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Abstract

DUSTIN M. LONG: Causal Inference and Principal Stratification:
Competing Risks, Bounds, and Surrogates

(Under the direction of Dr. Michael G. Hudgens)

Establishing statistical methods for quantifying the effects of interventions to pre-

vent infectious diseases is the overall objective of this research. The principal stratifi-

cation framework is frequently implemented to make causal comparisons where naive

methods fail. For HIV vaccine trials, estimates of the causal effect of vaccine on viral

load or post-infection survival is challenging using standard methods because all indi-

viduals do not become infected during the trial. In this scenario, the “principal” effect,

which is the causal effect within a principal stratum, is the effect of vaccine on viral load

for subjects who would be infected during the trial regardless of treatment assignment.

Without strong assumptions, the principal effect is not identifiable and usually requires

bounding, or sensitivity analysis, of the principal effect often resulting in bounds that

are often large and uninformative. Methods for estimating, i.e., bounding, the principal

effect of treatment on competing risks outcomes have not been developed. Furthermore,

situations where bounds on the principal effect can be improved by using baseline co-

variates have not been investigated. The principal stratification framework can also be

used to determine surrogates of vaccine protection, i.e., biomarkers measured during a

trial that are correlated with the desired outcome (infection). Repeated low-dose chal-

lenge studies are often used to evaluate potential vaccines. While these studies more

accurately mimic exposure, the assessment of the potential surrogates greatly depends

on the study design. Evaluation and comparison of different study designs have not
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been performed. Therefore, we propose to 1) develop methods to analyze the principal

effect of treatment on competing risks outcomes, 2) investigate the improvement of the

bounds on the principal effect based on baseline covariates, and 3) evaluate designs of

repeated low-dose challenge experiments to assess surrogates of vaccine protection.
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Chapter 1

Literature Review

1.1 Motivating Examples

Mother-to-Child Transmission

Recent research indicates that at least 40% of HIV infections in infants where infec-

tion time is known can be attributed to mother-to-child transmission (MTCT) through

breastfeeding (Bulterys, Ellington, and Kourtis 2010). In resource limited areas such

as sub-Saharan Africa, options in place of breastfeeding, such as replacement feeding,

which have made HIV MTCT through breast milk uncommon in developed countries

are not viable.

The risk of other diseases such as diarrhea and lower respiratory infections associ-

ated with poor water supplies in these settings make formula use unattractive (Bulterys

et al. 2004). Also, the added cost of animal milk prevents mothers from utilizing that

approach to reducing MTCT in resource-limited settings (Mofenson 2009). As such,

an important area of research in the prevention of MTCT is identifying effective pro-

phylactic treatment(s) for use on the mother (infant) prior to (during) during breast-

feeding. Examples include the KiBS study which assessed the efficacy of a maternal



triple-antiretroviral regimen given to women daily beginning at 34-36 weeks gestation

and until 6 months post-partum, the ZEB study which assessed the efficacy of early

weaning, the SWEN study which assessed the efficacy of prophylactic therapy given

to infants during breastfeeding and the BAN study which assessed the efficacy of pro-

phylactic therapy given to women or infants during breastfeeding (KiBS Study 2011;

Kuhn, et al. 2008; SWEN Study Team 2008; Chasela et al. 2010).

A significant problem with MTCT trial analysis involves early HIV infections. For

each of the trials above, randomization occurred at birth or shortly before. Since MTCT

of HIV can occur anytime before, at, or after birth (De Cock et al. 2000), an infant who

tests positive for HIV early in the trial does not have a clear method of transmission.

Most MTCT trials are interested in only HIV transmission through breast milk. Thus,

if randomization occurs at time 0, a time point τ0 > 0 is often chosen prior to the

beginning of the trial and only randomized infants alive and uninfected at τ0 are con-

sidered for analysis. The removal of these infants from the analysis, while eliminating

the potential bias due to other modes of HIV infection, creates that potential for se-

lection bias, since a mechanism other than randomization determined who was included.

A second issue in the analysis of the risk of HIV infection in MTCT trials is the

presence of competing risks (Alioum et al. 2001), in particular infant death and cessa-

tion of breastfeeding prior to HIV infection. Often infants experiencing HIV-free death

are treated as right censored in the primary analysis, e.g., when computing the Kaplan-

Meier estimator of the cumulative probability of HIV infection (for instance, see Figure

2a of Kumwenda et al. 2008). Unfortunately, interpretation of such estimates is not

straight-forward (Pepe and Mori 1993; Lawless 2003) and a preferred approach is to
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estimate the cumulative incidence of HIV treating death as a competing risk. Simi-

larly, cessation of breastfeeding is also a competing risk of HIV infection because once

an infant is weaned, the likelihood of HIV infection from the mother is essentially zero.

Vaccine Development in Macaques

The use of animal models in pre-clinical vaccine trials can reduce the risk, time and

cost of later clinical trials involving human subjects by providing precursory evidence of

potential risks and efficacy of a candidate vaccine (Girard et al. 2011; Shedlock, Silvestri

and Weiner 2009; Koff 2005). While chimpanzees are the only non-human primate that

can be infected with HIV-1, research on chimps is unfeasible due to ethical and finan-

cial constraints due to expense and endangerment of the species (Shedlock et al. 2009;

Smith 2002; Nath, Schumann, and Boyer 2000). Thus, the majority of pre-clinical stud-

ies of HIV-1 vaccines have used macaques and viral surrogates of HIV, such as simian

immunodeficiency viruses (SIVs), as disease progression of SIVs in macaques parallels

that of HIV in humans (Girard et al. 2011; Shedlock et al. 2009). Virus challenges in

these pre-clinical trials have previously been administered via a single high-dose intra-

venous or mucosal inoculation which frequently resulted in near certain infection of all

animals (Hudgens et al. 2009).

The appeal of single high-dose challenge studies is that high infection rates create

greater chance of observing vaccine efficacy, however this type of trial does not mimic

real exposure. Individuals are more likely to have repeated exposure to low doses of

the disease in non-trial settings implying the high-dose challenge studies are overesti-

mating infections probabilities. For example, the high infection in high-dose challenge

studies do not parallel the low probability of HIV transmission per heterosexual sex
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act, estimated to < 0.01 in various studies of different populations (Gray et al. 2001;

Boily et al. 2009). It is doubtful that vaccines are equally efficacious against high-dose

and low-dose challenges, i.e., the vaccine may create enough protection to prevent lower

doses from causing infections while a high dose could overwhelm the host immune re-

sponse. This implies that potential vaccines that would be efficacious against low-dose

challenges may be rejected due to poor effectiveness in the high-dose challenge studies

(Kim et al. 2006).

1.2 Causal Inference

1.2.1 Introduction

Determining the cause(s) of an outcome is the aim of most public health studies,

both observational and experimental. We wish to say with certainty that event A causes

event B, or that the absence of event A causes the absence of event B, e.g., vaccination

prevents disease. This idea of causation implies a certain “causal pathway” where we

can identify which event(s) cause the other (Rothman 1976). Most researchers desire

to perform and analyze these studies with simple or conventional methods. In many

cases, causation cannot be assessed from either type of research using conventional

methods due to mitigating circumstances. In observational studies, a lack of temporal-

ity or unmeasurable variables often hinder the ability to determine causation without

sophisticated methods or strong assumptions (Rubin 1974). While most randomized

studies are designed to answer, and are able to answer, causal questions using simple

approaches, situations can arise that would prevent these naive methods from deter-

mining causation, i.e., the BAN study. When these conventional methods fail, methods

and frameworks are developed to determine causation. The general term for this type

4



of research is causal inference.

One quantity of interest in causal inference is the causal effect (CE) or the effect of an

intervention on some outcome of interest. For example, the causal effect of angiotensin-

converting enzyme (ACE) inhibitor use on the prevention of a second heart attack is

the ability of the ACE inhibitor to prolong the time to a second heart attack. This can

be quantified as a difference of survival times (e.g. average time to second heart attack

while using an ACE inhibitor minus the average time to second heart attack when not

using an ACE inhibitor). In infection prevention studies, the causal effect of vaccine is

measured by vaccine efficacy (VE), defined as the reduction of disease incidence within

vaccinated individuals versus disease incidence in unvaccinated individuals (Halloran,

Longini, Struchiner 1999). Inference about these effects can be made using a number

of modeling techniques including four major types for health-sciences research: graph-

ical models (causal diagrams), potential outcome models, sufficient component cause

models, and structural equations models (Greenland and Brumback 2002).

Using the potential outcomes or counterfactual approach, suppose n individuals are

observed or selected and each individual is randomly assigned one of two treatments.

Without loss of generality, assume that there are two possible treatments and let Zi = 0

if subject i is assigned treatment 0 (control) and Zi = 1 if assigned treatment 1 (active

treatment). A necessary condition for estimating causal effects is that the possibility

for each individual to receive any of the treatments exists. This condition allows in-

dividuals to have specific outcomes had they been assigned a specific treatment, i.e.,

individuals have potential outcomes respective to each treatment. If we let Yi(Zi) be

some outcome for individual i when assigned treatment Zi, the potential outcomes

under our scenario are Yi(0) and Yi(1). These potential outcomes are assumed to be
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fixed and observable if assigned the respective treatment. This allows us to manipulate

which potential outcome is observed by changing the treatment assigned since there

is “no causation without manipulation”(Holland 1986). The major drawback to this

approach is that we can only observe one of the potential outcomes, since an individual

can only be assigned one treatment. The other potential outcome is termed as a coun-

terfactual, since it is the outcome that is contrary to fact. Thus, we define the observed

outcome as Y obs
i = ZiYi(1) + (1 − Zi)Yi(0) (Cole and Frangakis 2009). A standard

assumption states that the treatment assignment of individual i does not affect the

potential outcomes of other individuals (i.e., there is no interference) and there are not

multiple forms of treatment, i.e., the stable unit treatment value assumption (SUTVA)

holds (Rubin 1980).

1.2.2 Principal Stratification

The principal stratification framework was developed by Frangakis and Rubin (2002)

to provide causal interpretations where standard procedures would not allow. De-

veloped using the potential outcomes approach (Rubin 1974, Neyman et al. 1990),

principal strata are defined by the potential outcomes of a variable measured post-

randomization or post-treatment. Two goals of principal stratification are to reduce

post-treatment selection bias created by making causal comparisons of outcomes that

do not have a common set of units or individuals and identify principal surrogates.

In most trials of infectious disease prevention the post-randomization variable of

interest is infection status at some predetermined time τ0 with the outcome measured

in only those infected (viral loads) or uninfected (time to infection) at τ0. In these

cases, the principal strata are defined by the potential infection status at τ0 under all

6



possible treatment assignments. Let Si(Zi) be individual i’s potential infection status

at τ0 when given treatment Zi. In the simple case of only one treatment group and one

control group, there are four principal strata; always infected (AI) (Si(0) = Si(1) = 1),

protected (Si(0) = 1, Si(1) = 0), never infected (NI) (Si(0) = Si(1) = 0), and harmed

(Si(0) = 0, Si(1) = 0). For example, a person who is assigned Zi = 0 and becomes

infected at τ0 (Si = 1), they are either in the AI or the protected strata.

The principal effect is the causal comparison of treatment within the principal strata

of interest. When the principal strata are non-empty, principal effects are not identifi-

able from the data without strong assumptions. The monotonicity assumption states

that the treatment does no harm to patients or more formally

Si(0) ≥ Si(1), ∀i. (1.1)

Under monotonicity and SUTVA, one half of the causal effect of interest can be identi-

fied from the data, since there is not a harmed principal strata. While the role principal

stratification in research has caused recent debate (Pearl 2011; Gilbert, Hudgens, and

Wolfson 2011), principal stratification can be used to identify causal effects under sce-

narios where they are otherwise impossible.

For example, in HIV vaccine trials where viral load post-infection is of importance,

the AI principal strata is of interest. Here the causal comparison would be the differ-

ence in average viral load when taking control versus treatment among individuals who

would have been infected regardless of treatment assignment. A fundamental problem

with this approach involves principal strata membership. Since only one of the two

potential outcomes Si(0) and Si(1) is observed, an individuals principal strata mem-

bership is unidentifiable from the data without possibly strong assumptions.
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1.2.3 Sensitivity Analysis and Bounds Within Principal Strata

Assuming monotonicity in an HIV vaccine trial, all vaccinated individuals are in the

AI strata. On the other hand, individuals assigned control who become infected are a

mixture of individuals from the AI and protected principal strata. Thus the distribution

of potential outcomes when assigned control in the AI strata is not identifiable from the

observed data. However, the proportion of infected controls who are in the AI strata

is identifiable. Let V E = Pr[Si(1) = 0|Si(0) = 1] implying that 1 − V E = Pr[Si(1) =

1|Si(0) = 1]. Then, 1 − V E is the proportion we seek. We can think of 1 − V E

as a measure of potential selection bias (Hudgens, Hoering, and Self 2003 (HHS)).

HHS developed a framework where stochastic lower and upper bounds of this causal

effect can be estimated corresponding to extreme selection bias models. Specifically,

let FC(y) be the cumulative distribution function (CDF) of viral load among infected

control participants such that the causal effect of interest is CE = FAI
T (y) − FAI

C (y).

Then,

FC(y) = (1− V E)FAI
C (y) + (V E)F protected

C (y), (1.2)

where FAI
C (y) (F protected

C (y)) is the CDF of viral load for infected vaccinees in the

AI(protected) principal strata. Under monotonicity, FAI
V (y) = FV (y) and is thus iden-

tifiable from the observed data. For what HHS calls the extreme lower selection bias

model, the control component of the causal effect is

FAI
C,LB(y) = max

{
FC(y)− V E

1− V E
, 0

}
.

The extreme upper bound is

FAI
C,UB(y) = min

{
FC(y)

1− V E
, 1

}
.

8



They then present simulation results demonstrating the performance of hypothesis tests

using these bounds. Since 1−V E is only a measure of potential selection bias, the true

bias is likely not as extreme as the bounds presented in HHS.

Building upon HHS, Gilbert, Bosch, and Hudgens (2003)(GBH) developed sensi-

tivity analysis for a continuous outcome based on the mixing equation (1.2). With Zi,

Si(Zi), Yi(Zi), and the principal strata defined as before, they assumed a sensitivity pa-

rameter, β, that allowed for selection bias models between the extreme cases presented

in HHS. Recalculating (1.2), using the probability density function, yields

fAIC (y) = W−1w(y)fC(y),

where w(y) = Pr[Si(1) = 1|Yi(0) = y, Si(0) = 1] and W =
∫∞
−∞w(x)fC(x)dx = 1−V E.

Assuming a logistic relationship between β and 1 − V E gives w(y) = w(y|α, β) =

exp (α + βy)/(1 + exp (α + βy)). This results in

FAI
C (y|β) = (1− V E)−1

∫ y

−∞

exp (α + βx)

1 + exp (α + βx)
dFC(x), (1.3)

where for a fixed β, α is the solution to the equation FC(y|β) = 1. Similar to HHS,

GBH created test statistics and hypothesis tests based on the selection models with

critical values computed using the “controls only” approach. Simulations were con-

ducted under different selection bias models with varying values of β. They showed

that when presuming the correct value of β, their tests had correct Type I error and

decent power, independent of the value of V E assumed. However, an incorrectly spec-

ified β yielded poor performance. Their suggestion was to perform sensitivity analysis

across a continuously indexed range of βs. Gains in power or precision may be achieved

by restricting the range of β based on prior information elicited from subject matter
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experts (Scharfstein et al. 2006; Shepherd, Gilbert, Mehrotra 2007). Hudgens and Hal-

loran (2006) extended this work to a binary outcome.

A method for sensitivity analysis within principal strata with a time-to-event out-

come was developed by Shepherd, Gilbert, and Lumley (2007)(SGL). Consider the

same setup as GBH but instead of a continuous potential outcome Yi(Zi) we have a

time-to-event outcome Ti(Zi). Allowing for potential censoring times, the observed

outcome for an individual who become infected is the pair Y obs
i = min(Ti, Ci) and

∆i = I(Yi = Ti), where I() is the usual indicator function. Let Fz(t) be the CDF of

failure times for subjects randomized to the group z = 0, 1. The causal effect of inter-

est is SCE(t) = FAI
0 (t) − FAI

1 (t), the survival causal effect in the AI stratum at time

t. Assuming the same mixing equation (1.2), SGL proposed nonparametric extreme

selection models equivalent to HHS and GBH with similar upper and lower bounds.

SGL’s extreme bounds are

FAI
0,LB(t) = max

{
F0(t)− V E

1− V E
, 0

}

and

FAI
0,UB(t) = min

{
F0(t)

1− V E
, 1

}
,

which mimic those in HHS. Following GBH, they assume a semiparametric selection

bias model with logistic weighting that allow for bias models between the nonparamet-

ric extreme models. In fact, SGL’s selection bias model is found by replacing FC(y),

the CDF of the continuous outcome Yi for the control group, in (1.3) with F0(t). It

requires an additional set of assumptions to estimate SGL’s model in practice, since

1 − V E =
∫∞
0
w(x)dF0(x)dx requires knowledge of F0(t) after time τ1, the end of the

trial follow-up period, and a solution for α for a fixed β. For simplicity, they assume
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that the logistic weights are constant after τ1, which makes α identifiable from the data.

For both types of models, SGL present analytic variance estimates for each estimator of

the causal effect. SGL also present the setup for a parametric model but focus on per-

formance of the non- and semiparametric models. Their simulations show both types

of model have minimal bias when the correct β is specified. For most cases, confidence

intervals based on their estimators have proper coverage independent of the choice of β.

1.2.4 Covariates and Principal Stratification

Frangakis and Rubin (2002) formed the principal stratification framework assuming

that the analysis was performed within cells defined by baseline covariates. Shepherd

et al. (2006) developed sensitivity analysis of the causal effect conditional on baseline

covariates in a fully parametric setting. Jemiai et al. (2007) expanded the methods of

Shepherd et al. (2006) allowing for semiparametric estimation. There are other exam-

ples of principal stratification within levels of baseline covariates, e.g., Sjölander et al.

