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ABSTRACT
LINDSEY ALLEN HO: NOVEL STATISTICAL METHODS FOR THE

STUDY DESIGN AND ANALYSIS OF GENOME-WIDE ASSOCIATION
STUDIES.

(Under the direction of Dr. Ethan M. Lange.)

In Chapter 2, we compare the power of association studies using cases and screened

controls to studies that incorporate free public control genotype data. We describe a

two-stage replication-based design, which uses free public control genome-wide genotype

data in the first stage, and follow-up genotype data on study controls in the second

stage. We assess the impact of systematic ancestry differences and batch genotype

effects. We show that the proposed two-stage replication-based design can dramatically

increase statistical power and decrease cost of large-scale genetic association studies.

In Chapter 3, we describe and compare conventional haplotype analysis approaches

to a number of haplotype sharing measures. We evaluate the impact of the inclusion of

markers in linkage disequilibrium (LD) on power and assess the utility of recoding scores

using thresholds. Finally, we develop a quick and novel approach based on categorizing

similar haplotypes into contingency tables. These alternative methods are compared

via simulation assuming a rare-recessive disorder caused by a small number of high-

penetrant mutations within a single disease locus. We found that incorporating allele

frequencies and dichotomizing scores increased power. Conversely, using fixed windows

and excluding single nucleotide polymorphisms (SNPs) in low LD or with low minor

allele frequencies decreased power. Finally we show that our novel clustering algorithm

had competitive power than permutation testing.

In Chapter 4, we describe an alternative method to single SNP analyses of single

or multiple candidate genes that is designed to increase power when multiple SNPs are

associated with the trait. Our method is based on forward selection in regression that
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provides a joint test of the statistical significance of a gene. Within the framework of a

simulated candidate gene study as well as a study of related candidate genes, we assess

the power of this method by simulating a quantitative trait and compare our proposed

method to single SNP and other multiple SNP models. Our results suggest that our

method is competitive to conventional methods and may be more powerful when SNP

x SNP interactions exist.
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CHAPTER 1

INTRODUCTION AND

LITERATURE REVIEW

1.1 Introduction

A brief and directed review of seminal analytical techniques that have aided researchers

in revealing genetic determinants of disease is contained herein, as well as study design

and statistical issues surrounding these approaches. Linkage analysis is discussed in

Section 1.2, association studies are reviewed in Section 1.3, and a concise and pertinent

list of terms and definitions used in the field of genetics is presented in Section 1.4.

1.2 Linkage analysis

Linkage analysis has traditionally been used in determining disease genes, which in-

volves proposing a genetic model a priori that explains disease inheritance and sub-

sequently observe disease status and marker genotype patterns in pedigrees (Lander

and Schork, 1994; Ellsworth and Manolio, 1999c). Linkage analysis has particularly

been successful with monogenic Mendelian diseases (Jimenez-Sanchez et al., 2001;

Hirschhorn and Daly, 2005). Pritchard (2001) and Reich and Lander (2001) have



observed that these monogenic diseases are often due to rare variants (Hirschhorn and

Daly, 2005). The mapping resolution of linkage analyses has been reported to be no

more than about 1 centiMorgan, on average 1,000 kilobases (Boehnke, 1994).

In contrast to simple Mendelian disorders, common diseases may be the result of the

total effect of and/or interactions among multiple genetic and environmental factors

(Hirschhorn and Daly, 2005; Wang et al., 2005). As a result, any particular causal

gene could have an overall modest effect on disease risk. Furthermore, there have

been several reports that linkage analysis is not well powered to uncover these common

genetic variants (Risch and Merikangas, 1996; Risch, 2000; Cardon and Bell, 2001;

Tabor et al., 2002).

1.3 Association studies

Association studies are a strategic complement to linkage studies and, unlike linkage

studies, are powered to identify common genetic variants underlying complex diseases

(Risch and Merikangas, 1996; Cardon and Bell, 2001; Tabor et al., 2002; Carlson et al.,

2004; Hirschhorn and Daly, 2005). One way to analyze data from an association study

is to compare unrelated diseased cases and controls with respect to their frequencies of

alleles or genotypes at a given marker. It is also possible to use family-based controls

as a way to control for population stratification (Hirschhorn and Daly, 2005).

1.3.1 Population stratification

Population stratification is the existence of multiple subgroups within a population

such that the disease prevalence within each subgroup is different (Hirschhorn and

Daly, 2005). In association studies, population stratification can result in the overrep-

resentation of one or more subgroups in the sampled disease cases. This can result
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in a false-positive test at a given genetic marker if the allele frequencies differ in the

different subgroups. However, there has been a considerable amount of debate as to the

extent to which population stratification results in false-positives (Cardon and Palmer,

2003; Marchini et al., 2004; Clayton et al., 2005; Berger et al., 2006).

1.3.2 Family-based sampling designs

To address the possible complications arising from population stratification, family-

based sampling designs have been developed to choose the optimal control population.

In the parent-parent-affected offspring trio design, genotype data is collected on af-

fected individuals and their parents, and information is used on the alleles transmitted

and not transmitted from the parents to the affected offspring. The non-transmitted

alleles constitute the control sample, whereas in the unrelated case-control study de-

sign, individuals form the control sample. Several methods have been developed to

analyze such data (Falk and Rubinstein, 1987; Terwilliger and Ott, 1992; Spielman

et al., 1993; Spielman and Ewens, 1996), though it has been noted that Spielman and

Ewens’ (1996) transmission disequilibrium test (TDT), which has been widely used and

is essentially McNemar’s test of symmetry for paired data (McNemar, 1947), is subject

to technical artifacts due to laboratory difficulties (Mitchell et al., 2003; Hirschhorn

and Daly, 2005). In addition, the parent-parent-affected offspring trio design may be

biased toward ascertaining younger patients for late onset diseases (Hirschhorn and

Daly, 2005).

To circumvent this ascertainment bias for late onset diseases, the discordant sib

design was developed, which is a family-based association approach that matches an

affected individual with one or more unaffected siblings (Boehnke and Langefeld, 1998;

Horvath and Laird, 1998; Spielman and Ewens, 1998). In addition to being immune to

population stratification, the discordant sib design allows the control of shared envi-
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ronmental effects, assuming that siblings within a family shared the same environment.

However, despite the advantages, Horvath and Laird (1998), Morton and Collins (1998),

and Spielman and Ewens (1998) have reported that family-based association designs

only involving siblings are not as powerful as case-control studies.

1.3.3 Population-based sampling design: unrelated cases and

controls

The unrelated case-control study design, a traditional epidemiological tool, has been

easy and convenient for studying the relationship between putative genetic risk factors

and disease outcome (Schork et al., 2001), though the ease and convenience must be

considered in light of its caveats. Population based samples of a large number of affected

individuals (i.e. individuals with the disease or trait, cases) and a large number of

presumably well-matched unaffected individuals (i.e. individuals without the disease

or trait, controls) are collected and one way of evaluating statistical significance is to

examine the difference in observed frequencies of the cases’ and controls’ exposure to

the genetic risk factor. If significantly more cases than controls are exposed to the

genetic risk factor, then one may deduce that the genetic risk factor is involved in

disease pathogenesis, or protective to disease pathogenesis if significantly more controls

than cases are exposed.

The main assumption of genetic case-control studies is that the alleles at the locus

in question have a causal relationship with disease status (Schork and Chakravarti,

1996). It is further assumed that the genotyped alleles are either at the disease locus

or in linkage disequilibrium (LD) with the causal genetic variant. If the alleles are in

linkage equilibrium with the disease locus, then the causality assumption is questionable

(Schork and Chakravarti, 1996).

Unlike linkage studies that follow inheritance patterns of disease status and geno-
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typed markers within pedigrees, the unrelated case-control study design is population

based and relationships are unknown, i.e. in the case of haplotypes, information is not

captured on the evolution of haplotypes throughout time from the most recent common

ancestor. Furthermore, affection status is not followed over generations and analysis

rests upon correlations of current disease status with current genotypes (Balding, 2006).

1.3.4 Types of population association studies

Balding (2006) described four main types of population association studies, though

a particular study may exhibit characteristics from more than one type. Candidate

polymorphism studies investigate a particular polymorphism which is believed to be

involved in disease onset. In candidate gene studies, 5 to 50 single nucleotide polymor-

phisms (SNPs) within a gene are genotyped, the candidate gene being determined from

the results of a previous linkage or association study or from prior biological knowledge

about the gene’s function. Fine mapping studies often probe a candidate region of

1 to 10 megabases with hundreds of SNPs genotyped and possibly spanning 5 to 50

genes. Similar to candidate gene studies, an earlier linkage or association study may

have located the candidate region, though unlike candidate gene studies, fine mapping

covers a much wider region.

Genome-wide association (GWA) studies are the fourth type of population associa-

tion study. This approach searches the majority of the genome for genetic variants that

give rise to disease. Whereas candidate gene studies can be thought of as a hypothesis-

testing approach since positional or functional knowledge motivates these studies, GWA

studies represent a hypothesis-generating approach since the genomic location of disease

susceptibility variants is not assumed, but rather the aim is to uncover these variants

(Borecki and Suarez, 2001; Hirschhorn and Daly, 2005).

Previously, GWA studies were not reasonable to conduct because of the required

5



extensive labor and high cost (Hirschhorn and Daly, 2005). However, the decreasing

cost per genotype coupled with the improving technical ability to genotype at high-

throughput are making GWA studies a realistic alternative. As an example of high-

throughput, in Phase I of the International HapMap Project over one million SNPs

were genotyped in each of 269 DNA samples and in Phase II an additional 4.6 mil-

lion genotyped SNPs per DNA sample is the goal (International HapMap Consortium,

2005).

Commercially available high-throughput genotype platforms with genome-wide cov-

erage have been made available by companies such as Third Wave, Sequenom, ABI,

Illumina, Parallele, Affymetrix, and Perlegen. Each company utilizes a unique genotyp-

ing assay. These platforms allow the interrogation of a large number of genetic markers

on a sample of subjects with the use of robotic automation, though the cost to do so may

be restrictive. An example of such genotyping technologies is Illumina’s HumanHap300-

Duo and -Duo+ Genotyping BeadChips (www.illumina.com). The HumanHap300-Duo

accomodates two DNA samples simultaneously on more than 318,000 tag SNPs selected

from Phase I and II of the International HapMap Project. The two sample format os-

tensibly decreases experimental variability. In regions near a gene or in evolutionarily

conserved regions there is an increased density of tag SNPs.

1.3.5 Utility of the International HapMap Project in associa-

tion studies

When planning a GWA study, determining how many and which markers to genotype

is crucial to potential success, which can be aided by utilizing the haplotype map of

the International HapMap Project. This haplotype map reveals patterns of LD across

the entire human genome (International HapMap Consortium, 2005).

In particular, the aim of the International HapMap Project was to provide tools
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for genetic studies (e.g. candidate gene, linkage, and GWA studies) based on the ‘indi-

rect’ association approach. Collins et al. (1997) proposed this ‘indirect’ approach, in

which a set of genetic markers could be used to test for disease association in genomic

regions, and these markers would not necesarily be required to have a functional effect

on disease status. Subsequently, causal sequence variants could then be explored in

genomic regions where associations with disease have been previously found. On the

other hand, the ‘direct’ approach assesses disease association for each putative causal

variant across the entire genome (Risch, 2000). To locate candidate variants would

require sequencing the whole genome of many patient samples for a considerable cost

(Botstein and Risch, 2003).

The members of the International HapMap Consortium (2003) believe that the

indirect approach has the potential of outperforming the direct approach with respect

to capturing most human sequence variation, based upon ideas from human population

genetics. Kruglyak and Nickerson (2001) claim that about 90% of human sequence

variation consists of common variants. Furthermore, these common variants are the

result of a single mutation which ocurred at some point in time, so variants in close

proximity on the same chromosome are associated with the mutation. The indirect

approach capitalizes on these associations by using a small set of variants that represent

the LD patterns of common variation in the genome. Thus, it is not necessary to obtain

previous knowledge about functional variants in order to scan the regions of interest

(International HapMap Consortium, 2003). The hope is that a region or gene associated

with disease would be discovered even if the particular genetic marker tested is not

the causal variant. Additionally, the amount of genotyping (and hence the overall

study cost) would be significantly reduced since a subset of representative common

variants rather than the entire set would be genotyped. In terms of GWA studies,

Balding (2006) approximates that around 300,000 SNPs would capture a majority of

7



the common genetic variation in Caucasians and more SNPs for African poplations due

to increased genetic diversity.

1.3.6 Qualitative vs. quantitative phenotype

Phenotypes can be measured qualitatively or quantitatively. Qualitative phenotypes

are dichotomous, for example, presence or absence of a disease. A quantitative trait

is measurable and could contain discrete values (e.g. number of tumors) or could be

continuous (e.g. blood pressure). It is thought that the variation in quantitative traits

could be explained by genetic and/or environmental factors (Complex Trait Consor-

tium, 2003). Schork and Chakravarti (1996) describe qualitative traits as possibly

having multiple genetic and perhaps nongenetic determinants. It could be argued that

all traits could be considered quantitative since quantitative variables such as hormones

and protein amounts may be involved in disease pathogenesis. On the contrary, alleles

and mutations, which may underly disease onset or phenotypic expression, are discrete

in nature and thus it is not possible that all traits are quantitative.

The Complex Trait Consortium (2003) state that the same mapping strategies can

be used to search for causal loci in monogenic Mendelian disorders as well as for QTLs.

They view the classification of genetic effects as a continuum where on one end lies the

single gene effect of Mendelian diseases with a dichotomous outcome (i.e. affected or

unaffected). On the other end are quantitative traits that are influenced by multiple

genes, each with a small effect. In between these two poles are traits that are con-

trolled by multiple loci and possibly environmental determinants resulting in several

intermediate phenotypes.
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1.3.7 Common vs. rare causal genetic variants

As mentioned in sections 1.2 and 1.3, linkage analysis has been successful in mapping

rare genetic variants in monogenic Mendelian disorders whereas association studies are

more suited for detecting common alleles in complex diseases. However, two studies

have identified common variants using linkage analysis. Human leukocyte antigen was

suggested to be involved in type 1 diabetes (Concannon et al., 1998) and apolipoprotein

E was shown to play a role in late-onset Alzheimer’s disease, though an abundant

amount of references such as these may not exist.

A rough guide to variants considered common is having a minor allele frequency

above 5% (Balding, 2006). The Common Disease/Common Variant (CD/CV) idea,

proposed in the late 1990’s (Lander, 1996; Cargill et al., 1999; Chakravarti, 1999),

hypothesizes that common genetic variants are responsible for risk of common diseases.

Although several reports such as Corder et al. (1993), Bertina et al. (1994), and

Altshuler et al. (2000) support the CD/CV hypothesis, the extent to which it holds

remains unclear (Balding, 2006). Alternatively, multiple rare genetic variants may

contribute to complex diseases.

Rare variants may be more likely discovered in population isolates and founder

populations (e.g. Saami of Scandinavia, Laan and Pbo (1997)) due to their extensive

LD patterns. For example, it has been shown that there is considerable LD around

rare disease mutations in population isolates such as the Finns, Ashkenazi Jews, and

Mennonites (Risch, 2000). Moreover, for association tests power improves significantly

as LD increases. However, for these populations it may be unlikely to detect common

alleles (Wright et al., 1999).

Rare variants may be the result of a recent mutation and therefore restricted to

a single founder population or they may be the result of a historical mutation and

typically found in one major ethnic group (Risch, 2000). Thus, the same gene in other
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populations could be investigated for other functional variants associated with a similar

trait. If multiple functional variants are found, then this would strongly suggest a causal

relationship between the gene and trait.

On the other hand, common variants are probably present in many different pop-

ulations consisting of varying ethnicities (Risch, 2000). Positive associations between

a candidate variant and trait across multiple populations would imply causality. How-

ever, non-reproducibility would not necesarily refute a causal relationship since among

populations, gene expression may result in differing degrees of association.

1.3.8 Single SNP tests of association: unrelated cases and con-

trols

When SNPs are genotyped, there are several analytic approaches that can be employed.

In the genotype association test of 2 degrees of freedom, cases and controls can be clas-

sified in the rows and genotypes in the columns (Balding, 2006). For a diallelic SNP

with alleles ‘D’ and ‘d’, the possible genotypes are dd (homozygotes), Dd (heterozy-

gotes), and DD (homozygotes). Thus, the resulting contingency table is of dimension

2 × 3 and contains the respective cross classified counts. To assess the null hypothesis

of no association between disease status and genotype, either the Pearson’s 2 degree of

freedom χ2 test or Fisher’s exact test may be used. The latter is recommended if the

contingency table contains small expected cell counts. It is based on enumerating all

possible realizations of cell counts given the marginal totals, and so is computationally

burdensome. Both tests are readily available in standard statistical software programs.

There is widespread belief (Balding, 2006) that any particular causal SNP will often

approximately influence disease risk in an additive fashion. In other words, assuming ‘D’

is the causal disease allele, the risk of disease for a heterozygote Dd will be intermediate

between the homozygous risks of dd and DD, where the risk for homozygotes dd (i.e.
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those without any copy of the disease allele) is less than that of homozygotes DD (i.e.

those with two copies of the disease allele). The genotype association test described

above performs reasonably well in terms of power despite the underlying risks involved.

However, the allelic association test of 1 degree of freedom is more powerful than the

genotype association test if the genotype risks are additive. The construction of the 2

× 2 contingency table is as follows. Disease status constitutes the rows and alleles are

classified in the columns instead of genotypes, such that each subject contributes two

counts to any given cell. In particular, a homozygote dd will be counted twice in the d

allele column, similarly for a homozygote DD in the D allele column, and a heterozygote

Dd contributes one count to the d column and another to the D column. Pearson’s

1 degree of freedom χ2 statistic or Fisher’s exact test may be computed to test the

null hypothesis of no association. The main drawback of this approach is that alleles

within any given individual must be independent, or in genetics terms, Hardy-Weinberg

equilibrium (HWE) must hold in both cases and controls. Due to the assumption of

HWE and the observation that risk estimates are not interpretable, Sasieni (1997) does

not recommend the 1 degree of freedom allelic association test.

Using the 2 × 3 contingency table construction as described above, the Cochran-

Armitage test (Armitage, 1955) is yet another analytic option. This method tests for a

linear trend in the proportion of cases relative to the ‘ordered’ genotypes dd, Dd, and

DD. In the case of the additive genetic disease model, one would expect subjects with

two copies of the disease allele (i.e. genotype DD) to exhibit a higher proportion of cases

compared to individuals with zero copies (i.e. genotype dd), and those with one copy

(i.e. genotype Dd) to have an intermediate proportion of cases. The Cochran-Armitage

test is conservative and similar to the genotype association test, does not require the

assumption of HWE. It has good power for the additive model, though the farther from

the additive model, the more the power diminishes (Balding, 2006).
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1.3.9 Haplotype based approaches: motivations and difficul-

ties

Haplotypes have proven to be important in the fine-mapping of Mendelian disorders

(Schaid, 2004b). It is now the hope that haplotypes will facilitate the genetic discovery

and mapping of common diseases that are polygenic, unlike single-gene Mendelian

disorders. Haplotypes have been used in GWA studies, motivated by empirical results

suggesting that haplotype ‘blocks’ define the sequence variation throughout the genome,

in which the blocks are more conserved than in other regions (Daly et al., 2001; Jeffreys

et al., 2001; Patil et al., 2001; Gabriel et al., 2002).

Furthermore, McVean et al. (2004) offer strong evidence that recombination rates

are not uniformly distributed across the genome and that certain regions of the genome

are more likely to recombine (i.e. ‘hot’ spots) whereas other regions are less likely (i.e.

‘cold’ spots), resulting in areas of weak and strong LD, respectively.

Aside from the observation of haplotype blocks, there are several additional reasons

that suggest the utility of haplotypes. There are biological aspects of haplotypes.

Previously, genetic markers were widely spaced (Schaid, 2004a), and thus not capturing

the DNA sequence regions pertaining to biological function. Presently, the genotyping

of SNPs has been at a higher density, such that these genetic markers comprising

haplotypes are more representative of regions of biological function. Additionally, in

light of the central dogma, DNA sequence variation on a haplotype gives rise to the

linear arrangement of amino acids via transcription and translation, which subsequently

determines protein folding (Clayton et al., 2004). Furthermore, there are several reports

of a ‘super-allele’ (Schaid, 2004a), which is the result of multiple mutations on the same

haplotype that interact with each other to largely influence the observed phenotype

(Clark et al., 1998; Drysdale et al., 2000; Hollox et al., 2001).

The use of haplotypes to test for a trait of interest offers some statistical advan-
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tages. Schaid (2004a) has reviewed the literature on the statistical power of analyzing

haplotypes compared to single markers. It is difficult to directly compare the results

from various reports on the statistical power of analyzing haplotypes in contrast to

single markers, since investigations differ in their assumptions, though Schaid (2004a)

concludes the following. For quantitative traits, if there are more haplotypes than

causative SNPs (i.e. SNPs that influence the trait), among all the measured SNPs,

than single SNP tests are more powerful than haplotype based tests (Bader, 2001).

In addition, Long and Langley (1999) found that despite testing SNPs that were not

causal but rather in LD with a QTL, the single SNP tests were still more powerful.

On the other hand, for the dichotomous outcome of affecteds and unaffecteds in the

case-control setting, haplotype based tests are more powerful when the SNPs are in

LD with a causal variant (Akey et al., 2001). As described previously about common

complex diseases, several genetic variants may each contribute a portion to disease risk.

In terms of detecting these multiple associations, both the single marker and haplotype

based approaches lose power, though the latter suffers less (Slager et al., 2000). The

haplotype based tests offer the largest benefit in terms of power compared to the single

locus tests when the markers are in strong LD with the causal variants and not with

each other (Morris and Kaplan, 2002).

For haplotype methods, it is expected that surrounding the causal genetic variant

on the haplotypes of affected individuals (i.e. case haplotypes), there are significantly

longer stretches of DNA identical by descent (IBD) compared to randomly selected hap-

lotypes (Nolte, 2002). This is due to the inreased relatedness of the regions around the

predisposing mutation in the case haplotypes in contrast to randomly selected haplo-

types. Furthermore, the haplotype is the result of genetic drift and past mutational and

recombinational events, i.e. it is a reflection of evolution as it is transmitted through-

out generations. Therefore, approaches that measure the amount of sharing among
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haplotypes account for the evolutionary history of the sample (Beckmann et al., 2005),

whereas single locus tests do not.

Despite these reasons to employ haplotypes in gene mapping strategies, there are

several difficulties. First, including rare haplotypes in analyses inevitably increases the

degrees of freedom and thus reduces power (Balding, 2006). Second, in most cases

haplotypes are not directly measured and must be statistically inferred using unphased

genotype data. However, in order to empirically determine haplotype phase in the

laboratory, molecular haplotyping methods have been developed such as pyrosequencing

(Odeberg et al., 2002), intracellular ligation (McDonald et al., 2002), and clone-based

systematic haplotyping (Burgtorf et al., 2003), to name a few. Haplotyping methods

are not widely used because a relatively large number of samples cannot be processed

in a relatively short period of time, they are costly to implement, and technical issues

have not been fully addressed (Niu, 2004). Therefore, the current viable alternative is

to infer haplotypes using algorithms, though assessing the overall statistical significance

is problematic when there are phase uncertainties (Balding, 2006).

Third, the standard use of automated genotyping procedures unavoidably results in

ambiguities when scoring genotypes (Kang et al., 2004), which could lead to genotyping

errors since almost all genotyping machines assign a genotype despite the presence

of ambiguities (Niu, 2004). Thus, because of genotyping error, two haplotypes may

be similar yet not completely identical though they may share a common ancestor.

The dissimilarity may also be due to recombination events or mutations (Lange and

Boehnke, 2004). If both contain the causal variant, their separate effects on disease

risk may not be detectable unless they are jointly examined.
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1.4 Definitions

Alleles: “alternate forms of a gene or genetic locus that differ in DNA sequence”

(Ellsworth and Manolio, 1999a)

Base pair: The pair of nitrogenous bases, consisting of a purine linked by hydrogen

bonds to a pyrimidine, that connects the complementary strands of DNA or of hybrid

molecules joining DNA and RNA. The base pairs are adenine-thymine and guanine-

cytosine in DNA, and adenine-uracil and guanine-cytosine in RNA.

CentiMorgan (cM): “unit for expressing relative distance between genes or markers

on a chromosome equal to 1% recombination; one cM corresponds roughly to a physical

distance of one megabase (Mb, one million base pairs)” (Ellsworth and Manolio, 1999b)

Chromosome: A threadlike linear strand of DNA and associated proteins in the nu-

cleus of eukaryotic cells that carries the genes and functions in the transmission of

hereditary information.

Complex trait: “. . . refers to any phenotype that does not exhibit classic Mendelian

recessive or dominant inheritance attributable to a single gene locus.” (Lander and

Schork, 1994)

Crossover: see recombination

Deoxyribonucleic acid (DNA): “. . . a macromolecule that carries genetic informa-

tion and represents the molecular basis of heredity. . . There are four common nitroge-

nous bases in DNA: two purines—adenine (A) and guanine (G) and two pyrimidines—

cytosine (C) and thymine (T). The double-stranded molecule is twisted in the form of

a helix with a constant width maintained by restrictions to base pairing such that A

only pairs with T and G only pairs with C.” (Ellsworth and Manolio, 1999a)

Founder populations: “Populations that have been derived from a limited pool of

individuals within the last 100 or fewer generations.” (Hirschhorn and Daly, 2005)

“. . . and have undergone a demographic expansion with negligible migration afte foun-
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dation.” (Bourgain et al., 2000)

Gene: A hereditary unit consisting of a sequence of DNA that occupies a specific

location on a chromosome and determines a particular characteristic in an organism.

Genes undergo mutation when their DNA sequence changes.

Genetic drift: “The random fluctuation in allele frequencies as genes are transmitted

from one generation to the next.” (Cardon and Bell, 2001)

Genotype: The combination of alleles located on homologous chromosomes that de-

termines a specific characteristic or trait.

Genotyping: The process of determining the genotype of an individual by the use of

biological assays.

Haplotype: “The specific set of alleles observed on a single chromosome, or part of a

chromosome. . . ” (International HapMap Consortium, 2003)

Haplotyping: The process of determining the haplotypes of an individual by the use

of biological assays.

Hardy-Weinberg equilibrium: “Holds at a locus in a population when the two al-

leles within an individual are not statistically associated.” (Balding, 2006) or “The

binomial distribution of genotypes in a population, such that frequencies of genotypes

AA, Aa and aa will be p2, 2pq, and q2, respectively, where p is the frequency of allele A,

and q is the frequency of allele a. Hardy-Weinberg equilibrium applies in a population

when there are no factors such as migration or admixture that cause deviations from

p2, 2pq, and q2.” (Hirschhorn and Daly, 2005)

Heterozygote: An organism that has different alleles at a particular gene locus on

homologous chromosomes.

Homozygote: An organism that has the same alleles at a particular gene locus on

homologous chromosomes.

Identity by descent (IBD, see identity by state): “. . . the identity of two stretches
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of DNA due to inheritance from a common ancestor without recombinations and mu-

tations . . . ” (Nolte and te Meerman (2002)) or “Alleles that trace back to a shared

ancestor. For sibs, refers to inheritance of the same allele from a given parent.” (Risch,

2000)

Identity by state (IBS, see identity by descent): “Alleles are IBS if they are

simply of the same type.” (Schork and Chakravarti, 1996)

Linkage: “the proximity of multiple genes or markers on the same chromosome re-

duces the probability that recombination events will occur between them and increases

the probability that certain combinations of alleles at these genes or markers will be

inherited together as a linkage group or haplotype” (Ellsworth and Manolio, 1999b)

Linkage disequilibrium (see linkage equilibrium): “the nonrandom transmission

from parents to offspring of alleles from genes or markers that are located on the same

chromosome. Because alleles at tightly linked loci are often inherited together, linkage

disequilibrium is useful for detecting regions of the genome that historically have been

inherited as a linkage group and may help identify the approximate location of genes

that contribute to disease (fine mapping)” (Ellsworth and Manolio, 1999b)

Linkage equilibrium (see linkage disequilibrium): the converse of linkage dise-

quilibrium

Locus (plural: loci): “a position on a chromosome or segment of DNA, usually used

in reference to a gene or genetic marker” (Ellsworth and Manolio, 1999b)

Marker: “an identifiable physical location on a chromosome or DNA segment useful

in genome mapping and linkage analysis. Numerous types of sequences are considered

markers including functional genes, portions of expressed sequences (expressed sequence

tags or ESTs), short DNA segments that are detected by PCR (sequence-tagged sites

or STSs), microsatellites, restriction fragment length polymorphisms (RFLPs), and

single-nucleotide polymorphisms (SNPs)” (Ellsworth and Manolio, 1999b)
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Megabase (Mb): “unit of physical measurement for nucleic acids equal to one mil-

lion base pairs, roughly equivalent to a genetic distance of one centiMorgan (cM)”

(Ellsworth and Manolio, 1999b)

Mendelian inheritance: A set of primary tenets relating to the transmission of

hereditary characteristics from parent organisms to their children; it underlies much of

genetics.

Minor allele: the less abundant allele

Minor allele frequency: the frequency of the less abundant allele

Mutations: “occasional errors that occur during DNA replication” (Ellsworth and

Manolio, 1999a)

Penetrance: The proportion of individuals carrying a particular variation of a gene

(allele or genotype) that also express an associated trait (phenotype).

Phenotype (see genotype): any observable characteristic or trait of an organism.

Polymorphism: “the existence of multiple forms of a gene or genetic locus (alleles)

that differ in DNA sequence” (Ellsworth and Manolio, 1999a)

Population admixture: see population stratification

Population stratification (see population admixture and structure): “The

presence of multiple subgroups with different allele frequencies within a population.

The different underlying allele frequencies in sampled subgroups might be independent

of the disease within each group, and they can lead to erroneous conclusions of linkage

disequilibrium or disease relevance.” (Cardon and Bell, 2001)

Population structure: see population stratification

Quantitative trait locus (QTL): “a genetic factor believed to influence a quantita-

tive trait such as blood pressure lipoprotein levels” (Ellsworth and Manolio, 1999b)

Recombination: “process by which homologous chromosomes physically exchange

segments of DNA (also known as crossing-over)” (Ellsworth and Manolio, 1999c)
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Single nucleotide polymorphism (SNP, pronounced ‘SNiP’ or ‘S’ ‘N’ ‘P’):

“polymorphism where a single base substitution has created two forms of a DNA se-

quence that differ by a single nucleotide - currently of great interest for locating genes

associated with complex diseases” (Ellsworth and Manolio, 1999c)

tag SNP: “Single nucleotide polymorphisms that are correlated with, and therefore

can serve as a proxy for, much of the known remaining common variation in a region.”

(Hirschhorn and Daly, 2005)

Transmission disequilibrium test (TDT): “A family-based test for association that

is immune to population stratification. The transmission of alleles from heterozygous

parents to affected offspring is compared to the expected 1:1 ratio.” (Hirschhorn and

Daly, 2005)
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CHAPTER 2

USING PUBLIC CONTROL

GENOTYPE DATA TO

INCREASE POWER AND

DECREASE COST OF

CASE-CONTROL GENETIC

ASSOCIATION STUDIES

2.1 Introduction

Large-scale commercial genotyping platforms have facilitated the identification of nu-

merous common single nucleotide polymorphisms (SNPs) that are associated with com-

plex genetic diseases. The newest commercial genotyping platforms now contain over 1

million SNPs spread across the human genome. While the cost per genotype on these

platforms have decreased considerably over the past several years, the cost per sample



remains prohibitive for many scientific investigators who are interested in performing

a genome-wide association (GWA) study using their own samples.

