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ABSTRACT 

 
BRIAN STUCKY: Logistic Approximations of Marginal Trace Lines for Bifactor Item 

Response Theory Models  
(Under the direction of David Thissen, Ph.D.) 

 
Bifactor item response theory models are useful when item responses are best 

represented by a general, or primary, dimension and one or more secondary dimensions that 

account for relationships among subsets of items.  Understanding slope parameter estimates 

in multidimensional item response theory models is often challenging because interpretation 

of a given slope parameter must be made conditional on the item’s other parameters.  The 

present work provides a method of computing marginal trace lines for an item loading on 

more than one dimension.  The marginal trace line provides the relationship between the item 

response and the primary dimension, after accounting for all other dimensions.  Findings 

suggest that a logistic function, common in many applications of item response theory, 

closely approximates the marginal trace line in a variety of model related conditions.  

Additionally, a method of IRT-based scoring is proposed that uses the logistic approximation 

marginal trace lines in a unidimensional fashion to compute scaled scores and standard 

deviation estimates for the primary dimension.   

The utility of the logistic approximation for marginal trace lines is considered across 

a wide range of varying bifactor parameter estimates, and under each condition the marginal 

is closely approximated by a logistic function. In addition, it is shown that use of the logistic 

approximations to conduct item response theory-based scoring should be restricted to 

selecting a single item from each secondary dimension in order to control for local 
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dependence.  Under this restriction, scaled scores and posterior standard deviations are nearly 

equivalent to other MIRT-based scoring procedures.  Finally, a real-data application is 

provided which illustrates the utility of logistic approximations of marginal trace lines in 

item selection and scale development scenarios.  
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CHAPTER 1 
 

AN OVERVIEW OF MULTIDIMENSIONAL ITEM RESPONSE THEORY 

Item response theory (IRT) is a useful technique for item analysis and scoring which 

is becoming increasingly common in educational measurement, health outcomes research, 

and psychology.  IRT models propose that the probability of response to an item is a function 

of the characteristics of the item (i.e., item parameters) and the individual’s location on the 

latent trait(s) (i.e., person parameters).  This item response function, or trace line, conveys all 

information available from the item that can be used to estimate an individual’s latent trait.  

When used in combination with multiple items, the trace lines form the likelihood, from 

which one can determine the location on the latent variable where the trait level is most 

likely.  

IRT score estimates may be computed for either unidimensional (UIRT) or 

multidimensional (MIRT) models.  UIRT scores are appropriate when the relationships 

among the items, given an individual’s trait level, can be accounted for by a single latent 

variable.  When no additional latent variables are needed to account for response covariation 

beyond the single dimension, the item set satisfies the assumptions of unidimensionality and 

local independence.  However, if fitting the item response data requires multiple latent 

variables, then MIRT models are needed to achieve local independence.  

Often there are situations in which unidimensional scores are desired, but fitting a 

UIRT model suggests local dependence (LD) between small numbers of items.  LD refers to 

relationships among item responses that are not accounted for by a single dimension.  In 



 

these situations it is often useful to account for LD among a subset of items by estimating an 

additional latent variable (e.g., in a bifactor model).  As a special class of MIRT models, 

bifactor models account for the shared relations among all the items through a general, or 

primary, dimension and one or more secondary dimensions, orthogonal to the primary 

dimension, which contain loadings only for those locally dependent items.   

Traditionally, bifactor models have been employed only to identify LD (i.e., 

multidimensionality). In order to provide unidimensional scores for such models, the most 

common approach has been to set items aside from secondary dimensions, eliminating the 

dependence, and then to use the remaining items to compute scores with a unidimensional 

model. The present research aims to develop a method in which violations of 

unidimensionality can be accounted for in a bifactor model while still producing 

unidimensional scores. In other words, the model is allowed the flexibility to account for 

multiple dimensions, while the scores reflect the individual’s location on the general factor.  

The Effects of Ignoring Local Dependence 

When a set of items is best represented by a single dimension it is referred to as 

unidimensional.  Unidimensionality implies local independence, which indicates that all the 

relationships among the data are accounted for by the underlying latent variable.  Consider a 

pair of items i and j with trace lines Ti and Tj which “trace” the probability of response given 

the latent variable (θ).  If the response model is defined by a single dimension, then the 

probability of an individual correctly responding to both items is equal to the product of the 

individual trace lines given the latent variable: 

                           ( 1, 1| ) ( 1| ) ( 1|i j i jT u u T u T u ).θ θ= = = = = θ                                    (1) 
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In other words, if local independence holds, then the joint likelihood of a particular response 

pattern is properly represented by the product of the separate probabilities of item responses. 

Of course, this should also hold for all the items in a test conditional on θ.   

In the 1980’s, prior to usable implementations of MIRT models, researchers struggled 

to determine how robust IRT models were to violations of unidimensionality.  The majority 

of this work involved generating multidimensional data from simple structure factor analysis 

models with varying degrees of correlation between factors, and then comparing parameter 

and individual trait estimates after fitting UIRT models.  To briefly summarize, numerous 

authors suggest that when separate dimensions are correlated greater than about r = .60, a 

single factor may adequately represent the factor structure (Folk & Green, 1989; Drasgow & 

Parsons, 1983; Ackerman, 1989; Harrison, 1986; Reckase, 1979).  Additionally, trait 

recovery is improved when the general factor is strongly unidimensional and contains a large 

number of items with a high degree of information (Harrison, 1986).   

Though prior research attempted to validate the use of fitting UIRT models to 

multidimensional data, the costs can be great, including “θ-theft” (i.e., when a small number 

of locally dependent items define the dimension; Thissen & Steinberg, 2010, p. 131), over-

estimating score reliability (Thissen, Steinberg, & Mooney, 1989), and in misrepresenting the 

data. In practice θ-estimates often give the appearance of robustness to violations of 

unidimensionality, or as Demars (2006) says, “if the focus is on estimated theta and not the 

item parameters, any of the models will perform satisfactorily…” (p. 165).  Importantly, it is 

the factor structure, or item parameter interpretations, that are most often misrepresented in 

unidimensional representations of multidimensional data.  So, while differences in score 
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precision may be appear slight, interpretation of the latent trait based on the dimensions’ 

parameters is often what is most affected.   

Much of the past research on the robustness of UIRT models to violations of local 

independence was conducted prior to the availability of usable implementations of MIRT 

models.  Hence, previous research was motivated in large part by a desire to fit UIRT 

models, because MIRT models were not a viable alternative.  Past investigations, though 

important in understanding under what conditions essential unidimensionality may be 

sufficient, are of less relevance now that well established procedures are in place for fitting 

MIRT models (Reckase, 2009). 

Compensatory MIRT Models 

When fitting item responses requires more than one latent trait, MIRT models may be 

appropriate (McKinley & Reckase, 1983; Reckase, 1985). The most widely used are 

compensatory1 MIRT models, which model the probability of a response with a linear 

combination of latent variables (θ-coordinates).  In other words, if an individual’s location is 

low on a particular trait, the linear combination may compensate with a high score on another 

trait.  

For simplicity, consider the 2PL compensatory MIRT model as an extension of the 

2PL univariate IRT model (for multivariate extensions of Samejima’s (1969) graded 

response model see Muraki and Carlson (1993)). The probability of a person with trait vector 

θ responding correctly to item i is based on a vector of discrimination parameters ai and an 

intercept ci: 
                                                 

1 Other, less often used MIRT models are noncompensatory (Sympson, 1978).  This class of models 
can be considered the combination of separate unidimensional models.  Here the probability of 
correct response for an item is often formed from the product of the separate probabilities for the 
latent traits.  The models are said to be noncompensatory because the probability of correct response 
cannot be higher than any of the probabilities in the product. 
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Unlike the difficulty parameter in the UIRT 2PL model, ci represents the relative difficulty of 

an item without respect to a trait dimension.  Because more than one dimension affects 

responses, graphical representations (trace surfaces) are often used to depict the relation 

between item responses along 2-dimensions.  Figure 1 illustrates the trace surface for an item 

with a1 = 3, a2 = 2, c = 0.  
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Figure 1. Trace surface for an item more discriminating on the primary dimension 
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That the probability of a correct response increases more rapidly along θ1 indicates 

that the first dimension has a greater effect on responses for this item.  The compensatory 

nature of the model is also evident.  The exponent in eq. 2 is a linear combination of θ and a-

vectors with an intercept c. If the exponent is equal to 0, then eq. 2 simplifies to Ti = ½ 

because e0 = 1. Rearranging the terms in the exponent then provides the line through the θ-

space where the probability of correct response is 0.5: 

                                                  2 1 1
2

1 (a
a

θ θ )c= − − 3) 

ce, for the present example, relatively low trait levels on θ1 (say θ1 = -2) can be 

tem 

r 

MIRT Scoring 

The relative utility of MIRT mo ged by the scores they produce.  In 

general

                                                

.                                                    (

Hen

compensated for by high levels of θ2 (i.e., θ2 = 3).  Note that because this particular i

better discriminates on the θ1 dimension, higher levels of θ2 are required to compensate fo

low levels of trait θ1. 

dels may be jud

, MIRT scores may be thought of as a multivariate extension of UIRT scoring.  The 

likelihood of a particular response pattern is computed by the following: 

,
n

1

( | ) ( )
iu

i

L T θ
=

= ∏U θ
                                                 (4)

 

where L ponse pattern to a n it

all 

(U|θ) is the likelihood of a res em test for an individual with 

response pattern U = {u1, u2,…, un} (Segall, 1996). For certain extreme response patterns, 

correct (or positive) or incorrect (or negative) responses to test items (which are common in 

short tests), the mean of the likelihood becomes undefined, the mode is infinite, and some 

heuristic is needed to compute scores. For this and other reasons, it is useful to employ a 
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prior distribution and obtain posteriors for response patterns.  In the multivariate case, the 

posterior function takes the form, 

                                              ( | ) ( | ) ( ),f L φ=θ U U θ θ                                                  (5) 

where the posterior f(θ|U) is the product of the response pattern likelihood L(U|θ) and φf(θ), 

the multivariate normal distribution of θ.2  Using the parameters from Figure 1, Figure 2 

displays the posterior density for a correct item response. 

                                                 
2 When the model takes on an oblique simple structure form, the multivariate normal distribution has 
a mean vector of zeros and a variance-covariance matrix Φ with 1 along the diagonal elements and 
the population based covariances of the dimensions on the off-diagonal elements. In the case where 
the dimensions are correlated 1.0, and simple structure is imposed, the posterior equation reduces to 
the unidimensional case.  
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Figure 2. Multivariate posterior density for a correct response to an item discriminating on 
two dimensions 

 
 

 

The mode of the posterior density in Figure 2 provides the most likely trait estimate based on 

a correct response and the normal distribution (Maximum A Posteriori, MAP); the mean of 

that density is the two-dimensional Expected A Posteriori (EAP).     

The only reasonable advantage to using a MIRT-, rather than UIRT-based scoring 

procedure, is if the scores MIRT models produce have large enough gains in reliability to 
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warrant the added complexity of the model.  Theoretically, so long as the dimensions of a test 

are correlated, MIRT scores should have greater precision than UIRT scores. This is because 

of what Segall (2000) refers to as “cross-information”- that scores on one dimension inform 

scores on another dimension.  In other words, if dimensions are correlated, then a high score 

on one dimension is expected to correspond with a high-score on another dimension.  The 

effect of this additional information is either increased score precision or reduced test length. 

However, the actual increases in reliability due to MIRT are considered marginal (from about 

.1 to negligible (Segall, 1996; Luecht, 1996)).  It may be that gains are most substantial for 

domains that begin with relatively low levels of information, but are highly correlated with 

some other more precisely measured domain (requiring correlations perhaps greater than .6). 

When faced with strongly correlated dimensions, researchers are presented with a 

number of alternatives.  If the potential dimensions are weakly correlated, then little is gained 

from the MIRT model and fitting multiple UIRT models seems a better option.  If the 

dimensions are highly correlated, then some degree of score precision is gained through the 

MIRT model, but perhaps at the cost of scores with complex interpretations.  With highly 

correlated domains there exists the possibility of a general factor which underlies the items, 

along with some number of group-specific factors which account for variance particular to 

only subsets of items.   