(2009).

Grilli and Mealli (2008) presented nonparametric unadjusted bounds on the causal

effect, CE, within principal strata under a number of different assumptions. They sug-

gest that these unadjusted bounds for CE can be improved by creating bounds within

cells defined by a baseline covariate and then recovering then adjusting the bounds

through a weighted average. Let X be a baseline covariate and CEx be the causal

effect conditional on X = x such that CE =
∑
CEx Pr[X = x]. Let [CEl

x, CE
u
x ] be

the bounds on CEx. The adjusted bounds for CE would be CEl
X =

∑
CEl

x Pr[X = x]

and CEu
X =

∑
CEu

x Pr[X = x]. Grilli and Mealli (2008) performed this method on
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data from an employment study with mixed results. For some choices of X the ad-

justed bounds of CE had improvement on only one side of the unadjusted bounds,

i.e., CEl
X > CEl and CEu

X > CEu so improvement was seen on only one side of the

bounds. Other choices of X actually worsened the bounds. The reason for only partial

improvement was not addressed.

Using baseline covariates to model the probability of being in a certain principal

strata or “principal score” was first established in Hill, Waldfogel, and Brooks-Gunn

(2002). The process outlined within was more fully developed by Jo and Stuart (2009).

Their idea was to model the probability that an individual was a ‘complier’ using base-

line covariates. In the compliance literature the basic principal strata are defined by

a patients treatment assignment (Zi) and actual use of treatment (Si(Zi)). Compliers

are subjects who would take the treatment when assigned treatment and would not

take the treatment when assigned control, i.e., Si(0) = 0, Si(1) = 1. Jo and Stuart

assume that no patient assigned control has access to treatment which removes the

possibility of two principal strata, defiers (Si(0) = 1, Si(1) = 0) and always-takers

(Si(0) = Si(1) = 1). That implies that all patients are either compliers or never-takers

(Si(0) = Si(1) = 0). Thus, the principal score is the probability that an individual

is a complier. An analogous ‘compliance score’ was created previously by Follmann

(2000), which while mathematically equivalent, was created before, therefore outside,

the principal stratification framework. In both Jo and Stuart (2009) and Follmann

(2000), a two-step model is performed by first estimating the principal scores using lo-

gistic regression then using a parametric model for the outcome estimated by matching

or weighting by the principal scores.

A similar notion exists within the ‘truncation by death’ literature. Zhang, Rubin,
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and Mealli (2009) developed likelihood based methods that estimated the principal

scores and the outcome model simultaneously. Using HIV vaccine trial notation, let

Gi represent the principal strata membership for subject i, i.e., Gi = (Si(0), Si(1)). In

general, πSi(0)Si(1) = Pr[Gi = g], e.g., π11 is the probability that a subject is in the AI

strata. Their model allows for these probabilities to vary by subject.

1.2.5 Principal Surrogates

In HIV vaccine trials, participants cannot be followed forever, implying the primary

clinical outcome of HIV infection cannot be measured in all participants, preventing an

accurate measurement of VE. A surrogate endpoint that is predictive of the primary

outcome that can be measured for all subjects within the trial would be useful.

While not the first to use the term, Prentice (1989) laid the foundation for the

current surrogate literature. Let Zi be treatment assignment Zi = 0, 1. Let Si(Zi)

be a binary post-randomization variable and assume monotonicity, i.e., Si(0) ≥ Si(1)

for all i. Additionally, let Yi(Zi) be the outcome of interest. For Prentice, for Si

to be a surrogate endpoint for the true outcome Yi under treatment Zi, Yi would be

independent of Zi conditional on Si. Frangakis and Rubin (2002) term this a ‘statistical’

surrogate and demonstrate how a statistical surrogate can exist while not having a

causal relationship to the outcome. They state that a variable is a ‘principal’ surrogate

if all comparisons of the outcome within all strata where Si(0) = Si(1) results in

equality, i.e., there is no effect of treatment on the outcome given Si(0) = Si(1) = s

for all s. Let Si = 1 indicate if a person has a high potential surrogate value ,Si = 0

otherwise, and let f(x) be some measurement of interest, i.e. risk of infection. Si

would be a principal surrogate if f(Yi(0)|Si(0) = Si(1) = s)− f(Yi(1)|Si(0) = Si(1) =

s) = 0 for s = 0, 1. However, since principal strata membership is unknown, only

f(Yi(z)|Si(z) = s), z = 0, 1 can be identified from the data, which allows a variable to
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meet Prentice’s criteria (a statistical surrogate) but would not be a principal surrogate.

Likewise, a variable can be a principal surrogate but not a statistical surrogate. Using

Example 1 in Table 1.1, Si is a principal surrogate but is not a statistical surrogate

since the treatment effect is 0 in the strata where Si(0) = Si(1) but the treatment

effect is nonzero when Si = 0 in the observed data. Example 2 illustrates the reverse

situation.

Since Frangakis and Rubin (2002) defined principal surrogacy, researchers have de-

veloped further criteria, especially in the vaccine literature. A vaccine-induced immune

response (surrogate endpoint) that is predictive of infection, a correlate of protection,

is the ‘holy grail’ of vaccine trials (Halloran, Longini, and Struchiner 2009). Qin et

al. (2007) defined three different levels of confidence in a biomarker to be a correlate

of protection. The first level indicates a measurement that predicts the primary end-

point in a particular population and is called a correlate of risk. The higher levels are

called surrogates of protection (SoP) and have two levels of generalizability. A SoP is

a correlate of risk that predicts a vaccines efficacy based on comparisons between the

vaccinated and unvaccinated subjects immunological measurements. The level 1 SoP,

or specific SoP (Sadoff and Wittes 2007), can predict VE in the same setting in which

it was identified (same vaccine, population, etc). The level 2 SoP can predict VE in a

variety of settings and is termed a general SoP or a bridging SoP (Pearl and Barenboim

2011). While a general SoP is desirable, a specific SoP is still of scientific use (Gilbert,

Hudgens, and Wolfson 2011).

Joffe and Greene (2009) summarized four competing frameworks that have been

used for evaluating potential surrogate endpoints. The first two frameworks considered

are under the causal-effects paradigm, where the effect of treatment on the surrogate

and the effect of the surrogate on the clinical outcome are used to predict the effect of
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treatment on the clinical outcome. The first, developed by Prentice (1989), defines a

surrogate S as a valid surrogate when a hypothesis test of no relationship between S

and treatment is also a valid test of no relationship between treatment and the clini-

cal outcome. He proposed three criteria where when all criteria are met the previous

holds and S is a ‘true surrogate’. The second framework involves modeling the direct

and indirect effects of the surrogate on the clinical outcome. In general, both causal-

effects paradigm frameworks require direct manipulation of S to determine the causal

effects, which makes determination of proxy surrogates, a measurable related variable

to an unmeasurable S, possible. The second set of two frameworks are under a causal-

association paradigm, where the effect of treatment on the surrogate is associated with

the effect of treatment on the outcome. The first design in the causal-association

paradigm uses meta-analysis to examine the effect of a randomized treatment on the

clinical outcome across a number of studies. The second is principal surrogacy as de-

scribed previously.

Gilbert and Hudgens (2008) developed a principal stratification estimand they call

the “causal effect predictiveness (CEP ) surface” to measure a biomarkers accuracy

as a specific surrogate, or surrogate value. Built upon Frangakis and Rubin (2002),

and Follmann (2006), CEP is conditional on not yet having the primary outcome

under either treatment assignment at time τ , the time that the biomarker is collected.

Formally, CEP is defined as

CEP (s1, s0) = P (Y (0) = 1|S(1) = s1, S(0) = s0)− P (Y (1) = 1|S(1) = s1, S(0) = s0)

= E(Y (0)− Y (1)|S(1) = s1, S(0) = s0)
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(or some different contrast), where Y (Z) (S(Z)) is primary binary outcome (poten-

tial biomarker) if assigned treatment Z, Z = 0 is control and Z = 1 is treatment

(Gilbert, Hudgens, and Wolfson 2011). They argue that one can use CEP (s1, s0) to

determine the association between S(1)−S(0) and Y (1)−Y (0), the goal of predicting

VE, since previous estimands only measured the association between S(1) and Y (1)

(Gilbert and Hudgens 2008; Gilbert, Hudgens, and Wolfson 2011). Gilbert and Hudgens

(2008) also consider summary functions of the associative and dissociative effects of a

biomarker, namely the expected associative effect (EAE) and the expected dissociative

effect (EDE). They also define the proportion associative (PA) effect by

PAEw = |EAEw|/|EDE|+ |EAEw|, (1.4)

with the convention that |0|/(|0| + |0|) = 0.5. PAEw is the relative proportion of pri-

mary outcome effects for those with and without surrogate effects. Hudgens and Gilbert

(2009) assessed the vaccine effects in repeated-low-dose experiments. They suggest that

PAE, PAEw from (1.4) with w(., .) = 1, can be used as a summary measure of the

surrogate value of S. Using the framework for Follmann (2006), they define the transi-

tion probability from uninfected to infected as a probit model which allows PAE to be

estimated easily. Huang and Gilbert (2011) developed a method to evaluate the joint

surrogacy of multiple biomarkers.
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Table 1.1: Examples demonstrate possible scenarios where a biomarker is a statistical
surrogate but not a principal surrogate and vice versa.

Average potential Average potential Observed
post-treatment variable outcome Si, Yi Si, Yi
Si(0) Si(1) Yi(0) Yi(1) Zi = 0 Zi = 1

Example 1: Si a principal surrogate but not a statistical surrogate
0 0 10 10

0, 15
0, 10

0 1 20 40
1, 40

1 1 40 40 1, 40
Example 2: Si a not principal surrogate but is a statistical surrogate

0 0 15 20
0, 20

0, 20
0 1 25 25

1, 40
1 1 40 55 1, 40
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Chapter 2

Competing Risks Outcomes Within
Principal Strata

2.1 Introduction

Every year approximately 200,000 infants become infected with HIV through breast-

feeding; in the absence of treatment, half of these infants will die within two years of

birth (WHO 2007; UN AIDS 2007). In clinical trials to prevent MTCT of HIV through

breast milk, investigators are often interested in comparing interventions conditional

on the infant being alive and uninfected up to a certain time point during the trial

(van der Horst et al. 2009; Chasela et al. 2010; Kilewo et al. 2009; Kumwenda et al.

2008). Specifically, when randomization occurs at birth (time 0), a time point τ0 > 0

is often chosen prior to the beginning of the trial and only randomized infants alive

and uninfected at τ0 are considered for analysis. For example, in the Breastfeeding,

Antiretroviral, and Nutrition (BAN) study (van der Horst et al. 2009; Chasela et al.

2010) infants were randomized at birth but the primary analysis included only infants

HIV uninfected and alive at τ0 = 2 weeks. Infants infected prior to 2 weeks were ex-

cluded because these transmissions likely occurred in utero or during labor and delivery,

whereas the primary objective of the trial was to assess the effects of interventions to



prevent infection due to breast milk. Similar exclusions were made in the primary

analysis of the SWEN and PEPI trials (Bedri et al. 2008; Kumwenda et al. 2008).

There are two aspects of the analysis described above that are the focus of this paper.

First, an analysis comparing risk of HIV infection between trial arms among infants

who are alive and uninfected at time τ0 after randomization is subject to selection

bias. One method to protect against selection bias in this scenario entails principal

stratification (Frangakis and Rubin 2002). Principal stratification uses the potential

outcomes of a variable collected post-randomization to define strata of individuals.

In the MTCT trial setting, the principal stratum of interest is infants who would be

alive and uninfected by time τ0 under either treatment assignment. Because principal

stratum membership is not affected by treatment assignment, comparisons between

trial arms within a particular principal stratum are not subject to selection bias. For a

recent discussion of the strengths and weaknesses of principal stratification, see Pearl

(2011) and subsequent responses such as VanderWeele (2011).

The second aspect in the analysis of the effect of treatment on the risk of HIV in-

fection in MTCT trials is the presence of competing risks (Alioum 2001). In particular,

death or weaning prior to HIV transmission are competing risks for HIV infection since

these events (death, weaning) can preclude HIV infection from occurring. Likewise,

HIV infection precludes the possibility of an HIV-free death or weaning prior to HIV

infection. One analytical approach that avoids the complication of competing risks is to

use a composite endpoint, such as time until HIV infection or death. Using a composite

endpoint simplifies analysis and has the advantage of providing a single measure of the

overall effect of treatment. However, such an analysis does not provide inference about

whether the treatment is having an effect on the risk of HIV infection, death, or both

endpoints. Another common approach in the analysis of MTCT trials is to treat infants

experiencing HIV-free death as right censored, e.g., when computing the Kaplan-Meier
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estimator of the cumulative probability of HIV infection (for instance, see Figure 2a of

Kumwenda et al. 2008). It is well known that computing the Kaplan-Meier estimator

by right censoring competing events does not in general yield a consistent estimator of

the cumulative risk of the event of interest (Tsiatis 1998; Andersen, Abildstrom, and

Rosthøj 2002); in the MTCT setting such Kaplan-Meier estimators will tend to overes-

timate the risk of HIV infection when there is a non-zero probability of death prior to

HIV infection. A third approach, adopted in this paper, is to estimate the cumulative

incidence functions of each competing event, namely HIV, death, and weaning. The

resulting estimates have a straightforward interpretation as the cumulative risk of each

event in settings such as the trial where the other events may occur. Contrasts is the

estimated risks between trial arms can then be used to assess treatment effects on each

of the competing events. While Bekaert, Vansteelandt, and Martens (2010) investigate

the effect of time-varying covariates in the presence of competing risks, they assume

that there is a potential event time for each competing risk which we will avoid.

Previous work on estimating treatment effects within principal strata has considered

binary outcomes (e.g., Hudgens and Halloran 2006), continuous outcomes (e.g., Gilbert

et al. 2003) and survival outcomes (e.g., Hayden et al. (2005) and Shepherd et al.

(2007)). In this paper we develop methods for estimating treatment effects within

principal strata for a survival outcome in the presence of competing risks. In the absence

of competing risks the developed methods essentially reduce to those of Shepherd et al.

(2007). The outline of the remainder of this chapter is as follows. In Section 2 notation

and assumptions are discussed. In Section 3 inferential methods for the causal effect

of interest are presented. The finite sample performance of the methods are assessed

in a simulation study in Section 4. These simulations also illustrate how misleading

inferences can arise if selection bias are ignored. In Section 5 the methods are applied

to investigate the effect of infant antiretroviral therapy (ART) on the cumulative risk
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of HIV infection in the BAN trial. A brief discussion is given in Section 6.

2.2 Notation and Assumptions

Suppose n individuals are randomly assigned one of two treatments, 0 or 1, at

baseline (birth or time 0). For i = 1, . . . , n, let Zi = 0 if subject i is assigned treatment

0 and Zi = 1 otherwise. Let n0 =
∑

(1−Zi) and n1 =
∑
Zi, where here and throughout∑

=
∑n

i=1. Without loss of generality, assume Zi = 0 corresponds to placebo or control,

and Zi = 1 corresponds to active treatment. In the BAN study analysis, Zi = 1 will

refer to the infant ART arm and Zi = 0 will refer to the control arm. Suppose the

primary objective is to assess the effect of treatment on the time Ti (from baseline) until

some particular event occurs. Assume there are k possible causes or types of events and

let Ji denote the event type for individual i with Ji ∈ {1, . . . , k}. In the BAN study

there are k = 3 competing risks: HIV infection (Ji = 1), death prior to HIV infection

or weaning (Ji = 2), or cessation of breastfeeding prior to HIV infection (Ji = 3).

Suppose in the analysis of the effect of treatment Zi on (Ti, Ji) we would like to

condition on some binary post-randomization variable Si (taking on values 0 or 1)

measured at some pre-specified post-randomization time τ0 > 0. For instance, in the

analysis of BAN it is desired to assess the effect of treatment in infants alive and

uninfected at time τ0; in this case we let Si = 1 if an infant becomes infected or dies

by τ0 and Si = 0 otherwise. Note for the BAN example that Si = I(Ti ≤ τ0, Ji ≤ 2)

where I(·) is the usual indicator function, however in the methods developed below Si

need not be defined in terms of Ti or Ji.

Define Ci to be a potential right censoring time and assume τ0 ≤ Ci, i.e., no indi-

viduals drop out of the study prior to τ0 such that Si is always observed. Let τ1 denote

the maximum length of follow-up for the study such that any individual who has not

had an event or dropped out of the study by time τ1 is administratively censored at
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that time, i.e., Ci ≤ τ1. Let Yi = min{Ti, Ci} and ∆i = I(Yi = Ti). Due to censoring,

instead of (Ti, Ci, Ji) we only observe (Yi, Ji∆i); i.e., Ti and Ji are observed if and only

if individual i is not right censored.

Let Ti(z) be the potential survival time when assigned treatment z for z = 0, 1 such

that Ti = (1− Zi)Ti(0) + ZiTi(1). Define Ci(z), Si(z), and Ji(z) similarly. Assume the

treatment assignment of individual i does not affect the potential outcomes of other

individuals (i.e., there is no interference) and there are not multiple forms of treatment,

i.e., the stable unit treatment value assumption (SUTVA) holds (Rubin 1980). Let

Wi = (Si(0), Si(1), Ti(0), Ti(1), Ji(0), Ji(1), Ci(0), Ci(1)) denote the vector of potential

outcomes and Oi = (Zi, Si, Yi, Ji∆i) denote the vector of observable random variables.

Assume individuals in the study are a random sample from a larger population such

that W1, . . . ,Wn and O1, . . . , On are iid copies of W and O respectively.

