli, 1999; Jacinto et al., 2002). Thus, the results of this study could be generalized to 

provide insight into similar biological phenomena that are more difficult to manipulate and 

study.  
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We examined Canoe, Armadillo, actin, myosin II heavy chain, E-cadherin, and Enabled 

in wild-type Drosophila embryos. We found that Canoe’s enrichment pattern aligns closely with 

the ends of F-actin fibers along the leading edge. These results suggest that Canoe plays a role in 

modulating the linkage of the actomyosin cytoskeleton to the core catenin-cadherin complex at 

AJs.  

The location of myosin II differs from the location of actin. Whereas actin forms a 

continuous ring around the dorsal hole, myosin II appears enriched in bright spots located in 

between LE-LE bicellular junctions along the leading edge. These spots of myosin II form an 

alternating pattern with puncta of Enabled, which appear to localize at the bicellular junctions.  

These results led us to wonder, what happens to these enrichment patterns when canoe 

levels are reduced in the developing embryo? To examine this question, we generated canoe 

knockdown mutants by utilizing the UAS-Gal4 system in conjunction with RNA interference. 

Crossing different-strength maternal drivers with different-strength shRNA lines produced canoe 

knockdown mutants with dose-dependent morphogenetic defects.  

Results from cuticle preparation data suggest that the strongest canoe knockdown 

mutants can be generated by crossing the strong Mat-Ga14 (II,III) maternal driver with UAS.cno 

RNAi Valium 22 (II). These very strong canoe knockdown mutants will be appropriate for 

examining how near-complete loss of Canoe affects apical constriction and convergent extension 

during Drosophila germband extension. However, because strong canoe knockdown produces 

embryos that are too highly altered by late embryogenesis to obtain useful data, we shifted our 

focus to more moderate lines of canoe knockdown mutants for studies on dorsal closure.  

Once we generated canoe knockdown mutant lines, we examined how adhesion molecule 

enrichment patterns are disrupted when zygotic canoe is lost or reduced. We focused our 
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analyses on large-scale morphogenetic defects and on changes in the patterning of Enabled. The 

canoe knockdown mutants displayed severe phenotypic defects that were not observed in wild-

type embryos. These defects include the tearing away of the lateral epidermis from the 

amnioserosa, the curling-under of the leading edge in relation to the apical surface of the lateral 

epidermis, segmental groove fusion, abnormally deep segmental grooves, and defects in head 

involution. We found that loss of canoe also caused epithelial cells to become more cuboidal in 

shape compared to the columnar shape observed in wild-type embryos. Furthermore, the number 

and regularity of puncta of Enabled decreased across the leading edge when canoe was knocked-

down. These results are consistent with the notion that Canoe acts as an important cytoskeletal-

junction linker protein during morphogenesis. 

Three interesting phenomena observed during the course of this study will form the bases 

for future work. First, Armadillo undergoes dramatic relocalization during dorsal closure; 

Armadillo appears enriched along the LE-AS border during early closure, but relocalizes to LE-

LE cell borders as dorsal closure progresses. This change in Armadillo enrichment is an example 

of cell polarity – the ability to differentially target proteins to distinct plasma membrane 

domains.  Cell polarity is an important cellular property, underlying processes from bacterial 

motility to neuronal transmission. Recent work has suggested that Canoe plays an important role 

in establishing epithelial polarity by directing multiple proteins and positioning AJs (Bonello et 

al., 2018). Future studies will continue to investigate how polarity is initiated and established in 

epithelial cells using Drosophila embryogenesis as a model.  

Second, during our examination of actin, data from confocal microscopy studies 

suggested that actin forms bright spots at LE-LE bicellular junctions along the leading edge; 

however, super-resolution microscopy revealed that actin fibers end just prior to these junctions 
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(Manning unpublished). This example highlights the conflicts that are sometimes observed 

between results from confocal microscopy and those obtained from super-resolution microscopy. 

Future work will employ super-resolution microscopy to re-examine our current conclusions and 

gain further insight into the localization of AJ-associated molecules. 

Finally, initial examination of the protein Polychaetoid suggests that it may also act as a 

cytoskeletal-junction linker protein. Polychaetoid is homologous to the mammalian junction 

protein Zonula-Occludens-1 (ZO-1), which is associated with both septate/tight and adherens 

junctions in humans and mice (Brody 1998). Previous work in the Peifer lab suggests that Canoe 

and Polychaetoid exhibit similar tissue distribution and appear to colocalize at junctional 

membrane sites within epithelial cells (Sawyer et al., 2009; Choi et al., 2011). Future work will 

focus on knocking-down both polychaetoid and canoe in Drosophila. This work will continue 

Choi et al.’s work with zo-1 and afadin double-mutant MDCK cells (2016). Based on previous 

experiments, we expect that the dorsal closure phenotypes that we observed with the canoe 

single mutants will be more severe in the polychaetoid/canoe double mutants. This study will 

further our understanding of Canoe’s role and its interactions with other junction-linker proteins. 
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FIGURES AND TABLES 

 
 

Figure 1. During wild-type dorsal closure, Canoe and Armadillo are enriched at LE cells along the leading 

edge. (A) Canoe and Armadillo in a wild-type E-cadherin-GFP embryo. The white box indicates the region of 

focus. (A’) Canoe appears enriched along the leading edge, particularly at LE-LE bicellular junctions. These areas of 

enrichment are denoted by yellow arrows. Canoe is also enriched at tri- and multicellular junctions in the lateral 

epidermis. Tricellular junctions are indicated by blue arrows, and multicellular junctions are indicated by red arrows. 

