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ABSTRACT 

Chris M. Jones: Long-term Impacts of Sudden Oak Death and Interactions with Fire in Big Sur, 
CA Using Coupled Dynamic Spatial Temporal Epidemiological Modeling 

(Under the direction of Aaron Moody) 

Invasive forest pathogens are an increasing risk to forest ecosystems. One such invasive 

forest pathogen is Phytophthora ramorum, a generalist pathogen with asymmetries in host 

competency and susceptibility. Apparent competition, indirect competition between two or more 

species mediated by a common enemy (P. ramorum), can emerge when asymmetries in host 

response to a pathogen occur.  Additionally, invasive pathogens can interact with natural 

disturbance regimes to alter forest ecosystems in unexpected ways due to non-linear dynamics. 

Coupled spatial temporal models provide the ability to examine how disease and interactions 

with fire alter forest composition over the course of a century. Epidemiological models typically 

treat forest composition as static and don’t account for disease related mortality.  

Here, I present the first dynamic spatial epidemiological model that can interact with a 

FLSM, LANDIS-II, to incorporate changes in forest composition due to disturbance, natural 

growth, mortality, and regeneration. The model incorporates asymmetries in host susceptibility 

and competency across species and age classes and changes in inoculum production based on 

temperature and precipitation. Average odds ratio of the model was 7.9 compared to 7.6 for the 

current P. ramorum spread model. This model was then coupled with a forest composition model 

and fire behavior model to analyze the effect of disturbance interaction and apparent 

competition. The model simulated from 1990-2090 using 10-year time steps for the FLSM and a 

1-year time step for the disease and fire model in Big Sur, CA using daily projected climate data. 
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The model was replicated 30 times to account for stochastic variability in climate, disease 

spread, fire ignition locations, and seedling establishment. Three disturbance scenarios were 

utilized: fire, disease, and fire and disease. Model results suggest overall disease decreased fire 

severity, however, when disease related mortality occurred 3 years prior to a fire then fire 

severity increased. The model results suggest that bay laurel increases relative to other host 

species due to apparent competition under the disease only scenario. This effect is mitigated in 

the disease and fire scenario due to individual species response to fire.
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CHAPTER 1: INTRODUCTION 
 

Invasive Pest and Pathogen Problem 

Invasive forest insects and pathogens are a significant threat to forested ecosystems 

worldwide (Liebhold et al. 1995; Vitousek et al. 1997; Simberloff 2000; Perles, Callahan, and 

Marshall 2010; Vitousek et al. 1996). As of 2010, a total of 455 non-native forest pests and 16 

pathogens were discovered in the US; these organisms have become an increasingly serious 

threat to forest productivity and diversity (Aukema et al. 2010; Perles, Callahan, and Marshall 

2010). Despite regulatory measures to prevent new introduction, the number of species has 

continued to increase annually (Aukema et al. 2011). Recently, awareness of both the economic 

and ecological impacts associated with introduced insects and pathogens has increased (Aukema 

et al. 2010).  

For example, the emerald ash borer (Agrilus planipennis), Asian longhorned beetle 

(Anoplophora glabripennis), and sudden oak death (SOD) (Phytophthora ramorum) caused 

damages estimated to be in the billions of dollars due to lost timber resources (GAO 2006). 

Another study estimated approximately $1.7 billion in local government expenditures and $830 

million in lost property value from wood and phloem-boring non-native insects in the United 

States (Aukema et al. 2011). One study of emerald ash borer estimates that over the course of 10 

years the cost to treat and remove infected ash trees would be $10.7 billion (Kovacs et al. 2010). 

A study of oak wilt (Ceratocystis fagacearum) conducted in Anoka County, Minnesota found 

that the cost of removal of dead trees would range from $18-60 million (Haight et al. 2011). In 
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the Big Sur region of California, the estimated cost of treatment was $7.5 million and property 

value loss was $135 million (Kovacs et al. 2011). 

In addition to lost property value, these invasive forest pests and pathogens have serious 

consequences for ecosystem services and stability. These ecosystem effects include both short- 

and long-term effects. Short-term effects occur on timescales from weeks to years, while, long-

term effects are seen over decades or centuries (Lovett et al. 2006). Direct short-term effects of 

forest and pathogen disturbance are tree defoliation, loss of vigor, or death. Indirect short-term 

effects of forest pests and pathogens include but are not limited to temporary decrease in primary 

productivity, increased exchange and leaching of nutrients, increased or decreased 

decomposition, microclimate changes, and increased light availability (Lovett et al. 2006, 2004; 

J. C. Jenkins, Aber, and Canham 1999). Long-term effects are primarily driven by a change in 

tree species competition due to host mortality differentiation, that leads to altered forest 

structure, primary productivity, nutrient exchange rates, and soil organic matter production and 

turnover (Lovett et al. 2006). Three main attributes of the pest or pathogen affect the short- and 

long-term effects to ecosystem functions: mode of attack (how does a pest or pathogen attack the 

tree?), host specificity (generalist vs. specialist (one host vs. multiple hosts), Virulence (rapid 

mortality vs. slow mortality and probability of mortality) (Lovett et al. 2006). Additionally, there 

are important host tree characteristics that also play an important role in ecosystem 

consequences: dominance (i.e. basal area or leaf area), succession and growth (pure stands vs. 

mixed, where in the successional process, and regeneration effectiveness), and uniqueness 

(nitrogen fixation, unusual environmental tolerances, large seed crops) (Lovett et al. 2006; Orwig 

et al. 2008).  
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 The effects of forest pests and pathogens are typically long lasting due to 2 factors: host 

selectivity and persistence within the ecosystem (i.e. once established remain a permanent 

component of the ecosystem).  For example, hemlock woolly adelgid has been shown to reduce 

forest floor moisture, increase rates of nitrogen accumulation, increase nitrate leaching into 

streams, decrease soil CO2 efflux, and decrease stream flow in the summer (Den Boer 1968; J. C. 

Jenkins, Aber, and Canham 1999; Ross et al. 2003; Yorks, Leopold, and Raynal 2003; Cobb, 

Orwig, and Currie 2006; Orwig et al. 2008). Cryphonectria parasitica, the causal agent of 

chestnut blight, has dramatically altered forest composition in the Eastern US; forests once 

dominated by American chestnut have become oak/hickory dominant. This is especially true in 

areas of the Appalachian Mountains where it is estimated that one in four hardwoods was an 

American chestnut (Jules et al. 2014; Prospero and Cleary 2017). The local dominance, biomass, 

or functional importance of species killed following infection or infestation determines the 

magnitude and nature of ecosystem change (Lovett et al. 2006; Ruess et al. 2009). Pathogen 

impacts range from dramatic stand level population declines to removals of single individuals 

and can occur over many years (Eviner and Likens 2008). 

Modeling Pathogen Effects 

Pest and pathogen models – frequently used to predict areas of future infection/infestation 

– have often ignored the effect of host heterogeneity and asymmetric host susceptibility and 

competency, except see (Meentemeyer et al. 2011; Fitzpatrick et al. 2012). Landscape 

epidemiological models frequently treat forest composition and host density as static 

(Meentemeyer, Haas, and Václavík 2012), meaning that the trees do not age or experience 

effects of disturbance. This makes it difficult to understand how disease alters species 

composition at a landscape level (Cobb, Meentemeyer, and Rizzo 2010). Apparent competition 
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is a form of indirect competition driven by asymmetries in host susceptibility to a pathogen that 

lead to changes in species composition (Power and Mitchell 2004; Cobb, Meentemeyer, and 

Rizzo 2010). This lack of realistic changes in host community composition greatly impedes 

modeling the interactions of other landscape-level disturbances with disease spread (Cobb and 

Metz 2017). Combining a dynamic epidemiological model with a forest landscape simulation 

model (FLSM) allows for understanding how disease affects forest community composition and 

other disturbance dynamics and impacts. 

Forest landscape simulation models (FLSMs) have been developed to specifically address 

management and research questions at landscape scales (>105 ha) by projecting forest dynamics 

over space and time (Mladenoff 2004; Scheller and Mladenoff 2007). These models typically 

include details such as tree age, species and biomass, and are widely used to analyze the 

influence of disturbances over time as they affect large-scale forest ecosystem dynamics 

(Thompson et al. 2016; Scheller and Mladenoff 2004). One of several FLSMs, LANDIS-II 

stands out as a process-based forest landscape model that can include variable time steps for 

different ecological processes (e.g. succession, disturbance, seed dispersal, forest management, 

carbon dynamics) and simulate their interactions as an emergent property of the independently 

simulated processed (Mladenoff 2005; Scheller and Mladenoff 2007; Mladenoff 2004). 

LANDIS-II continues to grow its user community and several extensions are available to 

simulate disturbances like wind, fire, insect spread, or land-use change. To date, the 

representation of forest pathogen and disease spread in FLSMs including LANDIS-II has been 

lacking.  
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Phytophthora Ramorum 

Phytophthora ramorum is an oomycete, a fungus like eukaryotic microorganism, which 

can infect over a hundred plant species (Rizzo, Garbelotto, and Hansen 2005; Davidson, 

Patterson, and Rizzo 2008). Disease symptoms are expressed in two forms: lethal infections on 

canker hosts and non-lethal foliar infections. The lethal form of the disease infects stems and 

branches of several ecologically important tree species, such as, tanoak (Notholithocarpus 

densiflorus), coast live oak (Quercus agrifolia), canyon live oak (Quercus chrysolepsis), 

California black oak (Quercus kelloggii), and Shreve’s oak (Quercus parvula var. shrevei). 

These canker hosts are epidemiological dead ends with the exception of tanoak (Kovacs et al. 

2011; Davidson et al. 2005). The foliar hosts can transmit the disease as leaves and twigs of 

these species produce inoculum. California Bay Laurel produces the most inoculum of all 

infected species and as such is consider the reservoir host with other hosts considered alternative 

hosts (Figure 1) (Kelly and Meentemeyer 2002; Meentemeyer, Rank, et al. 2008; Václavík et al. 

2010). There are four main factors that make P. ramorum a serious threat to many forest 

ecosystems: the potential for foliar hosts to readily support P. ramorum growth, the pathogen’s 

ability to disperse by wind-blown rain (Davidson et al. 2005), the broad range of the host 

species, and the ability to kill ecologically important species (Garbelotto, Rizzo, and Marais 

2002; Rizzo and Garbelotto 2003).  
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Figure 1: Transmission pathways for the pathogen. Reservoir hosts = primary source of 
pathogen spread indicated by the solid red lines, alternate hosts = able to spread pathogen 
but to a lesser extent indicated by the dashed red lines, and terminal hosts = no spread of 
the pathogen. 

 

The range of sudden oak death is from the Big Sur region (Figure 3) of California to 

South-western Oregon (Meentemeyer, Rank, et al. 2008; Cobb, Meentemeyer, and Rizzo 2010; 

Václavík et al. 2010; Cobb, Filipe, et al. 2012) (Figure 2). P. ramorum produces two types of 

spores: chlamydospores (resting spores) and zoospores, which have flagella for swimming. 

Spores are transmitted via rain-splash and wind driven ran, which can knock spores into 

watercourse where they can be transmitted great distances. People engaged in outdoor activities 

can also transmit the disease spores on their equipment, especially in muddy areas (Davidson et 

Reservoir 
 

Terminal 
 

Alternate 
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al. 2002). Transmission can be much higher than average during periods of high spring rain fall 

and much lower during periods of prolonged drought (Cobb and Metz 2017; Haas et al. 2016). 

 

 

 

Figure 2: County level infection status of Sudden Oak Death as of 2016 (USDA Forest Service 
Northern Research Station and Forest Health Protection 2016) 
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Figure 3: Big Sur study area with most recent plot level infection status shown. 
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Economic costs of sudden oak death range from removal cost of dead trees, prevention 

cost, and loss of property value. One study estimated that over a ten year period the cost of 

treatment, removal, and replacement of 10,000 infected oaks was $7.5 million and that property 

losses to single family homes were $135 million (Kovacs et al. 2011).  

 

Ecosystem consequences of SOD 

P. ramorum is persistent within impacted stands, mortality is constant or increasing over 

the scale of a decade, and inter-annual climate variability is critical to rates of pathogen spread 

(Davidson, Patterson, and Rizzo 2008; Cobb, Meentemeyer, and Rizzo 2010; Davis et al. 2010). 

This dynamic interaction with its environment may prolong mortality and ecosystem effects of P. 

ramorum over a greater time frame compared to other pests or pathogens especially those that 

spread from discrete contact zones (Hansen and Goheen 2000; Rizzo, Slaughter, and Parmeter 

2000; Kauffman and Jules 2006). 

In plots affected by SOD, course woody debris accumulation rates increased in both 

snags and logs compared to uninfected plots  (Cobb, Chan, et al. 2012). The number of large live 

tanoaks decreased dramatically in infected vs. uninfected plots, however, tanoak should be able 

to persist due to vegetative reproduction (i.e. seedlings or resprouting after fire) (Cobb, Filipe, et 

al. 2012). Additionally, in redwood-tanoak forests P. ramorum infection has led not only to a 

decline in large tanoak but also redwood while bay laurel became a more dominant part of the 

forests (Cobb, Meentemeyer, and Rizzo 2010). Thus, incorporating epidemiological processes, 

particularly factors that determine transmission and host biomass will yield more realistic 

estimates of carbon accumulation over time and maximum amount of carbon released in infected 

forests (Cobb, Chan, et al. 2012; Cobb and Metz 2017). 
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Fire Regime 

The frequency of large wildfires in the western USA has increased significantly since the 

mid-1980s, together with warming temperatures and lengthened fire season (Beh et al. 2012). 

Wildfire has played a crucial role in shaping the structure and ecological function of coniferous 

forests throughout the world, including those in the Big Sur area of California (Van Wagtendonk 

and Cayan 2008; Metz et al. 2010). The relationship between fire and fuels is that recently 

burned areas limit subsequent fire size by reducing fuel load. Thus, large areas of dense 

continuous fuels increase the likelihood that fires will become larger and more severe 

(Valachovic et al. 2011; He and Mladenoff 1999). Large, severe fires can lead to dramatic 

reductions in mature trees and aboveground and belowground live biomass, leading to cascading 

ecological effects (Cobb, Meentemeyer, and Rizzo 2016; Sturtevant et al. 2012).  

Traditionally forest disturbance events that cause defoliation or damage to a stand are 

thought to increase fire severity and frequency due to an increase in litter accumulation and 

increased evapotranspiration due to greater light in the understory (McCullough, Werner, and 

Neumann 1998; Parker, Clancy, and Mathiasen 2006). However, recent empirical and modelling 

studies in pine bark beetle disturbance systems have shown that these disturbances are more 

interactive and may actually cause a decrease in fire severity. This is due to the nonlinear effects 

of increased dead fuel and thinned canopies (Romme et al. 2006; M. J. Jenkins et al. 2008; 

Lynch and Moorcroft 2008). The long-term consequences of pathogen disturbance on fire 

regimes is even more poorly understood due to the need for large temporal data.  

Pathogen disturbances influence successional pathways affecting future forest conditions 

that have subsequent repercussions for future fire and pathogen disturbance (Jasinski and Payette 

2005; Kulakowski and Veblen 2007; Bouchard and Pothier 2008). Additionally, wildfire is 
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frequently considered a major agent of soil and land degradation, some have suggested that it is 

the single most important agent of geomorphological change (Neary, Ryan, and DeBano 2005). 

Wildfire and pathogen/pest disturbances are key factors in hydrology of a region given that they 

have a large influence on evapotranspiration (Neary, Ryan, and DeBano 2005; Shakesby and 

Doerr 2006; Doerr et al. 2006).  

 

Interacting Disturbances 

Disturbances play an important role in maintaining or changing ecosystems. However, 

many disturbance regimes are being altered by climate change and other anthropogenic factors 

such as introduced species. Often times interacting disturbances have results that are unexpected 

based on the individual disturbances but when combined can lead to shifts from one ecosystem 

state to another (M. G. Turner 2010; Foster et al. 2015). Interactions between fire and disease can 

modify the other’s likelihood, intensity or spatial distribution.  