Principal strata can be defined by sets of individuals with the same potential out-

come pair (Si(0) = s0, Si(1) = s1). Define the never infected (NI) principal stratum to

be individuals with Si(0) = Si(1) = 0, i.e., individuals who would be alive and unin-

fected at τ0 regardless of treatment assignment. Similarly define the harmed stratum

as those individuals with Si(0) = 0, Si(1) = 1; the protected stratum as those indi-

viduals with Si(0) = 1, Si(1) = 0; and the doomed stratum as those individuals with

Si(0) = Si(1) = 1. Motivated by MTCT studies of HIV, we focus on drawing inference

about causal effects in the NI principal stratum. For example, in the BAN study we

are interested in the principal stratum of infants who would be alive and not infected

with HIV by τ0 = 2 weeks under either randomization assignment.

In the presence of competing risks, a quantity of interest is the cumulative incidence

function (CIF) or subdistribution function of (T, J). Let F (t, j) = P (T ≤ t, J = j)

denote the CIF, i.e., the probability of having event j at or before time t. Define the

causal estimand of interest to be CE(t, j) = FNI
1 (t, j)− FNI

0 (t, j) for t ∈ [τ0, τ1] where
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FNI
z (t, j) = Pr[Ti(z) ≤ t, Ji(z) = j|Si(0) = Si(1) = 0] for z = 0, 1. In words, CE(t, j)

is the difference in the probability of having an event of type j by time t for treatment

0 compared to treatment 1 within the NI principal stratum. For example, in the BAN

study (where j = 1 corresponds to HIV infection), CE(28, 1) is the difference in the

probability of HIV infection by 28 weeks between the two study arms among infants

who would be alive and HIV negative by τ0 weeks regardless of treatment assignment.

In the analysis of BAN, CE(28, 1) was of particular interest because per protocol a

primary endpoint of the trial was HIV infection by 28 weeks (van der Horst et al.

2009).

To draw inference about CE(t, j) we make the following assumptions:

Assumption 2.1 Independent treatment assignment: Zi ⊥ Wi

Assumption 2.2 Monotonicity: Si(1) ≤ Si(0) for all i

Assumption 2.3 Independent censoring: Ci(z) ⊥ {Ti(z), Ji(z), Si(z)} for z = 0, 1

Assumption 2.1 is plausible in randomized clinical trials. Assumption 2.2 is a strong

assumption that must be considered carefully and is discussed further in Section 2.5

in the context of the BAN study. Methods not requiring the monotonicity assumption

are discussed in Section 6. Assumption 2.3 is a common assumption when analyzing

competing risks data. In the infant ART and control arms of BAN, 15% of participants

were administratively censored at τ1 = 28 weeks and 12% were censored at earlier time

points due to drop-out from the study prior to week 28.

Under Assumptions 2.1 and 2.2, Zi = 0 and Si = 0 imply Si(0) = Si(1) = 0; i.e.,

individuals who are alive and uninfected by τ0 when assigned control must be members

of the NI principal stratum. Letting F0(t, j) = Pr[Ti(0) ≤ t, Ji(0) = j|Si(0) = 0], it

follows under Assumptions 2.1 – 2.2 that FNI
0 (t, j) = F0(t, j), which is identifiable from

the observable data under Assumption 2.3. However FNI
1 (t, j) remains unidentifiable

under Assumptions 2.1 – 2.3 because individuals who are alive and uninfected by τ0

23



when assigned treatment (Zi = 1) are a mixture of individuals from the NI and pro-

tected principal strata. In particular, following Gilbert et al. (2003)nocitegilbert2003b,

one can show

F1(t, j) = γFNI
1 (t, j) + (1− γ)F prot

1 (t, j), (2.1)

where γ = Pr[Si(0) = 0|Si(1) = 0] is the probability an individual is uninfected under

control given they would be uninfected under treatment, F1(t, j) = Pr[Ti(1) ≤ t, Ji(1) =

j|Si(1) = 0] and F prot
1 (t, j) = Pr[Ti(1) ≤ t, Ji(1) = j|Si(0) = 1, Si(1) = 0].

To proceed, one can introduce an additional assumption about the selective effect

of conditioning on Si which renders FNI
1 (t, j) identifiable. For example, following Hud-

gens and Halloran (2006), large-sample upper and lower bounds can be obtained by

considering extreme selection bias models. The upper bound selection model is given

by assuming either F prot
1 (t, j) = 0 or FNI

1 (t, j) = 1, while the lower bound selection

model is given by assuming either F prot
1 (t, j) = 1 or FNI

1 (t, j) = 0. By (2.1), these

models are equivalent to assuming either

FNI
1 (t, j) = min

{
γ−1F1(t, j), 1

}
, (2.2)

or

FNI
1 (t, j) = max

{
F1(t, j)− (1− γ)

γ
, 0

}
. (2.3)

Estimating CE(t, j) under (2.2) or (2.3) is useful in bounding the estimate of the causal

effect above and beyond any possible selective effects induced by conditioning on Si = 0.

The true degree of selection bias may be considerably less than that assumed by (2.2)

or (2.3). Therefore, we consider a class of selection models that includes the extreme

models above as special cases. Through sensitivity analysis over the entire class (as

in Robins et al. 2000 and Gilbert et al. 2003), the relationship between the assumed

degree of selection bias and inference about CE(t, j) can be explored. These selection
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models are semiparametric in the sense that no additional restrictions are placed on

the distribution of the observable random variables O1, . . . , On but an unidentifiable

parameter (βj in the model below) is used to quantify the selection bias. One possible

selection model is:

Assumption 2.4:

exp(βj) =
FNI
1 (t, j)/{1− FNI

1 (t, j)}
F prot
1 (t, j)/{1− F prot

1 (t, j)}
. (2.4)

The parameter βj equals the log odds ratio of having an event of type j by time t

under treatment assignment z = 1 in the NI principal stratum versus the protected

principal stratum. Note Assumption 2.4 allows for the log odds to differ across event

types as indicated by the subscript on β. Also note (2.4) is unverifiable since βj is

not identifiable from the observable data. For fixed βj, under Assumptions 2.1 – 2.4

FNI
1 (t, j; βj) is identifiable from the observable data and CE(t, j) can be estimated as

described in Section 2.3 below. The extreme models (2.2) and (2.3) can be viewed as

special cases of Assumption 2.4 as βj →∞ and βj → −∞. We refer to βj = 0 as the no

selection bias model because in this case the odds of having an event of type j by time t

are the same in the NI and protected principal strata. Sensitivity analysis of inference

about CE(t, j) can be conducted by letting βj range from −∞ to ∞. Gains in power

or precision may be achieved by restricting the range of βj based on prior information

about βj elicited from subject matter experts (Scharfstein et al. 2006; Shepherd et al.

2007).

2.3 Inference

In this section we first consider nonparametric estimation of CE(t, j) under the

extreme selection models (2.2) and (2.3). Then inference for CE(t, j) under the semi-

parametric selection model (2.4) given some value of βj is discussed in Section 2.3.2.
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The construction of uncertainty intervals about CE(t, j) is considered in Section 2.3.3.

2.3.1 Nonparametric Estimation: Bounds

Under Assumptions 2.1 - 2.3 consistent estimators of FNI
1 (t, j) assuming (2.2) or

(2.3) are given, respectively, by

F̂NI,up
1 (t, j) = min

{
γ̂−1F̂1(t, j), 1

}
and F̂NI,low

1 (t, j) = max

{
F̂1(t, j)− (1− γ̂)

γ̂
, 0

}
,

(2.5)

where

γ̂ = min

{∑
(1− Si)(1− Zi)/n0∑

(1− Si)Zi/n1

, 1

}
,

and F̂1(t, j) is the Aalen-Johansen estimator (Aalen and Johansen 1978) of F1(t, j)

calculated using (Yi, Ji∆i) for individuals with Zi = 1 and Si = 0. It can be shown

that γ̂ and F̂1(t, j) are nonparametric maximum likelihood estimators (NPMLEs) of

γ and F1(t, j). Thus the estimators in (2.5) can be viewed as NPMLEs of FNI
1 (t, j).

Because Assumptions 2.1 and 2.2 imply FNI
0 (t, j) = F0(t, j), consistent estimators

of CE(t, j) assuming either (2.2) or (2.3) are ĈE
up

(t, j) = F̂NI,up
1 (t, j) − F̂0(t, j) or

ĈE
low

(t, j) = F̂NI,low
1 (t, j)− F̂0(t, j), where F̂0(t, j) is the Aalen-Johansen estimator of

F0(t, j) calculated using (Yi, Ji∆i) for individuals with Zi = Si = 0. In the nomencla-

ture of Vansteelandt et al. (2006), the interval [ĈE
low

(t, j), ĈE
up

(t, j)] is an estimated

ignorance region of CE(t, j).

If 0 < γ < 1, then γ̂ is asymptotically normal. The Aalen-Johansen estimators

F̂z(t, j), for z = 0, 1 are asymptotically normal assuming 0 < Fz(t, j) < 1 and certain

regularity conditions (Aalen, Borgan, and Gjessing 2008). Therefore, F̂NI,up
1 (t, j) is

asymptotically normal if, in addition to these conditions,

F1(t, j) < γ. (2.6)
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If (2.6) does not hold, then F̂NI,up
1 (t, j)

p−→ 1 and hence is not asymptotically normal.

Under conditions where F̂NI,up
1 (t, j) is asymptotically normal, a consistent estimator of

the variance of F̂NI,up
1 (t, j) is

v̂ar{F̂NI,up
1 (t, j)} =

v̂ar{F̂1(t, j)}
γ̂2

+

{
F̂1(t, j)

γ̂

}2(
1

N0

− 1

n0

+
1

N1

− 1

n1

)
, (2.7)

where v̂ar{F̂1(t, j)} is a consistent estimator of the variance of F̂1(t, j) (e.g., see Aalen

et al. 2008, Section 3.4.5) and Nz =
∑
I(Si = 0, Zi = z). Similarly F̂NI,low

1 (t, j) is

asymptotically normal if, in addition to the conditions above,

1− γ < F1(t, j). (2.8)

If (2.8) does not hold, F̂NI,low
1 (t, j)

p−→ 0 and hence is not asymptotically normal. If

F̂NI,low
1 (t, j) is asymptotically normal, the variance can be consistently estimated by

v̂ar{F̂NI,low
1 (t, j)} =

v̂ar{F̂1(t, j)}
γ̂2

+

{
1− F̂1(t, j)

γ̂

}2(
1

N0

− 1

n0

+
1

N1

− 1

n1

)
. (2.9)

Derivations of (2.7) and (2.9) are given in the appendix. When (2.6) and (2.8) hold,

pointwise Wald-type confidence intervals for CE(t, j) can be constructed in the usual

manner. Alternatively, the bootstrap percentile method can be used for computing

confidence intervals of CE(t, j). If (2.6) and (2.8) do not hold, then F̂NI,up
1 (t, j)

p−→ 1

and F̂NI,low
1 (t, j)

p−→ 0, i.e., the bounds are non-informative. Note that conditions (2.6)

and (2.8) can be assessed based on observed data by comparing γ̂ and F̂1(t, j).

27



2.3.2 Semiparametric Estimation

Under Assumptions 2.1 – 2.4, for fixed βj a semiparametric estimator of FNI
1 (t, j)

can be constructed by plugging F̂1(t, j) and γ̂ into equation (2.1) and then simulta-

neously solving (2.1) and (2.4) for FNI
1 (t, j). This can be accomplished by expressing

F prot
1 (t, j) as a function of βj and FNI

1 (t, j) using (2.4), replacing F prot
1 (t, j) by this ex-

pression in (2.1), and finding the solution to (2.1) using a one-dimensional line search.

Define the solution as F̂NI
1 (t, j; βj) and let the corresponding estimator of the causal

effect be ĈE(t, j; βj) = F̂NI
1 (t, j; βj)− F̂0(t, j). Without a closed form for F̂NI

1 (t, j; βj),

confidence intervals of FNI
1 (t, j) and CE(t, j) for an assumed value of βj can be con-

structed using the bootstrap percentile method; alternatively, Wald-type confidence

intervals can be constructed based on bootstrap estimates of var{F̂NI
1 (t, j; βj)} and

var{ĈE(t, j; βj)}.

Note limβj→∞ ĈE(t, j; βj) = ĈE
up

(t, j) and limβj→−∞ ĈE(t, j; βj) = ĈE
low

(t, j),

i.e., the estimators that arise from the extreme selection models (2.2) and (2.3) are

special cases of the estimators from the semiparametric bias model (2.4). Under the

no selection model βj = 0, ĈE(t, j; βj) = F̂1(t, j) − F̂0(t, j), i.e., the causal effect

is estimated by the difference in Aalen-Johansen estimators from the two treatment

groups as in a standard competing risks analysis. In other words, assuming the no

selection model gives rise to a naive or “net” estimator (Frangakis and Rubin 2002)

which simply compares subsets of the two randomization groups conditional on being

observed HIV free and alive at τ0.
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2.3.3 Uncertainty Regions

The pointwise confidence intervals described in Sections 2.3.1 and 2.3.2 will contain

CE(t, j) with the stated coverage probability provided the correct value of βj is as-

sumed. However, the true value of βj is not identifiable from the observed data. There-

fore, following Vansteelandt et al. (2006), it is useful to also construct a (1 − α)100%

uncertainty interval which contains CE(t, j) with probability 1− α without condition-

ing on any assumption about the value of βj. Under the assumptions given in Section

2.3.1 where ĈE
up

(t, j) and ĈE
low

(t, j) are consistent and asymptotically normal, a

large sample (1− α)100% pointwise uncertainty interval for CE(t, j) is given by

[ĈE
low

(t, j)− c∗α/2v̂ar{ĈE
low

(t, j)}1/2, ĈE
up

(t, j) + c∗α/2v̂ar{ĈE
up

(t, j)}1/2]

where c∗α/2 can be computed using equation (4.3) of Vansteelandt et al. (2006),

v̂ar{ĈE
low

(t, j)} = v̂ar{F̂NI,low
1 (t, j)}+ v̂ar{F̂0(t, j)} and v̂ar{ĈE

up
(t, j)} =

v̂ar{F̂NI,up
1 (t, j)}+ v̂ar{F̂0(t, j)}.

2.4 Simulation Study

Simulations were conducted to evaluate the performance of the methods described

in Section 2.3 for drawing inference about CE(t, j). Data were simulated based on

the BAN study under five models: βj = −∞,−1, 0, 1,∞ for fixed j. These five

choices of βj correspond to the two extreme selection models (βj = −∞,∞), two

intermediate selection models (βj = −1, 1), and the no selection bias model (βj = 0).

The Gompertz distribution was used to simulate competing risks data (Jeong and

Fine 2006). Under the Gompertz distribution the CIF can be expressed as F (t, j) =

1− exp [λj{1− exp (αjt)}/αj] where {α1, . . . , αk, λ1, . . . , λk} are chosen such that
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∑k
j=1 Pr[J = j] =

∑k
j=1 F (∞, j) = 1. For the simulation study k = 3 and the param-

eters {α1, α2, α3, λ1, λ2, λ3} were selected such that F1(28, 1) = 0.02, F1(28, 2) = 0.02,

F1(28, 3) = 0.70, and
∑3

j=1 F1(∞, j) = 1. These probabilities correspond roughly to

the estimated risk of HIV infection (j = 1), death (j = 2) prior to HIV infection or

weaning, and cessation of breastfeeding prior to HIV infection (j = 3) at 28 weeks

in the BAN study among infants randomized to the infant ART arm who were HIV

negative and alive at 2 weeks.

Simulations were conducted under two scenarios (for each of the five models). For

the first scenario we let γ = 0.9884, corresponding to the estimated value of γ from

the BAN study. In this scenario we considered estimating CE(28, 1), i.e., the effect of

treatment on risk HIV infection at 28 weeks. Note (2.6) and (2.8) hold in this scenario

for t = 28 and j = 1 such that the estimators of the bounds are asymptotically normal.

Because γ = 0.9884 is near the boundary value of 1, for the second scenario we let

γ = 0.75. In order for (2.6) and (2.8) to hold in the second scenario, we considered

estimating CE(28, 3), i.e., the effect of treatment on weaning at 28 weeks. For the

first scenario simulations were conducted under the alternative hypothesis CE(28, 1) =

−0.05, i.e., the risk of HIV infection is lowered by 5% due to treatment. For the second

scenario simulations were conducted where CE(28, 3) = 0.05, i.e., women are more

likely to breastfeed at 28 weeks when the infant receives ART. For each model and

each scenario, data sets of n = 1520 iid copies of W were simulated according to the

following steps. The description below is for the first scenario where j = 1 is the event

of interest; simulations were conducted analogously for the second scenario where j = 3

is the event of interest.

Step 1. Si(1) was drawn from a Bernoulli(0.0458), where 0.0458 was the estimated

risk of infection or death at two weeks in the infant ART arm of BAN.

Step 2. If Si(1) = 1, then by monotonicity Si(0) = 1. In this case we let Ti(0) =
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Ji(0) = Ti(1) = Ji(1) = ∗ because the survival time and failure type for

individuals with Si = 1 are not used by any of the estimators of CE(t, j).

Step 3. If Si(1) = 0, then (Ti(1), Ji(1)) were generated according to the Gompertz

models described above. In particular, first Ji(1) was generated from a multi-

nomial distribution with cell probabilities 1− exp(λj/αj) for j = 1, 2, 3. Then

Ti(1) was set equal to τ0 + Ui where Ui was randomly generated from the

conditional distribution Pr[Ti(1) ≤ t|Ji(1) = j] = F (t, j)/Pr[Ji(1) = j] us-

ing the inverse probability transformation. Generating Ti(1) in this fashion

guarantees that Ti(1) > τ0 = 2 whenever Si(1) = 0.