The high-cost of GWA studies has lead to the utilization of multi-stage study de-

signs, a strategy routinely used in clinical trials. Two-stage genotyping designs typically

involve genotyping a fraction of the entire sample on a commercial genotyping platform

containing all SNPs of interest in stage 1, performing systematic tests of association

using stage 1 samples, and genotyping stage 2 samples on only the SNPs of greatest

interest as determined in stage 1 (Satagopan et al., 2002). Two-stage genotyping de-

signs have been shown to maintain power comparable to a single-stage study employing

all samples while substantially decreasing overall genotyping costs (Satagopan et al.,

2002; Satagopan et al., 2004; Skol et al., 2006; Thomas et al., 2004). The data col-

lected from the second stage of a two-stage GWA study is either analyzed separately as

a replication-based sample or the data is combined with data from the first stage and

the combined data is analyzed jointly. The replication-based approach requires a less

stringent significance threshold, due to a smaller multiple test correction factor that is

based on only the number of markers followed up in stage 2 samples, than the joint

analysis approach, that uses a correction factor that accounts for the entire number of

markers studied in stage 1. The joint analysis approach benefits from using all of the

available data as opposed to just the data from samples genotyped in the second stage.

A recent alternative approach for reducing the cost of a large-scale case-control ge-

netic association study is to use freely available genotype data from previous genome-

wide association scans as control data in the current study. The effective use of a

common control dataset for comparison with multiple case datasets for different phe-

notypes was illustrated by the Wellcome Trust’s Case Control Collaboration (WTCCC)

GWA study on 14,000 cases of seven common diseases and 3,000 shared controls (Well-

come Trust Case Control Consortium, 2007). In this study, based on British subjects of
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European descent, the WTCCC identified 24 independent associations (p < 5 x 10-7)

for bipolar disorder, coronary artery disease, Crohns disease, rheumatoid arthritis, type

1 diabetes and type 2 diabetes using 2,000 independent cases for each disorder. The

WTCCC demonstrated that utilizing a common control dataset can be a powerful and

cost effective approach for performing future GWA studies.

For investigators that have collected a well-matched group of cases and controls who

wish to preserve many of the benefits of their sample collection design, we describe a

two-stage replication-based case-control genetic association study design that uses free

genotype data from public controls in stage 1, well-matched study controls in stage 2,

and study cases distributed over stages 1 and 2. We compare the power and relative

cost of our two-stage approach to single-stage approaches that strictly use either free

public control genotype data or genotype data from study controls and to the single-

stage approach that combines public and study controls. We discuss the advantages

and limitations of each of the four sampling designs and show that the proposed two-

stage replication-based study design using both public and study controls is robust to

high proportions of mismatched public controls and batch genotype effects that can

result from genotyping samples different populations at different times.

2.2 Methods

We assumed an investigator had a sample of NA study cases, NU study controls and

access to free genotype data on NPU public controls. We further assumed that study

controls may or may not be screened for disease and that public controls had not been

screened for disease. We performed a series of calculations over a range of alternative

models comparing the power achieved in an association study using four different sam-

pling approaches: 1) a single-staged association study that used all NA study cases
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and NU study controls; 2) a single-staged association study that utilized all NA study

cases and NPU public controls; 3) a two-staged replication-based study that used all

NPU public controls in stage 1, all NU study controls in stage 2 and all NA cases ap-

portioned between stages 1 and 2; 4) a single-staged association study that used all

NA cases and combined all NU study and NPU public controls. We assumed an under-

lying multiplicative genetic mode-of-inheritance risk model for a bi-allelic locus with

alleles D and d and corresponding allele frequencies of fD and fd, respectively. For

each alternative model, we set the population frequency of the susceptibility allele D

in the general population, the prevalence (K) of the disease in the population, and the

locus specific genetic relative risk (GRR) = Pen(DD) / Pen(Dd) = Pen(Dd) / Pen(dd),

where Pen(dd), Pen(Dd), and Pen(DD) were the penetrances for the dd, Dd, and DD

genotypes, respectively. Consistent with many genetic power calculators, our power

calculations are for the main effects of a directly genotyped locus and, as such, do not

rely on additional assumptions regarding the extent of linkage disequilibrium between

this locus and an untyped causal locus. All power analyses were programmed into the

freely available statistical software R version 2.4.1 (R Development Core Team, 2006).

2.2.1 Single-stage Power Calculations

Assuming Hardy-Weinberg equilibrium in the general population from which the cases

and controls were selected, we used our model assumptions (allele frequencies, disease

prevalence and GRR) to calculate the penetrance functions and we used Bayes’ the-

orem to ascertain the conditional probability of each genotype given affection status,

Pji, where j = 0 (cases), 1 (controls) and i = 0 (dd), 1 (Dd), 2 (DD). Namely, for the

cases these probabilities were P00 = Pr(dd | case), P01 = Pr(Dd | case), and P02 =

Pr(DD | case) and for the unaffected (screened) controls the probabilities were P10 =

Pr(dd | unaffected control), P11 = Pr(Dd | unaffected control), P12 = Pr(DD | unaf-
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fected control). We assume no disease misclassification among study cases or screened

study controls. Derivations of the conditional genotype probabilities are provided for

the multiplicative model in the Supplementary materials. For unscreened and public

controls, the genotype probabilities for controls were set to the genotype probabilities

in the general population, namely P10 = f 2
d , P11 = 2fdfD, P12 = f 2

D, since affection

status was not assumed to be known.

We calculated asymptotic power for the Cochran-Armitage trend test (Armitage,

1955; Cochran, 1954) by specifying the non-centrality parameter based on work by

Chapman and Nam (1968) and we set the vector of scores to x = (0, 1, 2) for genotypes

(dd, Dd, DD), respectively (Slager and Schaid, 2001). In particular, the non-centrality

parameter, explicitly stated by Ahn et al. (2007), was

(2.1)

where NA and NU (or optionally NPU) were the sample sizes of the cases and screened

(or public) controls, respectively, xi was the score for the i-th genotype (i = 0, 1, 2

for genotypes dd, Dd, DD), and P0i and P1i were the probabilities of the i-th genotype

for the cases and controls, respectively. Power was then taken to be 1− β, where was

the type II error and was the cumulative distribution function of the non-central χ2

distribution with 1 degree of freedom and non-centrality parameter λ, evaluated at the

100(1 − αBonferroni) percentile of the central χ2 distribution with 1 degree of freedom.

For single-stage designs, the overall family-wise error rate was set to α = 0.05 by using a

Bonferroni corrected significance threshold αBonferroni = 0.05/M, where M is the number
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of markers evaluated.

2.2.2 Two-stage Power Calculations

Using the formulas described above for one-stage power, we calculated power for a

replication-based two-stage design. For a two-stage replication-based design, the overall

power for a SNP was simply calculated as the product of the power for the first stage

times the power of the second stage. Following the notation in Skol et al. (2006),

the power for the first-stage was calculated using a significance threshold defined as

the proportion of markers followed in stage 2, πmarkers. Power for the second-stage was

calculated using a significance threshold (assuming a two-sided test) equal to α/(M ·

πmarkers), i.e. the Bonferroni corrected cutoff, where M was the number of markers

typed and interrogated in stage 1. Setting the significance cutoff at markers in stage 1

on average resulted in markers being the type I error. Similar to Skol et al. we also

calculated the power for a one-sided test in stage 2 samples, requiring the effect for the

SNP to be in the same direction in both stage 1 and stage 2 samples.

While Skol et al. allowed markers to be any possible value, we restricted the number

of SNPs for follow-up analysis in stage 2 to be values that approximate numbers that

would typically be considered given todays currently available commercial genotyping

platforms. Namely, we considered follow-up platforms of size 100, 375, 1,500, 7,500,

and 16,500 SNPs. For each follow-up genotyping platform, we then found the optimal

proportion of cases, cases, to be genotyped in stage 1 that optimized the power of the

two-stage design. Specifically, we used the “optimize” function in R to search for the

maximum power in the continuous space of cases. This method combines the golden

section search and successive parabolic interpolation algorithms.
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2.2.3 Single-stage power calculation for combined public and

screened study controls

We used simulations to estimate the power of the single-stage study design that com-

pared allele frequencies between study cases and the combined sample of public and

screened study controls. Specifically, we simulated 10,000 data sets for each model

condition and used the Cochran-Armitage trend test, implemented in R, to test for

association between marker and disease. Similar to the other single-stage designs, the

overall family-wise error rate was set to α = 0.05 by using a Bonferroni corrected signif-

icance threshold αBonferroni = 0.05/M, where M was the number of markers evaluated.

2.2.4 Examples of Power Approximations for 1- and 2-Stage

Designs

We calculated power for three models to demonstrate the difference in power between

the competing approaches. For all three models, we assumed a multiplicative model

with a GRR = 1.3, and a susceptibility allele frequency fD = 0.3 in the general popu-

lation. In addition, for all three models we performed the calculations assuming study

controls (in stage 2) have or have not been screened for disease. Model 1 was a GWA

scan on M = 500,000 SNPs for a study sample of NA = 2,000 study cases and NU =

2,000 study controls. Model 2 was identical to Model 1, except that there were fewer

study controls, NU = 1,000. Model 3 was designed to mimic a targeted follow-up study

to a previous GWA study. For Model 3, M = 7,500 and NA = NU = 1,250. For all three

models we considered a wide range of disease prevalence values of K = 1 x 10−4, 0.01,

0.05, 0.1, 0.25, and 0.5 and we assumed available genotype data on samples of NPU

= 1,000, 3,000, 5,000 and 10,000 public controls. We calculated power for the single-

stage designs using only study controls, only public controls, or both control samples
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combined. We also calculated the power for the optimal two-stage replication designs

using one- and two-sided hypothesis tests in stage 2. For each optimal two-stage model

we define the optimal platform and proportion of cases, cases, genotyped in stage 1.

Finally, in order to test how power the 1- and 2-stage designs are impacted by different

possible combinations of disease allele frequency, disease prevalence, and GRR, we cal-

culated power for Model 1 (assuming NPU = 5,000) using disease susceptibility allele

frequencies of fD = 0.1 and 0.5, disease prevalences of K = 0.01, 0.1 and 0.25, and

GRRs ranging from 1.1 to 1.5.

In the above power calculations, for the two-staged replication approach we chose

the follow-up platform and proportion of cases genotyped in stage 1 that optimized

power under a specific alternative hypothesis, namely, the relative risk and disease

allele frequency (in the general population) were explicitly defined. In practice the true

alternative model is unknown. A desirable quality of any two-stage approach is that

the optimal choice of follow-up platform and the optimal proportion of cases genotyped

on the follow-up platform are robust to the underlying relative risk and disease allele

frequency. We performed additional power calculations to assess the robustness of

the choice of follow-up platform and the proportion of cases, cases, genotyped on the

follow-up platform across a range of alternative models. Specifically, assuming a GWA

study on M = 500,000 SNPs using NA = 2,000 study cases, NU = 2,000 screened study

controls and NPU = 5,000 public controls for a multiplicative trait with a prevalence

K = 0.1, we calculated the maximum power and corresponding proportion of cases

genotyped in stage 1, across a range of relative risks (GRR = 1.25-1.5) and disease

allele frequencies (fD = 0.1, 0.3, and 0.5) based on follow-up platforms containing 100,

375, 1,500, 7,500 and 16,500 SNPs. In addition, assuming a relative risk of 1.3 and

disease allele frequency of 0.3, we calculated power across a range of proportion of

cases, cases, genotyped for each of the 100, 1,500, 7,500, and 16,500 SNP follow-up
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platforms to assess the decrease in power when using a higher or lower proportion of

cases in stage 1 compared to the optimal proportion for each platform.

In the supplementary material, we performed additional power calculations using

the general model (co-dominant) test of association (two-degree-of-freedom Chi-square

test) under the same multiplicative alternative hypothesis models we considered for the

Cochran-Armitage trend test. In addition, power was also calculated for several dom-

inant and recessive inheritance models using the single-degree-of-freedom Chi-square

test.

2.2.5 Impact on Power of Ancestrally Poorly-Matched Public

Controls and Batch Genotype Effects

In the previous calculations, we did not consider the impact of ancestrally poorly-

matched public controls and batch genotype effects on power that can occur when

genotyping samples of cases and public controls from different populations at different

times. We evaluated the impact of these factors for a study design that included

2,000 study cases, 2,000 study controls, and 5,000 public controls for a multiplicative

disease model with susceptibility allele frequency = 0.3, K = 0.10 and GRR = 1.3.

For ancestrally poorly-matched public controls (with respect to our study cases), we

measured the reduction in power by decreasing the effective sample size of the public

control sample. Specifically, for the purpose of these calculations, we have assumed that

a fraction (we considered a range from 0% to 90%) of public controls will be removed

from consideration after genotyping study cases (when comparisons of ancestry can be

made between study cases and public controls using genome-wide data) and prior to

performing association testing. We have additionally assumed that the proportion of

cases genotyped in stage 1 of our two-stage replication design is optimized and chosen

prior to the removal of any public controls. Power calculations were also performed
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for the two one-stage designs that utilize public controls after eliminating ancestrally

poorly-matched public controls.

To help assess the impact of batch genotype effects on our proposed two-stage

design we calculated power using more stringent significance thresholds for stage 1. We

assumed that batch genotype effects in stage 1 would lead to an excess of SNPs, under

the null hypothesis, with low p-values and that the SNP associated with disease was

not subject to batch genotype effects. The impact of batch genotype effects under these

assumptions was that truly associated SNPs were required to reach a higher significance

level in stage 1 than anticipated in order to be included in stage 2 genotyping. We

calculated power in stage 1 of our two-stage replication design by varying the magnitude

of the departure of the required significance threshold from markers in stage 1 (p-value

required for a SNP to be genotyped in stage 2) to be between 0.99 x πmarkers and

0.1 x πmarkers. The proportion of cases genotyped in stage 1 was optimized under the

erroneous assumption of no batch genotype effects (i.e. markers was assumed to be

the significance threshold required for a SNP to be subsequently genotyped in stage

2). Power calculations that included batch genotype effects were not performed for the

three one-stage designs.

2.2.6 Example of Genotyping Costs for Different Genotype

Sampling Strategies

To understand the financial impact of the different genotyping sampling strategies, we

estimated the relative cost of each genotype sampling design for a GWA study based on

M = 500,000 SNPs using NA = 2,000 study cases, NU = 2,000 screened study controls

and NPU = 5,000 public controls. We assumed a multiplicative trait with a prevalence

K = 0.1, GRR = 1.3 and fD = 0.3 (Model 1). We calculated the relative costs of

performing the three single-stage studies that used either study or public controls or
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both. For these single-stage sampling designs, all samples were assumed to be genotyped

on all 500,000 SNPs; genotype data for public controls were assumed to be available at

no expense. In addition, we calculated the relative cost of the optimal (highest power)

replication-based two-stage study design for each follow-up platform. For the purpose

of our calculations, we assumed the Illumina Human660W-Quad platform would be

used for genotyping 500,000 viable SNPs in stage 1 and Illuminas GoldenGate 96, 384

and 1,536 SNP panels and Illuminas Custom iSelect Infinium 7,600 and 16,720 SNP

panels would be used as the follow-up platforms for stage 2. Given that genotyping

costs are constantly changing, rather than use dollar amounts, we report the relative

cost of genotyping based on the most current prices. Using the cost of genotyping

500,000 SNPs in a GWAS as a baseline, the relative cost of genotyping 16,000, 7,500,

1,500, 375 and 100 SNPs were assumed to be 1/2, 1/3, 1/5, 1/10 and 1/12 of the cost,

respectively, based on the most recent genotype prices at the CIDR genotyping facility

(www.cidr.jhmi.edu/pricing.pdf).

Skol et al. (2006) demonstrated that a joint analysis two-stage study design could

effectively achieve equivalent power to a single-stage study for a fraction of the cost.

Consequently, for the three single-stage sampling designs, we also estimated the rela-

tive cost of performing a joint analysis two-stage association study for each follow-up

platform. For each combination of sampling design and follow-up platform, we iden-

tified the least expensive joint analysis two-stage sampling design that obtained an

estimated power within 0.01 of the power obtained from the corresponding single-stage

study. For the sampling design that used only public controls, cases were to be divided

and genotyped in stages 1 and 2 while all public controls were assumed to be available

in stage 1. For the sampling design that included both study and public controls, all

study controls were assumed to be genotyped in stage 2, and all public controls were

assumed to be available in stage 1. Cases were divided and genotyped in stages 1 and
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2. For each study design, we simulated 50,000 replicate data sets to determine the

optimal partitioning of study samples into stages 1 and 2 that resulted in the lowest

total cost while preserving statistical power.

2.3 Results

We performed power calculations for a range of study designs and disease models.

Power is described for the frequency of the risk allele in the general population (the

frequency of the risk allele in cases and study controls for different values of K are

provided in the table footnotes). Our results showed that utilizing free genotype data

from public controls increases statistical power when the number of available public

controls is sufficiently large over studies that do not include these data. As expected,

combining screened study controls with public control genotype data increased power

over sampling designs that included just one or the other for all models considered, re-

gardless of the underlying disease prevalence (Table 2.1). The single-stage study design

based solely on public controls had greater power than the single-stage study design

based solely on screened study controls for many alternative models when the number

of public controls was greater than the number of study controls. However, when the

population prevalence of disease was high (K > 0.25), the single-stage study design

using screened study controls had, in some instances, greater power than the single-

stage study using public controls, even when the number of public controls was large.

Overall, the same general patterns of results were observed when varying GRR and fre-

quency of the disease susceptibility allele (Supplementary Figure 2.2), when analyzing

the genotype data using a general (co-dominant) 2-df inheritance model (Supplemen-

tary Table 2.7), and when considering dominant or recessive genetic inheritance models

(Supplementary Tables 2.8 and 2.9, respectively).
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Power for the proposed replication-based two-stage design was typically greater than

the power of the one-stage design based only on study controls for most genetic models

provided the prevalence of the disease was not high (K < 0.25). For example, for Model

1, assuming screened (unaffected) study controls and a disease prevalence of K = 0.05,

we had power equal to 0.68 when using only screened study controls. Power increased

to 0.69, 0.81, 0.86 and 0.88 when applying our proposed two-staged replication-based

approach (with a one-sided test in stage 2) when including available genotype data

from 1,000, 3,000, 5,000 and 10,000 public controls, respectively, in stage 1 (Table 2.1).

As seen in Model 2, the difference in power between the two-stage replication approach

and the single-stage study that used only study controls was more dramatic when

the number of available study controls was only half as large as the number of cases.

Gains in power were also observed when the initial platform in stage 1 contained only

7,500 SNPs (Model 3), as might be used in a more focused follow-up study of previous

GWA scans. Compared to studies using screened study controls, power noticeably

decreased for studies using unscreened study controls when K > 0.05 (Supplementary

Table 2.6). However, the loss in power for the two-stage replication-based approach

using unscreened study controls was less dramatic than the drop experienced by the

single-stage study based solely on unscreened study controls.

Our results showed that the optimal choice of follow-up platform and proportion of

cases used in stage 1 for our proposed two-stage replication sampling design are robust

across a range of different possible alternative models. In Table 2.2, we observed that

the smallest follow-up platform, containing 100 SNPs, consistently provided the greatest

power compared to the other follow-up platforms over the considered range of GRRs

and disease allele frequencies, though the differences in maximum power between the

different follow-up platform choices was, in most cases, modest. We also noted that

the optimal choice of the proportion of cases, cases, to be genotyped in stage 1 varied
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considerably between the different platforms (as expected, a larger proportion of cases

were necessary to be genotyped in stage 1 for the smallest follow-up platform) but,

importantly, varied little within a given platform across the considered range of GRRs

and disease allele frequencies. In fact, we noted that for a given follow-up platform, the

optimal choice of cases was also robust to analytic strategy (i.e. similar optimal values

of cases were observed for the general 2-df test as for the trend test) (Supplementary

Table 2.10) and genetic inheritance model (i.e., similar optimal values of cases were also

observed for the dominant and recessive models) (Supplementary Tables 2.11 and 2.12).

In Figure 2.1, we observed that for each platform, the power dropped very modestly

when the choice of the proportion of cases to be genotyped in stage 1 was within 0.05

of the optimal choice. Together these results suggest that it is reasonable to choose

an optimal two-stage replication-based study design, namely the choice of follow-up

platform and the proportion of cases, cases, to be genotyped in stage 1, based on a

specific genetic models and that power should be robust to this choice across a range

of alternative genetic models.

We have also demonstrated that our two-stage replication-based study design using

public controls is robust to high proportions of ancestrally mismatched public controls

(that would have to be eliminated prior to data analyses) and batch genotype effects

in stage 1. Specifically, even when eliminating 50% of public controls due to poorly-

matched ancestry with study cases, power of the two-stage design was greater than that

for the single-stage design based solely on study controls for the model we considered

across all stage 2 follow-up platforms (Table 2.3). Interestingly, the larger follow-up

platforms were noticeably more robust than the smaller follow-up platforms with respect

to the removal of mismatched controls. The single-stage study design that includes only

public controls was most strongly impacted by removal of public controls due to ancestry

mismatching while the single-stage study design that includes both public and study
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controls maintained the greatest power versus all other study designs. Our two-stage

replication-based study design was also robust to the increased significance threshold

in stage 1 due to batch genotype effects (Table 2.4). Of note, increasing the stage 1

significance threshold required for a SNP to be genotyped in stage 2 by a factor of 2

(0.50 x πmarkers) had only a small impact on power. Power remained relatively strong

even when requiring an order of magnitude higher level of statistical significance in

stage 1 (0.10 x πmarkers) for a SNP to be subsequently genotyped in stage 2.

In addition to increased power, in Table 2.5 we illustrate that substantial cost sav-

ings can be achieved for a GWA study when including public controls. We compared

the relative cost of one- and two-stage study designs that include study controls, public

controls or both. As expected, the most expensive study designs were the one-stage

study designs that genotyped all samples (excluding public controls – which provide

genotype data at no expense) on all SNPs. Significant cost savings were observed when

using the joint-analysis-based two-stage design described by Skol et al. (2006). For

example, when utilizing the joint-analysis-based two-stage design following-up the top

1,500 SNPs (corresponding to the 1,536 SNP Illumina GoldenGate custom panel) in

stage 2, a 36%, 44% and 60% cost savings was achieved relative to the correspond-

ing one-stage design for sample designs that included only study controls, only public

controls and both study and public controls, respectively. The total cost of our pro-

posed replication-based two-stage design was consistently less than the joint-analysis

two-stage designs for sample designs that included only study controls or both public

and study controls. The study design that included only public controls in a two-stage

joint analysis was the least expensive. In addition to having the lowest power, the

sampling design that included only study controls was substantially more expensive

than any other sampling design.
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TABLE 2.1: Power of the Cochran-Armitage trend test for 1- and 2-stage study designs
across a range of sample sizes, SNPs in stage 1, and disease prevalences. Study controls
are assumed to be screened and disease free.
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TABLE 2.2: Power for the Cochran-Armitage trend test and the proportion of cases
in stage 1 that optimizes power (in parenthesis) in a two-stage replication-based GWA
study with 2,000 Cases / 5,000 public controls (stage 1) / 2,000 screened controls (stage
2). Power calculated for one-sided hypothesis test in stage 2.
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TABLE 2.3: Statistical power calculations accounting for poor ethnic matching between
study cases and public controls. Calculations are for one- and two-stage study designs
including study controls (n = 2,000), public controls (n = 5,000) or both. Calculations
assume 2,000 cases, M = 500,000 markers in stage 1, a multiplicative genetic model
with susceptibility allele frequency = 0.3, K = 0.10 and GRR = 1.3. Power calculated
for a range of effective sample-size reductions in public controls due to poor ancestry
matching; proportion of cases genotyped in stage 1 analyses of two-stage replication
design based on optimized value obtained assuming (a priori) that all 5,000 public
controls are ethnically matched to study cases.
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TABLE 2.4: Statistical power calculations for two-stage replication design accounting
for batch genotype effects between study cases and public controls. Calculations assume
2,000 study cases (spread across stages 1 and 2), 5,000 public controls (stage 1), 2,000
public controls (stage 2) and M = 500,000 markers in stage 1. Power calculated for a
multiplicative genetic model with susceptibility minor allele frequency = 0.3, K = 0.10
and GRR = 1.3 across a range of alternative significance thresholds in stage 1 due to
batch genotype effects. The proportion of cases genotyped in stage 1 of the two-stage
replication design is based on the optimized value obtained assuming (a priori) that
there are no batch effects (i.e. significance threshold in stage 1 = πmarkers).
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TABLE 2.5: Estimated relative cost* (power/proportion of total study samples geno-
typed in stage 1) of GWA study (M = 500,000 SNPs) for one- and two-stage study
designs that include only study controls (n = 2,000), only public controls (n = 5,000)
or both. Relative cost estimates assume 2,000 cases, a multiplicative genetic model
with susceptibility minor allele frequency = 0.3, K = 0.10 and GRR = 1.3. The rela-
tive costs of genotyping 16,000, 7,500, 1,500, and 100 SNPs was assumed to be 1/2, 1/3,
1/5, and 1/12 of the cost of genotyping all 500,000 SNPs on GWA panel, respectively.
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2.4 Discussion

Large-scale case-control genetic association studies have proven to be successful in iden-

tifying genetic polymorphisms associated with human disease. It has become increas-

ingly clear that the majority of common genetic variants associated with most human

disease explain, individually, a relatively small amount of the total disease suscepti-

bility. The modest underlying genetic risk from a given susceptibility allele combined

with the high toll of multiple testing inherent with contemporary genotyping platforms

necessitates large sample sizes to achieve sufficient statistical power to detect an as-

sociation. Unfortunately, the sample sizes of todays genetic association studies are

constrained by the high cost of genotyping and sample collection. One mechanism

that can increase power in genetic association studies of dichotomous traits is to in-

clude additional control samples from other studies. Genome-wide genotype data from

many different populations are becoming increasingly freely available to scientific re-

searchers through public databases funded by the U.S. National Institutes of Health

and other public funding agencies and from private company efforts such as Illuminas

iControlDB database. Of note, several recent high-profile GWA studies have included

Illuminas iControlDB genotype data demonstrating, empirically, the value of using free

public genotype data (Hom et al., 2008; Silverberg et al., 2009; Wrensch et al., 2009).

We illustrate, through examples, the gains in statistical power that can be obtained

by combining study controls with free public genotype data on unscreened population

samples. We also demonstrate that in addition to increasing power, supplementing

study control data with free public control genotype data can dramatically decrease

overall study cost when utilizing two-stage genotyping designs. This cost reduction is

realized due to all study controls being genotyped on the smaller, less expensive, stage

2 genotyping platform and to a smaller proportion of study cases being genotyped in

stage 1.

40



The utilization of free public genotype data is subject to certain limitations and

can increase the risk for increased type 1 errors compared to studies that exclude these

data. Obviously the biggest potential obstacle of including public control genotype

data is the availability of genotype data on a sufficient number of ethnically matched

public controls for the same set of SNPs that will be genotyped in study samples.

Commercial genotyping platforms are constantly changing, typically adding additional

SNPs to established sets of SNPs included on older platforms. This limitation is being

mitigated, somewhat, by a more streamlined mechanism for public release of genome-

wide SNP data and by collaborations between investigators that study the same or

different diseases.

Free public controls typically are not screened for the disease in the current study

while study controls often are. It is well known that disease misclassification can

reduce statistical power. However, the increasingly large number of free controls that

are available to genetic researchers will often overcome this limitation and, as we and

others have shown, result in studies with even greater statistical power than studies

using a smaller number of screened controls (Edwards et al., 2005; Moskvina et al.,

2005; Wellcome Trust Case Control Consortium, 2007; Zheng and Tian, 2005). This

benefit is particularly noticeable for traits with low prevalence. It should be noted that

in our power calculations, we assumed that free publicly available controls from the

general population were not screened for any disease and that screened controls have

no disease misclassification. In fact, many public control samples have been ascertained

from healthy populations and many disease-screening techniques commonly used to

identify controls are not 100% accurate. As a result, the assumptions we used in

our power calculations may exaggerate the increased relative power gained by using

screened controls when compared to public controls.

A larger concern for utilizing public control genotype data is that observed allele

41



frequency differences between public controls and study cases may be the consequence

of systematic bias due to population stratification or batch effects from differential allele

calling between the two samples. Greater differences in background ancestry will likely

occur between public controls and cases than between cases and a carefully selected set

of controls from the same community. The concern of population stratification can be

largely remedied by employing appropriate analytic methods (Price et al., 2006; Roeder

and Luca, 2009; Yu et al., 2008), though there still is some concern for a relatively small

number of genetic markers under apparent selective pressure. Systematic differences in

genotyping calls from plate to plate can also cause bias in genetic association studies

(Moskvina et al., 2006; Neale and Purcell, 2008). Despite the availability of public

control data from many of the same commercial platforms that would be considered

for genotyping sample cases, the inability to account for systematic genotyping errors

through experimental design is a source of concern when relying solely on public con-

trols. Unfortunately, DNA is often unavailable on public controls making it difficult to

validate, through direct genotyping, any observed differences in genotype frequencies

between study cases and public controls. In some circumstances, individual marker

fluorescent intensity data from public control samples may be available to facilitate

combining these data with the marker data from cases genotyped on the same plat-

form; which would subsequently allow for renormalization and clustering of alleles for

the purpose of rescoring genotypes in the combined sample. Further work needs to

be done to evaluate the quality-control potential of this approach and, unfortunately,

to date these kinds of extensive data on public controls are not routinely available.

Given this limitation, the utilization of stringent quality control and including common

controls (e.g. HapMap samples) that are present in the public control dataset when

genotyping study samples can be critical for identifying individual problematic SNPs.

The availability of multiple public control datasets should also aide, through compar-
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ison of genotype frequencies among different control populations, in the identification

of SNPs that appear to be subject to batch genotype effects.

Public control datasets also typically lack valuable environmental exposure data

that is critical to understanding the interplay between genes and environment on the

etiology of disease. Even when environmental exposure data have been collected in

public controls, it is often not collected or scored in the same manner as in the case

study sample, thereby reducing the effectiveness of these data. Furthermore, public

controls and cases will usually come from different communities with each community

having its own unique set of unmeasured risk factors. These limitations substantially

reduce the ability of investigators to evaluate gene-by-environment interactions that

are increasingly thought to play a central role in genetic susceptibility.

Recent results from several GWA studies that have included public control genotype

data on Caucasian samples have revealed little evidence of strong systematic differences

in allele frequencies between previously genotyped public controls and study samples

(Hom et al., 2008; Luca et al., 2008; Silverberg et al., 2009; Wrensch et al., 2009; Yu

et al., 2008). While the results from these studies are encouraging with respect to

control of the overall type I error rate when using public controls, any single result

based on public control data should be viewed with some degree of skepticism. It is

plausible, given the high quality of genotyping on modern commercial panels, that many

SNPs are not subject to strong batch effects when genotyped at different times on the

same or different genotyping platforms, but it is very likely that some SNPs are. The

recent study by the WTCCC found highly significant differences in allele frequencies

for a small number of loci between samples of Caucasians from different communities

in Great Britain (Wellcome Trust Case Control Consortium, 2007). The differences

were attributed to natural selection, reflecting the historical settlement of ancestors in

these different communities from different parts of Europe. It is difficult to control for
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the effects of selection using modern analytic methods, such as principal components,

when the number of loci under such pressure is small. In the WTCCC study, study

cases, like the controls, were largely ascertained across Great Britain, thus substantially

reducing the potential impact of bias due to selection. Many studies, however, that will

use public control data will include cases and public controls that have been selected

from entirely different communities or, possibly, different countries.