Within the Big Sur study area of California there have been 2 years with large scale 

wildfires (2008 and 2016) since the establishment of the plot network in 2006. These fires have 

provided insights into how fire and SOD interact to affect forest composition and services. Forest 

floor carbon, nitrogen, and phosphorus were significantly greater in plots uninfected by P. 

ramorum compared to those infected within the 2008 Chalk and Basin Complex fire burn area in 

Big Sur. While no significant difference was found between infected and uninfected plots outside 

of the burn area indicating that the interaction between fire and SOD have a meaningful impact 

on post fire forest floor nutrient pools (Cobb and Metz 2017; Cobb, Meentemeyer, and Rizzo 

2016). 
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Host fire tolerance and post fire recovery has feedbacks for disease prevalence, while 

selective host mortality by P. ramorum affects the standing and downed course woody debris 

which alters the fuel load of the forest thus affecting likelihood and severity of fires (Cobb, 

Meentemeyer, and Rizzo 2016; Metz et al. 2013, 2010). In some cases, wildfire could directly 

eliminate the pathogen from burned areas or at a minimum reduce the amount of disease and 

increase time until reinfection (Beh et al. 2012; Metz et al. 2010, 2013).  

 

Goals 

 The goal of this dissertation is to use the LANDIS-II FLSM to examine how fire and 

disease interact and how those interactions affect forest composition. There are two highly 

important steps to be able to accomplish this goal.  First, I needed to create an epidemiological 

model that could interact with a forest composition model and fire model. Using this model at a 

30-m spatial resolution to capture the spatial heterogeneity of the Big Sur was too slow to be 

used for multiple simulation runs. Thus, I implemented the first parallelization in a FLSM to 

improve computational time. I have divided the work into three chapters: (1) Parallelization in 

FLSMs, (2) Dynamic Epidemiological Modelling in FLSMs: A Case Study Using P. ramorum in 

Big Sur, CA, (3) Interacting Disturbances and Their Ecological Impacts: A Case Study Using 

Fire and P. ramorum in Big Sur, CA.  
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CHAPTER 2: PARALLELIZATION OF FLSMS 
 

Introduction 

Forest landscape simulation models (FLSMs) are often used to understand and manage 

forest dynamics over space and time (Mladenoff 2004; Scheller and Mladenoff 2007). These 

models typically include details such as tree age, species, biomass and are widely used to analyze 

the influence of disturbances over time and space on forest ecosystem dynamics (Thompson et 

al. 2016). Among several types of FLSMs, LANDIS-II stands out as a spatially-explicit forest 

landscape model that can include variable time steps for different ecological processes (e.g. 

succession, disturbance, seed dispersal, forest management, carbon dynamics) and simulate their 

interactions (Mladenoff 2005; Scheller et al. 2007; Mladenoff 2004). LANDIS-II continues to 

grow its user community and several extensions are made available to simulate disturbances like 

wind, fire, insect spread, or forest pathogen spread and disease impacts. However, as the model 

becomes more complex the computational time increases, requiring a tradeoff between spatial 

extent and spatial resolution (Figure 4).  



14 

 
Figure 4: The tradeoff in computational time between resolution and extent. The log of both 

time and extent are shown here using a single-core model and number of computations for 
each combination of extent and resolution. 

 

Parallel computing offers a means to reduce computational time by performing many 

calculations simultaneously. This happens by dividing large calculations into smaller ones and 

bringing the results back together when all calculations of one type are complete. Care must be 

taken, however, to ensure that dependent processes still run sequentially. Parallelized FLSMs 

offer a means to examine processes and capture the effects of highly heterogenous areas on 

forest processes by allowing higher spatial resolutions within the same size study area. This also 

dramatically speeds up the calibration and validation process of these models. 

In this study, we introduce parallel computing to the LANDIS-II FLSM utilizing the Base 

Epidemiological Disturbance Agent (EDA) extension for LANDIS-II. Base EDA allows the 
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linking of forest pathogen spread and tree mortality in forested landscapes. Thus, the feedback 

between pathogen spread and mortality can be predicted across space and time. The parallelized 

version of EDA is compatible with all succession extensions and can be used in conjunction with 

other disturbance extensions (e.g. fire, insect, wind) to simulate their combined effects on forest 

landscape dynamics. In this paper, we show that a parallel version of the model decreases 

computational time proportional to the number of cores utilized for the model. This is done using 

an example application of the EDA extension in Big Sur, California.  

 

Model description 

The LANDIS-II modeling framework includes a model core that links, parses, and 

validates data from multiple extensions and allows the user to select a forest-succession 

extension and/or any number of disturbance extensions (Scheller et al. 2007). EDA is a 

disturbance extension compatible with all LANDIS-II forest-succession extensions. It is open 

source and freely available at the LANDIS-II project website: www.landis-ii.org. The download 

comes with an installer, user guide and sample data.  

To date, no extension or core in LANDIS-II has taken advantage of the benefits of 

parallel computing. This is partially due to the core utilizing the Microsoft .Net Framework 3.5 

instead of 4.0 or higher, which contain built in libraries for implementing parallel algorithms. 

However, we exported the necessary libraries to a Dynamic-link library that allows us to utilize 

the parallel functions within the .Net 3.5 framework.  

 

http://www.landis-ii.org/
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Case study 

To demonstrate the effect of parallelization, we ran the model for 20 years in an 8,017 km2 

area of central California at a 30-m resolution (total pixels = 885,588), USA with a 1-year time 

step. We averaged the time taken for a time step using 1, 2, 4, 6, and 8 cores on the same 

computer; this is done in order to minimize differences in processor speeds. We then divided the 

total time for a time-step by the number of pixels in the study area in order to get a per pixel 

time-step. This allows us to scale up to multiple extents and resolutions as the main formula for 

computational time is number of pixels multiplied by time per pixel. The decrease in 

computational time is directly related to the number of cores allocated to the model (1-8 in this 

case), see Table 1. At some point when much higher cores are used on super computers this 

relationship will break down and the decrease will no longer be 1:1 based on the amount of the 

model that is parallel compatible. This extension is 100% parallelizable so Amdahl’s law 

(McCool, Robison, and Reinders 2012) really takes effect at much larger core infrastructure 

(around 64 cores). Figure 5 shows the difference in computational time at different resolutions 

for a given extent. This means that the researcher can choose an extent 2 orders of magnitude 

higher with the same resolution and have a similar computational time when using an 8-core 

parallel model compared to the single core models that have been used previously. 
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Cores Time Speedup 

1 29531 1 

2 14621 2 

4 7387 4 

6 4907 6 

8 3676 8 

Table 1: Average time for a timestep for a simulation when allotted 1, 2, 4, 6, or 8 cores. 

 

 
Figure 5: Relationship between the log of time and resolution with extent as factors. The parallel 

model was ran using 8 cores on the same system as the single core.  
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Conclusion  

We have shown that utilizing the parallel processing can significantly decrease the 

computational time. This allows the user to choose a spatial extent two orders of magnitude 

larger or a significantly smaller resolution at the same spatial extent without increasing the 

computational time. Turner et al (1989) determined that increasing spatial resolution results in 

the loss of low frequency landcover types (ecoregions) and species especially in areas with low 

clustering or high heterogeneity. The use of smaller resolutions can greatly increase the 

understanding gained from processes occurring in highly heterogenous areas. Having shown that 

parallelization can lead to dramatically lower computational time future work should continue to 

utilize parallel computing and the opportunities it can provide.  
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CHAPTER 3: USING COUPLED DYNAMIC SPATIAL TEMPORAL 
EPIDEMIOLOGICAL MODELS FOR UNDERSTANDING LONG-TERM FOREST 

COMPOSITION CHANGES WITH ASYMMETRIC DISEASE HOST-COMPETENCY 
AND SUSCEPTIBILITY.  

 

Introduction 

Epidemiological disturbances, such as emerging pathogens and infectious disease 

outbreaks, are important agents of forest change around the world, causing tree mortality at 

scales ranging from individual trees of a single species to entire forest patches (Meentemeyer, 

Rank, et al. 2008; Welsh, Lewis, and Woods 2009). Beyond the complete loss of certain tree 

species, forest pathogens can significantly alter the functioning of forested ecosystems and the 

services they provide (Liebhold et al. 1995; Simberloff 2000; Vitousek et al. 1997). For example, 

pathogens can reduce the capacity of forests to sequester carbon, and can strongly interact with 

other types of disturbance such as fire, insects, and drought (Anderson et al. 2004; Dale et al. 

2009; Elderd et al. 2013; Jactel et al. 2012; Vitousek et al. 1997). Coupled dynamic spatial 

temporal epidemiological models provide a predictive tool that can inform our understanding of 

how introduced forest pathogens alter forest ecosystem dynamics, which is crucial for land 

managers and decision makers (Cobb and Metz 2017; Rizzo, Garbelotto, and Hansen 2005). 

One such emerging pathogen is Phytophthora ramorum, the causal agent of sudden oak 

death (SOD), which can infect over a hundred plant species (Rizzo, Garbelotto, and Hansen 

2005; Davidson, Patterson, and Rizzo 2008). Disease symptoms are expressed in two forms: 

lethal infections on canker hosts and non-lethal foliar infections. The lethal form of the disease 

infects stems and branches of several ecologically important tree species, such as tanoak 
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(Notholithocarpus densiflorus), coast live oak (Quercus agrifolia), canyon live oak (Q. 

chrysolepis), and California black oak (Q. kelloggii). These canker hosts are epidemiological 

dead ends with the exception of tanoak (Kovacs et al. 2011; Davidson et al. 2005). The foliar 

hosts can transmit the disease as leaves and twigs of these species produce inoculum. California 

bay laurel (Umbellularia californica)  produces the most inoculum of all infected species and as 

such is considered the reservoir host with other foliar hosts considered alternative hosts (Figure 

1) (Kelly and Meentemeyer 2002; Meentemeyer, Rank, et al. 2008; Václavík et al. 2010).  

One of the key effects that has surfaced at plot level analyses is the effect of apparent 

competition giving California bay laurel an advantage over tanoak (Cobb, Meentemeyer, and 

Rizzo 2010). Apparent competition occurs when 2 or more species share a common enemy (P. 

ramorum) that has asymmetric effects on the host species (oaks, tanoak, and bay laurel).  In 

order to capture this effect over time, a ratio of bay laurel to tanoak was created, this ratio should 

increase if either or both of the following are true: (1) bay laurel increases faster than tanoak 

and/or (2) tanoak decreases while bay laurel increases or stays the same. Understanding how this 

emerging infectious disease will change forest composition requires the use of a dynamic 

epidemiological model linked to a model that simulates forest growth and succession. 

Forest landscape simulation models (FLSMs) have been developed to specifically address 

management and research questions at landscape scales (>105 ha) by projecting forest dynamics 

over space and time (Mladenoff 2004; Scheller and Mladenoff 2007). These models typically 

include details such as tree age, species and biomass, and are widely used to analyze the 

influence of disturbances over time as they affect large-scale forest ecosystem dynamics 

(Thompson et al. 2016; Scheller and Mladenoff 2004). One of several FLSMs, LANDIS-II 

stands out as a process-based forest landscape model that can include variable time steps for 
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different ecological processes (e.g. succession, disturbance, seed dispersal, forest management, 

carbon dynamics) and simulate their interactions as an emergent property of the independently 

simulated processes (Mladenoff 2005; Scheller and Mladenoff 2007; Mladenoff 2004). 

LANDIS-II continues to grow its user community and several extensions are available to 

simulate disturbances like wind, fire, insect spread, or land-use change. To date, the 

representation of forest pathogen and disease spread in FLSMs including LANDIS-II has been 

lacking.  

Landscape epidemiological models frequently treat forest composition and host density 

as static (Cobb, Filipe, et al. 2012; Meentemeyer et al. 2011), meaning that the trees do not age 

or experience effects of disturbance. This makes it difficult to understand how disease alters 

competitive interactions among species, a process known as apparent competition, which can 

alter species composition at a landscape level (Cobb, Meentemeyer, and Rizzo 2010). Apparent 

competition can emerge when asymmetries in host susceptibility and tolerances to a pathogen 

drive changes in species composition (Power and Mitchell 2004; Cobb, Meentemeyer, and Rizzo 

2010). Ignoring changes in host community composition limits the realism with which the 

interactions of other landscape-level disturbances with disease spread can be forecast through 

modeling (Cobb and Metz 2017). 

Here I present the first case study of dynamic epidemiological modeling in a FLSM, 

utilizing LANDIS-II. The model couples the Net Ecosystem Carbon and Nitrogen (NECN) 

Succession extension to simulate forest succession and nutrient pools, with the new 

Epidemiological Disturbance Agent extension (EDA) for LANDIS-II to simulate disease spread. 

NECN will use a 10-year time-step and EDA will use a 1-year time-step (Figure 6). The model 

will simulate P. ramorum spread and forest succession from 1990 to 2090 in Big Sur, CA using 
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projected daily climate data. The EDA model accounts for asymmetries in both host 

susceptibility and competency and couples with the forest succession model to simulate forest 

composition changes across space and time. Utilizing models coupled in this way allows for 

examining changes in species composition due to apparent competition. 

 

Figure 6: Spatial modeling framework showing disease and forest composition. These two 
components of the interactive landscape change over time and space and interact with each 
other within and across time-steps. Sites also interact with each other within a time step 
(i.e. seeds and inoculum can disperse across the landscape). 

 

Methods 

Study Area 

 This study focuses on the Big Sur region of central coastal California (Figure 7). Forests 
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in this area are frequently classified into two main categories, redwood and mixed evergreen. 

There are many other ecosystem types in this study area and species composition varies even 

within these two broad classes. The topography in the study area is steep with deeply dissected 

slopes and drainages, elevation ranges from sea level to 1571 m within 5 km of the coast 

(Henson 1996).  In 2006/2007 a long-term monitoring network for P. ramorum was established 

(Metz et al. 2010; Beh et al. 2012). The network consists of 280, 12.5 m radius plots throughout 

a 79,356 hectares study area within the Big Sur, CA. The plots were randomly located across a 

range of ecological conditions stratified by elevation, latitude, fire history, and forest community 

type (mixed evergreen and redwood forests). Plots were also located in areas with and without 

pathogen presence. All trees ≥1 cm in diameter at breast height (dbh) and shrubs that reached an 

area ≥ 1 m2 were measured and species information recorded. P. Ramorum symptoms are 

recorded for hosts that meet these requirements and tissue from symptomatic individuals is 

brought to the lab for pathogen isolation (Davidson et al. 2005). All plots had plot centers 

confirmed using survey-grade global positioning system receivers with a horizontal accuracy of 

1 m or less after differential correction. A different subset of these plots were resampled in 2008, 

2009, 2010, 2011, and 2013. These data will be used to supply LANDIS parameters and for 

validation. 
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Figure 7: Big Sur Study area with disease status for all 280 plots, point of initial infection, and 8 
ecoregions with greater than 1% area. 
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Modeling Framework 

LANDIS-II is a process-based raster modeling framework consisting of a model core that 

links, parses, and validates data from multiple extensions (modules) and allows the user to “plug 

in” a forest succession extension and any number of optional disturbance extensions. Forests are 

represented as tree species-age cohorts (i.e. tanoak 100 for all tanoaks between 91-100 years) 

within raster cells across the landscape (Scheller et al. 2007). The NECN succession extension 

(version 4.1) and EDA extension (version 1.1) were utilized for this study.  

 

Succession Extension 

The NECN succession extension, originally developed as the Century Succession 

extension (Scheller et al. 2011), is a combination of the original LANDIS biomass extension  and 

the CENTURY Soil Organic Matter model (Parton et al. 1983). It simulates cohort growth, 

mortality, and regeneration based on life-history and physiological attributes. Species compete 

for resources within a grid cell and spatially disperse across cells within the landscape. This 

allows for species range shifts and the effects of apparent competition due to disease to play out. 

Additionally, the model estimates above- and below-ground net primary production (NPP), net 

ecosystem exchange (NEE), multiple pools of live and dead tree biomass (including leaf, wood, 

fine root, course root, and course woody debris) and active, passive, and slow soil organic matter 

pools (Parton et al. 1983; Scheller et al. 2011). NECN incorporates a climate library that allows 

all extensions to utilize the same climate information. The climate data influences soil water 

content and nitrogen available for tree growth. Growth and competition are simulated based on 

limitation imposed by temperature, water, nitrogen, leaf area, and light availability instead of 

operating at a photosynthetic level (Scheller et al. 2011).  
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Dynamic Epidemiological Extension 

Base EDA requires a raster map with location(s) of initial infection. As well as agent-

specific parameters such as host transmissivity, host susceptibility, climate tolerances and 

preferences, mean transmission rate, acquisition rate, maximum dispersal distance, and the 

appropriate dispersal kernel and exponent (see Sections 2.1-2.3 below). The model can also 

incorporate parameters defining how other disturbances modify likelihood of infection.   