Step 4. If Si(1) = 0, Si(0) was generated as follows. For β1 = −∞, Si(0) = I(Ti(1) <

q
(1−γ)
1 , Ji(1) = 1) where q

(1−γ)
j is defined in general such that Pr[Ti(1) ≤

q
(1−γ)
j , Ji(1) = j|Si(1) = 0] = 1− γ. Note for the first scenario (2.8) holds for

t = 28 and j = 1, guaranteeing the existence of q
(1−γ)
1 . For, β1 = −1, 0, 1,

the value of F prot
1 (28, 1; β1) was found by solving (2.1) and (2.4) simulta-

neously, and then Si(0) ∼ Bernoulli(pβ1) where pβ1 = (1 − γ)I(Ti(1) <

28, Ji(1) = 1)F prot
1 (28, 1; β1)/F1(28, 1) + (1 − γ){1 − I(Ti(1) < 28, Ji(1) =

1)}{1− F prot
1 (28, 1; β1)}/{1− F1(28, 1)}. For β1 =∞, Si(0) ∼ Bernoulli(p∞)

where p∞ = (1−γ){1−I(Ti(1) < 28, Ji(1) = 1)}/{1−F1(28, 1)}. Note for the

first scenario (2.6) holds for t = 28 and j = 1, implying 1− γ < 1− F1(28, 1)

thus ensuring p∞ < 1.

Step 5. If Si(0) = 0, then we let Ji(0) = Ji(1). If Si(0) = 0 and Ji(0) = 1, then

Ti(0) = Ti(1)/ε, where ε was chosen such that CE(28, 1) = −0.05. If Si(0) = 0

and Ji(0) 6= 1, then Ti(0) = Ti(1). If Si(0) = 1, then we set Ti(0) = Ji(0) = ∗.

Step 6. Ci(0) and Ci(1) were generated from exponential distributions with means 29

weeks and 18 weeks respectively.
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Step 7. Zi was randomly assigned such that n1 = 852 and n0 = 668.

Step 8. Given Zi, we set Yi = min{Ti(Zi), Ci(Zi)}, ∆i = I(Yi = Ti(Zi)), Ji = Ji(Zi),

and Si = Si(Zi).

These steps resulted in simulated data sets satisfying Assumptions 2.1 – 2.4 with

CE(28, 1) = −0.05 for the first scenario. For each data set simulated, ĈE(28, 1; βj)

was computed for βj = −∞,−1, 0, 1,∞. Bootstrap percentile and Wald 95% confi-

dence intervals as well as the uncertainty intervals described in Section 2.3.3 were also

computed for each simulated data set, assumed value of β1, and estimator of CE(28, 1).

Table 2.1 reports the mean relative bias of ĈE(28, j; βj) based on 10,000 simulated

data sets for both scenarios (γ = 0.9884, j = 1, and γ = 0.75, j = 3) and each model

(βj = −∞,−1, 0, 1,∞). The proposed estimator ĈE(28, j; βj) is approximately unbi-

ased when βj is correctly specified; for incorrectly specified βj the relative bias can be

quite large. For example, if β1 is (incorrectly) assumed to be zero, corresponding to

the naive analysis that simply compares infants HIV free and alive at two weeks from

each study arm, when in fact β1 = −∞, then the relative bias of ĈE(28, 1; β1) is 23%.

This demonstrates how a naive analysis that ignores the potential for selection bias can

yield incorrect inference. This is demonstrated further in the scenario where γ = 0.75,

in which case misspecifying β3 leads to even greater relative bias.

Table 2.2 shows the empirical coverage probabilities of 95% pointwise bootstrap

confidence intervals based on 500 bootstrap replications per simulated data set. When

the correct βj is specified, the confidence intervals associated with ĈE(28, j; βj) have

approximately 95% coverage. Similar results were found using Wald confidence intervals

(results not shown). Because βj is not identifiable from the observable data, coverage of

the uncertainty regions is perhaps of more practical interest. For the 50,000 simulated

data sets from the first scenario (i.e., combining across the 10,000 data sets for each of

the five values of βj), the empirical coverage of the 95% pointwise uncertainty regions
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was 97%. Similarly for the second scenario, the empirical coverage of the uncertainty

intervals was 97%.

2.5 Application to BAN Study

The BAN study was a randomized clinical trial to assess interventions for the pre-

vention of breast milk transmission of HIV in 2369 HIV infected mothers and their

infants in Lilongwe, Malawi (van der Horst et al. 2009; Chasela et al. 2010). There

were three arms in the BAN study: daily ART for the infant, daily ART for the

mother, or control. While the primary analysis of the study considered comparisons

of both ART arms to control, we will focus on comparing the infant ART and control

arms only. In March 2008 the data and safety monitoring board stopped the control

arm due to efficacy but recommended continued enrollment of mother/infant pairs into

the two active treatment arms. This led to an imbalance in the final number of infants

randomized to the three arms, with 852 infants in the infant ART arm and 668 infants

in the control arm. In the infant ART arm there were 37 HIV infections and 2 deaths

before τ0 = 2 weeks, while the control arm had 36 HIV infections and 2 infant deaths

prior to 2 weeks. Thus γ̂ = (630/668)/(813/852) = 0.9884, as in the first scenario of

the simulations in Section 2.4. Among infants HIV free and alive at 2 weeks, in the

infant ART (control) arm 12 (32) became HIV infected, 588 (384) weaned prior to HIV

infection, and 5 (6) died prior to HIV infection or weaning by 28 weeks. Figure 2.1

shows the Aalen-Johansen estimates of the cumulative risk of HIV, death prior to HIV

infection or weaning, and cessation of breastfeeding prior to HIV infection for infants

who were alive and uninfected at 2 weeks as in a standard analysis, i.e., assuming the

no selection model βj = 0 holds for all j. Figure 1(a) suggests a difference in the risk

of HIV infection between the infant ART arm and the control arm, however direct

comparison between the arms is subject to selection bias.
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Figure 2.2 shows the semiparametric sensitivity analysis described in Section 2.3.2.

The plot depicts ĈE(28, 1; β1) and pointwise 95% Wald confidence intervals for each

value of β1 (using bootstrap variance estimates). Note for the infant ART arm F̂1(28, 1) =

0.0141, suggesting (2.6) and (2.8) hold for t = 28 and j = 1. The estimated ignorance

region for CE(28, 1) equals [-0.056, -0.044] and the estimated 95% uncertainty interval

equals [-0.078, -0.025]. This estimated uncertainty interval was computed using boot-

strap variance estimates; using the analytical variance estimates (2.7) and (2.9) yielded

a slightly wider uncertainty interval of [-0.084, -0.025]. In either case, because the un-

certainty interval excludes 0, we conclude there is evidence of a causal effect of infant

ART on the cumulative incidence of HIV at 28 weeks in the NI stratum. Moreover,

without any assumptions about the selection bias mechanism, we are 95% confident

daily infant ART lowers the risk of HIV infection at 28 weeks between 3% and 8%.

The veracity of these results relies on several key assumptions. While interference

between infants was not likely, SUTVA could have been violated by changes in the

infant ART regimen. Per protocol, if an infant on ART had an adverse event due to

the study drug (nevirapine), the ART was changed (to lamivudine) and the infant re-

mained in the study. Thus not all infants were on the same treatment for the duration

of the study. Therefore, the effect of ART being estimated can be viewed as an average

causal effect over all administered ARTs (Vanderweele 2011). While this interpreta-

tion answers the hypothesis proposed for the BAN study, it does not indicate which

particular ART causes the greatest reduction in risk of HIV infection. Assumption 2.1

seems reasonable because treatment was randomized. While mothers were not blinded,

they were counseled to breastfeed their infants regardless of randomization assignment

and self-reported frequency of exclusive breastfeeding was comparable between study

arms (Chasela et al. 2010). The BAN study principal investigator, Dr. Charles van der
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Horst, indicated that monotonicity (Assumption 2.2) is reasonable (personal commu-

nication). Dr. van der Horst conjectured that an infant could have an adverse reaction

to ART leading to increased susceptibility to HIV infection but he felt this was “highly

unlikely.” Monotonicity is also supported by the estimated risk of HIV infection or

death at two weeks being lower in the infant ART arm than in the control arm.

Finally, note that two of the three endpoints in BAN were interval censored. In

particular, the HIV infection times of the infants were interval censored, known only to

be between the last negative and first positive HIV tests. Similarly, the actual timing

of weaning is known only to be visits where the mother reported still breastfeeding and

weaning. On the other hand, the time of death was known exactly for all infants. Other

analyses of the BAN data have found that formally accounting for interval censoring

almost always gives nearly the same result as using the midpoint or right endpoint of

the interval. This is not surprising given the visits in the BAN study were fairly close

together, typically two to four weeks apart. In settings where the intervals are wider,

midpoint or right endpoint imputation may yield misleading results. Instead, a non-

parametric estimator of F1(t, j) that allows for interval censored event times (Hudgens,

Satten, and Longini 2001) can be employed in place of the Aalen-Johansen estimator.

Inference that formally accounts for interval censoring is challenging however, owing

to slow rates of convergence and non-standard limiting distributions of non-parametric

estimators (for continuous time models; Groeneboom, Maathuis, and Wellner 2008a,b).

2.6 Discussion

The objective of many MTCT trials is to determine differences in the cumulative

risk of breastfeeding transmission of HIV between study arms conditional on infants

being HIV free and alive by some time point τ0 > 0. Here we have presented methods

for evaluating the effect of treatment on the cumulative risk of HIV within a principal
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stratum when death and weaning are competing risks. Large sample non-parametric

bounds and a semi-parametric sensitivity analysis model were developed, and the meth-

ods were applied to the BAN study, a large, recent MTCT trial. A simulation study

was presented demonstrating that the proposed methods perform well in finite samples

similar to the BAN study. The simulations also illustrated how analyses that ignore

the potential for selection bias by simply conditioning on being HIV free and alive at

τ0 can give misleading results in settings similar to the BAN study.

The analysis of the BAN study indicates infant ART reduces the risk of HIV infec-

tion by 28 weeks in infants who would be HIV free and alive at two weeks regardless

of treatment assignment. The proposed methods could be applied in other settings

as well. For example, BAN investigators (personal communication) were interested in

comparing the risk of HIV infection or death by 48 weeks conditional on infants being

HIV free and alive at 28 weeks; here τ0 = 28 weeks is further from time 0 and the

potential for selection bias is even greater than the analysis presented in Section 2.5.

Another example is given by the Zambia Exclusive Breastfeeding (ZEB) study, a ran-

domized MTCT study conducted to evaluate whether abrupt weaning at four months

compared with continued breastfeeding increases survival of children of HIV-infected

mothers (Kuhn et al. 2008). Randomization occurred at one month postpartum in

the ZEB study, however Kuhn et al. (2008) presented a comparison of the randomized

groups conditional on infants being HIV free and breastfeeding at four months.

A key assumption of the methods described in this paper is monotonicity, which

implies that the treatment is no worse than control for any individual in terms of the

intermediate variable S. This assumption seems reasonable in the analysis of the BAN

study presented in Section 5, but in other settings it may be unrealistic. For example,

monotonicity might be considered dubious in an analysis comparing the two active arms

of the BAN trial, i.e., maternal ART versus infant ART. In such settings methods that
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relax or do not require this assumption would be needed. Following Zhang and Rubin

(2003), nonparametric bounds analogous to those in Section 2 can be derived without

assuming monotonicity. Specifically, note that F0(t, j) = φFNI
0 (t, j)+(1−φ)F harm

0 (t, j),

where φ = Pr[Si(1) = 0|Si(0) = 0] and F harm
0 (t, j) = Pr[Ti(0) ≤ t, Ji(0) = j|Si(0) =

0, Si(1) = 1]. If γ and φ were identifiable, then bounds for FNI
0 (t, j) can be constructed

analogous to (2.2) and (2.3) and combined with bounds for FNI
1 (t, j) to obtain the

following bounds on CE(t, j):

CElow(t, j) = max

{
F1(t, j)− (1− γ)

γ
, 0

}
−min

{
F0(t, j)

φ
, 1

}
(2.10)

and

CEup(t, j) = min

{
F1(t, j)

γ
, 1

}
−max

{
F0(t, j)− (1− φ)

φ
, 0

}
. (2.11)

However, without the monotonicity assumption γ and φ are not identifiable. Let π =

Pr[Si(0) = 0, Si(1) = 1] and note that

γ = Pr[Si(0) = 0|Si(1) = 0] =
Pr[Si(0) = 0, Si(1) = 0]

Pr[Si(1) = 0]
=

Pr[Si(0) = 0]− π
Pr[Si(1) = 0]

and

φ = Pr[Si(1) = 0|Si(0) = 0] =
Pr[Si(0) = 0, Si(1) = 0]

Pr[Si(0) = 0]
=

Pr[Si(0) = 0]− π
Pr[Si(0) = 0]

are identifiable from the observed data for a fixed value of π. Thus, the lower bound of

CE(t, j) is found by minimizing (2.10) over π where max{0,Pr[Si(0) = 0]−Pr[Si(1) =

0]} ≤ π ≤ min{Pr[Si(0) = 0],Pr[Si(1) = 1]}. Likewise, the upper bound of CE(t, j)

is found by maximizing (2.11) over the same range of π. Sensitivity analysis could be

performed by adapting the methods of Shepherd, Gilbert, and Dupont (2011). For

instance, similar to Assumption 2.4, a selection model for FNI
0 (t, j) could be assumed,
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such as:

Assumption 2.5:

exp(ηj) =
FNI
0 (t, j)/{1− FNI

0 (t, j)}
F harm
0 (t, j)/{1− F harm

0 (t, j)}
. (2.12)

Sensitivity analysis under Assumptions 2.1, 2.3, 2.4, and 2.5 would be performed

by varying π over max{0,Pr[Si(0) = 0] − Pr[Si(1) = 0]} ≤ π ≤ min{Pr[Si(0) =

0],Pr[Si(1) = 1]} and ηj, βj each over (−∞,∞). The resulting inference will be more

precise if the ranges of π, ηj, and βj can be further restricted based on prior information

elicited from subject matter experts.

For the MTCT research motivating this work, interest focused on the principal

stratum of infants HIV free and alive at τ0 under either treatment assignment. The

methods developed could also be applied to infants HIV infected and alive at τ0 un-

der either treatment where T might denote the time until death from various causes.

Beyond MTCT trials, the methods developed could be applied in other settings where

inference about treatment effects within principal strata is of interest (e.g., truncation-

by-death or non-compliance) and the endpoint is a time-to-event outcome subject to

competing risks. Further research might entail allowing the cumulative incidence func-

tions to depend on baseline covariates (e.g., as in Jeong and Fine (2007)).
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Figure 2.1: Estimated cumulative incidence functions, F̂z(23, j), for the three events
from the BAN study: (a) HIV infection, (b) HIV-free death prior to weaning, and (c)
cessation of breastfeeding prior to HIV infection. For each panel, Zi = 0 (control) is
represented by the solid line (—) and Zi = 1 (infant ART) is represented by the dashed
line (−−−).
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Figure 2.2: Sensitivity analysis of the effect of infant ART on the cumulative incidence
of HIV at 28 weeks for the BAN study. The solid line — denotes ĈE(28, 1; β1) and
the dotted lines · · · denote pointwise 95% confidence intervals. The estimated non-
parametric bounds corresponding to β1 = −∞ and β1 =∞ are given by ◦.
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Table 2.1: Empirical relative bias of estimates of CE(28, j) from simulation study
described in Section 2.4 for both scenarios. Bold entries correspond to estimates where
the assumed βj was correct. Relative bias of ĈE(28, j; βj) defined as {ĈE(28, j; βj)−
CE(28, j)}/CE(28, j).

True parameters Assumed βj
γ CE βj −∞ −1 0 1 ∞

0.9884 -0.05 −∞ 0.02 0.22 0.23 0.24 0.24
-1 -0.19 0.01 0.01 0.02 0.02
0 -0.21 -0.01 0.00 0.00 0.01
1 -0.20 -0.01 0.00 0.00 0.00
∞ -0.21 -0.01 -0.00 0.00 0.00

0.75 0.05 −∞ -0.01 -1.10 -2.01 -3.13 -6.69
-1 1.02 -0.01 -0.88 -1.96 -5.32
0 2.00 0.91 -0.01 -1.12 -4.67
1 2.66 1.77 0.98 0.00 -2.93
∞ 6.50 5.44 4.55 3.45 0.00
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Table 2.2: Empirical coverage of pointwise 95% bootstrap percentile confidence intervals
of CE(28, j) from simulation study described in Section 2.4 for both scenarios. Bold
entries correspond to estimates where the assumed βj was correct.

True parameters Assumed βj
γ CE βj −∞ −1 0 1 ∞

0.9884 -0.05 −∞ 0.95 0.81 0.80 0.80 0.79
-1 0.90 0.95 0.94 0.94 0.94
0 0.88 0.94 0.94 0.94 0.94
1 0.89 0.95 0.95 0.95 0.95
∞ 0.89 0.95 0.95 0.95 0.95

0.75 0.05 −∞ 0.95 0.55 0.06 0.00 0.00
-1 0.66 0.94 0.65 0.06 0.00
0 0.14 0.66 0.94 0.47 0.00
1 0.01 0.12 0.55 0.94 0.01
∞ 0.00 0.00 0.00 0.00 0.94
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Chapter 3

Sharpening Bounds on Principal
Effects with Covariates

3.1 Introduction

Often in randomized trials to evaluate the effect of a treatment, inference is ham-

pered by possible selection bias induced by conditioning on or adjusting for a variable

measured post-randomization. One approach that avoids potential selection bias is

to focus inference on the causal effect within a principal strata of interest, i.e., the

principal effect (Frangakis and Rubin 2002). Principal strata are defined by the pair

of potential outcomes under either treatment assignment of the post-randomization

variable. In vaccine trials, a principal stratum of interest may be individuals who

would be infected at a certain time regardless of vaccine status (Shepherd et al. 2011).

In studies of interventions to prevent mother-to-child transmission (MTCT) of HIV

through breastfeeding, a principal stratum of interest is infants who would be unin-

fected at a certain time regardless of treatment (Nolen and Hudgens 2011). In either

case, principal strata membership is unidentifiable from the observable data without

strong assumptions because only one of the two post-randomization variable potential

outcomes is ever observed for an individual. In turn, the principal effect of interest is



not identifiable. One approach to cope with lack of identifiability is to conduct sensi-

tivity analysis wherein some model is assumed indexed by an unidentifiable parameter

conditional on which the principal effect is identifiable. Inference about the principal

effect is conducted conditional on some value of the unidentifiable parameter and then

sensitivity of the inference is examined by considering different values of the parame-

ter. An alternative approach entails drawing inference about bounds on the principal

effects, e.g., Zhang and Rubin (2003). Informally, these extreme bounds provide the

smallest and largest possible values of the principal effect consistent with the observed

data. This approach is appealing in that typically bounds can be obtained under mini-

mal assumptions. However, in many cases the bounds may be quite wide and therefore

not particularly informative about the principal effect.