We have introduced a replication-based two-stage genotyping design, including both

public and study controls, that addresses many of the limitations and concerns re-

garding the use of public controls while still providing increased power and decreased

genotyping costs compared to studies that use only study controls. In this design,

public controls and a subset of study cases are used to select a reduced list of SNPs

for independent association testing between study controls and the remaining study

cases. By this design, the final assessment of whether a SNP is associated with the

disease outcome is based entirely on genotype results from study controls, which will

be presumably selected from the same community and genotyped at the same time and

on the same platform as the set of study cases that have been included in stage 2.

In our power calculations, we have attempted to address the impact of poorly

matched (with respect to genetic ancestry) public controls and systematic differences

in allele calls for a subset of SNPs under consideration. We have shown, under certain

assumptions, that the effect of poorly matched public controls, with respect to ancestry,

can have a major impact on studies limited to public controls. However, our proposed

two-stage study design, which uses public controls in stage 1 and study controls in

stage 2, appears to be relatively robust to this problem even when it is not accounted

for in the initial study design. In addition, we have also shown that the proposed two-

stage design is robust to batch genotype effects when the SNP associated with disease

outcome is not subject to batch genotype effects (or under selection pressure). Should
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the SNP associated with the outcome also be subject to batch effects then the impact

on power would depend on the direction of the batch effects. Should the direction

of the batch effects be the same as the true effect (under the alternative) then power

would be increased in stage 1 and the associated SNP would even be more likely to

be included in stage 2 genotyping efforts. On the other hand, should the direction of

the batch effects be in the opposite direction then power would be decreased in stage

1 and the SNP would be less likely to be included in stage 2 genotyping. Extensive

simulations showing the impact of directional batch effects on the SNP associated with

disease warrants further future consideration.

The proposed two-stage replication-based approach ensures that the final main-

effects analyses, based on stage 2 samples, will be able to incorporate critical environ-

mental exposure data that has been collected from cases and study controls. Further-

more, all study controls and all study cases will have genotype data available on all

SNPs that demonstrate a modest degree of evidence of main effects in stage 1, making

the study of gene-by-environment interactions feasible for all SNPs genotyped in stage

2 using the complete set of study samples. It has been shown previously that greater

power to detect the most plausible gene-by-environment interactions can be achieved

by focusing attention on the reduced number of SNPs that demonstrate some evidence

of main effects (Kooperberg and Leblanc, 2008).

Our proposed two-stage replication-based sampling design could be particularly

valuable for studies that have collected a limited number of study controls (see Model

2, the 2nd example in Table 2.1) or for collaborative studies where some study sites

have only collected case samples while other studies have collected sets of matched cases

and controls. Collecting new sets of unrelated controls can be problematic for studies

that have not already done so (such as family linkage studies). Provided there is not a

lot of heterogeneity between the case samples from the various studies, this mechanism
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would facilitate the inclusion of additional cases and potentially thousands of public

controls, resulting in increased power and likely decreased cost for the combined study.

We have focused our calculations primarily on a study design for a GWA study

based on 500,000 SNPs. We have also shown (see Model 3, the 3rd example in Table

2.1) that using public control genotype data in our proposed two-stage design can sig-

nificantly increase power for smaller follow-up studies as well. Commercial companies

are constantly increasing the number of SNPs included on their panels while the cost,

per SNP, is declining. It is expected that the results from the 1,000 Genomes Project

could lead to commercial genotyping panels that contain millions of SNPs. As a con-

sequence, the examples for which we report power calculations may not reflect study

designs in the not too distant future. However, our underlying conclusion that the

proposed two-stage genotyping design utilizing public controls can increase statistical

power to detect an association and decrease overall study cost while preserving many

of the advantages of a well-matched case-control design should hold for future study

designs that include more SNPs. We have R software code that is available for inves-

tigators who would like to calculate power and make the comparisons for their own

studies.

2.5 Supplemental Methods

2.5.1 Explicit Cell Probabilities of the Case-Control Contin-

gency Table

The cell probabilities of the case-control contingency table for the cases were Pr(dd

| case), Pr(Dd | case), and Pr(DD | case) and for the controls were Pr(dd | control),

Pr(Dd | control), and Pr(DD | control), where d and D were the alleles at a bi-allelic

locus and dd, Dd, and DD were the genotype possibilities. The allele frequencies of
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d and D were fd and fD, respectively, and we assumed Hardy-Weinberg Equilibrium

such that the dd, Dd, and DD genotype frequencies were fdd = f 2
d , fDd = 2fDfd, and

fDD = f 2
D. The disease prevalence, K, was defined to be

(2.2)

Multiplicative Genetic Mode-of-Inheritance Risk Model

The genetic relative risk (GRR) under a multiplicative genetic mode-of-inheritance risk

model was defined to be

(2.3)

We had two equations and sought to determine the case and control cell probabilities

of the contingency table as described above. From Equation 2.3 followed

(2.4)

which we substituted into Equation 2.2 to yield

(2.5)
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Thus,

(2.6)

Applying Bayes’ Law and then substituting the above penetrances gave us the cell

probabilities for the cases,

(2.7)
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For the study controls, the penetrances followed from the cases’ penetrances,

(2.8)

Applying Bayes’ Law and then substituting the study controls’ penetrances gave us the

cell probabilities for the study controls, as we similarly did for the cases,

(2.9)
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Dominant Genetic Mode-of-Inheritance Risk Model

The GRR under a dominant genetic mode-of-inheritance risk model was defined to be

(2.10)

Similarly to the proof shown above for the multiplicative model, the genotype proba-

bilities for the cases were

(2.11)
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and the genotype probabilities for the controls were

(2.12)

Recessive Genetic Mode-of-Inheritance Risk Model

The GRR under a recessive genetic mode-of-inheritance risk model was defined to be

(2.13)
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Similarly to the proof shown above for the multiplicative model, the genotype proba-

bilities for the cases were

(2.14)

and the genotype probabilities for the controls were

(2.15)
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Unscreened and Public Controls

For unscreened and public controls, the genotype probabilities for controls were set to

the genotype probabilities in the general population, namely

(2.16)

Of note was the observation that the cases’ genotype probabilities were not a function

of K for the multiplicative, dominant, and recessive genetic mode-of-inheritance risk

models (as shown in the above sections), whilst the study controls’ genotype proba-

bilities were indeed a function of K. This provided justification for the result in Table

2.1 of the manuscript whereby the power for the 1-stage design with “Study Controls

Only” varied with varying levels of K, but the power for the 1-stage design with “Public

Controls Only” did not vary with varying levels of K (and similarly for the analogous

tables in which the true genetic mode-of-inheritance risk models were dominant and

recessive).

2.5.2 Alternative 1- and 2-df Tests

The results in the main manuscript were based on the Cochran-Armitage trend test

and assuming an underlying multiplicative genetic mode-of-inheritance risk model. In

Supplemental Figure 2.2, we present power curves for the one- and two-stage designs

using 2,000 cases, 2,000 study controls and 5,000 public controls over a range of GRRs,

disease prevalences, and susceptibility allele frequencies. In Supplemental Table 2.6, we

calculated the Cochran-Armitage trend test for the three models considered in Table 2.1

in the main manuscript, but under the assumption that study controls were unscreened

53



for disease. Supplemental Tables 2.7 through 2.12 present analogous results to Tables

2.1 and 2.2 in the main manuscript, though utilizing the general 2-df, dominant 1-df,

and recessive 1-df tests under multiplicative, dominant, and recessive models, respec-

tively. Specifically, Supplemental Tables 2.7, 2.8, and 2.9 are the general, dominant,

and recessive versions of Table 2.1 in the main manuscript and Supplemental Tables

2.10, 2.11, and 2.12 are analogous to Table 2.2. The single- and two-staged association

study designs as described in the methods of the main manuscript were also used for the

Supplemental Tables in terms of the number of study cases, study controls, and public

controls and the size of the GWA and follow-up genotyping platforms (Models 1, 2, and

3 of the main manuscript). In addition, the same disease prevalences were specified.

However, depending on the genetic model, we allowed the risk allele frequency (fD) and

GRR to vary. For the 1- and 2-df tests, we computed power using the “cost effective”

(CE) method proposed by Bukszár and van den Oord (Bukszár and van den Oord,

2006a). The CE is an approximation for computing the power of Pearson’s statistic for

2 x m (where m refers to the number of categories) contingency tables that is accurate

and efficient in terms of computer time. The authors point out (Bukszár and van den

Oord, 2006b) that the CE is very close to the true value of the distribution of Pear-

son’s statistic and more accurate than a commonly used approximation (based on a

non-central chi-square) that overestimates power in some scenarios and underestimates

it in others.

General 2-df Test

For Supplemental Tables 2.7 and 2.10, the general 2-df test was employed assuming an

underlying multiplicative genetic mode-of-inheritance risk model. The specific genotype

cell probabilities for the cases and controls are shown above. For Supplemental Table

2.7, as in the main manuscript, fD and GRR were set to 0.3 and 1.3, respectively. In
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order to compute power using the general 2-df test, we carried out the CE for 2 x m

tables where m = 3 columns / categories (genotypes dd, Dd, and DD) and the rows

pertained to the cases and controls, using the R script costeff2by3 provided by Bukszár

and van den Oord (http://www.vipbg.vcu.edu/ edwin/). Contrary to the 1-df test,

closed form analytical formulae did not exist for the 2 x 3 tables, though numerical

solutions were computed with the costeff2by3 R code.

Dominant 1-df Test

For Supplemental Tables 2.8 and 2.11, the dominant 1-df test was employed assuming

an underlying dominant genetic mode-of-inheritance risk model. The specific genotype

cell probabilities for the cases and controls are shown above. For Supplemental Table

2.8, fD was set to 0.3 (as with the multiplicative model), though the GRR was set to

1.4. In order to compute power using the dominant 1-df test, we carried out the CE

for 2 x m tables where m = 2 columns / categories (genotypes dd and Dd, or DD, i.e.

the Dd and DD genotype columns were combined) and the rows pertained to the cases

and controls. The power for critical value c (corresponding to the 1 - type I error) of a

central chi-square distribution was (Bukszár and van den Oord, 2006a)

(2.17)

where λ was the largest eigenvalue of matrix J (discussed by Bukszár and van den

Oord) and Fχ2 was the cdf of the non-central chi-square distribution with 1 degree of

freedom and non-centrality parameter

(2.18)
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where n was the total sample size, p was the proportion of controls in the total sample,

q = 1 - p was the proportion of cases in the total sample, and subscripts 1 and 2 referred

to the two genotype categories. These computations were carried out with the R script

costeff2by2 provided by Bukszár and van den Oord (http://www.vipbg.vcu.edu/ ed-

win/).

Recessive 1-df Test

For Supplemental Tables 2.9 and 2.12, the recessive 1-df test was employed assuming

an underlying recessive genetic mode-of-inheritance risk model. The specific genotype

cell probabilities for the cases and controls are shown above. For Supplemental Table

2.9, fD and GRR were set to 0.5 and 1.45, respectively. The power calculations were

performed in the same manner as the dominant 1-df test detailed above though the 2

x 2 table was constructed differently, namely, the dd and Dd columns were merged.

2.6 Supplemental Results

Under a multiplicative, dominant, and recessive genetic mode-of-inheritance risk model

and conducting a general 2-df, dominant 1-df , and recessive 1-df test, respectively, the

overall observations discussed in the main manuscript pertaining to the performances

of the study designs when using the Cochran-Armitage trend test (Table 2.1) were

applicable for the alternative tests (Supplemental Tables 2.7, 2.8, and 2.9). For instance,

the power of the proposed two-stage replication-based design that used both public and

study controls was significantly greater than the power for the single-stage study design

that used only study controls for nearly all study designs considered. The single-stage

study design based solely on public controls had greater power than the single-stage

study design based solely on screened study controls for many alternative models when
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the number of public controls was greater than the number of study controls. The

two-stage replication-based study design compared favorably to the singe-stage study

design that used public controls under most alternative models, particularly for smaller

public control samples and higher disease prevalences.

When carrying out a general 2-df test under a multiplicative model, as expected

almost all of the study designs across varying levels of disease prevalences resulted in a

loss of power (Supplemental Table 2.7), compared to the Cochran-Armitage trend test

(Table 2.1).

For the alternative tests assuming multiplicative, dominant, and recessive models,

our results showed that the optimal choice of the proportion of cases used in stage 1

were robust across a range of different possible alternative models (Supplemental Tables

2.10, 2.11, and 2.12), which we had also noted in the main manuscript (Table 2.2) for

the Cochran-Armitage trend test under a multiplicative model. The other observations

discussed in the main manuscript also applied to Supplemental Tables 2.10, 2.11, and

2.12.

In Supplemental Table 2.10, we noted that the powers for our two-stage design

across a range of GRRs, fDs, and follow-up platforms were lower for the general test

as compared to the Cochran-Armitage test (Table 2.2 of the main manuscript). Lastly,

despite the genetic inheritance model and test conducted, the proportion of cases in

stage 1 across the ranges of GRRs, fDs, and follow-up platforms were about the same

as the proportions seen in Table 2.2.
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TABLE 2.6: Power of the Cochran-Armitage trend test for 1- and 2-stage study designs
across a range of sample sizes, SNPs in stage 1, and disease prevalences. Study controls
are assumed to be unscreened for disease and to have the same disease risk as the
general population. Note, under this assumption, power is constant across different
values of disease prevalence for all study designs.

TABLE 2.7: Power of the general 2-df test for 1- and 2-stage study designs across a
range of sample sizes, SNPs in stage 1, and disease prevalences. Study controls are
assumed to be screened and disease free.
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TABLE 2.8: Power of the dominant test for 1- and 2-stage study designs across a range
of sample sizes, SNPs in stage 1, and disease prevalences. Study controls are assumed
to be screened and disease free.
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TABLE 2.9: Power of the recessive test for 1- and 2-stage study designs across a range
of sample sizes, SNPs in stage 1, and disease prevalences. Study controls are assumed
to be screened and disease free.
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TABLE 2.10: Power for the general 2-df test and the proportion of cases in stage
1 that optimizes power (in parenthesis) in a two-stage replication-based GWA study
with 2,000 Cases / 5,000 public controls (stage 1) / 2,000 screened controls (stage 2),
assuming a multiplicative model.
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TABLE 2.11: Power for the dominant test and the proportion of cases in stage 1 that
optimizes power (in parenthesis) in a two-stage replication-based GWA study with 2,000
Cases / 5,000 public controls (stage 1) / 2,000 screened controls (stage 2), assuming a
dominant model.
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TABLE 2.12: Power for the recessive test and the proportion of cases in stage 1 that
optimizes power (in parenthesis) in a two-stage replication-based GWA study with 2,000
Cases / 5,000 public controls (stage 1) / 2,000 screened controls (stage 2), assuming a
recessive model.
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FIGURE 2.1: Power for the Trend Test in 2-Stage Replication-Based GWA Study
Designs with 500,000 SNPs Across a Range of Follow-up Platforms, Using 2,000 Cases,
5,000 Public Controls (Stage 1), 2,000 Screened Controls (Stage 2) and Assuming a
Multiplicative Model. The different line types reflect the power curves for different
follow-up platforms across the possible range of proportion of cases genotyped in stage
1. The follow-up platforms are defined by the number of markers genotyped in stage 2:
a) solid line 16,500 SNPs; b) short-dash line 7,500 SNPs; c) dotted line 1,500 SNPs;
d) long-dash line 100 SNPs. We assumed the population prevalence of disease (K),
the risk allele frequency (fD), and genetic relative risk (GRR) was 0.10, 0.3, and 1.3,
respectively. The maximum power and the corresponding proportion of cases genotyped
in stage 1 (at which maximum power occurred) for the various study designs were: a)
16,500 0.836 and 0.27; b) 7,500 0.848 and 0.31; c) 1,500 0.868 and 0.40; d) 100 0.889
and 0.55.
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FIGURE 2.2: Power for the Trend Test in 1- and 2-Stage GWA Study Designs Assuming
500,000 Markers, 2,000 Cases, 5,000 Public Controls, and 2,000 Screened Controls.
Results are Presented Across a Range of Genotype Relative Risks and Assuming a
Multiplicative Risk Model, Risk Allele Frequency (fD) of 0.1 and 0.5, and Disease
Prevalences (K) of 0.01, 0.10, and 0.25. Each panel presents power curves for disease
prevalences (K) of 0.01, 0.10, and 0.25. Grey and black lines depict power when the
frequency of the disease susceptibility allele (fD) is 0.1 and 0.5, respectively. Solid
lines correspond to the optimal two-stage GWA study based on 5,000 public controls in
stage 1 and 2,000 screened controls in stage 2. Dashed lines represent a one-stage GWA
study using 5,000 public controls. Dotted lines represent a one-stage GWA study with
2,000 screened controls. Dot-dash lines represent a one-stage GWA study combining
2,000 screened controls with 5,000 public controls. The overall type I error (α) was set
at 0.05.
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CHAPTER 3

HAPLOTYPE SHARING

METHODS IN ASSOCIATION

STUDIES

3.1 Introduction

Genome-wide association (GWA) studies offer a promising approach to discover com-

mon genetic determinants of disease. Publicly accessible data on human genetic vari-

ation from the International HapMap Project (International HapMap Consortium,

2005), plunging genotyping costs, and the availability of high-throughput commercial

genome-wide platforms have contributed to its widespread use. GWA studies represent

a hypothesis-generating approach since the genomic location of disease susceptibility

variants is not assumed, but rather the aim is to uncover these variants (Borecki and

Suarez, 2001; Hirschhorn and Daly, 2005). To date numerous common genetic variants

have been identified to be associated with common diseases such as type 2 diabetes,

prostate cancer and psoriasis.

Barrett and Cardon (2006) evaluated genomic coverage for common and rare SNPs



using HapMap’s Phase II and ENCODE (International HapMap Consortium, 2005)

data, respectively, in several of Illumina’s and Affymetrix’s platforms. These platforms

were designed to capture common variation. In particular, the Illumina HumanHap300

and Affymetrix 500K panels captured 75% and 65% of the common SNPs, respec-

tively, in Americans of European ancestry (CEU). On the other hand, none of the

genome-wide products captured rare SNPs well, at a frequency of less than 10% in

the CEU, Yoruba from Nigeria, Japanese from Tokyo, and Han Chinese from Bei-

jing. This deficit in coverage of rare SNPs is still observed as the number of SNPs

on commercial genotyping platforms continues to expand. A major limitation for the

study of diseases associated with rare variants is that commercial genotyping platforms

(particularly Illumina) select SNPs for inclusion on their panels based on available

genotype and linkage disequilibrium information in the HapMap Phase I and II sam-

ples. Unfortunately, most rare SNPs were missed in HapMap samples because SNP

discovery has been limited to a small number of subjects. The 1000 Genomes Project,

which significantly expands the number of samples with genomic sequencing informa-

tion (www.1000genomes.org), is an ongoing project designed to specifically discover

rare genetic variants. This discovery should lead to inclusion of many new rare vari-

ants on next generation genotyping platforms. Currently there is a renewed interest

in identifying rarer functional variants that are associated with disease and these ex-

panded genotyping platforms should facilitate these studies in an economically sensible

way. However, disease-specific highly-penetrant-but-rare-founder mutations will likely

not be detected during the 1000 Genomes Project sequencing efforts and hence not

included on future genotyping platforms.

Due to the computational burden of analyzing large datasets generated from GWA

studies using commercial platforms, single SNP tests are the analytical tool of choice

(Balding, 2006). However, it has been suggested that haplotype ‘blocks’ define the se-
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quence variation throughout the genome, in which the blocks are more conserved than

in other regions (Daly et al., 2001; Jeffreys et al., 2001; Patil et al., 2001; Gabriel et al.,

2002). In many circumstances, haplotypes better capture an underlying untyped causal

variant than any single genotyped genetic marker. An alternative analytic approach

to capture unmeasured genetic risk variants is genotype imputation; however, this ap-

proach too relies on the directly causal variants being genotyped in large data sets such

as the HapMap samples. Genotype imputation of rare variants, utilizing data avail-

able from the 1000 Genomes Project, should increase efficiency/power when evaluating

many rare functional variants associated with common disease but such an approach

is not likely to be useful for capturing the rare-high-penetrant disease specific founder

mutations that likely exist for many rarer disorders. Haplotype analyses are still the

best analytic method for detecting founder-mutation disease associations. Ultimately

direct high-throughput sequencing may be the solution, particularly if the disease gene

location can be significantly narrowed using additional genetic information such as link-

age analysis, but this technology is relatively new and is currently prone to high error

rates and likely substantial noise (many mutations will be observed) masking any true

signals.

Haplotype-based association studies should be particularly useful for identifying

susceptibility genes, where susceptibility is conferred by a small number of very rare

but highly penetrant variants or mutations that are passed down from generation to

generation. These variants/mutations will likely not be identified by the ongoing efforts

of the 1000 Genomes Project or other large-scale sequencing efforts that are not specif-

ically focused on the gene of interest. Such rare variants/mutations will typically be

relatively recent, as random drift typically influences the frequency of rare mutations to

extinction. As a consequence, the haplotype surrounding a rare variant/mutation will

be highly conserved due to the relatively small number of generations of recombination
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since the variant/mutation occurred. Utilizing extended haplotype sharing between

affected individuals around the disease susceptibility variants/mutations has proven to

be very powerful for fine-mapping the underlying causal gene for many diseases includ-

ing ataxia-telangiectasia, Huntington’s disease, cystic fibrosis and breast cancer. In

all cases, an excess of long-range shared haplotypes between affected individuals, and

the break-points in these extended shared haplotypes, pinpointed the location of the

susceptibility gene. Success was enjoyed despite the fact that there were many differ-

ent founder mutations associated with these diseases (allelic heterogeneity), a scenario

which can have detrimental effects on power for single SNP studies. One strategy that

has previously been shown to be effective is to restrict association studies looking for

founder effects to population isolates, where the expected number of unique founder

mutations is expected to be considerably less than outbred/mixed populations such as

the U.S.. As long-range sequencing becomes more economically feasible and the quality

improves, the identification of long-range shared haplotypes between affected subjects

should aid in targeting specific regions for sequencing.

There are caveats to haplotype-based approaches. One of which is that in most

cases haplotypes are not directly measured and must be statistically inferred using

unphased genotype data. Algorithms for population based haplotype inference have

been proposed by Excoffier and Slatkin (1995), Clark et al. (1998), and Stephens et al.

(2001), among others. Alternatively, in order to empirically determine haplotype phase

in the laboratory, molecular haplotyping methods have been developed (McDonald

et al., 2002; Odeberg et al., 2002; Burgtorf et al., 2003) though are not widely used

because they are not high-throughput, are costly to implement, and have unresolved

technical issues (Niu, 2004). For this investigation, haplotype phase was assumed.

The haplotype χ2 test of association (Sham, 1998) is a traditional approach, in which

haplotypes are categorized together if their ordered set of contiguous alleles match at
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each genetic marker, the size and location of the window spanning the haplotypes are

designated a priori by the analyst. For cases and controls, a 2×c (where c is the unique

number of haplotypes) contingency table is then constructed such that disease status

and haplotype signatures define the rows and columns, respectively, and a test of no

association is conducted. Other traditional haplotype association methods such as that

of Clayton (1999) (for family-based studies) and that described by Schaid (2004a) (for

case-control studies) are likelihood-based and, as with the haplotype χ2 test, also re-

quire a predefined set of markers for analysis, which can present several problems (Lange

and Boehnke, 2004). Assigning windows with too few markers can limit the ability of

haplotypes to capture the important variability in the region of interest. Assigning

windows that contain too many markers could result in haplotypes with low frequen-

cies (i.e. sparse data) and unnecessarily increase the degrees of freedom. In addition,

including too many markers can separate haplotypes containing identical-by-descent

segments immediately surrounding the susceptibility variant. All of these limitations

can attenuate associations with disease, reducing the power to detect associations if

they exist.

As an alternative to the fixed window approach, Van der Meulen and te Meerman

(1997a, 1997b) proposed the Haplotype Sharing Statistic (HSS). At the time of their

proposal, they motivated their approach with the population genetic assumption that

a few of the affected individuals’ haplotypes from a founder population not only bear

the predisposing disease variant, but also surrounding this locus many alleles are iden-

tical by descent (IBD). Nolte and te Meerman (2002) later showed that in comparing

two haplotypes at a locus, as the number of identical by state (IBS) marker alleles

increases, the probability that the haplotypes are IBD increases. In other words, in-

creased sharing between two haplotypes at a locus suggests that they are IBD. The

HSS was designed for nuclear families with one or more affected offspring. A reference
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marker is chosen and sharing is assessed upstream and downstream of this location.

All possible pairings of haplotypes are considered and for a given pair of haplotypes,

the distance recorded represents the length of contiguous matching between alleles at

each marker locus surrounding the reference marker. At a given marker locus, alleles

match if they are IBS. The HSS is then computed to be the standard deviation among

the entire sample of recorded shared distances. Unlike traditional haplotype methods

that restrict analysis to a small subset of markers, Van der Meulen and te Meerman

offer a data driven approach that allows the use of all available marker data (Lange

and Boehnke, 2004). Unlike traditional haplotype-based approaches, the inclusion of

additional markers should always result in greater power as highly similar yet not com-

pletely identical haplotypes still contribute to the detection of a possible association.

Van der Meulen and te Meerman’s HSS reflects an approach in which similarity

scores are first generated for all possible pairs of haplotypes, then a summary mea-

sure (e.g. the HSS) is computed that incorporates these scores, and lastly statistical

significance of the summary measure is determined. Others have proposed alternative

methods to score haplotype pairs. Tzeng et al. (2003) and defined the ‘matching’,

‘length’, and ‘counting’ measures for case-control studies. Similar to traditional haplo-

type methods, these measures require a predefined window of markers to analyze. For

a given pair of haplotypes and within the prescribed window, the matching measure

assigns a score of 1 if all the alleles match and 0 otherwise, the length measure is the

length spanned by the longest continuous interval of alleles IBS, and the counting mea-

sure is the number of concordant alleles, which does not require matching alleles to be

adjoining. One of the drawbacks of these measures is the specification of the window,

as is with traditional haplotype tests.

Lange and Boehnke (2004) developed the conserved haplotype sharing statistic

(CHSS) and described it in the context of family trios comprising one affected indi-
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vidual and his or her parents, the parents may or may not be diseased. For each pair of

haplotypes among all pairings, the CHSS is constructed by evaluating alleles to the left

and right of a chosen reference marker. To control for possible genotyping errors and

marker allele mutations, one marker mismatch on both sides of the reference marker is

allowed, at the expense of a user-defined penalty parameter. Rare alleles that match

are given more weight than common alleles, by taking the inverse of the estimated allele

frequencies when computing the CHSS. Ambiguous phase and missing marker data are

accounted for in the scoring algorithm.

Once similarity scores are generated, then a summary statistic may be computed

with the intention of assessing its statistical significance. Lange and Boehnke (2004)

introduced the Haplotype Runs Test (HRT) statistics that strictly consider scores from

transmitted haplotypes (i.e. ‘case’ haplotypes) in the family trio setting. Also for the

trio design with affected offspring, Bourgain et al. (2000) defined the Maximum Identity

Length Contrast (MILC), which measures pairs of haplotypes in the same way as Van

der Meulen and te Meerman’s (1997a, 1997b) method. However, the MILC contrasts

the transmitted and non-transmitted samples of haplotypes differently, by subtracting

the mean of the scores formed from all possible haplotype pairs of the non-transmitted

haplotypes from that of the transmitted haplotypes. Lange and Boehnke (2004) in-

vestigated the power of summing only the transmitted haplotypes versus subtracting

off the sum of the non-transmitted from the sum of the transmitted haplotypes. They

discovered that the former method was much more powerful, postulating that under the

alternative hypothesis, for the groups of transmitted and non-transmitted haplotypes,

the within group similarity is high while the between group similarity is low. Thus, the

sums of scores corresponding to each group would both have reasonably high values

and subtracting the non-transmitted from the transmitted scores would obscure this

grouping effect.
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Neither of the above mentioned methods of summing the scores include scores from

discordant pairs of haplotypes, i.e. a transmitted (case) paired with a non-transmitted

(control) haplotype, are not incorporated into the summary statistics. Beckmann et al.

(2005) defined a statistic that uses all of the available haplotype similarity measures

such that each score is weighted. They motivated the weights with the argument that

in comparing haplotypes, the corresponding phenotypes, be they continuous traits or

measured dichotomously, that deviate the most from the phenotypic mean are the most

influential (Elston et al., 2000; Forrest, 2001). For example, in the case-control setting,

as the population frequency of disease becomes more rare, pairs of case haplotypes

(i.e. haplotypes that deviate most from the norm) are given more weight than pairs of

control or discordant haplotypes. Analogously, pairs of control haplotypes weigh more

as disease prevalence becomes more common.

In this investigation, we made slight modifications to Lange and Boehnke’s (2004)

CHSS statistic in that when considering a pair of haplotypes, the alleles at the reference

marker must match in order for the CHSS to build up and downstream and we did

not allow any mismatches on either side of the reference marker. In addition, we

investigated the power of the Length and Count measures. The Length score was based

on Van der Meulen and te Meerman’s (1997a, 1997b) scoring method in constructing

the HSS that measured the shared genetic distance. For matching alleles, the Count

score simply counted the number of matching alleles. Furthermore, Lange and Boehnke

created an indicator variable from the CHSS values and a predefined threshold value,

aiming to distinguish between haplotypes that have extended sharing (thus, more likely

to be IBD) and those that share for shorter stretches. Additionally, a haplotype pair or

a small number of pairs that are abundantly similar may dominate the test statistic, so

using an indicator variable would guard against this. The problems with this approach

are interpreting the meaning of this chosen value and knowing a priori an adequate
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threshold given the data. To address these issues, thresholds are determined from

designated percentiles of the ordered array of scores. Thus, the threshold is data driven

and more interpretable. Then, we recode each of the similarity measures in two ways.

First, we follow the design of the indicator variable as initially proposed by Lange and

Boehnke, though we use the percentile based thresholds. Second, we introduce a second

score based on thresholds that instead of assigning zeros to scores that are less than

the threshold, we divide these scores by the threshold value to construct normalized

scores less than one, and scores greater than or equal to the threshold are recoded to

one (in essence resulting in a truncated score with a threshold ceiling value).

For each of these similarity measures and recoded variables we employ the summary

methods as previously described and then assess statistical significance using permuta-

tion tests, similar to Lange and Boehnke (2004). Finally, we introduce a novel approach

that exploits the observation that similar haplotypes form clusters. As opposed to per-

mutation tests that are computationally burdensome, this novel approach is quick and

efficient in that contingency tables are constructed using the percentile based thresholds

and a p-value is computed with Pearson’s χ2 statistic.

We found that the log10 version of the CHSS outperformed the other reference

marker scores, dichotomizing the haplotype sharing scores with a threshold based on

percentiles increased power, using fixed windows was detrimental to power, removing

rare SNPs and SNPs in high LD with each other was not recommendable, and our

novel clustering algorithm had competitive power and was significantly faster than

permutation testing, which is desirable for genome-wide scans.
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3.2 Methods

We assumed that our sample consisted of an equal number of N cases and N controls,

unrelated and independent, for a total of 2N subjects and 4N haplotypes. All subjects

were assumed to be genotyped at M genetic polymorphic markers (for example, the

markers could be single nucleotide polymorphisms [SNPs], microsatellites, short tan-

dem repeats, etc.) with no missing data and the markers were ordered by physical

location. For the pool of 4N total haplotypes, we considered all possible
(
4N
2

)
pairings

of haplotypes, such that case (control) haplotypes were paired with other case (con-

trol) haplotypes as well as case haplotypes paired with control haplotypes. We assumed

Hardy-Weinberg Equilibrium and thus haplotypes within individuals were regarded as

independent and also included as a possible pairing. We generated a multitude of shar-

ing statistics for each pair of haplotypes, so that for each sharing statistic there were(
4N
2

)
scores.