Base EDA is specifically designed to simulate asymmetric weather-driven transmission 

of pathogen infection within a multi-host landscape. Transmission is modeled as a dynamic 

process, affecting a meta-population comprised of N contiguous subpopulations represented by 

cells (sites) arranged on a grid. Cells contain forest tree species age cohorts, and (optionally) 

non-forest vegetation types. Tree mortality simulated by EDA is passed to the succession model 

that in turn handles vegetation response to that mortality (e.g., changes in light, water, and/or 

nutrients, depending on the succession extension used). Epidemiological disturbances within the 

EDA are probabilistic at the site level, where each site is assigned a probability of being in one 

of the following states: Susceptible (S), Infected (infectious non-symptomatic) (I), Diseased 

(infectious and symptomatic) (D) (Figure 8). 

 

 

Figure 8: Compartmental structure of the epidemiological model used by the LANDIS-II Base 
Epidemiological Disturbance Agent (EDA) extension. 
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Probabilities are compared with a uniform random number to determine whether the site 

becomes infected or, if already infected, to become diseased. Disease causes species- and cohort-

specific mortality in the cell. The epidemiological model is similar to that in Meentemeyer et al. 

(2011) with adjustments made to fit the LANDIS-II framework and account for mortality. 

Additionally, the model can handle more than one EDA agent (pathogen), especially those with 

aerial dispersal. 

 

Site Host Index 

Site host index (SHI) was adapted from the “site resource dominance” concept in the 

LANDIS-II Biological Disturbance Agent Extension (Sturtevant et al. 2004). SHI accounts for 

the spatial distribution of known hosts of the EDA agent and is a combined function of tree-

species composition and the age cohorts present on that site. This approach allows the 

quantification of susceptibility for each non-infected cell to become infected, and the suitability 

of each infected cell to produce infectious spores. The relative host index value of a given 

species cohort is defined by its host competency class, where low, medium, and high 

competency classes are user-defined values ranging between 1 and 10, with non-hosts having a 

value of 0. The EDA extension compares a look-up table with the species cohort list at each cell 

generated by LANDIS-II to calculate SHI at time t using one of two methods: 1) the host value 

from the maximum host competency class present, or 2) an average host value of all tree species 

present, where the host value of each species is represented by the one assigned to the oldest 

cohort. Species identified as “ignored” do not contribute to the calculation of average resource 

value, while non-host species that are not ignored contribute a value of 0. Non-sporulating hosts 
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(i.e. hosts that do not contribute to pathogen or disease transmission) are not included in the host 

index calculation. 

 

Site host index modifiers 

Site host index modifiers (SHIMs) are optional parameters used to adjust SHI to reflect 

variation introduced by both site environment (i.e., landtype (ecoregion)) and recent disturbances 

(Sturtevant et al. 2004). Land type modifiers (LTMs) and disturbance modifiers (DMs) can range 

between -1 and +1, and are added to the SHI value of all affected sites where host species are 

present (SHI > 0). LTMs are assumed to be constant for the entire simulation, while DMs have a 

defined duration and decline linearly with the time since last disturbance (𝑡𝑡𝐷𝐷𝐷𝐷𝐷𝐷) as follows: 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑡𝑡) = 𝐷𝐷𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚,𝐷𝐷𝐷𝐷𝐷𝐷 ∗
𝐷𝐷𝐷𝐷𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝐷𝐷𝐷𝐷𝐷𝐷−𝑡𝑡𝐷𝐷𝐷𝐷𝐷𝐷

𝐷𝐷𝐷𝐷𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝐷𝐷𝐷𝐷𝐷𝐷
   (Equation 1) 

Disturbances that may affect a given EDA agent include fire, wind, other EDA agents and 

insects, as well as timber harvest. SHI is then modified by LTM and the sum of all DMs: 

𝐷𝐷𝑆𝑆𝑆𝑆𝐷𝐷(𝑡𝑡) = 𝐷𝐷𝑆𝑆𝑆𝑆(𝑡𝑡) + 𝐿𝐿𝐷𝐷𝐷𝐷 + (𝐷𝐷𝐷𝐷𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤(𝑡𝑡) +  𝐷𝐷𝐷𝐷𝑓𝑓𝑤𝑤𝑓𝑓𝑓𝑓(𝑡𝑡) + ⋯ )  (Equation 2) 

The user should calibrate the two modifiers to reflect the relative influence of species 

composition/age structure, the abiotic environment, and recent disturbance on SHI. SHIM is 

normalized by its mean over the entire study area, 𝐷𝐷𝑆𝑆𝑆𝑆𝐷𝐷(𝑡𝑡) =  𝐷𝐷𝑆𝑆𝑆𝑆𝐷𝐷(𝑡𝑡)
𝐷𝐷𝑆𝑆𝑆𝑆𝐷𝐷𝑚𝑚𝑚𝑚𝑑𝑑𝑑𝑑

, and modifies the 

disease transmission rate, β (see Section 2.2). Normalization of SHI allows comparison of β to 

homogeneous landscape conditions (where SHIM = 1) and to interpret β as the rate of secondary 

infection of cells by a single infected neighboring cell in an otherwise uninfected landscape. 
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Weather 

An annual weather index, 𝑤𝑤(𝑡𝑡), is used to account for the effect of weather conditions on 

the probability of uninfected hosts becoming infected, and infected hosts sporulating and 

spreading an individual EDA agent. Weather predictors (or transformations thereof) should be 

selected based on their relevance to the chosen EDA agent. The weather index is multiplied by a 

baseline transmission rate, 𝛽𝛽0, to produce a time-dependent transmission rate, 𝛽𝛽(𝑡𝑡) =

𝑤𝑤(𝑡𝑡)𝛽𝛽0, where 𝛽𝛽0 is defined by the user. The basic weather index for year t, 𝑊𝑊(𝑡𝑡), comprises the 

cumulative effects of N weather predictors (e.g. rainfall alone, or rainfall and temperature) over a 

range of months, specified by the user (e.g. April to June), and is calculated as follows: 

𝑊𝑊(𝑡𝑡) = ∑ 𝑋𝑋1 ∗𝑤𝑤∈[𝑚𝑚𝑚𝑚𝑤𝑤𝑡𝑡ℎ𝐴𝐴(𝑡𝑡),…,𝑚𝑚𝑚𝑚𝑤𝑤𝑡𝑡ℎ𝐵𝐵(𝑡𝑡)] 𝑋𝑋2 ∗ … ∗ 𝑋𝑋𝑁𝑁   (Equation 3) 

where 𝑋𝑋1 ∗  𝑋𝑋2 ∗ … ∗ 𝑋𝑋𝑁𝑁 represent the weather predictors and the cumulative-sum runs over days 

d included between two user-defined months (𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡ℎ𝐴𝐴 and 𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡ℎ𝐵𝐵) for the current year t. If 

necessary, weather predictors in (1) can be replaced by derived (e.g., aggregated, or transformed) 

versions. As an example, a predictor can be aggregated (summed or averaged) over N 

consecutive days of a week or month (e.g., cumulative precipitation). Transformed predictors are 

expressed by a function, (𝑋𝑋). In the current version of the extension (v1.0), only a polynomial 

transformation is available, defined as: 

𝑓𝑓(𝑋𝑋) = 𝐴𝐴 + 𝐵𝐵 + 𝑒𝑒𝑒𝑒𝑒𝑒 (𝐶𝐶 ∗ �ln �𝑋𝑋
𝐷𝐷
� 𝐸𝐸⁄ �

𝐹𝐹
)   (Equation 4) 

where A, B, C, D, E, F are constants specified by the user to adjust the shape of the polynomial 

(e.g., improving polynomial fit to empirical data on response of EDA agent to changes in 

temperature). As an example, such a transformation can reflect changes in rate of pathogen 

sporulation at increasing temperature values. The actual weather index, 𝑤𝑤(𝑡𝑡), is normalized by 

the mean 𝑊𝑊𝑚𝑚𝑓𝑓𝑚𝑚𝑤𝑤 over the available time series of historical weather predictors: 𝑤𝑤(𝑡𝑡) =



30 

 𝑊𝑊(𝑡𝑡) 𝑊𝑊𝑚𝑚𝑓𝑓𝑚𝑚𝑤𝑤⁄ . Normalization means that 𝛽𝛽0 can be interpreted as the annual transmission rate 

under average (or under constant) weather conditions. The weather index built this way varies 

annually, but is spatially uniform within each ecoregion. 

 

Epidemiological Processes 

The epidemiological model shares features with spatially-structured metapopulation 

models and relies on a few important assumptions: First, only the presence/absence of infection 

in each cell is accounted for. This simplification ignores a transient effect (occurrence, spread 

and intensification) within the same cell, assuming that an effective level of inoculum is reached 

rapidly (but still below the maximum sporulating capacity of the cell). Improving this 

approximation would require a much larger computational effort in the parameter estimation 

procedure described in Filipe et al. (2012). Second, infected cells immediately become 

infectious, which is particularly true for an EDA with a small latent period across its host range. 

Third, infected sites remain infectious for an undetermined (i.e., long) period; hence no species 

can recover from infection throughout the simulation. However, if a cohort is killed by fire and 

resprouts, it is no longer infected. 

At every time step t, a susceptible cell (site) i can become cryptically infected subject to a 

force of infection Λ𝑤𝑤(𝑡𝑡) and, once infected, it can become diseased at rate 𝑟𝑟𝐷𝐷. Despite potentially 

containing dead hosts, symptomatically infected (diseased) cells have the same transmission rate, 

i.e., are as infectious as cryptically infected cells. The probabilities that cell i is in each of the 

possible states (Susceptible, Infected, Diseased), Pi,S, Pi,I, and Pi,D, respectively, are governed by 

a system of differential equations: 

Δ𝑃𝑃𝑑𝑑,𝐷𝐷
Δt

= −Λ𝑤𝑤(𝑡𝑡)𝑃𝑃𝑤𝑤,𝐷𝐷  (Equation 5) 
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Δ𝑃𝑃𝑑𝑑,𝐼𝐼
Δt

= Λ𝑤𝑤(𝑡𝑡)𝑃𝑃𝑤𝑤,𝐷𝐷 − 𝑟𝑟𝐷𝐷𝑃𝑃𝑤𝑤,𝑆𝑆   (Equation 6) 

Δ𝑃𝑃𝑑𝑑,𝐷𝐷
∆t

= r𝐷𝐷𝑃𝑃𝑤𝑤,𝑆𝑆   (Equation 7) 

The initial conditions for each cell, at the estimated time of onset of the outbreak, are Pi,S = 1, Pi,I 

= 0, Pi,D = 0, except at the cell estimated to be the location of the first infection, where Pi,S = 0, 

Pi,I = 1, Pi,D = 0. The force of infection, Λ𝑤𝑤(𝑡𝑡), is given by: 

Λ𝑤𝑤(𝑡𝑡) =  𝛽𝛽(𝑡𝑡)∑ 𝐷𝐷𝑆𝑆𝑆𝑆𝐷𝐷𝑗𝑗(𝑡𝑡) ∗  𝐷𝐷𝑆𝑆𝑆𝑆𝐷𝐷𝑤𝑤(𝑡𝑡) ∗  𝑃𝑃𝑗𝑗,𝑆𝑆+𝐷𝐷|𝑤𝑤,𝐷𝐷 ∗ 𝐾𝐾(𝑑𝑑𝑤𝑤𝑗𝑗)𝑗𝑗≠𝑤𝑤    (Equation 8) 

where 𝛽𝛽(𝑡𝑡) = 𝑤𝑤(𝑡𝑡)𝛽𝛽0 is the transmission rate, with 𝑤𝑤(𝑡𝑡) the annual index of weather fluctuation 

about a N-year average (see Section 2.2) and 𝛽𝛽0 the baseline rate; 𝐾𝐾(𝑑𝑑𝑤𝑤𝑗𝑗) is a dispersal kernel 

(see Section 2.3.1) for a given distance d between target and source cells; 𝑃𝑃𝑗𝑗,𝑆𝑆+𝐷𝐷|𝑤𝑤,𝐷𝐷 is the 

conditional probability that source cell j is infectious (either cryptic or symptomatic infection) 

given that target cell i is susceptible. To achieve a first order of approximation, we assume that 

𝑃𝑃𝑗𝑗,𝑆𝑆+𝐷𝐷|𝑤𝑤,𝐷𝐷 ≈  𝑃𝑃𝑗𝑗,𝑆𝑆 + 𝑃𝑃𝑗𝑗,𝐷𝐷 which we expect to be a reasonable approximation to the infection 

pattern, especially when dispersal is not too localized (e.g. within short distance from source of 

infection). 

 

Dispersal kernel 

The dispersal kernel used in Base EDA is derived from, and shares code with, the seed 

dispersal kernel developed by Lichti and colleagues (N. Lichti, Purdue University, unpublished 

manuscript). This dispersal function and associated distributions are especially suitable for 

aerially dispersed EDA agents including a range of fungi, bacteria, and mistletoes. The 

probability that the agent disperses a distance d from the source was expressed by two main 

functional forms, often used in the literature: a power-law and a negative exponential. Their 

generic form can be defined as follows: 
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𝐾𝐾𝑃𝑃𝑚𝑚𝑤𝑤𝑓𝑓𝑓𝑓𝑃𝑃𝑚𝑚𝑤𝑤(𝑑𝑑) = 𝑑𝑑−𝛼𝛼   (Equation 9) 

𝐾𝐾𝑁𝑁𝑓𝑓𝑁𝑁𝑁𝑁𝑚𝑚𝑁𝑁(𝑑𝑑) = 𝑒𝑒−𝑤𝑤/𝛼𝛼   (Equation 10) 

An EDA agent produced in a source cell can only be deposited in a cell different from the 

source, i.e., transmission in force of infection (Λ, see Section 2.3 above) is conditional on the 

agent being dispersed outside the source cell. The rationale for this choice is that infection 

processes within a cell are not tracked (no transient effect). In addition, the kernel must integrate 

to 1 within a chosen 2D spatial neighborhood window (excluding the source cell). The 2D 

window accounts for all possible pathways through which the target cell can become infected by 

a given source cell. A user-defined maximum radial distance is used to limit EDA agent dispersal 

within a chosen neighborhood size. For cases where only local, short-distance dispersal events 

are considered, this parameter becomes essential to reduce computational burden. Only isotropic 

dispersal (no wind-assisted directional spread) was considered for version 1.0 of the Base EDA 

extension. 

 

Tree species cohort mortality 

Within each diseased cell, the mortality of individual tree species age cohorts is a 

probabilistic function of the mortality probability of the cohort’s vulnerability class. The user 

defines which species and ages fall into each vulnerability class (low-high), and the probability 

of cohort mortality for each class. Probabilities are compared with a uniform random number to 

determine whether an entire age-cohort dies (i.e. is removed) or not, where tree species cohort 

mortality is then passed to the succession extension which handles the removal of the cohort(s) 

and updates the cohort list. We acknowledge that complete cohort removal rather than a partial 

one may be a simplistic assumption in the current version of the model, but for many landscape-
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level processes or dynamics it should not cause significant changes in outcome. The Base EDA 

time step concludes updating the time since last disturbance, outputting maps of cell states (1 = 

Susceptible, 2 = Infected, 3 = Diseased) and cohort mortality, and by updating the Base EDA log 

file (Figure 9). 

 

 

Figure 9: Flow diagram illustrating the main logical structure of the LANDIS-II Base 
Epidemiological Disturbance Agent (EDA) extension. 

 

Model Inputs 

 LANDIS-II model inputs include initial vegetation data, ecoregion data, species and 

functional group trait data, epidemiological data, and climate data (Table 2). See Appendix 1 for 

all tables with NECN and EDA extension parameters.  
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Table 2: Data and Sources. 

Parameter Groups Source Data 

Species Specific 
Silvics Manual, 
Literature, LEMMA 
GNN 

Seed dispersal; fire regeneration; resprout 
probability; resprout age limits; shade, fire, 
and drought tolerance; sexual maturity; 
longevity; min temp; GDD min and max; 
leaf, wood, and root lignin and C/N ratios. 

Functional Groups 
Silvics Manual and 
previous Century 
models 

Mortality shape curves; max LAI; growth 
parameters; leaf drop month; and fraction of 
carbon in fine and course roots. 