Bifactor Models 

Bifactor models (Holzinger & Swineford, 1937; Tucker, 1958; Gibbons & Hedeker, 

1992) are used in situations in which a set of items may be represented by a general (or 

primary) latent variable in addition to a number of secondary dimensions (or group or content 

factors) which account for covariance specific to subsets of items.  The utility of bifactor 
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models lies in their broad range of application: Bifactor models are useful when multiple 

dimensions are expected, or when multidimensionality is caused by unwanted local 

dependence among item subsets.  

Gibbons and Hedeker (1992) describe the bifactor structure in which all items receive 

one slope parameter on the general dimension and one slope parameter on a secondary 

dimension (see Table 1).  This structure is imposed a priori by researchers in situations in 

which a single dimension is hypothesized to underlie all items on a scale, but additional 

dimensions are require to account for covariation specific to subsets of items.  For example, 

bifactor models have been used in psychological studies aimed at understanding inter-related 

but distinct concepts including, but not limited to, depression, anxiety, and anger  (e.g., 

Simms, Gros, Watson, & O’Hara, 2008; Irwin, et al., 2010).  In this framework, each concept 

is represented by a content-specific subfactor, and the primary dimension may be described 

as general distress/dysphoria.  In educational settings, the bifactor model is often used in tests 

of reading comprehension, where reading passages are followed by a set of related items.  

The general factor of the bifactor model is reading comprehensions, and additional specific-

factors are required for items belonging to each passage.  

Table 1. Example of bifactor structure 
Item θ1 θ2 θ3 θ4

1 a11 a12   
2 a21 a22   
3 a31  a33  
4 a41  a43  
5 a51   a44 
6 a61   a54 

 
Alternatively, when bifactor models are employed to account for undesired local 

dependence, a modification to the bifactor structure is made in which only locally dependent 

subsets of items receive the additional specific-factor loading (Table 2).  These models are 
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appropriate in situations in which a single latent variable is hypothesized, but subsequent 

analyses reveal the presence of unaccounted relationships among subsets of test items.  In 

such situations local independence may be achieved by modeling the additional relationships 

with one or more sub-factors.   The following section provides an example of modeling 

nuisance local dependence in a set of depression items with a modified-bifactor model. 

Table 2. Example of modified-bifactor structure 
Item θ1 θ2

1 a11 a12 
2 a21 a22 
3 a31  
4 a41  
5 a51  
6 a61  

 
Both the bifactor and modified-bifactor models serve as an indication of the 

dimensionality of a collection of items.  In assessing dimensionality, interpretation is focused 

on the model’s slope parameters. Specifically, the magnitude of the secondary dimension 

slope parameter indicates the influence of this dimension in accounting for relations among 

responses, but the ratio between general and secondary dimension slopes also indicate the 

relative strength of each factor.  However, interpreting the model in this manner remains 

limited to assessing the probability of response on one dimension conditional on the model’s 

other dimension(s).  Figure 3 illustrates this concept.  Using the same parameter estimates as 

Figure 1 (a1 = 3, a2 = 2, c = 0), the trace surface is now viewed along the θ1 dimension and 

the θ2 slopes have been removed. What remains are the item’s θ1 trace lines conditional on 

varying locations of θ2. 
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Figure 3. θ1 trace lines conditional on θ2 

 

In other words, a slope on θ1 (or the general factor in the bifactor case) does not 

indicate the marginal relation between an item response and θ1, but rather the relation 

between an item response on θ1 at various locations on θ2.  Because of this, in bifactor 

models the primary dimension slope interpretation may be confused or misleading.   
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Depressive Symptoms Example 

To illustrate the difficulties in interpreting bifactor item parameters, considered below 

are a series of analyses conducted on an eight-item subset of the Patient Reported Outcomes 

Measurement Information System (PROMIS) pediatric Depressive Symptoms scale (Irwin, et 

al. 2010).  The original 14-item scale was developed from 22 tryout items administered to at 

least 759 youth aged 12-17 in hospital clinics in North Carolina and Texas.  For the purpose 

of this illustration, eight items were selected to be re-analyzed as a separate scale (the eight 

items may be found in Table 3). Six of the eight items were from the scale as ultimately 

assembled and published (Irwin, et al. 2010), and the two additional items were from a 

locally dependent pair of items identified and set aside during the item tryout period.  

Specifically, in the analyses reported by Irwin et al. (2010), the items “I cried more than 

usual” and “I felt like crying” were modeled with a residual correlation in a factor analytic 

framework.   

In this illustration, we fit unidimensional IRT and bifactor MIRT models to the eight-

item subset. Table 3 provides the results of fitting two separate models.  The first model 

assumes unidimensionality, while the second bifactor model estimates a general dimension 

and a secondary dimension for the two locally dependent items with equality constraints on 

the slope parameters.  Comparing the slope parameters on the six unidimensional items 

between the unidimensional IRT model and bifactor MIRT model indicates that the slope 

parameters differ little (less than 0.1).  However, for the two locally dependent “crying” 

items, the slope parameters on the primary dimension substantially increase in comparison to 

the unidimensional estimate (more than 0.4).  This effect occurs for any bifactor model in 

which the slopes on the secondary dimensions are non-zero. The compensatory nature of 
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model accounts for item responses based on the total number of dimensions present. For 

items with slopes constrained to zero for the secondary dimension, the interpretation is 

consistent with the unidimensional model, and any difference in slopes may be due to the 

additional variance accounted for by the secondary dimensions3.  However, for items with 

non-zero slopes on more than one dimension, the interpretation of the primary dimension 

slope must be made conditional on the secondary dimension slope.  In other words, it would 

be incorrect to interpret the primary dimension slope, for an item with more than one slope, 

as one would a univariate slope parameter.  It may then be desirable to obtain the marginal 

relation between the item response and primary dimension that averages over the secondary 

dimension(s). 

Table 3. Unidimensional and bifactor slope parameters for eight depressive symptoms 
items. 
 UIRT MIRT 
Item a aPrimary aSubfactor 
I cried more than usual.  1.78 2.22 1.94 
I felt like crying.  1.79 2.33 1.94 
I felt everything in my life went wrong.  2.39 2.49 ---- 
I felt like I couldn't do anything right.  2.31 2.45 ---- 
I felt alone  2.20 2.12 ---- 
I felt so bad that I didn’t want to do anything.  1.93 1.98 ---- 
Being sad made it hard for me to do things with 
my friends.  1.92 1.94 ---- 

I wanted to be by myself.  0.73 0.75 ---- 
Note: Items in italics have been previously identified as locally dependent (Irwin et al., 
2010). 
 

This dissertation develops a technique for computing the marginal, or average, trace 

line for the primary dimension after accounting for secondary dimensions in bifactor models 

and assesses the appropriateness of a logistic approximation (Chapter 2).   Next, the 
                                                 

3 In this example, the difference in slopes for the six unidimensional items suggests that the two 
locally dependent “crying” items have re-oriented the latent variable in the unidimensional model. 
When the dependence between the “crying” items is accounted for, the slopes on the primary 
dimension slightly increase for the six items, indicating primary dimension is less influenced by local 
dependence.  
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technique is used to compute IRT-based primary dimension scale score estimates and 

standard errors, which are then compared to the primary dimension estimates computed from 

Cai’s two tier algorithm (2010) (Chapter 3).  Chapter 4 provides a real-data example using 

the PROMIS Asthma Symptoms scale, places the method of computing marginal trace lines 

in the context of the two tier algorithm. 



 

 

 
CHAPTER 2 

 
COMPUTING AND APPROXIMATING MARGINAL TRACE LINES 

In a 2-dimensional MIRT model, to obtain the marginal trace line for θ1, one must 

average over the θ2 dimension of the multivariate trace surface: 

                                          .)(),()|1( 22211Marginali
θθφθθθ dTuT ii ∫==                                    (

In th

6) 

is 2-dimensional example, the product of the θ1 conditional trace lines from the trace 

e 

itional 

e univariate trace line in 

unidim f 

 for 

ore 

                                                

surface, Ti(θ1, θ2) and the univariate normal distribution, integrated across θ2, represents th

marginal trace line for θ1, TMarginal.  Note that (6) is essentially computing the marginal trace 

line by weighting the θ1 conditional trace lines by the normal distribution. Because of this 

weighting process, marginal trace lines will never be greater in magnitude than the 

conditional trace lines along θ1, and depending on the relationship between the cond

slopes (a1 and a2) the marginal slope may be much smaller.   

Interpretation of the marginal trace line is not unlike th

ensional IRT; the marginal trace line is the relationship between the probability o

response given θ1, after accounting for the secondary dimension(s).4 Using the parameters

the first item in the depressive symptoms example in Chapter 1, I cried more than usual, one 

may illustrate this phenomenon by considering the θ1 marginal (6) and conditional trace lines 

(2) at various locations on θ2 (Figure 4).  The varying degrees of line width are meant to 

suggest that conditional trace lines closer to the mean of the normal distribution receive m

 
4 The marginal trace line has also been referred to as an expected score curve by Schultz and Lee (2002) and 
Donoghue (1997); their techniques were used to derive achievement level boundaries. 



 

weight than those near the tails of the distribution.  Clearly the slope of the marginal trace 

line is less than that of the conditional trace lines.  Recall that a1 for the item I cried more 

than usual was 2.22, but after computing the marginal, aMarginal is reduced to 1.46.  As 

researchers interpret such parameter estimates, the (conditional) slopes on the general 

dimension may be misleading as they suggest a relationship which is in fact inflated du

the secondary dimension.  After accounting for the secondary dimension, the marginal trace

line gives a more realistic account of the relationship between the item and general factor. 

e to 
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Figure 4. Marginal and conditional trace lines 

 
 

Figure 4 also illustrates the curious fact that when item calibration moves from a 

unidimensional model to a bifactor model, slope parameters on the factor of interest tend to 

increase, giving the false impression that items are more representative of the general factor.  

Rather, in keeping with prior literature (Reckase, 1979), one might expect that unmodeled 

LD should produce over-estimates of slope parameters on the on the unidimensional factor 

(i.e., “θ theft”; Thissen and Steinberg, 2010), and that after accounting for LD, slopes on the 
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general dimension should decrease. This surprising phenomenon is again attributable to 

slopes in bifactor models being conditional, rather than marginal, representations of item 

responses; when the marginal trace line is computed (as in Figure 4), the slope parameter 

takes on a more realistic value.   

Logistic Approximations 

Note that thus far the marginal trace line has been derived from a MIRT model, but 

has no item parameters which describe the relationship between the item and marginal θ1 

distribution. The expected score curve from a multidimensional logistic trace surface with a 

normal population distribution is not a logistic function or, indeed, any “simple” function. 

The marginal trace line may be thought of as an average of the θ1 conditional trace lines 

weighted by the normal distribution, and a logistic approximation of this average trace line 

may suffice.   

There is historical precedent for treating the summation of logistic functions as 

approximately logistic. Winsor (1932) notes that the “sum of a number of logistics does in 

fact often approximate closely a logistic as has been shown by Reed and Pearl (1927)” (p. 4).  

Reed and Pearl (1927) use sums of logistics to describe population growth, and later, Merrell 

(1931) would examine averages of individual growth curves to describe change over time for 

groups of individuals.  From this perspective, one should expect that the marginal trace line, 

which is itself a weighted average of logistic curves, should be closely approximated by a 

logistic function. 

Given the marginal trace line, to find a logistic approximation, one must estimate 

item parameters.  A potential approximation to be considered involves computing the 

derivative of the marginal trace line at T = 0.5, which is an estimate of the slope of an 
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approximately logistic function. We may approximate the derivative by taking values of 

Tmarginal and θ1 near T = 0.5: 
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where TH represents a probability slightly higher than 0.5, TL a probability slightly lower than 

0.5, and θH and θL the respective θ1 trait values. The ratio between the difference in the log 

odds of two probabilities near 0.5 and their respective θ1 values gives the slope of the 

function or the marginal trace line .  Next, the threshold or difficulty parameter is the 

location on θ1 where TMarginal is 0.5, and in practice is computed directly from the dimension 

of interest in the MIRT model.  For example, in a MIRT model where the marginal is desired 

for θ1, the threshold is: 
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We may then approximate the marginal trace line using the traditional unidimensional 

logistic function and  and  (Birnbaum, 1968).  In practice, the  parameters computed 

from the numerical derivative tend to be sensitive to the number of quadrature points 

provided.  Because of this concern, an alternative method is used as originally proposed by Ip 

(2010a; 2010b). 