The sharing statistics were constructed based on either a reference marker or fixed

window of markers. In the reference marker approach, an initial starting (or “ref-

erence”) marker was chosen and scores were computed up- and downstream of the

reference marker up to, but not including, the first mismatched pair of alleles. Thus,

for long stretches of consecutive haplotype sharing, the reference marker approach did

not restrict the magnitude of the sharing statistic to a predetermined number of mark-

ers. On the other hand, with the fixed window method we specified a region of markers

to be considered upon calculating the particular sharing statistic, such that markers

outside of this region were not considered.
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3.2.1 Reference Marker Approach

We calculated the conserved haplotype sharing statistic (CHSS) as proposed by Lange

and Boehnke (2004). Specifically, for a given pair of haplotypes, at the chosen reference

marker, r, within the ordered set of markers, 1 ≤ r ≤ M , the observed alleles were re-

quired to be identical by state (IBS) in order for the CHSS to be constructed, otherwise

the CHSS was set to 1. Let Aj
i be the specific allele at marker i, 1 ≤ i ≤ M , on haplo-

type j (j = 1, 2) of the haplotype pair and let f̂i(A
j
i ) be the estimated population-based

frequency of allele Aj
i computed using the entire sample of case and control alleles. De-

fine markers a and x (1 ≤ a ≤ r ≤ x ≤ M) such that a (x) is the first marker to

the left (right) of the reference marker that fails to match alleles IBS between the two

haplotypes. Given that the alleles matched at r, the CHSS was then defined to be the

product of the reciprocal of the f̂i’s across the contiguous interval of alleles IBS for a

given pair of haplotypes. Namely,

CHSSr =
x−1∏

i=a+1

(
f̂i(A

1
i )

)−1

(3.1)

Since the values of the allele frequencies were between 0 and 1, computing the

reciprocal of the f̂i’s gave much greater weight to matching alleles that were more

rare (i.e. as f̂i → 0, f̂−1
i → ∞). In contrast, identical alleles that were common (e.g.

0.20 ≤ f̂i < 1 corresponded to 1 < f̂−1
i ≤ 5) contributed much less to the magnitude

of the CHSS.

We also considered the CHSS in log base 10 space upon motivating the summary

statistics of the haplotype scoring measures. The CHSS in (3.1) was then

log10(CHSSr) =
x−1∑

i=a+1

log
(
f̂i(A

1
i )

)−1

(3.2)

76



Starting at the reference marker r and for each pair of haplotypes, we calculated

the total length of the continuous region over which all markers were IBS. This was

similar to the scoring measure used in the Maximum Identity Length Constrast (MILC)

statistic as described by Bourgain et al. (2000). In particular,

Lengthr = Pos(x− 1)− Pos(a + 1) (3.3)

where Pos was the relative position on the chromosome at either marker x− 1 or a+1.

For example, Pos could be the physical position in basepairs.

The final reference marker based sharing measure we examined was the Count. As

the name implies, for a given pair of haplotypes we counted the number of identical

alleles, beginning at r and then moving to the left and right of r until we reached

mismatching alleles.

Countr =
x−1∑

i=a+1

1 (3.4)

3.2.2 Fixed Window Approach

The haplotype sharing scores based on reference markers described in Section 3.2.1

were also implemented utilizing fixed windows. In other words, a region of markers

was defined and analogous measures to the CHSS, Length, and Count were computed

within this specified region, in addition to a binary score detailed by Tzeng et al.

(2003). For the CHSS and Count we simply considered all matching alleles within

this designated segment, regardless of any potential mismatches between markers. The

Length measure was defined to be the length of the longest continual interval within

the assigned window.

Define the lower and upper boundaries of the fixed window to be w1 and w2, re-

spectively, such that amongst the ordered set of M markers, 1 ≤ w1 ≤ w2 ≤ M . The
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CHSS under the fixed window approach, analogous to the CHSS based on a reference

marker (3.1), was then

CHSSw2
w1

=

w2∏
i=w1

If̂i

(
f̂i(A

1
i )

)−1

(3.5)

where the indicator variable If̂i
was set to 1 if at marker i the alleles for haplotypes 1

and 2 matched (i.e. A1
i = A2

i ), otherwise (i.e. A1
i 6= A2

i ) we set If̂i
to f̂i, which effectively

did not increase the size of the CHSS score for alleles that were not IBS. Lange and

Boehnke (2004) did not investigate the CHSS using windows, rather the sharing scores

included in their report were restricted to scores constructed about a reference marker.

The log10 equivalent of CHSSw2
w1

was

log10(CHSSw2
w1

) =

w2∑
i=w1

log10

[
If̂i

(
f̂i(A

1
i )

)−1]
(3.6)

The following fixed window scores (Matchw2
w1

, Lengthw2
w1

, and Countw2
w1

) were described

by Tzeng et al. (2003).

The Match score for window w1 to w2 was

Matchw2
w1

= Iw2
w1

(3.7)

where Iw2
w1

was 1 if for a given pair of haplotypes all of the alleles within w1 and w2

were identical and 0 if there was at least one discordant pair of alleles (i.e. A1
i 6= A2

i ).

The window based version of the Length haplotype sharing score given k = 1, . . . , c

continuous segments within the specified window (w1 to w2) was

Lengthw2
w1

= max
k

[
Pos(Uk)− Pos(Lk)

]
(3.8)

where Uk and Lk were the upper and lower markers that bounded the k-th continuous

interval. We found the largest such interval within w1 and w2 and set this to Lengthw2
w1
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for a given pair of haplotypes.

The Count measure using windows was

Countw2
w1

=

w2∑
i=w1

Ii (3.9)

where Ii was an indicator variable defined to be 1 for matching alleles (A1
i = A2

i ) and 0

for non-identical alleles (A1
i 6= A2

i ). The Countw2
w1

counted all alleles IBS within w1 and

w2 and did not require that matching alleles be adjacent to one another.

3.2.3 Threshold Scores

We constructed threshold scores for each of the haplotype sharing measures based on

reference markers (Section 3.2.1) and windows (Section 3.2.2) in order to distinguish

between groups of haplotypes, with the exception of the Matchw2
w1

(3.7) which by def-

inition was binary. The motivation was that across the
(
4N
2

)
haplotype pairings there

would be a varying degree of sharing scores, where smaller scores represented haplo-

types that failed to match or matched for only a few common alleles and larger scores

identified haplotypes that matched over an extended set of markers. The threshold

scores were aimed at separating these two contrasting sets of shared haplotypes. More

importantly, upon summing the haplotype sharing scores (described in Section 3.2.4),

a single or small number of haplotype pairs that exhibit a high degree of sharing would

not dominate the test statistic under a threshold score.

Lange and Boehnke (2004) proposed applying thresholds on their CHSS. They con-

sidered two threshold values, t = 100 and t = 10, 000, for which the modest threshold

value of t = 100 focused on excess sharing of short or common haplotypes whereas the

high threshold of t = 10, 000 focused on excess sharing of rare or extended haplotypes.

We further developed the idea of thresholds by defining thresholds based on percentiles

79



of the set of
(
4N
2

)
haplotype sharing scores. The use of percentiles allowed the threshold

values to be driven by the data, instead of arbitrarily selecting these threshold values,

which could be adequate for some data sets but not for others. Furthermore, in con-

trast to the investigation of Lange and Boehnke (2004) in which the thresholds were

employed only for the CHSS, the use of percentiles permitted us to utilize thresholds

across a range of haplotype sharing methods and compare their performance in terms

of power.

Specifically, to ascertain the threshold values, TPk
, given a set of percentiles (Pk

for k = 1, . . . , t) and a haplotype sharing score type (e.g. log10(CHSS), Length, and

Count), we ordered the entire set of
(
4N
2

)
scores, S(`) for ` = 1, . . . ,

(
4N
2

)
, and determined

the location L that demarcated Pk percent of the ordered scores, from (1) to (L). We

then defined Tk to be S(L). Since log10 is a one-to-one transformation, in building the

threshold based scores, we opted to compute threshold scores for log10(CHSS) and not

for CHSS (unlogged).

We defined two types of threshold scores that we used for both the reference marker

and window based haplotype sharing measures. The first was binary in nature,

I{S(`)≥TPk
} =


1, S(`) ≥ TPk

0, S(`) < TPk

(3.10)

where S(`) could either be a score computed using a reference marker (e.g. log10(CHSSr),

Lengthr, Countr) or a fixed window (e.g. log10(CHSSw2
w1

), Lengthw2
w1

, Countw2
w1

). We note

that the actual value of TPk
depended on the score type under assessment.

The second threshold score weighted the more similar haplotypes (i.e. the pairs of

haplotypes that had scores exceeding the corresponding threshold) equally and rendered
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the less similar haplotypes on a continuous scale. Specifically,

R{S(`)≥TPk
} =


1, S(`) ≥ TPk

S(`)

TPk

, S(`) < TPk

(3.11)

where 0 ≤ S(`)

TPk

< 1. Haplotypes with a high degree of sharing, as determined by the

threshold TPk
, were weighted in the same way as the binary threshold score I{S(`)≥TPk

}.

However, for haplotypes that did not meet this threshold criterion, we assigned the

ratio S(`) to TPk
, the particular score to the threshold. Haplotypes that were fairly

similar but did not quite surpass TPk
had a ratio close to 1 while on the contrary

haplotypes that did not have any alleles IBS or had a few common alleles had a ratio

of 0 or close to 0. We intended that R{S(`)≥TPk
} would utilize available information

about dissimilar haplotypes, as compared to simply assigning them a 0 which was the

approach of I{S(`)≥TPk
}.

3.2.4 Summary Statistics

We considered three methods of summing the haplotype similarity measures. First, we

defined a summary statistic that compared the haplotype sharing amongst the cases

with that of the controls. Nolte et al. (2007) investigated such a statistic for which

they summed the pairwise haplotype sharing in the cases and controls separately and

then calculated the difference in these sums in the construction of their test statistic,

the haplotype-sharing statistic (HSS). This was in contrast to their earlier proposed

HSS (Van der Meulen and te Meerman, 1997a, 1997b) that utilized all pairs of “case”

haplotypes (Van der Meulen and te Meerman based their report on family data such

that “case” haplotypes were haplotypes transmitted from the parents to the offspring).

Bourgain et al. (2000) also applied this approach of subtracting out the effect of the
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controls (i.e. non-transmitted haplotypes) from the cases (i.e. transmitted haplotypes).

Nolte et al. (2007) claimed that such an approach, as applied to their HSS, could

correct for linkage disequilibrium (LD) other than that caused by the disease mutation.

Specifically, we defined this sum in (3.14) as

SumCase =
4N−1∑
i=1

4N∑
j=i+1

ICase,iICase,jSij (3.12)

SumCon =
4N−1∑
i=1

4N∑
j=i+1

ICon,iICon,jSij (3.13)

SumDiff = SumCase − SumCon (3.14)

where SumCase and SumCon were the sum of the given haplotype sharing scores Sij (as

described in Sections 3.2.1 and 3.2.2), i and j indexed the haplotypes of the pairing,

ICase,i(j) was set to 1 if the i(j)-th haplotype was from a case subject and 0 if it was from

a control, and likewise ICon,i(j) was the indicator variable for the control haplotypes.

Assuming Hardy-Weinberg equilibrium, case and control haplotypes within subjects

were included in SumCase and SumCon.

Lange and Boehnke (2004) investigated the power of SumCase and SumDiff in the con-

text of the parent-parent-affected offspring trio design in which the “case” and “control”

haplotypes were those haplotypes transmitted and not transmitted from the parents

to the offspring, respectively. They discovered that SumCase was much more powerful,

postulating that under the alternative hypothesis, for the groups of transmitted and

non-transmitted haplotypes, the within group similarity was high while the between

group similarity was low. Thus, SumCase and SumCon would both have reasonably high

values and computing their difference (SumDiff) would obscure this grouping effect. For

the second summary measure, we extensively studied the power of SumCase in order to

examine closely Lange and Boehnke’s claim.

82



Lastly, the third summary measure we considered was the general approach of Man-

tel’s statistics for space-time clustering (Mantel, 1967) to correlate genetic and pheno-

typic similarity. Beckmann et al. (2005) proposed the use of Mantel’s statistic whilst

defining the phenotypic similarity. In contrast to SumCase and SumDiff that do not uti-

lize all
(
4N
2

)
scores, the Mantel statistic applies a weighting measure across all scores.

Namely,

M =
4N−1∑
i=1

4N∑
j=i+1

SijYSubji, Subjj (3.15)

where YSubji, Subjj was the phenotypic similarity for two haplotype copies i and j in

which the phenotypes were derived from subjects Subji and Subjj. Specifically,

YSubji, Subjj = (ySubji − µ)(ySubjj − µ) (3.16)

YSubji, Subjj was the mean corrected product where µ denoted the mean of the phenotype

and ySubji and ySubjj the phenotypes of subjects Subji and Subjj. The motivation

behind this definition was that either similar or different haplotype pairs farthest from

the mean µ would be the most influential (Elston et al., 2000; Forrest, 2001). There

were several possibilities to define µ and in the scenario of a binary phenotype such

as case/control status in our unrelated cases and controls design, we set µ to be the

disease prevalence and ySubji(j) was 1 if Subji(j) was a case and 0 if a control. µ was a

parameter that weighed the three possible comparisons between pairs of haplotypes, i.e.

1) both were from affected/exposed individuals; 2) both were from control individuals;

3) the haplotype pair was discordant, i.e. one was from an affected/exposed individual

and the other came from a control individual. For rare diseases, disease prevalence is
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close to 0 (i.e. µ ≈ 0), and it follows that

YSubji, Subjj = (ySubji − µ)(ySubjj − µ) =
≈ 1 if both haplotypes i and j were from affected individuals

≈ 0 if both haplotypes i and j were from unaffected individuals

< 0 if the haplotypes i and j were from discordant individuals

On the other hand, the more common the disease, i.e. as disease prevalence ap-

proaches 50% (µ → 0.5), the values of YSubji, Subjj for concordant affected and unaf-

fected haplotype pairs converge from 1 and 0, respectively, to 0.25, whereas scores for

discordant haplotype pairs (i.e. one haplotype comes from an affected individual and

the other from an unaffected) become more negative and reach −0.25. In this scenario,

concordant pairs, regardless of affection status, are scored equally and contrasted to

discordant pairs, thereby testing whether they have a tendency to share protective

haplotypes (Beckmann et al., 2005).

3.2.5 Significance Estimation of the Summary Statistics via

Permutation Testing

The asymptotic distributions of the various haplotype sharing scores generated by the

reference marker approach (Section 3.2.1) were mathematically intractable due to the

nature of these scores in which sharing was assessed for the length of the haplotype

pairs until a mismatch was encountered. Furthermore, we could not satisfactorily

approximate these distributions with any known distribution(s). Consequently, we

empirically estimated statistical significance of the summary statistics described in

Section 3.2.4 via permutation testing, for the sets of summary statistics pertaining to

84



both reference marker and fixed window scores (Section 3.2.2).

In particular, we randomly shuffled the affection status labels across all N cases

and N controls. To save computational time and resources, for each score type we did

not regenerate the
(
4N
2

)
haplotype pairing scores, but rather we simply reassigned each

score with its corresponding pair of labels resulting from the given random shuffle. We

then computed the summary statistics, SumCase, SumDiff, and M (Equations 3.12, 3.14,

and 3.15, respectively) according to the permuted affection status labels. We carried

this out B times, resulting in a set of t(1), t(2), . . . , t(B) permutation summary statistics

for each summary statistic type relating to a given score. We defined the permutation

p-value to be

p =

∑B
b=1 I(t(b) ≥ t)

B
(3.17)

where t was the observed summary statistic and I was the indicator function. For

t(b) = t, with one-half probability we set I to be one and zero otherwise.

3.2.6 Single Marker χ2 Test of Association

We compared the performance of the haplotype sharing measures and summary statis-

tics with the single marker χ2 test of association. At a given reference marker, r, we

performed an allelic association test of 1 degree of freedom. We constructed a 2 × 2

contingency table in the following manner. Disease status constituted the rows and

the alleles at r (e.g. d and D) were classified in the columns, such that each subject

contributed two counts to any given cell. Specifically, a homozygote dd was counted

twice in the d allele column, similarly for a homozygote DD in the D allele column,

and a heterozygote Dd contributed one count to the d column and another to the D

column. We employed Pearson’s 1 degree of freedom χ2 statistic, QP , to test the null

hypothesis of no association. We assumed Hardy-Weinberg equilibrium (HWE) in both

cases and controls.
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3.2.7 Haplotype χ2 Test of Association

We also assessed the power of the haplotype χ2 test of association. We used the same

fixed windows that we defined for the fixed window scores (Section 3.2.2) for the haplo-

type χ2 test. In particular, given a fixed window with lower and upper boundaries of w1

and w2, we searched the resulting pool of haplotypes for distinct haplotype signatures

and each signature was assigned a row in a R × 2 contingency table, where R was the

total number of rows (i.e. unique haplotype patterns) and there were 2 columns that

classified affection status. All haplotypes were then categorized into their corresponding

haplotype row and affection status column (i.e. haplotypes arising either from affected

or unaffected individuals were labeled as such). The cells of the R× 2 table contained

the counts of the categorized haplotypes.

To test the null hypothesis of no association, we computed the χ2 statistic that had

approximately a χ2 distribution with R−1 degrees of freedom. Beforehand we checked

for small haplotype row totals so that the number of rows (and hence the degrees of

freedom) would not be excessively large if many rare haplotypes were present in the

sample. Furthermore, the χ2 approximation was more appropriate when expected cell

sizes were 5 or greater. We implemented 2 approaches when haplotype row totals

were sufficiently small, i.e. < 10. First, we removed these rows entirely from the

table (“Delete” method). Second, we pooled together all rows with small sample sizes

(“Collapse” method).
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3.2.8 An Alternative to Permutation Testing: a Quick and Ef-

ficient Clustering Algorithm for Significance Estimation

of Haplotype Sharing Measures

We developed methods to assess statistical significance of excess haplotype sharing

amongst the cases as compared to the controls. Aside from the biological motivation,

these methods were computationally quick and efficient.

We investigated the haplotype sharing amongst 60 unrelated individuals (120 hap-

lotypes) of the CEPH sample (Utah Residents with Northern and Western European

Ancestry), genotyped as part of the HapMap project. Across all
(
120
2

)
= 7, 140 pairs

of haplotypes, we examined the number of contiguous alleles starting at a reference

marker in the PHB gene region. We chose 2 markers, one that was relatively common

(rs2233667, estimated minor allele frequency [MAF] = 0.328) and the other that was

rare (rs882031, estimated MAF = 0.025). Surprisingly, a fair amount of unrelated in-

dependent haplotypes shared a considerable number of adjacent alleles, regardless of

the MAF of the initial reference marker. We therefore hypothesized that case hap-

lotypes as well as control haplotypes in themselves shared a unique set of haplotype

patterns. This was similar to Lange and Boehnke’s 2004 assertion that under the alter-

native hypothesis, for the groups of transmitted and non-transmitted haplotypes in a

family-based study design, the within group similarity is high while the between group

similarity is low. Thus, we were prompted to design an approach that allowed affected

and unaffected haplotypes to cluster according to a relative measure of similarity and

to formally test the statistical significance of the observed clustering in the cases versus

the controls.

We carried out the clustering algorithm in the following manner. Begin cluster

formation with an arbitrary single haplotype, hc1,1, where c1 notated the first cluster
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being formed. The thresholds, TPk
’s, specific for a haplotype sharing score type (e.g.

reference marker and fixed window based log10(CHSS), Length, and Count) described

in Section 3.2.3 served as the cutoffs for which we designated haplotypes to be members

of a particular haplotype grouping.

1. Amongst the haplotype sharing scores pertaining to the haplotype pairings with

the initial haplotype in the cluster, search for any haplotype that meets or exceeds

TPk
and include them in the cluster. Note, for hc1,1 the threshold scores searched

is a subset of 4N − 1 scores out of a total of
(
4N
2

)
haplotype pairing scores for

2N + 2N = 4N case and control haplotypes.

2. For each of the haplotypes entered at Step 1, search for any haplotype(s) to

further include in the cluster, based on the corresponding subset of haplotype

sharing scores.

3. Once the cluster can no longer include additional haplotype members, begin build-

ing another cluster starting with an arbitrary single haplotype, granted that there

are haplotypes that have not yet been grouped. Repeat Steps 1 and 2 for new

clusters to be formed.

4. As soon as no other clusters can be formed after iterating through Steps 1 through

3 and haplotypes remain that have not been assigned to any of the clusters, place

them in an “other” bin to be subsequently assessed.

In Steps 1 and 2, we searched scores corresponding to haplotypes that have not yet

been clustered, so haplotypes were not counted more than once. As a result, this also

saved computational time and resources when searching.

To illustrate the clustering algorithm, consider the following example. We begin

building a cluster with an arbitrary haplotype, hc1,1, for the reference marker based

log10(CHSS). We choose Pk to be the 99-th percentile, so the threshold value is T99.
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1. 3 other haplotypes (hc1,2, hc1,3, hc1,4) have log10(CHSS) values ≥ T99 from their

pairings with hc1,1, so these are included in cluster c1.

2. (a) 2 other haplotypes (hc1,5 and hc1,6) have log10(CHSS) values ≥ T99 from their

pairings with hc1,2, so are included in cluster c1.

(b) 3 other haplotypes (hc1,7, hc1,8, and hc1,9) have log10(CHSS) values ≥ T99

from their pairings with hc1,3, so are included in cluster c1.

(c) No haplotypes have log10(CHSS) values ≥ T99 from their pairings with hc1,4,

so no additional haplotypes are included in cluster c1.

3. Amongst the log10(CHSS) values computed from the haplotype pairings with each

of the haplotypes entered in Step 2 (hc1,5, hc1,6, . . . , hc1,9), no other log10(CHSS)

values were ≥ T99, therefore the construction of cluster c1 is complete and consists

of haplotypes hc1,1, hc1,2, . . . , hc1,9. We begin building another cluster, c2, starting

with arbitrary haplotype hc2,1.

4. After iterating through Steps 1 to 3 two more times, there are 3 clusters, c1, c2,

and c3, each containing haplotypes (hc1,1, hc1,2, . . . , hc1,9), (hc2,1, hc2,2, . . . , hc2,5),

and (hc3,1, hc3,2, . . . , hc3,24). However, there are still 4N − (9 + 5 + 24 = 38)

haplotypes remaining that were not clustered, and will be placed in the “other”

bin.

We employed various methods to handle clusters containing few haplotypes and hap-

lotypes that were categorized into the “other” bin. We postulated that these rare hap-

lotypes could potentially provide useful information in discerning associations between

clusters and affection status, therefore we assessed the performance of incorporating

these rare haplotypes compared to removing them entirely from the analysis.

The first technique we implemented was to not attempt to regroup “other” haplo-

types into any of the existing clusters (“No Regrouping”). We defined minimum cluster
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sizes (sizei for i = 1, . . . , Nsizes) and if the number of haplotypes in a given cluster was

not greater than or equal to sizei then we placed all of the haplotypes in this cluster in

the “other” bin.

The second method was to attempt to regroup “other” haplotypes into any of the

clusters (“Regrouping”) in a 3 step process. First, we regrouped “other” haplotypes per

criteria which we discuss below. Small clusters that did not fulfill sizei could possibly

be expanded at this step. Second, we imposed the cluster size constraints, sizei, across

all clusters. Third, we attempted to regroup “other” haplotypes once again, since some

clusters may have moved to the “other” bin in the previous step.

Our strategy to regroup “other” haplotypes into clusters was the following. For

each of the “other” haplotypes, we inspected all of the scores from the pairings with

the haplotypes already in clusters and found the maximum score. We regrouped the

“other” haplotype into the cluster in which the maximum score resided. We required

that the maximum score stemmed from a haplotype that was not originally in the

“other” bin. If more than one maximum score was found in multiple clusters, we did

not regroup the “other” haplotype in question.

In the third method, we collected all of the small clusters (i.e. all of the clusters

that were not as large as sizei) into one group instead of recategorizing them into the

“other” bin (“Small Cluster Row”). We did not attempt to regroup “other” haplotypes

into clusters for this method.

Once the clusters were created by way of the “No Regrouping”, “Regrouping”, and

“Small Cluster Row” methods, we constructed R × 2 contingency tables where the

number of rows, R, represented the number of clusters and the 2 columns categorized

affection status (i.e. if a haplotype originated from an affected or unaffected individual).

We cross classified the clusters by affection status in order to examine if case haplotypes

grouped together differently than control haplotypes. Regardless if such a difference
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existed or not, the R× 2 tables characterized across all of the clusters the frequency at

which the case and control haplotypes congregated based on a quantifiable measure of

haplotype sharing.

Similar to how we tested for association in the R×2 tables of the haplotype χ2 test

(Section 3.2.7), we computed the χ2 statistic with R−1 degrees of freedom. We assessed

the performance of including and removing haplotypes that did not assemble into any

clusters, which were plausibly the rare haplotypes, by either keeping or removing the

“other” group for each of the 3 methods discussed above (“Keep” or “Delete”). For the

Delete method, we removed entirely the row of “other” haplotypes, given that such a

row existed and that deleting the “other” row did not result in a table with 0 degrees of

freedom (i.e. a table with 1 row). On the other hand, for the Keep method, we simply

kept in the “other” row when calculating the χ2 statistic.

Finally, we formed 2× 2 tables for which affection status defined the columns and

the 2 rows consisted of the aggregated collection of clusters and the group of “other”

haplotypes. We did not attempt to regroup “other” haplotypes into the cluster row.

We computed the χ2 statistic to assess statistical significance.

3.2.9 Illumina’s iControlDB Public Resource: Acquisition, Clean-

ing, and Phasing of Genotype Data from Genome-wide

Platforms

For the purposes of simulation, described in subsequent sections (Section 3.2.10), we

obtained genotypes from a total of 5,444 subjects with diverse ethnic backgrounds

(e.g. Caucasians, African-Americans, Hispanics/Latinos, Asians, American Indians),

genotyped on Illumina’s HumanHap550 Genotyping BeadChip. We downloaded the

data with the Illumina iControlDB Client (version 1.1.2.0) upon agreeing to the Illumina
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Genotyping Control Database Download Agreement and applying for an Illumina iCom

account at www.illumina.com. Control subjects genotyped on versions 1 and 3 of the

HumanHap550 platform were available, each comprising 2,990 and 2,454 individuals,

respectively.

There were a total of 555,352 and 561,466 genome-wide markers in versions 1 and 3,

respectively. Based on the marker names, we found 545,080 markers in common to both

versions and 10,272 markers to be in version 1 but not in version 3. Of these discrepant

markers, 5,109 SNPs had been renamed since version 1, according to a batch query

we performed on dbSNP (www.ncbi.nlm.nih.gov/projects/SNP), and 5,023 of these

SNPs in version 1 were in fact in version 3. We recovered these SNPs in common by

renaming the older version 1 SNPs with the most current names as they appeared in

version 3, which brought the total number of markers in common to both versions 1

and 3 to 550,103. We note that we were unable to recover 16,386 markers that resided

in version 3 but not in version 1.

We studied the gene regions BRCA1 and PHB, both on chromosome 17 (we motivate

the study of these regions in Section 3.2.10). Therefore, we restricted the genome-wide

iControlDB data to chromosome 17. Ten of the SNPs on chromosome 17 (rs2469786,

rs1072101, rs2674954, rs11541311, rs2957407, rs3999623, rs4790958 rs1642220, rs2898645,

and rs692161) were recorded in version 1 on the opposing complementary strand as ver-

sion 3, so amongst the subjects in version 1 we recoded these SNPs in accordance with

version 3.

We further subsetted the chromosome 17 data to include control subjects who re-

ported to be Caucasian although a small proportion of individuals reported to be of

mixed Caucasian ancestry whom we excluded. The Caucasian data was used for sub-

sequent quality control procedures, phasing, and power analyses. In PLINK version

0.99s (Purcell, 2007; Purcell et al., 2007), we carried out the following quality control
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procedures. We computed the estimated proportion, π̂, of alleles shared identity-by-

descent (IBD) for all pairwise comparisons of control subjects, in order to locate and

remove potentially related individuals such that the sample would consist of indepen-

dent controls. We also tested for HWE and calculated minor allele frequencies and

the rates of missing genotypes by SNP and subject. We then removed individuals and

SNPs that were missing more than 5% of their genotypes. SNPs with relatively low

MAFs were allowed to remain in the data set. For pairs of subjects who were related to

some degree, i.e. π̂ ≥ 0.2, we arbitrarily removed one of the related members. Lastly,

we made use of PLINK’s recoding facilities to output the resulting scrubbed genotype

data in fastPHASE format for which we inferred phase and reconstructed haplotypes

with fastPHASE version 1.2.3 (Scheet and Stephens, 2006).

3.2.10 Data Simulation to Assess the Power of the Competing

Tests

In order to evaluate the performance of the haplotype sharing measures and formal

tests, we generated simulated data sets from the pool of reconstructed iControlDB

control haplotypes, subsetted on 2 gene regions of particular interest to us, BRCA1

(breast cancer susceptibility gene 1, early onset) and PHB (prohibitin). Both genes

are larger than average spanning 81.16 and 10.82 kilobases, respectively, and are on

the q arm of chromosome 17 (17q21; BRCA1: base pair [bp] positions 38,449,840 to

38,530,994; PHB: bp positions 44,836,419 to 44,847,241; bp locations based on NCBI

B36 assembly / dbSNP b126). BRCA1 has been extensively researched with regard

to breast cancer onset in women (National Cancer Institute, 2009a; National Cancer

Institute, 2009b). PHB is thought to be a tumor suppressor and involved in sporadic

breast cancer (National Center for Biotechnology Information, Entrez Gene, 2009).

Aside from the biological relevance in studying BRCA1 and PHB, we were able to
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compare and contrast the power of the haplotype sharing measures, summary statistics,

clustering algorithm, and traditional approaches when applied to genomic segments of

relatively high and low LD as observed in BRCA1 and PHB, respectively.

We simulated phased SNP genotype data across N = 200 cases and N = 200 con-

trols (unrelated and independent) for a highly penetrant and rare disease by assuming a

disease prevalence (K) of 0.001, recessive genetic mode-of-inheritance risk model, geno-

type relative risk (GRR) of 750, and rare disease allele frequency (fD) of 0.0125 or 0.02,

depending on the pool of haplotypes carrying the disease allele, explained in greater

detail below. In order to simulate data sets with these assumed parameters, we sought

to explicitly define the genotype probabilities conditional on affection status, i.e. for the

cases Pr(dd|case), Pr(Dd|case), and Pr(DD |case), and for the controls Pr(dd|control),

Pr(Dd | control), and Pr(DD | control), where D represented the predisposing disease

allele and d the non-causal variant. With these conditional genotype probabilities, we

randomly determined the number of cases and controls with a specified genotype (dd,

Dd, or DD) and then for each case and control we randomly sampled without replace-

ment entire haplotypes from 2 distinct pools of haplotypes, according to the assigned

genotype. One pool consisted of 6,170 haplotypes that were phased and reconstructed

from the iControlDB Caucasian control subjects (please refer to Section 3.2.9) and hy-

pothetically carried the non-disease d allele (call it the “d haplotype pool”), whereas

the other pool comprised haplotypes hypothetically harboring the disease D allele (call

it the “D” haplotype pool). For example, if a case (or a control, for that matter) was

randomly assigned a Dd genotype, then we would randomly select without replacement

a haplotype from the D and d pools so as to construct the paternal and maternal chro-

mosomal segments. For homozygous cases and controls, i.e. subjects with either dd

or DD genotypes, we would randomly sample twice from the d or D haplotype pools,

respectively.
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For the set of power analyses based on the BRCA1 gene region, the haplotypes

in the d and D pools consisted of the SNPs present on the Illumina HumanHap550

marker platform at BRCA1. There were 12 such SNPs beginning at rs8176273 (bp

location 38,465,179) and ending at rs799923 (bp location 38,505,457). We selected an

additional 151 SNPs up and downstream of BRCA1, for a total of 314 SNPs spanning an

approximate 3 megabase region (rs3744786 to rs9891016 corresponding to bp positions

36,876,889 to 39,911,011). There were 6 markers covering PHB ranging from rs1049620

(bp location 44,836,513) to rs2277636 (bp location 44,847,176). Similar to BRCA1, we

chose an approximate 3 megabase segment centered about PHB, consisting of a total

of 486 SNPs (rs7220419 to rs9905480; bp locations 43,263,404 to 46,291,064) where 240

SNPs were located up and downstream of PHB.