Ecoregion Types 
LandFire Biophysical 
Regions 

Groups regions with similar climate, 
topography, and soil 

Ecoregion Parameters SSURGO, NADP Soil depth; percent clay; percent sand; field 
capacity; wilting point; drainage; nitrogen 

Climate (Daily) CA-BCM 2014 Precipitation, TMIN, TMAX, Wind 

Acronyms: LEMMA = Landscape Ecology, Modeling, Mapping & Analysis, GNN = Gradient Nearest Neighbor, 
GDD = growing degree days, C/N = Carbon/Nitrogen, LAI = Leaf Area Index, SSURGO = Soil Survey Geographic 
Database, NADP = National Atmospheric Deposition Program, CA-BCM 2014 = California Basin Characterization 
Model Downscaled Climate and Hydrology. 

 

Vegetation Data 

 Initialization of the current vegetation on the simulated landscape, used the gradient 

nearest neighbor (GNN) map for the California Southern Coastal Range (map region 233) 

produced by the Landscape Ecology, Modeling, Mapping and Analysis (LEMMA) group for the 

Northwest Forest Plan Effectiveness Monitoring (Ohmann et al. 2011; Ohmann and Gregory 

2002). The GNN method imputes forest inventory plot data to every pixel in the map, 

characterizing tree species composition, age structure, biomass, and other variables. The 

inventory plots come from various sources, with the predominant ones being the US Forest 

Service Forest Inventory and Analysis (FIA) and Current Vegetation Survey (CVS) programs 
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(Ohmann et al. 2011). Age information for each individual tree within the imputed forest 

inventory plots was obtained from the supplemental TREE_LIVE database provided by the 

LEMMA group. These data were used to classify species-age cohorts at 10-year intervals for 

each plot. Age cohorts range from 10 to the maximum age of the species.  

  

Ecoregions 

 LANDIS-II uses ecoregions to divide the study area into regions that have homogeneous 

soils and climate. I use LANDFIRE Biophysical Settings for the California Southern Coastal 

Range (map region 4) to define the ecoregions. LANDFIRE Biophysical Settings are classified 

based on topography, soil, and climate data and were developed by the LANDFIRE group of the 

Nature Conservancy to describe vegetation states prior to Euro-American settlement (names 

represent this purpose) (Rollins 2009). There are 17 ecoregions in the study area (Table 3). 

Ecoregion parameters include soil properties such as percent clay and sand, SOC decomposition 

rates, drainage class, and pools of nitrogen and carbon. SSURGO National Soil Survey for 

Monterey County, California (“Web Soil Survey” 2014) data was spatially averaged to a depth 

of 1 m across the ecoregions to obtain the necessary data at the ecoregion level. Percent clay and 

sand, field capacity, and drainage class were calculated directly from the SSURGO data, while 

wilting point was calculated as field capacity minus available water content. Soil organic carbon 

and nitrogen pools were calculated using browns-transect data collected across the 280 plots in 

the Big Sur plot network (Cobb and Metz 2017; Cobb, Chan, et al. 2012). Nitrogen inputs were 

assumed to come from wet and dry deposition, biological fixation, soil, and decaying logs 

(Zhang et al. 2012; Fenn et al. 2003). Wet and dry deposition were calculated from National 

Atmospheric Deposition Program (NADP) data across the study system (NADP Program Office 

2017).  
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Table 3: Ecoregions with percentage of total study area. 

Ecoregion Area (%) 

Water 0.1% 

Barren 0.2% 

Mixed Evergreen Woodland 31.7% 

Coastal Redwood Forest 26.7% 

Mixed Conifer Forest 5.0% 

Black Oak Conifer Forest 0.1% 

Southern California Coastal Scrub 0.7% 

California Maritime Chaparral 0.7% 

California Mesic Chaparral 4.3% 

Woodland Savanna 0.9% 

Dry Mesic Chaparral 5.0% 

Coastal Live Oak Woodland 11.5% 

Northern California Coastal Scrub 4.6% 

Southern Coastal Grassland 1.1% 

Northern Coastal Grassland 0.8% 

Riparian 6.3% 

Closed Cone Conifer Forest 0.2% 

 

Species and Functional Group Parameters 

 I simulated 27 tree species based on the data from LEMMA GNN: bristlecone fir, grand 

fir, bigleaf maple, California buckeye, white alder, red alder, pacific madrone, tanoak, knobcone 
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pine, Coulter pine, sugar pine, singleleaf pinyon, ponderosa pine, Monterey pine, gray pine, 

California sycamore, balsam poplar, big-cone Douglas fir, Douglas fir, California live oak, 

canyon live oak, blue oak, Oregon white oak, California white oak, interior live oak, redwood, 

and California bay laurel. These 27 species were grouped into 5 functional groups: Redwood, 

Evergreen-Conifer, Deciduous Conifer, Evergreen Broadleaf, and Deciduous Broadleaf. See 

Appendix 1 for data tables containing species and functional group parameters.  

 

Epidemiological Data 

 The model was initialized at the estimated true location of initial infection based on 

knowledge of invasion history in central coastal California (Rizzo, Garbelotto, and Hansen 2005; 

Mascheretti et al. 2008; Meentemeyer et al. 2011). Data on host species vulnerability were based 

on species mortality within both the Big Sur plot network as well as Sonoma County plot data. 

Host Index is the measure of the host ability to produce inoculum and to become infected 

(Davidson et al. 2005; Davidson, Patterson, and Rizzo 2008) and is derived from information 

from the plot network (Meentemeyer et al. 2011). The dispersal kernel utilizes the power law 

distribution in order to account for long-distance dispersal events such as accidental human 

assisted dispersal. The effect of precipitation is simulated by summing the previous 5 days and 

temperature effects are simulated using a polynomial transformation of daily temperature using 

parameters in Table 4.   

 

 

 

 



38 

Table 4: Shape parameters for fitting temperature effects on P. ramorum inoculum production 
using equation 4. These parameters are derived using methods in Meentemeyer et. al. 
(2011). 

Variable Temp 

  a 108.6 

  b 904.8 

  c -0.5 

  d 15.87 

  e 0.2422 

  f 2 

 

Climate Data 

 The NECN Succession extension requires monthly temperature and precipitation data for 

model spin-up and future projections. The EDA extension, however, requires daily data. We 

modified the climate library to take daily data and apply the proper temporal scaling for each 

extension and are able to supply daily data to the model while still having the ability to provide 

monthly data to the NECN succession extension. Climate data was obtained from the US 

Geological Survey GeoData Portal (https://cide.usgs.gov/gdp/) as an area weighted average for 

each ecoregion. Climate data is from the Western US Hydroclimate Scenarios Project 

Observations and Statistically Downscaled Data at 1/16th degree resolution (Hamlet, Salathé, and 

Carrasco 2010). This method uses the Modified Delta approach (Littell et al. 2011), based on 10 

models from Phase 3 of the Coupled Model Intercomparison Project to create daily temperature 

and precipitation values for historical and future climate (1950-2099) (Figures 10-12).  The 

model only uses the 10 best performing GCMs for a given area in this case the California Basin. 

https://cide.usgs.gov/gdp/
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Data from 1950 to 1990 was used for model spin-up, while 1990 to 2090 data was used for 

model projections. Simulating from 1990 to 2090 was necessary to be able to recreate the disease 

dynamics during the early stage of infection.   

 

 

Figure 10: Average maximum temperature of the 10 GCMs from 1990 to 2090 with shaded grey 
region representing one standard deviation. 
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Figure 11: Average minimum temperature from the 10 GCMs from 1990 to 2090 in °C with 
shaded grey region representing one standard deviation. 
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Figure 12: Average annual precipitation from the 10 GCMs from 1990 to 2090 with shaded grey 
region representing one standard deviation. 

 

Model Calibration 

 The NECN succession was calibrated using literature review and data for central coastal 

California. Expected patterns of growth, NEE, carbon accumulation, and stand age were 

determined from literature review (Henson 1996; D. P. Turner et al. 1995; Vogt 1991; Waring 

1983; Noss 1999; Johnson, Shifley, and Rogers 2009; Callaway and D’Antonio 1991; Battles et 

al. 2008; Pelt and Franklin 2000; Smith, Rizzo, and North 2005; Waring and Running 2010). 

Calibration of the NECN Succession extension begins with single-cell simulations, adjusting 

parameters (e.g. temperature response and moisture sensitivity shape parameters) to match 

patterns of growth and NEE in literature (Ewing et al. 2009; G. Turner 2008; D. P. Turner et al. 
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1995; Waring and Running 2010). The other parameters (e.g. soil organic carbon decay rates and 

shade tolerance) were calibrated across the entire Big Sir to ensure that starting conditions 

matched input data and landscape-scale processes were simulated correctly. Biomass estimates 

from the LEMMA GNN maps were created using the component ratio method (CRM) (Heath et 

al. 2009). The CRM computes aboveground biomass as the sum of three components: bole of the 

tree, stump of the tree, and the top of the tree. The biomass of the tree bole is calculated using 

regional volume equations, while the biomass of additional tree components is calculated using a 

series of ratios established by Jenkins et. al. (2003). The GNN biomass estimates were used to 

calibrate the initial aboveground biomass estimates of model spin-up (Figure 13). Final 

calibration was based on: (1) initial aboveground carbon was within 10% of GNN estimates 

across all ecoregions (Figure 13), (2) projected aboveground NPP and carbon matched trends in 

literature based on stand age, and (3) soil organic carbon accumulated 5-20% in all pools over 

the 100-year simulation. 
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Figure 13: Aboveground carbon estimates for ecoregions in the Big Sur, CA from GNN 
imputation and LANDIS-II at the beginning of the simulation (year 1990).  

 

Simulation Model Runs 

 The model simulated from 1990-2090 using 10-year time steps for NECN and a 1-year 

time step for EDA. The model was replicated 30 times using different random seeds for each 

simulation in order to account for stochastic variability in climate, disease spread, and seedling 

establishment. Model results were aggregated to the entire study region to look at the effect of 

disease across the entire landscape (i.e. large-scale impacts). Results were also aggregated to the 

ecoregion level to determine if the results at the landscape level are universal across the study 

system or vary based on biophysical attributes. 
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Results 

EDA Model Accuracy 

 We compared the disease spread results from the model to plot-level data using two 

methods: (1) aggregating all plot-level data to 2013 using the disease status of the most recent 

sampling year (i.e. if plot was last sampled in 2009 that information was used for that plot) (full 

method) and (2) comparing individual plot sampling results with the model results for that 

sample year (yearly method) (plots were sampled in 2006, 2007, 2008, 2009, 2010, 2011, and 

2013). The first method had 280 plots sampled while the second method ended up with 428 total 

comparisons (only a portion of the plots were sampled during a sample year and some plots are 

sampled during more than one year). Method 1 had a lower overall accuracy, higher average true 

positive rate, and a much lower average true negative rate. Method 2 clearly performed better 

which was to be expected as it compares the results during the year sampled to model results 

during the same year. The aggregate method had higher average positive results due to many 

false negatives associated with the fact that if the plot was last sampled in 2009 then showing 

results for 2013 may not be indicative of actual disease status in the plot. Total model accuracy 

using the yearly method was 73.02 (Figure 14). The average odds ratio for the 30 simulations 

was 7.90 ± 3.21 using the yearly method.  
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Figure 14: Boxplots of model accuracy comparison using the 2 methods full (all comparisons at 
year 2013) and Yearly (model results compared to plot data for every sampling year). 
Accuracy = total model accuracy for both positive and negative disease status, posC = True 
positive identification (i.e. both plot and model results showed disease present), and negC 
= True negative identification (i.e. both plot and model results showed no disease) 

  

Impacts of Disease on Forest Composition 

 When aggregated to the landscape level (entire study area) the impact of disease on the 

forest composition, as measured using the bay/tanoak ratio, stayed roughly constant from 1990 

(0.680) to 2000 (0.684) (Figure 15). From 2000 to 2020 the bay/tanoak ratio more than doubled 

(0.684 to 1.319) and continues to increase at a more modest rate through 2090 (1.835). This 

effect of disease on bay/tanoak ratio exhibited notable differences between ecoregions (Figure 

16). The higher the relative abundance of bay laurel compared to tanoak initially, the greater and 

more rapid the increase in the bay/tanoak ratio over time (Figure 16). 
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Figure 15: Ratio of Bay Laurel to Tanoak over time with shaded region representing one 
standard deviation and the dark blue line representing the average from the 30 simulations 
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Figure 16: Average ratio of bay laurel to tanoak over time by ecoregion. Solid line indicates the 
average and the shaded region represents the standard deviation. 

 

 

Discussion and Conclusions 

 The dynamic epidemiological model developed to work with LANDIS-II and calibrated 

for P. ramorum spread had an overall accuracy of 73% and odds ratio of 7.90 ± 3.21. These 

results are especially promising given the patchy nature of disease and the highly heterogeneous 

terrain and forest composition in the Big Sur. Also, the results are comparable to accuracy results 

(odds ratio = 7.6) from Meentemeyer et al (2011) in the central western ecoregion, the region in 

their study where the Big Sur is located. The model presented here achieves several advances 

compared to other forest epidemiological models: (1) separates host competency from host 
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susceptibility, (2) includes disease related mortality, (3) includes link to model of species 

composition due to forest growth, succession, and regeneration, (4) includes asymmetries in host 

competency and susceptibility by species and age classes. Separating host competency from host 

susceptibility allow us to more accurately capture disease dynamics. For instance, oaks play no 

role in the spread of P. ramorum (no competency) but experience disease related decline and 

mortality (medium susceptibility). Tanoak produces moderate levels of inoculum (medium 

competency) and experiences disease related decline and mortality (high susceptibility). Bay 

laurel produces the most inoculum (high competency) but experiences no disease related decline 

(no susceptibility). Previous models (Meentemeyer et al. 2011) have included asymmetries in 

host competency by species but not by age class. This distinction allows for increased inoculum 

production as trees age, grow, and have more leaf area for spore production. Despite these 

advances the model could be improved by: (1) allowing disease build up in a site over time, (2) 

include an option for anisotropic (wind or topography driven) spread (3) include an option for 

inoculum production based on leaf biomass within a site rather than by age class. Future work 

will seek to incorporate these and other improvements into EDA to more accurately capture 

disease dynamics. By incorporating this dynamic epidemiological model into a forest landscape 

simulation, we are able to not only track disease spread but also disease effects on forest 

composition.  

Generalist pathogens often have asymmetries in host susceptibility and/or competency 

that can lead to changes in species composition. This asymmetric impact on host species by a 

generalist pathogen is known as apparent competition. Apparent competition has been shown in 

experimentally controlled field studies using barley yellow dwarf virus where the presence of 

Avena fatua, a highly susceptible reservoir species, decreased the abundance of two other host 
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species (Power and Mitchell 2004). Empirical observational data has suggested apparent 

competition in P. ramorum infected redwood forests (Cobb, Meentemeyer, and Rizzo 2010; 

Cobb, Filipe, et al. 2012). The model suggests an increase in bay laurel relative to tanoak across 

the entire study area. This is true across all ecoregions but the rate and magnitude of change 

varies greatly between ecoregions. The ecoregions with the greatest increase in the ratio of bay 

laurel to tanoak are the ones with the greatest initial ratio of bay laurel to tanoak (i.e. redwood). 

In redwood systems in the Big Sur the three-primary species are bay laurel, tanoak, and redwood. 

The model results suggest that apparent competition mediated through asymmetric host 

susceptibility and competency lead to changes in species composition within the landscape, with 

bay laurel becoming more important (increasing from 10% to 13% for the entire study area) and 

tanoak becoming less important (decreasing from 14.7% to 7.1% across all ecoregions). The 

increase in bay laurel in the study area suggests that the disease will not only be maintained in 

the system but increase due to bay laurel producing the most inoculum of all hosts.  

It is important to note that our model tracks species biomass not individual trees and our 

calculations are not based on the number of individuals of a species but rather species biomass. 