â b̂ â

 Ip’s method of approximation is equivalent to transforming the MIRT slope parameters 

into the factor analytic loading metric, and then back-translating to arrive at the marginal 

slopes.  Ip’s method is equivalent to computing the marginal factor loading for the dimension 

of interest, in this case θ1: 
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where D is the commonly used scaling constant 1.7.  The item variance unexplained by the 

primary latent dimension is then: 
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As with the numerical derivative, is unchanged after computing the marginal.  A logistic 

approximation of the marginal trace line uses   and in the traditional fashion of the 2-

parameter logistic model: 
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Extensions to the graded response model (GRM; Samejima, 1969) provide no additional 

complications as the thresholds and slope parameter may be computed as in (8) and (11), 

respectively.  For binary items modeled with the 3-PL to account for guessing, Ip (2010a) 

notes that the lower asymptote gi is unaffected by marginalization (i.e., ). ˆ i ig g=

The Logistic as a Close Approximation of the Marginal Trace Line 

In order to justify the use of the logistic, it is important to assess the degree to which 

it approximates the marginal trace line.  Regarding the use of the logistic distribution to 

appoximate the normal CDF, Haley (1952) notes that the two never differ by probability 

values greater than 0.01.  Here one might anticipate similar results (and Ip (2010a) provides a 
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graphical illustration of a close approximation), but the degree to which the normal 

distribution influences the shape of the marginal trace line remains unknown. 

The closeness of the logistic approximation to the marginal trace line is here 

considered both graphically and numerically.  For the numerical comparison between 

marginal trace lines and logistic approximations, a wide range of marginals were computed 

from various 2-dimensional 2-PL trace surfaces which varied in the magnitude of the a1 and 

a2 slope parameters (all intercept parameters were 0.0).  All combinations of trace surfaces 

were considered from a1 and a2 values of 1.0 to 4.5 (a range which liberally incorporates 

most values seen in practice) in increments of 0.1, resulting in 1,296 unique trace surfaces.  

Using these trace surfaces, comparisons were made between each marginal trace line and 

logistic approximation.  For each of the 1,296 comparisons, across 81 quadrature nodes 

between -4 to 4 standard deviations from the mean, the maximum difference in probability 

between the marginal and logistic approximation of the trace line was no more than ±0.011 

(for all positive differences there is a corresponding negative difference of the same 

magnitude).  For each of the 1,296 trace line comparisons, across the range of θ1, the 

maximum difference in probabilities between the marginal trace line and logistic 

approximation ranged from ±0.006 to ±0.011 (mean = 0.010, SD = 0.001).  While there was 

very little difference among the various trace surfaces considered, there was a slight trend 

that the most precise approximations occurred when the a2 parameters were low in 

magnitude, indicating that a weak secondary dimension has little influence on either the 

marginal trace line or the logistic approximation. 

These numeric results may also be illustrated graphically. To demonstrate the 

appearance of these slight differences between the logistic approximation and the marginal 
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trace line, four different models were considered (see Table 4).  For the first two MIRT 

models the primary dimension slope is large in magnitude relative to the secondary 

dimension slope (a1 = 3.0 and a2 = 2.0), and the intercepts are the threshold equivalent to b = 

1.5 and -1.5.  The second two models have the same intercepts/thresholds, but reverse the 

magnitude of the primary and secondary dimension slopes.   

Table 4. Four 2-PL MIRT models and corresponding marginal parameter estimates 
Panels for 
Figure 5 and 6 a1 a2 c Marginala  

Marginalb  
Upper left 3.0 2.0 -4.5 1.94  1.5 
Upper right 3.0 2.0  4.5 1.94 -1.5 
Lower left 2.0 3.0 -3.0 0.99  1.5 
Lower right 2.0 3.0  3.0 0.99 -1.5 
 

Figure 5 illustrates the close approximation between the logistic and marginal trace 

lines. The marginal is nearly indistinguishable from the logistic approximation, and appears 

to be unaffected by differences in location parameters, as suggested by Ip (2010a).  Figure 6 

illustrates the marginal trace lines and logistic approximations after a log odds 

transformation.  Because the logit of a logistic function is linear, the approximations will 

always be linear. The marginal however, can strictly speaking can never be linear, and any 

deviation represents missfit of the logistic approximation.  The logits in Figure 6 illustrate 

this fact as deviations in marginals begin to appear in the tails of the distributions.  However, 

at such extreme values in log odds, the probability equivalent is actually quite small (between 

0.00002 and 0.003 at the most extreme values of θ1 for each comparison in Figure 6), 

providing further evidence of the utility of the logistic as an appropriate appoximation. 
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Figure 5. Four 2-PL marginal trace lines and logistic approximations  
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Figure 6. Four 2-PL marginal trace lines and logistic approximations in log odds  
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The Relation Between Conditional and Marginal Slope Parameters 

While Table 4 provides the marginal slope parameter of the logistic approximation 

for four sets of conditional slope parameters, in practice the computations needed to compute 

marginal slopes (equation 6) can be carried out for any combination of conditional slopes.  

Thus, it may be of some interest to provide the relation between conditional slope parameters 

and the resulting marginal slope parameter.  Initially, the magnitude of the marginal slope for 

some simple bifactor MIRT models which have equal a1 and a2 slope parameters is 

considered.  

Figure 7. Marginal slopes for items with equal conditional slopes on two dimensions 

 

Figure 7 illustrates the relationship between the magnitude of the marginal slope 

parameter and magnitude of the equal slopes on the primary and secondary dimensions.  For 
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illustrative purposes, horizontal grey lines indicate increases in the marginal slope of 0.2 

units, and correspond to marginal slopes of 1.1, 1.3, and 1.5.  In general, when conditional 

slopes are weak (e.g., when aConditional  is almost 1.5), the marginal slope is also weak and 

only slightly less than the conditional slopes (e.g., aMarginal =1.1).  The marginal slope 

increases quickly from 1.1 to 1.3 with only slight gains in the conditional slopes. For 

example, increasing the conditional slopes about 0.5 units from 1.5 to 2.0 results in a 

marginal slope increasing about 0.2 units from a marginal slope of 1.1 to marginal slope of 

1.3.  However, gains in the marginal slope quickly diminish as the conditional slopes become 

large.  Continuing with the present example, to achieve an additional gain in the marginal 

slope of 0.2 (i.e., aMarginal = 1.5) requires an increase in conditional slopes of more than 1.0 

units (i.e., aConditional = 3.2).   For most applications, conditional slopes constrained to be equal 

will not be greater than this, because such slopes correspond to the dimensions accounting 

for nearly 90% of the item variance. 

While conditional slopes much greater than this are unlikely and may be evidence of 

Heywood cases, they do illustrate an interesting fact of the marginal.  For bifactor MIRT 

models with the conditional slopes constrained to be equal on two dimensions, the marginal 

slope is bounded by the logistic scaling constant.  That is, as the conditional slopes increase, 

the item variance accounted for becomes nearly 50% for each dimension. Using (9) and (10), 

if the item variance explained is 50%,  then the resulting marginal corresponds to the scaling 

constant (here, 1.7), or a factor loading of about 0.707.  

For more general bifactor MIRT models with unequal conditional slopes, Appendix I 

may serve as a quick reference.  The table provides the slope of the logistic approximation of 

the marginal trace line resulting from conditional slopes which vary from 1.00 to 4.50 in 
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increaments of 0.25.  Because no current software programs compute marginal trace lines, 

the table should provide interested researchers with the magnitude of the marginal slope 

parameter for a wide variety of conditional slopes, and interpolation may be used for 

interpretation purposes. 

The relationship between a variety of conditional slopes and marginal slopes may also 

be considered graphically. Figure 8 shows the functional relationship between conditional 

and marginal slopes. This non-trivial function cannot be easily approximated and is here 

presented for illustrative purposes only.  The relationship is reasonably linear except for 

increasingly high values on θ1 and low values on θ2, which results in marginal slopes that 

increase rapidly.  This phenomena will continue as a1 increases and a2 approaches zero.  This 

relationship can also been seen in Appendix I. 

 

 

 

 

 

 



 

Figure 8. Marginal slopes across a range of conditional slopes on two dimensions 
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CHAPTER 3 

 
COMPUTING ITEM RESPONSE THEORY SCORES  

FROM MARGINAL TRACE LINES 

This chapter considers the utility of using logistic approximations of marginal trace 

lines in a variety of test scoring applications.  Specifically, logistic approximations of 

marginal trace lines are used to compute unidimensional IRT-scaled scores for the general, or 

primary, dimension in bifactor IRT models.  It is proposed that these scaled score estimates 

will provide a close approximation to the primary dimension point estimates used in 

traditional MIRT scoring (Segall, 1996, 2000).  In one recent example of MIRT scoring, Cai 

(2010) provides a two-tier algorithm in which the dimensionality of the integration for a 

multidimensional bifactor model is reduced to the number of primary dimensions plus one.  

Use of this estimation procedure results in a vector of ability estimates for the number of 

dimensions.  From this vector of ability estimates, computed from the multivariate posterior 

density, the first element  should be the same as the score estimate computed using the 

marginal posterior distribution (Segall, 2001).   

1θ̂

The remainder of this chapter considers the degree to which unidimensional scoring 

computations using logistic approximations of marginal trace lines provide primary 

dimension scores and standard error estimates similar to those obtained using the two-tier 

algorithm for multidimensional models.  If the two methods are comparable, then use of the 

unidimensional logistic approximation technique may provide a simpler, less 

computationally burdensome method for scoring the primary dimension.  What follows is a 



 

comparison of IRT-scores and standard error estimates obtained from the logistic 

approximation of the marginal trace line with the conventional MIRT scoring technique 

implemented using the two-tier algorithm. 

An Overview of IRT-Scaled Scores for Response Patterns and Summed Scores 

Many applications of IRT-based scoring use the individual’s complete response 

pattern in forming the scaled score estimate.  Known as response pattern scoring, the point-

estimate is the mean or Expected A Posteriori (EAP) from the posterior distribution (Bock & 

Mislevy, 1982): 
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where the posterior distribution is the product of the trace lines for each response u to item i 

and the prior density (here normally distributed with a mean of zero and a standard deviation 

of one).  The mean of the posterior density may be computed by approximating the integral 

over a range of quadrature points q: 
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Likewise, the standard deviation of any given posterior may also be computed by 

approximation: 
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As a function of the item parameters, the posterior standard deviation is allowed to fluctuate 

across the range of the latent variable.  
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 While response pattern EAPs and SDs incorporate all available information from an 

individual’s responses to a set of items, the number of response patterns (i.e., the number of 

response categories to the power of the number of items) often makes tables of such response 

patterns, scores, and standard deviations unwieldy.  As an alternative, one may compute the 

IRT-based expected value of the latent variable given the respondent’s summed score rather 

than response pattern.  Scoring tables of summed scores and their associated EAPs and SDs 

are user-friendly alternatives to response pattern scores and are readily interpretable.  It is 

possible to compute the expected value of the posterior for every summed score x which is 

itself the sum of the response vector u: 
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A recursive algorithm introduced by Lord and Wingersky (1984), and described in detail by 

Thissen, Pommerich, Billeaud, and Williams (1995), is used to compute )(θxL .  Briefly, the 

recursive algorithm may be viewed as an updating process which is initialized by the trace 

line for a single item T1 where the likelihood for a summed score of 1 is Lx=1 = T1, and the 

likelihood for summed score of 0 is Lx = 0 = (1-T1).  When a second item is added to the test, 

the likelihood of a summed score of 0 is (1- T1)*(1- T2); the likelihood for summed score of 2 

is T1*T2; and the likelihood of summed score of 1 is the sum of T1(1-T2) and T2(1-T1).  This 

updating process continues until the likelihoods for all possible summed scores are evaluated. 

 Because summed score based EAPs incorporate information available from all response 

patterns that yield a given summed score, and some of these response patterns may form 

likelihoods around different locations of the latent variable, any particular summed score 

likelihood will be slightly wider than the component response pattern likelihoods.  For all but 
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the most extreme response patterns, the loss of information when using IRT-scores from 

summed scores results in score standard deviations being inflated about 10% (i.e., a 10% loss 

in precision (Thissen, et al., 1995)), though the correlation between response pattern and 

summed score-based EAPs is often greater than 0.95.  

The decision to use IRT-scores from summed scores also allows intuitive and simple 

comparison between the two scoring methods.  An advantage of using IRT-scores from 

summed scores is that they are a function of the previously estimated item parameters and all 

possible response patterns.  Because these patterns are known and used in the recursive 

algorithm, there is no reliance on samples of individuals to provide IRT-scaled score 

estimates from summed scores.   