Grilli and Mealli (2008) derived nonparametric bounds on the principal effect under

a number of different assumptions. They suggested these bounds can be improved

(or narrowed) by creating bounds within strata defined by a baseline covariate and

combining these stratum specific bounds by taking a weighted average to obtain new

adjusted bounds on the principal effect. Grilli and Mealli (2008) performed this method

on data from an employment study with mixed results. The adjusted bounds were an

improvement on only one side of the unadjusted bounds, i.e., the adjusted lower bound

was larger than the unadjusted lower bound but the adjusted upper bound was also

larger than the unadjusted upper bound. The reason for only partial improvement

was not addressed and characterization of which circumstances will lead to improved

bounds was not investigated.

In this work we consider sharpening (or narrowing) the large sample bounds of a

principal effect using information from a baseline categorical covariate, as proposed

by Grilli and Mealli (2008). In Section 3.2, notation and assumptions are introduced.

Section 3.3 addresses non-identifiability of the principal effect and in Section 3.4 the
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unadjusted bounds are reviewed. In Section 3.5, adjusted bounds are presented by

taking a weighted average of bounds within levels of the baseline covariate. Section

3.6 contains the main result, giving necessary and sufficient conditions under which

the covariate adjusted bounds improve upon (i.e., are narrower than) the unadjusted

bounds. Cases in which adjusting for the covariate will identify the principal effect

are illustrated in Section 3.8. In Section 3.7, the adjusted and unadjusted bounds are

considered using data from a recent, large MTCT study. A brief discussion is presented

in Section 3.9. Proofs of the propositions in Section 3.6 are given in the Appendix.

3.2 Notation and Assumptions

To motivate, throughout we consider the MTCT example where infants of HIV

positive mothers are randomized at birth to treatment or control. Suppose n infants

are enrolled in a MTCT study and randomly assigned one of two treatments, 0 or 1, at

baseline (birth or time 0). For i = 1, . . . , n, let Zi = 0 if infant i is assigned treatment

0 and Zi = 1 otherwise. Without loss of generality, assume Zi = 0 corresponds to

control, and Zi = 1 corresponds to active treatment. Let Xi be some binary variable

measured at baseline (prior to randomization) taking on values 0 or 1. Let Si denote

whether infant i is infected at a pre-specified post-randomization time point τ0 > 0,

i.e., Si = 1 if the infant is infected at τ0, Si = 0 otherwise. Let Yi be a binary outcome

measured only in infants with Si = 0. Let Si(z) denoted the potential value of Si when

assigned treatment z for z = 0, 1 such that Si = (1 − Zi)Si(0) + ZiSi(1). Define Yi(z)

similarly. We assume the ith infant’s treatment assignment does not affect the potential

outcomes of other infants (i.e., no interference) and that there are not multiple forms

of treatment, i.e., the stable unit treatment value assumption (SUTVA) holds (Rubin

1980).

Principal strata are defined by sets of infants with the same potential outcome
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pair (Si(0) = s0, Si(1) = s1). Define the always infected (AI) principal stratum to be

infants with s0 = s1 = 1, i.e., infants who would be infected at τ0 regardless of treatment

assignment. Similarly define the harmed stratum as those infants with s0 = 0, s1 = 1;

the protected stratum as those infants with s0 = 1, s1 = 0; and the never infected (NI)

stratum as those infants with s0 = s1 = 0.

Here and throughout assume Assumption 1: Zi ⊥ (Xi, Si(0), Si(1), Yi(0), Yi(1))

Assumption 2 (Monotonicity): Si(1) ≤ Si(0) for all i Assumption 1 will hold in ran-

domized trials. Monotonicity assumes that treatment does no harm, i.e., there are no

infants who would be infected only if treated. Under Assumption 2, there are only

three possible principal strata: AI, NI, and protected. In MTCT studies to prevent

breastmilk transmission of HIV, investigators are interested in the NI stratum because

infections prior to τ0 could be due to the birthing process and not breastfeeding. The

causal estimand of interest, the principal effect, is the effect of treatment on Yi in infants

who would be uninfected and alive at τ0 under either treatment assignment, namely

CE = Pr[Yi(1) = 1|Si(0) = Si(1) = 0]− Pr[Yi(0) = 1|Si(0) = Si(1) = 0].

Below we consider large sample bounds for CE that do and do not adjust for baseline

covariates.

3.3 Partial Identifiability

In this section we consider the identifiability of CE. Let θzst = Pr[Yi(z) = 1|Si(1) =

s, Si(0) = t], πz = Pr[Yi(z) = 1|Si(z) = 0], and γ = Pr[Si(0) = 0|Si(1) = 0], such that

CE = θ100−θ000. Assume γ > 0 as otherwise the NI stratum is empty with probability

1. Under Assumptions 1 and 2, θ000 = Pr[Yi = 1|Si = 0, Zi = 0], which is identifiable

from the observed data. However, θ100 is not identifiable. Following Hudgens and
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Halloran (2006) note

Pr[Yi(1) = 1|Si(1) = 0] = Pr[Yi(1) = 1|Si(1) = Si(0) = 0] Pr[Si(0) = 0|Si(1) = 0]

+ Pr[Yi(1) = 1|Si(1) = 0, Si(0) = 1] Pr[Si(0) = 1|Si(1) = 0],

i.e.,

π1 = γθ100 + (1− γ)θ101. (3.1)

Under Assumption 1 π1 is identifiable. Under Assumptions 1 and 2 γ is identifiable

because

γ =
Pr[Si(0) = 0]

Pr[Si(1) = 0]
=

Pr[Si = 0|Z = 0]

Pr[Si = 0|Z = 1]
.

On the other hand, θ100 and θ101 are not identifiable because infants who were treated

and uninfected at τ0 are a mixture of infants from the protected and NI strata. Solving

(3.1) for θ100 yields,

θ100 =
π1
γ
− 1− γ

γ
θ101. (3.2)

Equation (3.2) describes a line with intercept π1/γ and slope −(1 − γ)/γ. Any point

on this line will give rise to the same observed data distribution. Two populations will

have the same observable data if all else being equal π1 ∗ γ + Pr[Yi(1) = 1|Si(0) =

1, Si(1) = 0] ∗ (1− γ) is the same in the two populations.

Note that if γ = 1, π1 = 1, or π0 = 0 then CE is identifiable. If γ = 1, then (3.2)

is a horizontal line with intercept π1 and thus θ100 = π1. If π1 = 1, then (3.1) implies

θ100 = 1. Likewise, if π1 = 0, then (3.1) implies θ100 = 0. Otherwise, if γ < 1 and

0 < π1 < 1, under Assumptions 1 and 2, CE is not identifiable from the observable

random variables.
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3.4 Unadjusted Bounds

In this section, we present large sample bounds that ignore the baseline covariate

X. Large sample bounds for CE are found by first bounding θ100. The upper bound

for θ100 is obtained by assuming θ101 = 0 or θ100 = 1. Likewise, the lower bound for

θ100 is obtained by assuming θ101 = 1 or θ100 = 0. These bounds can be envisaged as

corresponding to the point where the line (3.2) intersects the unit square (Hudgens and

Halloran 2006).

In particular, the upper and lower bounds are

θu100 = min

{
π1
γ
, 1

}
and θl100 = max

{
π1 − (1− γ)

γ
, 0

}
. (3.3)

Bounds for CE are found by replacing θ100 by θu100 and θl100, i.e., CEu = θu100− θ000 and

CEl = θl100 − θ000. These bounds will be referred to as “unadjusted” bounds since no

information from the covariate is used.

To illustrate, let the probabilities corresponding to a fictitious trial of MTCT of

HIV be γ = 0.95, π1 = 0.02, and π0 = 0.05. Using (3.3) for this trial, θu100 =

min{0.02/0.95,1} = 0.021 and θl100 = max{(0.02 − (1 − 0.95))/0.95, 0} = 0. This

gives the unadjusted bounds as [CEl, CEu] = [0− 0.05, 0.021− 0.05] = [−0.05,−0.029]

since θ000 = π0. Let the probabilities for a second fictitious trial be γ = 0.80, π1 = 0.85,

and π0 = 0.95. Thus, θu100 = 1 and θl100 = 0.813, implying the unadjusted bounds are

[CEl, CEu] = [−0.137, 0.05]. These two fictitious trials will be revisited in the next

section.

3.5 Adjusted Bounds

Here we consider the method proposed by Grilli and Mealli (2008) for adjusting

the large sample bounds using the binary baseline covariate X, i.e., bounds will be
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obtained within strata defined define by X and then weighted averages of the stratum

specific bounds will be computed. Let θzstx = Pr[Yi(z) = 1|Si(1) = s, Si(0) = t,Xi =

x], γx = Pr[Si(0) = 0|Si(1) = 0, Xi = x], πzx = Pr[Yi(z) = 1|Si(1) = 0, Xi = x],

φx = Pr[Xi = x|Si(1) = Si(0) = 0], and λx = Pr[Xi = x|Si(1) = 0] for x = 0, 1. Note

θ100 =
∑
x

θ100xφx, (3.4)

where here and in the sequel
∑

x =
∑1

x=0. As in the unadjusted case, θ100x is not

identifiable but using arguments analogous to (3.2) for Xi = x we have

θ100x =
π1x
γx
− 1− γx

γx
θ101x, (3.5)

and identifiable upper and lower bounds for θ100 are

θu100x = min

{
π1x
γx
, 1

}
and θl100x = max

{
π1x − (1− γx)

γx
, 0

}
. (3.6)

Under Assumptions 1 and 2, φx is identifiable because Pr[Xi = x|Zi = 0, Si = 0] =

Pr[Xi = x|Si(0) = 0] = Pr[Xi = x|Si(1) = Si(0) = 0]. Therefore, identifiable bounds

for θ100 can be obtained by combining (3.4) and (3.6), namely

θu100X =
∑
x

θu100xφx and θl100X =
∑
x

θl100xφx. (3.7)

This leads to adjusted bounds CEu
X = θu100X − θ000 and CEl

X = θl100X − θ000.

Table 3.1 contains the values of two baseline covariates, X1 and X2, for each of the

fictional trials discussed in Section 3.4. For the first trial and X1, by (3.6), we have

θu1000 = min{0.035/0.995, 1} = 0.035, θl1000 = max{(0.035−(1−0.995))/0.995, 0} = 0.03,

θu1001 = 0.011, and θl1001 = 0. Thus, θu100X = 0.035 ∗ 0.419 + 0.011 ∗ 0.581 = 0.021 and
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θl100X = 0.013. Therefore, there is improvement to the lower bound on the causal

effect when adjusting for X1, from [CEl, CEu] = [−0.05,−0.029] to [CEl
X1
, CEu

X1
] =

[−0.037,−0.029]. However, using X2 in the first trial there is no improvement since

θu100X = 0.021 = θu100 and θl100X = 0 = θl100.

For the second trial and X1, θ
u
1000 = 0.854, θl1000 = 0.73, θu1001 = 1, and θl1001 =

0.878. Thus, θu100X = 0.935 and θl100X = 0.813. Here adjusting for X1 yields a

smaller upper bound resulting in narrower bounds, i.e., [CEl, CEu] = [−0.137, 0.05]

to [CEl
X1
, CEu

X1
] = [−0.137,−0.015]. In fact, the adjusted upper bound is less than

the null value of 0, indicating treatment has an effect in the NI principal stratum. On

the other hand, using X2 there was again no improvement since θu100X = 1 = θu100 and

θl100X = 0.813 = θl100.

A graphical depiction of the unadjusted and adjusted bounds is given in Figure

3.1. The unadjusted bounds are found where the solid lines intersect the unit square.

Bounds within strata defined by X correspond to where the dashed and dotted lines

intersect the unit square. The adjusted bounds, represented by ◦ and +, are weighted

averages of these stratum specific bounds. For example, in the upper left panel corre-

sponding to trial 1 and X1, we see that θl100X is larger than θl100 since the + is above 0,

the point where the solid line intersects the horizontal axis.

3.6 Improvement of the Bounds

The examples in the preceding section illustrate that adjusting for a baseline co-

variate may or may not improve the bounds on CE. In this section, we give necessary

and sufficient conditions for when the adjusted bounds (3.7) will be narrower than the

unadjusted bounds of (3.3). Proofs for all propositions are given in the Appendix.

Proposition 1. [θl100X , θ
u
100X ] ⊆ [θl100, θ

u
100] for any baseline binary covariate X.
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According to Proposition 1, the adjusted bounds will be at least as narrow as the

unadjusted bounds no matter the choice of X. To characterize the conditions under

which the adjusted bounds are strictly narrower than the unadjusted bounds, assume

Xi takes on values x and x′ and consider the following two criteria:

π1x < γx and π1x′ > γx′ , (3.8)

and

π1x > (1− γx) and π1x′ < (1− γx′), (3.9)

where the value of x in (3.8) and (3.9) is not necessarily the same. In words, (3.8)

and (3.9) indicate that Xi is informative about relation of the distribution of Si(0)

given Si(1) = 0 and the distribution of Yi(1) given Si(1) = 0. On the other hand,

if Xi is uninformative about this relation then neither (3.8) nor (3.9) will hold. For

example, if Xi is independent of Si(0) given Si(1) = 0 and if Xi is independent of

Yi(1) given Si(1) = 0, then neither (3.8) nor (3.9) will hold. Using (3.8) and (3.9), the

following propositions characterize exactly the situations when the adjusted bounds

will be narrower.

Proposition 2. θu100X < θu100 if and only if X satisfies (3.8).

Proposition 2 states (3.8) is a necessary and sufficient condition for the adjusted

upper bound for θ100 to be smaller than the unadjusted bound. This proposition is

exemplified in the second fictional trial from Section 3.5 using X1, where π10 < γ0 and

π11 > γ1.

Proposition 3. θl100X > θl100 if and only if X satisfies (3.9).

Proposition 3 provides the necessary and sufficient condition for the adjusted lower

bound to be θ100 larger than the unadjusted bound. This proposition is illustrated in
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the first fictional trial from Section 3.5 using X1, where π10 > (1−γ0) and π11 < (1−γ1).

It follows immediately from Propositions 2 and 3 that if (3.8) and (3.9) both hold

then the adjusted bounds are strictly contained within the unadjusted bounds and if

neither hold, the adjusted and unadjusted bounds are equal.

3.7 Illustration

Grilli and Mealli (2008) analyzed data on academic careers and job opportunities

of university students and found that the estimated adjusted bounds were not strictly

contained within the estimated unadjusted bounds, apparently contradicting Proposi-

tion 1. In this section we consider a MTCT trial where a similar relationship between

the estimated adjusted and unadjusted bounds is found.

The Breastfeeding, Antiretoviral, and Nutrition (BAN) study was a randomized

clinical trial to assess interventions for the prevention of breast milk transmission of

HIV in 2369 HIV infected mothers and their infants in Lilongwe, Malawi (Chasela et

al. 2010). There were three arms in the BAN study: daily antiretroviral therapy (ART)

for the infant, daily ART for the mother, or control. While the primary analysis of the

study considered comparisons of both ART arms to control, we will focus on comparing

the infant ART and control arms only. Per protocol, infants who died or were infected

in the first 2 weeks post-treatment were excluded from the primary analysis, creating

the potential for selection bias. Let Si = 1 if the infant became HIV positive or died

by 2 weeks, Si = 0 otherwise. Furthermore, let Xi be an indicator of low birth weight

(< 2.5 kg), i.e., Xi = 1 if the infant had low birth weight, 0 otherwise. Define Yi as

HIV infection status at 28 weeks where Yi = 1 if an infant is infected by 28 weeks. As

there is right censoring in the BAN study, a more formal analysis would correct for

censoring using a survival outcome but as this is for illustration we will assume Yi is

observed for all infants. The principal effect of interest is the difference in risk of HIV
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infection at 28 weeks between the infant ART and control arms for infants in the NI

stratum.

For estimation, the consistent moment-based estimators under Assumptions 1 and

2 will be used. Let

γ̂ = min

{∑
(1− Si)(1− Zi)/

∑
(1− Zi)∑

(1− Si)Zi/
∑
Zi

, 1

}

and

γ̂x = min

{∑
(1− Si)(1− Zi)I(Xi = x)/

∑
(1− Zi)I(Xi = x)∑

(1− Si)ZiI(Xi = x)/
∑
ZiI(Xi = x)

, 1

}
,

where
∑

=
∑n

i=1 and I() is the usual indicator function. Likewise, let π̂z =
∑
Yi(1−

Si)I(Zi = z)/
∑

(1−Si)I(Zi = z), π̂1x =
∑
Yi(1−Si)ZiI(Xi = x)/

∑
(1−Si)ZiI(Xi =

x), λ̂x =
∑

(1 − Si)ZiI(Xi = x)/
∑

(1 − Si)Zi and φ̂x =
∑

(1 − Si)(1 − Zi)I(Xi =

x)/
∑

(1−Si)(1−Zi). For π̂z, the Aalen-J The estimates θ̂u100, θ̂
l
100, θ̂

u
100x, and θ̂l100x are

calculated using the above estimators in (3.3) and (3.6) and finally θ̂u100X =
∑

x θ̂
u
100xφ̂x

and θ̂l100X =
∑

x θ̂
l
100xφ̂x.

Table 3.2 presents data from this study by treatment and Xi. Using these data and

the above estimators, we have γ̂ = (630/668)/(813/852) = 0.9884, π̂1 = 0.0148, and

π̂0 = 0.0507. Thus the estimated unadjusted upper and lower bounds are θ̂u100 = 0.0149,

θ̂l100 = 0.0032 and [ĈE
l
, ĈE

u
] = [−0.0476,−0.0359].