By having calculations by biomass rather than number of individual trees makes species like 

redwood with larger than average biomass per tree relatively more important than they would be 

in an analysis based on number of stems, however, changes in species biomass relative to each 

other should still show similar trends to an analysis of individual trees. Model results support 

empirical data from other studies on SOD impact on forest composition and add support for the 

theory that tanoak will persist despite SOD impacts due to reproductive ability (Cobb, Filipe, et 

al. 2012; Cobb, Meentemeyer, and Rizzo 2010).  
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CHAPTER 4: UNTANGLING THE INTERACTING EFFECTS OF DUEL 
DISTURBANCES: SUDDEN OAK DEATH AND FIRE 

 

Introduction 

 Forest pests and pathogens can have large scale impacts on forest composition and can 

interact with natural disturbance regimes to dramatically change forest composition (Aukema et 

al. 2010; B. Buma and Wessman 2011; M. G. Turner 2010; Cobb and Metz 2017). But the long-

term impacts of and interactions with natural disturbance regimes for newly introduced pests and 

pathogens are not well understood. Therefore, we are combining a dynamic epidemiological 

model, a fire-behavior model, and a forest landscape simulation model (FLSM) (Figure 17) to 

understand how these disturbances interact and change forest composition over the course of a 

century using Phytophthora ramorum as our case study invasive pathogen. Three disturbance 

scenarios (fire, disease, and fire and disease) will be used in order to understand the interacting 

effects of fire and disease on forest composition. 
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Figure 17: Spatial modeling framework showing fire, disease, and forest composition. These 
three components of the interactive landscape change over time and space, and interact 
with each other within and across time-steps. Sites also interact with each other within a 
time step. 

 

Disturbance plays an important role in both the maintenance of and the transition of 

ecosystems (Brian Buma, Poore, and Wessman 2014). Many disturbance regimes are being 

altered by climate change and other anthropogenic factors such as introduced species (M. G. 

Turner 2010), and multiple disturbances can interact to produce unexpected changes in 

community composition or ecosystem state as compared to individual disturbance effects (Foster 

et al. 2015). Bender, Case, and Gilpin (1984) define two types of disturbance: pulse, which are 

short time frame (days to a couple months) events often with significant effects, i.e. fire; and 
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persistent, which are maintained over long time periods (months to many years), i.e. disease. 

These two types of disturbance can interact and affect each other in often unpredictable ways due 

to non-linear dynamics and interactive effects. Interactions between fire and disease can modify 

the other’s likelihood, intensity or spatial distribution. Additionally, the interacting effects can 

combine to modify the ecosystem. Based on the “additive” model of disturbance interactions 

(Crain, Kroeker, and Halpern 2008), if the combined effects of two disturbances is greater than 

(synergism) or less than (antagonism) the sum of their individual effects then interacting effects 

occur. Recent advances in this theory allow for the characterization of mechanistic pathways 

driving interactions and acknowledging that the effects are often non-linear. Under this theory 

disturbance interactions can be of two types: (1) interaction chain effects where one disturbance 

influences the occurrence or magnitude of the second disturbance and both disturbances have a 

direct impact on the variable being tested (in this case forest composition) and (2) interaction 

modification effects where the effect of one disturbance on the response variable (forest 

composition) depends on the environmental conditions and time since the other disturbance 

(Figure 18) (B. Buma and Wessman 2011; Foster et al. 2015). 

 

 

Figure 18: Disturbance interaction theory and associated mechanism. Arrows indicate direction 
of effect, top boxes are the disturbances, and bottom box is the response variable of 
interest, in this case forest composition. (a) and (b) are interaction chain which modify the 
likelihood of occurrence, while, (c) interaction modification modifies the magnitude or 
severity of the other disturbance. Figure modified from Foster et al. 2015. 



53 

Invasive forest pathogens tend to be persistent in nature and can dramatically alter forest 

composition due to many host species having no natural resistances (Cobb, Filipe, et al. 2012; 

Meentemeyer, Anacker, et al. 2008). For example, chestnut blight brought over through the 

nursery trade in the early 1900’s wiped out most American chestnuts. American chestnut 

dominated forests were replaced by oak-hickory dominated forests (Prospero and Cleary 2017). 

Phytophthora ramorum, the causal agent of sudden oak death (SOD) and ramorum blight, is an 

invasive pathogen introduced in California in the early 1990s that can infect over a hundred plant 

species (Rizzo, Garbelotto, and Hansen 2005; Davidson, Patterson, and Rizzo 2008). Disease 

symptoms are expressed in two forms: lethal canker infections and non-lethal foliar infections. 

The lethal form of the disease infects stems and branches of several ecologically important tree 

species, such as, tanoak (Notholithocarpus densiflorus), coast live oak (Quercus agrifolia), 

canyon live oak (Quercus chrysolepsis), California black oak (Quercus kelloggii), and Shreve’s 

oak (Quercus parvula var. shrevei). These canker hosts are epidemiological dead ends with the 

exception of tanoak (Kovacs et al. 2011; Davidson et al. 2005). The foliar hosts can transmit the 

disease through inoculum produced on leaves and stems. California Bay Laurel produces the 

most inoculum of all infected species and as such is consider the reservoir host with other foliar 

hosts considered alternative hosts (Figure 1) (Kelly and Meentemeyer 2002; Meentemeyer, 

Rank, et al. 2008; Václavík et al. 2010).  

Fire is a natural part of the ecosystem dynamics in Big Sur, CA. Many species have 

evolutionary adaptations that make fire an important part of their life cycle. In the Big Sur, CA 

there were a total of 69 fires during the 100-year period between 1912 and 2012 larger than 

10000 m2 (CAL FIRE 2014). Fire has been shown to reduce the likelihood of P. ramorum 

infection, with P. ramorum 29 times more likely to be recovered in unburned compared to 
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burned plots, however, the number of symptomatic bay laurels increased the likelihood of the 

pathogen being found at a post burn site (Beh et al. 2012). Most likely due to the increased 

likelihood that one of these symptomatic trees survived the fire. P. ramorum influences fire 

primarily by changing the fuel composition through species decline and mortality in canker 

hosts, however, over long-time periods the disease can lead to changes in species composition 

which can also change fuel loads. The effects of fire and disease on forest composition takes 

place over the course of multiple decades. Process-based models of fire and disease coupled 

together with a forest composition model provide a means to analyze projected changes in forest 

composition by fire and disease interactions. 

 

Methods 

Study System 

 In 2006-2007, a network of 280 plots throughout the Big Sur were created; 121 were 

located within the 2008 Basin Complex and Chalk fires creating a full factorial design across the 

2 disturbances with unburned and burned, and infected and uninfected. The plots are 500 m2 and 

distributed in a stratified-random design across redwood and mixed evergreen forest types, as 

well as in areas with and without P. ramorum (Haas et al. 2011). Within each plot, all stems ≥ 1 

cm diameter at breast height (dbh) are measured, P. ramorum symptoms at leaf, stem and twig 

are recorded for each tree and sent to the lab for pathogen identification, cover class by species is 

estimated, cylindrical volume of logs ≥ 20 cm is measured, and soil data is collected using the 

browns-transect method. This data is used for model calibration and validation.  
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Modeling Framework 

LANDIS-II is a process-based raster modeling framework consisting of a model core that 

links, parses, and validates data from multiple extensions (models) and allows the user to “plug 

in” a forest succession extension and any number of optional disturbance extensions. Forests are 

represented as tree species-age cohorts (i.e. tanoak 100 for all tanoaks between 91-100 years) 

within raster cells across the landscape (Scheller et al. 2007). The NECN succession extension 

(version 4.1), EDA extension (version 1.1), and Dynamic Fuel and Fire extension (version 2.0.5) 

are utilized in this study.  

 

Succession Extension 

The NECN succession extension, originally developed as the Century Succession 

extension (Scheller et al. 2011), is a combination of the original LANDIS biomass extension  and 

the CENTURY Soil Organic Matter model (Parton et al. 1983). It simulates cohort growth, 

mortality, and regeneration based on life history and physiological attributes. Species compete 

for resources within a grid cell and spatially disperse across cells within the landscape. This 

allows for species range shifts and the effects of the disease-fire interaction on species 

composition to be simulated. Additionally, the model estimates above- and below-ground NPP, 

NEE, multiple pools of live and dead tree biomass (including leaf, wood, fine root, course root, 

and course woody debris) and active, passive, and slow soil organic matter pools (Parton et al. 

1983; Scheller et al. 2011). NECN incorporates a climate library that allows all extensions to 

utilize the same climate information. The climate data influences soil water content and nitrogen 

available for tree growth. Growth and competition are simulated based on limitation imposed by 
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temperature, water, nitrogen, leaf area, and light availability instead of operating at a 

photosynthetic level (Scheller et al. 2011).  

 

Dynamic Epidemiological Extension 

 The EDA extension simulates disease spread and using dynamic spatially explicit 

processes based on disease data. The model simulates P. ramorum infection and disease related 

mortality. It is based on a spatial susceptible-infected-recovered model but modified so that 

recovered becomes diseased. This is done to indicate when a grid cell goes from being 

cryptically infected (non-detectable in the field) to symptomatic (visually identifiable in the 

field). Currently only whole cohorts are infected and diseased not individual trees or partial 

cohorts. This is a reasonable assumption given the 30-m resolution but should be adjusted when 

using larger resolutions.  

 

Dynamic Fuel and Fire Extension 

 Fire is simulated within LANDIS-II using the Dynamic Fire extension (Sturtevant et al. 

2009), which is designed to simulate landscape-scale fire regimes and stochastic behavior over 

long time scales. The Dynamic Fire extension simulates the general characteristics of a fire 

regime, including fire frequency, fire sizes and fire effects (mortality). Fire-induced cohort 

mortality is not mechanistically simulated but is class based. Cohort-based mortality depends on 

the cohort age, species fire tolerance, and the severity of the simulated fire. Young cohorts of a 

species with a low fire tolerance are the most susceptible, but mature fire tolerant cohorts can be 

killed by very severe fires. Reproduction following fire depends on species-specific reproductive 

rates either through resprouting or serotiny, seed release in response to fire occurrence, and is 
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controlled by the succession model. Additionally, species can disperse into a burned area from 

outside the burned area and will survive if site conditions are favorable (Sturtevant et al. 2009).  

 In the Dynamic Fire extension, fire spread rate and direction are a function of fuel type, 

weather, topography, and ignition rate. Fuel types represent fuel conditions of both the fuel bed 

and standing dead biomass with unique spread parameters, ignition probability and the base 

height of the crown (CBH: the height above ground that the live crown begins) (Sturtevant et al. 

2009). Temperature, wind speed, wind azimuth, relative humidity and precipitation are inputs 

into the model. The fine fuel moisture conditions and wind speed velocity determine the Initial 

Spread Index (ISI), which is combined with larger fuel moisture into the Fire Weather Index 

(FWI) (Sturtevant et al. 2009).  

 The Dynamic Fire extension calculates fire severity potential as a function of crown 

fraction burned and fire spread rate. Crown-fraction burned is a function of foliar moisture 

content (FMC), CBH and surface fuel consumption. Simulated fires generally have a wide range 

of fire severity potentials (Sturtevant et al. 2009). Actual severity can be mixed as well 

depending on the cohorts present in the burn area. 

 We use the Dynamic Fuels extension (Sturtevant et al. 2009) to assign fuel types. The 

extension assigns a fuel type to each cell within the study area for each time step based on 

species and cohort ages in the cell at that time step. These fuel types change based on succession 

or disturbance. The fuel type following a fire will not be the same as that before the fire due to 

the change in cohort species and ages present after fire.  

Model Inputs 

 LANDIS-II model inputs include initial vegetation data, ecoregion data, species and 

functional-group trait data, epidemiological data, fuel and fire data, and climate data (Table 5). 
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See Appendix 1 for all tables with NECN and EDA and Dynamics Fuel and Fire extension data 

parameters.  

 

Table 5: Data and Sources. 

Parameter Groups Source Data 

Species Specific 
Silvics Manual, 
Literature, LEMMA 
GNN 

Seed dispersal; fire regen; resprout 
probability; resprout age limits; shade, fire, 
and drought tolerance; sexual maturity; 
longevity; min temp; GDD min and max; 
leaf, wood, and root lignin and C/N ratios. 

Functional Groups 
Silvics Manual and 
previous Century 
models 

Mortality shape curves; max LAI; growth 
parameters; leaf drop month; and fraction of 
carbon in fine and course roots. 

Ecoregion Types LandFire Biophysical 
Regions 

Groups regions with similar climate, 
topography, and soil 

Ecoregion Parameters SSURGO, NADP Soil depth; percent clay; percent sand; field 
cap; wilting point; drainage; nitrogen 

Climate (Daily) CA-BCM 2014 Precipitation, TMIN, TMAX, Wind 

Fire CAL FIRE, Literature Ignition events, Max Size, Fuel moisture 
mins and max per season.  

Acronyms: LEMMA = Landscape Ecology, Modeling, Mapping & Analysis, GNN = Gradient Nearest Neighbor, 
GDD = growing degree days, C/N = Carbon/Nitrogen, LAI = Leaf Area Index, SSURGO = Soil Survey Geographic 
Database, NADP = National Atmospheric Deposition Program, CA-BCM 2014 = California Basin Characterization 
Model Downscaled Climate and Hydrology, CAL FIRE = California Department of Forestry and Fire Protection. 

 

Vegetation Data 

 Initialization of the current vegetation on the simulated landscape, used the gradient 

nearest neighbor (GNN) map for the California Southern Coastal Range (map region 233) 

produced by the Landscape Ecology, Modeling, Mapping and Analysis (LEMMA) group for the 

Northwest Forest Plan Effectiveness Monitoring (Ohmann et al. 2011; Ohmann and Gregory 
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2002). The GNN method imputes forest inventory plot data at every pixel, characterizing tree 

species composition, age, biomass, and other variables. The inventory plots come from various 

sources, with the predominant ones being the US Forest Service Forest Inventory and Analysis 

(FIA) and Current Vegetation Survey (CVS) programs (Ohmann et al. 2011). Age information 

for each individual tree within the imputed forest inventory plots was obtained from the 

supplemental TREE_LIVE database provided by the LEMMA group. These data were used to 

classify species-age cohorts at 10-year intervals to match the succession time-step. Age cohorts 

range from 10 to the maximum age of the species.  

  

Ecoregions 

 LANDIS-II uses ecoregions to divide the study area into regions that have homogeneous 

soils and climate. For this study, LANDFIRE biophysical regions for the California Southern 

Coastal Range (map region 4) are utilized. LANDFIRE biophysical regions are classified based 

on topography, soil, and climate data and were developed by the LANDFIRE group of the 

Nature Conservancy (Rollins 2009). There are 17 ecoregions in the study area: Water, Barren, 

Southern California Coastal Scrub, Northern California Coastal Scrub, Northern and Central 

California Dry-Mesic Chaparral, Mediterranean California Lower Montane, Black Oak-Conifer 

Forests and Woodland, Mediterranean California Dry-Mesic Mixed Conifer Forest and 

Woodland, Central and Southern California Mixed Evergreen Woodland, California Northern 

Coastal Grassland, California Montane Woodland and Chaparral, California Montane Riparian 

Systems, California Mesic Chaparral, California Coastal Redwood Forest, California Coast Live 

Oak Woodland and Savanna, California Coastal Closed-Cone Conifer Forest and Woodland, 

California Central Valley and Southern Coastal Grassland. Ecoregion parameters include soil 

properties such as percent clay and sand, SOC decomposition rates, drainage class, and pools of 
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nitrogen and carbon. SSURGO National Soil Survey data for Monterey County, California 

(“Web Soil Survey” 2014) was spatially averaged to a depth of 1 m across the ecoregions to 

obtain the necessary data at the ecoregion level. Percent clay and sand, field capacity, and 

drainage class were calculated directly from the SSURGO data, while wilting point was 

calculated as field capacity minus available water content. Soil organic carbon and nitrogen 

pools were calculated using soil data collected across the 280 plots in the Big Sur plot network 

using the browns-transect method (Cobb and Metz 2017; Cobb, Chan, et al. 2012). Assumption 

for nitrogen inputs were that they come from primarily from wet and dry deposition, biological 

fixation, soil, and decaying logs (Zhang et al. 2012; Fenn et al. 2003). Wet and dry deposition 

were calculated from National Atmospheric Deposition Program (NADP) data across the study 

system (NADP Program Office 2017).  

 

Species and Functional Group Parameters 

 I simulated 27 tree species based on the data from LEMMA GNN: bristlecone fir, grand 

fir, bigleaf maple, California buckeye, white alder, red alder, pacific madrone, tanoak, knobcone 

pine, Coulter pine, sugar pine, singleleaf pinyon, ponderosa pine, Monterey pine, gray pine, 

California sycamore, balsam poplar, big-cone Douglas fir, Douglas fir, California live oak, 

canyon live oak, blue oak, Oregon white oak, California white oak, interior live oak, redwood, 

California bay laurel. These 27 species were grouped into 5 functional groups: Redwood, 

Evergreen-Conifer, Deciduous Conifer, Evergreen Broadleaf, Deciduous Broadleaf, see 

Appendix 1 for data tables containing species and functional group parameters.  
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Epidemiological Data 

 The model is initialized at the best known location of initial infection based on the best 

knowledge of invasion history in central coastal California (Rizzo, Garbelotto, and Hansen 2005; 

Mascheretti et al. 2008; Meentemeyer et al. 2011). Data on host species vulnerability were 

utilized based on species mortality within both the Big Sur plot network as well as Sonoma 

County plot data. Host Index is the measure of the host ability to produce inoculum and to 

become infected (Davidson et al. 2005; Davidson, Patterson, and Rizzo 2008) and is derived 

from information from the plot network (Meentemeyer et al. 2011; Meentemeyer, Anacker, et al. 