Rather than comparing individual’s scaled scores using samples of response patterns, 

comparing summed score-based EAPs and SDs from the logistic approximation of the 

marginal trace line and the MIRT two-tier algorithm is quick and easy and may be computed 

directly from the MIRT item parameters.  For instance, consider a multidimensional six-item 

binary test with seven possible summed scores on the primary dimension (0, ... , 6).  Any 

difference in the seven EAPs between the two methods is interpreted as score bias when 

using the logistic approximations.  The ratio between the score standard deviations represents 

potential bias in score precision between the two methods.  For instance, if a particular score 

had standard deviation of 0.60 for the logistic approximation method and 0.80 for the two-

tier approach, the ratio between the two-tier score standard deviations and logistic 

approximation of the marginal trace lines (0.80/0.60) would indicate that the logistic 

approximation scores appeared to be 1.33 times more precise.  Such a finding would indicate 
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a bias of the logistic approximation method.  Using such simple comparisons, many scores 

and standard errors can be evaluated from a variety of models. 

The Method of Evaluating Primary Dimension Scores across MIRT Models 

The methods used in this dissertation involve comparing scaled scores and score 

standard deviations between the logistic approximation and the two-tier algorithm for a 

variety of MIRT models (or tests) for binary items.  All MIRT model parameter estimates are 

considered known.5 The steps involved for the comparisons are as follows: (1) For all 

multidimensional tests, the primary dimension scaled scores from summed scores are initially 

computed using the two-tier algorithm, (2) next the marginal trace lines and logistic 

approximations of them are computed for all items using the methods presented in Chapter 2, 

(3) finally, the recursive algorithm is used to compute the comparable primary dimension 

scores and score standard deviations from the logistic approximations.  These steps are 

repeated for all tests. 

To evaluate the utility of scoring tests using the logistic approximation of the marginal 

trace line, the two scoring approaches are compared across a variety of MIRT models.  

Comparisons between the two methods will take into account three model-related conditions, 

factor loadings, test length, and dimensionality.  The following model conditions are meant 

to reflect a wide range of bifactor models used in research settings.  

First, to compare models which vary in influence of the secondary dimension, the factor 

loading6 conditions will consider different ratios between the magnitude of the primary and 

secondary dimension loadings.  A range of factor loadings will be divided into three groups 
                                                 

5 For simplicity, the thresholds of all MIRT parameter estimates (modeled as intercepts) were fixed at 
the mean of the latent variable (θ = 0).  Findings in Chapter 2 indicate that fit of the logistic 
approximation to the marginal trace line is independent of the location of item’s location parameter. 
6 To provide a more readily interpretable metric, factor loadings are reported.  All computations were 
performed with slope parameters converted from factor loadings.   

35 
 



 

(low (.3 to .5), medium (.5 to .7), or high (.7 to .9)), following guidelines used by McDonald 

(1999) and Reise, Cook, and Moore (under review).  Items with multidimensional structure may 

have primary and secondary dimension slopes which are combinations of low, medium, and 

high (e.g., “high” primary and “low” secondary, “low” primary and “high” secondary”, etc.).  

Note that “high” factor loadings on both the primary and secondary dimensions may result in 

negative residual variances or so-called Heywood cases.  Thus, this condition was eliminated 

resulting in eight different primary and secondary factor loading conditions.  Varying the 

factor loadings across dimensions in this manner provides a means of detecting potential 

biases in scores based on the strength of a particular dimension. These biases, however 

minor, may be compounded depending on the strength of loadings and test length.  

In addition to differences in factor loadings across dimensions, it is also of interest to 

consider multiple test lengths.  For instance, for a long test with one pair of LD items, there 

may be little utility in computing the marginal trace line given simpler traditional methods 

(e.g., setting items aside to eliminate LD), whereas for a short test, which provides less score 

information, it may be more desirable to consider marginal trace lines as a means of gaining 

all possible information from the data.  Thus, to uncover how the test length condition affects 

scoring the logistic approximations, a few practical test lengths are considered. Based on 

common lengths of scales in both health outcomes and psychological research, short (6 

items), medium (12 items), and long (24 items) tests are considered.   

Finally, the design of the dimensionality condition will take into account two model 

fitting situations in which bifactor models are commonly used.  The first situation is one in 

which all items load on both the primary dimension and, because of hypothesized 

dependence among clusters of items, one secondary dimension (i.e., complete bifactor 
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structure).  The second situation represents a modified-bifactor model in which the items are 

generally unidimensional, but because of some unplanned nuisance dimensionality, 

secondary factors in the form of item doublets are needed to achieve conditional 

independence.  For both situations, the number of item clusters and doublets modeled is 

dependent on the length of the test.  For instance, while a short test may be limited to one or 

two secondary dimensions (modeled as doublets, or two locally dependent items), the 

medium and long test length conditions includes high-dimensional models which have only 

recently become practical following advances in MIRT parameter estimation via the two-tier 

method (Cai, 2010).  Because the number of dimensions possible depends on test length, or is 

nested within test length, the dimensionality condition allows the short test condition to have 

1 or 2 secondary dimensions (i.e., 1 or 2 doublet pairs); the medium length test has 3 

secondary dimensions with 4-item clusters or 3 doublet pairs of items; and the long test has 6 

secondary dimensions with 4-item clusters or 6 doublet pairs of items. 

Given these conditions, the study design crosses the strength of the factor loadings on 

the primary and secondary dimensions with test length (and also the number of dimensions 

that are nested within test length). This scoring design results in three factor loading 

conditions (which when crossed yields 8 conditions), three test length conditions, and two 

dimensionality conditions within each test length condition. The total number of conditions 

which compare scores computed from the logistic approximation to the two-tier algorithm is 

then 8factor loadings x 3test length x 2dimensionality = 48.  This study design covers the majority of test 

conditions seen in research settings.  These conditions provide insights into the use of logistic 

approximations of marginal trace lines in providing a better understanding of the relation 
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between item responses and the primary dimension, and if so, whether or not these 

techniques are useful in providing an IRT-score for the primary dimension. 

An IRT-based Scoring Example 

To further illustrate these MIRT scoring conditions, this section follows one of the forty-

eight conditions through the entire scoring process.  This condition uses the long test (24 

items), with complete bifactor structure (six secondary clusters with four items each), and has 

medium factor loadings on the primary dimension and low factor loadings on the secondary 

dimensions.  The multidimensional factor structure is provided in Table 5.  Note from the 

table that the primary dimension loadings are balanced between the lower (.5) and higher (.7) 

loadings for the “medium” factor loading condition, and the secondary dimension loadings 

are balanced between the lower (.3) and higher (.5) loadings for the “low” factor loading 

condition. 
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Table 5. Example of bifactor structure for scoring. 
Item λ1 λ2 λ3 λ4 λ5 λ6 λ7
1 0.5 0.3      
2 0.6 0.3      
3 0.6 0.3      
4 0.7 0.3      
5 0.5  0.4     
6 0.6  0.4     
7 0.6  0.4     
8 0.7  0.4     
9 0.5   0.5    
10 0.6   0.5    
11 0.6   0.5    
12 0.7   0.5    
13 0.5    0.3   
14 0.6    0.3   
15 0.6    0.3   
16 0.7    0.3   
17 0.5     0.4  
18 0.6     0.4  
19 0.6     0.4  
20 0.7     0.4  
21 0.5      0.5
22 0.6      0.5
23 0.6      0.5
24 0.7      0.5

 

After converting the factor loadings in Table 5 into slopes, the two-tier algorithm, as 

implemented in the software program IRTPRO (Cai, du Toit, & Thissen, forthcoming) is 

used to compute primary dimension IRT-scores and standard deviations along with their 

associated summed scores.  After tabulating these values, the marginal trace lines for all 24 

items are computed from the MIRT item parameters using the R language for statistical 

computing and 81 quadrature points equally spaced between -4 and +4.  Logistic 

approximations using the 2PL model are then made from these marginal trace lines.  Once 

the 2PL item parameters are obtained, the recursive algorithm is used to compute the IRT-

scaled scores and standard deviations from summed scores. This process results in two sets 
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of IRT-scaled scores and score standard deviations for the primary dimension.  A summed 

score to scale score translation table is then used to compare the values from the two 

approaches.  Below, Table 6 provides the results for this first of forty-eight scoring 

comparisons. 

Table 6. Example of a score translation table using the logistic 
approximation of marginal trace lines and the two-tier algorithm. 
Summed 

Score 
Two-Tier 

EAP 
Logistic 

EAP 
 Two-Tier 

SD 
Logistic 

SD 
0 -2.07 -2.17  0.59 0.56 
1 -1.73 -1.83  0.53 0.50 
2 -1.47 -1.56  0.49 0.45 
3 -1.25 -1.33  0.46 0.42 
4 -1.07 -1.13  0.44 0.39 
5 -0.90 -0.95  0.42 0.36 
6 -0.75 -0.79  0.41 0.35 
7 -0.61 -0.64  0.40 0.33 
8 -0.48 -0.50  0.39 0.32 
9 -0.36 -0.37  0.39 0.32 

10 -0.24 -0.25  0.38 0.31 
11 -0.12 -0.12  0.38 0.31 
12  0.00  0.00  0.38 0.31 
13  0.12  0.12  0.38 0.31 
14  0.24  0.25  0.38 0.31 
15  0.36  0.37  0.39 0.32 
16  0.48  0.50  0.39 0.32 
17  0.61  0.64  0.40 0.33 
18  0.75  0.79  0.41 0.35 
19  0.90  0.95  0.42 0.36 
20  1.07  1.13  0.44 0.39 
21  1.25  1.33  0.46 0.42 
22  1.47  1.56  0.49 0.45 
23  1.73  1.83  0.53 0.50 
24  2.07  2.17  0.59 0.56 

Note: Because the difficulty parameters are fixed at zero for all items, the EAP and standard 

deviations are symmetrical around the mean 0.0.   

 

This table provides the first appearance of bias in scoring when using the logistic 

approximations of marginal trace lines.  For each summed score, across the entire range of 
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the primary dimension, the scaled scores for the logistic approximation are more extreme 

than those computed directly from the MIRT model.  Though potentially minor, the 

difference in the logistic-based point estimates is at most ±0.10 standard deviations from the 

two-tier-based estimate.  Additionally, the standard deviations indicate overly narrow 

posteriors for the logistic approximation (a spurious increase in score precision of about 5% 

to 18% depending on the location of the latent variable). In other words, the logistic 

approximation gives the impression that the items provide more information about the latent 

variable than should be present.  

Prior to scoring all 48 conditions, this phenomena, where use of the logistic 

approximation of the marginal trace line results in a spurious increase in score precision (i.e., 

overly precise scores), is investigated in a few selected conditions.  Figure 9 provides a 

graphical illustration of the values in Table 6.  Parallel results for a 12-item scale with 

medium slopes on the primary dimensions and low secondary slopes with three doublet 

factors are shown in Figure 10, and results from an example with one doublet, 6-item scale 

with high slopes on the primary dimension and medium slopes on the secondary dimension 

are in Figure 11. 
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Figure 9. 
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Figure10.
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Figure 11.
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The figures illustrate the difference between primary dimension EAPs and SDs between 

the two-tier algorithm and the logistic approximation of the marginal trace line.  The upper 

panel of each figure indicates the differences in EAPs between the two scoring methods. 

Because the thresholds are fixed at zero, the mean IRT score is always 0.0 and is located in 

the middle of the summed score scale.  For instance, in Figure 9 the mean summed score is 

12 (out of 24) and is associated with an EAP of 0.0.  EAPs for summed scores greater than 

12 are positive values, and EAPs less than 12 are negative values.  In all figures, when the 

difference between two-tier and logistic approximation EAPs is positive for summed scores 

below the mean, the difference indicates that the logistic approximation is  providing an EAP 

which is lower than the EAP for the two-tier algorithm. 

The lower panel of each figure indicates the ratio in score standard deviations of the two-

tier algorithm to the logistic approximation.  Because all ratios are greater than 1.0, each of 

the three examples indicates that use of the logistic approximation provides overly precise 

score estimates (i.e., overly narrow posteriors). 