(A’’) An illustrated representation of the distribution of Canoe in wild-type embryos. (B) Canoe and Armadillo in a 

wild-type E-cadherin-GFP embryo. (B’) Compared to Canoe, Armadillo is enriched in the spaces between LE-LE 

bicellular junctions across the leading edge. These areas of enrichment are denoted by yellow arrows. (B’’) An 

illustrated representation of the distribution of Armadillo during early dorsal closure. (C) Canoe and Armadillo in a 

wild-type yellow-white embryo. (C’) As dorsal closure progresses, Armadillo relocalizes to LE-LE cell borders, 

indicated by yellow arrows. Actin-nucleating centers are indicated by red arrows. (C’’) An illustrated representation 

of the distribution of Armadillo during late dorsal closure.  
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Figure 2. During wild-type dorsal closure, actin appears continuously enriched along the leading edge, while 

myosin II heavy chain and Enabled form an alternating pattern. (A) E-cadherin and phalloidin in a wild-type 

yellow-white embryo. The white box indicates the region of focus. (A’-A’’) Actin is visible around the entire 

periphery of LE cells, shown by red arrows. Actin appears apically enriched at the leading edge and at multicellular 
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junctions in the lateral epidermis, indicated by yellow and blue arrows, respectively. This enrichment pattern mirrors 

Canoe’s enrichment pattern, suggesting that Canoe aligns with a subset of cortical F-actin. (A’’’) An illustrated 

representation of actin enrichment in wild-type embryos. (B) Myosin II heavy chain, Enabled, and E-cadherin in a 

wild-type Zipper-GFP (II) embryo. (B’-B’’) In contrast to actin, myosin II heavy chain appears in bright spots 

across the leading edge and is less enriched at multicellular junctions in the LE. Myosin II fibers along the leading 

edge typically appear in the spaces between LE-LE bicellular junctions, denoted by yellow arrows. (B’’’) In 

contrast, Enabled puncta appear at LE-LE junctions along the leading edge. This enrichment gives rise to an 

alternating sequence of myosin II - Enabled puncta, illustrated by the green and red arrows. (B’’’’) An illustrated 

representation of the alternating pattern of Enabled and myosin II heavy chain. (C) Histone-GFP, Enabled, and E-

cadherin in a wild-type Histone-GFP embryo. (C’-C’’) Enabled forms a regular pattern of puncta at LE-LE cell 

junctions along the leading edge, indicated by blue arrows. Enabled also appears subtly enriched around the 

perimeter of stretch cells at segmental grooves, highlighted by yellow arrows. (C’’’) An illustrated representation of 

Enabled in wild-type embryos. (D) E-cadherin and phalloidin in a wild-type yellow-white embryo. (D’) Actin also 

appears enriched around the borders of segmental groove cells. Groove cells near the leading edge show moderate 

actin enrichment, indicated by yellow arrows. Groove cells farther away from the leading edge show increased actin 

enrichment, highlighted by red arrows.  
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Figure 3. Reducing canoe levels results in dose-specific morphological defects. (A) We utilized RNAi and the 

UAS-Gal4 system to generate lines of canoe knockdown mutants. (B) A Western blot of embryo extracts with anti-

Canoe antibody indicates that canoe knockdown is stronger in UAS.cno RNAi Valium 22 (II) mutants (lanes 3, 7) 

than in UAS.cno RNAi Valium 20 (III) mutants (lanes 2, 5). Lanes 4 and 8 represent a wild-type control (Bonello et 

al., 2018). (C-H) Cuticle preparation data reveals the severity of morphogenetic defects for various-strength canoe 

mutants. Embryo C depicts a wild-type embryo. Embryo D shows mild defects. Embryos E through G depict severe 

defects. Embryo H depicts the most severe phenotype – only fragmented cuticle pieces remaining. Green arrows 

represent head or dorsal holes. Red arrows represent head defects. Blue arrows represent the Canoe namesake. 