2008). The dispersal kernel utilizes the power law distribution in order to account for long-

distance dispersal events. The effect of precipitation is simulated by summing the previous 5 

days and temperature effects are simulated using a polynomial transformation of the daily 

temperature using parameters in Table 4.   

 

Climate Data 

 The NECN Succession extension utilizes monthly temperature and precipitation data for 

model spin-up and future projections, however, the EDA extension requires daily data. We 

modified the climate library to take in daily data and apply the proper temporal scaling for each 

extension and were able to supply daily data to the model while still having the ability to provide 

monthly data to the NECN succession extension. Climate data was obtained from the US 

Geological Survey GeoData Portal (https://cide.usgs.gov/gdp/) as an area weighted average for 

each ecoregion. Climate data is from the Western US Hydroclimate Scenarios Project 

Observations and Statistically Downscaled Data at 1/16th degree resolution (Hamlet, Salathé, and 

Carrasco 2010). This method uses the Modified Delta approach (Littell et al. 2011), based on 10 

https://cide.usgs.gov/gdp/
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models from Phase 3 of the Coupled Model Intercomparison Project to create daily temperature 

and precipitation values for historical and future climate (1950-2099).  The model only uses the 

10 best performing GCMs for a given area in this case the California Basin. Future climate data 

is also an average of the 10 best performing GCMs as well. Data from 1950 to 1990 was used for 

model spin-up, while 1990 to 2090 data was used for model projections. Simulating from 1990 

to 2090 was necessary to be able to recreate the disease dynamics during the early stage of 

infection.   

Fire Data 

 The number of ignition events for a given time step is randomly drawn from a Poisson 

distribution based on the average number of lightning strikes for the historical fire regime, 2.97 

per year per 100 km2  in California’s central coast (Van Wagtendonk and Cayan 2008). This 

scales to 23 ignition events per year for the entire study area, ignition occurs if the fuel index is 

high enough. This ignores data on human ignition events due to lack of good data on number of 

human ignition events. It also assumes that all lighting strikes hit land rather than water so these 

two assumptions should offset. Fire size is based on connectivity of the fuel system, local 

weather, wind, and topography. This led to an average number of fires of ~71 across the 30 

simulations which is in line with the historical fire data from CALFIRE of 69 fires. 

 

Model Calibration 

 The NECN succession was calibrated using literature review and data for central coastal 

California. Expected patterns of growth, NEE, carbon accumulation, and stand age were 

determine from literature review (Henson 1996; D. P. Turner et al. 1995; Vogt 1991; Waring 

1983; Noss 1999; Johnson, Shifley, and Rogers 2009; Callaway and D’Antonio 1991; Battles et 
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al. 2008; Pelt and Franklin 2000; Smith, Rizzo, and North 2005; Waring and Running 2010). 

Calibration of the NECN Succession extension began with single-cell simulations, adjusting 

parameters (e.g. temperature response and moisture sensitivity shape parameters) to match 

patterns of growth and NEE in literature (Ewing et al. 2009; G. Turner 2008; D. P. Turner et al. 

1995; Waring and Running 2010). The other parameters (e.g. soil organic carbon decay rates and 

shade tolerance) were calibrated across the entire Big Sir to ensure that starting conditions 

matched input data and landscape-scale processes were simulated correctly. Biomass estimates 

from the LEMMA GNN maps were created using the component ratio method (CRM) (Heath et 

al. 2009). The CRM computes aboveground biomass as the sum of three components: bole of the 

tree, stump of the tree, and the top of the tree. The biomass of the tree bole is calculated using 

regional volume equations, while the biomass of additional tree components is calculated using a 

series of ratios established by Jenkins et. al. (2003). The GNN biomass estimates were used to 

calibrate the initial aboveground biomass for model spin-up (Figure 14). Final calibration was 

assessed based on the following criteria: (1) initial aboveground carbon was within 10% of GNN 

estimates across all ecoregions (Figure 14), (2) projected aboveground NPP and carbon matched 

trends in literature, and (3) soil organic carbon accumulated 5-20% in all pools over the 100-year 

simulation. 

 

Simulation Model Runs 

 The model simulated from 1990-2090 using 10-year time steps for NECN and a 1-year 

time step for EDA and Dynamic Fuel and Fire. The model was replicated 30 times using 

different random seeds for each simulation in order to account for stochastic variability in 

climate, disease spread, fire ignition locations, and seedling establishment. Three disturbance 

scenarios were utilized: fire, disease, and fire and disease. This allowed for the comparison of 
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species composition considering each disturbance in the absence of the other, as well as the 

interacting effects of the two disturbance types together. 

 

Analysis and Results 

Effects on Fire Regime 

 I calculated the size, average severity, and number of cohorts killed for each fire that 

occurred during the 100-year simulation for all 30 simulations and then averaged all three of 

these variables across an entire simulation. I then averaged the number of fires, number of 

cohorts killed, average fire size, and average fire severity from the thirty runs for each of the 2 

disturbance scenarios (fire, and fire and disease). Across the entire landscape only fire severity is 

significantly different between the two disturbance scenarios, however, the variability in the 

number of fires with disease increases with disease, despite the average number of fires being 

almost identical (Figure 19). The fire data used for this analysis account for every pixel including 

those outside of the fire perimeter. We analyzed fire severity across the ecoregions for both 

disturbance scenarios to see if all ecoregions show the same decrease in fire severity with disease 

or if they differ in this effect. Of the 17 ecoregions, only mixed evergreen, redwood, and oak 

woodlands had statistically significant decreases in fire severity at 95% confidence (Figure 20).  

 Fire severity was analyzed by disease stage to assess whether changes in fire severity 

depended on disease stage. I created four categories of disease stage to capture the effect of 

disease stage on fuel conditions. The four categories are: 1) uninfected; 2) infected = no disease 

effects only non-symptomatic hosts are present; 3) diseased with mortality occurring less than or 

equal to 3 years prior to the fire; and 4) diseased with mortality occurring more than three years 

before the fire. I used three years as the cutoff for early to late stage of disease progression as the 
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majority of trees experiencing disease related mortality have lost all of their branches and/or 

have fallen within 4 years of mortality. Fire severity for the disease stage analysis was averaged 

over each 100-year simulation and then averaged across all 30 simulations. Stage of disease 

appears to affect average fire severity especially but the only statistically significant difference 

occurred in diseased plots with mortality occurring 3 years or less prior to a fire (Figure 21).  

 

 

 

 

 

Figure 19: Average # of fires, average fire size, average fire severity, and average # of cohorts 
killed across the 30 simulations using the two disturbance scenarios with fire (fire, and fire 
and disease). Only fire severity is significant at a 0.05 confidence interval, p-value < 0.001. 
Both number of fires and average fire size show greater variability between simulations for 
fire and disease scenarios.  
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Figure 20: Average Fire Severity across ecoregions and entire landscape only accounting for 
pixels within the fire perimeter. The p-values for each ecoregion shown are significant at 
95% confidence using a t-test with a Bonferroni p-value adjustment: Mixed Evergreen = 
0.0067, Redwood = 0.0071, Oak Woodland = 0.0045, and the entire Big Sur = 0.0039, 
however, the other ecoregions were not statistically significant compare across the 2 
disturbance regimes. 
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Figure 21: Fire severity based on disease stage. Diseased with Mortality ≤ 3 is statistically 
different from the other disease states p-values =0.044, 0.021, and 0.006 for Infected, 
Uninfected, and Mortality greater than three years prior to fire, while other disease stages 
are not significantly different from each other using a pairwise non-paired t-test with non-
pooled standard deviation, and a Bonferroni p-value adjustment. 

 

Ecosystem Effects 

 In order to analyze the ecosystem effects of fire and disease, we analyze changes in 

species composition specifically the ratios of bay laurel to tanoak, bay laurel to coast live oak, 

and bay laurel to California black oak for the three disturbance scenarios. These ratios were 

chosen as these species are relatively abundant in our study area and epidemiologically/culturally 

important, with bay laurel being the reservoir host, tanoak being both a capable alternative host 

and the most susceptible host, and both oak species being canker hosts and endemic to the 

region. I averaged the biomass for each species for the 30 simulations for each disturbance 
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scenario for each time step at both the landscape level and the ecoregion level. I then calculated 

the three ratios: bay laurel/tanoak, bay laurel/coast live oak, and bay laurel/California black oak. 

The ratio of bay laurel to tanoak increased over time in the SOD only scenario and decreased in 

both the fire and fire + disease scenarios (Figure 22). The difference in the bay laurel to tanoak 

ratio between the disturbance scenarios holds across ecoregions, however, the magnitude varies 

greatly across the ecoregions (Figure 23).  

The ratio of bay laurel to coast live oak increased over time in the SOD only scenario and 

decreased in both the fire and fire + disease scenarios (Figure 24). The magnitude of this change 

is much smaller than the change in the ratio of bay laurel to tanoak. The bay laurel to coast live 

oak ratio also holds across all ecoregions, however, the magnitude varies greatly across the 

ecoregions with some experiencing little to no change between scenarios (Figure 25).  

The ratio of bay laurel to California black oak increased over time in the SOD only 

scenario and decreased in both the fire and fire + disease scenarios and starts out much larger 

than either the ratio of bay laurel to tanoak or bay laurel to coast live oak (Figure 26). The 

magnitude of this change is much smaller than the change in the ratio of bay laurel to tanoak. 

The changes in the ratio of bay laurel to California black oak show little to no change across four 

of our ecoregions and the magnitude varies greatly across the ecoregions (Figure 27). It is 

important to note that the redwood and mixed evergreen ecoregions make up greater than 50% of 

our study area and will have a disproportionately large effect at the landscape level compared to 

other ecoregions.  Bay laurel abundance represented as a percent of total biomass increases in the 

SOD only scenario and decreases in both scenarios involving fire (Figure 28). Tanoak abundance 

as a percent of total biomass increases in the fire only scenario but decreases in both scenarios 

involving SOD (Figure 29). Coast live oak as a percent of total biomass increases in all 3 
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disturbances scenarios, however, to a much lesser degree in the SOD only scenario (Figure 30). 

California black oak as a percent of total biomass is flat to increasing in all 3 disturbance 

scenarios, however, the variability between simulations is much greater than the differences 

between disturbance scenarios (Figure 31). Redwood as a percent of total biomass decreases 

dramatically in all 3 disturbance scenarios with little to no difference between scenarios (Figure 

32). 

 

 

Figure 22: Ratio of bay laurel to tanoak over the course of the 100-year simulation for all 3 
disturbance scenarios: fire, disease, and fire and disease. Solid line indicates the average 
and the shaded region is the standard deviation for the 30 simulations.  



70 

 

Figure 23: Ratio of bay laurel to tanoak over the course of the 100-year simulation for 3 
ecoregions for all 3 disturbance scenarios: fire, disease, and fire and disease. Solid line 
indicates the average and the shaded region is the standard deviation for the 30 
simulations.  
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Figure 24: Ratio of bay laurel to coast live oak over the course of the 100-year simulation for all 
3 disturbance scenarios: fire, disease, and fire and disease. Solid line indicates the average 
and the shaded region is the standard deviation for the 30 simulations.  
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Figure 25: Ratio of bay laurel to coast live oak over the course of the 100-year simulation for 3 
ecoregions for all 3 disturbance scenarios: fire, disease, and fire and disease. Solid line 
indicates the average and the shaded region is the standard deviation for the 30 
simulations.  
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Figure 26: Ratio of bay laurel to California black oak over the course of the 100-year simulation 
for all 3 disturbance scenarios: fire, disease, and fire and disease. Solid line indicates the 
average and the shaded region is the standard deviation for the 30 simulations.  
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Figure 27: Ratio of bay laurel to California black oak over the course of the 100-year simulation 
for 3 ecoregions for all 3 disturbance scenarios: fire, disease, and fire and disease. Solid 
line indicates the average and the shaded region is the standard deviation for the 30 
simulations.  
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Figure 28: Bay Laurel over the course of the 100-year simulation for all 3 disturbance scenarios: 
fire, disease, and fire and disease. Solid line indicates the average and the shaded region is 
the standard deviation for the 30 simulations.  
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Figure 29: Tanoak over the course of the 100-year simulation for all 3 disturbance scenarios: 
fire, disease, and fire and disease. Solid line indicates the average and the shaded region is 
the standard deviation for the 30 simulations.  

 



77 

 

Figure 30: Coast live oak over the course of the 100-year simulation for all 3 disturbance 
scenarios: fire, disease, and fire and disease. Solid line indicates the average and the 
shaded region is the standard deviation for the 30 simulations.  
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Figure 31: Bay Laurel over the course of the 100-year simulation for all 3 disturbance scenarios: 
fire, disease, and fire and disease. Solid line indicates the average and the shaded region is 
the standard deviation for the 30 simulations.  
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Figure 32: Redwood over the course of the 100-year simulation for all 3 disturbance scenarios: 
fire, disease, and fire and disease. Solid line indicates the average and the shaded region is 
the standard deviation for the 30 simulations.  

 

Conclusions 

 Forest pests and pathogens can interact with fire regime through changes in fuel load due 

to disease/pest related decline and mortality. These interactions often involve non-linear 

dynamics, resulting in different outcomes depending on time since disturbance and 

environmental conditions. For example, empirical analysis of the effect of disease on fire 

severity after the 2008 chalk and basin complex fires in Big Sur, CA revealed that disease had no 

significant effect on fire severity unless stage of disease was taken into account. In this analysis 

they discovered that plots in the early stage of disease had a higher fire severity than other 
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disease stages and non-infected plots that were located within the fire perimeters (Metz et al. 

2010). Empirical and modeling studies in bark beetle systems have shown no relationship 

between bark beetle outbreaks and fire severity and area burned even though there are occasional 

very large high severity fires that occur (M. J. Jenkins et al. 2008; Hart et al. 2015). 

Our results suggest that at both the landscape- and ecoregion-level average fire size and 

fire severity decrease compared to a natural fire regime without disease present. The patchy 

nature of the disease and the mortality associated with it are possible reasons for this difference 

(Cobb, Filipe, et al. 2012; Meentemeyer et al. 2011). This may also explain why there is more 

variability in the number of fires in the fire and disease scenario compared to fire only. While 

there is a change in fuel load when disease mortality occurs, the patchy nature of the disease 

makes the fuel less continuous compared to other disturbances and thus timing and location of 

fire events relative to disease related mortality are important factors to consider. The fire severity 

by disease stage analysis reveals that time since disturbance is an important factor in fire severity 

over long time periods. These results match those found by Metz et al. (2010) that found that fire 

severity increased during the early stage of disease. Linking this back to our additive theory of 

disturbance, the effect of disease on fire appears to be both an interaction modification and 

interaction chain. Here the interaction chain effect is shown through the increased variability in 

number of fires in the simulations. The interaction modification effects are shown in the fire 

disease dynamics where time since disturbance makes the modification either a synergism in 

early stages of the disease or an antagonism when disease mortality has occurred more than 4 

years prior to fire occurrence.  

Interacting disturbances often shape the landscape in unexpected ways even when the 

magnitude of one disturbance isn’t increased due to the presence of the other. This can result 
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from lack of recovery of the system between disturbances (Brian Buma, Poore, and Wessman 

2014; B. Buma and Wessman 2011, 2013) or species specific resilience mechanisms making 

certain species better suited for multiple disturbances (B Buma and Wessman 2012). Empirical 

data suggests that occurrence of fire in areas affected by SOD increases the ability of oaks and 

tanoak to maintain roughly their current level of abundance on the landscape despite the negative 

effects of SOD, however, the structure of these forests will change due to the loss of large trees. 

This is primarily due to their ability to regenerate more readily post-fire than bay laurel, fire 

killing the pathogen, and older trees being more susceptible to disease than younger trees.  