Using the data stratified by Xi, γ̂0 = 1 and γ̂1 = 0.8612. Furthermore, π̂10 = 0.0107,

π̂11 = 0.0645, θ̂u1000 = 0.0107, θ̂l1000 = 0.0107, θ̂u1001 = 0.0749, θ̂l1001 = 0, λ̂0 = 0.9237,

λ̂1 = 0.0763, φ̂0 = 0.9270, and φ̂1 = 0.0730. Therefore, θ̂u100X = 0.0153 and θ̂l100X =

0.0099 and [ĈE
l

X , ĈE
u

X ] = [−0.0409,−0.0354]. Since Xi satisfies (3.9) empirically, i.e.,

π̂10 > (1 − γ̂0) and π̂11 < (1 − γ̂1), the estimated adjusted lower bound is larger than

the estimated unadjusted lower bound, consistent with Proposition 3. However, the

estimated adjusted upper bound is larger than the estimated unadjusted bound which

53



seems to contradict Proposition 1.

In this example, γ̂ = 0.9884 6= 0.9894 =
∑

x γ̂xλ̂x even though γ =
∑

x γxλx. This

suggests an alternative estimator for λx, namely λ̃x = λ̂xα̂x where

α̂x =

∑
(1− Zi)I(Xi = x)/

∑
(1− Zi)∑

ZiI(Xi = x)/
∑
Zi

.

Note α̂x is a consistent estimator of Pr[Xi = x|Zi = 0]/Pr[Xi = x|Zi = 1], which equals

1 by Assumption 1, implying α̂x
p−→ 1 and thus λ̃x

p−→ λx. Similarly, let φ̃x = φ̂x/α̂x.

By design, the estimators θ̃u100X =
∑

x θ̂
u
100xφ̃x and θ̃l100X =

∑
x θ̂

l
100xφ̃x will satisfy the

relationship given in Proposition 1, i.e., the adjusted bounds computed using φ̃x and

φ̃x will always be at least as narrow as the unadjusted bounds.

Using the BAN data, α̂0 = 0.9912, α̂1 = 1.0988, φ̃0 = 0.9346, φ̃1 = 0.0664.

Thus, θ̃u100X = 0.0149, and θ̃l100X = 0.0100, yielding adjusted bounds for CE of

[−0.0408,−0.0359]. That is, the adjusted bounds are 58% narrower than the unad-

justed bounds.

3.8 Identifiability

As noted at the end of Section 3.3, in the absence of covariate X, CE is identifiable

if and only if one of the following three conditions occur: γ = 1, π1 = 1, or π0 = 0.

When at least one of these conditions holds, CE is identifiable and θu100 = θl100, i.e.,

the bounds collapse to a single point. In this section we consider conditions under

which adjusting for the binary covariate X renders CE identifiable in the sense that

the adjusted bounds collapse to a point, i.e., CEl
X = CEu

X . By the form of the adjusted

bounds given in (3.7), it follows that if 0 < φ0 < 1, then the adjusted bounds yield a
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single point if and only if

γx = 1, π1x = 1, or π1x = 0 (3.10)

for x = 0 and x = 1. If φ0 = 0 (and thus φ1 = 1), then CEl
X = CEu

X if and only if

(3.10) holds for x = 1. Analogously, If φ0 = 1, then CEl
X = CEu

X if and only if (3.10)

holds for x = 0.

Ding et al. (2011) also considered identifiability of a principal effect when outcomes

are truncated by death, which is mathematically identical to the problem considered

here. In addition to Assumptions 1 and 2 above, Ding et al. provided two additional

assumptions which are sufficient for identifiability: (i) Xi ⊥ Yi|{Si(0), Si(1), Zi} and

(ii) Pr[Xi = x|Si(0) = Si(1) = 0] 6= Pr[Xi = x|Si(0) = 1, Si(1) = 0]. Unfor-

tunately, assumption (i), which under randomization can be equivalently stated as

Xi ⊥ Yi(z)|{Si(0), Si(1)} for z = 0, 1, cannot be verified from the observable data.

Ding et al. also gave sufficient identifiability conditions that do not require (i) but in-

stead require that X takes on at least three levels or is continuous and that the mean

of Y satisfies a particular linear model.

In contrast, condition (3.10) can be assessed from the observable data because γx,

π1x and π0x are all identifiable under Assumptions 1 and 2 only. Moreover, (3.10)

suggests a strategy for selecting X. In particular, if a covariate X can be found such

that (3.10) holds for x = 0, 1, then CE will be identifiable. If no such covariate is

available, then selecting X such that (3.10) approximately holds for x = 0, 1 should

yield adjusted bounds with width close to zero. For instance, in the MTCT from

the previous section, the low birth weight indicator covariate X yields γ̂0 = 1, i.e.,

(3.10) empirically holds for x = 0; while (3.10) does not hold empirically for x = 1,

π̂11 = 0.065 is not too far from zero and indeed the birth weight adjusted bounds for

CE are substantially narrower than the unadjusted bounds.
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Finally, we note two special examples where Xi identifies CE. First, suppose Xi = 1

if and only if Si(0) = Si(1) = 0, i.e., Xi is a perfect predictor of membership in the NI

principal stratum. Because γ1 = 1, the causal effect is identifiable within the stratum

where Xi = 1, i.e., θl1001 = θu1001. Furthermore, because φ1 = 1 and φ0 = 0, it follows

that θu100X = θu1001 and θl100X = θl1001, implying CEl
X = CEu

X . This example is related

to the “principal score,” i.e., the probability an individual is within a principal stratum

conditional on one or more covariates (Jo and Stuart, 2009). In practice, principal

scores are not known but predicted based on fitted models using the observed data.

In the MTCT setting, such a model can be fit using data from infants with Zi = 0

and Si = 0, because under Assumptions 1 and 2 such infants are necessarily in the

NI stratum. This first example illustrates that if a set of one or more covariates (not

necessarily binary or even discrete) can be found such that the principal scores for the

NI stratum equal zero or one for all individuals and dichotomized at some threshold,

then CE is identified. In practice this may not be possible; however, if covariates

can be found such that the principal scores for the NI stratum are all close to zero or

one, i.e., the principal scores are highly predictive of NI stratum membership, then the

adjusted bounds constructed by stratifying on the dichotomized principal scores should

have width near zero. For the second example, suppose Yi = 1 if and only if Xi = 1,

i.e., Xi is a perfect predictor of Yi. Then π10 = 0 and π11 = 1 implying (3.10) holds

for x = 0 and x = 1 and therefore CEl
X = CEu

X . In settings where Zi has an effect

on Yi and Zi is assigned randomly, no such perfect predictor Xi will exist (because

Xi is measured pre-randomization), such that the second example seems to have little

practical implication.
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3.9 Conclusion

In summary, this paper considers when adjusted bounds of the principal effect will be

sharper than unadjusted bounds. In particular, Proposition 1 shows that the adjusted

bounds cannot be worse, i.e., wider, than the unadjusted bounds. Propositions 2 and 3

give necessary and sufficient conditions for the adjusted upper and lower bounds to be

an improvement. Throughout it was assumed that X was a binary covariate, although

the results from Section 3.6 can be extended to any categorical baseline covariate.

Specifically, Proposition 1 will hold for any categorical baseline covariate Xi with k

levels, k finite. Similarly, if there exists any two levels of X that satisfy either (3.8) or

(3.9), then either Proposition 2 or Proposition 3 will hold respectively.
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Figure 3.1: Graphical depiction of bounds discussed in Section 3.5 for the two fictional
trials from Section 3.5 stratified by two covariates. The solid lines depict equation (3.2)
with π1 = 0.02 and γ = 0.95 in the upper panels and π1 = 0.85 and γ = 0.8 in the
lower panels. The · · · (−−−) lines represent (3.5) for Xi = 0 (Xi = 1). The vertical
value of ◦ (+) corresponds to θu100X (θl100X).

58



Table 3.1: Probabilities from the fictional trials described in Section 3.4 stratified by
X1 and X2

Trial 1 X1 X2

0 1 0 1
γx 0.995 0.920 0.980 0.880
π1x 0.035 0.010 0.005 0.055
λx 0.400 0.600 0.700 0.300
φx 0.419 0.581 0.722 0.278

Trial 2 X1 X2

0 1 0 1
γx 0.890 0.740 0.875 0.625
π1x 0.760 0.910 0.910 0.710
λx 0.400 0.600 0.700 0.300
φx 0.445 0.555 0.766 0.234
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Table 3.2: Data from the BAN study stratified by X (low birth weight < 2.5 kg).

Control Treatment
X X

0 1 Total 0 1 Total
S = 1 28 10 38 36 3 39
S = 0 584 46 630 751 62 813
Y = 1 31 1 32 8 4 12
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Chapter 4

Principal Surrogates in Repeated
Low-Dose Challenge Experiments

4.1 Introduction

Experiments in non-human primates (NHPs) play an essential role in the develop-

ment, screening, and evaluation of preventive HIV vaccines (Morgan et al. 2008; Fauci

et al. 2008). Historically, these studies have usually entailed challenges with very high

doses of a hybrid simian-human immunodeficiency virus (SHIV), resulting in infection

of all NHPs in the experiment. Such an approach uses doses that are much higher

than those experienced in natural transmission, so that the failure of a vaccine candi-

date to protect from infection in this setting is not necessarily indicative of a vaccine

without utility in humans (Feinberg and Moore 2002). Thus researchers have recently

begun to conduct repeated low-dose challenge (RLC) studies in NHPs (Garcia-Lerma

et al. 2008; Ellenberger et al. 2006; Subbarao et al. 2006; Otten et al. 2005) that may

more closely mimic typical exposure in natural human transmission settings. Recent

investigations (Regoes et al. 2005; Hudgens and Gilbert 2009; Hudgens et al. 2009)

have shown that these experiments can be adequately powered to detect vaccine effi-

cacy against infection with a clinically feasible numbers of NHPs. Since investigators



control exposure, challenge experiments can assess vaccine effects of interest that may

be difficult to observe in typical human efficacy trials. For example, since infection

can be assessed after each exposure via viral load assays, one can easily estimate the

per-exposure or “per-contact” effect of vaccination. Likewise, challenge studies allow

precise characterization of immunological and virological parameters very early after

infection, which are practically impossible to evaluate in humans (except possibly in

neonates).

In addition to assessing vaccine effects on infection and post-infection endpoints,

evaluation of immunological surrogates of protection (SoPs) are a vital component of

NHP challenge experiments, providing points of reference to judge new vaccine can-

didates and for retrospective analyses of candidates evaluated previously in high-dose

challenge experiments (Regoes et al. 2005). In general, a SoP is defined to be an im-

munological variable Si such that a vaccine effect on Si is predictive of a vaccine effect

on the risk of infection or disease. The utility of such a SoP includes guiding vaccine

development, providing guidance for regulatory and immunization policy decisions, and

bridging efficacy of a vaccine observed in a trial to a new setting. For RLC challenge

studies, knowledge of an immunological surrogate can inform comparisons of vaccine

candidates in NHPs and support predictions of vaccine efficacy in humans.

Despite the importance of finding immune SoP, the literature on methods for their

quantitative assessment is still quite limited. Moreover, there exists considerably con-

fusion about what constitutes an immune correlate or surrogate of protection and how

it is appropriately evaluated. Recently Qin et al. (2007) and Gilbert et al. (2008) pro-

posed a hierarchical three-tier framework for evaluating immune correlates: correlate

of risk (CoR), specific SoP, and general SoP. A CoR is an immunological measurement

that correlates with the rate or level of a clinical endpoint in a defined population. A

specific SoP is a CoR that is predictive of vaccine efficacy in a particular setting. A
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general SoP is a specific SoP that is also predictive of VES across different settings (e.g.,

across populations or across vaccine formulations). Meta-analysis of multiple vaccine

studies is required for evaluating a general SoP whereas one study may be sufficient

for evaluating a specific SoP. Here attention is restricted to the evaluation of a specific

SoP from a single RLC challenge study of a candidate HIV vaccine.

Traditionally, identification of potential specific SoPs has relied on solely assessing

whether a immune response was a CoR, i.e., associated with risk of infection or dis-

ease. For example, in the first phase III trial of an HIV vaccine, a significant negative

association was found between risk of HIV infection and antibody (Ab) response to the

vaccine (Gilbert et al. 2005). Unfortunately, this purely correlational analysis provides

no information to distinguish between two possibilities: (i) a greater vaccine effect on

the immune response predicted a greater vaccine effect on infection risk, or (ii) the

immune response simply marked an innate ability to escape infection but did not pre-

dict vaccine efficacy. In other words, it was not possible based on the observed data

to conclude whether Ab response to the vaccine was a SoP or just a CoR. A similar

example is given by Ellenberger et al. (2006), who found an association between vaccine

induced ELISpot Gag responses and risk of SHIV infection in a RLC challenge study

evaluating an HIV DNA/MVA vaccine candidate.

Recently, novel experimental designs and corresponding statistical methodology

have been proposed for evaluating potential specific SoPs in the context of human

efficacy trials (Follmann 2006; Gilbert and Hudgens 2008). The central premise behind

these designs is to attempt to elicit the immune response control NHPs would have

had if they had been vaccinated. The first design, which is referred to as the baseline

immunogenicity predictor or BIP design, entails measuring a baseline covariate(s) W

that is correlated with the immune response that NHP would have to the HIV vaccine

being evaluated. For example, W might be an immune response to a non-HIV vaccine.

63



The missing HIV vaccine immune response for NHPs in the control arm can then be

predicted from their W and a prediction model based on observed data from the vaccine

group. In turn, the association between the vaccine induced immune response and the

vaccine effect to prevent infection can be assessed.

The second study design proposed for evaluation of SoPs in human efficacy trials is

the close-out placebo vaccination design, where placebo recipients who are uninfected

at the end of the trial are administered the HIV vaccine and their immune response is

measured. In the RLC challenge study setting, this design may not be feasible since

most, if not all, control NHPs are often infected after repeated challenges, e.g., see

Ellenberger et al. (2006) and Subbarao et al. (2006). Therefore this paper presents

a proposed modification of close-out placebo vaccination wherein after each challenge

uninfected control NHPs are randomly assigned to receive vaccine according to a pre-

specified crossover probability. This will be referred to as the crossover vaccination

(CrV) design.

Simulation studies of large (e.g., Phase III) randomized human efficacy trials have

demonstrated that the additional information provided by employing a BIP or close-

out placebo vaccination design can enable assessing the extent to which a CoR is a

SoP (Follmann 2006; Gilbert and Hudgens 2008). Similarly, Hudgens and Gilbert

(2009) demonstrated the BIP design also holds promise in identifying SoPs in the RLC

challenge study setting. However, the feasibility of the BIP design relies heavily on the

existence of a baseline covariate W that is correlated with the HIV vaccine immune

response. Whether such a covariate will be available may not be evident, especially

when evaluating new vaccine candidates. The CrV design, on the other hand, does not

require a BIP W . In order to further compare these two designs, methods are proposed

for assessing potential immunological SoPs using either the BIP or CrV design. The

operating characteristics of the different designs will then evaluated by simulating RLC
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challenge studies.

4.2 Methods

To begin consider the usual two-arm RLC challenge study design where no NHPs

crossover from control to vaccine. For NHP i, let Zi be the treatment assignment

subject i was randomized to, where Zi = 0 is control and Zi = 1 is vaccine. Let

Ti(z) be the potential survival time under assignment z. It is assumed throughout that

survival time is measured by the number of exposures (i.e., challenges) until infection

with SHIV; thus Ti(z) is a positive integer. Let Si(Zi) denote the HIV-specific immune

response when assigned treatment Zi. Assume Si(0) = 0 for all i because vaccine anti-

gens (absent in the control) are necessary to induce an HIV-specific immune response.

Let p(Zi, Si(1)) denote the probability of infection from a single exposure (i.e., the

transmission probability) under assignment to treatment Zi.

The model and likelihoods developed below rely on several key assumptions. First,

assume no interference between NHPs and no variations in the type of vaccine such that

the stable unit treatment value assumption (SUTVA) holds. The lack of interference

between NHPs should hold in this setting since investigators can prevent transmission

of SHIV between NHPs. Second assume ignorable treatment assignment, i.e., Zi ⊥

(Si(1)), which is insured by the use of randomization in assigning NHPs to receive

vaccine or serve as a control. Third, assume the per-challenge probability of infection

is independent of the prior number of challenges.

Under these assumptions, following Follmann (2006), a model for the transmission

probability is

p(Zi, Si(1),Wi; β) = Φ{β1 + β2Zi + β3Si(1) + β4ZSi(1)}, (4.1)
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where Φ is the standard normal CDF and β ≡ (β1, β2, β3, β4). The linear component of

model (4.1) can easily be generalized to include baseline covariates. A key parameter

of model (4.1) is β4 since β4 6= 0 indicates that larger vaccine effects on the immune

response Si are associated with larger vaccine effects on the probability of infection.

The parameter β2 of model (4.1) is also important as it describes the vaccine effect on

infection not associated with the vaccine effect on Si. In a typical RLC challenge study

design, Si(1) is only observed when Zi = 1. Thus, intuitively, it is not expected for β to

be fully identifiable without additional information. The Appendix contains the proof

that β is indeed not identifiable when Si(1) follows a normal distribution. On the other

hand, β is identifiable when either the BIP or CrV designs are employed (Gilbert and

Hudgens 2008).

The average causal effect of the vaccine on survival is defined as h(E{Ti(0)|Si(1)},

E{Ti(1)|Si(1)}), where h is some contrast function such that h(x, y) = 0 iff x = y, e.g.,

h(x, y) = x− y, and E{Ti(Zi)|Si(1)} is the expected time to infection under treatment

Zi given immune response Si(1). Thus, Ti(Zi)|Si(Zi) is a geometric random variable

with E(Ti(z)|Si(z) = s) = 1/p(z, s). Following Hudgens and Gilbert (2009), choosing

h(x, y) = Φ−1(1/x)−Φ−1(1/y) yields convenient causal effects, i.e., h(E{Ti(0)|Si(1) =

s}, E{Ti(1)|Si(1) = t}) = −β2 − β3(t− s)− β4t.