The computational details are as follows. Assuming HWE, fD, and the non-disease

allele frequency (fd = 1− fD), we computed genotype probabilities as fdd = f 2
d , fDd =

2 · fD · fd, and fDD = f 2
D. The disease prevalence, K, can be written as

K = Pr(case | dd) · fdd + Pr(case |Dd) · fDd + Pr(case |DD) · fDD (3.18)

The GRR under a recessive genetic mode-of-inheritance risk model was defined to be

GRR =
Pr(case |DD)

Pr(case | dd)
=

Pr(case |DD)

Pr(case |Dd)
(3.19)

It followed from Equation 3.19 that

Pr(case | dd) = Pr(case |Dd) =
Pr(case |DD)

GRR
(3.20)
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which we substituted into Equation 3.18 to yield

K =
Pr(case |DD)

GRR
· fdd +

Pr(case |DD)

GRR
· fDd + Pr(case |DD) · fDD

= Pr(case |DD) ·
(

fdd

GRR
+

fDd

GRR
+ fDD

)

and rearranging terms gave us the penetrance of DD

Pen(DD) = Pr(case |DD) =
K

fdd

GRR
+ fDd

GRR
+ fDD

(3.21)

As for the penetrances of dd and Dd, we substituted Equation 3.21 into Equation 3.20

Pen(dd) = Pen(Dd) =
K

fdd + fDd + fDD ·GRR
(3.22)

where Pen(dd) and Pen(Dd) were Pr(case|dd) and Pr(case|Dd), respectively. Lastly, we

computed the genotype probabilities conditional on affection status using the following

general relationships for the cases and controls derived from Bayes’ theorem

Pr(genotype | case) =
Pr(case | genotype) · fgenotype

K

Pr(genotype | control) =
Pr(control | genotype) · fgenotype

1−K

where “genotype” was dd, Dd, or DD and Pr(control | genotype) = 1−Pr(case | genotype).

Specifically, the probabilities of the cases were

Pr(DD | case) =
fDD

fdd+fDd

GRR
+ fDD

Pr(Dd | case) =
fDd

fdd + fDd + GRR · fDD

Pr(dd | case) =
fdd

fdd + fDd + GRR · fDD

(3.23)
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and for the controls were

Pr(DD | control) =

(
1− K

fdd+fDd
GRR

+fDD

)
· fDD

1−K

Pr(Dd | control) =

(
1− K

fdd+fDd+GRR·fDD

)
· fDd

1−K

Pr(Dd | control) =

(
1− K

fdd+fDd+GRR·fDD

)
· fdd

1−K

(3.24)

Therefore, the conditional genotype probabilities could be explicitly computed since

we assumed values for K and GRR and we calculated fdd, fDd, and fDD from the

assumed value of fD.

From the Equations in 3.21 and 3.22, the penetrances of our simulated data un-

der the assumed parameters (recessive genetic mode-of-inheritance risk model, K =

0.001, GRR = 750, and fD = 0.0125) were Pen(dd) = Pen(Dd) = 0.000895 and

Pen(DD) = 0.671. For the controls, Pr(control | dd) = Pr(control | Dd) = 0.999 and

Pr(control |DD) = 0.329. In other words, if an individual had 2 copies of the predis-

posing disease allele (DD), there was a firm chance of developing the disease. On the

other hand, if an individual did not have 2 copies of the disease allele (dd or Dd), with

a very high probability the individual would not contract the disease.

Moreover, our present investigation involved the unrelated case-control study de-

sign. Therefore, given our sample of N = 200 cases and N = 200 controls, their

genotype probabilities calculated from the set of Equations in 3.23 and 3.24 were

Pr(dd|case) = 0.873, Pr(Dd|case) = 0.022, and Pr(DD|case) = 0.105 amongst the cases

and Pr(dd |control) = 0.975, Pr(Dd |control) = 0.025, and Pr(DD |control) = 0.000051

amongst the controls. As an example, one of the realized simulated data sets con-

sisted of the following counts for the cases: 177 (dd), 3 (Dd), and 20 (DD) and for the

controls: 197 (dd), 3 (Dd), and 0 (DD).
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We further simulated sampling from a founder population in which random muta-

tions in the BRCA1 and PHB gene regions were induced and each haplotype carrying

the causal allele was followed throughout a number of generations and recombination

events. Specifically, for each simulated data set we generated a founder pool of haplo-

types that we designated as the “D haplotype pool” discussed above. We randomly se-

lected 1 or 5 loci within BRCA1 and PHB as the mutation site(s) and for each haplotype

we simulated recombination events across 20 or 100 generations under a Poisson process.

The recombination simulation was as follows. We randomly sampled a haplotype from

the 6,170 haplotypes in the “d haplotype pool” and randomly designated a location for

the mutation anywhere within the BRCA1 or PHB gene which did not necessarily have

to be at a locus that was genotyped. This mutation was followed after each meiosis.

We assumed that crossovers occurred randomly and independently over the entire chro-

mosome (i.e. no interference), which essentially was the Haldane mapping function. In

order to determine the number of crossover events for a given meiosis, we multiplied

the number of generations (20 or 100) by the recombination fraction, θ, and used this

expected number of crossovers as the λ input parameter of the Poisson distribution to

draw a random variate. We assessed θ for the designated regions centered about BRCA1

and PHB by first interpolating the sex-averaged map positions in centiMorgans (cM) of

the physical positions (in basepairs) that bounded the given gene region via the Rutgers

Map Interpolator web application (compgen.rutgers.edu/old/map-interpolator; Matise

et al., 2007). Due to the non-additivity of θ, we first calculated the difference of the

bounding map positions which gave us the number of cMs for the entire region. We

then converted this estimate of additive map distance, x, into the non-additive θ by

use of the Haldane map function (Haldane and Smith, 1947),

θ = 1
2
[1− exp(−2|x|)]
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Thus, the single Poisson input parameter (i.e. the expected number of crossovers across

20 or 100 generations) was computed as λ = θ · 20 or λ = θ · 100, in order to generate a

Poisson random variate that designated the number of crossovers for a given meiosis.

Subsequently, we randomly assigned the crossover sites according to the LD map

scaled in linkage disequilibrium units (LDUs). The LD maps for BRCA1 and PHB were

constructed with the program LDMAP (cedar.genetics.soton.ac.uk/public html/helpld.html;

Maniatis et al., 2002) and plotting the LDUs against the physical map in base pairs

revealed a pattern of plateaus and steps. The plateaus signified regions of low haplo-

type diversity or “LD blocks” whereas the steps reflected recombination hot-spots. We

separately read into the LDMAP program the entire set of 312 and 486 SNPs centered

about BRCA1 and PHB, respectively, across all 6,170 iControlDB haplotypes, in or-

der to generate the LD structure observed for this sample. We randomly specified the

crossover locations such that the size of the steps in the LD maps was proportional to

the likelihood of a recombination event. In other words, larger steps resulted in a higher

chance of a crossover. For each crossover, we randomly picked a haplotype from the d

haplotype pool and recorded the segment corresponding to the region on the disease

harboring haplotype that was recombined.

The founder pools containing 5 independently selected mutations were simply a

collection of 5 founder pools, each pool consisting of a distinct mutation.

3.2.11 Power Calculations to Evaluate the Performance of the

Haplotype Sharing Measures, Summary Statistics, Clus-

tering Algorithm, and Traditional Approaches

To calculate power of the haplotype sharing measures and accompanying summary

statistics, clustering algorithm, and traditional approaches, for each of the mutational
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models (i.e. 1 disease mutation inherited across 20 generations, 1 mutation / 100 gener-

ations, 5 mutations / 20 generations, and 5 mutations / 100 generations) we simulated

100 data sets using the BRCA1 and PHB gene region SNP sets discussed in Section

3.2.10. Then for each of the simulated data sets, we computed all single marker and

haplotype association tests as described in Sections 3.2.4, 3.2.6, 3.2.7, and 3.2.8, across

a selected subset of SNPs, designated as all of the SNPs in BRCA1 and PHB in addi-

tion to 5 SNPs up and downstream of these genes. For BRCA1, this subset started at

rs8076790 (bp location 38,408,126) and ended at rs11651341 (bp location 38,783,587) for

a total size of 375.46 kilobases on 22 SNPs (Table 3.1). For PHB, the segment analyzed

ranged from rs2584663 (bp location 44,823,146) to rs4794054 (bp location 44,887,097)

which was smaller than the BRCA1 region at 63.95 kilobases across a smaller set of 16

SNPs (Table 3.2).

The SNPs within the BRCA1 and PHB sets served as the analysis focal points for

the battery of association tests performed. At a given SNP, we carried out the allelic

test (Section 3.2.6) and for the haplotype χ2 test we positioned this SNP in the center

of windows that were 3, 7, and 11 SNPs wide (i.e. 1, 3, and 5 SNPs to each side of the

given SNP) and carried out the “Delete” and “Collapse” methods. We used these same

windows for the haplotype sharing measures based on fixed windows (Section 3.2.2), and

these scores were log10(CHSSw2
w1

), Matchw2
w1

, Lengthw2
w1

, and Countw2
w1

. This given SNP was

also the reference marker for the scores generated from the reference marker approach

(Section 3.2.1), which were log10(CHSSr), Lengthr, and Countr. To evaluate the Length

reference marker and fixed window measures, we defined the physical positions of all of

the SNPs in the data sets per the NCBI B36 assembly which corresponded to dbSNP

b126. Subsequently, the clustering algorithm (Section 3.2.8) employed all of these

reference marker and fixed window scores at this SNP. The threshold scores (Section

3.2.3) were computed for all of the reference marker and fixed window scores and were
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based on 6 percentiles: 75%, 90%, 95%, 99%, 99.5%, and 99.9%. Lastly, for each

score we calculated 3 summary statistics (Section 3.2.4), SumCase, SumDiff, and M , and

estimated their statistical significance by setting the number of permutations, B, at

5,000 and then evaluating the permutation p-value in Equation 3.17. To compute M ,

we specified µ as 0.001 since we simulated the data sets under a disease prevalence K

of 0.001.

In the R×2 contingency tables of the clustering algorithm, we enforced cluster sizes

(i.e. row totals) to be at least 10 and we also compared the performance of the clustering

algorithm when there was no cluster size restriction. This row total criterion was

utilized in all 3 of the approaches of the R× 2 clustering algorithm (“No Regrouping”,

“Regrouping”, and “Small Cluster Row”). The same series of percentiles (75%, 90%,

95%, 99%, 99.5%, and 99.9%) utilized for the threshold scores was also employed in the

R× 2 and 2× 2 clustering algorithm. Furthermore, for the 2× 2 clustering algorithm,

both 1- and 2-sided tests were performed.

At each of the 22 and 16 SNPs in the BRCA1 and PHB sets, respectively, we

computed all of the above-mentioned test statistics and p-values across all 100 simulated

data sets. For a given test and SNP, we calculated the power to be the proportion of

times out of 100 that the test was significant at the 0.05 alpha level.

We adjusted the power estimates for multiple testing across the 22 and 16 SNPs by

way of Bonferroni and an empirical method. Specifically, for the Bonferroni adjustment

we determined the minimum p-value for a given test throughout all of the referent SNPs

and for a given simulated data set. We then assessed the Bonferroni adjusted power

by computing the proportion of times out of 100 the minimum p-value was significant

at the 0.0023 (= 0.05 / 22) or 0.0031 (= 0.05 / 16) alpha level for the BRCA1 or PHB

SNP sets, respectively. Additionally, we empirically controlled the overall type I error

by first simulating 2,500 data sets under the null model that no association existed
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between case-control status and the genotypes simulated at the putative disease locus.

Then at a particular test and simulated null data set, we found the minimum p-value

amongst the referent SNPs, resulting in an empirical null distribution of minimum

p-values based on 2,500 minimum p-values. From this null distribution, we located

the minimum p-value that demarcated the smallest 5% of the minimum p-values and

designated this as the empirically determined significance cutoff that controlled the

overall type I error rate at 5%. The location of this empirical threshold corresponded

to the 125-th smallest minimum p-values. We note that these multiple testing methods

corrected for the multiple tests conducted amongst the SNPs and did not adjust for

the array of various types of association tests we performed.

We investigated the power of removing rare SNPs as well as SNPs in strong LD

with each other. Specifically, one filter removed SNPs that had a MAF of 2% or lower

and another filter excluded SNPs with pairwise r2 of 1% or more. We calculated r2

in PLINK (Purcell, 2007; Purcell et al., 2007) as the squared correlation based on

genotypic allele counts. For each of the 100 BRCA1 and PHB simulated data sets, we

analyzed the set of SNPs in 4 different ways: 1) without any filters, which included all

SNPs; 2) 2% MAF filter applied; 3) 1% r2 filter applied; 4) both the 2% MAF and 1%

r2 filters applied. We used PLINK’s data management capabilities to exclude SNPs

that did not meet the 2% MAF and 1% r2 criteria.

We computed power in the smaller pruned BRCA1 and PHB data sets in the same

manner as that described for the full data sets. The referent SNPs in the filtered data

sets were the same 22 and 16 referent SNPs chosen previously from the full BRCA1

and PHB data sets, respectively, less any SNPs that were excluded due to the 2% MAF

and/or 1% r2 filter, depending on the exclusion scenario. Consequently, the Bonferroni

and empirical corrections were based on the smaller number of analyzed SNPs.

Hardy-Weinberg equilibrium (HWE) was assumed throughout the power analyses.
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3.2.12 Computational Aspects and Complexity

To offer the reader an appreciation of the magnitude of the tests performed for the power

calculations across the group of SNPs about BRCA1 and PHB and the computational

requirements this entailed both in collecting and summarizing the data, we begin by

describing the tests conducted at a particular SNP and a given simulated data set:

1. Allelic test

2. Haplotype χ2, Delete and Collapse methods, 3 windows each ⇒ 6 tests

3. Summing / Permutation tests

(a) 3 reference marker scores

(b) 4 fixed window scores, 3 windows each ⇒ 12 scores

(c) For each of the reference marker and fixed window scores, there was a non-

threshold score plus binary and ratio threshold scores with 6 percentiles each

⇒ 13 scores

(d) For each score, there were 3 summary measures ⇒ 15 (= 3 + 12) primary

scores × 13 sub-scores × 3 summary statistics = 585 total tests

4. R× 2 clustering algorithm

(a) 3 reference marker scores

(b) 3 fixed window scores, 3 windows each ⇒ 9 scores

(c) For each of the scores, we defined 6 percentiles to compute thresholds so as

to cluster the haplotypes

(d) For each percentile, there were 12 test types, i.e. no minimum cluster size /

cluster size of 10, No Regrouping / Regrouping / Small Cluster Row, and
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Keep / Delete ⇒ 12 (= 3 + 9) scores × 6 percentiles × 12 test types = 864

total tests

5. 2× 2 clustering algorithm

(a) 3 reference marker scores

(b) 3 fixed window scores, 3 windows each ⇒ 9 scores

(c) For each of the scores, we defined 6 percentiles to compute thresholds so as

to cluster the haplotypes

(d) For each percentile, we conducted both 1- and 2-sided tests ⇒ 12 (= 3 + 9)

scores × 6 percentiles × 2 = 144 total tests

6. Grand total number of distinct tests per SNP = 1,600

Moreover, for the full data sets of BRCA1 and PHB we analyzed 22 and 16 SNPs,

respectively, so there were 35,200 (= 1,600 tests × 22 SNPs) and 25,600 (= 1,600 tests

× 16 SNPs) tests performed. We further applied the 3 MAF and LD exclusion criteria

as described in Section 3.2.11, resulting in the following number of tests conducted: 1)

2% MAF filter — there were 21 (BRCA1 set) and 15 (PHB set) SNPs for analysis,

contributing 33,600 and 24,000 tests; 2) 1% r2 filter — there were 2 referent SNPs for

each gene set, adding 3,200 tests each; 3) 2% MAF and 1% r2 filters — there was 1

referent SNP for each gene set, furnishing 1,600 tests each. Thus, for BRCA1 and PHB

we conducted 73,600 and 54,400 tests, respectively, for each of the 4 mutational models

(i.e. 1 disease mutation inherited across 20 generations, 1 mutation / 100 generations,

5 mutations / 20 generations, and 5 mutations / 100 generations), bringing the number

of tests to 294,400 and 217,600. Lastly, to compute the power we iterated through these

tests 100 times, for a grand total of 294,400,000 and 217,600,000 tests carried out which

included BRCA1 and PHB, all mutational models, and all SNP exclusion criteria.
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Data preprocessing, the haplotype pairing scores (Sections 3.2.1 and 3.2.2), thresh-

old scores (Section 3.2.3), summary statistics (Section 3.2.4), permutation tests (Section

3.2.5), allelic test (Section 3.2.6), haplotype χ2 test (Section 3.2.7), and clustering al-

gorithm (Section 3.2.8) were coded in C. We used a select set of subroutines from the

Numerical Recipes in C UNIX/Linux Version 2.10 (Press et al., 2002; software and

license obtained from www.nr.com), including “ran2” to generate uniform random de-

viates, “select” to return the k-th smallest value from a given array of values, “sort2”

to sort an array into ascending order using Quicksort while making the corresponding

rearrangements of another array, and “gammq” to compute p-values from the χ2 dis-

tribution. Appropriate changes were made to the source code of these subroutines so

as to conform to the architecture of our code. There were a total of 19,644 lines of

code spanning 384 single-sided printed pages (an uncompressed text file of almost 1

megabyte in size), which consisted of current and older versions of original subroutines,

the Numerical Recipes code, and detailed comments throughout.

We coded the simulation engines in both C and R, which generated the simulated

data sets as discussed in Section 3.2.10. The C code covered the probability sampling

of haplotypes and the R code constituted the construction of the founder pools.

In order to compute the power of the multitude of tests described above for the

BRCA1 and PHB gene sets, across all combinations of the 4 MAF/LD exclusion cri-

teria and 4 mutational models (Section 3.2.11), we had the computational burden of

processing 400 referent SNPs. For each of the simulated data sets, the 5,000 permu-

tations to estimate the statistical significance of the summary statistics (Section 3.2.4)

was incredibly time consuming, initially carried out serially on UNC’s Emerald, a 850-

processor Beowulf Linux cluster. In lieu of running these jobs for several months upon

end, in the C code we parallelized the permutation step by coding this with Message

Passing Interface (MPI) so as to take advantage of the parallel computing environment
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offered by UNC’s Topsail, a 4,160-processor Dell Linux cluster that was ranked by

TOP500 (www.top500.org) as the 87-th fastest publicly known supercomputer in the

world.

As an example, to analyze a particular SNP within the PHB gene set, on Topsail

it took 24 processors running in parallel almost 5 hours to complete 100 simulated

data sets. This was equivalent to over 4 and a half days of CPU time. On the other

hand, analyzing 2,500 null data sets to determine the null distribution of minimum

p-values for the empirically evaluated multiple test adjustments was more demanding.

For example, at a single SNP, 32 parallel processors ran for over 3 days, equivalent to

over 100 days of CPU time.

We wrote numerous Bash scripts that aided in automatically deploying the massive

number of jobs on Topsail as well as organizing the results, approximately 17 gigabytes

worth. In summarizing the results, we wrote R code that arranged the power estimates

in tables formatted in LATEX. Across BRCA1 and PHB, all mutational models, and all

SNP exclusion criteria, there were 1,632 one-sided landscape pages of results.

Finally, the LD displays in the Results (Section 3.3) were produced using Haploview

version 4.1 (Barrett et al., 2005).

3.3 Results

Upon subsetting the genome-wide SNP data from the consensus set of HumanHap550

version 1 and 3 platforms, there were 14,109 SNPs originating from chromosome 17.

We further restricted the subjects to Caucasian; there were a total of 3,172 Caucasians

(58.27% of the sample) of which there were 1,579 and 1,593 from versions 1 and 3,

respectively. We removed 87 (2.74% of the Caucasians) individuals who were likely re-

lated based on their computed π̂, leaving 3,085 unrelated and independent Caucasians.
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None of these subjects were missing more than 5% of their genotypes and so none were

removed for low genotyping. However, 214 SNPs (1.52%) were missing genotypes at

a rate of more than 5%, thus we eliminated them from further analysis, resulting in

a total of 13,895 chromosome 17 SNPs. Lastly, although we computed the MAFs, we

allowed rare SNPs to remain in the data set.

Phasing of the genotypes in fastPHASE required almost 26 days (618 hours) using

one processor and a maximum of 296 and 313 megabytes of random access memory and

swap space, respectively, on UNC’s Emerald, a 850-processor Beowulf Linux cluster.

The 6,170 inferred and independent haplotypes (each of the 3,085 subjects contributed

2 haplotypes) served as the “d haplotype pool” from which we sampled to simulate the

data sets for the power analyses, as described in Section 3.2.10.

The SNP names, physical positions, description of locations, alleles, and computed

MAFs of the set of SNPs that we designated as the referent SNPs for the power analyses

are presented in Tables 3.1 and 3.2 for BRCA1 and PHB, respectively. In the BRCA1

set, there were 5 SNPs that were relatively rare as their MAFs were less than 10%

(rs775990, rs8176225, rs3737559, rs4793211, rs8078799) and rs8176225 was incredibly

uncommon with a MAF of 0.1%, located in the intron of BRCA1. On the other hand,

more than half of the SNPs’ MAFs were about 30%. In the PHB set, there were 3 SNPs

that had MAFs of less than 10% (rs8065814, rs8066722, rs2277636) in which rs2277636

was quite infrequent (MAF = 0.9%), positioned in the intron of PHB. Conversely, the

majority of SNPs had MAFs greater than 30%, of which a handful were above 40%.

Figures 3.1 and 3.2 provide a graphical display of the LD patterns observed in the

BRCA1 and PHB data sets, respectively, that covered an approximate 3 megabase seg-

ment roughly centered about the genes of interest. In the BRCA1 data set (Figure 3.1),

there were distinctive LD blocks of varying sizes throughout the region, and BRCA1

exhibited the largest conserved area. On the contrary, in the PHB data set (Figure
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TABLE 3.1: Characterization of the 22 SNPs chosen within (12 SNPs) and surrounding
the BRCA1 gene (5 SNPs up and downstream). These SNPs served as the referent
locations for the subsequent power analyses.

Nucleotide
Index dbSNP IDa Positionb Location Allelesc MAFd

1 rs8076790 38,408,126 RPL27, intron C / T 0.200
2 rs775990 38,412,059 IFI35 C / T 0.059
3 rs382571 38,425,007 VAT1, intron G / A 0.183
4 rs9911630 38,441,868 G / A 0.355
5 rs11657053 38,444,655 T / G 0.336
6 rs8176273 38,465,179 BRCA1, intron C / T 0.333
7 rs8176265 38,467,522 BRCA1, intron A / G 0.333
8 rs8176257 38,469,731 BRCA1, intron A / C 0.272
9 rs8176225 38,475,122 BRCA1, intron T / G 0.001
10 rs1799966 38,476,620 BRCA1, intron G / A 0.333
11 rs3737559 38,487,830 BRCA1, intron A / G 0.077
12 rs1060915 38,487,996 BRCA1, intron C / T 0.335
13 rs16942 38,497,526 BRCA1, intron G / A 0.335
14 rs799917 38,498,462 BRCA1, intron T / C 0.357
15 rs16940 38,498,763 BRCA1, intron C / T 0.333
16 rs1799949 38,498,992 BRCA1, intron T / C 0.269
17 rs799923 38,505,457 BRCA1, intron A / G 0.229
18 rs4793211 38,552,381 C / T 0.017
19 rs9646417 38,779,779 A / G 0.337
20 rs8078799 38,782,474 A / G 0.010
21 rs4793230 38,782,929 C / A 0.352
22 rs11651341 38,783,587 C / T 0.339

adbSNP: www.ncbi.nlm.nih.gov/projects/SNP
bNucleotide positions based on NCBI B36 assembly, dbSNP b126
cMinor / major allele
dMinor allele frequency
eNumber of non-missing alleles
RPL27: ribosomal protein L27
IFI35: interferon-induced protein 35
VAT1: vesicle amine transport protein 1 homolog (T. californica)
BRCA1: breast cancer susceptibility gene 1, early onset
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TABLE 3.2: Characterization of the 16 SNPs chosen within (6 SNPs) and surround-
ing the PHB gene (5 SNPs up and downstream). These SNPs served as the referent
locations for the subsequent power analyses.

Nucleotide
Index dbSNP IDa Positionb Location Allelesc MAFd

1 rs2584663 44,823,146 T / C 0.356
2 rs8065814 44,825,719 C / T 0.077
3 rs8066722 44,830,006 A / G 0.078
4 rs2197159 44,832,634 C / T 0.328
5 rs4987082 44,836,373 G / A 0.410
6 rs1049620 44,836,513 PHB, UTR A / G 0.197
7 rs2898883 44,837,952 PHB, intron A / G 0.305
8 rs2233669 44,839,002 PHB, intron G / A 0.435
9 rs935129 44,841,015 PHB, intron A / G 0.305
10 rs7502499 44,845,101 PHB, intron A / G 0.302
11 rs2277636 44,847,176 PHB, intron T / C 0.009
12 rs7222591 44,862,018 T / G 0.406
13 rs2119930 44,869,038 C / A 0.416
14 rs2584684 44,875,052 G / A 0.125
15 rs2584681 44,884,745 T / C 0.269
16 rs4794054 44,887,097 T / G 0.114

adbSNP: www.ncbi.nlm.nih.gov/projects/SNP
bNucleotide positions based on NCBI B36 assembly, dbSNP b126
cMinor / major allele
dMinor allele frequency
eNumber of non-missing alleles
PHB: prohibitin
UTR: untranslated region
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FIGURE 3.1: LD plot (r2) of the 3.03 megabase region consisting of the BRCA1 gene
approximately centered within flanking segments. There were a total of 314 SNPs, of
which 12 resided in BRCA1. White represents r2 = 0, shades of grey 0 < r2 < 1, and
black r2 = 1.

FIGURE 3.2: LD plot (r2) of the 3.03 megabase region consisting of the PHB gene
approximately centered within flanking segments. There were a total of 486 SNPs, of
which 6 resided in PHB. White represents r2 = 0, shades of grey 0 < r2 < 1, and black
r2 = 1.

3.2), the LD blocks were less apparent though indeed present, suggesting a greater

degree of diversity along this portion of the chromosome. PHB, located to the right

of a medium-sized LD block and approximately in the center of Figure 3.2, was barely

noticeable in addition to much weaker r2 values computed within the gene, compared

to BRCA1.

Figures 3.3 and 3.4 show a closer view of BRCA1 and PHB, respectively, that

emphasizes the difference between these genes as well as the areas directly up and

downstream of them. There were 12 SNPs residing in BRCA1 (SNPs 6 through 17 in
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Figure 3.3) that constituted a large number of high r2 values (black squares). The rarest

SNP, rs8176225, was not correlated to any of the SNPs in BRCA1 (r2 = 0 throughout,

white squares). The other uncommon SNP, rs3737559, though more prevalent than

rs8176225 exhibited weak correlations with all of the SNPs in BRCA1. Downstream of

BRCA1 (SNPs 18 through 22), r2 values remained strong with the exception of 2 less

common SNPs, rs4793211 and rs8078799. Upstream of BRCA1 (SNPs 1 through 5),

the correlations appeared to taper off.

In contrast to BRCA1, PHB contained half as many SNPs (SNPs 6 through 11 in

Figure 3.4), likely owing to its smaller physical size (BRCA1: 81.16 kilobases; PHB:

10.82 kilobases). There was only one high pairwise r2 value, whereas the other cor-

relations were largely moderate (shades of grey). The correlations became weaker

downstream of PHB (SNPs 12 through 16), while on the contrary the correlations were

moderate at best upstream of PHB (SNPs 1 through 5).

These contrasting gene regions of BRCA1 and PHB allowed us to compare the per-

formance of the haplotype analysis techniques between hypothetical disease harboring

chromosomal segments that differed in LD and physical size.

Table 3.3 contains the results of the power analysis conducted on the BRCA1 data

sets, in which single founder mutation events were simulated and followed through-

out 100 generations, for the log10(CHSS), Length, and Count reference marker scores

and accompanying summary statistics, SumCas, SumDiff, and M at each of the 22 se-

lected SNPs within and surrounding the BRCA1 gene. The Bonferroni and empirically

adjusted powers of the log10(CHSS) reference marker score as well as the powers com-

puted at each of the 22 SNPs were much greater than the Length and Count scores,

for which their powers were about the same after controlling for multiple tests. SumCas

and M had nearly the same power across all 22 referent SNPs and after adjustment,

while SumDiff was markedly consistently lower. Interestingly, for SumCas and M based
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FIGURE 3.3: LD plot (r2) of the BRCA1 gene surrounded by 5 SNPs up and down-
stream, for a total size of 375.5 kilobases and 22 referent SNPs. White represents
r2 = 0, shades of grey 0 < r2 < 1, and black r2 = 1.

on log10(CHSS), the powers at the SNPs within BRCA1 (SNPs 6 through 17) were

overall higher than at the 5 locations upstream (SNPs 1 through 5), in contrast to the

5 SNPs downstream (SNPs 18 through 22) for which the powers steadily climbed to a

maximum of 0.96.

Instead of one founder mutation for a given simulated data set, five founder muta-

tions were created and the disease allele frequency was set slightly higher at fD = 0.02

in lieu of fD = 0.0125 for the one mutation models. All of the other model parame-

ters remained the same (i.e. disease prevalence K = 0.001, recessive genetic mode-of-

inheritance risk model, and genotype relative risk GRR = 750). Table 3.4 contains

the five mutation model results. All of the same patterns and features discussed for

Table 3.3 also held for Table 3.4. Specifying the same model parameters for the five

mutation model as for the one mutation model returned overall lower powers (data not
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FIGURE 3.4: LD plot (r2) of the PHB gene surrounded by 5 SNPs up and downstream,
for a total size of 64.0 kilobases and 16 referent SNPs. White represents r2 = 0, shades
of grey 0 < r2 < 1, and black r2 = 1.

shown), suggesting that the log10(CHSS), Length, and Count reference marker scores

and accompanying summary statistics, SumCas, SumDiff, and M were not as powerful

in detecting disease associations when multiple independent mutations were present in

a given founder pool.