The changes in forest composition across the modeled disturbance scenarios suggest that 

oaks and tanoaks would increase relative to bay laurel in a fire only scenario and decrease 

relative to bay laurel in the SOD only scenario. Both of these results are expected based on 

disease dynamics, fire-tolerance, and post-fire regeneration. Oaks and tanoaks have a higher fire 

tolerance and grow more rapidly after resprouting than bay laurel. The ratio of bay laurel to 

tanoak in the fire + SOD scenario initially increases along with the SOD only scenario, but then 

decreases along with the fire only scenario. The final ratio is between the two disturbance 

scenarios of the individual disturbances. The ratio of bay laurel to coast live oak in the fire and 

SOD scenario trends more toward the fire only scenario suggesting fire has a greater effect on 

this interaction than disease. The ratio of bay laurel to California black oak in the fire and SOD 

scenario is roughly between the 2 individual disturbance scenarios. These ratios are likely shaped 

by the individual species responses to the multiple disturbance.  

Results suggest that both bay laurel and coast live oak abundance at a landscape level 

respond more to fire than to SOD. California black oak seems to respond more to SOD than fire 

but variability between simulations is much greater than between disturbance differences. 
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Tanoak appears to initially respond more to SOD than to fire but over time the effect of both 

disturbances equalizes.  

Another factor affecting these results is the response of redwood to warming 

temperatures during the simulation. There is a large decrease in redwood abundance in our study 

area over the course of the simulations. The relative lack of response to the disturbance scenarios 

and small variance between simulations relative to the magnitude of the loss in redwood biomass 

suggests that this change is driven by a change in climate. A modeling study by Fernandez et al. 

(2015) suggests that as much as 80% of redwoods would be lost by 2030 in the southern portion 

of the redwood range if temperatures were to increase in the future. The Big Sur is in the 

southern portion of the redwood range. The loss of redwood opens up large areas of potential 

habitat for other species and creates a shift in ecosystem type. Our results suggest that a 

combination of canyon live oak, coulter pine, sycamore, tanoak, interior live oak, and coast live 

oak will benefit most from the decline in redwood, however, there is variation in which species 

benefits most based on the disturbance scenario. Under a fire only scenario the model projects 

that oak species would primarily replace redwoods. While under a SOD only scenario coulter 

pines, sycamore and non-susceptible oak species would benefit most. These results suggest that 

depending on environmental conditions, timing and type of disturbance events, and future 

climatic conditions, forests in the Big Sur will likely experience a shift away from the redwood 

dominant forests to a combination of oak woodlands and mixed evergreen forests.  

This work highlights the complex nature of disease dynamics and interacting 

disturbances. Future work will explore changes in forest age structure, management scenarios 

based on goals of stakeholders in the area, and exploration of the biodiversity disease risk 

hypothesis during multiple disturbances. In order to explore these questions, the EDA model will 
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be further improved to include disease build-up in a site over-time and an adaptive management 

extension will be developed.  
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CHAPTER 5: CONCLUSIONS 
 

Human activity is causing large-scale changes to forested ecosystems due to a 

combination of introduced forest pests and pathogens and climate change. The changes caused 

by many of these invasive forest pests and pathogens over long time periods is unknown due to 

the relatively recent introduction of many of them. However, evidence points to dramatic shifts 

in forest composition for pathogens that selectively remove hosts and potentially compound 

interactions with natural disturbances (Brian Buma, Poore, and Wessman 2014; Prospero and 

Cleary 2017). In this dissertation, I co-developed a dynamic epidemiological model for the 

LANDIS-II FLSM and used it to explore changes in forest composition and fire regime in Big 

Sur, CA under three disturbance scenarios: fire, disease, and fire and disease. 

In chapter 2, I show that utilizing parallelization in forest landscape simulation models 

can mitigate the necessity for the tradeoff in spatial resolution and spatial extent. In chapter 3, I 

developed a dynamic epidemiological model that interacts with a FLSM and examined accuracy 

in a highly heterogeneous environment, Big Sur, CA. In chapter 4, I used the dynamic 

epidemiological model coupled with a FLSM and fire model to examine the effects of a novel 

disease on the natural fire regime and the effects of interacting disturbances on forest 

composition over the course of a century. 

This research makes three primary contributions to the fields of landscape ecology, 

physical geography, and disease/disturbance ecology. 



85 

(1) Improvements in forest landscape simulation modeling.  Forest landscape 

simulation models (FLSMs) often require tradeoffs between spatial resolution and extent, due to 

the computational complexity of these models. By introducing parallelization to the FLSM 

modeling framework I was able to reduce the need for this tradeoff. This allows for smaller 

spatial resolutions to be used to further increase understanding of processes in highly 

heterogeneous environments. 

(2) Improving forest epidemiological modeling. The dynamic epidemiological model 

presented in chapter 3 achieves several advances compared to other forest epidemiological 

models: (1) separates host competency from host susceptibility, (2) includes disease related 

mortality, (3) includes link to model of species composition due to forest growth, succession, and 

regeneration, (4) includes asymmetries in host competency and susceptibility by species and age 

classes. Separating host competency from host susceptibility allow us to more accurately capture 

disease dynamics. For instance, oaks play no role in the spread of P. ramorum (no competency) 

but experience disease related decline and mortality (high susceptibility). Previous models 

(Meentemeyer et al. 2011) have included asymmetries in host competency by species but not by 

age class. This distinction allows for increased inoculum production as trees age, grow, and have 

more leaf area for spore production. Despite these advances the model could be improved by: (1) 

allowing disease build up in a site over time, (2) include an option for anisotropic spread (3) 

include an option for inoculum production based on leaf biomass within a site rather than by age 

class. 

 (3) Understanding the impacts of novel disease on natural fire regime and forest 

composition. This work offers insights into how forests will respond to the introduction of a 

novel disease with asymmetric host competency and susceptibility. This includes interactions 
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with the natural disturbance regime. Interactions between disturbances can often have synergistic 

or antagonistic effects on forest composition. The results of our model suggest that the timing of 

these two disturbance events relative to each other largely determines the nature of the 

interaction. During the early stage of the disease, when tree decline and mortality have happened 

recently fire severity is increased, however, the temporal window for this synergistic interaction 

is small. During other stages of disease fire severity is decreased and this interaction dominates 

at a landscape level over long-time periods due to a higher frequency of occurrence. Individual 

tree species respond differently to the interaction between fire and SOD and this is largely driven 

by their susceptibility to disease and adaptations to fire (i.e. fire-tolerance and post fire 

regeneration strategy).  

In summary, this dissertation seeks to connect plant epidemiology and forest modeling in 

order to understand how invasive forest diseases alter natural disturbance regimes and potential 

change forest composition over the course of a century. In this research, I show that linking 

models of epidemiology, fire, and forest composition can aid in our understanding of interacting 

disturbances and their effects of forest ecosystems. The results of this work support existing 

theories on forest composition changes due to disease dynamics, that tanoak and oak species will 

survive in the ecosystem but at lower levels. The results of this modeling work also support the 

idea that time since disturbance is equally/more important than the actual disturbance in 

determining the effect on subsequent disturbances. 
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APPENDIX 1: SUPPLEMENTAL TABLES 
 

Tables A1-A10, A11-A12, and A13-A15 contain all parameter values used to run the 

LANDIS-II NECN extension (version 4.1), EDA extension (version 1.1), and Dynamic Fuel and 

Fire extension (version 2.0.5) for Big Sur, CA. Values were averaged where multiple sources 

were available. Where no literature was available, values were approximated from similar 

species or previous studies, or were adjusted during calibration. Species are bristlecone fir 

(Abiebrac), grand fir (Abiegran), bigleaf maple (Acermacr), California buckeye (Aesccali), white 

alder (Alnurhom), red alder (Alnurubr), pacific madrone (Arbumenz), tanoak (Lithdens), 

knobcone pine (Pinuatte), Coulter pine (Pinucoul), sugar pine (Pinulamb), singleleaf pinyon 

(Pinumono), ponderosa pine (Pinupond), Monterey pine (Pinuradi), gray pine (Pinusabi), 

California sycamore (Platrace), balsam poplar (Popubals), big-cone Douglas fir (Pseumacr), 

Douglas fir (Pseumenz), California live oak (Queragri), canyon live oak (Querchry), blue oak 

(Querdoug), Oregon white oak (Quergarr), California white oak (Querloba), interior live oak 

(Querwisl), redwood (Sequsemp), California bay laurel (Umbecali). If all parameters were set 

the same across ecoregions, the ecoregion name is shown as “All ecoregions”. 

 

Species   Probability by actual shade    
Shade 
Class 0 1 2 3 4 5 

1 1 1 0.5 0.1 0 0 
2 0.75 1 1 0.5 0.1 0 
3 0.25 0.75 1 1 0.5 0.1 
4 0.25 0.5 0.75 1 1 0.5 
5 0.1 0.25 0.5 0.75 1 1 

Table A1: Light establishment table. 
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Shade 
Class 

All 
Ecoregions 

1 15% 
2 25% 
3 45% 
4 55% 
5 75% 

Table A2: Available light biomass. 

 

 

Active MapCode Name Description 
no 0 BS0 None 
yes 1 BS1 Water 
yes 2 BS2 Barren 
yes 3 BS3 Mixed Evergreen 
yes 4 BS4 California Coastal Redwood Forest 
yes 5 BS5 Dry Mesic Mixed Conifer Forest 

yes 6 BS6 
Lower Montane Black Oak Conifer 
Forest 

yes 7 BS7 Southern California Coastal Scrub 
yes 8 BS8 California Maritime Chaparral 
yes 9 BS9 California Mesic Chaparral 
yes 10 BS10 California Montane Woodlandand 
yes 11 BS11 Central California Dry Mesic Chaparral 
yes 12 BS12 California Coastal Live Oak Woodland 
yes 13 BS13 Northern California Coastal Scrub 
yes 14 BS14 California Southern Coastal Grassland 
yes 15 BS15 California Northern Coastal Grassland 
yes 16 BS16 California Montane Riparian 
yes 17 BS17 California CoastalConifer Forest 

Table A3: Ecoregions 
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Table A4: General species parameters

 Longe- Sexual Shade Fire Seed dispersal distance Vegetative Sprout age Post-fire 
Species vity maturity tolerance tolerance effective Max Rep prob Min Max regeneration 

Abiebrac 300 20 4 1 60 100 0 0 0 none 
Abiegran 325 20 4 3 120 400 0 0 0 none 
Acermacr 200 10 4 2 54 150 0.7 1 150 resprout 
Aesccali 300 10 2 1 14 40 0.8 1 300 resprout 

Alnurhom 160 10 2 1 100 1000 0 0 0 none 
Alnurubr 120 10 2 2 250 1000 0.2 2 15 resprout 

Arbumenz 400 6 3 1 50 100 0.2 5 400 resprout 
Lithdens 400 5 3 3 48 1000 0.7 0 400 resprout 
Pinuatte 120 10 1 1 48 1000 0 0 0 none 
Pinucoul 160 10 1 3 50 100 0 0 0 serotiny 
Pinulamb 550 20 3 3 30 1000 0 0 0 none 
Pinumono 1000 20 1 1 24 1000 0 0 0 none 
Pinupond 929 7 2 4 140 1000 0 0 0 none 
Pinuradi 120 5 3 3 70 1000 0 0 0 serotiny 
Pinusabi 200 10 2 2 40 1000 0 0 0 none 
Platrace 160 6 1 1 70 225 0.4 5 150 resprout 
Popubals 200 8 1 2 400 3000 0.5 0 200 resprout 
Pseumacr 700 20 2 4 60 600 0 0 0 none 
Pseumenz 1350 15 2 4 140 1400 0 0 0 none 
Queragri 300 10 2 5 50 2000 0.6 1 250 resprout 
Querchry 310 20 2 2 60 2000 0.6 1 300 resprout 
Querdoug 400 10 2 4 40 2000 0.25 1 200 resprout 
Quergarr 500 10 2 5 60 2000 0.6 1 500 resprout 
Querkell 500 30 2 4 50 2000 0.6 1 400 resprout 
Querloba 600 10 2 4 90 2000 0.6 1 200 resprout 
Querwisl 400 10 2 3 30 2000 0.6 1 200 resprout 
Sequsemp 2200 10 5 5 200 1000 0.8 1 2000 resprout 
Umbecali 200 30 3 1 36 120 0.6 1 200 resprout 
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Table A5.1: NECN succession species parameter

Species Functional N GDD GDD Min January Drought Leaf Epicormic 
  Type Fixer Min Max Temperature Tolerance Long Resprout 

Abiebrac 2 N 500 2450 -17 0.5 6 N 
Abiegran 2 N 500 2450 -14 0.5 7 N  
Acermacr 5 N 550 3600 -8 0.45 1 N 
Aesccali 5 N 1400 4400 2 0.6 1 N 

Alnurhom 5 Y 800 2950 -9 0.4 1 N 
Alnurubr 5 Y 400 2950 -15 0.4 1 N 

Arbumenz 5 N 900 3700 -4 0.5 1 N 
Lithdens 4 N 1200 3400 -2 0.6 4 N 
Pinuatte 2 N 1200 3600 -3 0.6 5 N 
Pinucoul 2 N 1800 4200 5 0.6 3.5 N 
Pinulamb 2 N 600 3600 -4 0.6 3 N 
Pinumono 2 N 1000 4000 -8 0.6 7 N 
Pinupond 2 N 400 2800 -15 0.6 5 N 
Pinuradi 2 N 815 2866 -4 0.6 4 N 
Pinusabi 2 N 1200 4400 0 0.6 4 N 
Platrace 5 N 1500 5000 7 0.5 1 N 
Popubals 5 N 200 2491 -30 0.267 1 N 
Pseumacr 2 N 1200 3600 5 0.6 5 Y 
Pseumenz 2 N 200 2800 -17 0.6 5 N 
Queragri 4 N 1800 4800 5 0.6 2 Y 
Querchry 4 N 900 4000 -3 0.6 2 Y 
Querdoug 5 N 2000 4600 2 0.6 1 N 
Quergarr 5 N 900 3400 -4 0.6 1 Y 
Querkell 5 N 1100 3800 -4 0.6 1 Y 
Querloba 5 N 2000 4800 4 0.6 1 Y 
Querwisl 4 N 800 4200 -1 0.6 1 N 
Sequsemp 1 N 400 4000 5 0.25 10 Y 
Umbecali 4 N 1100 4200 -1 0.5 2 Y 
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Table A5.2: NECN succession species parameters continued 

Species Lignin Content C:N Ratio 
  Leaf Fine Root Wood Coarse Root Leaf Fine Root Wood Coarse Root Litter 

Abiebrac 0.25 0.22 0.35 0.35 42 27 500 170 77 
Abiegran 0.25 0.22 0.35 0.35 42 27 500 170 77 
Acermacr 0.18 0.22 0.26 0.26 24 31 444 90 62 
Aesccali 0.18 0.23 0.23 0.21 27 48 352 200 40 

Alnurhom 0.22 0.15 0.26 0.26 22 25 246 90 28 
Alnurubr 0.22 0.15 0.26 0.26 22 25 246 90 28 

Arbumenz 0.22 0.26 0.26 0.26 25 45 412 90 100 
Lithdens 0.21 0.25 0.25 0.25 41 42 352 200 72 
Pinuatte 0.17 0.20 0.25 0.25 53 53 250 170 100 
Pinucoul 0.17 0.20 0.25 0.25 53 53 250 170 100 
Pinulamb 0.17 0.20 0.25 0.25 53 53 278 185 100 
Pinumono 0.17 0.20 0.25 0.25 53 53 250 170 100 
Pinupond 0.28 0.20 0.26 0.26 48 48 250 170 100 
Pinuradi 0.28 0.02 0.25 0.25 48 48 250 170 100 
Pinusabi 0.28 0.20 0.25 0.25 48 48 250 170 100 
Platrace 0.26 0.22 0.20 0.20 22 25 336 49 65 
Popubals 0.26 0.23 0.2 0.2 22 25 336 49 65 
Pseumacr 0.20 0.25 0.26 0.34 42 52 455 200 77 
Pseumenz 0.20 0.25 0.26 0.34 42 52 455 200 77 
Queragri 0.18 0.21 0.21 0.21 27 48 352 200 33 
Querchry 0.18 0.21 0.21 0.21 27 48 352 200 33 
Querdoug 0.18 0.23 0.23 0.23 27 48 352 200 33 
Quergarr 0.18 0.23 0.23 0.23 27 48 352 200 33 
Querkell 0.18 0.23 0.23 0.23 27 48 352 200 33 
Querloba 0.18 0.23 0.23 0.21 27 48 352 200 33 
Querwisl 0.18 0.21 0.21 0.21 27 48 352 200 33 
Sequsemp 0.28 0.35 0.35 0.35 49 82 455 214 100 
Umbecali 0.18 0.21 0.21 0.21 29 41 352 200 61 
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Name Index Temperature Parameters Leaf Leaf Area Index Parameters 
     Mean PDDF1 Max PPDF2 PPDF3 PPDF4 Fraction BTOLAI KLAI MAXLAI 

Redwood 1 23 40 1.4 4.6 0.3 0.01 
1000

0 15 
Conifer 2 27 42 1.3 4.4 0.3 0.01 8000 12 

Broad Leaf Evergreen 4 30 45 1 3.5 0.32 0.0001 2000 9 
Broad Leaf Deciduous 5 30 45 1 3.5 0.32 0.0001 2000 8 

Table A6.1: NECN succession functional group parameters. 