 The pattern of results is also similar across the three examples. That is, the logistic 

approximations of marginal trace lines produce more extreme scores and scores with more 

apparent information.  While there appear to be differences in the magnitude of these 

deviations, the patterns remain consistent.  The logistic approximation provides overly 

precise scores near the mean of the latent variable, and performs somewhat more expectedly 

near the tails of the distribution.  The EAPs for scaled scores at the mean are exactly the 

same as the two-tier algorithm suggests, indicating that the mean summed score is the middle 

value and corresponds with an EAP of zero.  However, differences from the mean are 

symmetrical such that the logistic approximation-based EAPs suggest scores that are farther 
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from the mean of the latent variable than the two-tier algorithm provides (i.e., more extreme 

scores). 

Controlling Local Dependence 

 Differences between scaled scores and standard deviations in Figures 9-11 indicate the 

same problem: More weight or information is being provided by the logistic approximations 

of marginal trace lines.  These findings may be best explained by a failure to account for 

local dependence.  In other words, while the marginal slope does provide the relation 

between the item response and the primary dimension after controlling for the secondary 

dimension(s) for each given item, it does not take into account the other items loading on the 

same dimension.  Each item’s marginal slope is the correct relation between the item 

response and the primary dimension for the individual item, but pooling multiple items from 

the same secondary dimension is still in essence providing more items of the type that are 

described by the secondary dimension, which is a violation of local independence when 

scored with a unidimensional model. 

 This phenomenon may be explained through an example. Suppose responses to a set of 

items were best characterized by a bifactor model in which negative affect is the primary 

dimension, but with the secondary factors anger, anxiety, and depression. If a researcher 

using only the anger subdomain items was interested in a score for the general factor, 

negative affect, then (as was proposed) computing the marginal trace lines for the negative 

affect dimension (integrating over the anger secondary factor) should provide the parameters 

to be used in IRT-based scoring.  However, this suggestion essentially ignores the items’ 

multidimensionality and treats them as if they were a unidimensional set measuring negative 
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affect.  Put more simply, one should not administer a set of anger items under the assumption 

that the scores measure only negative affect. 

 However, for each item separately, the logistic approximation of the marginal trace line 

does provide the correct relation between the item response and the dimension of interest.  

So, if each item is considered separately, the corresponding scale scores from the two-tier 

algorithm or logistic approximation approaches should be nearly identical.  As a brief 

illustration, consider a single binary, multidimensional item with a primary dimension slope 

of 2.0, a secondary slope of 2.0, and a corresponding threshold of 0.0. From Table A1, the 

marginal slope is 1.30 for the primary dimension (or secondary dimension).  If this single 

item were administered and scored separately using both techniques, the EAPs  for correct 

responses using the two-tier, multidimensional model and the logistic approximation of the 

marginal trace line are 0.488 and 0.480 (a difference of 0.008 standard deviations), 

respectively.  The score standard deviations between the two methods are also noticeably 

close (0.877 and 0.873, respectively).  This example illustrates that individual items selected 

from a multidimensional cluster of items can be appropriately scored using the logistic 

approximation of the marginal trace line, which is equivalent to achieving local 

independence among a set of locally dependent items.  If the previous example is extended to 

a scale of items with bifactor structure, selecting a single item, regardless of which item, 

from each LD cluster and proceeding with the logistic approximation method of scoring 

should provide scaled scores which reflect those from the two-tier algorithm.   

This method is actually similar to traditional approaches of controlling for local 

dependence.  It is common in practice to model the relations among a set of tryout items with 

a bifactor model (Hill, et al., 2007).  After identifying violations of unidimensionality (in the 

47 
 



 

form of doublets or clusters of locally dependent items loading on a secondary dimensions), a 

single item is retained for the final scale and all other locally dependent items are set aside.  

Removing an item’s locally dependent partners eliminates the shared relation above and 

beyond the primary dimension. This process results in a unidimensional scale with a subset 

of the initially multidimensional items. 

It is now proposed that the logistic approximation of the marginal trace line will produce 

scores similar to those from the two-tier algorithm if a single item is selected from each 

cluster of locally dependent items.  To test this revised hypothesis, the scoring design 

previously proposed is amended to include scoring runs which control for local dependence.  

The additional forty-eight scoring runs which select only a single item from each locally 

dependent cluster of items are referred to as using only locally independent items.  The 

original forty-eight conditions are referred to as using all items.  All forty-eight conditions 

are repeated to allow for comparisons between the all items set of scores, which violate local 

independence when using the logistic approximation, and the locally independent condition. 

To select a single item from each locally dependent subset of items some decisions are 

required.  In practice, it is best to select the item which most reflects the dimension of 

interest, along with other substantive concerns.  Because the conditions currently assessed are 

meant to be an evaluation of the method, the item selected from each locally dependent 

cluster of items tended to be an item in the middle of cluster (i.e., an item that is neither 

extreme on the primary dimension, nor extreme on the secondary dimension).  

Additionally, selecting a single item from each cluster reduces the number of items being 

scored.  The reduction in the number of scores depends on the test length and dimensionality 

conditions, but can range from just a single item (e.g., a 6-item scale with one locally 
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dependent doublet, which is reduced to 5 items which are scored) to the majority of the 

original scale (e.g., the 24-item, 6-cluster condition is reduced to 6 scored items). 

Scoring Results 

All 48 conditions were scored using all item and locally independent items only.  Prior to 

comparing results for all conditions, illustrations from a few selected examples are provided.  

Figures 12-17 provide differences in EAPs and SDs between the two-tier method and the 

logistic approximation.  The top panels of each figure plot bias in the EAPs by taking the 

difference between the two-tier algorithm and the logistic approximation.  Deviations from 

zero indicate scaled score differences between the two-tier algorithm and the logistic 

approximation.  The bottom panels plot the ratio between the score standard deviations for 

the two-tier algorithm and logistic approximation.  Positive SD ratios indicate overly precise 

scores for the logistic approximation.  The left panels indicate the bias in scores and SDs 

when all items are used and locally dependence is ignored.  The right panels indicate the 

correction in scores and SDs when a single item is selected from each locally dependent 

cluster of items and local independence is achieved.  

Recall that the original Figures 9-11 detected bias in the logistic approximation when 

ignoring local dependence.  Figures 12-14 plot the corresponding correction in scores when 

only locally dependent items are scored (i.e., the left panels of Figures 12-14 are equivalent 

to Figures 9-11, respectively, and the right panels of Figures 12-14 illustrate the correction in 

scores and SDs when local dependence is controlled).  Figures 15-17 are notable results from 

three of the remaining scoring conditions.  Figure 15 is illustrative of medium length scales 

(12 items), which are primarily unidimensional but with three pairs of locally dependent 

items.  Figures 16 and 17 represent long scales (24 items) which have complete bifactor 
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structure.  Figure 16 has a commonly seen factor structure with large loadings on the primary 

dimension and medium loadings on the secondary conditions.  Figure 17 is the most extreme 

example from the forty-eight conditions and represents a scale with low loadings on the 

primary dimension and high loadings on the secondary dimensions. 
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Figure 13.
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Figure 14.
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Figure 15.
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Figure 16.
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Figure 17. 
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 Figures 12-14 illustrate the bias in scoring when using all items, ignoring local 

dependence, and the correction made by selecting locally independent subsets of items.  As 

expected, ignoring local dependence can create large biases in scores and standard deviations 

when using the logistic approximation of the marginal trace line. In Figure 12 the maximum 

difference in scaled scores when using all items is ±0.099, which is reduced to ±0.005 when 

using locally independent subsets of items.  In Figure 13, because the secondary factor is 

weak, and only three pairs of the 12 items have secondary factors, little is lost by ignoring 

LD or gained by controlling for it.  However, the correction is greater in Figure 14 which 

contains only one doublet from a 6-item scale, but results in a maximum spurious increase in 

score precision of 12.2% for the logistic approximation method when ignoring local 

dependence (which is corrected to -0.6%, when using locally independent items). 

 Figures 15-17 illustrate some interesting examples that reflect common multidimensional 

models.  Figure 15 illustrates a largely unidimesional model with three doublets.  Ignoring 

unidimensionality does not affect scaled scores to a large degree; however, score precision 

can be over estimated by up to 14%.  Figure 16 represents a traditional bifactor model with 

high loadings on the primary dimension and medium loadings on the secondary dimensions.  

In this case, the effects of ignoring local dependence are widespread as scaled scores may be 

overestimated by 0.26 standard deviation units with a spurious increase in score precision of 

nearly 40%.  Finally, Figure 17 is an extreme example of a long scale with low loadings on 

the primary dimension and high factor loadings on the secondary dimensions.  Ignoring local 

dependence in this situation can result in the scale score differences of up to 0.74 standard 

deviations and score precision overestimation by nearly 30%. 
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Summary of Findings: Ignoring Local Dependence  

 EAP and SD estimates were computed using the two-tier algorithm and the logistic 

approximation of the marginal trace line for all forty-eight scoring conditions.  For each 

condition, across the range of summed scores, the maximum deviation between EAPs and 

SD estimates is presented in Tables 7 and 8, respectively. This approach is akin to selecting 

the most egregious case from each scoring run.  This presentation of findings indicates the 

bias in scores and score precision when ignoring local dependence, and after selecting locally 

independent subsets of items the proximity between primary dimension scores computed 

from either the two-tier algorithm or the logistic approximation. 

 Tables 7 and 8 suggest that bias in logistic approximation-based scores is not the product 

of a single factor.  The current results indicate (1) the deleterious effect of many instances of 

multidimensionality (i.e., local dependence), (2) the relative strength of the local dependence 

in relation to the strength of the primary dimension, and (3) the total number of items on the 

scale, which may either protect against, or amplify the effects of ignored local dependence.   

 As an overview of Tables 7 and 8, it appears that ignored local dependence results in the 

most severe biases for scales with a weak primary dimension but strong secondary 

dimensions (the second column from the right in Tables 7 and 8) and many items on each 

secondary dimension (the last few rows in Tables 7 and 8).  Indeed, scales with such 

covariance structure may indicate the appropriateness of multiple unidimensional scales 

rather than a bifactor model.  However, the number of items present on the scale may serve 

as a protective factor against local dependence overwhelming the orientation of the latent 

variable. Consider the second and third columns from the left (which indicate strong primary 

dimensions relative to the secondary dimensions) and the first three rows (where there are 
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fewer instances of local dependence); these conditions illustrate Harrison’s (1986) 

observation that effects of local dependence may be dampened by a strong primary 

dimension with many items relative to fewer subsets of LD items. 

Summary of Findings: Controlling for Local Dependence  

 Obtaining unidimensionality by setting aside items from clusters of locally dependent 

items greatly reduces the bias in the logistic approximation-based scores.   The correction in 

scores and score precision by selecting locally independent items is presented in three parts: 

short, medium, and long test lengths. First, considering the short test length with models 

including either one or two doublets, ignoring local dependence resulted in a maximum EAP 

deviation of 0.200 standard deviations and a 17.0% over-estimation of score precision (for 

the “low” primary and “high” secondary loading conditions, and  the “high” primary and 

“medium” secondary conditions, respectively).  In both cases, selecting locally dependent 

subsets of items resulted in a maximum bias in EAPs of ±0.007 standard deviations and a 

maximum over-estimation of score precision of 1.5%, which for most practical purposes 

reflects nearly identical scores and standard deviations between the two-tier and logistic 

approximation of marginal trace lines. 

 Results for the medium test length condition with three pairs of doublet items are 

consistent with those from the short test length conditions; however, ignoring local 

dependence in the bifactor structure condition resulted in maximum score bias of 0.724 

standard deviations, and an inflation in score precision of up to 30.7 percent (for the 

“low/high” and “medium/high” primary and secondary factor loading conditions, 

respectively).    For these cases, setting aside locally dependent items resulted in scores and 
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score standard deviations much closer to the two-tier findings (i.e., a ±0.019 standard 

deviation difference in EAPs and only a 1.9% spurious increase in precision). 

  Finally, the long test length condition with complete bifactor structure provided the most 

challenging set of results for the logistic approximation.  Ignoring local dependence resulted 

in a maximum EAP difference of ±0.741 standard deviations and a 39.8% maximum 

overestimation of score precision (for the “low/high” and “medium/high” primary and 

secondary factor loading conditions, respectively).  Obtaining a locally independent subset of 

items reduced the maximum EAP difference to ±0.120 and the score precision to -4.0% (an 

underestimation of score precision).  While these results are the most extreme example of the 

logistic approximation deviating from the two-tier algorithm, it is unlikely in practice that a 

bifactor model would be useful in the presence of a weak primary dimension and six strong 

and distinct secondary dimensions.