For the remaining analyses (Tables 3.5 through 3.12) based on causal mutations in

BRCA1, we simulated a single founder mutation event for each simulated data set.
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The power of the binary and ratio threshold scores, computed from the log10(CHSS)

reference marker measures, and SumCas, SumDiff, and M are shown in Table 3.5. For

both the binary and ratio threshold scores, as the percentiles increased from 75% to

99.9%, the powers increased as well. The binary scores outperformed the ratio scores;

the binary scores achieved a power of 1.00 at a 99% threshold, empirically adjusted,

whereas the maximum empirically adjusted power from the ratio scores was 0.92 for

a stringent 99.9% threshold. As the threshold percentiles increased, the differences in

power between the SumCas/M and SumDiff summary statistics became greater (SumDiff

having lower powers) and then gradually became less for the higher percentiles (99%,

99.5%, and 99.9%), with the SumCas and M having equivalent powers. For the binary

scores, we did not observe large differences in power depending on the location of the

reference marker (e.g. within BRCA1 versus outside), with the exception of the first 5

SNPs (SNPs 1 through 5) when a 95% threshold was used. On the other hand, for the

ratio scores, beginning at about the 99% threshold, the earlier SNPs (SNPs 1 through

5) tended to have lower power compared to the powers for SNPs within BRCA1 and

powers at the posterior SNPs (SNPs 18 through 22) were higher than the powers for

SNPs within BRCA1, as we saw before in Tables 3.3 and 3.4.
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We determined the power of employing windows of fixed lengths in comparison to

the reference marker approach, as discussed in Section 3.2.2. Table 3.6 presents the

power of the log10(CHSS), Length, Count, and Match scores for fixed windows of sizes 3,

7, and 11 SNPs and accompanying summary statistics. None of the measures achieved

the same or greater amount of power than their reference marker counterparts (i.e. the

log10(CHSS), Length, and Count measures) that were demonstrated in Table 3.3. In

fact, the highest empirically adjusted power attained by the window based scores was

0.50 by the log10(CHSS) and SumCas/M , which was 0.41 lower than its reference marker

analog at 0.91, also the highest power amongst all of the reference marker scores. The

powers of the Length and Count fixed window scores were also well below their reference

marker versions. The Match score almost performed as well as the log10(CHSS), its

maximum occurring with the empirically adjusted power of SumDiff at 0.44. Across all

of the measures, the smaller sized window of length 3 resulted in higher powers after

controlling for multiple testing. Lastly, it did not appear that SumDiff was significantly

less powerful than SumCas and M , as we observed previously for the reference marker

scores (Tables 3.3, 3.4, and 3.5).
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We assessed the impact of removing rare SNPs and SNPs that were in relatively high

LD with each other, as described in Section 3.2.10. Applying the 2% MAF criterion,

19 SNPs were extracted, leaving 295, a 6.1% reduction. Of the 22 selected SNPs within

and surrounding the BRCA1 gene in the unpruned data sets, SNP 9 (rs8176225) was

removed due to its MAF of 0.001, resulting in 21 referent SNPs for analysis, and the

power results are presented in Table 3.7 for the log10(CHSS) reference marker score

and summary statistics. The effect of removing rare SNPs from the data sets was

substantial, power decreased by 0.23 and 0.36 for the SumCas/M and SumDiff summary

statistics, as compared to the unpruned analysis in Table 3.3, resulting in the empirically

adjusted powers of 0.68 and 0.45 for SumCas/M and SumDiff, respectively, which was

previously 0.91 and 0.81.
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TABLE 3.8: Power of the log10(CHSS) reference marker score and accompanying sum-
mary statistics, SumCas, SumDiff, and M after the 1% LD filter was imposed on the
entire set of 314 SNPs in the simulated data sets. A total of 277 SNPs were excluded,
reducing the number of SNPs to 37. Of the 22 selected SNPs within and surrounding
the BRCA1 gene in the unpruned data sets, 20 were removed resulting in only 2 referent
SNPs left for analysis. Bonferroni (Bonf.) and empirically (Emp.) adjusted powers are
included, that accounted for the multiple testing across SNPs. One founder mutation
carried throughout 100 generations was simulated.

Summary Marker
Statistic Positions

3 9 Bonf. Emp.

SumCas 0.21 0.24 0.18 0.21
SumDiff 0.15 0.18 0.14 0.17
M 0.21 0.25 0.18 0.21

We imposed the 1% LD filter on the full data set; 88.2% of the SNPs (N = 277)

were pruned for which 37 of the SNPs remained in total and only 2 referent SNPs were

left for analysis (Table 3.8). This had an even greater impact on power than the 2%

MAF filter as the empirically adjusted powers of SumCas/M and SumDiff were 0.21 and

0.17, respectively.

In the last SNP exclusion scenario, we enforced both the 2% MAF and 1% LD

criteria. A total of 285 SNPs were excluded (90.8% of the SNPs), leaving 29 SNPs in

the entire data set and one SNP for analysis (Table 3.9). The same powers at SNP 3

were computed compared to when only the 1% LD filter was utilized (Table 3.8), 0.21

and 0.15 for SumCas/M and SumDiff, respectively.

The power of the allelic and haplotype χ2 tests for fixed windows of sizes 3, 7,

and 11 are shown in Table 3.10. Based on the Bonferroni and empirically adjusted

powers, the allelic and haplotype χ2 tests were about comparable, regardless of window

size for the haplotype χ2 test. However, in comparison to the reference marker scores

(log10(CHSS), Length, and Count) using SumCas/M (Table 3.3) and both the binary

and ratio threshold scores of log10(CHSS) (Table 3.5), both the unadjusted and adjusted
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TABLE 3.9: Power of the log10(CHSS) reference marker score and accompanying sum-
mary statistics, SumCas, SumDiff, and M after both the 2% MAF and 1% LD filters were
imposed on the entire set of 314 SNPs in the simulated data sets. A total of 285 SNPs
were excluded, reducing the number of SNPs to 29. Of the 22 selected SNPs within
and surrounding the BRCA1 gene in the unpruned data sets, 21 were removed resulting
in only 1 referent SNP left for analysis. One founder mutation carried throughout 100
generations was simulated.

Summary Marker
Statistic Position

3

SumCas 0.21
SumDiff 0.15
M 0.21

powers of the allelic and haplotype χ2 tests were considerably lower. On the other

hand, the window based scores (Table 3.6) overall had lower powers than the allelic

and haplotype χ2 tests.

The power of our novel, quick, and efficient R×2 clustering algorithm and grouping

techniques (No Regrouping, Regrouping, and Small Cluster Row) is presented in Table

3.11. For lower threshold values of 75%, 90%, and 99%, the powers calculated at

each SNP and after multiple testing adjustments were unsatisfactory, ranging from

an empirically adjusted power of 0.41 (90% threshold and Small Cluster Row/Keep)

to 0.66 (99% threshold and Regrouping/Delete). In this threshold range from 75% to

99%, the Regrouping technique was consistently higher than the other 2 approaches (No

Regrouping and Small Cluster Row) and as a matter of fact, its power remained stable

at about 0.65, whereas the powers of the other 2 approaches steadily climbed. However,

at the 99.5% threshold, all of the grouping techniques’ powers jumped to above 0.80.

At the higher 2 thresholds of 99.5% and 99.9%, the No Regrouping approach was the

most powerful and not the Regrouping method that was the most powerful before. The

empirically adjusted power of No Regrouping/Keep was 0.93 at the 99.5% threshold and

then was 0.99 at the most stringent 99.9% threshold. In these higher thresholds, keeping
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the “other” group of haplotypes in the R × 2 tables seemed to be more powerful than

deleting this group of the analysis entirely. On the contrary, for the prior thresholds

from 75% to 99%, the Keep and Delete methods were similar.

In comparison to the permutation based approach of SumCase/M using the log10(CHSS)

reference marker (Table 3.3) and threshold scores (Table 3.5), the R×2 clustering algo-

rithm at the highest 99.9% threshold performed better than the reference marker and

ratio scores and was comparable to the binary scores. We note that the powers of the

R × 2 clustering algorithm reached above 0.90 at the 99.5% threshold though for the

binary scores, higher powers were attained at the lower 99% threshold.

Finally, constructing 2× 2 tables with the clustering algorithm did not prove to be

a beneficial or competing approach (Table 3.12). The greatest power calculated was

0.74 at the 99.9% threshold and for the 1-sided test. At the lower thresholds from 75%

to 99.5%, the empirical powers ranged from 0 to 0.21.
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The same analytical approaches that were carried out for BRCA1 were also con-

ducted for PHB and are included in Tables 3.13 through 3.22. Table 3.13 presents the

power of the log10(CHSS), Length, and Count reference marker scores and accompa-

nying summary statistics for the PHB simulated data sets. Overall, the powers were

greater in the PHB than the BRCA1 simulated data sets. The majority of the empiri-

cally adjusted powers were above 0.87. Conversely, the Length reference marker score

performed the best as its empirically adjusted powers for SumCas/M almost reached

1.00, whereas log10(CHSS) had the highest powers for BRCA1. Also, the powers of the

Count reference marker score were considerably better at 0.90 (empirically adjusted)

for SumCas/M . The empirically adjusted powers of the log10(CHSS) reference marker

score improved slightly by 0.03 (SumCas/M = 0.94 and SumDiff = 0.87). Similar to

our observation with BRCA1, the permutation based SumDiff was consistently not as

powerful as SumCas and M . For the data sets that incorporated 5 independent founder

mutations carried throughout 100 generations (Table 3.14), the empirically adjusted

powers of the log10(CHSS) and Length reference marker scores for SumCas/M were

fairly similar. This was not the case with BRCA1 as the same patterns of results were

seen with the 5 mutation models as with the 1 mutation models.
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Table 3.15 shows the power of the binary and ratio threshold scores based on the

log10(CHSS) reference marker scores. As with BRCA1 (Table 3.5), the binary scores

resulted in greater powers than the ratio scores for the more stringent thresholds in

the PHB simulated data sets. However, for PHB the maximal powers of the binary

scores occurred as of the 99.5% threshold in contrast to BRCA1 in which powers peaked

earlier at the 99% threshold.

Table 3.16 contains the results of the window based scores, analogous to the BRCA1

results in Table 3.6. All of the observations described previously for BRCA1 also held

for the PHB analysis, with the exception that the empirically adjusted powers of the

Length and Match scores were almost equivalent for the smaller window sizes of 3 and

7 and these scores were also the most powerful. On the other hand, for the BRCA1

simulated data sets, the log10(CHSS) had the greatest power.

Table 3.17 exhibits the power of the log10(CHSS) reference marker score and ac-

companying summary statistics after the 2% MAF filter was imposed on the entire set

of 486 SNPs in the PHB simulated data sets. In contrast to the BRCA1 results (Table

3.7), there was not a substantial decrease in power after removing rare variants for

SumCas and M as their power remained stable at 0.91 (without removing rare SNPs

their power was 0.94). Though for SumDiff its power decreased considerably from 0.87

(Table 3.13) to 0.67.

In the second and third SNP exclusion scenario in which the 1% LD and 2%

MAF/1% LD filters were applied (Tables 3.18 and 3.19), both the unadjusted and

adjusted powers were approximately equivalent to those of the BRCA1 simulated and

pruned data sets.
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TABLE 3.17: Power of the log10(CHSS) reference marker score and accompanying
summary statistics, SumCas, SumDiff, and M after the 2% MAF filter was imposed
on the entire set of 486 SNPs in the simulated data sets. A total of 12 SNPs were
excluded, reducing the number of SNPs to 474. Of the 16 selected SNPs within and
surrounding the PHB gene in the unpruned data sets, SNP 11 (rs2277636) was removed
due to its MAF of 0.009, resulting in 15 referent SNPs for analysis. Bonferroni (Bonf.)
and empirically (Emp.) adjusted powers are included, that accounted for the multiple
testing across SNPs. One founder mutation carried throughout 100 generations was
simulated.

Summary Marker Positions
Statistic 1 2 3 4 5 6 7 8 9 10 12 13 14 15 16 Bonf. Emp.

SumCas 0.86 0.82 0.81 0.87 0.89 0.81 0.90 0.92 0.90 0.88 0.89 0.88 0.79 0.80 0.77 0.79 0.91

SumDiff 0.63 0.62 0.62 0.59 0.66 0.64 0.63 0.68 0.75 0.68 0.70 0.68 0.61 0.59 0.58 0.55 0.67
M 0.86 0.82 0.81 0.87 0.89 0.81 0.90 0.92 0.90 0.88 0.89 0.88 0.79 0.80 0.78 0.79 0.91

The allelic and haplotype χ2 tests were also carried out for PHB (Table 3.20).

The allelic test performed similarly for both gene regions; the empirically adjusted

powers were 0.59 and 0.55 for PHB and BRCA1 (Table 3.10), respectively. However,

for the haplotype χ2 test computed using a window consisting of 3 adjacent SNPs,

the empirically adjusted powers were almost the same for PHB and BRCA1 (0.62 and

0.58, respectively) and then for the PHB simulated data sets the empirically adjusted

powers steadily climbed from 0.69 (window size 7) to 0.76 (window size 11), while on the

contrary for the BRCA1 simulated data sets the empirically adjusted powers remained

under 0.60.

The R × 2 clustering algorithm was also applied to the PHB simulated data sets

and the results are in Table 3.21. Similar to the BRCA1 analysis, the powers using

the range of thresholds from 75% to 99% revealed inadequate powers as the maximum

empirically adjusted power computed was 0.76 for No Regrouping and Keep/Delete at

the 99% threshold. The empirically adjusted powers then improved significantly as of

the 99.5% threshold. The majority of the empirically adjusted powers were above 0.90,

the maximum empirically adjusted power occurring at the 99.9% threshold for the No

Regrouping/Keep approach. Similarly to BRCA1, the No Regrouping technique was

amongst the most powerful for the highest 2 thresholds of 99.5% and 99.9%. However,
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TABLE 3.18: Power of the log10(CHSS) reference marker score and accompanying
summary statistics, SumCas, SumDiff, and M after the 1% LD filter was imposed on the
entire set of 486 SNPs in the simulated data sets. A total of 430 SNPs were excluded,
reducing the number of SNPs to 56. Of the 16 selected SNPs within and surrounding
the PHB gene in the unpruned data sets, 14 were removed resulting in only 2 referent
SNPs left for analysis. Bonferroni (Bonf.) and empirically (Emp.) adjusted powers are
included, that accounted for the multiple testing across SNPs. One founder mutation
carried throughout 100 generations was simulated.

Summary Marker
Statistic Positions

11 15 Bonf. Emp.

SumCas 0.17 0.20 0.17 0.20
SumDiff 0.11 0.13 0.11 0.16
M 0.17 0.20 0.17 0.21

TABLE 3.19: Power of the log10(CHSS) reference marker score and accompanying
summary statistics, SumCas, SumDiff, and M after both the 2% MAF and 1% LD
filters were imposed on the entire set of 486 SNPs in the simulated data sets. A
total of 438 SNPs were excluded, reducing the number of SNPs to 48. Of the 16
selected SNPs within and surrounding the PHB gene in the unpruned data sets, 15
were removed resulting in only 1 referent SNP left for analysis. One founder mutation
carried throughout 100 generations was simulated.

Summary Marker
Statistic Position

15

SumCas 0.23
SumDiff 0.16
M 0.23

TABLE 3.20: Power of the allelic and haplotype χ2 tests for fixed windows of sizes 3,
7, and 11 at each of the 16 selected SNPs within and surrounding the PHB gene. Bon-
ferroni (Bonf.) and empirically (Emp.) adjusted powers are included, that accounted
for the multiple testing across SNPs. One founder mutation carried throughout 100
generations was simulated.

Marker Positions
Method 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Bonf. Emp.
Allelic Test 0.23 0.14 0.14 0.21 0.28 0.17 0.33 0.33 0.28 0.36 0.03 0.32 0.32 0.15 0.28 0.11 0.48 0.59

Haplotype χ2 Test
3 0.34 0.27 0.30 0.47 0.38 0.42 0.45 0.49 0.53 0.44 0.31 0.20 0.03 0.00 0.36 0.40 0.53 0.62
7 0.54 0.51 0.49 0.54 0.47 0.53 0.50 0.55 0.49 0.46 0.50 0.54 0.53 0.55 0.59 0.59 0.63 0.69
11 0.56 0.55 0.56 0.57 0.56 0.55 0.50 0.50 0.55 0.61 0.61 0.66 0.70 0.69 0.60 0.67 0.66 0.76
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the Small Cluster Row had similar empirically adjusted powers as the No Regrouping

technique, which we did not observe with the BRCA1 analysis. In addition, for the

thresholds between 75% and 95%, there was not a clear distinction amongst the three

competing grouping approaches, whereas for BRCA1 the Regrouping technique was

consistently higher at these threshold levels. Lastly, keeping and deleting the “other”

group of haplotypes in the R×2 tables had similar powers throughout the entire range

of thresholds.

Finally, in Table 3.22 the powers of the 2× 2 clustering algorithm are presented for

the PHB simulated data sets. The empirically adjusted powers were quite similar to

those of the BRCA1 analysis in Table 3.12, revealing poor power for this method in

that none of the empirically adjusted powers reached 0.70, even for the higher 99.9%

threshold.
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3.4 Discussion

We have demonstrated the utility of the log10(CHSS) reference marker score, recod-

ing the log10(CHSS) as a threshold score, and the R × 2 clustering algorithm. These

approaches were powerful when analyzing data sets of unrelated cases and controls sim-

ulated under a rare and highly penetrant recessive mode-of-inheritance disease model

for which the disease harboring haplotypes arose from founder populations. We hy-

pothesized that generating haplotype sharing scores for all
(
4N
2

)
pairs of haplotypes

from these simulated unrelated cases and controls would result in a powerful approach

since the genetic area flanking the founder mutation within the gene of interest would

be highly conserved amongst the cases throughout the recombination events across

100 generations. The simulated rare, highly penetrant, and recessive disease model

distributed the disease harboring haplotypes, that arose from the simulated founder

pools, primarily amongst the cases. Therefore, the haplotype sharing measures were

powered to detect excess sharing in the cases as compared to the controls who mainly

carried the control haplotypes sampled from the general population.

In addition, we observed that the log10(CHSS) reference marker score outperformed

the Length and Count in the BRCA1 analysis (Table 3.3), whereas all three scores

were sufficiently powered in the PHB analysis (Table 3.13). BRCA1 is a more con-

served region than the PHB gene. Therefore, we would expect that haplotype sharing

amongst the pairs of case haplotypes would be somewhat comparable to the amount

of sharing amongst the pairs of control haplotypes since the highly conserved region

within BRCA1 would exhibit a similar haplotype architecture in both the case and

control haplotypes. The result of this was that the Length and Count measures did

not adequately distinguish excess sharing amongst the cases versus the controls. On

the other hand, the PHB gene is much less conserved than BRCA1, thus the case hap-

lotypes that originated from a single mutated founder haplotype would share many
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more alleles than pairs of control haplotypes that likely did not resemble each other

because they arose from a sample of haplotypes that had different haplotype signatures

in this less conserved gene region. That said, we would expect the Length and Count to

sufficiently distinguish excess haplotype sharing amongst the cases than the controls,

which we observed as the Length and Count reference marker scores had robust powers

in the PHB analysis, as well as log10(CHSS).

Furthermore, log10(CHSS) did not suffer a loss in power as the Length and Count

did for the BRCA1 analysis, due to the rare SNPs contributing substantial weight to

the computed log10(CHSS) scores in contrast to the Length and Count that were not

designed to emphasize rare variants. This was clearly evident when we removed the rare

SNPs by applying the 2% MAF criterion to the BRCA1 simulated data sets, causing

the power of the log10(CHSS) to drop significantly as shown in Table 3.7.

We confirmed Lange and Boehnke’s (2004) claim that SumDiff is not as powerful as

SumCas. They showed this in the parent-parent-affected offspring trio design whilst we

have shown this in the unrelated case-control study design. Analogous to Lange and

Boehnke’s postulate, under the alternative hypothesis, the within group similarity for

the groups of case and control haplotypes is high while the between group similarity is

low. Thus, when subtracting off the sum of the control scores, the computed difference

is small which does not reveal this grouping effect.

We found that the Mantel statistic (Mantel, 1967), M , advocated by Beckmann

et al. (2005) had similar power to SumCas. This was not surprising since by defini-

tion for the rare disease that we simulated with disease prevalence K = 0.001, the

weights applied to the entire set of
(
4N
2

)
pairs of haplotype scores were 0.998 (close to

one) if both haplotypes were from cases, 10−6 (close to zero) if both haplotypes were

from controls, and -0.000999 if the haplotypes were from discordant affected individuals

(Section 3.2.4). Essentially, the approximate zero weight for the pairs of control haplo-

139



types removed their corresponding scores from the sum and the scores from discordant

individuals were given very little weight, which minimally decreased the overall sum.

Thus, the values of M were close to the values of SumCas.

The binary threshold scores recoded from the log10(CHSS) reference marker scores

was an incredibly powerful approach when the thresholds were set at a sufficiently high

enough percentile. The binary score discretely separated the pairs of haplotypes that

had relatively high scores from those that did not. These scores of greater magnitude

were likely due to excess sharing amongst a small set of case haplotypes that comprised

rare SNPs that matched. Therefore, upon shuffling the affection status labels in the

permutation testing, the likelihood that all of these case haplotypes would have been

assigned case labels was small relative to the assignment of some mixture of case/case,

case/control, or control/control labels, which would not result in a summary statistic

as high or greater than that observed.

Although the threshold ratio scores had excellent power at the highest 99.9% thresh-

old, in general it did not perform as well as the binary scores. For scores that did not

meet the given threshold, they were divided by the threshold in order to produce a

distribution of ratios between zero and one. Scores that met or exceeded the threshold

were simply assigned a value of one. In other words, scores were separated into groups

of relatively high and low haplotype sharing, much like the binary score. However,

upon permuting the affection status labels in order to assess statistical significance, the

results suggest that the ratios would by chance, more often than not, inflate the per-

muted summary test statistic, thus weakening the power of the ratio score. In contrast,

the binary score did not allow the smaller scores to augment the summary statistic

since the smaller scores were assigned a value of zero.

Restricting the haplotype scoring to fixed windows of a specified number of adja-

cent SNPs proved to be an inadequate approach. For pairs of haplotypes that matched
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for longer stretches of alleles than the window’s coverage, the magnitude of the com-

puted score was limited, therefore restricting the size of the score and subsequently the

power of the summary statistic. In other words, the window based scores did not suf-

ficiently distinguish between haplotype pairs that matched for great lengths and pairs

that matched to a lesser degree. Although defining windows lends itself well to the

theoretical tractability of the test statistics, we do not recommend the window based

approach in haplotype sharing.

For the log10(CHSS) reference marker score, we showed that removing rare SNPs

could adversely affect power. Though we did not demonstrate this, the Length and

Count reference marker scores also suffered substantial losses in power regardless of

the LD structure, physical size, and number of rare alleles in the gene region analyzed

(i.e. losses were observed in both the BRCA1 and PHB analyses). Excluding the rare

SNPs likely results in pairs of haplotypes that originally shared a great deal of alleles to

not match as much, for which the altered case/case and control/control pairings would

have the greatest effect on reducing power.

Pruning SNPs based on pairwise r2 was also not desirable. The motivation for doing

so would be to reduce the number of referent SNPs to analyze, thus alleviating the

multiple testing burden. However, despite the multiple testing burden being minimal

to none, the calculated power was extremely low.

We have proposed a fast and efficient algorithm that clusters similar haplotypes

based on applying thresholds to the log10(CHSS) reference marker score. This method

of constructing R × 2 contingency tables was adequately powerful as of the 99.5%

threshold and reached almost 1.00 for the 99.9% threshold. At these higher thresh-

olds, the clustering algorithm was powered to detect discrete clusters of haplotypes

in the simulated study subjects and differentiate between the specific sharing in the

cases and controls. The motivation behind the clustering algorithm was similar to
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the threshold scores that essentially separated the score data into groups of high and

low sharing. The clustering algorithm further developed this idea of dichotomizing

the data, whereby allowing the haplotype pairs with excess sharing to additionally be

categorized into separate classes. In essence, more information was extracted from the

score data by using the clustering algorithm than with the threshold score coupled with

the summary statistic which required computationally intensive permutation testing to

assess statistical significance. In contrast, the clustering algorithm was rapid since the

test statistic of the R × 2 table was Pearson’s χ2 statistic for which statistical signifi-

cance was determined with the χ2 distribution. For genome-wide data, the clustering

algorithm would clearly be the analytical tool of choice because of the minimal com-

putational resources required and the minimal time needed to carry out, in addition to

its equivalent power to the slower permutation based threshold score.

We posited that the 2 × 2 tables would be more powerful than the R × 2 tables

using the clustering algorithm, since the 2×2 tables would decrease the dimensionality

of the R×2 tables. However, the lesser degrees of freedom did not overcome the loss of

information resulting from grouping all haplotypes with excess sharing into one cluster.

Therefore, we would recommend the use of the R× 2 tables in the clustering algorithm

and not the 2× 2 tables.

There were several limitations of this investigation. First, we assumed that the

data was phased for which we initially phased the genotype data using fastPHASE. If

phasing must be computationally inferred, errors in the estimation of haplotypes clearly

could cause the results to be misleading if associations were observed. Furthermore, if

haplotype sharing techniques would be applied on a genome-wide scale, genotype data

that must be phased would be an immense computational endeavor. Future work to

incorporate phasing of genotype data is undoubtedly needed.

Second, our results were limited to the unrelated case-control study design, though
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analogous examinations on the power for other study designs could be conducted. In

fact, much of the initial C code for the simulation engine and haplotype analysis was

designed for the parent-parent-affected offspring trio design.

Third, we have presented the usefulness of haplotype sharing under the alternative

hypothesis of a rare, highly penetrant, and recessive disease in which the disease har-

boring haplotypes emerged from founder populations. This is a very specific disease

scenario amongst a spectrum of disease possibilities such as any combination of 1) the

disease prevalence, e.g. from rare to common; 2) varying degrees of penetrance; 3) the

genetic mode-of-inheritance risk models, e.g. multiplicative, dominant, over-dominant;

4) the presence or absence of a founder effect. In the initial stages of this investigation,

we simulated a multiplicative genetic mode-of-inheritance risk model, no founder effect,

and both common and rare causal SNPs sampled from the 6,170 phased iControlDB

Caucasian haplotypes. The R × 2 and 2 × 2 clustering algorithm nor the reference

marker, window based, nor threshold scores exceeded the power of the allelic or haplo-

type χ2 tests. Therefore, the haplotype sharing techniques that we have shown to have

adequate power in this report would perform well under this particular disease setting

(i.e. rare, highly penetrant, and recessive).

Lastly, we did not research the option of allowing for up to one mismatch on either

side of the reference marker, as Lange and Boehnke (2004) did. Thus, future investiga-

tions could address the issues of genotyping error, recombination events, and mutations

for haplotypes that are similar yet not completely identical though they may share a

common ancestor.

In this report, we conducted a comprehensive investigation of haplotype sharing

methods that have been proposed by other authors. It is our understanding of the

current literature that to date there does not exist such a study. In addition, we

elaborated on methods initially introduced by Lange and Boehnke (2004), such as the
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use of thresholds with reference marker scores and the log10(CHSS) reference marker

score, and we proposed a quick, efficient, and powerful algorithm that clusters like

haplotypes. We found that the log10 version of the CHSS outperformed the other

reference marker scores, dichotomizing the haplotype sharing scores with a threshold

based on percentiles increased power, using fixed windows was detrimental to power,

removing rare SNPs and SNPs in high LD with each other was not recommendable,

and our novel clustering algorithm had competitive power and was significantly faster

than permutation testing, which is desirable for genome-wide scans.
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CHAPTER 4

GENE AND PATHWAY-BASED

P-VALUES

4.1 Introduction

A commonly used approach in candidate gene association studies is to individually test

each SNP within the candidate gene and focus attention on the most significant SNP

or SNPs while ignoring those SNPs that did not reach statistical significance. However,

this “most-significant SNP” approach can pose several problems. First, depending on

the number of interrogated SNPs and hence the burden of multiple hypothesis testing,

genetic variants that confer small disease risks could be missed. The “most-significant

SNP” approach is not conducive to the phenomenon that multiple loci within a gene

or multiple genes within a pathway often jointly function together in the etiology of

common diseases (Peng et al., 2009). Second, due to locus heterogeneity (i.e. alleles

at different loci that cause diseases in different populations), replicating a significant

finding at a single marker can be a difficult task (Sladek et al., 2007). Replicating a

significant association at the gene level may be easier than at the SNP level since a

gene, particularly a pathway, comprises an interplay of components that act together



to perform specific biological tasks (Peng et al., 2009). Third, often the location of the

specific causal variant is unknown and therefore we rely on indirect association with

a SNP that is in high linkage disequilibrium (LD) with the actual susceptibility locus.

Thus, a given single SNP may poorly predict the unobserved causal variant. Whereas

a joint analysis of SNPs within a gene could be more powerful since information is

combined across a collective number of SNPs.

Several methods have been suggested in order to jointly analyze SNPs within a gene

or region, such as Fisher’s method (Fisher, 1932), Hotelling’s T 2 test (i.e. the standard

multivariate test) (Xiong et al., 2002; Chapman et al., 2003; Fan and Knapp, 2003),

a weighted Fourier transform (Wang and Elston, 2007), and conventional haplotype

analysis (Schaid et al., 2002). Furthermore, in attempts to combine the information

amongst the set of single SNP tests conducted, often the maximum value (i.e. mini-

mum p-value) serves as the test statistic, for which the null distribution is unknown and

its corresponding p-value is empirically evaluated through permutations of the disease

status across all individuals (Chapman and Whittaker, 2008) or a conservative Bonfer-

roni correction is applied. In gene expression microarray experiments, it is generally

acceptable practice to represent the expression value of a gene by the maximum or

median value of all its transcripts and/or probe sets, since a typical gene has only a few

transcripts, and their expression levels are generally correlated (Wang et al., 2007). On

the other hand, in a gene association study, a few or several hundred common SNPs

on a chip may represent a typical gene, yet only one or a few of them contribute to

disease susceptibility or are in LD with causal variants (Wang et al., 2007). Therefore,

it is not immediately clear if taking the maximum test statistic proves to be a fair

representation of the gene’s impact on disease risk. This may be particularly true as

focus shifts to rare variants.
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Fisher’s method for combining p-values is the following statistic,

TFisher = −2 ·
n∑

j=1

log(pj) (4.1)

where pj is the p-value corresponding to the single locus test at locus j and n is the

number of loci. Fisher showed that under the global null hypothesis, TFisher follows a χ2

distribution with 2n degrees of freedom granted that the tests are mutually independent.

However, the single locus tests at nearby loci are likely to be correlated and therefore

the limiting distribution of TFisher is unknown and statistical significance is estimated

via permutation tests.

Assuming a single underlying causal locus and a genotype-based model, Chapman

et al. (2003) showed that the appropriate multivariate score test statistic is

THotelling = UT V −1U (4.2)

where U =
∑N

i=1(Yi − Ȳ )Xi = XT (Y − Ȳ ), N is the number of genotyped individuals,

Y = (Y1, . . . , YN)T is an N × 1 vector of phenotypic values, X = (X1, . . . , XN)T is a

N × n matrix of genotype data for which each of N subjects contributes n genotypes

across the genotyped loci (i.e. a n× 1 vector of genotypes, Xi), and V is the estimated

null variance-covariance matrix of U . Under the null hypothesis of no association

between the putative causal locus and the phenotype, THotelling has an asymptotic χ2

distribution with n degrees of freedom.