The surrogate value of Si can be gleaned from the two curves p(0, s; β) and p(1, s; β).

Generally, larger |β4| and smaller |β2| will reflect greater surrogate value. Hudgens

and Gilbert (2009) suggest the proportion associative effect (PAE) statistic as a sum-

mary measure of the surrogate value of Si. PAE measures the proportion of the

total effect of treatment represented by the expected associative effect (EAE) of Si

versus the expected dissociative effect (EDE). EAE measures the association be-

tween the vaccine effect on Si and the vaccine effect on infection with larger values

of EAE implying stronger association. EDE measures the effect of vaccine in strata
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where Si(1) = Si(0) and is termed ‘dissociative’ since large values of EDE suggest

the opposite of an associative effect. Small values of EDE paired with large values

of EAE give strong indication that Si is an SoP. Thus, PAE = |EAE|/(|EAE| +

|EDE|). In general, EAE = E[h(E{Ti(0)|Si(1)}, E{Ti(1)|Si(1)})|Si(1) > Si(0)] and

EDE = E[h(E{Ti(0)|Si(1)}, E{Ti(1)|Si(1)})|Si(1) = Si(0)]. Using the h described

above EAE = −β2 − κβ4, where κ = E[Si(1)|Si(1) > Si(0) = 0], EDE = −β2 and

PAE ≡ |β2 + κβ4|/{|β2|+ |β2 + κβ4|}, (4.2)

where the convention |0|/(|0| + |0|) = 0.5 is used if β2 = β4 = 0. Note if β4 = 0, then

PAE = 0.5, corresponding to no association between the vaccine effect on Si and the

vaccine effect on infection. On the other hand, if β2 = 0 and β4 6= 0, then PAE = 1,

indicating there is a vaccine effect on infection if and only if there is a vaccine effect

on Si. Biomarkers with some surrogate value will have PAE ∈ (0.5, 1], with the value

increasing as PAE nears 1.

4.2.1 Baseline Immunogenicity Predictor Design

The likelihood for the BIP design can be constructed as follows. For NHP i, let Ti ≡

min{Ti(0)(1−Zi) +Ti(1)Zi, cmax} denote the observed number of exposures during the

experiment where cmax denotes the right censoring time, i.e., the maximum allowable

number of exposures. In general cmax may differ from NHP to NHP, but here for

simplicity it is assumed cmax is the same for all NHPs. LetWi denote a baseline covariate

that might be correlated with Si(1). Let δi equal 1 (0) if subject i is infected (uninfected)

by the end of the study and let Si ≡ Si(0)(1−Zi)+Si(1)Zi denote the observed immune

response. Suppose n iid copies of (Zi, Ti, δi, Si,Wi) are observed. Letting Gw denote
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the conditional distribution of Si(1) given Wi, the conditional likelihood is

Lbip(β,Gw) ≡
n∏
i=1

ϕ(1, Si, Ti, δi; β)Zi

{∫
ϕ(0, s, Ti, δi; β)dGw(s|Wi)

}1−Zi

,

where ϕ(Z, S, T, δ; β) ≡ {1− p(Z, S; β)}T−δp(Z, S; β)δ.

4.2.2 Crossover Vaccination Design

Next consider the likelihood for the CrV design. Recall in this design that after each

challenge uninfected control NHPs are randomly assigned to receive vaccine according

to a pre-specified crossover probability (cp). Let T 0
i denote the observed number of

challenges when the NHP was unvaccinated and δ0i be an indicator which equals one

if challenge T 0
i resulted in infection. Define T 1

i and δ1i similarly for when the NHP

was vaccinated. For NHPs randomly assigned to receive vaccine at the start of the

experiment let T 0
i = δ0i = 0. For NHPs randomly assigned to control at the start

of the experiment who become infected prior to crossover or reach the end of the

experiment prior to crossover let T 1
i = δ1i = 0. Let Z̃i indicate vaccination at some

point during the study, i.e., Z̃i = Zi + (1 − Zi)I[T 1
i > 0]. Suppose n iid copies of

(Z̃i, T
0
i , δ

0
i , T

1
i , δ

1
i , Si(1)I[T 1

i > 0]) are observed. Letting G be the marginal distribution

of Si(1), the conditional likelihood for the CrV design is

Lcrv(β,G) ≡
n∏
i=1

{
(ϕ(0, Si(1), T 0

i , δ
0
i ; β)ϕ(1, Si(1), T 1

i , δ
1
i ; β)

}Z̃i

{∫
ϕ(0, s, T 0

i , δ
0
i ; β)dG(s)

}1−Z̃i

. (4.3)

If the CrV and BIP designs are combined such that Wi is also observed for i =

1, . . . , n, then the conditional likelihood is the same as Lcrv except that dG(s) is replaced

by dGw(s|Wi) in (4.3).
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4.2.3 Inference

When Si(1) is normal β is unidentifiable even though G (Gw) can be identified.

Therefore, maximum “estimated likelihood” (Pepe and Fleming 1991) or “pseudolikeli-

hood” (Liang and Self 1996) can be used for inference. Maximum estimated likelihood

estimation (MELE) entails two steps. First obtain an estimate Ĝ (or Ĝw) using data

from the vaccine arm of the study. Then, conditional on Ĝ (or Ĝw), the MELE β̂ is

obtained by maximizing the likelihood Lbip (or Lcrv) with respect to β. The estimator

P̂AE is computed by evaluating (4.2) at β̂ and κ̂ =
∫
s>0

sdĜ(s)/
∫
s>0

dĜ(s). A para-

metric bootstrap test (PBT) (Davidson and Hinkley 1997; Hudgens and Gilbert 2009)

can be employed to assess H0 : PAE = 0.5 versus HA : PAE > 0.5, i.e., test the null

Si has no surrogate value versus the alternative Si has some surrogate value. The null

value of PAE = 0.5 is found by fixing β4 = 0 or β4 = −2κβ2.

4.3 Simulation study

A simulation study was conducted to assess whether sample sizes typical of RLC

challenge studies provide adequate power to detect immune responses with high surro-

gate value. Data were generated assuming 10, 15, 20, and 25 NHPs were randomized

to each arm initially, a maximum number of exposures per NHP of cmax = 10, and

model (4.1). Several RLC challenges studies with roughly 25 NHPs per arm are cur-

rently being conducted or planned by the NIH Vaccine Research Center (John Mascola,

personal communication).

Simulation studies were conducted where values of (Si(1),Wi) were generated using

the method of Emrich and Piedmonte (1991), which first generates a bivariate normal

random variable and truncates it to a create a bivariate binary random variable with
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(Si(1),Wi) each having success probability 1/2 and correlation ρ. Values of β were se-

lected such that the average probability of infection per challenge for controls (vaccines)

was 0.5 (0.1). Thus the vaccine efficacy (V E), i.e., percent reduction in the average

probability of infection due to vaccination, was (1-0.1/0.5) x 100 = 80%. To reflect

immune responses with varying surrogate values, simulated data sets were generated

under five scenarios corresponding to PAE ∈ {0.5, 0.6, 0.7, 0.8, 0.9}. For the first sce-

nario β = (−1,−1.85, 2,−1.12) such that PAE = 0.7. Values for β for the remaining

scenarios were chosen such that the desired PAE was achieved with p(1, Si(1); β) the

same as in the first scenario. Different values of the crossover probability cp were also

investigated to ascertain the optimal cp to detect a SoP. For each scenario, 1000 simu-

lated data sets were generated. For each data set maximum likelihood estimates β̂ and

P̂AE were computed and a PBT using 100 boots was performed for H0 : PAE = 0.5

versus H0 : PAE > 0.5 at the α = 0.10 significance level.

Simulation results for the case where (Si(1),Wi) are binary are given in Figure 4.1

and Tables 4.1 and 4.2. In general, there is power to reject H0 : PAE = 0.5 if neither

the BIP or CrV designs, which is surprising. However, as shown in the Appendix, β is

identifiable, up to absolute value, when Si(1) is binary. There is an increase in power

when using the CrV alone, but it appears that using a small cp, < 0.2, may be preferred

as there was an overall decrease in power for cp ≥ 0.2 versus cp ≤ 0.2.

One potential drawback of the CrV design is that there are fewer challenges of

unvaccinated NHPs, potentially diminishing the power to detect V E. Therefore we

also conducted simulation studies to assess how cp affects the power to reject the

null H0 : V E = 0. Simulations were performed for V E ∈ {0, 0.25, 0.50, 0.75} and

cp ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5}. The null H0 : V E = 0 is equivalent to testing H0 :

p(1)− p(0) = 0, where p(z) is the probability of infection under treatment z, and was

conducted using a likelihood ratio test. Results shown in Table 4.3 demonstrate the
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CrV design results in modest diminution of power to detect a vaccine effect on infection.

4.4 Discussion

A drawback in determining if a biomarker is a SoP in a RLC study is estimation of

Si(1) in the unvaccinated subjects. Previously, Follmann (2006) developed methods for

a BIP to be used to more accurately determine an SoP and also outlined the close-out

placebo vaccination (CPV). We have presented an innovative adaptation of his design,

the CrV, that provides a number of improvements. If all control subjects are infected

under the CPV design, there will be no subjects to receive vaccination at the end of the

trial. This scenario is not as likely in a RLC study. Employing the CrV will increase the

probability of measuring Si(1) for some control subjects, given the infection probability

at the first challenge is not one. Also, Follmann found that without incorporating a

BIP, the CPV design had little power to detect an SoP, whereas we have shown the

CrV, while more powerful when a BIP is present, has decent power to detect an SoP.

Additionally, the CrV design has little effect on power to detect V E.

Huang and Gilbert (2011) suggest alternative measures to the PAE for assessing

SoPs when multiple biomarkers are present. Specifically, the suggest using the stan-

dardized total gain (STG), a graphical measure which estimates the amount of vari-

ability of the treatment effect that is characterized by the risk difference between treat-

ment arms. Where PAE measures how well Si(0) − Si(1) predicts treatment effects,

STG measures the amount of variability in Pr[Yi(0) = 1] − Pr[Yi(1) = 1] explained

by Pr[Yi(0) = 1|Si(0), Si(1)] − Pr[Yi(1) = 1|Si(0), Si(1)], where Yi is the outcome of

interest and Si can be a vector of potential surrogates. Future research could entail

investigating the applicability of STG in the RLC setting by adapting (4.3) to estimate

STG under the CrV design, potentially gaining the flexibility to estimate the surrogate

value of multiple biomarkers in a RLC study.
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Figure 4.1: Empirical type I error and power to reject H0 : PAE = 0.5 versus HA :
PAE > 0.5 from simulation study described in Section 4.3 with 25 NHPs in each arm
and (Si(1),Wi) binary.
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Table 4.1: Results from simulation study described in Section 4.3 with (Si(1),Wi)
binary. Each table entry is based on 500 simulated data sets with m NHPs per arm for
cp = 0, 0.1. ρ is the linear correlation. Bias is the median bias and EP is the empirical
power for the PBT of H0 : PAE = 0.5 versus HA : PAE > 0.5 at level α = 0.1.

m = 10 m = 15 m = 20 m = 25
cp PAE ρ Bias EP Bias EP Bias EP Bias EP

0 0.5 0 0.267 0.067 0.240 0.093 0.242 0.087 0.227 0.092
0.5 0.259 0.062 0.251 0.084 0.231 0.087 0.230 0.074
0.9 0.234 0.044 0.238 0.063 0.235 0.083 0.233 0.077

0.7 0 0.2 0.235 0.055 0.361 0.027 0.462 0.001 0.583
0.5 0.139 0.247 0.044 0.371 0.020 0.49 -0.001 0.626
0.9 0.034 0.340 0.032 0.416 0.023 0.546 0.018 0.649

0.9 0 0.362 0.208 0.221 0.365 0.128 0.522 0.103 0.597
0.5 0.063 0.360 0.034 0.620 0.015 0.772 0.007 0.875
0.9 -0.011 0.59 -0.014 0.835 -0.005 0.952 0.003 0.977

0.1 0.5 0 0.219 0.087 0.216 0.092 0.216 0.101 0.211 0.080
0.5 0.224 0.080 0.220 0.083 0.220 0.081 0.217 0.085
0.9 0.220 0.064 0.232 0.077 0.235 0.068 0.227 0.077

0.7 0 0.038 0.314 0.009 0.415 -0.005 0.487 0.002 0.549
0.5 0.042 0.307 0.016 0.393 0.018 0.483 0.006 0.618
0.9 0.018 0.314 0.011 0.424 0.012 0.575 0.010 0.673

0.9 0 0.043 0.439 0.022 0.707 0.009 0.844 0.003 0.925
0.5 0.025 0.470 0.013 0.771 0.005 0.910 0.010 0.956
0.9 -0.013 0.616 -0.011 0.857 -0.012 0.956 -0.003 0.993
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Table 4.2: Results from simulation study described in Section 4.3 with (Si(1),Wi)
binary. Each table entry is based on 500 simulated data sets with m NHPs per arm for
cp = 0.2, 0.4. ρ is the linear correlation. Bias is the median bias and EP is the empirical
power for the PBT of H0 : PAE = 0.5 versus HA : PAE > 0.5 at level α = 0.1.

m = 10 m = 15 m = 20 m = 25
cp PAE ρ Bias EP Bias EP Bias EP Bias EP

0.2 0.5 0 0.187 0.107 0.208 0.104 0.205 0.088 0.208 0.083
0.5 0.227 0.068 0.219 0.103 0.215 0.098 0.215 0.079
0.9 0.211 0.064 0.228 0.065 0.226 0.065 0.229 0.070

0.7 0 0.034 0.311 0.000 0.394 0.002 0.463 0.012 0.49
0.5 0.032 0.312 0.004 0.386 0.009 0.468 0.003 0.537
0.9 -0.015 0.292 -0.012 0.416 0.004 0.547 0.008 0.65

0.9 0 0.022 0.483 0.023 0.715 0.015 0.856 0.017 0.922
0.5 0 0.526 0.008 0.784 0.019 0.909 0.014 0.964
0.9 -0.033 0.609 -0.019 0.871 -0.007 0.958 -0.001 0.990

0.4 0.5 0 0.162 0.089 0.194 0.092 0.208 0.097 0.220 0.083
0.5 0.158 0.071 0.212 0.097 0.207 0.091 0.216 0.065
0.9 0 0.06 0.216 0.086 0.217 0.072 0.215 0.063

0.7 0 0.007 0.252 -0.005 0.386 0.033 0.369 0.023 0.429
0.5 -0.009 0.259 0.014 0.346 0.027 0.381 0.034 0.449
0.9 -0.060 0.276 -0.032 0.394 0.000 0.486 -0.005 0.656

0.9 0 0.027 0.445 0.044 0.658 0.038 0.832 0.046 0.918
0.5 0.009 0.482 0.024 0.719 0.036 0.879 0.040 0.952
0.9 -0.041 0.581 -0.014 0.825 -0.014 0.941 0.001 0.987
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Table 4.3: Empirical power to reject H0 : V E = 0 where V E ≡ {1 − p(1)/p(0)} ×
100% is the percent reduction in the per-challenge risk of infection due to vaccination.
Simulation results assuming 50 NHPs total, with 25 randomized to vaccine initially.
The average number of control NHPs that crossover are given in parentheses. The
parenthetical numbers in the column headers denote the theoretical expected value of
the number of NHPs that crossover.

Crossover probability (cp)
VE 0 (0) 0.1 (2.3) 0.2 (4.2) 0.3 (5.8) 0.4 (7.1) 0.5 (8.3)

0 0.04 (0) 0.06 (2.3) 0.06 (4.1) 0.06 (5.8) 0.06 (7.2) 0.05 (8.4)
0.25 0.26 (0) 0.25 (2.3) 0.24 (4.2) 0.26 (5.8) 0.23 (7.2) 0.22 (8.4)
0.5 0.89 (0) 0.87 (2.3) 0.83 (4.2) 0.82 (5.8) 0.8 (7.2) 0.77 (8.3)

0.75 1.00 (0) 1.00 (2.2) 1.00 (4.2) 1.00 (5.8) 1.00 (7.2) 1.00 (8.3)
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Chapter 5

Conclusion

To summarize, assessing the causal effect of interventions to prevent infectious dis-

eases can be difficult in many settings. We have provided methodology to assess the

principal effect of treatment on competing risks outcomes. This work can be considered

an extension of Shepherd et al. (2007), who measured the principal effect on a survival

endpoint. Nonparametric bounds and sensitivity methods were created to determine

how the potential selection bias affects the estimate of the principal effect. These meth-

ods were evaluated by simulation studies and found to be precise and accurate. We

then analyzed the BAN study, a recent large study of mother-to-child transmission of

HIV.

Because unadjusted bounds of principal effects are frequently uninformative, we

have demonstrated methods to calculate adjusted bounds. These bounds, as outlined

by Grilli and Mealli (2008), incorporate information from a binary baseline covariate

X to create adjusted bounds. Unadjusted bounds are found within strata of X and

are averaged to create the overall adjusted bounds. We have shown that the adjusted

bounds can improve on the unadjusted bounds, i.e, be narrower than, and have pro-

vided the necessary and sufficient conditions when this will occur. Relaxation of the

monotonicity assumption and methods for adjusting for multiple covariates are two



possible directions for future research.

Additionally, surrogate evaluation requires consideration of novel study designs. Ac-

cordingly, we developed a new design for evaluation of surrogates of vaccine protection

in RLC challenge experiments, the crossover vaccination (CrV) design. This new de-

sign was an adaptation of the close-out placebo vaccination of Follmann (2006) and

also incorporated the use of a baseline covariate to improve estimation. The CrV was

investigated under different scenarios using simulation studies and found to be adequate

in the estimation and testing of potential surrogates, measured using the proportion

associative effect (PAE) and vaccine efficacy (V E). It is believed that the CrV can be

used to estimate of other measures of surrogacy, such as the standardized total gain

developed by Huang and Gilbert (2011).