 

Table 7. Maximum difference in EAPs between tests scored with the two-tier algorithm  
and the logistic approximation of the marginal trace line.† 
 
Test Length 
(Dimensionality) 
   ↓ 

Primary Loadings     → 
Secondary Loadings → 

Low 
Low 

Medium 
Low 

High 
Low 

Low 
Medium 

      
Short (6 items) 
(1 doublet pair) 

All items 
Locally Independent 

0.028 
0.001 

0.018 
0.002 

0.018 
0.003 

0.056 
0.002 

      
Short (6 items) 
(2 doublet pairs) 

All items 
Locally Independent 

0.055 
0.004 

0.038 
0.003 

0.038 
0.005 

0.067 
0.007 

      
Medium (12 items) 
(3 doublet pairs) 

All items 
Locally Independent 

0.035 
0.003 

0.020 
0.007 

0.021 
0.005 

0.082 
0.004 

      
Medium (12 items) 
(3 clusters with 4 
items each) 

All items 
Locally Independent 

0.224 
0.009 

0.138 
0.005 

0.118 
0.011 

0.455 
0.016 

      
Long (24 items) 
(6 doublet pairs) 

All items 
Locally Independent 

0.025 
0.008 

0.012 
0.007 

0.020 
0.004 

0.066 
0.014 

      
Long (24 items) 
(6 clusters with 4 
items each) 

All items 
Locally Independent 

0.187 
0.005 

0.099 
0.005 

0.105 
0.013 

0.422 
0.009 

    (Continued) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

61 
 



 

Test Length 
(Dimensionality) 
   ↓ 

Primary Loadings     → 
Secondary Loadings → 

Medium 
Medium 

High 
Medium 

Low 
High 

Medium 
High 

Short (6 items) 
(1 doublet pair) 

All items 
Locally Independent 

0.043 
0.003 

0.049 
0.004 

0.093 
0.003 

0.066 
0.003 

      
Short (6 items) 
(2 doublet pairs) 

All items 
Locally Independent 

0.091 
0.004 

0.105 
0.007 

0.200 
0.007 

0.174 
0.003 

      
Medium (12 
items) 
(3 doublet pairs) 

All items 
Locally Independent 

0.055 
0.011 

0.061 
0.009 

0.150 
0.002 

0.087 
0.012 

      
Medium (12 
items) 
(3 clusters with 
4 items each) 

All items 
Locally Independent 

0.329 
0.008 

0.111 
0.011 

0.724 
0.019 

0.459 
0.009 

      
Long (24 items) 
(6 doublet pairs) 

All items 
Locally Independent 

0.042 
0.015 

0.038 
0.005 

0.131 
0.018 

0.072 
0.019 

      
Long (24 items) 
(6 clusters with 
4 items each) 

All items 
Locally Independent 

0.271 
0.018 

0.262 
0.020 

0.741 
0.120 

0.482 
0.017 

 
 

Note: Because deviations in scores are symmetrical around the mean, each value in the table 
has a corresponding negative value. 
† The values displayed indicate the maximum difference in scores across the range of scale 
scores from summed scores. 
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Table 8. Maximum percentage difference in score precision between tests scored with the 
two-tier algorithm and the logistic approximation of the marginal trace line. † 

 
Test Length 
(Dimensionality) 
   ↓ 

Primary Loadings     → 
Secondary Loadings → 

Low 
Low 

Medium 
Low 

High 
Low 

Low 
Medium 

      
Short (6 items) 
(1 doublet pair) 

All items 
Locally Independent 

1.2 
0.1 

2.3 
-0.3 

5.4 
0.4 

2.6 
0.4 

      
Short (6 items) 
(2 doublet pairs) 

All items 
Locally Independent 

2.2 
0.5 

4.0 
0.4 

7.4 
0.4 

4.1 
0.8 

      
Medium (12 items) 
(3 doublet pairs) 

All items 
Locally Independent 

2.5 
0.4 

4.3 
0.4 

8.4 
0.9 

5.2 
0.6 

      
Medium (12 items) 
(3 clusters with 4 
items each) 

All items 
Locally Independent 

10.0 
0.8 

16.6 
1.0 

27.8 
-1.6 

16.8 
1.4 

      
Long (24 items) 
(6 doublet pairs) 

All items 
Locally Independent 

3.4 
0.5 

5.3 
0.8 

9.6 
1.8 

6.5 
0.9 

      
Long (24 items) 
(6 clusters with 4 
items each) 

All items 
Locally Independent 

13.1 
1.0 

19.5 
1.1 

31.0 
2.0 

22.1 
1.8 

    (Continued) 
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Test Length 
(Dimensionality) 
   ↓ 

Primary Loadings     → 
Secondary Loadings → 

Medium 
Medium 

High 
Medium 

Low 
High 

Medium 
High 

      
Short (6 items) 
(1 doublet pair) 

All items 
Locally Independent 

5.3 
0.3 

12.2 
-0.6 

4.7 
0.5 

7.6 
0.3 

      
Short (6 items) 
(2 doublet pairs) 

All items 
Locally Independent 

8.1 
0.7 

17.0 
1.5 

7.1 
1.0 

10.8 
1.1 

      
Medium (12 items) 
(3 doublet pairs) 

All items 
Locally Independent 

9.0 
1.2 

14.1 
-1.8 

7.9 
0.8 

11.2 
1.0 

      
Medium (12 items) 
(3 clusters with 4 items 
each) 

All items 
Locally Independent 

26.9 
 1.7 

26.2 
-1.6 

22.2 
1.6 

30.7 
1.8 

      
Long (24 items) 
(6 doublet pairs) 

All items 
Locally Independent 

9.8 
1.4 

13.7 
2.8 

10.3 
1.3 

12.5 
1.6 

      
Long (24 items) 
(6 clusters with 4 items 
each) 

All items 
Locally Independent 

31.2 
1.4 

39.8 
-4.0 

29.2 
5.5 

36.3 
2.0 

 

Note: Positive values indicate the logistic approximation’s tendency to over-estimate of score 
precision. 
† The values displayed indicate the maximum difference in scores across the range of scale 
scores from summed scores.  For each score comparison, the percentage difference is 

Two-Tier Logistic Two-Tier( ) 100%σ σ σ⎡ ⎤− ∗⎣ ⎦ . 



 

 

 
CHAPTER 4 

 
AN APPLICATION OF MARGINAL TRACE LINES FOR  

BIFACTOR ITEM RESPONSE THEORY MODELS 

Thus far, logistic approximations of marginal trace lines have only been considered 

for 2PL models with known item parameters.  To further examine the utility of the logistic 

approximation, a real-data application is now considered which makes use of the 5-category 

graded response model (GRM; Samejima, 1969) and data from one of the pediatric Patient 

Reported Outcomes Measurement Information System (PROMIS) scales.  The PROMIS 

pediatric network involves researchers whose goal is to develop item banks across several 

general health domains (e.g., physical function, pain, fatigue, emotional distress, social 

function, and one disease-specific scale for asthma) for youth ages 8–17 years (e.g., Irwin, et 

al., 2010; Yeatts, et al., 2010; Varni, et al., in press).  In developing these health outcome 

measures, PROMIS scale construction and item assembly methodology used bifactor models 

to account for nuisance dimensionality and local dependence, and IRT models to calibrate 

unidimensional subsets of items.   

The present example uses data from the 33 tryout items of the PROMIS Asthma 

Symptoms health outcomes domain previously analyzed by Yeatts et al. (2010) 7.  

Participants were recruited from hospital clinics and public schools in Texas and North 

Carolina and included 622 children ages 8-17 (55% Male, 46% White).  The researchers’ 

original item factor analytic model identified one primary dimension and seven nuisance 
                                                 
7 The initial set of tryout items for the asthma symptoms domain contained an item which cross-loaded on 
three dimensions, and is excluded from the present set of analyses. 



 

dimensions.  The high-degree of multi-dimensionality was due to the item development 

process.  The items were generated primarily from existing asthma symptoms scales, which 

had a moderate degree of content overlap; subfactors and doublets were needed to account 

for redundancy in content.  After substantive review, one item was selected from each 

doublet or subfactor to remain on the scale resulting in the calibration of an 18-item 

unidimensional model (an additional item was set aside following calibration yielding the 17-

item Pediatric Asthma Impact Scale (PAIS; Yeatts et al., 2010)). 

We now re-visit and re-estimate the models described by Yeatts et al. (2010) to 

illustrate the utility of logistic approximations of marginal trace lines.  Specifically, the 

techniques discussed here allow the original 33-item bifactor model to have marginal trace 

lines for all items with slope parameters on more than one dimension.  Following guidelines 

used by Yeatts et al (2010), items are set aside for local dependence and the remaining 

unidimensional subset of 18-items is calibrated.  This process allows for the comparison of 

item parameters, EAPs, and posterior standard deviations between the logistic 

approximations of marginal trace lines and the univariate IRT model with the same final set 

of items. 

Re-evaluating an Asthma Symptoms Scale 

 The final factor analytic model reported by Yeatts, et al (2010) was used to guide the 

current analyses.  Specifically, Yeatts et al. report 34 items loading on one primary 

dimension with five doublets (e.g., asthma attacks, trouble sleeping, hospital/emergency 

room visits, etc.), and two secondary factors best described as being “scared or worried” by 

having asthma and difficulties with “sports or exercise” due to asthma.  The present analyses 

fit this same model to the original asthma symptoms items using the software program 
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IRTPRO and the two-tier algorithm for item parameter estimation (an item reported by 

Yeatts et al. that cross-loaded on three dimensions was set aside).    

 Table 9 provides the slope parameters for this 8-dimensional model.  A few examples of 

conditional slopes may illustrate the challenge in using bifactor models in scale development 

scenarios.  Consider the items “I had trouble breathing because of my asthma” and “I felt out 

of breath because of my asthma.” Both items had relatively strong primary-dimension slopes 

(3.18 and 2.75, respectively) and weak, though significant secondary dimension slopes (1.13, 

each).  This information alone may make for a challenging interpretation of the relation 

between item responses and the primary dimension; however, after computing the marginal 

trace lines and logistic approximations (see Table 9 for conditional and marginal slopes) it is 

clear that this weak secondary factor has little influence on the marginal slopes for the 

primary dimensions (marginal slopes = 2.65 and 2.29, respectively).  Use of the marginal 

slope parameters in this case suggests that either item would be useful in a final scale for 

uncovering information regarding the latent variable. 

 While the previous item pair was indicative of relatively weak local dependence, the item 

pair “I went to the hospital for my asthma” and “I went to the emergency room for my 

asthma” had evidence of strong local dependence (secondary slopes = 3.31, each), though 

each is only moderately related to the primary dimension (primary slopes = 2.00 and 1.96).  

However, integrating over the secondary dimension illustrates how misleading conditional 

slopes may be as the marginal trace lines for both items are weak and indicate a relatively 

weak relationship with the primary dimension (marginal slopes = 0.91 and 0.90, 

respectively).  With knowledge of the marginal slope parameter, there may be little utility in 

including either item in a scale measuring asthma symptoms. 



 

Table 9. A comparison of conditional and marginal slope parameters for 33 asthma symptoms items. 

Item amarginal a1 a2 a3 a4 a5 a6 a7 a8 

I was scared at night because of 
my asthma. 1.85 2.20 1.09 --- --- --- --- --- --- 

I felt scared that I might have 
trouble breathing because of my 
asthma. 

1.90 2.09 0.78 --- --- --- --- --- --- 

I worried I would have an asthma 
attack. 1.52 1.95 1.36 --- --- --- --- --- --- 

I was scared that I might have to 
go to the emergency room or 
hospital because of my asthma. 

1.53 1.86 1.17 --- --- --- --- --- --- 

I worried that other people would 
not know what to do if I had an 
asthma attack. 

1.11 1.48 1.51 --- --- --- --- --- --- 

It was hard for me to play sports 
or exercise because of my asthma. 1.91 2.71 --- 1.72 --- --- --- --- --- 

I had trouble playing with other 
kids because of my asthma. 2.06 2.27 --- 0.79 --- --- --- --- --- 

It was hard for me to play outside 
because of my asthma. 1.87 2.19 --- 1.03 --- --- --- --- --- 

I limited my activities because of 
asthma. 1.70 2.15 --- 1.32 --- --- --- --- --- 

I was unable to take part in active 
sports, like running because of my 
asthma. 