Multiple linear/logistic regression is also an alternative to testing multiple variant

sites simultaneously. Such an approach could have substantial advantages over single

SNP analyses (Balding, 2006). For example, covariates such as gender, age, environ-

mental exposures, or SNP interactions can be included in the model. On the other

hand, multiple regression-like analysis methods are appropriate only if the predictor
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variables (e.g. the multiple marker loci) are not in strong LD, since an underlying as-

sumption is that the predictor variables are independent. For example, if there are

SNPs that are in LD with multiple functionally relevant variants, then standard regres-

sion analyses that do not control for the multicollinearity (i.e. the LD) would result in

misleading results (Draper and Smith, 1981). Furthermore, in the presence of mod-

erate to strong multicollinearity among the predictor variables, fitting the regression

model could be computationally problematic when singular matrices must be inverted

(Draper and Smith, 1981). Additionally, when the number of predictor variables far

exceeds the number of subjects, such as in the case of genetic association studies for

which thousands of SNPs may be genotyped, the least squares solution to estimation

either can not be obtained or is highly problematic.

To circumvent the above-mentioned issues in multiple regression analysis of genetic

association studies, Malo et al. (2008) propose the use of ridge regression. Ridge

regression can deal with a large number of predictor variables compared to the number

of subjects as well as predictors that are highly correlated. Ridge regression allows

the inclusion of all SNPs in the model, rather than selecting a “representative” subset

of SNPs as potential phenotype predictors. Since the 1970s, ridge regression has been

available as a statistical tool to deal with multicollinearity, and small sample size and/or

a large number of explanatory variables (Gruber, 1998; Hastie et al., 2001). Ridge

regression places constraints on the size of the parameter estimates in attempts to

control the large variances. In other words, these constraints effectively “shrink” the

contribution of the redundant variables (e.g. the SNPs that are in strong LD with

each other) toward zero. The ridge estimates of the usual linear regression model,

Y = Xβ + ε is

β̂Ridge = (XT X + kI)−1XT Y (4.3)

where X is an n×p matrix of genotypes (p is the number of SNPs or markers genotyped
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on a set of n subjects), Y is an n-dimensional vector containing phenotype values for

each individual, and the ridge parameter k > 0 represents the degree of shrinkage

(Malo et al., 2008). The term kI aids in reducing multicollinearity and preventing the

matrix XT X from being singular even if X is not full rank. None of the regression

coefficients are allowed to become very large, therefore it guards against over fitting

and high variances usually associated with correlated coefficients. In contrast, the

standard parameter estimates obtained by minimizing the residual sum of squares,

RSS = (Y −Xβ)T (Y −Xβ), is

β̂MLR = arg min(RSS) = (XT X)−1XT Y (4.4)

Wu et al. (2009) suggest the use of lasso penalized logistic regression for genome-

wide association analysis. The lasso penalty is another effective device for continuous

model selection, particularly when the number of predictors p far exceeds the number of

observations n (Tibshirani, 1996). Let yi be the response for case i, xij the j-th predictor

for case i, βj the regression coefficient corresponding to the j-th predictor and µ the

intercept. Also let θ = (µ, β1, . . . , βp)
T and xi = (xi1, . . . , xip)

T . The objective function

in ordinary linear regression is f(θ) =
∑n

i=1(yi− µ− xT
i β)2, whereas in lasso penalized

regression, the following modified objective function is minimized

g(θ) = f(θ) + λ

p∑
j=1

|βj| (4.5)

where the tuning constant λ controls the strength of the penalty, which shrinks each

βj toward the origin and enforces sparse solutions (Wu et al., 2009).

As an alternative to penalized regression for model selection in order to jointly assess

statistical significance for a set of SNPs within a gene of interest, the authors of PLINK

(Purcell, 2007; Purcell et al., 2007) implement an algorithm based on pruning SNPs
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in LD with each other as measured by r2. Under the section “Association / Set-based

tests”, the authors describe the algorithm in the following manner:

1. For each set, for each SNP determine which other SNPs are in LD, above a certain

threshold R.

2. Perform standard single SNP analysis (which might be basic case/control associ-

ation, family-based TDT or quantitative trait analysis).

3. For each set, select up to N “independent” SNPs (as defined in step 1) with

p-values below P . The best SNP is selected first; subsequent SNPs are selected

in order of decreasing statistical significance, after removing SNPs in LD with

previously selected SNPs.

4. From these subsets of SNPs, the statistic for each set is calculated as the mean

of these single SNP statistics.

5. Permute the dataset a large number of times, keeping LD between SNPs constant

(i.e. permute phenotype labels).

6. For each permuted dataset, repeat steps 2 to 4 above.

7. Empirical p-value for set (EMP1) is the number of times the permuted set-statistic

exceeds the original one for that set.

There are potential problems with this strategy of pruning SNPs based on the r2

measure of LD. If many SNPs are correlated, the chosen SNP may not actually be

the functional SNP. Furthermore, it is possible that more than one SNP is functional

amongst those that are in moderate LD, such that choosing one to represent a cluster of

correlated SNPs would not reflect the fact that more than one position in the sequence

is phenotypically relevant (Malo et al., 2008). Perhaps of greater concern is the forced
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evaluation of a single test statistic defined by the mean of all individual SNP test

statistics for individual “independent” (independence defined based on a user-defined

ad hoc threshold) SNPs that reach a user-defined threshold of statistical significance. In

this manner, it is plausible that a highly significant SNP will be combined with several

marginally significant results and the resulting test statistic would likely reflect a far

less significant finding than if the most significant SNP was the only SNP considered.

Furthermore, the iterative inclusion of individual SNP test statistics to the running

sum (from all other previously included SNPs) test statistic representing the combined

effect of the most significant SNPs ignores the impact of modest linkage disequilibrium

between the SNPs on the individual SNP test statistics.

Li and Leal (2008) propose two strategies for combining information across multiple

marker loci in the presence of rare variants. Li and Leal discuss their methods in light

of the next generation sequencing efforts that would inevitably lead to the identification

of rare variants, which will comprise both nonfunctional and functional rare variants in

disease etiology. They argue that an effective first approach is to identify the genes that

are involved in disease onset, although understanding the effects of specific rare variants

is ultimately important. The details of their proposed methods are the following.

Assume there are N cases and N controls that are genotyped across M SNPs. For

Li and Leal’s “Collapsing Method”, they set an indicator variable X for the j-th case

individual to 1 if rare variants are present within the M SNPs and 0 otherwise. They

define Yj similarly for the control individuals. The authors claim that due to the rarity

of variants, the probability of carrying more than one variant for an individual is low.

Thus, collapsing the genotypes across all variants could enrich the association signals,

granted that nonfunctional variants are not intermingled with functional ones. Li and

Leal test whether the proportion of individuals with rare variants in the cases (φA) and

controls (φĀ) differ, i.e. H0 : φA = φĀ, by way of Pearson’s χ2 statistic.
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Moreover, Li and Leal (2008) propose the “CMC Method” that combines collapsing

and multivariate tests. Based on some predefined criteria such as marker allele frequen-

cies, the M markers are divided into k subgroups (g1, . . . , gk) for which each group gj

contains nj (j = 1, . . . , k) SNP members. For each group gj, the Collapsing Method as

described above is carried out such that each subject has k indicator variables X that

specify the presence or absence of at least one rare variant within the group gj. Note

that no collapsing is performed for groups with a single member. Lastly, Hotelling’s T 2

test is utilized on the resulting data structure to jointly assess the statistical significance

of the gene.

Li et al. (2009) introduce yet another gene-based association test (ATOM: a multi-

marker Association Test by combining Optimally weighted Markers) that incorporates

marker weights that are proportional to the amount of information it captures about

the unknown trait locus. In particular, Li et al. define a score for an individual i

Si =
1

m

m∑
j=1

wjgij (4.6)

where m is the number of markers under study, wj weights the genotype at marker j,

and gij is the genotype at marker j for subject i for which gij ∈ {0, 1, 2} counts the

number of alleles 1j (markers are diallelic with alleles 1j and 0j). The genotype weights

are defined as

wj =
∆j

pjqj

(4.7)

where pj and qj are the allele frequencies at marker j and ∆j is the LD coefficient

between the quantitative trait locus (QTL) and marker j (typically referred to as D

and computed as ∆j = pT 1j−pT pj where pT is the allele frequency of T at the diallelic

QTL and pT 1j is the joint probability of alleles T and 1j at the QTL and marker j,

respectively. ∆j measures the difference between the observed joint frequency of T
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and 1j and the expected co-occurrence of T and 1j assuming independent loci). The

authors motivate wj by proving that the beta coefficients in the linear regression models

that regress the QTL genotypes on the phenotype and the marker genotypes on the

phenotype follow the relationship

β = βT
∆

pApa

(4.8)

where β and βT are the regression coefficients of the genotypes for the marker and QTL,

respectively, pA and pa are the allele frequencies at a given marker for alleles A and a,

respectively, and ∆ is the LD coefficient between the QTL and marker. Thus, the slopes

at the marker and QTL differ by a factor ∆/(pApa), the weighting function. In general,

the stronger the LD is between the trait and marker loci, the greater the magnitude

will be for the weight wj. Therefore, the score Si defined in Equation 4.6 effectively

allocates weights to markers according to their levels of LD with the trait locus (Li

et al., 2009). The association information contained in all m markers is captured in

one score for an individual i and the dimension is reduced from m to 1.

Since the location of the QTL is unknown, the weights must be estimated. Li

et al. (2009) propose gathering information on the LD structure of the candidate

gene by using a reference dataset such as the genotypes contained in the International

HapMap Project (www.hapmap.org), other publicly available dense SNP datasets, or

resequencing data from a subset of the study sample. In particular, employing the

reference sample containing M markers as well as the study sample consisting of m

markers (for which M > m in most scenarios) at each marker k in the reference dataset

(1 ≤ k ≤ M) would yield a score Si,k for every individual i

Si,k =
1

m

m∑
j=1

wk
j gij (4.9)
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where wk
j = ∆k

j /pjqj is the LD coefficient between markers k and j and pj and qj are

the allele frequencies at marker j. Upon computing these score estimates for all of

the subjects in the study sample, each subject will have M scores. Li et al. (2009)

then conduct principal components analysis (PCA) in order to reduce the dimension-

ality of the dataset while retaining as much as possible the variation contained therein.

The PCA transforms the original set of M correlated scores {S1,k, . . . , Sn,k}M
k=1 across

n individuals into a set of m uncorrelated principal components. Once the principal

components are computed, a series of linear (for a quantitative phenotype) or logistic

(for a binary trait) regression models are constructed in which the predictive set of

principal components for a given model is selected based on a designated proportion

of the variance explained by the principal components. For each model, a joint test

involving all the regression coefficients is conducted. The authors choose the maxi-

mum statistic, TATOM, as the test statistic and estimate its statistical significance via

permutation tests.

Li et al. (2009) suggest that their method is different from traditional PCA-based

approaches that operate directly on the marker genotypes observed in the study sample.

In contrast, their method operates on the set of scores {S1,k, . . . , Sn,k}M
k=1 for all M

markers in the reference dataset. With traditional PCA approaches, the regression

coefficients are determined solely by the correlation structure among the genotyped

markers. Whereas with Li et al.’s strategy, additional LD information for that region

is integrated into their defined weights wk
j .

We propose a method based on forward variable selection in regression that pro-

vides a joint test of the statistical significance of a gene. We compared our method

with existing and conventional methods such as computing the minimum p-value while

assessing statistical significance via permutation testing and PLINK’s Set-Based As-

sociation Test that calculates the average test statistic for a set of single SNPs and
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the overall p-value is also determined via permutation testing. We evaluated all meth-

ods under various alternative hypotheses, simulating candidate gene studies as well as

studies involving a candidate list of genes. Each method excelled in certain circum-

stances, for example, when simulating candidate gene studies, the minimum p-value

based approaches appeared to be more powerful under alternative models for which a

single QTL was responsible for the genetic variation. Both PLINK and our method

were most powerful in detecting more than one QTL, and our method performed the

best when pairwise SNP x SNP interactions were modeled. Lastly, for the simulations

comprising multiple candidate genes, our approach and Fisher’s Method had consistent

and greater power than the other techniques.

We note that although an aspect of our simulation study consisted of analyzing a set

of various candidate genes, one could plausibly apply the foregoing analytical methods

to a putative biological pathway comprising several genes.

4.2 Methods

4.2.1 Minimum P-Value Across All SNPs

We employed the approach of computing the minimum p-value across all of the single

SNP tests, as discussed in the Introduction (Section 4.1). We estimated the statistical

significance of this minimum p-value by permuting a large number of times the column

vector of quantitative phenotypes in a given simulated data set (while preserving the

LD structure of the SNPs across the sample of simulated subjects), and for each per-

mutation computing the minimum p-value from the single SNP tests. The permutation

adjusted minimum p-value was then taken to be the proportion of times the permuted

minimum p-values were less than or equal (i.e. as extreme or more extreme) than the

observed minimum p-value.
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For a data set containing SNPs within a specific gene region, this method offered a

way to test the significance of the gene. Furthermore, for data sets comprising multiple

genes within a biological pathway, the resulting p-value was an estimate of the statistical

significance of the pathway.

4.2.2 Minimum P-Value by Gene, Bonferroni Adjusted

Across NGenes genes within a given data set, we calculated the minimum p-value

amongst the single SNP tests within a particular gene, resulting in NGenes gene-specific

minimum p-values. We then estimated the statistical significance of these minimum

p-values via permutation testing as described above in Section 4.2.1. To adjust for

multiple hypothesis testing, we then applied the Bonferroni correction to the minimum

of the permutation adjusted minimum gene-specific p-values. Namely, we multiplied

the overall minimum p-value by NGenes and simply took the p-value to be one if this

product exceeded one.

We note that for data sets comprising a single gene, this method was equivalent to

taking the minimum p-value across all single SNP tests discussed in Section 4.2.1.

4.2.3 Minimum P-Value by Gene, Fisher’s Method

As an alternative to the Bonferroni adjustment detailed above in Section 4.2.2, we car-

ried out Fisher’s method for combining p-values, described in the Introduction (Section

4.1) and contained in Equation 4.1. We note that for single gene data sets, this was not

equivalent to computing the minimum p-value amongst all single SNP tests (Section

4.2.1) since TFisher was ultimately based on a χ2 distribution with 2NGenes degrees of

freedom.
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4.2.4 PLINK’s Set-Based Association Test

We performed PLINK’s set-based association test, explicitly described in the Introduc-

tion (Section 4.1). For data sets consisting of a single gene or entire biological pathway,

we defined the set to be the gene or pathway. We used the most current version (1.06)

of PLINK available at the time of implementation (Purcell, 2007; Purcell et al., 2007).

4.2.5 Joint Test Based on Forward SNP Selection

We propose a method based on forward variable selection in regression that provides a

joint test of the statistical significance of a gene or pathway. We assume that we have

n subjects that are genotyped on p SNPs within a candidate gene or pathway and that

have been measured for a quantitative phenotype. Specifically, the algorithm to build

the multi-SNP linear regression model is the following, for j = 1, . . . , p SNPs:

1. Begin forward selection (i.e. when j = 1) by carrying out single SNP linear

regression models across all p SNPs. After the first iteration (i.e. for j > 1),

adjust for the selected SNPs (i.e. SNP1, . . . , SNPj−1) in the model.

2. While adjusting for the selected set of SNPs (SNP1, . . . , SNPj−1), construct p−

(j−1) linear regression models across the remaining p−(j−1) SNPs that have not

yet been selected to represent the candidate gene or pathway. Do not consider

any SNPs that are in “high” LD with any of the SNPs already entered in the

SNP covariate set, based on a user-defined r2 threshold (i.e. prune any SNPs

with pairwise r2 values above a given r2 threshold). Note, for j = 1 we simply

select the SNP with the smallest p-value.

3. For each of the p−(j−1) models, conduct a joint test of all the SNPs, i.e. H0 : β1 =

· · · = βj = 0 and find the most significant p-value. If this minimum joint p-value is

smaller than the j−1-th joint p-value, then add this SNP to the SNP covariate set,
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provided that the p-value corresponding to the test on the individual parameter is

less than a user-defined p-value threshold. If the individual p-value does not meet

this p-value threshold, then consider the next “most significant” joint (that also

improves upon the prior joint p-value) and corresponding individual p-values, and

so forth. As a final filter, the SNP covariate set may not exceed a user-defined

number of members. The j-th SNP corresponding to this joint test is selected

as a predictor from the candidate gene or pathway in explaining the phenotypic

variation. Record the p-value for this joint test under the j-th iteration.

4. Repeat steps 1 through 3 for each iteration of j until no more SNPs can be

added in the multi-SNP linear regression model, based on the predefined stopping

criterion defined in the prior step. When the forward selection procedure ceases,

there will be p∗ SNP predictors in the model that contains the largest number of

variables.

5. The minimum p-value amongst the p∗ joint p-values will be the last joint p-value

recorded, as defined by the nature of the algorithm. This set of p∗min SNPs is

chosen to act as a proxy for the candidate gene or pathway. Estimate the p-value

of this test statistic via permutation testing. This joint p-value represents the

statistical significance of the candidate gene or pathway.

Alternative Stopping Criterion

We allowed for a more relaxed criterion in building the SNP covariate set. If the

current joint p-value being evaluated did not improve upon the prior joint p-value,

then we admitted this SNP in the set (granted that its individual p-value met the

threshold and the maximum number of SNP members in the set was not yet satisfied)

and continued building the set under the usual guidelines as specified above. We ceased
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to expand the SNP set when we encountered a joint p-value that was not smaller than

the overall minimum joint p-value.

Inclusion of Pairwise SNP x SNP Interactions

We designed the option to include pairwise SNP x SNP interactions. As we constructed

the SNP covariate set, we sequentially added all possible pairwise SNP x SNP inter-

actions in the linear model containing the current state of the SNP set (as well as all

other previously entered interactions). We decided to keep the interaction term if the

joint p-value that assessed all terms in the model was more significant.

A Note on the Thresholds: r2, Individual P-Value, and Max Number of

SNP Members

We analogously implemented the r2, individual p-value, and maximum number of SNP

members thresholds described in the Introduction in reference to PLINK’s set-based

association test (Section 4.1) so as to allow a fair and direct comparison of PLINK’s

approach and our competing method. The essential difference between the two tech-

niques was that PLINK assessed overall statistical significance by averaging the single

SNP test statistics contained in the set, whereas the p-value in our proposed method

was based on the joint test of the parameters in a general linear model.

Setting the maximum number of members in a set to one and not imposing a p-

value filter (i.e. setting the p-value threshold to one) resulted in a test based on the

“best” single SNP for PLINK’s set-based test and our forward selection procedure. On

the other hand, by not constraining the number of SNPs in the set and by turning the

p-value and r2 filters off (i.e. p-value threshold = 1 and r2 threshold = 1), PLINK’s test

included all test statistics across all of the SNPs in the data set. For our method, it was

not feasible to construct a regression model with a considerable number of parameters.
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4.2.6 Simulations: FTO as a Candidate Gene

To evaluate the power of the proposed methods, we simulated genotype-phenotype

data for a candidate gene in the following manner. We designated FTO (official full

name: fat mass and obesity associated; residing on chromosome 16; 410.5 kilobases in

length; spanning base pair positions 52,295,376 to 52,705,882) as the candidate gene

and subsetted the corresponding genotypes in 3,172 Caucasian subjects from Illumina’s

iControlDB who were genotyped on Illumina’s HumanHap550 platform. These subjects

served as the sampling pool from which we generated simulated data sets. There were a

total of 97 representative SNPs in FTO on this genotype panel. For the purposes of the

simulation, we required all of the subjects to have been successfully genotyped at all

97 SNP loci. Thus, we removed 510 subjects who were missing at least one genotype,

leaving a total of 2,662 subjects in the genotype sampling pool.

Based on a review of the literature, we chose SNP rs8050136 within FTO to act as

a “causal” locus. This SNP has been previously reported in investigations on obesity

(Scott et al., 2007; Scuteri et al., 2007; Grant et al., 2008; Thorleifsson et al., 2009;

Pecioska et al., 2010) and is a perfect proxy to rs9939609, for which we discerned

using the web-based tool from the Broad Institute, SNAP (SNP Annotation and Proxy

Search; Johnson et al., 2008; http://www.broadinstitute.org/mpg/snap/), based on the

CEU data in HapMap. The SNP rs9939609 is located within FTO and has been widely

published (Frayling et al., 2007; Scuteri et al., 2007; Wellcome Trust Case Control

Consortium, 2007).

To simulate the data for the power analyses, we randomly picked 3,000 subjects

(with replacement) from the iControlDB sampling pool described above. We assumed

that the quantitative phenotype was normally distributed and for each of the 3,000

simulated Caucasian subjects we generated the quantitative phenotype by drawing a

normal random variate based on the genotypes observed at the rs8050136 “suscepti-
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bility” locus for that subject. Specifically, we assumed that rs8050136 explained 0.5%

of the phenotypic variation (i.e. we set the coefficient of determination of the simple

linear regression model, R2, to 0.005) and then solved for the slope parameter using

the relationship

β1 =

√
σ2

Y

σ2
X

·R2 (4.10)

where σ2
Y and σ2

X were the variance of the quantitative phenotype and genotypes (at

rs8050136, in our example), respectively. We defined the variance of the phenotype

to be σ2
Y = 1 and its mean to be E(Y ) = 0, i.e. the phenotype followed a standard

normal distribution. Assuming an additive genetic model coding for the bi-allelic SNP,

the expectation and variance of the genotypes were

E(X) = µX = 0 · fdd + 1 · fDd + 2 · fDD (4.11)

V (X) = σ2
X = (0− µX)2 · fdd + (1− µX)2 · fDd + (2− µX)2 · fDD (4.12)

where X = 0, 1, 2 under the additive coding for genotypes dd, Dd, and DD, respectively,

and fdd, fDd, and fDD were the probabilities of observing said genotypes. We assumed

Hardy-Weinberg Equilibrium such that fdd = f 2
d , fDd = 2fDfd, and fDD = f 2

D, where

fd and fD were the frequencies of the non-risk and risk alleles, respectively. Finally,

since the mean of the quantitative phenotype was zero, then the intercept was

E(Y | µX) = 0 = β0 + β1 · µX

β0 = −β1 · µX

(4.13)

where β1 and µX were defined in Equations 4.10 and 4.11, respectively.

Therefore, utilizing the relationships specified above in Equations 4.10 through 4.13,

for rs8050136, fD = 0.3989 in the iControlDB genotype sampling pool, σ2
Y = 1, and

R2 = 0.005, the intercept and slope were computed to be −0.08146 and 0.1021, respec-
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tively.

Using this information, upon constructing the data set for the simulations, the

quantitative phenotype for each of the 3,000 randomly sampled vectors of genotypes was

generated by randomly sampling from the normal distribution with mean β0 +β1X and

standard deviation of one, where X(= 0, 1, 2) was the observed genotype at rs8050136.

Single SNP Simulation Models for SNPs in Low to Modest LD with rs8050136

In addition to the data sets described above for which rs8050136 was the causal locus,

we also generated an additional two sets of data sets using alternative causal loci. In

the first and second sets, we chose SNPs in low and modest LD with rs8050136 (MAF =

0.3989), rs16953002 had a pairwise D′ = 0.056 (MAF = 0.1741) and rs10521307 had a

pairwise D′ = 0.311 (MAF = 0.2977). We subsequently generated the two sets of data

sets with rs16953002 and rs10521307 as the causal loci, in the same manner described

above for rs8050136. The corresponding intercept and slope for the rs16953002 models

were −0.04591 and 0.1319, and for rs10521307 were −0.06511 and 0.1094.

Two SNP Simulation Models for SNPs in Low to Modest LD with rs8050136

We simulated two other sets of data sets for which two SNP loci were responsible for

the genetic variation observed in the quantitative trait. The first SNP was the original

rs8050136 SNP and the second SNP was either rs16953002 (low LD with rs8050136)

or rs10521307 (modest LD with rs8050136). The effect sizes (i.e. slope parameters)

were defined as above for the single SNP data sets, such that the two causal SNPs

explained a cumulative proportion of 1% of the total phenotypic variation. In contrast

to that described above for the single SNP data sets, to generate the quantitative

trait we randomly sampled from a normal distribution with mean β0 + β1X1 + β2X2

and standard deviation of one, where X1 was the sampled genotype (0, 1, or 2) at
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rs8050136 and X2 was the sampled genotype at either rs16953002 or rs10521307.

Simulation Models Including Pairwise SNP x SNP Interactions with rs8050136

Building upon the two SNP models described above, we added pairwise SNP x SNP

interactions with rs8050136. To accomplish this, we simply incorporated an interaction

parameter when randomly sampling from the normal distribution with mean β0+β1X1+

β2X2 + β3X1X2 and standard deviation of one. X1X2 was the product of the observed

sampled genotypes, e.g. X1X2 could have the values of 0, 1, 2, or 4.

The specification of the interaction parameter was more involved than for the simple

linear regression models. We assumed that the total phenotypic variation could be

decomposed into both genetic and environmental components,

σ2
T = σ2

G + σ2
E (4.14)

For example, by assuming that the quantitative trait arose from a normal distribution

with standard deviation of one, then σ2
T = 1. In addition, for these interaction models,

we assumed that the total genetic variation was fixed at 1%, i.e. σ2
G = 0.01. Since

we further assumed the mean of the phenotype to be zero (E(Y ) = 0), then from the

definition of variance,

σ2
T = E(Y 2)− [E(Y )]2

= E(Y 2)

(4.15)

Therefore, the genetic variation for a two SNP model including interactions (first SNP:
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minor/major alleles a/A; second SNP: minor/major alleles b/B) was

σ2
G = faafbb(β0 + 2β1 + 2β2 + 4β3)

2

+ faafBb(β0 + 2β1 + β2 + 2β3)
2

+ faafBB(β0 + 2β1)
2

+ fAafbb(β0 + β1 + 2β2 + 2β3)
2

+ fAafBb(β0 + β1 + β2 + β3)
2

+ fAafBB(β0 + β1)
2

+ fAAfbb(β0 + 2β2)
2

+ fAAfBb(β0 + β2)
2

+ fAAfBB(β0)
2

(4.16)

where faa, fAa, and fAA and fbb, fBb, and fBB were the probabilities of observing

the genotypes for SNPs one and two. We note that we assumed the two SNPs to be

completely independent. Similarly, for E(Y ) = 0

E(Y ) = 0 = faafbb(β0 + 2β1 + 2β2 + 4β3)

+ faafBb(β0 + 2β1 + β2 + 2β3)

+ faafBB(β0 + 2β1)

+ fAafbb(β0 + β1 + 2β2 + 2β3)

+ fAafBb(β0 + β1 + β2 + β3)

+ fAafBB(β0 + β1)

+ fAAfbb(β0 + 2β2)

+ fAAfBb(β0 + β2)

+ fAAfBB(β0)

(4.17)
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We had two equations (Equations 4.16 and 4.17) and two unknowns (β0 and β3) for

which β1, β2, and the genotype probabilities were completely specified. We solved for

β0 in Equation 4.17 and substituted β0 into Equation 4.16. This resulted in a quadratic

equation which we solved algebraically using the quadratic formula. Thus, given the

two SNPs’ allele frequencies, effect sizes, and genetic variation, we were able to solve

for the interaction parameter and intercept of the multiple linear regression model.

Namely, for the simulated data sets modeling rs8050136, rs16953002 (low LD with

rs8050136), and their pairwise interaction, the interaction parameters were 0.05659 and

−0.2331 with corresponding intercepts −0.1058 and −0.02533. For the simulated data

sets modeling rs8050136, rs10521307 (modest LD with rs8050136), and their interaction,

the interaction parameters were 0.04185 and −0.1876 with corresponding intercepts

−0.1235 and −0.01451.

Simulation Parameters and r2, P-Value, and Max Number of SNPs in Set

Filters

For the power analyses, we simulated 100 data sets for each simulation scenario in

which each data set contained 3,000 subjects. Whereas for the type I error analysis,

we simulated 500 data sets. For each data set, we permuted the phenotype 500 times

in carrying out the permutation-based tests.

For PLINK’s set-based association test and our forward selection procedure, we set

the r2 pruning thresholds to 1 (i.e. effectively no filter), 0.8, 0.5, and 0.1, the p-value

thresholds to 1 (i.e. effectively no filter), 0.05, and 0.0025. The 0.0025 p-value threshold

was chosen because based on prior power calculations, this cutoff was predicted to give

us 80% power to detect a variant that explained 0.5% of the variation in 3,000 subjects.

Lastly, the number of SNPs in the set was not allowed to exceed 5 or 10.

165



4.2.7 Simulations: Body Mass Index Related List of Candi-

date Genes

We assessed the power of the competing approaches in analyzing a list of candidate

genes, in contrast to one specific candidate gene as described in Section 4.2.6. We

continued under the hypothetical scenario of studying obesity as a quantitative trait

such as body mass index (BMI). Willer et al. (2009) reported the association of SNPs

within or near eight genes (NEGR1, TMEM18, GNDPA2, MTCH2, SH2B1, FTO,

MC4R, and KCTD15). We note that the FTO gene (the gene we used to simulate the

candidate gene studies) was also listed amongst these genes.

We prepared the pool of genotypes across the candidate genes in the following

way. Within the iControlDB Caucasian sample (N = 3,172) and for each gene, we

subsetted the SNPs located within 50 kilobase pairs upstream or downstream of the

gene, including the SNPs in the gene itself, resulting in eight pools of gene-specific

genotypes. Then, for each genotype pool we removed any subject that was missing at

least one genotype at any of the loci. We were left with 1,663, 2,881, 3,135, 3,150, 3,036,

2,497, 2,993, and 2,677 vectors of genotypes for the NEGR1, TMEM18, GNDPA2,

MTCH2, SH2B1, FTO, MC4R, and KCTD15 gene pools. The number of SNPs and

other characteristics of these genes are reported in the Results (Section 4.3).

The flanking SNPs for each gene defined the boundaries for the minimum p-value

gene-based methods described in Sections 4.2.2 and 4.2.3.

To generate the simulated data sets for the subsequent power analysis, we designated

five “causal” SNPs and proceeded in the same fashion as that described for the two

SNP candidate gene models (Section 4.2.6). The only difference being that instead

of randomly sampling with replacement from one pool of genotypes, we selected from

eight pools of gene-specific genotypes. The random selection of vectors of genotypes

for one pool was independent of the random selection for another pool. In essence, we
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assumed the genes were not in LD and so we did not attempt to preserve the observed

LD structure across the genes.

We simulated data under two alternative models. For both models, we assigned

two SNPs in FTO (rs8050136 and rs10521307, in moderate LD with the former) and

one SNP near MC4R (rs10871777) as QTLs. We selected the two SNPs in FTO based

on one of the two SNP causal models from the FTO candidate gene simulation study.

In addition, we chose these two genes and SNPs because Willer et al. (2009) strongly

confirmed their associations with BMI. We note that Willer et al. (2009) reported the

variant rs17782313, though this SNP was not on the Illumina HumanHap550 panel.

We therefore employed SNAP (Johnson et al., 2008) and located rs10871777, a perfect

proxy (r2 = 1 and D′ = 1) for rs17782313 that was on the array and is 666 base

pairs away. We allowed the primary FTO SNP (rs8050136) and the MC4R SNP to

explain 0.35% of the phenotypic variation, whereas the other FTO SNP (rs10521307)

explained slightly less (R2 = 0.25%). This corresponded to slope parameters of 0.08543,

0.07732, and 0.09836, respectively. Also, for both alternative models we simulated 3,000

subjects as we did prior for the FTO candidate gene models (Section 4.2.6), and an

overall phenotypic mean and standard deviation of 0 and 1, respectively. We did not

model any pairwise SNP interactions.