Causal inference, more specifically principal stratification, is the thread that binds

this dissertation together. Chapters 2 and 3 provide methods for analysis within a prin-

cipal stratum of interest while the approach addressed in Chapter 4 compares quantities

across all strata, i.e., compares effects in the stratum where Si(0) = Si(1) to the effects

in the strata where Si(0) 6= Si(1). For example, for the BAN study addressed in Section

2.5, the causal effect that was estimated is for infants that would never infected under

either treatment assignment, (Si(0) = Si(1) = 0) whereas the measure of a biomarker’s

potential as a surrogate of protection is averaged across all possible values of Si(1)

conditional on Si(0) = 0.

In general, principal stratification should be viewed as a tool for researchers to use

in settings where traditional methods do not yield causal interpretations. As pointed

out by Pearl (2011), one should be careful when using principal stratification to define

research questions but instead let it be an aid to answer causal questions when other

methods fail. However, in some settings when a proper or well defined question may

be lacking, principal stratification can be used to guide future research, i.e, the search
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for surrogates of protection, specifically see Gilbert, Hudgens, and Wolfson (2011).

Thus, I believe further research in principal stratification methods will allow investiga-

tors, specifically those of public health issues, to conduct studies and trials that more

efficiently and accurately determine a treatment’s casual effect on an outcome.
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Appendix I

Asymptotic Results for Chapter 2

Asymptotic Variances of F̂NI,up
1 (t, j) and F̂NI,low

1 (t, j)

To derive the asymptotic variances of F̂NI,up
1 (t, j) and F̂NI,low

1 (t, j), we first derive

the large sample variance of γ̂. Under monotonicity, it is straightforward to show

γ̂ − (N0/n0)/ (N1/n1)
p−→ 0, implying γ̂ and (N0/n0)/(N1/n1) have the same limiting

distribution; therefore for the derivation below we can assume γ̂ = (N0/n0)/(N1/n1).

For z, s = 0, 1, define pzs =
∑
I[Zi = z, Si = s]/n and πzs = Pr[Zi = z, Si = s],

and let p = (p00, p01, p10, p11)
′ and π = (π00, π01, π10, π11)

′. Define the function g as

g(π) = π00(π10 + π11)/{π10(π00 + π01)} and note that g(p) = γ̂ and g(π) = γ. Then by

the multivariate central limit theorem and the delta method (e.g., see Agresti 2002 ,

page 580),
√
n(γ̂−γ) =

√
n{g(p)−g(π)} D−→ N(0, σ2

γ) where σ2
γ =

∑1
z,s=0 πzs(∇gzs)2−

(
∑1

z,s=0 πzs∇gzs)2 and ∇gzs = ∂g(π)/∂πzs. It follows from straightforward algebra that

σ2
γ = γ2[π01/{π00(π00 + π01)} + π11/{π10(π10 + π11)}] for which a consistent estimator

is σ̂2
γ = γ̂2n(1/N0 − 1/n0 + 1/N1 − 1/n1).

For fixed t and j, let θtj = (F1(t, j), γ)′ and θ̂tj = (F̂1(t, j), γ̂)′. Under the condi-

tions stated in Section 2.3.1 of the main text, in particular assuming equation (2.6),

it is straightforward to show F̂NI,up
1 (t, j) − F̂1(t, j)/γ̂

p−→ 0, implying F̂NI,up
1 (t, j) and

F̂1(t, j)/γ̂ have the same limiting distribution. Therefore we can assume F̂NI,up
1 (t, j) =

F̂1(t, j)/γ̂ and, analogously, by equation (2.8) of the main text we can assume

F̂NI,low
1 (t, j) = {F̂1(t, j)−(1−γ̂)}/γ̂. Define the vector of functions h(x, y) = (x/y, {x−

(1− y)}/y)′ such that h(θ̂tj) = (F̂NI,up
1 (t, j), F̂NI,low

1 (t, j))′. Because F̂1(t, j) and γ̂ are
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consistent and asymptotically normal, by the delta method
√
n{h(θ̂tj) − h(θtj)}

D−→

N(0,∇h(θtj)Σtj∇h(θtj)
′) where

∇h(x, y) =

 1/y −x/y2

1/y (1− x)/y2

 , Σtj =

 σ2
tj 0

0 σ2
γ

 ,
and σ2

tj is the asymptotic variance of
√
n{F̂1(t, j)−F1(t, j)} such that in large samples

var{F̂1(t, j)} = σ2
tj/n. It follows that F̂NI,up

1 (t, j) and F̂NI,low
1 (t, j) are asymptotically

normal with variances

var{F̂NI,up
1 (t, j)} =

var{F̂1(t, j)}
γ2

+
F1(t, j)

2σ2
γ

nγ4
, (5.1)

and

var{F̂NI,low
1 (t, j)} =

var{F̂1(t, j)}
γ2

+
{1− F1(t, j)}2σ2

γ

nγ4
. (5.2)

Replacing var{F̂1(t, j)}, γ, F1(t, j), and σ2
γ in (A.1) and (A.2) with v̂ar{F̂1(t, j)}, γ̂,

F̂1(t, j), and σ̂2
γ yields equations (2.7) and (2.9) from the main text.
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Appendix II

Proofs from Chapter 3

Proof of Proposition 1

Note

θu100X =
∑
x

θu100xφx =
∑
x

min

{
π1x
γx
, 1

}
φx ≤ min

{∑
x

π1x
γx
φx,
∑
x

φx

}

= min

{
π1
γ
, 1

}
= θu100,

where the inequality holds since min{a1, b1}+ min{a2, b2} ≤ min{a1 + a2, b1 + b2} and

the third equality holds because

∑
x

π1x
γx

φx =
∑
x

Pr[Yi(1) = 1|Si(1) = 0, Xi = x]

Pr[Si(0) = 0|Si(1) = 0, Xi = x]
Pr[Xi = x|Si(0) = Si(1) = 0]

=
∑
x

Pr[Yi(1) = 1, Si(1) = 0, Xi = x] Pr[Si(1) = 0, Xi = x] Pr[Xi = x, Si(0) = Si(1) = 0]

Pr[Si(1) = 0, Xi = x] Pr[Si(0) = Si(1) = 0, Xi = x] Pr[Si(0) = Si(1) = 0]

=
∑
x

Pr[Yi(1) = 1, Si(1) = 0, Xi = x]

Pr[Si(0) = Si(1) = 0]
=
∑
x

Pr[Yi(1) = 1, Xi = x|Si(1) = 0]

Pr[Si(0) = 0|Si(1) = 0]

=
π1
γ
. (5.3)

Similarly for the lower bound,

θl100X =
∑
x

θl100xφx =
∑
x

max

{
π1x − (1− γx)

γx
, 0

}
φx

≥ max

{∑
x

π1x − (1− γx)
γx

φx, 0

}
= max

{
π1 − (1− γ)

γ
, 0

}
= θl100,

where the inequality holds because max{a1, 0}+ max{a2, 0} ≥ max{a1 +a2, 0} and the
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third equality holds because of (5.3) and

∑
x

1− γx
γx

φx =
Pr[Si(0) = 1|Si(1) = 0, Xi = x]

Pr[Si(0) = 0|Si(1) = 0, Xi = x]
Pr[Xi = x|Si(0) = Si(1) = 0]

=
∑
x

Pr[Si(0) = 1, Si(1) = 0, Xi = x]

Pr[Si(1) = 0, Xi = x]

Pr[Si(1) = 0, Xi = x] Pr[Xi = x, Si(0) = Si(1) = 0]

Pr[Si(0) = Si(1) = 0, Xi = x] Pr[Si(0) = Si(1) = 0]

=
∑
x

Pr[Si(0) = 1, Si(1) = 0, Xi = x]

Pr[Si(0) = Si(1) = 0]
=
∑
x

Pr[Si(0) = 1, Xi = x|Si(1) = 0]

Pr[Si(0) = 0|Si(1) = 0]

=
1− γ
γ

. �

Proof of Proposition 2

First, suppose (3.8) holds and, without loss of generality, assume π10 < γ0 and π11 > γ1

which implies that θu1000 = π10/γ0 and θu1001 = 1. If θu100 = π1/γ then,

θu100X =
∑
x

θu100xφx =
π10
γ0
φ0 + φ1 <

π10
γ0
φ0 +

π11
γ1
φ1 =

π1
γ

= θu100,

where the inequality holds because π11/γ1 > 1. Likewise, if θu100 = 1 then,

θu100X =
∑
x

θu100xφx =
π10
γ0
φ0 + φ1 < φ0 + φ1 = 1 = θu100,

where the inequality holds since π10/γ0 < 1 Thus, if (3.8) is satisfied by X then θu100X <

θu100.

Now suppose that (3.8) is not satisfied. Suppose that π1 < γ, which implies that

θu100 = π1/γ. Furthermore suppose π1x > γx for x = 0, 1. Thus, λ0π10 > λ0γ0 and

λ1π11 > λ1γ1 implying that

λ0π10 + λ1π11 > λ0γ0 + λ1γ1

π1 > γ,
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which is a contradiction. Thus, π1x < γx for x = 0, 1 and θu100x = π1x/γx which gives

θu100X =
∑
x

θu100xφx = π10/γ0φ0 + π11/γ1φ1 = π1/γ = θu100.

A analogous argument exists when π1 > γ and combined with the result above we

conclude that when (3.8) is not satisfied θu100X = θu100. Therefore, θu100X < θu100 if and

only if X satisfies (3.8). �

Proof of Proposition 3

Without loss of generality, assume π10 > (1− γ0) and π11 < (1− γ1) which implies that

θl1000 = {π10 − (1− γ0)}/γ0 and θl1001 = 0. If θl100 = {π1 − (1− γ)}/γ then,

θl100X =
∑
x

θl100xφx =
π10 − (1− γ0)

γ0
φ0 >

π10 − (1− γ0)
γ0

φ0 +
π11 − (1− γ1)

γ1
φ1

=
π1 − (1− γ)

γ
= θl100,

where the inequality holds since {π11 − (1− γ1)}/γ1 < 0. Likewise, if θl100 = 0 then,

θl100X =
∑
x

θl100xφx =
π10 − (1− γ0)

γ0
φ0 > 0 = θl100.

where the inequality holds since {π10 − (1− γ0)}/γ0 > 0. Thus, if (3.9) is satisfied by

X then θl100X > θl100.

Suppose that π1 > 1− γ, which implies that θl100 = {π1− (1− γ)}/γ. Now suppose

that (3.9) is not satisfied and furthermore suppose π1x < 1−γx for x = 0, 1. For λx > 0,

λ0π10 < λ0(1− γ0) and λ1π11 < λ1(1− γ1) implying that

λ0π10 + λ1π11 < λ0(1− γ0) + λ1(1− γ1)

π1 < 1− γ,
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which is a contradiction. Thus, π1x > 1−γx for x = 0, 1 and θl100x = {π1x−(1−γx)}/γx

which gives

θl100X =
∑
x

θl100xφx =
π10 − (1− γ0)

γ0
φ0 +

π11 − (1− γ1)
γ1

φ1 = {π1 − (1− γ)}/γ = θl100.

A analogous argument exists when π1 < 1 − γ and combined with the previous result

we conclude that when (3.9) is not satisfied θl100X = θl100. Therefore, θl100X > θl100 if and

only if X satisfies (3.9). �
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Appendix III

Identifiability Results from Chapter 4

Here we show β = (β1, β2, β3, β4) is not identifiable in the usual RLC challenge study

design (i.e., without CrV or BIP) assuming Si(1) is binary. Since treatment assignment

is random and S(1) is observed in all NHPs randomized to Zi = 1, G(s) is identifiable

and can be regarded as fixed and known. Assume the βs are all finite, so that there is a

positive probability of (not) observing an infection under either treatment assignment.

Also for now assume G(s) is discrete and the mass is not concentrated on a single point.

Under these assumptions, β1 + β2 and β3 + β4 are identifiable. To see this, suppose

there are two parameterizations β = (β1, β2, β3, β4) and β̃ = (β̃1, β̃2, β̃3, β̃4) such that

Pr[Ti = t, δi = d, Si = s|Zi = 1; β] = Pr[Ti = t, δi = d, Si = s|Zi = 1; β̃] (5.4)

for all t, d, s. Then, for some s1 6= s2, t = 1, d = 1, (5.4) implies

Φ{β1 + β2 + (β3 + β4)s1} = Φ{β̃1 + β̃2 + (β̃3 + β̃4)s1}

and

Φ{β1 + β2 + (β3 + β4)s2} = Φ{β̃1 + β̃2 + (β̃3 + β̃4)s2}.

Since Φ is invertible, this implies

β1+β2+(β3+β4)s1 = β̃1+β̃2+(β̃3+β̃4)s1 and β1+β2+(β3+β4)s2 = β̃1+β̃2+(β̃3+β̃4)s2,

implying β1+β2 = β̃1+β̃2 and β3+β4 = β̃3+β̃4, thus β1+β2 and β3+β4 are identifiable
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The more interesting issue is whether β2 and β4 individually are identifiable from

the observable data. To show this we will show that β1 and β3 are identifiable. Similar

to the argument above, suppose there are two parameterizations β = (β1, β2, β3, β4)

and β̃ = (β̃1, β̃2, β̃3, β̃4) such that

Pr[Ti = t, δi = d, Si = s|Zi = 0; β] = Pr[Ti = t, δi = d, Si = s|Zi = 0; β̃] (5.5)

Then for t = 1, d = 1, (5.5) implies

∫
Φ(β1 + β3s)dG(s) =

∫
Φ(β̃1 + β̃3s)dG(s) (5.6)

Now if we were considering a single dose challenge study (i.e., cmax = 1), then the only

other possible pattern of observed data under Zi = 0 would be t = 1, d = 0, in which

case (5.5) implies

∫
{1− Φ(β1 + β3s)}dG(s) =

∫
{1− Φ(β̃1 + β̃3s)}dG(s) (5.7)

Now suppose, without loss of generality that β̃3 6= 0. Then if we let and β3 = 0 and

β1 = Φ−1{
∫

Φ(β̃1 + β̃3s)dG(s)} then (5.6) and (5.7) hold, yet β3 6= β̃3. That is, β1 and

β3 are not identifiable in a single dose challenge study. Fortunately, in repeated low

dose studies (cmax > 1) we are not limited to the two observed data patterns above. In

particular, for t = 2, d = 1, (5.5) implies

∫
{1− Φ(β1 + β3s)}Φ(β1 + β3s)dG(s) =

∫
{1− Φ(β̃1 + β̃3s)}Φ(β̃1 + β̃3s)dG(s) (5.8)

Together (5.6) and (5.8) imply

∫
Φ(β1 + β3s)

2dG(s) =

∫
Φ(β̃1 + β̃3s)

2dG(s). (5.9)

86



Now the question becomes whether (5.6) and (5.9) together imply β1 = β̃1 and β3 = β̃3.

This seems plausible since we have two equations and two unknowns. Below we provide

proof that β1 and β3 are identifiable if Si(1) is binary.

Assume Si(1) is binary with Pr[Si(1) = 1] = θ, Pr[Si(1) = 0] = 1 − θ, 0 < θ < 1.

Below we prove if θ 6= 1/2 , then β1 and β3 are identifiable. If θ = 1/2, only |β3| is

identifiable. To begin, note (5.5) is equivalent to

(1− θ)At−d(1− A)d + θBt−dBd = (1− θ)Ct−d(1− C)d + θDt−dDd

for all t, d where A = 1−Φ(β1), B = 1−Φ(β1+β3), C = 1−Φ(β̃1), D = 1−Φ(β̃1+ β̃3).

Showing A = C and B = D is equivalent to proving β1 and β3 are identifiable. Since

Φ is one-to-one function and 1 − Φ(β1) = A = C = 1 − Φ(β̃1) implies β1 = β̃1 (and

similarly β3 = β̃3). For d = 0, we have

(1− θ)At + θBt = (1− θ)Ct + θDt for t = 1, 2, . . . (5.10)

Now for t = 1 we have

(1− θ)(A− C) = θ(D −B) (5.11)

If A = C, then B = D and identifiability is proved. So assume by way of contradiction

A 6= C, and thus D 6= B. Now for t = 2, 3 we have

(1− θ)(A2 − C2) = θ(D2 −B2) (5.12)

(1− θ)(A3 − C3) = θ(D3 −B3) (5.13)
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Dividing (5.13) and (5.13) by (5.11) yields

A+ C = D +B) (5.14)

A2 + AC + C2 = D2 +DB +B2 (5.15)

Squaring (5.15) and subtracting it by (5.15) yields

AC = BD (5.16)

Squaring (5.15) and then subtracting it by four times of (5.16) on both sides gives

(A− C)2 = (B −D)2 (5.17)

Assume without loss of generality that A > C. Then (5.11) implies D > B which by

(5.17) in turn implies

A− C = B −D. (5.18)

Note (5.11) implies

A− C =
θ

1− θ
(D −B). (5.19)

Together (5.18) and (5.19) imply

0 =
1− 2θ

1− θ
(D −B).

If θ 6= 1/2, this implies D = B, a contradiction. Thus if θ 6= 1/2, then β1 and β3 are

identifiable, and likewise β2 and β4.

Now suppose θ = 1/2. Equation (5.5) is equivalent to

At +Bt = Ct +Dt for t = 1, 2, . . . (5.20)
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There are at least two sets of solution to (5.20). One is A = C and B = D, which

implies β1 = β̃1 and β3 = β̃3. Another solution is A = D and B = C, or consequently

β1 = β̃1 + β̃3 and β1 + β3 = β̃3, which implies β3 = −β̃3. Thus if θ = 1/2, only |β3| is

identifiable implying that β4 is not identifiable because if β3 > 0 then β4+β3−|β3| = β4

but if β3 < 0 then β4 + β3 − |β3| = β4 + 2β3.
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