1.41 1.80 --- 1.34 --- --- --- --- --- 

I felt short of breath when I did 
active sports because of my 
asthma. 

1.55 1.70 --- 0.77 --- --- --- --- --- 

Asthma attacks bothered me. 1.87 2.55 --- --- 1.57 --- --- --- --- 

I had asthma attacks. 1.62 2.20 --- --- 1.57 --- --- --- --- 

I had trouble breathing because of 
my asthma. 2.65 3.18 --- --- --- 1.13 --- --- --- 

I felt out of breath because of my 
asthma. 2.29 2.75 --- --- --- 1.13 --- --- --- 

I had trouble walking because of 
my asthma. 2.01 2.64 --- --- --- --- 1.44 --- --- 

I had trouble talking because of 
my asthma. 1.61 2.11 --- --- --- --- 1.44 --- --- 

I went to the hospital for my 
asthma. 0.91 2.00 --- --- --- --- --- 3.31 --- 

I went to the emergency room for 
my asthma. 0.90 1.96 --- --- --- --- --- 3.31 --- 

I had trouble sleeping at night 
because of my asthma. 2.01 3.01 --- --- --- --- --- --- 1.90 

I woke up because of my asthma. 1.77 2.66 --- --- --- --- --- --- 1.90 

        (Continued) 
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Item amarginal a1 a2 a3 a4 a5 a6 a7 a8 

My asthma bothered me. --- 2.46 --- --- --- --- --- --- --- 

I felt wheezy because of my asthma. --- 2.13 --- --- --- --- --- --- --- 

It was hard to take a deep breath because 
of my asthma. --- 2.10 --- --- --- --- --- --- --- 

My chest felt tight because of my asthma. --- 1.87 --- --- --- --- --- --- --- 

My asthma was really bad. --- 1.72 --- --- --- --- --- --- --- 

 
I was bothered by the amount of time I 
spent wheezing. 

 
--- 

 
1.86 

 
--- 

 
--- 

 
--- 

 
--- 

 
--- 

 
--- 

 
--- 

My body felt bad when I was out of 
breath. 
 

--- 1.83 --- --- --- --- --- --- --- 

My asthma bothered me when I was with 
my friends. --- 1.55 --- --- --- --- --- --- --- 

I missed school because of asthma. 
 --- 1.54 --- --- --- --- --- --- --- 

I coughed because of my asthma. 
 --- 1.47 --- --- --- --- --- --- --- 

I got tired easily because of my asthma. --- 1.39 --- --- --- --- --- --- --- 

It was hard for me to play with pets 
because of my asthma. --- 1.15 --- --- --- --- --- --- --- 

 

Note: All conditional slope estimates are more than twice their standard errors



 

 Next, following the scale construction techniques described by Yeatts et al. (2010), a 

unidimensional subset of items was selected using the bifactor model for guidance.  

Specifically, Yeatts et al. (2010) selected a single item from each secondary factor based on 

the strength of the primary dimension slope or based on substantive content review.  Both the 

“hospital” and “emergency room” items were set aside. This process resulted in the 

unidimensional calibration of 18 remaining items. 

 Table 10 provides a comparison between the conditional MIRT or marginal slope 

parameters and the univariate IRT slope parameters.  The first six entries list the marginal 

slope parameters for the six items selected from secondary factors. The remaining twelve 

items (with no secondary dimensions) have their conditional slopes listed.  These marginal 

and conditional slope parameters may be compared to the slope parameters resulting from the 

unidimensional calibration of the same 18 items.  If the bifactor model accounts for local 

dependence among subsets of items, then the marginal trace lines should closely correspond 

to the univariate IRT slope parameter estimates.  Likewise, slopes for items modeled in the 

bifactor model that were only represented by a single dimension should be close to the 

estimates from the unidimensional IRT model.   

 Not surprisingly, differences between marginal or conditional slope parameters (and 

thresholds, see Table 11) and unidimensional IRT slopes and small.  The average slope 

parameter value difference between marginal/conditional and univariate slopes is -0.05, 

suggesting that the process of computing marginal slopes and logistic approximations may 

re-create the slope and threshold parameters from a unidimensional calibration.  However, 

the three items with the largest parameter estimates for the unidimensional IRT model and 

for the conditional/marginal model were also the three items with the largest slope 
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differences (-0.29 to -0.16), which may be evidence for unmodeled local dependence, though 

the increase in slope parameters is minor in magnitude.  



 

Table 10. A comparison of conditional, marginal, and univariate slope parameters for 
33 asthma symptoms items. 

Item amarginal a1 aunivariate 
Slope 

Difference 
I had trouble breathing because of my 
asthma. 2.65 --- 2.94 -0.29 

I had trouble walking because of my 
asthma. 2.01 --- 1.96 0.05 

I had trouble sleeping at night because of 
my asthma. 2.01 --- 2.00 0.01 

It was hard for me to play sports or 
exercise because of my asthma. 1.91 --- 2.00 -0.09 

I felt scared that I might have trouble 
breathing because of my asthma. 1.90 --- 1.93 -0.03 

I had asthma attacks. 1.62 --- 1.59 0.03 

My asthma bothered me. --- 2.46 2.64 -0.18 

I felt wheezy because of my asthma. --- 2.13 2.29 -0.16 

It was hard to take a deep breath because of 
my asthma. --- 2.10 2.15 -0.05 

My chest felt tight because of my asthma. --- 1.87 1.97 -0.10 

I was bothered by the amount of time I 
spent wheezing. --- 1.86 1.89 -0.03 

My body felt bad when I was out of breath. --- 1.83 1.86 -0.03 

My asthma was really bad† --- 1.72 1.75 -0.03 

My asthma bothered me when I was with 
my friends. --- 1.55 1.56 -0.01 

I missed school because of asthma. --- 1.54 1.50 0.04 

I coughed because of my asthma. --- 1.47 1.54 -0.07 

I got tired easily because of my asthma. --- 1.39 1.42 -0.03 

It was hard for me to play with pets 
because of my asthma. --- 1.15 1.13 0.02 

† indicates an item set aside from the PAIS due to gender DIF. 
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Table 11. A comparison of marginal and univariate thresholds for the reduced 18-item 
scale. 
 Marginal/Conditional Thresholds 

Item b1 b2 b3 b4 

I coughed because of my asthma. -1.36 -0.53 0.60 1.44 

My chest felt tight because of my asthma. -1.07 -0.46 0.67 1.39 

I had trouble breathing because of my asthma. -0.92 -0.36 0.82 1.51 

My body felt bad when I was out of breath. -0.97 -0.33 0.83 1.52 

My asthma bothered me. -0.96 -0.33 0.84 1.52 
I felt scared that I might have trouble breathing 
because of my asthma. -0.82 -0.13 1.05 1.85 

I got tired easily because of my asthma. -1.04 -0.24 1.09 2.12 
It was hard to take a deep breath because of my 
asthma. -0.66 -0.01 0.97 1.63 

I felt wheezy because of my asthma. -0.64 0.00 1.09 1.89 
It was hard for me to play sports or exercise because 
of my asthma. -0.50 0.06 1.15 1.78 

My asthma was really bad. -0.94 -0.14 1.43 2.31 
I was bothered by the amount of time I spent 
wheezing. -0.52 0.11 1.19 1.91 

I had trouble sleeping at night because of my asthma. -0.09 0.48 1.31 1.87 

My asthma bothered me when I was with my friends. -0.18 0.49 1.83 2.85 

I had asthma attacks. 0.34 0.93 1.87 2.60 

I missed school because of asthma. 0.34 0.83 1.93 2.56 

I had trouble walking because of my asthma. 0.59 1.14 1.86 2.63 
It was hard for me to play with pets because of my 
asthma. 0.43 1.19 2.18 3.00 

   (Continued) 
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 Univariate Thresholds  

Item b1 b2 b3 b4 bseverity 

I coughed because of my asthma. -1.33 -0.54 0.55 1.35 0.01 

My chest felt tight because of my asthma. -1.06 -0.47 0.61 1.31 0.09 

I had trouble breathing because of my asthma. -0.91 -0.38 0.75 1.41 0.20 

My body felt bad when I was out of breath. -0.97 -0.36 0.77 1.46 0.22 

My asthma bothered me. -0.94 -0.34 0.78 1.43 0.23 
I felt scared that I might have trouble breathing 
because of my asthma. -0.83 -0.17 0.97 1.78 0.42 

I got tired easily because of my asthma. -1.03 -0.26 1.04 2.04 0.43 
It was hard to take a deep breath because of my 
asthma. -0.67 -0.04 0.91 1.56 0.44 

I felt wheezy because of my asthma. -0.65 -0.04 1.02 1.79 0.51 
It was hard for me to play sports or exercise because 
of my asthma. -0.53 0.00 1.07 1.69 0.55 

My asthma was really bad. -0.94 -0.17 1.37 2.24 0.61 
I was bothered by the amount of time I spent 
wheezing. -0.54 0.08 1.13 1.85 0.62 

I had trouble sleeping at night because of my asthma. -0.13 0.42 1.26 1.86 0.85 

My asthma bothered me when I was with my friends. -0.21 0.45 1.78 2.78 1.17 

I had asthma attacks. 0.28 0.86 1.82 2.64 1.38 

I missed school because of asthma. 0.30 0.80 1.91 2.56 1.38 

I had trouble walking because of my asthma. 0.53 1.08 1.82 2.64 1.49 
It was hard for me to play with pets because of my 
asthma. 0.41 1.17 2.16 2.99 1.68 

 
 
Note: Items were arrainged by order of severity according to the univariate thresholds (i.e., 
bseverity).  Using the expected score curve for each graded response item, the “psuedo-
threshold” was computed for each item and then sorted according to items most likely to be 
endorssed to least likely. The single severity parameter is the location on the latent variable 
where a score in the middle response category is most likely.  For most response functions 
bseverity is similar to the average of the univariate thresholds.



 

 Finally, a score translation table is provided (Table 12).  Scaled scores for summed scores 

may be compared between the 18-item unidimensional IRT model and the 18-item MIRT 

model with logistic approximations of six items from secondary factors.  Given findings in 

Chapter 3, one would expect that the scores and posteriors would be close between these two 

methods, however, rather than assuming known item parameters and comparisons between 

the two-tier method for bifactor models and the unidimensional use of marginal trace lines, in 

this case item parameters are being estimated for the unidimensional model and are being 

compared to items with marginal trace lines.   

 Given the key differences between the Chapter 3 scoring conditions and the current 

application, score differences appear to be as minor as previously reported. Specifically, 

scores and posterior standard deviations were similar using the unidimensional IRT model or 

the marginal trace line approach.  Across the range of summed scores, the average difference 

in EAP estimates was 0.04 and none differred by more than 0.06 (e.g., an individual with a 

summed score of 64 would received a scaled score 0.06 standard deviations higher using the 

unidimensional slope estimates rather than the marginal estimates).  Similarily, both scoring 

methods resulted in nearly the same precision estimates.  Across the range of the latent 

variable, the average differenece in score precision was 1.6% (with the marginal method 

resulting in less precise scores), the maximum difference was 3.5%, and overall score 

reliability was quite similar (marginal reliability = 0.927 and 0.930, for the marginal slope 

and unidimensional IRT models, respectively). 
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Table 12. Marginal/Conditional and Univariate EAPs and SDs for 18 Asthma Symptoms Items. 
 Marginal/Conditional  Univariate     
 Summed 

Score 
  

EAP 
  

SD 
  

EAP 
 

SD 
 EAP  

Difference 
SD 

Difference 
0 -2.27 0.50  -2.26 0.50  -0.01 0.00 
1 -1.93 0.42  -1.91 0.41  -0.01 0.01 
2 -1.76 0.40  -1.75 0.39  -0.01 0.01 
3 -1.59 0.37  -1.58 0.36  -0.01 0.01 
4 -1.45 0.35  -1.45 0.34  -0.01 0.01 
5 -1.33 0.33  -1.33 0.32  0.00 0.01 
6 -1.22 0.31  -1.22 0.30  0.00 0.01 
7 -1.12 0.30  -1.12 0.29  0.00 0.01 
8 -1.03 0.29  -1.03 0.28  0.01 0.01 
9 -0.94 0.28  -0.95 0.27  0.01 0.01 