 

 

 

 

 

Name Drought Parameters Wood Monthly 
Age 

Mortality Drop 
Coarse 
Root 

Fine 
Root 

  PPRPTS2 PPRPTS3 Decay Rate Wood Mortality Shape Month Fraction Fraction 
Redwood 0.1 0.4 0.05 0.0008 15 9 0.18 0.29 
Conifer 0.1 0.2 0.05 0.0008 15 9 0.23 0.2 

Broad Leaf Evergreen 0.1 0.2 0.05 0.0008 15 10 0.2 0.25 
Broad Leaf Deciduous 0.1 0.1 0.05 0.0008 15 10 0.19 0.25 

Table A6.2: NECN succession functional group parameters continued 
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Table 7.1: Ecoregion parameters. Soil organic matter (SOM) is divided into four pools (SOM1-
surface, SOM1-soil, SOM2 and SOM3) based on the Century soil model (Parton et al. 
1983). Data derived from (“Web Soil Survey” 2014; N. P. Office 2017; Zhang et al. 2012; 
Fenn et al. 2003). 

 

 

 

 

 

Species Soil Percent Percent Field Wilting 
Storm 
Flow 

Base 
Flow Drainage 

 Depth Clay Sand Cap Point Fraction Fraction Class 
BS1 100 0.148 0.615 0.2229 0.092 0.2 0.2 0.8 
BS2 100 0.169 0.549 0.246 0.098 0.2 0.2 0.8 
BS3 100 0.207 0.514 0.263 0.111 0.2 0.2 0.8 
BS4 100 0.21 0.496 0.267 0.112 0.2 0.2 0.8 
BS5 100 0.198 0.489 0.265 0.107 0.2 0.2 0.8 
BS6 100 0.177 0.52 0.253 0.101 0.2 0.2 0.8 
BS7 100 0.195 0.526 0.257 0.107 0.2 0.2 0.8 
BS8 100 0.141 0.563 0.236 0.089 0.2 0.2 0.8 
BS9 100 0.2 0.52 0.26 0.108 0.2 0.2 0.8 
BS10 100 0.208 0.504 0.265 0.111 0.2 0.2 0.8 
BS11 100 0.203 0.519 0.261 0.11 0.2 0.2 0.8 
BS12 100 0.201 0.521 0.26 0.109 0.2 0.2 0.8 
BS13 100 0.202 0.524 0.26 0.109 0.2 0.2 0.8 
BS14 100 0.223 0.461 0.277 0.116 0.2 0.2 0.8 
BS15 100 0.179 0.564 0.246 0.102 0.2 0.2 0.8 
BS16 100 0.199 0.526 0.259 0.108 0.2 0.2 0.8 
BS17 100 0.171 0.533 0.249 0.099 0.2 0.2 0.8 
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Ecoregion Nitrogen Inputs Latitude SOM Decay Rates Denitrification 
Intercept Slope   surf SOM1 SOM2 SOM3   

BS1 0.0004 0.01 36 0.3 0.07 0.007 0.00005 0.001 
BS2 0.0004 0.01 36 0.3 0.07 0.007 0.00005 0.001 
BS3 0.0004 0.01 36 0.3 0.07 0.007 0.00005 0.001 
BS4 0.0004 0.01 36 0.3 0.07 0.007 0.00005 0.001 
BS5 0.0004 0.01 36 0.3 0.07 0.007 0.00005 0.001 
BS6 0.0004 0.01 36 0.3 0.07 0.007 0.00005 0.001 
BS7 0.0004 0.01 36 0.3 0.07 0.007 0.00005 0.001 
BS8 0.0004 0.01 36 0.3 0.07 0.007 0.00005 0.001 
BS9 0.0004 0.01 36 0.3 0.07 0.007 0.00005 0.001 
BS10 0.0004 0.01 36 0.3 0.07 0.007 0.00005 0.001 
BS11 0.0004 0.01 36 0.3 0.07 0.007 0.00005 0.001 
BS12 0.0004 0.01 36 0.3 0.07 0.007 0.00005 0.001 
BS13 0.0004 0.01 36 0.3 0.07 0.007 0.00005 0.001 
BS14 0.0004 0.01 36 0.3 0.07 0.007 0.00005 0.001 
BS15 0.0004 0.01 36 0.3 0.07 0.007 0.00005 0.001 
BS16 0.0004 0.01 36 0.3 0.07 0.007 0.00005 0.001 
BS17 0.0004 0.01 36 0.3 0.07 0.007 0.00005 0.001 

Table 7.2: Ecoregion parameters continued.  
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  SOM1 SOM1 SOM1 SOM1 SOM3 SOM2 SOM3 SOM3 Mineral 

  
C 
surface 

N 
surface C soil N soil C N C N N 

BS1 25 8 75 20 1250 200 1150 172 4 
BS2 25 8 75 20 1250 200 1150 172 4 
BS3 65 19 195 48 3250 474 2990 408 10 
BS4 145 35 435 88 7250 874 6670 751 18 
BS5 61 16 183 40 3050 399 2806 343 8 
BS6 55 13 165 33 2750 324 2530 279 7 
BS7 40 12 120 30 2000 300 1840 258 6 
BS8 40 12 120 30 2000 300 1840 258 6 
BS9 40 12 120 30 2000 300 1840 258 6 
BS10 40 12 120 30 2000 300 1840 258 6 
BS11 40 12 120 30 2000 300 1840 258 6 
BS12 62 17 186 43 3100 424 2852 365 9 
BS13 38 10 114 25 1900 250 1748 215 5 
BS14 38 10 114 25 1900 250 1748 215 5 
BS15 38 10 114 25 1900 250 1748 215 5 
BS16 38 10 114 25 1900 250 1748 215 5 
BS17 58 14 174 35 2900 349 2668 300 7 

Table 8: Initial ecoregion parameters. SOM = soil organic matter, C = carbon, N = nitrogen. All values in units g/m-2. 
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Species BS1 BS2 BS3 BS4 BS5 BS6 BS7 BS8 BS9 
Abiebrac 100 100 6238 2241 6238 100 2241 6238 6238 
Abiegran 100 100 3877 3877 100 100 100 100 100 
Acermacr 1163 100 14007 14007 14007 9221 9221 14007 14007 
Aesccali 12258 100 12258 12258 12258 4903 3547 12258 12258 

Alnurhom 100 100 5664 5664 5664 626 626 5664 5664 
Alnurubr 100 1163 9013 1163 9013 9013 100 1163 1163 

Arbumenz 27104 5820 31310 29235 31310 31310 27104 21522 27104 
Lithdens 40559 100 65973 40559 65973 65973 28274 33458 40559 
Pinuatte 100 100 4102 4102 4102 4102 4102 4102 4102 
Pinucoul 16667 7310 16667 16667 16667 7310 16667 7770 16667 
Pinulamb 100 1055 1055 100 1055 100 100 100 100 
Pinumono 100 4343 8743 100 4240 100 100 100 4343 
Pinupond 3167 100 13985 8401 13985 707 3167 13985 13985 
Pinuradi 63516 7065 63516 63516 7065 63516 63516 7065 63516 
Pinusabi 4809 9717 11782 11782 9717 9717 9717 11782 11782 
Platrace 3207 100 10737 10737 10737 1042 5039 10737 10737 
Popubals 100 100 8607 8607 8607 100 100 100 100 
Pseumacr 100 6284 6284 100 6284 100 100 100 100 
Pseumenz 4307 100 35916 35916 33789 33789 12579 6848 33789 
Queragri 46689 45685 68788 68788 64080 45685 50384 64080 64080 
Querchry 31704 33612 44072 33612 44072 44072 20648 44072 44072 
Querdoug 100 6255 17676 17040 17040 6081 3248 12951 20207 
Quergarr 100 100 31075 31075 12673 100 100 100 31075 
Querkell 14248 100 18921 18921 18921 3547 14248 14248 14248 
Querloba 100 100 15988 15988 15988 8420 15988 8420 15988 
Querwisl 18057 8912 55159 55159 55159 15200 55159 55159 55159 
Sequsemp 152535 100 152535 169535 152535 152535 152535 152535 152535 
Umbecali 21383 10066 34912 34912 32012 23627 21383 32012 32012 

Table 9.1: Maximum biomass. Values are in g m-2 and were estimated from the (GNN) database 
(http://lemma.forestry.oregonstate.edu/) 
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Species BS10 BS11 BS12 BS13 BS14 BS15 BS16 BS17 
Abiebrac 6238 6238 6238 2241 2241 2241 6238 100 
Abiegran 100 100 100 100 100 100 3877 100 
Acermacr 14007 14007 14007 14007 14007 14007 14007 100 
Aesccali 3970 4903 12258 3970 12258 3964 12258 100 

Alnurhom 5664 5664 5664 5664 5664 5664 5664 626 
Alnurubr 1163 1163 9013 1163 1163 1163 9013 100 

Arbumenz 27104 27104 27104 27104 23110 23110 27104 4657 
Lithdens 33458 40559 40559 34604 33458 28274 65973 28274 
Pinuatte 100 4102 4102 4102 4102 100 4102 100 
Pinucoul 7310 16667 16667 16667 16667 7310 16667 16667 
Pinulamb 1055 1055 1055 1055 100 1055 100 100 
Pinumono 100 4343 2557 100 100 100 100 100 
Pinupond 13985 13985 13985 3167 3167 3167 13985 100 
Pinuradi 63516 63516 63516 63516 63516 63516 63516 63516 
Pinusabi 4809 9717 11782 11782 11782 4809 9717 4809 
Platrace 3207 10737 10737 10737 10737 10737 10737 3207 
Popubals 100 100 8607 100 100 100 100 100 
Pseumacr 6284 6284 6284 6284 100 6284 100 100 
Pseumenz 3253 35916 35916 18453 18453 1182 35916 14957 
Queragri 64080 64080 68788 64080 64080 64080 64080 49173 
Querchry 44072 44072 44072 33612 44072 31675 44072 100 
Querdoug 100 17040 20207 20508 17040 12951 5906 100 
Quergarr 100 12673 31075 12673 31075 12673 31075 100 
Querkell 12852 17187 18921 14248 14248 14248 14248 100 
Querloba 8420 15081 20847 15988 15988 15081 8420 100 
Querwisl 17829 55159 55159 55159 33771 32062 55159 11865 
Sequsemp 152535 2E+05 152535 152535 152535 152535 152535 127835 
Umbecali 32012 32012 34912 22216 32012 23183 32012 21383 

Table 9.2: Maximum biomass continued. 
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Species 
All 

Ecoregions 
Abiebrac 250 
Abiegran 250 
Acermacr 175 
Aesccali 175 

Alnurhom 175 
Alnurubr 150 

Arbumenz 150 
Lithdens 200 
Pinuatte 250 
Pinucoul 250 
Pinulamb 250 
Pinumono 250 
Pinupond 250 
Pinuradi 250 
Pinusabi 250 
Platrace 250 
Popubals 250 
Pseumacr 300 
Pseumenz 300 
Queragri 150 
Querchry 150 
Querdoug 150 
Quergarr 150 
Querkell 150 
Querloba 150 
Querwisl 150 
Sequsemp 250 
Umbecali 150 

Table A10:  Monthly maximum above-ground net primary productivity (ANPP) (g m-2). 

 

TransmissionRate 5 
AcquisitionRate 0.45 
DispersalType STATIC 

DispersalKernel Power Law 
DispersalMaxDist 37500 

AlphaCoef 2.6 
Table A11: EDA transmission parameters 
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SRD 
Modifer Duration Type 

-0.25 5 Fire  
Table 12: Disturbance modifiers for EDA site host index (SHI). 
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  Host Index (Competency) Host Susceptibility Change Output 

 Low Medium High Low Medium High Fuel Mortality 
Species Age Score Age Score Age Score Age Mort Prob Age Mort Prob Age Mort Prob     

Umbecali 5 3 15 6 25 10 999 0 999 0 999 0 no no 
Lithdens 5 2 20 5 60 8 5 0.14 15 0.25 30 0.3 yes yes 

Sequsemp 50 2 999 4 999 7 999 0 999 0 999 0 no no 
Acermacr 50 1 999 4 999 7 999 0 999 0 999 0 no no 
Aesccali 50 1 999 4 999 7 999 0 999 0 999 0 no no 

Arbumenz 50 1 999 4 999 7 999 0 999 0 999 0 no no 
Pseumenz 50 1 999 4 999 7 999 0 999 0 999 0 no no 
Querchry 999 1 999 4 999 7 20 0.01 25 0.05 50 0.1 yes yes 
Querkell 999 1 999 4 999 7 20 0.01 25 0.05 40 0.16 yes yes 
Queragri 999 1 999 4 999 7 20 0.01 25 0.05 50 0.1 yes yes 

Table A13: EDA species parameters.  
100 
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Index Base Type 
Surface 

Type 
Ignite 
Probability a b c q BUI maxBE CBH 

1 Conifer C1 0.1 90 0.0649 4.5 0.9 72 1.076 2 
2 Conifer C2 0.1 110 0.0282 1.5 0.7 64 1.321 3 
3 Conifer C3 0.1 110 0.0444 3 0.75 62 1.261 8 
4 Conifer C4 0.1 110 0.0293 1.5 0.8 66 1.184 4 
5 Conifer C5 0.1 30 0.0697 4 0.8 56 1.22 18 
6 Conifer C6 0.1 30 0.08 3 0.8 62 1.197 62 
7 Conifer C7 0.1 45 0.0305 2 0.85 106 1.134 10 
8 Deciduous D1 0.1 30 0.0232 1.6 0.9 32 1.179 0 
9 Conifer M1 0.1 0 0 0 0.8 50 1.25 0 

10 Conifer M2 0.1 0 0 0 0.8 50 1.25 6 
11 Conifer M3 0.1 0 0 0 0.8 50 1.25 6 
12 Conifer M4 0.1 0 0 0 0.8 50 1.25 6 
13 Slash S1 0.1 75 0.0297 1.3 0.75 38 1.46 0 
14 Slash S2 0.1 40 0.0438 1.7 0.75 63 1.256 0 
15 Slash S3 0.1 55 0.0829 3.2 0.75 31 1.59 0 
16 Open O1a 0.1 190 0.031 1.4 1 1 1 0 
17 Open O1b 0.1 250 0.035 1.7 1 1 1 0 

Table A14: Fuel type parameters. 
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Fuel 
Type Base Fuel Age Range Species 

5 Conifer 0 to 1000 Pinumono Pinuatte Pinucoul Pinulamb Pinuradi Pinusabi 
7 Conifer 100 to 1350 Abiebrac Abiegran Pinupond Pseumacr Pseumenz 

8 Deciduous 0 to 600 
Acermacr Aesccali Alnurhom Alnurubr Arbumenz Platrace Popubals  

Queragri Querchry Querdoug Quergarr Querkell Querloba Querwisl Umbecali 
9 Conifer 0 to 1000 Sequsemp 
10 Conifer 1000 to 2200 Sequsemp 
16 Open 0 to 100 Abiebrac Abiegran Pinupond Pseumacr Pseumenz 

Table A15: Species fuel type. 

 

 

 

 

 

 

 

 

 

 

 

 

 
102 

 



103 

APPENDIX 2: SUPPLEMENTAL FIGURES/MOVIES 
 

 

Figure A1: Bay laurel to tanoak ratio over time movie. 

 

 

https://www.youtube.com/watch?v=pIMD_0OeaU8
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Figure A2: Bay laurel to coast live oak ratio over time movie. 

 

 

Figure A3: Bay laurel to California black oak ratio over time movie. 

https://www.youtube.com/watch?v=nN0Oh_klgE4
https://www.youtube.com/watch?v=ivrM3xhRtP0
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