Yellow arrows represent cuticle pieces. (I) Cuticle preparation and hatch rate data is tabulated. The black text in the 

table describes previous work in the Peifer lab (Manning and Sewell, unpublished). The red row in the table 

highlights new data that was obtained in this study.  
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Figure 4. Loss of canoe leads to large-scale morphological defects. (A) A wild-type Histone-GFP embryo for 

comparison. (B) In mild canoe knockdown mutants, mild defects are observed. Segmental grooves extend closer to 

the leading edge and penetrate more deeply into the underlying tissue compared to wild-type grooves. These 

abnormally deep grooves are indicated by purple arrows. Disruption of head involution is highlighted by yellow 

arrows. (C-D) In stronger canoe knockdown mutants, large-scale phenotypic defects appear more severe and are 

observed more frequently. (E-E’) The lateral epidermis is often observed to tear away from the amnioserosa. These 

torn regions are indicated by red arrows. In some instances, parts of the leading edge curl underneath the surface of 

the lateral epidermis, indicated by blue arrows. (F-F’) Segmental grooves are often observed to fuse in canoe 

mutants. Fused segmental grooves are highlighted by green arrows. (G-G’) In wild-type Histone-GFP embryos, 

epidermal cells form regular columnar shapes across the leading edge. (H-H’) Epidermal cell shape is dramatically 

altered in canoe knockdown mutants, where epidermal cells appear more cuboidal. The leading edge also appears 

less straight and more jagged. Yellow outlines highlight examples of LE cells.   
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Figure 5. The enrichment pattern of Enabled is dramatically altered in canoe knockdown mutants, but E-

cadherin and actin do not appear to be significantly disrupted. (A-A’) In wild-type Histone-GFP embryos, E-

cadherin appears only at the periphery of LE and AS cells. (B-B’) The enrichment pattern of E-cadherin in canoe 

mutants resembles the pattern observed in wild-type embryos. E-cadherin appears slightly less enriched along the 

leading edge and at the borders of LE cells adjacent to the leading edge, indicated by yellow and red arrows, 

respectively. (C-C’) In wild-type yellow-white embryos, actin fibers appear enriched along the leading edge during 

early dorsal closure. Actin enrichment is highlighted by yellow arrows. (D-D’) A similar pattern is observed in mild 

canoe mutants. Actin enrichment is indicated by yellow arrows, while small areas that appear to lack actin are 

highlighted by red arrows. These results suggest that Canoe is not essential for localizing E-cadherin or actin 

filaments to AJs; however, Canoe does play a role in connecting the actomyosin cytoskeleton to the core AJ 

molecules. (E-E’) In wild-type Histone-GFP embryos, more Enabled puncta are present, and the spacing between 

puncta is highly regular. (F-F’) In canoe mutants, fewer puncta are visible, and spacing between puncta is less 

regular.  
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Figure 6. Illustrated representation of the organization of adhesion molecules at AJs. Canoe acts as a 

cytoskeletal-junction linker protein. Canoe can bind to actin via its F-actin binding domain and can bind to E-

cadherin and the catenins via its PDZ and proline-rich domains. Canoe may also recruit the actin-associated 

molecule Enabled to the AJ. Binding is indicated by solid black arrows while recruitment is indicated by dashed 

black arrows.  
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Table 1. Fly stocks, crosses, antibodies, and probes 

 

Stock Source 

MTD-Gal4 (I,II,III) (stock #31777) 

P{w[+mC]=otu-GAL4::VP16.R}1, w[*]; 

P{w[+mC]=GAL4-nos.NGT}40; 

P{w[+mC]=GAL4::VP16-

nos.UTR}CG6325[MVD1]  

 

Bloomington Drosophila Stock Center  

(Bloomington, IL, USA) 

Mat-Gal4 (II,III) (stock #70630) Bloomington Drosophila Stock Center 

UAS-Gal4 cno RNAi Valium 20 (III) (stock #33367) Bloomington Drosophila Stock Center 

UAS-Gal4 cno RNAi Valium 22 (II) (stock #38194) Bloomington Drosophila Stock Center 

  

 

Female Parent Male Parent Cross progeny 

MTD-Gal4 (I,II,III) UAS.cno RNAi Valium 20 (III) MTD-Gal4; MTD-Gal4; MTD-Gal4/cno RNAi V20 

MTD-Gal4 (I,II,III) UAS.cno RNAi Valium 22 (II) MTD-Gal4; MTD-Gal4/cno RNAi V22; MTD-Gal4 

Mat-Gal4 (II,III) UAS.cno RNAi Valium 20 (III) +; Mat-Gal4; Mat-Gal4/cno RNAi V20 

Mat-Gal4 (II,III) UAS.cno RNAi Valium 22 (II) +; Mat-Gal4/cno RNAi V22; Mat-Gal4 

   

 

Antibodies and probes Dilution Source 

Primary antibodies   

Anti-Enabled (mouse) 1:500 Developmental Studies Hybridoma Bank, DSHB 

Anti-Armadillo (mouse) 1:200 DSHB 

Anti-Canoe (rabbit) 1:1000 J. Sawyer and N. Harris, UNC-CH, NC, USA 

Anti-DE-Cadherin (rat) 1:50 DSHB 

Secondary antibodies and probes   

Phalloidin FITC 1:500 Sigma Aldrich 

Alexa 405, 488, 568, and 647 1:500 Life Technologies 
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