Under the first model, we chose two other SNPs (beyond the three described above)

in MTCH2 (rs10838738) and SH2B1 (rs7498665), two genes for which there were few

representative SNPs (nine and five) on the Illumina HumanHap550 genotyping plat-

form. In contrast, under the second model, instead of the MTCH2 and SH2B1 causal

SNPs, we selected a SNP from NEGR1 (rs2568958) and TMEM18 (rs4854344), two

genes that contributed a fair number of SNPs to the analysis (144 and 34). Similar to

the MC4R SNP, we identified proxies for the NEGR1 and TMEM18 SNPs as described

in Willer et al. (2009), specifically, Willer et al. documented associations for rs2815752
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(in NEGR1) and rs6548238 (in TMEM18), although these SNPs were not on the Illu-

mina HumanHap550 array. We pursued the second model in order to assess the impact

on power when the QTLs were embedded in a larger set of SNPs. We posited that the

minimum p-value gene-based methods (for which the analyst must define the gene re-

gions) would suffer in power compared to PLINK’s or our step-wise method. For these

secondary SNPs, we set R2 to 0.25%, marginally less than the FTO and MC4R primary

SNPs (R2 = 0.35%). The corresponding slope parameters of the MTCH2 and SH2B1

SNPs for the first model were 0.07460 and 0.07353, and under the second model the

effect sizes of the NEGR1 and TMEM18 SNPs were 0.07501 and 0.09115, respectively.

Lastly, the vast majority of genes contained merely one or two SNPs on the Human-

Hap550 panel, thus we found it reasonable to include a 100 kilobase pair window about

the genes of interest, so as offer a fair assessment of power for the gene-based minimum

p-value methods with PLINK and our step-wise forward SNP selection procedure.

4.2.8 Computational Details

All code was written in R (R Development Core Team, 2006) and all power analyses

were carried out on UNC’s Topsail, a 4,160-processor Dell Linux cluster (2.3 GHz

Intel EM64T processors and 12 GB of memory). Due to the computationally intensive

permutation testing, we implemented parallel code in R using the library “snowfall”,

designating at least 8 CPUs for every simulated data set.

The LD displays were produced using Haploview version 4.1 (Barrett et al., 2005).

4.3 Results

Figure 4.1 contains the LD plot (D′) of the FTO gene region in the iControlDB sam-

ple of Caucasians (N = 2,662 subjects with no missing genotypes at any SNP loci).
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There were 97 representative SNPs on the Illumina HumanHap550 genotype platform.

The primary causal SNP (rs8050136) was located at position number 12, amongst a

relatively medium-sized LD block. The second disease bearing SNP was rs16953002,

which was SNP number 87, positioned on the extreme downstream end of the FTO

gene region. This SNP was in “low” LD with rs8050136 (D′ = 0.056) and was seated

in between relatively large (upstream) and small (downstream) LD blocks. The third

quantitative trait locus selected was rs10521307 (position number 25) and was in “mod-

est” LD with rs8050136 (D′ = 0.311).

FIGURE 4.1: LD plot (D′) of the FTO gene (residing on chromosome 16; 97 repre-
sentative SNPs on the Illumina HumanHap550 genotype platform; 395.96 kilobases in
length; spanning base pair positions 52,306,470 to 52,702,426) in the iControlDB sam-
ple of Caucasians (N = 2,662 subjects with no missing genotypes at any SNP loci).
White represents D′ < 1 and LOD < 2, shades of pink/red D′ < 1 and LOD ≥ 2, blue
D′ = 1 and LOD < 2, and bright red D′ = 1 and LOD ≥ 2.

Table 4.1 presents a brief characterization of the eight genes in the candidate gene

list power analyses. The largest genes were NEGR1 and FTO and hence these genes

correspondingly offered the most SNPs on the Illumina HumanHap550 array. On the
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TABLE 4.1: Characterization of the eight genes selected for the candidate gene list
analytical approach.

Number of SNPsa

Size Gene 50 kbp “Risk” SNPsc

Gene Chr (kbp) Only Windowb Model 1 Model 2 MAF
1 NEGR1 1 879.7 135 144 rs2568958 0.3496
2 TMEM18 2 9.5 2 34 rs4854344 0.1836
3 GNPDA2 4 24.4 1 7
4 MTCH2 11 25.2 2 9 rs10838738 0.3410
5 SH2B1 16 10.2 1 5 rs7498665 0.3628
6 FTO 16 410.5 97 110 rs8050136 rs8050136 0.3958

rs10521307 rs10521307 0.2982
7 MC4R 18 1.4 1 15 rs10871777d rs10871777d 0.2371
8 KCTD15 19 17.4 1 24

Chr: Chromosome
kbp: kilobase pairs
MAF: Minor Allele Frequency
rs2568958 (in NEGR1), rs4854344 (in TMEM18), and rs10871777 (near MC4R)
were strong proxies to rs2815752, rs6548238, and rs17782313, SNPs that Willer et al.
(2009) previously reported to show significant evidence for association with BMI
a Based on the Illumina HumanHap550 genotyping platform
b We included SNPs residing within a 50 kilobase pair window flanking the gene
c We set R2 = 0.35% for rs8050136 (in FTO) and rs10871777 (near MC4R) and
R2 = 0.25% for the remainder of the SNPs in the model
d rs10871777 is located near MC4R, not within

other hand, the smallest gene (MC4R) was not represented on the array, as well as the

SNP rs17782313 that was reported to be associated with BMI (Willer et al., 2009).

The variants rs2815752 (in NEGR1) and rs6548238 (in TMEM18) were also not on the

chip, thus we chose strong proxies that were proximal to the reported causal SNPs. All

of the SNPs included in the alternative models were fairly common (MAF above 18%).

Figure 4.2 is an LD plot of the pairwise D′ across the eight candidate genes. The

magnitude of the gene sets reflects the observations pointed out in Table 4.1. The genes

with a smaller number of SNPs (GNPDA2, MTCH2, SH2B1, and MC4R) revealed an

overall stronger LD pattern compared to NEGR1 and FTO (genes that had more SNPs)

that consisted of small blocks of LD. None of the genes appeared to be in LD with each
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other, as we suspected and designed into our simulation scheme (Section 4.2.7).

FIGURE 4.2: LD plot (D′) of the eight candidate genes (NEGR1, TMEM18, GNDPA2,
MTCH2, SH2B1, FTO, MC4R, and KCTD15; residing on chromosomes 1, 2, 4, 11, 16,
18, and 19; 348 representative SNPs on the Illumina HumanHap550 genotype platform;
a total of 2.01 megabases in length) in the iControlDB sample of Caucasians (N = 3,172
subjects). Each gene is flanked by a set of SNPs spanning approximately 50 kilobase
pairs up and downstream of the gene of interest. White represents D′ < 1 and LOD <
2, shades of pink/red D′ < 1 and LOD ≥ 2, blue D′ = 1 and LOD < 2, and bright red
D′ = 1 and LOD ≥ 2.

Table 4.2 presents the power of three gene-based p-value methods in analyzing the

FTO gene: 1) the overall minimum p-value computed across all SNPs, permutation

adjusted; 2) a consensus p-value calculated under the Bonferroni correction using the

minimum p-values by gene, permutation adjusted; 3) the same gene p-values determined

in method 2, though employing Fisher’s Method to combine the p-values. The sections

of columns in the table contain the various modeling scenarios considered. Specifically,

these models were: 1) a single variant contributed to the phenotypic variation; 2) two

SNPs were causal; 3) two SNPs were causal in addition to their positive interactive
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effect; 4) two SNPs were causal in addition to their negative interactive effect.

The highest powers achieved for the three minimum p-value based methods was for

the two SNP model that included the primary SNP (rs8050136) and the SNP that was

in low LD with it (rs16953002), with all three powers at 0.90 (Table 4.2). This is likely

due to the possibility of having two chances of detecting a causal variant instead of one

chance, as in the case of the single SNP models. For the single SNP models, the powers

were about 0.80 for the SNP 1 QTL and 0.70 for the SNP 2 QTL.

In contrast, there were significantly lower powers (around 0.77; Table 4.2) under

the two SNP model containing SNP 1 and the SNP in modest LD with it (rs10521307).

These powers were in the neighborhood of the powers under the single SNP models for

SNP 1 (0.80) and SNP 3 (0.78).

Modeling interactive effects between the two SNPs resulted in similar powers for

the SNP in low LD and for the SNP in modest LD with SNP 1 (around 0.90 and 0.77,

respectively; Table 4.2) when specifying the positive interaction parameter. However,

upon setting the interaction parameter with the negative parameter, the powers of the

three methods dropped considerably (0.31 and 0.10 for the SNP 1/SNP 2 and SNP

1/SNP 3 models, respectively).
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Table 4.3 presents the power results of PLINK’s Set-Based Association Test (SBT)

and our proposed step-wise forward SNP selection procedure (“Step”) in analyzing

the FTO gene under the single and two SNP causal models. We note that although

we imposed the r2 threshold for values of 1, 0.8, 0.5, and 0.1, we did not include

these results in Tables 4.3 and 4.4 because it did not appear that this threshold type

impacted the power to any appreciable degree. With SNP 1 (rs8050136) as the sole

QTL, PLINK attained the highest power above all other methods (0.86). However, the

more stringent p-value threshold (0.0025), adversely affected PLINK’s power whereas it

substantially improved our step-wise method (power = 0.80), though it did not greatly

improve upon the three minimum p-value based methods. Under the SNP 2 single

QTL model (rs16953002, in low LD with SNP 1), PLINK and our method performed

almost equivalently, with the exception of p-value threshold 1 / max 10 and p-value

threshold 0.05 / max 5 in which our method performed about 10% in power better. At

the more stringent thresholds (p-value = 0.0025 and max = 5 or 10), both PLINK and

“Step” were detecting this SNP at about the same rate as the minimum p-value based

methods. Lastly, under the SNP 3 QTL model (rs10521307, in modest LD with SNP

1), both PLINK and Step had similar powers, with the exception of thresholds p-value

= 0.05 and max = 10, for which we had an improvement of power of 16%. Similar to

the SNP 2 QTL model, PLINK and Step almost reached the power of the minimum

p-value based methods (power = 0.78; Table 4.2).

As for the two SNP models, PLINK outperformed all of the methods, including the

minimum p-value based ones, at a power of 0.93 and 0.88 (Table 4.3; SNP 1/SNP 2 and

SNP 1/SNP 3, respectively) versus 0.90 and 0.77 for the minimum p-value methods

(Table 4.2; SNP 1/SNP 2 and SNP 1/SNP 3, respectively). However, as we observed

before under the single SNP model of SNP 1, at the more rigorous p-value threshold

of 0.0025, PLINK had the worse power amongst all methods (0.85 and 0.70). Under
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TABLE 4.3: Power of PLINK’s Set-Based Association Test (SBT) and our proposed
step-wise forward SNP selection procedure (“Step”) in analyzing the FTO gene, under
the single and two SNP causal models.

Single SNP Models Two SNP Models
(SNP 2) (SNP 3) SNP 1/ SNP 1/

Thresholds SNP 1 Low LD Mod. LD Low LD Mod. LD
P-Value Max SBT Step SBT Step SBT Step SBT Step SBT Step
1.0000 5 0.85 0.67 0.52 0.59 0.64 0.69 0.93 0.89 0.84 0.82
1.0000 10 0.86 0.59 0.42 0.53 0.59 0.62 0.91 0.83 0.88 0.82
0.0500 5 0.86 0.65 0.54 0.62 0.62 0.65 0.93 0.88 0.83 0.83
0.0500 10 0.84 0.60 0.52 0.56 0.46 0.62 0.88 0.87 0.79 0.81
0.0025 5 0.72 0.80 0.70 0.69 0.74 0.76 0.84 0.89 0.70 0.85
0.0025 10 0.72 0.80 0.68 0.69 0.77 0.76 0.85 0.89 0.70 0.85

SNP 1: rs8050136
SNP 2: rs16953002, which is in “low” LD with SNP 1 (D′ = 0.056)
SNP 3: rs10521307, which is in “modest” LD with SNP 1 (D′ = 0.311)
The power calculations were based on 100 simulated data sets
3,000 subjects were simulated for each data set
500 permutations were carried out for the permutation testing
The overall type I error was fixed at 0.05
For the single SNP models, R2 was set at 0.5%, corresponding to effect sizes of 0.1021,
0.1319, and 0.1094 for SNPs 1, 2, and 3, respectively
For the two SNP models, R2 for each SNP was set at 0.5%, therefore the effect sizes
as specified above were utilized
The quantitative trait was randomly generated from a standard normal distribution
(i.e. mean zero and standard deviation of one)

the two SNP model that included the SNP in moderate LD with SNP 1, there was a

much greater gain in power utilizing our step-wise approach as compared to PLINK’s

SBT (SBT = 0.70 and Step = 0.85). In fact, our step-wise approach at this p-value

threshold of 0.0025 had greater power than the minimum p-value approaches.

Table 4.4 contains the power of the SBT and Step in analyzing the FTO candidate

gene, under the two SNP causal models including interactions. For the models with

the SNP 1/SNP 2 positive interactions, both the SBT and Step (around 0.92) had

powers slightly better than the three minimum p-value based methods (0.90; Table

4.2). However, for the SNP 1/SNP 3 positive interactions, both SBT and Step were
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more powerful (0.87 and 0.83, respectively) than the minimum p-value methods (0.77).

In some threshold instances, the SBT did better than Step and vice versa. Lastly, under

the negative interaction models, Step was the most powerful amongst all methods (0.38

for the SNP 1/SNP 2 scenario versus 0.31 for the min p-value methods; 0.23 for the SNP

1/SNP 3 scenario versus 0.10 for the min p-value methods). Furthermore, Step seemed

to consistently outperform SBT when modeling negative interactions. We note that

although Step was most powerful, these powers were relatively low and surprisingly not

an overall powerful method in discerning amongst the significant genetic parameters,

at least for the negative interaction models.

Table 4.5 contains the results of the candidate gene list approach in which we

analyzed “super” data sets (under two alternative models) comprising eight candidate

gene regions. The minimum p-value based approaches assessed at the gene level suffered

a substantial drop in power (less so for Fisher’s Method) under the alternative model

that housed the secondary QTLs in gene regions (NEGR1 and TMEM18) comprising

a larger set of SNPs (Model 2) compared to Model 1 that modeled secondary QTLs

in gene regions (MTCH2 and SH2B1) with less SNPs. Interestingly, computing the

minimum p-value across all available SNPs in the data set increased in power for Model

2. It is notable that Fisher’s Method under Model 1 performed the best (power =

0.99), which was somewhat not surprising since the gene regions bearing the simulated

QTLs exhibited little to no LD (Figure 4.2), and Fisher’s Method strictly assumes

mutually independent tests. The Bonferroni correction also had decent power (0.93),

though following Fisher’s Method in robustness was our step-wise procedure at 0.96.

Power marginally dropped upon imposing a stricter p-value threshold of 0.0025, which

was the opposite trend of what we observed for the candidate FTO gene alternative

models. PLINK showed adequate power when no p-value filter was implemented (0.86),

however, its power fell dramatically for the more stringent p-value threshold (0.67).
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TABLE 4.4: Power of PLINK’s Set-Based Association Test (SBT) and our proposed
step-wise forward SNP selection procedure (“Step”) in analyzing the FTO gene, under
the two SNP causal models including interactions.

Two SNP Models
+ Interactions − Interactions

SNP 1/ SNP 1/ SNP 1/ SNP 1/
Thresholds Low LD Mod. LD Low LD Mod. LD

P-Value Max SBT Step SBT Step SBT Step SBT Step
1.0000 5 0.91 0.91 0.87 0.82 0.28 0.35 0.080 0.20
1.0000 10 0.88 0.76 0.83 0.60 0.23 0.38 0.092 0.23
0.0500 5 0.90 0.89 0.82 0.78 0.25 0.28 0.080 0.14
0.0500 10 0.83 0.86 0.73 0.73 0.22 0.24 0.103 0.16
0.0025 5 0.88 0.92 0.70 0.83 0.30 0.31 0.080 0.11
0.0025 10 0.87 0.92 0.70 0.83 0.31 0.31 0.080 0.11

SNP 1: rs8050136
SNP 2: rs16953002, in “low” LD with SNP 1 (D′ = 0.056)
SNP 3: rs10521307, in “modest” LD with SNP 1 (D′ = 0.311)
Interactions: included in the model were pairwise SNP x SNP interac-
tions involving the two SNPs
+/− Interactions: the regression parameter of the interaction term
changed the phenotypic mean in the positive/negative direction for every
positive unit change in the interaction predictor
The power calculations were based on 100 simulated data sets
3,000 subjects were simulated for each data set
500 permutations were carried out for the permutation testing
The overall type I error was fixed at 0.05
The R2 for each SNP was set at 0.25%, corresponding to effect sizes of
0.07220, 0.09324, and 0.07732 for SNPs 1, 2, and 3
The interaction parameters explained 0.5% of the total phenotypic vari-
ation (i.e. R2 = 0.5%), corresponding to positive interaction parameters
of 0.05659 and 0.04185 and negative parameters of −0.2331 and −0.1876
(SNP 1 x SNP 2 and SNP 1 x SNP 3)
The quantitative trait was randomly generated from a standard normal
distribution (i.e. mean zero and standard deviation of one)
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Power remained roughly the same under Model 2 for the SBT and Step. We note

that the Step attained the highest power amongst all methods under Model 2 (0.96).

Overall, our step-wise method achieved substantially greater power than PLINK.

4.4 Discussion

We have reported results on some available methods for analyzing candidate gene or

a set of candidate genes. In contrast to tests of association that are conducted at the

SNP level, the approaches we have explored offer a consensus estimate of significance

for the entire set of SNPs comprising the gene or genes. With regard to analyzing a

data set consisting of multiple candidate genes, although we framed our power analyses

about a list of obesity-related genes, one could plausibly apply the foregoing analytical

methods to a putative biological pathway comprising various genes.

We assessed the power of three methods based on the minimum p-value for a given

candidate gene or genes: 1) the overall minimum p-value computed across all SNPs,

permutation adjusted; 2) a consensus p-value calculated under the Bonferroni correction

using the minimum p-values by gene, permutation adjusted; 3) the same gene p-values

determined in method 2, though employing Fisher’s Method to combine the p-values.

In the candidate gene approach, for the simulated data sets in which we modeled

an underlying single quantitative trait locus, these minimum p-value based methods

had decent power for the SNP 1 (rs8050136) and SNP 3 (rs10521307) models (power =

∼0.80; Table 4.2) though not for the SNP 2 (rs16953002) model. Consequently, SNPs

1 and 3 had much more abundant minor allele frequencies than SNP 2 (SNP 1 MAF

= 0.3989 and SNP 3 MAF = 0.2977 in comparison to SNP 2 MAF = 0.1741). Perhaps

due to the less frequent presence of SNP 2’s quantitative trait variant, the overall

phenotypic distribution was weighted heavier with trait values from homozygotes for
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TABLE 4.5: Power of the minimum p-value based methods (Overall, Bonferroni, and
Fisher’s Method), PLINK’s Set-Based Association Test (SBT), and our proposed step-
wise forward SNP selection procedure (“Step”) in analyzing the eight obesity-related
candidate genes in a single analysis, under two alternative modeling scenarios.

Method Model 1a Model 2b

Overall Min P-Value 0.80 0.87
Bonferroni (Gene) 0.93 0.78
Fisher’s Method (Gene) 0.99 0.93

Thresholds Model 1a Model 2b

P-Value Max SBT Step SBT Step
1.0000 5 0.86 0.96 0.87 0.96
1.0000 10 0.81 0.94 0.87 0.96
0.0500 5 0.88 0.96 0.88 0.96
0.0500 10 0.83 0.93 0.89 0.94
0.0025 5 0.72 0.90 0.72 0.90
0.0025 10 0.67 0.90 0.60 0.90

a Model 1: two QTLs in FTO (rs8050136:
R2 = 0.35%/slope = 0.08543; rs10521307:
R2 = 0.25%/slope = 0.07732), one near MC4R
(rs10871777: R2 = 0.35%/slope = 0.09836), and one
each in MTCH2 (rs10838738: R2 = 0.25%/slope =
0.07460) and SH2B1 (rs7498665: R2 = 0.25%/slope
= 0.07353)
b Model 2: the same SNPs and effect sizes in FTO
and near MC4R (noted above), and one QTL each
in NEGR1 (rs2568958: R2 = 0.25%/slope = 0.07501)
and TMEM18 (rs4854344: R2 = 0.25%/slope =
0.09115)
The power calculations were based on 100 simulated
data sets
3,000 subjects were simulated for each data set
500 permutations were carried out for the permuta-
tion testing
The overall type I error was fixed at 0.05
For the minimum p-value gene-based approaches
(Bonferroni and Fisher’s Method), the gene bound-
aries were defined as the SNPs that flanked the region
comprising the gene plus 50 kilobase pairs up and
downstream of the gene
The quantitative trait was randomly generated from
a standard normal distribution (i.e. mean zero and
standard deviation of one)
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the major allele. Hence, there was not such a clear distinction amongst this homozygous

distribution and the distributions arising from the heterozygotes and the homozygotes

for the minor allele.

As for the two SNP model results, we observed excellent power (0.90; Table 4.2)

when modeling SNP 1 and SNP 2 (the SNP in low LD with SNP 1) though we observed

a 12% decline in power for the SNP 1/SNP 3 models. This result can be explained

in the following way. We calculated the D′ between the SNPs as 0.311 whereas the

r2 was fairly low (0.02823). In addition, the minor allele frequencies of the two SNPs

were different (SNP 1, rs8050136: MAF = 0.3989; SNP 3, rs10521307: MAF = 0.2977),

therefore given the mathematical nature of D′ and r2, it is not surprising that their

values were discordant since D′ is affected by allele frequencies. These D′ and r2 results

imply no (or minimal) historical recombination events such that the representative pool

of haplotypes consisted of three possible haplotypes rather than all four. Taken together

with the power results, this suggests an overabundance of the haplotype bearing both

risk variants. Thus, including an additional causal SNP in simulating the quantitative

trait did not improve our chances in detecting these QTLs.

With respect to the two SNP models including interactions, overall the minimum

gene p-value based methods performed poorly, with the exception of the powers esti-

mated under the SNP 1/ SNP 2 (SNP in low LD with SNP 1) interaction models. This

was expected since taking the minimum gene p-value completely ignored the effects of

interaction on the quantitative trait.

Under the single and two SNP alternative models without interactions, PLINK

performed fairly well in comparison to our step-wise procedure. Taken together with our

observation that pruning SNPs in high LD with the significant SNPs did not positively

nor adversely affect power, PLINK’s approach of averaging the test statistics did not

push the averaged test statistic toward non-significance but rather this provided more
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power. This was counter-intuitive to us as we expected the average test statistic to be

less in magnitude than the overall minimum p-value across all SNPs.

On the contrary, under the single and two SNP alternative models without interac-

tions, our step-wise approach in many instances had significantly greater power than

PLINK when restricting individual p-values to be less than 0.0025. However, under

these alternative models and individual p-value restriction, we were not able to ex-

ceed the power attained by PLINK. A possible explanation for this drop in power with

PLINK’s method in these instances is the following. Upon removing SNPs that did

not meet the 0.0025 p-value threshold, the SNP or SNPs that drove the signal in the

averaged test statistic had corresponding p-values above 0.0025. Thus, in assessing

statistical significance of the observed average test statistic via permutation testing, it

was quite probable to calculate an average test statistic that was as extreme or more

extreme than the observed. On the other hand, for the instances in which power in-

creased under the 0.0025 p-value filter, the SNP or SNPs largely responsible for the

signal were likely retained after applying the filter.

As for the candidate gene list analyses, the minimum p-value approaches showed

acceptable power, though there were clearly gains in power in using our step-wise

method. Compared to the Bonferroni adjustment, Fisher’s method was more powerful

under both alternative model scenarios. Clearly, there was less of a penalty (or per-

haps no penalty at all) for multiple testing in combining the gene-specific permutation

adjusted minimum p-values using Fisher’s Method than Bonferroni. Regarding the

almost perfect power of Fisher’s Method under Model 1 (0.99), there were probably

strong associations at each gene, coupled with the small penalty for combining the p-

values and that each permutation test was for all practical purposes independent (due

to the minimal LD amongst the gene regions shown in Figure 4.2). The significant

decrease in power observed under Model 2 for the minimum p-value based methods at
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the gene level (not so much for Fisher’s Method) was likely due to the fact that two of

the QTL signals (in NEGR1 and TMEM18) were embedded amongst a greater number

of SNPs in contrary to MTCH2 and SH2B1 (Model 1). Fundamentally, under Model 2

there was more noise introduced that the methods had to tease out.

PLINK’s approach of averaging the test statistics did not prove to be much bet-

ter than the minimum p-value based methods, for the candidate gene list analyses.

Though the advantage to PLINK’s technique is that the analyst is not required to a

priori specify each gene region. This offers a more unbiased approach in computing

a consensus p-value for a candidate gene list of biological pathway. This was also a

desirable feature for our step-wise method.

In terms of the candidate gene list analyses, our step-wise forward SNP selection

procedure built on a linear regression modeling framework proved to be a more powerful

approach than PLINK. A possible explanation is the following. Under both modeling

scenarios, two SNPs contributed more to the phenotypic variation than the other set of

three SNPs (R2 = 0.35% for the primary two QTLs and R2 = 0.25% for the secondary

three QTLs). Since PLINK averages the test statistics in order to offer a proxy p-

value, the stronger associations from the primary QTLs were likely dampened by the

associations from the secondary QTLs, upon computing the average. On the contrary,

our step-wise method jointly tested the association at the various loci and was not

greatly disadvantaged by a mixture of strong and weaker QTLs.

Although we discussed (Section 4.2) and implemented an alternative stopping cri-

terion for our step-wise forward SNP selection technique (which was less stringent in

including a putative SNP in the SNP covariate set), we did not present these results

because the powers estimated were strikingly similar to the more rigorous approach

of ceasing to build the SNP covariate set at the first joint p-value that did not im-

prove upon the prior. In addition, during exploratory analyses we also implemented
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a third stopping criterion in which we mimicked PLINK’s set-based test criteria. In

other words, as long as a SNP fulfilled the r2 and individual p-value filters and the set

size did not exceed the maximum specified, the SNP in question was entered into the

set. The power results based on this third stopping criterion also were quite similar to

the first rule presented in the Tables, therefore we did not consider this rule in further

analyses.

Furthermore, pruning SNPs in “high” LD with significant SNPs also did not appear

to affect the powers of PLINK’s test nor ours, and so we presented the results for

which no LD pruning filter was turned on. This result suggests that SNPs in LD with

significant SNPs (as determined by PLINK’s SBT or our step-wise procedures) did not

add noise nor did they necessarily positively contribute in detecting a true association

with the quantitative trait.

In summary, we have presented results of methods that offer a consensus p-value

for analyzing data from a candidate gene study, or a study involving a list of candidate

genes or biological pathway. Each method bears advantages and disadvantages, and

under certain scenarios some methods performed better than others. There was no

single method that proved to be the best across all modeling and study design scenarios.
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CHAPTER 5

NATURAL EXTENSIONS TO

THE CURRENT

INVESTIGATIONS

5.1 Using Public Control Genotype Data to Increase

Power and Decrease Cost of Case-Control Ge-

netic Association Studies

There has been an increased use of imputing unobserved SNPs across commercial geno-

typing platforms, which has the advantage of enabling researchers to more exhaustively

test for association on a denser set of SNPs, by capitalizing on the available LD in-

formation contained across the genotyped loci. In terms of our proposed two-stage

replication-based design, further investigations could assess the impacts on power and

type I error of imputing untyped SNPs in the genome-wide association phase of the

study (i.e. stage one). Because the study cases and public controls were genotyped

at different points in time and also perhaps on different platforms, the question arises



on how best to deal with possible batch effects in terms of imputing SNPs. A clear

advantage of imputing SNPs in stage one is that the study cases and public controls

need not be initially genotyped on the same platform. However, to what extent is the

type I error affected by this and how much gain in power would imputation offer?

In addition, rare SNPs would presumably be imputed with a greater degree of

uncertainty as compared to common SNPs. One could investigate overall power as a

function of this uncertainty, over a range of minor allele frequencies (e.g. from incredibly

rare such as < 1% to more common such as 30%).

Granted that an imputed SNP in stage one is selected for follow-up in stage two,

how does this also influence power of our proposed two-stage design? For example, as

the proportion of true findings at imputed loci increases, what is the trend in power?

As a last point regarding imputation, how do we best handle SNPs with low to

high quality scores? As an extreme scenario, how powerful is our two-stage design for

low quality SNPs that truly are disease causing agents? Could we devise an analytical

approach that would account for such poor quality SNPs or even improve upon their

reliability somehow?

Finally, it would be fascinating to design and implement a study in practice that

utilizes our proposed two-stage replication-based study design. Such empirical results

could offer invaluable insight to the utility of our design in a practical setting, as

compared to our hypothesized alternative disease models.

5.2 Haplotype Sharing Methods in Association Stud-

ies

In comparing our haplotype sharing methods with currently available techniques, we

assumed that phase was known. This may or may not be a reasonable assumption
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in certain settings, thus some possibilities could be to explore alternatives to this as-

sumption. For example, we could develop sharing statistics in which phase is unknown,

therefore we utilize comparisons in genotypes rather than haplotypes. The sharing

measures would have to incorporate the phase ambiguity such as the use of penalties

or determining weights for the most probable pairs of alleles within genotypes, built

upon the extent of sharing observed throughout the sample.

If we impose phase as a preliminary pre-processing step, then we could examine

alternative ways to phase the genotype data, other than fastPHASE, the method

we employed for our study. For example, several programs utilize the expectation-

maximization (EM) algorithm in estimating haplotype signatures, such as PLINK,

Haploview, and haplo.stats. In addition, SimWalk2 uses a type of simulated annealing

approach to phase haplotypes. Would the haplotype measures assessed in our study

perform the same, better, or worse if we employed other methods to infer haplotype

phase?

5.3 Gene and Pathway-Based P-Values

An alternative to the proposed step-wise forward SNP selection method (Section 4.2)

would be a haplotype-based approach instead of a genotype-based approach to facilitate

the simultaneous analysis of multiple SNPs within a candidate gene. For example, one

could carry out a conventional haplotype χ2 test on the observed set of unique haplotype

signatures by categorizing the haplotypes on case-control status, as described in Section

3.2.7. In this way, all unique haplotype signatures would be assumed to be ancestrally

distinct, although consequently the formal test could have many degrees of freedom.

Optionally, the analyst could a priori classify the observed unique haplotype signatures

into groups if the plausibility exists that subgroups of the haplotypes originated from
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the same lineage or could allow the data to cluster individual haplotypes into different

“risk groups”. This would invariably decrease the degrees of freedom of the test and

increase power to detect an association, though allowing the data to generate haplotype

groupings would require a permutation test to account for the data driven nature of

the clustering.

We note that the aforementioned haplotype-based approach readily facilitate the

inclusion of a priori hypotheses (for example, the combining of putatively functional

alleles or genotypes based on public data bases) that, if properly applied, can increase

power. The potential advantage of such an approach should be its flexibility in allowing

the data to determine the optimal SNPs/haplotypes to include in the final test statistics,

though this greater flexibility could actually result in decreased power if good a priori

information is available and not incorporated or if results can in large be explained by

a single SNP.

In our current investigation, we explored a limited example of alternative models

that included SNP x SNP interactions, as well as one example of a list of candidate

genes. We could further our work by simulating larger or smaller lists of genes as well

as a putative biological pathway instead of a simple list of genes taken from a prior

study. Lastly, due to the computationally intensive nature of our step-wise forward

SNP selection procedure in which we employed parallel computing on high-end super-

computers, we could develop ways that are less computational such that our method

could be employed on a genome-wide scale.
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