10 -0.86 0.27  -0.87 0.27  0.01 0.01 
11 -0.79 0.27  -0.80 0.26  0.01 0.01 
12 -0.71 0.26  -0.73 0.26  0.01 0.01 
13 -0.64 0.26  -0.66 0.25  0.02 0.01 
14 -0.57 0.26  -0.59 0.25  0.02 0.01 
15 -0.51 0.26  -0.53 0.25  0.02 0.01 
16 -0.44 0.25  -0.46 0.25  0.02 0.01 
17 -0.38 0.25  -0.40 0.24  0.02 0.01 
18 -0.32 0.25  -0.34 0.24  0.03 0.01 
19 -0.26 0.25  -0.28 0.24  0.03 0.01 
20 -0.20 0.25  -0.22 0.24  0.03 0.01 
21 -0.14 0.25  -0.17 0.24  0.03 0.01 
23 -0.02 0.25  -0.11 0.24  0.03 0.01 
24 0.04 0.25  -0.05 0.24  0.03 0.01 
25 0.09 0.25  0.00 0.24  0.03 0.01 
26 0.15 0.24  0.06 0.24  0.04 0.01 
27 0.20 0.24  0.11 0.24  0.04 0.01 
28 0.26 0.24  0.17 0.24  0.04 0.01 
29 0.31 0.24  0.22 0.24  0.04 0.01 
30 0.37 0.24  0.27 0.24  0.04 0.01 
31 0.42 0.24  0.33 0.24  0.04 0.01 
32 0.48 0.24  0.38 0.24  0.04 0.01 
33 0.53 0.24  0.43 0.24  0.04 0.01 
34 0.58 0.24  0.48 0.24  0.05 0.01 
35 0.64 0.24  0.54 0.24  0.05 0.01 
36 0.69 0.24  0.59 0.24  0.05 0.00 

(Continued)
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 Marginal/Conditional  Univariate     
Summed 

Score 
  

EAP 
  

SD 
   

EAP 
  

SD 
 EAP  

Difference 
SD 

Difference 
37 0.74 0.24  0.69 0.24  0.05 0.01 
38 0.79 0.24  0.74 0.23  0.05 0.00 
39 0.85 0.24  0.80 0.23  0.05 0.00 
40 0.90 0.24  0.85 0.23  0.05 0.00 
41 0.95 0.24  0.90 0.23  0.05 0.00 
42 1.00 0.24  0.95 0.23  0.05 0.00 
43 1.05 0.24  1.00 0.23  0.05 0.00 
44 1.11 0.24  1.05 0.23  0.05 0.00 
45 1.16 0.24  1.11 0.23  0.05 0.00 
46 1.21 0.24  1.16 0.24  0.05 0.00 
47 1.27 0.24  1.21 0.24  0.05 0.00 
48 1.32 0.24  1.26 0.24  0.06 0.00 
49 1.37 0.24  1.32 0.24  0.06 0.00 
50 1.43 0.24  1.37 0.24  0.06 0.00 
51 1.48 0.24  1.43 0.24  0.06 0.00 
52 1.54 0.25  1.48 0.24  0.06 0.00 
53 1.60 0.25  1.54 0.24  0.06 0.00 
54 1.66 0.25  1.60 0.25  0.06 0.00 
55 1.71 0.25  1.66 0.25  0.06 0.00 
56 1.78 0.26  1.72 0.25  0.06 0.00 
57 1.84 0.26  1.78 0.26  0.06 0.00 
58 1.90 0.26  1.84 0.26  0.06 0.00 
59 1.97 0.27  1.91 0.27  0.06 0.00 
60 2.04 0.27  1.98 0.27  0.06 0.00 
61 2.11 0.28  2.05 0.28  0.06 0.00 
62 2.18 0.28  2.13 0.28  0.06 0.00 
63 2.26 0.29  2.21 0.29  0.06 0.00 
64 2.35 0.30  2.29 0.30  0.06 0.00 
65 2.43 0.31  2.38 0.31  0.06 0.00 
66 2.53 0.32  2.48 0.32  0.05 0.00 
67 2.63 0.33  2.58 0.33  0.05 0.00 
68 2.74 0.34  2.69 0.35  0.05 0.00 
69 2.86 0.36  2.81 0.36  0.05 0.00 
70 3.01 0.38  2.96 0.38  0.05 0.00 
71 3.17 0.40  3.13 0.40  0.04 0.00 
72 3.43 0.45  3.39 0.45  0.04 0.00 

    Note:  EAP differences were computed using more decimals than shown in the rounded values       
    in the table, accounting for apparent discrepancies.



 

Comparing the Logistic Approximation and Two-Tier Algorithm 

 This application and results from Chapter 3 indicate that IRT-scores using logistic 

approximations of marginal trace lines are equivalent to scores computed using the two-tier 

algorithm when only a single item is used from each secondary dimension.  This section 

provides more detail on the key differences between the two methods.  Consider a bifactor 

model for binary responses to items that are influenced by a primary dimension θi and K 

secondary dimensions θj.  Cai (2010, p. 607-608) notes that the contribution to the marginal 

likelihood may be approximated by quadrature points Q: 
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where Lk is the product of the θi and θj trace surfaces for responses to items on the kth 

secondary dimension.  It is convenient to consider the expected score on the primary 

dimension from a set of responses to items on the secondary dimension k as 
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and the product of all Eik over K secondary dimensions forms the marginal likelihood for the 

primary dimension as shown in (16).  In other words, Cai integrates over the secondary 

dimension in the likelihood formed as the product of the IRT trace surfaces belonging to each 

secondary dimension.   

By comparison, the method of using logistic approximations of marginal trace lines 

initially proposed in Chapter 3 formed the contribution to the marginal likelihood using the 

marginal trace line of each item from all secondary dimension θj: 
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where 
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The difference in the two techniques is that the two-tier algorithm simultaneously considers 

all items belonging to a secondary dimension and then integrates over the secondary 

dimension to form the contribution to the marginal likelihood for each secondary dimension, 

while the marginal trace line technique approximates the integral for each given trace surface 

regardless of whether or not an item belongs to a particular secondary dimension.  Thus, the 

marginal trace line technique of using all items from all secondary dimensions ignores local 

dependence and improperly weights the marginal likelihood if more than one item is used 

from any secondary cluster.  

 The slight difference between the way the marginal likelihoods are formed using the two-

tier algorithm and the marginal trace lines is compounded when there are both many items 

within each secondary dimension and many secondary dimensions.  In both techniques, 

products of Eik and Tmarginal are used to form the marginal likelihood, but because the 

marginal from a likelihood computed from more than one item is not the same as the product 

of the marginal trace lines for more than one item, Eik will not equal Tmarginal.  However, if a 

single item is considered from each secondary dimension, then Eik will be equivalent to 

Tmarginal because the integration occurs for the same trace surface.  In other words, the 

expected score curve on the primary dimension for a single item from a secondary dimension 

Eik is the marginal trace line Tmarginal.  Thus, when scoring tests, selecting a single item from 

each secondary dimension produces equivalent marginal likelihoods, and any difference in 

IRT-scores or SDs will be due entirely to the logistic approximation. 

 



 

 

CHAPTER 5 

CONCLUSIONS 

 As the use of bifactor models gains popularity, test analysts will be increasingly faced 

with the challenge of interpreting slope parameter estimates that must be made conditional on 

other dimensions.  The present work provides a useful method to ease interpretability of the 

relation between an item response and the primary dimension by computing marginal trace 

lines for items represented by more than one dimension.  In addition, findings suggest that a 

logistic function, common in many applications of item response theory, closely 

approximates the marginal trace line.  In particular, the fit the logistic approximation was 

compared to marginal trace lines computed across a wide range of varying bifactor parameter 

estimates, and under each condition the marginal trace line was closely approximated by a 

logistic approximation. 

 Additionally, a method of IRT-based scoring is proposed that uses logistic 

approximations of marginal trace lines to compute unidimensional scaled scores and 

posterior standard deviations for the primary dimension.  Using a variety of bifactor models 

which varied in the degree of dimensionality, test length, and factor loadings, IRT-scores and 

standard deviation estimates were compared between the logistic approximation of marginal 

trace lines and the two-tier algorithm. Contrary to initial hypotheses, it was shown that use of 

the logistic approximations to conduct item response theory-based scoring should be 

restricted to selecting a single item from each secondary factor in order to control for local 

dependence.  Given the restriction, the contribution to the marginal likelihood for the primar



 

dimension is the same using either marginal trace lines or the two-tier algorithm, a MIRT-

based estimation procedure which reduces integration to two-dimensions for bifactor models.  

Subsequently, the two methods result in nearly equivalent scaled scores and posterior 

standard deviation estimates.  A real-data application using a bifactor model is provided 

which illustrates the convenience of scoring a single dimension using the logistic 

approximation of marginal trace lines and the utility of considering marginal slope 

parameters in item selection and scale development scenarios.  

Regarding scoring, it was hypothesized that some computational gains may accrue 

from the use of marginal trace lines in a unidimensional fashion rather than multidimensional 

models estimated with the two-tier algorithm.  Following the findings in Chapter 4, it is clear 

that given the restriction that a single item must be selected from each secondary factor to 

control for local dependence, there are rare opportunities for improvement in computational 

efficiency.  However, in computer adaptive testing scenarios in which the restriction is 

imposed that only one item from any locally dependent cluster may be used for a particular 

respodent, scores on the primary dimension may be obtained more simply using 

unidimensional marginal trace lines rather than full implementation of a multidimensional 

adaptive test. 
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Appendix I: 

Marginal slope parameters from combinations of primary and secondary dimension slopes 

Secondary  
Primary  
 

4.50 4.25 4.00 3.75 3.50 3.25 3.00 2.75 

4.50 1.59 1.67 1.76 1.86 1.97 2.09 2.22 2.37 

4.25 1.50 1.58 1.66 1.75 1.86 1.97 2.10 2.23 

4.00 1.41 1.49 1.56 1.65 1.75 1.85 1.97 2.10 

3.75 1.33 1.39 1.47 1.55 1.64 1.74 1.85 1.97 

3.50 1.24 1.30 1.37 1.45 1.53 1.62 1.73 1.84 

3.25 1.15 1.21 1.27 1.34 1.42 1.51 1.60 1.71 

3.00 1.06 1.11 1.17 1.24 1.31 1.39 1.48 1.58 

2.75 0.97 1.02 1.08 1.14 1.20 1.27 1.36 1.45 

2.50 0.88 0.93 0.98 1.03 1.09 1.16 1.23 1.31 

2.25 0.80 0.84 0.88 0.93 0.98 1.04 1.11 1.18 

2.00 0.71 0.74 0.78 0.83 0.87 0.93 0.99 1.05 

1.75 0.62 0.65 0.68 0.72 0.76 0.81 0.86 0.92 

1.50 0.53 0.56 0.59 0.62 0.66 0.70 0.74 0.79 

1.25 0.44 0.46 0.49 0.52 0.55 0.58 0.62 0.66 

1.00 0.35 0.37 0.39 0.41 0.44 0.46 0.49 0.53 

       (Continued) 
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Secondary  
Primary  

 
2.50 2.25 2.00 1.75 1.50 1.25 1.00 

4.50 2.53 2.71 2.91 3.14 3.37 3.63 3.88 

4.25 2.39 2.56 2.75 2.96 3.19 3.42 3.66 

4.00 2.25 2.41 2.59 2.79 3.00 3.22 3.45 

3.75 2.11 2.26 2.43 2.61 2.81 3.02 3.23 

3.50 1.97 2.11 2.27 2.44 2.62 2.82 3.02 

3.25 1.83 1.96 2.10 2.26 2.44 2.62 2.80 

3.00 1.69 1.81 1.94 2.09 2.25 2.42 2.59 

2.75 1.55 1.66 1.78 1.92 2.06 2.22 2.37 

2.50 1.41 1.51 1.62 1.74 1.87 2.01 2.15 

2.25 1.27 1.36 1.46 1.57 1.69 1.81 1.94 

2.00 1.12 1.21 1.30 1.39 1.50 1.61 1.72 

1.75 0.98 1.05 1.13 1.22 1.31 1.41 1.51 

1.50 0.84 0.90 0.97 1.05 1.12 1.21 1.29 

1.25 0.70 0.75 0.81 0.87 0.94 1.01 1.08 

1.00 0.56 0.60 0.65 0.70 0.75 0.81 0.86 
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